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ABSTRACT
In the recent years JSON affirmed as a very popular data
format for representing massive data collections. JSON data
collections are usually schemaless. While this ensures sev-
eral advantages, the absence of schema information has im-
portant negative consequences: the correctness of complex
queries and programs cannot be statically checked, users
cannot rely on schema information to quickly figure out the
structural properties that could speed up the formulation of
correct queries, and many schema-based optimizations are
not possible.

In this paper we deal with the problem of inferring a
schema from massive JSON datasets. We first identify a
JSON type language which is simple and, at the same time,
expressive enough to capture irregularities and to give com-
plete structural information about input data. We then
present our main contribution, which is the design of a schema
inference algorithm, its theoretical study, and its implemen-
tation based on Spark, enabling reasonable schema infer-
ence time for massive collections. Finally, we report about
an experimental analysis showing the effectiveness of our ap-
proach in terms of execution time, precision, and conciseness
of inferred schemas, and scalability.

CCS Concepts
•Information systems→ Semi-structured data; Data
model extensions; •Theory of computation → Type
theory; Logic;

Keywords
JSON, schema inference, map-reduce, Spark, big data col-
lections

1. INTRODUCTION
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Big Data applications typically process and analyze very
large structured and semi-structured datasets. In many of
these applications, and in those relying on NoSQL docu-
ment stores in particular, data are represented in JSON
(JavaScript Object Notation) [10], a data format that is
widely used thanks to its flexibility and simplicity.

JSON data collections are usually schemaless. This en-
sures several advantages: in particular it enables applica-
tions to quickly consume huge amounts of semi-structured
data without waiting for a schema to be specified. Unfor-
tunately, the lack of a schema makes it impossible to stati-
cally detect unexpected or unwanted behaviours of complex
queries and programs (i.e., lack of correctness), users cannot
rely on schema information to quickly figure out structural
properties that could speed up the formulation of correct
queries, and many schema-based optimizations are not pos-
sible.

In this paper we deal with the problem of inferring a
schema from massive JSON datasets. Our main goal in this
work is to infer structural properties of JSON data, that is,
a description of the structure of JSON objects and arrays
that takes into account nested values and the presence of
optional values. These are the main properties that charac-
terize semi-structured data, and having a tool that ensures
fast, precise, and concise inference is crucial in modern appli-
cations characterized by agile consumption of huge amounts
of data coming from multiple and disparate sources.

The approach we propose here is based on a JSON schema
language able to capture structural irregularities and com-
plete structural information about input data. This lan-
guage resembles and borrows mechanisms from existing pro-
posals [20], but it has the advantage to be simple yet very
expressive.

The proposed technique infers a schema that provides a
global description of the whole input JSON dataset, while
having a size that is small enough to enable a user to consult
it in a reasonable amount of time, in order to get a global
knowledge of the structural and type properties of the JSON
collection. The description of the input JSON collection is
global in the sense that each path that can be traversed in
the tree-structure of each input JSON value can be traversed
in the inferred schema as well. This property is crucial to
enable a series of query optimization tasks. For instance,
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thanks to this property JSON queries [1, 9] can be optimized
at compile-time by means of schema-based path rewriting
and wildcard expansion [16] or projection [8]. These opti-
mizations are not possible if the schema hides some of the
structural properties of the data, as happens in related ap-
proaches [22].

At the same time, our inferred schemas precisely capture
the presence of optional and mandatory fields in collection
of JSON records. Thanks to our approach, the user has
a precise knowledge about i) all possible fields of records,
ii) optional ones, and iii) mandatory ones. Property i) is
crucial, as thanks to it the user can avoid time consum-
ing, error-prone (approximated) data explorations to realize
what fields can be really selected, while property ii) guides
the user towards the adoption of code to handle the op-
tional presence of certain fields; property iii), finally, indi-
cates fields that can be always selected for each record in
the collection.

A precise schema, like the one that can be inferred by our
approach, can be very useful when very large datasets must
be analyzed or queried with main-memory tools: indeed, by
identifying the data requirements of a query or a program
through a simple static analysis technique, it is possible to
match these requirements with the schema in order to load
in main memory only those fragments of the input dataset
that are actually needed, hence improving both scalability
and performance.

It is worth stressing that, even if in some cases JSON data
feature a rather regular structure, the only alternative way
for the user to be sure that all possible (optional) fields are
identified is to explore the entire dataset either manually or
by means of scripts that must be manually adapted to each
particular JSON source, with weak guarantees of efficiency
and soundness. Our approach instead applies to any JSON
data collection, and is shown to be sound and effective on
massive datasets. In addition, it is worth observing that,
while in many cases processed JSON data come from re-
mote, uncontrolled sources, in other particular cases JSON
data are generated by applications whose code is known. In
these cases a wider knowledge is available about the struc-
ture of the program output, but again schema inference is
important as it can highlight subtle structural properties
that can arise only in outputs of some particular program
runs; also, when the code starts being complex, it is difficult
to precisely figure out the structure of output JSON data. In
some other cases, remote JSON sources can be accessed by
APIs (e.g., Twitter APIs) that sometimes are provided with
some schema descriptions. Unfortunately, these descriptions
are often incomplete, some fields are often ignored, and the
distinction between optional and mandatory fields is often
omitted.

Our Contribution. Our main contribution is the design of
a schema inference algorithm and its implementation based
on Apache Spark [7], in order to ensure reasonable schema
inference time for massive collections. Our schema inference
approach consists of two main steps. In the first one, an in-
put collection of JSON values is processed by a Map trans-
formation in order to infer a simple type for each value. The
resulting output is processed by a Reduce action, which fuses
inferred types that are not necessarily identical, but that
share similar structure. This step relies on a binary function
that takes two JSON types as input and fuses them. This

function inspects the two input types and identifies parts
that are mandatory, optional, or repeated in the types, in
order to obtain a type which is a super type of the two input
types (it includes them), but that is potentially much more
succinct than their simple union. A theoretical study shows
that the fusion function is correct and, very importantly,
associative.

