
ChronicleDB: A High-Performance Event Store

Marc Seidemann
Database Systems Group

University of Marburg, Germany
seidemann@informatik.uni-marburg.de

Bernhard Seeger
Database Systems Group

University of Marburg, Germany
seeger@informatik.uni-marburg.de

ABSTRACT
Reactive security monitoring, self-driving cars, the Internet
of Things (IoT) and many other novel applications require
systems for both writing events arriving at very high and
fluctuating rates to persistent storage as well as supporting
analytical ad-hoc queries. As standard database systems are
not capable to deliver the required write performance, log-
based systems, key-value stores and other write-optimized
data stores have emerged recently. However, the drawbacks
of these systems are a fair query performance and the lack
of suitable instant recovery mechanisms in case of system
failures.

In this paper, we present ChronicleDB, a novel database
system with a well-designed storage layout to achieve high
write-performance under fluctuating data rates and power-
ful indexing capabilities to support ad-hoc queries. In ad-
dition, ChronicleDB offers low-cost fault tolerance and in-
stant recovery within milliseconds. Unlike previous work,
ChronicleDB is designed either as a serverless library to
be tightly integrated in an application or as a standalone
database server. Our results of an experimental evaluation
with real and synthetic data reveal that ChronicleDB clearly
outperforms competing systems with respect to both write
and query performance.

1. INTRODUCTION
Data objects in time also known as events are ubiqui-

tous in today’s information landscape. They arise at lower
levels in the context of operating systems like file accesses,
CPU usage or network packets, but also at higher levels,
for example, in the context of online shopping transactions.
The rapidly growing Internet of Things (IoT) is reinforcing
the new challenge for present-day data processing. Sensor-
equipped devices are becoming omnipresent in companies,
smart buildings, airplanes or self-driving cars. Furthermore,
scientific observational (sensor) data is crucial in various re-
search, spanning from climate research over animal tracking
to IT security monitoring. All these applications rely on low-

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

latency processing of events attached with one or multiple
temporal attributes.

Due to the rapidly increasing number of sensors not only
the analysis of such events, but also their pure ingestion
is becoming a big challenge. On-the-fly event stream pro-
cessing is not always the outright solution. Many fields of
application require to maintain the collected historical data
as time series for the long term, e.g., for further temporal
analysis or provenance reasons. For example, in the field
of IT security, historical data is crucial to reproduce criti-
cal security incidents and to derive new security patterns.
This requires writing various sensor measurements arriving
at high and fluctuating speed to persistent storage. Data
loss due to system failures or system overload is generally
not acceptable as these data sets are of utmost importance
in operational applications.

There is a current lack of systems supporting the above
described workload scenario (write-intensive, ad-hoc tempo-
ral queries and fault-tolerance). Standard database systems
are not designed for supporting such write-intensive work-
loads. Their separation of data and transaction logs gener-
ally incurs high overheads. Our experiments with traditional
relational systems revealed that their insertion performance
is insufficient to keep up with the targeted data rates. Post-
greSQL [9], for example, managed only about 10K tuple
insertions per second. Relational database systems are de-
signed to store data with the focus on query processing and
transactional safety. Instead of relational systems, today,
it is common to use distributed key-value systems like Cas-
sandra [1] or HBase [3], but they only alleviate the write
problem at a very high cost. In our benchmarks, our event
store ChronicleDB outperformed Cassandra by a factor of
47 in terms of write-performance on a single node. In other
words: Cassandra would need at least 47 machines to com-
pete with our solution. Apart from economical aspects due
to high expenses for large clusters, there are many embed-
ded systems where scalable distributed storage does not suit.
For example, in [14], virtual machines of a physical server
are monitored within a central monitoring virtual machine,
which does not allow a distributed storage solution due to
security reasons. Other examples are self-driving cars and
airplanes that need to manage huge data rates within a local
system.

In order to overcome these deficiencies, particularly the
poor write performance, log-only systems have emerged
where the log is the only data repository [32, 16, 33]. Our
system ChronicleDB also keeps its data in a log, but it dif-
fers from previous approaches by its centralized design for

Series ISSN: 2367-2005 144 10.5441/002/edbt.2017.14

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2017.14

high volume event streams. Because there are often only
modest changes in event streams, ChronicleDB exploits the
great potential of their lossless compression to boost write
and read performance beyond that of previous log-only ap-
proaches. This also requires the design of a novel storage
layout to achieve fault tolerance and near-instant recovery
within milliseconds in case of a system failure. In addition
to lightweight temporal indexing, ChronicleDB offers adap-
tive indexing support to significantly speed-up non-temporal
queries on its log. ChronicleDB can either be plugged into
applications as a library or run as a centralized system with-
out the necessity to use the common distributed storage
stack. In summary, we make the following contributions:

• We propose an efficient and robust storage layout for
compressed data with fault tolerance and instant re-
covery.

• ChronicleDB offers an adaptive indexing technique
compromising both lightweight temporal indexing as
well as full secondary indexing to speed-up queries on
non-temporal dimensions.

• In order to support out-of-order arrival of events, we
developed a hybrid logging approach between our log
storage and traditional logging.

• We compare the performance of ChronicleDB with
commercial, open-source and academic systems in our
experiments using real event data.

The remainder of this paper is structured as follows: Sec-
tion 2 discusses related work and proposes related solutions.
In Section 3, we give a brief overview of the system archi-
tecture. Section 4 addresses ChronicleDB’s storage layout,
Section 5 discusses its indexing approach. Recovery issues
are examined in Section 6. In Section 7, we evaluate our
system experimentally and Section 8 concludes the paper.

2. RELATED WORK
Our discussion of related work is structured as follows.

At first, we present data stores relating to ChronicleDB.
Then, we discuss previous work referring to our indexing
techniques.

Data Stores The domain of ChronicleDB partly relates
to different types of storage systems, including data ware-
house, event log processing as well as temporal database
systems.

One of the first solutions explicitly addressing event data
is DataDepot [20]. DataDepot is a data warehouse for
streaming data, running on top of a relational system.
Hence, DataDepot achieves a throughput of only about
10 MiB/s. Tidalrace [22], the successor of DataDepot, pur-
sues a distributed storage approach and reaches data rates
of up to 500.000 records per second, which still does not
compete with ChronicleDB running on a single machine.
DataGarage [25] is a data warehouse designed for manag-
ing performance data on commodity servers which consists
of several relational databases stored on a distributed file
system. Similar to ChronicleDB, DataGarage addresses ag-
gregation and deletion of outdated events. However, Data-
Garage is by design a scalable distributed system that is not
designed to run as a library tightly integrated in the appli-
cation code. In addition, DataGarage does not address high
ingestion rates.

The most popular NoSQL systems in the context of stor-
ing events are Cassandra [1] and HBase [3]. As shown in
our experimental section, ChronicleDB clearly outperforms
Cassandra when running on a central system.

A representative for log storage systems is LogBase [32],
which is also applied for event log processing. In contrast
to our approach, LogBase is designed as a general-purpose
database, also applicable for media data like photos. Log-
Base is based on HDFS [2] and simply writes data to logs.
The authors use an index similar to Blink-trees, augmented
with compound keys (key, timestamp) to index the data in
an in-memory multi-version index.

LogKV [16] utilizes distributed key-value stores to process
event log files. In fact, Cassandra [1] was used as underly-
ing key-value store. In experiments, the authors achieved a
throughput of 28K events/s ingestion bandwidth per worker
node, each consisting of an Intel Xeon X5675 system with
96GB memory and a 7200rpm SAS drive, connected via a
1GB/s network. In comparison to ChronicleDB, the inges-
tion rate is lower by about a factor of 100.

