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ABSTRACT
Lightweight data compression algorithms are frequently ap-
plied in in-memory database systems to tackle the growing
gap between processor speed and main memory bandwidth.
In recent years, the vectorization of basic techniques such
as delta coding and null suppression has considerably en-
larged the corpus of available algorithms. As a result, today
there is a large number of algorithms to choose from, while
different algorithms are tailored to different data charac-
teristics. However, a comparative evaluation of these algo-
rithms under different data characteristics has never been
sufficiently conducted in the literature. To close this gap,
we conducted an exhaustive experimental survey by evalu-
ating several state-of-the-art compression algorithms as well
as cascades of basic techniques. We systematically investi-
gated the influence of the data properties on the performance
and the compression rates. The evaluated algorithms are
based on publicly available implementations as well as our
own vectorized reimplementations. We summarize our ex-
perimental findings leading to several new insights and to
the conclusion, that there is no single-best algorithm.

1. INTRODUCTION
The continuous growth of data volumes is a major chal-

lenge for the efficient data processing. This applies not only
to database systems [1, 5] but also to other areas, such as in-
formation retrieval [3, 18] or machine learning [8]. With the
growing capacity of the main memory, efficient analytical
data processing becomes possible [4, 11]. However, the gap
between computing power of the CPUs and main memory
bandwidth continuously increases, which is now the main
bottleneck for an efficient data processing. To overcome
this bottleneck, data compression plays a crucial role [1, 22].
Aside from reducing the amount of data, compressed data
offers several advantages such as less time spent on load and
store instructions, a better utilization of the cache hierarchy,
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and less misses in the translation lookaside buffer.
This compression solution is heavily exploited in modern

in-memory column stores for efficient query processing [1,
22]. Here, relational data is maintained using the decom-
position storage model [6]. That is, an n-attribute relation
is replaced by n binary relations, each consisting of one at-
tribute and a surrogate indicating the record identity. Since
the latter contains only virtual ids, it is not stored explicitly.
Thus, each attribute is stored separately as a sequence of val-
ues. For the lossless compression of sequences of values (in
particular integer values), a large variety of lightweight algo-
rithms has been developed [1, 2, 3, 9, 12, 15, 16, 17, 18, 22]1.
In contrast to heavyweight algorithms like arithmetic cod-
ing [19], Huffman [10], or Lempel Ziv [21], lightweight algo-
rithms achieve comparable or even better compression rates.
Moreover, the computational effort for the (de)compression
is lower than for heavyweight algorithms. To achieve these
unique properties, each lightweight compression algorithm
employs one or more basic compression techniques such as
frame-of-reference [9, 22] or null suppression [1, 15], which
allow the appropriate utilization of contextual knowledge
like value distribution, sorting, or data locality.

In recent years, the efficient vectorized implementation of
these lightweight compression algorithms using SIMD (Sin-
gle Instruction Multiple Data) instructions has attracted a
lot of attention [12, 14, 16, 18, 20], since it further reduces
the computational effort. To better understand these vec-
torized lightweight compression algorithms and to be able to
select a suitable algorithm for a given data set, the behav-
ior of the algorithms regarding different data characteristics
has to be known. In particular, the behavior in terms of
performance (compression, decompression, and processing)
and compression rate is of interest. In the literature, there
are two papers with a considerable evaluation part. First,
Adabi et al. [1] evaluated a small number of unvectorized al-
gorithms on different data characteristics, but they neither
considered a rich set of data distributions nor the explicit
combination of different compression techniques. Second,
Lemire et al. [12] already evaluated vectorized lightweight
data compression algorithms, but considered only null sup-
pression with and without differential coding. Furthermore,
their focus is on postings lists from the IR domain, which
narrows the considered data characteristics. Hence, an ex-
haustive comparative evaluation as a foundation has been
never sufficiently conducted. To overcome this issue, we have

1Without claim of completeness.
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done an experimental survey of a broad range of algorithms
with different data characteristics in a systematic way. In
our evaluation, we used a set of synthetic data sets as well
as one commonly used real data set. Our main findings can
be summarized as follows:

1. Performance and compression rate of the algorithms
vary greatly depending on the data properties. Even
algorithms that are based on the same techniques, show
a very different behavior.

2. By combining various basic techniques, the compres-
sion rate can be improved significantly. The perfor-
mance may rise or fall depending on the combination.

3. There is no single-best lightweight algorithm, but the
decision depends on the data properties. In order to se-
lect an appropriate algorithm, a compromise between
performance and compression rate must be defined.

The remainder of the paper is organized as follows: In Sec-
tion 2, we present more details about the area of lightweight
data compression and introduce our evaluated algorithms.
The implementation aspects are described in Section 3, while
Section 4 covers our evaluation setup. Selected results of our
experimental survey are presented in Section 5 and Section 6.
Finally, we conclude the paper in Section 7.

2. PREREQUISITES
The focus of our experimental survey is the large corpus

of lossless lightweight integer data compression algorithms
which are heavily used in modern in-memory column stores
[1, 22]. To better understand the algorithm corpus, this
section briefly summarizes the basic concepts and introduces
the algorithms which are used in our survey.

2.1 Lightweight Data Compression
First of all, we have to distinguish between techniques and

algorithms, thereby each algorithm implements one or more
of these techniques.

Techniques. There are five basic lightweight techniques to
compress a sequence of values: frame-of-reference (FOR) [9,
22], delta coding (DELTA) [12, 15], dictionary compression
(DICT) [1, 22], run-length encoding (RLE) [1, 15], and null
suppression (NS) [1, 15]. FOR and DELTA represent each
value as the difference to either a certain given reference
value (FOR) or to its predecessor value (DELTA). DICT
replaces each value by its unique key in a dictionary. The
objective of these three well-known techniques is to repre-
sent the original data as a sequence of small integers, which
is then suited for actual compression using the NS technique.
NS is the most studied lightweight compression technique.
Its basic idea is the omission of leading zeros in the bit
representation of small integers. Finally, RLE tackles un-
interrupted sequences of occurrences of the same value, so
called runs. Each run is represented by its value and length.
Hence, the compressed data is a sequence of such pairs.