Associativity is crucial as it allows Spark to safely dis-
tribute and parallelize the fusion of a massive collection of
values. Associativity is also important to enable incremen-
tal evolution of the inferred schema under updates. In many
applications the JSON sources are dynamic, and new values
can be added at any time, with a structure that can differ
from that already inferred for previous records. In this situ-
ation, in the case of insertion of a new record in an existing
record collection, thanks to associativity, we simply need to
fuse the existing schema with the schema of the new record.
For incremental maintenance under other forms of updates,
in the usual case that a massive dataset is kept partitioned
and the updated parts are known, it just suffices to re-infer
the schema for the updated parts and to fuse them with
previously inferred schemas for unchanged parts.

Our last contribution consists of an implementation of
the proposed approach based on Spark, as well as an ex-
perimental evaluation validating our claims of succinctness,
precision, and efficiency. We based our tests on 4 real JSON
datasets. Our experiments confirm that our schema infer-
ence algorithm returns very succinct yet precise schemas,
even in the presence of poorly organized data (i.e., Wikipedia
dataset). Furthermore, a scalability analysis reveals that
our approach ensures reasonable execution times, and that
a simple partitioning strategy allows the performance to be
improved.

Paper Outline. The paper is organized as follows. In Sec-
tion 2 we illustrate some scenarios that motivate our work.
In Section 3, then, we survey existing works. In Section 4,
we describe the data model and the schema language we use
here, while in Section 5 we present our schema inference ap-
proach. In Sections 6 and 7, finally, we show the results of
our experimental evaluation and draw our conclusions.

2. MOTIVATION AND OVERVIEW
This section overviews the two steps of our schema fu-

sion approach: type inference and type fusion. To this end,
we first briefly recall the general syntax and semantics of
JSON values. As in most semi-structured models, JSON dis-
tinguishes between basic values, which range over numbers
(e.g., 123), strings (e.g., “abc”), and booleans (i.e., true/-
false), and complex values which can be either (unordered)
sets of key/value pairs called records or (ordered) lists of
values called arrays. The only constraint that JSON values
must obey is key uniqueness within each record. Arrays can
mix both basic and complex types. In the following, we will
use the term mixed-content arrays for arrays mixing atomic
and complex values.

A sample JSON record is illustrated in Figure 1. Syn-
tactically, records use the conventional curly braces symbols
whereas arrays use square brackets; finally, string values and
keys are wrapped inside quotes in JSON (but we will avoid
quotes around keys in our formal syntax).
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{"A": 123

"B": "The ..."

"C": false

"D": ["abc", "cde", "fr12"]

}

Figure 1: A JSON record r1.

Type inference.
Type inference, during the Map phase, is dedicated to

inferring individual types for the input JSON values, and
yields a set of distinct types to be fused during the Reduce
phase. Some proposals of JSON schemas exist in the liter-
ature. With one exception [20], none of them uses regular
expressions which, as we shall illustrate, are important for
concisely representing types for array values. Moreover, a
clean formal semantics specification of types is often miss-
ing in these works, hence making it difficult to understand
their precise meaning.

The type language we adopt is meant to capture the core
features of the JSON data model with an emphasis on suc-
cinctness. Intuitively, basic values are captured using stan-
dard data types (i.e., String, Number, Boolean), complex
values are captured by introducing record and array type
constructors, and a union type constructor is used to add
flexibility and expressive power. To illustrate the type lan-
guage, observe the following type that is inferred for the
record r1 given in Figure 1:

{A : Num, B : Str, C : Bool, D : [Str, Str, Str]}

As we will show, the initial type inference is a quite simple
and fast operation: it consists of a simple traversal of the
input values that produces a type that is isomorphic to the
value itself.

Type fusion.
Type fusion is the second step of our approach and consists

in iteratively merging the types produced during the Map
phase. Because it is performed during the Reduce phase in
a distributed fashion, type fusion relies on a fusion operator
which enjoys the commutativity and associativity proper-
ties. This fusion operator is invoked over two types T1 and
T2, and produces a supertype of the inputs. To do so, the
fusion collapses the parts of T1 and T2 that are identical and
preserves the parts that are distinct in both types. To this
end, T1 and T2 are processed in a synchronised top-down
manner in order to identify common parts. The main idea
is to represent only once what is common, and, at the same
time, to preserve all the parts that differ.

Fusion treats atomic types, record types, and array types
differently, as follows.

• Atomic types: the fusion of atomic types is obvious, as
identical types are collapsed while different types are
combined using the union operator.

• Record types: recall that valid record types enjoy key
uniqueness. Therefore, the fusion of T1 and T2 is led
by two rules:

(R1) matching keys from both types are collapsed and
their respective types are recursively fused;

(R2) keys without a match are deemed optional in the

resulting type and decorated with a question mark
?.

To illustrate those cases, assume that T1 and T2 are,
respectively, {A:Str, B:Num} and {B:Bool, C:Str}.
The only matching key is “B” and hence its two atomic
types Num and Bool are fused, which yields Num+Bool.
The other keys will be optional according to rule R2.
Hence, fusion yields the type

T12 = {(A:Str)?, B:Num + Bool, (C:Str)?}

Assume now that T12 is fused with

T3 = {A:Null, B:Num}

Rules R1 and R2 need to be slightly adapted to deal
with optional types. Intuitively, we should simply con-
sider that optionality ‘?’ prevails over the implicit total
cardinality ‘1’. The resulting type is thus

T123 = {(A:Str + Null)?, B:Num + Bool, (C:Str)?}.

Fusion of nested records eventually associates keys with
types that may be unions of atomic types, record types,
and array types. We will see that, when such types
are merged, we separately merge the atomic types, the
record types, and the array types, and return the union
of the result. For instance, the fusion of types

{l:(Bool + Str + {A:Num}}

and

{l:(Bool + {A:Str, B:Num})}

yields

{l:(Bool + Str + {A:(Num + Str), (B:Num)?}}.

