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ABSTRACT 

Recent development of next generation sequencer (NGS) and 

algorithms for genomic analysis are contributing to the 

understanding of human genetic variation and thus to 

personalized medicine. In leveraging this genomic data, the 

difficult task of finding out the genes relevant to dedicated 

phenotypes, e.g., disease-causal gene analysis, is becoming 

increasingly important．In a previous work, we have introduced 

a user defined function called “genome type” into PostgreSQL 
open source relational database management system (RDBMS) to 

accelerate genetic analysis with the aid of an efficient data 

structure in which all the genotypes are packed into one record. 

However, there are still some challenges to be addressed in order 

to efficiently implement the proposed genome type when using 

real data. One problem is that, although the majority of variants 

are composed of three types of genotypes, this number is not fixed 

and can be highly skewed. Another problem is that the amount of 

genomic data necessary for accurate association analysis is huge 

and speed-up is necessary to make an iterative analysis feasible. 

To solve these problems, we developed a new method which 

efficiently stores and processes variants of variable sizes. We also 

applied query parallelization techniques and exploited instruction 

level parallelization (SIMD) on Intel Xeon processor. Our 

performance evaluation shows that the processing of very large 

scale genomic data can be reduced to some few seconds. 

1. INTRODUCTION 
Due to recent technological innovations on genome sequencing 

and analysis, the speed and cost of acquiring genome information 

have drastically reduced and thus huge amounts of genome 

information has been collected. Human DNA consists of 3 billion 

DNA sequences and is represented by a sequence of four base 

AGCTs. Currently, it is said that there are tens of millions of 

variations such as SNP (Single nucleotide polymorphism), 

INDEL (insert-deletion), CNV (Copy Number Variation) that 

derive individual differences in their phenotypes. In recent years, 

disease-causal gene studies such like cohort studies and case-

control studies that are based on statistical association analysis of 

gene variants and diseases, as well as lifestyle habits and physical 

characteristic have attracted much attention. In our work we focus 

on the large-scale statistical association analysis, as seen in 

Genome Wide Association Study (GWAS) that targets the entire 

genome-wide scale data, and propose new methods to speed up 

the statistical analysis of disease-causal gene study on relational 

databases.  

Disease-causal gene study aims at finding genotypes (types of 

gene variants) that are relevant to a target disease. This is done by 

dividing patients into a group with disease (case group) and 

another without disease (control group), and finding genotypes 

with different distributions between the two groups. For example, 

in Figure 1, there is no difference in genotype distribution 

between the case group and the control group for variants 0 and 

1. However, since a significant difference can be seen in the 

distribution for variant N, this variant may be relevant to the target 

disease. The association between the target disease and the 

variants is calculated by performing a significance difference test 

under the null hypothesis (Cochrane-Armitage test, χ2 test, etc.) 

for each gene variant, and when the p value falls below the 

significance level, the variant is considered relevant to the disease.  

The processing required for the described association analysis is 

thus executed in two steps: (1) aggregating to generate the 

genotype distribution and (2) significant difference test. For the 

huge amount of genome data available nowadays step (1) requires 

much processing, and the total analysis may require some days if 

naively executed. Tools such as plink [3] address the statistical 

processing used in GWAS, and the performance of those analysis 

has shown improvements recently. In those tools, it is common to 

use genome information in a flat format file such as VCF, pad, or 

bad format [3]. However, in association analysis, the selection of 

the population greatly affects the correctness of the statistical 

result. Therefore, to search for meaningful results, an iterative 

approach where the selection of the population and the 

corresponding statistical processing are repeated a number of 

times is necessary to obtain correct statistical results. In order to 

repeatedly select and process data, it would be much easier if all 

the necessary data such as the genome data as well as the physical 

characteristic data (sex, race, age, etc.), the medical treatment data 

(presence/absence of disease, diagnosis results, etc.) related to the 

analysis were stored and managed in a single RDBMS not in flat 

format files. Recently, some studies that store and manage the 

whole necessary data in RDBMS have been proposed [4] [5], but 

none of the studies focus on high-speed processing of large-scale 

data on those RDBMS. It motivated us to speed up the processing 

on the data in RDBMS. In the previous work [1], we proposed a 

novel genome type and aggregate function as extended user-

defined types of PostgreSQL and developed a new genotype data 
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Figure 1: Example of genotype distributions 
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structure for efficient aggregate processing. However, in order to 

handle actual data, here we extend our previous work to handle 

variants with variable number of genotypes and to further speed-

up the processing of large scale data.  

