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ABSTRACT
Truth discovery, a validity assessment method for conflict-
ing data from various sources, has been widely studied in the
conventional database community. However, while existing
methods for static scenario involve time-consuming itera-
tive processes, those for streams suffer from much sacrifice
on accuracy due to the incremental source weight learning.
In this paper, we propose a novel framework to conduc-
t truth discovery over streams, which incorporates various
iterative methods to effectively estimate the source weight-
s, and decides the frequency of source weight computation
adaptively. Specifically, we first capture the characteristics
of source weight evolution, based on which a framework is
modeled. Then, we define the conditions of source weight
evolution for the situations with relatively small unit and
cumulative errors, and construct a probabilistic model that
estimates the probability of meeting these conditions. Fi-
nally, we propose a novel scheme called adaptive source re-
liability assessment (ASRA), which converts an estimation
problem into an optimization problem. We have conducted
extensive experiments over real datasets to prove the high
effectiveness and efficiency of our framework.
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1. INTRODUCTION
The current big data era has witnessed various sources

providing information on the same set of objects or events
[18]. The data inconsistency across multiple sources is an
important research issue in many applications. The re-
al world applications like weather situation analysis and
health-care require techniques to identify which data sources
are more reliable or what information is accurate. For ex-
ample, when we identify the weather condition of a city,
the inconsistent information may be obtained from multi-
ple websites. As another example, different medical records
on a patient may be found from different hospitals. Thus,
it is highly demanded to automatically identify trustworthy
information from conflicting data. For this task, truth dis-
covery has been proposed to model the source quality and
derive the truth based on a principle: the information from
a reliable source is trustworthy and the source providing
trustworthy information is reliable. By leveraging this prin-
ciple, several mechanisms have been proposed in previous
works for both static and dynamic data.

Consider a set of conflicting stock information for Apple
Inc. at certain time as shown in Figure 1. As the informa-
tion on the open price is arriving continuously, the truth on
it evolves over time. In addition, the value from Insidestocks
is closer to the truth at ti−1, while that from Stocksmart is
closer to the truth at ti. This implies the reliability degrees
of these three sources change over time as well. Thus, it is
vital to identify the reliability of sources and the truths over
continuous data streams, and develop advanced techniques
for the truth discovery under dynamic scenario. Existing
approaches for truth discovery mainly focus on static data
[6, 7, 8, 19, 2, 22, 3, 1, 15, 5, 9, 12, 4, 14, 24], where an
iterative process is exploited. The truth discovery process
constantly iterates until the source weight converges to an
optimal value. Applying the iterative process to the truth
discovery at each timestamp over streams, the high accura-
cy performance can be achieved. However, these approaches
suffer from expensive time costs, which is not applicable to
high-speed data streams. Recently, some approaches have
been proposed to improve the truth discovery efficiency by
learning source weights and deriving truths incrementally
[11, 23]. However, these methods sacrifice much accuracy,
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because they model each source weight as a constant. The
reliability of each source estimated by them is converged to
a value, while the true source weights in real applications
are constantly changing over time [16].
To effectively and efficiently discover truths over stream-

s, we need to well address three issues. First, various it-
erative methods should be incorporated in a nice way to
find the truths and the reliability of sources. This is im-
portant, as the optimal truths and source weights at each
timestamp can only be derived by iteration strategy. As
a result, the accuracy of truth discovery over data streams
can be improved. Second, we need to design a set of ad-
vanced techniques which adaptively decide the frequency
of source weight assessment to minimize the number of it-
erative operations. As data streams flow in large volume
at high speed, it is clearly unacceptable to perform itera-
tions at each timestamp. Finally, we should study the er-
rors caused by not accessing the source weights continually
over streams, and control these errors in a certain range.
In this paper, we propose a novel framework for effective

and efficient truth discovery over streams. The idea behind
it is to incorporate the iterative process in truth discovery
for high accuracy and adaptively reduce the frequency of
source weight assessment for high efficiency. Specifically, we
first define two concepts, Unit error and Cumulative error,
to describe the error caused by not changing the source reli-
ability over data streams. Then, we present the relationship
between each of these two concepts and the source reliabil-
ity change based on theoretical analysis, which guarantees
the accuracy of our truth discovery framework. For mini-
mizing the source weight assessment frequency, we turn the
problem of source weight assessment into an optimization
problem and propose a scheme called ASRA to determine
this frequency adaptively over data streams. In summary,
we make the following contributions:

• We speculate the condition of the source reliability
evolution under the constraints of small errors based
on theoretical analysis, which guarantees the accuracy
of our method. A probabilistic model is constructed to
estimate the probability of meeting these conditions.

• We propose an optimization-based scheme ASRA, that
minimizes the source reliability assessment frequency
by estimating the maximum value of cumulative error
smaller than a given threshold in a certain confidence
level of probabilities.

• We propose a framework, which adaptively determines
the time of source reliability assessment by combining
the incoming data. Our framework incorporates vari-
ous iterative approaches to estimate the reliability of
sources, and balances the efficiency and accuracy by
tuning the parameters.

• We validate the proposed framework on real datasets,
and the results demonstrate the high performance of
our proposed framework in term of effectiveness and
efficiency.

The rest of paper is organized as follows. We survey the
related work in Section 2, and formulate the research prob-
lem in Section 3. Section 4 proves some conclusions of truth
discovery over data streams. Section 5 introduces the prob-
ability model and proposes our method. Section 6 conducts
experiments and analyzes experimental results. Section 7
concludes our paper.
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Figure 1: An Example of Truth Discovery over Data

Streams

2. RELATED WORK
Truth discovery has been widely recognized in research

community, and applied in several domains such as social
sensing [17], health communities [13] and wireless sensor
networks [20]. Previous works on truth discovery mainly
focus on static databases [8, 7, 19, 6, 2, 22, 3, 1, 15, 5,
9, 12, 4, 21, 24]. In [19], Yin et al. propose an algorithm
called TruthFinder that identifies truths using an iterative
process. In [6], Galland et al. propose three alternative fix-
point algorithms, Consine, 2-Estimates and 3-Estimates, to
estimate the truths and the reliability of sources. In [22],
Zhao et al. study the truth discovery problem by modeling
the two-sided source quality and leveraging Gibbs sampling.
In [21], a probabilistic model is designed for the truth dis-
covery over numerical data. In [8], an optimization-based
framework is proposed to resolve the conflicts among mul-
tiple sources of heterogeneous data types. A confidence
aware truth discovery method is proposed to find truths
from the conflicting information with long-tails phenomenon
[7]. However, none of these approaches can be directly ap-
plicable to data streams due to the costly iterative process.

