
 

 

Series ISSN: 2367-2005 120 10.5441/002/edbt.2017.12

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2017.12


Table 1: Categorization of Existing Work and Ours

Line of Work Information Exploited Optimization

Spatial Textual Social Objective

Location Patterns (LP) [3, 10, 12, 15, 19, 23] × × frequency

Collective Spatial Keyword (CSK) [4, 21] × × proximity

Aggregate Popularity (AP) × × × popularity

Socio-Textual Associations (STA) × × × frequency

according to users’ behavior is based on rank aggregation [8]. For

each keyword, consider a ranking of locations according to the

keyword popularity, i.e., the number of posts that contain it. Then,

to derive a group of locations that is most associated with a set of

keywords, one can simply collect the most popular location for each

keyword. This approach, which we call Aggregate Popularity (AP),

has the advantage that individual locations are strongly associated

with their respective keywords, but the location set as a whole

may lack a strong socio-textual association. Indeed, each location

may be popular for a different type of users, hence there may be

no significantly sized population for which all these locations are

popular. Exactly as in the case of proximity-based associations, if

a strong thematic association among popular locations exists, our

socio-textual approach will discover it.

Another differentiating trait of our work is that we consider the

textual information that is included in the posts themselves, and do

not rely on an external categorization of locations or POIs. The

reason is that we seek to exploit the wisdom of the crowd to also

determine textual relevance, in addition to quantify the strength

of derived associations. Nonetheless, our methods can be readily

adapted to take into account external textual descriptions as well.

To better frame our contribution with respect to previous works,

Table 1 summarizes all approaches according to the type of infor-

mation they exploit, i.e., spatial, textual, or social (user id), as well

as the objective they optimize for. Mining location patterns does

not exploit textual information, and seeks for groups of locations

that maximize the frequency with which they co-appear among

users’ trails. On the other hand, collective spatial keyword queries

ignore the social aspect, and look for location sets that maximize

their proximity (to each other and/or a target location) subject to

the constraint that they cover given keywords. An approach based

on aggregating popularity considers all types of information avail-

able, and strives to include locations that are individually popular

for some keyword and collectively cover given keywords. Our

work also considers all types of information, but optimizes for a

frequency metric that counts co-appearances of locations under a

certain theme/topic/context, which is defined by the given keywords.

As an example, consider a search for locations in Berlin using

the keywords “wall”, “art” and “restaurant”. Figure 1 depicts

the results returned by different alternative approaches for combin-

ing locations to satisfy these keywords. Our socio-textual based

approach returns the following location set as the top result (star-

shaped markers): 〈 “East Side Gallery”, “Hackescher Markt” 〉.
The former is a portion of the Berlin wall covered with paintings,

hence hosting many posts with the keywords “wall” and “art”. The

latter is a popular square in the city center, hosting also a series of

restaurants frequently visited by tourists and travelers. As it turns

out, these locations are neither the most popular ones for each indi-

vidual keyword (see locations with circle-shaped markers, returned

by the AP approach) nor close to each other. Yet, they reveal an

interesting association, hinting to the fact that many travelers that

have visited or plan to visit the Wall, being interested in art, tend to

also prefer restaurants located at Hackescher Markt.

Furthermore, a search based on CSK identified around 350 sin-

gleton locations, for which there exists at least one user with posts

Figure 1: Example of location sets retrieved for keywords

“wall”, “art” and “restaurant” in Berlin.

containing all query keywords. One of these results is illustrated

in Figure 1 (square-shaped marker). It is not straightforward how

to select the best among these results; in fact, several of them may

even be due to outliers or noise, which are inherent to crowdsourced

content. Since a CSK query does not take frequency into account,

it is better suited for cases where the query terms refer to (curated)

POI categories, while being error prone and sensitive to outliers

when searching on raw tags. On the other hand, the top result based

on AP consists of Brandenburg Gate (for “wall”), a famous monu-

ment close to where the Berlin wall used to pass; the intersection of

Gneisenaustr. and Mehringdamm streets (for “restaurant”), a place

with many popular restaurants; and Stattbad Wedding (for “art”), a

former well-known art venue. Each of these locations is popular for

the respective query keyword, but they do not represent any strong

shared interest between the people visiting them.

