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ABSTRACT
Given a set of objects and a set of top-k queries on these ob-
jects, we are interested in adjusting some object’s attribute
values to meet some requirements under certain cost con-
straints. We call such an adjustment an improvement strat-
egy. Searching for cost-efficient improvement strategies is
crucial for applications like product marketing, where top-
k queries are used to model users’ preference. We propose
two types of Improvement Queries (IQs). A Min-Cost IQ
finds the improvement strategy that makes selected objects
hit a desired number of queries with the minimal cost, while
a Max-Hit IQ searches for the improvement strategy that
makes selected objects hit as many queries as possible with
a given budget. We show that answering IQs is NP-hard
and develop a suite of heuristic algorithms. Our key idea is
to interpret objects as functions and treat each top-k query
as an input to the functions. The geometric relationship
among the function intersections is then leveraged for effi-
cient query processing. We implement the proposed algo-
rithms as an analytic tool and integrate it with a DBMS,
and they exhibit excellent performance on both synthetic
and real-world data in experiments.

1. INTRODUCTION
Top-k query [7, 6, 11, 26] is widely used in applications

like e-commerce for users to find objects (e.g., products)
that best match their preference. A user’s preference is rep-
resented by a utility function which computes a “score” for
each object, and a top-k query retrieves the k objects with
the highest/lowest scores. When an object appears in a
query result, we say the object hits the query. Given a set of
objects and a set of top-k queries, adjusting an object’s at-
tribute values could result in changing the number of queries
it hits. In this paper, we refer to such an adjustment as an
improvement strategy. We are interested in querying the
improvement strategies for objects of interested under some
cost constraint. We consider two variations of Improvement
Query (IQ):
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• Min-Cost IQ: Given a cost function, this type of IQ
finds the most cost-efficient improvement strategy for an
object to hit a given minimum number of top-k queries.
Here a cost function is defined by the query issuer to mea-
sure the cost of adjusting attribute values of objects. The
idea of modeling costs as math functions is a common ap-
proach [19, 4]. We allow query issuers to define their own
cost functions.

• Max-Hit IQ: Given a cost function and a budget, this
type of IQ returns the improvement strategy for an object
to hit the maximal number of top-k queries under the
condition that the total cost does not exceed the budget.

The problem of finding improvement strategies arises from
a variety of applications. For example, a camera manu-
facturer may want to improve its product for more market
shares. Here an improvement is a change of the product’s
features such as camera’s resolution and price. Likewise, in
a presidential election, it is imperative for the candidates to
evaluate their campaign strategies from time to time, and
adjust if needed, in order to appeal themselves to more vot-
ers. In these examples, there are a set of objects (e.g., prod-
ucts, presidential candidates) and a set of top-k queries, each
representing the preference of a user (e.g., customer, voter),
and we want to improve one or more objects (called targets)
to hit as many queries as possible. Existing queries such
as reverse top-k query [21], maximal rank query [14], and
reverse k-ranks query [25] have been developed to provide
information concerning an object’s competitiveness in top-
k selection. These queries, however, do not allow one to
identify an improvement strategy, the focus of this paper.

The problem of processing IQs can be formulated as con-
strained optimization problems and we prove it is NP-hard.
As such, finding accurate query results is computation inten-
sive even for moderate size datasets. We address this prob-
lem by proposing a suite of heuristic algorithms. At the core
of the proposed algorithms is a novel indexing technique.
Our key idea is to 1) interpret each object as a function,
and 2) treat each top-k query as an input to these functions.
The intersection of two functions formulates a hyperplane
in their domain. Given a set of functions, their intersection
hyperplanes partition the domain into a number of subdo-
mains. We observe that the rank of an object must be the
same for all queries that fall in one subdomain. Applying
an improvement strategy to an object will cause the bound-
ary of some subdomains to change, but it will affect the
result of a top-k query only if the query falls into a different
subdomain. This observation allows us to develop a highly
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efficient algorithm for IQ processing. We summarize our
main contributions as follows:

• To our knowledge, this is the first to study the problem
of object improvement, defined as adjusting the attribute
values of the objects of interest. We prove the inherent in-
tractability of the minimal cost/maximal hit improvement
strategy searching problem.

• We propose the notion of Improvement Query (IQ), which
supplements the existing top-k query with the key infor-
mation needed to develop effective improvement strate-
gies. We propose two types of IQs: Min-Cost IQ and
Max-Hit IQ. Given a user-defined cost function, the for-
mer IQ finds the most cost-efficient improvement strat-
egy that achieves desired number of hits, while the latter
one finds the improvement strategy that hits the maximal
number of top-k queries with a given budget. We design
efficient IQ processing algorithms based on a novel query
indexing technique and an important observation.

• We implement the proposed techniques as an analytic tool
and integrate it with the Database Management System
(DBMS). The tool is thoroughly evaluated over synthetic
and real-world data. The results show that our techniques
demonstrate good performance, and the tool is scalable for
large-scale users and objects.

The rest of the paper is organized as follows. We discuss
related work in Section 2. In Section 3, we formally define
the problem and give an overview of our solution. The pro-
posed techniques for basic cases and complex scenarios are
presented in Section 4 and Section 5 respectively. In Sec-
tion 6, we describe our system implementation and present
experiment results. We conclude the paper in Section 7.

2. RELATED WORK
Our work is closely related to the top-k query and other

rank-aware queries. We briefly discuss some representative
works as follows.

Top-k query: Several indexing techniques have been pro-
posed for efficient processing of top-k queries. View-based
techniques (e.g., [11, 8]) employs materialized views to re-
trieve top k, where objects are ranked according to arbitrary
utility functions. Layer-based technique ( [6]) computes the
convex hulls of data points, and organizes them in layers.
Top-k queries are then processed from the outmost layer,
which contains objects that are most likely to be in top-
k. The state-of-the-art technique is [26], which exploits the
dominant relationship between objects. More specifically,
an object pi is said to dominate another object pj if there
exists no linear utility functions that ranks pi lower than
pj . Thus there is no way for pj to be include in a query
result unless pi is included first. As such, objects can be
organized into groups based on their dominant relationship.
This allows efficient processing of top-k queries. These tech-
niques, however, are all limited to linear utility functions.
The problem of non-linear utility function top-k selection is
studied in [24] as k-constrained optimization problem, and
addressed with a state-space indexing technique.

