
Protecting Location Privacy in Spatial Crowdsourcing
using Encrypted Data

Bozhong Liu
Centre for AI, University of

Technology, Sydney, Australia
liu.bo.zhong@gmail.com

Ling Chen
Centre for AI, University of

Technology, Sydney, Australia

Xingquan Zhu
Department of Computer &
Electrical Engineering and
Computer Science Florida

Atlantic University, USA

Ying Zhang
Centre for AI, University of

Technology, Sydney, Australia

Chengqi Zhang
Centre for AI, University of

Technology, Sydney, Australia

Weidong Qiu
School of Information Security

and Engineering
Shanghai Jiao Tong University,

Shanghai, China

ABSTRACT
In spatial crowdsourcing, spatial tasks are outsourced to a
set of workers in proximity of the task locations for efficient
assignment. It usually requires workers to disclose their lo-
cations, which inevitably raises security concerns about the
privacy of the workers’ locations. In this paper, we propose
a secure SC framework based on encryption, which ensures
that workers’ location information is never released to any
party, yet the system can still assign tasks to workers sit-
uated in proximity of each task’s location. We solve the
challenge of assigning tasks based on encrypted data using
homomorphic encryption. Moreover, to overcome the effi-
ciency issue, we propose a novel secure indexing technique
with a newly devised SKD-tree to index encrypted worker
locations. Experiments on real-world data evaluate various
aspects of the performance of the proposed SC platform.

Keywords
location privacy; spatial crowdsourcing; data encryption;
spatial index

1. INTRODUCTION
With the pervasiveness of mobile devices, the ubiquity of

wireless network and the improvement of sensing technol-
ogy, a new mode of crowdsourcing, namely Spatial Crowd-
sourcing (SC), has emerged [3]. In SC, task requesters regis-
ter through a centralized spatial crowdsourcing server (SC-
server) and request resources related to tasks situated in
specific locations. The SC server assigns tasks to registered
workers according to performance criteria. If a worker ac-

c⃝2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

cepts the assigned task, he physically travels to the location
to perform the required task. Existing SC systems usually
require workers to disclose their location in the form of ei-
ther spatial points or approximate regions, which may have
serious privacy implications. For example, with the leakage
of location information, an adversary may invoke a broad
spectrum of attacks such as physical stalking, identity theft,
and breach of sensitive information [7]. Location privacy
is therefore a critical security issue and it is important to
develop secure SC frameworks to ensure maximum security.

Several approaches have been proposed to protect work-
ers’ locations using a trusted third party (TTP) [10]. How-
ever, once the TTP is compromised by adversaries, loca-
tion privacy is infringed. Alternatively, a TTP-free privacy-
preserving framework can be achieved by obfuscating each
worker’s location as a probabilistic distribution, as opposed
to a deterministic value [7]. Unfortunately, by simply ob-
serving location distributions, the SC server is able to ap-
proximately guess a worker’s location. In addition, the server
knows the final task assignment results, from which it can
infer worker locations with reasonable confidence.

The above observations motivate our work, which aims to
deliver a general trustworthy SC framework with improved
security by requiring workers and requesters to encrypt their
location data when registering with and exchanging informa-
tion through the SC server. Using the correct settings and
protocols, real location information is hidden in the cipher-
texts and is never disclosed to any party. Accordingly, we
can deliver a secure SC framework to sufficiently preserve
the location privacy of both workers and requesters based
on encryption.

Although encryption provides maximum security protec-
tion, the challenge is that the SC server has to assign tasks
(e.g., compute the distance between tasks and workers) based
on encrypted data. We solve the problem of computation on
ciphertexts with a homomorphic encryption scheme and in-
troduce a dual SC server design. To address the inefficiency
of encryption operations, we propose a secure indexing tech-
nique with a newly devised SKD-tree to index encrypted
worker locations for fast searching and pruning. We have
named our SC framework HESI, as it combines a homo-

Poster Paper

 

 

Series ISSN: 2367-2005 478 10.5441/002/edbt.2017.49

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2017.49


Requesters

Registration
Task submission

Distance Computation

Task Assignment

Notification

Logistic Server (SL)

y

x y

x x y

Computing Server (SC)

Dimensional 
Dictionary

SKD-tree

Workers

SC System

SecInsert

SecSearch

1

SecDisCal2

SecAssign3

Figure 1: The HESI framework.

morphic encryption (HE) scheme and a secure indexing (SI)
technique.

