
Subgraph Querying with Parallel Use of Query Rewritings
and Alternative Algorithms

Foteini Katsarou
School of Computing Science

University of Glasgow, UK
f.katsarou.1@

research.gla.ac.uk

Nikos Ntarmos
School of Computing Science

University of Glasgow, UK
nikos.ntarmos@
glasgow.ac.uk

Peter Triantafillou
School of Computing Science

University of Glasgow, UK
peter.triantafillou@

glasgow.ac.uk

ABSTRACT
Subgraph queries are central to graph analytics and graph
DBs. We analyze this problem and present key novel discov-
eries and observations on the nature of the problem which
hold across query sizes, datasets, and top-performing algo-
rithms. Firstly, we show that algorithms (for both the de-
cision and matching versions of the problem) su�er from
straggler queries, which dominate query workload times. As
related research caps query times not reporting results for
queries exceeding the cap, this can lead to erroneous con-
clusions of the methods’ relative performance. Secondly, we
study and show the dramatic e�ect that isomorphic graph
queries can have on query times. Thirdly, we show that
for each query, isomorphic queries based on proposed query
rewritings can introduce large performance bene�ts. Fourthly,
that straggler queries are largely algorithm-speci�c: many
challenging queries to one algorithm can be executed e�-
ciently by another. Finally, the above discoveries naturally
lead to the derivation of a novel framework for subgraph
query processing. The central idea is to employ parallelism
in a novel way, whereby parallel matching/decision attempts
are initiated, each using a query rewriting and/or an alter-
nate algorithm. The framework is shown to be highly ben-
e�cial across algorithms and datasets.

CCS Concepts
�Information systems! Database query processing;
�Mathematics of computing ! Graph algorithms;

Keywords
Graph databases, graph query processing, subgraph isomor-
phism

1. INTRODUCTION
Graphs are ideal for representing complex entities and

their relationships/interactions and subgraph querying is es-
sential to graph analytics. In subgraph querying, given a

c
2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

pattern graph (query) and a graph DB, we want to know
whether it is contained in each DB graph (the decision prob-
lem) and/or �nd all its occurrences within it (the match-
ing problem). Subgraph querying entails the subgraph iso-
morphism problem (abbreviated as sub-iso), which is NP-
complete. Subgraph querying has received a lot of atten-
tion. Related work is categorized in two major categories:
the filter-then-verify (FTV) and the no-filter, verify (NFV)
methods. Numerous methods have been proposed for the
problem and three recent experimental analysis papers ([7,
9, 12]) compare and stress-test proposed methods.

In this work, we conduct a comprehensive analysis of this
problem. Our analysis aims to (i) lead to interesting novel
�ndings about the nature of the problem and existing solu-
tions, (ii) analyse and quantify said discoveries and their ef-
fect on well-established existing solutions, and (iii) show that
the �ndings can be used to develop a framework that can
o�er large performance gains. Speci�cally, we �rst recognize
the existence of\straggler"queries; i.e., queries whose execu-
tion time is dramatically higher than the rest. This holds for
all query workloads and all datasets examined and across all
tested FTV and NFV algorithms. Subsequently, we reveal
and quantify the interesting fact that isomorphic instances
of queries can have a wild variation in querying times. Then
we generate isomorphic instances of the original query using
statistics on vertex-label frequencies and/or vertex degrees
and we investigate their performance. Moreover, for NFV
methods in particular, we additionally show that challeng-
ing queries are algorithm-speci�c, with a straggler query for
one algorithm possibly being easy for others. Finally, we
incorporate these �ndings in a novel framework, coined the
	-framework, that exploits parallelism for both FTV and
NFV methods, achieving large performance gains. Speci�-
cally, instead of trying to come up with new algorithms for
sub-iso testing, we utilize isomorphic query rewritings and
existing alternative algorithms in parallel. Extensive experi-
mentation shows that our framework can be highly bene�cial
across datasets and workloads, and for both FTV and NFV
methods.

2. BACKGROUND

2.1 Related work
Related work is categorized in two major categories. In

the �rst category, proposed methods typically address a de-
cision problem, where given a dataset of many (typically
small) graphs and a query/pattern graph q, the method de-
cides whether q is contained in any graph in the dataset.

