
Fast Subsequence Search on Time Series Data

Yuhong Li1∗, Bo Tang2∗, Leong Hou U1, Man Lung Yiu2, Zhiguo Gong1

1Department of Computer and Information Science, University of Macau
{yb27407,ryanlhu,fstzgg}@umac.mo

2Department of Computing, Hong Kong Polytechnic University
{csbtang,csmlyiu}@comp.polyu.edu.hk

ABSTRACT

Many applications on time series data require solving the subse-

quence search problem, which has been extensively studied in the

database and data mining communities. These applications are

computation bound rather than disk I/O bound. In this work, we

further propose effective and cheap lower-bounds to reduce the

computation cost of the subsequence search problem. Experimen-

tal studies show that the proposed lower-bounds can boost the per-

formance of the state-of-the-art solution by up to an order of mag-

nitude.

1. INTRODUCTION
The subsequence search problem on time series data has exten-

sive applications in medical diagnosis, speech processing, climate

analysis, financial analysis, etc [1, 5]. Specifically, given a query

time series q and a target time series t, the subsequence search prob-

lem finds a subsequence tc of t such that it has the smallest distance

dist(q, tc) to q. Figure 1 illustrates the subsequence search prob-

lem. The typical distance measures are the Euclidean distance (ED)

and Dynamic Time Warping (DTW).

query q time series t

result

……

……Figure 1: Subsequence search on time series

Euclidean Distance (ED) is the most common similarity measure

[1, 5] due to its simplicity and applicability. The distance between

two time series of length m is given as follows.

ED(q, tc) =

√

√

√

√

m
∑

i=1

(q[i]− tc[i])2 (1)

∗indicates equal contribution

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

Dynamic Time Warping (DTW) is proposed to capture the similar-

ity of two sequences which may vary in time or have missing val-

ues. It has been shown to be an effective distance measure [2]. This

distance is defined as DTW (q, tc) =
√

DTWSQ(q, tc), where

DTWSQ(q, tc) is computed as follows.

DTWSQ(q, tc) = (q[1]− tc[1])
2+

min











DTWSQ(q[2...last], tc)

DTWSQ(q[2...last], tc[2...last])

DTWSQ(q, tc[2...last])

(2)

where q[2...last] denotes the subsequence of q containing values

from the 2nd to the last offset. To avoid pathological warping and

reduce the quadratic computational cost, many research work [5]

suggest to limit the warping length r such that q[i] is matched with

tc[j] if and only if |i − j| ≤ r. This reduces the complexity of

DTW from O(m2) to O(mr).
To the best of our knowledge, the UCR Suite [5] is the state-

of-the-art solution for arbitrary length subsequence search. Since

exact distance computations are expensive, the UCR Suite applies

a suite of lower-bounds to prune unpromising subsequences, be-

fore computing the exact distances for the remaining subsequences.

Nevertheless, the subsequence search problem is still a computa-

tion intensive problem, especially for increasingly long time series

nowadays. Even with the UCR Suite, the subsequence search on a

trillion-scale time series would take 3.1 hours (under the Euclidean

distance) or 34 hours (under Dynamic Time Warping) on a com-

modity PC [5].

To reduce the computation time of subsequence search, we pro-

pose effective lower-bounds based on the triangle inequality and

Piecewise Aggregate Approximation (PAA). The proposed lower-

bounds can be computed online and easily integrated into the UCR

Suite. According to our experimental evaluations, the proposed

methods can improve the performance of the UCR Suite by up to

an order of magnitude.

The paper is organized as follows. Section 2 formally defines

our problem and presents the state-of-the-art solution (i.e., the UCR

Suite). We present our online lower-bounds in Section 3. The ex-

perimental study is given in Section 4. Finally, we conclude the

paper in Section 5.

2. PRELIMINARIES

2.1 Problem Definition
In this work, we follow the suggestion of UCR Suite [5] that ev-

ery subsequence must be Z-normalized in order to capture the sim-

ilarity between the shapes of the sequences. Given a time series t,

the Z-normalized value of t[i] can be calculated as: t̂[i] = t[i]−µt

σt
,

Poster Paper

Series ISSN: 2367-2005 514 10.5441/002/edbt.2017.58

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2017.58

where t[i] is the i-th element of t, t̂[i] is the Z-normalized value

of t[i], and µt and σt are the mean and standard deviation of t,

respectively.

