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ABSTRACT
Graph query processing is essential for graph analytics, but
can be very time-consuming as it entails the NP-Complete
problem of subgraph isomorphism. Traditionally, caching
plays a key role in expediting query processing. We thus
put forth GraphCache (GC), the first full-fledged caching
system for general subgraph/supergraph queries. We con-
tribute the overall system architecture and implementation
of GC. We study a number of novel graph cache replace-
ment policies and show that different policies win over dif-
ferent graph datasets and/or queries; we therefore contribute
a novel hybrid graph replacement policy that is always the
best or near-best performer. Moreover, we discover the re-
lated problem of cache pollution and propose a novel cache
admission control mechanism to avoid cache pollution. Fur-
thermore, we show that GC can be used as a front end, com-
plementing any graph query processing method as a plug-
gable component. Currently, GC comes bundled with 3 top-
performing filter-then-verify (FTV) subgraph query meth-
ods and 3 well-established direct subgraph-isomorphism (SI)
algorithms – representing different categories of graph query
processing research. Finally, we contribute a comprehensive
performance evaluation of GC. We employ more than 6 mil-
lion queries, generated using different workload generators,
and executed against both real-world and synthetic graph
datasets of different characteristics, quantifying the benefits
and overheads, emphasizing the non-trivial lessons learned.

CCS Concepts
•Information systems→ Database query processing;
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1. INTRODUCTION
Graph datasets are proliferating nowadays, due to their

ability to capture and allow for the analysis of complex re-
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lations among objects, by modelling entities with nodes and
their relations/interactions with edges. Graphs have thus
been used, with great success, in a wide variety of appli-
cation areas, from chemical and bioinformatics datasets to
social networks. Central to graph analytics is the ability to
locate patterns in dataset graphs. Informally, given a query
(pattern) graph g, the system is called to return the set of
dataset graphs that contain g (subgraph query) or are con-
tained in g (supergraph query), aptly named the answer set
of g. Unfortunately, these operations can be very costly,
as they entail the NP-Complete problem of subgraph iso-
morphism[5] and even the popular algorithms [4, 18, 31] are
known to be computationally expensive. To this end, the
research community has contributed a number of innovative
solutions over the last few years. A large number of these fol-
low the “filter-then-verify” (FTV) paradigm: dataset graphs
are indexed so as to allow for the exclusion (filtering) of a
number of those that are definitely not in the query’s answer
set; the remaining graphs, called the candidate set of g, need
then to undergo testing (verification) for subgraph isomor-
phism (abbreviated as sub-iso or SI in the rest of this work).
However, recently extensive evaluations of FTV methods [9,
12] show significant performance limitations.

Although FTV solutions can produce candidate sets that
are much smaller than the original dataset, they still end
up executing unnecessary sub-iso tests: in the simplest of
cases, if the same query is submitted twice to the system,
it will also be sub-iso tested twice against its candidate set.
Furthermore, a key observation we can make is that in many
real-world applications, graph queries submitted in the past
bear subgraph or supergraph relations with future queries.
These relationships arise naturally. Queries against a bio-
chemical dataset range from queries for simple molecules
and aminoacids, all the way to queries for proteins of multi-
cell organisms. In exploratory smart-city analytics, queries
referring to road networks may pertain to neighbourhoods,
towns, metro areas, etc. In social networking queries, ex-
ploratory queries may start off broad (e.g., all people in a
geographic location) and become increasingly narrower (e.g.,
by homing in on specific demographics). In time-series graph
analytics, queries are typically associated with time inter-
vals, which contain (or are contained within) other intervals.

Based on these observations, we proposed in [34] a new
graph query processing method, in which queries (and their
answers) are indexed and used to expedite future query pro-
cessing with FTV methods. Underpinned by our method in
[34], this work presents a novel full-fledged caching system,
where any general subgraph/supergraph query method in

 

 

Series ISSN: 2367-2005 13 10.5441/002/edbt.2017.03

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2017.03


the literature could be plugged in, and overall contributes:
• GraphCache (GC), a full-fledged caching system for

sub-/supergraph queries, with detailed discussions of
design issues, its architecture and implementation, deal-
ing with resource management (memory and threads)
and dynamic management of the cache index;
• A fresh perspective to expedite state-of-the-art solu-

tions for the general subgraph isomorphism problems
(SI methods) by GC (in addition to FTV methods);
• A semantic graph cache which harness sub/supergraph

cache hits, extending the traditional exact-match-only
hit and leading to significant speedup for GC;
• A number of graph cache replacement strategies with

different trade-offs, including a novel hybrid graph cache
replacement policy with performance always better or
on par with the best alternative;
• A novel cache admission control mechanism enhancing

the performance gains of GC;
• Comprehensive evaluations (with millions of queries)

utilising well-established FTV and SI methods, against
real-world and synthetic datasets with different charac-
teristics and different workload generators, quantifying
benefits/overheads and uncovering key insights.

To the best of our knowledge, GC is the first caching system
in the literature for general subgraph/supergraph queries.

2. RELATED WORK
Subgraph/supergraph queries entail the subgraph isomor-

phism problem, which has two versions. The decision prob-
lem answers Y/N as to whether the query is contained in
each graph in the dataset. The matching problem locates
all occurrences of the query graph within a large graph (or
a dataset of graphs). For both the decision and match-
ing problems, the brute-force approach is to execute sub-iso
tests of the query against all dataset graphs. However, sub-
iso tests are costly, being NP-Complete[5]. Several heuristic
algorithms have been proposed over the years. [9] provides
an insightful presentation and comparison of several such
(SI) algorithms (which could be integrated within GC).

SI algorithms deteriorate when the dataset is comprised
of a large number of graphs, as each graph has to be tested.
Thus appeared the“filter-then-verify”(FTV) paradigm. FTV
methods try to reduce the set of graphs against which to run
the sub-iso test, by filtering out graphs which definitely do
not belong to the query answer set. At the heart of these
methods lies an index on the dataset graphs. Briefly, dataset
graphs are decomposed into features (i.e., paths, trees, cy-
cles or arbitrary subgraphs), which are then recorded in an
indexing structure (e.g., trie [2, 6], hash-based bitmap [14],
etc.). Query processing then proceeds in two stages. First,
in the filtering stage, the query graph g is decomposed to its
features, which are then used to retrieve from the dataset
index the IDs of those graphs containing all of them; the re-
sult is a subset of the dataset graphs, named the candidate
set of g. Then, in the verification stage, g undergoes sub-iso
testing against each graph in the candidate set.

Similarly, [29] presents a solution for subgraph queries
against historical (i.e., snapshotted) graphs – a variation of
typical graph queries where snapshots can be viewed as dif-
ferent graphs; the main focus of this work is on reconstruct-
ing minimal snapshots around candidate matching nodes,
by using a set of indices allowing for the retrieval of nodes
with specific labels/neighbourhoods at given time points.