• Array types: array fusion deserves special attention. A
particular aspect to consider is that an array type ob-
tained in the first phase may contain several repeated
types, and may feature mixed-content. To deal with
this, before fusing types we perform a kind of simpli-
fication on bodies by using regular expression types,
and, in particular, union + and repetition ∗. To illus-
trate this point, consider the array value

[′′abc′′,′′ cde′′, {′′E′′ :′′fr′′, ′′F ′′ : 12}],

containing two strings followed by a record (mixed-
content). The first phase infers for this value the type

[Str, Str, {E:Str, F :Num}].

This type can be actually simplified. For instance, one
can think of a partition-based approach which collapses
adjacent identical types into a star-guarded type, thus
transforming

[Str, Str, {E:Str, F :Num}]

into

[(Str)∗, {E:Str, F :Num}]

by collapsing the string types. The resulting schema
is indeed succinct and precise. However, succinctness
cannot be guaranteed after fusion. For instance, if that
type was to be merged with

[{E:Str, F :Num}, Str, Str],
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where strings and record swapped positions, succinct-
ness would be lost because we need to duplicate at least
one sub-expression, (Str)∗ or {E:Str, F :Num}. As we
are mainly concerned with generating types that can
be human-readable, we trade some precision for suc-
cinctness and do not account for position anymore. To
achieve this, in our simplification process (made before
fusing array types) we generalize the above partition-
based solution by returning the star-guarded union of
all distinct types expressed in an array. So, simplifica-
tion for either

[Str, Str, {E:Str, F :Num}]

or

[{E:Str, F :Num}, Str, Str]

yields the same type

S = [(Str + {E:Str, F :Num})∗].

After the array types have been simplified in this man-
ner, they are fused by simply recursively fusing their
content types, applying the same technique described
for record types: when the body type is a union type,
we separately merge the atomic components, the array
components, and the record components, and take the
union of the results.

3. RELATED WORK
The problem of inferring structural information from JSON

data collections has recently gained attention of the database
research community. The closest work to ours is the very
preliminary investigation that we presented in [12]. While
[12] only provides a sketch of a MapReduce approach for
schema inference, in this paper we present results about a
much deeper study. In particular, while in [12] a declarative
specification of only a few cases of the fusion process is pre-
sented, in this paper we fully detail this process, provide a
formal specification as well as a fusion algorithm. Further-
more, differently from [12], we present here an experimental
evaluation of our approach validating our claims of paral-
lelizability and succinctness.

In [22] Wang et al. present a framework for efficiently man-
aging a schema repository for JSON document stores. The
proposed approach relies on a notion of JSON schema called
skeleton. In a nutshell, a skeleton is a collection of trees de-
scribing structures that frequently appear in the objects of
JSON data collection. In particular, the skeleton may to-
tally miss information about paths that can be traversed in
some of the JSON objects. In contrast, our approach enables
the creation of a complete yet succinct schema description
of the input JSON dataset. As already said, having such
a complete structural description is of vital importance for
many tasks, like query optimisation, defining and enforc-
ing access-control security policies, and, importantly, giving
the user a global structural vision of the database that can
help her in querying and exploring the data in an effective
way. Another important application of complete schema in-
formation is query type checking: as illustrated in [12] our
inferred schemas can be used to make type checking of Pig
Latin scripts much stronger.

In a very recent work [20], motivated by the need of laying
the formal foundations for the JSON Schema language [3],
Pezoa et al. present the formal semantics of that language,

as well as a theoretical study of its related expressive power
and validation problem. While that work does not deal with
the schema inference problem, our schema language can be
seen as a core part of the JSON Schema language studied
therein, and shares union types and repetition types with
that one. These constructors are at the basis of our tech-
nique to collapse several schemas into a more succinct one.
An alternative proposal for typing JSON data is JSound
[2]. That language is quite restrictive wrt ours and JSON
Schemas: for instance it lacks union types.

In a very recent work [13] Abadi and Discala deal with
the problem of automatic transforming denormalised, nested
JSON data into normalised relational data that can be stored
into a RDBMS; this is achieved by means of a schema gener-
ation algorithm that learns the normalised, relational schema
from data. Differently from that work, we deal with schemas
that are far from being relational, and are closer to tree reg-
ular grammars [17]. Furthermore, the approach proposed in
[13] ignores the original structure of the JSON input dataset
and, instead, depends on patterns in the attribute data val-
ues (functional dependencies) to guide its schema genera-
tion. So, that approach is complementary to ours.

In [15] Liu et al. propose storage, querying, and indexing
principles enabling RDBMSs to manage JSON. The paper
does not deal with schema inference, but indicates a pos-
sible optimisation of their framework based on the identifi-
cation of common attributes in JSON objects that can be
captured by a relational schema for optimization purposes.
In [21] Scherzinger et al. propose a plugin to track changes in
object-NoSQL mappings. The technique is currently limited
to only detect mismatches between base types (e.g., Boolean,
Integer, String), and the authors claim that a wider knowl-
edge of schema information is needed to enable the detection
of other kinds of changes, like, for instance, the removal or
renaming of attributes.

It is important to state that the problem of schema infer-
ence has already been addressed in the past in the context
of semi-structured and XML data models. In [18] and [19],
Nestorov et al. describe an approach to extract a schema
from semistructured data. They propose an object-oriented
type system where nodes are captured by classes built start-
ing from nodes sharing the same incoming and outcoming
edges and where data edges are generalized to relations be-
tween the classes. In [19], the problem of building a type
out a of a collection of semistructured documents is studied.
The emphasis is put on minimizing the size of the resulting
type while maximizing its precision. Although that work
considers a very general data model captured by graphs, it
does not suit our context. Firstly, we consider the JSON
model, that is tree-shaped by nature and that features spe-
cific constructs such as arrays that are not captured by the
semi-structured data model. Secondly, we aim at processing
potentially large datasets efficiently, a problem that is not
directly addressed in [18] and [19].

More recent efforts on XML schema inference (see [14] and
works cited therein) are also worth mentioning since they
are somewhat related to our approach. The aim of these ap-
proaches is to infer restricted, yet expressive enough forms
of regular expressions starting from a positive set of strings
representing element contexts of XML documents. While
XML and JSON both allow one to represent tree-shaped
data, they have radical differences that make existing XML
related approaches difficult to apply to the JSON setting.
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Similar remarks hold for related approaches for schema in-
ference for RDF [11]. Furhermore, none of these approaches
is designed to deal with massive datasets.