Generally, these five techniques address different data lev-
els. While FOR, DELTA, DICT, and RLE consider the log-
ical data level, NS addresses the physical level of bits or
bytes. This explains why lightweight data compression al-
gorithms are always composed of one or more of these tech-
niques. In the following, we also denote the techniques from
the logical level as preprocessing techniques for the physi-
cal compression with NS. These techniques can be further
divided into two groups depending on how the input values

are mapped to output values. FOR, DELTA, and DICT
map each input value to exactly one integer as output value
(1:1 mapping). The objective of these preprocessing tech-
niques is to achieve smaller numbers which can be better
compressed on the bit level. In RLE, not every input value
is necessarily mapped to an encoded output value, because
a successive subsequence of equal values is encoded in the
output as a pair of run value and run length (N:1 mapping).
In this case, a compression is already done at the logical
level. The NS technique is either a 1:1 or an N:1 mapping
depending on the implementation.

Algorithms. The genericity of these techniques is the foun-
dation to tailor the algorithms to different data character-
istics. Therefore, a lightweight data compression algorithm
can be described as a cascade of one or more of these basic
techniques. On the level of the lightweight data compression
algorithms, the NS technique has been studied most exten-
sively. There is a very large number of specific algorithms
showing the diversity of the implementations for a single
technique. The pure NS algorithms can be divided into the
following classes [20]: (i) bit-aligned, (ii) byte-aligned, and
(iii) word-aligned.2 While bit-aligned NS algorithms try to
compress an integer using a minimal number of bits, byte-
aligned NS algorithms compress an integer with a minimal
number of bytes (1:1 mapping). The word-aligned NS algo-
rithms encode as many integer values as possible into 32-bit
or 64-bit words (N:1 mapping). The NS algorithms also dif-
fer in their data layout. We distinguish between horizontal
and vertical layout. In the horizontal layout, the compressed
representation of subsequent values is situated in subsequent
memory locations. In the vertical layout, each compressed
representation is stored in a separate memory word.

The logical-level techniques have not been considered to
such an extent as the NS technique on the algorithm level. In
most cases, the preprocessing steps have been investigated
in connection with the NS technique. For instance, PFOR-
based algorithms implement the FOR technique in combina-
tion with a bit-aligned NS algorithm [22]. These algorithms
usually subdivide the input in subsequences of a fixed length
and calculate two parameters per subsequence: a reference
value for the FOR technique and a common bit width for
NS. Each subsequence is encoded using their specific param-
eters, thereby the parameters are data-dependently derived.
The values that cannot be encoded with the given bit width
are stored separately with a greater bit width.

2.2 Considered Algorithms
We consider all five basic lightweight techniques in detail.

Regarding the selected algorithms, we investigate both, im-
plementations of a single technique as well as cascades of one
logical-level and one physical-level technique. We decided
to reimplement the logical-level techniques on our own (see
Section 3) in order to be able to freely combine them with
all seven considered NS algorithms (see Table 1). In the
following, we briefly sketch each considered NS algorithm.

2.2.1 Bit-Aligned NS Algorithms
4-Gamma Coding [16] processes four input values (data

elements) at a time. All four values are stored in the verti-
cal storage layout using the number of bits required for the

2[20] also defines a frame-based class, which we omit, as the
representatives we consider also match the bit-aligned class.
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largest of them. The unary representation of the bit width
is stored in a separate memory area for decompression.

SIMD-BP128 [12] processes data in blocks of 128 in-
tegers at a time. All 128 integers in the block are stored
in the vertical layout using the number of bits required for
the largest of them. The used bit width is stored in a sin-
gle byte, whereby 16 of these bit widths are followed by 16
compressed blocks.

SIMD-FastPFOR [12] is a variant of the original PFOR
algorithm [22], whose idea is to classify all data elements as
either regular coded values or exceptions depending on if
they can be represented with a certain bit width. This bit
width is chosen such that the overall compression rate be-
comes optimal. All data elements are packed with the chosen
bit width using the vertical layout. The exceptions require a
special treatment, since that number of bits does not suffice
for them. In SIMD-FastPFOR the exceptions are stored in
additional packed arrays. The overall input is subdivided
into pages which are further subdivided into blocks of 128
integers. SIMD-FastPFOR stores the exceptions at the page
level and uses an individual bit width for each block.

2.2.2 Byte-Aligned NS Algorithms
4-Wise Null Suppression [16] compresses integers by

omitting leading zero bytes. For each 32-bit integer, between
zero and three bytes might be omitted. 4-Wise NS processes
four data elements at a time and combines the corresponding
four 2-bit descriptors into a 1-byte mask. In the output,
four masks are followed by four compressed blocks in the
horizontal layout.

Masked-VByte [14] uses the same compressed represen-
tation as the VByte algorithm [12] and differs only in imple-
mentation details. It subdivides an integer into 7-bit units.
Each unit that is required to represent the integer produces
one byte in the output. The seven data bits are stored in
the lower part of that byte, while the most significant bit
is used to indicate whether or not the next byte belongs to
the next data element. Subsequent compressed values are
stored using the horizontal layout.

2.2.3 Word-Aligned NS Algorithms
Simple-8b [2] outputs one compressed block of 64 bits

for a variable number of uncompressed integers. Within
one block, all data elements are stored with a common bit
width using the horizontal layout. The bit width is chosen
such that as many subsequent input elements as possible
can be stored in the compressed block. One compressed
block contains 60 data bits and a 4-bit selector specifying
the compression mode. There are 16 compression modes:
60 1-bit values, 30 2-bit values, 20 3-bit values, and so on.
Additionally, Simple-8b has two special modes indicating
that the input consisted of 120 respectively 240 zeroes.

SIMD-GroupSimple [20] processes the input in units of
so-called quads, i.e., four values at a time. For each quad,
it determines the number of bits required for the largest
element. Based on the bit widths of subsequent quads, it
partitions the input sequence into groups, such that as many
quads as possible can be stored in four consecutive 32-bit
words using the vertical layout. There are ten compression
modes: the four consecutive 32-bit words could be filled with
4 × 32 1-bit values, 4 × 16 2-bit values, 4 × 10 3-bit values,
and so on. A four bit selector represents the mode chosen for
the compressed block. The selectors are stored in a different

Class Algorithm Layout Code origin SIMD

bit- 4-Gamma vert. Schlegel et al. yes
aligned SIMD-BP128 vert. FastPFor-lib yes

SIMD-FastPFOR vert. FastPFor-lib yes
byte- 4-Wise NS horiz. Schlegel et al. yes
aligned Masked-VByte horiz. FastPFor-lib n/y
word- Simple-8b horiz. FastPFor-lib no
aligned SIMD-GroupSimple vert. our own code yes

Table 1: The considered NS algorithms.

memory area than the compressed blocks.