[9] presents an insightful performance evaluation and [12]
provides a systematic performance and scalability study of
subgraph FTV methods. Though we are not aware of similar
in-depth studies on supergraph FTV solutions, [36] provides
a concise overview for studies published prior to 2013 and
recently [20] proposes an efficient solution for supergraph
queries. GC is capable of expediting query processing for
both subgraph and supergraph FTV methods.

The community has also looked into subgraph queries
against a single, very large graph (consisting of possibly bil-
lions of nodes). [16] and [30] employ scale-out architectures
and large memory clusters with massive parallelism respec-
tively. [8] and [28] provide a centralised solution to the same
problem, via advanced pruning approaches addressing the
matching order issues faced by most other SI algorithms.
GC does not target such use cases for the time being and
extending our system to queries against a single massive
graph or distributed operation is left for future work.

Caching of query results has long been a mainstay in data
management systems, from filesystem block caching to web
proxy caching and the cache of query result sets in rela-
tional databases. In the realm of graph-structured queries,
however, little work has been done. For XML datasets,
views have been used to accelerate path/tree queries [1,
19, 21]; Besides, [17] firstly proposed the MCR (maximally
contained rewriting) approach for tree pattern queries and
[33] revisited it by providing alternatives; both exhibit false
negatives for the query answer. Our GC does not produce
any false negative or false positive (formal proof of correct-
ness in [34]). Also, GC is capable of dealing with much
more complex graph-structured queries, which entail the
NP-Complete problem of subgraph isomorphism.

More recently, caching has also been utilized to optimize
SPARQL query processing for RDF graphs. [22] introduced
the first SPARQL cache, where a relational DB was em-
ployed to store the metadata. [27] contributed a cache for
SPARQL queries based on a novel canonical labelling scheme
(to identify cache hits) and on a popular dynamic program-
ming planner [23]. Similar to GC, query optimization in
[27] does not require any a priori knowledge on datasets/-
workloads and is workload adaptive. However, like XML
queries, SPARQL queries are less expressive than general
graph queries and thus less challenging [13, 30]; SPARQL
query processing consists of solving the subgraph homomor-
phism problem, which is different from the subgraph isomor-
phism problem, as the former drops the injective property of
the latter. Moreover, GC discovers subgraph, supergraph,
and exact-match relationships between a new query and the
queries in the cache, something that the canonical labelling
scheme in [27] fails to achieve. SPARQL query processing
also aims at optimizing join execution plans [7] (based on
join selectivity estimator statistics and related cost func-
tions), and the cache in [27] is focusing on this goal, whereas
GC aims to avoid/reduce costs associated with executing SI
heuristics whose execution time can be highly unpredictable
and much higher. As such, the overall rationale of GC and
the way cache contents are exploited differs from that in [27]
and in related SPARQL result caching solutions.

Finally, [15] presents a cache for historical queries against
a large social graph, in which each query is centered around
a node in the social graph, and where the aim is to avoid
maintaining/reconstructing complete snapshots of the social
graph but to instead use a set of static “views” (snapshots
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of neighborhoods of nodes) to rewrite incoming queries. [15]
does not deal with subgraph/supergraph queries per se; rather,
the nature of the queries means that containment can be
decided by just measuring the distance of the central query
node to the centre of each view. Moreover, [15] does not
deal with central issues of a cache system (cache replace-
ment, admission control, overall architecture/design, etc.).

3. DESIGN ISSUES AND GOALS
GraphCache is implemented for undirected labelled graphs,

as is typical in the literature (e.g., [2, 10, 14]). For simplic-
ity, we assume that only vertices have labels; all our re-
sults straightforwardly generalize to directed graphs and/or
graphs with edge labels.

Formally, a labelled graph G = (V,E, l) consists of a set of
vertices V and edges E = {(u, v), u, v ∈ V }, and a function
l : V → U , where U is the domain of labels. A graph
Gi = (Vi, Ei, li) is subgraph-isomorphic to a graph Gj =
(Vj , Ej , lj), by abuse of notation denoted by Gi ⊆ Gj , when
there exists an injection φ : Vi → Vj , such that ∀(u, v) ∈
Ei, u, v ∈ Vi,⇒ (φ(u), φ(v)) ∈ Ej and ∀u ∈ Vi, li(u) =
lj(φ(u)). Informally, there is a subgraph isomorphism Gi ⊆
Gj if Gj contains a subgraph that is isomorphic to Gi, and
we say that Gi is a subgraph of (contained in) Gj , or that Gj
is a supergraph of (contains) Gi denoted by Gj ⊇ Gi. As is
common in the relevant literature, we focus on non-induced
subgraph isomorphism. Last, the subgraph (supergraph)
querying problem entails a set D = {G1, . . . , Gn} containing
n graphs, and a query graph g, and determines all graphs
Gi ∈ D such that g ⊆ Gi (g ⊇ Gi, respectively).

In designing GraphCache, we identified a set of design is-
sues and goals, pertaining to the characteristics of (i) the
query workloads, (ii) the underlying graph datasets, and
(iii) the algorithmic and system context within which GC
will operate (e.g., categories of research methods GC will
complement). Overall, GC is intended to expedite graph
queries whatever the algorithm of choice may be and across
a wide variety of query workloads and graph datasets.

Query Workloads. As with any caching system, the as-
sumption is that previous queries can help expedite future
queries. This is reasonable, given the example applications
mentioned in §1. Most works [2, 6, 9, 14, 35] test algorithms
for queries directly generated from dataset graphs. Though
this is of particular interest, workloads should also include
queries that are not guaranteed to have any answer. Further-
more, in general, of particular interest to any caching system
is the probability distribution of possible queries. For GC
this in effect refers to the popularity of query graphs or of re-
gions of the dataset graphs. GC should thus be able to deal
effectively with various skewness levels of this distribution
(e.g., from uniform to highly skewed Zipf distributions). Fi-
nally, a practical problem emerges: workloads must contain
a large number of queries so as to obtain reliable results on
the performance of any method but subgraph isomorphism is
NP-Complete. This leads to queries with possibly very long
execution times, regardless of the heuristic used, making the
experiments very time consuming. Nevertheless, we utilized
well over 6 million queries for our performance evaluation.

Graph Datasets. Fortunately there exist a number of real-
world graph datasets commonly used in related research.

Figure 1: GraphCache System Architecture

These help concretize the effects of any solution on real-
world data and allow direct comparison of methods and re-
sult repeatability. For this reason we will report evaluations
conducted over three popular graph datasets: AIDS[24],
PDBS[11], and PCM[32]. However, it is worth creating ad-
ditional synthetic datasets so to perform evaluations under
characteristics unseen in the real-world datasets. Specif-
ically, we created a synthetic dataset presenting interest-
ing characteristics regarding the number, size and node de-
grees of graphs in the dataset. Interestingly, with respect to
dataset with graphs having a high average node degree, we
found that GC needs special mechanisms without which its
performance benefits degrade.

