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ABSTRACT
Entity matching, or record linkage, is the task of identifying
records that refer to the same entity. Naive entity match-
ing techniques (i.e., brute-force pairwise comparisons) have
quadratic complexity. A typical shortcut to the problem is
to employ blocking techniques to reduce the number of com-
parisons, i.e. to partition the data in several blocks and only
compare records within the same block.

While classic blocking methods are designed for data from
relational databases with clearly defined schemas, they are
not applicable to data from Web tables, which are more
prone to noise and do not come with an explicit schema. At
the same time, Web tables are an interesting data source for
many knowledge intensive tasks, which makes record link-
age on Web Tables an important challenge. In this work,
we propose an unsupervised approach to partition the data,
that does not exploit any external knowledge, but only relies
on heuristics to select the blocking attributes. We compare
different partitioning methods: we use (i) clustering on bag-
of-words, (ii) binning via Locality-Sensitive Hashing and (iii)
clustering using word embeddings. In particular, the cluster-
ing methods show good results on a standard dataset of Web
Tables, and, when combined with word embeddings, are a
robust solution which allows for computing the clusters in a
dense, low-dimensional space.
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1. INTRODUCTION
Entity matching aims at identifying different descriptions

in unstructured or (semi-)structured textual content that
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refer to the same real-world entity. Similarly, the dedu-
plication task (or record linkage) looks for nearly dupli-
cate records in relational data, usually amongst data points
that refer the same entity type. In both cases, if addressed
in a brute force fashion, the matching task has quadratic
complexity, as it requires pairwise comparisons of all the
records. The most widely adopted solution for this prob-
lem is to group records in blocks before comparing them, a
pre-processing step usually referred to as blocking. Blocking
offers a compromise between the number of comparisons to
perform and the number of missed entity matches [3].

Traditionally, a plethora of blocking techniques have been
proposed to reduce number of comparisons [5, 6, 12, 13],
especially for the deduplication task. These exploit specific
clues from the data schema, ad hoc similarity functions and
mapping rules, as well as background knowledge of the do-
main and of the type of the entities.

In this paper, we focus on Web tables (i.e., tables on
HTML pages), which stand in the middle ground between
unstructured Web content and relational data. From a struc-
tural point of view records in Web tables resemble records
in database tables. Nevertheless, they come with no schema
attached, making the direct usage of traditional blocking
techniques not applicable, since we cannot rely on any type
of assumption for the data nor have domain knowledge [3].
Thus, in this scenario, the high number of entity types and
the representational heterogeneity, even for entities of the
same semantic type, make traditional blocking techiques
hard to apply. Therefore, we argue for the need of a domain
agnostic representation of Web tables, which has the prop-
erty of being succinct and can be used in a similar fashion
as the signatures in the traditional blocking techniques. We
explore different heuristics based on bag of words and word
embeddings, combined with different clustering methods.

By using a publicly available gold standard (Section 4.1),
we measure the pair comparison reduction ratio and the pair
completeness of the instance matching task, when performed
after the blocking step. We show that the blocking based
on table embeddings leads to the best tradeoff between (i)
reduction ratio on the number of pair comparisons to per-
form and (ii) pair completeness (recall on entity matches).
Moreover, it is robust with respect to the type of table pre-
processing (Section 3.1), while also offering a succinct rep-
resentation for the tables.
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The main contribution of this work is twofold. First,
we propose a novel solution to represent tables in a latent
space using Neural Language Models (NLM). NLM have
been proved successful in replacing the classical bag of word
representation of text (binary feature vector, where each vec-
tor index represents one word) with a latent representation
with a lower vector dimensionality. Second, we exploit the
latent table representations to perform blocking in the con-
text of entity matching in Web tables.

2. STATE OF THE ART
Entity matching is a task with quadratic complexity, there-

fore, when applied to larger data collections, it is necessary
to reduce the number of comparisons to be performed. A
common way to reduce complexity is the use of so-called
blocking strategies to reduce the search space [13] and achieve
a reasonable compromise between the number of compar-
isons and the number of missed entity matches [3]. Tradi-
tionally, blocking techniques exploit specific criteria in the
data schema to split the data before performing entity com-
parisons, only utilizing the values of some key attributes. A
typical example is the Sorted Neighborhood Method (SNM)
[5], which performs sorting of the records according to a
specifically chosen Blocking Key.

