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Foreword

Welcome to the 19th edition of the International Conference of Extending Database Technology (EDBT).
Originally biennial, the EDBT conference has been held annually and jointly with ICDT (“International
Conference on Database Theory”) since 2009. This year, EDBT is taking place in Bordeaux, France, on March
15–18, 2016, continuing its long tradition as a top venue for presenting and discussing recent advancements
in data management.

This year we received 137 submissions to the research track, 18 submissions to the vision track, 24 sub-
missions to the industrial/application track, 28 submissions to the demo track and 11 tutorial proposals.
The high quality of these submissions made the job of selecting the best of them rather challenging. The
various program committees after thorough reviewing and careful consideration selected 38 research papers,
5 vision papers, 9 industrial/application papers, 16 demos and 3 tutorials. The proceedings include these
contributions. A new addition this year is the poster track for presenting novel ongoing work. There were 64
submissions from which the poster program committee selected 31 contributions included in this proceedings.

The proceedings also include an overview of the keynote talk by Elisa Bertino (Purdue), an overview of the
keynote talk by Gustavo Alonso (ETHZ) and a laudation concerning the EDBT 2016 Test of Time Award
that was given to the paper

“Bridging Physical and Virtual Worlds: Complex Event Processing for RFID Data Streams” by
Fusheng Wang, Shaorong Liu, Peiya Liu, Yijian Bai, published in the EDBT 2006 proceedings.

The EDBT 2016 program is the result of the joint effort of many people that I would like to take this
opportunity to thank. Ioana Manolescu (Vision Track Chair), Georgia Koutrika (Industrial/Application
Track Chair), Letizia Tanca (Demo Track Chair) and Amelie Marian (Tutorial Chair), all did an excellent
job, as Themis Palpanas with the workshops (whose proceedings appear in a companion volume). Thanks
also to the members of the program committees of the various tracks that worked very hard to review each
submission in detail and engaged in many discussions to create the best possible program.

Special mention should be made to the Test of Time Award committee members: Sihem Amer-Yahia, Yannis
Ioannidis and Christian S. Jensen. The general chair, Sofian Maabout and the local organizers worked
hard with all arrangements necessary for securing a successful event. Special thanks to Kostas Stefanidis,
the proceedings chair, and Patrick Mary, the website chair, for their invaluable contribution to this event.
Christine Collet and Norman Paton were instrumental in advising and coordinating with the EDBT Executive
Board.

And lastly and most importantly, thanks to all the authors that submitted their work to EDBT 2016. Their
contributions were what made this a strong program. I hope that you find the EDBT 2016 conference
informative, enjoyable and thought-provoking!

Evaggelia Pitoura
EDBT 2016 Program Chair
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Test-of-Time Award

In 2014, EDBT began awarding the EDBT Test-of-Time (ToT) Award, with the goal of
recognizing one paper, or a small number of papers, presented at EDBT earlier and that
have best met the “test of time”, i.e., that has had the most impact in terms of research,
methodology, conceptual contribution, or transfer to practice over the past decade(s). The
EDBT ToT Award for 2016 will be presented during the EDBT/ICDT 2016 Joint Conference,
March 15–18, 2016, in Bordeaux (France). The EDBT 2016 Test-of-Time Award committee
was formed by Sihem Amer-Yahia (CNRS, Laboratoire d’Informatique de Grenoble, France),
Yannis Ioannidis (University of Athens, Greece), Christian S. Jensen (Aalborg University,
Denmark), and all PC chairs of former EDBT conferences including EDBT 2006.

The committee was asked to select a paper or a small number of papers from the EDBT 2006
(Munich) proceedings. After careful consideration, the committee and the EDBT Executive
Board have decided to select the following paper as the EDBT ToT Award winner for 2016:

Bridging Physical and Virtual Worlds:
Complex Event Processing for RFID Data Streams

by Fusheng Wang, Shaorong Liu, Peiya Liu, Yijian Bai
published in the EDBT 2006 proceedings, 588–607

The paper proposes an event-oriented approach to the processing of RFID data which makes
it possible to automate the translation of RFID based application semantics through complex
event detection. In particular, it demonstrates the ability to process complex events by
capturing temporal constraints in an algebra. The resulting declarative event-based approach
is shown to simplify RFID data processing and is shown to be scalable. The paper pioneers
declarative event-based RFID processing. The simplicity and expressiveness of the proposed
framework are admirable. For example, the framework makes it possible to express object
tracking on historical data as well as to formulate real-time monitoring.

The committee and the EDBT Executive Board find that this paper stands out in terms of
relevance, impact, and influence in databases. It has had substantial impact. In particular,
it has impacted real systems, and the engine it proposes has been integrated into Siemens
RFID Middleware. It is also the most cited EDBT 2006 paper, has spurred a significant
amount of follow-up work, and remains relevant today.
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ABSTRACT

Deploying existing data security solutions to the Internet of
Things (IoT) is not straightforward because of device het-
erogeneity, highly dynamic and possibly unprotected envi-
ronments, and large scale. In this paper, after outlining key
challenges in data security and privacy, we summarize re-
search directions for securing IoT data, including efficient
and scalable encryption protocols, software protection tech-
niques for small devices, and fine-grained data packet loss
analysis for sensor networks.

1. INTRODUCTION

The Internet of Things (IoT) paradigm refers to the net-
work of physical objects or “things” embedded with elec-
tronics, software, sensors, and connectivity to enable objects
to exchange data with servers, centralized systems, and/or
other connected devices based on a variety of communication
infrastructures. IoT makes it possible to sense and control
objects creating opportunities for more direct integration
between the physical world and computer-based systems.
When IoT is augmented with sensors and actuators, IoT
is able to support cyber-physical applications by which net-
worked objects can impact the physical environment by tak-
ing “physical” actions. IoT will usher automation in a large
number of domains, ranging from manufacturing and energy
management (e.g. SmartGrid), to healthcare management
and urban life (e.g. SmartCity). Applications range from
monitoring the moisture in a field of crops, to tracking the
flow of products through a factory, to remotely monitoring
patients with chronic illnesses and remotely managing med-
ical devices, such as implanted devices and infusion pumps.
Forecasts by McKinsey&Company estimate that the eco-
nomic impact of IoT technology by year 2025 will range
from 2.7 to 6.2 trillion dollars [7]. Gartner forecasts predict
that by the year 2020 20.8 billions of IoT devices will be
installed. Such staggering numbers show that IoT will have
a major impact.

However, while on one side, IoT will make many novel

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
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15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
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applications possible, on the other side IoT increases the
risk of cyber security attacks. In addition, because of its
fine-grained, continuous and pervasive data acquisition and
control/actuation capabilities, IoT raises concerns about pri-
vacy and safety. A recent study by HP about the most
popular devices in some of the most common IoT niches
reveals an alarmingly high average number of vulnerabil-
ities per device [10]. On average, 25 vulnerabilities were
found per device. For example, 80% of devices failed to re-
quire passwords of sufficient complexity and length, 70% did
not encrypt local and remote traffic communications, and
60% contained vulnerable user interfaces and/or vulnerable
firmware [10]. Multiple attacks have already been reported
in the past against different embedded devices [2], [16] and
we can expect many more in the IoT domain.

2. SECURITY AND PRIVACY RISKS FOR

IOT

IoT systems are at high security risks for several reasons.
They do not have well defined perimeters, are highly dy-
namic, and continuously change because of mobility. In ad-
dition IoT systems are highly heterogeneous with respect to
communication medium and protocols, platforms, and de-
vices. IoT systems may also include “objects” not designed
to be connected to the Internet. Finally, IoT systems, or por-
tions of them, may be physically unprotected and/or con-
trolled by different parties. Attacks, against which there
are established defense techniques in the context of con-
ventional information systems and mobile environments, are
thus much more difficult to protect against in the IoT. The
OWASP Internet of Things Project [1] has identified the
most common IoT vulnerabilities and has shown that many
such vulnerabilities arise because of the lack of adoption
of well-known security techniques, such as encryption, au-
thentication, access control and role-based access control. A
reason for the lack of adoption may certainly be security un-
awareness by IT companies involved in the IoT space and by
end-users. However another reason is that existing security
techniques, tools, and products may not be easily deployed
to IoT devices and systems, for reasons such as the variety
of hardware platforms and limited computing resources on
many types of IoT devices. Even well known encryption
protocols, such as RSA, prove to be very expensive when
running on devices with limited computing capabilities espe-
cially when multiple encryption operations have to executed
concurrently such as in the case of networked vehicles [12],
and small drones [14].

Privacy is particularly critical in the context of IoT. As
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medical and well-being devices are increasingly been adopted
by users and personalized medicine and health care appli-
cations are being designed and deployed that rely on con-
tinuous fine-grained data acquisition from these devices, the
human body is becoming a rich source of information. Such
information is typically collected from devices and then up-
loaded to some cloud and/or transmitted to other devices,
such as mobile phones, which in turn may forward the infor-
mation to other parties. The collected information is typi-
cally very rich and often includes meta-data such as location,
time, and context, thus making possible to easily infer per-
sonal habits, behaviors, and preferences of individuals. It
is thus clear that on one side such information has to be
carefully protected by all parties involved in its acquisition,
management, and use, but also users should be provided
with suitable, easy to use tools to protect their privacy and
support anonymity depending on specific contexts [11].

3. RESEARCH DIRECTIONS

Developing comprehensive security and privacy solutions
for IoT requires revisiting almost all security techniques we
may think of. Encryption protocols need to be engineered so
to be efficient and scalable for deployment on large-scale IoT
systems and devices with limited computational resources.
Benchmarks are needed to perform detailed assessments of
such protocols [14]. In addition, as devices may be phys-
ically unprotected, attackers may have access to the state
of the memory while encryption operations are being per-
formed. Addressing such problems may require new tech-
niques based, for example, on white-box cryptography [3].
White-box encryption techniques hide encryption keys by
transforming them into large look-up tables in order to make
harder for attackers to extract the keys. Such techniques are
however very expensive and many of the proposed white-box
encryption protocols have been cryptanalyzed. Introducing
dynamics in the look-up tables by a shuffling approach [15]
may help addressing such problem. In addition, scalability
of such protocols is critical, in that in many safety-sensitive
applications encryption operations must be very efficient.
For example, in a vehicle network, a message from a vehicle
informing other vehicles of a sudden break should be pro-
cessed very quickly in order to give the other vehicles enough
time to break. Carefully engineered approaches taking ad-
vantage of specialized hardware, such as GPUs, available on
systems on chip must be designed and benchmarked [12].

Software running on the devices must also be secured.
Major challenges here arise from the fact that many IoT de-
vices are based on processors such the ARM processor, which
have differences in the instruction sets with respect to other
conventionally used processors. Such diversity has an impli-
cation for example on the techniques for protecting software
from attacks, such as return-oriented programming attacks,
as such techniques must be tailored to the specific instruc-
tion set of the platform of interest [6]. Other research issues
concern how to protect at run-time software from memory
vulnerabilities. Solutions to this problem may have to take
into account the specific programming languages used on
IoT devices, such the case of nesC used in TinyOS, and the
resource limitations [8]. Also well-known software manage-
ment practices, like remote software patching and firmware
updates, may become difficult if at all possible in an IoT
environment and may actually open the door to additional
attacks [5], [4]. Communication protection and defense tech-

niques against novel botnet attacks that exploit IoT de-
vices [8] are also critical.

Data security, availability, and quality are other critical
areas for IoT. Data security requires, in addition to the use of
encryption to secure the data while being transmitted and at
rest, access control policies to govern access to data, by tak-
ing into account information on data provenance and meta-
data concerning the data acquisition context, such as loca-
tion and time [9]. Availability requires among other things
to make sure that relevant data is not lost. Addressing such
requirement entails designing protocols for data acquisition
and transmission that have data loss minimization as a key
security goal. Kinesis [13] is an example of a sensor network
system designed to make it possible for sensors to automati-
cally take response actions in the event of data transmission
disruptions. Ensuring data quality is a major critical re-
quirement in IoT as data acquired and transmitted by IoT
devices may be of poor quality, because of several reasons
such as bad device calibration, device faults, and deliberate
attacks aiming at data deception attacks. Solutions like data
fusion need to be revised and extended to deal with dynamic
environments and large-scale heterogeneous data sources.

Finally privacy introduces new challenges, including how
to prevent personal devices from acquiring and/or transmit-
ting information depending on the user location and other
context information, and how to allow users to understand
risks and advantages in sharing their personal data.

4. CONCLUDING REMARKS

IoT technology introduces several exciting opportunities
and new applications. However, it is critical that solutions
be adopted to ensure security, privacy, and safety of IoT sys-
tems with minimal impact on performance, scalability, and
usability. Even though the computer and network security
area has offered over the years many important techniques
and methods, revisiting and extending these techniques and
methods in order to address the specificities of IoT systems
entails many scientific and engineering challenges.

5. ACKNOWLEDGMENTS

The work reported in this paper has been partially sup-
ported by the Purdue Cyber Center and the National Sci-
ence Foundation under grant CNS-1111512.

6. REFERENCES

[1] https://www.owasp.org/index.php/OWASP_

Internet_of_Things_Project.

[2] S. K. Bansal. Linux worm targets internet-enabled
home appliances to mine cryptocurrencies.
http://thehackernews.com/2014/03/

linux-worm-targets-internet-enabled.html,
March 2014.

[3] A. Bogdanov and T. Isobe. White-box cryptography
revisited: Space-hard ciphers. In Proceedings of the

22nd ACM SIGSAC Conference on Computer and

Communications Security, Denver, CO, USA, October

12-6, 2015, pages 1058–1069, 2015.

[4] A. Costin, J. Zaddach, A. Francillon, and
D. Balzarotti. A large-scale analysis of the security of
embedded firmwares. In Proceedings of the 23rd

USENIX Security Symposium, San Diego, CA, USA,

August 20-22, 2014., pages 95–110, 2014.

2



[5] A. Cui, M. Costello, and S. J. Stolfo. When firmware
modifications attack: A case study of embedded
exploitation. In 20th Annual Network and Distributed

System Security Symposium, NDSS 2013, San Diego,

California, USA, February 24-27, 2013, 2013.

[6] J. Habibi, A. Panicker, A. Gupta, and E. Bertino.
Disarm: Mitigating buffer overflow attacks on
embedded devices. In Network and System Security -

9th International Conference, NSS 2015, New York,

NY, USA, November 3-5, 2015, Proceedings, pages
112–129, 2015.

[7] J. Manyika, M. Chui, J. Bughin, R. Dobbs, P. Bisson,
and A. Marrs. Disruptive technologies: Advances that
will transform life, business, and the global economy.
http://www.mckinsey.com/insights/business_

technology/disruptive_technologies, May 2013.

[8] D. Midi, M. Payer, and E. Bertino. nesCheck: Static
analysis and dynamic instrumentation for nesC
memory safety. 2016. Submitted for publication.

[9] R. V. Nehme, H. Lim, and E. Bertino. FENCE:
continuous access control enforcement in dynamic
data stream environments. In Third ACM Conference

on Data and Application Security and Privacy,

CODASPY’13, San Antonio, TX, USA, February

18-20, 2013, pages 243–254, 2013.

[10] K. Rawlinson. Hp study reveals 70 percent of internet
of things devices vulnerable to attack.
http://www8.hp.com/us/en/hp-news/

press-release.html?id=1744676#.VpfsZ8ArJcw,
July 2014.

[11] B. Shebaro, O. Oluwatimi, D. Midi, and E. Bertino.
Identidroid: Android can finally wear its anonymous
suit. Transactions on Data Privacy, 7(1):27–50, 2014.

[12] A. Singla, A. Mudgerikar, I. Papapanagiotou, and
A. A. Yavuz. Haa: Hardware-accelerated
authentication for internet of things in mission critical
vehicular networks. In IEEE Military Communications

Conference, 2015.

[13] S. Sultana, D. Midi, and E. Bertino. Kinesis: a
security incident response and prevention system for
wireless sensor networks. In Proceedings of the 12th

ACM Conference on Embedded Network Sensor

Systems, SenSys ’14, Memphis, Tennessee, USA,

November 3-6, 2014, pages 148–162, 2014.

[14] J. Won, S. Seo, and E. Bertino. A secure
communication protocol for drones and smart objects.
In Proceedings of the 10th ACM Symposium on

Information, Computer and Communications Security,

ASIA CCS ’15, Singapore, April 14-17, 2015, pages
249–260, 2015.

[15] J. Won, S. Seo, and E. Bertino. White-box
attack-resistant dynamic block cipher for vehicular
networks. 2016. Submitted for publication.

[16] A. Wright. Hacking cars. Commun. ACM,
54(11):18–19, 2011.

3



Data Processing in Modern Hardware 
 Gustavo Alonso 

Systems Group  
Department of Computer Science 

ETH Zurich 

alonso@inf.ethz.ch 

 

 
 

 

 

ABSTRACT 

Data processing is changing in radical ways from how it has 

developed in the last four to five decades.  

On the one hand, data science and big data have brought an 
unprecedented growth and variety in data sizes, demanding 
workloads, data types, and applications. From studying social 
networks on graph data to genomics over string matching 
algorithms; from low latency key value stores used to retrieve user 
profiles to large scale data appliances focusing on data 
warehousing; from real time stream data processing to database 

engines on cloud platforms, the types, scope, and requirements on 
data management engines has grown enormously.  

On the other hand, hardware is no longer a source of performance 
as it has been in the last decades. Instead, it has become a 
complex, fast evolving, highly specialized, and heterogeneous 
platform that requires considerable tuning and effort to use 
optimally. Today, hardware is not becoming necessarily faster per 
se but provides instead a wide range of options for accelerating 

and tuning applications through new features. Unlike what 
happened in the past, applications in general and database engines 
in particular, have to work much harder to extract performance 
improvements from new hardware as the exploitation of these 
new features is not automatic and often requires a redesign of the 
system. In addition, many of the opportunities offered by modern 
hardware are still without adequate support from high level tools 

such as compilers or debuggers, placing quite a burden on system 
designers. 

In this talk I will discuss the issues in data processing that arise as 
a result of modern hardware: the need to deal with parallelism and 
distribution, the increasing importance of networking, the 

proliferation of accelerators, and the raise of heterogeneity in the 
machine. These issues are both a threat and a challenge, 
demanding a radical redesign of many aspects of data processing 
and database engines. Using examples from recent work ranging 
from query scheduling to hardware accelerators, I will present 
several exciting and radically new directions that are opening up 
for database research as a result of the advances being made in 
hardware. An important theme in the talk is the call for database 

designers and researchers to become proactive and identify the 
hardware features and characteristics that are needed to better 
support data processing.  
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ABSTRACT

Micro-blogging systems have become a prime source of in-
formation. However, due to their unprecedented success,
they have to face an exponentially increasing amount of
user-generated content. As a consequence finding users who
publish quality content that matches precise interest is a
real challenge for the average user. This paper presents a
new recommendation score which takes advantage both of
the social graph topology and of the existing contextual in-
formation to recommend users to follow according to user
interest. Then we introduce a landmark-based algorithm
which allows to scale. The experimental results and the user
studies that we conducted confirm the relevance of this rec-
ommendation score against concurrent approaches as well as
the scalability of the landmark-based algorithm.

1. INTRODUCTION
Micro-blogs have become a major trend over the Web

2.0 as well as an important communication vector. Twitter,
the main micro-blogging service, has grown in a spectacu-
lar manner to reach more than 570 million users in April,
2014 in less than seven years of existence. Currently around
1 million new accounts are added to Twitter every week,
while there were only 1,000 in 2008. 500 million tweets are
sent every day and on average a Twitter user follows 108 ac-
counts1. Facebook is another example with 1.26 billion users
who publish on average 36 posts a month. A Facebook user
follows on average 130 “friends”which results in 1,500 pieces
of information a user is exposed on average when he logs in1.
Other similar systems like Google+, Instagram, Youtube,
Sina Weibo, Identi.ca or Plurk, to quote the largest, also
exhibit dramatic growth.

1http://expandedramblings.com

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

This fast and unprecedented success has introduced sev-
eral challenges for service providers as well as for their users.
While the former have to face a tremendous flow of user
generated content, the latter struggle to find relevant data
that matches their interests: they usually have to spend a
long time to read all the content received, trying to filter
out relevant information. Two (complementary) strategies
have emerged to help the user to find relevant data that
matches his interest in the huge flow of user generated con-
tent: posts filtering like in [13, 14, 8] and posts/account
searches and/or recommendation like in [7, 4, 5]. Social
network systems usually offer the ability to search for posts
or accounts that match a set of keywords. This could be a
“local” search to filter out the posts received, or a “global”
search to query the whole set of existing posts/accounts.
For the latter search, there exist two options: some pre-
computed posts sets that correspond to the hot topics at
query time, or customized searches where the query result is
built according to the keywords specified by the user. How-
ever, the broad match semantics generally adopted by the
searching tools is very limited. Even a ranking score based
on the number of keywords is not sufficient to retrieve all
posts of interest. Combined with the lack of semantics and
the number of posts a day, the large number of searches per-
formed every day also raises scalability issue. For instance
in 2012, more searches were performed each month (24 bil-
lion) on Twitter than on Yahoo (9.4 billion) or on Bing (4.1
billion).

In this paper we consider the problem of discovering qual-
ity content publishers by providing efficient, topological and
contextual user recommendations on the top of a micro-blog
social graph. Micro-blogging systems are characterized by
the existence of a large directed social graph where each user
(accounts) can freely decide to connect to any other user for
receiving all his posts. In this paper we make the assump-
tion that a link between a user u and a user v expresses
an interest of u for one or several topics from the content
published by v. We consequently choose to model the under-
lying social network graph as a labeled social graph, where
labels correspond to the topics of interest of the users. Our
objective is to propose a recommendation score that cap-
tures both the topological proximity and connectivity of a
publisher along with his authority regarding a given topic
and the interest of the intermediary users between the one
to be recommended and the publisher.
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The size of the underlying social graph raises challenging
issues especially when we consider operations that involve
a graph exploration. In order to speed up the recommen-
dation process we propose a fast approximate computation
based on landmarks, i.e., we select a set of nodes in the
social graph, called landmarks, which will play the role of
hubs and store data about their neighborhood. This set of
landmarks is selected using different strategies we compare
experimentally in Section 5.

Contributions. In this paper we propose a recommenda-
tion system that produces personalized user recommenda-
tions. Our main contributions are:

1) considering the idea that measures based on the graph
topology are good indicators for the user similarity, we
propose a topological score which integrates semantic
information on users and their relationships;

2) furthermore, we introduce a landmark-based approach
to improve recommendation computation time and to
achieve a 2-3 order of magnitude gain compare to the
exact computation;

3) an experimental validation of our approach, including
a comparative study with other approaches (Twitter-
Rank [26] and Katz [16]).

Observe that we illustrate our proposal in the context of
micro-blogging systems, but our model is general and may
be used for any social networks where users publish content
and receive posts from the accounts they follow.

The paper is organized as follows: after the introduction in
Section 1, we present the related work in Section 2. Section 3
describes our model and our recommendation scores along
with their composition property. Then we propose our fast
recommendation computation based on a landmark strategy
in Section 4. Our experimental validation is presented in
Section 5 while Section 6 concludes the paper and introduces
future work.

2. RELATED WORK

Recommendation systems for social networks were re-
cently proposed like [16, 4, 26, 11, 7, 21, 10, 3, 28, 24]. The
work in [16] presents a comparison of different topological-
based recommendation methods adapted in the context of
link-prediction. In [2], authors propose to combine two rank-
ing scores estimated with a fair bets approach on the user
invitation graph and on the profile browsing graph. The
work in [24] presents a user recommendation system which
exploits node similarity scores estimated as a combination of
local and global scores. Local score is based on the number
of neighbors of the query node and of the recommendation
node while global score involved the shortest path between
them. Thus the recommendation scores for these approaches
are only based on the topology and unlike our proposal do
not consider neither content nor authority of the users. On
the other side, the work in [20] finds users with high topi-
cal authority scores in micro-blogging systems. Unlike our
method, those scores are not personalized, the system com-
putes global authority scores, which in our case are used
as parameters of the recommendation scores computed for
some user.

Other approaches, like [4, 11], consider collaborative filter-
ing. The work in [4] introduces a collaborative tweet ranking
based on preference information of the users, authority of the
publisher and the quality of the content. Recommendations
are produced at a tweet level. Hannon et al. [11] evaluate a
set of of profiling strategies to provide user recommendations
based on content, e.g. the tweets of the user or the tweets
of his followers, or collaborative filtering. The methods pro-
posed by [21] and [7] also provide tweet recommendations.
Pennacchiotti et al. [21] analyze the tweets content as well as
the content of the user’s direct neighbors while Diaz-Aviles
et al. [7] use the user past interaction to compute rankings
in real-time. All these works consider content but unlike
our proposal they do not consider paths longer than direct
follower/followee links.

Few papers combine content and topology of the social
graph. Wend et al. [26] present an extension of the PageR-
ank algorithm named TwitterRank which captures both the
link structure and the topical similarity between users. How-
ever this similarity is based on topics provided by LDA and
their distance-based similarity computation between users
does not capture the semantic similarity between topics.
We also propose an authority score for an account which
estimates the local and global influence of this account for
a given topic. Our scoring function also provides higher
weight for short paths to favor ”local” recommendations. In
[10], authors describe the production recommender system
implemented in Twitter. It relies on an adaptation of the
SALSA algorithm [15] which provides user recommenda-
tion in a centralized environment based on a bipartite graph:
the user’s circle of trust, computed with random walks from
the user considering content properties, and the accounts fol-
lowed by the users from the circle of trust (the authorities).
Our approach is different since it captures the users interest
through the labeled social graph, which allows to compute
scores based on semantics, on authority and on topology.

To scale and to accelerate our recommendations compu-
tations, we pre-compute scores for a subset of nodes named
landmarks. Landmark-based approach is a well-known divide-
and-conquer strategy for the shortest paths problem that
have been shown to scale up to very large graphs [25, 9, 22,
23]. The idea is to select a set L of nodes as landmarks
which store the distance to other nodes. The distance d(u, v)
between two nodes u and v is then estimated by computing
the minimum d(u, l) + d(l, v), where l ∈ L. Das Sarma et
al. [23] chose to pre-compute the time-consuming shortest-
path operations for each node in structures called ”sketches”
and to use them to provide shortest-path estimations at
query-time which enables scaling for large web graphs. Gu-
bichev et al. [9] extend the sketch-based algorithm proposed
by [23] to retrieve shortest paths and improve the overall
accuracy. Tretyakov et al. [25] use shortest-path trees to
achieve an efficient and accurate estimation which support
updates. They also introduce a landmark selection strategy
that attempts to maximize the shortest-paths coverage. In
[22] authors also investigated the impact of landmark selec-
tion on the accuracy of distance estimations. They proved
that optimizing the landmark coverage is a NP-hard problem
and showed experimentally that clever landmark selection
strategies yield better results. Similar to these approaches,
we employ landmarks for computation scaling and use some
of the existing landmark selection strategies in the context
of user recommendation.
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3. MODEL
We introduce in this section the underlying social graph

model and our recommendation scores. Table 1 lists the dif-
ferent notations used throughout the paper.

N, E resp. set of nodes and edges
Γu, Γu(t) followers for u (resp. total or on topic t)
T topics vocabulary
labeln, labele labeling function for nodes and for edges, resp.
topoβ(u, v) topological score of v for u with decay factor β
σ(u, v, t) recommendation score of v for u on topic t
σ̃S(u, v, t) approximate recommendation score considering

paths going through a node n ∈ S
ωp(t) topical component of the path score for path p
ωp(t) path score for path p
auth(u, t) node authority score for u on topic t
εe(t) edge relevance of edge e on topic t
α, β decay factor for an edge and path resp.
λ, L a landmark, the set of landmarks
Pu,v set of all paths between u and v
Pu,λ,v set of all paths between u and v through λ
Υk(λ) the k-vicinity of λ
Ru,v recommendation vector of v for u for all topics

Table 1: List of notations

3.1 Labeled social graph
Wemodel the Twitter social network as a directed labeled

graph G=(N, E, T , labelN , labelE) where N is set of vertices
such that each vertex u ∈ N is a user (account). E ⊆
N × N is a set of edges where an edge e = (u, v) ∈ E
exists if u follows v, i.e, u receives the publications of v.
The labeling function labelN : N → 2T maps each user to
the set of topics that characterize his posts, chosen in a topic
vocabulary T . The topics associated by the labeling function
labelE : E → 2T to an edge e = (u, v) describe the interest
of the user u for the posts of v. In this paper topics are
extracted from tweets by using OpenCalais1 combined with
a trained Support Vector Multi-Label Model using Mulan2

(see Section 5). For a user u, we define Γu(t) the set of nodes
following u on topic t and by Γu the set of all his followers.
An example of such graph is depicted in Figure 1. For users
B and C we display their topics of interest along with an
excerpt of their tweets.

3.2 Recommendation
For a user u and a query composed of several topics Q =

{t1, . . . , tn}, our model recommends users v based on the
following criteria which consider both graph topology and
content semantics:

(i) user proximity: u trusts his friends, the friends of his
friends, etc., but this confidence decreases with dis-
tance ;

(ii) the number of paths from u to v: user v is likely to be
more important for u if there are many other relevant
users (i.e., linked to u) who recommend v;

(iii) topical path relevance of the connections between u and
v with respect to Q.

1http://www.opencalais.com/
2http://mulan.sourceforge.net/

Figure 1: A labeled social graph

Our recommendation score combines the topical relevance
of paths with a topological measure which considers all ex-
isting paths between two nodes u and v of the graph. More
precisely, the recommendation score σ(u, v, t) of the user v
for user u on topic t on paths p = u ❀ v is the sum of all
path scores ωp(t) and is expressed as follows:

Definition 1 (Recommendation score).

σ(u, v, t) =
∑

p∈Pu,v

ωp(t) =
∑

p∈Pu,v

β|p|ωp(t) (1)

where Pu,v denotes the set of all paths between u and v,
ωp(t) is the total path score of a path of length |p| and ωp(t)
the topical relevance ωp(t). The decay factor β ∈ [0, 1] gives
more importance to shorter paths.

The final recommendation score for the query Q is com-
puted as a weighted linear combination (some are proposed
in [1]) where user scores for each individual topic ti ∈ Q are
weighted by the relevance of ti for the posts of u which is
computed by the topic extraction method (see Section 5).

Note that we can deduce from Equation 1 a score which
considers only the topology by ignoring the topical relevance
of paths (i.e. setting ωp(t) to 1). This score is higher if there
exist many short paths between u and v and is denoted as :

topoβ(u, v) =
∑

p∈Pu,v

β|p| (2)

It corresponds to the Katz score [16] that has been suc-
cessfully employed for link prediction. We will use it as a
baseline for comparison with our method in Section 5.

The topical relevance ωp(t) of a path p = u ❀ v for a topic
t in Equation 1 considers both the relevance of nodes (user
authority) and the topical relevance of edges (edge relevance)
on the path p w.r.t the topics of the query Q. We define in
the following these concepts.

Edge relevance:.
Each edge on a path p contributes to the score of p with a

semantical score which depends on its topics. Distant edges
contribute less to the recommendation score than edges close
to u. More precisely, the relevance of an edge e at distance
d from u on path p for a topic t is defined as :

εe(t) = αd ×maxt′∈labelE(e)(sim(t′, t)) (3)
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where labelE(e) is the labeling function that returns the top-
ics associated to the edge e. The decay factor α ∈ [0, 1]
decreases the influence of an edge according to its distance
from u. The function sim : T 2 → R computes the seman-
tic similarity between two topics t and t′. We use in the
present paper the Wu and Palmer similarity measure [27] on
top of the Wordnet 3 database (we have a small number
of topics for labeling our dataset without synonymy issues),
but other semantic distance measures, such as Resnik or
Disco 4 could also be used. The choice of the best similar-
ity function is beyond the scope of the current paper. When
an edge is labeled with several topics, we only keep the max-
imum similarity to t among all its topics to avoid high scores
for edges labeled with many topics that have small similarity
to t.

User authority:.
We define a per node topical authority function auth(u, t)

of u on a topic t which depends on the number of users
who follow u on t. The authority score is decomposed into
two scores: (i) the local authority score that gives a higher
score to users that are specialized on topic t than to users
u who publish on a broad range of topics and (ii) the global
popularity score that gives higher scores to users that are
more followed on t. Combination of local and global scores
has also been used to compute authorities for Web pages [12]
or micro-blogging [10]. The authority score auth(u, t) of a
user u on a topic t is consequently defined as follows :

auth(u, t) =
|Γu(t)|

|Γu|︸ ︷︷ ︸
local

×
log(1 + Γu(t))

log(1 +maxv∈N(Γv(t)))︸ ︷︷ ︸
global

where |Γu(t)| is the number of followers of u on t, and |Γu|
is its total number of followers. We used the logarithm func-
tion to smooth the difference between popular accounts and
accounts with very few followers. The local authority is 1
when u is followed exclusively on t and the global popularity
is 1 when u is the most followed user on t. If no other user
follows u on t both scores are 0. The authority scores for
a given topic t are high for users that are mainly followed
on topic t and that have a significant number of followers.
The combination of both local and global scores leads to
similar authority scores for very specialized accounts with
few followers and for very popular but generalist accounts.
Observe for scores update that |Γu| and |Γu(t)| can be com-
puted on local information of each user, without graph ex-
ploration. Oppositely the computation of maxv∈N(Γv(t))
may be costly since it requires to query the complete graph.
However, the log strongly limits the impact of a variation
in the popularity of an account with millions of followers,
and we can assume this value is stored (and re-computed
periodically).

Example 1 (Local and global authority). Consider
the example graph in Figure 1, with a sample of tweets for the
users B and C along with their topics. User B is more rele-
vant for technology than C. Indeed B and C have the same
global popularity with two followers on this topic for both ac-
counts. However the local authority of B on technology is

3http://wordnet.princeton.edu/
4http://www.linguatools.de/disco/disco en.html

higher than the one of C since 2 out of the three topics on
which B is followed are technology, whereas for C only 2 out
of the 6 topics on which it is followed are technology. For
the topic bigdata, the local authority of B and C is the same
(1 out of 3 for B and 2 out of 6 for C) but C is more fol-
lowed on bigdata (2 users who follow him) than B (1 user).
Therefore, the total authority of C on bigdata is higher.

Topical path relevance:.
Finally, we consider that the path relevance of p is high

when both the relevance of the nodes and the one of the
edges of p are high:

ωp(t) =
∑

e∈p

εe(t)× auth(end(e), t) (4)

where end(e) returns the end node of the edge e. The rec-
ommendation score of v for the user u on topic t is then
obtained by replacing ωp(t) in equation (1) by its formula
given by equation (4). The resulting user recommendation
score thus captures the topology (proximity and connectiv-
ity) of the graph along with the followers interests (expressed
as labeled edges) and the authority score regarding the topic
of interest for each user on the path.

Example 2 (Topical path relevance). In Fig. 1, we
want to recommend to A users on the topic technology (we
suppose a search within a range k = 2). Users D and E can
be reached with respectively the paths p1 = A → B → D and
path p2 = A → C → E, each of length 2. The relevance

of the edge A
bigdata,technology
−−−−−−−−−−−−→ B is higher than the one of

C
bigdata
−−−−−→ E, since the first one is at distance 1 from A,

whereas the second is at distance 2. Moreover, the authority
of node B on technology (computed as (local) × (global) =
2
3
× log(1+2)

log(1+2)
) is higher than the authority of C on technology

( 2
6
× log(1+2)

log(1+2)
). Overall, the semantic relevance of the edges

on p1 for technology is higher than the one of edges on p2
and D obtains a higher recommendation score than E.

3.3 Score analysis
We will show in the following the iterative formula for

score computation and the score composition property that
is used in Section 4 for landmark-based computation.

Iterative score computation.
Recommendation scores σ(u, v, t) (Equation 1) are com-

puted by using the Power Iteration algorithm [19] (see Algo-
rithm 1 in Section 4). It starts by initializing σ(u, u, t) = 1
and σ(u, v, t) = 0 (∀u 6= v). At each step i, a new score

σ(u, v, t)(i) (that considers all paths from u to v with length

≤ i) is computed by using the scores σ(u, v, t)(i−1) of the
neighbors w ∈ Γv computed at step (i− 1). The computa-
tion is performed until convergence. The iterative formula
for score computation is the following :

Proposition 1 (Iterative computation).

σ(i)(u, v, t) =
∑

w∈Γv−

(β.σ(i−1)(u,w, t)+

+ topo
(i−1)
αβ (u,w).ωw→v(t)) (5)

where topoi−1
αβ (u,w) is the topological score (see Equation 2)

with a decaying factor of α.β. The score ωw→v(t) = β.α.
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maxt′∈labelE(w→v)(sim(t′, t)).auth(v, t)) is the score of a path
that contains only the edge w → v with topic t.

Proof. Suppose a path p of length k ≤ i from u to v.
This path can be decomposed into a path p1 of length k− 1
from u to the neighbor w of v and an edge e from w to
v of length 1. By using Equations (3) and (4), the score

ωp(t) is computed as: ωp(t) = β.ωp1(t) + β|p1|.α|p1|.ωe(t) =
β.ωp1(t)+βk−1.αk−1.(β.α.maxt′∈le(edge)(sim(t′, t)).auth(v, t)).
The score ωp1(t) corresponds to a path that finishes at w.

We can re-organize the paths in Equation 1 by grouping
those that pass through the same neighbor w of v: σ(u, v, t) =∑

p∈Pu,v
ωp(t) =

∑
w∈Γv− (t)

(
∑

p∈Pu,v,w∈p
ωp(t)). By re-

placing ωp(t) into this equation we obtain the iterative score
formula.

Score composition.
From the iterative score computation we can deduce for

each path p from a node u to a node v its total path score
ωp(t) on topic t from the score of of its sub-paths already
computed using the following property :

Proposition 2 (Recommendation score composition).
Assume a path p = p1.p2, with ωp1(t) and ωp2(t) the total
path scores of respectively p1 and p2 for a topic t. The total
path score of p can be computed as:

ωp(t) = β|p2|.ωp1(t) + β|p1|.α|p1|.ωp2(t)

Proof. By induction using the recursive formula, we prove
the proposition for paths with length k ≥ 1.

Iterative score computation convergence.
In order to show the convergence of the iterative compu-

tation of recommendation scores σ(u, v, t) of users v for user
u on topic t (Equation (5)), we express this computation in
matrix form as :

R
(k+1)
t = (βA)R

(k)
t + (βα)StT

(k)
αβ (6)

where R
(k)
t is the recommendation vector for topic t com-

puted at step k (R
(k)
t [v] is the recommendation score σ(u, v, t)

computed at step (k)). Matrix A is the adjacency matrix
of the graph (A[v][u] = 1 if u follows v). Matrix St is the
similarity-authority matrix (St[v][u] = sim(maxt′∈le(u→v)(t

′, t))×

auth(v, t)). Vector T
(k)
αβ is the topological vector at step k

(T
(k)
αβ [v] is the topological score topo

(k)
αβ (u, v)). It can be ex-

pressed as follows :

T
(k+1)
αβ = αβAT

(k)
β + I

where I [u] = 1 and I [v] = 0 for all u 6= v. We deduce that
the computation convergence is achieved under the following
condition :

Proposition 3 (Scores computation convergence).
If β < 1/σmax(A), where σmax(A) is the highest eigen value
for A, then the iterative scores computation of our recom-
mendation scores converges.

Proof. Based on the recursive formula which defines the
topical vector for a given node n, the topical scores matrix
defined by the series expansion

Tαβ =
∞∑

i=1

αβiAi = (I − αβA)−1 − I

converges when I−αβA is positive definite, so αβ < 1/σmax(A).
Consider a step k′ when convergence is reached for Tαβ.
Then for any k > k′, we have the recursive computation

R(k+1) = (βA)R(k)+C with C = (αβ)ST
(∞)
αβ constant. The

convergence for R(k+1) is reached when R(∞) = (βA)R(∞)+

C thus when R(∞) = (I − βA)−1 × C. This can be achieve
if β < 1/σmax(A). Since β > αβ, this later condition is
sufficient to ensure convergence.

4. LANDMARK-BASED COMPUTATION

The recommendation score computation presented in the
previous section assumes to explore all paths from a user u
to the nodes to be recommended. Computing recommenda-
tion scores by graph exploration at k hops for a graph with
n nodes supposes to consider outkavg paths for the average

case (outavg denotes the average out degree) and ofNk paths
in the worst case for a complete graph. This might be pro-
hibitive in the context of social graphs with millions of nodes
and edges. We rely here on a landmark-based approach to
propose fast approximate recommendations.

The computation is performed in two steps: (i) in the
preprocessing step we precompute for a sample of nodes in
the graph, named landmarks, top-n recommendation scores
(n being a parameter of the system) for every topic t ∈ T
and (ii) at query time we compute approximate recommen-
dations by exploring the graph until a given depth (also a
parameter of the system) and collect precomputed recom-
mendations from landmarks encountered during this explo-
ration.

n
r4

r3

r2

r1
λ1

λ2

λ3

λ4

Figure 2: Landmark-based recommendation

Example 3. Figure 2 illustrates this approach, where n
is the query node and λ1, λ2, λ3 and λ4 are landmarks.
When performing the graph exploration represented by the
blue dashed-line from the node n, the landmarks λ1, λ2 and
λ4 are encountered. Node r2 is encountered during explo-
ration and its score for n is computed at the same time as
the scores for λ1, λ2 and λ4. r1 is not encountered during
the exploration from n, but it is encountered by the explo-
rations starting from landmarks λ1 and λ2. Its recommen-
dation score for n is estimated by aggregating the scores of
λ1 and λ2 for n computed at query time with the scores of
r1 for λ1 and λ2 which were precomputed.
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4.1 Preprocessing
For the preprocessing step we consider a subset L ⊂ N of

nodes, so-called the landmarks, with |L| ≪ |N |. Instead of
a random sampling, several strategies may be considered to
determine L. For instance, landmark-based approaches for
computing shortest paths within a large graph rely mainly
on centrality properties (betweenness or closeness centrality)
to determine the sampling. The publisher-follower charac-
teristics of our graph also allow other topology-based sam-
pling, like a selection of the nodes with the most important
number of followers (most popular accounts) or the ones that
follow the highest number of accounts (most active readers).
While the choice of the landmarks may impact the global
performances of our approach we do not investigate further
the sampling strategies in the current paper. Nonetheless
some of these sampling techniques are experimentally com-
pared in Section 5.

Algorithm 1: Landmark Recomm(λ, maxk, T , β, n)

Require: landmark (λ), maximum exploration (maxk), set of
topics (T ), topological decay factor (β), number of results to
return (n)

Ensure: a set of recommendation list Rλ, a topological vector
topoβ(λ)

1: Υ0 := λ, k := 0
2: while k < maxk and converged = false do
3: Υk+1 := ∅
4: for all u ∈ Υk do

5: Υk+1 := Υk+1 ∪ Γu

6: for all v ∈ Γu do

7: for all t ∈ T do

8: σ(k+1)(λ, v, t)+ =

β × σ(k)(λ, u, t) + topok
αβ

(λ, u)× ωu→v

9: end for

10: topo
(k+1)
β

(λ, v)+ = β × topok
β
(λ, u)

11: end for

12: Rt[u]+ = σ(k)(λ, u, t)
13: topoβ(λ, u)+ = topok

β
(λ, u)

14: end for

15: if (
∑

u∈Υk
σk(λ, u, t))/|Rt| < tol, ∀t ∈ T then

16: converged := true
17: end if

18: k := k + 1
19: end while
20: return for all t ∈ T top-n((Rt), topoβ(λ))

Algorithm 1 performs the recommendation computation
(we remove the initialization of recommendation scores to
simplify the presentation) and is used both in the prepro-
cessing and in the approximate score computation step. It
takes as parameters the starting node λ of the graph ex-
ploration, the maximum exploration depth maxk, the set of
topics on which the recommendations are computed T , the
path decay factor β and the number n of final results to be
kept.

The set of reached nodes at depth k from λ is called the
k-vicinity of λ, denoted Υk(λ). Υ∞(λ) denotes the set of
reachable nodes from λ. For each topic t ∈ T the algo-
rithm computes a recommendation vector Rt with Rt[u] =
σ(λ, u, t) (see Equation 6), where u ∈ Υ∞(λ) is a reachable
node from λ. The algorithm also computes the topological
scores topoβ(λ, u) with decay factor β for all u ∈ Υ∞ (Equa-
tion 2), used to estimate the final recommendation scores at
query time (see below). Iteration in line 4 allows to ex-

plore the k-vicinity of λ. For each iteration we add in the
k-vicinity nodes that could be reached with an additional
hop (l. 5). For each node v reached at this step (l. 6), we
compute (or update if the node has been already encoun-
tered)) the recommendation score for each term of the topic
vocabulary (l. 7-8), and the node’s topological score (l. 10).
The score for u on paths of length k is added to the sorted
topical (l.12) and topological (l.13) lists of λ. Finally, only
the top-n recommendations for each vector Rt and only the
top-n topological scores topoβ(λ) are stored.

In the preprocessing step, for each landmark λ ∈ L we
compute the recommendation scores on all topics for all
nodes encountered during the iterative computation. So Al-
gorithm 1 runs until the convergence is reached (maxk is set
to a large value) with the parameter T set to T .

4.2 Fast approximate recommendation
We now present the algorithm for fast approximate rec-

ommendations based on the pre-computations performed for
each landmark in the preprocessing step. We assume that
we want to recommend to an account u other accounts for
a topic t.

We first perform a graph exploration starting from u, sim-
ilar to the one described by the Algorithm 1, for a given
maximal depth k, maxk, set to a small value (e.g. 2 or 3).
The graph exploration finds landmarks in the k-vicinity of
u and computes path scores on topic t for paths from u to
each encountered landmark. These scores are further com-
bined with the scores stored by the landmarks in order to
compute the approximate recommendation scores.

More precisely, we denote Λ ⊆ L the set of landmarks en-
countered by the graph exploration. For each λ ∈ Λ the top-
n recommended accounts v along with their recommendation
scores σ(λ, v, t) and their topological score topoβ(λ, v) are al-
ready computed in the preprocessing step. The approximate
recommendation of a node v for a user u is an aggregation
of the scores of v computed by all the landmarks λ ∈ Λ :

Definition 2 (approximate recommendation score).
The approximate recommendation score of a node v for a
node u on the topic t with respect to the set of landmarks Λ
is defined as :

σ̃Λ(u, v, t) =
∑

λ∈Λ

σ̃λ(u, v, t)

where the score σ̃λ(u, v, t) denotes the score of v that takes
into consideration the set of paths Pu,λ,v from u to v that
pass through the landmark λ.

The score σ̃λ(u, v, t) is computed by the composition of the
scores σ(u, λ, t) and topoβα(u, λ) obtained during the explo-
ration phase with the scores σ(λ, v, t) and topoβ(λ, v) that
are stored in the sorted lists of λ.

Proposition 4 (approximate score computation).
The recommendation score of v for u with respect to the land-
mark λ can be computed as follows :

σ̃λ(u, v, t) = σ(u, λ, t)×topoβ(λ, v)+topoβα(u, λ)×σ(λ, v, t)

Proof. Any path p from Pu,λ,v could be decomposed into
p1 and p2, with p1 ∈ Pu,λ and p2 ∈ Pλ,v. Obviously any path
p = p1.p2 with p1 ∈ Pu,λ and p2 ∈ Pλ,v is a path from Pu,λ,v.
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Consequently, based on Proposition 2) we have:

σ̃λ(u, v, t) =
∑

p∈Pu,λ,v

ωp(t)

=
∑

p1∈Pu,λ

∑

p2∈Pλ,v

β|p2|.ωp1(t) + β|p1|.α|p1|.ωp2(t)

=
∑

p1∈Pu,λ

ωp1(t).
∑

p2∈Pλ,v

β|p2| +
∑

p1∈Pu,λ

(β.α)|p1|.
∑

p2∈Pλ,v

ωp2(t)

= σ(u, λ, t).topoβ(λ, v) + topoβ.α(u, λ).σ(λ, v, t)

Note that our approach estimates a lower-bound of the rec-
ommendation scores while landmark-based approaches tra-
ditionally proposed for shortest paths computation provide
score upper-bounds, based on the triangular inequality. In-
deed in our setting the approximate scores do not consider
all the paths from u to v, but only the subset Pu,λ,v that
pass through λ. However experiments show this approxima-
tion allows to retrieve a set of recommendations close to the
one retrieved by an exact computation.

Algorithm 2: Approx Recomm(u, k, t, β, α)

Require: a node u, a max. depth k, a topic t, the decay factor
for path β and for edge α.

Ensure: an ordered list of recommendations R̃t for u

1: (Rt, topoβ.α(u))←Landmark Recomm(u, k, t, β.α)
2: for all v ∈ Rt do

3: if v ∈ L then

4: for all w recommended by v do

5: R̃t[w]+ =
σ(u, v, t).topoβ(v, w) + topoβ.α(u, v).σ(v, w, t)

6: end for

7: end if
8: end for

9: return R̃t

We perform our approximate recommendation for a node
u and a topic t by using Algorithm 2. It first calls the
Landmark Recomm algorithm to compute recommenda-
tion scores from u to all nodes within a distance k along
with their topological score (l. 1). Observe that unlike the
preprocessing step, the exploration depth has a small value
k (2 in our experiments) so that the algorithm will not be
run until the convergence. The recommendations are com-
puted only for a single topic t. Note also that the decay
factor is here β.α. For each encountered landmark (l. 2-
3) we combine its recommendation for the topic t with the
recommendation score computed from u to the landmark
according to Proposition 4 (l. 5).

5. EXPERIMENTS
In this section we present the experiments that we have

conducted on a real Twitter and DBLP datasets to validate
our structures and algorithms.

5.1 The datasets
The Twitter dataset we use in our experiments contains

approximately 2.2 million users (with their 2.3 billion associ-
ated tweets acquired in 2015 from February to April) linked
by more than 125 million edges (i.e following relationships).

Table 2 describes the main topological properties on the gen-
erated dataset. For our Twitter dataset these properties are

Property Twitter DBLP

Total number of nodes 2,182,867 525,567
Total number of edges 125,451,980 20,526,843
Avg. out-degree 57.8 47.3
Avg. in-degree 69.4 53.6
max in-degree 348,595 9,897
max out-degree 185,401 5,052

Table 2: Datasets topological properties

very close to the ones of the real Twitter network observed
in [18].

Topic extraction:.
As already mentioned, in order to generate the topics of

the edges we first used the OpenCalais document categoriza-
tion to tag a subset of the users (nodes) in our graph with
topics extracted from their published tweets. This strat-
egy allowed to tag 10 percents of our nodes using a list of
18 standard topics for Web sites/documents proposed by
OpenCalais. The user categorization was completed by us-
ing a trained Support Vector Multi-Label Model using Mu-
lan, with a precision of 0.90, that associated to each user
in the graph his publisher profile (topics on which he pub-
lishes). Each follower is characterized by a follower profile
containing topics with high frequency among the topics of
their followed publishers. Finally the labels of each edge are
the topics in the intersection between the corresponding fol-
lower and publisher profiles. The resulting graph is a fully
labeled social graph with 2.2M nodes and 125M edges. We
refer to this dataset as Twitter. The edge labels obtained
with our generation method show a biased distribution simi-
lar to the one observed for Web sites in Yahoo! Directory [17]
(see Figure 3).

Figure 3: Distribution of edges per topic

For the DBLP dataset, we merged different versions of the
ArnetMiner DBLP datasets5. The resulting dataset contains
2,291,100 papers, 1,274,860 authors and 4,191,643 citations.
From this dataset we build a graph of author citations by
creating a directed edge between author u and author v if
some paper of u cites a paper of v. This results in a fi-
nal dataset with 525,567 authors and 20,526,843 citations

5http://aminer.org/billboard/citation
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between them. Observe that we only kept cited authors.
Then we used the Singapore Classification6 to manually la-
bel some of the major conferences. The other conferences
are labeled based on the number of authors they have in
common with already labeled coferences (topics of two con-
ferences are close if there are many authors that publish in
both of them). Paper topics are deduced from the conference
topics by assuming that a paper published in a conference
is about the main topic of this conference. Author profiles
are built from the topics of their published papers. The
resulting dataset is summarized in Table 2.

5.2 Implementation
We implemented our solution in Java (JVM version 1.7).

The experiments were run on a 64-bit server with a 10 cores
Intel Xeon processor at 2.20GHz and 128GB of memory.
The server is running Linux with a 3.11.10 kernel.

The topic similarities given by the Wu and Palmer sim-
ilarity scores are pre-computed and stored in memory as a
triangular similarity matrix. We considered here only the
18 common topics for Web documents, which results in a
2.5 KB file, but observe that for 10,000 topics the similarity
matrix will require around 750MB so can still easily fit in
memory. A similar approach was chosen for the similarity
matrix of the DBLP dataset. We stored the landmark rec-
ommendations as inverted lists: for each landmark, we have
a set of accounts recommended along with their recommen-
dation score for each topic from T . Landmarks were chosen
according to one of the selection strategies presented in Ta-
ble 4. We compare the quality of our recommendations
with two related algorithms chosen as baseline: the stan-
dard Katz score [16], which considers only the topology (all
paths between two accounts along with their length, given by
the topological score in Equation 2), and TwitterRank [26]
which captures both the link structure and the topical sim-
ilarity between users. In the following we denote our score
as Tr.

The values of parameter β and α are set to 0.0005 and
respectively to 0.85, similarily to the values used for the
Katz and the TwitterRank alogorithms in [16] and [26].

5.3 Quality of the recommendation
We consider a test set of T edges of the graph together

with their corresponding topics representing the ground truth.
As observed in [16], to maintain the topological properties
of the graph during the evaluation process, the target node
of an edge of the test set must have at least kin in-degree
and the source node at least kout out-degree (kin = 3 and
kout = 3 in our experiments). All edges from T are then
removed from the graph. For each edge e = u → v in T we
randomly select 1000 accounts in the graph. We compute
recommendation scores for the 1001 accounts (the 1000 ac-
counts and v) with respect to u on the topics of e and we
form a ranked list (similar to [6]) for each topic. For each
list, if v belongs to the top−n accounts of the ranked list we
have a hit, otherwise a miss. The overall recall and precision
are defined similarly to [6] with #hits/T and #hits/N.T re-
spectively. For our experiments we set the test size T = 100
and we average values over 100 trials.

Figure 4 illustrates the accuracy of the different recom-
mendation strategies for the Twitter dataset. We see that

6http://www.ntu.edu.sg/home/assourav/crank.htm

Figure 4: Recall at N (Twitter)

TwitterRank is outperformed by other algorithms. Indeed
only for 4% of the recommendations the account correspond-
ing to the removed edge is found in the top-1 for Twitter-
Rank, while Katz provides as first recommendation the cor-
rect account in 29% of the tests and Tr in 34%. So Tr
provides a 8.5 and 1.2 gain with TwitterRank and Katz re-
spectively for the top-1. For the top-10 the improvement
remains significant: 3.8 and 1.3 with TwitterRank and Katz
respectively.

Figure 5: Precision vs recall (Twitter)

Figure 5 confirms that Tr outperforms other approaches:
for a similar recall value greater than 0.4, the precision of Tr
is at least twice the one of Katz and one order of magnitude
higher than the one of TwitterRank.

Figure 6: Recall at N (DBLP)

We observe in Figures 6 and 7 that the DBLP dataset
exhibits similar results. The recall however exhibits a faster
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Figure 7: Precision vs recall (DBLP)

increase for Tr due to the self-citations phenomenon: au-
thors from a given paper often cite one or several of their
previous papers on the topic. These papers may share some
citations with the paper corresponding to the edge removed
for the selected author. This also explains the faster recall
increase for Katz strategy. TwitterRank whose recommen-
dations are essentially based on the popularity (in-degree)
of an account reached in the graph does not capture this
phenomenon and provides slightly worse results than with
the Twitter dataset.

Figure 4 also illustrates the benefit when taking into ac-
count both the edge similarity and the authority. Adding
the edge similarity to Katz, which takes into account only
the topology (number and length of the paths between two
nodes), provides a better precision and recall (+11% for the
precision and N = 20, see Tr−auth). When we consider
our approach without edge-similarity scores, but with topic
authorities of the nodes, we improve both recall and preci-
sion (+25% compare to Katz precision, see Tr−sim). Fi-
nally our approach which integrates the topology, the edge
similarity and the topic authorities, outperforms these ap-
proaches (+32%, +19% and +6% with resp. Katz, Tr−auth
and Tr−sim).

However there exists a large discrepancy for accuracy when
considering two dimensions of analysis: the edge removal
strategy and the popularity of the topic used for the recom-
mendation. For the top-10, Figure 8 shows that for Twitter
we have a very low accuracy, i.e. a recall of 0.15, 0.03 and
0.18 for respectively Katz, TwitterRank and Tr, when try-
ing to retrieve an account which belongs to the top-10% less
followed accounts (TW min). Conversely very popular ac-
counts (top-10% most followed accounts) are most of time
retrieved in the top-10 recommendations with a recall be-
tween 0.9 and 0.95 for all strategies. This can be explained
by their path-based approach which aggregates scores on in-
coming paths, so accounts with numerous incoming paths
got a high score. Observe that for popular accounts, Twit-
terRank provides the best results. Indeed most of large ac-
counts are labeled with several topics. While TwitterRank
score relies on the account popularity and on the presence
or not of a label for an account (whatever the number of
labels it has), Tr score considers for its authority score the
number of incoming edges labeled with a given topic. But
the more labels an account has, the lower authority score
for a given topic it may have. Oppositely an account with
a low in-degree rarely has several labels. Our approach that
also considers semantic similarity between topics on edges is

then particularly efficient. With the DBLP dataset, authors
who belong to the 10% less cited are more likely retrieved
than with the Twitter dataset for Katz and Tr due to the
higher density of the graph. However TwitterRank based on
the popularity fails to retrieve these authors. Even for the
10% most popular authors, TwitterRank does not achieve
the good results obtained for the Twitter datasets, due to a
different distribution of the in-degree. While the 10% most
followed accounts in Twitter include few extremely popular
accounts and some moderately popular, the 10% most fol-
lowed authors in DBLP consist in a more uniform dataset
regarding the in-degree.

Figure 8: Recall w.r.t. popularity

Since the distribution of edge topics is very biased we also
study the impact of the popularity of the topic on the rec-
ommendations. Results are depicted in Figure 9 for topics
social, leisure and technology. Two main conclusions
are underlined with this experiment. First, the less popular
an account is, the better accuracy for our recommendations
we get. So for an infrequent topic like social we get a recall-
at-10 for Tr, Katz and TwitterRank of respectively 0.959,
0.751 and 0.253. Oppositely for the popular topic technol-
ogy we get respectively 0.462, 0.424 and 0.09. Indeed for a
popular topic many accounts may be found in a close and
connected neighborhood of the account we want to recom-
mend, possibly with a higher score than for the account for-
merly linked by the removed edge. Second we observe that
Tr which considers the semantic similarity between topics
always outperforms other strategies.

Figure 9: Recall w.r.t. topic popularity

However this experiment does not highlight the quality of
the recommendations performed by each algorithm but only
the ability to retrieve a removed link between two followers
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(link prediction). To estimate the quality of the recommen-
dations we rely on a user validation.

User Validation Task.
In order to evaluate the relevance of the generated recom-
mendations, we conducted a user validation task on 54 IT
users (undergraduate, postgraduate and PhD students, and
academics) from which 46% are regular Twitter users. We
set up an on-line blind test where we ask users to rate the
relevance of a set of recommendations for a given topic on a
scale from 1 (low relevance) to 5 (high relevance). A recom-
mendation set consists in the top-3 recommendations given
by Katz, Tr and TwitterRank, so 9 recommended accounts
for topics Technology, Social and Leisure. On the inter-
face the recommendation list is shuffled, and for each recom-
mendation we display a sample of 5 randomly chosen tweets
from the corresponding account.

Figure 10: Relevance scores (user validation Twit-
ter)

Figure 10 presents the results of our user validation. We
observed that the user during the validation usually mark
with the average 2 or 3 value all accounts when he was doubt-
ful about the relevance or not of an account what happened
usually when tweets were neutral, unclear, or when they
required some knowledges about a given topic (e.g. few Eu-
ropean people know who is Tom Brady so can not assert this
tweet is about the leisure topic). So scores greater than
value 3 are significant since they means users really observe
the relevance of an account.

From this experiment we conclude that on average Tr
and TwitterRank provide more relevant recommendations
according to the topic searched. However according to the
popularity of the topics (see Figure 3) we have very dif-
ferent results. The social topic gave more homogeneous
results with a score between 2.7 for TwitterRank, 2.8 for
Katz and 2.9 for Tr. The reason for this result is that posts
published by these accounts are generally difficult to clas-
sify since they mix social and health, or social and politics
for instance. Oppositely topics like leisure or technology
are less ambiguous. For these topics, we see that Tr and
TwitterRank outperform Katz, which was expected since
these two approaches consider the content published for their
recommendation scores, unlike Katz. While TwitterRank
generally recommends accounts with a large number of fol-
lowers, Tr can also recommend smaller account but more-
specialized, which results in a better relevance score for topic
with a medium popularity like leisure, when TwitterRank
is slightly better for the most popular topic technology.

We also conduct a user validation for the DBLP dataset.
We build a list with the top-3 recommendations returned

by each method for researchers from our lab. Observe they
belong to different areas (IR, DB, OR, network, software en-
gineering, etc). To illustrate how the different methods may
help to discover relevant authors we limit to 100 the num-
ber of citations of the authors returned by each algorithm
(so we avoid to propose very popular and obvious authors).
We propose to each researcher the randomized list with the
9 authors retrieved based on his DBLP entry. He marks
each proposal between 1 and 5 according to the relevance of
the proposal (i.e. the proposed author could have been cited
regarding the past publications done by the researcher). We
collect 47 answers and results are presented in Table 3.

Katz Tr TWR
average mark 2.38 2.47 1.51
# 4 and 5-mark 46 47 11
best answer (%) 0.38 0.50 0.12

Table 3: User validation (DBLP)

The first row shows that both Katz and Tr outperform
TwitterRank on this dataset. The second row shows that
around a third of the recommendations proposed by Katz
and Tr are considered particularly relevant by our panel
(4 or 5-mark)) while only 8% are so-considered with Twit-
terRank. A first rationale is that papers we cite, including
papers from co-authors, often cite the same relevant articles
within a topically-closed research community. The impor-
tance of the semantics on edge is less than with Twitter since
researchers, whatever the number of articles they published,
cite/are cited by mainly researchers from their community.
This explains the close score for Katz and Tr. The impor-
tant role of the popularity in TwitterRank explains it poor
results in this context since it proposed popular authors even
when there exists a small number of paths between the query
author and them. Last row confirms the quality of our rec-
ommendations since Tr presents for 50% of the tests the
best top-3 recommendations, when Katz and TwitterRank
achieve respectively 38% and 12%.

5.4 Approximate computations
We perform a set of experiments to illustrate the benefits

of the landmark-based approximate computations. Since re-
sults may be highly related to the choice for the landmarks
selection, as underlined in [22], we decided to implement and
compare recommendations based on 11 different landmark
selection strategies presented in Table 4.

Size and building time of the landmark index. A first
experiment highlights the important time discrepancy for
the landmark selection algorithms (see Table 5). Obviously
random selections of the landmarks like Random, Btw-Fol
and Btw-Pub are the fastest strategies (around 2ms per
landmark), while strategies based on the centrality prop-
erty are 5 orders of magnitude slower (around 17h) due to
O(N2. logN + NE) centrality complexity (with Johnson’s
algorithm). Table 5 also illustrates that the recommenda-
tion computation for a given landmark is almost indepen-
dent of the landmarks selection strategy (between 12 and 15
mns), which means that convergence is achieved in a similar
number of steps after exploring a similar number of paths.

Comparison of the landmark selection strategies for
recommendations. We evaluate our approximate approach
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Algorithm Description
Random Draw landmarks with a uniform distribution
Follow Draw landmarks with a probability depending on

their # of followers
Publish Draw landmarks with a probability depending on

their # of publishers
In-Deg Landmarks are nodes with highest in-degree
Btw-Fol Draw landmarks among nodes with # of followers

in [min follow,max follow]
Out-Deg Landmarks are nodes with highest out-degree
Btw-Pub Draw landmarks among nodes with # of publish-

ers in [min publis,max publish]
Central Select landmarks that are reachable at a given dis-

tance from most of chosen seed nodes
Out-Cen Select the landmarks based on the number of dif-

ferent output seeds that they cover
Combine Weighted combination between the Central and

Out-Cen
Combine2 Weighted combination between the Btw-Fol and

Btw-Pub

Table 4: Landmarks selection algorithms proposed

Strategy
landmarks

select. (ms) comput. (s)
Random 2.4 756.7
Follow 3,712.8 877.3
Publish 3,614.7 868.6
In-Deg 459.6 854.3
Btw-Fol 2.4 735.1
Out-Deg 1,815.7 918.6
Btw-Pub 1.7 822.7
Central 61,060.2 807.8
Out-Cen 66,862,3 816.5
Combine 130,461.8 818.2
Combine2 2.45 805.6

Table 5: Determining landmark w.r.t. strategies

presented in Section 4. We perform a BFS at depth 2 from
a query node and combine scores with the ones of the land-
marks encountered. (see Algorithm 2). Then we compare
the recommendations retrieved with the ones provided by
the exact computation with convergence. Average results
for 100 landmarks are reported in Table 6.

Strategy #lnd time in s (gain) L10 L100 L1000
Random 2.9 0.93 (338) 0.130 0.124 0.125
Follow 17.5 0.83 (379) 0.377 0.140 0.096
Publish 11.7 0.58 (539) 0.349 0.136 0.100
In-Deg 58.9 0.84 (373) 0.523 0.149 0.066
Btw-Fol 3.5 0.55 (577) 0.061 0.059 0.058
Out-Deg 6.2 0.81 (388) 0.518 0.147 0.064
Btw-Pub 2.9 0.54 (585) 0.129 0.127 0.123
Central 5.3 0.76 (414) 0.134 0.123 0.125
Out-Cen 4.4 0.74 (425) 0.172 0.131 0.121
Combine 4.2 0.71 (443) 0.180 0.125 0.118
Combine2 3.7 0.54 (584) 0.129 0.126 0.124

Table 6: Comparison of the landmark selection
strategies

First we observe that the number of landmarks encoun-
tered during the BFS at distance 2 differs from one strategy
to another and ranges from 2.9 on average for the Ran-
dom strategy to 58.9 for In-Deg. Centrality approaches lead
to less landmarks encountered since they select landmarks
among nodes which connect connected subgraphs and a two-
hop BFS is more unlikely to visit several connected sub-
graphs. We notice that the processing time does not depend

on the number of landmarks found, what seems counterintu-
itive since more landmarks means more computations (score
combinations) to perform. The rationale is that we perform
pruning when we encounter a landmark during the BFS,
to avoid considering twice paths from the BFS which pass
through a landmark. Since the recommendation computa-
tion is dominated by the BFS exploration and computation,
this pruning largely reduces the whole processing time. A
second important result is that our approximate computa-
tion allows to get a 2-3 order of magnitude gain compared
to the exact computation. Finally observe that a strategy
which allows to find more landmarks is more tolerant to a
landmark departure or to a landmark with outdated recom-
mendation values.

Finally to validate the quality of the approximate com-
putation we report the average Kendall Tau distance be-
tween the approximate computation and the exact compu-
tation obtained at convergence when a landmark stores re-
spectively the top-10, top-100 or top-1000 recommendations
for all topics (see last 3 columns of Table 6). Keeping 1000
recommendations for the landmarks at the pre-processing
allows to reach a Kendall Tau distance between 0.06 and
0.13 for the top-100 recommended accounts for a node at
query time. Keeping a top-10 at landmarks leads to a higher
Kendall Tau distance since a landmark may update at most
10 scores from the top-10 built at distance 2 from the BFS.
Consequently an account which is ranked at the 11th place
for two landmarks is not kept as a recommendation whereas
its aggregate score may be higher than accounts kept as
recommendations. Remark that even when storing the top-
1000 for each topic, the landmarks recommendations can
easily fit in memory since they require 1.4MB storage each.

6. CONCLUSION
We present the Tr recommendation score which com-

bines topology and semantic information regarding the user
interest. To face prohibitive computations with very large
graphs, we propose a landmark-based approach which re-
quires a pre-computation step for a small set of identified
nodes and achieves a 2-3 order of magnitude gain compare
to the exact computation. The experiments and user valida-
tion show that Tr outperforms other algorithms. As future
work we intend to study updating strategies since many fol-
lowing links have a short lifespan. This graph dynamicity
may impact the scores stored by the landmarks. Moreover
we made the choice to handle the recommendation task in
a centralized manner motivated by the current social media
architectures like Twitter Who-to-Follow service hosted on
a single server. However, with the continuous increase of the
social graph sizes, distribution strategies must be considered
in the future. Regarding our approach, distribution implies
to split the graph by taking into account connectivity, but
also to perform landmark selections and distributions that
allow a node to evaluate the recommendation scores“locally”
minimizing network transfer costs.
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ABSTRACT
Web 2.0 users conveniently consume content through subscribing
to content generators such as Twitter users or news agencies. How-
ever, given the number of subscriptions and the rate of the sub-
scription streams, users suffer from the information overload prob-
lem. To address this issue, we propose a novel and flexible di-
versification paradigm to prune redundant posts from a collection
of streams. A key novelty of our diversification model is that it
holistically incorporates three important dimensions of social posts,
namely content, time and author. We show how different applica-
tions, such as microblogging, news or bibliographic services, re-
quire different settings for these three dimensions. Further, each
dimension poses unique performance challenges towards scaling
the diversification model for many users and many high-throughput
streams. We show that hash-based content distance measures and
graph-based author distance measures are both effective and effi-
cient for social posts. We propose scalable real-time stream pro-
cessing algorithms leveraging efficient indexes that input a social
post stream and output a diversified version of the stream, diversi-
fied across all three dimensions. Next, we show how these tech-
niques can be extended to serve multiple users by appropriately
reusing indexing and computation where possible. Through exten-
sive experiments on real Twitter data, we show that our diversifica-
tion model is effective and our solutions are scalable. We show that
different algorithms perform best for different application settings.

1. INTRODUCTION
Tremendous amounts of online social data are generated every

day. For instance, Twitter has reported over 280 million monthly
active users in its microblogging service and 500 million Tweets
posted per day1. One common way to consume social data is through
implicit or explicit subscription. For example, almost all news
agencies offer RSS feeds for people to subscribe. Google Scholar
continuously recommends new publications to its users based on a
user’s profile and publication history. In a microblogging system
like Twitter, one can subscribe to other users’ posts by following
them.
1https://about.twitter.com/company

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
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Creative Commons license CC-by-nc-nd 4.0

All posts matching a user’s subscriptions are typically displayed
in a convenient central place, such as the user’s timeline in Twit-
ter or Facebook. These timelines are updated in real time. A key
challenge is that a user could be easily overwhelmed by the num-
ber of posts in the timeline, especially if the user is subscribed to
many post producers. Further, a user’s timeline often contains lots
of posts that carry no new information with respect to other similar
posts. This data overload issue also happens in other applications
with smaller data throughput such as news and research papers. For
instance, it has been shown that a primary care physician should
read hundreds of medical publications per day to keep up with the
medical literature [2].

To alleviate the data overload problem, in this paper we pro-
pose a novel way to efficiently and effectively diversify social post
streams by pruning redundant posts. By social post streams we
mean a broad class of content generated by services where each
post, in addition to its textual content, has a unique author and a
unique timestamp, and where authors are associated through vari-
ous social relationships. For instance, in Google Scholar authors
are connected by relations such as co-authorship or overlapping
research interests. In microblogging sites users are connected by
follower/followee relations.

Given a stream consisting of all the posts from a user’s subscrip-
tions, our goal is to output in real-time a subset of the stream in
which (i) all posts are dissimilar to each other and (ii) any post in
the whole stream will be either included or covered by a post in the
sub-stream. A post covers another post if the two posts are simi-
lar in all three similarity dimensions: (a) content, (b) time and (c)
author.

Two posts have similar content if their text components are sim-
ilar. Intuitively, all other dimensions being equal, users want to
avoid seeing two posts with very similar content. Similarly, the
timestamp distance of two posts is important in social post diver-
sification. Two posts that have similar content but are far away in
terms of post time, may both be of interest to the user. Note that
time is widely used for diversifying search results in microblogging
systems [10, 14, 4].

The author similarity is a more subtle dimension that to the best
of our knowledge has not been used before for computing diver-
sity in social media. For example, CNN and Fox News, which
both have official Twitter accounts, are dissimilar to each other be-
cause they generally have different political views. We compute the
distance between two authors through their social connections. In
particular, we compare the sets of friends (or followers in the case
of Twitter) of the two authors, which has been shown to be a good
author similarity measure in social networks [21, 9].

Challenges: To summarize, in our model two posts are redun-
dant with respect to each other if they are similar in all of the three
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dimensions. It is challenging to apply the proposed diversification
model in a large scale social service with high posts throughput.
First, we must efficiently compare the content of a new post to
the content of all previous posts (within a time window). For this,
we apply Hash-based techniques to measure the content similar-
ity between social posts. Hash-based techniques have been applied
before to Web documents [11], but not to social posts, which are
generally shorter and may heavily rely on abbreviations or URLs.

Second, handling the author dimension is challenging. A naive
approach is to check if the author of each new post is similar to
the author of each existing post (within a time window). However,
we show that depending on the setting (similarity thresholds across
the three dimensions), a different indexing data structure is more
efficient to achieve real-time posts processing.

Third, the three diversity dimensions offer an opportunity to use
the results of the one dimension to prune the work needed for the
other dimension. For instance, if a reader knows that posts P1 and
P2 have high content similarity, then she doesn’t need to check if
their authors or time are similar.

Fourth, if we move from one user to many users, where each user
has a collection of subscriptions, the challenge is how to reuse the
computation performed for diversifying one user’s stream to diver-
sify streams of other users. We show that we can reuse computation
across users only if their shared subscriptions meet a strict condi-
tion.

Previous work on diversity: There has been much work on di-
versifying results for documents [15, 1, 3], social posts [10, 14, 4]
and database records [5, 6]. However, none of these works can be
applied to our setting where: (i) data is streaming and an instant
decision must be made on whether a post should be pushed to the
user, and (ii) a multi-dimensional diversity model is adopted. In
contrast, most previous works focus on the search setting, where a
user submits a query and the set of results must be diversified based
on content, including work on social posts [10, 14].