3. IMPLEMENTATION ASPECTS
As already mentioned, we reimplemented all four logical-

level techniques in C++, i.e., DELTA, DICT, FOR, and
RLE. Regarding the physical-level, several high-quality open-
source implementations of NS are available. We used these
existing implementations whenever possible and reimplemen-
ted only one of them. Table 1 summarizes the origins of the
implementations we employed. We also implemented cache-
conscious generic cascades of logical-level techniques and NS.
Furthermore, we implemented a decompression with aggre-
gation for all algorithms to evaluate a processing of com-
pressed data. In this section, we describe some of the most
crucial implementation details with respect to performance.

3.1 SIMD Instruction Set Extensions
Single Instruction Multiple Data (SIMD) instruction set

extensions such as Intel’s SSE and AVX have been available
in modern processors for several years. SIMD instructions
apply one operation to multiple elements of so-called vector
registers at once. The available operations include parallel
arithmetic, logical, and shift operations as well as permu-
tations. These are highly relevant to lightweight compres-
sion algorithms. In fact the main focus of recent research
[12, 14, 16, 18, 20] in this field has been the employment
of SIMD instructions to speed up (de)compression. Conse-
quently, most algorithms we evaluate in this paper make use
of SIMD extensions (see Table 1). Vectorized load and store
instructions can be either aligned or unaligned. The former
require the accessed memory addresses to be multiples of 16
bytes (SSE) and are usually faster. Although nowadays In-
tel’s AVX2 offers 256-bit operations, we decided to restrict
our evaluation to implementations using 128-bit SSE. This
has two reasons: (1) Most of the techniques presented in the
literature are designed for 128-bit vector operations3 and (2)
The comparison is fairer if only one width of vector regis-
ters is considered. Intel’s SIMD instructions can be used in
C/C++ without writing assembly code via intrinsic func-
tions, whose names start with _mm_.

3.2 Physical-Level Technique: NS
In the following, we describe crucial points regarding ex-

isting implementations as well as one reimplementation.

3.2.1 Bit-Aligned Algorithms
We obtained the implementation of 4-Gamma Coding

directly from the authors [16], and those of SIMD-BP128
and SIMD-FastPFor from the FastPFor-library [13]. All

3Thereby, a transition to 256-bit operations is not always
trivial and could be subject to future research.
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three implementations use vectorized shift and mask oper-
ations. SIMD-BP128 and SIMD-FastPFor use a dedicated
optimized packing and unpacking routine for each of the 32
possible bit widths. It is worth mentioning, that – while the
original PFOR algorithm is a combination of the FOR and
the NS technique – SIMD-FastPFOR, despite its name, does
not include the FOR technique, but only the NS technique.

3.2.2 Byte-Aligned Algorithms
Regarding 4-Wise Null Suppression, we use the origi-

nal implementation by Schlegel et al. [16]. It implements the
horizontal packing of the uncompressed values using a vec-
torized byte permutation. The 16-byte permutation masks
required for this are built once in advance and looked up
from a table during the compression. This table is indexed
with the 1-byte compression masks, thus there are 256 per-
mutation masks in total. The decompression works by using
the inverse permutation masks.

Masked-VByte vectorizes the decompression of the com-
pressed format of the original VByte algorithm. The imple-
mentation we use is available in the FastPFor-library [13]
and is based on code by the original authors. The crucial
point of the vectorization is the execution of a SIMD byte
permutation in order to reinsert the leading zero-bytes re-
moved by the compression. After 16 bytes of compressed
data have been loaded into a vector register, the most sig-
nificant bits of all bytes are extracted using a SIMD instruc-
tion. The lower 12 bits of this 16-bit mask are used as a key
to lookup the required permutation mask in a table. After
the permutation, the original 7-bit units need to be stitched
together, which is done using vectorized shift and mask op-
erations. Masked-VByte also has an optimization for the
case of 12 compressed 1-byte integers.

3.2.3 Word-Aligned Algorithms
We use the implementation of Simple-8b available in the

FastPFor-library [13], which is a purely sequential imple-
mentation. It uses a dedicated sequential packing routine
for each of the possible selectors.

We reimplemented SIMD-GroupSimple based on the
description in the original paper, since we could not find an
available implementation. We employed the two optimiza-
tions discussed by the original authors: (1) We calculate the
pseudo-quad max values instead of the quad max values to
reduce the number of branch instructions. (2) We use one
dedicated and vectorized packing routine for each selector,
whereby the correct one is chosen by a switch-statement.

The original compression algorithm processes the input
data in three runs: The first run scans the entire input and
materializes the pseudo-quad max array in main memory.
The size of this array is one quarter of the input data size.
The second run scans the pseudo-quad max array and ma-
terializes the selectors array. The third run iterates over the
selectors array and calls the respective packing routine to do
the actual compression. This procedure results in a subopti-
mal cache utilization, since at the end of each run, the data
it started with has already been evicted from the caches.
Thus, reaccessing it in the next run becomes expensive.

In order to overcome this issue, we enhanced the compres-
sion part of the algorithm with one more optimization, which
was not presented in the original paper: Our reimplementa-
tion stores the pseudo-quad max values in a ring buffer of a
small constant size (32 32-bit integers) instead of an array

proportional to the input size. This is based on the observa-
tion that the decision for the next selector can never require
more than 32 pseudo-quad max values, since at most 4× 32
(1-bit) integers can be packed into four 32-bit words. Due to
its small size (128 bytes), the ring buffer fits into the L1 data
cache and can thus be accessed at top-speed. Our modified
compression algorithm repeats the following steps until the
end of the input is reached (in the beginning, the ring buffer
is empty): (1) Fill the ring buffer by calculating the next up
to 32 pseudo-quad max values. This reads up to 4×32 = 128
uncompressed integers. (2) Run the original subroutine for
determining the next selector on the ring buffer. (3) Store
the obtained selector to the selectors section in the output.
(4) Compress the next block using the subroutine belonging
to the selector. This will typically reread the uncompressed
data touched in Step 1. Note that this data is very likely to
still reside in the L1 cache, since only a few bytes of memory
have been touched in between. (5) Increase the position in
the ring buffer by the number of input quads compressed in
the previous step. We observed that using this additional
optimization, the compression part of our reimplementation
is always faster than without it. Note, that this optimization
does not affect the compressed output in any way.