2. THE HESI FRAMEWORK
Our secure SC problem can be considered as a secure out-

sourcing multi-party computation [5]. Our aim is to enable
the SC server to carry out all the computations while users
(workers/requesters) do nothing but perform a small num-
ber of encryptions and decryptions.

2.1 The Dual-Server Architecture
We have adopted a dual-server design and propose an SC

framework that consists of two non-colluding semi-honest
servers. The assumption of non-collusion between two ser-
vice providers, such as Google and Amazon, is reasonable
in practice [8], because the collusion of two well-established
companies may damage their reputation and consequently
reduce their revenues. According to the semi-honest model,
these two servers are curious but will follow the protocols.
A dual-assisted server setting can liberate users from heavy
computation and communication by allowing the server to
complete computation tasks. The security intuition behind
dual-server settings has been addressed in related domains
such as secure multi-party computation [9], secure kNN search
[2] and secure trajectory computation [4], and we refer in-
terested readers to these texts for further rationale.
Figure 1 illustrates the HESI framework. It consists of

workers, requesters, and two servers: the logistics server
(SL) and the encrypted data computing server (SC). In gen-
eral, the requesters submit their tasks to the SC platform
and the tasks are dispatched to appropriate workers. The
SL handles all logistics issues, including new user/task reg-
istration, data indexing maintenance (i.e., SKD tree), and
task assignment, whereas the computing server is an auxil-
iary server that handles the computation of encrypted data.
We assume that each server owns a pair of encryption keys,
i.e., (pkL, skL) and (pkC , skC), where pk is the public key
and the private key sk is known only to owner.
Let W and T denote the set of workers and tasks, respec-

tively. Each worker only accepts a limited number of tasks
at the same time and accepts only those within a certain
distance. The whole process is presented as follows:
(1) Worker Registration (WR). Workers register and sign

up with the SL. The SL will index all workers’ encrypted
locations using an interactive secure indexing (SI) technique

Table 1: The outline of the secure protocols

Scope Protocols Description

Index

SecInsert
Insert a node (worker’s encrypted
location) into an SKD-tree se-
curely.

SecSearch
Given a spatial range, output a set
of workers within this range.

Computation
SecDisCal

Calculate the distance of two loca-
tions securely.

Assignment SecAssign
Perform secure task assignment ac-
cording to some strategies.

and store them in a data structure called an SKD-tree, as
shown in Figure 1.

(2) Task Submission (TS). Apart from worker locations,
our framework also protects the privacy of requester/task
locations. The requesters submit their tasks to the SL, in-
cluding the task location and task mission.

(3) Distance Computation (DC). In order to assign work-
ers to tasks in close proximity, the SC platform needs to
know the distances between tasks and workers. The SL

and SC together perform an interactive protocol to compute
the distance based on the encrypted data using homomor-
phic encryption scheme [6]. The distance between tasks and
workers can be used for evaluation during task assignment,
while the real locations of tasks and workers are never re-
vealed to either the SL or SC . In addition, neither the SL

and SC are able to learn any sensitive information from the
intermediate result, unless they conspire which is not allowed
according to the protocol.

(4) Task Assignment (TA). Based on a distance matrix
M, where element mij represents the distance between task
ti and worker wj , and the task acceptance conditions of
workers, the SC-system assigns the tasks to workers with
the goal of maximizing the number of assigned tasks while
minimizing the workers’ travel costs. The task assignment
is carried out by an interactive protocol between the SL and
the SC , under conditions that both servers cannot learn any
sensitive information from the intermediate results.