 

 

Series ISSN: 2367-2005 25 10.5441/002/edbt.2017.04

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2017.04


Most of the so-called �lter-then-verify (FTV) or indexed sub-
graph query processing methods solve this decision problem,
and work in 2 stages. In the index construction phase, stored
graphs are decomposed into features which are then indexed,
along with graph-id lists; i.e., lists of graphs that contain the
feature. During query processing, query graphs are similarly
decomposed into features; graphs from the dataset that do
not contain one or more of these features de�nitely do not
contain the query and are thus pruned away. The remaining
graphs form the candidate set. At the veri�cation stage, the
query graph is tested for subgraph isomorphism against each
graph in the candidate set to produce the �nal answer. The
target of all these methods is to prune the candidate set and
thus to reduce the number of sub-iso tests performed. Re-
lated works can be classi�ed along 4 major dimensions: (i)
type of indexed features (where \feature" refers to substruc-
tures of indexed graphs used to produce the index, indepen-
dently of whether these are actually stored in the index or
not): paths [1, 5, 30], trees [15, 25], simple cycles, or graphs
[3, 20, 21, 22, 24, 29]; (ii) approach for extracting said fea-
tures from indexed graphs: i.e., exhaustive enumeration [1,
10, 20, 30] or frequent subgraph mining techniques [3, 21,
22, 24, 25, 29]; (iii) index data structure: hash table, tree,
trie; and (iv) whether the index stores location information
or not. FTV methods are extensively discussed in [7, 9]. In
[9] we concluded that Grapes[5] and GGSX[1] are the best
solutions in terms of index construction and query process-
ing time, and scalability limitations.

In the second category, proposed methods address a match-
ing problem, whereby sub-iso testing is performed to �nd all
the embeddings of the query graph q in a given large, stored
graph g without performing any graph �ltering in advance.
We will call them the no-�lter, verify (NFV) methods. Pro-
posed methods, apart from the sub-iso test, additionally
comprise of a pre-processing step where they maintain a
feature-based index consisting of: (i) vertices and edges [15,
18], (ii) shortest paths [28] or (iii) subgraphs [8, 26] up to
a certain size. The algorithms store vertex label lists along
with additional information to facilitate the sub-iso test. A
number of such methods were presented and compared in
[12], concluding that (i) although there was no single algo-
rithm to outperform all others in all occasions, GraphQL[8]
was the only one that managed to complete all the tested
query workloads; (ii) all three of GraphQL, sPath[28] and
QuickSI[15] showed very good performance; but also that
(iii) all existing algorithms have weaknesses in the way they
apply their join selection and pruning heuristics, leading to
the need for new graph matching algorithms.

There is nothing obstructing the NFV methods being ap-
plied for the decision problem and the FTV methods for
the matching problem. FTV methods were originally pro-
posed to work with datasets consisting of numerous, rela-
tively small graphs, and their e�ectiveness relies on their
achieved �ltering, whereas NFV methods construct an in-
dex primarily to locate candidate vertices of the query in a
large stored graph. For the current work, we opt to utilize
all proposed methods for the originally proposed problems.

TwinTwig[11] and sTwig[16] deal with very large graphs,
stored in a distributed infrastructure, and rely on parallel
computing to perform sub-iso testing. Within FTV meth-
ods, iGQ[19] is a recent approach that employs caching on
top of any proposed FTV method to improve performance.
Semertzidis et al. [14] considered pattern queries over time-

evolving graphs, which are beyond the scope of this study.
Finally, there has been considerable work on the subject
of approximate graph pattern matching. Related techniques
(e.g. [10, 17, 20, 23, 27]) perform subgraph matching, but
with the support for wildcards and/or approximate matches.
All of these algorithms are not directly related to our work
as we focus on exact subgraph matching.

As subgraph querying is an important problem, we expect
that many researchers will keep focusing on trying to im-
prove upon existing algorithms in the future. Indeed, since
the publication just a few years ago of [12], comprehensively
comparing the then state of art, newer algorithms have been
proposed [6] with better performance. Nonetheless all al-
gorithms show exponential execution times even at small
query sizes (up to 10 edges)[13]. Our contributions aim to
help this process in two ways. First, by revealing key in-
sights, based on comprehensive experimentation, about the
problem itself and how they a�ect well-known algorithms.
Second, by shedding light onto a novel overall approach to
the problem and its bene�ts. Namely, instead of focusing
solely on developing new solutions by improving earlier al-
gorithms, try to bene�t from the wealth of ideas already
existing within previous algorithms! Speci�cally, our �nd-
ings show that di�erent algorithms are appropriate for dif-
ferent queries. Furthermore, they show that di�erent query
rewritings are appropriate for di�erent queries and for dif-
ferent algorithms! Finally, the existence of straggler queries
poses new challenges for the performance comparison of dif-
ferent algorithms, needing more detailed performance met-
rics and experimenting with more challenging queries. All
current works miss the above points: (i) they only consider
one query rewriting, if at all, for all queries, (ii) they use only
one algorithm for all workload queries, and (iii) they do not
stress-test their algorithms with more challenging queries
(e.g., larger sizes). Our framework shows that such misses
also lead to misses of dramatic performance improvements.