The third class of storage solutions ChronicleDB partly
relates to is that of time series databases. A representative
of this class is tsdb [18]. Similar to our approach, the au-
thors use a LZ compression for loss-less data compression.
In contrast to our approach, time series databases (including
tsdb) usually assume that data arrives at every tick.

Gorilla [29] proposes a main-memory time series system
on top of HBase with support for ad-hoc query processing.
The authors propose a compression technique for uni-variate
events of continuous event data.

OpenTSDB [8] and KairosDB [6] are time series database
systems on top of HBase and Cassandra. Thus, they have
the same deficiencies as their underlying systems.

The mostly related storage system is InfluxDB [5], a new
open-source time series database solution. As will be dis-
cussed in our experimental section, the performance and
functionality of InfluxDB on a central system are inferior
to ChronicleDB.

Indexing Aggregation in the context of temporal
databases has been extensively investigated before in the
database community. Widom et al. [34] proposed the SB-
tree for partial temporal aggregates. The SB-tree shares
some common characteristics with our indexing approach
TAB+-tree. But unlike our approach, a SB-tree only main-
tains the aggregates for a certain attribute.

More recent research concentrates on observational data
and event data. The recently proposed CR-index by Wang
et al. [33] is based on LogBase [32] and also utilizes tempo-
ral correlation of data. It maintains a separate index per
attribute on its minimum/maximum intervals within data
blocks. But instead of creating a separate index for each at-
tribute, ChronicleDB keeps all secondary information within
a single index. The cost for writing events is lower when the
event is written once. In addition, queries on multiple at-
tributes do not need to access multiple indexes.

3. SYSTEM ARCHITECTURE
This section introduces the general architecture of Chron-

icleDB. At first, we present our requirements on the system.
Afterwards, its main components are introduced. Finally,
we discuss the main features of ChronicleDB and its funda-
mental design principles.

145

Storage Engine

Load Scheduler

Query Engine

Java API Network API SQL

Compression Serialization Indexing

Figure 1: Layers of the ChronicleDB architecture.

3.1 Requirements
ChronicleDB aims at supporting temporal-relational

events, which consist of a timestamp t and several non-
temporal, primitive attributes ai. So, sequences of events
(streams) can be considered as multi-variate time series,
but with non-equidistant timestamps. Timestamps can ei-
ther refer to system time (when the event occurred at the
system) or application time (when the event occurred in
the application). The latter is more meaningful to tempo-
ral queries on the application level and thus our goal is to
maintain a physical order on application time.

Our main objective is fast writing in order to keep-up
with high and fluctuating event rates. ChronicleDB should
be as economical as possible in order to store data for the
long-term, i.e., months or years. Therefore, we aimed at a
centralized storage system for cheap disks running as an em-
bedded storage solution within a system (e.g., a self-driving
car).

Generally, we assume events to arrive chronologically.
Events are inserted into the system once and are (possi-
bly) deleted once. In the mean time, there are no updates
on an event. However, we also want to support occasional
out-of-order insertions as they typically occur in event-based
applications [13]. They can happen, e.g., if sensors are send-
ing their events in batches based on asynchronous clocks or
simply due to communication problems.

The most important types of queries the system has to
support are time travel queries and temporal aggregation
queries. Time travel queries allow requests for specific points
and ranges in time, e.g., all ssh login attempts within the last
hour. Temporal aggregation queries give a comprehensive
overview of the data, e.g., the average number of ssh logins
for each day of the week during the last three months. In
addition, the system should efficiently support queries on
non-temporal attributes, e.g., alls ssh logins within the last
day from a certain IP range.

3.2 Architecture Overview
Figure 1 depicts a high level view of ChronicleDB’s archi-

tecture. In this paper, we focus on the lower layer, i.e., the
storage engine and the indexing capabilities of ChronicleDB.
Nevertheless, we also give a short description of the other
layers, which will be discussed in more detail in future work.

The storage engine of ChronicleDB logically consists of
three components: event queues, workers and disks. Ba-
sically, event queues have two functions. Primarily, they
decouple the ingestion of events from further processing. As
a side effect, they also compensate chronologically out-of-
order event insertion. The workers are responsible for writ-
ing data to disks and therefore reside in their own threads.
Each worker processes the events from its assigned event

S
to

ra
g

e
 E

n
g

in
e

 Worker

Event Queue

Event Queue

Event Queue

Event Queue

Event Queue

Event Queue

Disk Worker

Worker Disk

Figure 2: Example of a ChronicleDB topology.

queues, as long as they are non-empty. All events of a stream
are separately stored on one of the worker’s dedicated disks.

The architecture of ChronicleDB is sufficiently flexible to
take into account workload characteristics as well as the
available system resources. The task of the load scheduler
is to determine the configuration settings. Figure 2 shows
an exemplary topology for seven streams, three workers and
two disks.

3.3 Design Principles & System Features
In ChronicleDB, the major design principle is: the log is

the database. We avoid costly additional logging as the con-
sidered append-only scenario does not cause costly random
I/Os and therefore does not incur buffering strategies with
no-force writes. Only in case of out-of-order arrival of events,
we have to deviate from this paradigm as we want to keep
the data ordered with respect to application time.

ChronicleDB is implemented in Java and is integrated into
the JEPC event processing platform [21]. It supports an
embedded as well as a network mode. ChronicleDB offers a
high-performance storage solution for event data while sup-
porting load-adaptive indexing and efficient removal of out-
dated events.

To improve storage utilization as well as write perfor-
mance, ChronicleDB makes use of (lossless) compression.
The main objective is write-optimization, thus we focused on
fast compression with reasonable compression rate. Hence,
we chose LZ4 [7] as compression algorithm, but any other
would be possible.

For data access, the query engine of ChronicleDB supports
an SQL-like query language. Additionally, queries can also
be processed via a Java API.

4. STORAGE LAYOUT
This section presents the storage layout of ChronicleDB.

At first, Section 4.1 describes the problem statement. Sec-
tion 4.2 introduces the components of the storage layout.
Finally, we present the overall layout.

4.1 Problem Statement
The main objective of the storage layout was to support

both full sequential write performance and full sequential
read performance. Furthermore, we aimed for reasonable
performance for random reads and fast recovery support in
case of system failures. The challenge was to support these
requirements with compressed, i.e., variable-sized data.

We decided to use blocks as compression unit, see Sec-
tion 4.2.1. Näıvly, the physical offset within a file could be
used as identifier (ID) for block addressing. In case of fixed
block sizes, the position of a block could be easily computed.
But due to compression, blocks are of variable size. So, the
final physical offset cannot be computed in advance, which

146

also causes a rethink of the indexing architecture, see Sec-
tion 5.2 and 5.3.

Therefore, a smart address mapping was required while
offering low storage overhead. To the best of our knowledge,
there is no existing solution that satisfies these requirements.
For example, TokuFS [19] proposes a compressed file system
for micro data, but only reaches about 35% of sequential
disk speed in the presented experiments. So, we developed
a novel storage layout that meets our requirements while
offering fast recovery.