3.3 Logical-Level Techniques
As previously mentioned, logical-level techniques are usu-

ally combined with NS in existing algorithms and are thus
hardly available in isolation. In order to be able to freely
combine any logical-level technique with any NS algorithm,
we reimplemented all four logical-level compression tech-
niques as stand-alone algorithms. Thereby, an important
goal is the vectorization of those algorithms.

3.3.1 Vectorized DELTA
Our implementation of DELTA represents each input ele-

ment as the difference to its fourth predecessor. This allows
for an easy vectorization by processing four integers at a
time. The first four elements are always copied from the in-
put to the output. During the compression, the next four dif-
ferences are calculated at once using _mm_sub_epi32(). The
decompression reverses this by employing _mm_add_epi32().
This implementation follows the description in [12] with the
difference that we do not overwrite the input data, because
we still need it as the input for the other algorithms.

3.3.2 Sequential DICT
Our implementation of DICT is a purely sequential single-

pass algorithm employing a static dictionary, which is built
on the uncompressed data before the (de)compression takes
place. Thus, building the dictionary is not included in our
time measurements and the dictionary itself is not included
in the compressed representation. This represents the case
of a domain-specific dictionary which is known in advance.
The compression uses a C++-STL unordered_map to map
values to their keys, whereas the decompression uses the key
as the index of a vector to look up the corresponding value.

3.3.3 Vectorized FOR
We implemented the compression of FOR as a vectorized

two-pass algorithm. The first pass iterates over the input
and determines the reference value, i.e., the minimum us-
ing _mm_min_epu32(). This minimum is then copied into all
four elements of one vector register. The second pass iter-

75



ates over the input again and subtracts this vector register
from four input elements at a time using _mm_sub_epi32().
In the end, the reference value is appended to the output.
The decompression adds this reference value to four data
elements at a time using _mm_add_epi32().

3.3.4 Vectorized RLE
Our implementation of RLE also utilizes SIMD instruc-

tions. The compression part is based on parallel compar-
isons. It repeats the following steps until the end of the input
is reached: (1) One 128-bit vector register is loaded with four
copies of the current input element. (2) The next four input
elements are loaded. (3) The intrinsic _mm_cmpeq_epi32()

is employed for a parallel comparison. The result is stored in
a vector register. (4) We obtain a 4-bit comparison mask us-
ing _mm_movemask_ps(). Each bit in the mask indicates the
(non-)equality of two corresponding vector elements. The
number of trailing one-bits in this mask is the number of el-
ements for which the run continues. If this number is 4, then
we have not seen the run’s end yet, and continue at step 2.
Otherwise, we have reached the run’s end and append the
run value and run length to the output and continue with
step 1 at the next element after the run’s end.

The decompression executes the following until the entire
input has been consumed: (1) Load the next pair of run
value and run length. (2) Load one vector register with four
copies of the run value. (3) Store the contents of that register
to memory as often as required to match the run length.

3.4 Cascades of Logical-Level and Physical-
Level Techniques

The challenge of implementing cascades, i.e., combina-
tions of logical-level and physical-level techniques, is the high
implementation effort due to the high number of possible
combinations. To address this problem, we implemented a
cache-conscious cascade which is generic w.r.t. the employed
algorithms. That is, it can be instantiated for any two al-
gorithms, without further implementation effort. It takes
three parameters: a logical-level algorithm L, a physical-
level algorithm P , and an (uncompressed) block size bsu.

The output consists of compressed blocks, each of which
starts with its size as a 32-bit integer followed by 12 bytes of
padding to achieve the 16-byte alignment required by SSE
instructions. The body of the block contains the compressed
data possibly followed by additional padding bytes.

The compression procedure repeats the following steps un-
til the end of the input is reached: (1) Skip 16 bytes in the
output buffer. (2) Apply the compression of L to the next
bsu elements in the input. Store the result in an intermediate
buffer. (3) Apply the compression of P to that buffer and
store the result to the output buffer. (4) Store the size bsc
of the compressed block to the bytes skipped in Step 1. (5)
Skip some bytes after the compressed block, if it is necessary
to achieve 16-byte alignment.

The decompression is the reverse procedure repeatedly ex-
ecuting the following steps: (1) Read the size bsc of the
current compressed block and skip the padding. (2) Apply
the decompression of P to the next bsc bytes in the input.
Store the result to an intermediate buffer. (3) Decompress
the contents of that buffer using L and append the result to
the output. (4) Skip the padding in the input, if necessary.

The intermediate buffer is reused for all blocks. Its size is
in the order of magnitude of bsu (we chose 4KiB+2×bsu as

a pessimistic estimation). This algorithm is cache-conscious,
if bsu is chosen to fit the Lx cache, since then, the data read
by the second algorithm is likely to still reside in that cache.

3.5 Decompression with Aggregation
We also modified the decompressions of both, our own

reimplementations and existing implementations, such that
they sum up the decompressed data instead of writing it to
memory. The usual case for the vectorized algorithms is that
four decompressed 32-bit integers reside in a vector register
before they are stored to memory using _mm_store_si128().
We replaced these store instructions by vectorized additions.
However, since the sum might require more than 32 bits, we
first distribute the four 32-bit elements to the four 64-bit ele-
ments of two 128-bit registers using _mm_unpacklo_epi32()

and _mm_unpackhi_epi32() and add both to two 64-bit run-
ning sums (which are added in the very end) by applying
_mm_add_epi64(). In the case of RLE, we add the product
of the run length and the run value to the running sum.

4. EVALUATION SETUP
In this section, we describe our overall evaluation setup.

All algorithms are implemented in C/C++ and we compiled
them with g++ 4.8 using the optimization flag -O3. As the
operating system we used Ubuntu 14.04. All experiments
have been executed on the same hardware machine in or-
der to be able to compare the results. The machine was
equipped with an Intel Core i7-4710MQ (Haswell) proces-
sor with 4 physical and 8 logical cores running at 2.5 GHz.
The L1 data, L2, and L3 caches have a capacity of 32 KB,
256 KB and 6 MB, respectively. We use only one core at any
time of our evaluation to avoid competition for the shared
L3 cache. The capacity of the DDR3 main memory was
16 GB. We are able to copy data using memcpy() at a rate
of 6.15 GiB/s or 1,650 mis (million integers per second).

