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ABSTRACT
Subgraph queries are central to graph analytics and graph
DBs. We analyze this problem and present key novel discov-
eries and observations on the nature of the problem which
hold across query sizes, datasets, and top-performing algo-
rithms. Firstly, we show that algorithms (for both the de-
cision and matching versions of the problem) suffer from
straggler queries, which dominate query workload times. As
related research caps query times not reporting results for
queries exceeding the cap, this can lead to erroneous con-
clusions of the methods’ relative performance. Secondly, we
study and show the dramatic effect that isomorphic graph
queries can have on query times. Thirdly, we show that
for each query, isomorphic queries based on proposed query
rewritings can introduce large performance benefits. Fourthly,
that straggler queries are largely algorithm-specific: many
challenging queries to one algorithm can be executed effi-
ciently by another. Finally, the above discoveries naturally
lead to the derivation of a novel framework for subgraph
query processing. The central idea is to employ parallelism
in a novel way, whereby parallel matching/decision attempts
are initiated, each using a query rewriting and/or an alter-
nate algorithm. The framework is shown to be highly ben-
eficial across algorithms and datasets.

CCS Concepts
•Information systems→ Database query processing;
•Mathematics of computing → Graph algorithms;

Keywords
Graph databases, graph query processing, subgraph isomor-
phism

1. INTRODUCTION
Graphs are ideal for representing complex entities and

their relationships/interactions and subgraph querying is es-
sential to graph analytics. In subgraph querying, given a
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pattern graph (query) and a graph DB, we want to know
whether it is contained in each DB graph (the decision prob-
lem) and/or find all its occurrences within it (the match-
ing problem). Subgraph querying entails the subgraph iso-
morphism problem (abbreviated as sub-iso), which is NP-
complete. Subgraph querying has received a lot of atten-
tion. Related work is categorized in two major categories:
the filter-then-verify (FTV) and the no-filter, verify (NFV)
methods. Numerous methods have been proposed for the
problem and three recent experimental analysis papers ([7,
9, 12]) compare and stress-test proposed methods.

In this work, we conduct a comprehensive analysis of this
problem. Our analysis aims to (i) lead to interesting novel
findings about the nature of the problem and existing solu-
tions, (ii) analyse and quantify said discoveries and their ef-
fect on well-established existing solutions, and (iii) show that
the findings can be used to develop a framework that can
offer large performance gains. Specifically, we first recognize
the existence of“straggler”queries; i.e., queries whose execu-
tion time is dramatically higher than the rest. This holds for
all query workloads and all datasets examined and across all
tested FTV and NFV algorithms. Subsequently, we reveal
and quantify the interesting fact that isomorphic instances
of queries can have a wild variation in querying times. Then
we generate isomorphic instances of the original query using
statistics on vertex-label frequencies and/or vertex degrees
and we investigate their performance. Moreover, for NFV
methods in particular, we additionally show that challeng-
ing queries are algorithm-specific, with a straggler query for
one algorithm possibly being easy for others. Finally, we
incorporate these findings in a novel framework, coined the
Ψ-framework, that exploits parallelism for both FTV and
NFV methods, achieving large performance gains. Specifi-
cally, instead of trying to come up with new algorithms for
sub-iso testing, we utilize isomorphic query rewritings and
existing alternative algorithms in parallel. Extensive experi-
mentation shows that our framework can be highly beneficial
across datasets and workloads, and for both FTV and NFV
methods.

2. BACKGROUND

2.1 Related work
Related work is categorized in two major categories. In

the first category, proposed methods typically address a de-
cision problem, where given a dataset of many (typically
small) graphs and a query/pattern graph q, the method de-
cides whether q is contained in any graph in the dataset.
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Most of the so-called filter-then-verify (FTV) or indexed sub-
graph query processing methods solve this decision problem,
and work in 2 stages. In the index construction phase, stored
graphs are decomposed into features which are then indexed,
along with graph-id lists; i.e., lists of graphs that contain the
feature. During query processing, query graphs are similarly
decomposed into features; graphs from the dataset that do
not contain one or more of these features definitely do not
contain the query and are thus pruned away. The remaining
graphs form the candidate set. At the verification stage, the
query graph is tested for subgraph isomorphism against each
graph in the candidate set to produce the final answer. The
target of all these methods is to prune the candidate set and
thus to reduce the number of sub-iso tests performed. Re-
lated works can be classified along 4 major dimensions: (i)
type of indexed features (where “feature” refers to substruc-
tures of indexed graphs used to produce the index, indepen-
dently of whether these are actually stored in the index or
not): paths [1, 5, 30], trees [15, 25], simple cycles, or graphs
[3, 20, 21, 22, 24, 29]; (ii) approach for extracting said fea-
tures from indexed graphs: i.e., exhaustive enumeration [1,
10, 20, 30] or frequent subgraph mining techniques [3, 21,
22, 24, 25, 29]; (iii) index data structure: hash table, tree,
trie; and (iv) whether the index stores location information
or not. FTV methods are extensively discussed in [7, 9]. In
[9] we concluded that Grapes[5] and GGSX[1] are the best
solutions in terms of index construction and query process-
ing time, and scalability limitations.

In the second category, proposed methods address a match-
ing problem, whereby sub-iso testing is performed to find all
the embeddings of the query graph q in a given large, stored
graph g without performing any graph filtering in advance.
We will call them the no-filter, verify (NFV) methods. Pro-
posed methods, apart from the sub-iso test, additionally
comprise of a pre-processing step where they maintain a
feature-based index consisting of: (i) vertices and edges [15,
18], (ii) shortest paths [28] or (iii) subgraphs [8, 26] up to
a certain size. The algorithms store vertex label lists along
with additional information to facilitate the sub-iso test. A
number of such methods were presented and compared in
[12], concluding that (i) although there was no single algo-
rithm to outperform all others in all occasions, GraphQL[8]
was the only one that managed to complete all the tested
query workloads; (ii) all three of GraphQL, sPath[28] and
QuickSI[15] showed very good performance; but also that
(iii) all existing algorithms have weaknesses in the way they
apply their join selection and pruning heuristics, leading to
the need for new graph matching algorithms.

