
Powering Archive Store Query Processing via Join Indices

Joseph Vinish D’silva1, Bettina Kemme1, Richard Grondin2, and Evgueni Fadeitchev2

1School of Computer Science , McGill University , joseph.dsilva@mail.mcgill.ca , kemme@cs.mcgill.ca
2ILM Development , Informatica , rgrondin@informatica.com , efadeitchev@informatica.com

ABSTRACT
In recent years, the industry landscape surrounding data
processing systems has been significantly impacted by Big
Data. Core technology and algorithms for data analysis have
been adjusted and redesigned to handle the ever increasing
amount of data. In this paper we revisit the concept of join
index, a base mechanism in relational DBMS to support the
expensive join operator, and analyze how it can be effectively
integrated and combined with other mechanisms widely de-
ployed for large-scale data processing. In particular, we show
how the data store Informatica IDV, originally designed to
facilitate backup and archival of application data, can bene-
fit from join indices to give fast SQL-based access to archival
data for discovery purposes. Informatica IDV supports both
horizontal and vertical partitioning – two mechanisms that
are widely used in modern data stores to speed up large-scale
data processing. However, this requires us to reexamine join
index design and usage. In this paper, we propose a scalable,
partitioned, columnar join index that supports parallel exe-
cution, ease of maintenance and a late materialization query
processing approach which is efficient for column-stores. Our
implementation based on Informatica IDV has been evalu-
ated using a TPC-H based benchmark, showing significant
performance improvements compared to executions without
join index.

CCS Concepts
•Information systems → Join algorithms;

Keywords
join indices; predicate evaluation; archive stores;

1. INTRODUCTION
The past decade has seen a surge in data analytics, pri-

marily driven by Big Data. Gartner predicts the market
forecast for BI & Analytics sector to reach $16.9 billion in
2016, an increase of 5.2 percent from 2015 [6]. Falling disk

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

storage prices [12] and off-the-shelf hardware costs in gen-
eral have resulted in an increasing number of organizations
taking the Big Data leap. The unprecedented abundance of
data and the demand to process them efficiently and eco-
nomically has resulted in various emerging trends.

Big Data frameworks like the Hadoop ecosystem, a promi-
nent technology to process large amount of unstructured
data, are engineered to run on clusters that can be easily
built from off-the-shelf commercial hardware without need-
ing any specialized and costly components. They also make
fault tolerance concepts, such as persisting intermediate re-
sults, stateless worker tasks, shared and replicated storage
etc., a fundamental part of their design. Most Big Data
applications are centered around use cases that have very
little update to existing data and hence, can exploit storage
structures optimized for appends. Data is usually parti-
tioned horizontally, allowing the framework to process the
various data partitions independently in parallel.

RDBMS vendors, on the other hand, have started feel-
ing the pinch to reduce the amount of I/O incurred during
query processing as the data sizes grew. A fundamental rea-
son for the high I/O has been due to the row-based storage
of data, that often results in reading a lot of attributes from
disk that are not required. This is where column stores have
found their resurgence, as they store each column in separate
blocks in the disk, often referred to as vertical data partition-
ing. [1] and [10] demonstrate that column-stores perform
better than row stores for analytical queries. These obser-
vations have forced the leading row-based RDBMS vendors
to incorporate many features of column stores [22]. However
[1] concludes that such optimizations on row-stores still fall
short of the column-store performance. The time point the
resultset of a query is materialized has a particular impact
in the performance. Row stores traditionally use early ma-
terialization, i.e., building the final resultset’s attributes as
early as possible whenever they access a potentially relevant
row for the first time (even if the row might be later dis-
regarded), while [2] shows that column-stores benefit from
late materialization, where the output columns for a tuple
are only retrieved when it is ensured that the tuple qualifies
all predicates, leading to a significant reduction in I/O.

A further player in the large-scale data processing domain
are Data Warehouses (DW). Although originally conceived
to process analytical queries on historical data, the need for
more up-to-date information in the form of real-time Busi-
ness Intelligence and event-driven processing has increased
the complexity of the DW systems both in terms of software
and hardware. The latter, for instance, is often character-

Industrial and Applications Paper

Series ISSN: 2367-2005 644 10.5441/002/edbt.2017.85

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2017.85

ized by large main memory, multi-processor servers attached
to fast, reliable storage such as SSDs. However, the resulting
higher price tag might be prohibitive for many application
domains, given that many DW vendors consider storage size
as a major factor for pricing their market offerings.

Therefore, organizations started looking whether their archive
stores, that were traditionally seen only as an infrastruc-
ture to facilitate backup and retirement of application data
that has some retention requirements, could be leveraged
to perform data discovery. Given that the source systems
for archive stores are predominantly RDMBS applications,
they inherit the semantic structure and data quality from
the source systems - a principal difference with typical Big
Data systems of today that are predominantly tailored to
process unstructured data. As a result, it is more natural
for archive stores to offer the familiar SQL query interface,
and behave more like an RDBMS – which appears attrac-
tive as RDBMS have shown to outperform BigData systems
like MapReduce when it comes to performing relational op-
erations [18]. Thus, the potential for query optimization,
in particular, when the archive store follows a column-store
approach, is high.

Additionally, as data is typically appended as chunks, and
later seldom updated, archive stores have the potential to
benefit from horizontal partitioning in a similar way as Big
Data Frameworks, facilitating shared storage and stateless
computing tasks design, and allowing for parallel and fault-
tolerant query processing. Therefore, building on the lessons
from Big Data systems and Column-stores, we can observe
that archive stores, in particular when they deploy both ver-
tical and horizontal partitioning, stand to gain by taking a
leaf from both of these technologies.

However there is an important part of query processing in
relational systems that is also very costly - joins! Among
other techniques, some RDBMS have employed an auxil-
iary data structure known as join index to address join
performance. A join index represents a fully pre-computed
join between two or more relations by storing some form
of source table row identifier for each resultset tuple [16].
While join indices can occur significant maintenance over-
head when the source tables change frequently, they are an
attractive proposition for archive stores where data is typi-
cally appended incrementally and existing data might only
be changed in batches, thus making it possible to do efficient
batch maintenance on join indices. Also, and as we will see
in this paper, appropriately designed join indices lend them-
selves well to partitioned data, thus providing great poten-
tial for scalability.

Therefore, in this paper, we hypothesize that join indices
can be highly beneficial for archive stores and develop an im-
plementation for a columnar, highly-scalable, archive data
store, Informatica IDV, analyzing carefully how data distri-
bution and the columnar architecture affects the join-index
design. Our approach naturally follows the horizontal parti-
tioning approach deployed in IDV, and performs join index
maintenance on a partition basis. We leverage the existing
columnar storage structure by persisting the join indices as
special system tables whose columns are rowids of tuples of
the different relations that join. We also implement new
query execution workflows that can utilize the join indices
which is in concordance with the way partitions are pro-
cessed currently in IDV, facilitating parallel processing of
join queries. Furthermore, we develop a new methodology

of evaluating selection predicates which addresses the costs
associated with redundant predicate processing. Finally, we
implement a late materialization strategy where projection
attributes of matching tuples are retrieved as late as possible
to take advantage of the columnar storage.

Our tests using a TPC-H1 based benchmark with differ-
ent queries and database configurations show conclusively
that using our join index does indeed offer significant per-
formance improvements on join query processing compared
to non-join index based joins in terms of execution times
and CPU, I/O and memory usage.