Content based blocking strategies usually look for com-
mon tokens between two entities. The search for common
tokens can be performed in entities descriptions or it can
be restricted to the values of attributes that overall have
similar values [12]. In a naive scenario, each token defines
a new block and all entities that share the token end up in
that block (here, entities may belong to multiple blocks);
more sophisticated methods index and rank tokens, so that
the search is restricted to the n most frequent ones [8]. An-
other commonly used technique is Locality-Sensitive Hash-
ing (LSH), which produces effective signatures of records
to perform fast comparisons amongst entities. Specifically,
Duan et al. [4] used LSH to perform instance based ontol-
ogy matching. The underlying assumption of their work is
that discovering relationships in data from different sources
can only be achieved after correctly typing the data. Their
objective is to perform comparisons amongst entity types.
The representation of each type is the sum of all its entities,
which can be seen as a big document, where they can exploit
the tf-idf weighting schema to select relevant tokens.

Multi-Block is a blocking strategy that uses a multidimen-
sional index in which similar objects are located near each
other. In each dimension, the entities are indexed by a dif-
ferent property to achieve effect retrieval [6]. To boost recall,
data is enriched by interlinking to DBpedia [9].

Differently from available state of the art we propose a
strategy which is (i) completely agnostic w.r.t. the data
schema, (ii) does not rely on external knowledge and (iii)
performs only minimal preprocessing of the data.

3. A BLOCKING APPROACH USING TA-
BLE EMBEDDINGS

The blocking step is performed at table label. We propose
an adaptation of neural language models (NLM) to represent
table embeddings, which provide a succinct latent represen-
tation of tables without relying on any domain knowledge.
In the following, we describe the preliminary table prepro-
cessing step, followed by the proposed embedding strategy.

3.1 Table Preprocessing
As Web tables are different from relational tables, i.e.,

they are schema-free and prone to noise, preprocessing and
normalization are required. We reuse components from the
“Mannheim Search Join Engine” [10] to: (i) identify pseudo
key attributes (the subject column); (ii) recognize table header
structures; and (iii) identify data types.

To identify the subject column we apply the heuristic pro-
posed by [14] of choosing the column of type string with the
highest number of unique values. In case of a tie, the left-
most column is used. The subject column basically contains
entity names which act as pseudo-keys for the table [2, 15,
16]. In the example depicted in Table 1, the first column is
used as a subject column.

For detecting the headers, we assume that the header row
is the first non-empty row. In the example depicted in Ta-
ble 1, the first row is used as headers.

For data type detection, we use about 100 manually de-
fined regular expressions to detect numeric values, dates,
and links. Based on the data type, the values of each col-
umn are normalized, e.g., the string values are lower-cased
and special characters are removed. Furthermore, for this
work we replace numbers, timestamps, and geo-coordinates
with a static value, as our approach currently does not han-
dle numeric values. For example, given Table 1, the first
two columns will be recognized as strings, and the last two
columns as numerical. The first row will be recognized as the
header row, and the first column as the subject attribute.
After preprocessing, the table will look like Table 2.

Table 1: Example table of countries
Country Capital Population GDP (USD)
Germany Berlin 80M 46,268.64
France Paris 60M 42,503.30

United Kingdom London 64.1M 41,787.47

Table 2: Preprocessed table
h:country h:capital h:population h:gdp (usd)
v:germany v:berlin $NUM$ $NUM$
v:france v:paris $NUM$ $NUM$

v:united kingdom v:london $NUM$ $NUM$

3.2 Table Embeddings
NLMs are explicitly built to take into account the order of

words in text documents and to encode a stronger statistical
dependence amongst words which are closer in the sequence.
As the model is originally designed for raw text, where the
sequence of words is naturally derivable from the sentences,
we first need to transform tables to word sequences, which
can be used to train a NLM. We consider table values and
table attributes instead of word sequences. Thus, in order
to apply such approaches on table data, we first have to
transform the tables into sequences of values and attributes,
which can be considered as sentences. Using those sentences,
we can train the same neural language models to represent
each value and attribute in the table as a vector of numerical
values in a latent feature space.