Algorithmic Context. GraphCache is intended to be a ge-
neral-purpose front-end for graph query processing. GC en-
tails a query indexing strategy that, as explained in [34], can
accommodate both subgraph and supergraph queries. In
addition, the design of GraphCache must be able to accom-
modate both FTV methods and SI algorithms; its current
implementation comes bundled with well-established FTV
methods and SI algorithms. In fact, any such algorithm is
viewed as a pluggable component into the architecture, al-
lowing any future algorithm to be incorporated.

4. SYSTEM ARCHITECTURE
GraphCache is designed from the ground up as a scal-

able semantic cache for subgraph/supergraph queries, ca-
pable of expediting any SI or FTV method (henceforth de-
noted Method M). Figure 1 shows its main architectural com-
ponents, comprising three major subsystems: Method M,
Query Processing Runtime, and Cache Manager. The last
two are internal subsystems of GC; the first is the method
that GC is called to expedite and hence external to GC.

The Method M subsystem includes, at a minimum, the
base graph dataset and a sub-iso test implementation, de-
noted Mverifier. Additionally, if M is a FTV method, then
it also features its index, denoted Mindex, and a filtering
component, Mfilter. The index is built in a pre-processing
step, by using Method M’s indexing component (not shown
in Figure 1 for simplicity). When GC is not used, sub-
/supergraph query processing proceeds by first using Mindex

through Mfilter to prune away dataset graphs definitely not
containing (or contained in) the query, thus forming its can-
didate set, MCS . Then Mverifier executes a sub-iso test
against all graphs in MCS , reading their structure directly
from the graph dataset store. For SI methods, MCS contains
all graphs in dataset.
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Figure 2: GraphCache System Data and Control Flow

Within GC, the Query Processing Runtime is responsi-
ble for the execution of queries and the monitoring of key
operational metrics. It comprises: a resource/thread man-
ager dispatching queries to the various filtering/verification
modules, the internal subgraph/supergraph query proces-
sors, the logic for GC’s candidate set pruning, and a statis-
tics monitor. These components communicate with Method
M and the Cache Manager via well-defined APIs.

In turn, the Cache Manager deals with the management
of data and metadata stored in the cache. It comprises the
cache replacement mechanisms, a Window Manager respon-
sible for cache admission control and maintenance of the
cache contents, a Statistics Manager responsible for meta-
data pertaining to past or current queries, as well as the
stores for all GC-related data including cached queries and
their answer sets, currently executing (not cached) queries,
and metadata/statistics for both past and current queries.

Figure 2 depicts the flow of control and data in GC dur-
ing processing of a query. The query first arrives at the
Resource Manager (1) and is then dispatched to Mfilter and
GC’s filtering processors in parallel (2). At the same time, a
copy of the query is added to the set of currently processed
queries, called the Window (discussed shortly). The filtering
components use their respective indexes to produce inter-
mediate candidate sets (3). More specifically, Mfilter uses
Mindex, while the two GraphCache processors use GCindex,
the set of cached graph queries and their answer sets. The re-
sults of this stage are then fed to the Candidate Set Pruner
which produces the final candidate set GCCS (4); at the
same time, statistics regarding GCCS and the contribution
of cached graphs are gathered by the Statistics Monitor and
forwarded to the Statistics Manager. The final candidate
set then undergoes sub-iso testing using Mverifier(5); meta-
data pertaining to the verification time are also gathered by
the Statistics Monitor and sent to the Statistics Manager.
When the Window is full, the Window Manager selects the
set of current queries to be considered for admission in the

cache (6) and invokes the cache replacement algorithm (7);
i.e., updates to the Cache are batched through the Window.

5. QUERY PROCESSING
This section discusses the design and implementation of

GraphCache’s Query Processing subsystem, responsible for
the execution of queries and the monitoring of key opera-
tional metrics. For the sake of clarity we first describe GC’s
operation when caching subgraph queries; we shall then dis-
cuss how GC can be used for supergraph queries as well.

5.1 Candidate Set Pruning
This subsection overviews the essence of [34]. For more

details and formal proofs of correctness, please refer to [34].
Initially, if Method M is a FTV method, its indexing subsys-
tem is used to build its graph dataset index as per usual. The
GraphCache’s data stores are initially all empty and are then
populated as queries arrive and are processed. When a query
g arrives at the system, Mfilter is used to produce a first can-
didate set. Concurrently, GraphCache checks whether the
query graph is a subgraph or supergraph of previous query
graphs, through its GCsub/GCsuper Processors.

GraphCachesub Processor. The GraphCachesub Proces-
sor is responsible for identifying when a new query g is a
subgraph of a previous query g′. When g′ was executed ,
GC indexed g′’s features in GCindex and stored its result set
and relevant statistics in the cache data stores.

Figure 3(a) depicts an example flowchart for this case.
The new query g is processed through Mfilter, producing
candidate set CSM (g) (with four graphs {G1, G2, G3, G4}).
Similarly, g is processed by the GCsub Processor, determin-
ing that there exists a previous query g′, such that g ⊆ g′.
GC then retrieves g′’s cached answer set, {G1, G2}. Now,
consider graph G1 ∈ CSM (g). Since g ⊆ g′ and from the
answer set of g′ we know that g′ ⊆ G1, it necessarily fol-
lows that g ⊆ G1 (and, similarly, g ⊆ G2). Therefore, we
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Subgraph
Query {G3, G4}

Answer
g

CSM (g) = {G1, G2, G3, G4}

CSM (g) � Answersub(g) =

g ✓ g0

Answersub(g) = {G1, G2}
Answer(g) = Answer [ {G1, G2}

, g0 ✓ {G1, G2}

Mverifier

GraphCachesub

Mindex

Processor

(a) Subgraph Case

{G1}
Subgraph
Query g

CSM (g) = {G1, G2, G3, G4}

Answersuper(g) = {G1, G5}

Answer(g)

GraphCachesuper , g00 ✓ {G1, G5}

Mverifier

Mindex

CSM (g) \ Answersuper(g) =

Processor

g ◆ g00

(b) Supergraph Case

Figure 3: GraphCache Processing of a Subgraph Query g

can safely remove G1 and G2 from CSM (g) and add them
directly to the final answer set. In the general case, g may
be a subgraph of multiple previous query graphs g′i. Then,
the set of graphs that need be sub-iso tested is given by:

CSGCsub(g) = CSM (g) \
⋃

g′i∈Resultsub(g)

Answer(g′i) (1)

where Resultsub(g) contains all query graphs currently in
GCindex of which g is a subgraph.