4. DATA MODEL AND TYPE LANGUAGE
This section is devoted to formalizing the JSON data

model and the schema language we adopt.
We represent JSON values as records and arrays, whose

abstract syntax is given in Figure 2. Basic values B com-
prise null value, booleans, numbers n, and strings s. As
outlined in Section 2, records are sets of fields, each field be-
ing an association of a value V to a key l whereas arrays are
sequences of values. The abstract syntax is practical for the
formal treatment, but we will typically use the more read-
able notation introduced at the bottom of Figure 2, where
records as represented as {l1 : V1, . . . , ln : Vn} and arrays
are represented as [V1, . . . , Vn].

V ::= B | R | A Top-level values
B ::= null | true | false | n | s Basic values
R ::= ERec | Rec(l, V,R) Records
A ::= EArr | Arr(V,A) Arrays

Semantics:

Records
Domain : FS(Keys ×Values)

JERecK M
= ∅

JRec(l, V,R)K M
= {(l, V )} ∪ JRK

Arrays
Domain : Lists(Values)

JEArrK M
= [ ]

JArr(V,A)K M
= JV K :: A

Notation:

{l1 : V1, . . . , ln : Vn}
M
= Rec(l1, V1, . . .Rec(ln, Vn,ERec))

[V1, . . . , Vn]
M
= Arr(V1, . . .Arr(Vn,EArr))

Figure 2: Syntax of JSON data.

In JSON, a record is well-formed only if all its top-level
keys are mutually different. In the sequel, we only consider
well-formed JSON records, and we use Keys(R) to denote
the set of the top-level keys of R.

Since a record is a set of fields, we identify two records
that only differ in the order of their fields.

The syntax of the JSON schema language we adopt is de-
picted in Figure 3. The core of this language is captured by
the non-terminals BT , RT , and AT which are a straightfor-
ward generalization of their B,R and A counterparts from
the data model syntax.

As previously illustrated in Section 2, we adopt a very
specific form of regular types in order to prepare an array
type for fusion. Before fusion, an array type [T1, . . . , Tn]
is simplified as [(T1 + . . . + Tn)∗], or, more precisely, as
[LFuse(T1, . . . , Tn)∗]: instead of giving the content type el-
ement by element as in [T1, . . . , Tn], we just say that it con-
tains a sequence of values all belonging to LFuse(T1, . . . , Tn)
that will be defined as a compact super-type of T1+ . . .+Tn.
This simplification is allowed by the fact that, besides the

basic array types AT = [T1, . . . , Tn], we also have the sim-
plified array type SAT = [T∗], where T may be any type,
including a union type.

A field OptRecT (l, T, . . .), represented as l : T? in the
simplified notation, represents an optional field, that is, a
field that may be either present or absent in a record of
the corresponding type. For example, a type {l : Num?,m :
(Str + Null)} describes records where l is optional and, if
present, contains a number, while the m field is mandatory
and may contain either null or a string.

A union type T +U contains the union of the values from
T and those from U . The empty type ε denotes the empty
set.1

We define now schema semantics by means of the function
J K, defined as the minimal function mapping types to sets
of values that satisfies the following equations. For the sake
of simplicity we omit the case of basic types.

Auxiliary functions

S0 M
= {[ ]}

Sn+1 M
= {[V ] :: a | V ∈ S, a ∈ Sn[ ]}

S∗
M
=

⋃
i∈N Si

Records
Domain : Sets(FS(Keys ×Values))

JERecT K M
= {∅}

JRecT (l, T,RT )K M
= {{(l, V )} ∪R | V ∈ JT K, R ∈ JRT K}

JOptRecT (l, T,RT )K M
= JRecT (l, T, RT )K ∪ JRT K

Arrays and Simplified Arrays
Domain : Sets(Lists(Values))

JEArrT K M
= {[ ]}

JArrT (T,AT )K M
= {[V ] :: A | V ∈ JT K, A ∈ JAT K}

J[T∗]K M
= JT K∗

Union types

JεK M
= ∅

JT + UK M
= JT K ∪ JUK

The basic idea behind our type fusion mechanism is that
we always generalize the union of two record types to one
record type containing the keys of both, and similarly for
the union of two array types. We express this idea as ‘merg-
ing types that have the same kind’. The following kind()
function that maps each type to an integer ranging over
{0, . . . , 5} is used to implement this approach.

kind(Null) = 0
kind(Bool) = 1
kind(Num) = 2

kind(Str) = 3
kind(RT ) = 4
kind(AT ) = kind(SAT ) = 5

In the sequel, generic types are indicated by the metavari-
ables T,U,W , while BT , RT , and AT are reserved for basic
types, record types, and array types.

1The type ε is never used during type inference, since no
value belongs to it. In greater detail, ε is actually a tech-
nical device that is only useful when an empty array type
EArrT is simplified, before fusion, into a simplified array
type: EArrT (that is, the type [ ]) is simplified as [ε∗], which
has the same semantics as EArrT , and our algorithms never
insert ε in any other position.
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T ::= BT | RT | AT | SAT | ε | T + T Top-level types
BT ::= Null | Bool | Num | Str Basic types
RT ::= ERecT | RecT (l, T,RT ) | OptRecT (l, T,RT ) Record types
AT ::= EArrT | ArrT (T,AT ) Array types

SAT ::= [T∗] Simplified array types

Notation:

{l1 : T1[?], . . . , ln : Tn[?]} M
= [Opt ]RecT (l1, T1, . . . [Opt ]RecT (ln, Tn,ERecT )) ‘?’ is translated as ‘Opt’

[ ]
M
= EArrT

[T1, . . . , Tn]
M
= ArrT (T1, . . .ArrT (Tn,EArrT ))

Figure 3: Syntax of the JSON type language.

Later on, in order to express correctness of the fusion pro-
cess we rely on the usual notion of subtyping (type inclu-
sion).