We propose three general approaches to transform ta-
bles to sentences: (i) attributes model : the header row is
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converted into a sequence of attributes, e.g., for Table 2
the produced sequence is: “h:country h:capital h’:population
h:gdp (usd)”; (ii) entities model : the subject column is con-
verted into a sequence of entities, e.g., for Table 2 the pro-
duced sequence is: “v:germany v:france v:united kingdom”.
(iii) attributes and entities model : we convert the table into
a sequence of triples of the form <entity, header, value>,
where the entity is the subject, the header is the predicate,
and the corresponding value is the object; e.g. for Table
2 the produced sequence is: “v:germany h:capital v:berlin;
v:germany h:population $NUM$; ... ;
v:united kingdom h:gdp (usd) $NUM$”.

As NLM, we use word2vec [11] , a two-layer neural net
model that learns word embeddings from raw text. Specifi-
cally, we employ the skip-gram model, which tries to predict
the context words given a target word. Given a sequence of
words w1, w2, w3, ..., wT and a context window c, the objec-
tive of the skip-gram model is to maximize the following
average log probability:

1

T

T∑
t=1

∑
−c≤j≤c,j 6=0

logp(wt+j |wt), (1)

The probability p(wt+j |wt) is calculated using the softmax
function:

p(wo|wi) =
exp(v′Twovwi)∑V
w=1 exp(v′Tw vwi)

, (2)

where vw and v′w are the input and the output vector of the
word w, and V is the entire vocabulary.

Directly calculating the softmax function is inefficient, as
it is proportional to the size of V , therefore we used neg-
ative sampling as an optimization technique, following the
approach discussed in [11].

Once the training is finished, all words (i.e., table val-
ues and attributes in our case) are projected into a lower-
dimensional feature space, and semantically similar words
are positioned close to each other. We can then use the pro-
duced latent representation of tables to calculate the similar-
ity between two tables using the standard cosine similarity
measure.

4. EXPERIMENTS
The aim of the experiments is to verify how the proposed

table embeddings perform in reducing the complexity of en-
tity matching, specifically in reducing the number of per-
formed pair comparisons, without loosing recall. As entity
matching per se is not the focus of this paper, we only
consider the pair completeness, i.e., the number of entity
pairs that are contained in the same bucket identified by
the blocking mechanism. That way, we can directly eval-
uate the tradeoff between (i) the reduction ratio achieved
with the blocking and (ii) the pair completeness, i.e. the
ratio of matches that can be potentially identified.

4.1 The T2D Dataset
As a gold standard, we use the publicly available T2D

dataset1. T2D contains a subset of the Web Data Commons
Web Tables Corpus2 for which schema-level and instance-
level correspondences to DBpedia 2014 are provided. We
1http://webdatacommons.org/webtables/goldstandard.
html
2http://webdatacommons.org/webtables/

use the 233 tables of T2D for which rows are mapped to
entities in the DBpedia knowledge base (for a total 26,124
entity-level correspondences). As we are not interested in
matching to DBpedia as an external knowledge base, but
rather finding correspondences within a dataset, we trans-
form the matches to internal matches within the tables, i.e.,
for every pair of table rows mapped to the same DBpedia en-
tity, we create a correspondence amongst the two table rows.
This process produces 50,072 instance correspondences.

To build the table embedding models, we use the T2D
dataset and the WikiTables dataset3. The WikiTables dataset
has been extracted from Wikipedia pages in the course of the
WikiTables project [1]. The corpus consists of 1.35 million
Wikipedia tables. Additionally, we extracted 365, 194 ta-
bles from the Wikipedia 2015 dumps. We build Skip-Gram
models with the following parameters: window size = 10;
number of iterations = 15; negative sampling for optimiza-
tion; negative samples = 25; 500 latent dimensions. All the
models, as well as the code, are publicly available4.

4.2 Results
Overall, we compared two different representations for

tabular data. We use the classical bag of word model (bow)
and the table embeddings. We build all the representations
using four different input features, as identified in the table
pre-processing step (Section 3.1): (i) the full content of the
table, (ii) the table header, (iii) the table subject column
and (iv) the combination of the table subject column and
the table header. For (i) and (iii), we use the attributes and
entities model, for (ii), we use the attributes model, and for
(iii), we use the entities model, as described in section 3.2.
Once the representations are built, we use either unsuper-
vised clustering (k-means) or binning via Locality-Sensitive
Hashing (LSH) to partition tables into bins.