Source correlation analysis has been studied as another
topic of truth discovery [2, 3, 1, 15, 5, 9]. In [2], the AC-
CU model is proposed, which applies Bayesian analysis to
decide the dependence between sources. In [3], Dong et
al. propose a probabilistic-based approach to decide the
copying relationship in a dynamic world. A Hidden Markov
Model (HMM) is utilized to decide whether a source is a
copier of another source and identify the specific moments
at which it copies. In [1], a global model is proposed to i-
dentify the co-copying and transitive copying relationships.
In [15], Pochampally et al. explore the correlation beyond
copying, and propose a Bayesian-based model for address-
ing the positive and negative relationships in sources. A
multilayer probabilistic model is proposed to compute the
trustworthiness levels of sources [5]. A set of experiments
is conducted to analyze the advantages and limitations of
several truth discovery methods [9].

Recently, some attempts have been conducted to solve
the truth discovery problem over data streams. In [23],
Zhao et al. propose a probabilistic model that handles con-
flicting values over data streams. However, their method
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Table 1: Notations
Notation Definition Defined in (Section)

v
(k,e,m)
i the observation of the mth property for the eth object by the kth source at ti 3
Vi the observations of all the objects on all the properties from all the sources at ti 3

wk
i the weight of the kth source at ti 3

Wi the source weight collection at ti 3

v
(∗,e,m)
i the truth of the mth property for the eth object at ti 3
V ∗

i the truths of all the objects on all the properties at ti 3
λ the smoothing factor 3.1

∆wk
i the source weight evolution on kth source at ti 3.2

ε the unit error threshold 4
α the probability threshold 5.2
E the cumulative error threshold 5.2

can only work over categorical data. In [11], Li et al. pro-
posed an incremental truth discovery method by transform-
ing their optimization-based solution into a probabilistic
model. However, the previous truth discovery work has
shown that true source weights change over time [16], and
this key point has not been considered in the models pro-
posed in [23] and [11]. The source weight learned by these
incremental methods converges to a certain value, which
is considered as the corresponding true source weight. Al-
though a smoothing factor has been introduced to capture
the source’s reliability changes [11], the source weight com-
puted by it also finally converges to a certain value. Thus,
these incremental methods suffer from low accuracy com-
pared with optimization-based solutions. To the best of
our knowledge, our work is the first attempt ever made to
trade off the accuracy and efficiency of truth discovery over
streams flexibly by tuning the parameters [10]. Moreover,
with our proposed framework, various iterative truth dis-
covery algorithms can be utilized to improve accuracy with
neglectable efficiency losses. The notation used in this paper
is listed in Table 1 for easy reference.

3. PROBLEM FORMULATION
In this section, we illustrate our proposed framework for

truth discovery over data streams. Before proceeding to the
problem formalization, we will introduce several important
concepts first, Observation, Source Weight, and Truth.

Definition 1. An observation is the data that describes
an object property of a source at a timestamp. We denote
the observation of the mth property on the eth object from

the kth source at ti as v
(k,e,m)
i , and all observations at ti as

Vi.

Definition 2. A source weight is the reliability degree of a
source at a timestamp. The source weights at ti are denoted
as Wi = {w1

i , w2
i , . . . , wK

i }, where wk
i is the reliability

degree of the kth source at ti.

Definition 3. A truth is an aggregated result derived from
truth discovery. We denote the truth of the mth prop-

erty for the eth object at ti as v
(∗,e,m)
i . Let v

(∗,e,m)
o,i be

the optimal truth satisfying the convergence criterion of a
given iterative method at ti, and Dist be a distance func-
tion. Given a timestamp tk for source weight assessmen-

t, the truth v
(∗,e,m)
k is a value that holds the condition:

Dist(v
(∗,e,m)
o,k , v

(∗,e,m)
k ) = 0. Given a timestamp tj with-

out source weight assessment, and two thresholds, ε, α, the

truth v
(∗,e,m)
j is a value that is derived by previous source

weights Wi (i < j) and holds the condition: the probabil-

ity of Dist(v
(∗,e,m)
o,j , v

(∗,e,m)
j ) ≤ ε(j − i)2 is no less than α.

The truths of all the objects on all the properties at ti are
denoted as V ∗

i .

Given a set of observations Vi, truth discovery over da-
ta streams is to automatically infer the truths V ∗

i and the
source weights Wi at each timestamp ti. In this paper, we
propose a novel framework that balances the effectiveness
and efficiency of truth discovery over data streams. The
idea behind it is to incorporate iterative process in truth
discovery for high accuracy and adaptively determine the
frequency of source weight assessment for high efficiency.
For this task, we first formalize the truth computation and
the source weight evolution to analyze the error caused by
not assessing source weights continually over data streams.
Then, we define two concepts, unit error and cumulative
error, and speculate the relationship between the source
weight evolution and the two errors based on theoretical
analysis, which guarantees the accuracy of our framework.
Finally, we propose an optimization-based scheme which
minimizes the iterative operations, and then propose our
method which adaptively decides the source weight assess-
ment frequency by combining the incoming data. We denote
the timestamp that our method updates the source weights
as update point. Next, we will introduce our basic ideas on
truth computation and source weight evolution.

3.1 Truth Computation
Truth computation is to keep the truths close to the claim-

s from reliable sources. Traditional voting or averaging
schema assumes all sources are equally reliable, which is
generally unreasonable in real applications. To overcome
this problem, many truth discovery methods use weighted
voting or averaging to obtain the truths [8, 7, 11, 19, 6,
2], which makes the observations from high quality sources
more important. In this paper, we infer the truth by ex-
ploiting the same weighted averaging strategy considering
its advantages:

v
(∗,e,m)
i =

∑K
k=1 w

k
i · v(k,e,m)

i
∑K

k=1 w
k
i

(1)

According to this weighted combinations, the information
from the higher quality sources is more trustworthy, which
is consistent with the principle of truth discovery. Howev-
er, for truth discovery over data streams, the information
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Figure 2: Source Weight Evolution in Real-World Applications

usually evolves smoothly. To capture this characteristic, we
add one smooth constraint on the aggregated results. As

such, the truth v
(∗,e,m)
i is computed by:

v
(∗,e,m)
i =

∑K
k=1 w

k
i · v(k,e,m)

i + λ · v(∗,e,m)
i−1

∑K
k=1 w

k
i + λ

(2)

where λ is the smoothing factor [11]. This equation treats

the truth v
(∗,e,m)
i−1 as the information from a pseudo source

and λ as the weight of this source.

Existing iterative truth discovery methods usually assess
the truths and source weights by conducting an alternating
iterative process [8, 7, 11, 19, 6, 2]. In other words, such
methods update truths while fixing source weights and then
update source weights while fixing truths until convergence.
We aim to design a framework which can embed various
iterative truth discovery approaches for the accuracy im-
provement, and infer the truth by exploiting the weighted
combinations strategy (i.e., Formula (1) or (2)). Thus, an
iterative truth discovery method can be plugged into our
framework only in the case that its truth computation is in
the form of weighted combinations.