Definition 4.1 (Subtyping) Let T and U be two types.
Then T is a subtype of U , denoted with T <: U , if and only
if JT K ⊆ JUK.

The subtyping relation is a partial order among types.
We do not use any subtype checking algorithm in this work,
but we exploit this notion to state properties of our schema
inference approach.

5. SCHEMA INFERENCE
As already said, our approach is based on two steps: i)

type inference for each single value in the input JSON data
collection, and ii) fusion of types generated by the first step.
We present these steps in the following two sections.

5.1 Initial Schema Inference
The first step of our approach consists of a Map phase

that performs schema inference for each single value of the
input collection. Type inference for single values is done ac-
cording to the inference rules in Figure 4. Each rule allows
one to infer the type of a value indicated in the conclusion
(part below the line) in terms of types recursively deter-
mined in the premises (part above the line). Rules with no
premises deal with the terminal cases of the recursive typing
process, which infers the type of a value by simply reflect-
ing the structure of the value itself. Note the particular
case of record values where uniqueness of attribute keys li
is checked. Also notice that these rules are deterministic:
each possible value matches at most the conclusion of one
rule. These rules, hence, directly define a recursive typing
algorithm. The following lemma states soundness of value
typing, and it can be proved by a simple induction.

Lemma 5.1 For any JSON value V , ` V ; T implies
V ∈ JT K.

It is worth noticing that schema inference done in this phase
does not exploit the full expressivity of the schema language.
Union types, optional fields, and repetition types (the Sim-
plified Array Types) are never inferred, while these types will
be produced by the schema fusion phase described next.

5.2 Schema Fusion

The second phase of our approach is meant to fuse all the
types inferred in the first Map phase. The main mechanism
of this phase is a binary fusion function, that is commutative
and transitive. These properties are crucial as they ensure
that the function can be iteratively applied over n types in
a distributed and parallel fashion.

When fusion is applied over two types T and U , it outputs
either a single type obtained by recursively merging T and
U if they have the same kind, or the simple union T + U
otherwise. Since fusion may result in a union type, and since
this is in turn fused with other types, possibly obtained by
fusion itself, the fusion function has to deal with the case
where union types T = T1 + . . .+Tn and U = U1 + . . .+Um

need to be fused. In this case, our fusion function identifies
and fuses types Tj and Uh with matching kinds, while types
of non-matching kinds are just moved unchanged into the
output union type. As we will see later, the fusion process
ensures the invariant property that in each output union
type a given kind may occur at most once in each union;
hence, in the two union types above, n ≤ 6 and m ≤ 6,
since we only have six different kinds.

The auxiliary functions KMatch and KUnmatch, defined
in Figure 5, respectively have the purpose of collecting pairs
of types of the same kind in two union-types T1 and T2, and
of collecting non-matching types. In Figure 5, two similar
functions FMatch and FUnmatch are defined. They identify
and collect fields having matching/unmatched keys in two
input body record types RT1 and RT2.

These two functions are based on the auxiliary functions
◦(T ) and �(RT ). The function ◦(T ) transforms a union type
T1 + . . .+ Tn into the multiset of its addends, i.e non-union
types T1, . . . , Tn. The function �(RT ) transforms a record
type {(l1:T1)m1 , . . . (ln:Tn)mn} into the set of its fields —
in this case we can use a set since no repetition of keys is
possible. Here we use (l:T )1 to denote a mandatory field,
(l:T )? to denote an optional field, and the symbols m and n

for metavariables that range over {1, ?}.
We are now ready to present the fusion function. Its for-

mal specification is given in Figure 6. We use the function
⊕ (S), that is a right inverse of ◦(T ) and rebuilds a union
type from a multiset of non-union types, and the function
©(S), that is a right inverse of �(RT ) and rebuilds a record
type from a set of fields. We also use min(m, n), which is
a partial function that picks the “smallest” cardinality, by
assuming ? < 1.

The general case where types T1 and T2 that may be union
types have to be fused is dealt with by the Fuse(T1, T2)
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(TypeNull)

` null ; Null

(TypeTrueBool)

` true ; Bool

(TypeNumber)

` n; Num

(TypeString)

` s; Str

(TypeEmptyRec)

` ERec ; ERecT

(TypeEmptyArray)

` EArr ; EArrT

(TypeRec)
` V ; T `W ; RT l /∈ Keys(RT )

` Rec(l, V,W ) ; RecT (l, V,RT )

(TypeArray)
` V ; T `W ; AT

` Arr(V,W ) ; ArrT (T,AT )

Figure 4: Type inference rules.

◦(T ) : transforms a type into a multiset of non-union types, where ∪b is multiset union

◦(T1 + T2) := ◦(T1) ∪b ◦(T2)
◦(ε) := { }
◦(T ) := {T} when T 6= T1 + T2 and T 6= ε

KMatch(T1, T2) := {(U1, U2) | U1 ∈ ◦(T1), U2 ∈ ◦(T2), kind(U1) = kind(U2)}
KUnmatch(T1, T2) := {U1 ∈ ◦(T1) | ∀U2 ∈ T2. kind(U1) 6= kind(U2)}

∪{U2 ∈ ◦(T2) | ∀U1 ∈ ◦(T1). kind(U2) 6= kind(U1)}

�(RT ) : transforms a record type into a set of fields

�(ERecT ) := ∅
�(RecT (l, T,RT )) := {(l:T )1} ∪ �(RT )
�(OptRecT (l, T, RT )) := {(l:T )?} ∪ �(RT )

FMatch(RT1, RT2) := {((l:T )n, (k:U)m) | (l:T )n ∈ �(RT1) and (k:U)m ∈ �(RT2) and l = k}
FUnmatch(RT1, RT2) := {(l:T )n ∈ �(RT1) | ∀(k:U)m ∈ �(RT2). l 6= k} ∪ {(l:T )n ∈ �(RT2) | ∀(k:U)m ∈ �(RT1). l 6= k}

Figure 5: Auxiliary functions.

function. According to what was said before, it recursively
applies LFuse to pairs of types coming from T1 and T2 and
having the same kind, while unmatched types are simply
returned in the output union type.