2.2 Definitions

Definition 1 (Graph). A graph G = (V;E; L) is de-
�ned as the triplet consisting of the set V = {vi}; i = 1; :::; n
of vertices of the graph, the set E ⊆ {(v; u) : v; u ∈ V }
of edges between vertices in the graph, and a function L :
V |E → L assigning a label l ∈ L (L being the set of all
possible labels) to each vertex v ∈ V and each edge e ∈ E.

We assume that each node in a graph is assigned an integer
in the interval [1; n], so that no two nodes in a graph have
the same number; we call this the node ID.

Definition 2 (Graph Isomorphism). Two graphs G
= (V;E; L) and G0 = (V 0; E0; L0) are isomorphic i� there
exists a bijection I : V → V 0 that maps each vertex of G to
a vertex of G0, such that if (u; v) ∈ E then (I(u); I(v)) ∈ E0,
L(u) = L0(I(u)), L(v) = L0(I(v)), and vice versa.

Note that, given a graph G, a graph G0 isomorphic to G
can be trivially produced by permuting the node IDs in G.

Definition 3 (Subgraph Isomorphism). A graph G
= (V;E; L) is subgraph isomorphic to a graph G0 = (V 0; E0;
L0), denoted by G ⊆ G0, i� there exists an injective function
I : V → V 0 such that if (u; v) ∈ E then (I(u); I(v)) ∈ E0

and L(u) = L0(I(u)) and L(v) = L0(I(v)). Graph G is then
called a subgraph of G0.

26



Much like all of the works mentioned earlier, we focus on
non-induced subgraph isomorphism.

3. EXPERIMENTAL SETUP

3.1 Short description of used Algorithms

3.1.1 FTV methods
Both Grapes[5] and GGSX[1] index the simplest form of

features – i.e., paths – up to a maximum length. Paths
are searched in a DFS manner and indexed in a trie or suf-
fix tree respectively. Compared to GGSX, Grapes takes an
additional step and maintains location information. Also,
Grapes features multi-threaded design for both indexing and
query processing. In query processing, maximal paths of
the query are extracted to form the query index which is
matched with the dataset index, pruning away unmatched
branches. Subsequently, the search space is further pruned
by the frequencies of indexed features. After this step, GGSX
forms its candidate set of graphs that will undergo sub-iso
testing. Grapes further exploits the maintained location in-
formation to extract relevant connected components of the
dataset graphs, against which sub-iso testing is performed.

The underlying isomorphism algorithm for both Grapes
and GGSX is VF2[4]. VF2 does not define any order in
which query vertices are selected. Given a query graph q
and a dataset graph g, the algorithm chooses a vertex from
q to match to vertices in g, and proceeds by then trying
to match still unmatched vertices adjacent to the matched
ones in q. Given an unmatched vertex in q, the set of can-
didate vertices of g is defined as the set of all vertices in
g with the same label as the unmatched vertex in q. VF2
then employs 3 pruning rules to reduce the number of can-
didate vertices. The first rule removes candidates that are
not directly connected to the already matched vertices of g.
The second rule removes all candidates for which the num-
ber of adjacent unmatched nodes which are also adjacent to
matched nodes of g, is smaller than the corresponding fig-
ure for the matched vertex of q. The final rule removes all
g candidates with less adjacent (matched/candidate) nodes
than the corresponding figure in q.

3.1.2 NFV methods
In the sub-iso test of QuickSI[15] (QSI for short), priority

is given to the vertices with infrequent labels and infrequent
adjacent edge labels. In the indexing phase, QuickSI pre-
computes the frequencies of labels and edges and uses them
to compute the “average inner support” of a vertex or an
edge; i.e., the average number of possible mappings of the
vertex or edge in the graph. The inner support is later used
in the graph matching process to assign weights on the edges
of the query graph and construct a rooted minimum span-
ning tree (MST). In case of symmetries, edges are added in
such a way that will make the MST denser. The order in
which vertices are inserted to the MST defines the order in
which they are then matched in the sub-iso test.