In short, our paper makes the following contributions.

• A join index design for a partitioned, scalable and
columnar database leveraging the existing storage struc-
tures for simplified implementation and maintenance.

• A holistic query execution strategy with improved se-
lection predicate processing that avoids redundant eval-
uations of selection predicates in multi-partition joins.

• A late materialization based approach for generating
the output result leveraging on the columnar storage.

• A detailed analysis of the performance of our join index
implementation using the TPC-H benchmark suite.

2. BACKGROUND AND RELATED WORK
Join is one of the most fundamental – and one of the

most costly, operations in relational query processing. Most
common is the equi-join where the join attributes are the
primary key and foreign key of the respective relations to be
joined. A join can be defined over multiple relations whereby
an N -way join can be computed as a series of N − 1 2-way
joins. Furthermore, complex SQL queries typically com-
bine joins with selection predicates on individual attributes
of the participating relations (WHERE clause of SQL state-
ments), and have the result set only project on a subset of
all possible attributes (SELECT clause of SQL statements).
Thus, it is not only crucial to find efficient ways of execut-
ing the join operations themselves [16] but also to integrate
join execution with selection and projection tasks.

There exists a variety of physical join mechanisms follow-
ing different query processing strategies [15, 7], and target-
ing various data characteristics and DBMS architectures. In
general, join mechanisms can be classified as (i) not depend-
ing on specialized data structures - such as nested join, sort-
merge join, hash join algorithms and their variants; (ii) or
depending on specific data structures such as indices that
need to be built and maintained. The most prominent join-
specific data structures can be broadly classified as links [9,
19], materialized views [20] and join indices [23, 5, 21, 17,
14]. For the sake of brevity, we will confine our background
discussions to some of the fundamental approaches of join
indices and query processing, as is relevant to this paper.

2.1 Join Index
Join indices in its current familiar form were defined by

Valduriez in [23] as a special relation that represents the ab-
straction of the join of two relations. Though other variants
[5, 21, 17, 14] exist, the primary design concept of join in-
dex remains more or less the same. A join index for two

1http://www.tpc.org/tpch/spec/tpch2.15.0.pdf

645

NATION
row
id

NATION
KEY

REGION
KEY N_NAME POP

1 6 4 GHANA 27
2 9 7 CHINA 1376
3 7 7 INDIA 1289
4 3 4 CHAD 14

REGION
row
id

REGION
KEY R_NAME

1 4 AFRICA
2 7 ASIA

JI_N	(rowids)
(NATION) (REGION)

1 1
2 2
3 2
4 1

JI_R	 (rowids)
(REGION) (NATION)

1 1
1 4
2 2
2 3

Figure 1: Join index impl. according to Valduriez

relations is a relation with two attributes where each tuple
of the index represents a pair of tuples of the base relations
that join according to the join criteria. For an equi-join of
two relations R and S, the join index relation JI can be
represented using the definition adapted from [23] as

JI = { (ri[rowid], sj [rowid]) | ri[attR] == sj [attS] }
Where ri and sj are tuples from the relations R and S

respectively, attR and attS are the attributes over which the
join is defined, and rowid is a database generated surro-
gate that is used to uniquely identify the tuples within the
particular relations. A join index can also be regarded as
a special form of a materialized view [17] as it represents
a pre-computed join between tables with only their rowid
attributes materialized.

A join index needs further processing to build the result-
set by accessing the required attributes of the selected tuples
from the underlying tables. This operation will have to be
performed with significant efficiency, otherwise any perfor-
mance advantage of having the joining tuples pre-computed
will be lost. If the join index has to be used in combina-
tion with tuple selection based on either of the relations,
Valduriez suggested that two copies of join index be main-
tained with each one clustered on the rowids of one of the
relations [23]. Fig. 1 shows an example of two join indices
built between NATION and REGION, one clustered on NATION

(JI_N) and the other one (JI_R) clustered on REGION. Now
assume the following join query over these two relations that
additionally contains a selection predicate on REGION.

SELECT *
FROM REGION JOIN NATION
ON REGION.REGION_KEY = NATION.REGION_KEY
WHERE R_NAME = ’ASIA’

For this query, the REGION table and the index JI_R can
be scanned sequentially and in tandem. The scan on REGION

will determine that only the rowid 2 of REGION qualifies the
selection predicate, and thus, only the last two rows in JI_R

are relevant. Therefore, only the NATION tuples with rowids
2 and 3 will be retrieved to build, together with the already
loaded tuple of REGION with rowid 2, the result set.

[17] describes a bitmap-based join-index that is suited for
star schema joins. In this approach, a join index is created
such that for each record in the dimension table, a bit string
that corresponds to the length of the fact table is stored in
the join index (i.e., the number of bits equals the number
of rows in the fact table). Individual bits on the bit string
map to the rowids of the fact table. A bit is set if that fact

table row joins with the row corresponding to the dimension
table entry.

[24] also proposes a join index that is suited for a star
schema. It applies a hybrid storage model in which the fact
table is maintained as a row store, whereas frequently ac-
cessed dimension tables are stored in a columnar fashion.
The fact table is transformed into a join index by replac-
ing the dimensional attributes stored in the fact table with
references to the corresponding tuple in the dimension table.

[5] proposes a composite attribute and join index which
is a variation of the concept of links described in [9]. The
index structure, termed Bc-tree is based on the concept of
a B+-tree. The leaf nodes of the Bc-tree contain references
(in principal, pointers to the physical locations) to all the
tuples in the database which share the same data values of a
common domain. Thus, the structure serves as a secondary
index on an attribute as well as a multi-way join index. Bc-
tree can also be used to enforce integrity constraints, since
the values of the domain are stored as part of the tree struc-
ture. Joins are performed by accessing the tuples via the
references stored in each of the leaf nodes. For joins with-
out additional selection, the search is performed by means of
a sequential traversal of the leaves of the Bc-tree [5]. Com-
pared to the regular join index [23], this implementation can
support multiple joins based on the same attribute simulta-
neously.

Comparative studies of the performance of join indices,
materialized views and join algorithms have been described
in [3] and [16]. [3] concluded that the method of choice
to implement joins was dependent on various environmental
characteristics like join selectivity2, main memory availabil-
ity, volatility of the attributes of base relations etc. Al-
though there are various optimizations of join algorithms, it
has been established that in most scenarios, join indices can
provide better performance compared to other join mecha-
nisms in traditional RDBMS [13].

Little work on join indices exists outside the scope of row-
based RDBMS. An exception is [4] where join indices are
created on the fly during query processing for the column-
based DBS MonetDB. The approach has some similarities
to ours due to both being based on a column storage which,
as we discuss below, brings advantages in terms of late ma-
terialization. But our approach is more general as it also
considers horizontal partitioning, carefully integrates with
selection operators, and stores join indices persistently.

2.2 Query Processing Approaches
In this section, we point at two fundamental approaches

related to scalability and performance that are of interest
for us in our join index design, namely operator pipelining
and materialization techniques.

2.2.1 Pipelined Operation for Efficiency
Most RDBMS support pipelined query processing, where

operators pass their output (often using intermediate buffers)
as they are produced to the next operator in the processing
step. This improves performance as operators can work in
parallel producing results faster, and in some scenarios pro-
viding the first rows while the query is still processing the
remaining records. But this tightly coupled query processing

2The selectivity factor is defined as the ratio of the number
of result tuples of a join operation to the number of tuples
in the Cartesian product of the underlying relations.