The specification of LFuse is captured by lines 2 to 7. Line
2 deals with the case where the input types are two identical
basic types. In this case, the fusion yields the input basic
type. Line 3 deals with the case where the input types are
records. In this case, pairs of fields whose keys match are
recursively fused by calling LFuse, the lowest cardinality
is chosen for each, so that a field is mandatory only if is
mandatory in both record types, whereas the unmatching
fields are copied in the result type as optional fields.

The remaining lines of LFuse are dedicated to the case
where the input types are arrays. Each of these lines deals
with a combination among original and simplified arrays by
ensuring that Fuse is called over the body types of arrays
that have been simplified through the call of collapse. While
line 4 faces the case that the two types have not been sub-
ject to fusion yet, lines 5-7 deal with the case that one of the
input is the result of previous fusion operations, and there-
fore it has a *-expression as a body (recall the discussion in
Section 2). Lines 8 and 9 are dedicated to the array sim-
plification function collapse. This function simply relies on
Fuse in order to generate an over-approximation of all the
different types that are found in the original array type, in
order to prepare the array type for the fusion process.

To illustrate both body array type simplification and record
fusion, consider the following type T :

T = [Num, Bool, Num, {l1 : Num, l2 : Str}, {l1 : Num},
{l2 : Bool, l3 : Str}]

We have that collapse(T ) is equal to:

(Num + Bool + {l1 : Num, l2 : Str + Bool, (l3 : Str)?})

Note that only one record type is created, by iterating fusion
over the three record types. Also note that there is a good
level of size reduction entailed by simplification. This hap-
pens in the most frequent cases (where elements of an array
share most of their structure), while size reduction becomes
weaker when very heterogeneous records appear in the ar-
ray body type (in the particular case where no field key is
shared among records, the unique record type given by sim-
plification contains all keys, with their associated types, as
optional fields).

To conclude this section, the following theorems state
the main theoretical properties of the fusion process: cor-
rectness, commutativity and associativity. The crucial role
played by these properties has already been discussed in the
previous sections.

All these properties hold for types that respect the invari-
ant that types of a given kind can occur at most once in
each union. We use the term “normal types” to refer to such
types. All of our algorithms respect this invariant, that is,
they only generate normal types.

We first deal with correctness.
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⊕(S) : transforms a multiset of addends into a union type of these addends, right inverse for ◦(T )

⊕({ }) := ε
⊕({T}) := T
⊕({T1, T2, . . . , Tn}) := T1 + ⊕({T2, . . . , Tn}) when n ≥ 2

©(S) : transforms a set of fields into a record type, right inverse for �(RT )

©(∅) := ERecT
©({(l:T )1} ∪ S) := RecT (l, T,©(S))
©({(l:T )?} ∪ S) := OptRecT (l, T,©(S))

1. Fuse(T1, T2) := ⊕({LFuse(U1, U2) | (U1, U2) ∈ KM } ∪b {U3 | U3 ∈ KU })

with KM = KMatch(T1, T2), KU = KUnmatch(T1, T2)

2. LFuse(B,B) := B with kind(B) < 4

3. LFuse(RT1, RT2) := ©({l:Fuse(T1, T2)min(m,n) | ((l:T1)m, (l:T2)n) ∈ FM }
∪{(l:T )? | (l:T )m ∈ FU })

with FM = FMatch(RT1, RT2), FU = FUnmatch(RT1, RT2)

4. LFuse(AT1, AT2) := [ Fuse(collapse(AT1), collapse(AT2))∗ ]
5. LFuse([T∗], AT ) := [ Fuse(T, collapse(AT ))∗ ]
6. LFuse(AT, [T∗]) := [ Fuse(collapse(AT ), T )∗ ]
7. LFuse([T1∗], [T2∗]) := [ Fuse(T1, T2)∗ ]

8. collapse(EArrT ) := ε
9. collapse(ArrT (T,AT )) := Fuse(T, collapse(AT ))

Figure 6: The formal specification of the type fusion.

Theorem 5.2 (Correctness of Fuse) Given two normal
types T1 and T2, if T3 = Fuse(T1, T2), then T1 <: T3 and
T2 <: T3.

The proof of the above theorem relies on the following
lemma.

Lemma 5.3 (Correctness of LFuse) Given two non-union
normal types T1 and T2 with the same kind, we have that
T3 = LFuse(T1, T2) implies both T1 <: T3 and T2 <: T3.

Another important property of fusion is commutativity.

Theorem 5.4 (Commutativity) The following two prop-
erties hold.

1. Given two normal types T1, T2, we have Fuse(T1, T2) =
Fuse(T2, T1).

2. Given two non-union normal types T and U having the
same kind, we have LFuse(T,U) = LFuse(U, T ).

Associativity of binary type fusion is stated by the follow-
ing theorem.

Theorem 5.5 (Associativity) The following two proper-
ties hold.

1. Given three normal types T1, T2, and T3, we have

Fuse(Fuse(T1, T2), T3) = Fuse(T1,Fuse(T2, T3))

2. Given three non-union normal types T , U and V of
the same kind, we have

LFuse(LFuse(T,U), V ) = LFuse(T,LFuse(U, V ))

6. EXPERIMENTAL EVALUATION
In this section we present an experimental evaluation of

our approach whose main goal is to validate our precision
and succinctness claims. We also incorporate a preliminary
study on using our approach in a cluster-based environment
for the sake of dealing with complex large datasets.

6.1 Experimental Setup and Datasets
For our experiments, we used Apache Spark 1.6.1 [7] in-

stalled on two kinds of hardware. The first configuration
consists in a single Mac mini machine equipped with an In-
tel dual core 2.6 Ghz processor, 16GB of RAM, and a SATA
hard-drive. This machine is mainly used for verifying the
precision and succinctness claims. In order to assess the
scalability of our approach and its ability to deal with large
datasets, we also exploited a small size cluster of six nodes
connected using a Gigabit link with 1Gb speed. Each node
is equipped with two 10-core Intel 2.2 Ghz CPUs, 64GB of
RAM, and a standard RAID hard-drive.