Other rank-aware queries: Top-k query has inspired a
rich family of rank-aware queries, which are closely related
to our research. Given a set of objects and a set of top-k

queries, a reverse top-k query [20, 21] retrieves the queries
whose result contains a selected object. For less popular ob-
jects, a useful variant of reverse top-k query is the reverse
k-ranks query, which can find the k queries whose rank of an
object is the highest among all queries. A maximum rank
query [14] computes the highest possible rank an object can
achieve for any utility function. Unlike our work, the max-
imum rank is not achieved by adjusting attributes of the
object itself, but by exploring different utility functions. It
can find the maximum rank one object can get with respect
to any query, but cannot provide information on how to in-
crease the number of queries that an object hits. This makes
it fundamentally different from our problem. These existing
queries help one understand the current competitiveness of
an object among its peers, but not improve the object to
make it more competitive.

Another related work is [13]. It considers how to find
the k objects from a dataset that can be upgraded with
minimal cost. The goal of upgrade is to make the object
appear on skyline of the dataset. An object is said to be
on skyline if it is not worse in all dimensions than another
object in the dataset. Each dimension is compared inde-
pendently and no function is computed, therefore making
an object to be on skyline is straightforward, and the ma-
jor challenge addressed in [13] is how to efficiently find the
k objects with lowest upgrading cost without traversing all
objects. In contrast, finding optimal improvement strategy
for even one object is NP-hard. Their proposed algorithm
cannot solve our problem. A similar work [22] discusses how
to efficiently create new products that appear on skyline of
a given dataset. But it does not consider improving existing
objects, thus less related to our work.

3. PRELIMINARIES

3.1 Problem Definition
Consider a dataset D with n objects. Each object pi

is a point in the d-dimensional space, where each dimen-
sion represents a numerical attribute of the object. We

use p
(j)
i to denote its j-th dimension’s value. Each dimen-

sion can be continuous or discrete, finite or infinite. Let
Q = {q1, q2, ..., qm} denote a set of m top-k queries. Each
query qi (1 ≤ i ≤ m) specifies a k value (i.e., the number
of object to return) and a utility function which computes a
score for each object. Together they represent a user’s pref-
erence. The number of top-k queries hit by pi is denoted by
H(pi). We define improvement strategy as follows:

Definition 1 (Improvement Strategy). An improve-
ment strategy s for an object pi is a d-dimensional vector s =
{s1, s2, ..., sd}, where si ∈ R specifies how the i-th attribute
is to be adjusted, i.e., applying s to pi will replace pi with a

new object p′i, where p
′(j)
i = p

(j)
i + sj (1 ≤ j ≤ d).

To illustrate, consider a camera dataset showed in Fig-
ure 1. Each camera has three discrete attributes resolution,
storage, and price. Together they determine the camera’s
rank for a given top-k query. Let s = {5, 2,−50} be an
improvement strategy. Applying s on a camera means to
increase the camera’s resolution by 5 Megapixel, increase its
storage by 2 GB, and decrease its price by $50. For ex-
ample, applying s on camera p1 will result in a new object
p′1 = {15, 4, 200}. Note that after the improvement, p′1’s
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Cameras

ID resolution (Megapixel) storage (GB) price ($)
p1 10 2 250
p2 12 4 340
· · · · · · · · · · · ·

⇓ Applying s = {5, 2,−50} to p1

ID resolution (Megapixel) storage (GB) price ($)
p′1 15 4 200
p2 12 4 340
· · · · · · · · · · · ·

Top-k queries represent users’ preference for camera

ID Utility function top-k
q1 5.0*resolution + 3.5*storage - 0.05*price k = 1
q2 2.5*resolution + 7.0*storage - 0.08*price k = 1
· · · · · · · · ·

Figure 1: Example of improvement strategy for cameras

rank becomes higher than that of p2 for both queries q1 and
q2.

For ease of presentation, we will simply use p′i = pi + s to
denote the improved object p′i that is derived by applying
s on pi. An improvement strategy aims to make a target
object appear in more query results. Given an improvement
strategy s, we measure its effectiveness in improving object
pi as the number of top-k queries hit by p′i = pi + s, denoted
by H(p′i). A larger H(p′i) means more effective that s is in
improving pi.

Improving an object requires resources such as time and
money. We let the query issuer specify such resource re-
quirements using a cost function Costpi(s), which computes
the cost of applying strategy s to object pi. There is rich lit-
erature on how to model product costs using math functions
and interested readers are referred to [19, 4, 2] for details.
Here we simply assume the cost functions are provided by
the query issuer. Our research is aimed at finding two kinds
of improvement strategies:

Definition 2 (Min-Cost Improvement Strategy).
Given an improvement goal that is to hit at least τ ∈ I
queries, an improvement strategy s for pi is a minimal cost
improvement strategy w.r.t. some cost function Costpi if
H(pi + s) ≥ τ and Costpi(s) is minimized.

Definition 3 (Max-Hit Improvement Strategy).
Given a budget β ∈ R, an improvement strategy s for pi is
a maximal hit improvement strategy w.r.t. some cost
function Costpi if Costpi(s) ≤ β and H(pi + s) is maxi-
mized.

Accordingly, we define two types of Improvement Queries
(IQs). A Min-cost IQ let user query minimal cost improve-
ment strategies for selected objects. Similarly, a Max-Hit
IQ returns the maximal hit improvement strategies. We
will show later in Section 4 that searching for the two types
of improvement strategies are NP-Hard even for one target
object, and the problem becomes more complex when trying
to improving multiple target objects. As such, our goal is
to develop highly efficient heuristic algorithms.

3.2 Interpreting Objects as Functions
Our key idea is to interpret each object as a function and

treat each top-k query as a function input. This is different
from existing works where queries are considered as utility
functions and objects as their input. We use the most com-
mon linear utility functions[7, 6, 11, 26] as an example to
explain our idea.

For linear utility functions, each query qi ∈ Q is a d-

dimensional vector qi = {q(1)i , q
(2)
i , ..., q

(d)
i } that assigns

a weight to each attribute of an object and computes the
weighted sum. For simplicity, we use the same assump-
tion as existing works that all queries are normalized, i.e.,

q
(j)
i ∈ [0, 1] for any dimension j. In our solution, we treat

each object pi as a linear function fi, where p
(j)
i is the j-th

coefficient. It takes a query q as input and computes the
ranking score of pi:

fi(q) =
∑d

j=1 q
(j)p

(j)
i (1)

Note that the ranking score is the same as the weighted sum.
The difference is that a query is now treated as a function
parameter while the object attribute values are treated as
function coefficients. As such, the set of objects D is in-
terpreted as a set of functions D = {f1, f2, ..., fn}. When
causing no ambiguity, we will use pi and fi interchangeably
to refer to the same object. To evaluate a top-k query q,
we compute f1(q), f2(q), ..., fn(q) and select the k functions
with lowest output values.