646

σ
REGION

JI_R

R_NAME=‘ASIA’
σ
REGION

JI_R

R_NAME=‘ASIA’
σ
REGION

JI_R

R_NAME=‘ASIA’

NATION_1NATION NATION_2

Figure 2: Impact on pipelining due to horizontal
partitioning

approach comes at a cost to fault tolerance. A failure in one
of the operator tasks can result in having to reprocess the
entire query workflow. With traditional RDBMS this was
not a significant issue, as with small number of computing
nodes, the rate of failures were very low to be of concern.

Looking more closely at the execution of the SQL join
query given in the previous section, we can see the pipelined
approach, depicted on the left side of fig. 2. The selection
operator reads records from REGION and pipelines the qual-
ifying tuples to the operator that looks-up the join index
JI_R. This operator produces the matching rowids of NATION
in its output, which are further pipelined to an operator that
reads the corresponding tuples from the NATION table.

However, this pipelined approach does not necessarily scale
well on a horizontally partitioned system. If NATION had two
partitions, then, if we want to achieve parallelism via scale-
out, we want to process both partitions at the same time. A
trivial design approach is to have each of the partitions to
be joined separately with REGION table in a pipelined fash-
ion. However, this will require the selection operator to be
applied twice on the same data of REGION as shown on the
right side of fig. 2.

In fact, if tables T1, T2, . . .Tn are joined in that order, with
each of them having p1, p2, . . . pn number of partitions, then
the number of duplicate selection predicate evaluations for a

table Ti has an upper bound of (
i∏

j=1

pj)−pi : i > 1. This can

translate to unnecessary I/O in a system with large number
of partitions. We will discuss how we tackle this effectively
in our query processing approach in the next section.

2.2.2 Materializing Strategies
Once determined in which order operators are executed

in the execution tree the question arises what information
is exactly transmitted from one operator to the next. If a
system that stores all attributes of a row in a single chunk
(row-based storage), it makes sense to retrieve all attributes
of a row that are needed for further processing the first time
any operator accesses this specific row and include them in
the data that is moved to the next operator. This early
materialization that grabs all attributes that might be po-
tentially useful in the first disk read can reduce the overall
I/O costs, as later steps, for example when generating the
final attributes to be returned, do not need to read the tuple
again, which might lead to additional I/O.

As an example, let’s have a look at the query

SELECT N_NAME , POP
FROM REGION JOIN NATION
ON REGION.REGION_KEY = NATION.REGION_KEY
WHERE R_NAME = ’ASIA’ AND N_NAME LIKE ’C%’

For this query, the NATION record for CHAD fulfills the se-
lection operator, and thus, early materialization will retrieve
the N_NAME and POPULATION attributes and forward them to
the join operator. However, this tuple will not find a match-
ing REGION tuple and thus, will be eliminated by the join.
Thus, the I/O cost for reading the attributes from disk and
forwarding them to the next operator is an overhead that
we incur in our efforts to avoid re-reading the same data
disk blocks later to generate the output list. Holistically,
any data that is read from the disk, but later not used for
query processing (because the tuple was discarded at a later
step), leads to wastage of resources.

It is in this context where column-stores, with their late
materialization approach, provide better results. In a colum-
nar model, each of the attributes is stored separately in a
different data block (or set of data blocks). Hence, when
looking for nations with N_NAME LIKE ’C%’, the selection
operator only needs to read the data blocks associated with
N_NAME. It can then produce the rowids that qualify the selec-
tion in its output and transmit this set to the join operator.
Similar approach holds for the selection operation to deter-
mine the set of rowids with R_NAME = ’ASIA’. The join op-
erator can then determine the join index tuples that contain
rowids from both the sets. This can be then consumed by
a result generator which can lookup the attributes required
in the output and construct the output tuples. Albeit a bit
more complex than early materialization, we can see that
with large scale data processing systems, this avoids wast-
ing precious I/O. For example, in the example above, the
data blocks for the attributes NATION_KEY and REGION_KEY

do not need to be read at all, and neither does the POP at-
tribute value for the record with N_NAME equal CHAD.

Work done in [2, 1] demonstrates how late materializa-
tion strategy provides performance boost for column-stores
over the early materialization based approach of traditional
row-stores. In summary, an advantage of column-stores is
that they are naturally suited for late materialization as all
the columns are stored in separate data blocks [1]. Thus,
column-stores can perform joins and selections by reading
just the columns required for the joins/selections without
fetching any other attributes. And then, for the final pro-
jection, only the projection attributes from matching tuples
need to be retrieved. This makes them I/O efficient com-
pared to row-stores that always retrieve the entire record
upon the first access.

2.3 IDV in a Nutshell
Informatica IDV serves as a relational archive store for

Informatica’s ILM Application suite, and provides access to
the archived data via standard SQL interfaces. The data
store follows a distributed architecture offering parallel exe-
cution of SQL queries. IDV provides columnar storage (ver-
tical partitioning) as well as horizontal partitioning. New
data gets appended as additional (horizontal) partitions in
immutable file structures3 [11]. The data files follow a pro-

3IDV supports logical delete by storing information about
deletions as extensions to the partition as well as facilitates

647

Customer_1.sct	

CUSTKEY	

CUSTNAME	

NATIONKEY	
Shared	 File	
System	

ParAAon	 1	 Customer_2.sct	

CUSTKEY	

CUSTNAME	

NATIONKEY	

ParAAon	 2	

Figure 3: Database storage layout

Client Server Agent

Distributed	
Shared	FS

Node

Metadata

Worker	
Task

DB	Files

Worker	
Task

Agent

Node
Worker	
Task

Worker	
Task

DB	Files

Figure 4: IDV high level database architecture

prietary format called Segment Compacted Table (SCT) and
are usually stored in shared/distributed filesystems, decou-
pling the storage and computation aspects of the database.
An abstract depiction of this storage structure is shown in
fig. 3.

The high level architecture of IDV (fig. 4) bears a lot
of resemblance to Big Data frameworks. Clients interact
with the database server which generates tasks to execute
query plans and places them in the execution queue. The
server uses the metadata (data location and partitioning,
data statistics, etc.) stored locally to determine the exe-
cution plans. The agent processes run on computing nodes.
They pick up tasks and spawn worker tasks to execute them.
The worker tasks are stateless by design and read data from
the shared storage and persist the output back to the shared
storage. This facilitates multi-step query processing, paral-
lelism, fault tolerance, etc., quite similar to Big Data frame-
works like MapReduce. The final output is sent back to the
client via the agents and server, the latter also consolidating
results from various tasks.

