
Implementation and Evaluation of Genome Type
Processing for Disease-Causal Gene Studies on DBMS

Yoshifumi Ujibashi
Fujitsu Laboratories Ltd.

Kawasaki, Japan
ujibashi@jp.fujitsu.com

Motoyuki Kawaba
Fujitsu Laboratories Ltd.

Kawasaki, Japan
kawaba@jp.fujitsu.com

Lilian Harada
Fujitsu Laboratories Ltd.

Kawasaki, Japan
harada.lilian@jp.fujitsu.com

ABSTRACT

Recent development of next generation sequencer (NGS) and

algorithms for genomic analysis are contributing to the

understanding of human genetic variation and thus to

personalized medicine. In leveraging this genomic data, the

difficult task of finding out the genes relevant to dedicated

phenotypes, e.g., disease-causal gene analysis, is becoming

increasingly important．In a previous work, we have introduced

a user defined function called “genome type” into PostgreSQL
open source relational database management system (RDBMS) to

accelerate genetic analysis with the aid of an efficient data

structure in which all the genotypes are packed into one record.

However, there are still some challenges to be addressed in order

to efficiently implement the proposed genome type when using

real data. One problem is that, although the majority of variants

are composed of three types of genotypes, this number is not fixed

and can be highly skewed. Another problem is that the amount of

genomic data necessary for accurate association analysis is huge

and speed-up is necessary to make an iterative analysis feasible.

To solve these problems, we developed a new method which

efficiently stores and processes variants of variable sizes. We also

applied query parallelization techniques and exploited instruction

level parallelization (SIMD) on Intel Xeon processor. Our

performance evaluation shows that the processing of very large

scale genomic data can be reduced to some few seconds.

1. INTRODUCTION
Due to recent technological innovations on genome sequencing

and analysis, the speed and cost of acquiring genome information

have drastically reduced and thus huge amounts of genome

information has been collected. Human DNA consists of 3 billion

DNA sequences and is represented by a sequence of four base

AGCTs. Currently, it is said that there are tens of millions of

variations such as SNP (Single nucleotide polymorphism),

INDEL (insert-deletion), CNV (Copy Number Variation) that

derive individual differences in their phenotypes. In recent years,

disease-causal gene studies such like cohort studies and case-

control studies that are based on statistical association analysis of

gene variants and diseases, as well as lifestyle habits and physical

characteristic have attracted much attention. In our work we focus

on the large-scale statistical association analysis, as seen in

Genome Wide Association Study (GWAS) that targets the entire

genome-wide scale data, and propose new methods to speed up

the statistical analysis of disease-causal gene study on relational

databases.

Disease-causal gene study aims at finding genotypes (types of

gene variants) that are relevant to a target disease. This is done by

dividing patients into a group with disease (case group) and

another without disease (control group), and finding genotypes

with different distributions between the two groups. For example,

in Figure 1, there is no difference in genotype distribution

between the case group and the control group for variants 0 and

1. However, since a significant difference can be seen in the

distribution for variant N, this variant may be relevant to the target

disease. The association between the target disease and the

variants is calculated by performing a significance difference test

under the null hypothesis (Cochrane-Armitage test, χ2 test, etc.)

for each gene variant, and when the p value falls below the

significance level, the variant is considered relevant to the disease.