The intersection of two functions fi and fj creates a hyper-
plane in the d-dimensional domain space. The intersection
partitions the domain into two subdomains, namely above
and below. For any input q falls in the above subdomain,
we have fi(q) ≥ fj(q), and for any input q in the below
subdomain, we have fi(q) < fj(q). The intersections of all
functions partition the domain space D into a number of
subdomains, and the functions can be strictly sorted in each
of these subdomains. That is, if there exists a query point
q in a subdomain such that fi(q) > fj(q) (or fi(q) < fj(q)),
then for any other query point p in the same subdomain, we
have fi(p) > fj(p) (or fi(p) < fj(p)). As a result, the rank
of a function fi remains the same for any two queries qx and
qy as long as they fall in the same subdomain.

Applying an improvement strategy s to pi will cause the
intersections involving fi to tilt towards some direction de-
termined by s. The boundaries of some subdomains will
also move. As showed in Figure 2, it may cause some query
points to move to a different subdomain (e.g., move from
above to below some intersections). We have two important
conclusions.

Fact 1. An improvement strategy s affects the result of
a query q if and only if q is moved to a different subdomain
after applying s to pi. Thus, if no query point is moved to
a different subdomain, we have H(pi + s) = H(pi).

Fact 2. The rank of two functions fi and fj must be
switched in the ranking result of some query q, if and only if
q is moved from above (or below) to below (or above) of the
intersection of fi and fj.

The proofs of the two conclusions are straightforward.
Due to limited space, we refer readers to [9, 16] for proof
details. These facts suggest an efficient way to evaluate a
given improvement strategy s. First, we apply s to pi and
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f (q)= 4q   + 3q        f (q)= q     - 2q        s = {1 , 0}   
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Affected Subspace

Query
Ranking results

Before applying s After applying s
q1, q2 [f1, f2] [f1, f2]
q3, q4 [f1, f2] [f2, f1]
q5 [f2, f1] [f2, f1]

Figure 2: An improvement strategy affects subdomain
boundaries and query results

find all the query points that are moved to a different sub-
domain. Then, for each query point found, check if pi ap-
pears in its result and update H(pi + s) accordingly. The
challenge now is, how to efficiently determine (without tra-
verse all query points or subdomains) which query points
are moved to which subdomains before and after applying
an improvement strategy, and then compute their results.
We discuss this approach in detail in the next section.

4. PROPOSED SOLUTION
We first introduce an Efficient Strategy Evaluation (ESE),

which group query points by subdomains and index them us-
ing multidimensional data structures such as R-tree [10] or
X-tree [3]. We will then discuss how to use ESE as a build-
ing block for efficiently processing of IQs. Here we consider
only one target object with linear utility functions. Never-
theless, our techniques allow users to select multiple objects
as targets, use different cost functions for each object, and
query improvement strategies with non-linear utility func-
tions, which we will discuss later in Section 5.

4.1 Efficient Strategy Evaluation (ESE)
Given an improvement strategy s for pi, we need to com-

pute its effectiveness in improving pi, i.e., counting the num-
ber of top-k queries that include p′i = pi + s in their re-
sult. For this purpose, existing solutions such as Reverse
top-k Threshold Algorithm (RTA) [21] can be used. These
schemes, however, support only linear utility functions. In
particular, they are less efficient when a less number of
queries include the object in their result. When H(pi + s)
increases, their performance will drop significantly. Here we
present an approach that works better for our purpose.

Given the intersection of two functions fi and fl:∑d
j=1 q

(j)(p
(j)
i − p

(j)
l ) = 0 (2)

Equation 3 represents the new intersection hyperplane after
some improvement strategy s is applied to pi.∑d

j=1 q
(j)(p

(j)
i + sj − p(j)l ) = 0 (3)

The area bounded between the old and new intersection hy-
perplanes represented by Equation 2 and 3 formulates a sub-
space (e.g., the shadow area showed in Figure 2) inside the
function domain space. We define this subspace as the af-
fected subspace of s. It contains all the query points whose
result are affected by applying s to pi. To efficiently retrieve
and evaluate such queries, we group all queries by their sub-
domains and index them with an R-tree.

Algorithm 1 FindSubdomains(I,Q)

1: d← newSubdomain()
2: Subdomains.add(d)
3: for all q ∈ Q do
4: q.subdomain← d
5: end for
6: for all Ii ∈ I do
7: for all Subdomain d ∈ Subdomains such that d over-

laps Ii do
8: dabove ← newSubdomain()
9: dabove.boundaries.add(Ii, above)

10: dbelow ← newSubdomain()
11: dbelow.boundaries.add(Ii, below)
12: for all q falls in d do
13: if q falls above Ii then
14: q.subdomain← dabove
15: else
16: q.subdomain← dbelow
17: end if
18: end for
19: if dabove contains query then
20: Subdomains.add(dabove)
21: end if
22: if dbelow contains query then
23: Subdomains.add(dbelow)
24: end if
25: end for
26: end for
27: Return Subdomains

Group query points by subdomain: Subdomains are
partitioned using intersection hyperplanes of functions in
D. Thus we need first to find the intersections created by
the functions. This can be efficiently done using intersec-
tion discovery algorithms such as the plane sweeping algo-
rithm [15]. We then partition the function domain into sub-
domains gradually, by considering function intersections one
at a time.

Let I = {I1, I2, ..., Im} be the set of all function intersec-
tions. An intersection hyperplane Ii partitions the domain
space into two subdomains: subdomain above and subdo-
main below the intersection. As such, it also partitions the
query points Q into two groups, above and below. Note that
queries fall on the intersection hyperplane can be treated as
above it with no affect on the proposed algorithm. Whether
a query point q falls above or below Ii is checked as fol-
lows. Let Ii be the intersection of some functions fa and
fb. A query q falls above Ii if and only if fa(q)− fb(q) ≤ 0.
Otherwise q is below Ii. These two groups of queries can
then be further partitioned by considering another inter-

297



section. We repeat this binary space partitioning process
until no group can be further partitioned. At the end, for
each query, we add an attribute Subdomain that contains
a unique subdomain ID, recording the subdomain that con-
tains the query point. If all query points in a sub-tree have
the same Subdomain value, then we can mark this on the
root-node of the sub-tree, instead of storing the same in-
formation for each query point. Note that we can also find
which intersection serves as a boundary of a subdomain dur-
ing this process. Finally, to save space, all the subdomains
that contain no query point are simply discarded. A more
formal description of this process is given in Algorithm 1.