There is nothing obstructing the NFV methods being ap-
plied for the decision problem and the FTV methods for
the matching problem. FTV methods were originally pro-
posed to work with datasets consisting of numerous, rela-
tively small graphs, and their effectiveness relies on their
achieved filtering, whereas NFV methods construct an in-
dex primarily to locate candidate vertices of the query in a
large stored graph. For the current work, we opt to utilize
all proposed methods for the originally proposed problems.

TwinTwig[11] and sTwig[16] deal with very large graphs,
stored in a distributed infrastructure, and rely on parallel
computing to perform sub-iso testing. Within FTV meth-
ods, iGQ[19] is a recent approach that employs caching on
top of any proposed FTV method to improve performance.
Semertzidis et al. [14] considered pattern queries over time-

evolving graphs, which are beyond the scope of this study.
Finally, there has been considerable work on the subject
of approximate graph pattern matching. Related techniques
(e.g. [10, 17, 20, 23, 27]) perform subgraph matching, but
with the support for wildcards and/or approximate matches.
All of these algorithms are not directly related to our work
as we focus on exact subgraph matching.

As subgraph querying is an important problem, we expect
that many researchers will keep focusing on trying to im-
prove upon existing algorithms in the future. Indeed, since
the publication just a few years ago of [12], comprehensively
comparing the then state of art, newer algorithms have been
proposed [6] with better performance. Nonetheless all al-
gorithms show exponential execution times even at small
query sizes (up to 10 edges)[13]. Our contributions aim to
help this process in two ways. First, by revealing key in-
sights, based on comprehensive experimentation, about the
problem itself and how they affect well-known algorithms.
Second, by shedding light onto a novel overall approach to
the problem and its benefits. Namely, instead of focusing
solely on developing new solutions by improving earlier al-
gorithms, try to benefit from the wealth of ideas already
existing within previous algorithms! Specifically, our find-
ings show that different algorithms are appropriate for dif-
ferent queries. Furthermore, they show that different query
rewritings are appropriate for different queries and for dif-
ferent algorithms! Finally, the existence of straggler queries
poses new challenges for the performance comparison of dif-
ferent algorithms, needing more detailed performance met-
rics and experimenting with more challenging queries. All
current works miss the above points: (i) they only consider
one query rewriting, if at all, for all queries, (ii) they use only
one algorithm for all workload queries, and (iii) they do not
stress-test their algorithms with more challenging queries
(e.g., larger sizes). Our framework shows that such misses
also lead to misses of dramatic performance improvements.

2.2 Definitions

Definition 1 (Graph). A graph G = (V,E, L) is de-
fined as the triplet consisting of the set V = {vi}, i = 1, ..., n
of vertices of the graph, the set E ⊆ {(v, u) : v, u ∈ V }
of edges between vertices in the graph, and a function L :
V |E → L assigning a label l ∈ L (L being the set of all
possible labels) to each vertex v ∈ V and each edge e ∈ E.

We assume that each node in a graph is assigned an integer
in the interval [1, n], so that no two nodes in a graph have
the same number; we call this the node ID.

Definition 2 (Graph Isomorphism). Two graphs G
= (V,E, L) and G′ = (V ′, E′, L′) are isomorphic iff there
exists a bijection I : V → V ′ that maps each vertex of G to
a vertex of G′, such that if (u, v) ∈ E then (I(u), I(v)) ∈ E′,
L(u) = L′(I(u)), L(v) = L′(I(v)), and vice versa.

Note that, given a graph G, a graph G′ isomorphic to G
can be trivially produced by permuting the node IDs in G.

Definition 3 (Subgraph Isomorphism). A graph G
= (V,E, L) is subgraph isomorphic to a graph G′ = (V ′, E′,
L′), denoted by G ⊆ G′, iff there exists an injective function
I : V → V ′ such that if (u, v) ∈ E then (I(u), I(v)) ∈ E′

and L(u) = L′(I(u)) and L(v) = L′(I(v)). Graph G is then
called a subgraph of G′.
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Much like all of the works mentioned earlier, we focus on
non-induced subgraph isomorphism.

3. EXPERIMENTAL SETUP

3.1 Short description of used Algorithms

3.1.1 FTV methods
Both Grapes[5] and GGSX[1] index the simplest form of

features – i.e., paths – up to a maximum length. Paths
are searched in a DFS manner and indexed in a trie or suf-
fix tree respectively. Compared to GGSX, Grapes takes an
additional step and maintains location information. Also,
Grapes features multi-threaded design for both indexing and
query processing. In query processing, maximal paths of
the query are extracted to form the query index which is
matched with the dataset index, pruning away unmatched
branches. Subsequently, the search space is further pruned
by the frequencies of indexed features. After this step, GGSX
forms its candidate set of graphs that will undergo sub-iso
testing. Grapes further exploits the maintained location in-
formation to extract relevant connected components of the
dataset graphs, against which sub-iso testing is performed.

The underlying isomorphism algorithm for both Grapes
and GGSX is VF2[4]. VF2 does not define any order in
which query vertices are selected. Given a query graph q
and a dataset graph g, the algorithm chooses a vertex from
q to match to vertices in g, and proceeds by then trying
to match still unmatched vertices adjacent to the matched
ones in q. Given an unmatched vertex in q, the set of can-
didate vertices of g is defined as the set of all vertices in
g with the same label as the unmatched vertex in q. VF2
then employs 3 pruning rules to reduce the number of can-
didate vertices. The first rule removes candidates that are
not directly connected to the already matched vertices of g.
The second rule removes all candidates for which the num-
ber of adjacent unmatched nodes which are also adjacent to
matched nodes of g, is smaller than the corresponding fig-
ure for the matched vertex of q. The final rule removes all
g candidates with less adjacent (matched/candidate) nodes
than the corresponding figure in q.