The processing required for the described association analysis is

thus executed in two steps: (1) aggregating to generate the

genotype distribution and (2) significant difference test. For the

huge amount of genome data available nowadays step (1) requires

much processing, and the total analysis may require some days if

naively executed. Tools such as plink [3] address the statistical

processing used in GWAS, and the performance of those analysis

has shown improvements recently. In those tools, it is common to

use genome information in a flat format file such as VCF, pad, or

bad format [3]. However, in association analysis, the selection of

the population greatly affects the correctness of the statistical

result. Therefore, to search for meaningful results, an iterative

approach where the selection of the population and the

corresponding statistical processing are repeated a number of

times is necessary to obtain correct statistical results. In order to

repeatedly select and process data, it would be much easier if all

the necessary data such as the genome data as well as the physical

characteristic data (sex, race, age, etc.), the medical treatment data

(presence/absence of disease, diagnosis results, etc.) related to the

analysis were stored and managed in a single RDBMS not in flat

format files. Recently, some studies that store and manage the

whole necessary data in RDBMS have been proposed [4] [5], but

none of the studies focus on high-speed processing of large-scale

data on those RDBMS. It motivated us to speed up the processing

on the data in RDBMS. In the previous work [1], we proposed a

novel genome type and aggregate function as extended user-

defined types of PostgreSQL and developed a new genotype data

© 2017, Copyright is with the authors. Published in Proc. 20th International
Conference on Extending Database Technology (EDBT), March 21-24, 2017

- Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative

Commons license CC-by-nc-nd 4.0

Figure 1: Example of genotype distributions

Poster Paper

Series ISSN: 2367-2005 494 10.5441/002/edbt.2017.53

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2017.53

structure for efficient aggregate processing. However, in order to

handle actual data, here we extend our previous work to handle

variants with variable number of genotypes and to further speed-

up the processing of large scale data.

In this paper, we first review our genome type and aggregate

function in Section 2. Then, we introduce a new data structure to

handle variants with variable size genotypes, and parallelization

to handle large scale data in Sections 3 and 4, respectively. We

finalize with some concluding remarks in Section 5.

2. Genome type and aggregate function
In our previous work [1], we have introduced a new genome type

and aggregate function as extensions of PostgreSQL, and verified

that those extensions enabled efficient genome analysis on

RDBMS. Figure 2 illustrates genome table TG where each row

stores an individual ID and a field of genome type (GT) that packs

the genotypes of all the N genome variants (GV0…GVN-1).

Additional data on each individual such as clinical, demographic,

lifestyle information, etc. can also be stored in other tables. Figure

2 illustrates a clinical table TC that registers the disease of each

individual. SQL 1 shows the SQL statement when executing

aggregation using the genome type aggregate function

fjgeno_count(). Since all the genotypes of the gene variants were

packed in a single field, the genome aggregate function could

efficiently count up through all genotypes of each individual at

once.

3. New data structure for genome type

3.1 Dictionary-based encoding

3.1.1 Data structure
As illustrated in Figure 2, the genome type introduced in our

previous work stored the genotype information in text format with

all the genotypes as strings packed in one line and delimited by

comma. In order to further improve its efficiency, here we

introduce the utilization of a dictionary to compress data by

numerically encoding the genotypes. Note that most gene variants

can have a few variations of genotype patterns. For instance, a

simple SNP can have three genotype patterns ‘A/A’, ‘A/C’ or

‘C/C’. When represented in text format, a genotype ‘A/A’ plus a
delimiter character would need four bytes. However, a numeric

code requires only two bits and thus has a compression factor of

1/16.

Figure 3 illustrates a variant dictionary table (TV) that, for each

of the N variants (GV0…GVN-1), maps the genotype to its numeric

code. In this example, each GVi can have three types of genotypes

(‘A/A’, ‘A/C’, ‘C/C’ for GV0, ‘G/G’, ‘G/T’, ‘T/T’ for GV1, …)

and thus each GVi can be encoded using two bits ((01)2, (10)2,

(11)2). Therefore the genome table TG is represented as an array

of 2N bits to store the genotypes of the N genome variants.

3.1.2 Performance of the new data structure
The proposed dictionary-based data structure also contributes

to the acceleration of the aggregate processing by avoiding heavy

text parsing processing. We measured the execution time of the

query in SQL 1 using the genome type based on dictionary-

encoding and on text developed in our previous work. We

executed the query on a PRIMERGY RX2540 M1 machine with

Xeon E5-2660 3 @2.60GHz, 576GB memory, and shared buffers

= 128GB for the PostgreSQL configuration parameter, using data

of 100,000 individuals with 100,000 variants. As shown in Table

1, while the execution time of aggregate processing takes about

46 seconds when parsing text, it takes only about 8 seconds using

the proposed dictionary method, which results in more than 5x

faster execution.