Once the index is in place, computing H(pi+s) is straight-
forward. We only need to evaluate (or re-evaluate, if it is al-
ready evaluated) all queries falling in the affected subspaces.
To check whether a query point q falls in the affected sub-
space, it is not necessary to solve the system of Equation 2
and 3. It is determined by two boundary conditions:∑d

j=1 q
(j)(p

(j)
i − p

(j)
l ) ≥ 0 (4)∑d

j=1 q
(j)(p

(j)
i + sj − p(j)l ) < 0 (5)

which is equivalent to a range query over the R-tree index,
where the query range is the affected subspace (ruled by
the boundaries of the function domain, if any). However,
evaluating queries in the affected subspace may still be ex-
pensive if the affected subspace is large. Here we propose
two methods to avoid complete re-evaluation of any query.

First, by Fact 2, if q falls in the affected subspace after s
is applied, the new ranking result of q can be generated by
simply switching the rank of fi and fl in the original ranking
result. If q is not in the affected subspace, its result must
remain the same. Additionally, if fl was not in the top-k
result of q, it indicates that after applying the improvement
strategy, fi cannot be in the top-k of the q because it only
switches order with fl. As such, we can rapidly eliminate
unaffected queries.

Second, all query points fall in the same subdomain share
exactly the same ranking result. Thus at most one query
needs to be evaluated per subdomain. Recall that we have
already grouped query points by their subdomains in the
indexing step, and marked for each query which subdomain
contains it. Let TP (pi) ⊆ Q denote the set of queries hit
by pi. The pseudocode of this ESE approach is given in
Algorithm 2.

We first find all the affected subspace(s) for the given
strategy s. This is done by checking all function intersections
involving fi among the intersections found in the indexing
stage. For each query point that falls in an affected sub-
space of s, we check its query result. If the query has not
been evaluated yet, then evaluate it and cache the result for
future use (note that at most one query result needs to be
cached per subdomain). Otherwise, use the aforementioned
function-switching method to rapidly generate its result. For
each subdomain, only one query needs to be evaluated, and
the result can be shared for all other queries. In ESE, each
top-k query needs to be evaluated for at most once, and the
result of a large proportion of queries can be generated by
re-using the result of their nearby queries, given that they
fall in the same subdomain.

4.2 Improvement Strategy Searching

4.2.1 Min-Cost Improvement Strategy

Algorithm 2 EfficientStrategyEvaluation(pi, s)

1: H(pi + s)← |TP (pi)|
2: for all fl ∈ D intersects fi and fl 6= fi do
3: Find the affected subspace
4: for all q falls in the affected subspace do
5: if q is not evaluated then
6: evaluate q
7: end if
8: Switch the rank of fi and fl;
9: for all qj falls in the same subdomain as q do

10: if qj /∈ TP (pi) and qj ∈ TP (pi + s) then
11: H(pi + v) + +;
12: else if qj ∈ TP (pi) and qj /∈ TP (pi + s) then
13: H(pi + v)−−;
14: end if
15: end for
16: end for
17: end for
18: Return H(pi + s)

Let pi be the object to be improved. Given an improve-
ment strategy s, we have the improved object p′i = pi + s.
We use pj,k to denote the k-th ranked object of query qj . In
order for p′i to be in the result of qj , the following condition
must hold:

f ′i(qj) < fj,k(qj) (6)

That is, the ranking score of p′i must be less than that of qj,k.
Here fj,k is pj,k’s corresponding function and f ′i that of p′i.
We have variable xj = 1 if p′i appears in the result of qj and
xj = 0 otherwise. For the min-cost improvement strategy,
the goal is to minimize the cost under the condition that p′i
can hit at least τ queries. This problem can be formulated
as a constrained optimization problem:

minimize Costpi(s) (7)

subject to

m∑
j=1

xj ≥ τ (8)

f ′i(qj) < fj,k(qj) + (1− xj)C ∀j ∈ [1,m] (9)

xj ∈ {0, 1} ∀j ∈ [1,m] (10)

where C denotes a very large number that exceeds the high-
est score of all objects. Constraint 8 guarantees that the
improved object hits at least τ queries, while Constraint 9
ensures that Equation 6 is satisfied for each hit query. Note
that the improvement strategy must also be Valid. That
is, all attribute values of the improved object must not ex-
ceed the allowed range. For simplicity, here we assume pi
is defined on Rd, thus the trivial condition pi + s ∈ Rd is
omitted in the above formulation. Nevertheless, in the case
where this certain limitation on the value of the i-th at-
tribute, additional constraints on si can be added to reflect
such requirements for valid improvement strategies. For ex-
ample, if the user does not allow value of the i-th attribute
of the target object to be adjusted at all, we can simply add
a constraint si = 0.

The formulated problem is an integer linear programming
problem [23], which has been studied extensively and no ef-
ficient algorithm is known. The problem of searching for
the min-cost improvement strategy actually is NP-hard. We
prove it with a reduction from the Minimal Set Cover prob-
lem, which is known to be NP-hard.

298



Definition 4 (Minimal Set Cover). Given a set U =
{u1, u2, ..., un} and S = {S1, S2, ..., Sm} where Si ⊆ U . Find
the minimal number of subsets in S whose union is U .

Reduction from Minimal Set Cover to Min-cost Im-
provement Strategy: An instance of minimal set cover
problem can be converted to an instance of the min-cost
improvement strategy problem as follows: Create a top-1
query qi for each element ui ∈ U with utility function:

ui(p) = wi1 ∗ p(1) + wi2 ∗ p(1) + ...+ wim ∗ p(m) (11)

and set weight wij to 1 if ui ∈ Sj , and wij = 0 if otherwise.
Suppose the objects are ranked by their utility scores in
non-increasing order. Create two m-dimensional objects p0
and p1, such that all attributes of p0 are set to 0 and all
attributes of p1 are set to 1/(m + 1). Therefore H(p0) = 0
and H(p1) = n. The goal is to improve p0 such that H(p0) =
τ = n. We impose a simple linear cost function:

Costp0(s) = s1 + s2 + ...+ sm (12)

such that the cost of adjusting any attribute of p1 is equally
expensive. Additionally, each attribute of p0 is discrete and
can only be 0 or 1. Note that covering an element ui ∈ U is
equivalent to hitting query qi with p0. In order to do so, an
improvement strategy must adjust at least one attribute p(j)

of p from 0 to 1 where wij = 1, which indicates that subset
Sj should be selected to cover ui. The total improvement
cost is equal to the number of selected subsets. As such,
a min-cost improvement strategy for the converted instance
can be translated into a minimal set cover for the original
instance.�

We now propose a heuristic algorithm (Algorithm 3) which
leverages the proposed ESE algorithm to search for the sub-
optimal strategy. The algorithm consists of multiple iter-
ations. In each iteration, it first computes for each query
qj ∈ Q, a strategy sj such that p′i = pi+sj can hit it with the
minimal cost. This step generates a set of S of candidate im-
provement strategies. Then we apply to pi the strategy s ∈ S
with the minimal cost per hit query Costp′i(s)/H(p′i + s).