All experiments happened entirely in main memory. The
disk was never accessed during the time measurements. The
whole evaluation is performed using our benchmark frame-
work [7]. The synthetic data generation was performed by
our data generator once per configuration of data proper-
ties. The data properties were recorded and the algorithms
were repeatedly performed on the generated data. During
the executions, the runtimes and the compression rates were
measured. Furthermore, we emptied the cache before each
algorithm execution by copying a 12-MB array (twice as
large as the L3 cache) using a loop operation.

All time measurements were carried out by means of the
wallclock-time (C++-STL high_resolution_clock) and were
repeated 12 times to receive stable values, thereby we only
report average values. The time measurements include:
Compression: Loading uncompressed data from main mem-

ory, applying the compression algorithm, storing the
compressed data to main memory

Decompression: Loading compressed data from main mem-
ory, applying the decompression algorithm, storing the
uncompressed data to main memory

Decompression & Aggregation: Loading compressed data
from main memory, applying the decompression and
summation, storing 8 bytes in total to main memory

5. EXPERIMENTS ON SYNTHETIC DATA
In this section, we present selected results of our experi-
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Figure 1: The general behavior of the three classes of NS algorithms.

mental survey. We generate synthetic data sets in order to
be able to control the data properties in a systematic way.
All uncompressed arrays contain 100 million 32-bit integers,
i.e., 400 MB. Thus, only a small portion of the uncom-
pressed data fits into the L3 cache. We report speeds in
million integers per second (mis) and compression rates in
bits per integer (bits/int). We begin with the evaluation of
pure NS algorithms in Section 5.1. After that, we investi-
gate pure logical-level algorithms in Section 5.2. In Section
5.3, we evaluate cascades of logical-level techniques and NS.
Finally, in Section 5.4 we present the conclusions we draw
from our evaluation on synthetic data.

5.1 Null Suppression Algorithms
We start by identifying the characteristics of the three

classes of NS algorithms. After that, we compare five se-
lected NS algorithms in more detail.

5.1.1 Classes of NS Algorithms
We generate 32 unsorted datasets, such that all data ele-

ments in the i-th dataset have exactly i effective bits, i.e., the
value range is [0, 1] for i = 1 and [2i−1, 2i) for i = 2, . . . , 32.
Within these ranges, the values are uniformly distributed.

Figure 1 (a-d) show the results for the considered bit-
aligned algorithms. These have the finest possible com-
pression granularity and thus can perfectly adapt to any
bit width. Consequently, the compression rate is a linear
function of the bit width. The speeds of compression, de-
compression, and aggregation follow the same linear trend.
Nevertheless, there are differences between the algorithms.
Since SIMD-BP128 and SIMD-FastPFOR store less meta in-
formation than 4-Gamma, they achieve better compression
rates. They are also better regarding the decompression and
aggregation speed. However, in terms of compression speed,
SIMD-FastPFOR is by far the slowest, while SIMD-BP128
still shows very good performance.

Figure 1 (e-h) present the results for the considered byte-

aligned algorithms. These algorithms compress an inte-
ger at the granularity of units of 8 bits (4-Wise NS) or
7 bits (Masked-VByte). As a result, the curves of all four
measured variables exhibit a step-shape, whereby the step
width is constant and equals the unit size of the algorithm.
Since the units of 4-Wise NS and Masked-VByte have dif-
ferent sizes, the first and second regarding compression rate
change several times when increasing the bit width. Con-
cerning the speeds, 4-Wise NS is always at least as fast as
Masked-VByte, except for the compression of values with up
to 7 bits, in this case Masked-VByte is significantly faster.

Finally, Fig. 1 (i-l) provide the results for the word-
aligned algorithms. These can adapt only to certain bit
widths, which are not the multiples of any unit size. For
instance, SIMD-GroupSimple supports 1, 2, 3, 4, 5, 6, 8, 10,
16, and 32 bits. Hence, the measured variables show steps at
these bit widths, i.e., the steps do not have a constant width
per algorithm. This basic shape is especially clear for the
compression rate and the compression speed, but can also be
found in the decompression and aggregation speed. SIMD-
GroupSimple compresses better for certain bit widths, and
for others, Simple-8b does. Since Simple-8b uses 64-bit
words in the output, it can still achieve a size reduction
for bit widths up to 20, while SIMD-GroupSimple cannot
reduce the size anymore if the bit width exceeds 16. SIMD-
GroupSimple is faster for bit widths up to 3 and slower in
all other situations. However, regarding decompression and
aggregation, it is faster for all bit widths.

To summarize, each of the three classes exhibits its indi-
vidual behavior subject to the bit width. At the same time
the differences between the classes are significant.

5.1.2 Detailed Comparison of NS Algorithms
For the following experiments we pick SIMD-BP128, SIMD-

FastPFOR, 4-Wise NS, Masked-VByte, and SIMD-Group-
Simple and investigate their behavior in more detail. Note
that all three classes of NS are represented in this selection.
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Figure 2: Comparison of NS algorithms of different classes on different data distributions.

We generate unsorted data using four distributions D1–4,
whereby we vary one parameter for each of them. D1 is a
uniform distribution with a min of 0 and a max varying from
0 to 232 − 1. D2 is a normal distribution with a standard
deviation of 20 and a mean varying from 64 to 231. For D3,
90% of the values follow a normal distribution with a stan-
dard deviation of 2 and a mean of 8, while 10% are drawn
from a normal distribution with the same standard devia-
tion and a mean varying from 8 to 231. That is, 90% of the
data elements are small integers, while 10% are increasingly
large outliers. D4 is like D3, but with a ratio of 50:50. While
D1–2 have a high data locality, D3–4 do not.