Existing algorithms for related problems cannot be used to extract

socio-textual associations. Although our problem seems similar to

mining frequent location patterns, the requirement for the locations

to collectively cover certain keywords significantly complicates the

problem, as we discuss in Section 4. Specifically, our notion of

support (frequency) for a location set does not exhibit the anti-

monotonicity property necessary to apply an Apriori-like algorithm

[1]. Briefly, such a property would allow for early pruning of

location sets that cannot be extended to produce valid results. Prac-

tically, the implication is that a naïve algorithm for even a relatively

small-sized city-level dataset, with around 20,000 distinct locations,

would need to investigate more than 1013 sets of three locations.

Nevertheless, by studying the problem characteristics, we are

able to introduce a weaker notion of support that (1) exhibits anti-

monotonicity, and (2) is an upper bound on the actual support of

location sets. Armed with these two properties, we then intro-

duce a methodology to efficiently identify location sets with strong

socio-textual associations. Moreover, we study three different im-

plementations of this methodology, each having its own merits. In

the simplest, we assume that no pre-processing is allowed and that

no index structure is available. We then present a method based

on a simple off-the-shelf inverted index, and demonstrate how it

can significantly speed up processing. The only caveat is that the

association of locations with nearby posts is assumed to be known

beforehand. Finally, leveraging the recent advances in spatio-textual

indices, we devise an algorithm that exploits their general function-

ality. In particular, we consider the state-of-the-art I3 index [22],

which we also extend further to derive an even faster approach.

Compared to the inverted index approach, the spatio-textual index

methods allow to define the association of locations with nearby
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Figure 4: Set relationships between supporting, weakly sup-

porting, and relevant users with respect to the association be-

tween location set L and keyword set Ψ.

Notice that user u2 is not relevant to Ψ = {ψ1, ψ2}. The next

result shows that if we restrict the set of weakly supporting users to

include only relevant users, we can still define a pruning rule.

Theorem 3. If the number of relevant users that weakly support

a location setL and a keyword set Ψ is less than σ, then the support

of any location set L′ ⊇ L and Ψ cannot be more than σ.

Proof. Recall that UΨ, U
LΨ̃

denote the set of relevant users and

weakly supporting users, respectively. Then, the theorem assumes

that |UΨ ∩ U
LΨ̃

| < σ. From (the proof of) Lemma 1 we have

that U
LΨ̃

⊇ U
L′Ψ̃

. Therefore, UΨ ∩ U
LΨ̃

⊇ UΨ ∩ U
L′Ψ̃

and thus

|UΨ ∩ U
LΨ̃

| ≥ |UΨ ∩ U
L′Ψ̃

|. From (the proof of) Lemma 2 any

user u that supports (L′,Ψ) must also weakly support (L′,Ψ).
In addition, u must be relevant to Ψ due to the first condition of

Definition 4. Hence, |UΨ ∩ U
L′Ψ̃

| ≥ sup(L′,Ψ). Combining the

two derived inequalities and the theorem assumption, we derive that

sup(L′,Ψ) < σ.

This result improves upon our filter and refine strategy, by allow-

ing us to early prune a location set that cannot have support above

σ, even though its weak support might be above σ.

A better way to understand the relation between the sets of sup-

porting ULΨ, weakly supporting U
LΨ̃

and relevant UΨ users of a

location set and keyword set (L,Ψ) is to draw a Venn diagram. Fig-

ure 4 depicts these sets, and also includes for completeness their dual

sets drawn with dashed lines (discussed in Section 5.2). We have

shown that while the cardinality of set ULΨ is not anti-monotone

with respect to L, the cardinalities of sets U
LΨ̃

and UΨ ∩ U
LΨ̃

are.

Figure 4 emphasizes that the intersection of relevant and weakly

supporting users is a tighter superset of the desired supporting

users set, while still allowing anti-monotonicity-based prunning. In

the following, we write rw_sup(L,Ψ) to denote the number of

relevant and weakly supporting users, i.e., |UΨ ∩ U
LΨ̃

|.
Returning to the example of Figure 2, the relevant to Ψ users are

all except u2. Therefore, we derive sup(L,Ψ) = |{u1, u3}| =
2, w_sup(L,Ψ) = |{u1, u2, u3}| = 3, and rw_sup(L,Ψ) =
|{u1, u3}| = 2, showing that the relevant and weak support is

closer to the actual support than weak support is.

5. FINDING FREQUENT ASSOCIATIONS
We first present a baseline method for Problem 1, which serves

as the foundation for more elaborate solutions based on indices.