The problem studied in this paper is also fundamentally different
from previous work on stream summarization [20, 18, 16, 23], be-
cause: (i) we do not aim to generate an aggregation of documents,
but instead select a subset of posts, and (ii) we define strict cover-
age constraints to guarantee that not even one uncovered posts is
missed.

Contributions: In this paper, we make following contributions:

• We propose a new paradigm to define diversity on social
posts, by incorporating three important dimensions – con-
tent, time and author – and we define corresponding opti-
mization problems (Section 2).

• We study how content similarity can be efficiently applied to
social posts, which are generally short and contain abbrevia-
tions (Section 3).

• We propose efficient data structures and algorithms to solve
the social posts stream diversification problem (Section 4).

• We show how the single-user algorithm can be extended to
handle many users, by reusing computation across users (Sec-
tion 5).

• We perform a comprehensive experimental evaluation, where
we focus on microblogging data, which poses the most se-
rious scalability challenges. We show how different algo-
rithms perform better for different diversity needs (Section 6).

Section 7 reviews related work. We conclude in Section 8.

2. FRAMEWORK AND PROBLEM DEFINI-
TION

Let P represent a stream (ordered set) of social posts. Each post
Pi in P has an author author(Pi), textual content text(Pi) and a
timestamp time(Pi) (also referred as ti). We define the distance
measures across the three diversity dimensions as follows.

• Content Distance. We represent the content distance be-
tween two posts Pi and Pj as distc(Pi, Pj). Cosine similar-
ity is a possible way to define the distance, but for efficiency
purposes we employ the hash-based simhash measure as ex-
plained in Section 3, where we show that simhash is effective
for social posts.

• Time Distance. The time distance between two posts Pi and
Pj is denoted as distt(Pi, Pj) = |ti − tj |.

• Author Distance. We denote the author distance between Pi

and Pj as dista(Pi, Pj). For social data, we define the sim-
ilarity between two authors as the cosine similarity between
their friends’ vectors, which has been successfully used in
previous work to measure the user similarity in Twitter [21,
9]. The author distance is (1 − similarity). For other do-
mains other distance measures may be more appropriate.

Next, we define the coverage semantics between posts.

Definition 1. (Post Coverage) Given a content diversity threshold
λc, a time diversity threshold λt and an author diversity threshold
λa, two social posts Pi and Pj cover each other if:

• distc(Pi, Pj) ≤ λc and

• distt(Pi, Pj) ≤ λt and

• dista(Pi, Pj) ≤ λa.

Note that the coverage semantics between two posts is symmet-
ric. The three thresholds may vary according to the characteristics
of a social system as we discuss below. The primary focus of this
paper is to study the efficient processing of a posts stream and not
to set these threshold values.

We next define the Social Post Stream Diversification (SPSD)
problem.
Problem 1 [Social Post Stream Diversification (SPSD)] Given
a social post stream P, and diversity thresholds λc, λt and λa, com-
pute a sub-stream of posts Z ⊆ P that covers P, that is, ∀Pi ∈ P
∃Pj ∈ Z, such that Pj covers Pi.

Note we have to computeZ in real-time, i.e., immediately decide
whether a post Pi should be included in Z at its arrival. That is, we
cannot first view the whole stream and then decide which posts
should be included in the substream.

In SPSD, there is a single user who consumes the stream and
many authors who generate the posts of the stream (a user may also
be an author and vice versa). That is, a solution to SPSD should be
deployed for each user, for example, as part of the Twitter app of a
user. On the other hand, a social network service would rather have
a central diversification engine that diversifies the posts for each
of its users, so that no client side post processing is required. We
refer to this version of SPSD as Multiple-Users SPSD (M-SPSD).
Another difference between SPSD and M-SPSD is that in SPSD we
can easily support user customized diversity thresholds. Figure 1
shows how SPSD and M-SPSD differ in terms of the setting and
deployment.

18



(a) SPSD (b) M-SPSD

Figure 1: Settings of SPDP and M-SPDP.

Problem 2 [Multiple-Users Social Post Stream Diversification
(M-SPSD)] Given a social post stream P, diversity thresholds λc,
λt and λa, and a set of users where each user is subscribed to a
subset of the authors, compute a diversified sub-stream for each
user.

3. CONTENT DISTANCE ESTIMATION FOR
MICROBLOGGING POSTS

Among the three diversity dimensions, the content distance is
the most expensive to compute, because it must be computed for
each new post. This is especially true given our real-time decision
semantics described above. In contrast, the author similarity be-
tween each pair of authors may be precomputed (e.g., once every
week), as it changes slowly over time. For that reason, we cannot
afford to use traditional content similarity measures such as cosine
similarity. Instead, we turn to hash-based distance measures. In
this section we present the details of the employed content distance
technique along with an analysis of its effectiveness for microblog-
ging data.

We define the content distance between two posts Pi and Pj as
the Hamming distance of their SimHash [17] fingerprints. Previous
work has applied SimHash on web documents [11] and showed that
it is efficient and effective. We represent the SimHash of text(Pi)
as Si, which is a 64-bit fingerprint. The Hamming distance of two
SimHash fingerprints is the number of different bits between them.
According to the experimental analysis in [19], the cosine distance
between two texts positively correlates to the Hamming distance of
their corresponding SimHash fingerprints.
Distribution of SimHash distances in Twitter

First, we study the distribution of SimHash distances on Twitter
data. We collected a dataset of 200 thousand tweets from the Twit-
ter Streaming API, which returns a stream of randomly selected
substream of Twitter ([12] showed that the stream is not exactly
random but this is not too important for our problem). The distri-
bution of the Hamming distances for these tweets is depicted in Fig-
ure 2, which shows a perfect normal distribution with mean value
32, as expected, and with most of the distances between 24 to 40.
User Study

To further evaluate the effectiveness of SimHash for social posts,
we conducted a user study to learn the relationship between the
SimHash distance between two posts and the perceived dissimilar-
ity between the posts. A second goal of the study is to learn what is
a good SimHash distance threshold (e.g., a threshold of 3 bits was

Figure 2: Hamming distance distribution

chosen to define redundant Web pages [11]) and if any preprocess-
ing of the tweet text (e.g., expand shortened URLs) may improve
the effectiveness of SimHash.

Setup and Methods: In particular, we collected a dataset of 2000
pairs of tweets randomly selected from the 200,000 tweets returned
by the Twitter Streaming API, with SimHash distances between 3
and 22 – 100 tweets from each distance value. We chose 3 to 22
because this is the range where we expect to find posts that are very
similar (redundant with respect to each other). This range choice is
supported by our results below. We recruited 12 undergraduate and
graduate students.

We evenly divided these 2000 pairs into 4 groups and distributed
them to the 12 students for labeling. The author and timestamp of
the posts are hidden. Some examples of these pairs are shown in
Table 1. Each group of tweets is labeled by 3 students. The students
were asked to mark whether the two tweets in a pair are redundant
with respect to each other.

To help the users more accurately label the similarity between
two posts, we showed the expanded URL (instead of the shortened
one shown in Table 1). We used a majority vote, that is, if at least
2 out of the 3 students labelled a pair as redundant, we labelled the
pair as near-duplicates.

Results: Out of the 2000 pairs, the users marked 949 pairs as
redundant. Figure 3 shows the precision and recall achieved by
various SimHash distance values. For each Hamming distance h,
the precision is defined as the fraction of pairs with Hamming dis-
tance no more than h that are true near-duplicates. Recall is the
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Table 1: Example tweet pairs and their Hamming distances

Tweet pair Hamming distance
Over 300 people missing after South Korean ferry sinks. (Reuters) Story: http://t.co/9w2JrurhKm

Over 300 people missing after South Korean ferry sinks. (Reuters) Story: http://t.co/E1vKp9JJfe
3

“In order to succeed, your desire for success should be greater than your fear of failure” Bill Cosby

In order to succeed, your desire for success should be greater than your fear of failure. #quote #success -
Bill Cosby

8

Alibaba’s growth accelerates, U.S. IPO filing expected next week http://t.co/mUcmLJ4cpc #Technology #Reuters

Alibaba’s growth accelerates, U.S. IPO filing expected next week: SAN FRANCISCO (Reuters) - Alibaba
Group Hold... http://t.co/aLAV8w4gWF

13

fraction of the total number of near-duplicate pairs that are detected
with Hamming distance at most h. This graph shows that SimHash
distance is an effective measure to identify similar posts.

Figure 3: Precision and Recall for Hamming distance. SimHash
fingerprints are generated from raw texts of tweets

Next, we study if various text preprocessing methods may im-
prove the precision or recall of SimHash distance measure for mi-
croblogs. We first normalize the text by (a) changing all text to
lowercase, (b) removing extra white spaces between words, and (c)
removing non-alphanumeric characters (such as ∗,,−,+, /, etc.).
Figure 4 plots the precision and recall after we apply the normal-
ization. We see that this graph achieves higher precision and recall
values than the original analysis in Figure 3. We also see that the
the two lines cross for distance = 18, which achieves precision
= 0.96 and recall = 0.95.Hence, we use λc = 18 as the default
content distance threshold in the experiments in Section 6.

We also tried other methods of text preprocessing such as ex-
panding shortened URLs (URLs in tweets are shortened by Twit-
ter), varying the weights of user mentions and hashtags (by creat-
ing artificial copies), and expanding abbreviations. However, these
methods had no significant impact to the precision and recall.

For completeness, we compared the effectiveness of SimHash to
that of cosine similarity (which is much slower as discussed above)
in terms of detecting posts with near-duplicate content (redundant).
We tried different cosine threshold values and found that the preci-
sion and recall lines across at cosine similarity 0.7, where all posts
with cosine similarity above 0.7 are marked as redundant. This
achieves precision and recall of 0.96 and 0.95 respectively, which
is the same as what we achieved using SimHash above. This means
that, for detecting near-duplicate in our dataset, SimHash achieves
effectiveness similar to cosine similarity. Hence, given the time
performance advantage of SimHash, it is the best choice for our
problem.

The high threshold value of λc = 18 for SimHash precludes the

Figure 4: Precision and Recall for Hamming distance. SimHash
fingerprints are generated from normalized texts of tweets

use of the efficient SimHash index proposed in [11] which relies
on building several copies of the SimHash values table for several
permutations of the bits, since the number of these copies is expo-
nential in λc (which was only 3 in [11]). Hence, as we discuss in
Section 4, other indexing and searching techniques are required.

4. ALGORITHMS FOR SPSD
In this section, we describe our algorithmic solutions for the

SPSD problem. As explained earlier in Section 3, due to the high
Hamming distance threshold we are unable to use existing SimHash
indexing techniques, and we must rely on comparing the SimHash
value of each new post with those of all the previous ones, leading
inevitably to linear time complexity per post in the worst case. We
reduce the number of these comparisons by leveraging the other
two dimensions, time and author. We first discuss how we han-
dle time diversity, which is simpler, and then we present various
approaches for handling author diversity.
Handling Time Diversity. According to the diversity model, at
the arrival of a post Pi it can only be covered by the previous posts
within a λt time distance. Thus, it is sufficient to store only the
posts from previous λt time in memory for checking the coverage
of a new post. One possible implementation is that we could store
the posts in a circular array. We track two post indices for the oldest
post within a λt distance to current time (a) and the most recent
post (b). At the arrival of each post Pi, we compare it to the posts
from most recent post to the oldest (i.e., from index b to a). If we
encouter a post Pj with ti − tj > λt, we update a to be index of
the post right after Pj . And we insert a non-redundant post to the
array with index (b+ 1) and update b = b+ 1.

Now that we have discussed how to handle time diversity, we
focus on the author diversity among the posts in the last λt time
units. The author similarity relations between all authors form an
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author similarity graph G, which as we discussed above may be
periodically precomputed. There is an edge between two authors
in G if their distance is below the threshold λa. For each user ui

who subscribes to a set A of authors, we define Gi as the subgraph
of G that contains all the A authors and the edges among them. In
this section, we assume there is only one user (hence, one Gi) and
in Section 5 we assume multiple users (and Gi’s).

4.1 UniBin
Our first method to solve SPSD, which we refer as UniBin, works

as follows: At the arrival of each post Pi in P, we sequentially
(from the most recent post to the older ones) compare Pi to each
post in the past λt time range in the diversified sub-stream Z. For
each post Pj , we check whether Pj meets both: (1) Hamming
distance between Si and Sj (SimHash fingerprints of Pi and Pj ,
respectively) ≤ λc, and (2) dista(Pi, Pj) ≤ λa, which can be
achieved by checking whether author(Pi) and author(Pj) are
the same or neighbors in G. If no post from the past λt time range
meets the above two conditions (i.e., Pi is not covered by Z), then
we add Pi to Z. Otherwise we do not include Pi in Z.

We denote this method as UniBin indicating that the posts from
all authors are stored in a single post bin (e.g., a circular array as
described earlier). We illustrate UniBin with an example. In Fig-
ure 5a, each node represents an author. Two authors are connected
by an edge if they are similar to each other (i.e., the author distance
≤ λa). Figure 5b shows the posts from these authors with post
distance information in terms of all three diversity dimensions.

We show the update of a post bin for UniBin in Figure 6a. When
P1 arrives, there is no posts in the bin yet. Thus P1 is not covered
hence is added to the bin. P2 is also added as it is not covered by P1

(the Hamming distance between S1 and S2, distc(P1, P2), is larger
than the threshold λc). For P3, the algorithm first compares it to P2

which does not cover P3 (because distc(P2, P3) > λc). However,
it is covered by P1 because in all three diversity dimensions they
are within the distance thresholds (or above similarity threshold).
Thus, P3 is not added. So forth, P4 is not covered by either P1 and
P2 and is included in the bin. However, we note that P4 and P3

cover each other. Finally, P5 is covered by P4.

4.2 NeighborBin
UniBin has to compare a new post (both its author and content

SimHash) to all posts in the last λt time units. This aggregated
time may be considerable given the high frequency of posts, even
if the author similarity graph Gi and the post bin are maintained in
memory.

To improve this, we partition the posts by their authors such that
for a new post Pi we only check its coverage by comparing with
the posts from author(Pi) or from author(Pi)’s similar authors.
Specifically, we create a post bin for each author.and when a new
post Pi comes, the algorithm sequentially checks posts in the bin
identified by author(Pi) but not other posts. However, we must
note that posts from the authors that are neighbors of author(Pi)
in Gi can potentially cover Pi. Hence, the post bin of an author
also includes the posts of similar authors (neighbors in Gi). Thus,
we add Pi to all bins of author(Pi)’s neighbors in addition to the
bin of author(Pi), if Pi is detected as a non-redundant post. We
denote this method as NeighborBin.

Figure 6b depicts the execution of NeighborBin for the data shown
in Figure 5. P1 is added not only to the bin of its author a1, but also
to the bins of a2 and a3, because they are neighbors of a1, as shown
in Figure 5a. To check the coverage of P2, only the post bin of
a2 is accessed where P1 does not cover P2. After that, P2 is also
added to the post bins of a1, a2 and a3. NeighborBin checks the

coverage of P3 by iterating posts in the bin of a3 where P1 covers
P3. When P4 comes, a4’s post bin is blank and thus P4 is added
to the post bins of a3 and a4 without incurring any post compar-
isons. Finally, P5 is detected as redundant by checking the bin of
a3 (author(P5) = a3) where P4 covers P5.

4.3 CliqueBin
In NeighborBin, we index the posts by author aiming to reduce

the pairwise post comparisons. But the tradeoff is memory con-
sumption: we have multiple copies of a post in different authors’
post bins.

To reduce the overhead on memory consumption incurred by
NeighborBin, we identify groups (cliques) of authors that are sim-
ilar to each other and assign a single bin to them, such that a post
generated by any of these authors is only stored in that bin. Specif-
ically we find a clique edge cover of Gi, that is a collection of
cliques whose union contains all edges of Gi. We maintain a post
bin per clique (e.g., a map from clique ID to a list of posts). Only
the posts from authors in a same clique as author(Pi) can possi-
bly cover post Pi. Thus, at the arrival of post Pi, we check whether
it is covered by sequentially comparing it to the posts from only
the cliques that contain author(Pi). Thus a post Pi in Z is stored
once for every clique that contains author(Pi) – instead of once
for each neighbor of author(Pi) in NeighborBin. Note that this
approach guarantees that the coverage requirement for posts is sat-
isfied: when a new post Pi authored by aj appears, and Pi is not
similar to earlier posts of aj or its neighbors then Pi will be added
to the cliques involving aj , because aj’s edges are covered by the
cliques.

Considering the space consumption, our objective should be to
minimize the sum of the sizes of cliques, i.e., the average number
of cliques per author is minimized and thus number of copies per
post is reduced. This is an NP-hard problem, and hence we have
decided to use a simple greedy heuristic. It starts by picking an
edge in Gi to form an initial clique. Then it extends the clique by
adding nodes that are neighbors to all the nodes in the clique. When
there is no such node, the clique is saved and the algorithm picks
another edge not yet included in any found cliques and repeats the
above process. We stop when all edges are covered.

Upon a new post Pi, we use a hashmap (Author2Cliques) to
get all the cliques that contains author(Pi), and then we check
the posts in the corresponding bins. Recall that NeighborBin and
UniBin load the author similarity graph Gi in memory. We can
make the same assumption that Author2Cliques is loaded in mem-
ory for applying CliqueBin. Similar to the computation of author
similarity graph, we assume the clique partition of Gi and the Au-
thor2Cliques mapping are computed offline. We denote this algo-
rithm as CliqueBin.

The update of a post bin by CliqueBin is depicted in Figure 6c.
Cliques C0 and C1 together cover all the edges in the graph. We
can see that P1 is only stored once in C0’s bin (because a1 is in C0)
instead of saving 3 copies in NeighborBin as Figure 6b. The same
applies to P2. Since a3 is in both C0 and C1, during the processing
of P3 CliqueBin may check both bins of C0 and C1. P4 will only
be compared with the bin of C1 because a4 belongs to only C1.
Again, CliqueBin checks the coverage of P5 by iterating both bins
of C0 and C1. This example illustrates how CliqueBin can reduce
space requirements compared to NeighborBin.

We note that in some cases CliqueBin may have to do a larger
number of pairwise post comparisons than NeighborBin. Suppose
that after P5 in the above example author a3 posts P6 and then au-
thor a4 posts P7. If P6 and P7 are not redundant to any other posts,
then P6 should be added to all four post bins in NeighborBin, and
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(a) Author similarity graph Gi (b) Social Posts

Figure 5: Example of author similarity graph and posts

(a) UniBin (b) NeighborBin (c) CliqueBin

Figure 6: Running example for the three algorithms for SPSD.

to both post bins in CliqueBin. For P7, NeighborBin only accesses
the bin of a4 and thus only needs to do two comparisons (with P4

and P6). In contrast, CliqueBin has to do 5 comparisons: with
P1, P2, P4 and twice with P6 (once in post bin of each clique). We
study this experimentally in Section 6.

4.4 Performance Analysis
In this section we show an estimate of the time and space com-

plexity of our algorithms, attempting to capture their performance
on realistic data, rather than the worst-case performance. Rigorous
derivation of such estimates is challenging, because the behavior
of these algorithms heavily depends on the specifics of the data
sets, including the topology of the social network. Instead, we pro-
vide informal derivations based on several reasonable assumptions
about the data set and the graph’s topology.

Suppose there are m subscribed authors, and the total number of
posts from these m authors in a λt time range is n. We assume a
ratio of r (≤ 1) posts left after diversification, that is, r · n non-
redundant posts per λt time. We also assume that the each author
generates the same number of n

m
posts with r·n

m
left after diver-

sification. Further we assume in the author similarity graph, each
author has d neighbors and is in c (≤ d) cliques. We denote s as
the average number of authors in a clique.

Note that cliques may have overlaps. If we define q as the num-

ber of edges in G over the total number of edges in c cliques from
G, we have m·c

s
= m·d

s·(s−1)·q , where both sides compute the num-
ber of distinct cliques. Thus we can expect c · (s− 1) · q = d with
0 ≤ q ≤ 1.

Recall that UniBin puts posts from all authors in Z into a single
post bin. Thus, the total bin size is r ·n in UniBin. Each new post is
sequentially compared to each post in the bin and thus the number
of post comparisons per new post is r ·n. Each non-redundant post
incurs one insertion into the bin.

NeighborBin maintains a set of per-author bins with each bin
storing posts from an author and her similar authors. Roughly, each
per-author bin stores d+1

m
·r ·n posts. Thus the total number of post

copies stored in memory is (d + 1) · r · n. At the arrival of a new
post Pi, the number of post comparisons made by NeighborBin is
d+1
m
·r ·n (compare Pi to all posts in author(Pi)’s post bin). Each

non-redundant post incurs a total of (d+1) insertions into the bins.
In CliqueBin, for each non-redundant postPi we store its c copies:

one copy in the bin of each clique containing author(Pi). Thus,
the total size of the clique bins is c · r · n. CliqueBin compares
each new post Pi to posts in the bins of c cliques that contain
author(Pi), which leads to a total of s·c

m
· r ·n comparisons. Each

non-redundant post incurs a total of c insertions into the bins.
Table 2 summarizes the performance analysis. We can see that

all these results contain the same component r · n. Obviously, all
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Table 2: Performance estimation of the algorithms for SPSD

UniBin NeighborBin CliqueBin
RAM r · n (d+ 1) · r · n c · r · n

Comparisons in λt r · n2 d+1
m
· r · n2 s·c

m
· r · n2

Insertions in λt r · n (d+ 1) · r · n c · r · n

three diversity thresholds effects the ratio of non-redundant post r.
The value of n is affected by several factors, such as the frequency
of the post stream P and the setting of time diversity threshold λt.

An important factor that affects the performance of the algo-
rithms, especially NeighborBin and CliqueBin, is the topology of
the author similarity graph G. In the above estimates, we use pa-
rameters d, c, s and m to capture the topology properties. We note
that the values of the ratios of d, c, s to m are functions of the au-
thor diversity threshold λa. Given a set of subscribed authors (i.e.,
withm fixed), the larger λa the denserG is (in terms of the number
of edges). Thus, the number of neighbors per author (d) increases
with λa, which means the performance of NeighborBin will drop if
all other settings remain unchanged. We also argue that c and c · s
increase with the graph’s density, and hence we expect CliqueBin
to perform better for smaller λas. In Section 6, we confirm this
through experiments on real data set.

In Section 6 we will summarize the use cases for each algorithm
based on this theoretical analysis combined with our experimental
results.

4.5 Summary
We summarize the characteristics of the three algorithms in Ta-

ble 3. In terms of data structure, UniBin and NeighborBin need
the author similarity graph, while CliqueBin needs the mapping of
each author to the set of cliques containing the author. As we men-
tioned, we assume that all these data structures are maintained in
memory.

We can see that UniBin requires the least RAM. NeighborBin
reduces the post comparisons compared to UniBin, but has high
RAM consumption because it maintains multiple copies of a post.
CliqueBin outperforms NieghborBin in terms of RAM consump-
tion, by reducing the number of copies per post (and thus insertions
per post), but it incurs more post comparisons. Since CliqueBin
still maintains multiple copies of a post, it requires more insertions
and higher RAM consumption than UniBin. Also, since CliqueBin
does not compare posts from non-similar authors, we expect the
number of comparisons in CliqueBin to be lower than in UniBin.

5. ALGORITHMS FOR MULTIPLE-USERS
SPSD (M-SPSD)

In this section, we extend our ideas to solving M-SPSD. When
we move from applying the diversity model for one user to multiple
users, the crucial question is whether it is possible to reuse the com-
putation performed for diversifying one user’s stream to diversify
the other users’ streams.

A simple way to solve M-SPSD is to process the post stream
for each user individually. That is, we can apply the algorithm for
SPSD on each user’s post stream separately. We denote the corre-
sponding algorithms for M-SPSD as M_UniBin, M_NeighborBin
and M_CliqueBin respectively, to distinguish them from the al-
gorithms for SPSD. In this section, we present variations of these
algorithms to optimize the diversification process by reusing com-
putations for multiple users who share subscriptions.

If two users do not share any common subscriptions, then their

post streams are disjoint and thus the computation of diversifying
one’s stream cannot be reused for diversifying the other users’ post
streams. Hence we only consider the cases for optimization when
users share the same subset of subscriptions.

(a) G1 (b) G2

Figure 7: Author similarity graphs of two users u1 and u2.

However, we notice several limitations to reusing the diversifi-
cation computation across multiple users, even if they share some
subscriptions. We use examples to illustrate this. Figure 7 shows
two users, u1 and u2, sharing a set of subscriptions {a1, a2, a4,
a6}.

We notice that after diversification u1 may see a different subset
of the posts from a4 as u2. u2 subscribes to a5 which is a similar
author to a4. Thus, it is possible that some posts from a4 are shown
to u1 but not to u2 if they are covered by a5’s posts.

However, the same diversified set of posts from {a1, a2, a6} will
be shown to u1 and u2. The three authors form a connected compo-
nent (denoted as g1 in Figure 7) in bothG1 andG2. That is, in both
G1 and G2 there are no other authors similar to any author in {a1,
a2, a6}. Hence, posts from other subscribed authors can not cover
the posts from {a1, a2, a6}. Thus, the diversification processes on
the posts from {a1, a2, a6} are exactly the same for u1 and u2. This
means that we can reuse the data structures and computation across
u1 and u2 for diversifying the post stream from {a1, a2, a6}.

Based on these observations, we can optimize the diversifica-
tion process for multiple users if they subscribe to a same set of
authors that form a connected component. We can then consider
a post stream (a subset of P) of each connected component sepa-
rately, apply the diversification algorithm on it, and then merge the
diversified post streams together.

For this, we first process the author similarity graph Gi of each
user ui to compute all connected components of all Gis. (Since
differentGis may overlap, some nodes may appear in several com-
ponents.) For each distinct connected component gi, we run one of
the proposed algorithms for SPSD on the post stream by the authors
in gi. User ui’s post stream consists of the union of the diversified
post streams from all connected components in Gi.

For example, as shown in Figure 8b, we can apply the UniBin
algorithm for three distinct connected components (g1, g2 and g3),
that is, we maintain a single post bin for each of the three compo-
nents. Then the posts shown to u1 is the union of the two diversified
post streams from g1 and g2. We refer this algorithm as S_UniBin.
For comparison, we show the example for M_UniBin in Figure 8a.
M_UniBin maintains a post bin for each user seperately. To extend
NeighborBin, we maintain a per-author post bin for each author in
a distinct connected component gi. To extend CliqueBin, we do the
clique partition for each gi, then maintain a per-clique post bin as
described earlier.

We denote the three algorithms with the above optimization as
S_UniBin, S_NeighborBin and S_CliqueBin respectively.
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Table 3: Differences between the three algorithms for SPSD

UniBin NeighborBin CliqueBin

Data Structures

(1) Author similarity graph
(2) A single post bin storing
posts from all authors.

(1) Author similarity graph
(2) A post bin per author stor-
ing posts from the author and
her neighbors.

(1) Author clique mapping
(2) A post bin per clique storing
posts from all the authors in the
clique.

Properties
RAM Low High Moderate

Comparisons High Low Moderate
Insertions Low High Moderate

(a) M_UniBin (b) S_UniBin

Figure 8: Example of M_UniBin and S_UniBin.

6. EXPERIMENTAL EVALUATION

6.1 Data Set and Experimental Settings
We conducted our experiments on Twitter data. The authors

in [22] published a Twitter social graph dataset consisting of more
than 660,000 Twitter authors (accounts). Computing the author
similarity graph for the whole data set would be prohibitive, as it re-
quires comparing all pairs of authors. Instead, we used a subgraph
of 20,150 authors obtained by randomly picking an initial author,
and adding authors that are reachable through Breadth First Search
on the follower-followee graph.

We computed all pairwise author similarity for these 20,150 Twit-
ter authors. The author similarity distribution is depicted in Fig-
ure 9, where the x-axis shows the author similarity value and y-axis
shows the fraction of author pairs with similarity values larger than
the value indicated by x-axis. It shows that 2.3% author pairs are
with similarity ≥ 0.2 and 0.6% pairs are with similarity ≥ 0.3.

Further, we crawled the tweets of these twitter authors using
Twitter REST API2 for one day. The tweets data set contains 233,311
tweets, which means these Twitter authors post slightly over 10
tweets per author per day. After we removed some short tweets
that have less than two words or only contain meaningless tokens,
there are 213,175 tweets left.

We implemented all algorithms in Java. We ran our experi-
ments on machines with Quad Core Intel(R) Xeon(R) E3-1230
v2@3.30GHz CPU and 16GB RAM.

6.2 Performance of the algorithms for SPSD
In this section, we evaluate the performance of the three algo-

rithms for SPSD. We assume that a user follows all the Twitter
authors in our dataset, and we run the algorithms on the user’s post
stream which consists of 213,175 posts in one day.

First, we study the effect of the three diversity dimensions: time,
content and author. Figure 10 shows the number of tweets left af-
ter diversification under different settings by removing diversity di-
mensions and varying diversity thresholds. Incorporating all three
diversity dimensions with reasonable diversity thresholds, the di-
2https://dev.twitter.com/overview/documentation

Figure 9: Author similarity distribution in our data set

versification model prunes about 10% redundant posts. We no-
tice that incorporating only some of these dimensions will largely
change the size of diversified stream. It means that all three dimen-
sions play an important role in diversifying tweet data.

6.2.1 Performance of the algorithms under different
diversity settings

The analysis in Section 4.4 indicates that the performance of the
three algorithms for SPSD is effected by several factors such as
the diversity thresholds and the post stream throughput. These di-
versity settings could change the relative performance between the
three algorithms. In this section, we study the performance of each
algorithm under different settings and we experimentally show that
each algorithm outperforms the other two in certain settings. Sup-
ported by former analysis and experimental results, we will sum-
marize use cases for each algorithm.
Varying time diversity threshold λt. In Figure 11, we present
the performance of UniBin, NeighborBin and CliqueBin under dif-
ferent time diversity thresholds (λt). In this experiment, we set
λc = 18 (according to the results in Figure 4) and λa = 0.7 (i.e.,
we consider two authors are similar if the cosine similarity between
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Figure 10: Number of tweets left after applying diversification in
our data set

their followee vector is≥ 0.3 and thus distance is≤ 0.7). The run-
ning time shows the execution time for an algorithm to ingest the
213,175 posts.

In Figure 11a we can see that the running time of all three al-
gorithms decreases with smaller λts. The reason is that with a
smaller λt, the algorithms perform fewer pairwise post compar-
isons (depicted in Figure 11c). NeighborBin and CliqueBin outper-
form UniBin in terms of running time. We also notice that Clique-
Bin is more efficient than NeighborBin when λt is small (e.g., ≤
10 minutes). This gives us evidence for the summarization of use
cases in Table 4 for NeighborBin and CliqueBin.

Smaller λt also reduces the RAM consumption because the algo-
rithms store shorter history of Z in post bins. As expected, Neigh-
borBin requires more memory than UniBin and CliqueBin.

(a) Running time (b) RAM

(c) Post comparisons (d) Post insertions

Figure 11: Performance of the three algorithms under different time
diversity thresholds λt.

Varying content diversity threshold λc. We also study the per-
formance of the three algorithms by varying λc. For this, we set
λt = 30 mins and λa = 0.7 and we vary the λc from 9 to 18.
Figure 12 depicts the results. It shows that, for all the three algo-
rithms, the change of content diversity threshold only slightly af-
fects the performance. The reason is that SimHash can effectively
detect tweets with near-duplicate content for λc ≥ 9 as we can see
in Figure 4. With λc changing from 9 to 18, the precision is already
stable. The recall is lower with smaller λc, which means more posts
will be detected as non-redundant. But this increase in number of

non-redundant posts is slight, and thus the increase in the number
of comparisons and insertions does not affect the overall efficiency
significantly.

(a) Running time (b) RAM

(c) Post comparisons (d) Post insertions

Figure 12: Performance of the three algorithms under different con-
tent diversity thresholds λc.

(a) Running time (b) RAM

(c) Post comparisons (d) Post insertions

Figure 13: Performance of the three algorithms under different au-
thor diversity thresholds λa.

Varying author diversity threshold λa. Further, we study the
performance by varying λa. The results are presented in Figure 13
where we set λt = 30mins and λc = 18.

We observe that the author diversity threshold λa significantly
affects the overall performance of NeighborBin and CliqueBin but
not UniBin. When λa increases, the author similarity graph gets
denser and thus the number of neighbors per author and the number
of cliques per author both increase. For instance, when λa = 0.7
the number of neighbors per author (d) is 113.7, the number of
cliques per author (c) is 29 and the average size of a clique (s) is
20 in our data set. They change to 437.3, 106 and 38 correspond-
ingly with λa = 0.8. Hence, the number of copies per post in
NeighborBin and CliqueBin increases. This explains that in Fig-
ure 13 the memory consumption by NeighborBin and CliqueBin
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(a) Running time (b) RAM

(c) Post comparisons (d) Post insertions

Figure 14: Performance of the three algorithms under different post
rates.

increases sharply with larger λas. However, the number of non-
duplicate posts does not vary much with different λas in our data
set; thus the performance of UniBin is stable.

We note that when λa is large the performance of NeighborBin
and CliqueBin (in terms of both memory consumption and running
time) is significantly worse than UniBin. Hence, we expect UniBin
is the best choice among these three algorithms in use cases where
λa is large, as we summarize in Table 4.
Varying post stream throughputs. We also study the performance
of the algorithms under different post stream throughputs. We test
this in two ways: (i) varying subscriptions’ post rate, and (ii) vary-
ing the number of subscriptions. For both, we keep λt = 30mins,
λa = 0.7 and λc = 18.

Varying post generation rate. For this, we randomly sample the
posts from the 21,050 authors and solve SPSD on the sampled post
stream. We conduct experiments for the sample ratio 25%, 5% and
1% and present the results in Figure 14. The results show that when
the throughput is low (the same ratio is low) UniBin outperforms
the other two algorithms. We can also see that CliqueBin performs
better than NeighborBin with a moderate or small post generation
rate.

Varying the number of subscribed authors. The results shown
above are for the case of one user subscribing (following) all Twit-
ter authors in our dataset. In this experiment, we randomly sample
Twitter authors in our dataset with different sample sizes. We as-
sume that a user subscribes to all authors in one sample and we
run the algorithms on the user’s post stream. The results in Fig-
ure 15 show that UniBin slightly outperforms the other two when
the number of subscriptions is small.

To summarize, UniBin delivers better performance than Neigh-
borBin and CliqueBin when the stream throughput is low. This is
consistent with our analysis in Section 4.4 – see also Table 4.

6.2.2 Discussion
Through extensive experiments, we observe that each algorithm

outperforms the other two in certain cases. In Table 4 we summa-
rize the best choice of algorithm in different use cases based on our
analysis and experimental study.

UniBin is the most memory efficient among the three algorithms.
Thus in applications with limited RAM UniBin should be consid-

(a) Running time (b) RAM

(c) Post comparisons (d) Post insertions

Figure 15: Performance of the three algorithms varying the number
of subscribed authors.

ered. Further, when the stream throughput is low (we tested it
with small number of subscriptions and low post generation rate),
UniBin performs better than the other two. According to the analy-
sis in Table 2, we expect that the number of comparisons increases
super-linearly with n (the number of posts in a λt time range), how-
ever the number of insertions increases sub-linearly with n. With
a lower stream throughput (smaller n) the overhead of insertions
in NeighborBin and CliqueBin is a large contribution to the total
running time. When n is small enough, the overhead on insertions
becomes larger than the saving on comparisons for NeighborBin
and CliqueBin compared with UniBin. The similar reasoning can
be applied to explain why UniBin is the best choice when λt is very
small. To clarify, in Figure 11 we did not include the results by set-
ting λt = 1 min where UniBin performs best among the three
algorithms. We argued that with a larger λa both d (number of
neighbors per author) and c (number of cliques per author) increase
and thus NeighborBin and CliqueBin both have higher number of
comparisons and insertions. Thus we can see UniBin is preferable
when λa is set large. One example use case for UniBin is News
RSS Feed reader, where the author similarity graph is dense. Gen-
erally, news agents form clusters (e.g., by their political views) such
that in each cluster the news agents are similar to each other from
a user’s perspective. Another use case could be Google Scholar
where the post (scientific publication) throughput is low.

In other cases, CliqueBin or NeighborBin will be the better choice.
They both perform well in cases with a high or moderate stream
throughput, which is very common for online social networks. The
tie breaker between them is the time diversity threshold λt, as we
analyzed λt determines the tradeoffs between costs of comparisons
and insertions. CliqueBin is a better choice if λt is set moderately.
For example, in Twitter information is time sensitive and thus peo-
ple may be interested in reading posts with related content but with
time distance larger than, say, minutes. For applications where the
value of λt could be in hours or even days, NeighborBin can be
applied. For example, Twitch3 is a platform on which people can
watch and share video game shows. Users may not be interested
in watching the video record of the same match that posted at dif-
ferent time. Even in Twitter some users may prefer to customize
the λt to a larger value, in order to reduce the post volume if they

3http://www.twitch.tv/
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Table 4: Use cases of the three algorithms for SPSD

Conditions Algorithm choice Example use case
Very small λt

OR low stream throughput
OR large λa (dense G)
OR RAM is a critical limitation

UniBin News RSS Feed, Google Scholar

Large λt

AND small λa (sparse G)
AND high stream throughput

NeighborBin Twitch

Moderate λt

AND small λa (sparse G)
AND high stream throughput

CliqueBin Twitter

(a) Running Time (b) RAM

(c) Post comparisons (d) Post insertions

Figure 16: Performance of the algorithms for M-SPSD.

follow a large number of authors.

6.3 Performance of the algorithms for M-SPSD
We consider now the scenario where each Twitter author is also

a user. Each user subscribes to (follows) a set of authors which we
can get from the original follower-followee social graph. Then we
run the algorithms solving M-SPSD for these 21,050 users in our
data set. For the experiments in this section, we set λt = 30mins,
λa = 0.7 and λc = 18.

The average number of subscriptions in our sampled user data
set is 443.6 and the median is 187. Since we only crawled the
posts and computed the author similarity graph for the set of 21,050
authors, we ignored the subscriptions that are not in this set. Then
the average number of subscriptions per user drops to 130 and the
median is 20. We should note that this reduces the probability of
different users sharing common subscriptions.

Figure 16 presents the performance of the algorithms. It shows
that the proposed optimization (reusing computation and data struc-
ture across multiple users described in Section 5) improves time ef-
ficiency as well as memory consumption. Specifically, S_UniBin
uses 43% less running time and 27% less memory than M_UniBin.
In the S_UniBin method, posts are stored separately by connected
components. This reduces the number of comparisons significantly
over M_UniBin. We also observe tthat S_NeighborBin reduces the
running time of M_NeighborBin by 8% while S_CliqueBin im-
proves M_NeighborBin by 4% in running time.

S_UniBin achieves superior performance. We also notice that

S_NeighborBin requires fewer post comparisons than S_UniBin
but many more insertions. We think that S_UniBin outperforms
S_NeighborBin and S_CliqueBin also because its post access pat-
tern is sequential while in the other two are not (each post bin is a
map).

7. RELATED WORK
Time Aware Diversity. The authors of [7] solve the problem of

maintaining the k most diverse results in a sliding window over a
stream. MaxMin semantics is used. They maintain a data structure
called the cover tree and show how to incrementally add new and
remove expired results from this tree. The cover tree cannot be used
for our diversity semantics because it cannot handle simultaneous
similarity in three dimensions: time, content and author.

Diversification on Microblogging Posts. The work of [4] stud-
ies the problem of diversifying posts in microblogging systems.
In their problem setting, users subscribe several queries (topics).
However, in practice users are more often subscribing to authors,
which is the setting of the problem we studied in this paper. In [4]
they apply strict coverage semantics similar to ours, but limited
only to time and content diversity. Unlike in our model, in [4] the
content diversity is guided by the inputted queries where no inter-
post content similarity is considered. They also studied the stream
variation of their problem in which they allow a lag upon a new
post to decide whether it should be outputted. In our problem, the
diversity model is required to make the decision immediately at the
arrival of a post.

Document Stream Summarization. The authors of [20] work
on the problem of summarizing a Twitter stream. They model the
summarization problem as a facility location problem. Give a bud-
get of k, they aim to select k tweets that maximize the similarity to
the whole tweets set. They incorporate the time factor to measure
the document similarity of two posts. But unlike in our problem,
instead of using a hard (boolean) threshold, they consider an ex-
ponential decay to the content similarity based on their timestamp
difference. In the work of [13], the authors apply clustering tech-
niques for Twitter stream summarization. Tweets are clustered ac-
cording to content similarity. For each cluster, they build a word
graph or phrase graph and pick frequent sentences (“paths” in the
graph) to construct a summary. The sentences in the summary may
not be in any original tweet. The authors of [18] propose a one-pass
online clustering algorithm to cluster tweets, and then they gener-
ate online summaries by selecting k tweets (one from each cluster)
that have high LexRank [8] score. In [16], the authors apply topic
modeling for personalized time-aware tweet summarization. How-
ever, all these work do not consider author similarity to measure
the similarity between tweets.

Detecting Duplicate Tweets. In [21], the authors propose to use
machine learning methods to detect near-duplicates in tweets. For
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this, they construct a rich set of syntactic, semantic and contextual
features. They aim to distinguish different levels of near-duplicates,
e.g. exact copy, strong near-duplicate, or weak near-duplicate.

8. CONCLUSION
In this paper, we studied the novel problem of diversifying so-

cial post streams by incorporating diversity in three dimensions:
content, time and author. We illustrated the challenges of solving
the problem and proposed various algorithms to efficiently handle
these challenges. We showed the tradeoffs between our proposed
algorithms and argued the use cases for them. We also studied the
problem of applying the proposed diversification model for mul-
tiple users in a social system. Extensive experiments proved the
effectiveness of our model and efficiency of proposed algorithms.
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ABSTRACT
Social content such as blogs, tweets, news etc. is a rich source
of interconnected information. We identify a set of requirements
for the meaningful exploitation of such rich content, and present
a new data model, called S3, which is the first to satisfy them.
S3 captures social relationships between users, and between users
and content, but also the structure present in rich social content, as
well as its semantics. We provide the first top-k keyword search
algorithm taking into account the social, structured, and semantic
dimensions and formally establish its termination and correctness.
Experiments on real social networks demonstrate the efficiency and
qualitative advantage of our algorithm through the joint exploita-
tion of the social, structured, and semantic dimensions of S3.

1. INTRODUCTION
The World Wide Web (or Web, in short) was designed for users

to interact with each other by means of pages interconnected with
hyperlinks. Thus, the Web is the earliest inception of an online
social network (whereas “real-life” social networks have a much
longer history in social sciences). However, the technologies and
tools enabling large-scale online social exchange have only become
available recently. A popular model of such exchanges features:
social network users, who may be connected to one another, data
items, and the possibility for users to tag data items, i.e., to attach to
an item an annotation expressing the user’s view or classification of
the item. Variants of this “user-item-tag” (UIT) model can be found
e.g., in [18, 21, 30]. In such contexts, a user, called seeker, may
ask a query, typically as a set of keywords. The problem then is to
find the best query answers, taking into account both the relevance
of items to the query, and the social proximity between the seeker
and the items, based also on tags. Today’s major social networks
e.g., Facebook [7], all implement some UIT variant. We identify a
set of basic requirements which UIT meets:

R0. UIT models explicit social connections between users, e.g.,
u1 is a friend of u0 in Figure 1, to which we refer throughout this
paper unless stated otherwise. It also captures user endorsement
(tags) of data items, as UIT search algorithms exploit both the user
endorsement and the social connections to return items most likely
to interest the seeker, given his social and tagging behavior.

©2016, Copyright is with the authors. Published in Proc. 19th Interna-
tional Conference on Extending Database Technology (EDBT), March 15-
18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenProceed-
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d0

d0.3.2

d0.5.1

d1

“When I got my M.S.
@UAlberta in 2012 ...”

d2

“A degree does give
more opportunities ... ”

u0u1 u2

u3

u4

posted by

friend

posted by

replies to

comments on
posted by

tagged with
′′university”

Figure 1: Motivating example.

To fully exploit the content shared in social settings, we argue
that the model used for such data (and, accordingly, the query model)
must also satisfy the requirements below:

R1. The current wealth of publishing modes (through social
networks, blogs, interlinked Web pages etc.) allows many differ-
ent relations between items. For example, document d1 replies to
document d0 (think for instance of opposite-viewpoint articles in a
heated debate), while document d2 comments on the paragraph of
d0 identified by the URI d0.3.2. The model must capture relations
between items, in particular since they may lead to implicit re-
lations between users, according to their manipulations of items.
For instance, the fact that u2 posted d1 as a reply to d0, posted by
u0, entails that u2 at least read d0, and thus some form of exchange
has taken place between u0 and u2; if one looked for explicit social
connections only, we would wrongly believe that u0 and u2 have
no relation to each other.

R2. Items shared in social media often have a rich structured
content. For instance, the article d0 comprises many sections, and
paragraphs, such as the one identified by the URI d0.3.2. Document
structure must be reflected in the model in order to return useful
document fragments as query results, instead of a very large docu-
ment or a very small snippet of a few words (e.g., exactly the search
keywords). Document structure also helps discern when users have
really interacted through content. For instance, u3 has interacted
with u0, since u3 comments on the fragment d0.3.2 of u0’s article
d0. In contrast, when user u4 tags with “university” the fragment
d0.5.1 of d0, disjoint from d0.3.2, u4 may not even have read the
same text as u3, thus the two likely did not interact.

R3. Item and tag semantics must be modelled. Social Web
data encapsulates users’ knowledge on a multitude of topics; on-
tologies, either general such as DBPedia or Google’s Knowledge
Base, or application-specific, can be leveraged to give query an-
swers which cannot be found without relying on semantics. For
instance, assume u1 looks for information about university gradu-
ates: document d1 states that u2 holds a M.S. degree. Assume a
knowledge base specifies that a M.S. is a degree and that someone
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U URIs L literals K keywords Ext(k) extension of k
Ω users D documents T tags I graph instance

Table 1: Main data model notations.

having a degree is a graduate. The ability to return as result the
snippet of d1 most relevant to the query is directly conditioned by
the ability to exploit the ontology (and the content-based intercon-
nections along the path: u1 friend of u0, u0 posted d0, d1 replied
to d0).

R4. In many contexts, tagging may apply to tags themselves,
e.g., in annotated corpora, where an annotation (tag) obtained from
an analysis can further be annotated with provenance details (when
and how the annotation was made) or analyzed in its turn. Infor-
mation from higher-level annotations is obviously still related to
the original document. The model should allow expressing higher-
level tags, to exploit their information for query answering.

R5. The data model and queries should have well-defined se-
mantics, to precisely characterize computed results, ensure cor-
rectness of the implementation, and allow for optimization.

R6. The model should be generic (not tied to a particular social
network model), extensible (it should allow easy extension or cus-
tomization, as social networks and applications have diverse and
rapidly evolving needs), and interoperable, i.e., it should be pos-
sible to get richer / more complete answers by integrating different
sources of social connections, facts, semantics, or documents. This
ensures in particular independence from any proprietary social net-
work viewpoint, usefulness in a variety of settings, and a desirable
form of “monotonicity”: the more content is added to the network,
the more its information value increases.

This work makes the following contributions.
1. We present S3, a novel data model for structured, semantic-rich
content exchanged in social applications; it is the first model to
meet the requirements R0 to R6 above.
2. We revisit top-k social search for keyword queries, to retrieve
the most relevant document fragments w.r.t. the social, structural,
and semantical aspects captured by S3. We identify a set of desir-
able properties of the score function used to rank results, provide a
novel query evaluation algorithm called S3k and formally establish
its termination and correctness; the algorithm intelligently exploits
the score properties to stop as early as possible, to return answers
fast, with little evaluation effort. S3k is the first to formally guar-
antee a specific result in a structured, social, and semantic setting.
3. We implemented S3k based on a concrete score function (ex-
tending traditional ones from XML keyword search) and experi-
mented with three real social datasets. We demonstrate the feasi-
bility of our algorithm, and its qualitative advantage over existing
approaches: it finds relevant results that would be missed by ignor-
ing any dimension of the graph.

An S3 instance can be exploited in many other ways: through
structured XML and/or RDF queries as in [9], searching for users,
or focusing on annotations as in [4]; one could also apply graph
mining etc. In this paper, we first describe the data model, and
then revisit the top-k document search problem, since it is the most
widely used (and studied) in social settings.

In the sequel, Section 2 presents the S3 data model, while Sec-
tion 3 introduces a notion of generic score and instantiates it through
a concrete score. Section 4 describes S3k, we present experiments
in Section 5, then discuss related works in Section 6 and conclude.

2. DATA MODEL
We now describe our model integrating social, structured, and

semantic-rich content into a single weighted RDF graph, and based
on a small set of S3-specific RDF classes and properties. We

Constructor Triple Relational notation
Class assertion s type o o(s)
Property assertion s p o p(s, o)

Constructor Triple Relational notation
Subclass constraint s ≺sc o s ⊆ o
Subproperty constraint s ≺sp o s ⊆ o
Domain typing constraint s ←↩d o Πdomain(s) ⊆ o
Range typing constraint s ↪→r o Πrange(s) ⊆ o

Figure 2: RDF (top) and RDFS (bottom) statements.

present weighted RDF graphs in Section 2.1, and show how they
model social networks in Section 2.2. We add to our model struc-
tured documents in Section 2.3, and tags and user-document inter-
actions in Section 2.4; Section 2.5 introduces our notion of social
paths. Table 1 recaps the main notations of our data model.

URIs and literals We assume given a set U of Uniform Resource
Identifiers (URIs, in short), as defined by the standard [28], and a
set of literals (constants) denoted L, disjoint from U .

Keywords We denote byK the set of all possible keywords: it con-
tains all the URIs, plus the stemmed version of all literals. For
instance, stemming replaces “graduation” with “graduate”.

2.1 RDF
An RDF graph (or graph, in short) is a set of triples of the

form s p o, stating that the subject s has the property p and the
value of that property is the object o. In relational notation (Fig-
ure 2), s p o corresponds to the tuple (s, o) in the binary relation p,
e.g., u1 hasFriend u0 corresponds to hasFriend(u1,u0). We con-
sider every triple is well-formed [27]: its subject belongs to U , its
property belongs to U , and its object belongs to K.

Notations We use s, p, o to denote a subject, property, and re-
spectively, object in a triple. Strings between quotes as in “string”
denote literals.
RDF types and schema The property type built in the RDF stan-
dard is used to specify to which classes a resource belongs. This
can be seen as a form of resource typing.

A valuable feature of RDF is RDF Schema (RDFS), which al-
lows enhancing the resource descriptions provided by RDF graphs.
An RDF Schema declares semantic constraints between the classes
and the properties used in these graphs, through the use of four RDF
built-in properties. These constraints can model:
• subclass relationships, which we denote by≺sc; for instance,

any M.S.Degree is also a Degree;
• subproperty relationships, denoted ≺sp; for instance, work-

ingWith someone also means being acquaintedWith him;
• typing of the first attribute (or domain) of a property, denoted
←↩d, e.g., the domain of hasDegreeFrom is a Graduate;
• typing of the second attribute (or range) of a property, de-

noted ↪→r , e.g., the range of hasDegreeFrom is an University.
Figure 2 shows the constraints we use, and how to express them.

In this figure, domain and range denote respectively the first and
second attributes of a property. The figure also shows the relational
notation for these constraints, which in RDF are interpreted under
the open-world assumption [1], i.e., as deductive constraints. For
instance, if a graph includes the triples hasFriend ←↩d Person
and u1 hasFriend u0, then the triple u1 type Person holds in this
graph even if it is not explicitly present. This implicit triple is due
to the←↩d constraint in Figure 2.

Saturation RDF entailment is the RDF reasoning mechanism that
allows making explicit all the implicit triples that hold in an RDF
graph G. It amounts to repeatedly applying a set of normative im-
mediate entailment rules (denoted `iRDF ) on G: given some triples
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explicitly present in G, a rule adds some triples that directly follow
from them. For instance, continuing the previous example,

u1 hasFriend u0, hasFriend ↪→r Person `iRDF

u0 type Person

Applying immediate entailment `iRDF repeatedly until no new
triple can be derived is known to lead to a unique, finite fixpoint
graph, known as the saturation (a.k.a. closure) of G. RDF entail-
ment is part of the RDF standard itself: the answers to a query on G
must take into account all triples in its saturation, since the seman-
tics of an RDF graph is its saturation [27].

In the following, we assume, without loss of generality, that all
RDF graphs are saturated; many saturation algorithms are known,
including incremental [10] or massively parallel ones [26].

Weighted RDF graph Relationships between documents, docu-
ment fragments, comments, users, keywords etc. naturally form a
graph. We encode each edge from this graph by a weighted RDF
triple of the form (s, p, o, w), where (s, p, o) is a regular RDF
triple, and w ∈ [0, 1] is termed the weight of the triple. Any triple
whose weight is not specified is assumed to be of weight 1.

We define the saturation of a weighted RDF graph as the satura-
tion derived only from its triples whose weight is 1. Any entailment
rule of the form a, b `iRDF c applies only if the weight of a and b
is 1; in this case, the entailed triple c also has the weight 1. We re-
strict inference in this fashion to distinguish triples which certainly
hold (such as: “a M.S. is a degree”, “u1 is a friend of u0”) from
others whose weight is computed, and carries a more quantitative
meaning, such as “the similarity between d0 and d1 is 0.5”1.

Graph instance I and S3 namespace We use I to designate the
weighted RDF instance we work with. The RDF Schema state-
ments in I allow a semantic interpretation of keywords, as follows:

DEFINITION 2.1 (KEYWORD EXTENSION). Given an S3
instance I and a keyword k ∈ K, the extension of k, denoted
Ext(k), is defined as follows:
• k ∈ Ext(k)
• for any triple of the form b type k, b ≺sc k or b ≺sp k in

I, we have b ∈ Ext(k).

For example, given the keyword degree, and assuming that
M.S. ≺sc degree holds in I, we have M.S. ∈ Ext(degree). The
extension of k does not generalize it, in particular it does not intro-
duce any loss of precision: whenever k′ is in the extension of k,
the RDF schema in I ensures that k′ is an instance, or a specializa-
tion (particular case) of k. This is in coherence with the principles
behind the RDF schema language2.

For our modeling purposes, we define below a small set of RDF
classes and properties used in I; these are shown prefixed with the
S3 namespace. The next sections show how I is populated with
triples derived from the users, documents and their interactions.

2.2 Social network
We consider a set of social network users Ω ⊂ U , i.e., each user

is identified by a URI. We introduce the special RDF class S3:user,
and for each user u ∈ Ω, we add: u type S3:user ∈ I.
1One could generalize this to support inference over triples of any
weight, leading to e.g., “u1 is of type Person with a weight of 0.5”,
in the style of probabilistic databases.
2One could also allow a keyword k′ ∈ Ext(k) which is
only close to (but not a specialization of) k, e.g., “student′′ in
Ext(“graduate′′), at the cost of a loss of precision in query re-
sults. We do not pursue this alternative here, as we chose to follow
standard RDF semantics.

To model the relationships between users, such as “friend”, “co-
worker” etc., we introduce the special property S3:social, and
model any concrete relationship between two users by a triple whose
property specializes S3:social. Alternatively, one may see S3:social
as the generalization of all social network relationships.

Weights are used to encode the strength w of each relationship
going from a user u1 to a user u2: u1 S3:social u2 w ∈ I. As
customary in social network data models, the higher the weight,
the closer we consider the two users to be.
Extensibility Depending on the application, it may be desirable to
consider that two users satisfying some condition are involved in a
social interaction. For instance, if two people have worked the same
year for a company of less than 10 employees (such information
may be in the RDF part of our instance), they must have worked to-
gether, which could be a social relationship. This is easily achieved
with a query that retrieves all such user pairs (in SPARQL or in a
more elaborate language [9] if the condition also carries over the
documents), and builds a u workedWith u′ triple for each such
pair of users. Then it suffices to add these triples to the instance,
together with the triple: workedWith ≺sp S3:social.

2.3 Documents and fragments
We consider that content is created under the form of structured,

tree-shaped documents, e.g., XML, JSON, etc. A document is an
unranked, ordered tree of nodes. Let N be a set of node names
(for instance, the set of allowed XML element and attribute names,
or the set of node names allowed in JSON). Any node has a URI.
We denote by D ⊂ U the set of all node URIs. Further, each
node has a name from N , and a content, which we view as a set of
keywords from K: we consider each text appearing in a document
has been broken into words, stop words have been removed, and
the remaining words have been stemmed to obtain our version of
the node’s text content. For example, in Figure 1, the text of d1
might become {“M.S.”, “UAlberta”, “2012”}.

We term any subtree rooted at a node in document d a fragment
of d, implicitly defined by the URI of its root node. The set of
fragments (nodes) of a document d is denoted Frag(d). We may
use f to refer interchangeably to a fragment or its URI. If f is a
fragment of d, we say d is an ancestor of f .

To simplify, we use document and fragment interchangeably;
both are identified by the URI of their unique root node.
Document-derived triples We capture the structural relationships
between documents, fragments and keywords through a set of RDF
statements using S3-specific properties. We introduce the RDF
class S3:doc corresponding to the documents, and we translate:

• each d ∈ D into the I triple d type S3:doc;

• each document d ∈ D and fragment rooted in a node n of d
into n S3:partOf d;

• each node n and keyword k appearing in the content of n into
n S3:contains k;

• each node n whose name is m, into n S3:nodeName m.

EXAMPLE 2.1. Based on the sample document shown in Fig-
ure 1, the following triples are part of I:

d0.3.2 S3:partOf d0.3 d1 S3:contains “M.S.”
d0.3 S3:partOf d0 d1 S3:nodeName text

The following constraints, part of I, model the natural relation-
ships between the S3:doc class and the properties introduced above:

S3:partOf ←↩d S3:doc S3:partOf ↪→r S3:doc
S3:contains ←↩d S3:doc S3:nodeName ←↩d S3:doc
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which read: the relationship S3:partOf connects pairs of frag-
ments (or documents); S3:contains describes the content of a frag-
ment; and S3:nodeName associates names to fragments.

Fragment position We will need to assess how closely related
a given fragment is to one of its ancestor fragments. For that,
we use a function pos(d, f) which returns the position of frag-
ment f within document d. Concretely, pos can be implemented
for instance by assigning Dewey-style IDs to document nodes, as
in [19, 22]. Then, pos(d, f) returns the list of integers (i1, . . . , in)
such that the path starting from d’s root, then moving to its i1-th
child, then to this node’s i2-th child etc. ends in the root of the frag-
ment f . For instance, in Figure 1, pos(d0.3.2, d0) may be (3, 2).

2.4 Relations between structure, semantics, users
We now show how dedicated S3 classes and properties are used

to encode all kinds of connections between users, content, and se-
mantics in a single S3 instance.
Tags A typical user action in a social setting is to tag a data item,
reflecting the user’s opinon that the item is related to some con-
cept or keyword used in the tag. We introduce the special class
S3:relatedTo to account for the multiple ways in which a user may
consider that a fragment is related to a keyword. We denote by T
the set of all tags.

For example, in Figure 1, u4 tags d0.5.1 with the keyword “uni-
versity", leading to the triples:

a type S3:relatedTo a S3:hasSubject d0.5.1
a S3:hasKeyword “university” a S3:hasAuthor u4

In this example, a is a tag (or annotation) resource, encapsulating
the various tag properties: its content, who made it, and on what.
The tag subject (the value of its S3:hasSubject property) is either
a document or another tag. The latter allows to express higher-level
annotations, when an annotation (tag) can itself be tagged.

A tag may lack a keyword, i.e., it may have no S3:hasKeyword
property. Such no-keyword tags model endorsement (support), such
as like on Facebook, retweet on Twitter, or +1 on Google+.

Tagging may differ significantly from one social setting to an-
other. For instance, star-based rating of restaurants is a form of
tagging, topic-based annotation of text by expert human users is an-
other, and similarly a natural language processing (NLP) tool may
tag a text snippet as being about some entity. Just like the S3:social
property can be specialized to model arbitrary social connections
between users, subclasses of S3:relatedTo can be used to model
different kinds of tags. For instance, assuming a2 is a tag produced
by a NLP software, this leads to the I triples:

a2 type NLP:recognize
NLP:recognize ≺sc S3:relatedTo

User actions on documents Users post (or author, or publish) con-
tent, modeled by the dedicated property S3:postedBy. Some of
this content may be comments on (or replies / answers to) other
fragments; this is encoded via the property S3:commentsOn.

EXAMPLE 2.2. In Figure 1, d2 is posted by u3, as a comment
on d0.3.2, leading to the following I triples:

d2 S3:postedBy u3 d2 S3:commentsOn d0.3.2

As before, we view any concrete relation between documents
e.g., answers to, retweets, comments on, is an old version of etc.
as a specialization (sub-property) of S3:commentsOn; the corre-
sponding connections lead to implicit S3:commentsOn triples, as
explained in Section 2.1. Similarly, forms of authorship connecting
users to their content are modeled by specializing S3:postedBy.

Class Semantics
S3:user the users (the set of its instances is Ω)
S3:doc the documents (the set of its instances is D)
S3:relatedTo generalization of item “tagging” with keywords (the

set of all instances of this class is T : the set of tags)
Property Semantics
S3:postedBy connects users to the documents they posted
S3:commentsOn connects a comment with the document it is about
S3:partOf connects a fragment to its parent nodes
S3:contains connects a document with the keyword(s) it contains
S3:nodeName asserts the name of the root node of document
S3:hasSubject specifies the subject (document or tag) of a tag
S3:hasKeyword specifies the keyword of a tag
S3:hasAuthor specifies the poster of a tag
S3:social generalization of social relationships in the network

Table 2: Classes and properties in the S3 namespace.

URI0

URI0.0

URI0.0.0

URI0.1 URI1

u0

u1

u2

u3

a0

k0 k1

k2

S3:postedBy, 1

S3:postedBy, 1

S3:postedBy, 1

S3:postedBy, 1

S3:commentsOn, 1

S3:commentsOn, 1

S3:hasSubject, 1

S3:hasSubject, 1 S3:hasAuthor, 1

S3:hasAuthor, 1

S3:hasKeyword, 1

S3:partOf, 1

S3:partOf, 1

S3:partOf, 1

S3:partOf, 1

S3:contains, 1 S3:contains, 1

S3:social, 0.3

S3:social, 0.5

S3:social, 0.5
S3:social, 0.7

Figure 3: Sample S3 instance I.

This allows integrating (querying together) many social networks
over partially overlapping sets of URIs, users and keywords.
Inverse properties As syntactic sugar, to simplify the traversal of
connections between users and documents, we introduce a set of in-
verse properties, denoted respectively S3:postedBy, S3:commentsOn,
S3:hasSubject and S3:hasAuthor,with the straightforward semantics:
s p̄ o ∈ I iff o p s ∈ I where p̄ is the inverse property of p. For in-
stance, u0 S3:friend u1 in Figure 1.

Table 2 summarises the above S3 classes and properties, while
Figure 3 illustrates an I instance.

2.5 Social paths
We define here social paths on I, established either through ex-

plicit social links or through user interactions. We call network
edges those I edges encapsulating quantitative information on the
links between user, documents and tags, i.e., edges whose proper-
ties are in the namespace S3 other than S3:partOf , and whose sub-
jects and objects are either users, documents, or tags. For instance,
in Figure 3, u1 S3:social u3 0.5 and URI0 S3:postedBy u1 are net-
work edges; URI0.0 S3:contains k0 and URI0.1 S3:partOf URI0
are not. The intuition behind the exclusion of S3:partOf is that
structural relations between fragments, or between fragments and
keywords, merely describe data content and not an interaction.
However, if two users comment on the same fragment, or one com-
ments on a fragment of a document posted by the other (e.g., u2
and u0 in Figure 1), this is form of social interaction.

When two users interact with unrelated fragments of a same doc-
ument, such as u3 and u4 on disjoint subtrees of d0 in Figure 1, this
does not establish a social link between u3 and u4, since they may
not even have read the same text3. We introduce:

3To make such interactions count as social paths would only re-
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DEFINITION 2.2 (DOCUMENT VERTICAL NEIGHBORHOOD).
Two documents are vertical neighbors if one of them is a fragment
of the other. The function neigh: U → 2U returns the set of verti-
cal neighbors of an URI.

In Figure 3, URI0 and URI0.0.0 are vertical neighbors, so are
URI0 and URI0.1, but URI0.0.0 and URI0.1 are not. In the sequel,
due to the strong connections between nodes in the same vertical
neighborhood, we consider (when describing and exploiting so-
cial paths) that a path entering through any of them can exit
through any other; a vertical neighborhood acts like a single node
only and exactly from the perspective of a social path4. We can
now define social paths:

DEFINITION 2.3 (SOCIAL PATH). A social path (or simply a
path) in I is a chain of network edges such that the end of each
edge and the beginning of the next one are either the same node, or
vertical neighbors.

We may also designate a path simply by the list of nodes it tra-
verses, when the edges taken along the path are clear. In Figure 3,

u2
u2 S3:hasAuthor a0 1−−−−−−−−−−−−−→ a0

a0 S3:hasSubject URI 0.0.0 1−−−−−−−−−−−−−−−−−−→ URI0.0.0
99K URI0 URI 0 S3:postedBy u0 1−−−−−−−−−−−−−−−→ u0 is an example of such a path
(the dashed line: URI0.0.0 99K URI0, is not an edge in the path but
a connection between vertical neighbors, URI0.0.0 been the end
of an edge and URI0 the begining of the next edge). Also, in this
Figure, there is no social path going from u2 to u1 avoiding u0, be-
cause it is not possible to move from URI0.1 to URI0.0.0 through a
vertical neighborhood.

Social path notations The set of all social paths from a node x
(or one of its vertical neigbours) to a node y (or one of its vertical
neighbors) is denoted x; y. The length of a path p is denoted |p|.
The restriction of x ; y to paths of length exactly n is denoted
x;n y, while x;≤n y holds the paths of at most n edges.
Path normalization To harmonize the weight of each edge in a
path depending on its importance, we introduce path normalization,
which modifies the weights of a path’s edge as follows. Let n be
the ending point of a social edge in a path, and e be the next edge in
this path. The normalized weight of e for this path, denoted e.n_w,
is defined as:

e.n_w = e.w/
∑

e′∈out(neigh(n)) e
′.w

where e.w is the weight of e, and out(neigh(n)) the set of network
edges outgoing from any vertical neighbor of n. This normalizes
the weight of e w.r.t. the weight of edges outgoing from any ver-
tical neighbor of n. Observe that e.n_w depends on n, however e
does not necessarily start in n, but in any of its vertical neighbors.
Therefore, e.n_w indeed depends on the path (which determines
the vertical neighbor n of e’s entry point).

In the following, we assume all social paths are normalized.
EXAMPLE 2.3. In Figure 3, consider the path:

p = u0
u0 S3:postedBy URI 0 1−−−−−−−−−−−−−−−→ URI0 99K

URI0.0.0 URI 0.0.0 S3:hasSubject a0 1−−−−−−−−−−−−−−−−−−→ a0

Its first edge is normalized by the edges leaving u0: one leading
to URI0 (weight 1) and the other leading to u3 (weight 0.3). Thus,
its normalised weight is 1/(1 + 0/3) = 0.77.

Its second edge exits URI0.0.0 after a vertical neighborhood
traversal URI0 99K URI0.0.0. It is normalized by the edges leav-
ing neigh(URI0), i.e., all the edges leaving a fragment of URI0. Its
normalised weight is 1/(1 + 1 + 1 + 1) = 0.25.
quire simple changes to the path normalization introduced below.
4In other contexts, e.g., to determine their relevance w.r.t. a query,
vertical neigbors are considered separately.

S3 meets the requirements from Section 1, as follows. Gener-
icity, extensibility and interoperability (R6) are guaranteed by the
reliance on the Web standards RDF (Section 2.1) and XML/JSON
(Section 2.3). These enable specializing the S3 classes and proper-
ties, e.g., through application-dependent queries (see Extensibility
in Section 2.2). Our document model (Section 2.3) meets require-
ment R2; the usage of RDF (Section 2.1) ensures R3, while the
relationships introduced in Section 2.4 satisfy R1 as well as R4
(higher-level tags). For what concerns R5 (formal semantics), the
data model has been described above; we consider queries next.

3. QUERYING AN S3 INSTANCE
Users can search S3 instances through keyword queries; the an-

swer consists of the k top-score fragments, according to a joint
structural, social, and semantic score. Section 3.1, defines queries
and their answers. After some preliminaries, we introduce a generic
score, which can be instantiated in many ways, and a set of feasibil-
ity conditions on the score, which suffice to ensure the termination
and correctness of our query answering algorithm (Section 3.3).
We present our concrete score function in Section 3.4.

3.1 Queries
S3 instances are queried as follows:

DEFINITION 3.1 (QUERY). A query is a pair (u, φ) where u
is a user and φ is a set of keywords.

We call u the seeker. We define the top-k answers to a query
as the k documents or fragments thereof with the highest scores,
further satisfying the following constraint: the presence of a docu-
ment or fragment at a given rank precludes the inclusion of its ver-
tical neighbors at lower ranks in the results5. As customary, top-k
answers are ranked using a score function s(q, d) that returns for a
document d and query q a value in R, based on the graph I.

DEFINITION 3.2 (QUERY ANSWER). A top-k answer to the
query q using the score s, denoted Tk,s(q), is recursively defined
as a top-k−1 answer, plus a document with the best score among
those which are neither fragments nor ancestors of the documents
in the top-k−1 answer.

Observe that a query answer may not be unique. This happens
as soon as several documents have equal scores for the query, and
this score happens to be among the k highest.

3.2 Connecting query keywords and documents
Answering queries over I requires finding best-scoring docu-

ments, based on the direct and indirect connections between doc-
uments, the seeker, and search keywords. The connection can be
direct, for instance, when the document contains the keyword, or
indirect, when a document is connected by a chain of relationships
to a search keyword k, or to some keyword from k’s extension.

We denote the set of direct and indirect connections between
a document d and a keyword k by con(d, k). It is a set of three-
tuples (type, frag, src) such that:

• type ∈ {S3:contains, S3:relatedTo, S3:commentsOn} is
the type of the connection,

• f ∈ Frag(d) is the fragment of d (possibly d itself) due to
which d is involved in this connection,

• src ∈ Ω ∪D (users or documents) is the source (origin) of
this connection (see below).

5This assumption is standard in XML keyword search, e.g., [6].
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Below we describe the possible situations which create connec-
tions. Let d, d′ be documents or tags, and f, f ′ be fragments of
d and d′, respectively6. Further, let k, k′ be keywords such that
k′ ∈ Ext(k), and src ∈ Ω ∪D be a user or a document.

Documents connected to the keywords of their fragments If the
fragment f contains a keyword k, then:

(S3:contains, f, d) ∈ con(d, k)
which reads: “d is connected to k through a S3:contains relation-
ship due to f”. This connection holds even if f contains not k itself,
but some k′ ∈ Ext(k). For example, in Figure 1, if the keyword
“university” appears in the fragment whose URI is d2.7.5, then
con(d2, “university”) includes (S3:contains, d2.7.5, d2).
Observe that a given k′ and f may lead to many connections, if
k′ specializes several keywords and/or if f has many ancestors.

Connections due to tags For every tag a of the form
a type S3:relatedTo a S3:hasSubject f
a S3:hasAuthor src a S3:hasKeyword k′

con(d, k) includes (S3:relatedTo, f, src). In other words, when-
ever a fragment f of d is tagged by a source src with a special-
ization of the keyword k, this leads to a S3:relatedTo connection
between d and k due to f , whose source is the tag author src.
For instance, the tag a of u4 in Figure 1 creates the connection
(S3:relatedTo, d0.5.1, u4) between d0 and “university”.

More generally, if a tag a on fragment f has any type of connec-
tion (not just S3:hasKeyword) to a keyword k due to source src,
this leads to a connection (S3:relatedTo, f, src) between d and k.
The intuition is that the tag adds its connections to the tagged frag-
ment and, transitively, to its ancestors. (As the next section shows,
the importance given to such connections decreases as the distance
between d and f increases.)

If the tag a on f is a simple endorsement (it has no keyword), the
tag inherits d’s connections, as follows. Assume d has a connection
of type type to a keyword k: then, a also has a type connection to
k, whose source is src, the tag author. The intuition is that when
src endorses (likes, +1s) a fragment, src agrees with its content,
and thus connects the tag, to the keywords related to that fragment
and its ancestors. For example, if a user u5 endorsed d0 in Figure 1
through a no-keyword tag a5, the latter tag is related to “university”
through: (S3:relatedTo, d0.5.1, u5).

Connections due to comments When a comment on f is con-
nected to a keyword, this also connects any ancestor d of f to that
keyword; the connection source carries over, while the type of d’s
connection is S3:commentsOn. For instance, in Figure 1, since d2
is connected to “university” through (S3:contains, d2.7.5, d2) and
since d2 is a comment on d0.3.2, it follows that d0 is also related to
“university” through (S3:commentsOn, d0.3.2, d2).

3.3 Generic score model
We introduce a set of proximity notions, based on which we state

the conditions to be met by a score function, for our query evalua-
tion algorithm to compute a top-k query answer.
Path proximity We consider a measure of proximity along one
path, denoted −−→prox, between 0 and 1 for any path, such that:
• −−→prox(( )) = 1, i.e., the proximity is maximal on an empty

path (in other words, from a node to itself),
• for any two paths p1 and p2, such that the start point of p2 is

in the vertical neighborhood of the end point of p1:
−−→prox(p1||p2) 6 min(−−→prox(p1),−−→prox(p2)),

6We here slightly extend notations, since tags do not have frag-
ments: if d is a tag, we consider that its only fragment is d.

where || denotes path concatenation. This follows the in-
tuition that proximity along a concatenation of two paths is
at most the one along each of these two components paths:
proximity can only decrease as the path gets longer.

Social proximity associates to two vertices connected by at least
one social path, a comprehensive measure over all the paths be-
tween them. We introduce such a global proximity notion, because
different paths traverse different nodes, users, documents and re-
lationships, all of which may impact the relation between the two
vertices. Considering all the paths gives a qualitative advantage
to our algorithm, since it enlarges its knowledge to the types and
strength of all connections between two nodes.

DEFINITION 3.3 (SOCIAL PROXIMITY). The social proxim-
ity measure prox : (Ω ∪ D ∪ T )2 → [0, 1], is an aggregation
along all possible paths between two users, documents or tags, as
follows:

prox(a, b) = ⊕path({(−−→prox(p), |p|), p ∈ a; b}),

where |.| is the number of vertices in a path and⊕path is a function
aggregating a set of values from [0, 1]×N into a single scalar value.