Repeat this process until p′i hits at least τ queries. In each
iteration, we call the ESE algorithm as a subroutine to com-
pute H(p′i + sj).

Algorithm 3 MinCostIQ(pi, τ, Costpi)

1: p′i ← pi
2: while H(p′i) < τ do
3: S ← ∅
4: for each query qj ∈ Q and /∈ TP (p′i) do
5: sj ← arg minCostp′i(s) such that qj ∈ TP (p′i + s)

6: Compute H(p′i + sj)
7: S.add(sj)
8: end for
9: Find s ∈ S with minimal Costp′i(s)/H(p′i + s)

10: if H(p′i + s) ≤ τ then
11: p′i = p′i + s
12: else
13: Return s ∈ S with minimal Costp′i(s) and H(p′i +

s) ≥ τ
14: end if
15: end while
16: Return s = p′i − pi

Note that the algorithm requires to find the minimal cost

strategy sj that hits a query qj . It formulates a single-
constraint optimization problem:

minimize Costpi(s) (13)

subject to f ′i(qj) < fj,k(qj) (14)

which can be efficiently solved using standard math tools
like [12].

The proposed algorithm can be considered a greedy one,
since it always selects the improvement strategy with max-
imal efficiency-cost ratio at each step. The rational behind
the algorithm is based on the following observation: The
average cost per hit query is minimized in a min-cost im-
provement strategy, comparing with any other improvement
strategies that hit the same number of queries. The pro-
posed algorithm tries to minimize the average cost per hit
query at each iteration. This greedy method reduces size of
the searching space to O(m) per iteration, and the number
of iterations is bounded by τ . In comparison, exhaustive
search takes at least O(2m) steps.

Similar to other greedy algorithms, our algorithm may
terminate with a local optimum. Nevertheless, our experi-
ment shows the algorithm is efficient enough to answer users’
IQs interactively (i.e., a user hardly feels waiting time) with
a regular desktop computer. Although the cost of the im-
provement strategy found may be sub-optimal, it greatly
outperforms other methods such as simple greedy search
(i.e., always try to hit the query with the least cost, repeat
until hit enough queries) and random search (i.e., return a
randomly generated improvement strategy), which we will
discuss later. To sum up, this algorithm offers a good trade-
off between improvement cost and feasibility.

Processing Min-Cost IQs: To issue a min-cost IQ, the
query issuer first defines a cost function Costpi for the se-
lected target pi and specifies a desired τ . The system then
uses Algorithm 3 to find the improvement strategy that sat-
isfies the desired number of hits. For query issuers who
indeed want the optimal strategy, we also provide them
with the option of exhaustively strategy searching, which
uses mathematical optimization tools (e.g., [12]) to solve
the above optimization problem. However, due to the in-
tractability of the problem, this algorithm is only feasible
for very small datasets.

4.2.2 Max-Hit Improvement Strategy
Recall that the goal of maximal hit improvement strategy

is to maximize the number of queries hit by the improved
object with the constraint that the total cost does not ex-
ceed a given budget β. Similarly, we formulate the following
optimization problem.

maximize H(pi + s) (15)

subject to Costpi(s) ≤ β (16)

f ′i(qj) < fj,k(qj) + (1− xj)C ∀j ∈ [1,m] (17)

xj ∈ {0, 1} ∀j ∈ [1,m] (18)

The target function computes the hit number of the im-
proved object, while Constraint 16 corresponds to the lim-
ited budget. The meaning of Constraint 17 is the same as
the minimal cost improvement strategy problem. It is easy
to see that searching for maximal hit improvement strat-
egy is also NP-Hard, because the minimal cost improvement
strategy problem reduce to it.

Reduction from Min-Cost Improvement Strategy to
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Max-Hit Improvement Strategy: Let MaxHit (pi, β,
Costpi) be a subroutine that finds the maximal hit improve-
ment strategy. We show how to find the minimal cost im-
provement strategy for pi with desired hit τ by calling the
subroutine. Let xmax be the cost required to hit all top-k
queries, which can be treated as a constant. The minimal
cost that we are looking for must fall in [0, xmax], so we can
search for the minimal cost strategy with a binary searching
process. We start by setting β to an initial value x such that
xmax ≥ x ≥ 0, and use the subroutine to find s such that
pi + s hit the maximal number of queries. If H(pi + s) ≥ τ ,
it means the minimal cost required to hit τ queries is no
greater than x. Thus we refine the searching range by set-
ting β to a new value in [0, x] and repeat the process. Simi-
larly, if H(pi +s) < τ , it indicates the minimal cost required
must be larger than x and thus we set β to a new value in
[x, xmax]. Regardless of the initial value, this binary search-
ing process can find the minimal cost improvement strategy
within log xmax attempts (i.e., by calling MaxHit(pi, β) for
at most log xmax times, which is linear).�

The above proof demonstrates that the two improvement
strategies, namely min-cost and max-hit, are closely related
to each other. The two types of improvement strategies
share a similar characteristic: the cost per hit query is min-
imized for a max-hit improvement strategy, comparing with
any other improvement strategies with the same cost. As
such, we modify the greedy searching Algorithm 3 to pro-
cess max-hit IQs. The algorithm uses a similar searching
method which looks for the most cost-efficient improvement
strategy in each iteration, and the iterations terminate when
all budget is used, or there is not enough budget to cover
more queries.