3.2 Source Weight Evolution
Based on the principle of truth discovery, the source weight

reflects the contribution of a source to the results of weight-
ed combinations. Therefore, a relatively smooth evolution
of a source weight implies a small variation on the contri-
bution of this source. Under this situation, neglecting the
updating of source weights will cause small errors, while
decrease the iterative process. Thus the iterative methods
can be applied to dynamic scenarios. The Source Weight
Evolution ∆wk

i on kth source at time ti is computed by:

∆wk
i =

∣

∣

∣w
k
i /

∑K

k=1
wk

i − wk
i−1/

∑K

k=1
wk

i−1

∣

∣

∣ (3)

To observe the evolution of source weights, we conduc-
t a set of experiments on two real-world datasets: Stock
Dataset and Weather Dataset. These datasets have been
used in the evaluation of truth discovery solutions [9, 3],
and their ground truths are available. For each dataset, we
randomly select two sources, S1 and S2, for tests. Each
source weight is quantified by comparing its observation-
s with the ground truths and measuring the closeness be-
tween them. Since data usually contain multiple attributes
in real applications, we normalize the deviation from various
attribute values. Figure 2 shows the experimental result-
s on source weight evolution over two different real-world
datasets. Clearly, the evolution of source weights is quite
minor at some moments. Under this scenario, it is natural
to utilize previous source weights instead of current ones
to obtain truths. For one thing, since the source weight
computation is neglected, the iterative process is decreased

under dynamic scenario. Thus, the iterative methods are
applicable to data streams to improve the accuracy of truth
discovery. For another, the deviation between the optimal
truth and the approximate one will be small as well. Next,
we will analyze this deviation caused by un-assessing source
weights.

4. THEORETICAL ANALYSIS
In this section, we prove the condition of the source weight

evolution under the constrains of small errors caused by un-
assessing source weights. We first define the error in the
form of mathematical formula. The unit error Φi

j (i < j) is
given by:

Φi
j = (

v
(∗,e,m)
o,j − v

(∗,e,m)

i/j

v
(max,e,m)
j

)2 (4)

where v
(∗,e,m)
i/j (i < j) is the approximate truth computed

based on the previous source weight Wi, and v
(max,e,m)
j is

the absolute maximum value of v
(k,e,m)
j (1 ≤ k ≤ K). We

use v
(max,e,m)
j to normalize the distance between the optimal

truth v
(∗,e,m)
o,j and the approximate one v

(∗,e,m)
i/j at tj . Here,

v
(∗,e,m)

i/j refers to v
(∗,e,m)
j in Definition 3.3. Specifically, let

Φ represent Φi−1
i . The relationship between the unit error

Φ and the source weight evolution is given by Theorem 1.

Theorem 1. Given a unit error threshold ε, let K be the
size of source collection. If for all k, 1 ≤ k ≤ K, the source
weight evolution holds: ∆wk

i ≤
√
ε/K, then the unit error

Φ ≤ ε is satisfied.

Proof. According to Formulas (1) and (4), we derive the
following:

√
Φ =

∣

∣

∣

∣

∣

∑K
k=1 (w

k
i /

∑K
k=1 w

k
i − wk

i−1/
∑K

k=1 w
k
i−1) · v(k,e,m)

i

v
(max,e,m)
i

∣

∣

∣

∣

∣

Then, we can infer

√
Φ ≤

∑K

k=1

∣

∣

∣

∣

∣

(wk
i /

∑K
k=1 w

k
i −wk

i−1/
∑K

k=1 w
k
i−1) · v(k,e,m)

i

v
(max,e,m)
i

∣

∣

∣

∣

∣

Since
∣

∣

∣
v
(max,e,m)
i

∣

∣

∣
≥

∣

∣

∣
v
(k,e,m)
i

∣

∣

∣
(1 ≤ k ≤ K), we have

√
Φ ≤

∑K

k=1

∣

∣

∣w
k
i /

∑K

k=1
wk

i − wk
i−1/

∑K

k=1
wk

i−1

∣

∣

∣

Further,
√
Φ ≤ K ·

√
ε/K =

√
ε

So far, we prove that Φ ≤ ε holds.
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Theorem 1 demonstrates the relationship between the
source weight evolution and the unit error, i.e., the unit
error Φ should be no more than ε if the formula (5) is sat-
isfied,

∆wk
i ≤
√
ε/K (1 ≤ k ≤ K) (5)

Under this scenario, we can use Wi−1 to approximate Wi

and ensure that the deviation between the optimal truth
and the approximate one will be constrained by a threshold
ε. Since we un-assess all sources weights at ti, the time com-
plexity of truth discovery is linear. For further improving
the efficiency, we aim to assess source weights over time as
few as possible. Therefore, it is essential to further analyze
the relationship between the source weight evolution and
the errors cumulated in a time period, i.e., the cumulative
error, which is computed by Formula (6),

Ψi
j =

∑j

h=i+1
Φi

h (6)

Combining with Formula (4), we can see that the cumulative
error is defined as the sum of unit errors in a time period.
Then, we give the maximum value of the cumulative error
under the condition that Formula (5) holds in a time period.

Theorem 2. Given a unit error threshold ε, let K be the
size of source collection. If for all k, h, 1 ≤ k ≤ K, i < h ≤
j, the source weight evolution holds: ∆wk

h ≤
√
ε/K, then

the cumulative error Ψi
j meets the condition Ψi

j ≤ ∆T (∆T+
1)(2∆T + 1)ε/6, where ∆T = j − i.

Proof. According to Formulas (1) and (4), we derive the
following:

√

Φi
h =

∣

∣

∣

∣

∣

∑K
k=1 (w

k
h/

∑K
k=1 w

k
h − wk

i /
∑K

k=1 w
k
i ) · v(k,e,m)

h

v
(max,e,m)
h

∣

∣

∣

∣

∣

Then similar to Theorem 1, we have
√

Φi
h ≤

∑K

k=1

∣

∣

∣
wk

h/
∑K

k=1
wk

h − wk
i /

∑K

k=1
wk

i

∣

∣

∣

According to ∆wk
h ≤

√
ε/K , for any h (i < h ≤ j), it is

easy to derive the following:
√

Φi
h ≤ (h− i) ·

√
ε

Further,
∑j

h=i+1
Φi

h ≤
∑j

h=i+1
(h− i)2ε

Then,
∑j

h=i+1
Φi

h ≤ (j − i)(j − i+ 1)(2(j − i) + 1)ε/6

Since Ψi
j =

∑j
h=i+1Φ

i
h, we have

Ψi
j ≤ (j − i)(j − i+ 1)(2(j − i) + 1)ε/6

Let ∆T = j − i, we prove that Ψi
j ≤ ∆T (∆T + 1)(2∆T +

1)ε/6 holds.