The conventional join query processing in IDV follows a
pipelining approach where N -table joins are executed as a
sequence of 2-table joins and selections on tables are per-
formed before the tuples are fed into the join operator. By
default, IDV uses a merge join. For instance, assuming a
3-table join over tables T1, T2, T3 with having p1, p2, p3 par-
titions respectively, there is a worker task for each combina-
tion of partitions of T1 and T2 (i.e., p1 ∗ p2 worker tasks).
Each of these worker tasks applies the selection predicates

rebuilding the whole partition to purge them, but this does
not have significant bearings in our approach and hence will
not be discussed in depth.

relevant to the partition(s) it is working on, constructing
a memory resident bit vector called Tuple Selection Vec-
tor (TSV) [8]. TSVs indicate which rows qualify from a
partition by turning on the corresponding row’s bit posi-
tion and are stored in compressed format to reduce memory
footprint. The TSV approach is conceptually similar to vec-
torized query processing described in [1]. The worker task
then uses the information from the TSVs to retrieve the re-
maining attributes required to perform the actual join and
generate the result set. The resulting tuples then build an
output partition that is one of the input partitions for the
next set of worker tasks. The second set of worker tasks join
the partitions generated by the first join with the partitions
of T3 again building TSVs for T3 as needed. There is a total
of p1 ∗ p2 ∗ p3 such worker tasks.

As selections are performed in a pipelined fashion by the
worker tasks that also do the join, and every partition joins
with many other partitions, there is a redundant execution
of selections as discussed in section 2.2. We will see how to
avoid this in our join implementation. Furthermore, IDV
currently performs early materialization, which is not nec-
essarily beneficial and can be avoided in column-stores.

3. COLUMNAR JOIN INDEX
In this section we present the design and implementation

of our join index that works together with IDV’s column-
based partitioning to support late materialization and hori-
zontal partitioning to support parallel computation. It also
clearly separates the selection operation from the join in or-
der to avoid redundant computation. Our design does not
only support 2-table join indices but arbitrary N -table join
indices. The idea is to create an N -table join index when-
ever the application has many queries that join these N
tables. Additionally, our N -table join index does not only
serve queries that join exactly these N tables but also poten-
tially queries that join a subset or a superset of these tables.
Furthermore, as IDV updates the data on a partition ba-
sis, the index join maintenance can be done incrementally,
so that the addition or the modification of a partition only
requires a partial regeneration of the join index.

3.1 Join Index Creation
We create join indices in a partitioned fashion by creat-

ing a join index partition for each combination of base table
partitions. Fig. 5 portrays the structure of the join index for
a three-table, many-partition join based on a subset of the
TPC-H schema, consisting of relations REGION, NATION and
CUSTOMER that are connected through foreign key relation-
ships. The join index has a total of 6 partitions. Our IDV
based implementation stores each of the join index partitions
in a columnar fashion as special system tables, making use
of the existing database storage APIs. An important advan-
tage of maintaining the join index in partitioned format is
that each join index partition can be processed by a different
worker task, providing ample opportunity for parallelism.

Number of Join Index Partitions. In the general case,
assuming a N -table join index should be created for base
tables T1, T2, . . .Tn, with each of them having p1,p2, . . . pn
number of partitions, respectively, we will create potentially
n∏

j=1

pj join index partitions. There will be
n∏

j=1,j 6=i

pj join

index partitions mapped to a given partition of Ti.

648

4	 2	

1	 1	

3	 3	
2	 0	

5	 4	

REGION	

4	 4	

1	 0	

3	 2	
2	 1	

4	

0	

1	
1	

4	 3	

1	 1	

3	 4	
2	 0	

5	 7	

2	

2	
1	

3	

3	
2	

1	

1	
1	

8	

5	 3	

7	
6	 7	

9	

2	

1	

2	
3	

0	

9	

6	

8	
7	

5	

4	

1	
2	

2	

2	

6	
8	

2	

0	
2	

9	

1	

3	
2	

7	
8	

4	
4	

5	
4	

9	 2	 6	

3	

4	
2	

1	

5	
1	

7	

9	
8	

3	 1	

1	

3	
1	

2	

1	
2	

7	

8	
9	

4	

4	
2	

Par//on	 	 1	

NATION	

Par//on	 	 1	

CUSTOMER	

Par//on	 	 1	

JOIN	 INDEX	
(rowids)	

(1,1,1)	
P1	

(1,2,1)	
P2	

(2,1,1)	
P3	

(2,2,1)	
P4	

(3,1,1)	
P5	

(3,2,1)	
P6	

Par//on	 	 2	 Par//on	 	 2	

Par//on	 	 3	

12	

21	

14	 10	

11	

12	

13	
14	

15	

16	

15	

14	

11	

10	

13	

12	

21	

12	

14	

12	

14	

21	

10	

11	
12	

14	

13	

15	

16	

Rowid	 is	 a	 virtual	
column	 that	 does	 not	
exist	 in	 the	 physical	
storage.	 	

Figure 5: 3-Table Join Index Example

However, in many scenarios the number of actual join in-
dex partitions will be potentially much lower than this the-
oretical upper bound. This is because, in many real world
scenarios, many combinations of source table partition joins
will not yield any records in the output due to the associa-
tive nature of data in partitions across related tables. For
example, consider an ORDER table, and a related LINEITEM

table, which lists for each order in the ORDER table the items
purchased under this order. As partitions of both ORDER and
LINEITEM tables are added to the system as the orders are
created, e.g., on a per-day basis, all ORDER and LINEITEM

records with the same ORDERDATE will be in the same par-
titions. Thus, there will be a 1 : 1 mapping between the
partitions of both the tables, and all tuples of a partition of
LINEITEM will only match with the one corresponding parti-
tion of ORDER. Any joins between the rows in partitions with
different values for ORDERDATE will yield no output.

Join Index Maintenance. We can maintain the join in-
dex in an incremental fashion. Whenever a new partition is
added to a table, say to CUSTOMER, only this partition has
to be joined with all existing partitions of the other tables
to create new join index partitions. The existing join index
partitions are not affected. The removal of a partition has
as effect the removal of the join index partitions that are
involved with the deleted partition.

As each combination of source table partitions is mapped
to a different join index partition, it reduces the storage
requirements by having to store only the rowid and not the
partition numbers, as the later can be captured as metadata.

3.2 Query Processing Using Join Index
We modified IDV’s query processing approach presented

in section 2.3 to execute N -table join queries using our join
indices. The modified query processing workflow consists of
two steps as depicted in fig. 6. In the first step, all predicate
selections declared in the query are performed. This involves
generating and persisting TSVs for each partition of the par-
ticipating relations. This can be performed in parallel. Once
the TSV generation step is completed, the actual join index
query processing takes place. This step is also capable of
parallel execution so that multiple join index partitions are
processed in tandem. These two steps constitute the pri-
mary components of the new join query workflow, and are
independent of the number of tables involved in the join,
contrary to the regular join workflow which involves N − 1
steps. In the following, we discuss in detail these two steps,
and how they differ from the original query processing.

3.2.1 Evaluating selection predicates
The original query execution process performed joins by

joining each partition of the first relation with each partition
on the second relation. Evaluating selection predicates was
tightly coupled with each of these partition-partition joins.
That is, for two partitions T1i and T2j of tables T1 and T2 to
be joined where there is a selection predicate on the tuples
of T1, the IDV worker task performs the selection predicate
evaluation by retrieving the column(s) on which the condi-
tion is specified, testing for validity, and constructing the
TSV for T1i. An important drawback of the current imple-
mentation is that the TSVs are not shared between worker
tasks, even if they are working on the same table partition,
evaluating the same selection predicates. As a single table
partition is involved in as many joins as there are partitions
of the joining (intermediate) table, this introduces a lot of
redundant TSV generations, at times depending on the na-
ture of the joins in the query and the predicates applied.
I.e, if p1 is the number of partitions in table T1 and it is be-
ing joined with a (intermediate) table T2 with p2 partitions,
then we are looking at a possible p1 × (p2 − 1) redundant
TSV evaluations for the partitions of table T1.