In the indexing phase of GraphQL[8] (GQL for short),
the labels of all vertices along with the neighbourhood sig-
natures, which capture the labels of neighbouring nodes in
a radius i in lexicographical order, are indexed. In the sub-
graph matching phase, the algorithm starts by retrieving all
possible matches for each node in the pattern. Subsequently,
3 rules are applied in order to prune the search space. First,

the indexed vertex labels and neighbourhood signatures are
used to infeasible matches. Then a pseudo subgraph iso-
morphism algorithm is applied to the problem iteratively
up to level l; i.e., for every pair of possible graph-query ver-
tex matches, the nodes adjacent to the query node should
be matched to the corresponding neighbours of the graph.
Finally, the algorithm needs to optimize the search order
in the query before proceeding with the actual sub-iso test,
which in turn consists of a number of joins of the candidate
node lists. This optimization is based on an estimation of
the result-set size of intermediate joins, and as it would be
very expensive to enumerate all possible search orders, only
left-deep query plans are considered.

sPath[28] (SPA for short), similarly to GraphQL, also
maintains a neighbourhood signature comprised of shortest
paths organized in a compact indexing structure. Specifi-
cally, in order to reduce the storing space, shortest paths
are not really maintained, but they are decomposed in a
distance-wise structure. In the query processing, the query is
initially decomposed in shortest paths that are then matched
to the candidate shortest paths from the stored graph. From
all possible candidate shortest paths, those that (i) can cover
the query and (ii) provide good selectivity, i.e. minimize the
estimated result-set size of each join operation, are selected
as candidates. For each one of the selected paths, an edge-
by-edge verification is then used to perform the sub-iso test.

3.2 Setup
Experiments with Grapes and GGSX were conducted on

a small cluster consisting of 5 nodes, each featuring an Intel
Core i5-3570 CPU (3.4GHz, 4 physical cores, 6MB cache),
16GB of RAM, 500GB disk per node, and running Ubuntu
Linux 14.04. Experiments with QuickSI, GraphQL and sPath
(i.e., the NFV methods) were conducted on a Windows 7
SP1 host, with 2 Intel Xeon E5-2660 CPUs (2.20GHz, 20MB
cache) with 8 cores/16 vcores per CPU, 128GB of RAM, and
3.5TB disk. For practical purposes, we allowed a maximum
limit of 10 mins for each query to be processed. Beyond that
time, the execution is terminated and we proceed with the
next query in the workload. Please note that this 10’ limit
does not apply in the indexing phases of the algorithms.

For Grapes and GGSX we used the implementations pro-
vided by their respective authors. However, in the case of
Grapes, we had to alter the source code so that the VF2
verification step returns after the first match of the query
graph, as opposed to the original implementation which was
returning all possible matches. The reason for this is that
FTV methods are mainly designed to retrieve the graphs
that contain the query as an answer. For QuickSI, GraphQL
and sPath, we used the implementation provided by [12].

We used the default values for the input parameters of
the compared algorithms, as they were defined by their re-
spective authors in the relevant publications and/or in their
implementation code. More specifically:
• For GGSX and Grapes, we enumerated paths of up to

size of 4.
• We ran Grapes with 1 and 4 threads; results for execu-

tions with 1 (resp. 4) threads are denoted by Grapes/1
(resp. Grapes/4).
• For GraphQL, we used a refined level of iterations of

pseudo-subgraph isomorphism r = 4.
• For sPath, we used a neighbourhood radius of 4 and

maximum path length 4.

27



PPI Synthetic

D
a
ta

se
t # graphs 20 1000

#disconnected graphs 20 0
#labels 46 20

P
er

G
ra

p
h

Avg #nodes 4942 1100
StdDev #nodes 2648 483
Avg #edges 26667 12487
Avg density 0.0022 0.020
Avg degree 10.87 24.5
Avg #labels 28.5 20

Table 1: Dataset characteristics for FTV methods

yeast human wordnet

#nodes 3112 4674 82670
#edges 12519 86282 120399
Avg degree 8.04 36.91 2.912
StdDev degree #nodes 14.50 54.16 7.74
Density 0.00258 0.0079 0.000035
#labels 184 90 5
Avg frequency labels 127 240 16534
StdDev frequency labels 322.5 430 152

Table 2: Dataset characteristics for NFV methods

• For QuickSI, GraphQL and sPath the number of searched
embeddings of the pattern graph on the stored graph
is capped at 1000; i.e., after finding the first 1000
matches, the algorithms terminate.