3.1.2 NFV methods
In the sub-iso test of QuickSI[15] (QSI for short), priority

is given to the vertices with infrequent labels and infrequent
adjacent edge labels. In the indexing phase, QuickSI pre-
computes the frequencies of labels and edges and uses them
to compute the “average inner support” of a vertex or an
edge; i.e., the average number of possible mappings of the
vertex or edge in the graph. The inner support is later used
in the graph matching process to assign weights on the edges
of the query graph and construct a rooted minimum span-
ning tree (MST). In case of symmetries, edges are added in
such a way that will make the MST denser. The order in
which vertices are inserted to the MST defines the order in
which they are then matched in the sub-iso test.

In the indexing phase of GraphQL[8] (GQL for short),
the labels of all vertices along with the neighbourhood sig-
natures, which capture the labels of neighbouring nodes in
a radius i in lexicographical order, are indexed. In the sub-
graph matching phase, the algorithm starts by retrieving all
possible matches for each node in the pattern. Subsequently,
3 rules are applied in order to prune the search space. First,

the indexed vertex labels and neighbourhood signatures are
used to infeasible matches. Then a pseudo subgraph iso-
morphism algorithm is applied to the problem iteratively
up to level l; i.e., for every pair of possible graph-query ver-
tex matches, the nodes adjacent to the query node should
be matched to the corresponding neighbours of the graph.
Finally, the algorithm needs to optimize the search order
in the query before proceeding with the actual sub-iso test,
which in turn consists of a number of joins of the candidate
node lists. This optimization is based on an estimation of
the result-set size of intermediate joins, and as it would be
very expensive to enumerate all possible search orders, only
left-deep query plans are considered.

sPath[28] (SPA for short), similarly to GraphQL, also
maintains a neighbourhood signature comprised of shortest
paths organized in a compact indexing structure. Specifi-
cally, in order to reduce the storing space, shortest paths
are not really maintained, but they are decomposed in a
distance-wise structure. In the query processing, the query is
initially decomposed in shortest paths that are then matched
to the candidate shortest paths from the stored graph. From
all possible candidate shortest paths, those that (i) can cover
the query and (ii) provide good selectivity, i.e. minimize the
estimated result-set size of each join operation, are selected
as candidates. For each one of the selected paths, an edge-
by-edge verification is then used to perform the sub-iso test.

3.2 Setup
Experiments with Grapes and GGSX were conducted on

a small cluster consisting of 5 nodes, each featuring an Intel
Core i5-3570 CPU (3.4GHz, 4 physical cores, 6MB cache),
16GB of RAM, 500GB disk per node, and running Ubuntu
Linux 14.04. Experiments with QuickSI, GraphQL and sPath
(i.e., the NFV methods) were conducted on a Windows 7
SP1 host, with 2 Intel Xeon E5-2660 CPUs (2.20GHz, 20MB
cache) with 8 cores/16 vcores per CPU, 128GB of RAM, and
3.5TB disk. For practical purposes, we allowed a maximum
limit of 10 mins for each query to be processed. Beyond that
time, the execution is terminated and we proceed with the
next query in the workload. Please note that this 10’ limit
does not apply in the indexing phases of the algorithms.

For Grapes and GGSX we used the implementations pro-
vided by their respective authors. However, in the case of
Grapes, we had to alter the source code so that the VF2
verification step returns after the first match of the query
graph, as opposed to the original implementation which was
returning all possible matches. The reason for this is that
FTV methods are mainly designed to retrieve the graphs
that contain the query as an answer. For QuickSI, GraphQL
and sPath, we used the implementation provided by [12].

We used the default values for the input parameters of
the compared algorithms, as they were defined by their re-
spective authors in the relevant publications and/or in their
implementation code. More specifically:
• For GGSX and Grapes, we enumerated paths of up to

size of 4.
• We ran Grapes with 1 and 4 threads; results for execu-

tions with 1 (resp. 4) threads are denoted by Grapes/1
(resp. Grapes/4).
• For GraphQL, we used a refined level of iterations of

pseudo-subgraph isomorphism r = 4.
• For sPath, we used a neighbourhood radius of 4 and

maximum path length 4.
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t # graphs 20 1000

#disconnected graphs 20 0
#labels 46 20
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Avg #nodes 4942 1100
StdDev #nodes 2648 483
Avg #edges 26667 12487
Avg density 0.0022 0.020
Avg degree 10.87 24.5
Avg #labels 28.5 20

Table 1: Dataset characteristics for FTV methods

yeast human wordnet

#nodes 3112 4674 82670
#edges 12519 86282 120399
Avg degree 8.04 36.91 2.912
StdDev degree #nodes 14.50 54.16 7.74
Density 0.00258 0.0079 0.000035
#labels 184 90 5
Avg frequency labels 127 240 16534
StdDev frequency labels 322.5 430 152

Table 2: Dataset characteristics for NFV methods

• For QuickSI, GraphQL and sPath the number of searched
embeddings of the pattern graph on the stored graph
is capped at 1000; i.e., after finding the first 1000
matches, the algorithms terminate.

3.3 Datasets
We have chosen datasets which (a) have also been used by

other studies, so as to enable possible direct comparisons,
and (b) have key characteristics covering a large part of the
design space (e.g., regarding graph size and density).

Table 1 summarizes the characteristics of the datasets that
we used for the FTV methods. PPI (used in [5, 9]) is a real
dataset representing 20 different protein-protein interaction
networks. The majority of existing real datasets that were
used for the FTV methods comprise of relatively small and
sparse graphs. In [9] we showed that, for such datasets,
both Grapes and GGSX perform adequately well. For our
current study we are further interested in more challenging
datasets and we thus employ an additional synthetic dataset
generated with GraphGen[2], allowing various parameters of
interest to be specified; namely, number of graphs, average
number of nodes and density per graph, number of labels in
the dataset). A more detailed description of how GraphGen
constructs the dataset can be found in [9].

Datasets used for the NFV methods consist of only one
graph as the primary task of these methods is to find all oc-
currences of the pattern graph in the large stored graph. Ta-
ble 2 summarizes the characteristics of the three real datasets
– namely yeast, human and wordnet — that we have used
for the NFV methods. Yeast and human were previously
used in [12], while Wordnet1 was used in [16].