In this paper, we first review our genome type and aggregate 

function in Section 2. Then, we introduce a new data structure to 

handle variants with variable size genotypes, and parallelization 

to handle large scale data in Sections 3 and 4, respectively. We 

finalize with some concluding remarks in Section 5. 

2. Genome type and aggregate function 
In our previous work [1], we have introduced a new genome type 

and aggregate function as extensions of PostgreSQL, and verified 

that those extensions enabled efficient genome analysis on 

RDBMS. Figure 2 illustrates genome table TG where each row 

stores an individual ID and a field of genome type (GT) that packs 

the genotypes of all the N genome variants (GV0…GVN-1). 

Additional data on each individual such as clinical, demographic, 

lifestyle information, etc. can also be stored in other tables. Figure 

2 illustrates a clinical table TC that registers the disease of each 

individual. SQL 1 shows the SQL statement when executing 

aggregation using the genome type aggregate function 

fjgeno_count(). Since all the genotypes of the gene variants were 

packed in a single field, the genome aggregate function could 

efficiently count up through all genotypes of each individual at 

once. 

3. New data structure for genome type 

3.1 Dictionary-based encoding 

3.1.1 Data structure 
As illustrated in Figure 2, the genome type introduced in our 

previous work stored the genotype information in text format with 

all the genotypes as strings packed in one line and delimited by 

comma. In order to further improve its efficiency, here we 

introduce the utilization of a dictionary to compress data by 

numerically encoding the genotypes. Note that most gene variants 

can have a few variations of genotype patterns. For instance, a 

simple SNP can have three genotype patterns ‘A/A’, ‘A/C’ or 

‘C/C’. When represented in text format, a genotype ‘A/A’ plus a 
delimiter character would need four bytes. However, a numeric 

code requires only two bits and thus has a compression factor of 

1/16.  

Figure 3 illustrates a variant dictionary table (TV) that, for each 

of the N variants (GV0…GVN-1), maps the genotype to its numeric 

code. In this example, each GVi can have three types of genotypes 

(‘A/A’, ‘A/C’, ‘C/C’ for GV0, ‘G/G’, ‘G/T’, ‘T/T’ for GV1, …) 

and thus each GVi can be encoded using two bits ((01)2, (10)2, 

(11)2 ).  Therefore the genome table TG is represented as an array 

of 2N bits to store the genotypes of the N genome variants.  

3.1.2 Performance of the new data structure 
The proposed dictionary-based data structure also contributes 

to the acceleration of the aggregate processing by avoiding heavy 

text parsing processing. We measured the execution time of the 

query in SQL 1 using the genome type based on dictionary-

encoding and on text developed in our previous work. We 

executed the query on a PRIMERGY RX2540 M1 machine with 

Xeon E5-2660 3 @2.60GHz, 576GB memory, and shared buffers 

= 128GB for the PostgreSQL configuration parameter, using data 

of 100,000 individuals with 100,000 variants. As shown in Table 

1, while the execution time of aggregate processing takes about 

46 seconds when parsing text, it takes only about 8 seconds using 

the proposed dictionary method, which results in more than 5x 

faster execution.  

Table 1: Execution time of aggregate processing 

Genome Type Execution time (sec) 

Text parsing (Previous work) 45.743 

Dictionary based (This work) 8.331 

3.2 Support for variable genotypes  

3.2.1 Dynamic data structure 
As shown in 3.1, a dictionary encoding the genotypes to a fixed 

length bitwise code can compress data and improve the aggregate 

processing. As illustrated in Section 3.1, a large number of 

variants presents a small number of genotype patterns, namely 

three.  However, even some simple SNPs and INDELs can 

present more than three patterns, and especially STRs (short 

tandem repeat) have many repeated patterns and so can present 

more than a hundred patterns. We can easily come up with two 

naïve methods to handle the variable number of genotype patterns. 

One way is to use a fixed length code that is long enough to 

represent the maximum number of possible genotype patterns 

among all variants. Another way is to use different length codes 

for each of the variants so that each variant code is long enough 

to represent the maximum number of possible patterns for that 

variant. However, note that both approaches are static and require 

a prior knowledge of the maximum number of patterns for the 

variants. In case a new individual’s genome type is inserted with 

a new pattern that requires a longer variant code, both approaches 

require the reconstruction of the genome table as well as the 

dictionary. We believe that the preknowledge of the maximum 

number of genotype patterns is not practical in real genome 

analysis where new data emerges constantly. Since the 

reconstruction of dictionary and genome table are too heavy, we 

introduce a new dynamic method that efficiently handles new 

genotype patterns without prior knowledge.  