Table 1: Execution time of aggregate processing

Genome Type Execution time (sec)

Text parsing (Previous work) 45.743

Dictionary based (This work) 8.331

3.2 Support for variable genotypes

3.2.1 Dynamic data structure
As shown in 3.1, a dictionary encoding the genotypes to a fixed

length bitwise code can compress data and improve the aggregate

processing. As illustrated in Section 3.1, a large number of

variants presents a small number of genotype patterns, namely

three. However, even some simple SNPs and INDELs can

present more than three patterns, and especially STRs (short

tandem repeat) have many repeated patterns and so can present

more than a hundred patterns. We can easily come up with two

naïve methods to handle the variable number of genotype patterns.

One way is to use a fixed length code that is long enough to

represent the maximum number of possible genotype patterns

among all variants. Another way is to use different length codes

for each of the variants so that each variant code is long enough

to represent the maximum number of possible patterns for that

variant. However, note that both approaches are static and require

a prior knowledge of the maximum number of patterns for the

variants. In case a new individual’s genome type is inserted with

a new pattern that requires a longer variant code, both approaches

require the reconstruction of the genome table as well as the

dictionary. We believe that the preknowledge of the maximum

number of genotype patterns is not practical in real genome

analysis where new data emerges constantly. Since the

reconstruction of dictionary and genome table are too heavy, we

introduce a new dynamic method that efficiently handles new

genotype patterns without prior knowledge.

 Our dynamic approach handles new patterns that exceed the

capability of initial bitwise codes by appending new bitwise codes

at the end of our data structure. As illustrated in Figure 4, let’s

SELECT fjgeno_count(TG.GT) FROM TG

WHERE TG.ID = Tc.ID AND Tc.D0 = YES;

SQL 1: Statement with genome type aggregation function

Figure 2: Database schema of genome type

Figure 3: Two-bit encoded genome type and variant

dictionary table

495

suppose that for the first M individuals, all the N genome variants

contain only three patterns that are represented by two-bit codes

(01)2, (10)2 and (11)2. Therefore, for individuals 0 to M-1, GT is

an array with two-bit spaces allocated to each of the N variants.

Now, let’s suppose that an individual M with a genome pattern
‘A/G’ for GV1, that is different to the previous patterns ‘G/G’,
‘G/T’ and ‘T/T’ that appeared so far in GV1, is inserted. In that

case, the genome array for individual M is extended with a new

two-bit space, and ‘A/G’ is encoded as (01)2 for this new two-bit

space for GV1, while the original two-bit space for GV1 is inserted

with code (00)2 indicating that the necessary code is stored

elsewhere in a new two-bit space. Note that the dictionary Tv is

updated and a new entry gives that ‘A/G’ is encoded as (01)2 for

GV1 and the code is located at the Nth two-bit space in GT array.

Analogously, the procedure continues as follows:

 When a fourth genotype pattern ‘G/G’ newly appears for
GV2 by inserting individual M+1, another space is added

for GV2 following the second space for GV1 with code

(01)2, and the first space for GV2 is filled with (00)2;

 When a fifth pattern ‘A/A’ newly appears for GV1 by

inserting individual M+2, the code (10)2 is stored in the

existing second space for GV1, and the first space for GV1

is filled with (00)2;

 When a sixth pattern ‘A/T’ for GV1 and a fifth pattern ‘G/T’
for GV2 appear by inserting individual M+3, they are

stored in the existing second spaces for GV1 and GV2 as

codes (11)2 and (10)2 , and the other spaces for GV1 and

GV2 are filled with (00)2, respectively;

 When a seventh pattern ‘C/G’ newly appears for GV1 by

inserting individual M+4, a third space is needed for GV1.