3.4 Query Workloads
To generate each of the queries, first we select a graph

from the dataset uniformly and at random, and from that

1http://vlado.fmf.uni-lj.si/pub/networks/data/dic/Wordnet/
Wordnet.htm

graph we select a node uniformly and at random. Starting
from said node, we generate a query graph by incremen-
tally adding edges chosen uniformly at random from the
set of all edges adjacent to the resulting query graph, until
it reaches the desired size. For the synthetic dataset, we
used 100 queries of size 24, 32 and 40 edges for Grapes/1
and Grapes/4. We did not run GGSX against the synthetic
dataset, because of excessive amount of time required for
the experiments to complete. For the PPI dataset, we used
100 queries of size 16, 20, 24, and 32 edges. For the NFV
methods, we used 200 queries of 10, 16, 20, 24 and 32 edges.
Last, for QuickSI we only report results against the yeast
dataset, as (i) it was the easiest NFV dataset to process,
and (ii) QuickSI always had many more cases, compared to
GraphQL and sPath, where query processing exceeded the
10’ cap. For all used methods, the majority of the queries
completed in under 2”. We call them easy queries. Another
portion of queries had processing times in the 2” to 600”
range; we denote these 2”-600” queries. We use the term
completed to refer to all queries that finished within the 10’
limit; those that did not are called hard or killed.

3.5 Performance Metrics
For every query against a stored graph, we measure the

Execution Time, denoted exec time, for both FTV and NFV
methods, while avg exec time denotes the average execution
time. Specifically for FTV methods, this is the pure sub-iso
time; i.e., excluding the index loading and filtering times,
which add only a trivial overhead. For FTV methods re-
ported times are in seconds, while for NFV methods times
are in milliseconds, unless stated otherwise.

Let qi be a given query and tMi the exec time of qi over
methodM . Let also qi,j be the j-th isomorphic instance of qi
and tMi,j the exec time of qi,j over method M . Finally, let tΨi,j
be the exec time of qi,j over our proposed Ψ-framework. We

define the (max/min) metric as:
maxj(tMi,j)

minj(tMi,j)
. The minimum

value of this metric is 1, indicating that there are no varia-
tions between the min and max exec time. The higher the
value of this metric, the higher the differences between the
min and max exec time achieved by the isomorphic query in-

stances. We also define the speedup∗ metric as:
tMi
T

, where T

is set to: (i) minj(t
M
i,j), when comparing against the various

isomorphic instances of qi, (ii) minM (tMi,j), when compar-

ing against different methods, and (iii) tΨi , when comparing
against our Ψ-framework. speedup∗ represents what we lose
in performance if we choose the original method over the
various alternatives; i.e., speedup∗ equals the maximum at-
tainable speedup over the original method, if we chose the
best of the examined alternatives. For comparison purposes,
for queries that were killed at the 10’ limit we use this time
(i.e., 600”) as their minimum execution time.

When comparing two sets of measurements A = {Ai} and
B = {Bi}, we can compute their average ratio in two ways:

• Workload-Level Aggregation (WLA), given by avgi(Bi)
avgi(Ai)

.

WhenA andB contain query response times, the WLA
computation would give the improvement in the overall
average execution time. This metric is important from
the system perspective as it encapsulates the overall
performance change.

• Query-Level Average (QLA), computed as avgi
(

Bi
Ai

)
.

When applied to query processing times, the QLA
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Figure 1: Stragglers in FTV methods

computation would give the average of per-query im-
provements. This metric is user-centric in the sense
that each user cares what the performance improve-
ment for his query is using different methods.

In both cases, avgi(Xi) is the average over all items Xi in
the set X. Based on this distinction, the aforementioned
(max/min) and speedup∗ metrics can have a QLA or WLA
version, denoted with a matching subscript; e.g., speedup∗QLA.
These two variants also carry over to other computations;
for example, the standard deviation of the ratio of A and

B would be computed as stdDevi(Bi)
stdDevi(Ai)

under WLA, and as

stdDevi(Bi/Ai) under QLA. However, unless stated other-
wise, we shall use QLA and WLA to denote averages.

4. STRAGGLER QUERIES
We know that as the dataset grows in terms of the size of

graphs, query processing becomes harder; ditto as the size
of the query graph increases [9]. But do these statements
hold across all queries-dataset graph combinations? Run-
ning many queries against the whole dataset can hide the
details of how much time is required per individual query-
graph pair. In the case that a small portion of such pairs
dominates the whole execution time, then by just looking
at the whole query workload execution times it is easy to
draw wrong conclusions about the algorithms’ performance.
Also, several related works choose to ignore queries whose
execution is much higher compared to the rest. To inves-
tigate the above, in this study we execute each individual
query against a single stored graph at a time.
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Figure 2: Stragglers in NFV methods

Observation 1: In all of workloads generated by us or
found in other papers, our experiments show “stragglers”;
i.e., queries whose processing time is many orders of mag-
nitude higher compared to the rest.

In order to back our observation, we present our results
from the experiments on the aforementioned datasets against
both FTV and NFV methods (fig. 1 and 2).

4.1 FTV methods
Fig. 1 presents the results from the query workloads on the

FTV methods. Specifically, 1(a) and 1(b) show the average
execution times for the corresponding algorithms for the syn-
thetic and the PPI dataset respectively (GGSX/synthetic
results omitted; see §3.4). 1(c) presents the percentage of
the sub-iso tests that were easy, 2”-600”, and hard for both
the synthetic and PPI datasets. As expected, Grapes/4 has
a much smaller percentage of killed queries compared to
Grapes/1 and GGSX. A notable thing here is that although
for both Grapes/1 and Grapes/4 the percentage of 2”-600”
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GraphQL sPath QuickSI

1
0
-e

d
g
e
q AET easy (ms) 66.84 134.78 131.67

% of easy 100 99.5 99
AET 2”-600” (ms) - 2871.44 50367.40

% of 2”-600” 0 0.5 1
% of hard 0 0 0

3
2
-e

d
g
e
q AET easy (ms) 130.66 120.71 96.62

% of easy 80 91 67.5
AET 2”-600” (ms) 140812 140781 78917.2

% of 2”-600” 6.5 3 6
% of hard 13.5 6 26.5

Table 3: Results for NFV methods on the yeast
dataset (AET: avg exec time)

GraphQL sPath

1
0
-e

d
g
e
q AET easy (ms) 179.49 209.91

% of easy 100 98
AET 2”-600” (ms) - 182392

% of 2”-600” 0 1
% of hard 0 0

3
2
-e

d
g
e
q AET easy (ms) 246.31 277.13

% of easy 71.5 84.5
AET 2”-600” (ms) 93523.7 31817

% of 2”-600” 4.5 4.5
% of hard 24 11

Table 4: Results for NFV methods on the human
dataset (AET: avg exec time)

queries is < 5% in the synthetic dataset and < 10% in PPI,
the avg exec time across all completed queries is significantly
affected; that is, the most expensive queries dominate the
execution time.