  Our dynamic approach handles new patterns that exceed the 

capability of initial bitwise codes by appending new bitwise codes 

at the end of our data structure. As illustrated in Figure 4, let’s 

SELECT fjgeno_count(TG.GT) FROM TG 

WHERE TG.ID = Tc.ID AND Tc.D0 = YES; 

SQL 1: Statement with genome type aggregation function 

Figure 2: Database schema of genome type 

Figure 3: Two-bit encoded genome type and variant 

dictionary table 
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suppose that for the first M individuals, all the N genome variants 

contain only three patterns that are represented by two-bit codes 

(01)2, (10)2 and (11)2. Therefore, for individuals 0 to M-1, GT is 

an array with two-bit spaces allocated to each of the N variants. 

Now, let’s suppose that an individual M with a genome pattern 
‘A/G’ for GV1, that is different to the previous patterns ‘G/G’, 
‘G/T’ and ‘T/T’ that appeared so far in GV1, is inserted. In that 

case, the genome array for individual M is extended with a new 

two-bit space, and ‘A/G’ is encoded as (01)2 for this new two-bit 

space for GV1, while the original two-bit space for GV1 is inserted 

with code (00)2 indicating that the necessary code is stored 

elsewhere in a new two-bit space. Note that the dictionary Tv is 

updated and a new entry gives that ‘A/G’ is encoded as (01)2 for 

GV1 and the code is located at the Nth two-bit space in GT array. 

Analogously, the procedure continues as follows: 

 When a fourth genotype pattern ‘G/G’ newly appears for 
GV2 by inserting individual M+1, another space is added 

for GV2 following the second space for GV1 with code 

(01)2, and the first space for GV2 is filled with (00)2; 

 When a fifth pattern ‘A/A’ newly appears for GV1 by 

inserting individual M+2, the code (10)2 is stored in the 

existing second space for GV1, and the first space for GV1 

is filled with (00)2; 

 When a sixth pattern ‘A/T’ for GV1 and a fifth pattern ‘G/T’ 
for GV2 appear by inserting individual M+3, they are 

stored in the existing second spaces for GV1 and GV2 as 

codes (11)2 and (10)2 , and the other spaces for GV1 and 

GV2 are filled with (00)2, respectively; 

 When a seventh pattern ‘C/G’ newly appears for GV1 by 

inserting individual M+4, a third space is needed for GV1. 

In this case, the third space for GV1 containing (01)2 is 

added following the second space for GV2, and (00)2 is 

inserted into the first and second spaces for GV1; 

Note that all these information are registered on the variant 

dictionary table Tv that is extended with a location field that gives 

the two-bit space in which a pattern for each of the variants is 

found. The physical address of such location is decided when 

loading the genome data, and then when new patterns are inserted 

and new space is needed to store them. 

In our method a fast array access is feasible because of its fixed 

length bitwise codes, and although the information for one variant 

is distributed among several spaces, each summation is efficiently 

processed over two-bit fixed elements. After the counts for each 

two-bit fixed element are processed, they are aggregated to 

generate the final counts for each variant by using the information 

on the variant dictionary table. 

3.2.2 Efficiency of the dynamic data structure 
To evaluate the efficiency of this method, we run the query on 

SQL 1 using the data distribution shown in Table 2. It emulates 

actual data containing 90,000 normal SNPs with three genotype 

patterns, 9900 irregular SNPs with six genotype patterns, and 100 

STRs with 55 genotype patterns.  

Table 2: Example of genotype size distribution 

Counts # of genotype pattern Supposed variant type 

90000 3 2-allelic SNPs 

9900 6 3-allelic SNPs 

100 55 STRs 

Table 3 shows the processing times when all variants have only 

three patterns (Fixed), and for the case of Table 2 (Variable). We 

found that even for the case of variable variant patterns, the 

processing time has only a 20% increase over the “ideal” case of 
fixed three patterns, which is proportional to the increase in table 

size. Therefore, we found that the proposed dynamic approach is 

very efficient in handling genome data without any prior 

knowledge on the number of variant patterns. 

Table 3: Times for fixed and variable patterns 

 Fixed Variable 

Time (sec) 8.331 9.958 

Size  (GB) 2.70 3.32 

4. Acceleration by parallelization 

4.1 Query parallelization 
With the aid of the increasing number of processors and cores 

in one machine, parallelization is a very effective way for 

processing speed acceleration. Here we show how the processing 

of our proposed genome data structures on PostgreSQL could 

take advantage of parallel processing. Since parallel query 

capabilities were introduced in the latest release 9.6 of 

PostgreSQL [2], we run the query SQL 1 on PostgreSQL 9.6. 