3.3 Datasets
We have chosen datasets which (a) have also been used by

other studies, so as to enable possible direct comparisons,
and (b) have key characteristics covering a large part of the
design space (e.g., regarding graph size and density).

Table 1 summarizes the characteristics of the datasets that
we used for the FTV methods. PPI (used in [5, 9]) is a real
dataset representing 20 different protein-protein interaction
networks. The majority of existing real datasets that were
used for the FTV methods comprise of relatively small and
sparse graphs. In [9] we showed that, for such datasets,
both Grapes and GGSX perform adequately well. For our
current study we are further interested in more challenging
datasets and we thus employ an additional synthetic dataset
generated with GraphGen[2], allowing various parameters of
interest to be specified; namely, number of graphs, average
number of nodes and density per graph, number of labels in
the dataset). A more detailed description of how GraphGen
constructs the dataset can be found in [9].

Datasets used for the NFV methods consist of only one
graph as the primary task of these methods is to find all oc-
currences of the pattern graph in the large stored graph. Ta-
ble 2 summarizes the characteristics of the three real datasets
– namely yeast, human and wordnet — that we have used
for the NFV methods. Yeast and human were previously
used in [12], while Wordnet1 was used in [16].

3.4 Query Workloads
To generate each of the queries, first we select a graph

from the dataset uniformly and at random, and from that

1http://vlado.fmf.uni-lj.si/pub/networks/data/dic/Wordnet/
Wordnet.htm

graph we select a node uniformly and at random. Starting
from said node, we generate a query graph by incremen-
tally adding edges chosen uniformly at random from the
set of all edges adjacent to the resulting query graph, until
it reaches the desired size. For the synthetic dataset, we
used 100 queries of size 24, 32 and 40 edges for Grapes/1
and Grapes/4. We did not run GGSX against the synthetic
dataset, because of excessive amount of time required for
the experiments to complete. For the PPI dataset, we used
100 queries of size 16, 20, 24, and 32 edges. For the NFV
methods, we used 200 queries of 10, 16, 20, 24 and 32 edges.
Last, for QuickSI we only report results against the yeast
dataset, as (i) it was the easiest NFV dataset to process,
and (ii) QuickSI always had many more cases, compared to
GraphQL and sPath, where query processing exceeded the
10’ cap. For all used methods, the majority of the queries
completed in under 2”. We call them easy queries. Another
portion of queries had processing times in the 2” to 600”
range; we denote these 2"-600" queries. We use the term
completed to refer to all queries that finished within the 10’
limit; those that did not are called hard or killed.

3.5 Performance Metrics
For every query against a stored graph, we measure the

Execution Time, denoted exec time, for both FTV and NFV
methods, while avg exec time denotes the average execution
time. Specifically for FTV methods, this is the pure sub-iso
time; i.e., excluding the index loading and filtering times,
which add only a trivial overhead. For FTV methods re-
ported times are in seconds, while for NFV methods times
are in milliseconds, unless stated otherwise.

Let qi be a given query and tMi the exec time of qi over
methodM . Let also qi,j be the j-th isomorphic instance of qi
and tMi,j the exec time of qi,j over method M . Finally, let tΨi,j
be the exec time of qi,j over our proposed Ψ-framework. We

define the (max=min) metric as:
maxj(tM

i;j)

minj(tM
i;j)

. The minimum

value of this metric is 1, indicating that there are no varia-
tions between the min and max exec time. The higher the
value of this metric, the higher the differences between the
min and max exec time achieved by the isomorphic query in-

stances. We also define the speedup∗ metric as:
tM

i
T

, where T

is set to: (i) minj(t
M
i,j), when comparing against the various

isomorphic instances of qi, (ii) minM (tMi,j), when compar-

ing against different methods, and (iii) tΨi , when comparing
against our Ψ-framework. speedup∗ represents what we lose
in performance if we choose the original method over the
various alternatives; i.e., speedup∗ equals the maximum at-
tainable speedup over the original method, if we chose the
best of the examined alternatives. For comparison purposes,
for queries that were killed at the 10’ limit we use this time
(i.e., 600”) as their minimum execution time.

When comparing two sets of measurements A = {Ai} and
B = {Bi}, we can compute their average ratio in two ways:

• Workload-Level Aggregation (WLA), given by avgi(Bi)
avgi(Ai)

.

WhenA andB contain query response times, the WLA
computation would give the improvement in the overall
average execution time. This metric is important from
the system perspective as it encapsulates the overall
performance change.