4.2 NFV methods
Fig. 2 presents the results from the query workloads on

the NFV methods (QuickSI human/wordnet results omitted;
see §3.4), while tables 3 and 4 give results for 10- and 32-
edge queries for the yeast and human datasets. We can use
the 10-edge query results to compare our findings with those
presented in [12]. [12] used small query sizes (up to 10 edges)
and showed that the best performing algorithm is GraphQL,
because it managed to complete all tested query workloads.
With our experiments, we confirm this for both the yeast and
human datasets and for queries of size 10 edges. GraphQL
performs better compared to sPath, having also 0% of hard
queries. The same holds for the easy queries of 32 edges.
However, the picture is reversed when looking at the rest of
the queries. In this case, the percentage of killed queries is
double for GraphQL compared to sPath.

We note that unlike yeast and human where sPath per-
forms overall better than GraphQL having (i) smaller avg
exec times on the completed queries and (ii) smaller percent-
ages of hard queries, in wordnet this behavior is reversed.
Based on our analysis, it’s very difficult to claim that one
algorithm is better than the other. In fact, in order to claim
that, we need to define a performance metric of interest.
Such a metric could be the percentage of killed queries, but
note that it depends on the time limit imposed on query
processing. For example, in wordnet, if the threshold was
2”, then sPath would be better than GraphQL, but if we
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Figure 4: Avg (max/min)QLA for NFV methods

change this threshold the picture changes.
We summarize our results to the following 3 conclusions:

(1) Some queries are hard. (2) Different algorithms have dif-
ferent percentages of completed queries; thus, different algo-
rithms find different queries hard. (3) As the most expensive
queries dominate the avg exec time, one must include a suf-
ficient number of hard queries in order to draw conclusions
about the relative performance of the algorithms.

5. ISOMORPHIC QUERIES
The proposed sub-iso methods ([8, 28, 15]), as well as

[12] that compares them, claim that the search order on the
query can have a huge impact on query processing time.
We agree with this claim. In the current study, we take
a further step and instead of relying on the order that the
individual method imposes, we generated our own isomor-
phic query rewritings. To achieve this, we keep the structure
of the query graph and the labels on the nodes unchanged,
and permute the node IDs. Subsequently, we transform the
query graph to an input format compatible with each in-
dividual method and perform the query processing. In the
following experiments, we used a total of 6 different rewrit-
ings per query, leading to the following observation.

Observation 2: Queries which are isomorphic to the orig-
inal query have widely and wildly different execution times.

We attribute this behavior to the fact that all proposed
methods do not define a strict order in which the nodes
of the query are matched, as computing a globally optimal
join plan would be too computationally expensive. Thus, all
methods rely on heuristics (see §3.1) in order to minimize
the search space for the join plan.

5.1 FTV methods
Fig. 3 depicts the QLA average value of the (max/min)

metric for the synthetic and PPI datasets, for the FTV
methods (GGSX results omitted for the synthetic dataset;
see §3.4). Table 5 additionally reports the stdDev, min, max
and median values of (max/min)QLA. In the calculations,
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Grapes/1 Grapes/4 GGSX

sy
n
th

et
ic stdDev 86,700.40 65,988.40 -

min 1.06 1.02 -
max 3,820,000.00 3,490,000.00 -

median 3.90 4.45 -

P
P

I

stdDev 469,934 395,285 1,020,000
min 1.03 1.02 1.01
max 3,680,000 3,160,000 12,000,000

median 1,186.51 11.19 109,086.00

Table 5: (max/min)QLA statistics for FTV methods

GraphQL sPath QuickSI

y
ea

st

stdDev 287.54 533.86 1685.71
min 1.01 1.01 1.00
max 7286.33 6695.85 15021.60

median 1.40 1.36 1.61

h
u
m

a
n

stdDev 440.18 662.78 -
min 1.00 1.04 -
max 4115.06 4087.81 -

median 1.82 1.96 -

w
o
rd

n
et

stdDev 20.55 396.87 -
min 1.01 1.01 -
max 646.44 3081.14 -

median 1.21 1.34 -

Table 6: (max/min)QLA statistics for NFV methods

we did not include queries that were not helped by any of
the isomorphic instances tried; i.e., queries that were hard
on all tested isomorphic instances of the query. This behav-
ior occurred in 0.0036% and 1.4% of queries for Grapes/1
on the synthetic and PPI datasets respectively, and 0.37%
of queries for Grapes/4 and 1.96% of queries for GGSX for
the PPI dataset. We note that the “max” and “average”
values of (max/min)QLA are only lower-bound estimations,
because of the 10’ limit that we used instead of the actual
verification time. In these results, we observe that there
is an at least 6 orders of magnitude difference between the
min and the max value of (max/min)QLA, with the median
(apart from GGSX) being closer to the min value. Along
with the high stdDev, we can see that isomorphic instances
of the same query can indeed have widely and wildly differ-
ent verification times.

5.2 NFV methods
Fig. 4 reports the QLA-average values of the (max/min)

metric for the yeast, human and wordnet datasets, for the
tested NFV methods (QuickSI results omitted for the hu-
man and wordnet datasets; see §3.4). Table 6 reports the
stdDev, min, max and median value of (max/min)QLA. We
report that 4.2%, 8.2% and 1.5% of queries were not helped
by any tested isomorphic query instances for GraphQL and
for yeast, human and wordnet respectively. For sPath the
corresponding values are 2.1%, 1.4% and 11.8%. Finally, for
QuickSI 8.6% of the queries were not helped for yeast.