The choice of using Spark is intuitively motivated by its
widespread use as a platform for processing large datasets of
different kinds (e.g., relational, semi-structured, and graph
data). Its main characteristic lies in its ability to keep large
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datasets into main-memory in order to process them in a fast
and efficient manner. Spark offers APIs for major program-
ming languages like Java, Scala, and Python. In particular,
Scala serves our case well since it makes the encoding of
pattern matching and inductive definitions very easy. Using
Scala has, for instance, allowed us to implement both the
type inference and the type fusion algorithms in a rather
straightforward manner starting from their respective for-
mal specifications.

The type inference implementation extends the Json4s li-
brary [4] for parsing the input JSON documents. This li-
brary yields a specific Scala object for each JSON construct
(array, record, string, etc), and this object is used by our im-
plementation to generate the corresponding type construct.
The type fusion implementation follows a standard func-
tional programming approach and does not need to be com-
mented.

It is important to mention that the Spark API offers a
feature for extracting a schema from a JSON document.
However, this schema inference suffers from two main draw-
backs. First, the inferred schemas do not contain regular
expressions, which prevents one from concisely representing
repeated types, while our type system uses the Kleene-Star
to encode the repetition of types. Second, the Spark schema
extraction is imprecise when it comes to deal with arrays
containing mixed content, such as, for instance, an array of
the form:

[Num, Str, {l : Str}]

In such a case, the Spark API uses type coercion yielding an
array of type String only. In our case, we can exploit union
types to generate a much more precise type:

[(Num + Str + {l : Str})∗]

For our experiments we used four datasets. The first two
datasets are borrowed from an existing work [13] and corre-
spond to data crawled from GitHub and from Twitter. The
third dataset consists in a snapshot of Wikidata [6], a large
repository of facts feeding the Wikipedia portal. The last
dataset consists in a crawl of NYTimes articles using the
NYTimes API [5]. A detailed description of each dataset is
provided in the sequel.

GitHub.
This dataset corresponds to metadata generated upon pull

requests issued by users willing to commit a new version
of code. It comprises 1 million JSON objects sharing the
same top-level schema and only varying in their lower-level
schema. All objects of this dataset consist exclusively of
records, sometimes nested, with a nesting depth never greater
than four. Arrays are not used at all.

Twitter.
Our second dataset corresponds to metadata that are at-

tached to the tweets shared by Twitter users. It comprises
nearly 10 million records corresponding, in majority, to tweet
entities. A tiny fraction of these records corresponds to a
specific API call meant to delete tweets using their ids. This
dataset is interesting for our experiment for many reasons.
First, it uses both records and arrays of records, although
the maximum level of nesting is 3. Second, it contains five
different top-level schemas sharing common parts. Finally,
it mixes two kinds of JSON records (tweets and deletes).

This dataset is useful to assess the effectiveness of our typ-
ing approach when dealing with arrays.

Wikidata.
The largest dataset comprises 21 million records reach-

ing a size of 75GB and corresponding to Wikipedia facts.
These facts are structured following a fixed schema, but suf-
fer from a poor design compared to the previous datasets.
For instance, an important portion of Wikidata objects cor-
responds to claims issued by users. These user identifiers
are directly encoded as keys, whereas a clean design would
suggest encoding this information as a value of a specific key
called id, for example. This dataset can be of interest to our
experiments since several records reach a nesting level of 6.

NYTimes.
The last dataset we are considering here is probably the

most interesting one and comprises approximately 1.2 mil-
lion records and reaches the size of 22GB. Its objects feature
both nested records and arrays, and are nested up to 7 lev-
els. Most of the fields in records are associated to text data,
which explains the large size of this dataset compared to the
previous ones. These records encode metadata about news
articles, such as the headline, the most prominent keywords,
the lead paragraph as well as a snippet of the article itself.
The interest of this dataset lies in the fact that the content
of fields is not fixed and varies from one record to another.
A quick examination of an excerpt of this dataset has re-
vealed that the content of the headline field is associated,
in some records, to subfields labeled main, content kicker,
kicker, while in other records it is associated to subfields la-
beled main and print headlines. Another common pattern
in this dataset is the use of Num and Str types for the same
field.

In order to compare the results of our experiments us-
ing the four datasets, we decided to limit the size of every
dataset to the first million records (the size of the small-
est one). We also created, starting from each dataset, sub-
datasets by restricting the original ones to respectively thou-
sand (1K), ten thousands (10K) and one hundred thousands
(100K) records chosen in a random fashion. Table 1 reports
the size of each of these sub-datasets.

1K 10K 100K 1M
GitHub 14MB 137MB 1.3GB 14GB
Twitter 2.2MB 22 MB 216MB 2.1GB

Wikidata 23MB 155MB 1.1GB 5.4GB
NYTimes 10MB 189MB 2GB 22GB

Table 1: (Sub-)datasets sizes.

6.2 Testing Scenario and Results
The main goal of our experiments is to assess the effec-

tiveness of our approach and, in particular, to understand if
it is able to return succinct yet precise fused types. To do
so we report in Tables 2 to 5, for each dataset, the number
of distinct types, the min, max, and average size of these
types as well as the size of the fused type. The notion of
size of a type is standard, and corresponds to the size (num-
ber of nodes) of its Abstract Syntax Tree. For fairness, one
can consider the average size as a baseline wrt which we
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compare the size of the fused type. This helps us judge the
effectiveness of our fusion at collapsing common parts of the
input types.

From Tables 2, 3, and 4, it is easy to observe that our
primary goal of succinctness is achieved for the GitHub and
the Twitter datasets. Indeed, the ratio between the size of
the fused type and that of the average size of the input types
is not bigger than 1.4 for GitHub whereas it is bounded by 4
for Twitter, which are relatively good factors. These results
are not surprising: GitHub objects are homogeneous. Twit-
ter has a more varying structure and, in addition, it mixes
two different kinds of objects that are deletes and tweets,
as outlined in the description of this dataset. This explains
the slight difference in terms of compaction wrt GitHub.
As expected, the results for Wikidata are worse than the
results for the previous datasets, due to the particularity
of this dataset concerning the encoding of user-ids as keys.
This has an impact on our fusion technique, which relies on
keys to merge the underlying records. Still, our fusion algo-
rithm manages to collapse the common parts of the input
types as testified by the fact that the size of the fused types
is smaller than the sum of the input types.2 Finally, the
results for NYtimes dataset, which features many irregular-
ities, are promising and even better than the rest. This can
be explained by the fact that the fields in the first level are
fixed while the lower level fields may vary. This does not
happen in the previous datasets, where the variations occur
on the first level.