GraphCachesuper Processor. In turn, the GCsuper Pro-
cessor is responsible for identifying when a new query g
is a supergraph of a previous query g′′. Figure 3(b) de-
picts an example flowchart for this case. Again, Method M
produces its candidate set, CSM (g) (e.g., {G1, G2, G3, G4}).
GCsuper then determines that there exists a previous query
graph g′′ such that g′′ ⊆ g and whose cached answer set is
{G1, G5}. The reasoning then proceeds as follows. Consider
graph G2 ∈ CSM (g). We know from the cached answer set
above that G2 is not in the answer set of g′′. Since g′′ ⊆ g, if
g ⊆ G2 were to be true then it should also hold that g′′ ⊆ G2;
i.e., the answer set of g′′ would contain G2, which is a con-
tradiction. Therefore, it is safe to conclude that g * G2 and
thus G2 can be removed from CSM (g). In the general case,
g may be a supergraph of multiple previous query graphs
g′′j . Then, the set of graphs tested for sub-iso by GC is:

CSGCsuper (g) = CSM (g) ∩
⋂

g′′j ∈Resultsuper(g)

Answer(g′′j )

(2)
where Resultsuper(g) contains all query graphs currently con-
tained in GCindex of which g is a supergraph.

Putting It All Together. The Candidate Set Pruner collects
CSM and the results of the above two Processors; it then
first applies equation (1) on CSM , then applies (2) on the
result of the previous operation. The end result is a reduced
candidate set, which is then sub-iso tested by Mverifier.

Two Special Cases. Additionally, there are two cases that
warrant attention since they yield the greatest possible gains.

First, note that GC can easily recognize the case where a
new query, g, is isomorphic to a previous cached query. For
connected query graphs, this holds when ∃g′ ∈ GCindex such
that g ⊆ g′ or g ⊇ g′, and g and g′ have the same number
of nodes and edges. Thus, GC can return the cached result
of g′ directly and completely avoid any further processing.

Second, consider that ∃g′ ∈ Resultsuper(g) (i.e., g′ ⊆ g)
and Answer(g′) = ∅; then GC can directly return with an
empty result set. The reason is that if there were a dataset
graph g′′ such that g ⊆ g′′, since g′ ⊆ g we would conclude
that g′ ⊆ g′′, which implies that g′′ ∈ Answer(g′), contra-

dicting the fact that Answer(g′) = ∅; thus, no such graph
g′′ can exist and the final result set is necessarily empty.

Supergraph Query Processing. As mentioned earlier, GC
can expedite both subgraph and supergraph query process-
ing. In the latter case, the filtering components of GC re-
main unchanged, but the handling of the return answer sets
is the exact inverse of what happens for subgraph queries.
Briefly, given a supergraph query processing Method M and
a supergraph query g, the union of the answer sets of graphs
in Resultsuper(g) are removed from CSM (g) and added to
AnswerGCsuper (g), and the graphs not appearing in the in-
tersection of the answer sets of graphs in Resultsub(g) are
completely subtracted from CSM (g). Also, the first special
case still holds, but for the second special case processing ter-
minates when ∃g′ ∈ Resultsub(g) such that Answer(g′) = ∅.

5.2 Statistics Monitoring
The final component of this subsystem is the Statistics

Monitor. This is a lightweight layer, implemented as a wrap-
per library allowing components of this subsystem to record
various statistics (see §6.1) and to communicate them to the
Statistics Manager component of the Cache Manager sub-
system. Currently the following quantities are monitored:
• Static query metrics such as the number of nodes,

edges and distinct labels in the query.
• Total filtering and verification time of the query when

first executed.
• Break-down of total filtering times of the query to the

three filtering components.
• Number of times the query was matched by either GC

Processors and number of special-case matches.
• Most recent time a cached query was hit, expressed as

the serial no. of last benefited query.
• Total reduction in the candidate set size of new queries.

This statistic is easily monitored, as the Candidate Set
Pruner knows exactly which graphs from the answer
set of each matched cached query where removed from
the candidate set of any given new query (through ap-
plication of equations (1) and (2)).
• Total time saving due to the cached query. This statis-

tic is computed as the sum of the estimated costs of
all sub-iso tests alleviated, as mentioned above. The
estimation of the individual sub-iso test time c(g,G)
for a query graph g against a dataset graph G, is per-
formed using the formula[34]: c(g,G) = N×N !

Ln+1×(N−n)! ,

where L is the number of distinct labels, n the number
of nodes in g, and N ≥ n the number of nodes in G.

6. CACHE MANAGEMENT
GC’s Cache Manager subsystem, running in parallel with

the Query Processing Runtime subsystem, deals with the
management of the data and metadata stored in the cache.
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We first discuss the various data stores handled by this sub-
system, then dive into the design of its various components.

6.1 Data Layer
GraphCache’s Cache Manger maintains a number of com-

plementary data stores, conceptually bundled together into
two groups: the Cache stores and the Window stores.

The Cache stores include three components: First, a com-
ponent storing copies of cached queries (i.e., the actual graph
submitted as a query to GC) alongside their result sets
(i.e., the sets of dataset graph IDs containing (for subgraph
queries) or being contained in (for supergraph-queries) the
query graph). This component is implemented as an in-
memory hash table, loaded from disk on startup and writ-
ten back to disk on shutdown of the Cache Manager sub-
system. In said hash table, the serial number of the query
is used as the key and the query graph and result set as
the value. At startup, an upper limit is set on the size of
this hash table (expressed in number of records); the Cache
is deemed full when this upper limit is reached. Second, a
combined subgraph/supergraph index, indexing the afore-
mentioned query graphs to expedite subgraph/supergraph
matching of future queries against past queries. We have
loosely based our query index design on the GraphGrepSX
subgraph query index[2], augmented with additional meta-
data to allow for the processing of supergraph queries. This
index is loaded on startup and written back on shutdown
of the Cache Manager subsystem. Our index design allows
us to have a single index for both subgraph and supergraph
queries, thus providing for lower disk space and I/O over-
head, and a memory footprint low enough to allow for the
index to be easily resident in main memory throughout the
lifetime of the Cache Manager process. Third, a component
storing statistics for each cached query, implemented as an
in-memory key-value store, loaded from disk on startup and
written back on shutdown of GC. The query serial number
is again used as the key, pointing to a variable size array
of columns, sorted by column name. Columns in this store
include, but are not limited to: static query such as the
number of nodes, edges and distinct labels in the query; to-
tal filtering and verification time of the query when first exe-
cuted; count of times the query was matched by either of the
GCsub/GCsuper Processors plus number of optimal matches
(see §5.1); last (most recent) time a query contributes, ex-
pressed as the serial number of the benefited query; total
contribution of the cached query in reducing the candidate
sets and processing times of future queries, expressed as the
number of dataset graphs removed from the candidate set of
queries due to their being in the cached query’s answer set
and the cumulative sub-iso test time alleviated; etc.

On the other hand, the Window stores include two com-
ponents: First, a component storing new graph queries and
their result sets, implemented in the same manner as the first
component of the Cache stores above. An upper limit on the
size of this store is also configured at startup; the Window is
deemed full when said limit is reached. Second, a component
storing statistics for each query in the previous component,
also implemented as an in-memory key-value store like the
statistics component of the Cache stores. In this case, the
statistics include only static information regarding the new
queries, including the number of nodes, edges and distinct
labels in the query, as well as the total filtering and verifica-
tion time of the query.New queries are sent to the Window

Manager directly from the Query Dispatcher to be added to
the appropriate store, while their answer sets are added at
the end of their processing.