According to Theorem 2, we can get that the relationship
between the unit error and the maximum value of cumula-
tive error under the condition of ∆wk

h ≤
√
ε/K (i < h ≤

j, 1 ≤ k ≤ K):

max(Ψi
j) = ∆T (∆T + 1)(2∆T + 1)ε/6 (7)

where ∆T = j − i. Let the size of source collection K
be 3 and the unit error threshold ε be 0.03. Suppose that

we update the source weights at t1 and the source weight
evolutions satisfy Formula (5) from t2 to t5, i.e., ∆wk

i ≤
0.03
3

= 0.01 (1 ≤ k ≤ 3, 1 < i ≤ 5). The cumulative error

Ψ1
5 will be no more than 4×(4+1)×(2×4+1)×0.03/6 = 0.9.
Theorem 2 ensures that, under dynamic scenario, we can

incorporate iterative methods to improve the accuracy of
truth discovery without scarifying much efficiency. The rea-
son is that we neglect the iterative estimation of source
weights Wi when the source weight evolutions ∆wk

i (1 ≤
k ≤ K) satisfy Formula (5), i.e., the iterative truth discov-
ery methods are utilized over data streams only at certain
timestamps. In addition, as the cumulative error is con-
strained by ε and ∆T , we can ensure the accuracy of truth
discovery even if the iterative process is reduced. Although
we do not update the source weights at each timestamp,
the accuracy of our method is still much higher than the
existing incremental methods (as shown in Section 6).

To capture the temporal relations among truths by adding
smoothing factor as in Formula (2), we only need to re-

define v
(max,e,m)
j in Formula (4) as the absolute maximum

value of v
(1,e,m)
j , v

(2,e,m)
j , ..., v

(K,e,m)
j , v

(∗,e,m)
j−1 , and slightly

modify Formula (5) by changing K into K +1. The reason
is that we treat the smoothing factor as the weight of the

(K + 1)th source and v
(∗,e,m)
j−1 as the information from this

source. Since we still compute truths by exploiting weighted
combinations, the smoothing factor will not affect our con-
clusions. Moreover, we introduce the smoothing factor for
truth computation only when the data changing is smooth,

thus it is reasonable to utilize the v
(max,e,m)
j to normalize

the unit error.
As shown in Theorems 1 and 2, a relative smooth source

weight evolution leads to a lower unit error comparing with
a big “jump” (the peaks in Figure 2) of source weight evo-
lution. However, since the evolution of source weight is un-
known over data streams, it is hard to make sure whether
Formula (5) is satisfied. For solving this issue, we propose a
probabilistic model to dynamically estimate the probability
of Formula (5) holding over data streams.

5. ASRA-BASED TRUTH DISCOVERY
In this section, we propose an adaptive source reliabili-

ty assessment scheme (ASRA) for truth discovery over da-
ta streams. The basic idea behind this scheme is to dy-
namically determine the time for source weight assessment.
Then the truth with a predetermined accuracy is identified.
Specifically, we first derive a probabilistic model to estimate
the probability of the source weight evolution which meets
the condition in Formula (5). By integrating the conclu-
sions in section 4, we achieve the maximal period of source
weight assessment under the condition that the maximum
value of cumulative error is smaller than a given threshold
in a certain confidence level. This will transform the source
weights assessment into an optimization problem. Based
on this optimization problem, we then propose our ASRA
scheme that adaptively assesses source weights over stream-
s.

5.1 Probability Forecasting Model
As proved in Theorem 1, the source weight evolution has

great influence on unit error. If all the source weight evolu-
tions meet the conditions in Formula (5), the unit error will
be less than ε. Otherwise, it can not be controlled within
the ε constraint. However, in real-world applications, even if
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the variation trend of the information from various sources
can be obtained, the evolution of each source weight is still
not available. Considering this, we propose a probability
model based on the Bernoulli distribution to estimate the
probability of Formula (5) holding over data streams. Given
a timestamp ti, we can consider ∆wk

i ≤
√
ε/K (1 ≤ k ≤ K)

as an independent and random event. Here, the probability
of the event occurrence is a random variable which follows
Bernoulli distribution, i.e., ξ ∼ B(1, p). Based on the proba-
bility theory, the probability p can be estimated by sampling
as explained by Example 1.

Example 1. Given a unit error threshold ε and a source
collection, assume that t1 ∼ tl is the initial period of time.
We assess the source weight at each timestamp. Let N be
the times of all source weight evolutions satisfying Formula
(5) during this period. The total times of counting all source
weight evolutions is M = l − 1. Thus the probability p can
be estimated as N/M .

As the time increases, both the source weight evolution
and the probability p are likely to change. Thus, a dynamic
estimation makes the probability p more accurate. This
is also the basis of ASRA scheme. We will illustrate the
time for the update of probability p while introducing our
scheme.

5.2 ASRA Scheme
This section presents our ASRA scheme in details. The

ASRA scheme includes two parts: (1) adaptive update point
prediction; and (2) ASRA-based truth discovery algorithm.
We first transform the update point prediction issue into
an optimization problem which minimizes the frequency of
source weight assessment. Then, an ASRA-based algorithm
is proposed with the support of this optimization strategy.
ASRA assesses source weights with changeable frequencies
while finding the truth with a certain level of accuracy given
by users. Accordingly, we can achieve high efficiency by
reducing the frequency of assessing source weights and high
accuracy by incorporating the iterative process. Given a
current update point ti, ASRA predicts the next update
point tj by solving the following optimization problem:

Max j = i+∆T
s.t. (∆T − 1)(∆T − 2)(2∆T − 3)ε/6 ≤ E

p∆T−2 ≥ α
(8)

where ∆T is considered as the maximum period of assessing
source weights. There are two constraint functions regard-
ing this optimization problem as listed below:

• p∆T−2 ≥ α: This is equivalent to p(∆wk
h ≤
√
ε/K) ≥

α (1 ≤ k ≤ K, i + 1 < h < j), where α is the prob-
ability threshold given by users. We do not need to
estimate the source weight evolutions at ti+1 and tj .
For one thing, we assess the source weights Wi since
ti is an update point. Considering that we should
compute the source weight evolutions for dynamical-
ly updating p, the source weights Wi+1 is also as-
sessed to obtain the evolution of all source weights,
i.e., ∆w1

i+1, . . . , ∆wK
i+1. Then, we utilize Wi+1 in-

stead of Wi+2, . . . , Wj−1 to compute the truths at
ti+2, . . . , tj−1. For another, we assess the source
weights Wj since tj is also an update point. Thus, it
is unnecessary to estimate the probability of ∆wk

i+1 ≤√
ε/K, ∆wk

j ≤
√
ε/K (1 ≤ k ≤ K).