The results for D1 can be found in Fig. 2 (a-d). The
bit-aligned algorithms SIMD-BP128 and SIMD-FastPFOR
always achieve the best compression rates, since they can
adapt to any bit width. Masked-VByte is the fastest com-
pressor for small values, although it is not even vector-
ized. However, for larger values, SIMD-BP128 is the fastest,
but comes closer to 4-Wise NS as the values grow. SIMD-
GroupSimple yields the highest decompression speed for max-
imums up to 32. From there on SIMD-BP128 and SIMD-
FastPFOR are the fastest, while SIMD-GroupSimple and
4-Wise NS come quite close to their performance, especially
for the values for which they do not waste too many bits due
to their coarser granularity.

For D2 (Fig. 2 (e-h)) we can make the same general obser-
vations. However, the steps in the curves of the byte-aligned
algorithms become steeper, since D2 produces values with

less distinct bit widths than D1.
The results of D3 (Fig. 2 (i-l)) reveal some interesting

effects. Regarding the compression rate, SIMD-FastPFOR
stays the winner, while SIMD-BP128 is competitive only for
small outliers. For large outliers it even yields the worst
compression rates of all five algorithms. This is due to the
fact that SIMD-BP128 packs blocks of 128 integers with the
bit width of the largest element in the block, i.e., one outlier
per block affects the compression rate significantly. SIMD-
FastPFOR on the other side, can handle this case very well,
since it – like all variants of PFOR – is explicitly designed
to tolerate outliers. The byte-aligned algorithms 4-Wise NS
and Masked-VByte are worse than SIMD-FastPFOR, but
still quite robust, since they choose an individual byte width
for each data element and are, thus, not affected by outliers.
SIMD-GroupSimple compresses better than SIMD-BP128 in
most cases, since outliers lead to small input blocks, while
there can still be large blocks of non-outliers. In terms of
compression speed, SIMD-BP128 is still in the top-2, but it
is overtaken by 4-Wise NS for large outliers. Concerning de-
compression speed, 4-Wise NS overtakes SIMD-BP128 when
the outliers need more than 12 bits. SIMD-FastPFOR is
nearly as fast as 4-Wise NS, but achieves much better com-
pression rates. Regarding the aggregation, SIMD-BP128 is
still the fastest algorithm, although SIMD-FastPFOR comes
very close for small outliers and 4-Wise NS for large outliers.

D4 increases the amount of outliers to 50%. The compres-
sion rate of SIMD-BP128 does not change any more, since
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Figure 3: Logical-level techniques applied to D5 (a-g) and D2 (h-l): Data properties.4
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basically all blocks were affected by outliers in D3 already.
However, since the other algorithms compress worse now,
the trade-offs have to be reevaluated. Thanks to patched
coding, SIMD-FastPFOR still is in the top-2 regarding the
compression rate. However, this comes at the cost of (de)-
compression and aggregation performance, which heavily de-
creases as the outliers grow. Encoding each value individu-
ally 4-Wise NS and Masked-VByte come very close to the
compression rate of SIMD-FastPFOR and 4-Wise NS de-
compresses faster than SIMD-FastPFOR for large outliers.

To sum up, the best algorithm regarding compression rate
or performance depends on the data distribution. Regarding
one measured variable, a certain algorithm can be the best
for one distribution and the worst for another distribution.
Moreover, for a certain distribution the best algorithm re-
garding one measured variable can be the worst for another
variable. In addition, there are many points of intersection
between the algorithms’ compression rates and speeds offer-
ing many different trade-offs.

5.2 Logical-Level Techniques
A general trend observable in Figures 1 and 2 is that all

NS algorithms get worse as the data elements get larger.
Logical-level techniques can be able to change the data prop-
erties in favor of NS. To illustrate this, we provide the re-
sults of the application of the four logical techniques to two
unsorted datasets: D2, already known from the previous sec-
tion, and D5, whose data elements are uniformly drawn from
the range [0, 216 − 1] while varying the average run length.

We start with the discussion of D5. First of all, in Fig. 3 (a)
we can see that the total number of data elements after the
application of FOR, DELTA, and DICT is the same as in
the uncompressed data (1:1 mapping), while with RLE it
decreases significantly as the run length increases (N:1 map-
ping). This has two consequences: (1) an NS algorithm
applied after RLE needs to compress less data and (2) RLE

alone suffices to reduce the data size. Figure 3 (b-f)4 show
the data distributions in the uncompressed data as well as
in the outputs of the logical-level techniques. Most uncom-
pressed values have 16 or 15 effective bits. This does not
change much with FOR, since the value distribution can pro-
duce values close to zero. In contrast, the output of DELTA
contains nearly only values of one effective bit for long runs,
since these yield long sequences of zeros. Note that there
are also outliers having 32 effective bits, resulting from neg-
ative differences being represented in the two’s complement.
With DICT, the values start to get smaller as soon as the
run length is high enough to lead to a decrease of the number
of distinct values (see Fig. 3 (g)), and thus the maximum
key. For RLE there are always two peaks in the distribu-
tions: one is at a bit width of 16 and corresponds to the run
values and the other one is produced by the increasingly
high run lengths. Note that this distribution is quite similar
to D4 from the previous section. The distributions might
seem to get worse for high run lengths. However, it must be
kept in mind that RLE reduces the total number of data ele-
ments in those cases. Figure 4 provides the (de)compression
speeds. The performance of DELTA and FOR is indepen-
dent of the data characteristics, since they execute the same
instructions for each group of four values. On the other side,
RLE is slow for short runs, but becomes by far the fastest
algorithm for long runs, since it has to write(read) less data
during the (de)compression. DICT is the slowest compres-
sor due to the expensive look ups in the map. Regarding the
decompression, it is competitive to DELTA and FOR, but
sensitive to the number of distinct values, which influences
whether or not the dictionary fits into the Lx cache.

The distributions for D2 are visualized in Fig. 3 (h-l).
Here, FOR can improve the distribution significantly, since
the value range is narrow. The same applies to DICT, since
consequently the number of distinct values is small. As the
data is unsorted and does not have runs, about half of the
values in the output of DELTA have 32 effective bits, i.e.,
the distributions get worse in most cases. Note that RLE
doubles the number of data elements due to the lack of runs.

To sum up, logical-level techniques can significantly im-

4 How to read Fig. 3 (b-f) and (h-l): The y-axis lists all
possible numbers of effective bits a data element could have.
Each vertical slice corresponds to one configuration of the
data properties. The intensity encodes what portion of the
data elements has how many effective bits. That is, the
dark pixels show which numbers of effective bits occur most
frequently in the dataset.
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Figure 5: Comparison of the cascades on dataset D2.5

prove the data distribution in favor of NS. However, the data
properties determine which techniques are suitable. In the
worst case, the distributions might even become less suited.
We also experimented with other data characteristics such
as the number of distinct values and sorted datasets, but
omit their results due to a lack of space. Those experiments
lead to similar conclusions.