PROBLEM 1 (SUBSEQUENCE SEARCH PROBLEM). Given a

time series t of length n, a query time series q of length m, and

a distance function dist(·, ·), the subsequence search problem re-

turns a length-m subsequence tc ∈ t such that dist(q̂, t̂c) ≤
dist(q̂, t̂c′), ∀ tc′ ∈ t of length m.

A naïve solution for the subsequence search (cf. Problem 1) is

to calculate the distance n−m+ 1 times. The computation of the

subsequence search may become prohibitive for long sequences. It

should be noted that the search performance is closely related to

the distance function dist(·, ·).

2.2 The State-of-the-Art: UCR Suite
In the following, we briefly introduce how the UCR Suite can

boost ED-based and DTW-based subsequence search.

UCR-ED. For ED-based subsequence search, the UCR-ED [5] first

employs the early abandoning technique. In general, it attempts

to early terminate the distance computation when the accumulated

distance is already larger than the best-so-far distance. To further

improve the performance, the UCR-ED proposes reducing the Z-

normalization cost and prioritizing the accumulation order.

UCR-DTW. For DTW-based subsequence search, the UCR-

DTW [5] employs a filter-and-refinement framework. It evaluates

the DTW distance for a subsequence only if it survives from three

lower-bounds, i.e., LBKimFL, LB
EQ
Keogh and LBEC

Keogh. More

specifically, the lower-bounds are applied in an order starting from

quick-and-dirty one to slow-and-accurate one, as shown in Fig-

ure 2. We briefly introduce these lower bounds as follows.

��௄��ி௅�ሺ1ሻ ��௄���ℎா��ሺ�ሻ ��௄���ℎா��ሺ�ሻ ����ሺ��ሻ
C3C2C1

Candidates

C

Figure 2: UCR-DTW framework

LBKimFL is based on a fact that the First and the Last offset must

be matched in DTW.

LB
EQ
Keogh is derived from the distance between the candidate sub-

sequence t̂c and the envelop of q̂. The envelop of q̂ is based on the

warping constraint r where q̂[i] can be matched with t̂c[j] subject

to |j − i| ≤ r. The upper and lower envelop can be calculated as,

q̂u[i] = maxi+r
j=i−r q̂[j] and q̂l[i] = mini+r

j=i−r q̂[j], respectively.

Accordingly, we have

LB
EQ
Keogh(q̂, t̂c) =

√

√

√

√

√

√

m
∑

i=1











(t̂c[i]− q̂u[i])2 if t̂c[i] > q̂u[i]

(t̂c[i]− q̂l[i])2 if t̂c[i] < q̂l[i]

0 otherwise

(3)

LBEC
Keogh is similar to LB

EQ
Keogh but the lower bound is derived

from the distance between the query q̂ and the envelop of t̂c. It

should be noted that the optimization techniques in UCR-ED can

be applied to compute LB
EQ
Keogh and LBEC

Keogh.

3. LOWER-BOUND OPTIMIZATIONS
In this section, we propose two online lower-bounds, i.e., taking

O(1) and O(φ) time1, to further improve the performance of the

UCR Suite for both ED and DTW.

3.1 Fast ED-based Subsequence Search
The UCR Suite does not employ any lower-bound for the Eu-

clidean distance (ED) [5], even though ED takes O(m) time. In

this section, we propose two lower bounds for ED, which can be

computed in O(1) and O(φ), respectively.

3.1.1 Lower-Bound by Triangle Inequality in O(1)
Time

As shown in Lemma 1, we can derive the Euclidean distance

lower-bound for the running candidate tc based on the exact dis-

tance of the last candidate (i.e., the consecutive subsequence tc−1)

by triangle inequality.

LEMMA 1 (LOWER-BOUND FOR ED). For two consecutive

candidate subsequences tc−1 and tc in t, we have:

ED(q̂, t̂c−1)− ED(t̂c−1, t̂c) ≤ ED(q̂, t̂c)

PROOF. It is trivial as triangle inequality holds for the Euclidean

distance.