• (∆T − 1)(∆T − 2)(2∆T − 3)ε/6 ≤ E: Based on Theo-
rem 2, when p(∆wk

h ≤
√
ε/K) ≥ α (i+1 < h < j), the

probability of max(Ψi+1
j−1) = (∆T −1)(∆T −2)(2∆T −

3)ε/6 is no smaller than α. Though we expect ∆T
to be large for high efficiency, max(Ψi+1

j−1) will become
large with ∆T increasing. Thus, we also need to make
sure that max(Ψi+1

j−1) is no more than E, where E is
the cumulative error threshold given by users. By this
way, the cumulative error between any two update
points is constrained.

Formula (8) implicates that our ASRA scheme tries to
search for the maximum period of assessing source weights.
When the unit error threshold ε is fixed, only two tuned
parameters, α and E, need to be set. A large α may lead
to a small ∆T , while a small E will also result in a small
∆T . However, the performance trend of ε is actually un-
certain. We will show in Section 6 that the effects of the
probability threshold α, cumulative threshold E and unit
error threshold ε in our framework, and the performance
of our framework can be flexibly changed by tuning these
parameters.

Algorithm 1 presents the whole procedure of ASRA-based
truth discovery. Let ti denote the current timestamp and
tj denote the update point, Algorithm 1 performs in three
steps. In the first step (lines 3-4), we update the source
weights. Given the update points tj and tj+1 (line 3),
we call the existing truth discovery method to assess the
source weights Wj , Wj+1. In the second step (lines 5-13),
we update the probability p of satisfying Formula (5) by
re-estimating p according to ∆wk

j+1 (1 ≤ k ≤ K). In the
last step (lines 14-18), we predict the next update point.
By utilizing the probability p computed in the second step,
we predict the next update point tj according to Formula
(8). If ∆T computed by Formula (8) is less than 2, we set
∆T = 2 (lines 16-17).

In Algorithm 1, line 4 suggests that various methods for
source weight computation can be plugged into our scheme
only if the truth computation of the plugged method is in
the form of weighted combinations. We set a window size M
for more accurately estimating the probability p without the
influence of out-of-date data. Note that we can introduce
the smoothing factor by slightly modifying our algorithm.
As mentioned above, we treat the smoothing factor λ as the
weight of (K + 1)th source and the previous truths as the
information from this source. As λ is a constant [11], only
the source weight evolution and the size of source collection
will be changed when the smoothing factor λ is introduced.
Accordingly, for capturing the temporal relationship over
streaming data, we only need to change K into K + 1 in
line 6, and change “Formula (1)” into “Formula (2)” in line
21. For the existing truth discovery methods plugged into
our scheme (line 4), we also simply change its truth com-
putation from “Formula (1)” into “Formula (2)”. Obviously,
the complexity of the algorithm is determined by the cor-
responding iterative truth discovery methods at an update
point. Otherwise, its complexity is O (|Vi|) at ti.

For probability p, there are two points to remark: (1) the
cumulative error is usually constrained to a small value in
real world applications. According to Formula (8), ∆T will
not be a large value. Thus we can assume that p is a con-
stant in a small time window (∆T ); and (2) p is defined as
the probability of all the source weight evolutions satisfying
Formula (5) at each timestamp, i.e., a small p implies the
source weight evolution is generally large over data streams.
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Algorithm 1: ASRA-based truth discovery

Input : Observation collection Vi, threshold α, E;
Output: Truth collection V ∗

i ;

1 j ← 1, m← 1, N [1...M ] ← 0, p← 0;
2 for i = 1→∞ do

3 if i == j||i == j + 1; then
4 Update V ∗

i , Wi according to existing iterative
truth discovery methods;

5 if i == j + 1; then
6 if all ∆wk

i (1 ≤ k ≤ K) satisfy Formula (5);
then

7 N [m] = 1;
8 if m <= M ; then
9 p = (

∑m
n=1 N [n])/m

10 else

11 Slide the window forward and keep array N
always contains M elements;

12 p = (
∑M

n=1 N [n])/M ;

13 m++;
14 i = i− 1;
15 Update j by Formula (8);
16 if j − i < 2; then
17 j = i+ 2;
18 i = i+ 1;

19 else

20 Wi ←Wi−1;
21 Set V ∗

i by Formula (1);

22 Return V ∗

i ;

Note that the exact timestamp with a large source weight
evolution is still unknown if we do not compute the source
weights. Therefore, the algorithm may also neglect source
weight computation when the source weight evolution does
not satisfy Formula (5). However, according to Formula (8),
a small p will lead to more frequent source weight estima-
tion, thus the high performance of our framework can be
ensured (as shown in Section 6).

6. EXPERIMENTS
In this section, we experimentally validate the proposed

approach for truth discovery over data streams.

6.1 Experimental Setup
We evaluate our framework on three real-world dataset-

s: Sensor Dataset1, Stock Dataset2 and Weather Dataset2.
The Sensor Dataset contains data from 54 sensors deployed
in the Intel Berkeley Research lab between Feb. 28, 2004
and Apr. 5, 2004. Each sensor collected the time-stamped
topology values once per 30 seconds. The temperature and
humidity properties are adopted for evaluation. The Stock
Dataset contains data for 1000 stocks that are collected from
55 sources over the weekdays of July 2011. We adopt three
properties: change %, change value and last trade price.
The ground truths are given. The Weather Dataset con-
tains 18 sources that record weather data for 30 cities of U-
nited States from Jan. 28, 2010 to Feb. 4, 2010. We adopt
the temperature and humidity properties, and consider the
information collected from Accuweather.com as the ground
truths.

1http://db.csail.mit.edu/labdata/labdata.html
2http://lunadong.com/fusionDataSets.htm

Since the ground truths of Stock Dataset and Weather
Dataset are known, each source weight can be quantified by
measuring the distance between its observations and the
ground truths. Accordingly, the true source weight-

s of Stock Dataset and Weather Dataset are also

available. Moreover, although Stock Dataset and Weather
Dataset have been used in [11], the experimental results can
be different because we choose various types of properties
to conduct the experiments while only one type of property
was used in [11].

6.2 Evaluation Methodology
We have conducted extensive experiments to evaluate the

effectiveness and efficiency of the proposed method by four
steps: (1) validate the effectiveness of the probabilistic mod-
el estimateing source weight evolution; (2) analyze the ef-
fects of three parameters, probability threshold α, cumu-
lative error threshold E and unit error threshold ε in our
framework; (3) evaluate the effectiveness and efficiency of
our approach by comparing with state-of-art competitors;
and (4) further confirm the accuracy of source weight com-
putation of our proposed approach. Eleven methods, includ-
ing seven state-of-the-art competitors and four proposed al-
ternatives, are used in the experiments.
Baseline Methods. The following state-of-the-art method-
s for truth discovery over continuous data are implemented.
The parameters of each baseline method are set according
to the original paper.

• GTM: Using Bayesian probabilistic model for resolv-
ing conflicts on continuous data [21].