Observe that the set of all paths between two nodes may be
infinite, if the graph has cycles; this is often the case in social
graphs. For instance, in Figure 3, a cycle can be closed between
(u0,URI0, u0). Thus, in theory, the score is computed over a po-
tentially infinite set of paths. However, in practice, our algorithm
works with bounded social proximity values, relying only on paths
of a bounded length:

prox≤n(a, b) = ⊕path({(−−→prox(p), |p|), p ∈ a;≤n b})
Based on the proximity measure, and the connections between

keywords and documents introduced in Section 3.2, we define:

DEFINITION 3.4 (GENERIC SCORE). Given a document d and
a query q = (u, φ), the score of d for q is:

score(d, (u, φ)) = ⊕gen ({(k, type, pos(d, f), prox(u, src))
|k ∈ φ, (type, f, src) ∈ con(d, k)})

where ⊕gen is a function aggregating a set of (keyword, relation-
ship type, importance of fragment f in d, social proximity) tuples
into a value from [0, 1].

Importantly, the above score reflects the semantics, structure,
and social content of the S3 instance, as follows.

First,⊕gen aggregates over the keywords in φ. Recall that tuples
from con(d, k) account not only for k but also for keywords k′ ∈
Ext(k). This is how semantics is injected into the score.

Second, the score of d takes into account the relationships be-
tween fragments f of d, and keywords k, or k′ ∈ Ext(k), by
using the sequence pos(d, f) (Section 2.3) as an indication of the
structural importance of the fragment within the document. If the
sequence is short, the fragment is likely a large part of the docu-
ment. Document structure is therefore taken into account here both
directly through pos, and indirectly, since the con tuples also prop-
agate relationships from fragments to their ancestors (Section 3.2).

Third, the score takes into account the social component of the
graph through prox: this accounts for the relationships between
the seeker u, and the various parties (users, documents and tags),
denoted src, due to which f may be relevant for k.

Feasibility properties For our query answering algorithm to con-
verge, the generic score model must have some properties which
we describe below.

1. Relationship with path proximity This refers to the relation-
ship between path proximity and score. First, the score should only
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increase if one adds more paths between a seeker and a data item.
Second, the contribution of the paths of length n ∈ N to the social
proximity can be expressed using the contributions of shorter “pre-
fixes” of these paths, as follows. We denote by ppSetn(a, b) the set
of the path proximity values for all paths from a to b of length n:

ppSetn(a, b) = {−−→prox(p) | p ∈ a;n b}
Then, the first property is that there exists a function Uprox with

values in [0, 1], taking as input (i) the bounded social proximity for
path of length at most n − 1 , (ii) the proximity along paths of
length n, and (iii) the length n, and such that:

prox≤n(a, b) = prox≤n−1(a, b)

+ Uprox(prox≤n−1(a, b), ppSetn(a, b), n)

2. Long paths attenuation The influence of social paths should
decreases as they get longer; intuitively, the farther away two items
are, the weaker their connection and thus their influence on the
score. More precisely, there exists a bound B>nprox tending to 0
as n grows, and such that:

B>nprox ≥ prox− prox≤n

3. Score soundness The score of a document should be positively
correlated with the social proximity from the seeker to the docu-
ment fragments that are relevant for the query.

Denoting score[g] the score where the proximity function prox
is replaced by a continuous function g having the same domain
(Ω ∪ D ∪ T )2, g 7→ score[g] must be monotonically increasing
and continuous for the uniform norm.

4. Score convergence
This property bounds the score of a document and shows how

it relates to the social proximity. It requires the existence of a
function Bscore which takes a query q = (u, φ) and a number
B ≥ 0, known to be an upper bound on the social proximity
between the seeker and any source: for any d, query keyword k,
and (type, f, src) ∈ con(d, k), we know that prox(u, src) ≤ B.
Bscore must be positive, and satisfy, for any q:
• for any document d, score(d, q) ≤ Bscore(q,B);

• limB→0(Bscore(q,B)) = 0 (tends to 0 like B).
We describe a concrete feasible score, i.e., having the above

properties, in the next section.

3.4 Concrete score
We start by instantiating −−→prox, prox and score.

Social proximity Given a path p, we define −−→prox(p) as the prod-
uct of the normalized weights (recall Section 2.5) found along the
edges of p. We define our concrete social proximity function
prox(a, b) as a weighted sum over all paths from a to b:

prox(a, b) = Cγ ×
∑

p∈a;b

−−−→prox(p)
γ|p|

where γ > 1 is a scalar coefficient, and Cγ = γ−1
γ

is introduced to
ensure that prox ≤ 1. Recall that by Definition 3.3, prox requires
a⊕path aggregation over the (social proximity, length) pairs of the
paths between the two nodes. Hence, this concrete social proximity
corresponds to choosing:

⊕path(S) = Cγ ×
∑

(sp,len)∈S

sp

γlen

where (sp, len) is a (social proximity, length) pair from its input.

EXAMPLE 3.1. Social proximity Let us consider in Figure 3
the social proximity from u0 to URI0, using the −−→prox and ⊕path
previously introduced. An edge connects u0 directly to URI0, lead-
ing to the normalized path p:

p = u0
u0 S3:postedBy URI 0 1

1+0.3−−−−−−−−−−−−−−−−−−→ URI0
which accounts for a partial social proximity:

prox≤1(u0,URI0) =
−−−→prox(p)
γ|p| = 1/(1+0.3)

γ1

This social proximity generalizes Katz distance [17]; other com-
mon distances may be used, e.g., SimRank [14].

Score function We define a simple concrete S3 score function
which, for a document d, is the product of the scores of each query
keyword in d. The score of a keyword is summed over all the con-
nections between the keyword and the document. The weight for
a given connection and keyword only depends on the social dis-
tance between the seeker and the sources of the keyword, and the
structural distance between the fragment involved in this relation
and d, namely the length of pos(d, f). Both distances decrease
exponentially as the path length grows. Formally:

DEFINITION 3.5 (S3k SCORE). Given a query (u, φ), the S3k
score of a document d for the query is defined as:

score(d, (u, φ)) =
∏
k∈φ

(∑
η|pos(d,f)| × prox(u, src)
(type,f,src)∈ con(d,k)

)
for some damping factor η < 1.

Recall from Definition 3.4 that an aggregation function ⊕gen
combines the contributions of (keyword, relationship type, impor-
tance, social proximity) tuples in the score. The above definition
corresponds to the following ⊕gen aggregator:

⊕gen(S) =
∏
k∈φ

( ∑
η|rel| × prox
rel,prox

∃type,(k,type,rel,prox)∈S

)
Note that if we ignore the social aspects and restrict ourselves to

top-k search on documents (which amounts to prox = 1), ⊕gen
gives the best score to the lowest common ancestor (LCA) of the
nodes containing the query keywords. Thus, our score extends typ-
ical XML IR works, e.g., [6] (see also Section 6).

Obviously, there are many possible ways to define ⊕gen and
⊕path, depending on the application. In particular, different types
of connections may not be accounted for equally; our algorithm
only requires a feasible score (with the feasibility properties).

THEOREM 3.1 (SCORE FEASIBILITY). The S3k score func-
tion (Definition 3.5) has the feasibility properties (Section 3.3).

The proof appears in our technical report [3].

4. QUERY ANSWERING ALGORITHM
In this section, we describe our Top-k algorithm called S3k,

which computes the answer to a query over an S3 instance using
our S3k score, and formally state its correctness.

4.1 Algorithm
The main idea, outlined in Algorithm 1, is the following. The

instance is explored starting from the seeker and going to other
vertices (users, documents, or resources) at increasing distance. At
the n-th iteration, the I vertices explored are those connected to the
seeker by at least a path of length at most n. We term exploration
border the set of graph nodes reachable by the seeker through a
path of length exactly n. Clearly, the border changes as n grows.

During the exploration, documents are collected in a set of can-
didate answers. For each candidate c, we maintain a score interval:
its currently known lowest possible score, denoted c.lower, and its

35



Algorithm 1: S3k – Top-k algorithm.
Input : a query q = (u, φ)
Output: the best k answers to q aver an S3 instance I , Tk,s(q)

1 candidates← [ ] // initially empty list
2 discarded← ∅
3 borderPath← [ ]

4 allProx← δu // δu[v] =
{

1 if v = u

0 otherwise
5 threshold←∞ // Best possible score of a document not yet

explored, updated in ComputeCandidatesBounds
6 n← 0
7 while not StopCondition(candidates) do
8 n← n+ 1
9 ExploreStep()

10 ComputeCandidatesBounds()
11 CleanCandidatesList()
12 return candidates[0, k − 1]

q = (u, φ) Query: seeker u and keyword set φ
k Result size
n Number of iterations of the main loop of the algorithm
candidates Set of documents and/or fragments which are candidate query

answers at a given moment
discarded Set of documents and/or fragments which have been ruled out of

the query answer
borderPath[v] Paths from u to v explored at the last iteration (a;n v)
allProx[v] Bounded social proximity (prox≤n) between the seeker u and a

node v, taking into account all the paths from u to v known so far
connect[c] Connections between the seeker and the candidate

c: connect[c] = {(k, type, pos(d, f), src)|k ∈
φ, (type, f, src) ∈ con(c, k)}

threshold Upper bound on the score of the documents not visited yet

Table 3: Main variables used in our algorithms.

Algorithm 2: Algorithm StopCondition

Input : candidates set
Output: true if candidates[0, k − 1] is Tk,s(q), false otherwise

1 if ∃d, d′ ∈ candidates[0, . . . , k − 1], d ∈ neigh(d′) then
2 return false
3 min_topk_lower ←∞
4 foreach c ∈ candidates[0, . . . , k − 1] do
5 min_topk_lower ← min(min_topk_lower, c.lower)
6 max_non_topk_upper ← candidates[k].upper
7 return max(max_non_topk_upper, threshold) ≤
min_topk_lower // Boolean result

highest possible score, denoted c.upper. These scores are updated
as new paths between the seeker and the candidates are found. Can-
didates are kept sorted by their highest possible score; the k first
are the answer to the query when the algorithm stops, i.e., when no
candidate document outside the current first k can have an upper
bound above the minimum lower bound within the top k ranks.

Further, the search algorithm relies on three tables:
• borderPath is a table storing, for a node v in I, the set of

paths of length n between u (the seeker) and v, where n is
the current distance from u that the algorithm has traversed.
• allProx is a table storing, for a node v in I, the proximity

between u and v taking into account all the paths known so
far from u to v. Initially, its value is 0 for any v 6= u.
• connect is a table storing for a candidate c the set of connec-

tions (Section 3.2) discovered so far between the seeker and c
These tables are updated during the search. While they are de-

fined on all the I nodes, we only compute them gradually, for the
nodes on the exploration border.

Termination condition Of course, search should not explore the
whole graph, but instead stop as early as possible, while returning

Algorithm 3: Algorithm ExploreStep

Update: borderPath and allProx
1 if n = 1 then
2 borderPath← out({u})
3 else
4 foreach v ∈ I do
5 newBorderPath[v]← ∅
6 foreach p ∈ borderPath do
7 foreach network edge e in out(neigh(p.end)) do
8 m← e.target
9 if m is a document or a tag then

10 GetDocuments(m)
11 newBorderPath[m].add(p||e)

12 borderPath← newBorderPath

13 foreach v ∈ I do
14 newAllProx[v]← allProx[v] + Uprox(allProx[v],
15 {−−→prox(p), p ∈ borderPath[v]}, n)
16 allProx← newAllProx

the correct result. To this aim, we maintain during the search an
upper bound on the score of score of all documents unexplored so
far, named threshold. Observe that we do not need to return the
exact score of our results, and indeed we may never narrow down
the (lower bound, upper bound) intervals to single numbers; we
just need to make sure that no document unexplored so far is in
among the top k. Algorithm 2 outlines the procedure to decide
whether the search is complete: when (i) the candidate set does
not contain documents such that one is a fragment of another, and
(ii) no document can have a better score than the current top k.

Any-time termination Alternatively, the algorithm can be stopped
at any time (e.g., after exhausting a time budget) by making it return
the k best candidates based on their current upper bound score.

Graph exploration Algorithm 3 describes one search step (itera-
tion), which visits nodes at a social distance n from the seeker. For
the ones that are documents or tags, the GetDocuments algorithm
(see hereafter) looks for related documents that can also be candi-
date answers (these are added to candidates); discarded keeps
track of related documents with scores too low for them to be can-
didates. The allProx table is also updated using the Uprox func-
tion, whose existence follows from the first score feasibility prop-
erty (Section 3.3), to reflect the knowledge acquired from the new
exploration border (borderPath). Observe that Algorithm 3 com-
putes prox≤n(u, src) iteratively using the first feasibility property;
at iteration n, allProx[src] = prox≤n(u, src).

Computing candidate bounds The ComputeCandidateBounds

algorithm (shown in [3]) maintains during the search the lower and
upper bounds of the candidates, as well as threshold. A candi-
date’s lower bound is computed as its score where its social prox-
imity to the user7 is approximated by its bounded version, based
only on the paths explored so far:

⊕gen({(kw, type, pos(d, f), allProx[src]) | kw ∈ φ,
(type, f, src) ∈ con(d, kw)})

This is a lower bound because, during exploration, a candidate
can only get closer to the seeker (as more paths are discovered).

A candidate’s upper bound is computed as its score, where the
social proximity to the user is replaced by the sum between the
bounded proximity and the function B>nprox(u, src), whose exis-
tence follows from the long path attenuation property (Section 3.3).
7The actual (exact) social proximity requires a complete traversal
of the graph; our algorithms work with approximations thereof.
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The latter is guaranteed to offset the difference between the bounded
and actual social proximity:

⊕gen({(kw, type, pos(d, f), allProx[src] +B>nprox(u, src)) |
kw ∈ φ, (type, f, src) ∈ con(d, kw)})

The above bounds rely on con(d, k), the set of all connections
between a candidate d and a query keyword k (Section 3.2); clearly,
the set is not completely known when the search starts. Rather,
connections accumulate gradually in the connect table (Algorithm
GetDocuments), whose tuples are used as approximate (partial)
con(d, k) information in ComputeCandidateBounds.

Finally, ComputeCandidateBounds updates the relevance thresh-
old using the known bounds on score and prox. The new bound
estimates the best possible score of the unexplored documents.

Cleaning the candidate set Algorithm CleanCandidateList re-
moves from candidates documents that cannot be in the answer,
i.e., those for which k candidates with better scores are sure to ex-
ist, as well as those having a candidate neighbor with a better score.
The algorithm is delegated to [3].

Getting candidate documents Given a candidate document or tag
x, Algorithm GetDocuments checks whether some documents un-
explored so far, reachable from x through a chain of S3:partOf ,
S3:commentsOn, S3:commentsOn, S3:hasSubject, or
S3:hasSubject edges, are candidate answers. If yes, they are added
to candidates and the information necessary to estimate their score
is recorded in connect. The algorithm is detailed in [3].

4.2 Correctness of the algorithm
The theorems below state the correctness of our algorithm for

any score function with the feasibility properties identified in Sec-
tion 3.3. The proofs are quite involved, and they are delegated
to [3]. The core of the proofs is showing how the score feasibil-
ity properties entail a set of useful properties, in particular related
to early termination (convergence).

THEOREM 4.1 (STOP CORRECTNESS). When a stop condi-
tion is met, the first k elements in candidates are a query answer.

We say the tie of two equal-score documents d, d′ is breakable if
examining a set of paths of bounded length suffices to decide their
scores are equal. (In terms of our score feasibility properties, this
amounts to B>nprox = 0 for some n). Our generic score function
(Definition 3.5) does not guarantee all ties are breakable. How-
ever, any finite-precision number representation eventually brings
the lower and upper bounds on d and d′’s scores too close to be
distinguished, de facto breaking ties.

THEOREM 4.2 (CORRECTNESS WITH BREAKABLE TIES).
If there exists a query answer of size k and all ties are breakable
then Algorithm 1 returns a query answer of size k.

THEOREM 4.3 (ANYTIME CORRECTNESS). Using anytime
termination, Algorithm 1 eventually returns a query answer.

In our experiments (Section 5), the threshold-based termination
condition was always met, thus we never needed to wait for con-
vergence of the lower and upper bound scores.

5. IMPLEMENTATION & EXPERIMENTS
We describe experiments creating and querying S3 instances.

We present the datasets in Section 5.1, while Section 5.2 outlines
our implementation and some optimizations we brought to the search
algorithm. We report query processing times in Section 5.3, study
the quality of our returned results in Section 5.4, then we conclude.

I1 (Twitter)
Users 492,244
S3:social edges 17 544 347
Documents 467,710
Fragments (non-root) 1,273,800
Tags 609,476
Keywords 28,126,940
Tweets 999,370
Retweets 85%
Reply to users’ status 6.9%
String-keyword associations extracted from DBpedia 3,301,425
S3:social edges per user having any (average) 317
Nodes (without keywords) 2 972 560
Edges (without keywords) 24 554 029

I2 (Vodkaster) I3 (Yelp)
Users 5,328
S3:social edges (vdk:follow) 94,155
Documents (movie comments) 330,520
Fragments (non-root) 529,432
Keywords 3,838,662
Movies 20,022

Users 366,715
S3:social edges
(yelp:friend)

3,868,771

Documents
(reviews)

2,064,371

Keywords 59,614,201
Businesses 61,184

Figure 4: Statistics on our instances.

5.1 Datasets, queries, and systems
Datasets We built three datasets, I1, I2, and I3, based respectively
on content from Twitter, Vodkaster and Yelp.

The instance I1 was constructed starting from tweets obtained
through the public streaming Twitter API. Over a one-day interval
(from May 2nd 2014 16h44 GMT to May 3rd 2014 12h44 GMT),
we gathered roughly one million tweets. From every tweet that is
not a retweet, we created a document having three nodes (i) a text
node: from the text field of the tweet, we extracted named entities
and words (using the Twitter NLP tools library [20]) and matched
them against a general-purpose ontology we created from DBpedia
(see below); (ii) a date node, and (iii) a geo node: if the tweet
included a human readable location, we inserted it in this node.
The RDF graph of our instance was built from DBPedia datasets,
namely: Mapping-based Types, Mapping-based Properties, Per-
sondata and Lexicalizations Dataset. These were chosen as they
were the most likely to contain concepts (names, entities etc.) oc-
curring in tweets. Tweet text was semantically enriched (connected
to the RDF graph) as follows: within the text fields, we replaced
each word w for which a triple of the form u foaf:name w holds
in the DBPedia knowledge base, by the respective URI u.

When a tweet t′ authored by user u is a retweet of another tweet
t, for each hashtag h introduced by t′, we added to I1 the triples:
a type S3:relatedTo, a S3:hasSubject t, a S3:hasKeyword h
and a S3:hasAuthor u. If a tweet t′′ was a reply to another tweet
t, we considered t′′ a comment on t. Whenever t was present in
our dataset8, we added the corresponding S3:commentsOn triple
in I1. The set of users ΩI1 corresponds to the set of user IDs
having posted tweets, and we created links between users as fol-
lows. We assigned to every pair of users (a, b) a value u∼(a, b) =
t · js1(a, b) + (1 − t) · js2(a, b), where js1, js2 give the Jac-
card similarities of the sets of keywords appearing in each user’s
posts, respectively, in each user’s comments. Whenever this sim-
ilarity was above a threshold, we created an edge of weight u∼
between the two users. Through experiments on this dataset, we
set the threshold to 0.1.

The instance I2 uses data from Vodkaster, a French social net-
work dedicated to movies. The data comprises follower relations
between the users and a list of comments on the movies, in French,
along with their author. Whenever user u follows user v we in-

8The corpus may contain a re-tweet of a tweet we do not capture;
this is unavoidable unless one has access to the full Twitter history.
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cluded u vdk:follow v 1 in I2, where vdk:follow is a custom sub-
property of S3:social. We translate the first comment on each film
into a document; each additional comment was then considered a
comment on the first. The text of each comment was stemmed, then
each stemmed sentence was made a fragment of the comment.

The instance I3 is based on Yelp [29], a crowd-sourced reviews
website about businesses. This dataset contains a list of textual re-
views of businesses, and the friend list of each user. As for I2, we
considered that the first review of a business is commented on by
the subsequent reviews of the same business. For each user u friend
with user v, we added u yelp:friend v 1 to I3, where yelp:friend
is a S3:social subproperty modeling social Yelp connections. Re-
views were also semantically enriched using DBPedia.

Table 4 shows the main features of the three quite different data
instances. I1 is by far the largest. I2 was not matched with a knowl-
edge base since its content is in French; I2 and I3 have no tags.

Queries For each instance we created workloads of 100 queries,
based on three independent parameters:
• f , the keyword frequency: either rare, denoted ‘−′ (among

the 25% least frequent in the document set), or common, de-
noted ‘+′ (among the 25% most frequent)

• l, the number of keywords in the query: 1 or 5
• k, the expected number of results: 5 or 10

This lead to a total of 8 workloads, identified by qsetf,l,k, for
each dataset. To further analyze the impact of varying k, we added
10 more workloads for I1, where f ∈ {+,−}, l = 1, and k ∈
[1, 5, 10, 50] (used in Figure 7). We stress here that injecting se-
mantics in our workload queries, by means of keyword extensions
(Definition 2.1), increased their size on average by 50%.

Systems Our algorithms were fully implemented in Python 2.7; the
code has about 6K lines. We stored some data tables in PostgreSQL
9.3, while others were built in memory, as we explain shortly. All
our experiments were performed on a 4 cores Intel Xeon E3-1230
V2 @3.30GHz with 16Go of RAM, running Debian 8.1.

No existing system directly compares with ours, as we are the
first to consider fine-granularity content search with semantics in a
social network. To get at least a rough performance comparison,
we used the Java-based code provided by the authors of the top-k
social search system described in [18], based on the UIT (user, item
tag) model, and referred to as TopkS from now on. The data model
of TopkS is rather basic, since its documents (items) have no inter-
nal structure nor semantics and tags have no semantic connection
between them. Further, (user, user, weight) tuples reflect weighted
links between users. TopkS computes a social score and a content-
based score for each item; the overall item score is then α× social
score +(1− α)× content score, where α is a parameter of TopkS.

We adapted our instances into TopkS’s simpler data model. From
I1, we created I′1 as follows: (i) the relations between users were
kept with their weight; (ii) every tweet was merged with all its
retweets and replies into a single item, and (iii) every keyword k
in the content of a tweet that is represented by item i posted by
user u led to introducing the (user, item, tag) triple (u, i, k). To
obtain I′2 and I′3, each movie or business becomes an item, each
word extracted from a review leads to a (user, item, tag) tuple.

5.2 Implementation and optimizations
We briefly discuss our implementation, focusing on optimiza-

tions w.r.t. the conceptual description in Section 4.
The first optimization concerns the computation of prox, re-

quired for the score (Definition 3.5). While the score involves
connections between documents and keywords found on any path,
in practice S3k explores paths (and nodes) increasingly far from
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Figure 5: Query answering times on I1 (Twitter).

the seeker, and stores such paths in borderPath, which may grow
very large and hurt performance. To avoid storing borderPath,
we compute for each explored vertex v the weighted sum over all
paths of length n from the seeker to this vertex:

borderProx(v, n) =
∑

p∈u;v,|p|=n
−−−→prox(p)
γn

and compute prox directly based on this value.
Furthermore, Algorithm GetDocuments considers documents

reachable from x through edges labeled S3:partOf , S3:commentsOn,
S3:commentsOn,S3:hasSubject or S3:hasSubject. Reachability
by such edges defines a partition of the documents into connected
components. Further, by construction of con tuples (Section 3.2),
connections carry over from one fragment to another, across such
edges. Thus, a fragment matches the query keywords iff its com-
ponent matches it, leading to an efficient pruning procedure: we
compute and store the partitions, and test that each keyword (or
extension thereof) is present in every component (instead of frag-
ment). Partition maintenance is easy when documents and tags are
added, and more expensive for deletions, but luckily these are rarer.

The query answering algorithm creates in RAM the allProx ta-
ble and two sparse matrices, computed only once: distance, en-
coding the graph of network edges in I (accounting for the verti-
cal neighborhood), and component, storing the component of each
fragment or tag. Thus, Algorithm 3, which computes allProx and
finds new components to explore, relies on efficient matrix and vec-
tor operations. For instance, the new distance vector borderProx
w.r.t. the seeker at step n + 1 is obtained by multiplying the dis-
tance matrix with the previous distance vector from step n. The
documents and the RDF graph, on the other hand are not stored in
RAM, and are queried using a PostgreSQL database.

The search algorithm can be parallelized in two ways. First,
within an iteration, we discover new documents in different compo-
nents in parallel. Second, when borderProx is available in the cur-
rent iteration, we can start computing the next borderProx using
the distance matrix. More precisely, Algorithm 3 (ExploreStep)
can be seen as consisting of two main blocks: (i) computing the
new borderProx using the (fixed) distance matrix and the previ-
ous borderProx (lines 1-12 except line 10); (ii) computing
allProx using the new borderProx and the previous allProx
(lines 13-16) plus the call to GetDocuments (line 10). The lat-
ter algorithm consists of two parts: (iii) identifying the newly dis-
covered components, respectively (iv) testing the documents they
contain. We used 8 concurrent threads, each running a task of one
of the forms (i)-(iv), above, and synchronized them with a custom
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Figure 6: Query answering times on I3 (Yelp).
scheduler. This reduced the query answering time on average by a
factor of 2.

5.3 Query answering times
Figures 5 and 6 show the running times of S3k on the I1 and

I3 instances; the results on the smaller instance I2 are similar [3].
We used different values of the γ social proximity damping factor
(Section 3.4) and the α parameter of TopkS. For each workload, we
plot the average time (over its 100 queries). All runs terminated by
reaching the threshold-based stop condition (Algorithm 2).

A first thing to notice is that while all running times are com-
parable, TopkS runs consistently faster. This is mostly due to the
different proximity functions: our prox, computed from all possi-
ble paths, has a much broader scope than TopkS, which explores
and uses only one (shortest) path. In turn, as we show later, we
return a significantly different set of results, due to prox’s broader
scope and to considering document structure and semantics.

Decreasing the γ in S3k reduces the running time. This is ex-
pected, as γ gives more weight to nodes far from the seeker, whose
exploration is costly. Similarly, increasing α in TopkS forces to
look further in the graph, and affects negatively its performance.

The influence of k is more subtle. When the number of candi-
dates is low and the exploration of the graph is not too costly, higher
k values allow to include most candidates among the k highest-
scoring ones. This reduces the exploration needed to refine their
bounds enough to clarify their relative ranking. In contrast, if the
number of candidates is important and the exploration costly, a
small k value significantly simplifies the work. This can be seen
in Figure 7 where, with frequent keywords, increasing k does not
affect the 3 fastest quartiles but significantly slows down the slow-
est quartile, since the algorithm has to look further in the graph.

The same figure also shows that rare-keyword workloads (whose
labels start by −) are faster to evaluate than the frequent-keyword
ones (workload labels starting with +). This is because finding rare
keywords tends to require exploring longer paths. Social damping
at the end of such paths is high, allowing to decide that possible
matches found even farther from the seeker will not make it into
the top-k. In contrast, matches for frequent keywords are found
soon, while it is still possible that nearby exploration may signif-
icantly change their relative scores. In this case, more search and
computations are needed before the top-k elements are identified.
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Measure \ Instance I1 I2 I3
Graph reachability 12% 23% 41%
Semantic reachability 83% 100% 78%
L1 8% 10% 4%
Intersection size 13.7% 18.4% 5.6%

Figure 8: Relations between S3k and TopkS answers.

5.4 Qualitative comparison
We compare now the answers of our S3k algorithm and those of

TopkS from a qualitative angle. S3k follows links between doc-
uments to access further content, while TopkS does not; we term
graph reachability the fraction of candidates reached by our algo-
rithm which are not reachable by the TopkS search. Further, while
S3k takes into account semantics by means of semantic extension
(Definition 2.1), TopkS only relies on the query keywords. We call
semantic reachability the ratio between the number of candidates
examined by an algorithm without expanding the query, and the
number of candidates examined with query expansion. Observe
that some S3k candidates may be ignored by TopkS due to the lat-
ter’s lack of support for both semantics and connections between
documents. Finally, we report two measures of distance between
the results of the two algorithms. The first is the intersection size
i.e., the fraction of S3k results that TopkS also returned. The sec-
ond, L1, is based on Spearman’s well-known foot rule distance be-
tween lists, defined as:
L1(τ1, τ2)= 2(k−|τ1∩τ2|)(k+1)+

∑
i∈τ1∩τ2

|τ1(i)− τ2(i)|−
∑

τ∈{τ1,τ2}
i∈τ\(τ1∩τ2)

τ(i)

where τj(i) is the rank of item i in the list τj .
The averages of these 4 measures over the 8 workloads on each

instance appear in Figure 8. The ratios are low, and show that dif-
ferent candidates translate in different answers (the low L1 stands
witness for this). Few S3k results can be attained by an algo-
rithm such as TopkS, which ignores semantics and relies only on
the shortest path between the seeker and a given candidate.

5.5 Experiment conclusion
Our experiments have demonstrated first the ability of the S3

data model to capture very different social applications, and to
query them meaningfully, accounting for their structure and en-
riching them with semantics. Second, we have shown that S3k
query answering can be quite efficient, even though considering all
paths between the seeker and a candidate answer slows it down
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w.r.t. simpler algorithms, which rely on a shortest-path model.
We have experimentally verified the expected impact of the social
damping factor γ and of the result size k on running time. Third,
and most importantly, we have shown that taking into account in
the relevance model the social, structured, and semantic aspects of
the instance bring a qualitative gain, enabling meaningful results
that would not have been reachable otherwise.

6. RELATED WORK
Prior work on keyword search in databases spreads over different

research directions:
Top-k search in a social environment uses UIT models [18, 21,
30] we outlined in Section 1. Top-k query results are found based
on a score function accounting for the presence of each keyword in
the tags of a candidate item, and a simple social distance based on
the length of the social edge paths; query answering algorithms are
inspired from the general top-k framework of [8]. As documents
are considered atomic, and relations between them are ignored, re-
quirements R1, R2 and R4 are not met. Further, the lack of seman-
tics also prevents R5. Recent developments tend to focus on per-
formance and scalability, or the integration of more attributes such
as locality or temporality [7, 16], without meeting the abovemen-
tioned requirements. Location and time can be added to generic
scores but this is outside of the scope of this paper.

Semi-structured document retrieval based on keywords relies
mostly on the Least Common Ancestors approach, by which a set
of XML nodes containing the requested keywords are resolved into
one result item, their common ancestor node [6, 23]. This field pio-
neered by [11], encompassed by our model, generalizes LCA con-
straints but lacks both social and semantics, and thus meets only
R2. Other recent developments in this area, including more flex-
ible and comprehensive reasoning patterns, have been presented
in [2] but have the same limitations. IR-style search in relational
databases [12, 13] considers key-foreign key relationships between
items, but ignores text structure, semantics, and social aspects.

Semantic search on full-text documents, either via RDF [15, 25]
or a semantic similarity measure [24], allows to query intercon-
nected, semantic rich unstructured textual documents or entities,
thus meeting R1, R5 and R6. Efforts to consider XML structure in
such semantics-rich models [9] also enable R2.

Personalized IR in a social context adapts the answers to a user’s
query, taking into account her interests and those of her direct and
indirect social connections [5]; this meets R1 but not R2 nor R3.

All the aforementioned models can be seen as partial views over
the S3 model we devised, and they could easily be transcribed into
it modulo some minor variations; for instance, Facebook’s Graph-
Search [7] is a restricted form of SPARQL query one could ask
over an S3 instance. Slight adaptations may be needed for social
contexts tolerating similarity between keywords that goes beyond
the strict specialization relation (in RDF sense) we consider. We
have hinted in Section 2 how this could be included.

7. CONCLUSION
We devised the S3 data model for structured, semantic-rich con-

tent exchanged in social applications. We also provided the S3k
top-k keyword search algorithm, which takes into account the so-
cial, structural and semantical aspects of S3. Finally, we demon-
strated the practical interest of our approach through experiments
on three real social networks.

Next, we plan to extend S3k to a massively parallel in-memory
computing model to make it scale further. We also consider gen-

erating user-centric knowledge bases to be used in S3k, to further
adapt results to the user’s semantic perspective.
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ABSTRACT
Subgraph/supergraph queries although central to graph an-
alytics, are costly as they entail the NP-Complete problem
of subgraph isomorphism. We present a fresh solution, the
novel principle of which is to acquire and utilize knowledge
from the results of previously executed queries. Our ap-
proach, iGQ, encompasses two component subindexes to
identify if a new query is a subgraph/supergraph of pre-
viously executed queries and stores related key informa-
tion. iGQ comes with novel query processing and index
space management algorithms, including graph replacement
policies. The end result is a system that leads to signifi-
cant reduction in the number of required subgraph isomor-
phism tests and speedups in query processing time. iGQ can
be incorporated into any sub/supergraph query processing
method and help improve performance. In fact, it is the only
contribution that can speedup significantly both subgraph
and supergraph query processing. We establish the princi-
ples of iGQ and formally prove its correctness. We have im-
plemented iGQ and have incorporated it within three popu-
lar recent state of the art index-based graph query process-
ing solutions. We evaluated its performance using real-world
and synthetic graph datasets with different characteristics,
and a number of query workloads, showcasing its benefits.

Categories and Subject Descriptors
H.2.4 [Systems]: Query processing

General Terms
Design, Performance

Keywords
Graph query processing, indexing, query result caching

1. INTRODUCTION
Graph structured data are prevalent in many modern big

data applications, ranging from chemical, bioinformatics,
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and other scientific datasets to social networking and social-
based applications (such as recommendation systems). In
biology, for example, there is a great need to model “struc-
tured interaction networks”. These abound when studying
species, proteins, drugs, genes, and molecular and chemical
compounds, etc. In these graphs, nodes can model species,
genes, etc. and edges reflect relationships between them.
Molecular compounds, consisting of atoms and their bonds,
are naturally modeled as graphs. Ditto for social networks,
where nodes refer to people and edges to their relationships.

Developing systems and algorithms that can store, man-
age, and provide analysis over large numbers of (potentially
large) graphs is a formidable challenge. Already, there exist
several very large graph datasets. For instance, the Pub-
Chem[34] chemical compound dataset contains more than
35 million graphs and ChEBI[11] (Chemical Entities of Bi-
ological Interest) dataset contains more than half a million
graphs. Further applications extend to software develop-
ment and debugging[27] and to similarity searching in med-
ical datasets[32]. As a result, a large number of graph
data management systems, optimised for handling graph
data, have emerged (e.g., Neo4J[4], InifiteGraph[20]). This
is in addition to graph management systems designed by
big data companies for their own purposes (e.g., Twitter’s
FlockDB[38], Google’s Pregel[28]) and the list is continu-
ously expanding. Hence, the demand for high performance
data analytics in graph data systems is steadily increasing.

Central to graph analytics, is the need to locate patterns
in dataset graphs. Informally, given a query graph, the sys-
tem is called to identify which of the stored graphs in its
dataset contain it (subgraph matching), or are contained in
it (supergraph matching). This is a very costly operation
as it entails the NP-Complete[14] problem of subgraph iso-
morphism and even its most popular solutions [9, 25, 39]
are computationally very expensive. This problem is exac-
erbated when dealing with datasets storing large numbers
of graphs, as the number of required subgraph isomorphism
tests grows. Furthermore, performance deteriorates signifi-
cantly with increasing graph sizes.

The key driver of our work is the realization that in many
applications, it is natural to expect that queries submit-
ted in the past share subgraph or supergraph relationships
with queries of the future. As one example, consider chem-
ical graph datasets, where queries use the graph represen-
tation of chemical entities. Such queries are naturally hi-
erarchical: At the base, we see chemical elements. Then,
there are graphs depicting chemical compounds (consisting
of chemical elements), while there are also techniques to

 

 

Series ISSN: 2367-2005 41 10.5441/002/edbt.2016.07

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2016.07


create chemical compound clusters out of similar chemical
compounds[34]. Similarly, in protein datasets there is also
a hierarchy of queries for aminoacids, proteins, protein mix-
tures, proteins of uni-cell bacteria, all the way to those of
multi-cell organisms. Finally, typical tools for social net-
work analysis (SNA – e.g., Pajek[10]) provide the ability to
produce graphs by filtering nodes and/or edges from other
graphs. Using such graphs as queries in exploratory interac-
tive SNA induces again the previous characteristic. For in-
stance, consider the (query) graphs for analyzing friendship
networks: such networks within the USA are subgraphs of
friendship networks within North America, which in turn are
subgraphs of the complete friendship network graph. The
conclusion is that, in many applications, any query can itself
be a subgraph or supergraph of a previously issued query.
Up to now, this natural subgraph/supergraph relationship
among queries has not been exploited.

2. PERSPECTIVES AND RELATED WORK
The problem of subgraph/supergraph query processing

has been extensively studied. A prominent paradigm in the
literature is the filter then verify paradigm. Essentially, this
is an index-based class of methods. During indexing, the
dataset graphs are reduced to their features (a feature being
any substructure of a graph, be it path, tree, cycle, or arbi-
trary subgraph), which are inserted into an index structure
(e.g., tree, trie, hash table, etc.). Given a query graph g,
g is also decomposed into its features, following the same
process as for dataset graphs. Then the index is searched
for g’s features; for subgraph queries, the set of graphs that
contain all of said features are returned, whereas for super-
graph queries the returned set consists of graphs all of whose
features are contained in g’s features. This set is called the
candidate set and producing it constitutes the filtering stage
of query processing.

All known algorithms guarantee that there will be no false
negatives; that is, for subgraph (resp. supergraph) queries,
all graphs in the dataset that can possibly contain (resp.
are contained in) the query graph will be included in the
candidate set. However, false positives are possible – not
all graphs in the candidate set contain (resp. are contained
in) the query graph. And herein lies the primary source
of problems, since a subgraph subgraph isomorphism test
must be performed against each graph in the candidate set,
during the verification stage of query processing. The ma-
jor focus of related work then is how to reduce the number
of false positives, i.e., the number of unnecessary subgraph
isomorphism tests.

Approaches in the literature can be classified along two
dimensions: whether they employ (frequent) mining tech-
niques or an exhaustive enumeration for the production of
features, and based on the type of features of the dataset
graphs they index (e.g., paths, trees, subgraphs). Note that
exhaustive enumeration can yield huge indices and may take
a prohibitively long time to do so. For this reason, all ex-
haustive enumeration approaches limit the size of features
to a typically fairly small number of edges (i.e., 10 or less).

Mining-based approaches, both for supergraph queries ([5,
51, 46, 6, 52]) and subgraph queries (e.g., [41, 7, 52]) uti-
lize techniques to mine for frequent (or discriminating, in
[6]) (sub)graphs among the dataset graphs that are then
indexed. Other mining-based approaches, like Tree+∆[49]
and TreePi[45] mine for and index frequent trees. Last, Lin-

dex[43] and LWindex[44] utilize the frequent mining algo-
rithms of previous approaches, and are thus able to index
and query several feature types. Typically such approaches
tend to mine for more complex structures, which presents a
trade-off between the complexity and time required for the
indexing process vis-a-vis the potential for higher pruning
power during query processing. However, numerous related
performance studies [21, 12, 15, 17, 22] have shown that
feature-mining approaches tend to be comparatively worse
performers.

On the other hand, SING[12], GraphGrep[16] and Graph-
GrepSX[3] perform exhaustive enumeration, listing all paths
of dataset graphs up to a certain path length. Similarly,
CT-Index[22] indexes trees and cycles, whereas Grapes[15]
indexes paths along with location information.

A different approach, which does not index features as
above, is presented in gCode[53]. For each graph G in the
graph dataset, gCode computes a signature per vertex of G
(essentially reflecting the vertex’s neighbourhood) and then
computes a signature for G itself. The latter is a tree struc-
ture combining the signatures of all its vertices.

With respect to the verification stage, approaches also dif-
fer on how this is performed. In some works, verification is
performed by applying any (exact) subgraph isomorphism
algorithm of choice (see [25] for a detailed insightful com-
parative evaluation) after the filtering stage. Indeed, this
can be the default choice for all approaches and there is a
large variety of subgraph isomorphism algorithms available.
Most such algorithms are influenced by Ullman’s early work
[39]. Arguably, the algorithm that is now the most widely
used is the VF2[9] algorithm. Last, several approaches store
and utilize location information in their index to achieve
further filtering ([45, 12, 15]).

Recent performance studies [17, 21] have shown that CT-
Index[22] and Grapes[15] are high performing approaches.
CT-Index[22] is based on deriving canonical forms for the
(tree, cycle) features of a graph G, to the fact that for trees
and cycles finding string-based canonical forms can be done
in linear time (unlike general graphs). These string represen-
tations of a graph’s features are then hashed into a bitmap
structure per graph G. Checking whether a query graph g
can possibly be a subgraph of a graph G, can be done with
simple bitwise operators between the bitmap of g and that of
G (as supergraphs must contain all features of a subgraph).
Last, its verification stage is then based on VF2.

Grapes[15] is designed to exploit parallelism available in
multi-core machines. It exhaustively enumerates all paths
(up to a maximum length), which are then inserted into a
trie with their location information. This operation is per-
formed in parallel by several threads, each of which works
on a portion of the graph, producing its own trie, and subse-
quently all tries are merged together to form the path index
of a graph. Grapes then computes (typically) small con-
nected components of graphs in the candidate set, on which
the verification (subgraph isomorphism test) is performed.

An insightful discussion and comparative performance eval-
uation of several indexing techniques for subgraph query
processing (published prior to 2010) can be found in [17].
Furthermore, in [21] we presented a systematic performance
and scalability study of several older as well as current state-
of-the-art index-based approaches for subgraph query pro-
cessing. We are not aware of similar in-depth studies of
solutions to supergraph query processing; however, [44] pro-
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vides a concise overview of related approaches.
On a related note, recent work also deals with graph query-

ing against historical graphs, identifying subgraphs enduring
graph mutations over time [35], which can be viewed as a
variation whereby graph snapshots in time can be viewed as
different graphs. Also, the research community has recently
started looking into subgraph queries against a single, very
large graph consisting of possibly billions of nodes[36]. To
accelerate the query processing, SPath[48] proposes a path-
at-a-time fashion, which proves to be more efficient than tra-
ditional vertex-at-a-time methods, whereas [36] makes use of
a memory cloud and [33, 1, 24] exploit MapReduce. In this
subgraph querying problem for the single large graph set-
ting, the goal is to expedite the subgraph isomorphism itself,
whereas in the setting with many dataset graphs, the target
of subgraph querying problem is to minimize the number
of isomorphism tests that need to be performed. Our work
focuses on the latter setting and leaves for future work the
application of our ideas to the former setting.

There has also been considerable work on approximate
graph pattern matching. Relevant techniques (e.g., [22, 18,
37, 40, 42, 47, 50, 33, 13]) perform subgraph matching with
support for wildcards and/or approximate matches. These
solutions are not directly related to our work, as we expedite
exact index-based subgraph/supergraph query processing.

Caching of the results of path/tree queries has been ex-
plored in XML databases[26, 2, 29]. The problem we focus
on is considerably different, as the queries we deal with are
in the form of graphs (not just paths/trees), thus entailing
the NP-Complete problem of subgraph isomorphism. Fur-
thermore, in our setting queries retrieve stored graphs that
contain the query graph (subgraph queries) or are contained
in it (supergraph queries), and we exploit both supergraph
and subgraph relationships among queries themselves, as op-
posed to only subsumption (i.e., supergraph) relationships.
Moreover, our graph replacement policy also takes into ac-
count the subgraph isomorphism costs, as opposed to just
the size or popularity of cached queries.

Last, [23] presents a cache for targeted historical queries
against a large social graph. In this case, each query is
centered around a uniquely identified node in the social
graph, and the objective is to avoid maintaining and/or
reconstructing complete snapshots of the social graph, but
to instead use a set of static “views” – i.e., snapshots of
neighborhoods of nodes – to rewrite incoming queries. [23]
does not deal with subgraph/supergraph query processing;
rather, the nature of the queries means that containment can
be decided by simply measuring the distance of the central
query node to the center of each view, while also taking into
account the diameter of these two graphs. Furthermore, the
authors do not provide a cache replacement strategy, but
rather an algorithm to compute the optimal cache contents
given a set of queries. iGQ could well be used to both gen-
eralise and expedite query processing in [23].

2.1 The iGQ Perspective
In this work we offer a new perspective and a strategy

for improving subgraph/supergraph query processing per-
formance and scalability. Our approach rests on the follow-
ing three observations: First, in related works there exists
an implicit assumption that graph queries will be similarly
structured to the dataset graphs. In general this is not guar-
anteed to hold (e.g., in exploratory analytics), and when

query graphs have no match in the dataset graphs, query
processing cannot benefit at all from indexes that are solely
constructed on dataset graphs. Second, even when query
graphs have matches against dataset graphs, the system per-
forms expensive computations during query processing and
simply throws away all (painstakingly and laboriously) de-
rived knowledge (i.e.,previous querying result). Third, the
success of known approaches depends on and exploits the
fact that dataset graphs share features (e.g., when mining
for frequent features) and/or that dataset graph features
contain or are contained in other graph features (e.g., when
using tries to index dataset graph features). However, they
completely fail to investigate and exploit such similarities
between query graphs.

As mentioned, it is natural in many applications for new
queries to bear subgraph/supergraph relationships with pre-
viously issued queries. Our efforts in this work centre on
exploiting this characteristic to further improve the per-
formance of query processing. Therefore, instead of “min-
ing” only the stored graphs and creating relevant indexes
on them, we also “mine” query graphs and accumulate the
knowledge produced by the system when running queries,
creating a query index in addition to the dataset index. Our
insights identify which is the relevant accumulated knowl-
edge and how to exploit it during query processing in order
to further reduce the number of subgraph isomorphism tests.
iGQ can accommodate any proposed index for sub or super-
graph query processing and help expedite both query types.

2.2 Contributions
The contributions of this work are that we:
• Provide a new perspective to the problem of subgraph/

supergraph query processing, with insights as to how
the work performed by the system when executing
queries can be appropriately managed to improve the
performance of future queries.
• Detail the iGQ approach, based on a query index struc-

ture and associated query processing algorithms, which
can reduce the number of isomorphism tests performed
during query processing.
• Present the iGQ framework, showing how to incorpo-

rate iGQ within existing approaches, and the two iGQ
components: a subgraph query index and a supergraph
query index. The subgraph index of iGQ can be based
on any existing subgraph index (over query graphs, not
dataset graphs). The supergraph index on the other
hand is a new index to swiftly determine supergraph
status between new and previous queries.
• Address the issue of index space management, provid-

ing mechanisms for index updates and a graph replace-
ment policy, deciding contents of query index.
• Implement iGQ, incorporate it within three popular

approaches for graph query processing, and provide
experimental results using real-world datasets and a
number of query workloads, showcasing iGQ’s benefits
against competitive state of the art methods.

3. PROBLEM FORMULATION
We consider undirected labeled graphs. For simplicity, we

assume that only vertices have labels; all our results straight-
forwardly generalize to graphs with edge labels.

Definition 1. A labeled graph G = (V,E, l) consists of
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Figure 1: Dominance of the Verification Time on the Overall
Query Processing Time of Three Subgraph Querying Algo-
rithms on Two Different Real-world Graph Datasets

a set of vertices V (G) and edges E(G) = {(u, v), u ∈ V, v ∈
V }, and a function l : V → U , where U is the label set,
defining the domain of labels of vertices.

A sequence of vertices (v0, . . . , vn) s.t. ∃(vi, vi+1) ∈ E,
constitutes a path of length n. A simple path is a path where
no vertices are repeated. A cycle is a path of length n > 1,
where v0 = vn. A simple cycle is a cycle with no repeated
vertices (other than v0 and vn). A connected graph is one
where there exists a path between any pair of its vertices.

Definition 2. A graph Gi = (Vi, Ei, li) is subgraph-iso-
morphic to a graph Gj = (Vj , Ej , lj), (by abuse of notation)
denoted by Gi ⊆ Gj, when there exists an injection φ : Vi →
Vj, such that ∀(u, v) ∈ Ei, u, v ∈ Vi,⇒ (φ(u), φ(v)) ∈ Ej
and ∀u ∈ Vi, li(u) = lj(φ(u)).

Informally, there is a subgraph isomorphism Gi ⊆ Gj if Gj
contains a subgraph that is isomorphic to Gi. In this case,
we say that Gi is a subgraph of (or contained in) Gj , or
inversely that Gj is a supergraph of (contains) Gi (denoted
by Gj ⊇ Gi).

Definition 3. The subgraph querying problem entails a
set D = {G1, . . . , Gn} containing n graphs, and a query
graph g, and determines all graphs Gi ∈ D such that g ⊆ Gi.

Definition 4. The supergraph querying problem entails
a set D = {G1, . . . , Gn} containing n graphs, and a query
graph g, and determines all graphs Gi ∈ D such that g ⊇ Gi.

The iGQ index, I, will be called to index the features of
query graphs; then we shall say that query graph g is indexed
by iGQ and (by abuse of notation) denote it by g ∈ I. We
denote with Isub(g) all query graphs currently contained in I
that are supergraphs of g (answers to g, if g was a subgraph
query); i.e., Isub(g) = {G | G ∈ I ∧ g ⊆ G}. Similarly, we
denote with Isuper(g) all query graphs currently contained in
I that are subgraphs of g (answers to g, if g was a supergraph
query); i.e., Isuper(g) = {G | G ∈ I ∧ g ⊇ G}.

4. iGQ PRINCIPLES
We firstly discuss our findings from experiments we ran

regarding the major performance obstacles we need to over-
come if we are to bring about further query processing time
reductions. Subsequently, we present the iGQ framework,
followed by an explanation of how the components of iGQ
are utilized for further performance improvements, and re-
lated formal proofs of correctness. As mentioned, so far re-
lated work has not considered benefiting from the execution
of previous queries. Thus, despite devoting a lot of resources
to such queries, the results derived cannot be put to good
use to improve performance of future subgraph queries.

Figure 2: Average Number of Candidates, Answer Set Size,
and False Positives in the AIDS Dataset

4.1 Insights
We report on the fundamentals of the performance of

three state of the art approaches, GraphGrepSX[3] (GGSX),
Grapes[15], and CT-Index[22], over three real datasets and
one synthetic dataset with different characteristics. These
characteristics will be presented in detail in the experimen-
tal evaluation section. Briefly, AIDS represents a graph DB
consisting of 40,000 very small, sparse graphs, while PDBS
is a graph dataset containing 600 large graphs. Please note
that the way the queries were generated is standard among
related work [15, 22].

Subgraph Query Performance: Where Does Time Go?
There are two key components of the overall query process-
ing time: filtering time (to process the index and produce
the candidate set) and verification time (to perform the ver-
ification of all candidate graphs). Fig. 1 shows what per-
centage of the total query processing time is attributed to
each component.

The dominance of the verification step is clear. This holds
across the three different approaches that employ different
indexing methods and utilize different strategies for cutting
down the cost of subgraph isomorphism. Recall that sub-
graph isomorphism performance is highly sensitive to the
size of both the input graph and the stored graph. Hence,
we would expect that for smaller stored graphs (as in the
AIDS dataset) the verification step would be much faster.
Notably, however, even when graphs are very small, the
verification step is the biggest performance inhibitor and
as graphs become larger (e.g., PDBS) the verification step
becomes increasingly responsible for nearly the total query
processing time. Of course, given the NP-Completeness of
subgraph isomorphism, one would expect that verification
would dominate, especially for large graphs. But the fact
that even with very small graphs this holds is noteworthy.

Filtering Power: Is It Good Enough?
The second fundamental point pertains to how one can re-
duce the verification cost. Related works highlight that their
approaches prove to be very powerful in terms of filtering out
the vast majority of DB graphs. In Figures 2 and 3 we show
our results with respect to the average size of candidate sets
and of the answer set, as well as the average number of false
positives for the AIDS and PDBS datasets.

First, note that different algorithms behave differently
in different datasets (e.g., Grapes significantly outperforms
CT-Index in PDBS while the reverse holds for AIDS). Sec-
ond, note that despite the powerful filtering of an approach,
when the DB contains a large number of graphs (see Figure
2) in absolute numbers, there is a very large number of un-
necessary subgraph isomorphism tests (i.e., false positives)
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Figure 3: Average Number of Candidates, Answer Set Size,
and False Positives in the PDBS Dataset

that is required. The above two combined imply that even
the best algorithm will suffer from a large number of unnec-
essary subgraph isomorphism tests under some datasets.

Turning our attention to Figure 3 we see that for DBs with
medium to small number of graphs, the high filtering power
can indeed result in requiring only a relatively small number
of subgraph isomorphism tests. However, considerable per-
centages of false positives can appear in the candidate sets of
even top-performing algorithms; e.g., CT-Index, which ex-
hibited the best filtering in the AIDS dataset, has an almost
50% false positive ratio in the PDBS dataset. Furthermore,
not all subgraph isomorphism tests for the graphs in the
candidate set are equally costly. As the cost of subgraph
isomorphism testing depends on the size of the graph, the
larger graphs in the candidate set contribute a much greater
proportion of the total cost of the verification step. Note
that, naturally, false positive graphs tend to be the largest
graphs in the DB, since these have a higher probability to
contain all features of query graphs.

Note that we placed emphasis on the number of unneces-
sary subgraph isomorphism tests (i.e., the false positives),
as we can improve filtering further by reducing this number.
However, this is not the only source of possible improve-
ments. As we shall show later, iGQ can improve on the
number of subgraph isomorphism tests even beyond this, by
exploiting knowledge gathered during query execution.

The insights that can be drawn are as follows:
• Despite the fact that state of the art techniques (based

on indexing features of DB graphs) can enjoy high fil-
tering capacity, there is still large room for improve-
ment, as even the best approaches may perform large
numbers of unnecessary subgraph isomorphism tests.
• Improving further the filtering power of approaches

can significantly improve query processing time, as this
will reduce the number of subgraph isomorphism tests,
which dominates the overall querying time.
• Even approaches that are purported to enjoy great fil-

tering powers, can behave much more poorly under
different datasets.
• Unnecessary subgraph isomorphism tests are not solely

caused by false positives; even graphs in the candidate
set that are true positives can be unnecessarily tested
if the system fails to exploit this knowledge (accrued
by previous query executions).

4.2 The iGQ Framework
iGQ aims to augment the functionality and benefits of-

fered by any one of the subgraph and/or supergraph index-
ing methods in the literature. Let us call the chosen method
M. The iGQ framework consists of method M and the two
components of I, Isub and Isuper. For the sake of simplicity,
we shall first describe the operation of iGQ when M is a

method for subgraph query processing (denoted Msub). Ini-
tially, method Msub builds its graph dataset index as per
usual. The iGQ index, I, starts off empty; it is then popu-
lated as queries arrive and are executed by Msub.

Upon the arrival of a query g, the query processing process
is parallelized. One thread uses method Msub’s algorithms
and indexing structure to breakdown the query graph into
its features, and uses its index to produce a candidate set of
graphs, CS(g), as usual. Additionally, I will obtain as many
of the intermediate and final results from method M’s execu-
tion as possible; e.g., it will obtain the features of the query
graph, to be compared to those stored in I (from previously-
executed queries). At this point, two separate threads will
be created: one will check whether the query graph is a
subgraph of previous query graphs and the other will check
whether it is a supergraph of previous query graphs. These
cases yield different opportunities for optimization and are
discussed separately below.

In the following we proceed to describe the function of
each component of the iGQ framework and how it is all
brought together. For the formal proofs of correctness that
follow, for simplicity, we make the following assumptions.

Assumptions. The iGQ index components, Isub and Isuper
work correctly. That is:

G ∈ Isub(g)⇒ g ⊆ G (1)

and

G ∈ Isuper(g)⇒ g ⊇ G (2)

We will prove that these assumptions hold in sections 6.1
and 6.2.

4.2.1 The Subgraph Case: Isub

This case occurs when a new query g is a subgraph of a
previous query G. When G was executed by the system, the
Isub component of iGQ indexed G’s features. Additionally,
iGQ stored the results computed by Msub for G.

Fig. 4 depicts an example for the subgraph case of iGQ.
A new query g is “sent” to method Msub’s graph index, pro-
ducing a candidate set, CS(g), which in this case contains
the four graphs {g1, g2, g3, g4}. Similarly, g is “sent” to the
iGQ subgraph component, Isub, from where it is determined
that there exists a previous query G, such that g ⊆ G. iGQ
then retrieves the answer set, Answer(G) (previously pro-
duced by method Msub and indexed by Isub); in this case,
Answer(G) = {g1, g2}. The reasoning then proceeds as
follows. Consider graph g1 ∈ CS(g). Since from Isub it has
been concluded that g ⊆ G and from the answer set of G we
know that G ⊆ g1, it necessarily follows that g ⊆ g1. Simi-
larly, we conclude that g ⊆ g2. Hence, there is no point in
testing g for subgraph isomorphism against g1 or g2, as the
answer is already known. Therefore, one can safely subtract
graphs g1, g2 from Msub’s candidate set, and test only the
remaining graphs (reducing the number of subgraph isomor-
phism tests in this example by 50%). After the verification
stage, g1, g2 are added to the final answer set.

In the general case, g may be a subgraph of multiple previ-
ous query graphs Gi in Isub. Following the above reasoning,
we can safely remove from CS(g) all graphs appearing in
the answer sets of all query graphs Gi, as they are bound to
be supergraphs of g; that is, the set of graphs submitted by
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Figure 4: iGQ Processing of a Subgraph Query in the Sub-
graph Case

iGQ for subgraph isomorphism testing is given by:

CSsub(g) = CS(g) \
⋃

Gi∈Isub(g)

Answer(Gi) (3)

Finally, if Answersub(g) is the subset of graphs in CSsub(g)
verified to be containing g through subgraph isomorphism
testing, the final answer set for query g will be:

Answer(g) = Answersub(g) ∪
⋃

Gi∈Isub(g)

Answer(Gi) (4)

Lemma 1. The iGQ answer in the subgraph case does not
contain false positives.

Proof. Assume that a false positive was produced by
iGQ; particularly, consider the first ever false positive pro-
duced by Isub, i.e., for some query g, ∃GFP such that g *
GFP and GFP ∈ Answer(g). Note that GFP cannot be in
Answersub(g), as the latter contains only those graphs from
CSsub(g) that have been verified to be supergraphs of g af-
ter passing the subgraph subgraph isomorphism test, and
hence g * GFP ⇒ GFP 6∈ Answersub(g). Therefore, by
formula (4), GFP ∈ Answer(g)⇒ ∃G such that G ∈ Isub(g)
and GFP ∈ Answer(G). But (by formula (1)) G ∈ Isub(g)
⇒ g ⊆ G, and GFP ∈ Answer(G) ⇒ G ⊆ GFP . Thus
g ⊆ GFP (a contradiction).

Lemma 2. iGQ in the subgraph case does not introduce
false negatives.

Proof. Assume that a false negative was produced by
iGQ; particularly, consider the first ever false negative pro-
duced by Isub, i.e., for some query g, ∃GFN such that g ⊆
GFN and GFN /∈ Answer(g). As method Msub is assumed
to be correct, it cannot produce any false negatives when
processing query g, hence g ⊆ GFN ⇒ GFN ∈ CS(g).
Then, the only possibility for error is that GFN was removed
using formula (3); i.e., GFN /∈ CSsub(g). That implies that
∃G such that G ∈ Isub(g) and GFN ∈ Answer(G). But
then, by formula (4), GFN will be added to Answersub(g)
and thus GFN ∈ Answer(g) (a contradiction).

Theorem 1. The iGQ answer in the subgraph case of
query processing is correct.

Proof. There are only two possibilities for error; iGQ
can produce false negatives or false positives. The theorem
then follows straightforwardly from Lemmas 1 and 2.

4.2.2 The Supergraph Case: Isuper

This case occurs when a new query g is a supergraph of
a previous query G. Fig. 5 depicts an example for the su-
pergraph case of iGQ. Again, the subgraph query processing
method Msub produces a candidate set, CS(g) that, say, con-
tains four graphs {g1, g2, g3, g4}. Running g through Isuper,

DB Graph
Index

CS(g) = {g1, g2, g3, g4}

iGQ Query
index (SUPER) Answer(G) = {g1, g20}

CS(g) \ Answer(G) =

{g1}
Subgraph

Isomorphism 
Test

Answer(g)
Subgraph
Query g

G ✓ g

Figure 5: iGQ Processing of a Subgraph Query in the Su-
pergraph Case

it is determined that there exists a previous query graph G
such that G ⊆ g. Also Isuper supplies the stored answer set
for G, Answer(G) = {g1, g20}.

The reasoning then proceeds as follows. Consider graph
g2 ∈ CS(g). We know from Isuper that g2 /∈ Answer(G).
Now, if g ⊆ g2 were to indeed be true, since G ⊆ g, then it
must also hold that G ⊆ g2; that is, Answer(G) would have
to contain g2 as well, which is a contradiction. Therefore,
it is safe to conclude that g * g2 and thus g2 can be safely
removed from CS(g). Similarly, we can also safely remove
graphs g3, g4 from CS(g), reducing in this case the number
of required subgraph isomorphism tests by 75%. Thus, only
g1 needs to be isomorphism-tested in this example.

In the general case, g may be a supergraph of multiple
previous query graphs Gi in Isuper. By the above reasoning,
only those graphs appearing in the answer sets of all queries
Gi may actually be supergraphs of g; thus the set of graphs
submitted by iGQ for subgraph isomorphism testing is:

CSsuper(g) = CS(g) ∩
⋂

Gi∈Isuper(g)

Answer(Gi) (5)

The final answer produced for query g by iGQ, Answer(g),
will be the subset of graphs in CSsuper(g) that have been
verified by the subgraph isomorphism test.

Lemma 3. The iGQ answer in the supergraph case does
not contain false positives.

Proof. This trivially follows by construction as all graphs
in Answer(g) have passed through subgraph isomorphism
testing at the final stage of processing.

Lemma 4. The iGQ answer in the supergraph case does
not introduce false negatives.

Proof. Assume false negatives are possible and consider
the first ever false negative produced by Isuper; i.e., for some
query g, ∃GFN such that g ⊆ GFN and GFN /∈ Answer(g).
Method Msub does not produce in its candidate set any false
negatives (as will be formally proven shortly), hence GFN ∈
CS(g). Then, the only possibility for error is for iGQ to
have removed graph GFN from CSsuper(g) with formula (5).
This implies that ∃G such that G ∈ Isuper(g) and GFN /∈
Answer(G). But since G ∈ Isuper(g), by equation (2), G ⊆
g, and then g ⊆ GFN ⇒ G ⊆ GFN ⇒ GFN ∈ Answer(G)
(a contradiction).

Theorem 2. The iGQ answer in the supergraph case of
query processing is correct.

Proof. There are only two possibilities for error; iGQ
can produce false negatives or false positives. The theorem
then follows straightforwardly from Lemmas 3 and 4.
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4.3 iGQ and Optimal Performance
There are two special cases that warrant further emphasis,

since they introduce the greatest possible benefits.
First, note that iGQ can easily recognize the case where

a new query, g, is exactly the same as a previous query con-
tained in I. Specifically, this holds when ∃G ∈ I such that
g ⊆ G or g ⊇ G, and g and G have the same number of
nodes and edges. When this holds, since I stores the re-
sult for G, we can return directly and completely avoid the
subgraph isomorphism testing as the actual result for g is
known! As the subgraph isomorphism test dominates the
query execution time, this is expected to be a large perfor-
mance improvement.

Second, consider the supergraph part of iGQ. If ∃G ∈
Isuper(g) such that G ⊆ g and Answer(G) = ∅, then we can
completely omit the verification stage again: If there were a
dataset graph G′ such that g ⊆ G′, since G ⊆ g we would
conclude that G ⊆ G′, which necessarily implies that G′ ∈
Answer(G), which contradicts the fact that Answer(G) =
∅. Thus, no such graph G′ can exist and it is safe to stop
query processing at this stage.

4.4 iGQ and Supergraph Query Processing
As mentioned earlier, iGQ can expedite both subgraph

and supergraph query processing. In the latter case, the
components of iGQ (Isub, Isuper) remain unchanged, but
the handling of the return answer sets is the exact inverse
of what happens for subgraph queries. Briefly, given a su-
pergraph query processing method Msuper and a supergraph
query g, the union of the answer sets of graphs in Isuper(g)
are removed from CSsuper(g) and added to Answersuper(g)
to produce the final answer, and the graphs not appearing
in the intersection of the answer sets of graphs in Isub(g) are
completely subtracted from CSsub(g). Also, the first opti-
mal case mentioned above still holds, but the second opti-
mal case is inversed with the processing terminating when
∃G ∈ Isub(g) such that Answer(G) = ∅. The intuition be-
hind this design and the proof of correctness of iGQ for
supergraph query processing, follow the same reasoning as
above and are omitted for space reasons. The elegance af-
forded by the double use of iGQ is unique.

5. iGQ INDEX SPACE MANAGEMENT
As queries arrive continuously and the space to store I is

finite, iGQ requires methods for (i) efficiently handling this
space and (ii) ensuring that it is best utilized, keeping those
query graphs that increase its performance impact.

5.1 iGQ Graph Replacement Policy
Our replacement policy differs fundamentally from stan-

dard replacement policies: Unlike traditional cache replace-
ment, whereby replacing a page or a file block saves one
IO, different graphs in I bring about different benefits, as is
shown below. We identify three key principles.
Increase the use of iGQ index . I should contain popular
graphs; this is typical of all replacement algorithms. We

define the popularity of a graph g as P (g) = H(g)
M(g)

, where

H(g) is the number of times a graph g ∈ I has been found
to be a subgraph or supergraph of query graphs (hit), and
M(g) is the total number of all queries processed since g was
added to the iGQ index. In essence, this models the fraction
of queries affected over time by g being in I.

Reduce the number of subgraph isomorphism tests.
Ideal graphs for I are graphs that bring about the great-
est possible reductions in the number of executed subgraph
isomorphism tests. Let R(g) be the total number of graphs
removed from the candidate sets of incoming queries because

of g being in I. Then this component is computed as R(g)
H(g)

–

the per-hit average number of subgraph isomorphism tests
alleviated by g.
Reduce the cost of each subgraph isomorphism test.
A graph g ∈ I is more desirable if it helps avoid subgraph
isomorphism tests on the biggest graphs from M’s CS. This
is so since we also wish to remove from CS graphs with
expensive subgraph isomorphism tests. We denote by C(g)
the total cost of the subgraph subgraph isomorphism tests
alleviated as a result of g being in I. In order to estimate this
value, we extend the asymptotic complexity analysis of [8] to
the case of subgraph isomorphism. Specifically, given graphs
with L labels, graph g′ with n nodes, and graph Gi with
Ni ≥ n nodes, the cost c(g′, Gi) of subgraph isomorphism of
g′ against Gi is given by:

c(g′, Gi) = Ni×Ni!
Ln+1×(Ni−n)!

C(g) is then computed as the sum over all c(g′, Gi), for all
g′ whose CS(g′) was reduced by removing Gi as a result of

g being in I, and C(g)
R(g)

gives the average cost reduction per

alleviated test.
Ideal graphs for I are those that could help future queries

as much as possible. To quantify such a contribution, we
introduce the notion of graph utility, U(g), defined as:

U(g) = H(g)
M(g)

× R(g)
H(g)

× C(g)
R(g)

= C(g)
M(g)

That is, the utility of a graph g in iGQ is equal to the
probability of g being used for an incoming query (i.e., be-
ing hit), times the average savings in number of subgraph
isomorphism tests per such hit, times the average cost for a
single subgraph isomorphism test. The replacement policy
is then based on this, with the graph with the smallest U(g)
being evicted.

5.2 iGQ Index Maintenance Policy
For all graphs in I we maintain the metadata mentioned

above (i.e., C(g),M(g)). Additionally, we store the actual
query graphs that are indexed by I in a separate store coined
Igraphs. To facilitate index updates without interfering with
query processing performance, we employ the concepts of
query window size, W , and cache size, C, with W ≤ C.
As new graph queries arrive, they are processed as outlined
above, update the metadata for graphs in I, and are inserted
into a temporary storage Itemp. When W new queries have
been processed, we consult the metadata to locate the W
graphs in I with the lowest utility values. The graph data
for those graphs is removed from Igraphs and replaced by the
graphs in Itemp. The latter is then emptied, and a “shadow”
index, Ishadow, is built over graphs in Igraphs. Incoming
queries keep being served by I and updating its metadata.
When the shadow indexing is over, Ishadow replaces I (with
a pointer swap). Finally, metadata for graphs removed from
I is also removed from the metadata store (C(g),M(g)).

6. iGQ ALGORITHMS AND STRUCTURES
The proofs of correctness provided by the previous section,

assume that Isub and Isuper provide correct results (recall
formulas (1) and (2)). We shall now discuss the associated
mechanisms and prove that they hold.
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Algorithm 1 The Supergraph Index in iGQ

1: Input: Set Q of (previous) queries g1, g2, . . . , gn
2: Output: Supergraph index of previous queries Isuper
3:
4: Initialize Isuper to an empty trie
5: for all gi ∈ Q do
6: Extract all features of gi and insert them in set F (gi)
7: NF [gi] = |F (gi)|
8: for all features f ∈ F (gi) do
9: o = number of occurrences of f in gi

10: Isuper.insert(f, {gi, o})
11: end for
12: end for
13: return Isuper

6.1 Finding Supergraphs in Isub

This case represents a microcosm of our original problem,
where instead of indexing and querying dataset graphs, we
index and query previous query graphs. Hence, any ap-
proach from the related works can be adapted for this pur-
pose. Actually, as iGQ can complement any existing ap-
proach, Msub, we can utilize Msub’s method for subgraph
query processing for the subgraph case of iGQ, or any other
method appropriate for iGQ’s special characteristics (i.e.,
relatively small set of small graphs). Note that the assumed
correct method Msub precludes false negatives and subgraph
isomorphism testing of all candidates precludes false posi-
tives. Hence, formula (1)’s assumption is trivially satisfied.

6.2 Finding Subgraphs in Isuper

The problem of supergraph query processing has also re-
ceived some attention (e.g., in [5, 44, 46, 6, 51]). In principle,
any of these algorithms can be utilized for the task at hand
within iGQ. However, we choose to propose a new approach,
which is efficient yet simple and avoids the complexities and
overheads involved in the above general approaches. The
point is that we want a method for supergraph query pro-
cessing that can easily fit within the framework of iGQ and
perform both subgraph and supergraph query indexing and
processing. Algorithm 1 shows how Isuper is created. Briefly,
Isuper is a trie, storing features of queries. For each feature f
it stores a pair {gi, o} for each graph gi in which f appears,
where o is its number of occurrences in gi. For each gi it also
stores the number of distinct features (NF [gi]) it contains.

Algorithm 2 illustrates how Isuper identifies candidates CS
that are potential subgraphs of query g. The idea is to
find those graphs that contain only features included in the
query graph g (lines 19–22; the check for count(gi) on line
20, ensures that all individual features of gi are contained
in g), and where for each such graph gi a feature f occurs
at most as many times as f occurs in g (line 12). Last, the
graphs in CS are isomorphically tested to verify that gi ⊆ g.

It is straightforward to see that no false negatives can exist
in CS. Assume there is a false negative gi such that gi ⊆ g
and gi /∈ CS. Since gi ⊆ g, any feature f in gi appears no
more times than f appears in g, thus gi would be added to G
on every execution of line 12. As gi ⊆ g, all of gi’s features
must appear in g. Thus, gi would pass the if-clause at line
20 and be added to CS (contradiction). Moreover, subgraph
isomorphism testing of all members of CS precludes false
positives. Hence, formula (2)’s assumption holds.

Algorithm 2 Supergraph Query Processing in iGQ

1: Input: Query graph g and Isuper
2: Output: Candidate set CS of potential subgraphs of g
3:
4: Initialize multiset G = ∅
5: Extract all features of query graph g, F (g)
6: for all features f ∈ F (g) do
7: O[f, g] = number of occurrences of f in g
8: end for
9: for all features f ∈ F (g) do

10: if f ∈ Isuper then
11: for all {gi, o} ∈ Isuper.get(f) do
12: if o ≤ O[f, g] then
13: G.insert(gi)
14: end if
15: end for
16: end if
17: end for
18: for all graphs gi ∈ G do
19: count(gi) = number of occurrences of gi in G
20: if count(gi) == NF [gi] then
21: CS.add(gi)
22: end if
23: end for
24: return CS

6.3 iGQ System Operation
Fig. 6 depicts the complete iGQ system operation when

used to expedite a subgraph query processing method Msub.
Please keep in mind, though, that iGQ can be integrated
with any subgraph and/or supergraph querying method.
Given a new subgraph query g:

1. The query is sent to three separate processing threads
in parallel and also stored in the query window.

2. In the first thread, Msub uses its Dataset Graph Index
to filter the dataset graphs and produce the candidate
set CS(g), as usual.

3. The remaining two threads perform filtering along the
subgraph (section 4.2.1) and supergraph path (section
4.2.2). Their results are combined to prune CS(g),
based on formulae (3) and (5).

4. The resulting candidate set, CSigq(g), undergoes sub-
graph isomorphism testing to produce Ansigq(g).

5. Since this is for a subgraph query, the graphs pruned
during processing along the subgraph path in step 3
are added to Ansigq(g) to produce the final answer
set, Answer(g) (see formula (4)).

6. Metadata maintained throughout the processing of g,
including Answer(g) and its subgraphs/supergraphs
detected during step 3, are added to the metadata
store, Stat(iGQ Graph).

7. If the query window is full, the system uses the above
metadata to select appropriate cached graphs to evict.
Said graphs are replaced by the graphs in the window.

8. Finally, the iGQ index is updated to reflect the new
contents of the cache (section 5.2 details the mainte-
nance of the iGQ index).

7. PERFORMANCE EVALUATION
We have implemented the iGQ algorithms and report on

experiments evaluating its performance on the savings of
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Figure 6: Operation of iGQ on Top of a Subgraph Query Processing Method Msub

subgraph query processing time (supergraph query process-
ing time is omitted for space reason) and on the number of
subgraph isomorphism tests.

7.1 Experimental Setup
Experiments were run on a Dell R920 system (4 Intel

Xeon(R) CPUs (15 cores each), 512GB RAM, 1TB disk),
and on a cluster of four Dell R720’s (each with 2 Intel
Xeon(R) CPUs (8 cores each), 64GB RAM, 1TB disk).