Inferred types size Fused
type size# types min. max. avg.

1K 29 147 305 233 321
10K 66 147 305 239 322
100K 261 147 305 246 330
1M 3,043 147 319 257 354

Table 2: Results for GitHub.

Inferred types size Fused
type size# types min. max. avg.

1K 167 7 218 74 221
10K 677 7 276 75 273
100K 2,320 7 308 75 277
1M 8,117 7 390 77 299

Table 3: Results for Twitter.

Inferred types size Fused
type size# types min. max. avg.

1K 999 27 36,748 1,215 37,258
10K 9,886 21 36,748 866 82,191
100K 95,298 11 39,292 607 87,290
1M 640,010 11 39,292 310 117,010

Table 4: Results for Wikidata.

Execution times for the type inference and the type fusion
for GitHub, Twitter, and Wikidata datasets are reported

2The total size of input types can be roughly estimated by
multiplying either the minimum, maximum, or average size
with the number of types.

Inferred types size Fused
type size# types min. max. avg.

1K 555 299 887 597.25 88
10K 2,891 6 943 640 331
100K 15,959 6 997 755 481
1M 312,458 6 1,046 674 760

Table 5: Results for NYTimes.

in Table 6. As it can be observed, processing the Wiki-
data dataset is more time-consuming than processing the
two other datasets. This is explained, once again, by the
nature of the Wikidata dataset. Observe also that the pro-
cessing time of GitHub is larger than that of Twitter due to
the size of the former dataset that is larger than the latter
one.

1K 10K 100K 1M
GitHub 1s 4s 32s 297s
Twitter 0 1s 7s 73s

Wikidata 7s 15s 121s 925s

Table 6: Typing execution times.

6.3 Scalability
To assess the scalability of our approach, we have deployed

the typing and the fusion implementations on our cluster. To
exploit the full capacity of the cluster in terms of number of
cores, we set the number of cores to 120, that is, 20 cores
per node. We also assign to our job 300GB of main memory,
hence leaving 72GB for the task manager and other runtime
monitoring processes. We used the NYTimes full dataset
(22GB) stored on HDFS. Because our approach requires two
steps (type inference and type fusion), we adopted a strategy
where the results of the type inference step are persisted into
main-memory to be directly available to the fusion step. We
ran the experiments on datasets of varying size obtained by
restricting the full one to the first fifty, two hundred-fifty and
five hundred thousands records, respectively. The results
for these experiments are reported in Table 7 together with
some statistics on these datasets (number of records and
cardinality of the distinct types). It can be observed that
execution time increases linearly with the dataset size.

size # records # distinct types time
1GB 50,000 5,679 2 min

4.5GB 250,000 54,868 4.4 min
9GB 500,000 128,943 8.5 min
22GB 1,184,943 312,458 12.5 min

Table 7: Scalability - NYTimes dataset.

In an attempt to optimize the execution time on the clus-
ter, we started by analyzing the execution and realized that
the full capacity of the cluster was not exploited. Indeed,
the HDFS uses only one node to store the entire dataset,
which does not allow the parallelism to be exploited. We
also observed that the intermediate results produced by the
type inference step were split on only two nodes. The overall
effect is that the computation was performed on two nodes
while the remaining four nodes were idle.
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To overcome this problem, we considered a strategy based
on partitioning the input data that would force Spark to take
full advantage of the cluster. In order to avoid the overhead
of data shuffling, the ideal solution would be to force com-
putation to be local until the end of the processing. Because
Spark 1.6 does not explicitly allow such an option, we had
to opt for a manual strategy where each partition of data
is processed in isolation, and each of the inferred schema
is finally fused with the others (this is a fast operation as
each schema to fuse has a very small size). The purpose
is to simulate the realistic situation where Spark processes
data exclusively locally, thus avoiding the overhead of syn-
chronization. The times for processing each partition are re-
ported in Table 8. The average time is 2.85 minutes, which
is a rather reasonable time for processing a dataset of 22
GB.

# objects # types time
partition 1 284,943 67,632 2.4 min
partition 2 300,000 83,226 3.8 min
partition 3 300,000 89,929 1.9 min
partition 4 300,000 84,333 3.3 min

Table 8: Partition-based processing of NYTimes.

Note that this simple yet effective optimization is possible
thanks to the associativity of our fusion process.

7. CONCLUSIONS AND FUTURE WORK
The approach described in this paper is a first step to-

wards the definition of a schema-based mechanism for ex-
ploring massive JSON datasets. This issue is of great im-
portance due to the overwhelming quantity of JSON data
manipulated on the web and due to the flexibility offered by
the systems managing these data.

The main idea of our approach is to infer schemas for the
input datasets in order to get insights about the structure of
the underlying data; these schemas are succinct yet precise,
and faithfully capture the structure of the input data. To
this end, we started by identifying a schema language with
the operators needed to ensure succinctness and precision of
our inferred schemas. We, then, proposed a fusion mecha-
nism able to detect and collapse common parts of the input
types. An experimental evaluation on several datasets vali-
dated our claims and showed that our type fusion approach
actually achieves the goals of succinctness, precision, and
efficiency.

Another benefit of our approach is its ability to perform
type inference in an incremental fashion. This is possible
because the core of our technique, fusion, is incremental by
essence. One possible and interesting application would be
to process a subset of a large dataset to get a first insight on
the structure of the data before deciding whether to refine
this partial schema by processing additional data.

In the near future we plan to enrich schemas with sta-
tistical and provenance information about the input data.
Furthermore, we want to improve the precision of the infer-
ence process for arrays and study the relationship between
precision and efficiency.
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