4.2 Components
The management of compressed blocks is closely related

to that of variable-length records in database systems. They
usually manage variable-length records in blocks of fixed
size and maintain pointers to the different records within
the block. To solve the problem of addressing variable-
sized blocks, we adopt this approach. We introduce logical
IDs (representing virtual addresses) and an abstraction layer
that maps logical IDs to physical addresses. While this so-
lution is quite obvious, the challenging aspect is the storage
of the mapping. A straight-forward approach would be to
store the physical mapping information logical IDs → phys-
ical addresses separately. Unfortunately, this incurs random
writes and therefore results in a significant performance loss,
as we will show in our experimental evaluation. Thus, we
decided to store the mapping information interleaved with
the data.

4.2.1 Blocks
The smallest operational unit of the proposed storage lay-

out is a logical block (L-block). Because we utilize disks as
primary storage, we align the L-block size at the size of a
physical disk block. Each L-block has to be separately ac-
cessible via a unique ID. This is why we chose L-blocks as
unit for compression. While L-blocks are of fixed size, the
size of a compressed block (in the remainder of the paper
denoted as C-block) depends on its individual compression
ratio and therefore, C-blocks are of variable size.

In terms of compression, the optimal physical data storage
layout would be a column layout. In terms of write perfor-
mance, a row layout is superior. We optimized our storage
layout for better compression rates utilizing a hybrid ap-
proach. ChronicleDB stores relational events in a column-
based fashion only within a single L-block, similar to the
PAX layout [12]. Thus, all data belonging to the same row
is organized within the same L-block. At the same time, the
column-based ordering of the data within a L-block groups
values that are expected to be very similar, which allows
better compression.

4.2.2 Macro Blocks
C-blocks are managed in groups of blocks, denoted as

macro blocks, with a fixed physical size. Nevertheless, the
number of C-blocks contained in a macro block varies, de-
pending on the compression rate of the corresponding L-
blocks. Macro blocks provide the smallest granularity for
physical writes to disk. The size of the macro block has
to be a multiple of the L-block size. We impose this con-
straint for recovery purposes, as will be discussed in detail
in Section 6.

Each macro block stores the number of C-blocks it con-
tains as well as the size of each C-block. If a C-block does

not completely fit into the current macro block, the C-block
is split and the overflow is written to a new macro block.
So, macro blocks are dense by default. However, out-of-
order events cause updates on C-blocks. In case of dense
blocks such updates result in costly macro block overflows.
In order to avoid these cost, we reserve a certain amount of
spare space for updates in macro blocks. Section 5.7 pro-
vides more details on spare space in blocks. Figure 3 shows
the layout of a macro block.

4.2.3 Translation Lookaside Buffer
Translation of virtual to physical memory addresses is a

fundamental task in computer systems, typically conducted
in hardware in the memory management unit (MMU).

In ChronicleDB, we followed a similar approach, but
used a software-based translation lookaside buffer (TLB).
In ChronicleDB, a virtual address is the ID of an L-block.
The physical address is the position of the corresponding
C-block in the storage layout. The physical address of a
C-block c is represented by a tuple (mbc, pc), consisting of
the position of the corresponding macro block mbc and the
offset pc within mbc.

The IDs of L-blocks are simply consecutive numbers.
Hence, the TLB only has to store the physical addresses,
while the virtual addresses are implicitly given by the posi-
tion. This TLB structure is related to the CSB+-tree [31],
which also uses implicit child pointers to improve the cache
behavior of the B+-tree.

The mapping information for recent blocks is kept in mem-
ory. Though, to support fast recovery, we have to write parts
of the mapping information frequently to disk. Therefore,
TLB entries are also managed in blocks, denoted as TLB-
blocks. The size of a TLB-block is equal to the size of an
L-block. If a TLB-block is filled, it is written to disk. Each
TLB-block contains the same amount of entries. E.g., for an
L-block size of 8 KiB and 64 bit address size, a TLB-block
can contain up to 1020 entries (considering meta data). To
support a large address space, we organize TLB-blocks hier-
archically in a tree. The resulting TLB tree does not require
explicit routing information for address lookup.

Algorithm 1 outlines the address lookup. It starts at the
root of the TLB tree, which is always and solely kept in
memory. Thanks to the consecutive ID numbering, the in-
dex of the corresponding child entry can be easily calculated
as well as the associated address. This address is used to load
the child block from disk. The algorithm proceeds with the
next levels until a leaf node is reached and the final C-block
address can be looked up. To speed up address translation,
we use a write buffer for each level of the TLB. Furthermore,
at least the index levels of the TLB are kept in memory to
improve read performance. This should be possible as the
size of the TLB index (without the leaf level) is N/b2 for N
C-blocks and L-block size b.

4.3 Overall Layout
The storage layout is designed to avoid random I/Os.

Therefore, macro blocks and TLB-blocks are stored inter-
leaved.

In a first possible solution, from the query processing per-
spective, a TLB-block with k mapping entries should ide-
ally address its k succeeding C-blocks. Unfortunately, this
requires either to buffer these k blocks with the risk of data
loss in case of a system failure, or to perform a random I/O

147

Algorithm 1: TLB-block Address Lookup

Input : ID id of the requested block, entries per
TLB-block b and TLB height l

Output: The physical address of the C-block

index ←
⌊
id

bl

⌋
mod b;

for i = l − 1 to 1 do
address ← TLBi+1[index];
load TLBi from address;

index ←
⌊
id

bi

⌋
mod b;

end
return TLB0[id mod b]

to write the TLB-block after writing the k C-blocks. So,
there is a tradeoff between performance and safety issues.

In a second solution, we solve this problem by placing the
TLB-block behind the data it refers to. So, a TLB-block
with k entries always refers to its immediately preceding
k C-blocks. In this way, we do not have to buffer C-blocks
during ingestion, but still avoid random I/Os for writing the
mapping information. The drawback of the second solution
is that read operations now cause random I/Os. To avoid
these random I/Os, a sliding read buffer of k L-blocks is used
when a sequential scan is performed. This requires less than
8 MiB memory in case of 8 KiB per L-block. In comparison
to the first solution, this approach requires the same amount
of buffering, but avoids possible data loss. So, we opted for
the second solution.

5. ON INDEXING EVENTS
In this section we present our indexing approach to sup-

port the queries we listed in Section 3.1. Among those are
time-travel queries, temporal aggregation queries and filter
queries on non-temporal attributes.

The remainder of this section is structured as follows: At
first, Section 5.1 describes the key characteristics of tempo-
ral data. Section 5.2 presents our primary index, secondary
indexes are addressed in Section 5.3. Removal of old data
is explained in Section 5.4. In Section 5.5, we propose our
temporal partitioning and load scheduling approach. Sec-
tion 5.6 explains how the indexes can efficiently support the
targeted types of queries. Finally, Section 5.7 addresses our
solution for dealing with out-of-order events.

5.1 Temporal Correlation
In general, we observe in event processing that values

occurring within a small time interval are often very sim-
ilar. Sensor values, e.g., representing temperature or main
memory consumption, typically do not change tremendously
within short time periods. We call this temporal correlation.
In agreement with [16], we introduce a formal notation of
temporal correlation in the following. For a given sequence
A of attribute values ai, 1 ≤ i ≤ N , we define the average
distance as

dist(A) :=
1

N − 1

N∑
k=2

| ak − ak−1 |

This sum is the arithmetic mean of the Manhattan distance.
The temporal correlation (tc) is then 1 minus the average

co
u
n
t

si
ze

s

ov
er

fl
ow

sp
a
re

C-blocks

Figure 3: Macro block
layout.