• Query-Level Average (QLA), computed as avgi
(

Bi
Ai

)
.

When applied to query processing times, the QLA

28



29





Grapes/1 Grapes/4 GGSX

sy
n
th

et
ic stdDev 86,700.40 65,988.40 -

min 1.06 1.02 -
max 3,820,000.00 3,490,000.00 -

median 3.90 4.45 -

P
P

I

stdDev 469,934 395,285 1,020,000
min 1.03 1.02 1.01
max 3,680,000 3,160,000 12,000,000

median 1,186.51 11.19 109,086.00

Table 5: (max/min)QLA statistics for FTV methods

GraphQL sPath QuickSI

y
ea

st

stdDev 287.54 533.86 1685.71
min 1.01 1.01 1.00
max 7286.33 6695.85 15021.60

median 1.40 1.36 1.61

h
u
m

a
n

stdDev 440.18 662.78 -
min 1.00 1.04 -
max 4115.06 4087.81 -

median 1.82 1.96 -

w
o
rd

n
et

stdDev 20.55 396.87 -
min 1.01 1.01 -
max 646.44 3081.14 -

median 1.21 1.34 -

Table 6: (max/min)QLA statistics for NFV methods

we did not include queries that were not helped by any of
the isomorphic instances tried; i.e., queries that were hard
on all tested isomorphic instances of the query. This behav-
ior occurred in 0.0036% and 1.4% of queries for Grapes/1
on the synthetic and PPI datasets respectively, and 0.37%
of queries for Grapes/4 and 1.96% of queries for GGSX for
the PPI dataset. We note that the “max” and “average”
values of (max/min)QLA are only lower-bound estimations,
because of the 10’ limit that we used instead of the actual
verification time. In these results, we observe that there
is an at least 6 orders of magnitude difference between the
min and the max value of (max/min)QLA, with the median
(apart from GGSX) being closer to the min value. Along
with the high stdDev, we can see that isomorphic instances
of the same query can indeed have widely and wildly differ-
ent verification times.

5.2 NFV methods
Fig. 4 reports the QLA-average values of the (max/min)

metric for the yeast, human and wordnet datasets, for the
tested NFV methods (QuickSI results omitted for the hu-
man and wordnet datasets; see §3.4). Table 6 reports the
stdDev, min, max and median value of (max/min)QLA. We
report that 4.2%, 8.2% and 1.5% of queries were not helped
by any tested isomorphic query instances for GraphQL and
for yeast, human and wordnet respectively. For sPath the
corresponding values are 2.1%, 1.4% and 11.8%. Finally, for
QuickSI 8.6% of the queries were not helped for yeast.

The QLA-average (max/min) for the NFV methods is
up to 3 orders of magnitude lower than that of the FTV
methods. This is somewhat expected as the NFV methods
define a more strict order in which the nodes of the query
are matched and thus leave less space for wild variations.
However, this order is still significantly affected by the ini-

Grapes/1 Grapes/4 GGSX

sy
n
th

et
ic stdDev 53,785.70 24,267.60 -

min 1.00 1.00 -
max 3,820,000 2,110,000 -

median 1.36 1.24 -

P
P

I

stdDev 302,250 237,573 758,668
min 1.00 1.00 1.00
max 3,370,000 2,910,000 9,390,000

median 3.71 1.67 1,751.22

Table 7: speedup�QLA statistics for FTV methods
across rewritings

GraphQL sPath QuickSI

y
ea

st

stdDev 235.61 422.56 1193.03
min 1.00 1.00 1.00
max 7286.33 6695.85 15021.60

median 1.10 1.08 1.30

h
u
m

a
n

stdDev 259.93 492.45 -
min 1.00 1.00 -
max 4115.06 4087.81 -

median 1.09 1.08 -

w
o
rd

n
et

stdDev 20.55 244.66 -
min 1.00 1.00 -
max 646.44 3081.14 -

median 1.13 1.08 -

Table 8: speedup�QLA statistics for NFV methods
across rewritings

tial node ids of the query, and thus we still see per-query
(max/min) values of up to 2 orders of magnitude.

We summarize our overall results to the following conclu-
sions: (1) For every isomorphic test to be executed, given
a query graph q and a stored graph, there is an isomor-
phic version of q that can take anywhere from 2 to 6 orders
of magnitude more time to execute compared to the least
expensive version of the query. This holds across all algo-
rithms and datasets tested. (2) Although the presented fig-
ures hide the details of the individual query sizes, we report
that the harder the queries (higher query sizes), the higher
these number are.