Algorithm 4 MaxHitIQ(pi, β, Costpi)

1: p′i ← pi
2: s∗ ← 0
3: while Cost(pi)(s∗) < β do
4: S ← ∅
5: for each query qj ∈ Q and /∈ TP (p′i) do
6: sj ← arg minCostp′i(s) such that qj ∈ TP (p′i + s)

7: Compute H(p′i + sj); S.add(sj)
8: end for
9: Find s ∈ S with minimal Costp′i(s)/H(p′i + s)

10: if Cost(pi)(s∗) + Cost(pi)(s) ≤ β then
11: s ∗+ = s
12: else
13: for each s ∈ S, sorted by cost do
14: if Cost(pi)(s∗) + Cost(pi)(s) ≤ β then
15: s ∗+ = s
16: end if
17: end for
18: Break
19: end if
20: end while
21: Return s∗

Processing Max-Hit IQs: A max-hit IQ consists of tar-
get object(s), corresponding cost function(s), and a budget
β. The improvement strategy that satisfies the budget con-
straint is then returned to the user by Algorithm 4. For
convenience, we will refer to Algorithms 3 and 4 together as
the Efficient-IQ algorithm. Similarly, we also provide the

exhaustive search option in our implementation.

4.3 Data updating
Add/Remove a query: When a query point is added to
or removed from Q, the R-tree needs to be updated. Adding
or removing an indexed point on R-tree is easy. However,
when a new query point is added, we need to find which
subdomain contains it. We can use Algorithm 1 but only
on the newly added query point to find its subdomain. This
is usually not necessary. We observe that, if a new query
point q falls closely to a group of other query points which
are all in a subdomain d, then it is very likely that q also
falls in d. Fortunately, we can quickly check if q falls in d
by verifying the above/below relations between q and the
boundary intersections of d as in Algorithm 1. Based on
this observation, we propose to use the subdomain(s) of the
k-Nearest Neighbour of q as candidate subdomain of q, and
use Algorithm 1 only if q is not in any of these candidates.

Add/Remove an object: Adding or removing an object
will cause the boundary of subdomains to change. Thus,
similar to applying an improvement strategy, some query
points may move to a different subdomain. We discuss how
to update subdomain of affected queries as follows. When a
new object is added, we first find all the newly created inter-
sections and then rerun Algorithm 1 with these intersections
to update the queries. Similarly, when an object is removed,
we find all existing intersections that involve the object, and
then locate all subdomains whose boundaries include one of
the involved intersections. Then, if the subdomain is above
the intersection, we merge it with the subdomain that is be-
low it, and vice versa. This is to reflect the fact the once the
object is removed, this intersection no longer exists, and the
two subdomains that were separated by it should be merged
as one subdomain. To facilitate this process, we implement a
bloom filter to index the subdomains based on their bound-
aries, allowing us to quickly check if a subdomain uses an
intersection as its boundary.

5. EXTENSION

5.1 Improving Multiple Target Objects
So far we have considered improving a single object. In

this section, we extend our proposed techniques to enable
users to query strategies that improve multiple objects. Here
a user wants to select a set of objects Dt ⊆ D as targets, and
query the min-cost improvement strategy such that the total
number of hits of the targets is no less than certain threshold
τ , while the total improving cost is minimized. Each target
can be associated to a different cost function, or share the
same one. We assume that if one query is hit by two dif-
ferent target objects in Dt, the query is counted only once.
We consider two Combinatorial Object Improvement
problems.

Definition 5. Given a set of target objects Dt ⊆ D and
their corresponding cost functions, the Combinatorial Min-
Cost Improvement Strategy for Dt is a set of improve-
ment strategies St, where si ∈ St is an improvement strat-
egy for pi ∈ Dt, such that

∑
pi∈Ds

H(pi + si) ≥ τ and∑
pi∈Ds

Costpi(si) is minimized.

Definition 6. Given a set of target objects Dt ⊆ D and
their corresponding cost functions, the Combinatorial Max-
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Hit Improvement Strategy for Dt is a set of improve-
ment strategies St, where si ∈ St is an improvement strat-
egy for pi ∈ Dt, such that

∑
pi∈Ds

Costpi(si) ≤ β and∑
pi∈Ds

H(pi + si) is maximized.

The two problems are both NP-hard, since the single-
object improvement strategy problems are their special cases.
We can slightly modify the algorithms proposed in Sec-
tion 4.2 to handle the combinatorial improvement strategy
searching problems. To search for the combinatorial mini-
mal cost improvement strategy, we can modify Algorithm 3
as follows: First finds the min-cost improvement strategies
that can hit each query, and uses them as candidates. The
algorithm then selects the candidate strategy with minimal
cost per hit query. This process is repeated until at least the
desired number of queries are hit. A more formal description
is given as follows:

• Step 1: For each query q and each target object pi, find
the minimal-cost improvement strategy that makes pi hits
q. All such improvement strategies are used as candidates.

• Step 2: Find and apply the candidate strategy s with min-
imal cost per hit query. If the total number of hit queries
after applying the strategy is larger than τ , then instead
of s, we should apply the candidate strategy that hits at
least τ queries with minimal cost. This is to avoid over-
achieving the desired number of hits, and thus increase
the total cost.

• Step 3: If the number of query hit by the improved objects
is less than τ , repeat step 1 and 2.

Similarly, for max-hit IQ, we modify Algorithm 4 to make
it applicable for multiple target objects.

• Step 1: For each query q and each target object p, find the
minimal-cost improvement strategy that makes pi hits q.
All such improvement strategies are used as candidates.

• Step 2: Filter out the candidate strategies whose cost ex-
ceeds the remaining budget. If the candidate set is not
empty, then select the candidate strategy with minimal
cost per hit query, and apply it to the corresponding ob-
ject. Update the remaining budget accordingly. If the
candidate set is empty, then terminate.

• Step 3: If there is still available budget, repeat step 1 and
2.

5.2 Complex Utility Functions
We now discuss how to handle the case when the utility

functions used in top-k queries are non-linear. Regardless
of its complexity, a utility function f(pi) can always be seen
as a function fpi(q) for object pi, in which the attribute
values of pi are treated as constants of the function, while
the variable q consists of the other parameters of the top-k
query (e.g., attribute weights as in linear utility functions).
We explain the idea with a complex utility function example,
applied on a Car dataset with three attributes (Table 1),
where w1 and w2 are user-specified weights.

u(Car c) =
√
w1 ∗ c.Price+ w2

c.Capacity

c.MPG
(19)

As showed in the table, each car object can be seen as a
non-linear function, by treating its Price, MPG (Mileage
Per Gallon gas), and Capacity as constants. The function

Table 1: Car dataset and the corresponding functions

ID Price MPG Capacity u(w1, w2)

1 15000 30 4
√

15000w1 + w2
4
30

2 20000 28 6
√

20000w1 + w2
6
28

3 8000 35 2
√

8000w1 + w2
2
35

has input variables (w1, w2). The intersection of non-linear
functions can take a more complex form. Generally, the in-
tersection of two d-variable functions formulates a surface in
the d-dimensional domain space. Nevertheless, our observa-
tion that these functions are sortable in subdomains parti-
tioned by their intersection is still valid. Thus the proposed
Efficient-IQ algorithm works as well over complex functions.
Our concern is, however, for certain complex functions, the
number of subdomains partitioned by intersections can be
very large 1, which may result in a high indexing cost.