(5) Task Notification (TN). The final stage is for the SL

to notify assignment results to corresponding workers. Be-
cause the SL does not know the exact locations of the tasks,
it needs to communicate with requesters as follows. The
SL first sends the workers’ public keys to the requester ac-
cording to the assignment results. For example, if a result
record is {ti : w1, . . . , wk}, ti will receive the corresponding
workers’ public keys. Next, the requester encrypts the task’s
location with the received public keys and sends them back
to the SL. The SL then notifies the worker wj with a mes-
sage containing encrypted task locatiosn and task mission.
When wj receives the message, he decrypts the ciphertext
using his own private key to obtain the task’s location. The
worker is then able to travel to the specified location and
perform the task according to the mission.

We briefly outline our proposed secure protocols in Table
1. These secure protocols are categorized into distance com-
putation, secure index and assignment. There are four main
protocols1: SecDisCal, SecInsert, SecSearch and SecAssign.
In the following, we focus on explaining the details of our
proposed secure indexing.

1The details of the protocols can be found in a full version
of this paper at https://goo.gl/1jkqCn

479



2.2 Secure Indexing
Given only a small number of workers usually satisfy the

neighborhood condition of a task, instead of comparing all
worker-task pairs, the encrypted locations of workers are
indexed in advance, and unpromising workers are pruned
before computing the distances.
KD-tree [1] was the first, and most promising, indexing

technique we considered to tackle this purpose. Using a
KD-tree to construct our framework presents two major
challenges. First, all operations must be performed on en-
crypted data, to ensure that neither the SL nor the SC will
obtain any private location information during the indexing
process. Second, normal KD-trees hold a potential privacy
threat. The splitting dimensions of normal KD-trees are
pre-determined and public – nodes in odd levels split the
space with the x -dimension, and nodes in even levels split
with y-dimension. Consequently, the SL could deduce the
relative locations of all workers. For instance, it knows w1

is to the left side of w2 if w2 is an x-splitting node and w1 is
in the left subtree of w2. By continually observing the tree,
the possible spatial range of w1 can be shrunk to a small
region, if enough relative location information is collected.
Even though the location information is relative, not exact,
it is still insecure.
We have therefore developed a novel secure indexing tech-

nique based on KD-tree, called SKD-tree. One major dif-
ference between an SKD-tree and a normal KD-tree is that
SKD-tree is split into two parts and stored on the SL and
SC separately. The SL stores the tree structure informa-
tion (i.e., parent-child relationships) while the SC stores the
dimension splitting information in a dictionary. The split-
ting dimension of each node is selected randomly, allowing
nodes in the same level to split the space along different di-
mensions. This feature improves security by increasing the
difficulty of inferring the relative locations.
Figure 2 compares a normal KD-tree with an SKD-tree.

All worker locations are indexed by a normal KD-tree (left)
and an SKD-tree (right). Each line in the graph represents
a node that splits the space along a particular dimension.
In a normal KD-tree the splitting information is fixed in
advance. By contrast, each node’s splitting dimension is
randomly generated and separately stored in the SKD-tree
on the SC . The SL, preserving the tree structure, acquires
the dimension splitting information from the SC through se-
cure protocols. The shaded nodes in the SKD-tree represent
encrypted data. For example, while node 1 at the level 0
(i.e. root) is partitioned along x axis and node 2 at the
level 1 is partitioned along y axis in the normal KD-tree,
both node 1 and 2 in our SKD-tree are partitioned along
x axis according to the dimension dictionary stored at the
SC , which increases the difficulty for malicious adversaries
to infer the relative locations of workers.
Our SKD-tree is constructed by inserting nodes one by

one using the protocol SecInsert. By quering the SKD-
tree using SecSearch, we can obtain promising neighbor-
hood workers efficiently. In practice, the size of potential
worker set will be small as there are only limited number
of workers close to a task, which means generally a great
number of nodes can be pruned during each iteration.

3. PERFORMANCE EVALUATION

3.1 Benchmark Data

Registration

Server
Assignment

Server

SKD-tree

Secure 

Protocols

1

25

6

X

Y

X

Normal KD-tree

Y 4

3

7

1

25

3

4

6

7

Dimension 

Dictionary

node 1: X
node 2: X

node 3: Y

node 4: X

—————

node 5: Y

node 6: Y

node 7: Y

Figure 2: An example of a normal KD-tree vs. an SKD-tree.