All updates to the query statistics stores are performed
through the Statistics Manager using values supplied by the
Statistics Monitor. The Statistics Manager is currently im-
plemented as a lightweight wrapper library, encapsulating
accesses to the statistics stores. The design of this sub-
system has explicitly been abstract enough to allow for an
easy replacement of the data stores with other in-memory,
on-disk or even remote/distributed stores without requiring
changes to the rest of our code. The Statistics Manager ex-
poses an interface akin to that of contemporary key-value
stores; i.e., it stores triplets of the form {key, column name,
column value}, accessible either by key (returns a“row”with
all triplets with the given key), or by column name alone
(returns a “column” with all triplets with the given column
name), or by key and column name (returns a single triplet).

6.2 Window Manager with Admission Control
The Window Manager, implemented as a separate thread,

is the brain of the Cache Manager subsystem. It keeps track
of the queries in the current Window and invokes the Cache
Admission Control algorithm to decide whether each new
query should be considered as a candidate for addition to the
cache. It also executes the Cache Replacement algorithms
when the Window is full, and rebuilds GCindex to reflect
any changes in the cached queries store. In the latter case,
the Window Manager first computes the new contents of
the cache (by replacing evicted queries with admitted Win-
dow queries) and invokes the indexing mechanism; queries
arriving at the system while this procedure is taking place,
continue being served by the old index and update the old
statistics. Once the re-indexing is over, the new cache con-
tents and index are swapped in place of the old ones, and
any statistics entries corresponding to evicted queries are re-
moved lazily from the statistics store. The driving force be-
hind this design was the fact that, much like all index-based
graph-matching methods, our current version of GCindex
does not support dynamic concurrent updates. Neverthe-
less, our design allows for low-latency/high-throughput pro-
cessing of new queries, even while the index is rebuilt, and
incurs minimal locking overhead (i.e., only for the swapping
of old and new cache contents/index structures, actually im-
plemented as simple in-memory reference (pointer) swaps),
trading off some possible cache hits against window queries.

Cache Admission Control. While experimenting with dif-
ferent workloads and datasets we observed that often the
performance of GraphCache would be lower than expected;
that is, although GraphCache benefited the majority of que-
ries, the overall speedup achieved was very low (close to
1). The reason behind this proved to be that the cache
was polluted, storing and improving the performance pri-
marily of inexpensive graph queries. To alleviate this situ-
ation, we make the natural conjecture that past expensive
(time-wise) queries are more likely to benefit later coming
expensive queries as they will help in alleviating more ex-
pensive sub-iso tests (and vice-versa for inexpensive queries).
We therefore propose a novel admission control mechanism,
part of the Window Manager component, which optimises
the graph cache by preventing inexpensive queries from be-
ing added to the cache. To quantify the expensiveness of a
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Table 1: Running Example: Cached Query Statistics

SerialNo / Last Hit Number CSM SI Cost
Query ID of Hits Reduction Reduction

11 91 23 170 2600
13 51 32 80 1200
37 69 26 376 780
53 78 13 210 360
82 90 5 120 150
91 95 4 10 270

query graph, we use the ratio of its verification time over its
filtering time. Each executed query is thus assigned an “ex-
pensiveness” score and only queries with such a score above
a threshold are considered as candidates for entering the
graph cache (a threshold value of 0 disables this compo-
nent). To compute said threshold, our mechanism examines
the queries in the first few windows and computes an expen-
siveness value which would result in a predefined percentage
of queries being classified as expensive. We have also experi-
mented with more dynamic approaches (e.g., greedily adapt-
ing the threshold using an exponential back-off approach
until the achieved time speedup reaches a local maximum);
without loss of generality and due to lack of space, we omit
further discussion of these techniques. The reasoning be-
hind the above lies in the fact that, given a graph query
processing framework, the filtering time is relatively con-
stant across queries, in contrast to the dramatic variance of
verification times. Moreover, the verification stage is known
to dominate the query time[9, 12], and the larger the verifi-
cation time the more overwhelming this dominance. Thus,
the above mechanism is a simple yet effective technique to
guarantee that more complex queries are prioritised.

6.3 Cache Replacement Policies
[34] used a specific graph replacement policy (PINC). We

have developed and tested a number of new different cache
replacement strategies (POP, PIN and HD), each offering
different trade-offs and performance characteristics for dif-
ferent datasets and query workloads. We describe the vari-
ous strategies here and report on their relative performance
in §7. In all cases, the replacement strategies access query
statistics through the Statistics Manager’s key-value store
interface, and return the IDs of queries to be cached out.
In order to compute this set, queries are assigned a “utility”
value and those with the lowest such values are cached out.

Below we present all cache replacement algorithms con-
sidered in this work. We use Table 1, presenting a snapshot
of GCstats for a number of hypothetical cached queries, as
our running example. In all cases, assume that the replace-
ment algorithm is invoked at time point 99 (i.e., right after
the query with serial number 99 was executed) and needs to
remove two entries from the cache, thus has to find the two
entries with the lowest utility value.

Least Recently Used (LRU). LRU discards the least re-
cently used items from the cache. The utility of each cached
graph is its last hit time, i.e., the serial no. of the last query
that is expedited by said cached graph. In our running ex-
ample, cached queries with serial number 13 and 37 would
be cached out. LRU is a simple and very popular policy
in several traditional caches. However, it builds on the as-
sumption of temporal locality of reference and thus fails to

identify cases of queries which have contributed huge sav-
ings to query processing although not having been used in
a while. In our example, we can see that query 13 has con-
tributed the most times, but still is evicted.

Popularity-based Ranking (POP). Ideally we would pre-
fer a replacement policy that would take into account the
popularity of queries. This leads to the second policy con-
sidered here: POP (short for Popularity-based Ranking).
This policy assigns each cached graph a utility value equal
to H/A, where H is the number of times a query has con-
tributed and A is its age in the cache, computed as the num-
ber of processed queries since the said graph enters cache;
this function manages to combine query popularity and age.
In our example, this policy would evict queries 11 and 53.

POP + Number of Sub-Iso Tests (PIN). As mentioned,
unlike traditional exact-match caches in which a cache hit
saves a disk/network IO, cache hits in GraphCache may
result into vastly different reductions in query processing
times. One of the reasons why this is so, is that cache hits
reduce the candidate set of the coming query by possibly
vastly different amounts. However, neither LRU nor POP
(actually, none of the known replacement policies) take this
into account. This gives rise to the next, exclusive to Graph-
Cache, replacement policy: PIN (short for Popularity and
sub-Iso test Number) Instead of looking just at the number
of hits H of a cached query, PIN assigns each cached graph
a utility value equal to R/A, where R is the total number of
subgraph isomorphism tests alleviated by said cached query,
and A is the same aging factor as above. The utility formula
of PIN can also be rewritten as: R

A
= H

A
· R
H

, which can be
interpreted as the probability of the query being a hit (i.e.,
its popularity), times the average savings in number of sub-
graph isomorphism test per hit. In our running example,
this policy would evict queries 13 and 91.