5.3 Cascades of Logical-Level and Physical-
Level Techniques

To find out which improvements over the stand-alone NS
algorithms the additional use of logical-level techniques can
yield, we compare the five stand-alone NS algorithms from
Section 5.1.2 to their cascades with the four logical-level
techniques. That is, we compare 5 + 5 × 4 = 25 algorithms
in total. The evaluation is conducted on three datasets: D1
and D5, which are already known, and D6, a sorted dataset
for which we vary the number of distinct data elements by
uniformly drawing values from the range [0, max], whereby
max starts with 0 and is increased until we reach 100 M dis-
tinct values, i.e., until all data elements are unique. For all
three datasets, we provide a detailed comparison of SIMD-
BP128 to its cascaded derivatives as well as a comparison of
all 25 algorithms for selected data configurations. For our
generic cascade algorithm, we chose a block size of 16 KiB,
i.e., 4096 uncompressed integers. This size is a multiple of
the block sizes of all considered algorithms and fits into the
L1 cache of our machine. We also experimented with larger
block sizes, but found that 16 KiB yields the best speeds.

Figure 5 (a-d) show the results of SIMD-BP128 and its
cascaded variants on D2. The results for the compression
rate are consistent with the distributions in Fig. 3 (h-l):
Combined with FOR or DICT, SIMD-BP128 always yields
equal or better results than without a preprocessing, while
DELTA and RLE affect the results negatively. However, the
cascades with logical-level techniques decrease the speeds
of the algorithm, whereby the slow-down is significant for
small data elements, but becomes acceptable for large val-
ues at least for DICT (decompression) and FOR. Indeed,
the decompression of FOR + SIMD-BP128 is faster than
SIMD-BP128 alone for means larger than 216. A compar-

ison of all 25 algorithms can be found in Fig. 5 (e-h) and
(i-l) for means of 26 respectively 231.5 For the small mean,
the cascades with RLE and DELTA achieve the worst com-
pression rates, while for DICT, FOR and stand-alone NS,
the algorithms are roughly grouped by the employed NS al-
gorithm, since DICT and FOR do not change the distribu-
tions for the considered mean (see Fig. 3 (h-l)). Regarding
the speeds, the top ranks are held by stand-alone NS algo-
rithms. When changing the mean to 231, the cascades with
FOR and DICT achieve by far the best compression rates.
Stand-alone NS algorithms are still among the top ranks
for the speeds. However, none of them achieves an actual
size reduction. While depending on the application, many
trade-offs between compression rate and speed could be rea-
sonable, it generally does not make sense, to accept com-
pression rates of more than 32 bits/int, since then, the data
could rather be copied or not touched at all, which would be
even faster. Keeping this in mind, the cascades with FOR
achieve the best results regarding all three speeds, whereby
DELTA also makes it into the top-3 for the compression.

Figure 6 shows the results on D5. The cascades of any
logical-level technique and SIMD-BP128 achieve better com-
pression rates than the stand-alone SIMD-BP128 from some
run length on (Fig. 6 (a)). Regarding the (de)compression
speeds, only RLE + SIMD-BP128 can yield an improve-
ment, if the run length exceeds 25. It is noteworthy that the
cascades with DELTA and FOR imply only a slight slow
down, while they achieve much better compression rates.
The aggregation speed of RLE + SIMD-BP128 gets out of
scope for any other cascade for run lengths above 28, since
the aggregation of RLE has to execute only one multiplica-
tion and one addition per run. The next three rows of Fig.
6 compare all cascades for average run lengths of 6, 37, and
517. Even for the lowest of these run lengths (Fig. 6 (e-h)),

5 The bars in these diagrams are sorted, such that the best
algorithm is at the left. We use the color to encode the
NS algorithm and the hatch to encode the logical-level tech-
nique, whereby (none) means a stand-alone NS algorithm.
Furthermore, bars with an X on top mark algorithms which
do not achieve a size reduction on the dataset, i.e., require
at least 32 bits per integer.
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Figure 6: Comparison of the cascades on dataset D5.5

the cascades with RLE yield by far the best compression
rates, while those with DELTA are among the last ranks.
However, the (de)compression speeds of the cascades with
RLE are not competitive to those of the best stand-alone NS
algorithms. On the other hand, RLE + SIMD-BP128 has
the best aggregation speed. As the run lengths get a little
higher (Fig. 6 (i-l)), the cascades with RLE move further to-
wards the top-ranks of the speeds and further improve their
compression rates. Interestingly, the compression rates of
the cascades with DELTA do now achieve the best compres-
sion rates after the cascades with RLE, except for DELTA +
SIMD-BP128, which still yields the worst compression rate.
When the run length is increased further (Fig. 6 (m-p)),
these trends continue and the cascades with RLE do now
dominate both, the compression rate and all three speeds.

Figure 7 (a-d) report the results of SIMD-BP128 and its
cascades on D6 subject to the number of distinct data ele-
ments. Since D6 is sorted, a low number of distinct values
is equal to a high average run length. Consequently, RLE +
SIMD-BP128 achieves a better compression rate than stand-
alone SIMD-BP128 until the number of distinct values comes
close to the total number of values, i.e. 100 M. Although the
possible minimum value is zero, FOR + SIMD-BP128 also
improves the compression rate. This is due to the fact that
within each input block of the cascade, the value range is
small as the data is sorted. Apart from that, especially the
decompression speed is interesting. For low numbers of dis-
tinct values and thus long runs, SIMD-BP128 and its cascade
with RLE are nearly equally fast. As the number of distinct
values increases, SIMD-BP128 is affected stronger than RLE
+ SIMD-BP128. However, when the number of distinct val-
ues exceeds 221, the performance of the cascade with RLE
deteriorates and from this point on, the cascade with FOR,
respectively DELTA is the fastest algorithm. Note that in
this case, the decompression of the stand-alone SIMD-BP128
is never the fastest alternative. Figure 7 (e-h) show the com-