Algorithms. In addition to our implementation of iGQ
query processing, we also secured access to implementations
of three recent high performing subgraph query processing
methods, GraphGrepSX[3] (GGSX), Grapes[15], and CT-
Index[22]. In addition to their competitive performance,
these three methods represent interesting design decisions.
GGSX indexes paths (up to a certain maximum length,
equal to 4 in these experiments) and uses the VF2 subgraph
isomorphism algorithm for its verification stage. Grapes,
like GGSX, also indexes paths (of up to length of 4), but
utilizes location information in the filtering stage to expe-
dite the verification stage, essentially focusing only on con-
nected components of the dataset graphs that may contain
the query graph. CT-Index indexes trees (of maximum size
6), and cycles (of maximum size 8) in hash-based bitmap
structures (4096-bit wide), and uses a modified VF2 for its
verification stage.

The implementations for Grapes and GGSX were obtained
from the corresponding project web sites[15, 3]. For Grapes,
we present two alternatives, Grapes and Grapes(6), which
use 1 and 6 threads respectively. For fairness, we altered
the code of Grapes so to stop query processing when the
first match was found, instead of looking for all matches of
a query within each stored graph. For CT-Index we ob-
tained the JAR file from one of the authors, which we then
reverse-engineered to derive its code in Java. Subsequently,
we integrated the iGQ algorithms of Section 4.2.1 within
Grapes, CT-Index, and GGSX, yielding three different ver-
sions of iGQ, denoted as iGQ Grapes, iGQ CT-Index, and
iGQ GGSX. In this way, (i) we validate our claim that iGQ
can be incorporated into existing approaches, and (ii) we
show that it can introduce significant performance gains dur-
ing subgraph query processing of any of these approaches.

Datasets. We have employed three real-world datasets
and one synthetic dataset with different characteristics, out-
lined in Table 1. AIDS is the Antiviral Screen Dataset of
the National Cancer Institute, containing topological struc-
tures of molecules [30]. PDBS[19] is a dataset of graphs
representing DNA, RNA and proteins. As AIDS and PDBS
contain typical but relatively sparse graphs, we have per-

dataset
unique graphs average num. nodes per graph num. edges per graph
vertex in node
labels dataset degree avg std.dev max avg std.dev max

AIDS 62 40,000 2.09 45 22 245 47 23 250
PDBS 10 600 2.13 2,939 3,217 16,431 3,064 3,264 16,781
PPI 46 20 9.23 4,943 2,717 10,186 26,667 26,361 89,674

Synthetic 20 1,000 19.52 892 417 7,135 7,991 5 8,007

Table 1: Characteristics of Datasets

formed further experiments on dense datasets, including the
PPI dataset and a synthetic dataset. PPI[15] models large
and dense protein interaction networks and consists of 20
graphs. We also used the generator provided by [7] to cre-
ate a much larger number (1,000) of much denser graphs.

Query Workloads. Unfortunately, despite the availabil-
ity of graph datasets, the community does not enjoy well es-
tablished benchmarks and/or real-world query logs for these
datasets. So all related works synthesize queries derived
from components of the dataset graphs. We follow this es-
tablished principle for generating our workloads, whereby
queries are generated from the original dataset graphs as
follows. There are 3 key probability distributions to con-
sider here. The first governs how a graph is selected from
the dataset graphs. The second governs how a node is se-
lected within this graph. Given these, we produce 4 query
workloads: uni−uni, uni−zipf , zipf−uni, and zipf−zipf ,
with, e.g., zipf − uni denoting that dataset graphs have a
popularity (probability of being selected) following a Zipf
distribution, while nodes within the selected graph have a
popularity drawn from a uniform distribution. The proba-
bility density function of the Zipf distribution is given by:

p(x) = x−α

ζ(α)
, where ζ is the Riemann Zeta function[31]. The

default value for α was 1.4 – we have also used α = 1.1 rep-
resenting a much smaller skew and α = 2.0 representing a
stronger skew (as a reference point, web page popularities
follow a Zipf with α = 2.4 [31]). The third governs the size
of each graph query: query sizes are uniformly at random
selected from 4, 8, 12, 16, 20 edges. Once a graph and a
node within this graph have been selected, we then perform
a BFS traversal of the latter’s neighborhood, with unvis-
ited edges of each traversed node included in the generated
graph, until the desired query size is reached.

For AIDS and PDBS, we ran 3,000 queries for each exper-
iment. The first W of these queries were used to warm-up
the index. We then used the remaining queries to measure
the times and candidate set sizes with and without iGQ for
each algorithm. By default we use a cache size C = 500 and a
batch window (and warm-up set) size W = 100 queries – we
have also used C = 1000,W = 200 and C = 1500,W = 300
with a 5,000-query workload to test cache size impact. We
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Figure 7: Speedup in Number of Subgraph Isomorphism
Tests for AIDS

Figure 8: Speedup in Number of Subgraph Isomorphism
Tests for PDBS

further tested iGQ against PPI and the synthetic dataset,
in order to examine its performance under larger and denser
graphs. In these cases, queries take 1-2 orders of magnitude
more time to execute, hence for practical reasons we reduced
the query workload to 500 queries. The batch window (and
warm-up set) size were set to W = 20 queries, with cache
sizes of C = 100, 200, 300 and Zipf skew α = 1.4, 2.0, 2.4.

We report the speedup (reduction) achieved by iGQ, de-
fined as the ratio of the average performance of the tradi-
tional method M over the average performance of iGQ M,
for the number of subgraph isomorphism tests and the query
processing time.

7.2 Filtering Power Speedup
We first examine the filtering power, reflecting the speedup

in the number of subgraph isomorphism tests performed.
This metric facilitates a qualitative analysis of performance,
independent of implementation and system details. Fig. 7
and 8 depict results for the AIDS and PDBS datasets respec-
tively, across all four query workloads. The reduction in the
number of subgraph isomorphism tests is evident (speedups
of 5× to 11×). Fig. 9 shows how Zipf skew α affects this met-
ric for the PDBS dataset, using one of the fastest methods
(Grapes(6)). Results for the AIDS dataset and the other
algorithms are similar and omitted for space reasons. As
expected, with more skewness come increased benefits by
iGQ.

Fig. 10 focuses on speedup across queries grouped by size
(e.g., Q4 groups queries with 4 edges). As iGQ does not
maintain separate caches per query size, the various query
groups compete for the same space. Thus, some of them may
seem to exhibit a lower speedup for larger cache sizes (e.g.,
the speedup of Q16 drops slightly when going from C =200 to
300); however, the speedup for the whole workload exhibited
a steady rise (2.18, 2.45 and 2.53 for C= 100, 200 and 300
respectively; figure omitted due to space reasons). Last, Fig.
11 depicts the results for the synthetic dataset.

7.3 Query Processing Speedup
Fig. 12 and 13 show the query processing time speedup for

the AIDS/PDBS datasets. Interestingly, juxtaposing Fig.
12 against Fig. 7 (and Fig. 13 against Fig. 8) we see that
reductions in the number of subgraph isomorphism tests do
not directly translate into equal gains in query processing

Figure 9: Speedup in Number of Subgraph Isomorphism
Tests for PDBS/Grapes(6) vs Zipf Skew α

Figure 10: Speedup in Number of Subgraph Isomorphism
Tests for PPI/Grapes(6)/zipf − zipf(α = 1.4)/Query
Groups

Figure 11: Speedup in Number of Subgraph Isomorphism
Tests for Synthetic/Grapes(6)/zipf − zipf(α = 2.4)/Query
Groups

Figure 12: Speedup in Query Processing Time for AIDS

Figure 13: Speedup in Query Processing Time for PDBS

times. This is due to some large graphs in the candidate sets
not being pruned away by the current index contents. We
would expect this to be ameliorated as cache sizes increase.
Indeed Fig. 14 shows this for Grapes(6) as cache size varies
from 500 to 1,000 and 1,500 queries. Results for other cases
are similar and omitted for space reasons.

Fig. 15 shows the impact of Zipf skew α on query pro-
cessing speedup for the Grapes(6) algorithms on the PDBS
dataset. Again, with more skewness come greater benefits,
up to impressive levels. Interestingly, juxtaposing Fig. 15
against Fig. 9 tells a different story. We see that reductions
in the number of subgraph isomorphism tests translate into
higher gains in query processing times. This is because of
the replacement algorithm that maintains in the index those
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Figure 14: Speedup in Query Processing Time for
PDBS/Grapes(6) vs Cache Size

Figure 15: Speedup in Query Processing Time for
PDBS/Grapes(6) vs Zipf Skew α

query graphs g with the higher utility; i.e., which help to
avoid expensive subgraph isomorphism tests against graphs
in the candidate sets. Fig. 16 and Fig. 17 show the speedup
for the query processing time, corresponding to Fig. 10 and
Fig. 11, respectively.

Last, Fig. 18 plots the index size for iGQ for C =500 graph
queries, versus that of the three algorithms we’ve considered
so far, for the AIDS dataset. In the default configurations,
iGQ adds a negligible space overhead on top of the base
indexes (less than 1%). In addition to the default config-
urations for said algorithms, Fig. 18 also plots the index
sizes for the immediately larger configurations (i.e., for max
path length of 5 for Grapes and GGSX, and for trees of
size 7, cycles of size 9, and 8192 bits per bitmap for CT-
Index). Note that this minimal increase in the feature size
results in almost double the space requirements for the base
indexes. On the other hand, these larger indexes bring a per-
formance improvement of less than 10% in all cases (figure
omitted due to space reasons), which is virtually negligible
when compared to the gains provided by iGQ.

Overall, iGQ is shown to introduce significant to impres-
sive performance gains, against the state of the art methods
in the literature. We have actually conducted a detailed per-
formance evaluation of most related algorithms[21] and se-
lected GGSX, Grapes(1), Grapes(6), and CT-Index as those
showing the best performance. Regardless of the method,
when incorporating iGQ with it, large performance gains
ensue. These gains are robust and are manifested in all four
different query workloads we have presented and, most im-
portantly, with a minimal space overhead.

8. CONCLUSIONS
We have presented a novel perspective and solution to

the graph querying problem, departing from related work
in three ways: First, it constructs query indexes, as op-
posed to simply relying on dataset graph indexes. Second,
it maintains the knowledge the system produced when exe-
cuting previous queries. Third, it can be used to expedite
both subgraph and supergraph queries. We showed how
these can help improve the performance of future queries
and provided formal proof of correctness. The proposed iGQ
framework consists of (i) a subgraph index, (ii) a supergraph
index, (iii) a method for efficiently maintaining the index,

Figure 16: Speedup in Query Processing Time for
PPI/Grapes(6)/zipf − zipf(α = 1.4)/Query Groups

Figure 17: Speedup in Query Processing Time for
Synthetic/Grapes(6)/zipf − zipf(α = 2.4)/Query Groups

Figure 18: Absolute Index Sizes (in MBytes) for AIDS

including a graph replacement policy, and (iv) any popular
method for indexing and processing subgraph or supergraph
queries. We incorporated iGQ within 3 popular methods
from related work, showcasing its wide applicability. Last,
our performance evaluation on both real-world and synthetic
datasets with various query workloads showed iGQ’s signif-
icant performance gains and negligible space overhead.
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ABSTRACT
Enterprises and researchers often have datasets that can be
represented as graphs (e.g. social networks). The owner
of a large graph may want to scale it down to a smaller
version, e.g. for application development. On the other
hand, the owner of a small graph may want to scale it up to
a larger version, e.g. to test system scalability. This paper
investigates the Graph Scaling Problem (GSP):

Given a directed graph G and positive integers ñ

and m̃, generate a similar directed graph G̃ with
ñ nodes and m̃ edges.

This paper presents a graph scaling algorithm Gscaler
for GSP. Analogous to DNA shotgun sequencing, Gscaler,
decomposes G into small pieces, scales them, then uses the

scaled pieces to construct G̃. This construction is based on
the indegree/outdegree correlation of nodes and edges.

Extensive tests with real graphs show that Gscaler is

scalable and, for many graph properties, it generates a G̃
that has greater similarity to G than other state-of-the-art
solutions, like Stochastic Kronecker Graph and UpSizeR.

1. INTRODUCTION
The emergence of online social networks, like Facebook

and Twitter, has attracted considerable research. However,
their enormous sizes make any experiment on the entire
graph impractical. It is therefore often necessary to obtain
a smaller version of the graph for experiments. We call this
the scaling down problem.

At the other end of the scale, a new social network service
provider may have a small graph, but wants to test the scal-
ability of their system. They may therefore want to have
a larger (and necessarily) synthetic version of their current
empirical graph. We call this the scaling up problem.

These two problems arise in other contexts as well, e.g.
where the graph represents router topology or web links.
They illustrate the Graph Scaling Problem (GSP):

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

Given a directed graph G and positive integers ñ

and m̃, generate a similar directed graph G̃ with
ñ nodes and m̃ edges.

There are many possible ways to define “similarity”, de-
pending on the context, but we believe the definitions must
all be in terms of graph properties, like indegree distribution,
clustering coefficient, effective diameter, etc.

However, it is impossible for G and G̃ to have exactly

the same properties; e.g. if G and G̃ have the same degree
distributions, then the larger graph must necessarily have
smaller density. One must therefore select the graph prop-
erties that are to be preserved when scaling. GSP facilitates
this selection by allowing ñ and m̃ to be specified separately.

Related work in the literature have objectives that are
different from GSP. There are many papers on graph sam-
pling, such as gSH, BFS, forest fire and frontier sampling
[1, 3, 18, 21, 23, 30, 35]. They can be viewed as examples of

scaling down, since they produce a G̃ that is a subgraph of
G; this can have data protection issues that do not arise if

G̃ is synthetic. Moreover, graph sampling cannot generate

a G̃ that is larger than G.
Other related work use generative models that can pro-

duce a G̃ that is smaller or larger than G. For example, an
Erdös-Rényi model generates a graph of any size n with a
specified edge probability p [9]; Chung and Lu’s model gen-
erates graphs with a specified degree distribution [4]; and
Stochastic Kronecker Graphs [19,20] are generated from an
initiator by applying Kronecker product. However, these do
not allow a choice of both ñ and m̃.

In contrast, we propose Gscaler, a solution to GSP that
deviates from previous work by using a technique that is
analogous to DNA shotgun sequencing [31]. The latter
breaks a long DNA strand into smaller ones that are easier
to sequence, then use these smaller sequences to reconstruct
the sequence in the original strand.

Similarly, Gscaler (i) breaks the given G into two sets

Sin and Sout of small pieces, (ii) scales them by size to S̃in

and S̃out; (iii) merges these pieces to give a set S̃bi of larger

pieces, then (iv) assembles G̃ from the pieces in S̃bi.
This paper makes the following contributions:

1. We present Gscaler, an algorithm for solving GSP.

2. We prove that Gscaler (i) does not generate multiple
edges between two nodes, and (ii) has small degree

distribution error even when the average degree of G̃
differs from that of G.
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3. We present experiments that compare Gscaler to 4
other techniques, using 2 real graphs and 7 properties.

We begin by surveying related work in Sec. 2. We describe
Gscaler in Sec. 3, and prove that it does not generate mul-
tiple edges between any two nodes. Sec. 4 reviews the graph
properties, state-of-the-art algorithms and datasets that are
used for comparison. Sec. 5 then proves that Gscaler has
small error, and presents the experimental comparison to
other algorithms. We discuss the choice of ñ and m̃ in Sec. 6,
before Sec. 7 concludes with a summary.

2. RELATED WORK
The closest work in graph scaling from the literature are

graph sampling algorithms and generative models.
For graph sampling, the main approaches are node-based

sampling, edge-based sampling and traversal-based sampling
which produce a subgraph of the original graph G.

Node-based sampling selects a set of nodes Vsub from G,

then G̃ is just the induced graph of this set of nodes Vsub.
Authors in [32] pointed out that node-based sampling may
not preserve a power law degree distribution because of bias
induced by high degree nodes.

Similarly, traditional edge-based sampling selects edges
randomly. However, this might result in a sparsely con-

nected graph G̃ [21]. Some other edge-based sampling vari-
ants [1,16,21] sample the graph using edge selection/deletion
and combination with node selection/deletion.

Most graph sampling techniques focus on traversal-based
sampling [14]. Breadth first sampling (BFS) [3, 18, 35] and
random walk sampling (RW) [12, 30] are the most basic
and well-known algorithms. Similar to BFS, snow ball sam-
pling [13] (SBS) is widely used in sociology studies. Metropolis-
Hastings Random Walk (MHRW) [12,27] is a Markov-Chain
Monte Carlo algorithm which samples unbiased subgraph
in undirected social graphs. However, MHRW suffers from
sample-rejection problem. Later, rejection-controlled Metropolis-
Hastings (RCMH) [26] is proposed to reduce the sample-
rejection ratio.

Frontier sampling is a multi-dimensional random walk which
results in better estimators for some graph properties [30].
A probabilistic version of SBS, forest fire (FF ) [21,23] cap-
tures some important observations in real social networks,
e.g. small diameter.

Most traversal-based sampling requires random access to
a node’s neighbors, which might not be feasible for large
graphs (that cannot fit into memory). Hence, streaming
graph sampling algorithms are proposed, e.g. induced edge
sampling (ES-i) [2]. As mentioned previously, graph sam-
pling algorithms are limited to scaling down problem.

For generative models, the Erdös-Rényi model generates
a graph of any size n with a specified edge probability p [9].
There are variants of random models that generate graphs
with specific graph properties [4, 28], e.g. the Chung-Lu
model generates graphs with a specified degree distribution.

One group of generative models [5, 6, 11, 17] employ the
strategy of preferential attachment. They obey a simple
rule: a new node u attaches to the graph at each time step,
and adds an edge euv to an existing node v with a probability
p proportional to the degree of the node v.

Another type of generative models is recursive matrix
model [7, 19, 20], which recursively multiplies the adjacency
matrix. For example, Stochastic Kronecker Graph (SKG) [20]

Notation Description
G(V,E) original graph

G̃(Ṽ , Ẽ) scaled graph

n/ñ number of nodes in G/G̃

m/m̃ number of edges in G/G̃

fin/f̃in G/G̃’s indegree distribution

fout/f̃out G/G̃ graph’s outdegree distribution

fbi/f̃bi G/G̃ graph’s bidegree distribution

fcorr/f̃corr G/G̃ graph’s edge correlation distribution

Sin/S̃in set of pieces with incoming edges in G/G̃

Sout/S̃out set of pieces with outgoing edges in G/G̃

S̃bi set of pieces with incoming and outgoing edges in G̃
ct∆ count function of the pieces in set ∆, ∆ can be

Sin, S̃in and so on.
I(α′)/O(α′) total number of available incoming/outgoing edges

for nodes with bidegree α′

D(f, f̃) KS-D statistics of between f and f̃

Table 1: Notation

recursively multiplies the graph initiator K1 through Kro-
necker product, which results in a self-similar graph. SKG
captures most social network properties, such as small di-
ameter and power law degree distribution.

Scaling problem appears in other fields as well. For ex-
ample, UpSizeR is a pioneer tool which synthetically scales
a relational dataset [33]. UpSizeR’s focus is on preserving
correlation among tuples from multiple tables. In relational
terms, GSP requires preservation of correlation among tu-
ples in a single table (for the edges).

For Resource Description Framework (RDF), the AO bench-
mark [8] is the first tool that scales down an RDF dataset.
Later, RBench [29] is proposed to both scale down and up.
However, these two benchmarks are evaluated with differ-
ent metrics (dataset coherence, relationship specialty, literal
diversity), so it would be unfair to use them for comparison.

3. GRAPH SCALER (Gscaler)
Given a graph G(V,E), |V | and |E| may need to scale by

different factors to maintain similarity for certain properties
(e.g. density). Hence, Gscaler allows the user to specify
the target ñ and m̃. As shown in Fig.1, the scaling has the
following 4 steps:

DECOMPOSE SCALING

N
O

D
E

S
Y

N
T

H
E

S
ISEDGE 

SYNTHESIS

Figure 1: The 4 steps in Gscaler.

Gscaler first decomposes G into 2 sets Sin and Sout. Sin
consists of pieces, where a piece is a node with its incoming
edges (minus the source nodes). Similarly, Sout consists of
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Algorithm 1: Gscaler(G, ñ, m̃)

1 Sin, Sout, fbi, fcorr = DECOMPOSE(G)

2 S̃in = SCALING(Sin, ñ, m̃)

3 S̃out = SCALING(Sout, ñ, m̃)

4 S̃bi = NODE SYNTHESIS(S̃in, S̃out, fbi)

5 G̃ = EDGE SYNTHESIS(S̃bi, fcorr)

pieces, where a piece is a node with its outgoing edges (minus
the target nodes). Each node in G generates 2 pieces, one
in Sin and one in Sout.

After that, Gscaler scales Sin and Sout to get the scaled

sets of pieces S̃in and S̃out with ñ nodes and m̃ edges.

In node synthesis, S̃in and S̃out are used to form a set S̃bi
of larger pieces. Each new piece has a node with incoming
edges (with no source nodes) and outgoing edges (with no

target nodes); it will generate one node in G̃.

The last step (edge synthesis) is to link pieces in S̃bi which

finally results in G̃. Edge synthesis is similar to a jigsaw puz-
zle, where you want to fit the small pieces together. Algo. 1
summaries the workflow for Gscaler.

In the following, we will explain each step in detail, and

use a running example to show how G is scaled to G̃ in Fig.1.
As presented in Fig.1, n = 3, ñ = 6, m = 3, m̃ = 7.

3.1 DECOMPOSE

This step is straightforward, and Fig. 1 shows the pieces
in Sin and Sout from decomposing G.

3.2 SCALING

To simplify the explanation, we just use Sin for demon-
stration. Let N = {0, 1, 2, 3, . . .}. We use the count function
ct to denote k pieces in ∆ has property x:

ct∆(x) = k, k ∈ N (1)

For example, ctSin(x) = k means k pieces in Sin have inde-
gree x. For both Sin and Sout, the scaling process takes the
following three steps:

• node scaling. For indegree x, let Ax = ctSin(x)× ñ
n

. As

Ax might not be an integer, we round-off S̃in as follows:

ctS̃in(x) =

{
dAxe with probability Ax − bAxc
bAxc with probability dAxe −Ax

(2)

For example, if Ax = 4.8, then with 0.8 probability,
ctS̃in(x) = 5, and with 0.2 probability, ctS̃in(x) = 4.
Hence, Eq.2 can be rewritten as

E[ctS̃in(x)] = ctSin(x)× ñ

n
(3)

Fig.2 shows the S̃in and S̃out that we get after this scaling.

• node adjustment. With randomness in node scaling

(Eq.2), we may have |S̃in| 6= ñ. If so, |ñ − |S̃in|| nodes

Figure 2: S̃in, S̃out after node scaling for G in Fig.1.

Algorithm 2: SCALING(Sin, ñ, m̃)

1 node scaling(Sin, ñ)

2 node adjustment(S̃in, ñ, Sin)
/* h0/l0 is the upper/lower bound where x

varies. By default, h0/l0 should be the

highest/lowest degree in the graph. h0/l0
will be further extended if needed. t is the

edge difference threshold where the loop

stops. ct(x) refers to ctS̃in(x). */

3 initialize h = h0, l = l0, t
55 while |

∑
x ct(x)× x− m̃| > t do

6 if l>=h then
7 l = l0; h = h0;

8 if m̃ >
∑
x ct(x)× x then

9 if ct(l)>0 then
10 ct(l)−−; ct(h) + +;
11 l + +; h−−;

12 else l + +;

13 else
14 if ct(h)>0 then
15 ct(l) + +; ct(h)−−;
16 l + +; h−−;

17 else h−−;

18 adjust |
∑
x ct(x)× x− m̃| edges

with random degree are added to or removed from S̃in.
For G in Fig. 1, such adjustment is not needed.

• edge adjustment. Next, the number of scaled edges
must equal to m̃, i.e.

∑
x ctS̃in(x)× x = m̃.

If
∑
x ctS̃in(x) × x < m̃, we increase the number of high

degree nodes, and decrease the number of low degree
nodes. If

∑
x ctS̃in(x) × x > m̃, we decrease the num-

ber of high degree nodes, and increase the number of low
degree nodes. The details are shown in Algo. 2.

In our running example,
∑
x ctS̃in(x) × x = 6 < 7 = m̃.

Hence, we increase the number of high degree nodes (in-
degree=2), and decrease the number of low degree (inde-
gree=1) nodes. Thus, we have 1 node with indegree=2

and 5 nodes with indegree=1 for S̃in. After the edge ad-

justment, the correct S̃in, S̃out are shown in Fig. 1.

3.3 NODE SYNTHESIS

Now we have S̃in and S̃out, and we match 1 piece in S̃in
to 1 piece in S̃out and merge them to give a larger piece.
This synthesis follows a bidegree distribution fbi : N2 →
[0, 1], where fbi(d1, d2) = z means a fraction z of nodes have
bidegree (d1, d2). We say a node u has bidegree (d1, d2) if
it has indegree=d1 and outdegree=d2. For G in Fig. 1, the
corresponding fbi is listed in Table 2.

Gscaler loops through fbi(d1, d2) to synthesize nodes.

However, for a desired bidegree (d1, d2), S̃in and S̃out may
not have the necessary pieces. Hence, a neighboring (d1

′, d2
′)

will be used. Gscaler uses a greedy heuristic that matches
pieces by minimizing the Manhattan distance

||(d1, d2)− (d1
′, d2

′)||1 = |d1 − d1
′|+ |d2 − d2

′|.
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Algorithm 3: NODE SYNTHESIS(S̃in, S̃out, fbi)

1 while S̃in and S̃out not empty do
2 for fbi(d1, d2) do
3 while bfbi(d1, d2)× m̃c > 0 do
4 (d1

′, d2
′)←Manhattan(d1, d2)

5 S̃bi ← (d1
′, d2

′)

6 update S̃in, S̃out, fbi(d1, d2)

For Table 2, when Gscaler sees fbi(1, 0) = 1
3
, it will first

generate 1 node with bidegree (1, 0), and generate the other
node with bidegree (1, 1). Next, Gscaler sees fbi(1, 1) = 1

3
,

two nodes both having bidegree (1, 1) are generated. Lastly,
Gscaler sees fbi(1, 2) = 1

3
, and two nodes with bidegree

(1, 2), and (2, 2) are generated.
Algo.3 summarizes the node synthesis. The synthesized

pieces for S̃bi in G̃ are shown in Fig. 1. Note that each piece

in S̃bi maps to a node in G̃.

3.4 EDGE SYNTHESIS

Now we are almost done with the graph scaling, we only
need to link the edges. This is similar to a jigsaw puzzle,
we only need to make sure that each piece links to another

correctly. When linking the pieces from S̃bi, we link 1 out-

going edge from a source node vs ∈ S̃bi to 1 incoming edge

from a target node vt ∈ S̃bi. There are numerous ways of
joining the nodes. Gscaler synthesizes edges based on the
edge correlation function

fcorr : N2 ×N2 → [0, 1],

where fcorr(αs, αt) = z means a fraction z of the edges
have a source node with bidegree αs and a target node with
bidegree αt. The fcorr for G is listed in Table 3.

Instead of synthesizing edges one by one based on fcorr
directly, Gscaler undergoes Correlation Function Scaling

to scale fcorr to f̃corr for G̃. After a suitable f̃corr is found,

Gscaler links edges based on f̃corr.

3.4.1 Correlation Function Scaling
Gscaler loops through fcorr to produce f̃corr. For each

fcorr(αs, αt), it does the following Iterative Correlating:

Manhattan Minimization
Gscaler chooses the closest (αs

′, αt
′) for f̃corr by minimiz-

ing ||αs−αs′||1 + ||αt−αt′||1. For fcorr((1, 2), (1, 0)) = 1/3
in Table 3, Gscaler chooses (1, 2) for αs

′ and (1, 0) for αt
′.

Increment Probability Maximization

Gscaler increments f̃corr(αs
′, αt

′) by p, where p needs to
be the largest number that satisfies the following constraints:
C1. p ≤ fcorr(αs, αt).
C2. p ≤ min{O(αs

′)
m̃

, I(αt
′)

m̃
}, where I(αt

′) is the total num-
ber of available incoming edges for nodes with bidegree αt

′,
and O(αs

′) is the total number of available outgoing edges
for nodes with bidegree αs

′. C2 guarantees incremented
number of edges does not exceed the total available number
of edges of source nodes and target nodes.

C3. p ≤
ct
S̃bi

(αs
′)×ct

S̃bi
(αt
′)

m̃
− f̃corr(αs′, αt′). C3 ensures

fbi(1, 0) = 1
3

fbi(1, 1) = 1
3

fbi(1, 2) = 1
3

Table 2: Bidegree distribution for G in Fig. 1.

fcorr((1, 2), (1, 0)) = 1
3

fcorr((1, 2), (1, 1)) = 1
3

fcorr((1, 1), (1, 2)) = 1
3

Table 3: Edge Correlation for G in Fig.1.

the total number of edges from source nodes to target nodes
is not more than the maximal number of edges allowed from
source nodes to target nodes (no multiple edges).
For fcorr((1, 2), (1, 0)) = 1/3 in Table 3:
By C1, p ≤ 1/3.

By C2, p ≤ min{O((1,2))
7

, I((1,0))
7
} = min{ 2

7
, 1

7
} = 1

7
.

By C3, p ≤
ct
S̃bi

((1,2))×ct
S̃bi

((1,0))

7
− f̃corr((1, 2), (1, 0)) =

1×1
7
− 0.

Hence, the incremental value is p = min{ 1
3
, 1

7
, 1

7
} = 1

7
.

Value Update
Next, Gscaler updates the distributions:

• f̃corr(αs′, αt′) ← f̃corr(αs
′, αt

′) + p.
• O(αs

′) ← O(αs
′)− p× m̃.

• I(αt
′) ← I(αt

′) − p× m̃.
For fcorr((1, 2), (1, 0)) = 1/3 in Table 3, Gscaler gets

f̃corr((1, 2), (1, 0)) = 1/7, O((1, 2)) = 1, I((1, 0)) = 0. Ta-

ble 4 shows the resulting scaled f̃corr.
After iterative correlating, and due to the no multiple

edges constraint, it is possible that
∑
f̃corr(αs

′, αt
′) < 1,

which we fix by random swapping. This swap first ran-
domly permutes the leftover bidegree from I and O without
violating C3, then takes one element with bidegree γs

′ from
O and one element with bidegree γt

′ from I to swap with

generated f̃corr(αs
′, αt

′).
The idea is to break 1 edge from some source node vs with

bidegree αs
′ to some target node vt with bidegree αt

′, and
form 2 new edges: 1 edge pointing from some node with
bidegree γs

′ to the other node with bidegree αt
′, and 1 edge

pointing from some node with bidegree αs
′ to some node

with bidegree γt
′. If C3 allows, then update f̃corr as follows:

• f̃corr(αs′, γt′)← f̃corr(αs
′, γt

′) + 1
m̃

.

• f̃corr(γs′, αt′)← f̃corr(γs
′, αt

′) + 1
m̃

.

• f̃corr(αs′, αt′)← f̃corr(αs
′, αt

′)− 1
m̃

.

One successful swap thus increases f̃corr by 1
m̃

.
In the worst case (this did not happen in our experiments),

after random swaps,
∑
f̃corr(αs

′, αt
′) < 1 might still hold.

We just leave f̃corr as it is, and we will introduce some

dummy nodes to link these (1−
∑
f̃corr(αs

′, αt
′))×m̃ edges

f̃corr((1, 2), (1, 0)) = 1
7

f̃corr((1, 2), (1, 1)) = 1
7

f̃corr((1, 1), (1, 2)) = 1
7

f̃corr((2, 2), (1, 1)) = 2
7

f̃corr((1, 1), (2, 2)) = 2
7

Table 4: Edge Correlation for G̃ in Fig. 1.
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Figure 3: Local linking of source and destination.

later in Sec.3.4.2.

3.4.2 Edge Linking
After f̃corr is generated, Gscaler links the p × m̃ edges

locally for each f̃corr(αs
′, αt

′) = p. Note that some linking
steps are related, since αs

′ might appear in a series of local
linking steps, such as

f̃corr(αs
′, αt1

′) = p1, . . . , f̃corr(αs
′, αtk

′) = pk

Hence, one must make sure that after f̃corr(αs
′, αt1

′) = p1 is

done, f̃corr(αs
′, αt2

′) = p2, . . . , f̃corr(αs
′, αtk

′) = pk are still
possible to be linked with no multiple edges. To emphasize
the importance of this step, we use the following example to
demonstrate both good and bad approaches.

In Fig.3, S̃bi and f̃corr are presented at the top. S̃bi has
2 pieces of bidegree (2, 2), 2 pieces of bidegree (1, 0), and 2
pieces of bidegree (0, 1). The dotted edges represent newly
linked edges at each step. If an edge has no source or target
node attached, then it has not linked any two nodes yet.
Example A demonstrates a failed strategy, while example B
demonstrates a successful strategy.

For f̃corr((0, 1), (2, 2)) = 1
3
, it corresponds to local linking

step 1©, which links two edges from (0, 1) to (2, 2). Both
examples link edges successfully. Example A links all 2 edges
to 1 target node with bidegree (2, 2), whereas example B
links 2 edges to 2 different target nodes with bidegree (2, 2).

For f̃corr((2, 2), (1, 0)) = 1
3
, it corresponds to local linking

step 2©, which links 2 edges from (2, 2) to (1, 0). Both ex-
amples link edges successfully. Example A links all 2 edges
from 1 source node with bidegree (2, 2). Example B links 2
edges from 2 different source nodes with bidegree (2, 2).

For f̃corr((2, 2), (2, 2)) = 1
3
, it corresponds to local linking

step 3©, which links edges from (2, 2) to (2, 2). Example
A produces multiple edges, which is not allowed, whereas
example B successfully produces the graph.

Apart from the multiple edge constraint, the algorithm
must be efficient as well. The naive idea of back tracking
previous edge linking processes is obviously not practical

for large graphs. Gscaler not only generates G̃ with no
multiple edges, it also links edges in linear time (see below).
Gscaler first selects the proper source nodes Ls and target
nodes Lt, and then link the edges from Ls to Lt.

Let Sαs′/Tαt′ be a queue of the source/target nodes with

bidegree αs
′/αt

′ from S̃bi. For each f̃corr(αs
′, αt

′) = p,
Gscaler dequeue&enqueue p × m̃ elements from Sαs′ to
Ls, and dequeue&enqueue p× m̃ elements from Tαt′ to Lt.
More specifically, whenever one element is dequeued from

Sαs′/Tαt′ , it will be put into Ls/Lt, and then been enqueued
to Sαs′/Tαt′ again. For example, if we dequeue&enqueue
7 elements from S(1,1) = [1, 2, 3, 4, 5] to Ls, then Ls =
[1, 2, 3, 4, 5, 1, 2], and S(1,1) = [3, 4, 5, 1, 2]. In general,

Ls = {u
d p×m̃|S

αs′
| e

1 , . . . , u
d p×m̃|S

αs′
| e

rs , u
b p×m̃|S

αs′
| c

rs+1 , . . . , u
b p×m̃|S

αs′
| c

|Sαs′ |
}, ∀ui ∈ Sαs′

Lt = {v
d p×m̃|T

αt
′ |
e

1 , . . . , v
d p×m̃|T

αt
′ |
e

rt , v
b p×m̃|T

αt
′ |
c

rt+1 , . . . , v
b p×m̃|T

αt
′ |
c

|Tαt′ |
},∀vj ∈ Tαt′

rs = p× m̃ mod |Sαs′ | , rt = p× m̃ mod |Tαt′ |, (4)

where vk1 means v1 appears k times in Lt, and k is called
the multiplicity of v1.

After Ls and Lt are generated, Gscaler links edges from
Ls to Lt. Before that, we prove a theorem for Compound
Multiplicity Reduction ; we later use this to show Gscaler
does not generate multiple edges between two nodes.

Theorem 1. [Compound Multiplicity Reduction]. Given

multisets U = {umu11 , . . . , u
muθ0
θ0

}, V = {vmv11 , . . . , v
mvθ1
θ1

},∑
ui∈U

mui = |U| = |V| =
∑
vj∈V

mvj , (5)

max
ui∈U

mui − min
ui∈U

mui ≤ 1, (6)

and max
vj∈V

mvj − min
vj∈V

mvj ≤ 1, (7)

there exists a multiset W = {wk|wk(0) ∈ U, wk(1) ∈ V}

such that U =
⋃
k

{wk(0)}, V =
⋃
k

{wk(1)}, (8)

max
wk∈W

mwk − min
wk∈W

mwk ≤ 1, (9)

∀wk ∈W,mwk ≤ d
|W|

θ0 × θ1
e. (10)

Proof. Reorder U,V to
U = (u1, . . . , u1, u2, . . . , u2, . . . , uθ0 , . . . , uθ0),
V = (v1, v2, . . . , vθ1 , v1, v2, . . . , vθ1 , v1, . . . ).

Construct W as follows: ∀wk ∈ W, wk = (U(k),V(k)),
where U(k) means the kth element in U. Therefore, Eq.8
is satisfied. Further, for any ui, let

Wui = ((ui,V(ci)), (ui,V(ci + 1)), . . . , (ui,V(di)))
be the sequence of all elements in W containing ui as first
coordinate. Consider Vui = (V(ci),V(ci + 1), . . . ,V(di)),
a sequence of elements in V pairing with ui. Note Vui is a
periodic sequence with period=θ1. Thus, the maximum mul-

tiplicity in Vui is d |Vui |
θ1
e, and similarly for Wui . Hence, the

maximum multiplicity of W is

max
wk∈W

mwk = max
1≤i≤θ0

d |Vui |
θ1
e (11)

It is trivial that

|Vui | = mui , ∀i, 1 ≤ i ≤ θ0 (12)

Moreover, by Eq.6, we will have

∀ui ∈ U,mui ≤ d
|U|
θ0
e (13)

Hence, by Eq.11, Eq.12, Eq.13, we will have

max
wk∈W

mwk = max
1≤i≤θ0

d |Vui |
θ1
e ≤ d

d |U|
θ0
e

θ1
e = d |U|

θ0 × θ1
e (14)
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Since |U| = |W|, therefore

max
wk∈W

mwk ≤ d
|W|

θ0 × θ1
e, (15)

so Eq.10 holds. Similarly, the minimum multiplicity of W is

min
wk∈W

mwk = min
1≤i≤θ0

b |Vui |
θ1
c ≥ b |W|

θ0 × θ1
c (16)

Eq.9 follows from Eq.15 and Eq.16. We call such a W a
compound multiset.

For edge linking between Ls and Lt, Gscaler links u1 ∈
Ls to v2 ∈ Lt to form one edge (u1, v2) in Le (edge set). By
Eq.4, Ls/Lt satisfies U/V in Theorem 1 respectively, and it
is easy to see that Le is the compound W in Theorem 1.

Theorem 2. Given non-empty Ls(U) dequeued&enqueued
from Sαs′ , and non-empty Lt(V) dequeued&enqueued from
Tαt′ , the maximum multiplicity for edge set Le(W) as de-
scribed in Theorem 1 is 1.

Proof. If |Ls| ≤ |Sαs′ |, then every element in Ls is
unique. Hence, the maximum multiplicity for elements in
Ls is 1, so Le has maximum multiplicity of 1. The case is
similar for |Lt| ≤ |Tαt′ |.

If |Ls| > |Sαs′ | and |Lt| > |Tαt′ |, then Ls has |Tαs′ | dis-
tinct elements, and Lt has |Tαt′ | distinct elements. By The-
orem 1, the maximum multiplicity of elements in Le is

d |Le|
|Sαs′ | × |Tαt′ |

e (17)

Since |Ls| = |Le|, and Ls has f̃corr(αs
′, αt

′) × m̃ elements,
the maximum multiplicity of elements in Le is

d f̃corr(αs
′, αt

′)× m̃
|Sαs′ | × |Tαt′ |

e

Moreover, by C3 in Sec.3.4.1, we know that

f̃corr(αs
′, αt

′)× m̃ ≤ |Sαs′ | × |Tαt′ |, (18)

so d |Le|
|Sαs′ | × |Tαt′ |

e = d f̃corr(αs
′, αt

′)× m̃
|Sαs′ | × |Tαt′ |

e ≤ 1 (19)

Hence, by Theorem 2, there are no multiple edges from Ls
to Lt. Therefore, Gscaler successfully produces a graph
without multiple edges.

Moreover, the generation runs in linear time: For each

f̃corr(αs
′, αt

′), the generation for Ls and Lt is in linear time:
After Ls, Lt are generated, the Le is formed by sequentially
matching the elements in Ls and Lt as described in Theo-
rem 1. Hence, the total edge linking time is linear. Given

the edge correlation f̃corr in Table 4, Gscaler generates G̃
as presented in Fig. 1.

Finally, as stated at the end of Sec.3.4.1, there might be

some small possibility that
∑
f̃corr(αs

′, αt
′) < 1 holds. This

is the theoretical worst case (which has not happened in
our experiments). To resolve this, Gscaler introduces ε

dummy nodes into G̃ for the purpose of maintaining de-
gree distribution similarity. After the dummy nodes are in-

troduced, all the 1 −
∑
f̃corr(αs

′, αt
′) edges are linked to

Algorithm 4: EDGE SYNTHESIS(S̃bi, fcorr )

1 f̃corr ← correlation function scaling(S̃bi, fcorr)

2 while f̃corr(αs
′, αt

′) = p do
/* produce the Ls and Lt */

3 Ls, Lt ← local set(αs
′, αt

′, p, m̃)
/* link the edges from Ls to Lt */

4 G̃← edge linking(Ls, Lt)

5 add dummy nodes to G̃ (if necessary)

these dummy nodes. To avoid multiple edges, we can set
ε = maxα{I(α), O(α)}; this ε is obviously not the small-
est possible. However, such an ε is already small(negligible)

compared to |G̃|, and such a scenario is rare. Algo.4 sum-
marizes the edge synthesis.

4. EVALUATION
We first review the graph properties that we use for sim-

ilarity measurement.

4.1 Graph Properties
There are numerous graph properties that can be chosen

as the similarity measurement criteria, e.g. degree distri-
bution, diameter, k-core distribution, etc. We choose the 7
most common graph properties used in the literature. Let
N = {0, 1, 2, 3, . . .} and consider the following local and
global graph properties:

1. Indegree distribution fin : N → [0, 1]
fin(d) = z means a portion z of nodes have indegree d.

2. Outdegree distribution fout : N → [0, 1]
fout(d) = z means a portion z of nodes have outdegree d.

3. Bidegree distribution fbi : N2 → [0, 1]
Defined in Sec 3.3.

4. Ratio of largest strongly connected component
(SCC)
An SCC of G is a maximal set of nodes such that for ev-
ery node pair u and v, there is a directed path from u to
v and another from v to u. The ratio is the number of
nodes in the SCC divided by |V |.

5. Average clustering coefficient (CC)
For node vi, let Ni be the set of its neighbors. The local
clustering coefficient [34] Ci for nodes vi is defined by

Ci =
|{(vj , vk) : vj , vk ∈ Ni, (vj , vk) ∈ E}|

|Ni|(|Ni| − 1)

The average clustering coefficient [15] C̄ =

∑
vi∈V

Ci

|V |

6. Average shortest path length (ASPL)
For u and v in V , the pairwise distance d(u, v) is the num-
ber of edges in the shortest path from u to v; d(u, v) =∞
iff there is no path from u to v (where∞ is some number
greater than |E|). The ASPL is∑

d(u,v)<∞ d(u, v)

|V | × (|V | − 1)
.
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7. Effective diameter [21]
The effective diameter is the smallest k ∈ N that is
greater than 90% of all pairwise distances that satisfy
d(u, v) <∞.

4.2 Measuring Similarity
For a scalar graph property α, let αG denote the α value

for G and α
(i)

G̃
denote the α value for G̃ constructed with al-

gorithmA(i). We can compareA(1) andA(2) by the absolute

difference |α(i)

G̃
−αG| or the relative difference |α(i)

G̃
−αG|/αG

These are equivalent since

|α(1)

G̃
− αG| < |α(2)

G̃
− αG| ⇐⇒

|α(1)

G̃
− αG|
αG

<
|α(2)

G̃
− αG|
αG

However, an α like effective diameter is an integer, whereas a
property like average clustering coefficient has α < 1. Some
information on αG is thus lost if we plot relative differences,
so we will plot absolute differences instead.

For a degree distribution f : Nd → [0, 1], we follow Leskovec
and Faloutsos [21] and use a Kolmogorov-Smirnov (KS) D-
statistic to measure the difference between distributions fG
and fG̃. For d = 1, the statistic is defined as

sup
x
|FG(x)− FG̃(x)|

where FG and FG̃ are the cumulative distribution functions
(cdf) for fG and fG̃. For d > 1, defining the cdf is not

straightforward, since there are 2d − 1 possibilities. In this
paper, we adopt Fasano and Franceschini’s computationally
efficient variant [10] of the KS D-statistic.

4.3 Algorithms
We compare Gscaler to state-of-art algorithms (for graph

sampling, generative models, and database scaling) that have
been widely used as baselines for comparison.

• In Random Walk with Escaping (RW), a starting node
v0 is chosen uniformly at random. Each step in the
random walk samples an unvisited neighbor uniformly
at random, and there is a probability 0.8 (following [21])
that the walk restarts at v0. If the walk reaches a dead
end, the walk restarts with a new v0.

• In Forest Fire (FF) [21], a v0 is similarly chosen. At
each step, first choose a positive integer y that is ge-
ometrically distributed with mean pf (1− pf ), and let
x = dy×ce, c ∈ [0, 1]. (We follow Leskovec and Falout-
sos and set pf = 0.7 and c = 1.) Pick uniformly at
random neighbors w1, . . . , wx that are not yet sam-
pled, then recursively repeat these steps at each wi.

• In Stochastic Kronecker Graph (SKG) [20], SKG first
trains a N1 by N1 matrix K1, where N1 is typically set
as 2. Then recursively multiply K1 through Kronecker
product. Thus, d multiplication of Kronecker product
results in a graph of Nd

1 nodes. In our experiment, we
use the Nd

1 closest to ñ as the target number ñ.

• UpSizeR was designed to synthetically scale a rela-
tional dataset by maintaining the degree distribution [33].
However, UpSizeR does not allow free choice of m̃. For
our experiments, we transform the graph to relational
tables so UpSizeR can scale it.

4.4 Datasets
We pick 2 real directed graphs from Stanford’s collection

of networks [24]. They are large enough that it makes sense
for scaling down, but small enough for global properties like
diameter to be determined in reasonable time. These two
graphs were also used by previous authors [20–22,25].

• Epinions (|V | = 75879, |E| = 508837) for the website
Epinions.com, where an edge (x, y) indicates user x
trusts user y.

• Slashdot is a website for technology-related news, where
users tag others as friend or foe. The graph contains
friend/foe links between the users of Slashdot. The
dataset Slashdot0811 (|V | = 77360, |E| = 828161) was
from November 2008.

Given the space constraint, we choose to compare more
properties for 2 graphs, instead of comparing fewer prop-
erties for more graphs.

5. RESULTS AND DISCUSSION
All experiments are done on a Linux machine with 128GB

memory and AMD Opteron 2.3GHz processor. For SKG,
we use the C++ implementation [24]. For UpSizeR, we
use the authors’ C++ implementation 1. For FF, RW and
Gscaler, we implemented them in Java.

These algorithms use the number of nodes n to specify
sample size or scale factor, so we define s = ñ/n. In our ex-
periments, we set s = 1

5
, 1

7.5
, 1

10
, 1

12.5
, 1

15
, 1

17.5
, 1

20
for scaling

down, and s = 2, 3, 4, 5, 6 for scaling up.
Gscaler allows the user to specify the number of edges

m̃. However, an m̃ that is arbitrarily small or arbitrarily

large will make it impossible for G̃ to be similar to G. To
be fair, we choose an m̃ for Gscaler that yields the best
results. We will revisit this issue in Sec.6.

For each s value, we run each algorithm 10 times (using
different seeds) on each dataset. The average of these 10
runs is then plotted as one data point.

5.1 Execution Time
For a fair comparison, we exclude the I/O time for all

algorithms.
Execution time for SKG has two parts: training time

and running time. SKG needs to train the graph initiator
matrix K1, where K1 is a 2 by 2 matrix in our case; K1

can be pre-computed. After K1 is trained, SKG uses K1 to
generate a graph with 2k nodes.

To get a better understanding of SKG’s time complexity,
we plot both training time and running time. SKG-Train
represents the time needed for training K1, while SKG-Run
represents the running time of graph generation given K1.

Fig.4 and Fig.5 show the execution time for all algorithms
using log scale.

For both datasets, SKG-Train is very large for training the
graph initiator K1. However, after K1 is trained, graph gen-
eration is fast (seconds), so SKG-Run is small. That aside,
Gscaler has the smallest execution time, which is faster
than SKG-Train by about 2 orders of magnitude, and faster
than RW,FF,UpSizeR by about 1 order of magnitude.

1http://www.comp.nus.edu.sg/∼upsizer/
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Figure 4: Execution time (log scale) for Slashdot.
FF and RW do not work for s > 1.
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Figure 5: Execution time (log scale) for Epinions.
FF and RW do not work for s > 1.

5.2 Theoretical Bounds of Degree Distribution
Before looking at the similarity comparison, we first show

theoretically that Gscaler performs well on varying m̃ and
ñ for indegree/outdegree distribution. To save space, we
just consider indegree distribution throughout this section.
The proof for the outdegree distribution is similar.

Theorem 3. Given original graph G’s indegree distribu-

tion is fin, and Gscaler scales G to G̃, where m̃ and ñ

scale by the same ratio s. Then, E[D(fin, f̃in)] = 0.

Proof. As explained in Sec.3.2, Gscaler scales Sin with
the following criterion:

E[ctS̃in(x)] = ctSin(x)× ñ
n

Now, consider the current scaled number of nodes |Ṽ | and

number of edges |Ẽ|. After node scaling,

E[|Ṽ |] = E[
∑
x

ctS̃in(x)] =
∑
x

E[ctS̃in(x)] =
∑
x

ctSin(x)× s

= n× s = ñ.

E[|Ẽ|] = E[
∑
x

ctS̃in(x)× x] =
∑
x

E[ctS̃in(x)× x]

=
∑
x

E[ctS̃in(x)]× x =
∑
x

ctSin(x)× s× x

=
∑
x

ctSin(x)× x× s = m× s = m̃.

Hence, no edge adjustment is expected in Sec.3.2. Thus,

∀x,E[f̃in(x)− fin(x)] = 0.

Consequently, E[D(fin, f̃in)] = 0.

However, a Gscaler user may want to have a G̃ with av-
erage degree different from G, i.e. m̃ and ñ scale by different
factors. In this case, Gscaler can still produce a similar de-
gree distribution with small and bounded error.

Theorem 4. Given an original graph G’s indegree distri-

bution is fin, and Gscaler scales G to G̃, where ñ = n× s,
m̃ = m× s× (1 + r) and r 6= 0. Then,

E[D(fin, f̃in)] ≤ 2m|r|
n× d∗

where d∗ is approximately the largest degree of G.

Proof. As shown in the proof of Theorem 3, after node

scaling, E[|Ṽ |] = n× s = ñ and E[|Ẽ|] = m× s 6= m̃.

Hence, edge adjustment is needed, as stated in Sec.3.2.
In total, we are expecting m × s × (1 + r) edges. Hence,
|m× rs| edges are expected to be added/removed. We refer
to ctS̃in(x) as ct(x) if there is no ambiguity.

Consider r > 0, so m× rs edges are to be added. This is
done by the edge adjustment operation as stated in Algo.2:
(i) ct(l) − −, ct(h) + +, (ii) l + +, h − −. The net effect is
to add h− l edges per adjustment.

Let dm be the maximum degree of G. We assume l is
initiated as 0, while h is initialized as dm.
Case ct(l) > 0 for all the first k adjustment:
Then Gscaler will add

dm, dm− 2, dm− 4 . . . , dm− [(k− 1) mod ddm
2
e]× 2 (20)

edges for the first k adjustments. Let Tk be the total number
of edges added by first k adjustments, then

Tk ≥
dm
2
× k (21)

Since m× rs edges are expected to be added, the expected
number of adjustments k satisfies

k ≤ m× rs
dm
2

=
2m× rs
dm

(22)

Moreover, each edge adjustment changes f̃in by

(i) decrementing 1
ñ

for some f̃in(xi), where xi <
dm
2

(ii) incrementing 1
ñ

for some f̃in(xj), where xj >
dm
2

Thus, the expected total decremental changes made to f̃in
is 1

ñ
× k. By Eq.22,

1

ñ
× k ≤ 1

ñ
× 2m× rs

dm
=

2m× rs
sn× dm

=
2mr

n× dm
(23)

Since D(fcorr, f̃corr) measures largest difference between the

cumulative function of fcorr, f̃corr. Hence, by Eq.23,

E[D(fcorr, f̃corr)] ≤
2mr

n× d∗ , where d
∗ = dm (24)

Case ∃lj , ct(lj) = 0. Assume at the ith adjustment, ct(l0) =
0 for some l0, where i is the smallest.
Then Gscaler shifts l to l0+1, and try to decrease ct(l0+1).
Assume ct(l0 + 1) > 0, then we can do ct(l0 + 1)−−.

1. l0 + 1 6= h: By Eq.20, the number of edges added at
ith step is dm − [(i − 1) mod d dm

2
e] × 2 − 1. Hence,

Ti = Ti−1 +dm−[(i−1) mod d dm
2
e]×2−1. By Eq.21,

Ti + 1 ≥ dm
2
× i (25)
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Then, Ti ≥ dm
2
× i− 1 = dm−1

2
× i+ ( i

2
− 1)

Since T1 = dm−1 ≥ dm−1
2

, then Ti ≥ dm−1
2
× i ∀i ∈ N

2. l0 + 1 = h: Then l will be reset to 0, and h will be
reset to dm, so the number of edges at ith adjustment
is obviously larger than dm−[(i−1) mod d dm

2
e]×2−1.

Hence, Eq.25 will hold as well.

Therefore, during the first k adjustments, if we encounter
w different l0, l1, . . . , lw−1, such that ct(lj) = 0, ∀0 ≤ j < w,
then by mathematical induction, one can still conclude that

Ti ≥
dm − w

2
× i.

Hence, let d∗ = dm−w and follow the proof after Eq.21; then

E[D(fcorr, f̃corr)] ≤ 2mr
n×d∗ , where d∗ is close to dm in general.

The proof for r < 0 is similar

5.3 Experimental Results
All figures in this section (except Figs.7, 9, 11,12) plot the

similarity measures (Sec. 4.2) comparing G and G̃, where

• the horizontal axis is scale factor s = ñ
n

;

• the vertical axis is KS D-statistic for indegree, outde-
gree and bidegree distributions;

• the vertical axis is absolute error for the other 5 prop-
erties (effective diameter, largest SCC ratio, etc.);

• the true value for all datasets’ graph properties are
provided above each figure;

• we choose m̃ to give best results for Gscaler; the
other algorithms do not allow a free choice of m̃.

We first look at scaling down for all the algorithms. As
mentioned in Sec.1, scaling down in GSP has an objective
that is different from graph sampling. However, we use
graph sampling algorithms for comparison because GSP is a
new problem, so there is no other algorithms for comparison
except UpSizeR and SKG.
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Figure 6: KS-D statistics for Indegree Distribution
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Figure 7: Indegree Distribution Plot
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Figure 8: KS-D statistics for Outdegree Distribution
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Figure 9: Outdegree Distribution Plot

5.3.1 Indegree Distribution
For the indegree distribution, Fig. 6 shows that both Gscaler

and UpSizeR perform very well for Slashdot, with error
< 0.01. For Epinions, UpSizeR has an error of 0.05 on
average, whereas Gscaler again has a small error < 0.01.

For more details, Fig. 7 plots the indegree distribution for
s = 0.2, where the x-axis is the indegree, and the y axis is
the ratio of nodes having that indegree. We only show the
plot up to indegree = 15, which covers more than 87% of
all nodes.

The plot shows that Gscaler and UpSizeR mimics G’s
indegree distribution very well. Although all algorithms pro-
duce power law shaped distributions, only UpSizeR and
Gscaler give a close fit for the empirical distribution.

5.3.2 Outdegree Distribution
For the outdegree distribution, Fig. 8 similarly shows that

both Gscaler and UpSizeR perform very well for Slashdot,
with error < 0.03 on average. For Epinions, UpSizeR has
an error of 0.05 on average, whereas Gscaler still has an
error < 0.01.

The outdegree distributions are plotted in Fig. 9. We ob-
serve that Gscaler and UpSizeR also closely match G’s
outdegree distribution. Again, although all algorithms pro-
duce power law shaped distributions, UpSizeR and Gscaler
give the best fit for the empirical outdegree distribution.

5.3.3 Bidegree Distribution
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Original Gscaler UpSizeR

SKG RW FF

Figure 11: Bidegree distribution for Slashdot

Original Gscaler UpSizeR

SKG RW FF

Figure 12: Bidegree distribution for Epinions

Even though UpSizeRmatches the empirical indegree and
outdegree distributions, it is not able to capture the bide-
gree distribution that describes the correlation between inde-
gree and outdegree. Such correlation is especially important
for social network graphs. For example, in Epinions, the
number of people he/she trusts and the number of people
who trust him/her are correlated. As shown in Fig.10, only
Gscaler captures such correlation very well.

For a detailed look at the bidegree distributions, we give
2-dimensional plots Fig. 11 and Fig. 12. We transform the
bidegree distribution to a k × k matrix B. Each cell i, j
represents the portion of nodes with bidegree (i, j). In other
words, B[i, j] = fbi(i, j). When visualizing B, we use a gray
scale intensity plot for cell i, j to indicate B[i, j]. The larger
fbi is, the darker the cell (i, j) is. In our case, we set k = 50
which covers more than 90% of total nodes.

Fig. 11 and Fig. 12 show indegree is positively correlated
to outdegree. For both Slashdot and Epinions, Gscaler
is the best algorithm in capturing this indegree/outdegree
correlation. We also observe that UpSizeR tends to have in-
degree and outdegree negatively correlated. SKG has very
concentrated and similar-shaped plots for both datasets. We
suspect this is because of the self-similar matrix operation,
Kronecker product. For FF , it captures the bidegree corre-
lation for Slashdot’s bidegree, but not for Epinions.
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5.3.4 Effective Diameter
Fig. 13 shows that, for Slashdot, Gscaler produces ex-

actly the real effective diameter; for Epinions, it produces
an effective diameter with an absolute error no larger than
1. Overall, Gscaler, FF , SKG are the best algorithms in
producing similar effective diameters.

5.3.5 Average Clustering Coefficient
For both datasets, Gscaler significantly reduces the er-

ror for average clustering coefficient. Fig. 14 shows that, for
Slashdot, the average error for the other algorithms are be-
tween 0.03 and 0.045. This corresponds to a relative error
of 60% to 90%. However, Gscaler only has an absolute
error 0.005 on average, which corresponds to a relative error
< 10%. Similarly, for Epinions, Gscaler also improves the
relative error from 70% to 10% on average.

5.3.6 Largest SCC Ratio
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Figure 15: Absolute Error for Largest SCC Ratio
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For largest SCC ratio, Fig. 15 shows that FF , UpSizeR,
and Gscaler have the best performance for Slashdot. For
Epinions, SKG is the best performing algorithm, whereas
Gscaler only loses to SKG by an error < 0.01.

Note that, Gscaler and FF are the best performing al-
gorithms which produce best similar largest SCC ratio for
both datasets on average.

5.3.7 Average Shortest Path Length
Fig. 16 shows that Gscaler is the best algorithm in pro-

ducing similar ASPL for the scaled graph.
For Slashdot, Gscaler has relative error < 10%, whereas

the second best performing algorithm UpSizeR has the av-
erage relative error 40%

For Epinions, Gscaler is the most stable and accurate
algorithm, with a consistent absolute error < 0.25. RW
performs well for large s, but does badly for small s.

5.3.8 Scaling Up
To save space, Fig.17 plots performance of both Slashdot

and Epinions for each graph property.
Similar to scaling down, Gscaler improves the accuracy

of indegree/outdegree/bidegree distribution significantly. For
effective diameter, Gscaler and SKG are the best perform-
ing algorithms. Gscaler is the best algorithm which pro-
duces the most accurate results for average clustering coef-
ficient, largest SCC ratio, and average shortest path length.

5.3.9 Summary of Comparisons
For indegree, outdegree and bidegree distributions, Gscaler

reduces the error from about 0.1 for the other algorithms to
about 0.01. This is expected since Gscaler uses fbi to con-

struct G̃, and agrees with the theoretical bound in Sec. 5.2.

Gscaler only uses Psub = {fbi, fcorr} to construct G̃, but
measures similarity to G with a larger set P of both local
and global properties listed in Sec. 4.1. The results show
that enforcing Psub suffices to induce similarity for P.

6. LIMITATION
Unlike the other algorithms, a user can choose both ñ and

m̃ for Gscaler. Table 5 illustrates Gscaler’s accuracy for
Slashdot, using different ñ and m̃.

However, Gscaler cannot guarantee similarity for arbi-
trary choices of ñ and m̃ — the error bound in Theorem 4
becomes loose for large |r|. For example, if n = 1000 and
m = 5000, but ñ = 2000 and m̃ = 500000, one cannot

expect to find any G̃ similar to G.
There is a Densification Law [23] that says, ifG1, G2, G3, . . . ,

are snapshots of a growing graph, then

E(Gi) ∝ V (Gi)
α for some 1 ≤ α ≤ 2

If G̃ follows such a law, then (m̃/m) = (ñ/n)α. If ñ = sn
and m̃ = (1 + r)sm, then

m̃

ñα
=

(1 + r)sm

(sn)α
=

m

nα
1 + r

s(α−1)
,

Therefore, for G̃ to follow the Densification Law, the user
must choose r > 0 for s > 1, and r < 0 for s < 1. In other
words, m̃ > mñ/n for ñ/n > 1, and m̃ < mñ/n for ñ/n < 1.

Note that modeling the evolution of n and m is an inter-
esting problem that is relevant, but orthogonal to GSP.

Slashdot Effective Largest ASPL CC
Diameter SCC

n = 77360 m = 828161 5 0.909 3.74 0.052
ñ = 4421 m̃ = 32179 5 0.916 3.59 0.058
ñ = 4421 m̃ = 33831 5 0.916 3.52 0.053
ñ = 4421 m̃ = 34399 5 0.916 3.62 0.058
ñ = 15472 m̃ = 141583 5 0.916 3.57 0.053
ñ = 15472 m̃ = 144895 5 0.916 3.51 0.060
ñ = 15472 m̃ = 147849 5 0.916 3.45 0.059
ñ = 154720 m̃ = 1669903 5 0.917 3.71 0.055
ñ = 154720 m̃ = 1671288 5 0.917 3.71 0.062
ñ = 154720 m̃ = 1672057 5 0.917 3.70 0.062
ñ = 386800 m̃ = 4182213 5 0.917 3.89 0.058
ñ = 386800 m̃ = 4186353 5 0.917 3.89 0.048
ñ = 386800 m̃ = 4190908 5 0.917 3.89 0.053

Table 5: Gscaler accuracy for different ñ and m̃.

7. CONCLUSION
We considered the problem of synthetically scaling a given

graph. Our solution Gscaler first breaks G into pieces,
scales them, then merges them using the degree and corre-
lation functions from G.

Different from previous approaches, Gscaler gives user
a choice for ñ and m̃. We proved that Gscaler does not
produce multiple edges between two nodes, and has a small

distribution error even when the average degree of G̃ differs
from the original graph G.

Experiments with 2 well-known real datasets show that

the G̃ constructed by Gscaler is more similar to G for
most properties than random walk, forest fire, UpSizeR and
Stochastic Kronecker Graph.

Our current work aims to extend Gscaler to scale rela-
tional databases by representing the tables as graphs.
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ABSTRACT
The work on large-scale graph analytics to date has largely focused
on the study of static properties of graph snapshots. However, a
static view of interactions between entities is often an oversimplifi-
cation of several complex phenomena like the spread of epidemics,
information diffusion, formation of online communities, and so on.
Being able to find temporal interaction patterns, visualize the evolu-
tion of graph properties, or even simply compare snapshots across
time, adds significant value in reasoning over graphs. However,
due to the lack of underlying data management support, an ana-
lyst today has to manually navigate the added temporal complexity
of dealing with large evolving graphs. In this paper, we present a
system, called Historical Graph Store, that enables users to store
large volumes of historical graph data and to express and run com-
plex temporal graph analytical tasks against that data. It consists of
two key components: (1) a Temporal Graph Index (TGI), that com-
pactly stores large volumes of historical graph evolution data in a
partitioned and distributed fashion – TGI also provides support for
retrieving snapshots of the graph as of any timepoint in the past or
evolution histories of individual nodes or neighborhoods; and (2) a
Temporal Graph Analysis Framework (TAF), for expressing com-
plex temporal analytical tasks and for executing them in an efficient
and scalable manner using Apache Spark. Our experiments demon-
strate our system’s efficient storage, retrieval and analytics across a
wide variety of queries on large volumes of historical graph data.

1. INTRODUCTION
Graphs are useful in capturing behavior involving interactions

between entities. Several processes are naturally represented as
graphs – social interactions between people, financial transactions,
biological interactions among proteins, geospatial proximity of in-
fected livestock, and so on. Many problems based on such graph
models can be solved using well-studied algorithms from graph
theory or network science. Examples include finding driving routes
by computing shortest paths on a network of roads, finding user
communities through dense subgraph identification in a social net-
work, and many others. Numerous graph data management sys-
tems have been developed over the last decade, including special-

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

ized graph database systems like Neo4j, Titan, etc., and large-scale
graph processing frameworks such as GraphLab [27], Pregel [29],
Giraph, GraphX [12], GraphChi [24], etc.

However much of the work to date, especially on cloud-scale
graph data management systems, focuses on managing and ana-
lyzing a single (typically, current) static snapshot of the data. In
the real world, however, interactions are a dynamic affair and any
graph that abstracts a real-world process changes over time. For in-
stance, in online social media, the friendship network on Facebook
or the “follows” network on Twitter change steadily over time,
whereas the “mentions” or the “retweet” networks change much
more rapidly. Dynamic cellular networks in biology, evolving cita-
tion networks in publications, dynamic financial transactional net-
works, are few other examples of such data. Lately, we have seen
an increasing merit in dynamic modeling and analysis of network
data to obtain crucial insights in several domains such as cancer
prediction [38], epidemiology [15], organizational sociology [16],
molecular biology [9], information spread on social networks [26]
amongst others.

In this work, our focus is on providing the ability to analyze and
to reason over the entire history of the changes to a graph. There are
many different types of analyses of interest. For example, an an-
alyst may wish to study the evolution of well-studied static graph
properties such as centrality measures, density, conductance, etc.,
over time. Another approach is through the search and discovery of
temporal patterns, where the events that constitute the pattern are
spread out over time. Comparative analysis, such as juxtaposition
of a statistic over time, or perhaps, computing aggregates such as
max or mean over time, possibly gives another style of knowledge
discovery into temporal graphs. Most of all, a primitive notion of
just being able to access past states of the graphs and performing
simple static graph analysis, empowers a data scientist with the ca-
pacity to perform analysis in arbitrary and unconventional patterns.

Supporting such a diverse set of temporal analytics and query-
ing over large volumes of historical graph data requires addressing
several data management challenges. Specifically, there is a want
of techniques for storing the historical information in a compact
manner, while allowing a user to retrieve graph snapshots as of any
time point in the past or the evolution history of a specific node
or a specific neighborhood. Further, the data must be stored and
queried in a distributed fashion to handle the increasing scale of the
data. There is also a need for an expressive, high-level, easy-to-use
programming framework that will allow users to specify complex
temporal graph analysis tasks, while ensuring those tasks can be
executed efficiently in a data-parallel fashion across a cluster.

In this paper, we present a graph data management system, called
Historical Graph Store (HGS), that provides an ecosystem for man-
aging and analyzing large historical traces of graphs. HGS con-
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sists of two key distinct components. First, the Temporal Graph
Index (TGI), is an index that compactly stores the entire history of
a graph by appropriately partitioning and encoding the differences
over time (called deltas). These deltas are organized to optimize the
retrieval of several temporal graph primitives such as neighborhood
versions, node histories, and graph snapshots. TGI is designed to
use a distributed key-value store to store the partitioned deltas, and
can thus leverage the scalability afforded by those systems (our im-
plementation uses Apache Cassandra1 key-value store). TGI is a
tunable index structure, and we investigate the impact of tuning
the different parameters through an extensive empirical evaluation.
TGI builds upon our prior work on DeltaGraph [21], where the
focus was on retrieving individual snapshots efficiently; TGI ex-
tends DeltaGraph to support efficient retrieval of subgraphs instead
of only full snapshots, retrieval of histories of nodes or subgraphs
over past time intervals, and features a highly scalable design over
DeltaGraph.

The second component of HGS is a Temporal Graph Analy-
sis Framework (TAF), which provides an expressive framework to
specify a wide range of temporal graph analysis tasks. TAF is based
on a novel set of temporal graph operands and operators that en-
able parallel execution of the specified tasks at scale in a cluster
environment. The execution engine is implemented on Apache
Spark [40], a large-scale in-memory cluster computing framework.

Outline: The rest of the paper is organized as follows. In Section 2,
we survey the related work on graph data stores, temporal indexing,
and other topics relevant to the scope of the paper. In Section 3,
we provide a sketch of the overall system, including key aspects
of the underlying components. We then present TGI and TAF in
detail in Sections 4 and 5, respectively. In Section 6, we provide an
empirical evaluation, and and conclude with a summary and a list
of future directions in Section 7.

2. RELATED WORK
In the recent years, there has been much work on graph storage

and graph processing systems and numerous systems have been de-
signed to address various aspects of graph data management. Some
examples include Neo4J, Titan2, GBase [19], Pregel [29], Giraph,
GraphX [12], GraphLab [27], and Trinity [36]. These systems use
a variety of different models for representation, storage, and query-
ing, and there is a lack of standardized or widely accepted models
for the same. Most graph querying happens through programmatic
access to graphs in languages such as Java, Python or C++. Graph
libraries such as Blueprints3 provide a rich set of implementations
for graph theoretic algorithms. SPARQL [33] is a language used
to search patterns in linked data. It works on an underlying RDF
representation of graphs. T-SPARQL [13] is a temporal extension
of SPARQL. He et al. [17], provide a language for finding sub-
graph patterns using a graph as a query primitive. Gremlin4 is a
graph traversal language over the property graph data model, and
has been adopted by several open-source systems. For large-scale
graph analysis, perhaps the most popular framework is the vertex-
centric programming framework, adopted by Giraph, GraphLab,
GraphX, and several other systems; there have also been several
proposals for richer and more expressive programming frameworks
in recent years. However, most of these prior systems largely focus
on analyzing a single snapshot of the graph data, with very little
support for handling dynamic graphs, if any.
1https://cassandra.apache.org
2http://thinkaurelius.github.io/titan/
3https://github.com/tinkerpop/blueprints/wiki
4https://github.com/tinkerpop/gremlin

A few recent papers address the issues of storage and retrieval in
dynamic graphs. In our prior work, we proposed DeltaGraph [21],
an index data structure that compactly stores the history of all
changes in a dynamic graph and provides efficient snapshot re-
construction. G* [25] stores multiple snapshots compactly by uti-
lizing commonalities. ImmortalGraph [30] is an in-memory sys-
tem for processing dynamic graphs, with the objectives of shared
storage and computation for overlapping snapshots. Ghrab et
al. [11] provide a system of network analytics through labeling
graph components. Gedik et al. [10], describe a block-oriented and
cache-enabled system to exploit spatio-temporal locality for solv-
ing temporal neighborhood queries. Koloniari et al. [23] also utilize
caching to fetch selective portions of temporal graphs they refer to
as partial views. LLAMA [28] uses multiversioned arrays to rep-
resent a mutating graph, but their focus is primarily on in-memory
representation. There is also recent work on streaming analytics
over dynamic graph data [8, 7], but it typically focuses on analyz-
ing only the recent activity in the network (typically over a sliding
window).

Temporal graph analytics is an area of growing interest. Evolu-
tion of shortest paths in dynamic graphs has been studied by Huo
et al. [18], and Ren et al. [34]. Evolution of community structures
in graphs has been of interest as well [5, 14]. Change in page rank
with evolving graphs [3], and the study of change in centrality of
vertices, path lengths of vertex pairs, etc. [32], also lie under the
larger umbrella of temporal graph analysis. Ahn et al. [1] pro-
vide a taxonomy of analytical tasks over evolving graphs. Barrat
et al. [4], provide a good reference for studying several dynamic
processes modeled over graphs. Our system significantly reduces
the effort involved in building and deploying such analytics over
large volumes of graph data.

Temporal data management for relational databases was a topic
of active research in the 80s and early 90s. Snapshot index [39]
is an I/O optimal solution to the problem of snapshot retrieval for
transaction-time databases. Salzberg and Tsotras [35] present a
comprehensive survey of temporal data indexing techinques, and
discuss two extreme approaches to supporting snapshot retrieval
queries, referred to as the Copy and Log approaches. While the
copy approach relies on storing new copies of a snapshot upon ev-
ery point of change in the database, the log approach relies on stor-
ing everything through changes. Their hybrid is often referred to as
the Copy+Log approach. We omit a detailed discussion of the work
on temporal databases, and refer the interested reader to a represen-
tative set of references [37, 31, 35].Other data structures, such as
Interval Trees [2] and Segment trees [6] can also be used for stor-
ing temporal information. Temporal aggregation in scientific ar-
ray databases is another related topic of interest, but the challenges
there are significantly different. Kaufmann et al. [20] propose an
in-memory index in SAP HANA that addresses temporal aggrega-
tion, joins, and snapshot construction. The applicability of tem-
poral relational data management techniques to graphs is restricted
due to lack of (efficient) support for graph specific retrieval such
as fetching neighborhoods, or histories of nodes over time. Our
work in this paper focuses on techniques for a wide variety of tem-
poral graph retrieval and analysis on entire graph histories that are
primarily stored on disk.

3. OVERVIEW
In this section, we introduce key aspects related to HGS. We

begin with the data model, followed by the key challenges and con-
cluding with an overview of the system.
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Figure 1: The scope of temporal graph analytics can be represented
across two different dimensions - time and entity. The chart lists re-
trieval tasks (black), graph operations (red), example queries (ma-
genta) at different granularities of time and entity size.