Table (3) shows the results of applying k-means to the rep-
resentations (according to the four different input features)
generated via table embeddings (shortened in the table as
emb) and bag of words (shortened in the table as bow). As
we are looking for a good tradeoff between the pair com-
parison reduction ratio and pair completeness of matched
instances, we also report the harmonic mean (hm) of those
two values for each run. The first observation concerns the
input features. In all scenarios the table headers alone are
not enough to perform effective binning. The subject col-
umn (also combined with the table header) instead leads
to good performance, regardless of the representation, with
comparable performance (>90%) for 10 and 20 bins. Fur-
thermore, we can observe that the word embeddings are also
competitive when using the full table as input, again with
performance >90% for 10 and 20 bins. This means that the
potentially expensive and error-prone detection of header
and key columns can be omitted when using that approach.

We also perform LSH using a java-LSH implementation5

both with the standard bow model as well as using the ta-
ble embeddings as input (using the Super-Bit algorithm [7]).
While the table embeddings representation outperformed
the standard bow, the general performance were quite low
(hm around 60%). This is a direct consequence of the size
of the gold standard. As we perform the binning at table
level and not at instance level, the dataset only contains 233

3http://downey-n1.cs.northwestern.edu/public/
4http://data.dws.informatik.uni-mannheim.de/table2vec/
5https://github.com/tdebatty/java-LSH
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Table 3: Pair comparison reduction ratio (rr) and
pair completeness (pc) of the instance matching task
and their harmonic mean (hm), when performed af-
ter blocking using either table embeddings (emb) or
simple bag of word model (bow), when run on either
the full content of the table (all), the table header
(h), the table subject column (k) or the table subject
column and the table header (k+h).

input #k rr-
emb

pc-
emb

hm-
emb

rr-
bow

pc-
bow

hm-
bow

all 5 0.75 0.98 0.85 0.74 0.89 0.81
all 10 0.85 0.98 0.91 0.83 0.5 0.62
all 20 0.91 0.97 0.94* 0.92 0.5 0.65
all 30 0.93 0.62 0.74 0.91 0.29 0.44
all 40 0.92 0.85 0.88 0.92 0.4 0.56
all 50 0.95 0.65 0.77 0.95 0.32 0.48
h 5 0.79 0.8 0.79 0.73 0.47 0.57
h 10 0.87 0.66 0.75 0.87 0.42 0.57
h 20 0.94 0.38 0.54 0.91 0.41 0.57
h 30 0.96 0.33 0.49 0.93 0.26 0.41
h 40 0.96 0.32 0.48 0 1
h 50 0.19 0.97 0.32 0 1
k+h 5 0.66 0.98 0.79 0.79 0.99 0.88
k+h 10 0.85 0.98 0.91 0.85 0.99 0.91
k+h 20 0.9 0.97 0.93 0.91 0.96 0.93*
k+h 30 0.92 0.96 0.94* 0.93 0.68 0.79
k+h 40 0.93 0.79 0.85 0.94 0.69 0.8
k+h 50 0.95 0.63 0.76 0.96 0.41 0.57
k 5 0.79 0.99 0.88 0.77 0.92 0.84
k 10 0.87 0.98 0.92 0.88 0.98 0.93*
k 20 0.92 0.97 0.94* 0.92 0.88 0.9
k 30 0.94 0.89 0.91 0.93 0.78 0.85
k 40 0.94 0.89 0.91 0.93 0.7 0.8
k 50 0.96 0.52 0.67 0.96 0.51 0.67

tables. In constrast, LSH is know to be effective for large
datasets, where the number of points in each bin is at least
100.

5. CONCLUSIONS AND FUTURE WORK
The paper presents a method to perform entity blocking

for the task of entity matching in Web tables, by represent-
ing tables in a latent space using Neural Language Models.
When compared to state of the art blocking methods table
embeddings prove to be a promising solution. The current
study has been performed on a set of 233 Web tables, man-
ually annotated with entities matches (for a total of 50,072
instance correspondences). In future work, we plan to re-
peat the experiment on a larger dataset of tables from the
Web Data Commons project by semi-automatically generat-
ing the gold standard, and to explore ways of meaningfully
exploiting other value types, such as numbers and dates.
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