The Yelp dataset2 is a collection of user reviews about
local businesses, such as restaurants. It includes users’ com-
ments, check-ins and business information. We consider each
Yelp user as an SC worker with their check-in as the loca-
tion, and assume that the restaurants are the specified task
targets. The Gowalla dataset3 is a location-based social
network dataset where users share their locations with their
friends. Each Gowalla user is considered to be an SC worker,
and their location is the most recent check-in. Each check-in
point is also modeled as a task location.

In our experiments, 10, 000 workers and 5, 000 tasks were
chosen from both datasets. It is assumed that each worker’s
maximum number of tasks (Ti) and maximum travel dis-
tance (Di) are the same. By default, we set Ti to 5, set
Di = 1km for the Yelp dataset and Di = 10km for the
Gowalla dataset. We ran each experiment five times and
report the average runtime.

3.2 Experimental Results

3.2.1 SKD-tree Evaluation
We first evaluate the scalability of our tree construction

method. Two Paillier key sizes are used: K = 512 bits and
K = 1024 bits. We vary the number of workers from 1000
to 10, 000 and record the corresponding runtime for building
the SKD-tree. The results are presented in Figure 3 and
show that the runtime for tree construction achieves good
scalability on both datasets. In addition, we observe that the
encryption key size influences the performance significantly,
which justifies the fact that a trade-off between privacy and
efficiency exists. In the following experiments, we used 1024
as the default key size.

Next we evaluate the operations on SKD-tree. Because
deletion is very similar to insertion, only the results of inser-
tion and range search are presented. Figure 4a illustrates the
costs of inserting a node into trees of different size. The y-
axis represents the average runtime of inserting a node (i.e.,
worker) into the tree. It can be observed that the trend in-
creases quite slowly, showing that the insertion operation is
scalable to the tree size.

2https://www.yelp.com/dataset challenge
3https://snap.stanford.edu/data/loc-gowalla.html

480



0 2000 4000 6000 8000 10000

Number of Workers

0

500

1000

1500

2000

2500

B
u
ild

 T
re

e
 T

im
e
 (

s) yelp-1024

yelp-512

(a) Build Tree - Yelp

0 2000 4000 6000 8000 10000
Number of Workers

0

500

1000

1500

2000

2500

B
u
ild

 T
re

e
 T

im
e
 (

s) gowalla-1024

gowalla-512

(b) Build Tree - Gowalla

Figure 3: Evaluation of tree construction

0 2000 4000 6000 8000 10000
Number of Workers

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

A
v
e
ra

g
e
 I
n
se

rt
 T

im
e
 (

s)

yelp

gowalla

(a) Insert Time vs. Tree Size

0 2000 4000 6000 8000 10000

Number of Workers

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

A
v
e
ra

g
e
 S

e
a
rc

h
 T

im
e
 (

s)

yelp

gowalla

(b) Search Time vs. Tree Size

Figure 4: Tree operation evaluation

To evaluate range search, we invoked 100 random queries
with a default range size of 1km. Figure 4b reports the aver-
age search time with respect to the number of workers, which
demonstrates good scalability on both datasets. Moreover,
it costs less time to search the Gowalla dataset because it
is sparser than the Yelp dataset, more unnecessary compar-
isons are pruned at each step.

3.2.2 Overall Performance Evaluation
We compare the performance of HESI to the baseline

index-free framework which compares all worker-task pairs
for distance information. We set the number of tasks as 10
and vary the number of workers from 100 to 1000. It can
be seen in Figure 5 that the performance of the baseline
framework increases linearly with respect to the number of
workers. The HESI framework shows a clear advantage over
the baseline. This is mainly because HESI is able to prune
a large number of unnecessary distance computations with
the contribution of the secure indexing technique.