3.1 Data Model
Under a discreet notion of time, a time-evolving graph GT =

(V T ,ET ) may be expressed as a collection of graph snapshots over
different time points, {G0 = (V 0,E0),G1, . . . ,Gt}. The vertex set
V i for a snapshot consists of a set of vertices (nodes), each of which
has a unique identifier (constant over time), and an arbitrary num-
ber of key-value attribute pairs. The edge sets E i consist of edges
that each contain references to two valid nodes in the correspond-
ing vertex set V i, information about the direction of the edge, and
an arbitrary list of key-value attribute pairs. A temporal graph can
also be equivalently described by a set of changes to the graph over
time. We call an atomic change at a specific timepoint in the graph
an event. The changes could be structural, such as the addition or
the deletion of nodes or edges, or be related to attributes such as
an addition or a deletion or a change in the value of a node or an
edge attribute. For instance, a new user joining the Facebook so-
cial network corresponds to an event of node creation; connecting
to another user is an event of edge creation; changing location or
posting an update are events of change and creation of attribute val-
ues, respectively. These approaches specified here as well as cer-
tain hybrids have been used in the past for the physical and logical
modeling of temporal data. Our approach to temporal processing
in this paper is best described using a node-centric logical model,
i.e., the historical graph is seen as a collection of evolving vertices
over time; the edges are considered as attributes of the nodes. This
abstraction helps in our design of distributed storage of the graph
and parallel execution of the analytical tasks.

3.2 Challenges
The nature of data management tasks in historical graph analyt-

ics can be categorized based on the scope of analysis using the dual
dimensions of time and entity as illustrated with examples in Fig-
ure 1. The temporal scope of an analysis task can range from a
single point in time to a long interval; the entity scope can range
from a single node to the entire graph. While the diversity of an-
alytical tasks provides a potential for a rich set of insights from
historical graphs, it also poses several challenges in constructing a
system that can perform those tasks. To the best of our knowledge,
none of the existing systems address a majority of those challenges
that are described below:

Compact storage with fast access: An natural tradeoff between
index size and access latencies can be seen in the Log and Copy ap-
proaches for snapshot retrieval. Log requires minimal information

to encode the graph’s history, but incurs large reconstruction costs.
Copy, on the other hand, provides direct access, but at the cost of
excessive storage. The desirable index should consume space of
the order of Log index but provide near direct access like Copy.

Time-centric versus entity-centric indexing: For point access
such as past snapshot retrieval, a time-centric indexing such as
DeltaGraph or Copy+Log is suitable. However, for version re-
trieval tasks such as retrieving a node’s history, entity-centric in-
dexing is the correct choice. Neither of the indexing approaches,
however, are feasible in the opposite scenarios. Given the diver-
sity of access needs, we require an index that works well with both
styles of lookup at the same time.

Optimal granularity of storage for different queries: Query la-
tencies for a graph also depend on the size of chunks in which the
data is indexed. While larger granularities of storage incur waste-
ful data read for “node retrieval”, a finely chunked graph storage
would mean higher number of lookups and aggregation for a 2-
hop neighborhood lookup. The physical and logical arrangement
of data should take care of access needs at all granularities.

Coping with changing topology in a dynamic graph: It is evi-
dent that graph partitioning is inevitable in the storage and pro-
cessing of large graphs. However, finding the appropriate strategy
to maintain workable partitioning on a constantly changing graph
is another challenge while designing a historical graph index.

Systematically expressing temporal graph analytics: A plat-
form for expressing a wide variety of historical graph analytics
requires an appropriate amalgam of temporal logic and graph
theory. Additionally, utilizing a vast body of existing tools in
network science is an engineering challenge and opportunity.

Appropriate abstractions for distributed, scalable analytics:
Parallelization is key to scale up analytics for large graph datasets.
It is essential that the underlying data-representations and operators
in the analytical platform be designed for parallel computing.

3.3 System Overview
Figure 2 shows the architecture of our proposed Historical Graph

Store. It consists of two main components:

Temporal Graph Index (TGI) records the entire history of a
graph compactly while enabling efficient retrieval of several tempo-
ral graph primitives. It encodes various forms of differences (called
deltas) in the graph, such as atomic events, changes in subgraphs
over intervals of time, etc. It uses specific choices of graph parti-
tioning, data replication, temporal compression and data placement
to optimize the graph retrieval performance. TGI uses Cassandra, a
distributed key-value store for the deltas. In Section 4, we describe
the design details of TGI and the access algorithms.

Temporal Graph Analytics Framework (TAF) provides a tem-
poral node-centric abstraction for specifying and executing com-
plex temporal network analysis tasks. It helps the user analyze
the history of the graph by means of simple yet expressive tem-
poral operators. The abstraction of temporal graph through a set
of (temporal) nodes (SoN) allows the framework to achieve compu-
tational scalability through distribution of tasks by node and time.
TAF is built on top of Apache Spark to utilize its support for scal-
able, in-memory, cluster computation; TAF provides an option to
utilize GraphX for static graph computation. We provide a Java
and Python based library to specify the retrieval, computation and
analysis tasks. In Section 5, we describe the details of the data and
computational models, query processing, parallel data fetch aspects
of the system, the analytical library along with a few examples.
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Figure 2: System Overview

4. TEMPORAL GRAPH INDEX
In this section, we investigate the issue of indexing temporal

graphs. First, we introduce a delta framework to define any tempo-
ral index as a set of different changes or deltas. Using this frame-
work, we are able to qualitatively compare the access costs and
sizes of different alternatives for temporal graph indexing, includ-
ing our proposed approach. We then present the Temporal Graph
Index (TGI), that stores the entire history of a large evolving net-
work in the cloud, and facilitates efficient parallel reconstruction
for different graph primitives. TGI is a generalization of both en-
tity and time-based indexing approaches and can be tuned to suit
specific workload needs. We claim that TGI is the minimal index
that provides efficient access to a variety of primitives on a his-
torical graph, ranging from past snapshots to versions of a node
or neighborhood. We also describe the key partitioning strategies
instrumental in scaling to large datasets across a cloud storage.

4.1 Preliminaries
We start with a few preliminary definitions that help us formalize

the notion of the delta framework.

DEFINITION 1 (STATIC NODE). A static node refers to the
state of a vertex in a network at a specific time, and is defined as a
set containing: (a) node-id, denoted I (an integer), (b) an edge-list,
denoted E (captured as a set of node-ids), (c) attributes, denoted A,
a map of key-value pairs.

A static edge is defined analogously, and contains the node-ids
for the two endpoints and the edge direction in addition to a map of
key-value pairs. Finally, a static graph component refers to either a
static edge or a static node.

DEFINITION 2 (DELTA). A Delta (∆) refers to either: (a) a
static graph component (including the empty set), or (b) a differ-
ence, sum, union or intersection of two deltas.

Such a definition of delta helps express the change in a wider con-
text than merely difference of graph states at two points. It helps us
articulate several temporal graph indexes including TGI and Delta-
Graph in a single framework.

DEFINITION 3 (CARDINALITY AND SIZE). The cardinality
and the size of a delta are the unique and total number of static
node or edge descriptions within it, respectively.

DEFINITION 4 (∆ SUM). A sum (+) over two deltas, ∆1 and
∆2, i.e., ∆s = ∆1 +∆2 is defined over graph components in the two
deltas as follows: (1) ∀gc1 ∈ ∆1, if ∃gc2 ∈ ∆2 s.t. gc1.I = gc2.I,
then we add gc2 to ∆s, (2) ∀gc1 ∈ ∆1 s.t. @gc2 ∈ ∆2 s.t. gc1.I =
gc2.I, we add gc1 to ∆s, and (3) analogously the components
present only in ∆2 are added to ∆s.

Note that: ∆1 + ∆2 = ∆2 + ∆1 is not necessarily true due the
order of changes. We also note that: ∆1 + /0 = ∆1, and (∆1 +∆2)+
∆3 = ∆1 +(∆2 +∆3). Analogously, difference(-) is defined as a set
difference over different components of the two deltas. ∆1−φ =∆1
and ∆1 − ∆1 = φ , are true, while, ∆1 − ∆2 = ∆2 − ∆1, does not
necessarily hold.

DEFINITION 5 (∆ INTERSECTION). An intersection of two
deltas is defined as a set intersection over the the components of
two deltas. ∆1 ∩ φ = φ , is true for any delta. Similarly, union of
two deltas ∆∪ = ∆1 ∪∆2, consists of all elements from ∆1 and ∆2.
The following is true for any delta: ∆1∪φ = ∆1.

Next we discuss and define some specific types of deltas:

DEFINITION 6 (EVENT). An event is the smallest change that
happens to a graph, i.e., addition or deletion of a node or an edge,
or a change in an attribute value. An event is described around
one time point. As a delta, an event concerning a graph component
c, at time point te, is defined as the difference of state of c at and
before te, i.e., ∆event(c, te) = c(te)− c(te−1).

DEFINITION 7 (EVENTLIST). An eventlist delta is a chrono-
logically sorted set of event deltas. An eventlist’s scope may be
defined by the time duration, (ts, te], during which it defines all the
changes that happened to the graph.

DEFINITION 8 (EVENTLIST PARTITION). An eventlist pari-
tition delta is is a chronologically sorted set of event deltas per-
taining to a set of nodes, P, over a given time duration, (ts, te].

DEFINITION 9 (SNAPSHOT). A snapshot, Gta is the state of a
graph G at a time point ta. As a delta, it is defined as the difference
of the state of the graph at ta from an empty set, ∆snapshot(G, ta) =
G(ta)−G(−∞).

DEFINITION 10 (SNAPSHOT PARTITION). A snapshot parti-
tion is a subset of a snapshot. It is identified by a subset P of all
nodes in graph, G at time, ta. It consists of all nodes in G at ta and
all the edges whose at least one end-point lies in P at time, ta.

4.2 Prior Techniques
The prior techniques for temporal graph indexing use changes

or differences in various forms to encode time-evolving datasets.
We can express them in the ∆-framework as follows. The Log in-
dex is equivalent to a set of all event deltas (equivalently, a single
eventlist delta encompassing the entire history). The Copy+Log
index can be represented as combination of: (a) a finite number
of distinct snapshot deltas, and (b) eventlist deltas to capture the
change between successive snapshots. Although we are not aware
of a specific proposal for a vertex-centric index, however, a natural
approach would be to maintain a set of eventlist partition deltas,
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one for each node (with edge information replicated with the end-
points). The DeltaGraph index, proposed in our prior work, is a
tunable index with several parameters. For a typical setting of pa-
rameters, it can be seen as equivalent to taking a Copy+Log index,
and replacing the snapshot deltas in it with another set of deltas
constructed hierarchically as follows: for every k successive snap-
shot deltas, replace them with a single delta that is the intersection
of those deltas and a set of difference deltas from the intersection
to the original snapshots, and recursively apply this till you are left
with a single delta.

Table 1 estimates the cost of fetching different graph primitives
as the number and the cumulative size of deltas that need to be
fetched for the different indexes. The first column shows an esti-
mate of index storage space, which varies considerably across the
techniques. For proofs, please refer to the extended version [22].

4.3 Temporal Graph Index: Definition
Given the above formalism, a Temporal Graph Index for a graph

G over a time period T = [0, tc] is described by a collection of dif-
ferent deltas as follows:

(a) Eventlist Partitions: A set of eventlist partition deltas, {Et p},
where Et p captures the changes during the time interval t be-
longing to partition p.

(b) Derived Snapshot Partitions: Consider r distinct time points,
ti, where 1 ≤ i ≤ r, ti ∈ T , For each ti, we consider l parti-
tion deltas, Pi

j, 1 < j < l, such that ∪ jPi
j = Gti . There exists a

function that maps any node-id(I) in Gti to a unique partition-
id(Pi

j), fi : I→ Pi
j. With a collection of Pi

j over T as leaf nodes,
we construct a hierarchical tree structure where a parent is the
intersection of children deltas. The difference of each parent
from its child delta is called as a derived snapshot partition and
is explicitly stored. Note that Pi

j are not explicitly stored. This
is the same as DeltaGraph, with the exception of partitioning.

(c) Version Chain: For all nodes N in the graph G, we maintain a
chronologically sorted list of pointers to all the references for
that node in the delta sets described above (a and b). For a node
I, this is called a version chain (denoted VCI).

In short, the TGI stores deltas or changes in three different forms,
as follows. The first one is the atomic changes in a chronological
order through eventlist partitions. This facilitates direct access to
the changes that happened to a part or whole of the graph at speci-
fied points in time. Secondly, the state of nodes at different points
in time is stored indirectly in form of the derived snapshot partition
deltas. This facilitates direct access to the state of a neighborhood
or the entire graph at a given time. Thirdly, a meta index stores
node-wise pointers to the list of chronological changes for each
node. This gives us a direct access to the changes occurring to
individual nodes. Figure 3(a) shows the arrangement of eventlist,
snapshot and derived snapshot partition deltas. Figure 3(b) shows
a sample version chain.

TGI utilizes the concept of temporal consistency which was opti-
mally utilized by DeltaGraph. However, it differs from DeltaGraph
in two major ways. First, it uses a partitioning for eventlists, snap-
shots or deltas instead of large monolithic chunks. Additionally,
it maintains a list of version chain pointers for each node. The
combination of these two novelties along with DeltaGraph’s tem-
poral compression generalizes the notion of entity-centric and time-
centric indexing approaches in an efficient way. This can be seen by
the qualitative comparison shown in Table 1 as well as empirical re-
sults in Section 6. Note that the particular design of TGI in the form
of eventlist partitions and deltas, and version chain is not equiva-
lent to two separate indexes, one with snapshots and eventlists and
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Figure 3: Temporal Graph Index representation: (a) TGI deltas par-
titions - eventlists, snapshots and derived snapshots. The (dashed)
bounded deltas are not stored; (b) Version Chains.

the other with chronologically organized events per node. For in-
stance, the latter is fairly inefficient to fetch temporal subgraphs or
neighborhoods over time intervals.

4.4 TGI: Design and Architecture
In the previous subsection, we presented the logical description

of TGI. We now describe the strategies for physical storage on a
cloud which enables high scalability. In a distributed index, we
desire that all graph retrieval calls achieve maximum paralleliza-
tion through equitable distribution. A distribution strategy based on
pure node-based key is good idea for snapshot style access, how-
ever, it is bad for a subgraph history style of access. A pure time-
based key strategy on the other hand, has complementary qualities
and drawbacks. An important related challenge for scalability is
dealing with two different skews in a temporal graph dataset – tem-
poral and topological. They refer to the uneven density of graph
activity over time and the uneven edge density across regions of
the graph, respectively. Another important aspect to note is that for
a retrieval task, it is desirable that all the deltas needed for a fetch
operation that are present on a particular machine be proximally
located to minimize latency of lookups5. Based on the above con-
straints and desired properties, we describe the physical layout of
TGI as follows:

1. The entire history of the graph is divided into time spans, keep-
ing the number of changes to the graph consistent across differ-
ent time spans, ft : e.time→ tsid, where e is the event and tsid
is the unique identifier for the time span.

2. A graph at any point is horizontally partitioned into a fixed num-
ber of horizontal partitions based upon a random function of
the node-id, fh : nid→ sid, where nid is the node-id and sid is
unique identifier of for the horizontal partition.

3. The partition deltas (including eventlists) are stored as a key-
value pairs, where the delta-key is composed of
{tsid,sid,did, pid}, where did is a delta-id, and pid is the
partition-id of the partition.

4. The placement-key is defined as a subset of the composite deltas
key described above, as {tsid,sid}, which defines the chunks in
which data is placed across a set of machines on a cluster. A
combination of the tsid and sid ensure that a large fetch task,
whether snapshot or version oriented, seeks data distributed
across the cluster and not just one machine.

5In general, this depends on the underlying storage mechanism.
The physical placement of deltas is irrelevant for an in-memory
store, but significant for an on-disk store due to seek times.

69



Index Snapshot Static Vertex Vertex versions 1-hop 1-hop Versions
Size ∑∆ |∆| ∑∆ 1 ∑∆ |∆| ∑∆ 1 ∑∆ |∆| ∑∆ 1 ∑∆ |∆| ∑∆ 1 ∑∆ |∆| ∑∆ 1

Log |G| |G| |G|
|E| |G| |G|

|E| |G| |G|
|E| |G| |G|

|E| |G| |G|
|E|

Copy |G|2 |S| 1 |S| 1 |S||G| |G| |S| 1 |S||G| |G|
Copy+Log |G|2

|E| |S|+ |E| 2 |S|+ |E| 2 |G| |G|
|E| |S|+ |E| 2 |G| |G|

|E|
Node Centric 2|G| 2.|G| |N| |C| 1 |C| 1 |R|.|V | |R| |R|.|V | |R|
DeltaGraph |G|(h+1) h.|S|+ |E| 2h h.|S|+ |E| 2h |G| |G|

|E| h.(|S|+ |E|) 2h |G| |G|
|E|

TGI |G|(2h+3) h.|S|+ |E| 2h h.|S|
p + |E|

p 2h |V |(1+ |S|
p ) |V |+1 h.(|S|+|E|)

p 2h |V |(1+ |S|
p ) |V |+1

Table 1: Comparison of access costs for different retrieval queries and index storage for various temporal indexes. |G|=number of changes
in the graph; |S|=size of a snapshot; h = height and |E|= eventlist size; |V |=number of changes to a node; |R|=numbers of neighbors of a
node; p= number of partitions in TGI. The metrics used are, sum of delta cardinalities (∑∆ |∆|) and number of deltas (∑∆ 1).

5. The partitioned deltas are clustered by the delta key. The given
order of delta-key along with the placement-key implies that all
partitions of a delta are stored contiguously, which makes it ef-
ficient to scan and read all partitions belonging to a delta in a
snapshot query. Also, if the order of did and pid is reversed, it
makes fetching a partition across different deltas more efficient.

Implementation and Architecture: TGI uses Cassandra for its
delta storage as well as metadata regarding partitioning, time-
spans, etc. TGI consists of a Query Manager (QM) is responsi-
ble for planning, dividing and delegating the query to one or more
Query Processors (QP). Multiple QPs query the datastore in paral-
lel and process the raw deltas into the required result. Depending
on the query specification, the distributed result is either aggregated
at a particular QP (the QM) or returned to the client which made the
request without aggregation. An Index Manager is responsible for
the construction and maintenance activities of the index. We omit
further details and refer the reader to the extended version [22].

4.5 Dynamic Graph Partitioning
Partitioning of the deltas is an essential aspect of TGI and pro-

vides cheaper access to subgraph elements when compared to Delt-
aGraph or similar indexes. The two traditional approaches to parti-
tioning a static graph are random (node-id hash-based) or locality-
based (min-cut, max-flow) partitioning. Random partitioning is
simpler and involves minimal bookkeeping. However, since it loses
locality, it is unsuitable for neighborhood-level granularity access.
Locality-aware partitioning, on the other hand, preserves locality
but incurs extra bookkeeping in form of a {node-id:partition-id}
map. TGI is designed to work with either configuration as desired,
as well as different partition size specifications. TGI also supports
replication of edge-cuts for further speed up of 1-hop neighbor-
hoods. It uses a separate auxiliary delta partition besides each delta
partition to store the replication, thereby preventing extra read cost
for snapshot or node centric queries. More details on this can be
found in the extended manuscript.

Locality-aware partitioning, however, faces an additional chal-
lenge with time-evolving graphs. With the change in size and topol-
ogy of a graph, a partitioning deemed good (with respect to local-
ity) at an instant may cease to be good at a later time. A probable
approach of frequent repartitioning over time would maintain par-
titioning quality, but leads to excessive amounts of bookkeeping,
which in turn leads to degradation of performance while accessing
different node or neighborhood versions.

Our approach of dealing with this dilemma is described as fol-
lows. For a time-evolving graph, G(t), we update the partitioning
once at the beginning of each time span. The partitioning valid dur-
ing a time-span τ , is decided as the collectively best partitioning
for the graph during time τ , Gτ . Now, the best-suited partition-

ing for a graph over a time-interval Gτ is performed by projecting
it to a static graph using a function, Ω(Gτ ), followed by a static-
graph partitioning. Ω could be defined in various ways, depending
on the best-deemed interpretation of a representative static graph.
Any definition, however, must retain all and only the nodes that
appeared in Gτ . In TGI, the default choice of Ω is called Union-
Mean and includes all edges that appeared in Gτ with the edge-
weights computed as a function of time-fraction of existence. We
refer the reader to the extended manuscript for further details on
different choices of Ω, contrast of this technique with other alter-
natives, and comments on the associated problem of finding the
appropriate boundaries of time-spans.

4.6 Fetching Graph Primitives
We briefly describe how the different types of retrieval queries

are executed. The details of the algorithms can be found in the
extended version of the paper.

Snapshot Retrieval: In snapshot retrieval, the state of a graph at a
time point is retrieved. Given a time ts, the query manager locates
the appropriate time span T such that ts ∈ T , within which, it figures
out the path from the root of the TGI to the leaf closest to the given
time point. All the snapshot deltas, ∆s1,∆s2, . . . ,∆sm, (i.e., all the
corresponding partitions) along that path from root to the leaf, and
the eventlists from the leaf node to the time point, ∆e1,∆e2, . . . ,∆en
are fetched and merged appropriately as: ∑

m
i=1 ∆si +∑

n
i=1 ∆ei (no-

tice the order). This is performed across different query processors
covering the entire set of horizontal partitions. This is conceptually
similar to the DeltaGraph snapshot reconstruction with the addition
of the aspect of partitions.

Node’s history: Retrieving a node’s history during time interval,
[ts, te) involves finding the state of the graph at point ts, and all
changes during the time range (ts, te). The first one is done in a
similar manner to snapshot retrieval except the fact that we look up
only a specific delta partition in a specific horizontal partition, that
the node belongs to. The second part happens through fetching the
node’s version chain to determine its points of changes during the
given range. The respective eventlists are fetched and filtered for
the given node.

k-hop neighborhood (static): In order to retrieve the k-hop neigh-
borhood of a node, we can proceed in two possible ways. One of
them is to fetch the whole graph snapshot and filter the required
subgraph. The other is to fetch the given node, and then determine
its neighbors, fetch them, and recurse. It is easy to see that the per-
formance of the second method will deteriorate fast with growing
k. However for lower values, typically k≤ 2, the latter is faster or at
least as good, especially if we are using neighborhood replication
as discussed in a previous subsection. In case of a neighborhood
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fetch, the query manager automatically fetches the auxiliary por-
tions of deltas (if they exist), and if the required nodes are found,
further lookup is terminated.

Neighborhood evolution: Neighborhood evolution queries can be
posed in two different ways. First, requesting all changes for a
described neighborhood, in which case the query manager fetches
the initial state of the neighborhood followed by the events indicat-
ing the change. Second, requesting the state of the neighborhood
at multiple specific time points. This translates to the retrieval of
multiple single neighborhoods fetch tasks.

5. ANALYTICS FRAMEWORK
In this section, we describe the Temporal Graph Analysis Frame-

work (TAF), that enables programmers to express complex analyt-
ical tasks on time-evolving graphs and execute them in a scalable,
parallel, in-memory manner. We present details of the novel com-
putational model, including a set of operators and operands. We we
also present the details of implementation on top of Apache Spark,
as well as the user API (exposed through Python and Java). Finally,
we describe TAF’s coordination with TGI, particularly the parallel
data transfer protocol, that provides a complete ecosystem for his-
torical graph management and analysis.

5.1 Data and Computational Model
At the heart of this analytics framework is an abstraction with the

view of historical graph as a set of nodes (or subgraphs) evolving
over time. The choice of temporal nodes as a primitive is instru-
mental in enabling us to express a wide range of fetch and compute
operations in an intuitive manner. More significantly, it provides us
with the appropriate basis for the parallelizing computation of arbi-
trary analysis tasks. The temporal nodes and set of temporal nodes
bear a correspondence to tuples and tables of the relational algebra,
as the basic unit of data and the prime operand, respectively. The
two central data types are defined below:

DEFINITION 11 (TEMPORAL NODE). A temporal node
(NodeT), NT , is defined as a sequence of all and only the states
of a node N over a time range, T = [ts, te). All the k states of the
node must have a valid time duration Ti, such that ∪k

i Ti = T and
∩k

i Ti = φ .
DEFINITION 12 (SET OF TEMPORAL NODES). A SoN, is

defined as a set of r temporal nodes {NT
1 ,N

T
2 . . .NT

r } over a time
range, T = [ts, te), as depicted in Figure 4.

The NodeT class provides a range of methods to access the state
of the node at various time points, including: getVersions()
which returns the different versions of the node as a list of static
nodes (NodeS), getVersionAt()which finds a specific version
of the node given a timepoint, getNeighborIDsAt() which
returns IDs of the neighbors at the specified time point, and so on.

A Temporal Subgraph (SubgraphT) generalizes NodeT and cap-
tures a sequence of the states of a subgraph (i.e., a set of nodes and
edges among them) over a period of time. Typically the subgraphs
correspond to k-hop neighborhoods around a set of nodes in the
graph. An analogous getVersionAt() function can be used to
retrieve the state of the subgraph as of a specific time point as an
in-memory Graph object (the user program must ensure that any
graph object so created can fit in the memory of a single machine).
A Set of Temporal Subgraphs (SoTS) is defined analogously to SoN
as a set of temporal subgraphs.

5.2 Temporal Graph Analysis Library
The important temporal graph algebra operators supported by

our system are described below.

time

no
de

attribu
te

{
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{

timeslice
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Figure 4: SoN: A set of nodes can be abstracted as a 3 dimensional
array with temporal, node and attribute dimensions.

1. Selection accepts an SoN or an SoTS along with a boolean
function on the nodes or the subgraphs, and returns an SoN or
SoTS. It performs entity-centric filtering on the operand, and
does not alter temporal or attribute dimensions of the data.

2. Timeslicing accepts an SoN or an SoTS along with a timepoint
(or time interval) t, finds the state of each of individual nodes or
subgraphs in the operand as of t, and returns it as another SoN
or SoTS, respectively (SoN/SoTS can represent sets of static
nodes or subgraphs as a well). The operator can accept a list of
timepoints as input and return a list.

3. Graph accepts an SoN and returns an in-memory Graph object
containing the nodes in the SoN (with only the edges whose
both endpoints are in the SoN). An optional parameter, tp, may
be specified to get a GraphS valid at time tp.

4. NodeCompute is analogous to a map operation; it takes as input
an SoN (or an SoTS) and a function, and applies the function to
all the individual nodes (subgraphs) and returns the results as a
set.

5. NodeComputeTemporal. Unlike NodeCompute, this operator
takes as input a function that operates on a static node (or
subgraph) in addition to an SoN (or an SoTS); for each node
(subgraph), it returns a sequence of outputs, one for each
different state (version) of that node (or subgraph). Optionally,
the user may specify another function (NodeCompute-
Delta, described next) that operates on the delta between two
versions of a node (subgraph). Another optional parameter
is a method describing points of time at which computation
needs to be performed; in the absence of it, the method will be
evaluated at all the points of change.

6. NodeComputeDelta operator takes as input: (a) a function that
operates on a static node (or subgraph) and produces an output
quantity, (b) an SoN (or an SoTS) , (c) a function that operates
on the following: a static node (or subgraph), some auxiliary
information pertaining to that state of the node (or subgraph),
the value of the quantity at that state, and an update (event) to it.
This operator returns a sequence of outputs, one for each state of
the node (or subgraph), similar to NodeComputeTemporal.
However, it computes the required quantity for each version
incrementally instead of computing it afresh. An optional
parameter is the method describing points of time at which
to base the comparison. An optional parameter is a method
describing points of time at which computation needs to be
performed; in the absence of it, the method will be evaluated at
all the points of change.

7. Compare operator takes as input two SoNs (or two SoTSs)
and a scalar function (returning a single value), computes the
function value over all the individual components, and returns
the differences between the two as a set of (node-id, difference)
pairs. This operator tries to abstract the common operation of
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comparing two different snapshots of a graph at different time
points. A simple variation of this operator takes a single SoN
(or SoTS) and two timepoints as input, and does the compare
on the timeslices of the SoN as of those two timepoints. An
optional parameter is the method describing points of time at
which to base the comparison.

8. Evolution operator samples a specified quantity (provided as a
function) over time to return evolution of the quantity over a
period of time. An optional parameter is the method describing
points of time at which to base the evolution.

9. TempAggregation abstractly represents a collection of temporal
aggregation operators such as Peak, Saturate, Max, Min,
and Mean over a scalar timeseries. The aggregation operations
are performed over a specified quantity for an SoN or SoTS.
For instance, finding “times at which there was a peak in the
network density” is used to find eventful timepoints of high in-
terconnectivity such as conversations in a cellular network, or
high transactional activity in a financial network.

5.3 System Implementation
The library is implemented in Python and Java and is built on

top of the Spark API. The choice of Spark provides us with an
efficient in-memory cluster compute execution platform, circum-
venting dealing with the issues of data partitioning, communica-
tion, synchronization, and fault tolerance. We provide a GraphX
integration for utilizing the capabilities of the Spark based graph
processing system for static graphs. Note that while we use Spark
for implementation, the concepts presented as a part of the TAF are
general and can be implemented over other distributed frameworks
such as DryadLINQ6.

The key abstraction in Spark is that of an RDD, which represents
a collection of objects of the same type, stored across a cluster. SoN
and SoTS are implemented as RDDs of NodeT and SubgraphT re-
spectively (i.e., as RDDTG<NodeT> and RDDTG<SubgraphT>,
where RDDTG extends RDD class). Note that the in-memory graph
objects may be implemented using any popular graph representa-
tion, specially the ones that support useful libraries on top. We
now describe in brief the implementation details for NodeT and
SubgraphT, followed by details of the incremental computational
operator, and the parallel data fetch operation.

Figure 5 shows sample code snippets for three different analyt-
ical tasks – (a) finding the node with the highest clustering coeffi-
cient in a historical snapshot; (b) comparing different communities
in a network; (c) finding the evolution of network density over a
sample of ten points.

NodeT and SubgraphT: A set of temporal nodes is represented
with an RDD of NodeT (temporal node). A temporal node contains
the information for a node during a specified time interval. The
question of the appropriate physical storage of the NodeT (or
SubgraphT) structure is quite similar to storing a temporal graph
on disk such as the one using a DeltaGraph or a TGI, however,
in-memory instead of disk. Since NodeT is fetched at query time, it
is preferable to avoid creating a complicated index, since the cost to
create the index at query time is likely to offset any access latency
benefits due to the index. Upon observing several analysis tasks, we
noticed that the common access pattern is mostly in chronological
order, i.e., the query requesting the subsequent versions or changes,
in order of time. Hence, we store NodeT (and SubgraphT)
as an initial snapshot of the node (or subgraph), followed by a
list of chronologically sorted events. It provides methods such
as GetStartTime(), GetEndTime(), GetStateAt(),
6http://research.microsoft.com/en-us/projects/DryadLINQ/

tgiH = TGIHandler(tgiconf, "wiki", sparkcontext)
sots = SOTS(k=1, tgiH).Timeslice("t = July 14,2002").fetch()
nm = NodeMetrics()
nodeCC = sots.NodeCompute(nm.LCC, append = True, key="cc")
maxlCC = nodeCC.Max(key="cc")

(a) Finding node with highest local clustering coefficient

tgiH = TGIHandler(tgiconf, "snet", sparkcontext)
son = SON(tgiH).Timeslice('t >= Jan 1,2003 and t< Jan 1, '
       \',2004').Filter("community") 
sonA=son.Select("community =\"A\" ").fetch()
sonB=son.Select("community =\"B\" ").fetch()
compAB = SON.Compare(sonA, sonB, SON.count())
print('Average membership in 2003,')
print(A=%s\tB=%s'%(mean(compAB[0]), mean(compAB[1])))

(b) Comparing two communities in a network

tgiH = TGIHandler(tgiconf, "wiki", sparkcontext)
son = SON(tgiH).Select("id < 5000").Timeslice("t >= OCt"  
        \"24, 2008").fetch()
gm = GraphMetrics()
evol = son.GetGraph().Evolution(gm.density, 10)
print('Graph density over 10 points=%s'%evol)

(c) Evolution of network density
Figure 5: Examples of analytics using the TAF Python API.

GetIterator(), Iterator.GetNextVersion(),
Iterator.GetNextEvent(), and so on. We omit their
details as their functionality is apparent from the nomenclature.

NodeComputeDelta: NodeComputeDelta evaluates a quantity
over each NodeT (or SubgraphT) using two supplied methods, f ()
which computes the quantity on a state of the node or subgraph,
and, f∆(), which updates the quantity on a state of the node or sub-
graph for a given set of event updates. Consider a simple example
of computing the fraction of all nodes that contain a specific at-
tribute value in a given SubgraphT. If this was performed using
NodeComputeTemporal, the quantity will be computed afresh
on each new version of the subgraph, which would cost O(N.T )
operations where N is the size of the operand (number of nodes)
and T is the number of versions. However, using incremental com-
putation, each new version after the first snapshot can be processed
in constant time, which adds up to O(N+T ). While performing in-
cremental computation, the corresponding f∆() method is expected
to be defined so as to evaluate the nature of the event – whether
it brings about any change in the output quantity or not, i.e., a
scalar change value based upon the actual event and the concerned
portions of the state of the graph, and also update the auxiliary
structure, if used. Code snippet in Figure 6 illustrates the usage of
NodeComputeTemporal and NodeComputeDelta in a sim-
ilar example.

Consider a somewhat more intricate example, where one needs
to find counts of a small pattern over time on an SoTS, such as find-
ing the occurrence of a subgraph pattern in the data graph’s history.
In order to perform such pattern matching over long sequences of
subgraph versions, it is essential to maintain certain inverted in-
dexes which can be looked up to answer in constant time whether
an event has caused a change in the answer from a previous state or
caused a change in the index itself, or both. Such inverted indexes,
quite common to subgraph pattern matching, are required to be up-
dated with every event; otherwise, with every new event update, we
would need to look up the new state of the subgraph afresh which
would simply reduce it to performing non-indexed subgraph pat-
tern matching over new snapshots of a subgraph at each time point,
which is a fairly expensive task. In order to utilize a constantly
updated set of indices, the auxiliary information, which is a param-
eter and a return type for f∆(), can be utilized. Note that such an
incremental computational operator opens up possibilities of utiliz-
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tgiH = TGIHandler(tgiconf, "dblp", sparkcontext)
sots = SOTS(k=2, tgiH).Timeslice('t >= Nov 1,2009 and t< Nov 30,'\  
            '2009').fetch()
labelCount = sots.NodeComputeTemporal(fCountLabel)

labelCount = sots.NodeComputeDelta(fCountLabel, fCountLabelDel)
...
def fCountLabel(g):
   labCount = 0
   for node in g.GetNodes():
      if node.GetPropValue('EntityType') == 'Author':
          labCount += 1
   return labCount

def fCountLabelDel(gPrev, valPrev, event):
   valNew = valPrev
   if event.Type == EType.AttribValAlter:
       if event.AttribKey == 'EntityType':
            if event.PrevVal == 'Author':
                valNew = valPrev - 1
            else if event.NextVal == 'Author':
                valNew = valPrev + 1    
   return valNew

Figure 6: Incremental computation using different options:
NodeComputeTemporal and NodeComputeDelta to com-
pute counts of nodes with a specific label in subgraphs over time.

ing a large body of algorithmic work in online and streaming graph
query evaluation for the purpose of graph analytics.

Specifying interesting time points: In the map-oriented version
operators on an SoN or an SoTS, the time points of evaluation,
by default, are all the points of change in the given operand. How-
ever, a user may choose to provide a definition of which points to
select. This can be as simple as returning a constant set of time-
points, or based on a more complex function of the operand(s).
Except the Compare operator, which accepts two operands, other
operators allow an optional function, which works on a singe tem-
poral operand; the compare accepts a similar function that operates
on two such operands. Two such examples can be seen in Figure 7.

tgiH = TGIHandler(tgiconf, "wiki", sparkcontext)
son = SON(tgiH).Select("id < 5000").Timeslice("t >= OCt"  
        \"24, 2008").fetch()
gm = GraphMetrics()
evol = son.GetGraph().Evolution(gm.density,
     \ selectTimepointsMinimal)
print('Graph density over 3 points=%s'%evol)
...
def selectTimepointsMinimal(son):
    time_arr = []
    st = son.GetStartTime()
    et = son.GetEndTime()
    time_arr.append(st)
    time_arr.append((st + et)/2)
    time_arr.append(et)
    return time_arr

Figure 7: Using the optional timepoint specification function for an
Evolution query with the start, middle and endpoint of SON.

Data Fetch: In a temporal graph analysis task, we first need to in-
stantiate a TGI connection handler instance. It contains configu-
rations such as address and port of the TGI query manager host,
graph-id, and a SparkContext object. Then, a SON (or SOTS)
object is instantiated by passing the reference to the TGI handler,
and any query specific parameters (such as k-value for fetching 1-
hop neighborhoods with SOTS). The next few instructions spec-
ify the semantics of the graph to be fetched from the TGI. This
is done through the commands explained in Section 5.1, such as
the Select, Filter, Timeslice, etc. However, the actual
retrieval from the index doesn’t happen until the first statement fol-
lowing the specification instructions. A fetch() command can
be used explicitly to tell the system to perform the fetch operation.
Upon the fetch() call, the analytics framework sends the com-
bined instructions to the query planner of the TGI, which translates
those instructions into an optimal retrieval plan. This prevents the
system from retrieving large amounts of data from the index that is
a superset of the required information and prune it later.

Parallel Fetch
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Figure 8: A flow diagram of the parallel fetch operation between
the TGI and TAF clusters. The numbers in circles indicate the rel-
ative order of events and arrowheads indicate the direction of flow.

The analytics engine runs in parallel on a set of machines, so
does the graph index. The parallelism at both places speeds up and
scales both the tasks. However, if the retrieval graph at the TGI
cluster was aggregated at the Query Manager and sent serially to
the master of the analytical framework engine after which it was
distributed to the different machines on the cluster, it would create
a space and time bottleneck at the Query Manager and the mas-
ter, respectively, for large graphs. In order to bypass this situation,
we have designed a parallel fetch operation, in which there is a di-
rect communication between the nodes of the analytics framework
cluster and the nodes of the TGI cluster. This happens through a
protocol that can be seen in Figure 8 and summarized below:

1. Analytics query containing fetch instructions is received by the
TAF master.

2. A handshake between the TAF master and TGI query manager is
established. The latter receives fetch instructions and the former
is made aware of the active TGI query processors.

3. Parallel fetch starts at the TGI cluster.
4. The TAF master instantiates a TGIDriver instance at each of its

cluster machines wrapped in a RDD.
5. Each node at the TAF performs a handshake with one or more

of the TGI nodes.
6. Upon completion of fetch at TGI, the individual TGI nodes

transfer the SoN to an RDDs on the corresponding TAF nodes.

More details on the TGI-TAF integration can be found in the
longer version of the paper [22].

6. EXPERIMENTAL EVALUATION
In this section, we empirically evaluate the efficiency of TGI and

TAF. To recap, TGI is a persistent store for entire histories of large
graphs, that enables fast retrieval for a diverse set of graph primi-
tives – snapshots, subgraphs, and nodes at past time points or across
intervals of time. We primarily highlight the performance of TGI
across the entire spectrum of retrieval primitives. We are not aware
of a baseline that may compete with TGI across all or a substantial
subset of these retrieval primitives. Specialized alternatives such as
DeltaGraph for snapshot retrieval is highly unsuitable for node or
neighbor version retrieval; a version centric index may be special-
ized for node-version retrieval but is highly unsuitable for snapshot
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Figure 9: Snapshot retrieval times for varying parallel fetch factor
(c), on Dataset 1; m = 4; r = 1, ps = 500.

or neighborhood-version style retrieval. Also note that TGI gener-
alizes all the known approaches including those two; using appro-
priate parameter configurations, it can even converge to any specific
alternative. Secondly, we demonstrate the scalability of TGI design
through experiments on parallel fetching for large and varying data
sizes. Finally, we also report experiments demonstrating computa-
tional scalability of the TAF for a graph analysis task, as well as the
benefits of our incremental computational operator.

Datasets and Notation: We use four datasets: (1) Wikipedia cita-
tion network consisting of 266,769,613 edge addition or modifica-
tion events from Jan 2001 to Sept 2010. At its largest point, the
graph consists of 21,443,529 nodes and 122,075,026 edges; (2) We
augment Dataset 1 by adding around 333 million synthetic events
which randomly add new edges or delete existing edges over a pe-
riod of time, making a total of 700 million events; (3) Similarly, we
add 733 million events, making the total around 1 billion events;
(4) Using a Friendster gaming network snapshot, we add synthetic
dates at uniform intervals to 500 million events with a total of ap-
proximately 37.5 million nodes and 500 million edges.

Following key parameters that are varied in the experiments:
data store machine count (m), replication across dataset (r), num-
ber of parallel fetching clients (c), eventlist size (l), snapshot or
eventlist partition size (ps), and Spark cluster size (ma).

We conducted all experiments on an Amazon EC2 cluster. Cas-
sandra ran on machines containing 4 cores and 15GB of available
memory. We did not use row caching and the actual memory con-
sumption was much lower that the available limit on those ma-
chines. Each fetch client ran on a single core with up to 7.5GB
available memory. The machines with TAF nodes running Spark
workers ran on a single core and 7.5GB of available memory each.

Snapshot retrieval: Figure 9 shows the snapshot retrieval times for
Dataset 1 for different values of the parallel fetch factor, c. We ob-
serve that the retrieval cost is directly proportional to the size of the
output. Further, using multiple clients to retrieve the snapshots in
parallel gives near-linear speedup, especially with low parallelism.
This demonstrates that TGI can exploit available parallelism well.
We expect that with higher values of m (i.e., if the index were dis-
tributed across a more machines), linear speedup would be seen for
larger values of c (this is corroborated by the next set of experi-
ments). Figure 11c shows snapshot retrieval times for Dataset 4.

Figure 10 shows snapshot retrieval performance for three differ-
ent sets of values for m and r. We can see that while there is no
considerable difference in performance across the different config-
urations, using two storage machines slightly decreases the query
latency over using one machine, in the case of a single query client,
c = 1. For higher c values, we see that m = 2 has a slight edge over
m = 1. Also, the behavior for the two m = 1 and m = 2;r = 2 cases
are quite similar for same c values. However, we observed that the

latter case allows a higher possibility of c value whereas the for-
mer peaks out at a lower c value. Further, compression for deltas is
negligible for TGI. We omit the detailed points of our investigation,
but Figure 11a is representative of the general behavior.

In the special case of ps→ ∞, TGI becomes structurally equiva-
lent to a DeltaGraph. While DeltaGraph provides the most efficient
way of performing snapshot retrieval, we show that using lower val-
ues of ps in TGI only has a marginal impact on the performance of
snapshot retrieval (Figure 11b). This occurs due to the TGI design
policy of storing all the partitions of a delta contiguously in a clus-
ter and avoiding any additional seek costs. Hence, DeltaGraph is
subsumed as a part of TGI and we omit further comparisons in this
respect. Also note that the internals of snapshot retrieval through
DeltaGraph have been thoroughly explored in our prior work [21].

Node History Retrieval: Smaller eventlists or partition sizes pro-
vide a lower latency time for retrieving different versions of a node,
which can be seen in Figure 12a and Figure 12c, respectively. This
is primarily due to the reduction in effort for fetching and dese-
rialization. A higher parallel fetch factor is effective in reducing
the latency for version retrieval (Figure 12b). Note that the perfor-
mances of version and snapshot retrieval for varying partition sizes
are opposite. However, smaller eventlist sizes benefit both version
and snapshot retrieval. Node version retrieval for Dataset 4 shows
a similar behavior, which can be seen in Figure 14.

Neighborhood Retrieval: We compared the performance of re-
trieving 1-hop neighborhoods, both static and specific versions, us-
ing different graph partitioning and replication choices. A topolog-
ical, flow-based partitioning accesses fewer graph partitions com-
pared to a random partitioning scheme, and a 1-hop neighborhood
replication restricts the access to a single partition.This can be seen
in Figure 13a for 1-hop neighborhood retrieval latencies. As dis-
cussed in Section 4, the 1-hop replication does not affect other
queries involving snapshots or individual nodes, as the replicated
portion is stored separately from the original partition. In case of a
2-hop neighborhood retrieval, there are similar performance bene-
fits over random partitioning.

Increasing Data Over Time: We observed the fetch performance
of TGI with an increasing size of the index. We measured the laten-
cies for retrieving certain snapshots upon varying the time duration
of the graph dataset, as shown in Figure 13b. Datasets 2 and 3 con-
tain additional 333 million and 733 million events over dataset 1,
respectively. Only a marginal difference in snapshot retrieval per-
formance demonstrates TGI’s scalability for large datasets.

Conducting Scalable Analytics: We examined TAF’s perfor-
mance through an analytical task for determining the highest lo-
cal clustering coefficient in historical graph snapshot. Figure 13c
shows compute times for the given task on different graph sizes, as
well as varying size of the Spark cluster. Speedups due to parallel
execution can be observed, especially for larger datasets.

Temporal Computation: Earlier in the chapter, we presented two
separate ways of computing a quantity over changing versions of a
graph (or node). Those include, evaluating the quantity on different
versions of the graph separately, and alternatively, performing it in
an incremental fashion, utilizing the result for the previous version
and updating it with respect to the graph updates. This can be seen
for a simple node label counting task in Figure 6. the benefits due
to the incremental (NodeComputeDelta operator) computation
over a version-based computation (NodeComputeTemporal
operator) can be seen in Figure 15.
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Figure 10: Snapshot retrieval times across different m and r values on Dataset 1.
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7. CONCLUSION
Graph analytics are increasingly considered crucial in obtaining

insights about how interconnected entities behave, how informa-
tion spreads, what are the most influential entities in the data, and
many other characteristics. Analyzing the history of a graph’s evo-
lution can provide significant additional insights, especially about
the future. Most real-world networks however, are large and highly
dynamic. This leads to creation of very large histories, making it
challenging to store, query, or analyze them. In this paper, we pre-
sented a novel Temporal Graph Index that enables compact storage
of very large historical graph traces in a distributed fashion, sup-
porting a wide range of retrieval queries to access and analyze only
the required portions of the history. Our experiments demonstrate
its efficient retrieval performance across a wide range of queries,
and can effectively exploit parallelism in a distributed setting. We
also presented a distributed analytics framework, built on top of
Apache Spark, that allows analysts to quickly write complex tem-
poral analysis tasks and execute them scalably over a cluster.
Acknowledgments: This work was supported by NSF under grant
IIS-1319432, an IBM Collaborative Research Award, and an Ama-
zon AWS in Education Research grant.
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ABSTRACT
There is considerable interest in the design and development
of distributed systems that can execute algorithms to pro-
cess large graphs. Serializability guarantees that parallel
executions of a graph algorithm produce the same results as
some serial execution of that algorithm. Serializability is re-
quired by many graph algorithms for accuracy, correctness,
or termination but existing graph processing systems either
do not provide serializability or cannot provide it efficiently.
To address this deficiency, we provide a complete solution
that can be implemented on top of existing graph processing
systems. Our solution formalizes the notion of serializabil-
ity and the conditions under which it can be provided for
graph processing systems. We propose a novel partition-
based synchronization approach that enforces these condi-
tions to efficiently provide serializability. We implement our
partition-based technique into the open source graph pro-
cessing system Giraph and demonstrate that our technique is
configurable, transparent to algorithm developers, and pro-
vides large across-the-board performance gains of up to 26×
over existing techniques.

1. INTRODUCTION
Graph data processing has become ubiquitous due to the

large quantities of data collected and processed to solve real-
world problems. For example, Facebook processes massive
social graphs to compute popularity and personalized rank-
ings, find communities, and propagate advertisements for
over 1 billion monthly active users [16]. Google processes
web graphs containing over 60 trillion indexed webpages to
determine influential vertices [19].

Graph processing solves real-world problems through al-
gorithms that are implemented and executed on graph pro-
cessing systems. These systems provide programming and
computation models for graph algorithms as well as correct-
ness guarantees that algorithms require.

One key correctness guarantee is serializability. Infor-
mally, a graph processing system provides serializability if it

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

can guarantee that parallel executions of an algorithm, im-
plemented with its programming and computation models,
produce the same results as some serial execution of that
algorithm [18].

Serializability is required by many algorithms, for exam-
ple in machine learning, to provide both theoretical and em-
pirical guarantees for convergence or termination. Parallel
algorithms for combinatorial optimization problems experi-
ence a drop in performance and accuracy when parallelism
is increased without consideration for serializability. For ex-
ample, the Shotgun algorithm for L1-regularized loss mini-
mization parallelizes sequential coordinate descent to handle
problems with high dimensionality or large sample sizes [11].
As the number of parallel updates is increased, convergence
is achieved in fewer iterations. However, after a sufficient
degree of parallelism, divergence occurs and more iterations
are required to reach convergence [11]. Similarly, for energy
minimization on NK energy functions (which model a sys-
tem of discrete spins), local search techniques experience an
abrupt degradation in the solution quality as the number of
parallel updates is increased [32]. Some algorithms also re-
quire serializability to prevent unstable accuracy [27] while
others require it for statistical correctness [17]. Graph col-
oring requires serializability to terminate on dense graphs
[18] and, even for sparse graphs, will use significantly fewer
colors and complete in only a single iteration (rather than
many iterations) when executed serializably.

Providing serializability in a graph processing system is
fundamentally a system-level problem that informally re-
quires: (1) vertices see up-to-date data from their neighbors
and (2) no two neighboring vertices execute concurrently.
The general approach is to pair an existing system or compu-
tation model with a synchronization technique that enforces
conditions (1) and (2). Despite this, of the graph process-
ing systems that have appeared over the past few years, few
provide serializability as a configurable option. For exam-
ple, popular systems like Pregel [28], Giraph [1], and GPS
[31] pair a vertex-centric programming model with the bulk
synchronous parallel (BSP) computation model [34] but do
not provide serializability.

Giraphx [33] provides serializability by pairing the asyn-
chronous parallel (AP) model, which is an asynchronous
extension of the BSP model, with the single-layer token
passing and vertex-based distributed locking synchroniza-
tion techniques. However, it implements these synchroniza-
tion techniques as part of specific user algorithms rather
than within the system, meaning algorithm developers must
re-implement the techniques into every algorithm that they
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write. Consequently, Giraphx unnecessarily couples and ex-
poses internal system details to user algorithms, meaning
serializability is neither a configurable option nor transpar-
ent to the algorithm developer. Furthermore, its implemen-
tation of vertex-based distributed locking unnecessarily di-
vides each superstep, an iteration of computation, into mul-
tiple sub-supersteps in which only a subset of vertices can
execute. This exacerbates the already expensive commu-
nication and synchronization overheads associated with the
global synchronization barriers that occur at the end of each
superstep [20], resulting in poor performance.

GraphLab [27], which now subsumes PowerGraph [18],
takes a different approach by starting with an asynchronous
implementation of the Gather, Apply, Scatter (GAS) com-
putation model. This asynchronous mode (GraphLab async)
avoids global barriers by using distributed locking. GraphLab
async provides the option to execute with or without seri-
alizability and uses vertex-based distributed locking as its
synchronization technique. However, GraphLab async suf-
fers from high communication overheads [22, 20] and scales
poorly with this technique. Moreover, neither GraphLab
nor Giraphx provide a theoretical framework for proving the
correctness of their synchronization techniques.

Irrespective of the specific system, synchronization tech-
niques used to enforce conditions (1) and (2) fall on a spec-
trum that trades off parallelism with communication over-
heads (Figure 1). In particular, single-layer token passing
and vertex-based distributed locking fall on the extremes
of this spectrum: token passing uses minimal communica-
tion but unnecessarily restricts parallelism, forcing only one
machine to execute at a time, while vertex-based distributed
locking uses a dining philosopher algorithm to maximize par-
allelism but incurs substantial communication overheads due
to every vertex needing to synchronize with their neighbors.

To overcome these issues, we first formalize the notion of
serializability in graph processing systems and establish the
conditions under which it can be provided. To the best of our
knowledge, no existing work has presented such a formaliza-
tion. To address the shortcomings of the existing techniques,
we introduce a fundamental design shift towards partition
aware synchronization techniques, which exploit graph par-
titions to improve performance. In particular, we propose
a novel partition-based distributed locking solution that al-
lows control over the coarseness of locking and the resulting
trade-off between parallelism and communication overheads
(Figure 1). We implement all techniques at the system level
in the open source graph processing system Giraph so that
they are performant, configurable, and transparent to al-
gorithm developers. We demonstrate through experimen-
tal evaluation that our partition-based solution substantially
outperforms existing techniques.

Our contributions are hence threefold: (i) we formal-
ize the notion of serializability in graph processing systems
and establish the conditions that guarantee it; (ii) we intro-

duce the notion of partition aware techniques and our novel
partition-based distributed locking technique that enables
control over the trade-off between parallelism and commu-
nication overheads; and (iii) we implement and experimen-
tally compare the techniques with Giraph and GraphLab to
show that our partition-based technique provides substan-
tial across-the-board performance gains of up to 26× over
existing synchronization techniques.

This paper is organized as follows. In Section 2, we pro-
vide background on the BSP, AP, and GAS models. In Sec-
tion 3, we formalize serializability and, in Sections 4 and
5, describe both existing techniques and our partition-based
approach. In Section 6, we detail their implementations in
Giraph. We present an extensive experimental evaluation of
these techniques in Section 7 and describe related work in
Section 8 before concluding in Section 9.

2. BACKGROUND AND MOTIVATION
In this section, we introduce the computation models and

give a concrete motivation for serializability.

2.1 BSP Model
Bulk synchronous parallel (BSP) [34] is a computation

model in which computations are divided into a series of
(BSP) supersteps separated by global barriers. Pregel (and
Giraph) pairs BSP with a vertex-centric programming model,
where vertices are the units of computation and edges act
as communication channels.

Graph computations are specified by a user-defined com-
pute function that executes, in parallel, on all vertices in
each superstep. The function specifies how each vertex pro-
cesses its received messages, updates its vertex value, and
who to send messages to. Importantly, messages sent in
one superstep can be consumed/processed by their recipi-
ents only in the next superstep. Vertices can vote to halt to
become inactive but are reactivated by incoming messages.
The computation terminates when all vertices are inactive
and no more messages are in transit.

Pregel and Giraph use a master/workers configuration.
The master machine partitions the input graph across worker
machines, coordinates all global barriers, and performs ter-
mination checks based on the two aforementioned condi-
tions. The graph is partitioned by edge-cuts: each vertex
belongs to a single worker while an edge can span two work-
ers. Finally, BSP is push-based : messages are pushed by the
sender and buffered at the receiver.

As a running example, consider the greedy graph color-
ing algorithm. Each vertex starts with the same color (de-
noted by its vertex value) and, in each superstep, selects
the smallest non-conflicting color based on its received mes-
sages, broadcasts this change to its neighbors, and votes to
halt. The algorithm terminates when there are no more
color conflicts. Consider an undirected graph of four ver-
tices partitioned across two worker machines (Figure 2). All
vertices broadcast the initial color 0 in superstep 1 but the
messages are not visible until superstep 2. Consequently, in
superstep 2, all vertices update their colors to 1 based on
stale data. Similarly for superstep 3. Hence, vertices col-
lectively oscillate between 0 and 1 and the algorithm never
terminates. However, if we could ensure that only v0 and v3
execute in superstep 2 and only v2 and v1 execute in super-
step 3, then this problem would be avoided. As we will show
in Section 4.3, serializability provides precisely this solution.
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Figure 2: BSP execution of greedy graph coloring.
Each graph is the state at the end of that superstep.

2.2 AP Model
The asynchronous parallel (AP) model improves on the

BSP model by reducing staleness: instead of delaying all
messages until the next superstep, vertices can immediately
process any received messages (including ones sent in the
same superstep). The AP model retains global barriers to
separate supersteps, so messages that arrive too late to be
seen by a vertex in superstep i (because the vertex was al-
ready executed) will be processed in the next superstep i+1.
We use a more efficient and performant version of the AP
model, described in [20], and its implementation in Giraph,
which we will refer to as Giraph async.

Like BSP, the AP model can also fail to terminate for the
greedy graph coloring algorithm. Consider again the undi-
rected graph (Figure 3) and suppose that workers W1 and
W2 execute their vertices sequentially as v0 then v2 and v1
then v3, respectively. Furthermore, suppose the pairs v0, v1
and v2, v3 are each executed in parallel. Then the algorithm
fails to terminate. Specifically, in superstep 1, v0 and v1
initialize their colors to 0 and broadcast to their neighbors.
Due to the asynchronous nature of AP, v2 and v3 are able
to see this message 0 and select the color 1. Similarly, in
superstep 2, v0 and v1 now see each other’s message 0 (sent
in superstep 1) and also the message 1 from v2 and v3, re-
spectively, so they update their colors to 2. Similarly for v2
and v3, who now update their colors to 0. Ultimately, the
graph’s state at superstep 4 returns to that at superstep 1,
so the vertices are collectively cycling through three graph
states in an infinite loop.

However, if we can force v0 to execute concurrently with
v3 instead of v1 (and v2 with v1), then neighboring vertices
will not simultaneously pick the same color. Furthermore, if
we ensure that v2 and v1 wait for the messages from v3 and
v0 to arrive before they execute, then they will have up-to-
date information on all their neighbors’ colors. With these
two constraints, graph coloring will terminate in just two su-
persteps. In Section 3, we present a theoretical framework
for serializability that formalizes and incorporates these con-
straints as correctness criteria.

2.3 GAS Model
The Gather, Apply, and Scatter (GAS) model is used

by GraphLab for both its synchronous and asynchronous
modes, which we refer to as GraphLab sync and GraphLab
async. These two system modes use the sync GAS and async
GAS models, respectively. In GAS, each vertex pulls infor-
mation from its neighbors in the gather phase, applies the
accumulated data in the apply phase, and updates and ac-
tivates neighboring vertices in the scatter phase.

Like Pregel and Giraph, GraphLab pairs GAS with a
vertex-centric programming model. However, as evidenced
by the Gather phase, GAS is pull-based rather than push-
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Figure 3: AP execution of greedy graph coloring.
Each graph is the state at the end of that superstep.

based. Furthermore, GraphLab partitions graphs by vertex-
cut : for each vertex u, one worker owns the primary copy of
u while all other workers owning a neighbor of u get a local
read-only replica of u.

Sync GAS is similar to BSP: vertices are executed in su-
persteps separated by global barriers and the effects of apply
and scatter of one superstep are visible only to the gather of
the next superstep. Async GAS, however, is different from
AP as it has no notion of supersteps. To execute a vertex
u, each GAS phase individually acquires a write lock on u
and read locks on u’s neighbors to prevent data races [3].
However, this does not provide serializability because GAS
phases of different vertex computations can interleave [18].
To provide serializability, a synchronization technique must
be added on top of async GAS. This technique prevents
neighboring computations from interleaving by performing
distributed locking over all three GAS phases.

Async GAS can similarly fail to terminate for graph col-
oring [18]. For example, for the graph in Figure 3, suppose
both W1 and W2 each have two threads for their two ver-
tices and that all four threads execute in parallel. Then, as
described above, the GAS phases of different vertices will
interleave, which causes vertices to see stale colors and so
the execution is not guaranteed to terminate: it can become
stuck in an infinite loop. In contrast, executing in async
GAS with serializability will always terminate successfully.

3. SERIALIZABILITY
In this section, we present a theoretical framework that

formalizes key conditions under which serializability can be
provided for graph processing systems. Later, we show how
serializability can be enforced efficiently in these systems.

3.1 Preliminaries
Since popular graph processing systems use a vertex-centric

programming model, where developers specify the actions of
a single vertex, we focus on vertex-centric systems. The for-
malisms that we will establish apply to all vertex-centric
systems, irrespective of the computation models they use.

Existing work [18, 33] considers serializability for vertex-
centric algorithms where vertices communicate only with
their direct neighbors, which is the behaviour of the ma-
jority of algorithms that require serializability. For exam-
ple, the GAS model supports only algorithms where vertices
communicate with their direct neighbors [27, 18]. Thus, we
focus on this type of vertex-centric algorithms. Our goal
is to provide serializability transparently within the graph
processing system, independent of the particular algorithm
being executed.

In vertex-centric graph processing systems, there are two
levels of parallelism: (1) between multiple threads within a
single worker machine and (2) between the multiple worker
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machines. Due to the distributed nature of computation,
the input graph must be partitioned across the workers and
so data replication will occur. To better understand this, let
neighbors refer to both in-edge and out-edge neighbors.

Definition 1. A vertex u is a machine boundary vertex,
or m-boundary for short, if at least one of its neighbors v
belongs to a different worker machine from u. Otherwise, u
is a machine internal, or m-internal, vertex.

Definition 2. A replica is local if it belongs to the same
worker machine as its primary copy and remote otherwise.

Systems keep a read-only replica of each vertex on its
owner’s machine and of each m-boundary vertex u on each of
u’s out-edge neighbor’s worker machines. This is a standard
design used, for example, in Pregel, Giraph, and GraphLab.
Remote replicas (of m-boundary vertices) exist due to graph
partitioning: for vertex-cut partitioning, u’s vertex value is
explicitly replicated on every out-edge neighbor v’s worker
machine; for edge-cut, u is implicitly replicated because the
message it sends to v, which is a function of u’s vertex value,
is buffered in the message store of v’s machine. This distinc-
tion is unimportant for our formalism as we care only about
whether replication occurs. Local replicas occur in push-
based systems because message stores also buffer messages
sent between vertices belonging to the same worker. In pull-
based systems, local replicas are required for implementing
synchronous computation models like sync GAS. For asyn-
chronous models, pull-based systems may not always have
local replicas (such as in GraphLab async) but we will con-
sider the more general case in which they do (if they do not,
then reads of such vertices will always trivially see up-to-
date data).

Definition 3. A read of a replica is fresh if the replica
is up-to-date with its primary copy and stale otherwise.

An execution is serializable if it produces the same result
as a serial execution in which all reads are fresh. Formally,
this is one-copy serializability (1SR) [5]. Informally, we will
say a system provides serializability if all executions conform
to 1SR. In terms of traditional transaction terminology, we
define a site as a worker machine, an item as a vertex, and
a transaction as the execution of a single vertex. We detail
such transactions next.

3.2 Transactions
We define a transaction to be the single execution of an

arbitrary vertex u, consisting of a read on u and the replicas
of u’s in-edge neighbors followed by a write to u. The read
acts only on u and its in-edge neighbors because u receives
messages (or pulls data) from only its in-edge neighbors—it
has no dependency on its out-edge neighbors. Denoting the
read set as Nu = {u, u’s in-edge neighbors}, any execution
of u is the transaction Ti = ri[Nu]wi[u], or simply Ti(Nu)
as all transactions are of the same form.

Any v ∈ Nu with v 6= u is also annotated to distinguish
it from the other read-only replicas of v. For example, if u
belongs to worker A, we annotate the read-only replica as
vA ∈ Nu. However, the next two sections will show how we
can drop these annotations.

Our definition relies only on the fact that the system is
vertex-centric and not on the nuances of specific compu-
tation models. For example, although BSP and AP have

a notion of supersteps, the i for a transaction Ti(Nu) has
no relation to the superstep count. The execution of u
in two different supersteps is represented by two different
transactions Ti(Nu) and Tj(Nu). Our definitions also work
when there is no notion of supersteps, such as in async GAS,
or when there are per-worker logical supersteps (supersteps
that are not globally coordinated), such as proposed in [20].
Thus, the notion of a transaction that follows from our above
definition is consistent with the standard notion of a trans-
action [5]: it captures, for graph processing, the atomic unit
of operation that acts on shared data (the graph state).

3.3 Our Approach
In contrast to traditional database systems, graph pro-

cessing systems present unique constraints that need to be
taken into account for providing serializability.

First, Pregel-like graph processing systems such as Giraph
and GraphLab do not natively support transactions: they
are not database systems and thus have no notion of com-
mits or aborts. The naive solution is to implement trans-
action support into all graph processing systems. However,
this requires a fundamental redesign of each system, which
is neither general nor reusable. Moreover, such a solution
fails to be modular: it introduces performance penalties for
graph algorithms that do not require serializability.

Second, an abort in a graph processing system can result
in prohibitively expensive (and possibly cascading) rollbacks
on the distributed graph state: a transaction often involves
sending messages to vertices of different worker machines,
the effects of which are difficult to undo. Consequently, so-
lutions relying on optimistic currency control are a poor fit
for graph processing due to the high cost of aborts.

However, for graph processing systems, a write-all ap-
proach [5] can be used to keep replicas up-to-date because
graph processing systems replicate only for distributed com-
putation and not for availability. When a worker machine
fails, we lose a portion of the input graph and so cannot pro-
ceed with the computation. Indeed, failure recovery requires
all machines to rollback to a previous checkpoint [1, 27, 28],
meaning the problem of pending writes to failed machines
never occurs. In contrast, a write-all approach is very expen-
sive for traditional database systems because they replicate
primarily for better performance and/or availability.

Furthermore, as detailed in Section 3.2, the read and write
sets of each transaction are known a priori (Nv and v, respec-
tively, for a transaction Ti(Nv)), which means pessimistic
concurrency control can be used to avoid costly aborts.

Our approach, at a high level, is to pair graph processing
systems with a synchronization technique, which uses (1) a
write-all approach to avoid data staleness and (2) pessimistic
concurrency control to prevent conflicting transactions from
starting. For the graph processing systems, (1) means ver-
tices will always read from fresh replicas and so the system
need not reason about versioning, while (2) means all trans-
actions that start will commit, so aborts never occur and
hence the system can treat all operations as final without
needing explicit support for commits and aborts. Further-
more, this solution enables us to use transactions to formally
reason about correctness without the burden of fundamen-
tally redesigning each system to support transactions. Since
aborts cannot occur, we also avoid the expensive penalties
of distributed cascading rollbacks.

Using the definitions introduced in Section 3.2, we can
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formalize our requirements into the following two conditions:

Condition C1. Before any transaction Ti(Nu) executes,
all replicas v ∈ Nu are up-to-date.

Condition C2. No transaction Ti(Nu) is concurrent with
any transaction Tj(Nv) for all copies of v ∈ Nu, v 6= u.

Next, we will prove that 1SR can be provided by enforcing
these two conditions.

3.4 Correctness
We first prove, in Lemma 1, that enforcing condition C1

simplifies the problem of providing 1SR to that of providing
standard serializability on a single logical copy of each vertex
(i.e., without data replication).

Lemma 1. If condition C1 is true, then it suffices to use
standard serializability theory where operations are performed
on a single logical copy of each vertex.

Proof. Condition C1 ensures that before every transac-
tion Ti(Nu) executes, the replicas v ∈ Nu are all up-to-date.
Then all reads ri[Nu] see up-to-date replicas and are thus
the same as reading from the primary copy of each v ∈ Nu.
Hence, there is effectively only a single logical copy of each
vertex, so we can apply standard serializability theory.

Theorem 1 then establishes the relationship between 1SR
and conditions C1 and C2.

Theorem 1. All executions are serializable for all input
graphs if and only if conditions C1 and C2 are both true.

Proof Sketch. Due to space constraints, we will briefly
sketch only the key ideas of the proof. The full proof is
provided in [21].

(If) Since condition C1 is true, by Lemma 1 we can apply
standard serializability theory [5]. It can then be shown
that, for all input graphs, if condition C2 is true then it
is impossible for the read and write sets of two arbitrary
transactions to overlap. Thus, transactions never conflict
and so the serialization graph [5] is always acyclic.

(Only if) We prove the inverse (if either condition is false
then there exists a non-serializable execution for some input
graph) by considering an input graph with two vertices con-
nected by an undirected edge. When C1 is true and C2 is
false, we can construct a non-serializable history with two
parallel but conflicting transactions. When C2 is true and
C1 is false, replicas are no longer kept up-to-date and so, by
placing each vertex on a different worker, we can construct
a serial history that violates 1SR.

3.5 Enforcing Serializability
The computation models from Section 2 do not enforce

conditions C1 and C2 and therefore, by Theorem 1, do not
provide serializability. Consequently, graph processing sys-
tems that implement these models also do not provide seri-
alizability. Moreover, these models do not guarantee fresh
reads even under serial executions (on a single machine or
under the sequential execution of multiple machines). For
example, BSP effectively updates replicas lazily1 because
messages sent in one superstep, even if received, cannot be

1The “synchronous” in BSP refers to the global communica-
tion barriers, not the method of replica synchronization.

read by the recipient in the same superstep. Thus, both m-
boundary and m-internal vertices (Definition 1) suffer stale
reads under a serial execution. While AP reduces this stal-
eness and can update local replicas eagerly, it propagates
messages to remote replicas lazily without the guarantees
of condition C1 and so stale reads can again occur under a
serial execution of multiple machines.

As mentioned in Section 3.3, to provide serializability, we
enforce conditions C1 and C2 by adding a synchronization
technique (Sections 4 and 5) to the systems that implement
the above computation models. These synchronization tech-
niques implement a write-all approach for updating replicas,
which is required for enforcing condition C1. They also en-
sure that a vertex u does not execute concurrently with any
of its in-edge and out-edge neighbors. At first glance, this
appears to be stronger than what condition C2 requires.
However, suppose v is an out-edge neighbor of u and v is
currently executing. Then if u does not synchronize with its
out-edge neighbors, it will erroneously execute concurrently
with v, violating condition C2 for v. Alternatively, if v is an
out-edge neighbor of u then u is an in-edge neighbor of v,
so they must not execute concurrently.

4. EXISTING SYNCHRONIZATION
TECHNIQUES

Token passing and distributed locking are the two general
approaches for implementing synchronization techniques that
enforce conditions C1 and C2. In this section, we review two
existing synchronization techniques: single-layer token pass-
ing and vertex-based distributed locking.

4.1 Preliminaries
How a synchronization technique implements a write-all

approach (Section 3.3) depends on whether the computation
model is synchronous or asynchronous.

In asynchronous computation models (AP and async GAS),
replicas immediately apply received updates. Thus, local
replicas can be updated eagerly, since there is no network
communication (Section 6). Remote replicas, however, are
updated lazily in a just-in-time fashion to provide commu-
nication batching. This lazy update is possible because all
vertices are coordinated by a synchronization technique: any
vertex v must first acquire a shared resource (e.g., a token
or a fork) from its neighbor u before it can execute. Con-
sequently, for an m-boundary vertex u with a replica on its
neighbor v’s worker, u’s worker can buffer remote replica
updates until v wants to execute (i.e., requests the shared
resource)—at which point u’s machine will flush all pend-
ing remote replica updates (and ensure their receipt) before
handing over the shared resource that allows v to proceed.

In contrast, synchronous computation models (BSP and
sync GAS) hide updates from replicas until the next super-
step. That is, replicas can be updated only after a global
barrier. This means systems with synchronous models are
limited to specialized synchronization techniques that keep
replicas up-to-date by dividing each superstep into multiple
sub-supersteps. This is significantly less performant than
synchronization techniques for systems with asynchronous
computation models, as detailed further in Section 6.

4.2 Single-Layer Token Passing
Single-layer token passing, considered in [33], is a simple

technique that passes an exclusive global token in a round-
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robin fashion between workers arranged in a logical ring.
Each worker machine must execute with only one thread.

The worker machine holding the global token can execute
both its m-internal and m-boundary vertices (Definition 1),
while workers without the token can execute only their m-
internal vertices. This prevents neighboring vertices from
executing concurrently since each m-internal vertex and its
neighbors are executed by a single thread, so there is no
parallelism, while an m-boundary vertex can execute only
when its worker machine holds the exclusive token.

To enforce condition C1, local replicas must be updated
eagerly, while remote replicas of a worker’s m-boundary ver-
tices can be updated in batch before a worker passes along
the global token (as updates will arrive before the token).
Per Section 4.1, this is possible with asynchronous compu-
tation models. Thus, for asynchronous models, single-layer
token enforces conditions C1 and C2 and, by Theorem 1,
provides serializability. However, this technique does not
provide serializability for synchronous computation models
as they cannot update local replicas eagerly.

4.3 Vertex-based Distributed Locking
Vertex-based distributed locking, unlike token passing,

pairs threads with individual vertices to allow all vertices
to attempt to execute in parallel. As motivated in Section
2.1, the key idea is to coordinate these vertices such that
neighboring vertices do not execute concurrently, while also
addressing issues such as deadlock and fairness.

This coordination is achieved using the Chandy-Misra al-
gorithm [13], which solves the hygienic dining philosophers
problem, a generalization of the dining philosophers prob-
lem. In this problem, each philosopher is either thinking,
hungry, or eating and must acquire a shared fork from each
of its neighbors to eat. Philosophers can communicate with
their neighbors by exchanging forks and request tokens for
forks. The “dining table” is effectively an undirected graph
where each vertex is a philosopher and each edge is asso-
ciated with a shared fork: a philosopher u must acquire
deg(u) forks to eat. The Chandy-Misra algorithm ensures
no neighbors eat at the same time, guarantees fairness (no
philosopher can hog its forks), and prevents deadlocks and
starvation [13]. Hence, condition C2 is enforced.

To enforce condition C1, local replicas are updated ea-
gerly and, for remote replicas, each worker flushes its pend-
ing remote replica updates before any m-boundary vertex
relinquishes a fork to a vertex of another worker. Then, per
Section 4.1, vertex-based distributed locking provides serial-
izability for asynchronous computation models. As we men-
tioned in Section 4.1, this solution is incompatible with syn-
chronous models (BSP and sync GAS) because these models
do not allow local replicas to be updated eagerly. However,
applying the theory developed in Section 3, Proposition 1
shows that a constrained vertex-based locking solution can
provide serializability for systems with synchronous models.
We omit the proof due to space constraints. It can be found
in the longer version of this paper [21].

Proposition 1. Vertex-based distributed locking enforces
conditions C1 and C2 for synchronous computation models
when the following two properties hold: (i) all vertices act
as philosophers and (ii) fork and token exchanges occur only
during global barriers.

5. PARTITION AWARE TECHNIQUES
In this section, we show how partition aware synchroniza-

tion techniques can address severe limitations of existing
techniques. We then present our partition-based solution to
demonstrate its significant performance advantages.

5.1 Preliminaries
Existing graph processing systems provide parallelism at

each worker machine by pairing computation threads with
either graph partitions or individual vertices.

For example, both Giraph and Giraph async (Section 2.2)
assign multiple graph partitions to each worker machine and
pair threads, each roughly equivalent to a CPU core, with
available partitions. This allows multiple partitions to exe-
cute in parallel, while vertices in each partition are executed
sequentially. We call such systems partition aware.

In contrast, GraphLab async uses over-threading to pair
lightweight threads (called fibers) with individual vertices.
Thus, it has no notion of partitions. The large number of
fibers provides a high degree of parallelism and ensures that
CPU cores are kept busy even when some fibers are blocked
on communication.