The QLA-average (max/min) for the NFV methods is
up to 3 orders of magnitude lower than that of the FTV
methods. This is somewhat expected as the NFV methods
define a more strict order in which the nodes of the query
are matched and thus leave less space for wild variations.
However, this order is still significantly affected by the ini-

Grapes/1 Grapes/4 GGSX

sy
n
th

et
ic stdDev 53,785.70 24,267.60 -

min 1.00 1.00 -
max 3,820,000 2,110,000 -

median 1.36 1.24 -

P
P

I

stdDev 302,250 237,573 758,668
min 1.00 1.00 1.00
max 3,370,000 2,910,000 9,390,000

median 3.71 1.67 1,751.22

Table 7: speedup∗QLA statistics for FTV methods
across rewritings

GraphQL sPath QuickSI

y
ea

st

stdDev 235.61 422.56 1193.03
min 1.00 1.00 1.00
max 7286.33 6695.85 15021.60

median 1.10 1.08 1.30

h
u
m

a
n

stdDev 259.93 492.45 -
min 1.00 1.00 -
max 4115.06 4087.81 -

median 1.09 1.08 -

w
o
rd

n
et

stdDev 20.55 244.66 -
min 1.00 1.00 -
max 646.44 3081.14 -

median 1.13 1.08 -

Table 8: speedup∗QLA statistics for NFV methods
across rewritings

tial node ids of the query, and thus we still see per-query
(max/min) values of up to 2 orders of magnitude.

We summarize our overall results to the following conclu-
sions: (1) For every isomorphic test to be executed, given
a query graph q and a stored graph, there is an isomor-
phic version of q that can take anywhere from 2 to 6 orders
of magnitude more time to execute compared to the least
expensive version of the query. This holds across all algo-
rithms and datasets tested. (2) Although the presented fig-
ures hide the details of the individual query sizes, we report
that the harder the queries (higher query sizes), the higher
these number are.
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Figure 5: Isomorphic queries generated with differ-
ent rewritings (assuming the label frequencies in the
stored graph are: “A”=20, “B”=15, “C”=10)

6. GRAPH QUERY REWRITING
Having established that isomorphic versions of a query

can have dramatically different execution times, we set out
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Figure 6: Results for individual query rewrtings for both FTV and NFV methods
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Figure 7: Avg speedup∗QLA for FTV methods across
rewritings
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Figure 8: Avg speedup∗QLA for NFV methods across
rewritings

to construct specific rewritings, constructing graphs isomor-
phic to the original queries, with the aim to capture these
benefits. We have developed and experimented with several
such query rewritings. We outline below five such rewrit-
ings, all performed by carefully permuting the node IDs in
the query graph:
• Query Rewriting ILF (Increasing Label Frequency):

In a preprocessing step, we compute the frequencies
of node labels in the stored graph, sorted in increas-
ing frequency order. Given this order, we produce a
rewriting of the query graph so if i, j are the node IDs
of query graph nodes ni, nj , L(ni), L(nj) are their la-
bels, and f(L(·)) is the frequency of a label L(·) in the
stored graph, then f(L(ni)) < f(L(nj))⇒ i < j. Ties

can appear in 2 cases: (i) two or more query nodes have
the same label, or (ii) two or more query nodes have
different labels but with the same frequency. These
ties are broken arbitrarily.
• Query Rewriting IND (Increasing Node Degree):

The nodes of the query are sorted in increasing node
degree order; i.e., if ni, nj are two query graph nodes,
and d(·) is the degree (number of edges) of a node,
then d(ni) < d(nj)⇒ i < j. In the case of nodes with
the same number of edges, ties are broken arbitrarily.
• Query Rewriting DND (Decreasing Node Degree):

This rewriting is similar to the IND but the nodes of
the query are sorted in decreasing node degree and the
nodes ids are assigned accordingly.
• Query Rewriting ILF+IND: This rewriting is the same

as ILF above, with ties being broken in an IND man-
ner: i.e., nodes with smaller outgoing degree get a
lower node id.
• Query Rewriting ILF+DND: This rewriting is the same

as ILF+IND, with ties being broken in a DND manner.
Fig. 5 presents an example of the above rewritings. Note

that the ILF+IND rewriting in 5(d) is also a valid ILF
rewriting. As we already mentioned, ties are (utterly) bro-
ken in an arbitrary way, and thus one may compute several
different isomorphic graphs for the same rewriting.

Indicatively2 and because of space restrictions, in fig. 6
we report the WLA average processing times of the original
query and the 5 proposed query rewritings for the PPI and
yeast datasets, as well as the corresponding percentages of
the hard queries. For the FTV methods, the best perform-
ing rewritings are ILF and ILF+DND, with the percentage
of hard queries being significantly improved. For the NFV
methods, the picture is slightly different. GraphQL shows
no considerable improvement with any individual rewriting;
as a matter of fact, there are rewritings leading to higher

2We obtained similar results for the synthetic dataset for the
FTV methods and the human dataset for the NFV meth-
ods. The sole exception was sPath, whose percentage of hard
queries increased slightly for the wordnet dataset.
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avg exec times than the original query. For sPath, the DND
and ILF+DND rewritings reduced the percentage of killed
queries from 2.8% to 2.4%. For QuickSI, ILF+DND reduced
the percentage of killed queries from 11.3% to 10.2%, but
DND only brought it down to 10.9%. More importantly,
note that there is no single rewriting that manages to im-
prove all algorithms across all datasets and workloads.

Observation 4: “Stragglers” can have isomorphic coun-
terparts which are not stragglers.

Please note that the max and average reported speedup∗

represent a lower-bound estimation because of the value 600”
that we use for the hard queries that were killed. Addition-
ally, in our calculations we do not include the few queries
that were killed for both the original instance and with all
the rewritings of the query (see §5.1 and §5.2).