In general, it can be shown that if tables T1, T2, . . .Tn are
joined in that order, with each of them having p1,p2, . . . pn
number of partitions, then the redundant TSV evaluations
of the ith table Ti has an upper bound of:

≤

(

2∏
j=1

pj)− p1 : i = 1

(
i∏

j=1

pj)− pi : i > 1

When using a join index for join query processing, we still
need to evaluate the selection predicates, as a join index in
general is built with just an equijoin between the relations
and contains entries for all joining tuple combinations. In
order to achieve maximum parallelism, we need to employ
a worker task to process each join index partition. Follow-
ing the current approach on tight integration of selection
predicate evaluation with the join process will only result in
aggravating an already existing problem of redundant TSV
evaluations. In general, each of the tables Ti would con-

tribute to pi × (
n∏

j=1,j 6=i

pj − 1) redundant TSV evaluations

towards the join query. The total number of redundant TSV

649

Spawn
Worker
tasks,

Manage
communication

CLIENT SERVER AGENTS WORKER	TASKS

Submit
join

query

Generate TSV
Tasks For
Predicate
evaluation

Create
T1.tsv

Create
Tn.tsv

Generate
Query

Processing
Tasks for each

JI partition

Server
Resultset
Merger

Process
resultset

Pre-
processor

Process JI
partition 1
Resultset
generator

Pre-
processor

Process JI
Partition n
Resultset
generator

TSV	
Generation

Step	1

Join	Tasks

Step	2

Time

Figure 6: Activity diagram for query processing workflow using join index

evaluations for the query can be given by.

n∑
i

(pi × (

n∏
j=1,j 6=i

pj − 1)) = n(

n∏
j=1

pj)−
n∑

j=1

pj

In order to overcome this design predicament, we decided
to separate the TSV generation step, which was tightly inte-
grated with the join processing, into a separate step, and to
have the TSVs persisted in shared disks for reuse so that the
same partitions undergo only one selection predicate evalua-
tion. This method avoids all the redundant TSV generations
and generates the bare minimum number of TSVs required,
which is the same as the total number of partitions across

all the participating tables in the join, i.e.,
n∑

j=1

pj . Another

advantage of this strategy is that the TSVs for all the par-
titions of all the tables can be processed in parallel, as they
are independent of each other, thereby reducing the overall
processing time.

Implementation Details. As mentioned previously, the
TSVs were originally designed as memory resident bit vec-
tors, which were compressed and optimized for sequential
access. However, as we will observe later, when we use the
TSVs in connection with the join index, the lookup of bit po-
sitions in the TSV follows a random access. Our prototype
testing of random access on the compressed list implemen-
tations of TSV proved this to be a potential bottleneck as
lists used in the compressed format are not suited for ran-
dom lookups. Thus, we switched to using uncompressed
TSVs, which are stored as a contiguous 64-bit integer array,
with each integer representing the status of 64 tuples in the
partition. As in IDV the maximum number of records in a
partition is 2 billion, the theoretical maximum size of an un-
compressed TSV is 268 MB, which we consider acceptable
given the performance gain of now being able to access a bit
position in Θ(1). In case there are no predicate selections
on a partition or all bits would be 1 (all tuples in the parti-
tion qualify), we do not maintain the TSV, as all tuples are
selected. Instead, in the absence of a TSV, a TSV lookup is

always set to return true.

3.2.2 Join index query task
The actual join execution is depicted in fig. 7 for a join

over the four tables A − D containing selection predicates
for attribute A1 of table A and C1 of table C, that is, the
previous execution step has created TSVs for tables A and
C. Furthermore, the query projects on attributes A1 and
A2 of table A and B1 of table B, i.e., A1, A2 and B1 need
to be in the result set. We assume a join index that covers
exactly the four tables A − D. Each partition of the join
index is assigned to a different worker task that performs
the join and the generation of the result set in three phases.

Phase 1. In phase 1, the worker task performs pre-processing
steps aimed at reducing the I/O and CPU processing over-
head by determining the set of tables and their attributes
that are relevant for the query. The worker task goes through
TSVs and the projection list specified in the query, and
builds a reduced list of source tables. Only those tables
are relevant that have a column in the projection list (ta-
bles A and B) or that have a TSV which results in tuple
elimination (tables A and C). Thus, the join index columns
corresponding to the rowids from tables A, B and C must be
read by the worker task, in order to be able to check whether
the bit for this rowid is set in the corresponding TSV, and
if yes, retrieve the corresponding result set attributes. In
contrast, there is no need for the worker task to read the
join index column corresponding to the rowids from table D
as it was not involved in the projection or selection. Thus,
the reduced source table list consists of only A, B and C.

Phase 2. In this phase, the join index iterator determines
the list of qualifying join index tuples. It will only read those
columns from the join index system table that refer to the
rowids of the tables appearing in the reduced source table
list. For each of the join index tuples it checks whether the
tuple qualifies for output which is the case if all selection
predicates are fulfilled. More precisely, a join index tuple
qualifies to generate output for the query, if all rowids in
that join index tuple map to a 1 bit in the TSV of the corre-

650

A1_8 B1_1 A2_8

output	result	tuples

A1_2 B1_2 A2_2
A1_1 B1_1 A2_1

Sequential	pipelined
execution

Phase 3

Resultset
generator

1 1
2 2
8 1

Selected	 join
index	tuples

A1 A2Table	A	SCT	

Table	B	SCT	 B1

Phase 2 Join	Index	iterator

A B C

Reduced	source
table	 list	

1 1 1 3
2 2 1 4
3 2 2 5
4 1 2 2
5 1 2 1
6 4 1 2
7 2 2 3
8 1 1 5
9 4 1 3

3 2 4

A B C D

Tables	 rowids	

Join	Index	
System	Table

1
2
3
4
5
6
7
8
9

Entry

1010

Phase 1

Pre-processor

1101101101

10

TSVs

A1 B1 A2

Column	projection	list

Figure 7: join index query task processing

sponding source table partition. For tables without selection
predicate, this bit lookup always returns 1 because all tuples
of that table qualify.

Phase 3. A qualifying index tuples is then passed to phase
3, which comprises of the resultset generator. It uses rowids
from the join index tuple to retrieve the attributes specified
in the column projection list from the corresponding source
table partitions to create the output result set.

Performance Discussion. The join index tuple selection
(phase 2) and output resultset generation (phase 3) happen
in a sequential pipeline, so that the process starts generat-
ing the output records before the join index is completely
traversed. This helps significantly in reducing the first row
generation time, as we do not wait for all the selected join
index tuples to be processed before producing any output.
Thus, the client does not have to wait for the completion of
the query to start receiving the first results. This not only
reduces the perceived response time but is also beneficial
when only a sample of records is needed by the client.

The join index iterator reads the entire join index only
once per query in a sequential fashion, ignoring columns of
tables that were pruned in the pre-processing step.