Systems like GraphLab async are well-suited for very fine-
grained synchronization techniques such as vertex-based dis-
tributed locking (Section 4.3). Partition aware systems like
Giraph async are able to support partition aware techniques
that, as we will show, take advantage of partitions to signif-
icantly improve performance. Since GraphLab async is not
partition aware, it is unable to support such techniques.

Lastly, as we will show in the following sections, it is im-
portant for synchronization techniques implemented in par-
tition aware systems to distinguish between p-internal and
p-boundary vertices, defined as follows.

Definition 4. A vertex u is a partition boundary vertex,
or p-boundary for short, if at least one of its neighbors v
belongs to a different partition from u. Otherwise, u is a
partition internal, or p-internal, vertex.

5.2 Motivation
The two existing synchronization techniques described in

Section 4 suffer from several major performance issues.
Token passing has minimal communication overheads but

very limited parallelism (Figure 1): only one worker machine
can execute its m-boundary vertices at any time. Having
only one global token also results in poor scalability, be-
cause the size of the token ring increases with the num-
ber of workers, which leads to longer wait times. Moreover,
the token ring is fixed: workers that are finished must still
receive and pass along the token, which adds unnecessary
overheads. This is especially evident in algorithms such as
SSSP, where workers may dynamically halt or become active
depending on the state of their constituent vertices. Thus,
as we show in Section 7.3, single-layer token passing is too
coarse-grained, which negatively impacts performance.

On the other hand, vertex-based distributed locking maxi-
mizes parallelism, by allowing all vertices to execute in paral-
lel, but suffers significant communication overheads. Vertex-
based locking requires, in the worst case, O(|E|) forks, where
|E| is the number of edges in the graph ignoring directions
(i.e., counting undirected edges once). This leads to signif-
icant communication overheads due to the forks and corre-
sponding request tokens that must be sent between individ-
ual vertices. Furthermore, it is difficult to form large batches
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Figure 4: Dual-layer token passing, with the global
token T at worker 1 and the local tokens L at par-
titions 0 and 2.

of messages (remote replica updates) as messages must be
flushed very frequently, whenever an m-boundary vertex re-
leases its forks. Although systems such as GraphLab async
can use fibers to try to mask communication latency with
additional vertex computations, it does not fully mitigate
the communication overheads, which results in poor perfor-
mance and scalability as we demonstrate in Section 7.3.

A key deficiency of these techniques is that they are not
partition aware: given a partition aware system, they are
unable to exploit partitions to improve performance. For
example, single-layer token passing would pass the global
token between the partitions rather than workers, with p-
boundary vertices requiring the token to execute (Definition
4). This increases the size of the token ring and does not
solve the existing performance problems. Similarly, vertex-
based distributed locking (for asynchronous models) would
require only p-boundary vertices to act as philosophers, since
p-internal vertices are executed sequentially. However, al-
though this reduces the number of forks, the heavy-weight
threads will block an entire CPU whenever a vertex blocks
on communication. Consequently, it is unable to mask com-
munication latency and performs worse than GraphLab async’s
pairing of fibers with individual vertices (Section 5.1).

We address these performance deficiencies by considering
partition aware synchronization techniques. Adding parti-
tion awareness enables us to devise either a more fine-grained
token passing technique to increase parallelism, or a more
coarse-grained distributed locking technique to reduce com-
munication overheads. We present these approaches next.

5.3 Dual-Layer Token Passing
We propose dual-layer token passing, which, unlike single

layer token passing, supports multithreading by being parti-
tion aware. This enables more vertices to execute in parallel
while ensuring condition C2 is enforced.

Dual-layer token passing uses two layers of tokens and
a more fine-grained categorization of vertices. Let u be a
vertex of partition Pu of worker Wu. Then an m-internal
vertex u is now either a p-internal vertex, if all its neighbors
belong to Pu, or a local boundary vertex otherwise. An m-
boundary vertex u is either remote boundary, if its neighbors
are only on partitions of other workers, or mixed boundary
otherwise (i.e., its neighbors belong to partitions of both
Wu and other workers). For example, in Figure 4, v6 is a
p-internal vertex, v0 and v4 are local boundary vertices, v2
is a remote boundary vertex, and v1, v3, and v5 are mixed
boundary vertices.

A global token is passed in a round-robin fashion between

Worker 1 Worker 2

v0 v1

v2

v3 v4

v5 v6

P0 P1 P2 P3

Figure 5: Partition-based distributed locking.

the workers. Each worker also has its own local token passed
between its partitions in a round-robin fashion (Figure 4).
A p-internal vertex can execute without tokens, while a lo-
cal boundary vertex requires its partition to hold the local
token. A global boundary vertex requires its worker to hold
the global token and a mixed boundary vertex requires both
tokens to be held. To ensure that every mixed boundary
vertex gets a chance to execute, each worker must hold the
global token for a number of iterations equal to the number
of partitions it owns. Like single-layer token passing, local
replicas are updated eagerly while remote replicas are up-
dated before a worker relinquishes the global token. Hence,
dual-layer token passing enforces conditions C1 and C2 for
asynchronous computation models. Then, by Theorem 1, it
provides serializability for asynchronous models.

Although dual-layer token passing improves parallelism by
adding support for multithreading, it still suffers from the
same performance issues as single-layer token passing. It
again uses only one global token, has a fixed token ring, and
scales poorly when the number of workers and/or partitions
are increased. Having only one local token per worker also
means local boundary vertices cannot execute in parallel.

While these problems may be solved via more sophisti-
cated schemes, such as using multiple global tokens for more
parallelism or tracking additional state to support a dynamic
ring, it becomes much harder to guarantee correctness (no
deadlocks and no starvation) while also ensuring fairness.
Thus, rather than make token passing even more complex
and fine-grained, we propose an inherently partition-based,
coarse-grained distributed locking approach next.

5.4 Partition-based Distributed Locking
We propose partition-based distributed locking by build-

ing on the Chandy-Misra algorithm and treating partitions
as the philosophers. Two partitions share a fork if an edge
connects their constituent vertices. For example, in Figure
5, partitions P0 and P1 share a fork due to the edge between
their vertices v0 and v1, respectively. Alternatively, forks are
associated with the virtual partition edges (in green), cre-
ated based on the edges between each partition’s vertices.

Condition C2 is enforced for p-boundary vertices because
neighboring partitions never execute concurrently, while p-
internal vertices do not need coordination as each partition
is executed sequentially. As an optimization, we can avoid
unnecessary fork acquisitions by skipping the partitions for
which all vertices are halted and have no more messages. To
enforce condition C1, local replicas are updated eagerly and,
for remote replicas, each worker flushes its pending remote
replica updates before any partition (with an m-boundary
vertex) relinquishes a fork to a partition of another worker.

83



Since both conditions are enforced, Proposition 2 follows
immediately.

Proposition 2. Partition-based distributed locking enforces
conditions C1 and C2 for asynchronous computation models.

Hence, by Theorem 1, partition-based distributed locking
provides serializability for asynchronous computation mod-
els. Synchronous models are not supported as they cannot
update local replicas eagerly (Section 4.1), which is required
due to the sequential execution of p-internal vertices.

Partition-based distributed locking needs at most O(|P |2)
forks, where |P | is the total number of partitions. By con-
trolling the number of partitions, we can control the gran-
ularity of parallelism. On one extreme, |P | = |V | can give
vertex-based distributed locking (Section 4.3). On the other
extreme, we can have exactly one partition per worker. This
latter extreme still provides better parallelism than single-
layer token passing because any pair of non-neighboring work-
ers can execute in parallel, with a negligible increase in com-
munication. In general, |P | is set such that each worker can
use multithreading to execute multiple partitions in parallel.

Due to this flexibility, partition-based locking is both more
general and more performant than vertex-based locking: any
choice of |P | � |V | significantly reduces the number of forks
and hence communication overheads. Moreover, partition-
based locking enables messages (remote replica updates) of
an entire partition of vertices to be batched, substantially re-
ducing communication overheads. Compared to token pass-
ing, partition-based locking enables more parallelism: forks
are required only between partitions that cannot execute in
parallel, removing the need for a token ring, and halted par-
titions do not need their forks and will not perform unnec-
essary communication with their neighbors. These factors
result in partition-based locking’s superior performance and
scalability over both vertex-based distributed locking and
token passing.

Hence, partition-based distributed locking leverages the
best of both worlds: the increased parallelism of distributed
locking and the minimal communication overheads of token
passing. It scales better than vertex-based locking and to-
ken passing, due to its lower communication overheads and
the absence of a token ring, and offers flexibility in the num-
ber of partitions to allow for a tunable trade-off between
parallelism and communication overheads.

6. IMPLEMENTATION
We now describe our implementations for dual-layer token

passing and partition-based distributed locking in Giraph,
an open source graph processing system. Each technique is
an option that can be enabled and paired with Giraph async
to provide serializability. We show in Section 6.5 that pro-
viding serializability for AP does not impact usability. We
do not consider the constrained vertex-based locking for BSP
(Proposition 1) as it further exacerbates BSP’s already ex-
pensive communication and synchronization overheads [20].

We use Giraph because it is a popular and performant
system used, for example, by Facebook [14]. It is parti-
tion aware and thus can support partition aware synchro-
nization techniques. We do not implement token passing
and partition-based distributed locking in GraphLab async
because, as described in Section 5.1, GraphLab async is
optimized for vertex-based distributed locking and is not

partition aware. Adding partitions would require substan-
tial changes to the architecture, design, and functionality of
GraphLab async, which is not the focus of this paper.

6.1 Giraph Background
As described in Section 5.1, Giraph assigns multiple graph

partitions to each worker. During each superstep, each worker
creates a pool of compute threads and pairs available threads
with uncomputed partitions. Each worker maintains a mes-
sage store to hold all incoming messages, while each compute
thread uses a message buffer cache to batch outgoing mes-
sages to more efficiently utilize network resources. These
buffer caches are automatically flushed when full but can
also be flushed manually. In Giraph async, messages be-
tween vertices of the same worker skip this cache and go
directly to the message store so that they are immediately
available for their recipients to process.

Since Giraph is implemented in Java, it avoids garbage
collection overheads (due to millions or billions of objects)
by serializing vertex, edge, and message objects when not in
use and deserializing them on demand. For each vertex u,
Giraph stores only u’s out-edges in u’s vertex object. Thus,
in-edges are not explicitly stored within Giraph.

6.2 Dual-Layer Token Passing
For dual-layer token passing, each worker uses three sets

to track the vertex ids of local boundary, remote boundary,
and mixed boundary vertices that it owns. p-internal ver-
tices are determined by their absence from the three sets.
We keep this type information separate from the vertex ob-
jects so that token passing is a modular option. Moreover,
augmenting each vertex object with its type adds undesir-
able overheads since vertex objects must be serialized and
deserialized many times throughout the computation. Hav-
ing the type information in one place also allows us to update
a vertex’s type without deserializing its object.

To populate the sets, we intercept vertices during input
loading and scan the partition ids of its out-edge neighbors
to determine its type. This is sufficient for undirected graphs
but not for directed graphs: a vertex u has no information
about its in-edge neighbors. Thus, we have each vertex v
send a message to its out-edge neighbors u that belong to
a different partition. Then u can correct its type based on
messages received from its in-edge neighbors. This all occurs
during input loading and thus does not impact computation
time. We also batch all dependency messages to minimize
network overheads and input loading times.

As per Section 5.3, the global and local tokens are passed
in a round-robin fashion. Each local token is passed among
its worker’s partitions at the end of each superstep. Since
local messages (between vertices of the same worker) are
not cached, local replicas are updated eagerly. For remote
replicas, workers flush and await delivery confirmations for
their remote messages before passing along the global token.

6.3 Partition-based Distributed Locking
For partition-based distributed locking, each worker tracks

fork and token states for its partitions in a dual-layer hash
map. For each pair of neighboring partitions Pi and Pj , we
map Pi’s partition id i to the id j to a byte whose bits in-
dicate whether Pi has the fork, whether the fork is clean or
dirty, and whether Pi holds the request token. Since parti-
tion ids are integers in Giraph, we use hash maps optimized
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for integer keys to minimize memory footprint.
In the Chandy-Misra algorithm, forks and tokens must

be placed such that the precedence graph, whose edge di-
rections determine which philosopher has priority for each
shared fork, is initially acyclic [13]. A simple way to en-
sure this is to assign each philosopher an id and, for each
pair of neighbors, give the token to the philosopher with the
smaller id and the dirty fork to the one with the larger id.
This guarantees that philosophers with smaller ids initially
have precedence over all neighbors with larger ids, because a
philosopher must give up a dirty fork upon request (except
while it is eating). Partition ids naturally serve as philoso-
pher ids, allowing us to use this initialization strategy.

For directed graphs, two neighboring partitions may be
connected by only a directed edge, due to their constituent
vertices. Since partitions must be aware of both its in-edge
and out-edge dependencies, workers exchange dependency
information for their partitions during input loading. Like
in token passing, dependency messages can be batched to
ensure a minimal impact on input loading times.

Partitions acquire their forks synchronously by blocking
until all forks arrive. This is because even if all forks are
available, it takes time for them to arrive over the network,
so immediately returning is wasteful and may prevent other
partitions from executing (a partition cannot give up clean
forks: it must first execute and dirty them). Finally, per
Section 5.4, each worker flushes its remote messages before
a partition sends a shared fork to another worker’s partition.

Using the insights from our implementation of partition-
based distributed locking, we can also implement vertex-
based distributed locking, which is the special case where
|P | = |V | (Section 5.4). Each worker tracks fork and to-
ken states for its p-boundary vertices and uses vertex ids as
the keys for its dual-layer hash map. Keeping this data in a
central per-worker data structure, rather than at each vertex
object, is even more important than in token passing: forks
and tokens are constantly exchanged so their states must be
readily available to modify. Storing this data at each ver-
tex object would incur significant deserialization overheads.
Fork and token access patterns are also fairly random, which
would further incur an expensive traversal of a byte array
to locate the desired vertex.

Like the partition-based approach, for directed graphs,
each vertex v broadcasts to its out-edge neighbors u so that u
can record the in-edge dependency into the per-worker hash
map. This occurs during input loading and all messages are
batched. Vertices acquire their forks synchronously and each
worker flushes its remote messages before any m-boundary
vertex forfeits a fork to a vertex of another worker. However,
as we show in Section 7, these batches of remote messages are
far too small to avoid significant communication overheads.

6.4 Fault Tolerance
For fault tolerance, we use the existing checkpointing mech-

anism of Giraph. In addition to the data that Giraph al-
ready writes to disk at each synchronous checkpoint, we
change Giraph to also record the relevant data structures
(hash sets or hash maps) that are used by the synchroniza-
tion techniques. For dual-layer token passing, each worker
also records whether they have the global token and the id
of the partition holding the local token. Checkpoints occur
after a global barrier and thus capture a consistent state:
there are no vertices executing and no in-flight messages.

Thus, neither token passing’s global token nor distributed
locking’s fork and request tokens are in transit.

6.5 Algorithmic Compatibility and Usability
A system can provide one computation model for algo-

rithm developers to code with and use a different compu-
tation model to execute user algorithms. For example, Gi-
raph async allows algorithm developers to code for the BSP
model and transparently execute with an asynchronous com-
putation model to maximize performance [20]. Thus, with
respect to BSP, the more efficient AP model implemented
by Giraph async does not negatively impact usability.

When we pair Giraph async with partition-based or vertex-
based distributed locking, it remains backwards compatible
with (i.e., can still execute) algorithms written for the BSP
model. To take advantage of serializability, algorithm de-
velopers can now code for a serializable computation model.
Specifically, this is the AP model with the additional guar-
antee that conditions C1 and C2 hold. For example, our
graph coloring algorithm is written for this serializable AP
model rather than for BSP (Section 7.2.1).

However, not all synchronization techniques provide this
clean abstraction. Token passing fails in this regard because
only a subset of vertices execute in each superstep. That is,
token passing cannot provide the guarantee that all vertices
will execute some code in superstep i, because only a subset
of the vertices will execute at superstep i. The same issue
arises for the constrained vertex-based distributed locking
solution for BSP and sync GAS (Proposition 1), because it
relies on global barriers for the exchange of forks and to-
kens. In contrast, our implementations of partition-based
and vertex-based locking ensure that all vertices are exe-
cuted exactly once in each superstep and thus provide supe-
rior compatibility and usability.

7. EXPERIMENTAL EVALUATION
We compare dual-layer token passing and partition-based

distributed locking using Giraph async and vertex-based dis-
tributed locking using GraphLab async. We exclude Giraph
async for vertex-based locking because it is much slower than
GraphLab async, up to 44× slower on OR (Table 1). As dis-
cussed in Section 5.1, this is because GraphLab async is
specifically tailored for the vertex-based technique whereas
Giraph async is not. On the other hand, unlike Giraph
async, GraphLab async is not partition aware and thus can-
not support token passing or partition-based distributed lock-
ing. Hence, our evaluation focuses on the most performant
combinations of systems and synchronization techniques.

7.1 Experimental Setup
To evaluate the different synchronization techniques, we

use 16 and 32 EC2 r3.xlarge instances, each with four vC-
PUs and 30.5GB of memory. All machines run Ubuntu
12.04.1 with Linux kernel 3.2.0-70-virtual, Hadoop 1.0.4,
and jdk1.7.0 65. We implement our modifications in Gi-
raph 1.1.0-RC0 and compare against GraphLab 2.2, which
is the latest version that provides serializability.

We use large real-world datasets2,3[8, 7, 6], which are
stored on HDFS as text files and loaded into each system us-
ing the default random hash partitioning. We use hash par-

2
http://snap.stanford.edu/data/

3
http://law.di.unimi.it/datasets.php
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Table 1: Directed datasets. Parentheses give values
for the undirected versions used by graph coloring.

Graph |V | |E| Max Degree

com-Orkut (OR) 3.0M 117M (234M) 33K (33K)
arabic-2005 (AR) 22.7M 639M (1.11B) 575K (575K)
twitter-2010 (TW) 41.6M 1.46B (2.40B) 2.9M (2.9M)
uk-2007-05 (UK) 105M 3.73B (6.62B) 975K (975K)

titioning as it is the fastest method of partitioning datasets
across workers and, importantly, does not favour any par-
ticular synchronization technique. Alternative partitioning
algorithms such as METIS [24] are impractical as they can
take several hours to partition large datasets [22, 30].

Table 1 lists the four graphs we use: OR and TW are social
network graphs while AR and UK are web graphs. |V | and
|E| of Table 1 denote the number of vertices and directed
edges for each graph, while the maximum degree gives a
sense of how skewed the graph’s degree distribution is. All
graphs have large maximum degrees because they follow a
power-law degree distribution.

For partition-based distributed locking, we use Giraph’s
default setting of |W | partitions per worker, where |W | is
the number of workers. Increasing the number of partitions
beyond this does not improve performance: more edges be-
come cut, which increases inter-partition dependencies and
hence leads to more forks and tokens. Smaller partitions also
mean smaller message batches and thus greater communica-
tion overheads. However, using too few partitions restricts
parallelism for both compute threads and communication
threads: the message store at each worker is indexed by
separate hash maps for each partition, so more partitions
enables more parallel modifications to the store while fewer
partitions restricts parallelism and degrades performance.

7.2 Algorithms
We use graph coloring, PageRank, SSSP, and WCC as

our algorithms. Our choice is driven by the requirements
exhibited by graph processing algorithms that need serial-
izability. As described in Section 1, many machine learning
algorithms require serializability for correctness and conver-
gence. SSSP is a key component in reinforcement learning
while WCC is used in structured learning [29, 10]. Both
algorithms are used with extensive parallelism, making con-
vergence a crucial criterion that serializability can provide.
Similarly, as established in Section 2, graph coloring falls
into yet another class of algorithms where serializability en-
sures successful termination. Finally, PageRank is a good
comparison algorithm for two reasons: first, existing systems
that have considered serializability also implement PageR-
ank [33, 18] and second, the simple computation and com-
munication patterns of PageRank are identical to other more
complex algorithms [4], which allows us to better understand
the performance of the synchronization techniques without
being hindered by algorithmic complexity.

7.2.1 Graph Coloring
We use a greedy graph coloring algorithm (Algorithm 1)

that requires serializability and an undirected input graph.
Each vertex u initializes its value/color as no color. Then,
based on messages received from its (in-edge) neighbors, u
selects the smallest non-conflicting color as its new color and
broadcasts it to its (out-edge) neighbors.

Algorithm 1 Graph coloring pseudocode.

1 procedure compute(vertex, incoming messages)
2 if superstep == 0 then
3 vertex.setValue(no color)
4 return
5 if vertex.getValue() == no color then
6 cmin ← smallest non-conflicting color
7 vertex.setValue(cmin)
8 Send cmin to vertex’s out-edge neighbors
9 voteToHalt()

In theory, the algorithm requires only one iteration since
serializability prevents conflicting colors. In practice, be-
cause Giraph async is push-based, it requires three itera-
tions: initialization, color selection, and handling extrane-
ous messages. The extraneous messages occur because ver-
tices indiscriminately broadcast their current color, even to
neighbors who are already complete. This wakes up ver-
tices, leading to an additional iteration. GraphLab async,
which is pull-based, has each vertex gather its neighbors’
colors rather than broadcast its own and thus completes in
a single iteration.

7.2.2 PageRank
PageRank is an algorithm that ranks webpages based on

the idea that more important pages receive more links from
other pages. Each vertex u starts with a value of 1.0. At
each superstep, u updates its value to pr(u) = 0.15 + 0.85x,
where x is the sum of values received from u’s in-edge neigh-
bors, and sends pr(u)/ deg+(u) along its out-edges. The al-
gorithm terminates after the PageRank value of every vertex
u changes by less than a user-specific threshold between two
consecutive execution of u. The output pr(u) gives the ex-
pectation value for a vertex u, which can be divided by the
number of vertices to obtain the probability value.

We use a threshold of 0.01 for OR and AR and 0.1 for TW

and UK so that experiments complete in a reasonable amount
of time. Using the same threshold ensures that all systems
perform the same amount of work for each graph.

7.2.3 SSSP
Single-source shortest path (SSSP) finds the shortest path

between a source vertex and all other vertices in its con-
nected component. We use the parallel variant of the Bellman-
Ford algorithm [15]. Each vertex initializes its distance (ver-
tex value) to∞, while the source vertex sets its distance to 0.
Vertices update their distance using the minimum distance
received from their neighbors and propagate any newly dis-
covered minimum distance to all neighbors. We use unit
edge weights and the same source vertex to ensure that all
systems perform the same amount of work.

7.2.4 WCC
Weakly connected components (WCC) is an algorithm

that finds the maximal weakly connected components of a
graph. A component is weakly connected if all constituent
vertices are mutually reachable when ignoring edge direc-
tions. We use the HCC algorithm [23], which starts with
all vertices initially active. Each vertex initializes its com-
ponent ID (vertex value) to its vertex ID. When a smaller
component ID is received, the vertex updates its vertex value
to that ID and propagates the ID to its neighbors.
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(a) Graph coloring
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(b) PageRank
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(c) SSSP
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(d) WCC

Figure 6: Computation times for graph coloring,
PageRank, SSSP, and WCC. Missing bars are la-
belled with ‘F’ for unsuccessful runs.

7.3 Results
For our results, we report computation time, which is the

total time of running an algorithm minus the input loading
and output writing times. This also captures any commu-
nication overheads that the synchronization techniques may
have: poor use of network resources translates to longer com-
putation times. For each experiment, we report the mean
and 95% confidence intervals of five runs (three runs for ex-
periments taking over 3 hours). Due to space constraints, we
exclude the results for AR. They can be found in [21].

For graph coloring, partition-based locking is up to 2.3×
faster than vertex-based locking for TW with 32 machines
(Figure 6a). This is despite the fact that Giraph async per-
forms an additional iteration compared to GraphLab async
(Section 7.2.1). Similarly, partition-based locking is up to
2.2× faster than token passing for UK on 32 machines. Vertex-
based locking fails for UK on 16 machines because GraphLab
async runs out of memory.

As detailed in Section 5.4, these performance gains arise
from significantly reducing the communication overheads,
which is achieved by sharing fewer forks between larger par-
titions instead of millions or billions of forks between in-
dividual vertices. Moreover, unlike vertex-based locking,
partition-based locking is able to support message batching,
which further reduces communication overheads.

For PageRank, partition-based distributed locking again
outperforms the other techniques: up to 18× faster than
vertex-based locking on OR with 16 machines (Figure 6b).
Vertex-based locking again fails for UK on 16 machines due to
GraphLab async exhausting system memory. Token passing
takes over 12 hours (720 mins) for UK on 32 machines due to
its limited parallelism (Section 5.3), making partition-based
locking over 14× faster than token passing.

For SSSP and WCC on UK, token passing takes over 7
hours (420 mins) for 16 machines and 9 hours (540 mins) for
32 machines, while GraphLab async fails on 16 machines due
to running out of memory (Figures 6c and 6d). For SSSP,

partition-based locking is up to 13× faster than vertex-based
locking for OR on 16 machines and over 10× faster than to-
ken passing for UK with 32 machines. For WCC, partition-
based locking is up to 26× faster than vertex-based locking
for OR on 16 machines and over 8× faster than token pass-
ing for UK with 32 machines. These performance gains are
larger because these algorithms, like many machine learning
algorithms, require multiple iterations to complete: the per-
iteration performance gains, described earlier, are further
multiplied by the number of iterations executed.

Partition-based distributed locking also scales better when
going from 16 to 32 machines. For example, partition-based
locking achieves a speedup with graph coloring on UK, whereas
token passing suffers a slowdown (Figure 6a). In the cases
where partition based-locking also experiences slowdown,
which occurs because serializability trades off performance
for stronger guarantees, its performance does not degrade
as quickly as token passing and vertex-based locking and its
computation time remains the shortest.

Lastly, Giraphx implements its synchronization techniques
only for graph coloring, so we can compare against only
this algorithm. As discussed previously, Giraphx imple-
ments its techniques as part of user algorithms rather than
within the system, resulting in poor usability as they must
be re-implemented in every user algorithm. A key advantage
of our techniques is that, because they are implemented at
the system level, serializability is automatically provided for
all user algorithms. For graph coloring on OR with 16 ma-
chines, Giraphx with single-layer token passing is 30× and
41× slower than Giraph async with dual-layer token passing
and partition-based distributed locking, respectively. With
vertex-based locking, Giraphx is 55× slower than GraphLab
async with vertex-based locking and 103× slower than Gi-
raph async with partition-based locking. On TW and UK,
Giraphx fails to run due to exhausting system memory. Gi-
raphx’s poor performance is due to its less efficient tech-
niques, the fact that it uses a much older and less perfor-
mant version of Giraph and, unlike Giraph async, does not
implement the more performant version of the AP model.

8. RELATED WORK
To the best of our knowledge, this paper is the first to

formulate the important notion of serializability for graph
processing systems and to incorporate it into a foundational
framework that has been implemented in a real system to de-
liver an end-to-end solution. Only Giraphx [33] and GraphLab
[27, 18] provide serializability but, as we showed in this pa-
per, our techniques significantly outperform their designs.
Moreover, neither of their proposals provide a formal frame-
work for reasoning about serializability nor do they show
correctness for their synchronization techniques. Giraphx
considers single-layer token passing and vertex-based dis-
tributed locking but its implementations are a part of user
algorithms rather than within the system: each technique
must be re-implemented in every user algorithm, which neg-
atively impacts performance and usability. GraphLab async
uses vertex-based distributed locking and is tailored for this
synchronization technique. However, it is not partition aware
and thus cannot support the more efficient partition-based
distributed locking technique.

We mention several other vertex-centric graph processing
systems next, however, they neither consider nor provide se-
rializability. Apache Hama [2] is a general BSP system that,
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unlike Giraph, is not optimized for graph processing. GPS
[31] and Mizan [25] are BSP systems that consider dynamic
workload balancing, but not serializability, while GRACE
[35] is a single-machine shared memory system that imple-
ments the AP model. GraphX [36] is a system built on the
data parallel engine Spark [37], and considers graphs stored
as tabular data and graph operations as distributed joins.
GraphX’s primary goal is to provide efficient graph process-
ing for end-to-end data analytic pipelines implemented in
Spark. Pregelix [12] is a BSP graph processing system im-
plemented in Hyracks [9], a shared-nothing dataflow engine.
Pregelix stores graphs and messages as data tuples and uses
joins to implement message passing. GraphChi [26] is a
single-machine disk-based graph processing system for pro-
cessing graphs that do not fit in memory.

9. CONCLUSION
We presented a formalization of serializability for graph

processing systems and proved that two key conditions must
hold to provide serializability. We then showed the need for
partition aware synchronization techniques to provide seri-
alizability more efficiently. In particular, we introduced a
novel partition-based distributed locking technique that, in
addition to being correct, is more efficient than existing tech-
niques. We implemented all techniques in Giraph to provide
serializability as a configurable option that is completely
transparent to algorithm developers. Our experimental eval-
uation demonstrated that our partition-based technique is
up to 26× faster than existing techniques that are imple-
mented by graph processing systems such as GraphLab.
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ABSTRACT

A traditional relational database can evaluate complex queries
but requires users to precisely express their information need.
But users often do not know what information is available
in a database, and hence cannot correctly express their in-
formation need. Traditional databases do not provide con-
venient means for users to gain familiarity with the data.

In this paper, we study the problem of exploratory search,
which a user may wish to perform to get an understanding of
the data set. We note that users often have some decisions
already made, so what they need is not an overall database
summary, but rather a summary “in context” of the rele-
vant portion of the database. Towards this end, we devise a
novel data summarization technique called the Conditional
Attribute Dependency (CAD) View, which shows the condi-
tional dependencies between attribute values conditioned on
applied selections. The CAD View can help users to gain fa-
miliarity with structured datasets in an attribute-wise man-
ner.

To evaluate the CAD View, we perform a user study com-
prising three complex exploratory tasks on a real dataset.
Our studies show that users are able to do all the tasks
about 4-5 times faster and with better accuracy using the
CAD View compared to the data summary shown in faceted
navigation, which is currently the most popular search inter-
face for e-commerce and has support for exploratory search.

1. INTRODUCTION
Users today have access to many large databases, yet find

it difficult to access the records they want. In some cases,
the challenge is to write correct SQL. But databases today
often come with easy-to-use query interfaces. Users still find
it difficult to specify the precise query conditions, due to
limited familiarity with the data. Consider, for example, a
user on a travel web site looking to book a hotel in a big
city. If she knows her preferences for price, location, star
rating, and other such relevant attributes, she can easily
specify a query that will pull out a few good choices for

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

her to consider from among the hundreds of hotels in the
city. But, if she is unfamiliar with the city, she may not
understand what typical prices are in the city or how all
the 5-star hotels are clustered in the financial district or
how there is a tradeoff between location and price. Without
this knowledge of the data in the database, she is forced to
depend on other data sources, such as advice from friends
and relatives, social media, web documents, etc., to gain
data familiarity and pose the right queries. In consequence,
even after hours of effort she may be left with various doubts:
“Did I make a good choice?”“Did I explore all my options?”
“Did I spend more than I needed to?”

Our goal in this paper is to develop database facilities to
support exploratory search. There are two types of search:
lookup and exploratory [26, 24, 19]. In lookup search users
have a specific well-defined search goal. In contrast, in ex-
ploratory search, the users’ goal is to gain a comprehensive
understanding of data that will enable them to pose more
informed lookup queries.

Supporting data exploration is difficult because: (a) Datasets
are complex and heterogeneous, and (b) Users have diverse
needs. It is easy, for example, to provide the user with some
simple summary statistics, such as average price for a ho-
tel room. However, this number is of only limited value to
the user, perhaps because there is huge variance between
different parts of the city or perhaps because the user is a
backpacker looking for youth hostels whose price is poorly
correlated with those at fancy hotels. What the user needs
is a characterization of a portion of the data (which she has
identified to the system) along dimensions that are of inter-
est to her.

Let us consider an example task to better appreciate our
problem. For variety, we describe a car purchase task rather
than a hotel room booking task. For specificity, we write
all queries in SQL, even though we expect any real imple-
mentation to have a user-friendly interface layer on top the
query language.

Example 1. Consider a used car database, which con-
tains a single table D with n attributes where each tuple rep-
resents a car for sale. The table has numerous attributes
that describe details of the car, such as Price, Make, Model,
BodyType, Drivetrain, Mileage, EngineSize, NumCylin-

ders, Color, FuelEconomy, Power, Year, etc.
Consider a user Mary who is unfamiliar with cars and

wants to buy a relatively new SUV car. She has five initial
Make preferences (Ford, Chevrolet, Toyota, Honda and Jeep),
because she has friends who drive these Makes, but she is open
to explore any similar option. She starts her exploration
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with an initial query: R = SELECT * FROM D WHERE
Mileage BETWEEN 10K AND 30K AND Transmission =
Automatic AND BodyType = SUV. This query leads to a
large result set with thousands of tuples. Mary has to specify
more constraints to get to a smaller result set that she can
explore in depth. She thinks a good place to start may be to
reduce the number of Makes she considers. Let’s look at her
difficulties in choosing between Makes.

Limitation 1. Understanding Attribute Values —
The attribute Make has more than 50 values. Even to choose
among the 5 Makes she has initially chosen, she needs to un-
derstand what is the main difference between SUVs from
any pair of manufacturers, such as Jeep and Chevrolet. Fur-
thermore, Mary knows that her initial set of 5 Makes is just
a rough starting point, so before she narrows it down fur-
ther she may also want to understand what other Makes are
similar, and therefore belong in her consideration set. For
example, she may want to know who else makes SUVs very
similar to those made by Chevrolet.

Comparison can be of two types: independent and condi-
tional. An independent comparison would be comparing the
general characteristics of Chevrolet vs. Jeep cars. A condi-
tional comparison would be based on the user’s already made
selections. For example, Mary might want to compare the
five Makes: Ford, Chevrolet, Toyota, Honda and Jeep, given
the following choices: BodyType = SUV, 10K ≤ Mileage

≤ 30K, Transmission = Automatic. Conditional compar-
isons are difficult even for users who are quite familiar with
the domain. For example, Mary might know what Make she
would prefer if there are no constraints on other attributes.
However, if there are constraints in other attributes, such as
Price, Year, Color, etc., it is hard to find Makes that will
lead to cars that maximally satisfy her preferences across all
the attributes.

With traditional relational database, result sets are pre-
sented as sets of tuples. To compare Chevrolet SUVs with
Jeep SUVs, Mary has to look at hundreds of instances in
each set. This is very difficult to do. Perhaps these tuples
could be sorted on some important attributes, such as Price,
so that corresponding tuples can be compared. But this re-
quires knowing enough of the database to choose important
attributes, and even so provides only limited assistance in
understanding.

Finding similarities and differences are two complemen-
tary aspects of comparison. We looked at the difference
case in the preceding paragraph. To find additional similar
Makes is even more difficult, because now we need to check
the hundreds of Chevrolet instances with the thousands of
instances from dozens of other manufacturers. We note fur-
ther Mary has a desired mileage range initially specified. As
she explores the data set, she may decide to change this.
If she is comparing Makes conditioned on her mileage selec-
tion, then she has a whole new comparison. The conditional
comparisons change with every change in the given query
condition.

Limitation 2. Querying Hidden Attributes — Often,
there are characteristics of the data item that are important
to the user but not explicitly recorded as an attribute in
the database. For example, Mary wants to choose a certain
car body look, but this field is not encoded anywhere in the
database. There may be a way to express her preference as a
selection on available attributes (perhaps as a combination

of low height, large wheel diameter and four doors). But
Mary does not know how to express her desired look in terms
of these other attributes.

Even worse, many database interfaces, for the sake of
simplicity, may limit the number of queriable attributes.
The number of cylinders in the engine may be an attribute
recorded in the database, but it is not available to Mary
through her forms-based interface for querying the database.
It is possible that queriable attributes, such as fuel efficiency,
can be used as surrogates to express her preference for a 4
cylinder engine. However, such cross-attribute relationships
are completely opaque to Mary, and she is unable to substi-
tute the surrogate for her desired attribute.

In exploring a database, users have two problems: (a) Choos-
ing attributes that will enable them to efficiently and pre-
cisely reach to their desired result set, and (b) Choosing at-
tribute values for each chosen attribute. These choices are
challenging because there is complex dependency between
attribute values within and across attributes, and users also
have an unspecified, complicated preference function that
spans across multiple attributes. Moreover, their preference
function changes on seeing the comparison between available
choices.

In short, while exploring a data set, users often make
choices in sequence (with some backtracking where needed).
They need help to understand the fragment of the database
that is currently selected, and they would like to see this
fragment of the data set characterized in terms of the choices
(of attributes and attribute values) that the user is contem-
plating next. The alternation of browsing and querying in
user interaction with data has been well-documented, where
the purpose of browsing is mostly exploration. When data
sets become large, unfortunately, browsing is no longer effec-
tive because of the very large number of tuples to be viewed.
Therefore, this understanding of selected database fragment
is best provided as a context-sensitive summary that sup-
ports the user’s exploration need.

In this paper, we present a novel data summarization tech-
nique called the Conditional Attribute Dependency (CAD)
View, which allows users to systematically explore the con-
ditional dependencies between attribute values both within
and across attributes. It thereby lifts the two limitations
described in the motivating example above. Our proposed
CAD View can be integrated with any structured data pre-
sentation system.

Our key contributions are as follows:

• We identify two limitations that users face in exploring
databases due to limited data familiarity (Section 1).

• We propose a query model and a data summarization
technique called the CAD View that can help users gain
familiarity with structured datasets (Section 2).

• We present the algorithms and techniques necessary to
create and present the relevant CAD Views (Sections 3
and 4).

• We integrate CAD View with faceted navigation to make
the exploratory search process user-friendly. Moreover,
this also leads to a novel search interface that can support
both exploratory and lookup search. (Section 5).

• We evaluate the CAD View on real data with a detailed
user study. We find that users, on average, can perform
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Make Compare Attrs. IUnit 1 IUnit 2 IUnit 3

Chevrolet

Model

Engine

Price

Drivetrain

Year

[Traverse LT] [Equinox LT]

[V6]

[25K-30K] [20K-25K]

[AWD]

[2011-2012]

[Suburban 1500 LT, Tahoe LT]

[V8]

[35K-40K] [40K-45K]

[4WD] [2WD]

[2011-2012]

[Captiva LS, Equinox LT]

[V4]

[15K-20K, 20K-25K]

[2WD]

[2011-2012]

Ford

Model

Engine

Price

Drivetrain

Year

[Escape XLT] [Escape Ltd.]

[V6, V4]

[20K-25K, 15K-20K]

[2WD][4WD]

[2011-2012] [2010-2011]

[Explorer XLT] [Explorer Ltd.]

[V6] [V8]

[30K-35K] [25K-30K]

[4WD] [2WD]

[2011-2012]

[Edge Ltd.] [Edge SEL]

[V6]

[25K-30K]

[AWD, 2WD]

[2011-2012] [2010-2011]

Honda ... ... ... ...

Toyota ... ... ... ...

Jeep

Model

Engine

Price

Drivetrain

Year

[Wrangler Unlimited]

[V6] [V8]

[25K-30K] [30K-35K]

[4WD]

[2011-2012] [2010-2011]

[Compass Sport, Patriot Sport]

[V4]

[15K-20K]

[4WD] [2WD]

[2011-2012]

[Liberty Sport]

[V6]

[15K-20K]

[4WD] [2WD]

[2011-2012] [2010-2011]

Table 1: This table shows a sample Conditional Attribute Dependency (CAD) View for comparing five
different car manufacturers. The first column Make is the Pivot Attribute. The second column Compare

Attributes shows the top-5 attributes that are most informative for comparing the five Makes. The last three
columns shows the top-3 IUnits for each Make. The user has selected BodyType = SUV, 10K ≤ Mileage ≤ 30K,
Transmission = Automatic. Each IUnit is a cluster label that summarizes a group of similar SUVs.

tasks that require data understanding with 4-5 times
greater efficiency and accuracy using our CAD View as
compared to faceted interface (Section 6).

Finally, we conclude with Section 8 after a discussion of
related work in Section 7.

2. SOLUTION ARCHITECTURE
In this section we describe our solution to the exploratory

search problem in complex databases — the Conditional At-
tribute Dependency (CAD) View. We also identify algorith-
mic challenges that must be solved for the CAD View to
fulfill its goals.

2.1 The CAD View
The CAD View is a novel data summarization technique

that shows the conditional relationship between values in a
given attribute with values in other attributes. It is best
introduced by example. A more formal treatment follows in
the next subsection.

2.1.1 Overview

Table 1 shows a sample CAD View, obtained from a real
dataset, for the example query discussed in Section 1. Mary’s
goal was to explore automatic transmission SUV cars that
have Mileage between 10K-30K from five different Makes.
The CAD View has several important components:

1. The Pivot Attribute organizes the information that
is shown in the CAD View. A user explicitly chooses one of
the attributes as Pivot Attribute fp and requests the system
to create a CAD View that facilitates comparison among
attribute values selected from the Pivot Attribute by show-
ing their relationship with values across other attributes. In
Table 1, Mary has chosen Make as the Pivot Attribute.

2. Compare Attributes are data attributes that inter-
act with the Pivot Attribute in “interesting” ways. All the

values in the Pivot Attribute are compared using the same
set of Compare Attributes. These attributes can be auto-
matically determined based on the result set and the Pivot
Attribute or explictly provided by the user. For example,
one can use correlation to quantify interesting interaction.
In Table 1, the system has given five Compare Attributes:
Model, Engine, Price, Drivetrain, and Year.

3. An IUnit (Interaction Unit) is an “interesting” group of
values for the Compare Attributes. In Table 1, each IUnit
is described using the five Compare Attributes mentioned
above. Each IUnit is chosen to be relevant to a Pivot At-
tribute value: Chevrolet, Ford, Honda, etc. The top-left IU-
nit in this table (containing Traverse LT and Equinox LT)
identifies a set of midsized Chevrolet SUVs: they share an
engine size and a drivetrain, and have similar prices. One
can think of an IUnit as a cluster of database values with
two special differences: it is a cluster on a partition of the
database determined by each Pivot Attribute value, and the
cluster is labeled using the chosen Compare Attribute labels
and Compare Attribute values.

The Overall CAD View is a tabular combination of the
above three components. It displays one row for each value
of the user-selected Pivot Attribute. In the second column
the system shows an ordered list of Compare Attributes, one
for each row of the table. The rest of the table shows each
row’s top IUnits, sorted left-to-right in descending order of
relevance to the row’s Pivot Attribute value. If an IUnit
cluster can be represented equally well by multiple values in
a single Compare Attribute, then an IUnit will show multiple
attribute values in square brackets (e.g. Traverse LT and

Equinox LT).
Note that there are competing ways to rank IUnits from

left-to-right within each row. They can be ranked left to
right in order of their salience for the row’s Pivot Attribute
value. Or we could try to ensure that all of the IUnits in
a single column can be compared across all Pivot Attribute
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values so that, e.g., the IUnit 1 for Chevrolet is similar to
IUnit 1 for Ford (and thereby addressing Limitation 1).

However, not all Pivot Attribute values may share compa-
rable IUnits, forcing our system into an impossible tradeoff
between IUnit quality and columnar IUnit “comparability.”
Thus, we chose to rank IUnits strictly by their relevance
to the row’s Pivot Attribute value. We use other means
to satisfy the comparability goal as described below in Sec-
tion 2.1.3.

2.1.2 Query Model

We use the following extension of SQL to express an ex-
ploratory search query:

CREATE CADVIEW cadview_name AS

SET pivot = pivot_attr

SELECT attr1, attr2,...,attrN

FROM table1, table2...

[WHERE Clause]

[LIMIT COLUMNS M] [IUNITS K]

[ORDER BY attr_name, attr_name ASC|DESC]

In the above expression, the list of attributes shown in the
SELECT clause are the attributes that the user has explictly
selected as Compare Attributes. The LIMIT COLUMNS
clause is used to limit the number of Compare Attributes.
The CAD View will have total of M columns as Compare
Attributes, in which N are explicitly provided by the user
and the remaining (M-N) are automatically selected based
on the query result and the Pivot Attribute. The number of
IUnits per row K is determined using the keyword IUNITS.
The ORDER BY keyword can be used to sort the IUnits by
one or more columns.

CREATE CADVIEW CompareMakes AS

SET pivot = Make

SELECT Price

FROM UsedCars

WHERE Mileage BETWEEN 10K AND 30K AND

Transmission = Automatic AND BodyType = SUV AND

(Make = Jeep OR Make = Toyota OR Make = Honda OR

Make = Ford OR Make = Chevrolet)

LIMIT COLUMNS 5 IUNITS 3

For example, Mary’s query can be expressed as above. The
Price attribute has been explicitly selected as a Compare
Attribute, and the remaining four attributes (Model, Engine,
Drivetrain and Year) are automatically determined.

2.1.3 Finding Similar Information

If there are V values in the Pivot Attribute and the user
has requested k IUnits per attribute value, then the CAD
View will have k|V| IUnits. As discussed in Section 1, one of
the primary goal of exploratory search is comparison, which
includes finding similarities and differences. To facilitate
comparison, we support the following two search operations
within the CAD View: (i) Finding similar top ranked IUnits,
and (ii) Finding similar attribute values within the Pivot
Attribute.

For example, if a user likes a particular IUnit from one of
the selected Pivot Attribute values (e.g., Chevrolet), then the
user may want to efficiently locate similar top-ranked IUnits
that belong to other Pivot Attribute values. Similarly, if
the user likes multiple IUnits of a particular Pivot Attribute
value, then the user might be interested to find out other
Pivot Attribute values that have similar IUnits.

Let’s say Mary likes IUnit 3 of Chevrolet. She can create a
new CAD View where all the IUnits that are similar to this
IUnit gets highlighted by using the following query:

HIGHLIGHT SIMILAR IUNITS

IN CompareMakes

WHERE SIMILARITY(Chevrolet, 3) > 3.5

In the similarity function the user gives the Pivot At-
tribute value and the IUnit ID. The above query will high-
light all the IUnits (e.g., IUnit 1 of Ford, IUnit 2 of Jeep) in
the CAD View CompareMakes with similarity score greater
than 3.5. As discussed later, for five Compare Attributes
the max similarity score can be 5.0.

Similarly, to find Makes that are similar to Chevrolet, one
can reorder the rows of the CAD View such that the Pivot
Attribute values are ordered in terms of decreasing similar-
ity with respect to Chevrolet. The similarity between two
Pivot Attribute values can be measured by measuring the
similarity between their IUnits. This query can be expressed
as follows:

REORDER ROWS

IN CompareMakes

ORDER BY SIMILARITY(Chevrolet) DESC

2.1.4 Design Goals

We can now examine the extent to which the CAD View
addresses the limitations described in the motivating exam-
ple above:

Limitation 1. Understanding Attribute Values —
With the traditional tuplewise presentation of result set, it
was difficult for Mary to find the Makes that are similar to
Chevrolet, or see the difference between Chevrolet and Jeep.
However, using the CAD View it is easy to see that IUnits of
Chevrolet and Ford are quite similar, and thus one can infer
that both Chevrolet and Ford offer SUVs at roughly similar
capacities and price points. One can also see that SUVs from
Chevrolet and Jeep are quite different, and they primarily
differ in Price and Drivetrain. Moreover, the CAD View
can show conditional comparisons. Since Mary had selected
Mileage between 10K and 30K, the CAD View shows her
comparison between SUVs in Year range 2011-2012.

Limitation 2. Querying Hidden Attributes — Also
recall that Mary was unable to choose cars with V4 engines,
because the interface did not expose Engine type as an op-
tion in the query panel even though the information was
contained in the database (i.e., Engine was a non-queriable
attribute). Moreover, she was not familiar enough with the
database to indirectly find V4 engines by selecting values in
the queriable attributes. In contrast, the CAD View identi-
fies V4 engines as a characteristic of specific IUnits for each
body style. Mary can select the desired tuples using the
corresponding queriable attributes.

2.2 Problem Definition

2.2.1 Assumptions

The CAD View is a tabular structure whose size must be
small enough for the summary information to be absorbed
effectively by the user. For example, the width must be small
enough not to require horizontal scrolling when displayed on
the user’s screen. We reflect this constraint on the width by
limiting the number of IUnits we can show for each attribute
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value. Let this number be k. We assume that k is given
to us, either by the user explicitly, or through the system
gaining knowledge of the user’s set up.

The length of the table must also be constrained for the
same reason. There are two variables that control table
length. The first is the number of distinct values for the
pivot attribute. By default, we will show all of them. If the
user is focused on only specific values, these can be listed
explicitly in the CAD View specification. Mary has chosen
5 specific Makes in the example above. The second variable
affecting table length is the number of Compare Attributes
in each row. We assume that this number c is given to
us, just as k is. Furthermore, if the user is interested in
specific attributes, she can insist that these be included in
the Compare Attributes that the system selects.

For categorical attributes or attributes with small discrete
numerical domain, the attribute values are directly obtained
from the domain. Where the number of values is very large,
such as for most numerical domains, ranges of values are
binned together to create a small number of discrete at-
tribute values. Such attribute value cardinality reduction is
necessary for effective summarization. However, this cardi-
nality does not itself play a role in the CAD View generation
algorithm. Therefore, we mention it here as a pre-processing
step, but do not go into details of exactly how this binning
is done. We suggest following the well-developed techniques
in histogram construction[17] for this purpose.

In this section we describe the problems that needs to be
solved to create the CAD View. Our goals are (i) to pop-
ulate this structure effectively, making the most of limited
screen real-estate available, and (ii) to arrange and present
the information populated in this structure to maximize its
value to the user.

For the first goal, we have to find the best (i.e., most
informative) Compare Attributes, the best IUnit clusters,
and (for each IUnit) the best value labels to describe the
IUnit’s data.

The CAD View structure already lays out IUnits in rows,
one per attribute value for the Pivot Attribute. For the
second goal, the system must further decide how to order
IUnits within each row, how to indicate similarity between
IUnits in different rows, and how to indicate similarities and
differences between rows as a whole.

2.2.2 Creating the CAD View

The CAD View is created for a given result data set R
and a Pivot Attribute. Populating the CAD View entails one
main task: obtaining the k IUnits of interest for each value
of the pivot attribute. This task can be written formally as:

Problem 1 (Generate IUnits): Given a result set R, a
Pivot Attribute fp, a set of attribute values V selected from
fp, and a threshold value k, find for each attribute value
v ∈ V a list of k IUnits Sv, where Sv = {sv1 , s

v
2 , ..., s

v
k} and

svj is the jth IUnit for attribute value v.

The first task could be accomplished as finding k clusters
with our favorite clustering algorithm. However, we observe
that our goal is to explain the main structure of this frag-
ment of the data set to the user. Therefore, there are two
important ways in which we deviate from the basic problem
statement above. The first is that we restrict the clustering
to be on the basis of only the attributes selected as Compare
Attributes. These are the attributes that will be displayed in

the CAD View. In other words, these are the attributes that
will be used to label each cluster (IUnit). Therefore, it is
the values of these attributes that we wish to have clustered
together in each IUnit rather than some other attributes not
shown to the user. The second point we note is that we are
under no obligation to cover all points in the data set with
the clusters produced. We do not want outliers to distort
the clusters. To this end, we choose to solve the clustering
problem with a larger number l, and then choose the top-
k IUnits from among these l clusters. l can be chosen by
iterating through all plausible l values and evaluating the
quality of the resulting CAD View for each. Or it could be
obtained as a system tuning parameter, such as l = 1.5k.

We can then restate the CAD View generation problem
as the following sequence of sub-problems:

Problem 1.1 (Compare Attributes): Given a result set
R, a Pivot Attribute fp, and set of attribute values V selected
in fp, find a subset of Compare Attributes I s.t. I generate
the most contrast among values in V.

Choosing Compare Attributes is a feature selection prob-
lem [12, 22] with a specialized way of evaluating the quality
of a feature: good features (that is, Compare Attributes)
yield sharply contrasting IUnits across the different Pivot
Attribute values. One can discriminate among Compare At-
tributes as follows: Given a multi-class problem, a feature X
is preferred to another feature Y if X induces a greater con-
trast between the multi-class conditional probabilities than
Y. X and Y are indistinguishable if they induce the same
amount of contrast.

Problem 1.2 (Generate Candidate IUnits): Given a
result set R, a Pivot Attribute fp, a set of attribute values
V selected from fp, a set of Compare Attributes I, and a
threshold value l, find for each attribute value v ∈ V a list of
l candidate IUnits Sv, where Sv = {sv1 , s

v
2 , ..., s

v
k} and svj is

the jth candidate IUnit for attribute value v.
Problem 1.2 is now stated as a clustering problem, with

each resulting cluster being a candidate IUnit. We finally
need to choose k IUnits from among these l candidates.

Problem 2 (Top-k IUnits): Given a list of IUnits Sv for
attribute value v, and a preference function P , find the top-
k IUnits T v in Sv according to preference P , where T v =
{tv1 , t

v
2 , ..., t

v
k} and T v ⊆ Sv.

The IUnits could be ranked based on a function that is
rooted in the clustering algorithm; for example, we could
prefer “tight” clusters by ranking them in ascending order
of minimum pairwise similarity. However, we can pursue
some application-specific goals by ranking IUnit clusters in
a manner that is distinct from the IUnit creation mechanism.
For example, our car navigation interface might, by default,
rank clusters in ascending order of cluster price. In contrast,
the fleet manager for a taxi company might have a different
preference function that ranks IUnits in descending order
of car mileage. Therefore, we have defined this ranking in
terms of a specific preference function. If no function is
specified by the user, we can use a simple system default,
such as cluster size.

2.2.3 Finding Similar Information

The two search operations within the CAD View can be
stated as following two problems:

Problem 3 (Similar IUnits): Given two attribute values
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x and y from the Pivot Attribute, and an IUnit txi from T x,
find all IUnits tyj s.t. tyj ∈ T y and sim(txi , t

y
j ) ≥ τ .

We can use any similarity function for this purpose, and
any user or system specified threshold τ . We describe the
specifics of the similarity function in Section 4.1.

Problem 4 (Similar Attribute Value): Given two at-
tribute values x and y and their top-k list of IUnits T x and
T y, find the similarity between x and y by measuring the
similarity of their top-k IUnits.

If a user shows preference for a particular attribute value,
it implies that the user has liked most of the top-k IUnits
that has been shown for that attribute value. The user would
be interested to see other attribute values that have similar
IUnits both in terms of content and rank. We describe the
specifics in Section 4.2.

3. CREATING THE CAD VIEW
In this section, we describe how we create and sort IUnits

(problems 1 and 2 above) for the CAD View.

3.1 Generating Candidate IUnits
Generating uniformly labeled IUnits consists of two steps:

finding good Compare Attributes I that can show contrast
in Pivot Attribute values V; and then generating l IUnits for
each value v ∈ V.

3.1.1 Finding Compare Attributes

The problem of finding Compare Attributes is similar to
feature selection in a multi-class classification problem. To
provide efficient user interaction and understanding, we use
a feature selection algorithm that is computationally effi-
cient and returns all the relevant features.

To determine the number of Compare Attributes we con-
sider two factors: the available screen space and the rele-
vance score of each informative facet. The user’s available
screen space determines the maximum number c of Compare
Attributes that can be shown for any Pivot Attribute. How-
ever, all Pivot Attribute may not have c informative facets
that have relevance greater than a required minimum thresh-
old relevance score. A relevant Compare Attribute always
provides additional useful information. However, if a Com-
pare Attribute is not informative about the Pivot Attribute,
including it will lower the quality of generated IUnits and
waste valuable screen space.

We use the ChiSquare feature selection algorithm [23].
ChiSquare evaluates the worth of an attribute by comput-
ing the value of the chi-squared statistic with respect to the
class. For ChiSquare test one can determine the threshold
relevance using p-values, such as significance level equal to
0.01, 0.05, or 0.10. Even with this simple technique, ranking
Compare Attributes in order of decreasing relevance yields
a few interesting observations that a typical user might not
know. For example, it might seem that Mileage should be
the best Compare Attribute when distinguishing among dif-
ferent Year values: older cars will naturally accrue more
miles. However, it turns out that Model is better, as specific
car models (Suburban 1500 LT, not simply Suburban) are re-
leased frequently, and a specific model is prominent in the
database for only a short period of time.

3.1.2 Finding Important Attribute Interactions

To create IUnits for a Pivot Attribute value v ∈ V, we
take all tuples from the result set R that contain the given
value v, and allocate those tuples to l clusters. We derive
an IUnit from each of these l clusters. We cluster the tuples
using only the above-chosen Compare Attributes.

Since the CAD View is a user-facing application, we want
to create it within interactive time limits, well under 1 sec.
There are various factors that can slow down a clustering
algorithm: (i) clustering a dataset with large numbers of tu-
ples or dimensions, (ii) trying to infer the ideal number of
clusters using the clustering algorithm, and (iii) clustering
with large numbers of cluster centers. Since there are stan-
dard existing techniques to address each of these factors,
we defer their discussion to experimental evaluation (Sec-
tion 6.3).

The quality of IUnits depends on the quality of the clus-
tering algorithm. Since both efficiency and quality are major
concerns of our system, we use standard k-means algorithm.
Our main contribution in the clustering step is the dynamic
variation of system parameters to achieve real-time perfor-
mance, as discussed later in Section 6.3.

Our key contribution in creating the IUnits is the post-
clustering step of cluster labeling, which is often ignored in
clustering research. Although clustering is a very nice data-
categorization technique, it is very hard for most users to un-
derstand the large amount of information that is contained
in each cluster, or be able to compare multiple clusters.

There are existing systems to visually explore clusters of
structured data [5, 21, 29]. Some of these systems are not
easy to explore when the data is high-dimensional or cate-
gorical. For normal end-users, the commonly used cluster
labeling technique is to show the centroid of each cluster,
which is useful when all clusters are spherical. For complex
shaped clusters, it is considered more informative to show
multiple tuples that can show the whole cluster boundary [5].
It is very hard to understand a high-dimensional cluster by
seeing just one centroid or some boundary points. When a
user sees a high-dimensional representative tuple, it is not
easy to infer the dimensions that are most significant. We
need to label the clusters in such a way that we can convey
large amount of information in a summarized manner and
also emphasize the important information.

The way we label the clusters has many benefits. We la-
bel all IUnits uniformly and use ranking at all levels. We
rank the Compare Attributes to highlight the attributes that
are most significant. Similarly, in each IUnit we rank the
Compare Attribute values and show only the most impor-
tant representatives. Instead of showing few representative
tuples from each cluster, we try to summarize statistical
distribution of each Compare Attribute. To label both cate-
gorical and numerical attributes in uniform manner, we dis-
cretize the numerical attributes. We rank attribute values
based on frequency count and then group multiple values if
they have similar frequency count. We use two thresholds
— max display count and statistical difference between fre-
quency counts — to determine the representative Compare
Attribute values for each cluster.

3.2 Top-k IUnits
Without an explicit user preference function, we choose a

preference function that depends on the size of the IUnit’s
underlying cluster, as well as overall result diversity. IU-
nits that represent large clusters are desirable because they
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summarize attribute interactions for larger number of tu-
ples. Moreover, they may give more reliable insight than
smaller outlier-prone clusters. However, when we select the
top-k IUnits based purely on the cluster size, many are quite
similar and appear redundant to the user.

Thus we use the generic top-k algorithm proposed in [25]
to compute diversified top-k IUnits. It requires the follow-
ing measures: preference score of each IUnit sxi , denoted as
score(sxi ); similarity between two IUnits sxi and syj , denoted
as sim(sxi , s

y

j ); and a user defined threshold similarity value
τ . Two IUnits sxi and syj are considered similar, denoted as
sxi ≈ syj , if sim(sxi , s

y
j ) ≥ τ .

Diversified Top-k IUnits: Given a list of IUnits Sv =
{sv1 , s

v
2 , ...} for a attribute value v, and an integer k, the

diversified top-k IUnits for v, denoted as T v = {tv1 , t
v
2 , ...},

is the list of IUnits that satisfy the following conditions:
1) T v ⊆ Sv and |T v| ≤ k
2) For any two different IUnits svm and svn, if s

v
m ≈ svn then

{ivm, ivn} 6⊆ T v

3) Σtv
i
∈Tv score(tvi ) is maximized.

To create the CAD View, we need to compute the diversi-
fied top-k IUnits for each attribute value v. The diversified
top-k problem can be reduced to the NP-Hard maximum
independent set problem on graphs [25]. Greedy solutions
often lead to good approximate results in many NP-Hard
problems, but for this problem a greedy algorithm can lead
to arbitrarily bad solutions, with no bounded constant fac-
tor solution [25]. Because in our problem the size |Sv | is
generally not large, Qin, et al.’s basic div-astar algorithm
works well.

4. FINDING SIMILAR INFORMATION
In this section, we decribe how to find similar components

in the CAD View. These are solutions to Problems 3 and 4.

4.1 Finding Similar IUnits
If a user likes one of the IUnits, say IUnit txi from T x, the

user can find all the IUnits t in the CAD View s.t. txi ≈ t
(in other words, sim(txi , t) ≥ tau). This approach allows
us to address the IUnit sorting problem mentioned in Sec-
tion 2.1.1; we can now sort IUnits from left-to-right by order
of salience to the row’s Pivot Attribute value, while still al-
lowing the user to compare similar IUnits.

Computing similarity between IUnits is equivalent to com-
puting similarity between clusters. For a numerical dataset,
one can compute cluster distance by measuring the distance
(such as Euclidean distance) between cluster centroids. For
a categorical dataset, one can use any distance measure that
is used in existing categorical clustering algorithms to com-
pute cluster distance [11]. However, things become more
complicated when we have a mixed dataset, having both
numerical and categorical attributes. The distance measure
that is used in categorical datasets is quite different com-
pared to those used in numerical datasets. To compute simi-
lar IUnits, we propose a new distance measure that can treat
both numerical and categorical attributes in a uniform man-
ner. We use discretization to convert numerical attributes
into categorical attributes. Then we use a modified form of
cosine-similarity to compute IUnit similarity.

Let txi and tyj be two top-k IUnits for selected attribute
values x and y, and I be their set of Compare Attributes. We
measure the similarity of txi and tyj by summing their cosine

Algorithm 1 IUnit Pair Similarity

Input: txi : IUnit 1
tyj : IUnit 2
I: set of informative dimensions

Output: s: similarity between the two IUnits
Method:

1: s← 0
2: for all d ∈ I do
3: s← s+ cosine-similarity(txi .d, t

y

j .d)
4: end for
5: return s

similarities along each dimension d s.t. d ∈ I. We use the
frequency count of each attribute value in the corresponding
cluster as the attribute value’s term frequency. Since the
range of cosine-similarity function is [0, 1], the range of the
above similarity function is [0, |I|]. Based on the specific
data domain, one can choose the IUnit similarity threshold
value τ as some α.|I|, where α ∈ (0, 1).

Algorithm 2 Attribute-value Pair Similarity

Input: T x = {tx1 , t
x
2 , ..., t

x
k} top-k IUnits for attribute value x

T y = {ty
1
, ty

2
, ..., tyk} top-k IUnits for attribute value y

Output: d: distance between T x and T y

Method:

1: d← 0
2: for all txi ∈ Tx do

3: if ∃t ∈ T y s.t. t ≈ txi then

4: index← j s.t. txi ≈ t
y
j and argmin

j

|j − i|

5: else

6: index← |T y|+ 1
7: end if

8: d← d+ |i− index|
9: end for

10: for all t
y
j ∈ T y do

11: if ∃t ∈ Tx s.t. t ≈ t
y
j then

12: index← i s.t. txi ≈ t
y
j and argmin

i

|j − i|

13: else
14: index← |Tx|+ 1
15: end if

16: d← d+ |j − index|
17: end for

18: return d

4.2 Finding Similar Attribute Values
If a user has preference for a Pivot Attribute value, the

user can create a CAD View where the first row contains
IUnits for the preferred value, and the remaining Pivot At-
tribute values are shown in decreasing order of similarity
to the preferred value. Two attribute values are considered
similar if their top-k IUnits lists are similar. Two ranked
IUnit lists T x and T y should be similar if they have similar
IUnits, and similar IUnits have similar rank.

To the best of our knowledge, there is no existing distance
metric to compute similarity between two ranked lists hav-
ing a disjoint set of items. In Algorithm 2, we propose a
distance measure that can compute distance between two
given ranked lists by taking into consideration the similarity
between their items both in terms of information content
and rank.
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Figure 1: This screen capture from cars.com repre-
sents an example of a faceted navigation interface.

In lines 2-9, we compare how IUnits in T x compare to
IUnits in T y. In line 3, we check whether the list T y has
some IUnit which is similar to IUnit txi from T x. If there
is no similar IUnit (line 6), we assume that txi is similar to
the IUnit that has highest rank amongst non-selected IUnits
(i.e., Sy \ T y), and thus has rank |T y| + 1. In lines 3-4, if
there are multiple IUnits in T y that are similar to txi , then
we take the IUnit whose rank is closest to rank of txi in T x,
which is i. In line 8, we sum the rank differences for all
IUnits in T x. Lines 10-16 show the same steps for list T y.

5. FACETED SEARCH WITH CAD VIEW
The CAD View defined above can be used with any rela-

tional database, independent of any front ends used. In fact,
we have even suggested small SQL extensions to capture this
concept. Nevertheless, we recognize that most end-users are
unlikely to be SQL programmers, and are likely to be ac-
cessing relational data through some user-friendly interface.
In this section, we consider one such popular interface, and
describe how we have integrated CAD View with it.

Shoppers in e-commerce applications are a major target
for our work: they are often exploring unfamiliar web sites
before they actually buy. Since most e-commerce web sites
use faceted navigation, that is the interface that we chose
to integrate CAD View into. Figure 1 is a screenshot of
a typical faceted interface for browsing a database of cars.
In this section, we describe a novel two-phased faceted in-
terface, called TPFacet, which integrates CAD View with
faceted browsing.

A basic faceted interface has two main component pan-
els: a query panel and a results panel. The latter typically
occupies the majority of the screen real estate and shows
the set of currently selected items. The former is usually on
the left side, and offers both user interface controls as well
as a summary digest of the current query and result set.
This summary digest typically comprises all the attribute
values (attribute values) that appear in the selected items,
grouped by their corresponding attribute (attribute). The
tuple count for each attribute value may also be included.

To fit the CAD View within users’ limited screen space,

we propose a slightly changed interaction model for faceted
navigation: at any one time, the interface will display either
the results panel or the CAD View. The user explicitly
toggles between them, though it is easy to imagine a system
that intelligently chooses a default view, based on the size
of query results. We imagine the user will interact with
the system in two distinct phases: the query revision phase
focuses on the CAD View, while the result set phase focuses
on the results panel, with the user exploring individual items
of interest in the result set.

Faceted navigation is an interaction based search system.
We need to modify the faceted search interface so that users
can create the CAD View or find similar components within
the CAD View using interactive search techniques. We made
the following three modifications: (i) Make each queriable
attribute selectable (using html radio buttons) so that users
can select them as Pivot Attribute, (ii) When users click on
an IUnit in the CAD View we highlight all the other similar
IUnits, and (iii) When users click a Pivot Attribute value
in the CAD View we reorder all the rows in the CAD View
in decreasing order of similarity w.r.t. the clicked attribute
value. We call the faceted interface with these changes as
TPFacet system.

6. EVALUATION
The goal of the CAD View is to facilitate exploratory

search in complex datasets. As such, the primary evaluation
of the CAD View is by means of a user study. In particu-
lar, we compare the use of the CAD View with a standard
faceted interface for three exploratory search tasks. As a
baseline for comparison, we use Apache Solr [2], which is
a popular open source enterprise search platform. Apache
Solr has support for faceted navigation and is used by many
e-commerce sites. Apache Solr has many configuration set-
tings. We chose a setting that is closest to the CAD View
query model. We discuss the user study in depth in Sec-
tion 6.2.

A secondary question is one of performance. Since the
summaries shown in the CAD View are quite complex, we
have to make sure that they can be computed in reasonable
(interactive) time for the data set complexities and sizes that
we expect. We discuss this issue in Section 6.3.

6.1 Implementation and Environment
We integrated the CAD View with Apache Solr to design

the TPFacet system (see Section 5). We input the users’
query from faceted interface, compute the CAD View and
all similarity scores in the backend server, and return the
resulting CAD View and similarity information using HTML
and Javascript. To do feature selection and clustering, we
use ChiSquare and SimpleKMeans algorithm respectively.
Both algorithms are available in Weka [13].

We used two real datasets—YahooUsedCar and Mush-

room [9]— to do the evaluation. We scraped Yahoo’s used
car site [1] to create a table comprising 40,000 tuples with
11 attributes. The Mushroom dataset has 8124 tuples with
23 attributes. These numbers are at the lower end of what
one sees in a typical e-commerce dataset. The CAD View
will become more valuable in datasets that have more num-
ber of attributes or tuples. The Mushroom dataset is very
popular in machine learning. It is simple to understand for
a non-expert, since it describes familiar properties, such as
color and smell, but has data that most of us (and all of our
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users) have no knowledge of, forcing us to learn patterns by
examining the data set afresh without reliance on previous
knowledge.

6.2 User Study
We devised a diverse set of carefully specified information

exploration tasks, described in the subsections that follow,
each of which tests (some aspects of) the users’ understand-
ing of the database. These tasks roughly correspond to the
two motivating limitations discussed in Section 1. The first
two tasks correspond to Limitation 1, where we evaluate
users’ ability to perform comparisons in the form of find-
ing differences and similarities respectively. The third task
corresponds to Limitation 2, where we test users’ ability
to query non-queriable attributes using available queriable
attributes. We used the Mushroom data set, which was
unfamiliar to all our users.

We compare TPFacet and Solr in terms of their usability
in users’ task completion time and quality of response to
given tasks. For all the tasks we report the results using
statistical analysis.

We performed our user study using eight graduate stu-
dents from our university. As we will see in the following
subsections, statistical analysis show that the conclusions
we draw from these eight users are statistically significant.

We gave all the users a demo explaining all features of
the TPFacet and the steps to do the tasks using both the
interfaces. We allowed the users to do the tasks remotely
to minimize effect of any environmental factors. We created
3 matched pairs of tasks, one pair for each type described
below. We divided the eight users into two equal groups.
We indicate each user by their user id U1-U8. Users with id
U1-U4 were assigned to group 1 and U5-U8 to group 2. For
a task pair (A,B) we asked one of the groups to do task A
using TPFacet and task B using Solr. We reversed the task
assignment for the other group. In other words, if a task
was done by group 1 users using Solr, then the same task
was done by group 2 users using TPFacet, and vice versa.

For all the three tasks we have performed linear mixed
model statistical analysis [28]. We use Display type as fixed
effect and User ID as random effect. Computing p-values for
mixed models aren’t as straightforward as they are for linear
models. The most popular way to obtain p-value is to use
the Likelihood Ratio test as a means to attain p-values. The
logic of the likelihood ratio test is to compare the likelihood
of two models with each other. First, the model without
the factor that one is interested in (the null model) and
then the model with the factor that one is interested in.
By comparing these two models, one can determine whether
the factor one is considering is significant or not. We use
ANOVA to compare the two models.

6.2.1 Simple Classifier

This task illustrates the benefits of the CAD View in find-
ing differences between attribute values. We asked users to
build a simple classifier. Classification is an important ma-
chine learning problem where given a training data with
multiple class labels, one builds a classification model by
which one can find the set of classes (categories) a new
test observation belongs. In this task, we build a classi-
fier for binary class data. We assume a simple classification
model that consists of selecting at most two attribute values
that maximizes the number of tuples retrieved from a given

target class, and minimizes the number of tuples from the
other class. Although problems like classification are rarely
done manually for large datasets, human ability in this task
demonstrates an understanding of crucial database themes.
We evaluate the goodness of the classifier using standard F1
accuracy score. A sample task was to build a classifier for
target class Bruises = true, where the given classes were
Bruises = {true, false}.
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Figure 2: Simple Classifier
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Figure 3: Simple Classifier
Figure 2 shows the F1 scores for the classifiers that users

got for this task. Statistical analysis shows that TPFacet
affects the quality of classfier by (χ2(1) = 5.572, p = 0.018),
increasing the F1 score by about 0.078 ± 0.0285. Moreover,
the variation in F1 score is much lower when users use the
TPFacet system as compared to Solr because the exploration
using TPFacet is more methodical. In Figure 3, we show
the time taken by the users to build the classifiers. Statis-
tical analysis shows that TPFacet affects the time taken by
(χ2(1) = 8.54, p = 0.003), lowering it by about 5.44 ± 1.56
minutes.

6.2.2 Most Similar Facet Value Pair

This task illustrates the benefits of the CAD View in find-
ing similar (or equivalent) attribute values. In this task, we
gave users a list of four attribute values from an attribute
and asked them to find the two most similar attribute values.
For example, given attribute = GillColor and attribute val-
ues = {buff, white, brown, green}, find the two most similar
gill colors.

In the traditional faceted interface, users can Compare
Attribute values by comparing their summary digest. We
gave users a cosine-similarity based distance metric to com-
pare the summary digests. We asked users to select each of
the given attribute values, one at a time, and compare their
summary digest. In the CAD View, we didn’t show the com-
puted similarity scores, but allowed users to use interactive
effects to find similar IUnits and attribute values.

Figure 4 shows users response quality for this task. Since
there are four attribute values, there are 6 possible attribute
value pairs. We computed the defined similarity score for
each pair and ranked them from 1 to 6, with the most simi-
lar pair being ranked as 1. Since computing exact similarity
score is very hard for humans, we purposely chose attributes

97



0 

1 

2 

3 

4 

5 

6 

7 

U1 U2 U3 U4 U5 U6 U7 U8 

Si
m

il
a

r 
P

a
ir

 R
a

n
k 

User ID 

Solr TPFacet 

Figure 4: Most Similar Attribute Value Pair

and attribute values that would make the task humanly fea-
sible in Solr. The similarity between gill colors brown and
white was so high as compared to other choices that all the
eight users got correct answer for this task. Group 1 users
(U1-U4) did this task using TPFacet and group 2 users using
Solr. However, the other similarity task was slightly harder.
For the other task, users U7 and U8 got the most similar
attribute value pair according to attribute value similarity
we defined in Section 4, but according to the metric defined
in this task, they turned out to be second most similar pair.
Statistical analysis shows that there is no difference in users
response quality by using the two types of interface.
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Figure 5: Most Similar Attribute Value Pair
Figure 5 shows the time users took to finish this task. Sta-

tistical analysis shows that TPFacet affects the time taken
by (χ2(1) = 12.04, p = 0.0005), lowering it by about 6.00±
1.23 minutes. All users, except user U7, finished the task
around four times faster using TPFacet as compared to Solr.
Since the users were doing this task for the first time, some
of them were trying to manually compare the IUnits. Users
could have got the desired answer for this task much faster
by just using the interactive effects, as seen in case of users
U4, U8 and U1.