6.1 FTV methods
Fig. 7 presents the average speedup∗QLA for the FTV

methods for the synthetic and PPI datasets (GGSX/synthetic
results omitted; see §3.4). Additionally, table 7 reports the
QLA stdDev, min, max and median of speedup∗QLA. More-
over, as we increased the size of the queries, speedup∗QLA

increased by up to 3 orders of magnitude (not visible in the
figure as results are aggregated). For the presented results,
median speedup∗QLA is close to min speedup∗QLA, evidenc-
ing again a wide variation in the benefits of the isomorphic
query rewritings. Keeping in mind that the majority of the
queries are easy (fig. 1), we conclude that large performance
gains can come from improving the hard queries.

6.2 NFV methods
Fig. 8 presents the average speedup∗QLA for the NFV

methods for the yeast, human and wordnet datasets (QuickSI
human/wordnet results omitted; see §3.4). Table 8 reports
the stdDev, min, max and median of the speedup∗QLA. The
performance of sPath could seemingly be improved by one
to two orders of magnitude across all datasets. The same
holds for QuickSI on yeast. GraphQL could also be im-
proved by more than a factor of 10× on the yeast and human
datasets. However, no significant improvement was possi-
ble for GraphQL on wordnet. The reason why this is so,
is somewhat subtle. Apart from what the algorithms are
doing internally to match the query, other culprits are the
characteristics of the actual stored graphs and the gener-
ated queries. Looking at the statistics of the graphs (table
2), yeast and especially wordnet are very sparse graphs with
small average node degree. Thus, the majority of the gen-
erated queries are paths and the rewritings based on node
degrees are not effective in this case. Additionally for word-
net, the small number of labels (only 5) and distribution of
the frequencies of the labels being highly skewed leads to
the generation of queries that in their majority contain only
1 or 2 labels, with the second label appearing only once. As
a result, the rewritings are of little use in these cases.

7. ALGORITHM-SPECIFIC STRAGGLERS
As we already mentioned in section 4, we notice that for

the NFV methods, different algorithms have different per-
centages of hard queries, leading to the conclusion that dif-
ferent algorithms find different queries hard. In this section
we elaborate on this observation.
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Figure 9: Avg speedup∗QLA when utilising different
algorithms on NFV methods

GraphQL sPath QuickSI

y
ea

st
2
a
lg stdDev 1094.57 1051.65 -

min 1.00 1.00 -
max 9189.36 9129.60 -

median 1.00 1.80 -

y
ea

st
3
a
lg stdDev 1596.47 1255.34 2162.97

min 1.00 1.00 1.00
max 13060.10 12403.70 12312.70

median 1.00 1.88 1.32

h
u
m

a
n

stdDev 1394.34 570.83 -
min 1.00 1.00 -
max 30873.80 4341.44 -

median 1.00 1.04 -
w

o
rd

n
et

stdDev 253.56 104.42 -
min 1.00 1.00 -
max 3733.78 932.58 -

median 2.47 1.00 -

Table 9: speedup∗QLA statistics when utilizing differ-
ent algorithms on NFV methods

Observation 5: “Stragglers” are algorithm-specific; i.e.,
by evaluating the same query workloads with various algo-
rithms, we have seen that a “straggler”-query for one algo-
rithm can be a typical query for the other algorithms.

Fig. 9 presents the average speedup∗QLA for the yeast,
human and wordnet datasets and for the tested algorithms.
In table 9, we additionally report the stdDev, min, max
and median of speedup∗QLA. For the yeast dataset, we
present the results with utilizing all 3 algorithms (noted as
yeast3alg), as well as with the pair of algorithms (GraphQL
and sPath) that we utilize for the remaining datasets (noted
as yeast2alg). For the yeast dataset, all tested queries were
helped by the use of different algorithms. In the human and
wordnet datasets, only 0.8% and 0.1% of the queries were
not helped by this scheme. Note that the speedup∗QLA val-
ues for using multiple algorithms are higher compared to the
speedup∗QLA values achievable with multiple query rewrit-
ings (see §6.2). This leads to the conclusion that the use of
multiple algorithms could be way more beneficial compared
to the rewritings, which are not always effective (§6.2).

8. THE Ψ-FRAMEWORK
In this section we present how we incorporate our findings

in a novel framework that exploits parallelism. The pro-
posed framework is called Ψ-framework (Parallel Subgraph
Isomorphism framework). Unlike recent related work [11,
16], by having different threads/machines working on differ-
ent versions of the problem our Ψ-framework exploits par-
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allelism in a novel way. We utilize Grapes and GGSX (as
well as GraphQL and sPath) as well-established FTV (resp.
NFV) methods. Within our Ψ-framework we have incorpo-
rated the original implementations of Grapes and GGSX as
provided by their authors, and of GraphQL and sPath as
found in [12].

In the FTV methods we leave intact the index construc-
tion and the filtering stages during query processing. In the
verification stage, for every graph in the candidate set, we
instantiate a number of threads equal to the number of the
isomorphic-query rewritings we utilize. These threads run
in parallel with each being assigned one rewriting of the ini-
tial query, and the first thread to finish is the “winner”; i.e.,
the rest of the threads are killed and the algorithm proceeds
with the verification of the next graph in the candidate set.

Ψ-framework for the NFV methods works similarly to the
verification stage of the FTV methods. However, we men-
tioned in observation 5 that stragglers disappear when us-
ing an alternative matching algorithm. We incorporate this
finding in our Ψ-framework by running simultaneously two
threads: one for sPath and one for GraphQL with the origi-
nal query. Again after the completion of the fastest thread,
the rest of them are killed.

On one hand we have seen that the more the isomorphic
instances we use, the better the speedup we gain in the graph
matching process. On the other hand, the instantiation and
synchronization of many threads come with a non-trivial
overhead, impacting the overall speedup. To this end, in our
performance evaluation we report on the speedup achieved
by several beneficial combinations of rewritings. We note
that our Ψ-framework is of course not the only solution
to the straggler-queries’ problem. Undoubtedly, it would
be preferable to choose the right isomorphic query instance
and/or algorithm to use to minimize the query execution
time. However, given the complex nature of the sub-iso
problem, we leave such design decisions for future work.

The cost of producing the query rewritings was measured
from a few tens (for smaller query sizes) to a few hundreds
(for the biggest query sizes) of µsecs; being a negligible over-
head to the overall query processing time, we ignore it in the
figures and omit any further discussion of this cost factor.