• CRH: Working with heterogeneous data by incorpo-
rating into various loss functions [8].

• DynaTD: Finding truths over data streams in an in-
cremental way [11].

• DynaTD+smoothing: Adding the smoothing factor
based on DynaTD [11].

• DynaTD+decay: Adding the decay factor based on
DynaTD [11].

• DynaTD+all: Adding both the smoothing factor and
the decay factor based on DynaTD [11].

• Dy-OP: Optimization-based solution of DynaTD [11].

Proposed Alternatives. We plug different existing truth
discovery methods into our framework. All these methods
iteratively conduct the updates of source weights and truths
until convergence. For the truth update, all these methods
exploit weighted combinations strategy (i.e., Formula (1) or
(2)) [8, 11] and can be plugged into our framework. The
details on the source weight update for each method are as
follows:

• ASRA(CRH): We incorporate CRH into our frame-
work and choose the normalized squared loss function
to measure the deviation from the truths to the ob-
servations. The source weight wk

i is derived as the
following formula:

wk
i = − log(

lki
∑K

k′=1 l
k′

i

) (9)
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where lki refers to the normalized squared loss function
of the kth source at ti [8], i.e.,

lki =
∑E

e=1

∑M

m=1

(v
(k,e,m)
i − v

(∗,e,m)
i )

2

std(v
(1,e,m)
i , . . . , v

(K,e,m)
i )

(10)

• ASRA(CRH+smoothing): We further introduce the
smoothing factor λ to ASRA(CRH) for capturing the
temporal relations over streams. Under this scenari-

o, we consider v
(∗,e,m)
i−1 as the information from the

(K + 1)th source (v
(∗,e,m)
i−1 = v

(K+1,e,m)
i ) and λ is the

weight of this source. Therefore, only the number
of sources in Formula (10) and Formula (9) need to
be changed for computing loss functions and source
weights.

• ASRA(Dy-OP): We incorporate the basic optimiza-
tion function of DynaTD [11], denoted as Dy-OP, into
our framework. The source weight wk

i is derived as
the following formula:

wk
i =

qki
η · lki

(11)

where qki refers to the number of observations provided
by the kth source at ti and η is a trade-off parameter
of Dy-OP [11]. In addition, the normalized squared
loss functions lki (1 ≤ k ≤ K) in Formula (11) are
computed by Formula (10).

• ASRA(Dy-OP+smoothing): The smoothing factor λ
is also introduced to ASRA(Dy-OP) for capturing the
temporal relations over streaming data. As mentioned,
only the number of sources need to be changed for
computing source weights and loss functions.

So far, for each method plugged into our framework, we
have presented the formula for its source update step. The
details of Formulas (9) and (11) are listed in Appendix. For
truth computation, we only need to utilize Formula (2) to
capture the temporal relations over streaming data.
Performance Metrics. To evaluate the efficiency of our
framework, we report the running time of each method. To
assess the accuracy of it, we calculate the Mean of Absolute
Error (MAE) of each method by comparing their outputs
with ground truths. For both metrics, lower values indicate
better performance. All the algorithms were performed on
a PC with Windows OS, Intel Core i7 processor.

6.3 Probabilistic Model Validation
This part validates the effectiveness of the probabilistic

model for estimating the source weight evolution over data
streams. Obviously, if the probabilistic model can capture
the large source weight evolution (Formula (5) cannot be
satisfied), our proposed model is effective. Thus, we validate
the effectiveness of our probabilistic model by counting all
probable scenarios including:

(1) Formula (5) does not hold and our framework updates
the source weights at the same time (denoted as TP );

(2) Formula (5) holds and our framework keeps the source
weights at the same time (denoted as TN);

(3) Formula (5) does not hold and our framework keeps
the source weights at the same time (denoted as FN);

Table 2: Probabilistic Model Valiadation
(a) Stock Dataset

Parameter Setting Experimental Results
ε α TP TN FN FP CR

5× 10−4 0.45 0.500 0.278 0.167 0.055 0.778

1× 10−3 0.45 0.390 0.333 0.222 0.055 0.723

5× 10−3 0.45 0.155 0.500 0.112 0.233 0.655

5× 10−4 0.55 0.500 0.278 0.167 0.055 0.778

1× 10−3 0.55 0.500 0.389 0.056 0.055 0.889

5× 10−3 0.55 0.212 0.444 0.055 0.289 0.656

5× 10−4 0.65 0.612 0.278 0.055 0.055 0.890

1× 10−3 0.65 0.612 0.333 0 0.055 0.945

5× 10−3 0.65 0.389 0.444 0.055 0.112 0.833

(b) Weather Dataset

Parameter Setting Experimental Results
ε α TP TN FN FP CR

5× 10−2 0.45 0.155 0.540 0 0.305 0.695

1× 10−1 0.45 0.058 0.724 0.023 0.195 0.782

5× 10−1 0.45 0.034 0.799 0 0.167 0.833

5× 10−2 0.55 0.155 0.495 0 0.350 0.650

1× 10−1 0.55 0.052 0.695 0.029 0.224 0.747

5× 10−1 0.55 0.034 0.776 0 0.190 0.810

5× 10−2 0.65 0.255 0.431 0.006 0.308 0.686

1× 10−1 0.65 0.063 0.632 0.017 0.288 0.695

5× 10−1 0.65 0.035 0.747 0 0.218 0.782

(4) Formula (5) holds and our framework updates the
source weights at the same time (denoted as FP ).

Both scenario (1) and (2) show that our probabilistic model
captures the source weight evolution successfully. Thus, the
effectiveness of our probabilistic model can be transformed
into CaptureRate (CR) formulated as:

CR = TN + TP (12)

The experiments are conducted over Stock Dataset and
Weather Dataset. We vary two parameters, α and ε, to
observe the effectiveness of our probabilistic model with d-
ifferent parameter settings. The cumulative threshold E is
given to constrain the maximum of ∆T .

The experimental results are reported in Table 2. As we
can see, CR is always more than 0.6 on both two datasets
and can achieve more than 0.9 at some cases. Note that
our framework assigns the first two timestamps to update
points, which may lead to a higher FP and a lower CR.
Therefore, our probabilistic model can capture the source
weight evolution in most situations, which further proves
the effectiveness of our framework.

6.4 Evaluation on Parameters
To analyze the effects of the probability threshold α, cu-

mulative error threshold E and unit error threshold ε in our
framework, we test the performance of our method over the
Sensor Dataset and Weather Dataset by changing the value
of one parameter while fixing the others. To discover truths,
we incorporate Dy-OP into our framework, i.e., ASRA(Dy-
OP). Three metrics, running time, MAE and assess times,
are used to observe the influence of three parameters to our
framework. Here, assess times is defined as the average
times of assessing source weight over streaming data. Ob-
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Figure 3: Evaluation on Parameters

viously, lower assess times indicates higher efficiency and
lower accuracy.