parison of all 25 algorithms when the dataset contains 128
distinct values. Since the average run length is very high
(nearly 800k), the cascades including RLE are the best re-
garding both, compression rate and speeds. The extreme
case of unique data elements, i.e., 100 M distinct values, is
given in Fig. 7 (i-l). Now the cascades of RLE are among the
worst algorithms for all four measured variables, since the
data contains no runs. The best compression rates are now
achieved by the cascades of DELTA, since the data is sorted.
While the fastest compressor is stand-alone SIMD-BP128,
the next ranks are held by cascades making use of DELTA.
Regarding the decompression speed, the top-3 algorithms
use SIMD-BP128 for the NS-part and DELTA, FOR, or no
preprocessing. In terms of the aggregation speed, the stand-
alone NS algorithms SIMD-BP128 and SIMD-FastPFOR are
the fastest. However, DELTA + SIMD-BP128 and FOR +
SIMD-BP128 also achieve very good aggregation speeds, but
much better compression rates.

Summing up, the changes to the data distributions achieved
by the logical-level techniques do indeed propagate to the
compression rates of their cascades with NS. Furthermore,
the speeds of the cascades can even exceed those of the cor-
responding stand-alone NS algorithms. This is especially
true for the cascades including RLE, if the data contains
long enough runs. Cascades with the other three logical-
level techniques generally lead to less significant speed ups
or even slow downs, whereby these often come with an im-
provement of the compression rate. Finally, if the logical-
level technique is fixed, its cascades with different NS algo-
rithms can lead to significantly different results regarding
compression rate and speed. This justifies the consideration
of multiple different NS algorithms even in cascades.

5.4 Lessons Learned
In order to employ lightweight compression effectively, it

is desirable to know which algorithm is most suitable for a
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Figure 7: Comparison of the cascades on dataset D6.5

given data set w.r.t. a certain optimization goal as, e.g., the
best compression rate, the highest (de)compression speed,
or a combination thereof. Regarding the compression tech-
niques, we can observe some general trends. For instance,
NS usually performs the better, the lower the values are,
while RLE profits from long runs, and DICT from few dis-
tinct values. However, these facts can be derived from the
ideas of the techniques and have already been shown ex-
perimentally by other authors, e.g. in [1]. What is more
interesting is the level of the compression algorithms. While
SIMD-BP128 seems to be a good choice regardless of the op-
timization goal if the data exhibits a good locality, the case is
more complicated for data with a low locality. What makes a
decision even more complex is that the performance of some
NS algorithms is not monotonic in the size of the values.
This holds, e.g., for the word-aligned NS algorithms (Fig. 1
(i-l)) as well as Masked-VByte (Fig. 2, second column).

Moreover, lightweight data compression is still a hot re-
search topic. Hence, more algorithms will be published in
the future. Therefore, an automatic approach for choosing
the best out of a set of algorithms would be welcome. It is
self-evident that the näıve solution of first executing all con-
sidered algorithms on the exact data to be compressed and
then choosing the best algorithm is infeasible for efficiency
reasons. Instead, a model of the algorithms’ compression
rate and performance – subject to the data properties –
could be used. While we believe that such a model could be
built based on our systematic evaluation, we see the main
contribution of this paper in illustrating that this decision is
non-trivial and that, thus, further research in the direction
of an automatic selection is necessary. However, since this is
beyond the scope of this paper, we leave it for future work.

6. EXPERIMENTS ON REAL DATA
To complement our experiments on synthetic data, we

evaluated the algorithms considered in Section 5.3 on a dataset
of postings lists of the real-world document collection GOV26,
which is frequently used to evaluate integer compression al-

6This data set of postings lists is provided by Lemire et al. at
http://lemire.me/data/integercompression2014.html.

gorithms [12, 18, 20]. GOV2 is a corpus of 25 M documents
found in a crawl of the .gov websites. The dataset contains
about 1.1 M postings lists in total, each of which is a sorted
array of unique 32-bit document ids. We discarded all lists
containing less than 8192 integers, since time measurements
are not reliable enough on too short arrays.

Figure 8 (a-d) compare SIMD-BP128 to its cascaded deriva-
tives subject to the list length. Note that, as the total num-
ber of entries in the lists increases, so does the number of
distinct entries (uniqueness), while the average difference of
two subsequent entries decreases. The compression rate of
RLE is noncompetitive to the other algorithms, since unique
values imply the absence of runs. Employing any other
logical-level technique can yield an improvement of the com-
pression rate, whereby DELTA and FOR get better as the
lists get longer. Regarding the compression and aggregation
speed, pure SIMD-BP128 is the fastest for all list lengths.
However, its cascades with DELTA respectively FOR (only
aggregation) are not much slower for long lists. Regarding
the decompression, using DELTA or FOR yields better re-
sults than pure NS for lists longer than 219 respectively 220.

Figure 8 (e-h) provide the rankings of all 25 algorithms.
The reported measurements are averages over all lists lengths
weighted by the actual distribution of the lengths in the
dataset. The cascades with DELTA yield the best compres-
sion rates. The fastest compressors are SIMD-BP128 and
4-Wise NS followed by their cascades with DELTA. Regard-
ing the decompression and aggregation speeds, the top-4 are
stand-alone NS algorithms, which are followed by cascades
with DELTA or FOR.

7. CONCLUSION
Lightweight data compression is heavily employed by mod-

ern in-memory column-stores in order to compensate for the
low main memory bandwidth. In recent years, the corpus
of available compression algorithms has significantly grown,
mainly due to the use of SIMD extensions. In our experi-
mental survey, we systematically evaluated recent vectorized
algorithms of all five basic techniques of lightweight compres-
sion as well as cascades thereof on a multitude of synthetic
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Figure 8: Comparison of the cascades on the postings lists of the real-world document collection GOV2.5

and one real data set. We have shown that there is no single-
best algorithm suitable for all data sets. Instead, making
the right choice is non-trivial and always depends on data
properties such as value distributions, run lengths, sorting,
and the number of distinct data elements. Furthermore, the
best algorithm regarding the compression rate is often not
the best regarding the (de)compression speed, such that a
trade-off must be defined. Even the various null suppression
algorithms show significantly different behavior depending
on the data distribution. Finally, cascades of two techniques
can heavily improve the compression rate, which comes at
the cost of a lower speed in some, but not all cases.
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