Furthermore, only the source table blocks pertaining to
the attributes required for the projection list or for evalu-
ation of selection predicates will be read from disk. That
is, our approach follows for a truly late materialization ap-

4	 2	

1	 1	

3	 3	
2	 0	

5	 4	

Ro
w
id
	

REGION	

4	 4	

1	 0	

3	 2	
2	 1	

4	

0	

1	
1	

4	 3	

1	 1	

3	 4	
2	 0	

5	 7	

2	

2	
1	

3	

3	
2	

1	

1	
1	

8	

5	 3	

7	
6	 7	

9	

2	

1	

2	
3	

0	 9	

6	

8	
7	

5	

4	

1	
2	

2	

2	

6	
8	

2	

0	
2	

9	

1	

3	
2	

7	
8	

4	
4	

5	
4	

9	 2	 6	

3	

4	
2	

1	

5	
1	

7	

9	
8	

3	 1	

1	

3	
1	

2	

1	
2	

7	

8	
9	

4	

4	
2	

Re
gi
on

Ke
y	

Ro
w
id
	

NATION	

N
a8

on
Ke
y	

Re
gi
on

Ke
y	

Ro
w
id
	

CUSTOMER	

Cu
st
Ke
y	

N
a8

on
Ke
y	

Cu
st
om

er
	

3	 TABLE	
JOIN	 INDEX	
(rowids)	

N
a8

on
	

Re
gi
on

	

12	

21	

14	

10	
11	

12	

13	
14	

15	

16	

15	

14	

11	

10	

13	

12	

21	

12	
14	

12	

14	

21	

10	

11	
12	

14	
13	

15	

16	

Rowid	 is	 a	 virtual	
column	 that	 does	 not	
exist	 in	 the	 physical	
storage.	 	

3	

3	
2	

1	

3	
2	

7	
8	

5	
4	

9	 6	

3	

4	
2	

7	

9	
8	

3	

1	

3	
1	

7	

8	
9	

10	

11	
12	

14	
13	

15	

16	

Cu
st
om

er
	

N
a8

on
	

2	 TABLE	
JOIN	 INDEX	
(rowids)	

Iden8cal	 columns	

Figure 8: Multi-table join indices and foreign key
relationships

proach and is in tune with the principles of column-stores by
avoiding I/O on irrelevant attributes. As any block fetched
from disk is cached in memory, further lookups on the block
do not incur a further physical I/O if the processing job is
not memory bound.

3.3 One join index, many joins
Reducing the source table list to only relevant tables has

some additional advantages. We can, under certain condi-
tions, use an N -way join index over tables T1, T2,Tn to
evaluate queries that only join a subset of these tables. To
understand this better, let us consider a simpler, single par-
tition system of the 3-table join index described in fig. 5.
The number of partitions are irrelevant for our discussion.
The new join index arrangement is shown in fig. 8. Here we
have a 1 : N mapping from REGION to NATION and 1 : M
mapping from NATION to CUSTOMER. If all the foreign keys of
the referencing relations in the join are not nullable, then we
can make use of the original 3-table join index for a query
that only joins CUSTOMER and NATION. This is because, if the
foreign key column is not nullable, then the equi-join be-
tween the referencing relation and the referenced relation
will always yield the same cardinality in the output relation
as the original referencing relation. In the particular exam-
ple, if every NATION tuple must refer to a REGION, then a
join between NATION and REGION will have the same num-

651

ber of tuples as NATION. Hence the contents of a 2-table
join index between CUSTOMER and NATION will be identical
to the 3-table join index in fig. 5 without the rowid column
for REGION, which in columnar storage can be ignored while
reading.

Additionally, we can use an N -table join index over ta-
bles T1, T2,Tn to evaluate queries that join a superset of
these tables, i.e., joins that contain at least all tables cov-
ered by the N -table join index. In this case, the query can
be processed by first using the join index and evaluating the
N joins over T1, ...Tn, persisting an intermediate relation T
that contains the necessary attributes from these N rela-
tions and then joining T with the remaining relations using
the conventional query processing steps.

4. SYSTEM EVALUATION

4.1 System configuration
The test environment databases was setup on a Dell XPS

9100 system having 8 IntelR© CoreTMi7 CPU 960 @ 3.20GHz
processors with 4 cores, 12 GB 1333 MHz DDR3-SDRAM, 1
TB Western Digital WD10EALX 6 GB/s 7200RPM SATA
storage, running Linux - Kubuntu 14.04 with 12 GB swap.

4.2 Benchmark
Our evaluation is based on the TPC-H benchmark as the

industry-wide standard for decision support benchmarking.
It has been widely used for benchmarking column stores like
C-Store [21] and MonetDB [4]. Most of our experimental
runs are performed against TPC-H databases of scale factor
(SF) 1, 2, 4, 8, 12, 16, 20, 25 and 50. Our tests attempt to
understand each of the different features of our design and
how they work together. Thus, most tests consider only a
single partition per table in order to focus on other dimen-
sions. Whenever more than one partition per table is used,
we state this explicitly.

We used modified versions of the TPC-H queries focusing
on the selection predicates, the joins and the projection of
simple attributes but without any aggregation components.
We did not integrate this functionality into our prototype
result set generator, as we are only interested in understand-
ing the performance implications of the actual join and its
interaction with selection and projection.

4.3 Experiments and Results

4.3.1 Two-table single partition joins
For this base experiment, we had only a single partition

per table and we only consider the TPC-H queries Q12-
14, Q16-17 and Q19, that are defined over two tables. We
created a 2-table join index for each of these queries.

Additionally, the fact that each table has only a single par-
tition also eliminates any redundant TSV evaluations in the
original implementation. This a performance overhead that
we discussed in section 3.2.1 with the original join query
processing workflow. Therefore, with respect to the TSV
evaluation strategy, this test case benefits the original im-
plementation over the join index approach. This is because
the original implementation performs the TSV evaluation
and join in the same step, whereas our modified join work-
flow utilizing the join index performs the TSV evaluation
first and persists the TSV. The join is performed only in the

0
100
200
300
400
500
600
700

1 2 4 8 12 16 20 25 50

No	JI
JI

Query	Execution	Time

TPC-H	Scale	factor

se
co
nd

s

0	

5000	

10000	

15000	

20000	

25000	

1	 2	 4	 8	 12	 16	 20	 25	 50	

No	 JI	
JI	

TPC-‐H	 Scale	 factor	

I/O	 u=liza=on	

M
B	

0	

100	

200	

300	

400	

500	

1	 2	 4	 8	 12	 16	 20	 25	 50	

No	 JI	
JI	

TPC-‐H	 Scale	 factor	

CPU	 Cycle	 consumpBon	

se
co
nd

s	

0	

5000	

10000	

15000	

20000	

25000	

1	 2	 4	 8	 12	 16	 20	 25	 50	

No	 JI	
JI	

TPC-‐H	 Scale	 factor	

Memory	 consumed	 by	 all	 	
worker	 tasks	

M
B	

Figure 9: 2-table 1-partition join using queries
Q12,13,14,16,17,19

next step, introducing a small overhead for this test case for
our join index based approach.

Fig. 9 shows the total across all queries for execution time,
CPU, I/O and memory consumption for executions with no
join index (No JI) and with using the join index (JI) for
the different scale factors of the database. Overall, by using
the join indices, queries run about 60% faster than without
join index. This is mainly due to the lower CPU costs of the
join index based execution, as can be seen from the CPU
utilization chart. Using the join index consumed only about
55% of the CPU compared with no index executions.