[mina1 ,maxa1] suma1

co
u
n
t

· · · · · ·
[minan ,maxan] suman

t

Figure 4: Index entry
layout of TAB+-tree.

distance divided by the range of values within the sequence
A. Thus,

tc(A) := 1− dist(A)

max(A)−min(A)

The value of temporal correlation is in the unit interval. If
close to 1, there is a high correlation within the sequence A.
We will leverage temporal correlation for lightweight-index-
ing to speed-up queries.

5.2 TAB+-tree
As primary index for ChronicleDB, we propose the Tem-

poral Aggregated B+-tree (TAB+-tree). The TAB+-tree is
based on the B+-tree and uses the events’ timestamp as
key. As usual for B+-trees, the TAB+-tree node size matches
block size, i.e., L-block size.

5.2.1 Index Layout
For query processing and recovery issues, we use a linking

in both directions at every level of the tree. We utilize this
linking to speed-up query processing as well as to enhance
recovery, discussed in Section 6.

To improve query processing, we leverage temporal corre-
lation of event data. For every node in the TAB+-tree, we
store the minimum and maximum (minai ,maxai) value of
each attribute Ai. Figure 4 shows the index entry layout.

These min-max values are used for supporting filter
queries on non-temporal attributes without the need of an
index on the secondary attribute. This approach is called
lightweight indexing as it is inexpensive to offer. How-
ever, the indexing quality largely depends on the temporal
correlation of attributes.

In addition to minimum and maximum values, the TAB+-
tree also maintains the sum as well as the number of entries
(count) for each attribute in a subtree. These simple statis-
tics are stored in the index entries, next to the timestamp
(t), which represents the key in the TAB+-tree. The storage
overhead is very small because aggregates are only main-
tained in the index levels and the number of attributes is
negligible compared to the number of entries in an index
node.

5.2.2 Tree Construction
The problem of storing chronological events in an indexed

fashion on disks can be solved with an efficient sort-based
bulk-loading strategy for B+-trees. Figure 5 sketches the in-
dex construction. Due to the key’s sorted nature, the index
can be built in from-left-to-right fashion while holding the
tree’s right flank in memory. Because sorting is not required,
the cost for index creation is reduced from O(N

b
logb

N
b

) to

O(N
b

) for N events and block size b. Hence, index construc-
tion is almost for free. We avoid the traversal of the right
flank for each event and build the tree from bottom to top.
When a leaf node is filled, its corresponding index entry is
inserted into the parent node. Therefore, the parent node

148

left to right

Figure 5: TAB+-tree construction.

has to be accessed only once per child node, which also ap-
plies to the entire tree.

A problem arises due to the next neighbor linking (indi-
cated by red arrows in Figure 5). The next neighbor refer-
ence has to be known in advance when the node is written to
disk. Otherwise, the node would have to be updated later,
resulting in random I/Os which would deteriorate the sys-
tem performance notably. This issue is intensified by data
compression. Therefore, stable IDs are necessary as we have
discussed in Section 4 already.

5.3 Secondary Indexes
To efficiently support queries on non-temporal attributes

without high temporal correlation, ChronicleDB also pro-
vides secondary indexes. We chose log-structured indexes
as they are designed for high write-throughput. Neverthe-
less, secondary indexes incur high overheads. Hence, Chron-
icleDB’s load scheduler temporally deactivates secondary in-
dexing in case of peak loads, as will be discussed in Section
5.5.

The most popular log-structured index used, e.g., in
HBase [3] or TokuDB [23], is the LSM-tree [28]. In addi-
tion to LSM trees ChronicleDB also supports cache oblivious
look-ahead arrays (COLA), another log-structured index.
The advantage of COLA in comparison to a native LSM-
tree is its better support for proximity and range queries. To
speed-up exact-match queries, we utilize Bloom filters [15],
which can be maintained very efficiently.

5.4 Time-Splitting
ChronicleDB is a hybrid between OLTP and OLAP

database. In terms of data ingestion, ChronicleDB is like
a traditional OLTP system, but queries to ChronicleDB are
similar to OLAP queries. Aggregation queries on (histori-
cal) data are essential in OLAP systems and commonly ad-
dress predefined time ranges, like the sales within the last
week or month ([17]). ChronicleDB offers the possibility to
align data organization to the specific query pattern. There-
fore, we introduce regular time-splits. After a user-defined
amount of time, a new TAB+-tree residing in a separate
file is created. E.g, a salesman is interested in weekly sales
statistics, so he would choose weeks as regular time split
granularity. The same takes place for each secondary index
such that the regular time-split covers a fixed interval for
all indexes. The regular time-splits are managed within a
TAB+-tree again. This enables aggregation queries even in
constant time.

Though ChronicleDB aims at long-term storage, it also
addresses deletion and reduction of ancient data. Removing
events from the TAB+-tree could be realized via cutting off
its left flank. However, this would result in costly I/O oper-
ations, as the data has to be removed event-by-event. Even

more critical: secondary indexes have to be kept consistent.
Thus, all events contained in the left flank of the TAB+-tree
also have to be removed from the secondary index. Instead
of removing data event-by-event, ChronicleDB supports the
removal of outdated events at the granularity of regular time
splits. Thus, only the corresponding files have to be deleted
(logically). Alternatively, outdated events can be thinned
out or condensed via aggregation, leveraging the aggregates
in the TAB+-tree again.

Regular time-splits enable ChronicleDB to keep local
statistics for each time-split. Especially the temporal cor-
relation is an important metric that can be considered to
decide which secondary indexes should be maintained. If
the temporal correlation for the last split is above a cer-
tain threshold, ChronicleDB can switch to lightweight in-
dexing only. This results in systematic partial indexing.
Furthermore, time splits allow for higher insertion perfor-
mance while building secondary indexes compared to one
large index. This also has been observed in [27]. Ancient
data is removed from ChronicleDB in whole regular time
splits, indicated in Figure 6 before rs1.

5.5 Partial Indexing
Fluctuating data rates are always a very challenging prob-

lem, especially in the context of sensor data. We addressed
this problem with load scheduling to ensure maximum in-
gestion speed. In times of moderate input rates, we try
to maintain as many secondary indexes as possible. We
give higher priority to those indexes on attributes with low
temporal correlation. More advanced strategies are possible
taking into account the access frequency of the attributes.
But in case of a system overload, the load scheduler stops
building secondary indexes for attributes with high temporal
correlation until ChronicleDB can handle the input again.
This results in (unplanned) partial indexes, which have to
be synchronized with the primary index again. Therefore,
we introduce a second kind of time split, termed irregular
split.

Figure 6 shows an example where regular splits are pre-
fixed with rsx, irregular splits with isx. For each time split,
Px denotes a TAB+-tree, Sx a secondary index. At is3,
secondary indexation has been switched off due to a sys-
tem overload. Therefore, the primary index is split, too. If
the system load decreases, secondary indexes are switched
on again. Re-activation only takes place at regular splits.
In this example, secondary indexation continues after rs5.
In case of sufficient resources, ChronicleDB can also rebuild
secondary indexes for previous time splits that emerged dur-
ing an overload, e.g., [is3, rs4] as well as [rs4, rs5].

5.6 Query Processing
In this section we discuss how a TAB+-tree can be utilized

for query processing.