6.4.1 Effect of α
In this test, we evaluate the effect of the probability thresh-

old α on the accuracy and efficiency of our framework. For
Sensor Dataset, we fix ε to 10−5 and E to 1, and vary the
value of α from 0.65 to 0.85. For Weather Dataset, we fix
ε to 0.1 and E to 1, and vary the value of α from 0.15 to
0.45. The results are shown in Figures 3(a)-(c).
As we can see, with the increasing of α, running time and

assess times increase while MAE decreases. This result is
caused by the following reason. The probability threshold α
controls the holding probability of Formula (5) during the
period of keeping source weights. Therefore, a relatively
large α means Formula (5) should be more likely hold, and
a smaller α will relax this constraint while leading to a rela-
tively large ∆T . In other words, a lager α achieves a higher
accuracy while suffering from much sacrifice on efficiency.

6.4.2 Effect of E
In this test, we evaluate the effect of the cumulative er-

ror threshold E on the performance of our framework. For
Sensor Dataset, we set E to 0.02 and 0.1 respectively, and
fix ε to 10−5 and α to 0.75. For Weather Dataset, we set E
to 0.2 and 1 respectively, and fix ε to 0.1 and α to 0.2. The
results are shown in Figures 3(d)-(f).
Obviously, with the decreasing of cumulative threshold E,

running time and assess times increase while MAE decreas-
es. According to Formula (8), a relatively large E means our
framework is allowed to make more errors between any two
update points. Therefore, a large E will lead to a large pe-
riod of assessing source weights and improve the efficiency.
However, it suffers from much sacrifice on accuracy.

6.4.3 Effect of ε
We test the effect of the unit error threshold, ε, on three

metrics. For Sensor Dataset, we fix α to 0.6 and E to 0.01,
and set ε to 5× 10−5, 10−4 and 5× 10−4 respectively. For
Weather Dataset, we fix α to 0.95 and E to 1, and set ε to
0.2 and 0.5 respectively. The results are shown in Figures
3(g)-(i).
As we can observe, with the increasing of ε, running time

and assess times decrease while MAE increases. However,
the performance trend of unit error threshold is actually
uncertain. Based on the first constraint function of Formula
(8), a relatively small ε may result in a larger ∆T . At the
same time, the second constraint of Formula (8) implicates
that a relatively small ε can also result in a smaller ∆T .
Since we set a relatively large cumulative error threshold
E (E = 1) in our experiments, the optimal ∆T is mainly
restricted by the second constraint function of Formula (8).
Thus a larger ε achieves a better efficiency and suffers from
much sacrifice on accuracy.

For the same parameter setting, with the time increasing,
MAE decreases while both running time and assess time
increase over two datasets. This is because the source weight
evolutions of these two datasets become large as the time
increases. Thus our framework automatically improve the
frequency of assessing source weights and achieve the high
accuracy of the truth discovery.

To summarize, all the experimental results (Figures 3(a)-
(i)) show that these three parameters of our framework can
tune the performance of truth discovery flexibly.

6.5 Evaluation on Performance
We first compare our proposed approach with the state-

of-the-art competitors in terms of effectiveness and efficien-
cy. Then, we further study the effectiveness of our approach
under the optimal efficiency, and its efficiency under the best
accuracy.

6.5.1 Comparison with Existing Approaches
In this test, we evaluate our proposed approach by com-

paring with the existing competitors: DynaTD, DynaTD+s-
moothing, DynaTD+decay, DynaTD+all, Dy-OP, CRH and
GTM. For Stock Dataset, we set ε to 10−3, α to 0.75 and
E to 1. For Weather Dataset, we set ε to 0.1, α to 0.8 and
E to 1. For Sensor Dataset, we set ε to 5× 10−6, α to 0.85
and E to 0.01. Table 3 shows the experimental results for
all the methods on the three datasets. Since the ground
truths of Sensor Dataset are unknown, we only report the
accuracy (MAE) on two datasets with ground truths, i.e.,
Stock Dataset and Weather Dataset.
Efficiency. In terms of efficiency, the proposed method
performs nearly as well as DynaTD, DynaTD+smoothing,
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Table 3: Comparison with Existing Approaches

Method
Stock Dataset Weather Dataset Sensor Dataset

MAE Time(ms) MAE Time(ms) Time(ms)
ASRA(Dy-OP) 1.3941 99 0.4974 419 658
ASRA(CRH) 1.4007 104 0.5029 424 674

ASRA(Dy-OP+smoothing) 1.0142 103 0.4474 417 638
ASRA(CRH+smoothing) 1.0781 117 0.5076 427 676

DynaTD 1.5462 99 1.0593 316 549
DynaTD+smoothing 1.5064 98 0.9261 306 595

DynaTD+decay 1.4956 98 0.9300 310 552
DynaTD+all 1.4455 93 0.9205 307 570

Dy-OP 1.3328 305 0.4425 1680 2041
CRH 1.3994 325 0.5028 1782 2092
GTM 1.4112 430 0.6011 1718 2133
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Figure 4: Efficiency Study
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Figure 5: Accuracy Study

DynaTD +decay and DynaTD+all. As all these method-
s work in an incremental way, they can be viewed as the
low bound of the iterative methods. Therefore, the result-
s shown in Table 3 implicate our proposed framework can
achieve high efficiency. Meanwhile, ASRA(Dy-OP) can run
as fast as DynaTD on Stock Dataset. The reason is that
the proposed framework only performs iterations at certain
timestamps. Moreover, our proposed framework is more
efficient compared with other iteration-based truth discov-
ery methods. Specifically, our framework outperforms the
iterative method GTM in terms of both accuracy and effi-
ciency. The reason is that the basic methods plugged into
our framework (CRH, Dy-OP) achieve better performance
than GTM.
Accuracy. In terms of effectiveness, the proposed method
is better than existing competitors, DynaTD, DynaTD+sm-
oothing, DynaTD+decay and DynaTD+all. The reason
is that these competitors exploit incremental computation,
updating the source weights according to the new arrival
data until each source weight converges to a certain value.
However, the true source weights in real applications are
constantly changing. Thus, the source weights computed by
the incremental methods deviate from the true ones, leading
to big errors. In addition, CRH and Dy-OP are more accu-

rate than our methods (ASRA(CRH), ASRA(Dy-OP)), as
they solve the truth discovery task by an iterative process
that iteratively computes the truths and source weights at
each timestamp. In this way, each source weight converges
to its optimal one. However, without computing the source
weights at each timestamp, the accuracy of ASRA(Dy-OP)
and that of ASRA(CRH) are still similar to the correspond-
ing basic methods Dy-OP and CRH. The reason is that our
proposed framework updates the source weights frequent-
ly when the source weight evolutions are generally large.
Based on Theorems 1 and 2, we can constrain the cumula-
tive error and ensure the accuracy of our framework. When
a smoothing factor is introduced, our methods, ASRA(Dy-
OP+smoothing) and ASRA(CRH+smoothing), achieve the
best accuracy among all the methods on Stock Dataset. It
can also be observed that ASRA(Dy-OP) achieves better
accuracy than ASRA(CRH), while Dy-OP performs better
than CRH on both two datasets. Obviously, the accuracy of
our framework is consistent with the basic method plugged
into it.