PIN + Sub-Iso Tests Costs (PINC). PIN takes into ac-
count the number of sub-iso tests alleviated. Another Graph-
Cache-exclusive replacement policy PINC further considers
the possibly vast differences in query execution times. PINC
assigns each cached query a utility value equal to C/A, where
A is the same aging factor as above, and C is the total de-
crease in query processing time due to the cached query.
Alas, this figure cannot be computed unless the relevant
sub-iso tests are actually performed, which is a moot point
in our case; instead, as mentioned (§5.2), we use a heuristic
to estimate this cost. PINC may improve upon PIN’s util-
ity value computation by considering the actual (estimated)
time cost of alleviated sub-iso tests instead of deeming them
all equivalent. PINC’s utility formula can be rewritten as:
C
A

= H
A
· R
H
· C
R

, interpreted as the probability of a cached
graph being hit, times the average savings in number of sub-
iso tests per hit, times the average estimated time cost per
saved sub-iso test. In our running example, PINC would
evict queries 53 and 82.

The Hybrid Dynamic Policy (HD). As the cost compo-
nent in PINC is only an estimation, using it does not always
lead to improvements in GC’s net query processing time. As
a matter of fact, we have observed through a large number
of experiments, that when the values of the R utility com-
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ponent exhibit a high variability, they are discriminative
enough on their own. In such cases, taking the estimated
cost into account can actually lead to lower time gains (i.e.,
PIN performing better than PINC). However, when the val-
ues of R exhibit a low variability, adding in the C component
leads to considerable query processing time improvements.

Thus, the last replacement policy considered in this work
(also exclusive to GraphCache), coined the hybrid policy
(HD), coalesces both PIN and PINC. More specifically, when
the HD policy is invoked, it first retrieves the R compo-
nent from GCstats and computes its variability[25] by using
the (squared) coefficient of variation (CoV ). CoV is de-
fined as the ratio of the (square of the) standard deviation
over the (square of the) mean of the distribution. When
CoV > 1, the associated distribution is deemed of high vari-
ability, as exponential distributions have CoV = 1 and typ-
ically hyper-exponential distributions (which capture many
high-variance, heavy tailed distributions) have CoV > 1. In
this case, HD performs cache eviction using PIN’s scoring
scheme; otherwise, it uses PINC’s scoring scheme.

In our running example, the mean R value is µ = 161 and
its standard deviation σ ≈ 126; then CoV = σ/µ ≈ 0.78 < 1
and thus HD will use PINC and evict queries 53 and 82.

7. PERFORMANCE EVALUATION

7.1 System Setup
We have implemented all aforementioned components and

subsystems of GraphCache in Java over ≈6,000 lines of code.
Experiments were performed on a Dell R920 host (4 Intel
Xeon E7-4870 CPUs (15 cores each), with 320GB of RAM
and 4×1TB disks, running Ubuntu Linux 14.04.4LTS.

We used GraphCache on top of three subgraph FTV and
three SI methods (due to space limitations, we only present
results for subgraph queries). The default value for the up-
per limit on the sizes C of the Cache and W of the Window
stores were C = 100 and W = 20 respectively; we also ex-
perimented with other values for both C (200, 300) and W
(50, 100, 200) to test their impact on GC’s performance.
Last, the sizes of the various thread pools are all set to 1 so
as to show just the benefits of using a graph query cache.
For the FTV methods we chose GraphGrepSX [2] (GGSX),
Grapes [6], and CT-Index [14], specifically because they are
proven to be top performers in their class[12]. Grapes and
GGSX were configured to index paths up to length 4, and
CT-Index to index trees up to size 6 and cycles up to size 8
using 4,096-bit-wide bitmaps. For Grapes, we examine two
alternatives, Grapes1 and Grapes6, with 1 and 6 threads re-
spectively. To be fair, we altered the code of Grapes so to
stop query processing after the first match in each dataset
graph. Please note that all mentioned values match their
default configurations in [2, 6, 14]. For the SI methods we
used GraphQL[10] as provided by [18] and a modified ver-
sion of VF2[4] (denoted VF2+) provided by [14], again for
being well-established and good performers[9, 12]; we also
used vanilla VF2[4] since it has been used by several FTV
implementations [2, 6, 9]. GC uses the Java Native Inter-
face to directly execute the native C++ implementations of
Grapes, GGSX, GraphQL and VF2, while CT-Index and
VF2+ are implemented in Java and thus invoked directly
from GC. This diversity in the implementation languages of
the incorporated methods attests to GC’s flexibility.

7.2 Datasets and Query Workloads
We employ three real-world (AIDS, PDBS, PCM) and one

synthetic graph datasets with different characteristics. More
specifically, AIDS[24] – the Antiviral Screen Dataset of the
National Cancer Institute – contains topological structures
of 40,000 molecules. Graphs in AIDS contain on average≈45
vertices (std.dev.: 22, max: 245) and ≈47 edges (std.dev.:
23, max: 250) each, whereby the few largest graphs have
an order of magnitude more vertices and edges. PDBS[11]
is a dataset of graphs representing DNA, RNA and pro-
teins, consisting of fewer (600) but larger graphs compared
to AIDS, with on average ≈2,939 vertices (std.dev.: 3,215,
max: 16,341) and≈3,064 edges (std.dev.: 3,261, max: 16,781)
per graph. PCM[32] consists of 200 graphs representing pro-
tein interaction maps, with on average ≈377 nodes (std.dev.:
187, max: 883) and ≈4,340 edges (std.dev.: 1,912, max:
9,416) per graph. Last, the Synthetic dataset was created
using [3] and contained 1,000 graphs with on average ≈892
nodes (std.dev.: 417, max: 7,135) and≈7,991 edges (std.dev.:
5.09, max: 8,007) per graph. We created this dataset as a
larger counterpart to the PCM dataset, consisting of 5×
more graphs, each being 2-3× larger on average than the
average PCM graph. Graphs in AIDS and PDBS have low
average node degree (AIDS ≈2.09, PDBS ≈2.13), whereas
graphs of PCM and Synthetic have much higher average
node degrees (PCM ≈22.39, Synthetic ≈19.52).

We follow the established principle for the generation of
our workloads, using two different algorithms to synthesize
queries from the dataset graphs, outlined below.