5.6.1 Time travel queries
Due to its descent from B+-tree and the fact that events

are indexed based on their (start) timestamps, the TAB+-
tree performs a time travel query like a range query in a
B+-tree. The leaf nodes of the TAB+-tree can be sequen-
tially traversed from left to right using the linking between
adjacent leaf nodes until an event occurs that is outside of
the temporal query range. Thus, the total cost is logarith-
mic (in the number of events) plus the time to access the

149

P
0 P

2

P
4

P
5

S
9

S
10

S
11

P
3

P
1

rs
1

rs
2

is
3

rs
4

rs
5

S
0

S
1

S
2

S
3

S
4

S
5

Figure 6: Index scheduling example.

required leaves.
In addition, we also utilize restrictions on non-temporal

attributes specified in the query to speed-up query process-
ing. Then, the (min, max) information of the correspond-
ing attributes is used for pruning. If the query interval for
a specific attribute a and the interval (mina,maxa) of a
TAB+-tree node are disjoint during tree traversal, the node
is skipped.

Algorithm 2: TAB+-tree pruning query

Input : Time interval [ts, te], range [minai ,maxai] for
attributes Ai

Stack s, Node n, Index i;
s.push(root);
s.push(0);
while ! s.isEmpty() do

n ← s.pop();
i ← s.pop();
while i < n.size do

if n.isLeaf() then
if n [i].t > te then

return; /* No further results */

else if n [i].t ≥ ts then
output n [i];

end

else if Intersection (n [i],intervals) then
s.push(n);
s.push(i +1);
n ← n [i].child;
i ← 0;
continue;

else if i > 0 AND n [i-1].t > te then
return; /* No further results */

end
i ← i +1;

end

end

5.6.2 Temporal aggregation queries
Temporal aggregation queries compute an aggregation

value (sum, avg, stdev, count, min, max) for a given point
or range in time. Again, the TAB+-tree acts as guide for the
temporal dimension. Additionally, the aggregation informa-
tion per node can be utilized. If a node in the TAB+-tree is
fully covered by the query range, ChronicleDB can exploit
the node’s aggregate value (covering all of its child nodes).

If the node’s time interval is intersected by the given query
range, the query proceeds with its qualifying child nodes.
Therefore, also temporal aggregation queries are answered
in logarithmic time.

5.6.3 Secondary queries in TAB+-tree
Secondary queries can utilize the inherent lightweight in-

dexing of the TAB+-tree. Algorithm 2 sketches the sec-
ondary query processing. As input, the requested time in-
terval as well as the restrictions on the desired attributes are
provided. For simplicity, the proposed algorithm reports all
query results; in fact, query processing in ChronicleDB is
demand-driven. The TAB+-tree is traversed in depth-first
order by means of a stack while nodes are pruned as early as
possible. The stack keeps track of the current tree path as
well as the index of the last visited entry for each tree level.

5.7 Managing out-of-order Data
So far, we have assumed an unexceptional chronological

order of the incoming events. This is, however, not satisfied
in real scenarios where asynchronous clocks, network delays
and faulty devices cause exceptional out-of-order arrival of
events. This problem is well-known in event processing [13],
but also has a serious impact on the design of ChronicleDB.
There are two basic solutions for dealing with out-of-order
arrivals of events. First, we could change the notion of time
in the TAB+-tree. Instead of using application time as the
primary attribute for indexing, we could use system time.
By definition, the events are then always in correct order
because an event item receives its timestamp at arrival in
ChronicleDB. Furthermore, application time should be used
as an additional attribute indexed in a lightweight fashion
within the TAB+-tree. This causes additional cost in query
processing, in particular for aggregate queries. The second
solution still maintains the TAB+-tree as an index on appli-
cation time (as described in the previous sections). We will
pursue this approach in the following.

5.7.1 Out-of-order Buffers
In order to deal with out-of-order, we introduce the Algo-

rithm 3 that is illustrated in Figure 7. First, we try to insert
incoming out-of-order events into the right flank buffer of the
tree. If the timestamp of an event is too far in the past, we
insert the event into a dedicated queue sorted with respect
to application time. When this queue becomes full, we flush
its entries in bulk into the TAB+-tree. To prevent data loss
in case of a system crash, all events in the queue are addi-
tionally written to a mirror log in system time order.

While the sorted queue serves to leverage temporal lo-
cality, we also target at leveraging physical locality in the
storage layout. Therefore, an additional buffer in combina-
tion with a write-ahead log [26] and no-force write strategy
is introduced for the TAB+-tree .

Without any further modifications, this approach would
still cause serious problems in the TAB+-tree. First of all,
an out-of-order insertion will often hit a full L-block. Conse-
quently, a split would be triggered and the sequential layout
would be damaged causing higher costs for queries. In or-
der to avoid these splits, we propose to reserve a certain
amount of spare space in an L-block for absorbing out-of-
order insertions without structural modifications. This is
only meaningful if the number of out-of-order arrivals is not
extremely high. For example, if we expect 15 out-of-order

150

Algorithm 3: Out-of-order Insertion

Input: Out-of-order event e, right flank of TAB+-tree
flank, sorted queue queue, mirror log log

if e.timestamp > flank[1].getLast().timestamp then
// Add e to leaf of the TAB+-tree flank

flank[0].add(e);

else
// Add e to sorted queue

queue.add(e);
// Write e to the mirror log

log.append(e);
if queue.isFull() then

// Flush all events from queue
for qe in queue do

insert qe from bottom to top into flank;
end
Clear log;

end

end

Primary

Index

Right TAB+-tree Flank

Mirror Log

Sorted Queue Tree Buffer (LRU)

Write-ahead Log
Disk

Clear Checkpoint

Data

Base

Figure 7: Buffer layout and data flow for out-of-
order data.

events per L-block, a simple urn-based analysis shows that
the probability of an overflow is less than 10% for a spare
space of 20 events.

In addition, we also address additional spare space on the
storage level. Each L-block corresponds to a compressed C-
block which size depends on the compression rate. A reduc-
tion of the compression rate results in an increased C-block
size. For example, an update on an aggregate could lead
to an increased C-block size, even though the L-block size
has not changed. Thus, macro blocks also reserve a certain
amount of spare space. If a C-block exceeds the remaining
spare space of its macro block, it is moved to the end of
the database and a reference entry is written at its original
position.

5.7.2 Keeping Secondary Indexes consistent
References in the secondary index are represented by phys-

ical addresses. So, references to relocated C-blocks in the
storage layout will become invalid in a secondary index. One
solution for this problem is to update the affected references
in the secondary index. However, since there can be many
secondary indexes, eager reference updates are very expen-
sive.

Thus, we use the following lazy approach instead where
a split of a block does not trigger an update of the entries
in the secondary indexes. In order to maintain the search
capabilities of secondary indexes, we store the timestamp of
the event in the corresponding index entry of a secondary
index. In addition, a flag in each block is kept for indicating
whether a block is split or not. If a search via a secondary
index arrives at a block that has been split, we use the times-
tamp to search for the event in the primary index. For all
other blocks we still use the direct linkage.

6. FAILURES AND RECOVERY
This section addresses the recovery capabilities of Chron-

icleDB after a system crash. Recovery takes place in three
steps. At first, the storage layout is recovered. Subsequently,
the primary index is restored and finally the logs are pro-
cessed to transfer the system into a consistent state again.

6.1 Storage Layout Recovery
In ChronicleDB, the most critical part of the storage lay-

out is its address translation, i.e., the TLB. As the root
and the right flank of the TLB are only kept in memory,
any information about block address translation is lost in
case of a system crash. Rebuilding the TLB would require
a full database scan. However, this is not acceptable for a
database we expect to be very large (in the range of ter-
abytes).

