
Efficient spatio-temporal event processing with STARK

Stefan Hagedorn
TU Ilmenau, Germany

stefan.hagedorn@tu-ilmenau.de

Timo Räth
TU Ilmenau, Germany

timo.raeth@tu-ilmenau.de

ABSTRACT
For Big Data processing, Apache Spark has been widely ac-
cepted. However, when dealing with events or any other
spatio-temporal data sets, Spark becomes very ine�cient as
it does not include any spatial or temporal data types and
operators. In this paper we demonstrate our STARK project
that adds the required data types and operators, such as
spatio-temporal �lter and join with various predicates to
Spark. Additionally, it includes k nearest neighbor search
and a density based clustering operator for data analysis
tasks as well as spatial partitioning and indexing techniques
for e�cient processing. During the demo, programs can be
created on real world event data sets using STARK’s Scala
API or our Pig Latin derivative Piglet in a web front end
which also visualizes the results.

1. INTRODUCTION
Spatio-temporal data is used in various application ar-

eas: for example by (mobile) location aware devices that
periodically report their position as well as in news articles
describing events that happen at some time and location.
Spatio-temporal event data can, e.g., be extracted from text
documents using spatial and temporal taggers that identify
the respective expressions in a text corpus. The extraction of
the structured event data from text is just a �rst step and
data needs to further be analyzed using appropriate data
mining operations to gain new insight.

As the event data sets may become very large, scalable
tools are needed for the event analysis pipelines. Apache
Spark has become a very popular platform for such Big Data
analytics because of its in memory data model that allows
much faster execution than with Hadoop MapReduce pro-
grams. However, Spark has a general data model which does
not take the spatial and temporal aspects of the data into
account, e.g., for partitioning. Furthermore, dedicated data
types and operators for this spatio-temporal are missing.

In this paper we demonstrate our STARK1 framework for

1https://github.com/dbis-ilm/stark

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

scalable spatio-temporal data analytics on Spark, with the
following features:

• STARK is built on top of Spark and provides a domain
speci�c language (DSL) that seamlessly integrates into
any (Scala) Spark program.
• It includes an expressive set of spatio-temporal opera-

tors for �lter, join with various predicates as well as k
nearest neighbor search.
• A density based clustering operator allows to �nd groups

of similar events.
• Spatial partitioning and indexing techniques for fast

and e�cient execution of the data analysis tasks.

In contrast to similar existing solutions for Spark, STARK
is the only framework that addresses not only spatial but
also spatio-temporal data. Unlike other frameworks, STARK
is seamlessly integrated into the Spark API so that spatio-
temporal operators can directly be called on standard RDDs.
Furthermore, we provide a Pig Latin extension in our Piglet
engine to create (spatio-temporal) data processing pipelines
using an easy to learn scripting language. A web front end
supports users with interactive graphical selection tools and
also visualizes the results. We evaluated STARK in a mirco
benchmark against other solutions and showed that we can
outperform them.

2. THE STARK FRAMEWORK
STARK is tightly integrated into the Apache Spark API

and users can directly invoke the spatio-temporal operators
and their RDDs. To achieve this, we created new data type
and operator classes that make use of already existing Spark
operations, but also extend internal Spark classes. Figure 1
gives an overview of STARK’s architecture and its integra-
tion into Spark.

In the following, we describe the internal components for
spatial partitioning and indexing as well as the API/DSL
for spatio-temporal operations and integration into Spark.

2.1 Partitioning
Partitioning has a signi�cant impact in data parallel plat-

forms like Spark. If the partitions sizes, i.e., the number
of elements per partition, are not balanced, a single worker
node has to perform all the work while other nodes idle.