We define LBTRI
ED (q̂, t̂c) as follows:

LB
TRI
ED (q̂, t̂c) = LBED(q̂, t̂c−1)− ED(t̂c−1, t̂c), (4)

where LBED(q̂, t̂c−1) is any lower bound which satisfies

LBED(q̂, t̂c−1) ≤ ED(q̂, t̂c−1).
With Lemma 1, we have LBTRI

ED (q̂, t̂c) ≤ ED(q̂, t̂c). Sup-

pose the LBED(q̂, t̂c−1) is known, we will elaborate how to

compute it shortly. LBTRI
ED (q̂, t̂c) can be computed in O(1) iff

ED(t̂c−1, t̂c) can be calculated in constant time. To achieve this,

it is sufficient to maintain five running sums: S1 =
∑m

i=1 tc−1[i],
S2 =

∑m

i=1 tc[i], S3 =
∑m

i=1 t
2
c−1[i], S4 =

∑m

i=1 t
2
c [i], and

S5 =
∑m

i=1 tc−1[i]tc[i], where these running sums can be main-

tained incrementally in O(1) time. With these running sums, we

can compute ED(t̂c−1, t̂c) in O(1) as follows.

ED(t̂c−1, t̂c) =
√

2m(1− ρ(tc−1, tc)) (5)

where ρ(tc−1, tc) is the Pearson correlation between tc−1 and tc.

ρ(tc−1, tc) =
mS5 − S1S2

√

mS3 − (S1)2
√

mS4 − (S2)2
(6)

3.1.2 Lower-Bound by PAA in O(φ) Time

The Piecewise Aggregate Approximation (PAA) [3] is a concise

representation for time series. Given a normalized subsequence t̂c,

its PAA representation is a φ-dimensional vector where the k-th

element is defined as follows.

et̂c [k] =
φ

ℓ

ℓ
φ
(k+1)−1
∑

x= ℓ
φ
·k

t̂c[x] (7)

The distance, LBPAA
ED (q̂, t̂c), between the PAA representations of

q̂ and t̂c is:

LBPAA
ED (q̂, t̂c) =

√

√

√

√

m

φ

φ−1
∑

k=0

(eq̂ [k]− et̂c [k])
2

1
The value of parameter φ is much smaller than m typically, i.e., φ ≪ m.

515

According to [3], LBPAA
ED (q̂, t̂c) ≤ ED(q̂, t̂c). It can be cal-

culated in O(φ) time with the PAA representations of q̂, t̂c. Our

remaining challenge is to compute the PAA of a subsequence ef-

ficiently, where a straightforward solution takes O(m) time. To

avoid O(m) time cost, we transform Eq. 7 (i.e., expanding t̂c[x])
into the following equation.

et̂c [k] =
φ

m

m
φ

(k+1)−1
∑

x=m
φ

·k

t[c+ x]− µ(tc)

σ(tc)
(8)

Observe that µ(tc), σ(tc),
∑

t[c+x] can be calculated in O(1) time

by
∑

tc[i],
∑

t2c [i] and
∑

t[c+ x− 1], respectively. Thus we can

compute the PAA of t̂c in O(φ) incrementally. This optimization

is also utilized in [4].

3.1.3 Putting Them Altogether

Returning to the Equation 4, we require LBED(q̂, t̂c−1) ≤
ED(q̂, t̂c−1). Thus, LBED(q̂, t̂c−1) can be updated to

LBTRI
ED (q̂, t̂c−1), LB

PAA
ED (q̂, t̂c−1) and ED(q̂, t̂c−1).

Algorithm 1 shows the pseudo code for ED-based subsequence

search with our two novel lower bounds. We denote LBED as the

lower bound for the current candidate tc. We apply a cheap triangle

inequality bound (cf. Line 5), before applying a slightly expensive

PAA bound (cf. Line 7). If tc cannot be pruned by all lower bound

testings, then we compute the distance ED(q̂, t̂c) by calling UCR-

ED. Furthermore, the value of LBED in the current iteration will

be used to derive the bound in the next iteration.