(a) Original

A A

A
B

B

C

C
0

1

2

3
4

5
6

(b) ILF (c) IND (d) ILF+IND

Figure 5: Isomorphic queries generated with differ-
ent rewritings (assuming the label frequencies in the
stored graph are: “A”=20, “B”=15, “C”=10)

6. GRAPH QUERY REWRITING
Having established that isomorphic versions of a query

can have dramatically different execution times, we set out

31



(a) PPI dataset, WLA-Avg exec time (s)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

Grapes/1 Grapes/4 GGSX

%
 o

f 
h

ar
d
 q

u
er

ie
s

Orig
ILF

IND
DND

ILF+IND
ILF+DND

(b) PPI dataset, percentage of hard queries

(c) yeast dataset, WLA-Avg exec time (ms)

 0

 2

 4

 6

 8

 10

 12

GQL SPA QSI

%
 o

f 
h
ar

d
 q

u
er

ie
s

Orig
ILF

IND
DND

ILF+IND
ILF+DND

(d) yeast dataset, percentage of hard queries

Figure 6: Results for individual query rewrtings for both FTV and NFV methods

 1

 10

 100

 1000

 10000

 100000

 1e+06

sp
ee

d
u
p
*

Q
L

A

Grapes/1
Grapes/4

GGSX

PPIsynthetic

Figure 7: Avg speedup∗QLA for FTV methods across
rewritings

Figure 8: Avg speedup∗QLA for NFV methods across
rewritings

to construct speci�c rewritings, constructing graphs isomor-
phic to the original queries, with the aim to capture these
bene�ts. We have developed and experimented with several
such query rewritings. We outline below �ve such rewrit-
ings, all performed by carefully permuting the node IDs in
the query graph:
• Query Rewriting ILF (Increasing Label Frequency):

In a preprocessing step, we compute the frequencies
of node labels in the stored graph, sorted in increas-
ing frequency order. Given this order, we produce a
rewriting of the query graph so if i, j are the node IDs
of query graph nodes ni, nj , L(ni), L(nj) are their la-
bels, and f(L(·)) is the frequency of a label L(·) in the
stored graph, then f(L(ni)) < f(L(nj))⇒ i < j. Ties

can appear in 2 cases: (i) two or more query nodes have
the same label, or (ii) two or more query nodes have
di�erent labels but with the same frequency. These
ties are broken arbitrarily.
• Query Rewriting IND (Increasing Node Degree):

The nodes of the query are sorted in increasing node
degree order; i.e., if ni, nj are two query graph nodes,
and d(·) is the degree (number of edges) of a node,
then d(ni) < d(nj)⇒ i < j. In the case of nodes with
the same number of edges, ties are broken arbitrarily.
• Query Rewriting DND (Decreasing Node Degree):

This rewriting is similar to the IND but the nodes of
the query are sorted in decreasing node degree and the
nodes ids are assigned accordingly.
• Query Rewriting ILF+IND: This rewriting is the same

as ILF above, with ties being broken in an IND man-
ner: i.e., nodes with smaller outgoing degree get a
lower node id.
• Query Rewriting ILF+DND: This rewriting is the same

as ILF+IND, with ties being broken in a DND manner.
Fig. 5 presents an example of the above rewritings. Note

that the ILF+IND rewriting in 5(d) is also a valid ILF
rewriting. As we already mentioned, ties are (utterly) bro-
ken in an arbitrary way, and thus one may compute several
di�erent isomorphic graphs for the same rewriting.

Indicatively2 and because of space restrictions, in �g. 6
we report the WLA average processing times of the original
query and the 5 proposed query rewritings for the PPI and
yeast datasets, as well as the corresponding percentages of
the hard queries. For the FTV methods, the best perform-
ing rewritings are ILF and ILF+DND, with the percentage
of hard queries being signi�cantly improved. For the NFV
methods, the picture is slightly di�erent. GraphQL shows
no considerable improvement with any individual rewriting;
as a matter of fact, there are rewritings leading to higher

2We obtained similar results for the synthetic dataset for the
FTV methods and the human dataset for the NFV meth-
ods. The sole exception was sPath, whose percentage of hard
queries increased slightly for the wordnet dataset.