3.2.3 Communication Cost Evaluation
We evaluate the communication overhead between two

servers in the proposed framework. Specifically, we record
the total size of data that transferred during the executions
of the secure protocols. Table 2 shows the results with re-
spect to different numbers of workers and tasks. It can
be seen that the cost changes from 8.18MB to 26.25MB
when the number of workers varies from 2000 to 10000, and
changes from 5.24MB to 21.83MB when the number of tasks
varies from 1000 to 5000. The result shows that the extra
communication overhead due to the dual-server design is ac-
ceptable, and our proposed framework is feasible in practice.

4. CONCLUSIONS
In this paper, we proposed a novel privacy-preserving frame-

work for spatial crowdsourcing, which ensures that user lo-

0 200 400 600 800 1000
Number of Workers

0

2000

4000

6000

8000

R
u
n
 T

im
e
 (

s)

HESI

baseline

(a) Yelp

0 200 400 600 800 1000
Number of Workers

0

2000

4000

6000

8000

R
u
n
 T

im
e
 (

s)

HESI

baseline

(b) Gowalla

Figure 5: Performance Improvement

Table 2: Communication cost

#Workers Cost (MB) #Tasks Cost (MB)
2000 8.18 1000 5.24
4000 10.95 2000 8.63
6000 16.20 3000 13.35
8000 20.22 4000 17.39
10000 26.25 5000 21.83

cations are never released to anyone, yet the system is still
able to assign tasks to workers in an efficient way. The key
innovation of our framework, compared to existing work in
the field, is threefold: (1) a new encrypted data-based spa-
tial crowdsourcing framework for the SC community; (2)
a secure SKD-tree structure to store and index encrypted
data for fast search; and (3) ensured data privacy (including
worker and requester privacy) and data security, whereas
existing works only limit to worker privacy.

Acknowledgement This work was supported by the Aus-
tralia Research Council (ARC) Discovery Project under Grant
No. DP140100545 and program of New Century Excellent
Talents in University under Grant No. NCET-12-0358.

5. REFERENCES
[1] J. L. Bentley. Multidimensional Binary Search Trees Used

for Associative Searching. Commun. ACM, 18(9):509–517,
1975.

[2] Y. Elmehdwi, B. K. Samanthula, and W. Jiang. Secure
k-nearest Neighbor Query over Encrypted Data in
Outsourced Environments. In ICDE, pages 664–675, 2014.

[3] L. Kazemi and C. Shahabi. Geocrowd: Enabling query
answering with spatial crowdsourcing. In SIGSPATIAL,
pages 189–198, 2012.

[4] A. Liu, K. Zheng, L. Li, G. Liu, L. Zhao, and X. Zhou.
Efficient Secure Similarity Computation on Encrypted
Trajectory Data. In ICDE, pages 66–77, 2015.

[5] J. Loftus and N. P. Smart. Secure Outsourced
Computation. In AFRICACRYPT, pages 1–20, 2011.

[6] P. Paillier. Public-Key Cryptosystems Based on Composite
Degree Residuosity Classes. In EUROCRYPT, pages
223–238, 1999.

[7] L. Pournajaf, L. Xiong, V. S. Sunderam, and S. Goryczka.
Spatial Task Assignment for Crowd Sensing with Cloaked
Locations. In MDM, pages 73–82, 2014.

[8] B. K. Samanthula, F. Rao, E. Bertino, and X. Yi.
Privacy-Preserving Protocols for Shortest Path Discovery
over Outsourced Encrypted Graph Data. In IRI, pages
427–434, 2015.

[9] Y. Sun, Q. Wen, Y. Zhang, H. Zhang, Z. Jin, and W. Li.
Two-Cloud-Servers-Assisted Secure Outsourcing Multiparty
Computation. The Scientific World Journal, 2014, 2014.

[10] H. To, G. Ghinita, and C. Shahabi. A Framework for
Protecting Worker Location Privacy in Spatial
Crowdsourcing. PVLDB, 7(10):919–930, 2014.

481


	Protecting Location Privacy in Spatial Crowdsourcing using Encrypted DataBozhong Liu, Ling Chen, Xingquan Zhu, Ying Zhang, Chengqi Zhang, Weidong Qiu