In this case, the third space for GV1 containing (01)2 is

added following the second space for GV2, and (00)2 is

inserted into the first and second spaces for GV1;

Note that all these information are registered on the variant

dictionary table Tv that is extended with a location field that gives

the two-bit space in which a pattern for each of the variants is

found. The physical address of such location is decided when

loading the genome data, and then when new patterns are inserted

and new space is needed to store them.

In our method a fast array access is feasible because of its fixed

length bitwise codes, and although the information for one variant

is distributed among several spaces, each summation is efficiently

processed over two-bit fixed elements. After the counts for each

two-bit fixed element are processed, they are aggregated to

generate the final counts for each variant by using the information

on the variant dictionary table.

3.2.2 Efficiency of the dynamic data structure
To evaluate the efficiency of this method, we run the query on

SQL 1 using the data distribution shown in Table 2. It emulates

actual data containing 90,000 normal SNPs with three genotype

patterns, 9900 irregular SNPs with six genotype patterns, and 100

STRs with 55 genotype patterns.

Table 2: Example of genotype size distribution

Counts # of genotype pattern Supposed variant type

90000 3 2-allelic SNPs

9900 6 3-allelic SNPs

100 55 STRs

Table 3 shows the processing times when all variants have only

three patterns (Fixed), and for the case of Table 2 (Variable). We

found that even for the case of variable variant patterns, the

processing time has only a 20% increase over the “ideal” case of
fixed three patterns, which is proportional to the increase in table

size. Therefore, we found that the proposed dynamic approach is

very efficient in handling genome data without any prior

knowledge on the number of variant patterns.

Table 3: Times for fixed and variable patterns

 Fixed Variable

Time (sec) 8.331 9.958

Size (GB) 2.70 3.32

4. Acceleration by parallelization

4.1 Query parallelization
With the aid of the increasing number of processors and cores

in one machine, parallelization is a very effective way for

processing speed acceleration. Here we show how the processing

of our proposed genome data structures on PostgreSQL could

take advantage of parallel processing. Since parallel query

capabilities were introduced in the latest release 9.6 of

PostgreSQL [2], we run the query SQL 1 on PostgreSQL 9.6.

However, as a result of our trial, we found that the introduced

parallelization is not effective for performance acceleration of

that query. Figure 5 shows which processing are parallelized in

the query execution plan created when running the query of SQL

1. We can see that PostgreSQL 9.6 parallelizes the join between

Figure 5: Parallelized query plan

Figure 4: Adding genotype patterns

496

the genome table and the clinical table, however the subsequent

aggregate of the large join result is not parallelized and thus can

become the bottleneck of the total query processing.

As we show later in Section 4.3, a more efficient parallel

execution was achieved when using our original parallel function

developed in a previous work [6] based on PostgreSQL 9.4. As

shown in Figure 5, this function parallelizes the query execution

plan from the topmost plan and thus both join and aggregation are

parallelized, resulting in the acceleration of the total performance

of the query.

4.2 SIMD processing
In addition, SIMD instructions of the processor could be used to

parallelize the processing in the CPU instruction. Currently we

can run 256-bit wide vector processing utilizing AVX2 which has

been equipped from Sandy Bridge generation of Intel Xeon

processors. The aggregate processing is mainly composed of two

steps: taking the genotype patterns stored in each variant at the

genome type structure, and then, counting the corresponding

variant elements in a summation array. In order to efficiently

realize the vector processing, we introduce a lookup array which

stores vectors corresponding to the pattern values of the genome

type and that should be added to the summation array. Figure 6

illustrates how the count-up processing uses the lookup array.