The I/O utilization, however, does not show any signifi-
cant deviation when join indices are used by the query. This
is because the worker tasks need to process an additional
data structure that stores the join index system table, and
any I/O savings that could be attributed to avoiding join
computation is amortized over the cost of reading the join
index. To understand this, we should consider that in the
TPC-H database schema the key columns of the relations
are of integer domain. While a query not using any index
has to read the join attributes in order to compute the join,
a query using a join index needs to read the rowids from the
join index system table which are also of integer domain.
Hence, intuitively, both kinds of queries have to execute ap-
proximately the same amount of I/O, in the absence of other
influencing factors like projection attributes.

Analyzing the memory utilization, we notice about 45%
reduction in the memory consumed by the worker tasks
when using a join index. This can be attributed to the fact
that in the absence of a join index, the worker tasks need to
load the key columns into memory buffers to facilitate the
merge join. With the join index based approach, our sequen-
tial scan technique requires only the current block (which
is being processed) of the join index to be in the memory.
Thus, the size of the join index does not have any signifi-
cant memory impact. Also, sequential iteration of the join
index is a CPU cache - friendly operation, a property that
lends itself to faster program execution. Such cache con-
scious techniques of performance enhancements have been
successfully employed in other column stores before [4].

652

0
0.5
1

1.5
2

2.5
3

3.5
4

4.5

0 5 10 15 20 25 30

noji
ji

query:	Q02

Query	Execution	Time

se
co
nd

s

TPC-H	Scale	factor 0

20

40

60

80

100

120

0 5 10 15 20 25 30

noji
ji

query:	Q03

Query	Execution	Time

se
co
nd

s

TPC-H	Scale	factor

Figure 10: multi-table 1-partition joins

4.3.2 Multi-table single partition joins
Most of the real-world decision support queries are de-

fined over many tables. Hence, for this test case we use
two queries from the TPC-H benchmark suite. Q02 is a five
table join between Part, Supplier, Partsupp, Nation and
Region. Q03 is a three table join between Lineitem, Or-

ders and Customer. To support these queries, we create the
corresponding five-table and three-table join indices respec-
tively. We use single partitions to isolate and observe the
performance impact of having multiple tables in the join.

Fig. 10 shows the execution time for both queries again
with increasing scale factor. Q03 runs 60% faster with the
join-index based execution, similar to what we observed for
two-table joins. Q02, however, behaves differently. The ta-
bles involved in Q02 are small in comparison to other tables
like Lineitem or Orders which are involved in most of the
other queries. The largest table involved in Q02 is partsupp
at 20 million records for a scale factor 25 database. Also,
the query itself only returns about 0.08% of the records, be-
ing very highly selective with its predicates. The selection
predicate on the part table causes record elimination in the
first join step with partsupp, resulting in reducing the size of
intermediate tables in the succeeding join steps. Thus, this
query is inherently fast in nature and, as can be observed by
the execution time provided in the figure, takes only a few
seconds even for large databases. This performance benefit
of the join index based execution results from a combina-
tion of avoiding the join computation costs along with sav-
ings from late materialization. The later has a significant
impact on this query’s performance as it retrieves a signif-
icant number of attributes from different tables, making it
an ideal candidate for savings from late materialization.

4.3.3 Two-table multi-partition joins
Multi-partitioned tables are the most common scenario

in very large databases like the ones typically supported by
IDV. For this test case, we setup 2, 3, 5 and 10 partition
versions of the database having a scaling factor of 50, to
facilitate the execution of the 2-table join query Q12. This
query joins Lineitem and Orders tables which are the two
largest tables in the TPC-H database. Further, the selection
predicates on Lineitem limit the number of records retrieved
by the query to 2.74% of Lineitem table. Having no join
index, all partition combinations have to be joined, leading
to the creation of m × n worker tasks, each performing the
join of one partition combination.

In the case of using a join index, as discussed in sec-
tion 3.1, due to the associative nature of data in partitions
across related tables, we can often determine at index cre-
ation time, that a certain combination of partitions does not

#	of	src tbl partitions

Query	Execution	Time

0
20
40
60
80
100
120

0 2 4 6 8 10 12

noji
jise

co
nd

s

1.50	
1.67	

1.80	 1.90	

0.00	

0.50	

1.00	

1.50	

2.00	

2	 3	 5	 10	

JI	 par11ons	 /	 source	 table	 par11ons	

#	 of	 src	 tbl	 par11ons	

CPU	Cycle	consumption

#	of	src tbl partitons
0

100

200

300

400

500

0 2 4 6 8 10 12

noji
ji

se
co
nd

s

0
5000
10000
15000
20000
25000
30000
35000
40000

0 2 4 6 8 10 12

noji
ji

M
B

Memory	consumption	
by	worker	tasks

#	of	src tbl partitions

Figure 11: two-table multi-partition join query Q12

result in any joining tuples, and thus, in an empty join index
partition. In fact, this was the case for our test database.
For a 10 partition database, where both the tables involved
in the join were partitioned to 10 equal size partitions, our
index creation process materialized only 19 join index par-
titions instead of the theoretical maximum of 10× 10 = 100
partitions. Thus, at the time of the join, only 19 worker
tasks need to be spawned.

From fig. 11 we can see that the join index execution is
always at least two times as fast as an execution without join
index, and the performance gap increases with increasing
number of partitions (top left figure).

At low number of partitions the performance benefit is
due to the generally lower CPU and memory demands of
the join index based execution as discussed in the previous
experiments. When we now increase the number of parti-
tions up to 5 partitions per table, performance improves for
both strategies as the different partitions can be executed in
parallel taking advantage of all cores and the ample avail-
able main memory. However, with 10 partitions, while the
execution time of the join index implementation stagnates,
performance becomes worse for the execution without join
index. The reason for the latter are the much higher CPU
and memory requirements (see the top and bottom right fig-
ures) as so many more partitions have to be read into main
memory and joined even if they do not result in match-
ing tuples. Once all compute cores and main memory have
been used to exploit maximum parallelism a further increase
in number of worker tasks due to the increase in partition
combinations leads to too much contention and thus, per-
formance decreases.

In contrast, the increase in CPU and memory overhead
with increasing number of partitions is relatively small for
the join index based execution. The reason is that the num-
ber of join index partitions per source table partition in-
creases only slightly with the number of partitions (left bot-
tom figure) and thus, the overall number of join index parti-
tions remains relatively small. Our current system configu-
ration can exploit the increased parallelism when increasing
the number of partitions from 2 to 5, and still does not see
any deterioration when there are 10 partitions.

653

0

100

200

300

400

500

600

0 5 10 15 20 25 30

Q03_ALL_noji
Q03_ALL_ji
Q03_KEY_noji
Q03_KEY_jise

co
nd

s

TPC-H	Scale	factor

Query	Execution	Time

se
co
nd

s

TPC-H	Scale	factor

CPU	Cycle	consumption

0
50

100
150
200
250
300
350

0 5 10 15 20 25 30

Q03_ALL_noji
Q03_ALL_ji
Q03_KEY_noji
Q03_KEY_ji

0

5000

10000

15000

20000

25000

0 5 10 15 20 25 30

Q03_ALL_noji
Q03_ALL_ji
Q03_KEY_noji
Q03_KEY_ji

M
B

TPC-H	Scale	factor

I/O	activity

Figure 12: late materialization

4.3.4 Late materialization
To understand the impact of late materialization, we used

the three table join query Q03 that joins Lineitem, Orders
and Customer. For this test case, we created two versions of
the query. The first version, Q03 ALL selects every attribute
from Orders and Customer (the two relations joined first
when no join index is used). The second version Q03 KEY
selects only key attributes, reducing any impact due to late
materialization. Thus, any increase in resource utilization
from Q03 KEY to Q03 ALL will be the cost associated with
materializing the extra attributes that are in the projection
list of Q03 ALL. The queries were executed on single parti-
tion tables.