5.1 Basic Algorithm
This algorithm implements the filter and refine approach dis-

cussed in Section 4. Recall that Theorems 2 and 3 allow to prune

location sets with support less than σ based on the concepts of rele-

vant and weakly supporting users (filter step). While this guarantees

Algorithm 1: Algorithm STA

Input: keyword set Ψ, maximum cardinalitym, support threshold σ

Output: result setRσ of all location sets with support at least σ

1 Rσ ← ∅
2 C1 ← L . candidate 1-location sets

3 UΨ ← IdentifyRelevantUsers(Ψ)

4 for 1 ≤ i ≤ m do

5 Fi ← ∅ . i-location sets with more than σ relevant and weakly supporting

users

6 foreach L ∈ Ci do

7 ComputeSupports(L, Ψ)

8 if rw_sup(L,Ψ) ≥ σ then

9 Fi ← Fi ∪ {L}
10 if sup(L,Ψ) ≥ σ then

11 Rσ ← Rσ ∪ {L}

12 Ci+1 ← CandidateGeneration(Fi) . candidate (i+ 1)-location sets

Algorithm 2: STA.IdentifyRelevantUsers

Input: keyword set Ψ
Output: set UΨ of relevant users

1 UΨ ← ∅
2 foreach u ∈ U do

3 covΨ← ∅
4 foreach p ∈ Pu do

5 if p.ψ ∈ Ψ then

6 covΨ← covΨ ∪ {ψ}

7 if |covΨ| = |Ψ| then

8 UΨ ← UΨ ∪ {u}

no false negatives, there can still be false positives, i.e., location sets

with support less than σ, which need to be identified (refine step).

Note that instead of performing this at the end, it can be done more

efficiently during candidate generation, as explained later.

Algorithm 1 outlines the basic method, denoted as STA. It op-

erates on the set P of posts organized by user, i.e., the list Pu
containing the posts of each user u. The input includes the keyword

set Ψ, the maximum cardinality m of a location set, and the sup-

port threshold σ. STA exploits the Apriori principle (lines 4–12) to

identify the location sets with support above σ, filtering out each

location set with fewer than σ relevant and weakly supporting users.

Initially, the result set is empty and the potential 1-location sets

are set to all locations (lines 1–2). Also, the set of users relevant

to Ψ is identified (line 3). Procedure IdentifyRelevantUsers,

depicted in Algorithm 2, iterates across every list Pu and checks if

user u has made posts that cover all keywords that appear in Ψ.

Then, STA proceeds in m iterations, following the Apriori prin-

ciple. At the i-th iteration, all i-location sets with rw_sup not less

than σ are stored in set Fi. Among them, those with support not

less than σ are added to the result set Rσ . After initializing Fi (line

5), each candidate i-location set L is examined (lines 6–11). The

set Ci of candidate i-location sets was generated at the end of the

previous iteration (line 12) by the CandidateGeneration proce-

dure that applies the Apriori principle. In particular, Candidate

Generation creates candidate location sets of cardinality one more

than what was just examined. It takes as input the i-location sets

Fi with relevant weak support above σ, and inserts into Ci+1 an

(i + 1)-location set only if all its i-location subsets are in Fi, due

to the Apriori principle implied by Theorem 3.

For candidate i-location set L, procedure ComputeSupports

(described later) is invoked to determine the number rw_sup(L,Ψ)
of relevant weakly supporting users, and the number sup(L,Ψ) of

supporting users (line 7). If the former support is above σ, L is

added to Fi (lines 8–9). If, additionally, the latter support is greater

than σ, then L is added to the result set Rσ (lines 10–11). This

essentially corresponds to refining the surviving candidates.

Algorithm 3 depicts the pseudocode for ComputeSupports. The
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Table 7: Most Popular Keyword Sets

|Ψ| London

2 london+eye, thames (922); big+ben, london+eye (908); thames, westminster (898); park, thames (880); big+ben, thames (846)

3
big+ben, london+eye, thames (557); big+ben, thames, westminster (497); big+ben, london+eye, westminster (472); london+eye, thames, westminster (464); park, thames,

westminster (440)

4
big+ben, london+eye, thames, westminster (358); big+ben, london+eye, thames, tower+bridge (293); art, green, park, thames (258); green, park, thames, trees (257); park,

statue, thames, westminster (257)