6.2.3 Alternative Search Condition

This task illustrates the benefits of the CAD View in
querying non-queriable attributes using queriable attribute
values. In this task, we gave users a set of selection condi-
tions that lead to some result set R. We asked users to find
another set of selection conditions that would lead to same
result set R, but not using any of the already given selection
conditions. One can see the given selection conditions as se-
lection conditions on non-queriable attributes that the users
cannot query. Only an informed user can precisely access
the desired result set using an alternate option. A sample
task was to find an alternative selection condition using at
most two attribute values that would lead to the same result
as selecting: StalkShape = enlarged and SporePrintColor

= chocolate.
To evaluate users response quality, we checked the simi-

larity between the query result obtained from the given se-
lection condition and the users alternate selection condition.
To measure similarity between the two results, we measured
the similarity between their faceted summary digest.
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Figure 6: Alternative Search Condition

Figure 6 shows users response quality for this task. Statis-
tical analysis shows that TPFacet affects the users alterna-
tive search condition by (χ2(1) = 3.28, p = 0.07), lowering
the retrieval error by about 0.329 ± 0.172. Using TPFacet
most users were able to do the task with five times lower
retrieval error. In this task pair, the task that group 1 users
did using Solr, turned out to be quite easier compared to the
one they had to do using TPFacet. We can see this differ-
ence by seeing that users U3 - U8 have very low and similar
error for this task. For the easier task, just one attribute
value was sufficient to get to the desired result set. All the
users in group 2 had come up with slightly variant solutions,
but exactly the same retrieval error (48 missing tuples out of
1344). Since TPFacet allows users to do this type of task in
more methodical approach compared to Solr, we find much
lower variation in users response quality. For the slighly
harder task, we see slight variation in retrieval error among
group 1 users who did this task using TPFacet, but the error
variation is much higher for group 2 users who did it using
Solr. Group 2 users, such as U5, U6 and U8, who had much
lower error compared to user U7 had to spend significantly
more amount of time as seen in Figure 7.
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Figure 7: Alternative Search Condition
Figure 7 shows the time users took to finish this task. Sta-

tistical analysis shows that TPFacet affects the time taken
by (χ2(1) = 2.58, p = 0.108), lowering it by about 2.00±1.14
minutes. Most users were able to do the task 1.5 to 2 times
faster using TPFacet as compared to Solr. This task re-
quired more time because users had to manually differenti-
ate the IUnits. The main benefit of TPFacet was that users
didn’t have to try various options using hit-and-trial. They
had to look through the IUnits to find the discriminating at-
tribute values, but then it was just trying very few possible
alternate choices to see which one gives the best result.

6.3 Performance
Computational time is a crucial constraint for all user fac-

ing applications because users expect almost instantaneous
response. In this subsection, we evaluate whether TPFacet
can provide interactive responses. We performed all our per-
formance experiments on the YahooUsedCar dataset with
40K tuples and 11 attributes. When users browse over e-
commerce sites, they rarely deal with result size that is more
than 30K-40K tuples and 5-10 queriable attributes. Thus
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we evaluate our system using all the tuples of our used-car
dataset as query result, with all its attributes being used as
queriable attributes.

Our experiments show that TPFacet can give acceptable
performance by just using computationally efficient feature
selection and clustering algorithms. Each of our experimen-
tal graphs are based on average readings of 50 simulations,
where for each simulation we generate a different query re-
sult by randomly selecting a subset of tuples and/or at-
tributes. The default parameters in these experiments are:
the number of Compare Attribute I = 11, the number of
generated IUnits l = 10, the number of IUnits shown k = 6,
and the number of attribute-values selected in the Pivot At-
tribute V = 5. In these experiments, we assume that if the
total size of the query result set is |R|, then each attribute
value v ∈ V has |R|/|V| tuples.

����

����

����

����

����

����

����

�
��
��
��

�	

���	
����������� ����
���������� ���
�

�

���

����

����

����

�� ��� ��� ��� ��� ��� ��� ���

�
��

�
��
�


��������������

Figure 8: Worst Case System Performance

Figure 8 shows the total time to compute the CAD View
for different sizes of query result. In the shown graph, we
do not do any optimizations, except using a computation-
ally efficient feature selection and clustering algorithm, that
can lead to better system performance. Moreover, we chose
system parameter values to demonstrate the worst-case per-
formance of our system. For example, we kept |I| = 11
and l = 15. When we consider interaction between many
attributes (large |I|) or try to compute many interactions
(large l), then it decreases system performance, as shown
in later experiments. We divide the total time into three
parts: time to compute Compare Attribute, time to gen-
erate IUnits and time for all remaining steps, such as top-k
ranking, and similarity between IUnits and attribute-values,
that we represent collectively as others. We can see that the
most computationally intensive parts of TPFacet is comput-
ing the top Compare Attribute and generating candidate
IUnits. Total time for all other steps is negligible because of
the small values of k and |V| established due to user’s display
constraint. We can see that even this naive solution is ac-
ceptable when the result size is less 15K. But as we increase
the result set size, we can see that the time to compute CAD
View increases and becomes almost 4.5 secs for 40K tuples.
Since the result set size is likely to be the largest in the ini-
tial stages of exploration, and since this is also likely to be
when the user really needs interactive response to freely try
alternatives, a multi-second response time is too slow. To
alleviate this problem, we developed several optimizations.

Optimization 1. Sampling — Sampling can improve
both feature selection and clustering. For all our attributes,
when we computed the set of top ranked Compare Attribute
using a small random sample of size 5K-10K, we always got
almost the same set, as we got from any larger sample size,
including the full dataset. As shown in Figure 8, computing

Compare Attribute takes only 20-50 ms for 5K-10K tuples,
as compared to 1700 ms for 40K tuples. Quality of Compare
Attribute is more crucial when users are towards the end of
their exploration, and at that time even the exact computa-
tion will take very short time due to small result size. Even
if there were some degradation in quality due to sampling,
it may not matter much in the intial stages. Similarly, we
can also reduce the time for generating IUnits by generating
IUnits from a small sample.
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Figure 9: Number of Generated IUnits vs Time

Optimization 2. Varying Generated IUnits — Fig-
ure 9 shows the effect of number of generated IUnits l on
computation time for different result sizes. We observed that
as we increased the number of generated IUnits, it increases
computation time due to increased time for clustering. For
small 10K result size, computation time is small, less than
500 ms, even when we generate 15 IUnits per attribute value.
However, if the result set is large and we generate large num-
ber of IUnits, as shown in Figure 8 for 40K tuples with l =
15, then it slows down system performance. When users are
in their beginning stages of exploration, it is hard to know
their preference because their query is too broad. Generat-
ing more IUnits and finally ranking is meaningful when we
know users’ preference more precisely, which typically hap-
pens near the end-stages of exploration. Thus we generate
fewer IUnits when the result set is very large, so that we
can provide a good summary of all options. As users narrow
down their exploration, we increase the number of generated
IUnits and return better top-k IUnits.
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Figure 10: Number of Compare Attributes vs Time

Optimization 3. Fewer Compare Attributes — Fig-
ure 10 shows the effect of number of Compare Attributes
on computing clusters for different result sizes. As we in-
crease the number of Compare Attributes, it increases com-
putation time because we need to look at the interaction
between larger number of attributes. By showing few Com-
pare Attributes we can cluster even 40K tuples in less than
500 ms.

By combining all the above optimizations in creating the
CAD View, we can greatly increase the performance of TP-
Facet system. For example, we can get an CAD View for
40K tuples in less than 500 ms.
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7. RELATED WORK
Exploratory search [26, 27, 24, 19] has recently become

an important research problem in IR, HCI and database
communities. We defined a new exploratory search prob-
lem in databases. In evaluating exploratory search systems
we cannot separate human behavior from the search system.
Since users have diverse background knowledge and informa-
tion need, it is difficult to evaluate exploratory search sys-
tems. Designing evaluation metrics and methodologies for
exploratory search system is a challenging research prob-
lem [26]. We presented a detailed user-study, based on
explicit exploration/understanding tasks with quantitative
measures, to evaluate our system.

The CAD View is a summary of important interactions
between attributes. Measuring attribute interactions is a
part of broader feature selection problem [12, 22, 18] in
machine learning. In databases, attribute interactions are
often measured in form of functional dependencies [8, 16]
and referential integrities. Although standard feature selec-
tion can find the interaction between attributes, a Bayesian
network [15] can provide a more accurate description of at-
tribute interactions by giving probabilistic dependencies be-
tween attributes. These techniques can be used to create
CAD Views with other types of data summaries.

Large volumes of relational data are often summarized us-
ing data warehousing and OLAP technology [10]. There are
also many data mining techniques, such as clustering [20, 3]
and decision trees [4, 6], that can group data into meaningful
groups according to some user given notion of similarity. A
central property of these algorithms is that they depend on
the data and are independent of the user’s interest. There-
fore, the results are often not related to the user’s specific
exploratory goal. In this paper, we presented a context de-
pendent summarization technique.

Faceted categorization and clustering are both grouping
techniques. Hearst [14] presents a nice comparison of how
these two techniques complement each other. Various us-
ability studies have shown that users prefer the predictable
faceted categorization over clustering [7]. In this paper, we
combined faceted browsing with clustering to build the TP-
Facet system that has benefits of both faceted navigation
and clustering.

8. CONCLUSION
In this paper, we presented an exploratory search system

for relational databases. Our solution relies on a novel data
summarization technique called the CAD View, which pro-
vides a context dependent summary of relational result set.
We showed through an extensive user study that the CAD
View can help users gain quick data familiarity with complex
datasets. Although computing the CAD View is computa-
tionally intensive, we provided optimizations that enable it
to be easily integrated with existing search interfaces, with-
out compromising system performance.
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ABSTRACT
Although existing database systems provide users an efficient means
to select tuples based on attribute criteria, they however provide lit-
tle means to select tuples based on whether they meet aggregate
requirements. For instance, a requirement may be that the cardi-
nality of the query result must be 1000 or the sum of a particular
attribute must be < $5000. In this work, we term such queries
as “Aggregation Constrained Queries” (ACQs). Aggregation con-
strained queries are crucial in many decision support applications
to maintain a product’s competitive edge in this fast moving field of
data processing. The challenge in processing ACQs is the unfamil-
iarity of the underlying data that results in queries being either too
strict or too broad. Due to the lack of support of ACQs, users have
to resort to a frustrating trial-and-error query refinement process. In
this paper, we introduce and define the semantics of ACQs. We pro-
pose a refinement-based approach, called ACQUIRE, to efficiently
process a range of ACQs. Lastly, in our experimental analysis we
demonstrate the superiority of our technique over extensions of ex-
isting algorithms. More specifically, ACQUIRE runs up to 2 orders
of magnitude faster than compared techniques while producing a
2X reduction in the amount of refinement made to the input queries.

1. INTRODUCTION
Databases provide a number of ways to efficiently select tuples

of interest to the user by constraining attributes of individual tuples,
for instance, return tuples that meet the criteria price < $50, join
results between tuples in table A and table B that match on attribute
“id," etc. However, little effort has been focused on a means of se-
lecting tuples based on whether they satisfy aggregate constraints.
For instance, select tuples with average price < $10, number of
tuples = 1000, etc. The ability to apply aggregate constraints along
with constraints on tuples’ individual attribute values is important
in many applications as illustrated below.

• In advertising campaigns (such as Example 1), the budget
restricts the number of users that can be reached [4]; as a re-
sult, the campaign manager must select users based not only
on demographics but also whether the total number of users
(i.e. the COUNT) is within the budget limit.

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

• In a supply chain application, a requirement on the total num-
ber of parts to be ordered from suppliers translates to a con-
straint on the sum of the number of parts available with each
supplier (Example 2). As a result, queries must place con-
straints not only on part specifications but also the SUM of
the parts available.

• When analyzing large data sets through aggregates [15], users
often want to identify what input tuples produced outliers in
aggregate values (e.g. select patients who had extremely high
average cost). In this case, the user would like to place con-
straints on the AVG aggregate.

Example 1. HighStyle Designers would like to run a Facebook
1 ad campaign to get more users to “like” their page. The cam-
paign budget of $10, 000 will allow HighStyle to reach 1 million
customers. Therefore, when the campaign manager, Alice, selects
target users, she must not only constrain her search based on cus-
tomer demographics but also based on the total number of cus-
tomers who must be reached. This situation thus calls for an “Ag-
gregation Constrained Query” (ACQ).

Figure 1: Facebook Ad Creation Interface: Allows specifying
demographic criteria and view estimate of audience size.

Figure 1 shows the Facebook’s Advertising Interface2 that allows
campaign manager Alice to select target users for her ad. In terms
of SQL, Alice has to run the following query:

Q1: SELECT * FROM Users
WHERE location in (’Boston’, ’New York’,
’Seattle’, ’Miami’, ’Austin’) AND
(gender = ’Women’) AND (25 <= age <= 35)
AND (education = ’CollegeGrad’)

1http://www.facebook.com
2https://www.facebook.com/ads/create/
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AND (relationshipStatus = ’Single’)
AND (interests IN {’Retail’, ’Shopping’})

Need for Query Refinement. For Alice’s above query, Face-
book estimates the reach to be 393,980 users, i.e. only 40% of the
required 1 million users. While the results of query Q1 precisely
satisfy Alice’s selection predicates, they are far from meeting her
aggregate constraints. In fact, selection and aggregation constraints
are orthogonal in most cases. As a result, we need to refine various
query predicates in order to meet the aggregate constraints.

Current Approach. In existing systems Alice has to manually
alter her criteria to encompass more users while ensuring that the
semantics of her query are not altered. While some selection cri-
teria (e.g. gender and shopping interest) may be fixed, Alice can
try potentially infinite refinements of her predicates such as target
consumers in additional cities; alter age range; relax relationship
status; or any combination of the above. Repeatedly altering the
original query and having its size estimated is not only inefficient
for the backend, but the process is tedious and frustrating for Alice.

Desired User Experience. A much better user experience can
be provided if Alice was allowed to specify her (1) demographic
criteria (query), and (2) aggregate constraints, and the database en-
gine can then execute variations of the input query such that the
aggregate constraints are met. The output of such a search would
be a set of refined queries that change Q1 as little as possible while
meeting the aggregate constraints (in our case the audience size).
Alice would then simply pick the query that best meets her selec-
tion criteria.

In this paper, we encode ACQs by introducing two SQL key-
words CONSTRAINT and NOREFINE, where CONSTRAINT cap-
tures the aggregate constraint and NOREFINE specifies whether
the predicate should not be refined. The encoded Query Q1 is:

Q1’: SELECT * FROM Users
CONSTRAINT COUNT(*)=1M
WHERE location in (’Boston’, ’New York’,
’Seattle’, ’Miami’, ’Austin’) AND
(gender = ’Women’) NOREFINE AND (25 <=age<=35)
AND (education = ’CollegeGrad’)
AND (relationshipStatus = ’Single’) AND
(interests IN {’Retail’, ’Shopping’}) NOREFINE;

Running Q1’ will automatically generate alternate queries that
produce 1M customers and alter Q1 as little as possible.

Example 2. HybridCars Co. would like to place an order for
100,000 units of a burnished steel part having specific size, whole-
sale price less than $1000, and from suppliers who have a low ac-
count balance. On the TPC-H benchmark, HybridCars runs query
Q2 to find the suppliers with whom to place the order.

Q2: SELECT * FROM supplier, part, partsupp
WHERE (s_suppkey = ps_suppkey) AND
(p_partkey = ps_partkey) AND
(s_acctbal < 2000)
AND (p_retailprice < 1000) AND (p_size = 10)
AND (p_type = ’SMALL BURNISHED STEEL’)

As in Example 1, this situation calls for an ACQ as we would
like to constrain the total number of available parts, i.e. sum of the
number of parts available per supplier (i.e. SUM(ps_availqty)) in
addition the select predicates. We can encode the ACQ as Q2’ to
produce alternate refined queries. As before, the NOREFINE key-
word associated with p_type and p_size indicate that these predi-
cates cannot be altered.

Q2’: SELECT * FROM supplier, part, partsupp
CONSTRAINT SUM(ps_availqty) >= 0.1M
WHERE (s_suppkey = ps_suppkey) NOREFINE AND
(p_partkey = ps_partkey) NOREFINE AND
(p_retailprice < 1000) AND (s_acctbal < 2000)
AND (p_size = 10) NOREFINE AND
(p_type = ’SMALL BURNISHED STEEL’) NOREFINE

Building a system to execute ACQs is challenging because the
number of possible refined queries is exponential in the number
of predicates. Hence an exhaustive search of all possible queries
is prohibitively expensive. Moreover even for aggregates such as
COUNT, finding a query that meets its constraint is an NP-Hard
problem [1]. In this paper, we limit ourselves to ACQs with nu-
merical select and join predicates, and aggregates that satisfy the
optimal substructure property (Section 2). Additionally, we focus
on the problem of expanding predicates to meet constraints, rather
than the inverse problem of shrinking queries returning too many
tuples.

Contributions. We propose a technique to efficiently execute
ACQs and our contributions are summarized as follows:

• We introduce and define semantics of a new class of queries
called an Aggregation Constrained Query (ACQ). These
special purpose queries are of value in real-world applica-
tions and are amenable to clever execution techniques.

• We propose a technique called ACQUIRE to execute ACQs
via query refinement. ACQUIRE auto-generates alternative
refined queries that minimize changes to the original query
while meeting aggregate constraints.

• We combine the building blocks of breadth-first-search and
dynamic programming in a novel way to elegantly and effi-
ciently re-use query results. We call this Incremental Aggre-
gate Computation (Section 5).

• We propose sensible default query refinement scoring and
aggregate error functions. The design principle of ACQUIRE
is general and therefore we allow user defined predicate re-
finement scoring and aggregate error functions. The func-
tions used in this work are merely sensible defaults.

• Our experimental analysis on TPC-H dataset demonstrates
that ACQUIRE consistently out-performs extensions to cur-
rent techniques by up to 2 orders of magnitude. Moreover,
queries recommended by ACQUIRE are on average closer to
the original query by a factor of 2X more than the compared
techniques (Section 8).

2. PRELIMINARIES

2.1 SQL extension for ACQs
We propose to capture ACQs by using two keywords: CON-

STRAINT to describe the aggregate constraint and NOREFINE to
indicate that a predicate should not be refined. By default, we as-
sume that all predicates can be refined.

SELECT * FROM Table1, Table2 ...
CONSTRAINT AGG(attribute) Op X
WHERE Predicate1 AND Predicate2 ...
AND Predicate_i NOREFINE AND Predicate_j
AND ...Predicate_n NOREFINE
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The aggregate constraint is of the form AGG(attribute) Op
X , where AGG is a standard (COUNT, SUM, MIN, MAX, AVG)
or user defined aggregate function, X is a positive number and Op
is a comparison operator (=,≤, <,≥, and >). In this work, we
focus on the problem of expanding predicates to meet constraints,
rather than the inverse problem of shrinking queries returning too
many tuples, we therefore limit the comparison operation to =,≥
, and >. Henceforth for illustrative purposes only we assume that
the aggregate constraint has an equality condition.

2.2 Query Representation
In this work, we focus on queries with numeric select, project

and join predicates of the form Q = P1 ∧ . . . ∧ Pd, where Pi’s is
a predicates on relations R1. . .Rk. To illustrate consider query Q3
with one select and one join predicate.

Q3: SELECT * FROM A, B
WHERE A.x=B.x AND B.y < 50

For a given query Q, we divide each predicate Pi into two parts:
the predicate function (PiF ) and the predicate interval (PiI). PiF

is a monotonic function on attributes of relations R1. . .Rk while
Pi
I denotes the interval of acceptable values forPiF , that is, PiI =

(mini
I ,maxi

I). To illustrate, if the minimum value of B.y is 0,
the predicate (B.y < 50), in Q3 is decomposed into PiF = B.y
and PiI = (0, 50). Range predicates like (10 < B.y < 50) are
rewritten as two one-sided predicates, (B.y > 10) ∧ (B.y < 50).
This enables the refinement of one or both sides of the range pred-
icate. For equi-joins (A.x = B.x) and non-equi joins (2 ∗ A.x
< 3 ∗ B.x), the form of PiI is unchanged; however, PiF takes
the form ∆((Pi

F )1, (Pi
F )2), where (Pi

F )1 and (Pi
F )2 are sep-

arate predicate functions and ∆ is the function measuring distance
between them. Therefore, join predicate A.x = B.x in Q3 is de-
composed into (Pi

F )1 = A.x and (Pi
F )2 = B.x. PiI = (0, 0)

signifies that values of the two functions must match exactly. For
each predicate Pi, we also store a boolean value indicating whether
the predicate can be refined. Recall that ACQ’s contain an aggre-
gate function that specifies the target value of an aggregate over the
output result. We denote the target, or expected, aggregate value as
Aexp and actual aggregate value returned by the query as Aactual.

2.3 Measuring Query Refinement Quality
We define a query refinement score to measure the change that

has been made to the original query to obtain the refined query.
A query Q=(P1 ∧ . . . ∧ Pd) is refined to Q′ by refining one or
more predicates Pi ∈ Q to predicates Pi′ ∈ Q′. The refine-
ment of Q′ along Pi, called the predicate refinement score, de-
noted as PScorei(Q,Q′), is measured as the percent departure of
(Pi
I)
′

from Pi
I (Equation 1). Note that if (Pi

I)min = (Pi
I)max,

PScorei(Q,Q
′) = 0. For equality join predicates, the denomina-

tor is set to 100. Measuring relative change as opposed to absolute
change in predicate intervals, compensates for the differing scales
of query attributes. While percent refinement is the default pred-
icate refinement metric used in this work, a user can override the
metric with custom (monotonic) functions without changes to our
algorithm. By computing the refinement score for each query pred-
icate, a refined queryQ′ can be represented as a d-dimensional vec-
tor of predicate refinement scores, called the predicate refinement
vector or PScore(Q,Q′) (Equation 2).

PScorei(Q,Q
′) =

|(PiI)min − (Pi
I)
′
min|+ |(Pi

I)max − (Pi
I)
′
max|

|(PiI)max − (Pi
I)min|

· 100 (1)

PScore(Q,Q′) = (PScore1(Q,Q′) . . . PScored(Q,Q
′)) (2)

The query refinement score of Q′, denoted by QScore(Q,Q′)
is defined as a monotonic function f : Rd → R used to measure
the magnitude of PScore(Q,Q′). We use the popular weighted
vector p-norms [7] to calculate QScore(Q,Q′). Equation 3 shows
the calculation of QScore(Q,Q′) using the default L1 norm.

L1 : QScore(Q,Q′) =
( d∑
i=1

PScorei(Q,Q
′)
)

(3)

Example 3. Consider the following refinement to Q3.

Q3’: SELECT * FROM A,B
WHERE A.x = B.x AND B.y < 60

The refined query Q3′ expands the range of acceptable values
for B.y from (0, 50) to (0, 60). Therefore, Q3′ is represented as
PScore(Q3, Q3′)= (0, 60−50

50−0
·100) and hasQScore(Q3, Q3′)=20

for the L1 norm.

2.4 Refining Join Predicates
The advantage of representing predicates as functions (Pi

F ) and
intervals (Pi

I), and defining refinement as the change in the predi-
cate interval, is that join refinement can be expressed and operated
on in the same way as select predicates. For instance, a query with
PScore(Q3, Q3′′)= (10, 20) indicates that the join predicate in
Q3 has been refined by 10 to become ‖A.x−B.x‖ ≤ 10 and that
theB.y predicate has been refined by 10 units. Thus, the algorithm
can be applied unchanged for select as well as join queries.

2.5 Measuring Aggregate Error
To measure the difference between the expected aggregate value

Aexp and the actual aggregate valueAactual, we use a relative error
measure defined as:

ErrA =
‖Aexp −Aactual‖

Aexp
(4)

This measure is appropriate for aggregates such as COUNT or
AVG; however, a hinge-function that only penalizes errors on one
side is appropriate for SUM, MIN and MAX.

ErrA =

{
(Aexp −Aactual) if Aexp > Aactual

0 otherwise

2.6 Optimal Substructure Property
In this work, we limit ourselves to aggregate functions that ei-

ther (a) have the optimal substructure property (OSP), or (b) can be
broken down into functions that satisfy the OSP. Consider any two
queries Q1 and Q2 such that all the results of query Q2 are also re-
sults of query Q1 (Q1 contains Q2). An aggregate is said to satisfy
the OSP if the value of the aggregate for the results of Q1 can be
computed without re-executing part or whole of the query Q2.

For instance, the COUNT aggregate is said to satisfy the OSP
because given queries Q1 and Q2 as defined above, the value of
COUNT for Q1 can be computed by adding the value of COUNT
for Q2 to the value of COUNT for the query (Q1-Q2). SUM, MIN
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and MAX similarly satisfy the OSP, and can be addressed by our
technique. AVG, another common aggregate, can be broken down
into two aggregates SUM and COUNT which have the optimal sub-
structure property in turn, and therefore AVG can also be addressed
by our technique. STDDEV, on the other hand, does not satisfy the
OSP because even if the STDDEV for Q2’s results are known, the
results of Q2 must be re-analyzed to compute STDDEV for Q1.

2.7 Problem Definition
Given a query Q and a desired aggregate value Aexp, the prob-

lem of Aggregation Constrained Query Execution consists of
refining Q to produce alternate queries Q′ that produce the aggre-
gate value Aexp while changing Q as little as possible. Formally,
we can state it as follows:

DEFINITION 1. Given database D, query Q, desired aggre-
gate value Aexp, an aggregate error threshold δ, and refinement
threshold γ, ACQ finds a set of refined queries Q’ s.t. (a) the
actual aggregate value for Q’, Aactual, satisfies: ErrA ≤ δ,
and (b) ‖QScore(Q,Qi) − QScoreopt‖ ≤γ, where Qi ∈ Q′,
QScoreopt= min {QScore(Q,Q′j)| ∀ valid query refinements Q′j
s.t. (ErrA ≤ δ)}.

Since the problem of attaining the required aggregate value is
NP-hard, we cannot provide formal guarantees about constraint (a)
in Definition 1. However, as demonstrated in our experiments (Sec-
tion 8), our algorithm ensures that the constraint is met practically
every time. Our proximity-driven refinement technique guarantees
that ACQUIRE will always meet constraint (b) in Definition 1.

We now turn our attention to evaluating these ACQs. As noted
in the introduction, in this paper, our major focus is on queries that
undershoot the aggregate constraint, however, we show in Section
7 how ACQUIRE can be extended to handle queries that overshoot
the constraint. Furthermore, although we use COUNT as the ag-
gregate of choice for all discussions, it is straightforward to support
other aggregates with our technique and we note any changes to the
algorithm that are required for doing so.

3. ACQUIRE: AN OVERVIEW
Given a query, the desired aggregate value, and acceptable re-

sult thresholds, ACQUIRE produces a set of refined queries that
minimize changes to the original query but also satisfy the aggre-
gate constraint. In formulating this set of refined queries, AC-
QUIRE adopts the strategy of Expand and Explore to iteratively
expand the original query and to explore refined queries with
respect to aggregate values. The expand phase ensures that re-
fined queries satisfy the refinement threshold and that queries with
smaller refinements are produced before those with larger refine-
ments. Thus, once ACQUIRE finds a query satisfying the aggregate
constraint, it need not examine queries with larger refinements. The
explore phase on the other hand efficiently computes aggregate
values for refined queries via an incremental aggregate computation
algorithm. We delegate all actual query execution tasks to an evalu-
ation layer, which in this case is Postgres. However, the evaluation
layer is modular and can be replaced with other techniques such
as estimation, and/or sampling. Our incremental aggregate com-
putation algorithm exploits dependencies between refined queries
and the optimal substructure property so that for each query, AC-
QUIRE must only execute a small sub-query and then simply use
our recursive model to combine results from previous queries. To-
gether, these two techniques ensure that once a query Q has been
executed, any query Q’ that contains Q will not have to re-execute
Q. As a result, ACQUIRE can evaluate a large number of refined

queries at a cost that is a fraction of the execution time for a single
query. Figure 2 shows the system architecture described above.
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Figure 2: System Architecture of ACQUIRE

4. PHASE I: EXPAND
As described in the previous section, the Expand phase of AC-

QUIRE is responsible for iteratively generating refined queries that
meet two criteria: (1) they satisfy the proximity threshold, and (2)
their refinement scores (QScore values) are greater or equal to the
scores of previously generated queries.
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Figure 3: Refined Space and Generation of Refined Queries

To meet the above query generation goals, ACQUIRE uses an ab-
straction called the Refined Space to represent all refined queries.
Given an original query Q having d predicates, the Refined Space,
denoted henceforth byRS(Q), is a d-dimensional space, where the
origin represents Q and the axes measure individual predicate re-
finement. To illustrate, consider a refined queryQ′ and assume that
the L1 norm is used to compute QScore. Q′ would then be repre-
sented inRS(Q) as (u1, u2, . . . , ud) where ui = (PScorei(Q,Q

′))

∀i = 1, . . . , d, making QScore(Q,Q′) = (
∑d
i=1 ui). Conversely,

every point in the refined space (u1, u2, . . . , ud) corresponds to
some query Q′ with PScorei(Q,Q′) = ui. Therefore, any d-
dimensional hyper-rectangle onRS(Q) also corresponds to a query.

ACQUIRE divides RS(Q) into a multi-dimensional grid with
step-size γ

d
to avoid an exhaustive search of RS(Q) and to stay

within the proximity threshold, as illustrated by Theorem 1. Each
query on the multi-dimensional grid is called a grid query.
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Theorem 1. Suppose the original query is Q and Qopt is the
optimal query meeting the aggregate constraint and having min-
imum refinement. Let RS(Q) be a multi-dimensional grid with
step-size on each axis equal to γ

d
. Then at least one refined query

Q′ lying on the RS(Q) grid will satisfy the proximity constraint
w.r.t. to Qopt.

Proof: Let Qopt = {u1, u2, . . . , ud} lie in some grid cell G
in RS(Q). Since the refined space grid has step-size γ

d
, any query

Q′ = {u′1, u′2, . . . , u′d} on G satisfies:
|u1p − u′1

p| + |u2p − u′2
p| + . . . + |udp − u′d

p| ≤ γ
d
· d = γ

⇒ |(u1p + u2p + . . .+ ud
p)− (u′1

p + u′2
p + . . .+ u′d

p)| ≤ γ

⇒ |QScore(Qopt, Q)p −QScore(Q′, Q)p| ≤ γ

⇒QScore(Qopt, Q)p −QScore(Q′, Q)p ≤ γ
(assume QScore(Qopt, Q)p ≥QScore(Q′, Q)p)

⇒ (QScore(Qopt, Q) −QScore(Q′, Q)) · (QScore(Qopt, Q)p−1 +
QScore(Qopt, Q)p−2 ·QScore(Q′, Q) + . . .+QScore(Q′, Q)p−1)
≤ γ

⇒(QScore(Qopt, Q)−QScore(Q′, Q)) ≤ γ (γ > 1)

Figure 3 depicts the refined space abstraction for query Q3 as-
suming γ = 10. Since Q3 has two predicates, step-size=5 and
RS(Q3) is a 2-dimensional space with the axes respectively mea-
suring the refinements along the select and join predicates. A re-
fined query like Q3’ having PScore(Q3, Q3′)= (0, 20) is repre-
sented as (0, 4) in RS(Q3).

The second goal of the Expand phase is to generate refined queries
in order of increasing refinement. ACQUIRE achieves this goal by
producing queries close to the origin in RS(Q) before those far
from it. In particular, the Expand phase uses breadth-first search to
generate refined queries in layers where queries in a given query-
layer have the same QScore. Consequently, for all Lp norms ex-
ceptL∞, query-layers take the form of d-dimensional planes corre-
sponding to QScore = k⇒ QScorep = kp⇒ (

∑d
i=1 u

′
i) = kp.

For L∞, however, query-layers are L-shaped and intersect each
axis at kp. Figure 3 shows query-layers for Q3 assuming theL1 and
L∞ norms. Beginning with the query-layer with refinement 0, AC-
QUIRE generates all grid queries in the current query-layer. If no
query from the current layer satisfies the aggregate constraint, AC-
QUIRE proceeds to the next query-layer having QScore increased
by γ

d
. Since this iterative expansion model examines queries in

order of increasing refinement, ACQUIRE can stop immediately
after a query is found to meet the required constraint, thus reduc-
ing the number of queries examined by ACQUIRE. Algorithms 1
and 2 respectively describe the pseudo code for generating queries
using the Lp and L∞ norms. The Lp algorithm generates query-
layers using a breadth-first search while the L∞ norm sequentially
enumerates queries in the given layer.

Algorithm 1 GetNextQuery(Queue queryQue)
1: int[] Qcurr = queryQue.Pop() //Indexed from 1
2: for i = 1, . . . , d do
3: Qnext ← GetNextNeighbor(i) //Increment i-th dimension

of Qcurr by stepsize
4: if (!queryQue.Contains(Qnext)) then
5: queryQue.Push(Qnext)
6: return Qcurr

Algorithm 2 GetNextQuery(Queue queryQue, int currRef)
1: if (!queryQueue.Empty()) then
2: return queryQue.Pop()
3: else
4: Query Qnew = 0
5: for i = 1, . . . , d do
6: Qnew[i] = currRef; queryQue.Push(Qnew)
7: while Qnew != null do
8: IncrementQuery(Qnew, i, currRef) // enumerate

queries with i-th dim fixed at currRef and others< cur-
rRef

9: queryQue.Push(Qnew)

Theorem 2. A grid query Q′i with QScore(Q,Q′i) = k is in-
vestigated after all grid queries with QScore(Q,Q′i) = (k − 1)
have been investigated.

Proof: Consider the refined space to be a directed graph with
the origin as the root and every grid query as a node. Every grid
query is connected to d queries obtained by incrementing one di-
mension by the unit step-size. These connections form the graph’s
edges. ThenGetNextQuery for the Lp norm performs a breadth-
first search on the refined space grid, guaranteeing that all queries
at distance k − 1 from the root are investigated before those at dis-
tance k. The result is trivially true forL∞ norm since our algorithm
explicitly generates queries in each query layer.

Time Complexity. The worst case complexity of the Expand
phase isO(V +E) where V is maximum number of refined queries
in the grid and |E| = d · |V |.

5. PHASE II: EXPLORE
The Explore phase of ACQUIRE is responsible for efficiently

computing the aggregate values of queries produced in the Expand
phase. For this purpose, we introduce a light-weight query execu-
tion methodology based on a novel, efficient incremental query exe-
cution algorithm that exploits dependencies between refined queries
using a specialized recursive model. For each query, our model re-
quires execution of only one sub-query and computes the overall
aggregate by intelligently combining partial results from previous
queries. ACQUIRE guarantees that a query is executed at most
once, irrespective of how many queries contains it.

5.1 Incremental Aggregate Computation
The principle underlying our query execution algorithm is that

refined queries often share results. Therefore, once a query re-
sult has been evaluated it must never be re-evaluated for any other
query.

Query Containment. A refined query Q′=(u′1, u
′
2, . . . , u

′
d) is

said to be contained within another refined queryQ′′=(u′′1 , u
′′
2 , . . . , u

′′
d)

if (u′i≤u′′i ) ∀ i = 1 . . . d.

Theorem 3. If refined queryQ′ is contained within refined query
Q′′: (1) all results of Q′ also satisfies Q′′. (2) Q′ is guaranteed to
be generated before Q′′ in the Expand phase.

Proof: Let tuple τ satisfy Q′. (1) By Equation 2:
PScorei(τ,Q) ≤ PScorei(Q′, Q) ∀ i = 1, . . . , d
⇒ PScorei(τ,Q)p ≤ PScorei(Q

′, Q)p = u′i ∀ i = 1, . . . , d
(PScore ≥ 0)
⇒ PScorei(τ,Q)p ≤ u′′i
⇒ PScorei(τ,Q) ≤ PScorei(Q′′, Q).
Consequently, all the query results of Q′ also satisfy Q′′. For
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Figure 4: Sub-queries of a 2-D query

(2), from the definition of contained queries, QScore(Q′, Q) ≤
QScore(Q′′, Q). Therefore, by Theorem 2, the Expand phase will
produce Q′ before Q′′.

Since all contained queries are produced and executed before
those containing them, ACQUIRE can extensively use previously-
generated query results. In particular, ACQUIRE exploits the con-
cept of query containment by constructing contained queries, called
sub-queries henceforth, that are used as units of query execution
and result sharing. We now describe the sub-queries used.

5.1.1 Query Decomposition
Consider query Q′ with d predicates, represented as point (u′1,

. . . , u′d) in the refined space. In addition to Q′, ACQUIRE de-
fines d specialized sub-queries contained within it, giving d + 1
queries in all. Figure 4 shows these queries for a 2-predicate query.
The first sub-query (A) corresponds to the unit square in RS(Q)
with its upper-right corner at Q′=(u′1, u

′
2), the second sub-query

(B) corresponds to a unit-width rectangle in RS(Q) with Q′ at its
upper-right corner, and the third sub-query is the entire query (C).
Similarly, for a 3-predicate query as in Figure 5, the first sub-query
(A) is the unit cube, the second (B) is a unit length and width paral-
lelepiped, the third (C) is a unit width parallelepiped, and the fourth
(D) is the entire query sub-query. For ease of exposition, we refer
to the first sub-query as cell, the second as pillar, the third as wall,
and the fourth as block, respectively.

In a d-dimensional refined space, the d + 1 sub-queries, called
O1, O2,. . . , Od+1, can be formally defined as shown in Equations
5-8. All d + 1 sub-queries have the same upper bound (Q′ =
(u′1, . . . , u

′
d)), but different lower bounds. For instance, the cell

sub-query O1 has a lower bound which is a unit length away from
(u′1, . . . , u

′
d) on all dimensions (Equation 5). The cell sub-query

corresponds to the cell in the refined space grid having (u′1, . . . , u
′
d)

as its upper bound. Similarly, the pillar sub-query has a lower
bound with the first dimension equal to 0 and all remaining dimen-
sions j (j = 2, . . . , d) unit length away from u′j (Equation 6). In
general, the lower bound of the jth sub-queryOj is (0, . . . , 0, u′j−
1, . . . , u′d − 1, ). For simplicity, we will refer to an sub-query Oi
corresponding to query (u′1, . . . , u

′
d) as Oi(u′1, . . . , u′d).

O1 = ((u′1 − 1, . . . , u′d − 1), (u′1, . . . , u
′
d)) (5)

O2 = ((0, u′2 − 1, . . . , u′d − 1), (u′1, . . . , u
′
d)) (6)

Oj = ((0, 0, . . . , 0, u′j − 1, . . . , u′d − 1), (u′1, . . . , u
′
d)) (7)

Od+1 = ((0, . . . , 0), (u′1, . . . , u
′
d)) (8)

By decomposing a query into the sub-queries defined above, we
can reuse previously obtained results. To illustrate, consider Figure
6.a where the 2-D query is decomposed into 3 sub-queries. We ob-
serve that sub-queryA is theCell(u′1, u′2),B is thePillar(u′1, u′2−
1), and C is the Wall(u′1 − 1, u′2). Similarly, Figure 6.b shows
the decomposition of a 3-predicate query into the four sub-queries
A, B, C and D which are respectively the Cell(u′1, u′2, u′3), the
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Figure 6: Query Decomposition: (a) 2-D (b) 3-D

Pillar(u′1 − 1, u′2, u
′
3), the Wall(u′1, u

′
2 − 1, u′3), and the Block

(u′1, u
′
2, u
′
3 − 1). In general, a d-predicate query can be decom-

posed into the previously defined (d+ 1) sub-queries:

2− predicate Query : (9)
O3(u′1, u

′
2) = O1(u′1, u

′
2) +O2(u′1 − 1, u′2) +O3(u′1, u

′
2 − 1)

3− predicate Query : (10)
O4(u′1, u

′
2, u
′
3) = O1(u′1, u

′
2, u
′
3) +O2(u′1 − 1, u′3, u

′
3) +

O3(u′1, u
′
2 − 1, u′3) +O4(u′1, u

′
2, u
′
3 − 1)

d− predicate Query : (11)
Od+1(u′1, u

′
2, . . . , u

′
d) = O1(u′1, u

′
2, . . . , u

′
d) +

O2(u′1 − 1, u′2, . . . , u
′
d) +O3(u′1, u

′
2 − 1, u′3, . . . , u

′
d) +

. . .+Od+1(u′1, u
′
2, . . . , u

′
d − 1)

Thus, if the aggregates for the (d + 1) sub-queries have been
pre-computed, the aggregate of query Q′ is the mere addition1 of
these sub-aggregates. We must store only the aggregate values for
the d + 1 sub-queries. The corresponding result tuples can either
be stored in main memory or paged to disk. The above sub-query
decomposition also leads to two crucial observations: (1) The only
part of a query unique to itself is the cell; all remaining parts of
the sub-query are shared with other queries. (2) The d + 1 sub-
queries defined above belong to queries completely contained
in Q′. Therefore, Theorem 3 guarantees that these queries would
have been produced and hence executed before investigating Q′.
As a consequence, ACQUIRE must only execute the cell sub-query
and can directly reuse aggregates of the remaining sub-queries.

5.1.2 Recursive Aggregate Computation
Query decomposition assumes that the aggregates for the d + 1

sub-queries have already been computed. But independently de-
termining aggregates of these sub-queries is redundant. Instead,
we present a recursive strategy to calculate the aggregates of the
sub-queries in constant time. Reconsider Figure 6 focusing now
on the relationship between sub-queries. We observe that for 2-
predicate sub-queries (Figure 6.a) the Pillar(u′1, u′2) is equiva-
lent to Cell(u′1, u′2) and Pillar(u′1-1, u′2) combined. Similarly,
the Wall(u′1, u

′
2), which is the entire query is equal to the sum of

Pillar(u′1, u
′
2) and Wall(u′1, u

′
2 − 1). For the 3-predicate query,

in Figure 6.b, we have three similar recurrences as shown below.

1For aggregates like MIN/MAX, addition is replaced by the corre-
sponding MIN/MAX function, while AVERAGE = SUM/COUNT.
SUM and COUNT aggregates are computed and stored separately.
AVERAGE is computed from these values as required.
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Figure 5: Sub-queries of a 3-predicate query

2−Recurrences : (12)
Pillar(u′1, u

′
2) = Cell(u′1, u

′
2) + Pillar(u′1 − 1, u′2)

Wall(u′1, u
′
2) = Pillar(u′1, u

′
2) +Wall(u′1, u

′
2 − 1) (13)

3−Recurrences : (14)
Pillar(u′1, u

′
2, u
′
3) = Cell(u′1, u

′
2, u
′
3) + Pillar(u′1 − 1, u′2, u

′
3)

Wall(u′1, u
′
2, u
′
3) = Pillar(u′1, u

′
2, u
′
3) +Wall(u′1, u

′
2 − 1, u′3) (15)

Block(u′1, u
′
2, u
′
3) =Wall(u′1, u

′
2, u
′
3) +Block(u′1, u

′
2, u
′
3 − 1) (16)

In general, this recursion for a d-predicate query is:

Oi(u
′
1, . . . , u

′
d) = Oi−1(u

′
1, . . . , u

′
d) + (17)

Oi(u
′
1, u
′
2, . . . , u

′
i−1 − 1, . . . , u′d) where i = 2, . . . , d+ 1

Since the sub-query O1 has no recurrences, its aggregate must
be computed by executing the query. However, once the aggregate
ofO1 is determined, it takes d (constant) steps to calculate the total
aggregate for query Q′.

5.1.3 Aggregate Computation Algorithm
Algorithm 3 takes as input the query Q′(u′1, . . . , u′d) being in-

vestigated and produces its aggregate. For this, Algorithm 3 first
computes the aggregate of the Cell(u′1, . . . , u′d), and then itera-
tively applies the recurrence in Equation 17 to compute aggregates
of the remaining sub-queries. The function ExecuteCellQuery
is used to compute the aggregate over a single input cell by issuing
a query to the evaluation layer.

Algorithm 3 ComputeAggregate(Query Qcurr , int d)
1: int[d+ 1] Acurr // All arrays are indexed from 1
2: Acurr[1] = ExecuteCellQuery(Qcurr)
3: for i = 2, . . . , d+ 1 do
4: Qprev ← GetPreviousNeighbour(i-1) // decrement the (i −

1)th dimension of Qcurr by stepsize
5: int[] Aprev = GetAllAggregates(Qprev)
6: Acurr[i] = Acurr[i− 1] + Aprev[i]
7: StoreAllAggregates(Qcurr , Acurr)
8: return Acurr[d+ 1]

6. PUTTING IT ALL TOGETHER
Algorithm 4 presents the pseudo code for the ACQUIRE frame-

work. Given an initial queryQ and the refinement threshold γ, AC-
QUIRE begins to iteratively Expand and Explore refined queries,

starting at the origin of the refined space and sequentially traversing
queries in subsequent layers. For each refined query, ACQUIRE
calculates the aggregate using the Incremental Aggregate Compu-
tation technique described in Algorithm 3. Once the aggregate
value Aactual has been determined, it is compared to Aexp. If the
aggregate is within the error threshold δ, the query is stored in the
answer list (A). In this case, query search terminates with the ex-
ploration of all queries in the current layer, i.e., all alternate queries
with the same refinement score. If all queries in a layer undershoot
the constraint by more than δ, ACQUIRE explores the next higher
layer. Lastly, if any query overshoots the expected aggregate value
by more than δ, we repartition the cell corresponding to the given
query and examine queries lying within. We repeat the repartition-
ing process for b iterations, where b is a tunable parameter. If, at
the end of repartitioning, no query is found to satisfy the aggre-
gate constraint, ACQUIRE returns the query attaining the closest
aggregate value.

Algorithm 4 ACQUIRE(QueryQoriginal, doubleAexp, int δ, dou-
ble γ)
1: A =[] // Set of refined Queries
2: Queue queryQueue = [] // Data structure for traversal
3: d← Flexible predicates in Qoriginal
4: int[d] Qcurr = {0,. . . , 0} // Origin represents Qoriginal
5: queryQueue.push(Qcurr)
6: int minRefLayer = MAX_INTEGER_VALUE
7: int currRefLayer = 0
8: while (currRefLayer ≤ minRefLayer) do
9: double Aactual =ComputeAggregate(Qcurr , d) // Algo-

rithm 3
10: if ( | Aexp - Aactual | ≤ δ) then
11: A.add(Qcurr)
12: minRefLayer = currRefLayer
13: else if ( Aexp > Aactual) then
14: A.add(Repartition(Qcurr))
15: Qcurr = GetNextQuery(queryQueue) // Algorithm 1
16: currRefLayer = QScore(Qcurr)
17: return A

7. EXTENSIONS
In this section, we present extensions to the framework that ac-

commodates some of the limitations of our approach.

7.1 Preferences in Refinement
Along with the NOREFINE keyword used to identify and pre-

serve rigid constraints, ACQUIRE allows users to set preferences
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on which predicates should be refined. This can be easily done by
specifying a LWp norm which sets appropriate weights on various
predicates. Similarly, users can also supply maximum refinement
limits on predicates. While we provide several avenues for user
control, user intervention is not required and each tunable parame-
ter is provided an appropriate default setting.

7.2 Contracting Queries With Too Many Re-
sults

ACQUIRE with minor modifications handles queries that gen-
erate too many results. This is achieved by constructing a query
Q′min with each predicate of the original query Q set to its mini-
mum value. Since Q′min will produce too few results, we can now
construct a refined space bounded by Q and Q′min. ACQUIRE
now traverses the refined space to find queries that meet the cardi-
nality constraint, this time minimizing refinement with respect to
Q instead of Q′min.
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Figure 7: Ontology for Categorical Data

7.3 Non-numeric Predicates
The focus of this work is to handle numeric predicates. Measur-

ing refinement distance between categorical data points is in itself a
challenging problem, requiring the analysis of taxonomy informa-
tion. However, ACQUIRE can be extended to support categorical
predicates by plugging in the appropriate means for measuring the
distance between any two categorical values. For example, Figure
7 depicts sample ontology trees related to food preferences and lo-
cation. The refinement distance between the original query desiring
places that serve Gyro to restaurants that have any Mediterranean
cuisine may be defined based on the relative depths of the two
nodes. In general, the roll-up operation on an ontology tree corre-
sponds to making the predicate less selective, i.e., relaxation. While
the drill down operation translates to query contraction. Given this
meta-information from the ontology tree and a distance metric, the
ACQUIRE framework can be used to refine categorical predicates.

7.4 Exploiting Indexes and Data Distribution
The algorithms discussed so far make no assumptions about the

underlying data distribution or presence of indexes on the data.
Moreover, experiments in Section 8 indicate that ACQUIRE is al-
ready 2 orders of magnitude faster than the state-of-the-art tech-
niques. However, if required, we can further boost the efficiency of
ACQUIRE by employing a specialized bitmap-like index structure
on the tables. To construct this index, we divide each attribute di-
mension into equi-width parts and create a multi-dimensional grid
on the table. We then examine the records in the table to deter-
mine which grid cell each record belongs to. In our index, each
cell is assigned a corresponding bit, which is set to 1 if the cell
contains some tuple and 0 otherwise (storing the number of tuples
may be easier for keeping the index up-to-date but requires more
space). Once constructed, this simple index structure can be used

in the Explore phase to determine if a given cell query is empty
without actually executing the query. If the query is found to be
empty, we can safely skip it and proceed to the next, thus avoiding
unnecessary query execution costs.

8. EXPERIMENTAL EVALUATION

8.1 System Implementation
The ACQUIRE framework is built on top of Postgres. ACQUIRE

sits outside the DBMS where it performs the tasks of exploring the
refinement space, formulating queries and applying our aggregate
computation algorithm. To make ACQUIRE portable across mul-
tiple database systems, and to aid in proper comparison with com-
peting techniques, all query execution tasks are delegated to the
DBMS. We similarly implemented the compared techniques on top
of Postgres.

8.2 Alternative Techniques
We compare ACQUIRE to three extensions of existing techniques

that address the ACQ problem to varying degrees. First, we com-
pare it to Top-k which, although unable to produce refined queries,
is suited to ranking tuples in order of refinement. While it is straight-
forward to translate a COUNT constraint to Top-k, translating other
aggregate constraints (e.g. AVERAGE) is difficult if not impossi-
ble. As a result, we only study Top-k ranking for COUNT con-
straints. We use existing DBMS capabilities of ORDER BY and
LIMIT to implement Top-k, as demonstrated on generic queries (Q
and corresponding Top-k-Q) below.

Q = SELECT COUNT(*) from table1
WHERE x <= 10 and y <= 20;

Top-k-Q = SELECT * FROM table1 ORDER BY
(case when (x <= 10) then 0
else (x - 10)/(x.max - x.min)) +
(case when (y <= 20) then 0
else (y - 20)/(y.max - y.min)) LIMIT A_exp

We also compare ACQUIRE to the TQGen [11] and a simple bi-
nary search (BinSearch) technique [11]. Our experiments uses the
TQGen parameters reported in [11]. To allow for uniform compar-
isons across all methods, we do not employ sampling techniques
for TQGen. However, our experiments demonstrate that our results
hold even for small sample-size datasets (see Figure 10.a). The fi-
nal point to note is that, unlike ACQUIRE, (a) none of the above
techniques addresses aggregates other than COUNT, and (b) even
for COUNT, none of the above techniques are capable of refining
join predicates.

8.3 Methodology
To study the robustness of ACQUIRE we vary (1) dimension-

ality of refinement space, i.e., number of refinable predicates, and
combination of attributes in these predicates, (2) magnitude of ag-
gregate value discrepancy, i.e., ratio Aactual/Aexp between the
actual aggregate value and the desired aggregate value, (3) dataset
size, (4) aggregate types, and (5) data distributions. To study the
efficiency gained by the ACQUIRE system, we evaluated the net
decrease in query execution time for various data sizes and dimen-
sionality. Finally, we evaluated the performance of ACQUIRE un-
der various settings of refinement and aggregate thresholds as well
as presence of join refinement. For each experimental setting, we
measure the time needed to return the set of refined queries, QF ,
amount of refinement (refinement score), and relative aggregate er-
ror = ErrA.
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Figure 8: Performance Comparison Under Varying Aggregate Ratios: ACQUIRE, Top-k, TQGen and BinSearch

All algorithms were implemented in Java. Measurements were
obtained on AMD 2.6GHz Dual Core CPUs, and Java heap of 2GB.
We utilized the TPC-H datasets of varying sizes (1K - 10M tu-
ples). Since the standard TPC-H data is uniformly distributed (i.e.,
Z = 0), we used [3] to also generate skewed data with Z = 1. Our
test queries are TPC-H queries which have been adapted to include
only numeric range and join predicates. Query Q2 (in Example 2)
provides skeleton query that was used to evaluate the SUM aggre-
gate. For each dataset, query, and ACQUIRE settings, we define
the original aggregate Aactual and the aggregate ratio Aactual

Aexp
.

8.4 Performance Comparisons

8.4.1 Effect of Aactual
Aexp

Ratio
We first examine the effect of aggregate ratio, Aactual

Aexp
, on the

execution time, error rate and refinement scores. A small Aactual
Aexp

ratio implies that the original query is highly selective and needs
large refinements, while a large Aactual

Aexp
implies that the original

query is close to the desired query and needs only small refine-
ments. These experiments were carried out on a 1 million tuple
dataset and a query with 3 flexible predicates. The aggregate ratio
was varied between 0.1 - 0.9.

As shown in Figure 8.a, the execution time for ACQUIRE in-
creases with decreasing expansion ratio, i.e., the greater the need
to expand the query, longer it takes for ACQUIRE to reach the re-
quired aggregate ratio. While Top-k requires the same execution
time (the ranking function is unchanged and all records need to
be sorted), its execution time however is on average 3.7X more
than ACQUIRE. TQGen and BinSearch both need to explore the
same number of queries each time and hence their execution time
remains constant. ACQUIRE does consistently as well as all the
other methods, and is on average 2X faster than BinSearch and 2
orders of magnitude faster than TQGen (Y-axis is in log scale). Al-
though BinSearch shows promise with respect to execution time,
we show next that it is not robust with respect to aggregate errors.

Figure 8.b shows the relative error (average relative error for Bin-
Search) for each of the queries with changing aggregate ratio. We
do not compare Top-k because a Top-k query explicitly specifies

the number of tuples to return and hence has no aggregate error by
definition. The BinSearch line in the graph shows that BinSearch is
extremely unstable and has high variance in aggregate errors. The
underlying reason is that BinSearch is very sensitive to the order
in which predicates are refined; even a single change to the order
can change the error by a factor of 100. To illustrate, one ordering
of predicate refinement in BinSearch produces a refinement error of
0.19 or 20% whereas another ordering produces an error of 0.002 or
0.2%. Attempting to refine the query by attempting all orderings of
predicates is computationally expensive. ACQUIRE, on the other
hand, not only produces queries consistently within the threshold
(δ = 0.05), but also does so efficiently. TQGen, in fact, produces
lower error rates than ACQUIRE. However, this reduction comes
at the cost of a 100X increase in execution time. Since both error
rates are acceptable, we prefer ACQUIRE. Lastly, in Figure 8.c we
compare the refinement scores obtained by each method. We see
that the refinement score for queries generated by other methods
are 2-3X larger than those from ACQUIRE.

8.4.2 Effects of Dimensionality
Next, we discuss the effects of increasing dimensionality, i.e. in-

crease in the number of query predicates. We used the same dataset
as before, used expansion ratio = 0.3 and varied the number of pred-
icates in the query. In execution time, we see the same trend as be-
fore where the execution time increases with increasing dimension-
ality of the query. However, for ACQUIRE, the increase is largely
linear and not exponential. For Top-k, the execution time remains
largely constant since only the ranking function changes. For TQ-
Gen, we see an exponential increase in the execution time (as num-
ber of queries executed is exponential in number of dimensions)
with the method taking 500X more time than ACQUIRE for high
dimensional queries. Thus, ACQUIRE is a much better alterna-
tive to the state-of-the-art on queries of varying dimensions. Figure
9.b once again demonstrates that BinSearch is extremely unstable
with respect to aggregate error. While some queries obtain an error
rate of 0.6%, some obtain an unacceptable error rate of 45%. This
large variance in error values produced by BinSearch indicates that
the method is unpredictable and not-robust. As a result, it cannot
guarantee any threshold on the error rate.
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Figure 9: Performance Comparison Under Varying Number of Predicates Ratios: ACQUIRE vs. Top-k vs. TQGen vs. BinSearch
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Figure 10: Performance Comparison Under Varying (a) Table Size, (b) Refinement Threshold and (c) Cardinality Threshold

In Figure 8.c exemplifies the trends in query refinement score
seen with all methods. The refinement scores of ACQUIRE are
consistently the lowest across all methods – meaning fewer changes
to the original user query and therefore more desirable. Top-k pro-
duces higher refinement than ACQUIRE. This figure also shows
that TQGen and BinSearch can have high variance in refinement
scores. Since the goal of these techniques is only to meet the ag-
gregate constraint and not to minimize refinement, this is expected.
BinSearch queries have, on average, 4.8X more refinement than
ACQUIRE queries.

8.4.3 Varying Table Size
For datasets of varying size, beginning with a 1k-tuple dataset (to

mimic a sample based approach) to a 1M-tuple dataset. As shown
in Figure 10.a the execution time for ACQUIRE and all compared
techniques increases proportionally to the size of the dataset. Rela-
tive error and refinement scores show the same trends as before.

8.4.4 Effect of Varying Data Distributions

To study the robustness of our method, we re-ran experiments on
data with Zipfian skew = 1. Trends in results were same as above.

8.4.5 ACQUIRE Parameter Studies
In Figure 10.a and Figure 10.c, we report the performance of

ACQUIRE with respect to its internal parameters, namely the ag-
gregate threshold, the number of steps in the grid and the depth
of the search. As expected, a stringent cardinality and refinement
threshold produces proportional increases in the ACQUIRE execu-
tion time as more queries need to be explored.

8.4.6 Varying Aggregate Types
ACQUIRE framework is general and can be applied to different

types of aggregates satisfying the optimal substructure from Sec-
tion 2.6. We tested the technique for other aggregates too. Fig-
ure 11 shows the results for the SUM, COUNT and MAX aggre-
gates. We omit MIN since this can be written as the MAX(-1 *
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Figure 11: ACQUIRE’s Performance on Different Aggregates

attribute). We find that ACQUIRE successfully minimizes refine-
ment and reaches the aggregate thresholds in all the above aggre-
gates.

8.5 Summary of Experimental Conclusions

1. ACQUIRE is consistently 2 orders of magnitude faster than
TQGen and on average 2X faster than BinSearch.

2. In all experimental conditions, ACQUIRE’s aggregate error
is well below the aggregate error threshold. In contrast, Bin-
Search has very high variance in error rates, reaching up to
45% of the expected aggregate value.

3. Although, Top-k can be efficient at small-sized datasets, it
quickly becomes inefficient as data size increases. In general
Top-k is about 3.7 times slower than ACQUIRE.

4. ACQUIRE generates queries that on average have 2X better
refinement scores than a query produced by either TQGen or
BinSearch.

9. RELATED WORK
In this section, we discuss two areas of related work namely, (1)

set-based queries [6, 5, 16, 14, 13] and (2) solving the empty result
problem [9, 1, 11]. Existing set-based query evaluation techniques

differ from our work fundamentally because they are solving a dif-
ferent problem than the one addressed in this work. For instance,
techniques proposed in [13] address the problem of recommending
“satellite items" (e.g., car charger, case) for a given item that the
customer is currently shopping for (e.g. smart phones). Alterna-
tively, [16, 5] solve the generalized the Knapsack problem [6] of
making composite recommendations of a set of items. That is, rec-
ommend the Top-k sets of items with the total cost below a given
budget and preferring the set with higher ratings. In contrast, [14]
focused on finding users (e.g. tourists) sets of results (e.g. a set
of places of interest) given a set of constraints (e.g. budget). This
is identical to the current behavior of the Facebook Ad Creation
Interface [4]. However, this approach is less than desirable (as de-
scribed in Section 1) as it would force Alice to go through hundreds
of iterations to find a meaningful query that meet the aggregate con-
straints. To summarize, techniques for set-based queries focus on
returning tuples or sets of tuples that meet a constraint. In large
scale database systems since the users are mostly unfamiliar with
the characteristics of the underlying data, they usually construct
queries that are either too strict or too broad [9]. In such scenarios,
execution techniques designed for set-based queries could poten-
tially return no results or all tuples in the database.

To the best of our knowledge, we are the first work to address
the question of recommending refined user queries that meets their
aggregate constraints. Existing query refinement techniques can be
classified into two categories namely, (1) tuple-oriented approaches,
and (2) query-oriented approaches. Table I summarizes the key re-
lated work, and whether they support all aggregate constraints and
/ or a proximity criteria.

Techniques Aggregates Proximity Card. Query
Supported

Tuple-Oriented:
Skyline [8], COUNT X X
Top-k [2],

Query-Oriented:
BinSearch [11], COUNT X

IQR [10]
Query-Oriented:

TQGen [11], COUNT X X
Hill-Climbing [1]

COUNT, SUM,
ACQUIRE MIN, MAX, X X X

AVG, UDA2

Table 1: Summary of the Related Work
Tuple-Oriented Techniques. Result refinement techniques [12,

8] focus only on generating the required number of results and ig-
nore the problem of generating refined queries that explain how the
result tuples were selected. The refinement criteria are crucial in
scientific and business applications. Similarly Top-k algorithms,
such as [2], while useful in many instances cannot correctly ad-
dress the ACQ problem since they can only handle COUNT aggre-
gates. To illustrate, consider a query that selects patients based on
income, blood pressure, and the amount of weekly exercise. A Top-
k based approach will obtain the required number of patients, but
these patients will likely be skewed in certain predicate dimensions
and will not be representative of the population. Thus pure Top-
k and its variations are inadequate to address the ACQ problem;
clearly demonstrated in our experiments (see Section 8).

Query-Oriented Approach. More recently in the context of
database testing [1, 11, 10] have started to focus on the problem of

2User Defined Aggregates that either satisfy the optimal substructure property (OSP)
or can be broken into functions that satisfy OSP
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generating refined predicates. [10] proposed a framework that iter-
atively narrows the bounds on each selection predicate in a query
and asks the user to manually refine the predicate within the con-
strained dimensions. This approach however cannot be extended to
support the refinement of join predicates as ACQUIRE does. For
select-only queries, [11] seeks only to attain the desired cardinality
and disregards proximity. Consequently, it cannot guarantee that
the refined query has the least refinement. The BinSearch algo-
rithm [11] is heavily influenced by the order in which predicates
are refined; some orders produce accurate results whereas others
produce large errors. Unlike ACQUIRE, these techniques don’t
generate a set of alternative refined queries for the user to choose
from. To summarize, ACQUIRE is the first technique to refine se-
lect and join queries to meet the dual constraints of proximity to the
original query and the desired aggregate constraint.

10. CONCLUSION
We introduce Aggregation Constrained Queries that constrain

not only the tuples produced by the query, but also aggregates on
these tuples. We argue that algorithms targeting ACQs must com-
bine efficient query execution and query refinement. We propose
ACQUIRE to tackle ACQs. ACQUIRE adopts the Expand and
Explore strategy where it iteratively expands the original query to
minimize refinement and efficiently explores refined queries via a
novel incremental aggregate computation technique. The general
principle of ACQUIRE allows us to support user defined predicate
refinement scoring and aggregate error functions. ACQUIRE guar-
antees that each query is executed at most once, regardless of the
number of queries it is contained within thereby exploiting work
sharing. This enables ACQUIRE to consistently perform up to 2
orders of magnitude faster and produce queries with 2X smaller
refinement than extensions to existing techniques.
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ABSTRACT
Ranked lists are an essential methodology to succinctly sum-
marize outstanding items, computed over database tables
or crowdsourced in dedicated websites. In this work, we ad-
dress the problem of reverse engineering top-k queries over
a database, that is, given a relation R and a sample top-
k result list, our approach, named PALEO1, aims at deter-
mining an SQL query that returns the provided input re-
sult when executed over R. The core problem consists of
finding predicates of the where clause that return the given
items, determining the correct ranking criteria, and to eval-
uate the most promising candidate queries first. To capture
cases where only a sample of R is available or when R is
different to the relation that indeed generated the input, we
put forward a probabilistic model that allows assessing the
chance of a query to output tuples that are resembling or
are somewhat close to the input data. We further propose
an iterative candidate query execution to further eliminate
unpromising queries before being executed. We report on
the results of a comprehensive performance evaluation using
data and queries of the TPC-H and SSB [14] benchmarks.

1. INTRODUCTION
Reverse engineering database queries describes the task

of obtaining an SQL query that is able to generate a spec-
ified input table, when executed over a given database in-
stance. This generic problem has various important applica-
tion scenarios, specifically for top-k database queries that
often yield valuable analytical insights. Consider, for in-
stance, business analysts who are interested in determin-
ing alternative queries that yield the same or similar query
result tuples, data scientists who try to find explanatory
SQL queries for crowd-sourced top-k rankings, or to find
the data-generating query of a sample input in order to re-
execute it on current or future database instances in cases

∗This work has been supported by the German Research
Foundation (DFG) under grant MI 1794/1-1.
1PALEO is approximately the reverse of the word OLAP
and also emphasizes the goal of assembling queries based
on their data footprints (results), much like paleontologists
reconstruct and study fossils.
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Name City State Plan Month Minutes SMS Data
John Smith SF CA XL June 654 87 1,230
John Smith SF CA XL July 175 22 900
· · · · · · · · · · · · · · · · · · · · · · · ·
Jane O’Neal LA CA XL April 699 15 2,300
Jane O’Neal LA CA XL June 334 10 1,900
· · · · · · · · · · · · · · · · · · · · · · · ·
Richard Fox Oakland CA XL June 596 23 1,272
· · · · · · · · · · · · · · · · · · · · · · · ·
Jack Stiles San Jose CA XL March 429 42 1,192
Jack Stiles San Jose CA XL April 586 8 1,275
· · · · · · · · · · · · · · · · · · · · · · · ·
Lara Ellis San Diego CA XL May 784 11 2,107

Table 1: Sample relation of telecommunications traffic data

where the original query has not been saved or has not
been made public, for one or another reason. The discov-
ered queries can reveal interesting properties of the input,
most importantly the constraints to tuples expressed in the
“where clause” of the query and how tuples are ranked. The
last years have brought up various research results [17, 12,
19] on reverse engineering database queries. Compared to
existing approaches that operate on input in form of full
tables, reverse engineering top-k queries adds two complex
ingredients to the re-engineering task. First, it is the rather
small input, consisting of only a few (as k is usually quite
short) ranked tuples and, second, the various ways top-k
SQL queries can be formulated, given various sorting orders
and aggregation functions.

Consider a relation Traffic, illustrated in Table 1, con-
taining cellphone-traffic data. The relation contains textual
attributes like name of the customer, the city and state the
customer lives in, and the tariff plan and the month for which
the traffic was realized. In addition, there are numerical at-
tributes that measure the customer’s traffic, like number of
minutes talked, the number of text messages (SMS) sent,
and the number of spent megabytes of data.

Lara Ellis 784
Jane O’Neal 699
John Smith 654
Richard Fox 596
Jack Stiles 586

Table 2: Example input list

Table 2 shows a top-k list with two columns and five rows.
The input list does not have attribute names (or if it does,
are not correlated to the attribute names in the database
table). The first attribute is the customer’s name, while
the second is the performance attribute according to which
the customer ranking was produced. Note that there are no
empty cells in the list, all values are specified. Considering
the Traffic relation of Table 1, we can see that the input
ranking list can perhaps be generated using the following
query:
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SELECT name, max(minutes) FROM traffic
WHERE state = ’CA’
GROUP BY name ORDER BY max(minutes) DESC
LIMIT 5

This query computes the top 5 customers of the telecom-
munications company, living in the state of California, ranked
by the number of minutes talked in a single month. In gen-
eral, there can be several different queries that produce the
same results; consider for instance augmenting the above
query Q with an additional constraint to customers with
the tariff plan “XL“, it would leave the result unchanged
(including the order among tuples).

1.1 Problem Statement
Given a database D with a single relation R with schema
R = {A1, A2, . . .} and an input relation L that represents a
ranked list of items with their values. The task we con-
sider in this paper is to efficiently and effectively
determine queries Qi that output tuples that resem-
ble L when executed over R.

We focus on top-k select-project queries over relation R of
the form shown in Figure 1(left). We specifically focus on a
single relation to emphasize on the intrinsic characteristics
of top-k queries, instead of considering the reverse engineer-
ing of joins, too, which has been addressed by Zhang et
al. [19] in their recent work on reverse engineering complex
join queries.

SELECT id, agg(value)
FROM table
WHERE P1 and P2 and . . .
GROUP BY id
ORDER BY agg(value) LIMIT k

L
L.e L.v
e 100
f 90
g 80
m 70
o 60

Figure 1: Query template (left) and example input L (right)

The problem has two properties that can be relaxed or
tightened. First, it can either demand determining only one,
multiple, or all input-generating queries. Second, the notion
of a query being valid in the sense that it resembles the input
can be relaxed to a notion of approximately resembling the
input.

The problem is challenging for the following reasons: (i)
The size of the input list is rather small, it is difficult to
derive meaningful (statistical) properties in order to iden-
tify valid predicates and ranking criteria, (ii) the relevant
subset of R that features all tuples of the entities in L can
become very large, and (iii) false positive and false nega-
tive candidate queries deteriorate system performance due
to many necessary query evaluations and limit the chance
to successfully determine a valid query that generates the
input.

The presented approach, coined PALEO, is not limited to
finding exact matches, but can almost directly be applied
to finding queries that compute a ranking L′ over R, with
L′ being similar to L. We get back to this generalization
in Section 3.3. We refer to the specific attribute in R that
contains the entities the table reports on as Ae and assume
it is known a priori.

As already indicated in the template query, we focus on
predicates P of the form P1 ∧ P2 · · · ∧ Pm, where Pi is an
atomic equality predicate of the form Ai = v (e.g., state
= ”CA”). Furthermore, we denote with size of a predicate
|P | the number of atomic predicates Pi in the conjunctive
clause.

The input top-k list L has two columns; L.e and L.v de-
note the entity column and the numeric score column, re-
spectively. Note that L does not contain the name of the

column L.v or the column name of L.v is named for human
consumption (e.g.,“Total traffic”, which can be total number
of minutes, SMS, or data), i.e., not corresponding to the ones
present in the database. Hence, referencing to the appropri-
ate attribute in R cannot be done by name. Table 3 shows a
summary of the most important notations used throughout
this paper.

1.2 Sketch of the Approach
A näıve approach would enumerate all possible queries,

say with a limited complexity of the predicate in the where
clause, evaluate the queries one-by-one against the database
and check whether the returned results resemble the input
list. This is clearly beyond hope, even for relatively small
databases and schemas.

Our approach, conceptually, loads all tuples from R that
contain any of the entities in L. This table is called R′ and is
used in two subsequent steps, first, to determine the query
predicate and, second, to find the right attribute(s) and ag-
gregation function. In case R′ is completely given, our ap-
proach is extremely effective in determining the individual
building blocks of the desired query. When working on a
subset of R′, we show how to handle large amounts of po-
tential candidate queries by introducing a suitability-driven
order among them, in order to find the desired query early.

1.3 Contributions and Outline
With this paper we make the following contributions:

• To the best of our knowledge, this work is the first
to consider the problem of reverse engineering top-k
OLAP queries. We present an efficient and effective
solution to it, in a flexible and extensible framework.

• We show how to efficiently compute promising predi-
cates using an apriori-style algorithm over R′ and how
to augment them with ranking criteria using data sam-
ples and statistics obtained from the base relation R.

• We present a probabilistic reasoning that allows or-
dering candidate queries by the likelihood that they
compute the input ranking L. This, together with a
method to skip unpromising queries dynamically at
validation time, allows finding the desired valid queries
very efficiently.

• We report on the results of a carefully conducted ex-
perimental evaluation using data and queries from the
TPC-H [16] and SSB [14] benchmarks.

This paper is organized as follows. Section 2 discusses re-
lated work. Section 3 presents the framework and key ideas
behind our approach, followed by the specific sub-problems
of identifying query predicates in Section 4, and determin-
ing the ranking attributes and aggregation function, in Sec-
tion 5. Section 6 considers handling changed data in R, and
proposes a probabilistic model to rank queries by their ex-
pected suitability to generate the input. Section 7 introduces
an incremental strategy to eliminate unpromising candidate
queries based on observed results of already executed can-
didates. Section 8 reports on the results of the experimental
evaluation and presents lessons learned. Section 9 concludes
the paper.

2. RELATED WORK
The problem of reverse engineering queries was considered

by Tran et al. [17] in their data-driven approach called Query
by Output (QBO). Given a database D and a query output
Q(D) produced by a query Q, they try to find an instance-
equivalent query Q′. They focus on identifying the selection
predicates in select-project-join queries and formulate this
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R Base table in the database
Ai Attribute in R
Ae Entity attribute in R
L Top-k input list
L.e Entity column in L
L.v Ranking column in L
ei Entities in Ae or L.e
v Values in Ai

P Predicate (atomic or conjunctive)
Q Query
Q(R) Result set of Q when querying R

Table 3: Overview of Notations

problem as a data classification task. For generating the se-
lection conditions they use a decision tree classifier that is
constructed in a top-down manner in a greedy fashion by
determining a “good” predicate according to which the tu-
ples are split into two classes. These two classes would then
form the root nodes of two decision trees (constructed re-
cursively).

Sarma et al. [12] explore the View Definitions Problem
(VDP) which is a subproblem of QBO in that it considers
only one relation R and there are no joins and projections.
Thus, they only try to find the selection condition of the
view V and do this looking at the problem as an instance
of the set cover problem. From the families of queries that
they cover, we focus on conjunctive queries with a single
equality predicate and conjunctive queries with any number
of equality predicates. For both types they propose näıve
algorithms that utilize the size of the attribute domains in
the view. Zhang et al. [19] compute a generating join query
that produces a table Q(D) from the tables in D. The gener-
ated join query does not have selection conditions and they
focus mostly on identifying the joins using graph structures
following foreign/primary-key links.