Type A Workloads. Queries in these workloads are gener-
ated in the following manner: first, a source graph is selected
randomly from the dataset graphs; then, a node is selected
randomly in said graph; finally, a query size is selected uni-
formly at randomly from several pre-defined sizes and a BFS
is performed starting from the selected node. For each new
node, all its edges connecting it to already visited nodes are
added to the generated query, until the desired query size is
reached. For the first two random selections above, we have
used two different distributions; namely, Uniform (U) and
Zipf (Z), with the probability density function of the latter
given by p(x) = x−α/ζ(α), where ζ is the Riemann Zeta
function[26]. Ultimately, we had three categories of Type
A workloads: “UU”, “ZU” and “ZZ”, where the first letter
in each pair denotes the distribution used for selecting the
starting graph, and the second for the starting node.

Type B Workloads (with no-answer queries). These work-
loads are generated as follows. For each of the query sizes,
we first create two query pools: a 10,000-query pool with
queries with non-empty answer sets against the dataset, and
a second 3,000-query pool with no match in any dataset
graph (i.e., empty result set). Queries for the first pool are
extracted from dataset graphs by uniformly selecting a start
node across all nodes in all dataset graphs, and then per-
forming a random walk till the required query graph size
is reached. Generation of no-answer queries has one extra
step: we continuously relabel the nodes in the query with
randomly selected labels from the dataset, until the resulting
query has a non-empty candidate set but an empty answer
set against the dataset graphs. Once the query pools are
filled up, we generate workloads by first flipping a biased
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coin to choose between the two pools (with the “no-answer”
pool selected with probability 0%, 20% or 50%), then ran-
domly (Zipf) selecting a query from the chosen pool. We
thus have three categories of Type B workloads: “0%”,“20%”
and “50%”, denoting the above probability used.

We use Zipf α = 1.4 by default; we also use α = 1.1
representing a smaller skewness and α = 1.7 for a higher
skewness. As a reference point, web page popularities fol-
low a Zipf distribution with α = 2.4 [26]. Query graphs are
generated in different sizes: 4, 8, 12, 16 and 20-edge graphs
for the smaller AIDS and PDBS datasets; 20, 25, 30, 35 and
40-edge queries for the larger PCM and Synthetic datasets
(as almost half of the dataset graphs in AIDS contain no
more than 40 edges, larger queries are not usable). Such
sizes are typical in the literature [6, 14, 35]. Workloads for
AIDS and PDBS consist of 10,000 queries, while workloads
for PCM and Synthetic contain 5,000 queries for practical
reasons, as PCM/Synthetic queries take much longer to ex-
ecute. We only allow one for one Window (i.e., 20 queries)
before starting measuring GC’s performance.

We report on both the benefits and the overheads of GC.
Reported metrics include query time and number of sub-iso
tests per query, along with the speedups introduced by GC.
Speedup is defined as the ratio of the average performance
(query time or number of sub-iso tests) of the base Method
M over the average performance of GC when deployed over
Method M (i.e., speedups >1 indicate improvements). The
results were produced over more than 6 million queries! As a
yardstick, [21] (also a cache but for XML databases) report
a query time speedup of 2.6× with 10,000-query workloads
generated using Zipf α = 1.5, and a 1,500-query warm-up.

7.3 Results and Takeaways
Figure 4 depicts the speedups attained by GraphCache

when CT-Index and GGSX where used as Method M (re-
sults for other FTV and SI methods showed similar trends
and are thus omitted for space reasons). We can see that
GraphCache attains significant speedups (up to 10× lower
query processing times in this case), and that it is always
one of the GC-exclusive policies (PIN, PINC) that produces
the best results. A more subtle observation, though, is that
there are cases where PIN wins over PINC and vice-versa;
for example, PIN dominates the scene for queries against
the AIDS dataset but it is PINC that takes the lead when
querying the PDBS dataset. Ultimately, different cache re-
placement policies exhibit different performance depending
on the workload and dataset characteristics. The question
then is how to choose a replacement policy when said charac-
teristics are unknown a-priori. Our answer to this question
then, and the first takeaway message, is: When in doubt,
use the HD replacement policy, as it always manages to
do better or on par with the best of the alternatives. For
the remainder of this section we will be using HD as the
replacement policy; results for other caching policies show
similar trends and are thus omitted for space reasons.

Figure 5 depicts speedups in query processing time against
all FTV methods for queries on the PDBS dataset (results
for other datasets are similar). Query processing time speed-
ups range from 1.60× (i.e., 37.5% lower processing time) to
more than 42×. A similar picture is drawn in Figure 6 for
speedups in the number of sub-iso tests performed. Jux-
taposing Figure 5 and 6 leads to the following interesting
insight: Reductions in the number of sub-iso tests do
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Figure 4: Query Processing Time Speedups over CT-Index
Across Replacement Policies

not translate directly into reductions in query time;
this validates our claim that cache hits in GraphCache ren-
der different benefits. In all cases, though, GraphCache
achieves significant improvements in both query pro-
cessing time and number of sub-iso tests performed.

Figure 7 shows the speedups achieved by GraphCache for
Type B workloads against the AIDS dataset, for various val-
ues of the Zipf α skewness parameter (results for number of
sub-iso tests and other workloads show similar trends and
are omitted for space reasons). We can see that the more
skewed the query distribution, the higher the gains
from caching. This is, of course, expected and has been
shown times and again in related work on traditional caches,
as caches are built on the premise of (temporal) locality of
reference and thus more skewed query distributions have the
potential to translate to higher hit ratios. A subtler, but
equally important observation here, reached by examining
Figure 5 in the light of the above result, is that Graph-
Cache leads to significant performance gains even for
query workloads with uniform query popularity distri-
butions. These distributions represent worst-case scenarios
for caching schemes, but we can see speedups from 1.29×
(≈20% lower times) up to ≈11× for the UU workloads, em-
phasizing a significant characteristic of GraphCache where
the realm of “locality” is extended by subgraph/supergraph
matches among queries, in addition to the traditional exact-
match of isomorphic queries.

Figure 8 shows the performance of GC against GGSX for
queries on AIDS and PDBS, for varying cache sizes (results
for other methods and datasets show similar trends). We can
see that increasing the cache size improves the perfor-
mance of the cache. However, this does not mean that
one can increase the size of the cache indefinitely; the size
of the cache is first limited by the amount of main mem-
ory available for GC, then by the overhead associated with
updating the cache contents (more on this shortly).