Fig. 12 shows execution times with increasing scale factor.
Again, using a join index is always better than not using
the index which is to be expected based on the previous test
cases. Comparing the ALL version against the KEY version,
we can observe that generating a result set with many at-
tributes is generally expensive in both implementations. For
the join index based execution, execution time for Q03 ALL
compared to Q03 KEY for a database with scale factor 25
increases by 244 seconds, while it increases by 485 seconds
when no index is used. Given that the attribute extraction
proves to be a major part of the execution time, the benefit
of late materialization becomes very apparent. The analysis
performed on the difference in CPU consumption and I/O
utilization correlate with our observation for query execu-
tion timings.

4.3.5 Query selectivity
To test the influence of query selectivity on performance,

we took again the 2-table join query Q12 which joins LineItem
and Order tables but changed its selection predicate on LineItem

so that the percentage of records selected varied from 0.05%
to 100%. Both the tables were composed of a single parti-
tion each. Fig. 13 shows the execution times for a scaling
factor of 50. At 0.05%, the join-based implementation is
18% better than having no join index, but the gains quickly
increase with larger selectivity percentages. That is, the
benefits of using a join index increase with the number of
records joined. The reason is that the join index execution

0
250
500
750

1000
1250
1500
1750
2000

0 20 40 60 80 100

noji_sf50
ji_sf50

%	records	selected

Query	Execution	Time

se
co
nd

s

0
250
500
750

1000
1250
1500
1750

0 20 40 60 80 100

noji_sf50
ji_sf50

%	records	selected

CPU	Cycle	consumption

se
co
nd

s

Figure 13: query Q12 at different selectivity

needs to iterate over the entire index irrespective of the se-
lection predicates, whereas the non-index based approach
can reduce the number of records to be joined by apply-
ing the selection predicates in advance, reducing the CPU
consumption for the join computation itself.

5. CONCLUSIONS
In this paper, we propose a join index implementation for

a columnar archive store to facilitate faster query response
times. Our implementation integrates seamlessly with the
horizontally partitioned nature of the system which facili-
tates scalability and the columnar structure which allows for
later materialization. N -join indices can be also exploited
in an efficient manner for joins with less or more then N
tables. Our performance evaluation using a TPC-H based
benchmark over a variety of database and query character-
istics demonstrate significant savings in execution time, and
CPU and memory usage compared to an execution without
join index.

We are presently exploring more efficient ways of storing
rowids in the join index system table as well as runtime
clustering of join index partitions at the query processing
stage to increase main memory cache hit rates.

6. REFERENCES
[1] D. J. Abadi, S. R. Madden, and N. Hachem.

Column-Stores vs. Row-Stores: How Different Are
They Really? In ACM SIGMOD, pages 967–980, 2008.

[2] D. J. Abadi, D. S. Myers, D. J. DeWitt, and S. R.
Madden. Materialization Strategies in a
Column-Oriented DBMS. In Proc. of the IEEE Int.
Conf. on Data Engineering (ICDE), pages 466–475,
2007.

[3] J. A. Blakeley and N. L. Martin. Join Index,
Materialized View, and Hybrid-Hash Join: a
Performance Analysis. In Proc. of the IEEE Int. Conf.
on Data Engineering (ICDE), pages 256–263, 1990.

[4] P. A. Boncz. Monet; a Next-Generation DBMS Kernel
For Query-Intensive Applications. PhD thesis,
University of Amsterdam (UvA), May 2002.

[5] B. C. Desai. Performance of a Composite Attribute
and Join Index. IEEE Transactions on Software
Engineering, 15(2):142–152, 1989.

[6] Gartner. Worldwide Business Intelligence and
Analytics Market 2016. Published at
http://www.gartner.com/newsroom/id/3198917, 2016.

[7] G. Graefe. Query Evaluation Techniques for Large
Databases. ACM Computing Surveys, 25(2):73–169,
1993.

654

[8] R. Grondin, E. Fadeitchev, and V. Zarouba.
Searchable Archive, Feb. 26 2013. US Patent
8,386,435.

[9] T. Haerder. Implementing a Generalized Access Path
Structure for a Relational Database System. ACM
Transactions on Database Systems, 3(3):285–298,
1978.

[10] S. Harizopoulos, V. Liang, D. J. Abadi, and
S. Madden. Performance Tradeoffs in Read-Optimized
Databases. In VLDB, pages 487–498, 2006.

[11] Informatica Corporation. Informatica Data Archive
Manage Application Data throughout its Lifecycle.
https://www.informatica.com/content/dam/
informatica-com/global/amer/us/collateral/
data-sheet/data-archive data-sheet 6955.pdf, Aug.
2014.

[12] M. Komorowski. A history of storage cost (update).
http://www.mkomo.com/cost-per-gigabyte-update,
2014.

[13] Z. Li and K. A. Ross. Fast Joins Using Join Indices.
The VLDB Journal-The International Journal on
Very Large Data Bases, 8(1):1–24, 1999.

[14] S. Manegold, P. Boncz, N. Nes, and M. Kersten.
Cache-Conscious Radix-Decluster Projections. In
VLDB, pages 684–695, 2004.

[15] K. P. Mikkilineni and S. Y. W. Su. An evaluation of
Relational Join Algorithms in a Pipelined Query
Processing Environment. IEEE Transactions on
Software Engineering, 14(6):838–848, 1988.

[16] P. Mishra and M. H. Eich. Join Processing in
Relational Databases. ACM Computing Surveys,
24(1):63–113, 1992.

[17] P. O’Neil and G. Graefe. Multi-table Joins Through
Bitmapped Join Indices. ACM SIGMOD Record,
24(3):8–11, 1995.

[18] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J.
DeWitt, S. Madden, and M. Stonebraker. A
comparison of approaches to large-scale data analysis.
In ACM SIGMOD, pages 165–178, 2009.

[19] H. A. Schmid and P. A. Bernstein. A Multi-Level
Architecture for Relational Data Base Systems. In
VLDB, pages 202–226, 1975.

[20] O. Shmueli and A. Itai. Maintenance of Views. In
ACM SIGMOD Record, volume 14, pages 240–255,
1984.

[21] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen,
M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden,
E. O’Neil, et al. C-Store: a Column-Oriented DBMS.
In VLDB, pages 553–564, 2005.

[22] Teradata. Teradata Columnar. Published at
http://www.teradata.com/teradata-columnar, 2016.

[23] P. Valduriez. Join Indices. ACM Transactions on
Database Systems, 12(2):218–246, 1987.

[24] Y. Zhang, S. Wang, and J. Lu. Improving Performance
by Creating a Native Join-Index for OLAP. Frontiers

of Computer Science in China, 5(2):236–249, 2011.

655

	Powering Archive Store Query Processing via Join IndicesJoseph D'silva, Bettina Kemme, Richard Grondin, Evgueni Fadeitchev