32



33



34



 0

 20

 40

 60

 80

 100

 120

 140

 160

sp
ee

d
u
p

*
Q

L
A

Ψ(Or/ILF/ILF+IND)
Ψ(Or/ILF/IND/DND)

Ψ(Or/ILF/IND/DND/ILF+IND)
Ψ(all)

QSISPAGQL

(a) yeast dataset

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

sp
ee

d
u
p

*
Q

L
A

Ψ(Or/ILF/ILF+IND)
Ψ(Or/ILF/IND/DND)

Ψ(Or/ILF/IND/DND/ILF+IND)
Ψ(all)

SPAGQL

(b) human dataset

(c) wordnet dataset

Figure 13: Avg speedup∗QLA across di�erent versions
of 	-framework on the NFV methods

PPI yeast human wordnet

Grapes/4 6.29% - - -
GraphQL - 4.3% 10% 1.6%

sPath - 2.8% 4.4% 13%
	-fram 2.06% 0% 0.7% 0%

Table 10: Percentage of killed queries of FTV meth-
ods and our 	-framework

tal of 4 threads as well): ILF, IND, DND, ILF+IND. The
results are presented in �g. 12 for the PPI dataset (results
for the synthetic dataset were similar). Table 10 reports the
percentage of killed queries for Grapes/4 and 	-framework
on PPI. As is obvious, although both contenders have the
same level of parallelism, 	-framework makes better use of
its threads and leads to lower query processing times.

8.2 NFV methods
Fig. 13 presents the avg speedup∗QLA for utilizing di�er-

ent versions of 	-framework on the NFV methods (we omit
the �gures for avg speedup∗WLA due to space constraints).
We utilize the following versions of 	-framework and the
corresponding number of threads: (a) Orig/ ILF/ ILF+IND
(3 threads) (b) Orig/ ILF/ IND/ DND (4 threads), (c)
Orig/ ILF/ IND/ DND/ ILF+IND (5 threads), and (d) Orig
+ all-rewritings (titled as all) (6 threads). For all tested
datasets and workloads, GraphQL bene�ted the least by the
rewritings. The biggest improvements appear in the human

(a) speedup∗QLA for GraphQL

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

sp
ee

d
u
p

*
Q

L
A

Ψ([GQL/SPA]-[Or])
Ψ([GQL/SPA]-[ILF])
Ψ([GQL/SPA]-[IND])

Ψ([GQL/SPA]-[DND])
Ψ([GQL/SPA]-[Or/DND])

wordnethumanyeast

(b) speedup∗QLA for sPath

Figure 14: Avg speedup∗QLA for running multiple al-
gorithms against NFV methods on 	-framework

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

sp
ee

d
u
p
*

W
L

A

Ψ([GQL/SPA]-[Or])
Ψ([GQL/SPA]-[ILF])
Ψ([GQL/SPA]-[IND])

Ψ([GQL/SPA]-[DND])
Ψ([GQL/SPA]-[Or/DND])

wordnethumanyeast

(a) speedup∗WLA for GraphQL

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

sp
ee

d
u
p
*

W
L

A

Ψ([GQL/SPA]-[Or])
Ψ([GQL/SPA]-[ILF])
Ψ([GQL/SPA]-[IND])

Ψ([GQL/SPA]-[DND])
Ψ([GQL/SPA]-[Or/DND])

wordnethumanyeast

(b) speedup∗WLA for sPath

Figure 15: Avg speedup∗WLA for running multiple
algorithms against NFV methods on 	-framework

dataset. We attribute this to the fact that this dataset com-
prises a denser graph with more labels, thus a larger portion
of \hard"queries bene�ted by our rewritings and framework.

Finally, �g. 14 and 15 depict the avg speedup∗QLA and the
avg speedup∗WLA for utilizing di�erent algorithms and dif-
ferent versions of 	-framework on the NFV methods and
on yeast, human and wordnet, against vanilla GraphQL
and sPath respectively. We instantiated the following ver-
sions of our 	-framework with the corresponding number
of threads: (a) GraphQL-Orig/ sPath-Orig (2 threads), (b)
GraphQL-ILF/ sPath-ILF (2 threads), (c) GraphQL-IND/
sPath-IND (2 threads), (d) GraphQL-DND/ sPath-DND (2
threads). (e) GraphQL-Orig /sPath-Orig/ GraphQL-DND/
sPath-DND (4 threads). For both GraphQL and sPath, we

35



36


	Subgraph Querying with Parallel Use of Query Rewritings and Alternative AlgorithmsFoteini Katsarou, Nikos Ntarmos, Peter Triantafillou