To mitigate this problem, we propose to convert non-
linear functions into linear functions through variable sub-
stitution, i.e., replacing complex components of an equation
with one variable to simplify the equation. After converting
non-linear functions into linear ones, we can then apply the
same techniques introduced in Section 4 for efficient process-
ing of IQs. Consider an example of top-k queries with poly-
nomial utility function, applied on a 4-dimensional dataset
D:

u(p) = w1(p(1))3 + w2(p(2) ∗ p(3)) + w3(p(4))2 (20)

which contains three high degree terms. It can be converted
into an equivalent linear function:

u∗(p) = w1p
(5) + w2p

(6) + w3p
(7) (21)

where p(5) = (p(1))3, p(6) = p(2) ∗ p(3), and p(7) = (p(4))2 are

used to substitute p(1)-p(4). As such, each object becomes
7-dimensional. Nevertheless, in this example, attributes 1 4
are no longer used in the converted utility function, thus
the dataset can be treated as 3-dimension. The value of
each augmented attributed is computed using the original
attribute values of the object, thus they do not need to be
computed and stored in advance. Instead, we simple store
the conversion process as math formulas, and compute their
values on the fly to avoid storage redundancy.

Variable substitution can be used to convert other forms
of complex functions into linear ones as well. Consider func-
tion:

u(p) =
√

(w1 − p(1))2 + (w2 − p(2))2 (22)

which computes the Euclidean distance between a data point
and a given location {w1, w2}. We can make the following
conversion:

u∗(p) =(w1 − p(1))2 + (w2 − p(2))2 (23)

u∗(p) =(w2
1 + w2

2)− 2w1p
(1) − 2w2p

(2) (24)

+ p(3) + p(4) (25)

where p(3) = (p(1))2 and p(4) = p(2))2 are the two augmented
attributes. Note that u∗(p) = u(p)2. Since distance is al-
ways positive, the ranking result of the converted function

1For linear functions, the number of such subdomains is
bounded by O(nd) where n is the number of objects and
d the number of variables [17]. While for some high-degree
functions, the number can be O(2n).
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remains the same.

5.3 Heterogeneous Utility Functions
Since IQ allows users to apply complex utility functions,

it is possible that each user defines a utility function with
a completely different form. For example, to query the Car
dataset (Table 1), some users may express their preference
as a different utility function:

v(Car c) =
c.MPG

w1 ∗ c.Price
+ w2(c.Capacity)2 (26)

In this case, we cannot simply use the value of (w1, w2) to
differentiate different top-k queries. Because even for the
same (w1, w2), the two functions 19 and 26 may compute
different values, as they represent two evaluation methods
over the same dataset. The default way to handle hetero-
geneous utility function is to add another column v(w1, w2)
to the Car dataset, and use function outputs in this column
to sort the objects when considering the top-k queries with
v(Car c). However, this will significantly increase the in-
dexing cost, because we need to find subdomains for two
different sets of functions, each has the same size of the ob-
ject set.

To address this problem, we propose constructing a“generic”
function in such a way that all the user-defined utility func-
tions are special cases of this one function. Let’s continue
with the Car dataset example. Construct the following generic
function for functions 19 and 26 by adding them up:

G(Car c) =u(Car c) + v(Car c) (27)

=
√
w1 ∗ c.Price+ w2

c.Capacity

c.MPG
(28)

+
c.MPG

w3 ∗ c.Price
+ w4(c.Capacity)2 (29)

Now we can differentiate two queries by the value of (w1, w2,
w3, w4) as in the linear case. Our solution works because
if a query uses function 19 as utility function, it must set
w3, w4 to 0. While for queries with function 26, w1, w2 is 0.
As such, we unify the domain of the two functions into one
domain space, and are able to interpret each object as only
one function.

6. IMPLEMENTATION AND EVALUATION

6.1 System Implementation

Figure 3: Graphic User Interface for Improvement Query

We have implemented the proposed techniques as an ana-
lytic tool and integrated it with the Database Management
System (DBMS). The tool allows users to issue IQs in an in-
teractive way via a Graphic User Interface (GUI) showed in
Figure 3. Users can select target objects manually from the
object dataset or via an SQL select statement. For the tar-
get objects, users specify which attributes can be adjusted
and in what range, and also the cost function to be used
for each object. Our system is implemented using C++ and
C# on a Windows server with Intel Xeon 64-bit 8-core CPU
running on 2.93GHz and 32GB RAM. An R-tree is used to
index the queries. For comparison purpose, we implement
four IQ processing schemes in our experiments.

• Efficient-IQ: This is the proposed heuristic algorithm,
which uses the ESE algorithm for improvement strategy
evaluation.

• RTA-IQ: This implementation uses the RTA algorithm,
designed for reversed top-k query, to evaluate improve-
ment strategies in each iteration, instead of the proposed
ESE algorithm. Note that RTA supports only linear util-
ity functions.

• Greedy: This implementation uses simple greedy algo-
rithm. It always finds the query point that can be hit by
any target object with the minimal cost, then repeats the
process until the desired number of queries are hit (for
Min-Cost IQs), or there is no budget left (for Max-Hit
IQs).

• Random: This scheme randomly generates improvement
strategies until it finds an improvement strategy that sat-
isfies the improvement goal (i.e., hits the desired number
of queries, or total cost less than the budget), and returns
it as the answer to user’s IQ.

6.2 Data Preparation
We test our system over four types of object datasets,

namely Independent (IN), Correlated (CO), Anti-correlated
(AC), and Real-world. IN, CO, and AC are synthetic datasets
generated with the method described in [5]. Specifically, in
IN, all attributes of an object are generated independently
with a uniform distribution, while in CO and AC, attribute
values of the an object is correlated or anti-correlated, re-
spectively. Each generated object has 10 numerical attributes
in range [0, 1]. We use two real-world datasets: VEHICLE
and HOUSE. VEHICLE [1] contains 37051 vehicle models
with attributes including year, weight, horse power, mileage
per gallon (MPG), and annual cost. HOUSE is extracted
from [18], including 100,000 records with four attributes
house value, household income, number of person, and monthly
mortgage payment. We normalize attributes of the real-
world datasets to [0, 1].