In conclusion, from the performance comparison results,
it can be seen that our framework always outperforms the
iterative methods with respect to efficiency and performs
better than the incremental methods in terms of accuracy.
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Since our framework can contain different plugged truth dis-
covery methods, it also outperforms some baselines in terms
of both accuracy and efficiency (such as GTM).

6.5.2 Further Study
To further confirm the performance of our framework, we

evaluate its efficiency while achieving the optimal accura-
cy, and its accuracy while the efficiency is optimal. In this
test, we conduct experiments on Stock Dataset and Weath-
er Dataset. Since our framework can flexibly tune the effi-
ciency and accuracy of truth discovery over streaming da-
ta, both accuracy and efficiency can be optimized by tuning
the parameters. Also, we change the number of properties in
this part, and denote the experiments conducted on a single
property as Single-Property (“Sin” in Figures (4)-(5)), and
the ones on multiple properties as Multiple-Property (“Mul”
in Figures (4)-(5)). For evaluation on Single-Property, we
choose the last trade price property for Stock Dataset, and
the humidity property for Weather Dataset.
Efficiency. From Table 3, we can see that Dy-OP achieves
the best accuracy comparing with all the baselines. Thus,
the accuracy of Dy-OP can be considered as the optimal
accuracy. We achieve the same accuracy with Dy-OP by
tuning the parameters (ε = 10−3, α = 0.85, E = 0.1 for
Stock Dataset and ε = 10−3, α = 0.85, E = 1 for Weather
Dataset). Under this scenario, we evaluate the efficiency of
our framework by comparing with Dy-OP.
From Figures 4(a)-(d), we can see that our framework

achieves much higher efficiency performance than Dy-OP
for both Single-Property and Multi-Property. The reason
is that our framework does not assess the source weights
continually. In addition, the gap between our framework
and Dy-OP on Multiple-Property is larger than the one on
Single-Property, which illustrates our method is more suit-
able for addressing different types of properties.
Accuracy. To the best of our knowledge, DynaTD is the
most effective incremental truth discovery method for con-
tinuous data, and also the basis of DynaTD+smoothing,
DynaTD+decay, DynaTD+all [11]. Thus, we consider the
efficiency of DynaTD as the optimal efficiency. Then we
achieve the same efficiency with DynaTD by tuning the pa-
rameters (ε = 10−3, α = 0.75, E = 1 for Stock Dataset
and ε = 0.1, α = 0.65, E = 1 for Weather Dataset). Under
this scenario, we evaluate the accuracy of our framework by
comparing with DynaTD.
Figures 5(a)-(d) show that, for both Single-Property and

Multi-Property, the accuracy of our proposed framework is
much higher than the incremental method. For one thing,
we use the iterative method to assess source weights, which
makes source weights converge to the optimal values at each
timestamp. For another, both Theorems 1 and 2 ensure the
accuracy of our framework. Although we do not assess the
source weights continually, our framework achieves much
higher accuracy comparing with the existing incremental
methods. Moreover, Figure 5(a) shows that, at the initial
time, the truths computed by our framework is nearly e-
qual to the ground truths, which also implicates the high
accuracy of our framework.
To summarize, by tuning the parameters of our frame-

work, we can balance the efficiency and accuracy of the
truth discovery task, and achieve better performance than
the state-of-the-art competitors as well.

6.6 Evaluation on Source Weight
As aforementioned, the estimation of source weights plays
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Figure 6: Evaluation on Source Weight

a vital role in the truth discovery task. Thus, we design a
set of experiments to evaluate the accuracy of source weight
computation using our proposed framework. In this test, we
choose Weather Dataset as the experimental dataset. We
randomly select two sources (denoted as S1, S2 respectively)
for experiments. Dy-OP method is plugged into our frame-
work, i.e., ASRA(Dy-OP). For comparison purpose, we also
compute the source weights using the existing incremen-
tal methods, DynaTD and DynaTD+decay. Moreover, for
controlling the source weights in a same range, we utilize
L1-norm to regularize the source weights computed by all
the methods.

Figures 6(a)-(b) show the experimental results. Clearly,
each true source weight changes constantly over time, and
the source weights computed by our framework are usually
more closer to the true values. Conversely, a source weight
computed by DynaTD and DynaTD+decay can converge to
a certain value quickly, which is inconsistent with the real
source weight change. In conclusion, these results prove the
accuracy of our approach in terms of source weight compu-
tation.

7. CONCLUSION
In this paper, we study the truth discovery problem over

data streams. We propose a framework for truth discov-
ery which adaptively determines the frequency of assessing
source weights for high efficiency and incorporates various
iterative truth discovery methods for high accuracy. We first
define and study the unit error and the cumulative error of
truth discovery. Then we transform the prediction of the cu-
mulative error into an optimization problem, and propose
our ASRA scheme. Tuning parameters of our framework
supports a trade-off between accuracy and efficiency in truth
discovery. Moreover, by a series of theoretical analysis, the
accuracy of our framework is guaranteed while the iterative
processes are reduced. Extensive experiments on real-world
datasets have been conducted to evaluate the effectiveness
and efficiency of our approach, and the experimental result-
s have proved the high performance of our truth discovery
framework.
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APPENDIX

A. PROOF OF FORMULA (9)

Proof. According to [8], for each timestamp ti, the source
weights Wi are conducted as the following:

Wi ← arg min
Wi

∑K
k=1 w

k
i l

k
i s.t.

∑K
k=1 exp(−wk

i ) = 1

(13)
Then the derivation of Formula (9) is the same as the

derivation of source weights in [8].

B. PROOF OF FORMULA (11)

Proof. According to [11], as we model that each source
weight changes over time, the source weights Wi can be
conducted as the following:

Wi ← arg min
Wi

η
∑K

k=1
wk

i l
k
i −

∑K

k=1
qki log(wk

i ) (14)

where qki denotes the number of observations provided by
kth source at ti, and η is given to support the trade-off
between the two terms in Formula (14) [11]. Moreover, the
initial loss function in [11] is un-normalized. However, in
this paper, we choose the normalized squared loss function
for addressing different types of attributes (Formula (10)).
Since the standard deviation of the observations at each
timestamp can be considered as a constant, the conclusions
will not be affected. We take the partial derivative of Wi

in Formula (14) with respect to wk
i , and set the partial

derivative equal to zero. Then we obtain the source weight
expression as shown in Formula (11).
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