Algorithm 1 ED-based subsequence search

Alg ED-search(Query q, Sequence t, Dimensionality φ)

1: os := −1, bsf := ∞, LBED := 0
2: for c := 1 to n − m + 1 do

3: if c > 1 and LBED > bsf then

4: LBED := LBED − ED(t̂c−1, t̂c) ⊲ O(1)

5: if LBED < bsf then

6: LBED := LBPAA
ED (q̂, t̂c) ⊲ O(φ)

7: if LBED < bsf then

8: compute ED(q̂, t̂c) using UCR-ED ⊲ O(m)
9: if ED(q̂, t̂c) < bsf then

10: os := c, bsf := ED(q̂, t̂c)

11: LBED := ED(q̂, t̂c)

12: return (os, bsf)

We illustrate Algorithm 1 using an example in Figure 3. Sup-

pose bsf = 2 and we can safely prune t1 by computing its lower-

bound, LBPAA
ED (q̂, t̂1) = 10. As ED(t̂1, t̂2) = 4 (i.e., using Equa-

tion. 5-6), thus we can derive LBED(q̂, t̂2) = (10 − 4) = 6.

Since LBED(q̂, t̂2) is larger than bsf , t2 is safely pruned. Based

on the triangle inequality, we have ED(q̂, t̂3) ≥ LBED(q̂, t̂2) −
ED(t̂2, t̂3) = (LBED(q̂, t̂1) − ED(t̂1, t̂2)) − ED(t̂2, t̂3). By

computing ED(t̂2, t̂3), we can derive LBED(q̂, t̂3) = (10− 4)−
3 = 3 > bsf , as a consequence, t3 can also be pruned safely.

subsequence t1 subsequence t2 subsequence t3

Dist

LB
= LBPAA

ED (q̂, t̂1)
= 10

= LBED − ED(t̂1, t̂2)
= 10 − 4 = 6

= LBED − ED(t̂2, t̂3)
= 6 − 3 = 3

Time O(φ) O(1) O(1)

Figure 3: Illustration of pruning techniques

3.2 Fast DTW-based Subsequence Search
The proposed lower-bounds in Section 3.1.1 can be adapted to

LB
EQ
Keogh(q̂, t̂c). In this section, we discuss two lower-bounds for

LB
EQ
Keogh whose computation cost are O(1) and O(φ), respec-

tively.

3.2.1 Lower-Bound by Triangle Inequality in O(1)
Time

As shown in Lemma 2, we can derive the lower-bound of

LB
EQ
Keogh(q̂, t̂c) based on the LB

EQ
Keogh(q̂, t̂c−1) by triangle in-

equality.

LEMMA 2 (LOWER-BOUND FOR LB
EQ
Keogh). Let tc−1 and

tc be consecutive candidates in t. We have:

LB
EQ
Keogh(q̂, t̂c−1)− ED(t̂c−1, t̂c) ≤ LB

EQ
Keogh(q̂, t̂c)

PROOF. For LB
EQ
Keogh, there exists a sequence a that is enclosed

by the envelop sequences q̂u and q̂l (i.e., q̂l[i] ≤ a[i] ≤ q̂u[i]),

such that LB
EQ
Keogh(q̂, t̂c) = ED(a, t̂c). With Lemma 3, we have

LB
EQ
Keogh(q̂, t̂c−1) ≤ ED(a, t̂c−1).

LB
EQ
Keogh(q̂, t̂c−1) ≤ ED(a, t̂c−1)

⇐⇒ LB
EQ
Keogh(q̂, t̂c−1)− ED(t̂c−1, t̂c)

≤ ED(a, t̂c−1)− ED(t̂c−1, t̂c)

Applying Lemma 1: ED(a, t̂c−1)− ED(t̂c−1, t̂c) ≤ ED(a, t̂c)

⇐⇒ LB
EQ
Keogh(q̂, t̂c−1)− ED(t̂c−1, t̂c) ≤ ED(a, t̂c)

⇐⇒ LB
EQ
Keogh(q̂, t̂c−1)− ED(t̂c−1, t̂c) ≤ LB

EQ
Keogh(q̂, t̂c)

LEMMA 3. LB
EQ
Keogh(q̂, t̂c) ≤ ED(a, t̂c), where sequence a

is enclosed by sequences q̂u and q̂l, i.e., q̂l[i] ≤ a[i] ≤ q̂u[i].

PROOF. Since q̂l[i] ≤ a[i] ≤ q̂u[i], for case (i) t̂c[i] > q̂u[i],
we have (t̂c[i] − q̂u[i])2 ≤ (t̂c[i] − a[i])2. Similarly, for case

(ii) t̂c[i] < q̂l[i], we have (t̂c[i] − q̂l[i])2 ≤ (t̂c[i] − a[i])2 as

a[i] ≥ q̂l[i] . Finally, 0 ≤ (t̂c[i]− a[i])2 always hold for case (iii)

q̂l[i] ≤ t̂c[i] ≤ q̂u[i].