We generate two sets of top-k queries, namely UN and
CL. Both sets of queries use polynomial utility functions,
while the distribution of function coefficients (weights) are
uniform and independent in UN but clustered in CL. Details
of how to generate such queries are given in [21]. The degree
of each term in the function is randomly chosen from [1, 5]
and the top-k value is randomly selected from [1, 50]. The
default experiment setting is given in table 2.

6.3 Experiment Results
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Table 2: Experiment Setting

Parameter Default Range
|D| 100,000 50,000 - 200,000
|Q| 10,000 5,000 - 15,000
τ 250 100 - 500
β 50 10 - 100

Dimensionality 3 1 - 5

6.3.1 Data Indexing
We first evaluate the indexing cost of the proposed tech-

niques, which involve the cost of building an R-tree over
the query points and grouping them by subdomains. To
better understand the scale of this cost, we compare in-
dexing structure size (showed as percentage to the original
dataset) and the total indexing time of the proposed tech-
nique (Efficient-IQ) with two benchmarks: 1) the cost of
building only an R-tree on the query points (R-tree), and 2)
the cost of building a Dominant Graph (DominantGraph) [26]
for the objects, which is the state-of-the-art indexing tech-
nique for top-k query with linear utility functions.
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Figure 4: Scalability to the object set size
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Figure 5: Scalability to the query set size

We adjust the number of objects and report the corre-
sponding indexing time and size of the proposed technique
and DominantGraph (Figure 4). In order for Dominant
Graph to work, we use only linear utility functions for top-k
queries. For each test point, we generate 100 different utility
functions and report the average indexing costs. We observe
that the indexing cost on different types of synthetic data is
almost the same, thus we report the average cost over all the
types of datasets to save space. The dimension (i.e., number
of variables) of the utility functions is uniformly picked in
[1, 5]. The indexing time of DominantGraph is similar to our
technique in general while Efficient-IQ incurs slightly higher
storage overhead (less than 5% of the data size). However,
our technique is unique in being able to support efficient
processing of IQ.
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Figure 6: Indexing cost of real-world datasets

We then adjust the number of queries and compare the
proposed technique with building only an R-tree (Figure 5).
This time we allow non-linear utility functions. For the same
set of queries, the proposed Efficient-IQ requires about 20%
- 25% more indexing time comparing with building only an
R-tree. The extra time is used to find subdomains for each
query point, in order to facilitate the ESE algorithm. The
final index size, nevertheless, is only about 10% larger than
an R-tree. This is because many adjacent query points fall
in the same subdomain and thus we do not need to store
the subdomain information for each of them. In general,
the propose technique shows good scalability, in terms of in-
dexing cost, with respect to both the number of objects and
queries. Experiment over real-world datasets is consistent
with that on synthetic data.

6.3.2 IQ Processing
For query processing, we are interested in two metrics: 1)

Average query processing time, and 2) Quality of the im-
provement strategy returned to the user. For Min-Cost IQ,
the quality of an improvement query can be measured by its
total cost. While for Max-Hit IQ, it’s the total number of
query hit by the improved objects. We use an unified quality
measurement for both types of queries, i.e., the average cost
per hit query of an improvement strategy, the lower the bet-
ter. If multiple target objects hit the same query, we count
them as only one hit. Our experiment shows that, even for
the smallest dataset, exhaustive search takes more than 4
hours to process a query in average. Thus we compare only
the 4 aforementioned schemes. For RTA-IQ to work, we
limit the type of utility functions to linear with attribute
weights normalized to 1. We use the following cost function
for all objects:

Cost(s) =
√∑d

i=1 s
2
i (30)
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Figure 7: Query processing on the IN object dataset

We evaluate the scalability of the proposed techniques
with regard to the size of D and Q respectively. The re-
sults on different data sets are showed in Figure 7-13. For
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Figure 8: Query processing on the CO object dataset
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Figure 9: Query processing on the AC object dataset
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Figure 10: Query processing on the UN query dataset

each test point, we issue 100 Min-Cost IQs and 100 Max-Hit
IQs, and report the average performance of the compared
schemes. The parameters of these IQs are randomly and
uniformly selected from the ranges given in Table 2. For
each real-world dataset, we use a randomly generate query
set that is one third of its size.

It is not surprising that Random is the fastest scheme
in processing IQs, but it also yields the worst improvement
strategy quality. The simple greedy algorithm has better
strategy quality than Random, but is still very poor when
compared with the proposed techniques. The Efficient-IQ
achieves both good running time and high strategy quality.
It outperforms RTA-IQ significantly in querying processing
time, while achieving the best improvement strategy qual-
ity. (Note that RTA-IQ uses the same strategy-searching
approach as Efficient-IQ, thus the quality of the strategies
found by the two schemes is the same). The result shows
that the good performance of the proposed technique is due
to the combination of an efficient strategy searching method
and a fast evaluation algorithm used in each searching iter-
ation.

Finally, we evaluate the scalability of the proposed tech-
nique with respect to dimensionality of the functions (i.e.,
the number of variables in the interpreted functions). Since
RTA only works on linear function, in this experiment we
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Figure 11: Query processing on the CL query dataset
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Figure 12: Query processing on the real-world datasets
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Figure 13: Scalability to the number of variables in
functions

plot only the result of Efficient-IQ. The result (Figure )
shows as the number of variables increases, the query pro-
cessing time increases too, but in a sub-linear way. That
means the query processing time becomes less sensitive to
dimensionality as it increases, which is a desired feature.

7. CONCLUSION
We live in a society that is competitive in nature. Daily we

face the challenges of improving something to make it more
competitive against its peers. In this paper, we consider
the problem of finding improvement strategies. We propose
a new type of query called Improvement Query (IQ) that
has two variants. A Min-Cost IQ retrieves the improvement
strategy with minimal cost for some target object to hit a
desired number of top-k queries, and a Max-Hit IQ tries
to find an improvement strategy that maximize the num-
ber of hit queries with a given budget. Here the cost of
an improvement strategy is modeled by a user-defined cost
function. We show that finding the exact answers to both
queries are NP-Hard and propose a suite of heuristic solu-
tions. Our key idea is to interpret each object as a function
and treat each top-k query as as its input. As such, the set
of functions can be strictly sorted by their output in each
subdomain partitioned by their intersections. The geomet-
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rical relations among then function intersections can then
be leveraged for efficient processing of IQs. We implement
the proposed techniques as an analytic tool and integrated
it with the DBMS. In our extensive evaluation, it demon-
strates excellent performance.
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