In order to support fast reconstruction of the TLB’s right
flank, we introduce references within the TLB. As only the
recently created part of the TLB has to be restored, recovery
is performed from the end of the database to its start. Each
TLB-block keeps a reference to its previous TLB-block on
the same level. Given the last successfully written TLB-
block, its predecessor can be directly accessed. The recovery
has to scan all TLB-blocks that are children of the last (and
therefore lost) TLB-block in the parent level. Then, recovery
continues with the next level. To support the direct access
to upper levels, TLB-blocks additionally store a reference to
its parent’s predecessor TLB-block. Thus, these references
implicitly create checkpoints for each level. Figure 8 shows
the linking of TLB-blocks. For presentation purposes, we
assume two address entries per TLB-block. For example,
the leaf d10 is a child of m1 and keeps an extra pointer to
d9 that is the predecessor of m1.

The TLB recovery is outlined in Algorithm 4. In case of
a crash, the last written TLB-block is seeked on disk. This
is simple as the size of a macro block is a multiple of TLB-
block size. There are two possibilities for the classification
of the last written L-block: either it is a TLB-block or it
is part of a macro block. In the latter case, the previous
L-block is read until the last successfully written TLB-block
is found. The upper bound for the number of L-blocks to
be read before finding a TLB-block is the number of entries
per TLB-block. After having located the last successfully
written TLB-block the recovery of the TLB continues by
leveraging the introduced references.

The predecessors of the last written TLB-blocks are lo-
cated until the parent reference is different. The correspond-
ing references of these TLB-blocks (except the last) are used
to rebuild the parent node. The recovery continues at the
next upper level with the parent’s previous entry. At each
level of the TLB, the number of entries to be read is limited
by the number of entries per TLB-block.

151

d8 d10 m0

d9 m1

d6 m2

m3

Disk

Level 3

Level 2

Level 1

Level 0

Memory

Figure 8: TLB structure with recovery references.

Figure 8 gives an example. In case of a system failure,
the TLB-blocks m0 − m3 are lost. The recovery starts to
discover d10 first, which was referenced in m1 before the
crash. Its predecessor, d8, has a different previous parent
reference. So, recovery continues with d9 and afterwards
with d6. After that, m1 −m3 are recovered. m0 is restored
by simply scanning all macro blocks after d10.

Algorithm 4: TLB Recovery

Input: Database size in bytes s, L-block size in bytes b

baddr ←
⌊s
b

⌋
∗ b ; // Last complete block address

block ← read(baddr);
// Lookup last TLB-block

while block is not a TLB-block do
baddr ← baddr − b;
block ← read(baddr);

end
// Rebuild TLB

while block.prev != null do
prev ← read(block.prev) ; // Read previous entry

if prev.prevParent != block.prevParent then
// Switch to the next higher TLB level

block ← read(block.prevParent);

else
// Restore the reference in the new

parent entry

Add baddr to TLBblock.level+1;

end

end

6.2 TAB+-tree Recovery
In the second step of the system recovery, the right flank

of the TAB+-tree is reconstructed. This reconstruction is
very similar to the TLB recovery and starts scanning the
data base in reverse order for the last successfully written
TAB+-tree node. After locating the last node ni at level i,
a new index entry is inserted into the tree’s right flank at
level i + 1. In the next step, all nodes of level i belonging
to the same parent node are iterated utilizing the previous
neighbor linking at all levels of the TAB+-tree. The recovery
continues recursively with the last written node of the parent
level until the root is reached.

6.3 Log Recovery
Finally, the consistency of the data base has to be ensured.

This step only matters in case of previously occurred out-

of-order events. At first, the write-ahead log is processed
from start to end. For each log entry, its LSN is compared
with the LSN of the block it refers to. If the LSN of the
block is smaller than the entry’s LSN, the associated event
is regularly inserted into the TAB+-tree. Finally, the sorted
queue is restored by scanning the mirror log.

7. EXPERIMENTAL EVALUATION
This section presents a selection of important results from

an extensive performance comparison. Section 7.1 describes
the experimental setup, Section 7.2 evaluates the storage
layout of ChronicleDB and Section 7.3 evaluates the query
performance. Section 7.4 compares ChronicleDB with open-
source (Cassandra), commercial (InfluxDB) academic sys-
tems (LogBase in combination with CR-index). Finally, Sec-
tion 7.5 investigates the performance impact of out-of-order
data.

7.1 Experimental Setup
All experiments were conducted on a Windows 7 desk-

top computer with Intel I7 2600 quad-core CPU at 3.4 GHz
and 8 GB DDR3 RAM, equipped with an 1 TB HDD and
128 GB SSD. The latter is only used for writing the out-
of-order logs. We run various experiments to identify the
impact of parameters on the performance of ChronicleDB
and to chose the best settings. The L-block size and the
size of macro blocks are two parameters we set to 8 KiB and
32 KiB, respectively. Smaller block sizes (e.g. 4 KiB) as well
as larger block sizes (e.g. 32 KiB) perform slightly inferior
to our standard settings. Because we measured only a minor
impact of these parameters, we do not detail these results.
Unless specified otherwise, the experiments with Chronicle-
DB where conducted with 10 % spare for an L-block and
without partial indexing on a single worker.

In our experiments we used four data sets termed CDS,
BerlinMod, DEBS and SafeCast. CDS is a synthetic data
set with eight numerical attributes and a timestamp. This
data set was generated based on real-world cpu data [14].
DEBS is a real data set, extracted from the DEBS Grand
Challenge 2013 data [11]. The data provides sensor read-
ings of a soccer game. We used the data set obtained from
the ball. BerlinMOD is a semi-synthetic data set, sampled
from a collection of taxi trips in Berlin. We used the pre-
calculated trips data available at [4]. SafeCast [10] contains
spatio-temporal radiation data collected by the community.
We extracted spatial and temporal attributes as well as the
radiation. Table 1 reports important properties: the num-
ber of events, the size of an event, the compression rate,
the minimum temporal correlation among all attributes of
the corresponding data set and the time for reading the in-
put into memory. As these data sets are ordered by time,
they are not suited for out-of-order experiments. We will
postpone the generation of out-of-order data to Section 7.5.

7.2 Compression and Recovery
First of all, we evaluate the performance of the stor-

age layout presented in Section 4, in the following denoted
as ChronicleDB layout. We compare ChronicleDB layout
with a completely separated storage layout (separate lay-
out), storing the address information of the blocks from the
data of the TAB+-tree in a separate file.

In order to evaluate the storage layout, we measured the
impact of compression. We run experiments with a hy-

152

Table 1: Indicators of the data sets.
Data set #Events Bytes/Event Compression minimum tc Input Processing (s)
DEBS 24,278,210 76 34.37% 0.476 53.14

BerlinMOD 56,129,943 48 71.14 % 0.9996 285.655
SafeCast 40,193,450 36 64.08 % 0.9622 354.093

CDS 20,000,000 72 68,36 % 0.869 0.618

●
●

●

●

disk speeddisk speeddisk speeddisk speeddisk speeddisk speeddisk speeddisk speeddisk speeddisk speeddisk speeddisk speeddisk speeddisk speeddisk speeddisk speed

0

100

200

300

400

0% 25% 50% 75%
Compression rate

M
iB

/s

●ChronicleDB Read ChronicleDB Write Separate Read Separate Write

Figure 9: Throughput as a function of the compres-
sion rate for different storage layouts.

pothetical compression rate that is constant for all blocks.
Figure 9 shows that the write as well as the read perfor-
mance of ChronicleDB layout scales almost linearly with
the compression rate. In addition, we measured the sequen-
tial disk speed by writing data without address information
and without compression. This results in 123.89 MiB/s that
matches sequential disk speed. Without compression Chron-
icleDB achieves almost the same results, while the write
performance of the separate layout drops to 71.59 MiB/s.
This shows the advantage of ChronicleDB layout where data
blocks and TLB blocks are kept interleaved in a single file.