First, the value (00010110)2 composed of four variant’s pattern
codes is taken from the genome type. The decimal value of

(00010110)2 is 22 and thus, the 22th element of the lookup array

gives the vector with the bits where places corresponding to the

four variant’s pattern values (GVn’s (00)2, GVn+1’s (01)2, GVn+2’s
(01)2, GVn+3’s (10)2) are set to 1. Then, one counting cycle is done

by adding the vector to the summation array with SIMD

instruction. Note that all the 256 vector values that corresponds to

the composition of the four variant’s pattern codes are prepared

on the lookup array in advance.

Because the element size of the summation array has to fit one

SIMD vector, its size is restricted to 16-bit width. Thus when any

element in the summation array achieves the maximum value of

65535 in integer, all the element values are added to a “final
summation array” whose elements are wide enough. The

summation array elements are then cleared to continue the

aggregate processing.

4.3 Performance evaluation
In this section, we evaluate how the parallel processing of the

newly proposed genome type accelerates the aggregate

processing. We used the same experimental environment in

Section 3.1.2. The results are shown in Figure 7 when using

PostgreSQL 9.6 and 9.4 extended with our parallel function.

We can see that for one core, the newly released PostgreSQL

9.6 was improved from the older 9.4. However, as we explained

in 4.1, since PostgreSQL 9.6 cannot parallelize the aggregate that

represents the heaviest operation in the query, its total time does

not scale when increasing the number of cores. On the other hand,

for PostgreSQL 9.4 with our parallel extension, the execution

time of 8.3 seconds on single core improves to 2.1 seconds on

eight cores, i.e. about four times faster. In addition, using SIMD

instructions, the performance improves by 20% compared with

simple aggregate processing using dictionary encoded genome

type.

5. Conclusion
 In this paper, we present our new efforts on accelerating

genomic analysis to deal with actual large-scale data. The

dictionary-based data structure described in 3.1.2 enables dealing

with genotype patterns of variable maximum number and resulted

in 5 times faster aggregate processing. And as shown in the results

in 4.3, query parallelization with 8-cores and SIMD processing

resulted in 5 times faster aggregate processing, and thus resulting

in a total acceleration factor of 25x. This results in an execution

time of less than two seconds for the aggregation of genome

variants for genome information of 100 thousands individuals

with 100 thousands variants. In recent studies, it is reported that

more than 10 million variants have been included in the human

genome. For such huge data, our aggregate processing would

require some hundreds seconds. We believe that meaningful

association studies requires a try and error approach where a

variety of conditions are run iteratively. We believe our method

could contribute to the feasibility of such an iterative approach for

genome analysis.

6. REFERENCES
[1] Y. Ujibashi, M. Kawaba, L. Harada (2015) Proposal of Database

Type and Aggregation Function for Accelerating Medical

Genomics Study on DBMS EDBT 2016: 672-673

[2] The PostgreSQL Global Development Group. (1996-2016)
PostgreSQL http://www.postgresql.org/

[3] C. C Chang, C. C Chow, L. CAM Tellier, S. Vattikuti, S. Purcell,

J. J Lee (2015) Second-generation PLINK: rising to the challenge
of larger and richer datasets. GigaScience, 4.

[4] A. Ameur, I. Bunkikis, S. Enroth, et al. (2014) CanvasDB: a local

database infrastructure for analysis of targeted- and while genome

resequencing projects. Database, Vol. 2014, Article ID bau098

[5] U. Paila, B. A. Chapman, R. Kirchner (2013) GEMINI: integrative
exploration of genetic variation and genome annotations. PLOS

Comput. Biol.,9,e1003153

[6] Y. Ujibashi, M. Nakamura, T. Tabaru., T. Hashida, M. Kawaba, L.
Harada.: Design of a Shared Memory mechanism for efficient

parallel processing in PostgreSQL. IISA 2015: 1-6

Figure 6: SIMD processing using lookup array

Figure 7: Execution time of aggregate processing

497

	Implementation and Evaluation of Genome Type Processing for Disease-Causal Gene Studies on DBMSYoshifumi Ujibashi, Lilian Harada