Spark already includes partitioners, but they do not ex-
ploit the spatial (or spatio-temporal) characteristics. Spatial-
temporal partitioning means that partitions are not created
by using, e.g., a simple hash function, but by considering
the location in space and/or time of occurrence. Thus, after

Demonstration

 

 

Series ISSN: 2367-2005 570 10.5441/002/edbt.2017.72

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2017.72


Figure 1: Overview of STARK architecture and integration into
Spark.

store to HDFS

query execution

load from HDFS

spatial
partitioning

optional
indexing

raw data

Figure 2: Internal workflow for converting, partitioning, and query-
ing spatio-temporal data

a spatio-temporal partitioner was applied on a data set, a
partition contains all elements that are near to each other
in time and/or space and the bounds of a partition repre-
sent a spatial region and/or temporal interval which cover
all items of that partition. This bound is very useful to de-
termine what partitions actually have to be processed for a
query. For example, an intersects query only has to check
the items of partitions where the partition bounds them-
selves intersect with the query object. Such a check can
decrease the number of data items to process significantly
and thus, also reduce the processing time drastically.

When the spatial and temporal objects of a data set are
not points or instants, respectively, these regions and in-
tervals may span across multiple partitions. There are two
options to handle such scenarios:

• The item is replicated into every of these partitions and
the resulting duplicates have to be pruned afterwards.

• The items are assigned to only one partition and the
partition bounds are adjusted accordingly which re-
sults in overlapping partitions.

STARK uses the latter approach by assigning polygons to
partitions based on their centroid point. Beside the parti-
tion bounds, we keep an additional extent information that
is adjusted with the minimum and maximum values of the
respective objects in each dimension. We decide which par-
tition has to be checked during query execution based on
this extent information and prune partitions that cannot
contribute to the final result.

In its current version, STARK only considers the spa-
tial component for partitioning. The partitioners implement
Spark’s Partitioner interface and can be used to spatially
partition an RDD with the RDD’s partitionBy method.

Grid Partitioner.
The first partitioner included in STARK is a fixed grid

partitioner. Here, the data space is divided into a number of
intervals per dimension resulting in a grid of rectangular cells
(partitions) with equal dimensions. The bounds of these
partitions are computed in a first step and afterwards with a
single pass over the data, each item is assigned to a partition
by calculating in which grid cell this item is contained.

Cost-Based Binary Space Partitioner.
As the fixed grid partitioner created partitions of equal

size over the data space, it might create some partitions
that contain the majority of the data items, while other
partitions are empty. As an example consider the world
map where events only occur on land, but not on sea. With

a grid partitioning, there might be empty cells on sea and
overfilled partitions in densely populated areas. To overcome
this problem, we implemented a cost based binary space
partitioning algorithm, based on [1]. This partitioner divides
the space into two partitions with equal cost (number of
contained items). If the cost for one partition exceeds a
threshold, it is recursively divided again into two partitions
of equal cost. This way, large regions with only a few items
will belong to the same partition, while dense regions are
split into multiple partitions. The recursion stops when a
partition does not exceed the cost threshold or the algorithm
reached a granularity threshold, i.e., a minimum side length
of a partition.

2.2 Indexing
Just as in relational DBMS, indexing the content can sig-

nificantly improve query performance. STARK uses the
JTS2 library for spatial operations. This library also pro-
vides an R-tree implementation (more accurately, an STR-
tree) for indexing. STARK can use this index structure to
index the content of a partition. A spatial partitioning is
not mandatory to use index, but might bring additional
performance benefits. Basically, STARK has three index-
ing modes, that can be chosen by the user:

No Indexing.
The partitions are not indexed and all items within a par-

tition have to be evaluated with the respective predicate
function.

Live Indexing.
When a partition is processed for evaluating a predicate,

the content of that partition is first put into an R-tree and
then, this index is queried using the query object. Since the
results of the R-tree query are only candidates where the
minimum bounding boxes match the query, these candidates
have to be checked again if they really match the query
object. During this candidate pruning step, the temporal
predicate is evaluated as well, if needed. Live indexing can
be used in a program by calling the liveIndex method on an
RDD. This method takes the order of the tree as well as an
optional partitioner as parameters, in case the RDD should
be repartitioned before indexing.

Persistent Indexing.
Creating an index may be time consuming and often the

same index will be reused in subsequent runs of the same
or in another program. For such cases, STARK allows to

2http://tsusiatsoftware.net/jts/main.html

571



572




	Efficient spatio-temporal event processing with STARKStefan Hagedorn, Timo Räth