Finally, we discuss the recovery times of ChronicleDB lay-
out. Therefore, we triggered a system crash after ingesting
a predefined number of events from DEBS and measured
the recovery time for the TLB. The results are depicted as
a function of the number of ingested events in Figure 10.
Note that recovery of the storage layout requires only a few
milliseconds, independent of the number of events. The re-
covery time is not a perfect monotonic function because it
is determined by the fill degree of the nodes from the right
flank of the TLB.

7.3 Query Performance
At first, we discuss the TAB+-tree lightweight indexing

performance for the data set CDS. Therefore, we report the
impact of the number of (lightweight) indexed attributes
on the overall ingestion performance, depicted in Figure 11.
There is a very mild linear performance decrease in the num-
ber of indexed attributes because of the capacity reduction
of internal nodes in the TAB+-tree.

7.3.1 Time-Travel & Temporal Aggregation Queries
Next, we discuss the query times for time-travel queries as

well as temporal aggregation queries in ChronicleDB while
varying the temporal range (selectivity). We used the DEBS
data set in this experiment. Figure 12 depicts the total
processing time as a function of selectivity. The performance
of the time travel queries decreases linear in the selectivity,
while the logarithmic performance of the aggregate query
seems to be constant.

0

5

10

15

0 5 10 15 20 25
Million Events

T
im

e
(M

ill
is

ec
on

ds
)

Figure 10: TLB recov-
ery time after ingest-
ing various numbers of
events.

0

0.5

1

1.5

2

0 2 4 6 8
Number of indexed attributes

M
ill

io
n

E
ve

nt
s/

s

Figure 11: Write
throughput as a func-
tion of the number of
indexed attributes.

0

4

8

12

0.000.250.500.751.00
Selectivity

T
im

e
(S

ec
on

ds
)

Temporal Aggregation Time Travel

Figure 12: Performance evaluation of time-travel
queries and temporal aggregation queries on DEBS.

7.3.2 Secondary Indexes
Finally, we evaluate the index capabilities of ChronicleDB.

Therefore, we ingested the DEBS data set into ChronicleDB
twice. First, we used lightweight indexing (TAB+-tree) on
velocity, the attribute with smallest temporal correlation.
In the second built, we used a secondary index (LSM-tree)
on the same attribute. As shown in Figure 13a, the build
time is substantially higher in case a LSM-tree is generated.

Figure 13b presents our query results for ChronicleDB
with TAB+-tree and LSM-tree respectively (note the log-
scale). Additionally, we compared the results with the CR-
index in LogBase. Therefore, we used the configuration from
[33] and deployed LogBase on the local file system of the
same machine as ChronicleDB. We also depict the time for
a full range scan in ChronicleDB as a dashed line. In sum-
mary, LogBase with CR-index is inferior to ChronicleDB.
For very low selectivity, the secondary LSM index in Chron-
icleDB performs best, slightly better than the CR-index. In
contrast to CR-index, TAB+-tree is not fully kept in mem-
ory, which explains the lower query performance for very low
selectivities. In case of higher selectivities, the TAB+-tree
is significantly faster than both LSM and CR-Index. In case
of LSM, the low temporal correlation of velocity introduces
many random accesses resulting in poor query performance.
To find the break-even in query performance between LSM
and TAB+-tree, the selectivity as well as the temporal cor-
relation have to be taken into account. But due to the high

153

0

50

100

150

200

TAB+−tree LSM

T
im

e
(S

ec
on

ds
)

(a) Loading

●

●

●
●

● scanscanscanscanscanscanscanscanscanscanscanscanscanscanscan

0.01

1

100

0.0001 0.0010 0.1000 1.3000
Selectivity (%)

T
im

e
(S

ec
on

ds
)

● CR−index LSM TAB+−tree

(b) Queries

Figure 13: Secondary index evaluation on DEBS
in LogBase (CR-index) and in ChronicleDB with
lightweight index (TAB+-tree) and with secondary
index (LSM).

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

DEBS BerlinMOD SafeCast CDS

M
ill

io
n

E
ve

nt
s/

s

ChronicleDB LogBase InfluxDB Cassandra

Figure 14: Ingestion throughput benchmark.

cost for index creation, the LSM is only justified for highly
read-intensive applications.

7.4 Benchmarking ChronicleDB
In the following, we compare ChronicleDB with sIn-

fluxDB (v0.9), Cassandra (v2.0.14) and LogBase, all running
on the same machine as ChronicleDB. In terms of write-
performance as well as read throughput, Cassandra is cur-
rently one of the fastest representatives of distributed key-
value stores (see Rabl et al. [30]). For InfluxDB we used
batches of 5K events and a batch interval of one second to
reduce network overhead. Cassandra does not offer batches
for performance improvement. We used the JAVA client li-
braries for InfluxDB1 and Cassandra2. For LogBase, we ap-
plied the suggested configuration from [33] again. Figure 14
reports the throughput of the four systems for our data sets.
We did not include here the time for reading and convert-
ing the input data, see Table 1. In summary, ChronicleDB
clearly outperforms Cassandra, InfluxDB and Logbase. In
case of CDS, ChronicleDB is superior to Cassandra and In-
fluxDB by a factor of 50 and 22, respectively. For LogBase,
the speedup is still more than a factor of three.

We also report the performance of full relation scans (ex-
emplary for DEBS), as replaying of historical data is an
important feature of a historical data store. In case of In-
fluxDB, we used only half of the data due to limitations
regarding the response size of a query. As presented in Fig-
ure 15, ChronicleDB outperforms LogBase by a factor of 5,

1https://github.com/influxdb/influxdb-java
2https://github.com/datastax/java-driver

Writing

Reading

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Million Events/s

ChronicleDB LogBase InfluxDB Cassandra

Figure 15: Write and read throughput comparison
with LogBase, Cassandra and InfluxDB on DEBS.

exponential

uniform

exponential

uniform

exponential

uniform

1
%

5
%

1
0
%

0 250000 500000 750000 1000000

Events/s

0% Spare 5% Spare 10% Spare

O
u

t−
o

f−
o

rd
e

r

Figure 16: Out-of-order ingestion performance

Cassandra and InfluxDB by a factor of 22 and 43, respec-
tively.

7.5 Out-of-order Data
In order to examine the out-of-order insertion perfor-

mance, we modified the timestamps of the CDS data as fol-
lows. Out-of-order insertions take place in bulk after every
10K insertions of chronological events. The delay of out-of-
order data is restricted to the time interval since the last
out-of-order bulk insertion, simulating late arrivals from a
sensor. We consider two distributions for a delay: uniform
and exponential. For an exponential distribution, smaller
delays occur more often than longer ones (with an expected
delay of 40 ms).