Berlin

2 alexanderplatz, fernsehturm (404); fernsehturm, reichstag (320); alexanderplatz, reichstag (253); reichstag, wall (249); fernsehturm, spree (248)

3
alexanderplatz, fernsehturm, reichstag (192); alexanderplatz, fernsehturm, spree (166); alexanderplatz, fernsehturm, wall (145); brandenburger+tor, fernsehturm, reichstag

(144); fernsehturm, reichstag, spree (142)

4
alexanderplatz, fernsehturm, reichstag, spree (106); alexanderplatz, brandenburger+tor, fernsehturm, reichstag (96); alexanderplatz, fernsehturm, reichstag, wall (95);

alexanderplatz, fernsehturm, potsdamer+platz, reichstag (90); alexanderplatz, fernsehturm, museum, reichstag (82)

Paris

2 eiffel+tower, louvre (777); louvre, seine (745); louvre, museum (706); louvre, notre+dame (691); eiffel+tower, notre+dame (606)

3
eiffel+tower, louvre, notre+dame (415); eiffel+tower, louvre, seine (343); louvre, notre+dame, seine (339); louvre, river, seine (327); arc+de+triomphe, eiffel+tower, louvre

(324)

4
eiffel+tower, louvre, notre+dame, seine (215); bridge, louvre, river, seine (209); arc+de+triomphe, eiffel+tower, louvre, notre+dame (208); louvre, museum, river, seine

(189); bridge, river, seine, street (187)

Table 8: Degree of Overlap Between the Associations Discovered

by STA and those of Existing Approaches

London Berlin Paris

|Ψ| AP CSK AP CSK AP CSK

2 0.22 0.24 0.28 0.30 0.20 0.14

3 0.17 0.04 0.09 0.07 0.08 0.03

4 0.14 0.03 0.01 0.04 0.00 0.00

Table 9: Ratio of Number of Location Sets with Support Above

Threshold over Number of Location Sets with Weak Support

Above Threshold; σ = 0.2%

|Ψ| London Berlin Paris

2 13.29% 23.80% 25.98%

3 1.35% 1.09% 3.85%

4 0.01% 0.00% 0.36%

parameter σ, which is a percentage of the number of users in each

dataset. Note that the basic STA method was at least an order of

magnitude slower than all other methods and is thus omitted from

all plots. Moreover, we include STA-ST in the comparison, in order

to assess the benefits resulting by the STA-STO optimizations. The

results are presented in Figures 7 and 8, for 2 and 4 keywords,

respectively; results for |Ψ| = 3 are similar and are omitted.

As the support threshold increases, the performance of all meth-

ods improves because fewer location sets survive the pruning. This

is apparent in Paris, but not so much in London and Berlin for the

specific range of support values depicted. Clearly, STA-I achieves

the best performance. This is not surprising, since exploiting the

preconstructed inverted index saves a substantial amount of the

execution time during evaluation. It is worth noticing, however,

that STA-STO is also very efficient, achieving competitive execu-

tion times compared to STA-I. In fact, this is not a merit of the

spatio-textual index per se, but rather a result of the proposed op-

timizations; indeed, the execution times of the generic STA-ST are

higher by an order of magnitude. The results appear to be consistent

across the different datasets and for different number of keywords.

Table 9 quantifies the number of location sets (or associations)

discovered that have weak support above but actual support below

the threshold, which was set to σ = 0.2%. For example, in London

for Ψ = 2, we have that 13.29% of the location sets considered

are actual results. As the keyword cardinality increases, the ratio

decreases dramatically, because it becomes harder for location sets

with weak support above the threshold to also cover all keywords.

Finally, we evaluate the performance of the algorithms for the

top-k version of the problem. The results are presented in Figure 9

for |Ψ| = 3. A similar outcome is observed, with k-STA-I outper-

forming k-STA-STO in all cases. For both algorithms, the execution

time tends to increase with k as more results are requested.

8. CONCLUSIONS
In this paper, we have addressed the problem of finding socially

and textually associated location sets from user trails on the Web.

We have formally defined the problem and studied its characteristics.

Based on this, we have proposed a general approach for addressing

the problem, which we have elaborated to derive three algorithms

based on different indices. Furthermore, we have extended our

approach to address also the top-k variant of the problem. The pro-

posed methods have been evaluated experimentally using geotagged

Flickr photos in three different cities.
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