However, as a result of our trial, we found that the introduced 

parallelization is not effective for performance acceleration of 

that query. Figure 5 shows which processing are parallelized in 

the query execution plan created when running the query of SQL 

1. We can see that PostgreSQL 9.6 parallelizes the join between 

Figure 5: Parallelized query plan 

Figure 4: Adding genotype patterns 
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the genome table and the clinical table, however the subsequent 

aggregate of the large join result is not parallelized and thus can 

become the bottleneck of the total query processing.  

As we show later in Section 4.3, a more efficient parallel 

execution was achieved when using our original parallel function 

developed in a previous work [6] based on PostgreSQL 9.4. As 

shown in Figure 5, this function parallelizes the query execution 

plan from the topmost plan and thus both join and aggregation are 

parallelized, resulting in the acceleration of the total performance 

of the query. 

4.2 SIMD processing 
In addition, SIMD instructions of the processor could be used to 

parallelize the processing in the CPU instruction. Currently we 

can run 256-bit wide vector processing utilizing AVX2 which has 

been equipped from Sandy Bridge generation of Intel Xeon 

processors. The aggregate processing is mainly composed of two 

steps: taking the genotype patterns stored in each variant at the 

genome type structure, and then, counting the corresponding 

variant elements in a summation array.  In order to efficiently 

realize the vector processing, we introduce a lookup array which 

stores vectors corresponding to the pattern values of the genome 

type and that should be added to the summation array. Figure 6 

illustrates how the count-up processing uses the lookup array. 

First, the value (00010110)2 composed of four variant’s pattern 
codes is taken from the genome type. The decimal value of 

(00010110)2 is 22 and thus, the 22th element of the lookup array 

gives the vector with the bits where places corresponding to the 

four variant’s pattern values (GVn’s (00)2, GVn+1’s (01)2, GVn+2’s 
(01)2, GVn+3’s (10)2) are set to 1. Then, one counting cycle is done 

by adding the vector to the summation array with SIMD 

instruction. Note that all the 256 vector values that corresponds to 

the composition of the four variant’s pattern codes are prepared 

on the lookup array in advance.  

Because the element size of the summation array has to fit one 

SIMD vector, its size is restricted to 16-bit width. Thus when any 

element in the summation array achieves the maximum value of 

65535 in integer, all the element values are added to a “final 
summation array” whose elements are wide enough. The 

summation array elements are then cleared to continue the 

aggregate processing.  

4.3 Performance evaluation 
In this section, we evaluate how the parallel processing of the 

newly proposed genome type accelerates the aggregate 

processing. We used the same experimental environment in 

Section 3.1.2. The results are shown in Figure 7 when using 

PostgreSQL 9.6 and 9.4 extended with our parallel function.  

We can see that for one core, the newly released PostgreSQL 

9.6 was improved from the older 9.4. However, as we explained 

in 4.1, since PostgreSQL 9.6 cannot parallelize the aggregate that 

represents the heaviest operation in the query, its total time does 

not scale when increasing the number of cores. On the other hand, 

for PostgreSQL 9.4 with our parallel extension, the execution 

time of 8.3 seconds on single core improves to 2.1 seconds on 

eight cores, i.e. about four times faster. In addition, using SIMD 

instructions, the performance improves by 20% compared with 

simple aggregate processing using dictionary encoded genome 

type.  

5. Conclusion 
    In this paper, we present our new efforts on accelerating 

genomic analysis to deal with actual large-scale data. The 

dictionary-based data structure described in 3.1.2 enables dealing 

with genotype patterns of variable maximum number and resulted 

in 5 times faster aggregate processing. And as shown in the results 

in 4.3, query parallelization with 8-cores and SIMD processing 

resulted in 5 times faster aggregate processing, and thus resulting 

in a total acceleration factor of 25x. This results in an execution 

time of less than two seconds for the aggregation of genome 

variants for genome information of 100 thousands individuals 

with 100 thousands variants. In recent studies, it is reported that 

more than 10 million variants have been included in the human 

genome. For such huge data, our aggregate processing would 

require some hundreds seconds. We believe that meaningful 

association studies requires a try and error approach where a 

variety of conditions are run iteratively. We believe our method 

could contribute to the feasibility of such an iterative approach for 

genome analysis.  
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