Figure 16 shows the results of our experiments with differ-
ent fractions of out-of-order data as well as varying amounts
of spare for uniform and exponential delay distribution.
Out-of-order inserts are expensive. The throughput for 10%
out-of-order is smaller by a factor of three than that of 1%.
Nevertheless, even for an out-of-order rate of 10%, Chron-
icleDB outperforms InfluxDB by more than an order of
magnitude. As expected, exponential distribution performs
slightly better during ingestion because of higher locality
in the buffer. The read performance is very similar for all
approaches at about 1.4M events per second. In general,
sparing improves ingestion performance as well as read per-
formance because larger reorganizations can be avoided and
there is no need to remap blocks.

We also measured the influence of the ratio between the
range of out-of-order data and the buffer size, depicted in
Figure 17. For example, a buffer ratio of 2 indicates that the

154

0

0.2

0.4

0.6

2 4 6 8 10

Buffer ratio

M
il
li
o
n
 E

v
e
n
ts

/s

1% 5% 10%

(a) Uniform

0

0.2

0.4

0.6

0.8

2 4 6 8 10

Buffer ratio

M
il
li
o
n
 E

v
e
n
ts

/s

1% 5% 10%

(b) Exponential

Figure 17: Evaluation of the buffer ratio impact.

buffer covers half of the out-of-order data. The size of the
out-of-order buffer does not have a significant influence on
the overall performance, as the system is CPU-bound due
to overheads for compression and serialization.

8. CONCLUSION & FUTURE WORK
The design of a database system for event streams is nowa-

days important to tackle the very high ingestion rates in
new application related to IoT. Not all of these applica-
tions allow large-scale distributed database systems, but re-
quire a tightly integrated database solution in the applica-
tion code. In this paper, we presented ChronicleDB, a new
type of centralized database system that exploits the tem-
poral arrival order of events. We discussed in detail its stor-
age management, indexing support and recovery capabili-
ties. Due to its dedicated system design, our experimental
results showed a great superiority of ChronicleDB in com-
parison to distributed systems like Cassandra and InfluxDB
that are widely used for write-intensive applications like the
management of event streams.

So far, we put our focus on the careful design of Chronicle-
DB as a centralized system and showed that simply making
standard systems scalable is not the right answer. However,
there is no reason for not using ChronicleDB in a distributed
environment. In our current and future work, we examine
how to exploit the benefits of distributed frameworks for
write-intensive applications. We even believe that Chroni-
cleDB’s write-once policy and its storage layout suits well to
distributed file systems like HDFS.

9. REFERENCES
[1] Apache Cassandra. http://cassandra.apache.org/.
[2] Apache Hadoop. http://hadoop.apache.org/.

[3] Apache HBase. http://hbase.apache.org/.

[4] BerlinMOD. http://dna.fernuni-hagen.de/secondo/
BerlinMOD/BerlinMOD.html.

[5] InfluxDB. https://github.com/influxdata/influxdb.
[6] KairosDB. https://kairosdb.github.io/.

[7] LZ4 Compression. https://code.google.com/p/lz4/.
[8] OpenTSDB. http://opentsdb.net/.
[9] PostgreSQL. http://www.postgresql.org/.

[10] SafeCast. http://blog.safecast.org/data/.
[11] DEBS Grand Challenge 2013. http://www.orgs.ttu.edu/

debs2013/index.php?goto=cfchallengedetails, 2013.
[12] A. Ailamaki, D. J. DeWitt, M. D. Hill, and M. Skounakis.

Weaving Relations for Cache Performance. In VLDB, pages
169–180, 2001.

[13] R. S. Barga, J. Goldstein, M. H. Ali, and M. Hong.
Consistent streaming through time: A vision for event
stream processing. In CIDR, pages 363–374, 2007.

[14] L. Baumgärtner, C. Strack, B. Hoßbach, M. Seidemann,
B. Seeger, and B. Freisleben. Complex Event Processing for
Reactive Security Monitoring in Virtualized Computer
Systems. In DEBS, pages 22–33, 2015.

[15] B. H. Bloom. Space/Time Trade-offs in Hash Coding with
Allowable Errors. Commun. ACM, 13(7):422–426, 1970.

[16] Z. Cao, S. Chen, F. Li, M. Wang, and X. S. Wang. LogKV:
Exploiting Key-Value Stores for Log Processing. In CIDR,
2013.

[17] S. Chaudhuri and U. Dayal. An Overview of Data
Warehousing and OLAP Technology. SIGMOD Rec.,
26(1):65–74, 1997.

[18] L. Deri, S. Mainardi, and F. Fusco. Tsdb: A compressed
database for time series. In TMA, pages 143–156, 2012.

[19] J. Esmet, M. A. Bender, M. Farach-Colton, and B. C.
Kuszmaul. The TokuFS Streaming File System. In
HotStorage, pages 14–14, 2012.

[20] L. Golab, T. Johnson, J. S. Seidel, and V. Shkapenyuk.
Stream Warehousing with DataDepot. In SIGMOD, pages
847–854, New York, NY, USA, 2009. ACM.

[21] B. Hoßbach, N. Glombiewski, A. Morgen, F. Ritter, and
B. Seeger. JEPC: The Java Event Processing Connectivity.
Datenbank-Spektrum, 13(3):167–178, 2013.

[22] T. Johnson and V. Shkapenyuk. Data Stream Warehousing
in Tidalrace. In CIDR, 2015.

[23] B. Kuszmaul. How TokuDB Fractal Tree Indexes Work.
Technical report, TokuTek, 2010.

[24] P. L. Lehman and s. B. Yao. Efficient locking for concurrent
operations on b-trees. ACM Trans. Database Syst.,
6(4):650–670, Dec. 1981.

[25] C. Loboz, S. Smyl, and S. Nath. DataGarage: Warehousing
Massive Performance Data on Commodity Servers.
PVLDB, 3(1-2):1447–1458, 2010.

[26] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and
P. Schwarz. Aries: A transaction recovery method
supporting fine-granularity locking and partial rollbacks
using write-ahead logging. ACM Trans. Database Syst.,
17(1):94–162, 1992.

[27] P. Muth, P. O’Neil, A. Pick, and G. Weikum. The LHAM
Log-structured History Data Access Method. The VLDB
Journal, 8(3-4):199–221, 2000.

[28] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The
Log-structured Merge-tree (LSM-tree). Acta Inf.,
33(4):351–385, 1996.

[29] T. Pelkonen, S. Franklin, J. Teller, P. Cavallaro, Q. Huang,
J. Meza, and K. Veeraraghavan. Gorilla: A Fast, Scalable,
In-memory Time Series Database. PVLDB,
8(12):1816–1827, 2015.

[30] T. Rabl, S. Gómez-Villamor, M. Sadoghi,
V. Muntés-Mulero, H.-A. Jacobsen, and S. Mankovskii.
Solving Big Data Challenges for Enterprise Application
Performance Management. PVLDB, 5(12):1724–1735, 2012.

[31] J. Rao and K. A. Ross. Making B+- Trees Cache Conscious
in Main Memory. In SIGMOD, pages 475–486, 2000.

[32] H. T. Vo, S. Wang, D. Agrawal, G. Chen, and B. C. Ooi.
LogBase: A Scalable Log-structured Database System in
the Cloud. PVLDB, 5(10):1004–1015, 2012.

[33] S. Wang, D. Maier, and B. C. Ooi. Lightweight Indexing of
Observational Data in Log-Structured Storage. In PVLDB,
volume 7, pages 529–540, 2014.

[34] J. Yang and J. Widom. Incremental Computation and
Maintenance of Temporal Aggregates. The VLDB Journal,
12(3):262–283, 2003.

155

	ChronicleDB: A High-Performance Event StoreMarc Seidemann, Bernhard Seeger