Similarly, we define LBTRI
DTW (q̂, t̂c) as follows:

LB
TRI
DTW (q̂, t̂c) = LBDTW (q̂, t̂c−1)− ED(t̂c−1, t̂c), (9)

where LBDTW (q̂, t̂c−1) is any lower bound with

LBDTW (q̂, t̂c−1) ≤ LB
EQ
Keogh(q̂, t̂c−1). With Lemma 2,

we have LBTRI
DTW (q̂, t̂c) ≤ LB

EQ
Keogh(q̂, t̂c).

3.2.2 Lower-Bound by PAA in O(φ) Time

In section 3.1.2, we propose a technique to construct the PAA

representations for subsequences incrementally in O(φ) time.

Given the PAA representations, we can derive LBPAA
DTW (q̂, t̂c) as

follows.

LBPAA
DTW (q̂, t̂c) =

√

√

√

√

√

√

m

φ

φ−1
∑

x=0











(et̂c [x]− Û [x])2 et̂c [x] > Û [x]

(et̂c [x]− L̂[x])2 et̂c [x] < L̂[x]

0 otherwise

516

where Û and L̂ are the PAA representation of the upper and lower

envelopes of q̂, respectively. In addition, its building cost can be

neglected as it is only computed once at the beginning of the search.

According to [2], we have LBPAA
DTW (q̂, t̂c) ≤ LB

EQ
Keogh(q̂, t̂c).

Returning to Lemma 2, we require LBDTW (q̂, t̂c−1) ≤

LB
EQ
Keogh(q̂, t̂c−1). Thus, LBDTW (q̂, t̂c−1) can be set to

LBTRI
DTW (q̂, t̂c−1), LB

PAA
DTW (q̂, t̂c−1) or LB

EQ
Keogh(q̂, t̂c−1).

3.2.3 Putting Them Altogether

Figure 4 illustrates the complete framework of our DTW-based

subsequence search. We first evaluate LBKimFL as in the UCR

Suite. We proceed to examine the lower-bound by triangle inequal-

ity if the candidates cannot be pruned by LBKimFL. As a remark,

LBTRI
DTW (q̂, t̂c) is computed only when LBDTW (q̂, t̂c−1) > bsf .

The surviving candidates are then evaluated by LBPAA
DTW (q̂, t̂c), its

cost is O(φ), before computing expensive LB
EQ
Keogh and LBEC

Keogh

(i.e., O(m)). Finally, we call DTW (q̂, t̂c) if t̂c is not pruned by

any above lower bounds.

��௄��ி௅�ሺ1ሻ ��௄���ℎா��ሺ�ሻ ��௄���ℎா��ሺ�ሻ ����ሺ��ሻ
C3C2

C1

Candidate set

��஽���ோ��ሺ1ሻ ��஽��௉���ሺɸሻ��′ ��′′ Our proposed

lower bounds

C

Figure 4: DTW-based subsequence search

4. EXPERIMENT
In this section, we compare our proposed techniques (denoted

as FAST-ED and FAST-DTW), with the UCR Suite (denoted as

UCR-ED and UCR-DTW).

Platform setting: All methods are implemented in C++. We evalu-

ate the performance on a machine running 64-bit Windows 10 with

a 3.16GHz Intel(R) Core(TM) Duo CPU E8500, 8 GB RAM.

Dataset: To evaluate the efficiency and scalability of our proposed

techniques, we use the random walk model as in [4, 5] to generate

both the query and the target time series. For each experimental

setting, we run each method by 10 query sequences, and report the

average execution time.

Result: We first test the performance of FAST-based subsequence

search methods by varying φ from 8 to 40, where query length is

1024 and data length is 2 millions. The maximum standard devia-

tion among these execution time is less than 3% in both FAST-ED

and FAST-DTW. Thus, we choose φ = 24 in the following experi-

ments.