8.1 FTV methods
Fig. 10 and 11 present the avg speedup∗QLA and avg

speedup∗WLA respectively for utilizing different versions of
Ψ-framework on the FTV methods. Specifically, we present
the avg speedup∗QLA and avg speedup∗WLA of the following
versions of Ψ-framework: (a) ILF/ ILF+IND (2 threads),
(b) ILF/ ILF+DND (2 threads), (c) ILF/ IND/ DND (3
threads), (d) ILF/ IND/ DND/ ILF+IND (4 threads) and
(e) all 5 possible rewritings (5 threads). Our framework
proves highly beneficial for all algorithms and datasets. Al-
though not depicted in the figure, but as it was expected, by
increasing the number of threads running multiple rewritings
on the Ψ-framework, not only the avg execution time is sig-
nificantly improved but also the percentage of hard queries
is decreased, even leading to straggler-free executions. How-
ever, note that the Ψ-framework(ILF/ IND/ DND) (3 threads)
is only 3-8% worse compared to Ψ-framework(ILF/ IND/
DND/ ILF+IND) (4 threads) for Grapes/1 and Grapes/4.

As Grapes is designed as a multi-threaded application,
we additionally compare Grapes/4 against our Ψ-framework
running Grapes/1 with the following four rewritings (for to-
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Figure 10: Avg speedup∗QLA across different versions
of our framework on the FTV methods
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Figure 11: Avg speedup∗WLA across different versions
of our framework on the FTV methods
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Figure 12: Comparison of avg exec time over the
PPI dataset, for Grapes/4 against the Ψ-framework
with 4 rewritings over Grapes/1
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Figure 13: Avg speedup∗QLA across different versions
of Ψ-framework on the NFV methods

PPI yeast human wordnet

Grapes/4 6.29% - - -
GraphQL - 4.3% 10% 1.6%

sPath - 2.8% 4.4% 13%
Ψ-fram 2.06% 0% 0.7% 0%

Table 10: Percentage of killed queries of FTV meth-
ods and our Ψ-framework

tal of 4 threads as well): ILF, IND, DND, ILF+IND. The
results are presented in fig. 12 for the PPI dataset (results
for the synthetic dataset were similar). Table 10 reports the
percentage of killed queries for Grapes/4 and Ψ-framework
on PPI. As is obvious, although both contenders have the
same level of parallelism, Ψ-framework makes better use of
its threads and leads to lower query processing times.

8.2 NFV methods
Fig. 13 presents the avg speedup∗QLA for utilizing differ-

ent versions of Ψ-framework on the NFV methods (we omit
the figures for avg speedup∗WLA due to space constraints).
We utilize the following versions of Ψ-framework and the
corresponding number of threads: (a) Orig/ ILF/ ILF+IND
(3 threads) (b) Orig/ ILF/ IND/ DND (4 threads), (c)
Orig/ ILF/ IND/ DND/ ILF+IND (5 threads), and (d) Orig
+ all-rewritings (titled as all) (6 threads). For all tested
datasets and workloads, GraphQL benefited the least by the
rewritings. The biggest improvements appear in the human
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(a) speedup∗QLA for GraphQL
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(b) speedup∗QLA for sPath

Figure 14: Avg speedup∗QLA for running multiple al-
gorithms against NFV methods on Ψ-framework
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(a) speedup∗WLA for GraphQL
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(b) speedup∗WLA for sPath

Figure 15: Avg speedup∗WLA for running multiple
algorithms against NFV methods on Ψ-framework

dataset. We attribute this to the fact that this dataset com-
prises a denser graph with more labels, thus a larger portion
of “hard”queries benefited by our rewritings and framework.

Finally, fig. 14 and 15 depict the avg speedup∗QLA and the
avg speedup∗WLA for utilizing different algorithms and dif-
ferent versions of Ψ-framework on the NFV methods and
on yeast, human and wordnet, against vanilla GraphQL
and sPath respectively. We instantiated the following ver-
sions of our Ψ-framework with the corresponding number
of threads: (a) GraphQL-Orig/ sPath-Orig (2 threads), (b)
GraphQL-ILF/ sPath-ILF (2 threads), (c) GraphQL-IND/
sPath-IND (2 threads), (d) GraphQL-DND/ sPath-DND (2
threads). (e) GraphQL-Orig /sPath-Orig/ GraphQL-DND/
sPath-DND (4 threads). For both GraphQL and sPath, we
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were able to achieve up to 3 orders of magnitude improve-
ment with our Ψ-framework on both per-query and per-
workload metrics. Also, with the Ψ-framework, the percent-
age of hard queries was reduced and, for yeast and wordnet,
hard queries became extinct – see Table 10.

9. CONCLUSIONS
We have studied the subgraph isomorphism problem, in

both its decision and matching versions, using well-established
FTV and NFV methods respectively, and against several
different real and synthetic datasets of various characteris-
tics. Our research has revealed and quantified a number of
insights, concerning (i) the existence and role of straggler
queries in a method’s overall performance, (ii) the dramat-
ically varying performance of isomorphic queries, (iii) the
impressive impact that query rewriting can have when used
before executing the query with several algorithms, and (iv)
the fact that straggler queries are algorithm-specific. We
suggested and used both WLA and QLA metrics to fully
appreciate the performance of algorithms in the presence
of stragglers. A number of query rewritings were proposed
and our results showed that in many cases there existed one
rewriting that could offer great performance advantages –
with different rewritings being best for different queries. We
showcased that, for the NFV algorithms, when a query was
proved to be very expensive with one algorithm, another al-
gorithm would actually manage to compute its answer very
efficiently. These findings then naturally culminated into a
novel framework, which employs in parallel different threads,
each using a different well-known algorithm and/or a spe-
cific query rewriting, per query. This introduced dramatic
improvements (up to several orders of magnitude) to FTV
and NFV algorithms. We hope that our findings will open
up new research directions, striving to find appropriate, per-
query, isomorphic rewritings, in combination with alternate
per-query sub-iso algorithms that can yield large improve-
ments. Using machine learning models to predict which ver-
sion of our framework (algorithms, rewritings) to employ per
query is of high interest.
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