Figure 9 shows the speedups in query time (9(a)) and
number of sub-iso tests (9(b)) against Grapes6 for the PCM
and Synthetic datasets, attained when the cache admission
control is disabled (C) and enabled (C + AC). For clarity,
performance without specific notes refer to turning off the
cache admission control (C) by default. We can see that
cache admission control leads to even higher speed-
ups, thus validating our observation regarding cache pollu-
tion and the appropriateness of our “expensiveness”-based
mechanism. A subtler observation is that the correspond-
ing speedup in the number of sub-iso tests is reduced when
cache admission control is enabled, as shown in Figure 9(b).
For better understanding of this trend, let us concentrate on
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Figure 7: GraphCache Speedup in Query Time for Type B workloads on the AIDS dataset, for various value of Zipf α
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the Synthetic-50% workload: GC without admission control
yields a speedup as high as ≈4× in the number of sub-iso
tests, but the resulting query time speedup is only ≈1.5×.
The reason is that top expensive queries do not benefit as
much when the cache is polluted: more specifically, the av-
erage time for the top-1% most time-consuming queries is
≈16.5 seconds with Grapes6, going down to ≈15 seconds for
GraphCache without admission control – a 1.1× speedup;
the remaining 99% “inexpensive” queries enjoy speedups of
2×, going from ≈0.200 seconds down to ≈0.100 seconds, but
they account for a much smaller percentage of the overall
query processing time compared to the top-1% ones. When
we enable the admission control mechanism, these top-1%
expensive queries are prioritized, with their average query
processing time going down considerably to ≈10 seconds – a
much improved 1.65× speedup. Hence, despite the lower
speedup in number of sub-iso tests, the overall query
processing time benefits greatly.

We have shown so far that GraphCache leads to significant
decreases in the query processing time and number of sub-
iso tests of FTV (and SI) methods. We know that sub-iso
tests take up the majority of the query processing time for
FTV methods. A logical consideration, then, would be to
try and increase the filtering power of these methods so as to
further decrease the size of the resulting candidate set. This
can be accomplished by increasing the size of the features
recorded by FTV methods; larger features bear higher dis-
criminative power as, obviously, the larger a feature the less
its occurrences in dataset graphs. To this end, we reconfig-
ured all FTV methods increasing their feature sizes by just
one (i.e., max path length of 5 for Grapes and GGSX; trees
of size 7, cycles of size 9, and 8192 bits per bitmap for CT-
Index). This minimal increase in feature size indeed led to
better performance, with the average query processing time
going down by approximately 10%; however, it also led to an
almost doubling of the space required for the FTV indexes
across all methods. At the same time, GC accomplishes its
speedup for a negligible space overhead ; for example, for
the AIDS dataset the memory and disk space required by
GraphCache was just over 1% of the space required for the
indexes of the various FTV methods, but leading to time
speedups of up to 40× (figure omitted for space reasons).

Figure 10 depicts a break-down of query processing time
for FTV methods and GraphCache, showing how much of
GC time is spent (on average) to update the Window and
Cache data stores (including executing the cache replace-
ment algorithms and re-indexing the cached query graphs),
for various cache sizes. As we can see, the time overhead
for cache maintenance chores is trivial. Another inter-
esting observation is that, although increasing the size of the
cache improves query processing time (as also shown in Fig-

ure 8), it also leads to an increase in the overhead associated
with the maintenance of the cache contents. For the cache
sizes considered in this work we can see that what we lose in
maintenance overhead, we gain in query time. That means
that, if we had designed our architecture to update the cache
contents in-line (i.e., not in parallel) with query processing,
we would see diminishing returns with larger cache sizes.
Our current design does not suffer from this problem; how-
ever, we expect that, for considerably larger cache sizes, this
overhead may outgrow the time required for the Window to
fill (and thus for a new replacement/re-indexing round to
begin). The upside is, though, that even with the meagre
cache sizes used in this work, the performance gains
are enough to not warrant a much larger cache.

Figure 11 depicts the query processing speedups of GC
over the two well-established SI methods considered in this
work – GQL and VF2+ (vanilla VF2 results where simi-
lar and are omitted for space and readability reasons). We
can see that GC improves the performance of well-
established SI methods, with the same meagre 100-query
cache configuration as above. This is significant in that
GC provides a new way to expedite sub-iso tests (as
opposed to developing yet another SI heuristic) which
is usable with any mainstream SI method. Note the
interesting finding that VF2+ speedup for AIDS UU work-
load is close to that of AIDS ZU (7.18 vs 6.49), whereas one
might have expected a different outcome. Intuitively, the ZU
workload bears more exact-match hits than UU, due to the
skewness of selecting source graphs during query generation
(see §7.2). And it does: we measured circa 2.5X the number
of exact-match cache hits in ZU vs UU. However, recall that
GC exploits also sub/supergraph hits. When exact-matches
are not frequent, GC loads graphs in the cache that can help
with their sub/supergraph relationships. Indeed, we mea-
sured circa 2X such matches for the UU workload vs ZU.
Of course, the overall performance result is a very complex
picture and depends on how big benefit is each saved exact-
match vs each saved sub/supergraph match. But the key in-
sight here is that by utilizing exact-matches and sub/su-
pergraph matches, GC can introduce significant ben-
efits in both skewed and non-skewed workloads.

Let us now take a step back and look at how FTV meth-
ods and GC operate: they both expedite queries by filter-
ing out dataset graphs, thus producing a reduced candi-
date set. The logical question then is: what happens if
we pitch a full-blown FTV method against GC operating
on top of a simple SI method? Figure 12 shows the re-
sults when comparing GC on top of VF2+ against CT-Index
(also using VF2+ for its verification chores), across several
datasets and Type-A workloads (results for Type-B work-
loads omitted for space reasons). For the small 100-query
cache, GC performs on par or better than CT-Index in six
out of nine cases, slightly worse in two other cases, and takes
up to double the time of CT-Index in the remaining worst
case. Note, though, that GC’s space requirements are un-
der ≈15% of the space requirements of CT-Index’s index for
PDBS and under 0.2% for AIDS, and that CT-Index has the
fastest verification algorithm and by far the smallest index
among all FTV methods considered in this work. The situ-
ation is more impressive when using the larger (500-query)
cache, where GC matches or outperforms CT-Index across
the board (by a factor of 1.8× on average). Note that even
for this“larger”cache, GC’s space requirements are less than
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≈70% of CT-Index’s index size for PDBS and less than 1%
for AIDS (and comparable to the latter against GGSX and
Grapes). The conclusion is then that GC can replace the
best-performing FTV methods, achieving comparable
or better performance for a fraction of the space and
no pre-processing cost as no indexing is needed.

8. CONCLUSIONS
We presented GraphCache, to the best of our knowledge

the first full-fledged caching system for general subgraph/su-
pergraph query processing, including its architecture meet-
ing demanding design goals, a number of GC-exclusive graph-
query-aware cache replacement policies, and an accompa-
nying cache admission control mechanism. The proposed
system can be used to expedite all current FTV and SI
methods (bridging these two, alas, separate threads of re-
search so far), and is applicable for both subgraph and su-
pergraph queries. Our extensive performance evaluation
has proven the applicability and appropriateness of our ap-
proach. GC achieves considerable improvements in query
processing time for meagre space overheads. Our work also
revealed a number of key lessons, pertaining to graph caching
and query processing. Future work currently focuses on two
big ticket items: first, to develop a distributed/decentral-
ized version of GraphCache; second, to extend GraphCache
to benefit subgraph queries when finding all occurrences of
a query graph against a single massive stored graph.
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