Table 1 compares the pruning ratio of our proposed lower-

bounds with existing lower-bounds in the UCR Suite (in gray

color). The UCR-ED does not provide any lower-bound func-

tion whereas our proposed lower-bounds can prune at least 99%
of candidates. For example, it can prune 99.8% candidates when

query length equals to 512 (i.e., among them, 14.6% candidates are

pruned by LBPAA
ED and 85.2% candidates are pruned by LBTRI

ED).

For subsequence search under DTW, our proposed lower-bounds

are applied after LBKimFL and before LB
EQ
Keogh (cf. Figure 4).

Thus, the proposed lower-bounds can absorb most the pruning

ability of LB
EQ
Keogh, but not other existing lower-bounds like

LBKimFL, LB
EC
Keogh. As shown in Table 1, our proposed lower-

bounds can nearly approach the pruning ability of LB
EQ
Keogh by us-

ing less CPU time. Recall that our proposed bounds take O(1) and

O(φ) time, whereas LB
EQ
Keogh takes O(m) time. Figure 5 shows

Table 1: Pruning ratios, on RW
Query Length 512 1024 2048 4096 8192

UCR-ED: N/A -

LBPAA
ED 14.6% 11.8% 9.4% 7.1% 5.4%

LBTRI
ED 85.2% 88.0% 90.3% 92.6% 94.2%

Total of proposed LBs 99.8% 99.8% 99.7% 98.7%99.6%

UCR-DTW: LB
EQ

Keogh
44.0% 56.9% 80.9% 74.1% 95.0%

LBPAA
DTW 12.0% 12.2% 12.1% 9.1% 7.9%

LBTRI
DTW 30.8% 43.2% 67.2% 63.7% 86.4%

Total of proposed LBs 42.8% 55.4% 79.3% 72.8%94.1%

the execution time of the FAST-based and the UCR-based subse-

quence search, by varying the query length, where data length is 2

million. The FAST-based search can be up to 11 and 3 times faster

than the UCR-based search on ED and DTW respectively. Note that

the performance gap between the FAST-based and the UCR-based

widens when the query length increases.

 0

 5

 10

 15

 20

512 1024 2048 4096 8192

R
un

ni
ng

 ti
m

e
(s

ec
)

Query length

UCR-ED
FAST-ED

 0

 200

 400

 600

 800

512 1024 2048 4096 8192

R
un

ni
ng

 ti
m

e
(s

ec
)

Query length

UCR-DTW
FAST-DTW

(a) for ED (b) for DTW

Figure 5: Response time, on RW

5. CONCLUSION
In this paper, we propose two novel lower-bounds to speedup the

subsequence search over time series data. These lower-bounds are

based on the triangle inequality and PAA representations, respec-

tively, and can be easily integrated with the UCR Suite to further

improve its performance.

Acknowledgement

This work was supported by grant GRF 152043/15E from the

Hong Kong RGC, grant MYRG105- FST13- GZG, MYRG2014-

00106-FST, MYRG2015-00070-FST and MYRG2016-00182-FST

from UMAC Research Committee, grant FDCT/116/2013/A3 and

FDCT/007/2016/AFJ from Macau FDCT, grant NSFC 61502548

from National Natural Science Foundation of China. We thank Ji-

ahao Zhang for helping with the experiments.

6. REFERENCES
[1] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast

subsequence matching in time-series databases. In SIGMOD, 1994.

[2] E. Keogh and C. A. Ratanamahatana. Exact indexing of dynamic time
warping. Knowl. Inf. Syst., 7(3):358–386, 2005.

[3] E. J. Keogh, K. Chakrabarti, M. J. Pazzani, and S. Mehrotra.
Dimensionality reduction for fast similarity search in large time series
databases. Knowl. Inf. Syst., 3(3):263–286, 2001.

[4] Y. Li, L. H. U, M. L. Yiu, and Z. Gong. Quick-motif: An efficient and
scalable framework for exact motif discovery. In ICDE, pages
579–590, 2015.

[5] T. Rakthanmanon, B. J. L. Campana, A. Mueen, G. E. A. P. A. Batista,
M. B. Westover, Q. Zhu, J. Zakaria, and E. J. Keogh. Addressing big
data time series: Mining trillions of time series subsequences under
dynamic time warping. TKDD, 7(3):10, 2013.

517

	Fast Subsequence Search on Time Series DataYuhong Li, Bo Tang, Leong Hou U, Man Lung Yiu, Zhiguo Gong