Shen et al. [13] study the problem of discovering a min-
imal project-join query that contains given example tuples
in its output and do not consider selections. They only han-
dle text columns with keyword search allowed on them and
introduce a candidate generation-verification framework to
discover all valid queries. By using common sub-join trees of
the candidate queries as filters they manage to improve the
efficiency of their approach.

Psallidas et al. [10] propose a candidate-enumeration and
evaluation framework for discovering project-join queries.
Their system handles only text columns and establish a
query relevance score based evaluation of candidate queries.
The system returns the PJ queries with the top-k high-
est scores and it discovers not only the queries that ex-
actly match the given example tuples. Moreover, they pro-
pose a caching-evaluation scheduler, where they dynamically
cache common sub-expressions that are shared among the
PJ queries. Join queries are orthogonal to our work and none
of the above approaches handle top-k aggregation queries.

In keyword search over databases [2], the input is a single
tuple with specified keywords as fields. The works of [5, 15]
interpret the query intent behind the keywords and compute
aggregate SQL queries. Blunschi et al. [5] use patterns that
interpret and exploit different kinds of metadata, while Tata
et al. [15] discovers aggregate SQL expressions that describe
the intended semantics of the keyword.

The principle of reverse query processing is studied in [3,
4, 6, 9], however their objectives and techniques are different.
Binning et al. [3, 4] discuss the problem of generating a
test database D such that given a query Q and a desired
result R, Q(D) = R. Bruno et al. [6] and Mishra et al. [9]
study the problem of generating test queries to meet certain
cardinality constraints on their subexpressions.

Top-k list

Candidate Query
Generation

Find
Predicates

Find
Ranking
Criteria Database

Instance

Candidate 
Query
Verification

Figure 2: System task steps

A reverse top-k query [18] returns for a point q and a
positive integer k, the set of linear preference functions (in
terms of weighting vectors) for which q is contained in their
top-k result. For example, finding all customers who treat
the given query product q as one of their top-k favorite ele-
ments. In such cases, each customer is described as a vector
of weights. Although it appears related given the name, this
research area is not directly related to our work.

3. APPROACH
The task of reverse engineering top-k queries is split into

the following three steps, illustrated in Figure 2:

• Step 1: find the predicate P in the where clause of Q

• Step 2: find the ranking criteria

• Step 3: validate queries

As the basis of further computation, we first retrieve from
relation R all tuples whose entity column contains one of the
entities of the input table L; we call the resulting table R′.

3.1 Table R’
Consider a top-k list L as shown in Figure 1. Let ei ∈
{e, f, g,m, o} denote the entities in the column L.e.

By using a standard database index, such as a B+ tree,
on the entity attribute of R, we can efficiently retrieve R′

(shown in Table 4) containing all tuples from R matching
any of the entities ei ∈ L.e. Whether the index is actually
used or the query optimizer decides to perform a table scan
is not a concern here. In any case, in this example, the query
to compute R′ is

SELECT * FROM R
WHERE Ae IN [e, f, g, m, o]

For the purpose of efficient access of its data, PALEO stores
R′ in-memory in a column oriented fashion, with columns
being represented as arrays, allowing fast evaluation of ag-
gregate queries over R′. The relation R′ has k′ ≥ k number
of tuples, since it contains all tuples without (potentially)
being filtered by predicates. In fact, it is reasonable to as-
sume, without prior knowledge, that k′ � k, as each distinct
entity ei can appear many times in R. We will allow to work
on a subset (samples) of R′ in Section 6, and study the con-
sequences, but for now we assume R′ in fact covers all tuples
of any entity of the input.

3.2 The Three Steps

Candidate Predicates Identification. Using the tuples in
R′ we create a set of candidate predicates that are subse-
quently augmented with ranking criteria to make up full-
fledged candidate queries.
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definition 1. Candidate Predicate
We say a predicate P is a candidate predicate iff for each
entity that appears in L there is a tuple t in R′ that fullfils
the predicate. Formally,

∀ei ∈ L.e∃ tuple t ∈ R′ : P (t) = true ∧ t.e = ei

It is easy to see that a candidate predicate can potentially
produce the top-k input list. In other words, having a can-
didate predicate in the where clause is a necessary criterion
of a query to be a valid query, but it is not a sufficient cri-
terion. This is because a candidate predicate can still “let
through” tuples of other entities (that are not in the input
table L) that can be ranked higher than the tuples in L,
hence, the query is not a valid query as the output does not
match the input.

corollary 1. Downward-closure (anti-monotone)
property of the candidate predicate criterion. Given
a predicate P1 that is not a candidate predicate, then a pred-
icate Pi such that P1 ⊆ Pi (that is, all sub-predicates in P1

are also present in Pi) can not be a candidate predicate.

The corollary follows immediately from the defitinion of
candidate predicates: any predicate Pi with P1 ⊆ Pi for
another predicate P1 evaluates to true for a subset of tuples
for which P1 evaluates to true. This property is used to prune
the searchspace in Section 4, similar to what the apriori
algorithm [1] does for the support measure.

Ranking Criteria Identification. In the second step of our
approach, we identify the ranking criteria according to which
the entities in the top-k list are ranked. For this purpose we
need to find a suitable numeric attribute (or multiple ones)
including an aggregation function—or decide if one is used
at all.

definition 2. Candidate Ranking Criterion
We say a ranking criterion, consisting of one or multiple
numerical attributes and, if existing, an aggregation function
is a candidate iff, when executed on R′ together with a
candidate predicate, it returns a result identical to the
input list L.

This definition is very reasonable but similar to the crite-
rion to identify candidate predicates it is only a necessary
condition to a valid ranking criteria for a query when exe-
cuted over the entire relation R. It is, however, not a suf-
ficient condition, as when executed on R there can be still
other entities, not in L, that are disturbing the “correct”
order. The case of partial matches is discussed below.

Candidate Queries Identification and Evaluation. Us-
ing the candidate predicates and the valid ranking criteria
we can form candidate queries. Each candidate query is ex-
ecuted on R and the results are compared with the input
top-k list. The queries that produce instance-equivalent re-
sults with the original query are the valid queries.

3.3 Allowing Partial Matches
Like other approaches on reverse engineering queries, this

approach can be relaxed to allow finding also partially match-
ing queries. This can be useful for cases where the input L
has been obtained from an older instance of the database or
in cases where L has been generated in the extreme, through
crowdsourcing top-k rankings. Our approach can be adapted
to such partial match scenarios as follows. First, the condi-
tion to accept a query during the validation phase needs
to be switched to accepting partial match. For comparing
rankings, there exist several ways, most prominently Spear-
man’s Footrule distance and Kendall’s Tau. Fagin et al. [7]

R′

t.id E A B C · · · N1 N2 N3 · · ·
1 e a1 b9 c3 · · · 75 4 5 · · ·
2 e a1 b8 c1 · · · 100 8 7 · · ·
3 e a3 b1 c6 · · · 45 15 1 · · ·
4 f a1 b8 c1 · · · 90 16 2 · · ·
5 f a5 b4 c6 · · · 35 23 3 · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
10 g a1 b8 c3 · · · 80 42 14 · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
20 m a1 b8 c4 · · · 70 29 10 · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
30 o a1 b8 c4 · · · 60 31 7 · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

Table 4: Example of a Relation R′ for Input L in Figure 1

show how these measures can be applied to top-k lists. In
our case of ranking with two columns (entity and value) we
would compute such methods on the entity column; and can
additionally compute a distance measure like L1 or L2 on
the values if numerical or otherwise use a distance like the
set-based Jaccard distance. Second, not taking for granted
that we cannot precisely reverse engineer the input L implies
that even a fully known R′ would behave exactly like being a
sample, with the consequences described in Section 6. That
means, we can directly apply the reasoning on query suit-
ability explained there.

4. CANDIDATE PREDICATES
The task we consider in this section is to find all k-sized

candidate predicates Pi. Each predicate can be simple atomic
equality predicate like (A = a1) or conjunctions of atomic
equality predicates, e.g., (A = a1) ∧ (B = b8). Candidate
predicates are determined over the table R′, as described
above. From Definition 1 we know that in order to be a can-
didate predicate, a predicate P has to have for each entity
in the input L.e at least one tuple in R′ with P (t) = true.

This criteria is anti-monotone (aka. downward-closed), i.e.,
a predicate Pi with size k can be considered a candidate
predicate if and only if all its sub-predicates are also candi-
date predicates. This problem is similar to frequent itemset
mining for which the apriori principle and algorithm [1] is
widely known. In data mining terminology, itemsets resem-
ble the values that are used to form the candidate predicates.

The method to compute candidate predicates in PALEO
is described in Algorithm 1. In the first step, k = 1, we start
by identifying all atomic candidate predicates, i.e., the pred-
icates with size |Pi| = 1 (Lines 2–6 in Algorithm 1). For this
purpose for each column Ai we identify values v such that
the predicate Pi := (Ai = v) is a candidate predicate (Lines
3–4 in Algorithm 1). Furthermore, for each such created Pi

we keep a set IPi containing the tuple ids (aka. row ids)
that this predicate selects, i.e., IPi = {t.id|Pi(t) = true}.
In each additional step, conjunctive predicates of size k are
created, by adding atomic predicates from the set P1 to the
predicates created in the previous iteration (Lines 7–14 in
Algorithm 1). The algorithm does not create a predicate
multiple times. The conjunctive predicate Pij whose tuple
ids set IPij covers all entities in the input list is added to
the set of candidate predicates with size k (Lines 12–13) and
will be used in creating candidate predicates of size k+ 1 in
the next iteration.

Example: Considering Table 4 and the input list in Fig-
ure 1, we create atomic predicates starting with column A
as we iterate over its values ai. Note that the entities in E
are sorted. The set of atomic candidate predicates is cre-
ated, P1 = {P1 := (A = a1), P4 := (B = b8)}. These two
predicates are candidates, since the tuples that fulfill the
predicates cover all entities in the input list L. Furthermore,
the set tuple ids that the predicates select are kept, e.g.,
IP1 = {1, 2, 4, 10, 20, 30} . If added as a selection condition,
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method: findPredicates
input: top-k list L

relation R′

output: a set of candidate predicates P
1 P = ∅; k = 1; Pk = ∅
2 for each Ai in R′

3 find Pi := (Ai = v) with |Pi| = 1 s.t.
4 ∀ei ∈ L.e∃ tuple t ∈ R′ : Pi(t) = true ∧ t.e = ei
5 add Pi to Pk

6 for each Pi keep IPi = {t.id|Pi(t) = true}
7 repeat
8 k = k + 1
9 Pk = ∅
10 for each Pi ∈ P1 and Pj ∈ Pk−1 and Pi ∩ Pj = ∅
11 create IPij = IPi ∩ IPj

12 if IPij covers all ei ∈ L.e
13 add Pij := Pi ∧ Pj to Pk

14 until Pk = ∅
15 return P =

⋃
k Pk

Algorithm 1: Finding candidate predicates

these candidate atomic predicates would result in a candi-
date query.

In each next step, we try to produce conjunctive clauses of
size k from the predicates in P1 and Pk−1. Thus, for k = 2,
we test if the predicate P14 := (A = a1) ∧ (B = b8) qual-
ifies as a candidate by intersecting the corresponding sets
of tuple ids. Since the intersected tuple ids in IP1 ∩ IP4 =
{2, 4, 10, 20, 30} cover all entities in L.e, the predicate P14

is a candidate predicate. Recall that R′ is held in memory
and that we can, via tuple ids, very efficiently access the full
tuple to check whether or not it matches the predicate.

Properties of the Algorithm:

(i) The algorithm is correct with respect to R′, that is,
predicates returned by the algorithm are guaranteed to
be candidate predicates, following Definition 1. Fur-
ther, the algorithm is complete, that is, it finds all
possible candidate predicates over R′.

(ii) When predicates are applied in R instead of R′ they
can also let tuples with entities that are not in L pass,
which leads to false positive candidate queries.

The difference to the apriori algorithm that operates on
the support measure is that apriori counts the frequency of
all itemsets and then determines the ones above the specified
threshold. In our algorithm, we eliminate a predicate as soon
as we find that it does not cover a certain entity. The same
happens in each additional pass, since apriori will generate
all the pairs of frequent items and count their appearance.
Thus, all pairs that contain a false positive singleton will
also be false positives.

2, 4, 10, 20, 30

tuple set I

tuple ids

P : B = b
4

P : (A = a ) and (B = b )
14 1

8

8

Figure 3: Mapping from tuple set to predicates.

4.1 Tuple Sets and Predicates
Some of the created candidate predicates have identical

tuple sets IPi . These predicates select the same tuples in
R′ and share the same data characteristics regarding to R′.
Thus, candidate predicates are grouped according their tuple

1"

av
g(
A)
'

topE" his" R’" topE" his" R’" R’" R’" R’" R’"

2" 3" 4" 5" 6" 7" 8" 9" 10"

Figure 4: Order of looking for the ranking criteria

sets, i.e., if IPi = IPj , then Pi and Pj would belong to the
same group.

Figure 3 depicts a tuple set mapped to a group of can-
didate predicates created from the tuples in Table 4. The
predicates P4 and P14 cover the same tuples in Table 4.
Thus, for these predicates, it is enough to examine the data
characteristics of the tuples in the tuple set I.

5. RANKING CRITERIA
In order to find the ranking criteria according to which

the ranking in the top-k list is done, PALEO operates on
the distinct tuple sets, determined in the algorithm above.
If relation R, and hence also R′, is identical to the database
state when the input data was once generated, it is guar-
anteed that PALEO is able to determine the valid ranking
criteria.

The actual size of R′ depends naturally on the size k of
the input list L and also on the data characteristics, i.e., how
many tuples R contains for a single entity. We expect R′ to
be holding a factor of k/n less tuples than R, where n is the
number of distinct entities in R, and that this allows to load
R′ entirely in main memory. While it might be reasonably
cheap to execute a query on this R′ in memory, note that we
have to possibly do so very many times to identify suitable
ranking criteria. That is, depending on the size of R′ we can
potentially reduce the runtime of our algorithm if it can be
avoided to work on R′ directly.

The idea is to harness small data samples, histograms,
or simple descriptive statistics computed upfront from the
base relation R in order to select a subset of potentially
useful columns without touching R′. However, there might
be invalid criteria identified or potentially also no criteria
at all, given the limited coverage of data samples and the
impreciseness of histograms. Therefore, identified candidate
ranking criteria are validated on R′ and in case no heuristic
is applicable or was not successful, the whole ranking criteria
identification is executed on R′.

Depending on the aggregation function we aim at checking
for suitability, we can or cannot use some of these techniques.
For instance, comparing the entities in L with the top enti-
ties stored for each column of R can be applied to queries
with max aggregate function, but not directly to queries us-
ing sum as the aggregation function. Figure 4 summarizes
this observation. Traversing the tree pre-order depth-first is
the way PALEO looks for the ranking criteria, with the leaf
nodes showing the order in which the techniques are ap-
plied. The system tries to identify the ranking criteria with
smaller search space first. Thus, for instance, if the valid
ranking criteria is max(A) and comparing the top entities
produces valid results, only the shaded part of Figure 4 will
be processed.

5.1 Top Entities
The most apparent first attempt to identify an attribute

according to which tuples are sorted in L is to store for
each attribute in R the topmost entries, when sorted by the
specific attribute. Then, we intersect the input entity set
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method: topEntities

input: top-k list L
relation R′

output: a set of candidate numerical columns AC

1 for each Ai in R′

2 if Ai not numerical, then skip Ai

3 if max(v ∈ Ai) < max(v ∈ L.v), then skip Ai

4 if min(v ∈ Ai) > min(v ∈ L.v), then skip Ai

5 if |Ai| < |L.v|, then skip Ai

6 if TopE(Ai) ∩ L.v 6= ∅, add Ai to AC

7 return set of candidates AC

Algorithm 2: Finding candidate columns with top entities

from L with these top entries. More than just the k top
values are stored to increase the chance that these entities
do overlap with the entities in L. Clearly, it should also
not be too large such that each numeric column appears
promising. The exact way of how this idea is applied is shown
in Algorithm 2, line 6.

Before this is done, PALEO filters out attributes by apply-
ing three simple checks: it compares the max (min) values
of the input list and the column and if the column’s value
is smaller (greater) than the max value of the input list it
does not intersect the entities (Algorithm 2, line 3 and 4).
Additionally, the number of distinct values is compared: If
the column has less distinct values than the input list, we
skip this column (Algorithm 2, line 5).

The numerical columns that result in a non-empty in-
tersection are considered as candidate numerical columns.
Thus, using R′ and the tuple sets created in finding candi-
date predicates, they are checked whether they can match
the ranking in the top-k input list.

5.2 Querying Histograms
In the case no candidate numerical columns have been

identified with the above intersection of top entities, PA-
LEO employs histograms describing an attribute’s frequency
distribution in order to find candidate attributes that ap-
pear suitable for ranking. As we consider only numeric at-
tributes to be used as the bases of ranking criteria, such a
histogram describes how frequent a specific numeric value
appears in the attribute’s column in relation R. One idea
is comparing the value-frequency distributions of the his-
togram of the input list with the histograms of the numer-
ical columns in R, by using histograms distance measures
such as Earth Mover’s Distance [11]. However, a top-k list
is inherently small and does not contain enough elements to
provide a meaningful distribution. Hence, PALEO samples
each attribute’s histogram and calculate the L1 distance be-
tween its top-k values and the input values. Similar to using
top entities of each column, we draw samples following the
distribution described in the histogram. PALEO uses equi-
width histograms having 1000 cells each.

This is done for each attribute, which allows ordering all
attributes by the L1 distance of the sampled data to the
data in L. Depending on the data in the table, if there is a
column with similar values and distribution as the column
we are looking for, it is possible that the correct column does
not have lowest L1 distance. In order to account for this, we
consider the top 30% of the columns in the list as candidate
attributes.

5.3 Validation over R’
As a validation for the possible ranking criteria identified

above, we use the tuples in R′. In the case when we have
successfully identified candidate attributes with the previous
techniques, we first check if any of these candidate attributes

can produce the ranking. For this purpose, we go through
the distinct tuple sets Ii we computed in Section 4 and check
which of the candidate numerical columns, i.e., their sorted
aggregated values exactly match the input L.

Some of the supported ranking criteria cannot be identi-
fied by the above mentioned techniques, requiring more com-
plicated statistics and this is beyond the scope of this paper.
For instance, with the avg and sum aggregate functions, the
top entities for a column depend heavily on the predicate,
since the values are aggregated over multiple tuples. Simi-
larly, harnessing histograms with sum would involve convo-
lutions of the histograms of the pairs of columns.

As a fall back, if none of the candidate attributes can
produce the ranking criteria, we revert to checking the re-
maining numerical columns in R′ that were not found as
candidates. We still use only the tuples with tuple ids found
in the tuple sets Ii. For each tuple set and each numerical
attribute in R′ that passes our (three) simple checks (i.e.,
min, max comparison, and number of distinct items), we
compute whether the tuples in Ii if sorted according to the
specific attribute and aggregate function are identical to L.
After identifying the appropriate numerical attribute and
aggregate function, we can filter out some of the candidate
predicates. If a certain tuple set does not contain the input
numerical values, we remove this tuple set and all the can-
didate predicates that correspond to it from the candidate
predicates.

6. HANDLING VARIATIONS OF R
The techniques behind PALEO discussed so far are based

on the assumption that exactly the same relation R that
produced the input list L is available and that it is feasible to
operate on it directly. However, it might appear that tuples
in R have changed, for instance, because of inserts, updates,
and deletes, due to slowly changing dimensions [8] in data
warehousing scenarios, or only a subset (sample) is available.
In this section, we describe how PALEO deals with situations
when only subset of the original tuples in R is available.

This assumption has direct consequences on PALEO’s abil-
ity to accurately identify suitable predicates and ranking cri-
teria. As we have discussed above, determining query predi-
cates with the proper table R at hand only leads to obtaining
false positives in the candidate predicates, introduced by
additional entities outside R′ that qualify for the predicate.
The changed data further introduces false negatives. That
is, the query that generated the input might not be found at
all, although such a query exists. This is caused by missing
or modified tuples in R that would be required to unveil a
predicate to be fulfilled by all of the k entities. False nega-
tives are synonym to loss in recall, i.e., the fraction of found
queries to all existent queries that generate the input.

We address this by

• Reasoning about likelihood of being a successful query.

• Smart evaluation to skip unpromising queries.

Variations in R means also variations in R′. Let us denote
the table stemming from the modified base table as R′′. It
can happen that R′′ does not contain tuples from all enti-
ties from the input list, for instance if all tuples for a certain
entity ei ∈ L.e have been deleted from R. Recall that the
method for finding predicates, described in Algorithm 1 de-
mands that a predicate must cover all entities of the input
list L.e.

Now, it is possible that the tuples containing the valid
predicate for a certain entity have changed in the columns
that comprise the predicate. Then, it is impossible to pre-
cisely validate or invalidate the predicate using the method
in Algorithm 1: Being strict, missing the tuples with the
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valid predicate for a certain entity will lead to evicting the
valid predicate even though the majority of entities in R′′

contain tuples with it, thus resulting in false negatives. To
avoid that, the condition of evicting a predicate is relaxed.
Instead of demanding that a predicate is considered as a
candidate predicate if it covers all distinct entities in R′′,
we ask for it to cover the majority of the entities, thus tak-
ing into account that some entities can have tuples with the
valid predicate missing. Another possible approach is not to
evict predicates at all, i.e., form all the predicates that we
encounter in R′′ while not demanding any entity covering.
This might, however, result in very many candidate pred-
icates with too many false positives. Executing candidate
queries for all such predicates will drastically decrease the
overall efficiency of PALEO.

We describe a probabilistic model of assessing candidate
predicates when the data in the base table has changed and
how uncertainty in finding ranking criteria can be handled.

6.1 Assessing Candidate Predicates
Changes in R introduce uncertainty in finding the valid

predicates. To account for such changes, the condition of
evicting a predicate is relaxed. As a result, our methods
identify more candidate predicates that need to be assessed
whether or not they are likely to be indeed a valid predicate.
This assessment is later used when executing queries in the
final step such that queries can be executed in increasing
order of the likelihood to be in fact a valid query.

A candidate predicate Pi identified from the table R′′ is a
false positive if: ∃ ei @ t s.t. P (t) = true. In other words, if
for a certain entity ei there is no tuple for which the pred-
icate P is valid, then this predicate is a false positive. This
means that a query with this predicate would return a top-k
list without the entity ei.

Consider a predicate P over the attributes A1, . . . Am. The
probability that a tuple exists in relation R is given by the
number of distinct entries of the columns Ai (i.e., |Ai|) as

P [tuple exists] =
∏
i

1

|Ai|

Consider an entity ej for which we did not find a tuple that
matches the predicate and let unseen(ej) be the number of
changed tuples of entity ej , then

P [won’t see for ej ] = (1− P [tuple exists])unseen(ej)

The probability that at least one entity is rendering this
predicate to be a false positive (by not providing a matching
tuple) is thus given as

P [false positive] = 1−
∏
j

(1− P [won’t see for ej ])

6.2 Approximating Ranking Criteria
Operating on R′′ also introduces uncertainty in finding

ranking criteria. Since not all tuples for each entity ei are
the same, the ranking criterion cannot exactly match the
numerical values in the input top-k list. This is why there is
a need of measuring the suitability of each candidate rank-
ing criteria to the input list. For this purpose, we compute
the distance between the input values and the candidate at-
tribute(s) values. We use the L1 distance (aka. Manhattan
distance) that is simply the sum of absolute differences in
the numeric values.

Queries without sum: The changes in the tuples for
an entity ei renders the topEntities method (Section 5.1)
not directly applicable. Without the identical tuples, it is
difficult to match the candidate numerical columns with the
input ranking values. Using the L1 distance and the column

values in R′′ (Section 5.3) provides the possibility to com-
pute the suitability of the candidate ranking columns. That
way, each candidate column has a corresponding L1 distance
that is used in ranking the candidate queries.

Queries with sum: The sum aggregate function sums
up all values for a certain entity ei. Since with changed data
some of the tuples for an entity are missing, they need to be
approximated. We do this by using the column values for the
column(s) in R′. Using this approximation, the L1 distance
to the input ranking values is calculated and then used for
ranking the suitability of the column(s).

The approximation of the sum for each entity is done using
the tuple id sets. We take a look at the more complicated
case of having a sum of two columns Ai and Aj . Thus, for
a predicate P with a corresponding tuple set IP , for each
entity ei let sumAij (IP ) denote the sum of the values, of

the columns Ai and Aj , of the tuples in R′′ with tuple ids
in IP that have an entity ei, i.e.:

sumAij (IP ) = Ai(IP ) op Aj(IP ) s.t. t.e = ei , op ∈ {+, ∗}

Additionally, let #v denote the number of tuple ids in the
tuple set IP of the entity ei, i.e., the number of tuples that
the predicate P selects with ei. We approximate the sum as:

appxSumei(IP ) =
sumAij (IP )

#v
×(#v× |ei|R′′

|ei|R′′ − unseen(ei)
)

where |ei|R′′ is the number of tuples in R′′ for the entity ei.
Thus, for each entity ei, the average summed value from the
sampled tuples is multiplied with the approximated selectiv-
ity of the predicate P . The sorted list appxSum(I) formed
from the sums for each entity appxSumei(IP ) is then used
for calculating the L1 distance d to the input list and ranking
the candidate column pairs.

6.3 Combined Model
The queries formed from the combination of candidate

predicates and ranking criteria need to be validated by ex-
ecuting them on R. The order of execution is done ordered
by a suitability value for each candidate query Qc. The suit-
ability is computed as:

s(Qc) = (1− P [false positive])× (1− d)

where P [false positive] is the probability of the predicate in
the candidate query of being a false positive and d is the
max normalized L1 distance between the ranking criteria in
Qc and the numerical values in the input list L.

6.4 Working with Samples of R’
Consider a scenario where it is impossible or unfeasible

to work on the complete relation R′ (the subset of R of all
tuples that contain any of the entities in L). This relation
R′ can be very large, potentially as big as R, if there are
many tuples for each distinct entity—a typical case in data-
warehousing applications that often aggregate large amounts
of observations of a specific entity. The probabilistic model
for assessing candidate predicates together with the approx-
imation of the ranking criteria can also be applied to such a
scenario as well.

We consider two approaches of sampling. First, we sample
by retrieving all tuples for a certain (e.g., randomly selected)
subset of the entities in L.e. In this way, we do not get
any false negatives and the candidate predicates set is a
superset of the valid predicates. This is because having all
tuples in R′′ for a certain entity is guaranteed to contain the
tuples with valid predicates. As a result, our algorithm will
create the predicate as a candidate. However, the drawback
of this approach is having too many false positives. This can
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especially happen if for a sampled entity there are too many
tuples in the base table R. This will lead to creating a large
amount of false positives which impairs efficiency.

Sampling uniformly from all entities mediates this prob-
lem, thus sampling a certain percentage of the tuples from
each entity. This way, possibility of false positives is de-
creased, at the price of an increased possibility of false neg-
atives. We encounter the same problem as if we would sam-
ple by tuple: it can happen that tuples that contain a valid
predicate are not sampled for a certain entity. Relaxing the
condition of evicting a predicate mediates this problem.

We can draw a parallel between the scenarios of having
modified data in R and sampling. The tuples that are sam-
pled in R′′ correspond to the tuples in the base table that
have the columns comprising the valid predicate unmod-
ified. Hence, the not sampled tuples are analogous to the
ones that are modified.

Consider a predicate Pi that is a valid predicate for an
entity ei. The probability that k tuples with the valid pred-
icate are sampled in R′′ has a hypergeometric distribution,
i.e.,

P [k tuples sampled] =

(
K
k

)(
N−K
n−k

)(
N
K

)
where K is the total number of tuples with the predicate
in R′, N is the total number of tuples to sample from, i.e.,
N = |R′|, and n = |R′′| is the number of sampled tuples.

The probability of sampling at least one tuple with the
valid predicate Pi for an entity ei:

P [one tuple sampled] = 1−
(
K
0

)(
N−K
n−0

)(
N
K

)
Considering an input top-k list with m distinct entities ei
and assuming independence in the sampling from the differ-
ent entities, the probability of seeing a tuple with the valid
predicate is:

P [all ei] = P [one tuple sampled]m

Intuitively, this probability describes that increasing the sam-
pling size increases the probability of sampling a tuple with
the valid predicate for each distinct entity. Consequently,
making the condition of evicting a predicate more strict as
the sample size increases is needed, i.e., increasing the num-
ber of entities ei that are covered by a predicate so it can
qualify as a candidate predicate. This would eliminate the
creation of too many false positives with larger sample sizes.

7. SMART QUERY VALIDATION
Ordering candidate queries by their expected suitability

to answer the input L promises to find a valid query early—
ideally at the first query execution. Even if more than one
valid query is to be found, such an order is accelerating the
discovery process immensely. We will show in the experi-
mental evaluation that this is indeed the fact.

Now, instead of purely trusting the order, it would be
careless to simply execute queries sequentially in the given
order, without trying to benefit from information learned
while executing them. Consider a candidate query Qc that
is executed and yields a result Qc(R) that is very similar to
the input list L, but is still not an exact match. It would be
preferable to continue validating queries that are similar to
Qc and skip those in the ordered query candidate list C that
are not.

It is clear that the similarity (overlap) of the results of a
candidate query when executed over R and input list L can
be directly computed, using Jaccard similarity for instance.
But for the not-yet-executed queries we do not have direct
insight on their result, but we can “speculate” about it: We
model this similarity between Q1 and Q2 by two means; first,

method: resultDrivenValidation
input: ordered list of candidate queries C;

Jaccard similarity threshold τ
output: a valid query Qv

1 Qc := C.first
2 /* search for first query with results overlapping L*/
3 while J(Qc(R).e, L.e) < τ
4 Qc := C.next
5 /* keep this first match query */
6 Qfm := Qc

7 foundR := false
8 foundR := true if J(Qc.v, L.v) > τ
9 while(C.hasNext)
10 Qc = C.next
11 /* skip query Qc? */
12 if (P (Qc) ∩ P (Qfm) = ∅ or

(foundR and R(Qfm)! = R(Qc))))
13 continue
14 execute Qc

15 return if found valid
16 resultDrivenValidation(skipped Qc)

Algorithm 3: Result driven candidate query validation

by the common atomic equality predicates in the conjunctive
where clause, and second, by the use of the same (or not)
ranking criteria. For this, with R(Q) we denote the ranking
criterion of a query and with P (Q) the set of its atomic
predicates.

For each executed query we check if its output matches
the input list. In the first part of the algorithm presented
in Algorithm 3, we sequentially test the candidate queries
until we have found for which the entities in its results are
similar to the entities in L.e. This query is denoted Qfm,
for “first match query”. We also check if the numeric values
of the query result are similar to the numeric values L.v
of the input list L, again, using the Jaccard similarity. If
they are sufficiently similar, we mark the ranking criteria
of query Qfm as valid. In the second while loop (line 9–13
in Algorithm 3), we iterate over the remaining candidate
queries and skip those queries whose predicates are not at
all overlapping with the predicates in Qfm. We further skip
queries that have a different ranking criterion to the one of
Qfm (line 12 in Algorithm 3), in case this was found as valid.

If by the end of the query list C a valid query is not found,
the algorithm is called for the previously skipped queries,
until all queries are evaluated or one valid query is found.

8. EXPERIMENTAL EVALUATION
We have implemented the approach described above in

Java. Experiments are conducted on a 2× Intel Xeon 6-
core machine, 256GB RAM, running Debian as an oper-
ating system, using Oracle JVM 1.7.0 45 as the Java VM
(limited to 20GB memory). The base relation R is stored
in a PostreSQL 9.0 database, with a B+ tree index on R’s
entity column.

Datasets. We evaluate our approach of computing instance-
equivalent queries using data and queries of two benchmarks,
TPC-H [16] and the SSB [14]. For this, we created a scale
factor 1 instance of both TPC-H and SSB data and materi-
alized a single table R by joining all tables from their respec-
tive schema. The table R results in 57 and 60 columns, for
TPC-H and SSB, respectively. The column c name (from
the customer table) acts as the entity column. We obtain
tables with the characteristics described in Table 5.
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TPC-H SSB
# Tuples 5,313,609 6,001,171
# Entities 171,753 20,000
# Textual columns 27 28
# Non-key numerical columns 13 20
# Avg tuples per entity 31 300
Highest # tuples per entity 187 579

Table 5: Table R characteristics

Query sel.

T
P
C
|
H

γc name,MAX(o totalprice)

(σp type=′MEDIUM POLISHED STEEL′

∧ r name=′AMERICA′(R))
0.001

γc name,SUM(ps supplycost+ps availqty)

(σn name=′JAPAN ′

∧ p container=′JUMBO BAG′

∧ l shipmode=′TRUCK ′(R))

0.0001

S
S
B

γc name,AV G(lo revenue)

(σs nation=′UNITED STATES ′

∧ p category=′MFGR#14 ′(R))
0.002

γc name,SUM(lo extendedprice∗lo discount)

(σp brand=′MFGR#2221 ′

∧ s region=′ASIA′

∧ d year=1995(R))

0.00003

Table 6: Example queries and their selectivity

We examine the applicability of our approach with varia-
tion of data in R, by performing experiments with sampling.
As described in Section 6, operating on a sample of R has
similar characteristics as working on a table R with modified
data.

Queries. There are 13 and 22 queries available in the TPC-
H and SSB benchmark, respectively. We adjusted the origi-
nal queries by creating different query types (max(A), avg(A),
sum(A), sum(A+B), sum(A∗B), and no aggregation), sup-
ported by PALEO (cf., Figure 4). We only write the ranking
criteria when discussing the different query types. In order
to examine the effects of the predicate size and selectivity
factor, in each query, we vary the predicate size |P |, with
|P | ∈ {1, 2, 3}. Queries with larger predicates have higher
selectivity. Furthermore, all queries have the column c name
as an entity column. Example queries and their selectivity
are shown in Table 6.

We execute each query Q over the table R to produce the
top-k lists L. Using the LIMIT clause, we create top-k lists
with k∈ {5, 10, 20, 50, 100}. Then, we execute PALEO with
inputs L and the table R. For the experiments involving
sampling, we perform the experiments three times for each
input list L and report on the median performance. In order
to examine the effects of different sample sizes, we created
experiments with sample size of 5%, 10%, 20%, and 30%.
We keep the 1, 000 top entities for each numerical column.

Using the B+ tree on R, for each input list we retrieve
(a sample of) R′ and store it in memory. Thus, identifying
the candidate predicates and ranking criteria are in-memory
processes. Without using any compression techniques, the
memory consumption of R′ in our experiments was around
500MB. The query validation step is done by issuing queries
to the underlying PostgreSQL database that resides on disk.
Finally, queries show similar results depending on the num-
ber of columns in the aggregate function. Thus, for the sake
of brevity, we discuss the results of max(A) queries as rep-
resentative of single column queries and sum(A+B) for the
two column queries. Finally, although PALEO discovers all
valid queries for an input list, we focus on the efficiency of
discovering the first valid query in the presented results.
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Figure 5: Number of query executions until first valid query
with all tuples for TPC-H dataset

 0

 1

 2

 3

 4

 5

 6

|P|=1 |P|=2 |P|=3

N
u

m
b

e
r 

o
f 

e
x
e

c
u

te
d

 q
u

e
ri
e

s
Predicate size

Ranked validation
Expected

(a) max(A)

 0

 0.5

 1

 1.5

 2

 2.5

|P|=1 |P|=2 |P|=3

N
u

m
b

e
r 

o
f 

e
x
e

c
u

te
d

 q
u

e
ri
e

s

Predicate size

Ranked validation
Expected

(b) sum(A+B)

Figure 6: Number of query executions until first valid query
with all tuples for SSB dataset

Valid query discovery. PALEO always discovers all valid
queries for any of the supported query types when having
available the entire table R′. The availability of all tuples
ensures that false negatives are avoided, and introduces only
(a small number of) false positives.

We observe that with all tuples from R′ available, our sys-
tem requires very few query executions in order to identify
a valid query. Thus, for sum(A+B) queries and the TCP-H
dataset, the average number of query validations amounts
to only 1.1 for |P | = 1, 1.3 for |P | = 2, and 2.1 for |P | = 3.
In fact, for both TPC-H and SSB, only a single query
validation is required for 76% of the top-k lists that stem
from sum(A + B) queries, while only two query executions
are required for 14% of the top-k lists. Similarly, 65% and
70% of the top-k lists from max(A) queries are found after a
single candidate query is executed, while 26.6% and 16% af-
ter two query executions, for TPC-H and SSB respectively.
Moreover, as shown in Figures 5 and 6, ranked validation
outperforms the expected unordered validation and the ben-
efit increases with predicate size. The expected number of
query validations reflects the case of executing candidate
queries in random order. Assuming a uniform probability of
the location of the valid queries in the candidate list, we
compute the number of expected validations with dividing
the number of candidate queries with the number of valid
queries.

Query discovery efficiency. We study the efficiency of the
different steps from our system. Figure 7 shows the runtime
of each step of our approach. As expected, the total run-
time is dominated by the database-related operation, i.e.,
the candidate query validation (Step 3). Note that Figure 7
shows the runtime of finding the first valid query. We observe
that for the TPC-H dataset the runtime of Step 3 is orders
of magnitude higher than that of Step 1 and 2. Thus, for
max queries the average runtime of candidate query valida-
tion is 3.6 seconds, while the average runtime of identifying
candidate predicates and ranking criteria is 12.4 and 3.9 mil-
liseconds, respectively. With the SSB dataset and the same
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Figure 8: Number of candidate predicates
for max(A) queries

type of queries, Step 3 needs 7.5 seconds, while the runtime
of Step 1 and 2 amounts to 3.3 and 0.3 seconds respectively.
The table R from the SSB dataset has more tuples per en-
tity, which leads to having a larger R′ and more data to
process with our algorithms.

Identifying candidate predicates. We study the effect of
predicate size and the length of the input top-k lists on creat-
ing candidate predicates. Figure 8 shows the number of cre-
ated candidate predicates with different predicate and input
list size. We observe that for the TPC-H data, the average
number of created candidate predicates increases from 13.8
with |P | = 1, to 69 with |P | = 2, and to 95 with |P | = 3. We
observe the same trend with the SSB dataset. Larger predi-
cate size leads to generating more candidate predicates. The
reason for this is that for a valid predicate with size |P | we
create as candidate predicates all sub-predicates with size
smaller than |P | as well. The number of shared tuple sets is
smaller than the one of created predicates.

Figure 8(b) shows the average number of created predi-
cates with different length of the top-k input lists . We ob-
serve that the number of candidate predicates decreases with
larger k. For TPC-H, the number of created predicates de-
creases from 41.3 for k = 5 to 14.3 for k = 100. With SSB,
the average number of candidate predicates decreases from
1142.9 for k = 5 to 279.7 for k = 100. Larger k reduces
the number of false positives in the candidate predicates.
A predicate needs to select tuples with the distinct entities
from the input list in order to qualify as a candidate predi-
cate. With larger lists the number of entities increases, thus
making it more difficult for a predicate to qualify as a can-
didate. Furthermore, we observe that a significantly larger
number of predicates is created with the SSB data. This is
due to the characteristics of the dataset, with SSB having
more tuples per entity and more variety in data.

8.1 Evaluation with Sampling
The TPC-H generator creates uniform column distribu-

tions, thus the generated instance does not contain enough
tuples per entity, with 14 tuples for an entity, at most. The
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Figure 9: Valid query discovery
with sum(A+B) queries

SSB data has many tuples per entity, however these are ex-
tremely diverse in terms of predicates, i.e., the predicates
found in the SSB queries often cover only a single tuple
per entity. We thus focus on TPC-H data when employing
sampling. There, for each tuple t in R we add n additional
tuples, where n is a random number following the Gaussian
distribution N (200, 50). These n tuples have the same val-
ues in the textual columns as t, but with non-key numerical
values: v = v + v × abs(m), where m ∈ [0, 1] is a random
number following N (0.5, 0.5).

We study the effect of the sample size on the successful
discovery of valid queries. We observe that a valid query
is successfully discovered for all top-k lists that stem from
single column queries, regardless of sample and predicate
size. Figure 9 shows results for the discovery of sum(A +
B) queries. The discovery of valid queries depends on both
the sample and predicate size. Having larger sample size
enables better query discovery. For |P | = 2 and a sample
size of 5% our system successfully manages to discover a
valid query for 70% of the top-k lists. With a sample size of
10% the percentage of discovered queries increases to 85%,
while with a sample size of 20% and larger, we manage to
discover 100% of the queries with |P | = 2. Furthermore, we
observe that discovering queries with larger predicate size
is more difficult. With a sample size of 10% we successfully
discover a valid query for 90% of the top-k lists with |P | = 1,
85% with |P | = 2, and 60% with |P | = 3. Queries with
larger predicates are very selective, hence the probability of
sampling tuples with a valid predicate is lower, which leads
to false negatives. Sampling more tuples for these queries
mediates this problem.

Smart Query Validation. Validating the created candidate
queries is the bottleneck of our approach; executing (aggre-
gated) queries on the database is expensive. We study the
effects of our candidate query validation in terms of the com-
puted query suitability and our result driven optimization.
In addition, we investigate the effects of the predicate and
sample size. Table 7 shows the average number of query exe-
cutions needed using the two approaches for candidate query
validation: smart result driven validation and ranked valida-
tion by query suitability. Furthermore, it shows the average
number of created candidate queries Qc for each query type
and the average number of valid queries identified when hav-
ing all tuples from R′ available.

Figure 10 compares average number of executed queries
with our two approaches to validation with the expected
number of query validations if the candidate queries are not
ordered. For max(A) queries, we observe that smart vali-
dation outperforms unordered validation by a factor of 7.3
with |P | = 1, 4.2 with |P | = 2, and 3.3 with |P | = 3. Fur-
thermore, smart validation performs 26% query executions
less than ranked validation with |P | = 2 and 33% less execu-
tions for |P | = 2. The benefits with discovering sum(A+B)
queries are even greater. Thus, smart validation in average
reduces the number of expected query executions by a fac-
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select Ae, max(A) select Ae, sum(A+B)
|P| Sample % Smart Ranked # candidates #valid Q Smart Ranked # candidates # valid Q
1 5 20.6 24.6 163.7 16.6 32.1 11621.9
1 10 13.7 12.4 185.1 24.9 28.2 10919.9
1 20 5.1 3.4 144.7 9.8 16.2 10330.7
1 30 3.6 2.0 105.1 4.3 6.6 7287.4
1 100 1.0 1.0 4.8 4.0 1.1 1.1 4.8 4.0
2 5 33.1 69.8 161.3 100.9 1379.0 6540.4
2 10 23.4 40.4 219.3 47.4 958.4 6991.2
2 20 9.3 12.8 155.5 20.4 362.8 6605.4
2 30 6.4 8.7 130.1 10.5 49.4 4820.4
2 100 1.3 1.3 12.9 4.8 1.2 1.2 5.8 3.7
3 5 59.4 121.0 219.4 199.0 2510.6 3802.5
3 10 49.5 129.4 282.0 133.8 982.4 4524.0
3 20 24.8 56.4 224.0 22.7 61.4 3263.0
3 30 20.3 31.8 203.5 15.4 38.5 4457.1
3 100 2.8 2.8 25.7 3.0 2.1 2.1 4.4 1.5

Table 7: Number of candidate query validations with the different approaches by sample and predicate size
for max(A) and sum(A+B) queries
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Figure 10: Number of query executions until first valid
query with 30% sample for TPC-H data

tor of 424.7 with |P | = 1, 124.7 with |P | = 2, and 192.6
with |P | = 3. The greater benefit with this type of queries
stems from the fact that identifying the ranking criteria in-
volves different combinations of columns, which significantly
increases the number of candidate queries.

Furthermore, smart validation significantly outperforms
ranked validation with smaller sample size. Thus, with sam-
ple size of 5% smart validation reduces the number of query
executions for discovering sum(A+B) queries over the rank-
based validation by a factor of 13.7 and 12.6, with |P | = 2
and |P | = 3 respectively. Similarly, with a sample size of
10% smart validation reduces the average number of execu-
tions by a factor of 20.2 with |P | = 2 and 7.3 with |P | = 3.
We observe that smart candidate query validation improves
over rank-based validation for max(A) queries as well, albeit
with smaller but still significant effect. The greater benefit
with sum(A + B) queries stems from the fact that identi-
fying the ranking criteria is more complex with this type of
queries, thus making the query suitability less precise.

Larger sample size improves the candidate query suitabil-
ity and reduces the number of candidate queries, thus re-
sulting in less query validations. Smart validation reduces
the number of validations for discovering max(A) queries
with a sample size of 30% by an average factor of 4.6 over
a sample of 5%. Less candidate queries are created with
larger sample size, since the availability of more tuples leads
to better generation of candidate predicates and we discuss
this later using Figure 11. Larger sample size significantly
improves the approximation in finding the ranking criteria
with sum(A + B) queries and the factor of improvement
amounts to 8.8 for the same sample sizes.

Larger predicate size increases the number of needed query
validations. We observe that with a sample size of 30% dis-
covering max(A) queries requires 3.6 candidate query val-

idations with |P | = 1, 6.4 with |P | = 2, and 20.3 with
|P | = 3. With the same sample size, discovering sum(A+B)
queries needs 4.3, 10.5, and 15.4 query executions, with
|P | = 1, |P | = 2, and |P | = 3 respectively. Queries with
larger predicates are more selective, thus it is less probable
that tuples selected by the valid predicate will be sampled.
Additionally, subpredicates of a larger valid predicate can
select the same tuples as the larger predicate, but in turn
the smaller predicates are less selective which reduces their
probability of being a false positive. Hence, candidate queries
with smaller predicates can have higher query suitability.

Note that with sampling, the number of candidate queries
formax(A) queries is significantly lower than that of sum(A+
B) queries, as shown in Table 7. With single column queries
identifying the ranking criteria is an easier task and we can
limit the number of columns to consider as candidates. With
sum(A+B) queries on the other hand, the task of finding the
ranking criteria involves combinations of two columns, thus
making it more complicated. Furthermore, it is difficult to
limit the number of column combinations to consider since
a certain column with very large numbers (e.g., total price
in TPC-H) can dominate the sum. Hence, we consider all
possible column combinations as candidate ranking criteria
and rank them according to their approximated L1 distance.

Identifying Candidate Predicates. We study the effect of
sample size on the number of created candidate predicates.
We observe that the number of candidate predicates de-
creases with larger sample size. Larger sample size increases
the probability of sampling larger number of tuples with a
valid predicate, which in turn allows for stricter criteria in
qualifying a predicate as candidate. Following the sampling
probability in Section 6, with larger sample size we increased
the ratio of covered entities in order to denote a predicate as
a candidate. Thus, for sample size of 5%, the ratio of covered
entities was set to 0.5, for 10% to 0.6, for 20% to 0.7, and to
0.8 for a sample size of 30%. Lower ratio avoids false nega-
tives, but comes at the cost of increasing the number of false
positives, since more predicates will qualify as candidates.

It is important to note that the experiments with sam-
pling introduced expected variability. Depending on which
tuples are sampled, the probability of the candidate pred-
icates varies. Furthermore identifying the ranking criteria
with sum(A + B) queries is influenced by the sampled tu-
ples. Example: We ran five executions of the input list from
the second query in Table 6 with k = 10 and sample of 5%.
As a best case a valid query is found after only 2 query ex-
ecution, while 125 executed candidate queries were needed
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Figure 11: Number of candidate predicates
for max(A) queries

in the worst case. In the first case, the sampled rows con-
tain the correct predicate for each distinct entity, i.e., the
predicate probability is 1.0. Additionally, the correct rank-
ing criteria (column combination) has the second lowest L1
distance on the valid predicate. It seems that the sampled
rows were good for approximating the ranking values for the
correct columns. In the other case, the predicate probabil-
ity is 0.84 (14th in the ranking), while the correct column
combination has a very large L1 distance, since the sam-
pled tuples were not a good approximation of the ranking
values. The remaining executions resulted in 27, 16, and 39
query validations. With smaller sample it is more difficult
to find the ranking criteria for sum(A+B) queries. This is
a consequence of the non-uniform distribution of the values
in A and B. Thus, the approximation depends on which tu-
ples are sampled. Larger sample size mediates this problem.
Having more tuples avoids the dependence on which tuples
are sampled and leads to a more precise approximation.

8.2 Lessons Learned
With all tuples from R′ available our system always dis-

covers a valid query. Furthermore, for both datasets this is
done efficiently and requires just a few query executions with
only a single query validation for 76% and 68% of the top-k
lists that stem from sum(A + B) and max(A) queries, re-
spectively. On the other hand, sampling introduces the pos-
sibility of false negatives. However, we manage to discover a
valid query for all top-k lists that result from a single column
query. Finding valid sum(A+B) queries is more difficult and
we manage to identify a valid query for 96.7% of the top-k
lists with a sample size of 30%. Identifying the candidate
predicates and ranking criteria is done in-memory and are
very efficient. The smart result driven candidate query vali-
dation significantly reduces the number of query executions
needed in finding a valid query. In addition, larger predicate
size leads to more query validations. Larger sample size re-
duces both the number of false positives and false negatives
in the candidate predicates. Furthermore, having more data
improves the ranking of the candidate ranking criteria, since
we have better approximation of the L1 distance.

9. CONCLUSION AND OUTLOOK
We proposed a framework to reverse engineer top-k OLAP

queries. This has turned out a complex problem given the
various dimensions of the search space, the potentially very
large base relation, and the small input snippet in form of a
top-k list. Our approach mainly operates on a subset of the
base relation, held in memory, and further uses data sam-
ples, histograms, and simple descriptive statistics to identify
potentially valid queries (that generate the input list). We
proposed a probabilistic model that evaluates the suitability
of a query discovered over a subset of R′, methodology that
is directly applicable to the case of handling variations of R
and considering partial match queries, i.e., queries that only

approximately match the input list. In any case, when trying
to identify promising queries, the main difficulty is to limit
the number of false positives—that cause unnecessary query
validations—as well as to limit false negatives—that cause
loss in recall. The ordering of potentially valid queries ac-
cording to the probabilistic model in addition to an iterative
refinement of the validation of candidate queries was proven
to drastically decrease the amount of time to validate (or
invalidate) queries in the final stage of the approach. This
is specifically true for cases of low sampling rates—and ex-
pectedly likewise for partial-match scenarios.

As ongoing work, we investigate whether existing work
on reverse engineering join queries is compatible with our
approach and evaluate PALEO in partial-match scenarios.
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ABSTRACT
In this paper, we propose a crowdsourcing-based approach to solv-
ing skyline queries with incomplete data. Our main idea is to lever-
age crowds to infer the pair-wise preferences between tuples when
the values of tuples in some attributes are unknown. Specifically,
our proposed solution considers three key factors used in existing
crowd-enabled algorithms: (1) minimizing a monetary cost in iden-
tifying a crowdsourced skyline by using a dominating set, (2) re-
ducing the number of rounds for latency by parallelizing the ques-
tions asked to crowds, and (3) improving the accuracy of a crowd-
sourced skyline by dynamically assigning the number of crowd
workers per question. We evaluate our solution over both simulated
and real crowdsourcing using the Amazon Mechanical Turk. Com-
pared to a sort-based baseline method, our solution significantly
minimizes the monetary cost, and reduces the number of rounds up
to two orders of magnitude. In addition, our dynamic majority vot-
ing method shows higher accuracy than both static majority voting
method and the existing solution using unary questions.

1. INTRODUCTION
In recent years, crowdsourcing has become a new paradigm for

implementing human computation. Many extensions to existing
DBMS techniques have been proposed to employ crowdsourcing so
that the problems difficult for machines but easier for humans can
be solved better than ever, e.g., CrowdDB [5], Qurk [13], Deco [19],
AskIt! [1], and CyLog/Crowd4U [16]. Motivated by their suc-
cess, ones attempt to leverage crowdsourcing into existing micro-
level query operations. For instance, they are selection [6, 18, 21],
join [14, 24, 25, 26], group-by [4], max [8, 22, 23], and sort [14].

In this paper, we study a crowdsourcing-based approach to solv-
ing skyline queries with incomplete data. The skyline queries have
gained considerable attention for assisting multi-criteria decision
making applications [2, 9, 17]. Given two tuples s and t, it is said
that s dominates t if the values of s are no worse than those of t
over all attributes and the values of s are better than those of t over
any attribute. Given a set R of tuples, the skyline is a set of tuples
that are not dominated by any other tuples in R. To illustrate this,
we consider the following motivating example.

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

EXAMPLE 1 (SKYLINE QUERY) Suppose that Alice wants to find
the skyline movies of her preference, i.e., most popular and most
romantic movies, released in 2010-2015.

SELECT * FROM movie_db
WHERE year >= 2010 and year <= 2015
SKYLINE OF box_office MAX, romantic MAX

The popularity can be estimated by the box_office (i.e., the
number of movie audiences) attribute. However, the movie_db
table does not record how romantic a movie is. That is, in the
romantic attribute, the values of tuples are all unknown (or miss-
ing). To address this problem, we utilize crowdsourcing that can
effectively infer missing values on the subjective attribute. Specif-
ically, we ask crowds which movie is more romantic with respect
to two movies, and get a relative preference of movies by using a
pair-wise question. By repeatedly asking such pair-wise questions
and aggregating their answers, we can fill missing values of tuples,
and then find a skyline. Note that our setting above is an extreme
case (i.e., all values of tuples are missing in the romantic at-
tribute). When some values of tuples are missing, we can apply our
proposed solution to only the tuples with missing values. 2

A crowd-enabled skyline query is defined as a skyline query
with incomplete data in which crowds are used to infer the miss-
ing preferences between tuples [12]. Although existing work [12]
addresses crowd-enabled skyline queries, it assumes a fixed budget
and computes a probabilistic skyline. In contrast, our goal is min-
imize the number of pair-wise questions to crowds in identifying
a complete skyline. In addition, [12] is based on unary questions
to assess missing values of tuples. Because it is difficult to obtain
correct answers for unary questions, the skyline result in [12] can
be inaccurate. In our empirical study, it is observed that the pair-
wise questions achieve higher accuracy than the unary questions in
existing work [12].

In order to address skyline queries with crowdsourcing, we deal
with three key factors: (1) how to minimize rewards paid to crowds
(i.e., monetary cost), (2) how to reduce the delay of crowd-enabled
computation (i.e., latency), and (3) how to improve the quality of
the skyline using the answers obtained from crowds (i.e., accu-
racy). When asking questions to crowds, we have to pay certain
monetary rewards. Assuming that a fixed amount of a reward per
question is paid, the monetary cost is proportional to the number
of questions asked to crowds. In order to measure the latency, we
need to estimate the running time to obtain answers from crowds in
a round. Assuming that each round has a fixed amount of time [25],
the latency is proportional to the number of rounds needed for ask-
ing all questions.

We then propose a new solution that addresses crowd-enabled
skyline queries for each factor. First, in order to minimize the mon-
etary cost, it is essential to remove unnecessary questions while
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computing a crowdsourced skyline. Toward this goal, we make use
of two relationships between tuples, dominance and incomparabil-
ity. In particular, we adopt a dominating set to remove unnecessary
questions in identifying a skyline. That is, given a tuple t, the dom-
inating set DS(t) is a set of tuples that dominate t. Using DS(t),
we can skip the questions for tuples with the incomparability rela-
tionship, and selectively ask the questions for tuples with the domi-
nance relationships. We also prune unnecessary questions by using
the transitivity of dominance relationships in DS(t).

Second, we address how to reduce the number of rounds by ask-
ing multiple independent questions in a round. A set of questions
are said to be independent if the answers of each question do not
affect the other questions in the set. We show that independent
questions can be asked in a round, yielding the parallelization of
asking questions. Based on this observation, we develop two par-
allelization methods that significantly reduce the number of rounds
without influencing other factors.

Lastly, we explain how to improve the accuracy of a crowd-
sourced skyline. When a single crowd worker is assigned per ques-
tion, some answers can be erroneous as workers can make mistakes.
To alleviate this problem, we assign multiple workers per question
and decide the final answer by using majority voting [6, 11, 15, 18].
As the simplest method, we can equally assign the same number of
workers for each question. Because it neglects the characteristics of
skyline queries, however, we develop a dynamic assignment strat-
egy in which the number of workers can be assigned differently
depending on the importance of questions. The proposed dynamic
assignment can improve the accuracy of the crowdsourced skyline
without incurring additional monetary cost.

To summarize, our main contributions are as follows:

• We formulate the problem of crowd-enabled skyline queries
with three key factors used in crowd-enabled algorithms.

• To minimize monetary cost, we propose a crowd-enabled
skyline algorithm with three pruning methods on top of the
notion of a dominating set.

• To reduce the number of rounds, we develop two paralleliza-
tion methods based on the notion of dominating sets and sky-
line layers.

• To improve the accuracy of the crowdsourced skyline, we
design a dynamic majority voting that assigns the number of
workers depending on the importance of questions.

• We validate the effectiveness of our proposed algorithm in
both simulated and real-life crowdsourcing using the Ama-
zon Mechanical Turk. In terms of accuracy, we also compare
our proposed solution against existing work [12].

The remainder of this paper is organized as follows. In Sec-
tion 2, we explain the concept of crowd-enabled algorithms and
formulate the skyline query with crowdsourcing. In Section 3, we
first propose an algorithm to minimize monetary cost using several
pruning methods. In Section 4, we develop two algorithms to min-
imize the number of rounds by parallelizing multiple questions in
a round. In Section 5, we design a dynamic majority voting that
improves a static majority voting by considering the importance
of questions. In Section 6, we empirically compare our proposed
algorithm with the baseline and existing crowdsourced skyline al-
gorithms with unary questions. In Section 7, we review our related
work. In Section 8, we summarize and conclude our work.

2. PRELIMINARIES
In this section, we first present the concept of crowd-enabled al-

gorithms (Section 2.1), and then explain the basic notion of skyline
queries (Section 2.2). We lastly formulate the problem of skyline
queries with crowdsourcing, where questions are asked to crowds
to acquire the relative preferences between tuples with missing val-
ues (Section 2.3).

2.1 Crowd-Enabled Algorithms
The crowd-enabled algorithms first require us to design the for-

mat of micro-tasks asked to crowds. Because the micro-tasks are
typically represented as questions, we use both terms, micro-tasks
and questions, interchangeably. Let π denote a latent scoring func-
tion with which crowds assess the missing value of a tuple. The
argument of π can differ depending on formats of questions.

Specifically, the micro-tasks are classified into quantitative and
qualitative formats [14]. First, the quantitative format asks crowds
to determine an absolute (normalized) preference. This can be ab-
stracted as a unary function π(t) for a tuple t, e.g., rating from 1 to
7 for the size of a given square. Let n denote the number of tuples
with missing values. While the unary function is effective for min-
imizing the number of questions in determining the total order of
tuples, i.e., n questions, the accuracy of answers can be low. That
is, because crowds usually have no global knowledge for missing
values of tuples, it is difficult for them to return correct answers.

Second, the qualitative format allows crowds to judge the rel-
ative preference between two (or more) tuples. As the simplest
format, it can be modeled as a binary function π(s, t) to compare
two tuples s and t, e.g., selecting one with a larger size between two
squares. (Possibly, it can be extended to an m-ary format.) Com-
pared to the quantitative format, because it only requires relative
preference between two tuples, more questions are usually asked.
In the worst case,

(
n
2

)
questions are needed for obtaining a total or-

der of n tuples. Meanwhile, because the crowd can answer binary
questions correctly without global knowledge for missing values,
the accuracy of answers in the qualitative format is higher than that
in the quantitative format.

In this paper, we adopt binary function π(s, t) for questions in
order to obtain more accurate answers. That is, we use a pair-wise
question (s, t) with ternary answers, where it is symmetric, i.e.,
(s, t) = (t, s). Given (s, t), the crowd chooses a more preferred
one (i.e., either s or t) or the third option, indicating that the two
tuples are equally preferred. For example, the following questions
are asked to crowds: “which square between the two is larger?” or
“who is a more valuable baseball player?"

We next explain three key factors used in existing crowd-enabled
algorithms, e.g., [4, 6, 18, 20, 22, 25]. Using the key factors, we for-
mulate the problem of crowd-enabled skyline queries (Section 2.3).

(1) Monetary cost: Unlike existing machine-only algorithms, crowd-
enabled algorithms compensate rewards to crowds. Assuming that
a fixed amount of a reward per question is paid, the monetary cost
is proportional to the number of questions asked to crowds. For
monetary cost, there are two optimization directions: (1) minimiz-
ing the number of questions asked for obtaining a complete query
result and (2) selecting the most important questions for a given
budget. In this paper, we focus on minimizing the total number of
questions during executing a skyline query with crowdsourcing.

(2) Latency: Since each question can take different time to finish,
it is non-trivial to design an effective model for estimating latency.
As an alternative way, we assume that a fixed amount of time is as-
signed per question. Because multiple questions can be performed
in parallel, we use the number of rounds (or iterations.) to measure
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the latency [25]. Specifically, there are two strategies in latency:
(1) one-shot strategy that generates all questions at once, and (2)
adaptive strategy that asks questions in an interactive manner. Be-
cause the one-shot strategy needs only one round, it is much faster
than the adaptive strategy. Meanwhile, the adaptive strategy can
identify unnecessary questions by using the answers of questions
asked at the previous rounds, and thus reduces the total number
of questions. In this paper, we leverage the adaptive strategy and
discuss how to minimize the latency for a given question set.

(3) Accuracy: Because crowds can make mistakes in answering
questions, the accuracy of a query result can be imperfect. There
are two models to improve the accuracy: query-independent and
query-dependent models. Existing work [6, 11, 15, 18] proposed
various query-independent methods to improve the accuracy for a
single question by considering the proficiency of workers and the
difficulty of questions. Although improving the accuracy of a query
result in a micro-level manner, they do not consider the importance
of questions depending on an inherent property of a query type in
a macro-level way, e.g., [4, 20]. In this paper, we aim to develop a
query-dependent method by distinguishing the importance of ques-
tions for a skyline query.

2.2 Skyline Queries with Missing Data
Let A denote a finite set of d attributes, A = {A1, . . . , Ad}, in

which the domainDi ofAi is a set of positive numbers and a miss-
ing value, denoted by 2, i.e., Di := R+ ∪{2}. A base datasetR is
an instance of database relations, i.e., R ⊆ D1 × . . . ×Dd. Each
tuple t ∈ R is represented by t = (t1, . . . , td) such that ti ∈ Di

for i = 1, . . . , d. In this paper, we use s, t, u, and v to point out
arbitrary tuples.

The attribute set A is divided into two attribute subsets. First,
AK is a set of attributes in which the values of tuples are known.
The preference of values overAK can be represented by a total or-
der. Second, AC is a subset of attributes in A, where the values of
tuples are missing. We callAC crowd attributes. Two attribute sets
are disjoint, i.e., AK ∩ AC = ∅, AK ∪ AC = A. We assume that
all values of tuples in AC are missing, i.e., hand-off crowdsourc-
ing [7]. That is, for any tuple t ∈ R, ∀Aj ∈ AC : tj = 2 holds.
This implies that all preferences between tuples in AC should be
assessed by crowds. After the missing preferences between tuples
in AC are judged by crowds, it can be represented by a partial or-
der of tuples. When a subset of tuples inR only has missing values
in many real applications, some known values of tuples can be rep-
resented by a pre-defined partial order. Therefore, we can extend
our proposed techniques for real-life scenarios.

We next define fundamental notions used in skyline literatures [2,
9, 17]. In this paper, we assume that smaller values over AK are
more preferred. Given s, t ∈ R, a strict preference s <i t is
defined if s is preferred over t in Ai. Let s .i t define a weak
preference if s <i t or s =i t in Ai. If no preference between s
and t is inferred in Ai ∈ AC , an indifferent preference s ⊥i t is
defined.

DEFINITION 1 (DOMINANCE) Given s, t ∈ R, s dominates t in
A, denoted by s ≺A t, if ∀Ai ∈ A : s .i t and ∃Aj ∈ A : s <j

t. If s does not dominate t in A, it is denoted as s ⊀A t.

DEFINITION 2 (INCOMPARABILITY) Given s, t ∈ R, they are in-
comparable in A, denoted by s ≺�A t, if (i) s ⊀A t and t ⊀A s

or (ii) ∃Aj ∈ AC : s ⊥i t.

DEFINITION 3 (SKYLINE) Given a set R of tuples, a skyline is a
set of tuples that are not dominated by any other tuples in A, i.e.,
SKYA(R) = {t ∈ R|∀s ∈ R : s ⊀A t}.
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Figure 1: A toy dataset for a crowdsourced skyline query with
A = {A1, A2, A3}

These notions can be applied to a subset ofA. That is,A in≺A,
⊀A, and ≺�A can be replaced with AK or AC .

2.3 Problem Formulation
The earlier work [12] maximized the accuracy of the crowd-

sourced skyline at a fixed budget. When tuples have missing values,
[12] adopts crowds to assess missing values of tuples with a unary
question. In contrast to [12], in order to achieve more reliable sky-
line results, our goal is to minimize monetary cost while computing
crowd-enabled skyline queries in which binary questions are used
for obtaining the preferences between tuples. (In Section 7, we
explain the differences between ours and [12].)

When the crowds evaluate missing values of tuples, a skyline
result can be iteratively updated. Initially, since the preferences
of tuples over AC are undefined, all tuples are incomparable to
each other, and by default in the skyline. Let Q(t) = {(s, t)|s ∈
R \ {t}} be a set of all possible pair-wise questions for t. After a
question set Q′(t) ⊆ Q(t) is answered by crowds, s can exist such
that s ≺A t. At this point, t becomes a non-skyline tuple, and is
removed from the initial skyline. If the status of t is not changed
regardless of remaining questions for t, it is called a complete tu-
ple. That is, once t is determined as a complete tuple, additional
questions for t are unnecessary.

DEFINITION 4 (COMPLETE TUPLE) After a set of questionsQ′(t)
⊆ Q(t) is answered, a tuple t is said to be complete if (i) ∃s ∈ R :
s ≺A t, (i.e., a complete non-skyline tuple) or (ii) ∀s ∈ R :
s ⊀A t holds regardless of the answers of remaining questions
Q(t)−Q′(t) for t, (i.e., a complete skyline tuple).

EXAMPLE 2 (CROWD-ENABLED SKYLINE QUERY) Given a setR
of 12 tuples, Figure 1 depicts a toy dataset for a crowd-enabled sky-
line query such that AK = {A1, A2} and AC = {A3}. Note that
all values of R in A3 are missing. Since {b, e, i, l} (a dashed line
in Figure 1a) are not dominated by any other tuples in AK , they
are always in the skyline in A regardless of preferences of tuples
in AC . Therefore, they are complete skyline tuples. Because the
other tuples can be non-skyline tuples depending on the results of
questions on AC , however, they are regarded to be incomplete tu-
ples. Suppose that the preferences of tuples in AC are depicted in
Figure 1(b), where an edge s→ t indicates that s is preferred over
t in AC and transitivity between edges holds. (In Section 3.3, we
discuss how to build a preference tree inAC .) Since b ≺AK a and
b ≺AC a, a becomes a non-skyline tuple. By using the preference
relationships in Figure 1(b), all tuples become complete tuples, and
the skyline is finally identified as {b, e, i, l, k, f, h}. 2
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In this paper, we consider three key factors, i.e., monetary cost,
latency, accuracy, in computing crowd-enabled skyline queries. We
first aim to minimize the number of questions in identifying a com-
plete skyline. Then, we further optimize the other factors for a
given question set. Although this problem formulation does not
identify a solution that optimizes three factors simultaneously, it
can be a more practical setting as done in [24, 25]. Formally:

PROBLEM 1 (CROWDSOURCED SKYLINE) Let P be a set of pos-
sible execution plans for computing a complete skyline. Our prob-
lem is to identify an execution plan Popt ∈ P that minimizes mon-
etary cost C(P,R) for questions in AC .

Popt = argmin
P∈P

C(P,R)

Note that Popt can also be used for optimizing the other factors
such as latency and accuracy.

Assuming that a single question is asked at each round, execu-
tion plan P can be represented by a sequence set Q of questions,
e.g., Q = 〈(a, b), . . . , (k, l)〉. Let |Q| denote the number of ques-
tions inQ. When the monetary cost per question is equal, C(P,R)
becomes proportional to |Q|. Therefore, we minimize the number
of questions |Q| in identifying a complete skyline tuple.

In the following sections, we first assume that the answers of
crowds are always correct. Based on this assumption, we propose
a crowd-enabled skyline algorithm to minimize |Q| (Section 3).
When multiple questions are asked in parallel, we also develop how
to reduce the number of rounds for Q (Section 4). By relaxing
such an assumption, we lastly discuss how to improve the accuracy
of a complete skyline while both the number of questions and the
latency are kept (Section 5).

3. MINIMIZING MONETARY COST
As a baseline method, we may ask all possible pair-wise ques-

tions between tuples, i.e.,
(
n
2

)
to obtain the total order of tuples.

However, because it is too exhaustive, we modify existing sort-
ing algorithms such as tournament sort and bitonic sort [3] with
crowdsourcing. Specifically, the pair-wise comparisons in existing
sorting-based algorithms [3] can be replaced by binary questions,
and the total order of tuples inAC can be used to identify a crowd-
sourced skyline. While the sorting-based method is effective for
obtaining all missing preferences of tuples, it can incur unneces-
sary questions in computing the crowd-enabled skyline.

To address this problem, it is observed that the dominance and
incomparability relationships of tuples inAK can be used to reduce
unnecessary questions. Based on this observation, we adopt the
notion of a dominating set to remove unnecessary questions. In the
following sections, we also develop several pruning methods on top
of the dominance set to remove additional questions.

For a simpler presentation, whenAC has multiple attributes, i.e.,
m = |AC | > 1, we suppose that m questions for (s, t) are asked
at once, i.e., ∀Aj ∈ AC : (sj , tj). Because m questions can be
asked simultaneously, we simply use (s, t) to denote m questions
for (s, t), when context is clear.

In addition, we suppose that the values of tuples in AK are dis-
tinct, i.e., for any tuples s, t ∈ R, ∃Ai ∈ AK : si 6= ti holds. As
a degenerate case, we separately handle a tuple set with the same
values in AK . Because we cannot exploit our pruning methods for
the tuple set, it is performed as a pre-processing step. That is, given
(s, t) such that ∀Aj ∈ AK : si = ti, we remove a non-skyline tu-
ple by identifying the dominance relationship between two tuples
in AC . (This degenerate case is described in lines 1–3 in Algo-

Table 1: Dominating sets and question sets for the toy dataset
in Figure 1(a)

t DS(t)

a {b}
c {a, b, e}
d {b, e}
f {a, b, d, e}
g {e}
h {b, d, e, g, i}
j {a, b, d, e, f, g, h, i}
k {i, l}

t Q(t)

a {(a, b)}
c {(c, a), (c, b), (c, e)}
d {(d, b), (d, e)}
f {(f, a), (f, b), (f, d), (f, e)}
g {(g, e)}
h

{(h, b), (h, d), (h, e),
(h, g), (h, i)}

j
{(j, a), (j, b), (j, d), (j, e),
(j, f), (j, g), (j, h), (j, i)}

k {(k, i), (k, l)}

(a) Dominating sets (b) Question sets

rithm 1.) After performing the pre-processing, we can safely make
use of our pruning methods without loss of correctness.

3.1 Using a Dominating Set
We first exploit the incomparability relationship of tuples to by-

pass unnecessary questions. For instance, when two tuples a =
(2, 8,2) and d = (5, 7,2) in Figure 1(a) are incomparable inAK =
{A1, A2}, they also become incomparable in A regardless of the
answer of (a, d) inAC = {A3}. That is, we only need to compare
a question (s, t) inAC by asking a question (s, t) if s and t are not
incomparable in AK by using the property of sharing incompara-
bility [10].

Based on this property, we adopt a dominating set DS(t) for a
tuple t ∈ R as a set of candidates that can affect the dominance
relationship of t in A. That is, the dominance set ensures that only
the questions Q(t) = {(s, t)|s ∈ DS(t)} are enough to generate
the dominance relationship between s and t in A.

DEFINITION 5 (DOMINATING SET) A dominating set DS(t) of a
tuple t ∈ R is a set of tuples that dominate t in AK , i.e., DS(t) =
{s ∈ R|∀s ∈ R \ {t} : s ≺AK t}.

LEMMA 1 Given t ∈ R and s /∈ DS(t), (s, t) is unnecessary in
Q(t).

PROOF. We prove this by contradiction. Assume that a question
(s, t) exists that s /∈ DS(t) dominates t in A. By Definition 5,
s /∈ DS(t) does not dominate t in AK . Because AK ⊂ A, s
cannot dominate t in A regardless of asking (s, t). That is, we do
not have to ask a question (s, t) to determine whether t is complete.
This contradicts that asking question (s, t) is necessary for t to be
complete.

EXAMPLE 3 (DOMINATING SET) Continue to use the toy dataset
in Figure 1(a). Table 1(a) illustrates dominating sets for each tu-
ple. The questions generated by dominating sets are shown in Ta-
ble 1(b). As a result, the total number of questions (i.e., 26 ques-
tions) is calculated as

∑
t∈R |DS(t)|, where |DS(t)| is the num-

ber of tuples in DS(t). 2

3.2 Pruning Questions for Non-skylines in A
While sequentially generating (s, t) such that s ∈ DS(t), t can

be determined as a complete tuple (by Definition 4). For all of
the questions, if t is preferred to s, t becomes a complete skyline
tuple. On the other hand, if t is not preferred to s for any ques-
tion, t becomes a complete non-skyline tuple and remaining ques-
tions in Q(t) can be skipped. Once s ≺A t is determined, it can
also be used for removing additional unnecessary questions for any
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Table 2: Sorted dominating sets and question sets after remov-
ing a (�), g (C), and d (�C), respectively

t DS(t)

a {b}
g {e}
d {b, e}
k {i, l}
c {a, b, e}
f {a, b, d, e}
h {b, d, e, g, i}
j {a, b, d, e, f, g, h, i}

t Q(t)

a {(a, b)}
g {(g, e)}
d {(d, b), (d, e)}
k {(k, i), (k, l)}
c {���(c, a), (c, b), (c, e)}
f {��

�(f, a), (f, b),�
��HHH(f, d), (f, e)}

h
{(h, b),��

�HHH(h, d), (h, e),
HHH(h, g), (h, i)}

j
{���(j, a), (j, b),��

�H
HH(j, d), (j, e),

(j, f),HHH(j, g), (j, h), (j, i)}

(a) Sorted dominating sets (b) Question sets

other tuple. That is, once a tuple t is determined as a complete
non-skyline tuple, we can safely skip to ask all questions for t as
unnecessary ones.

LEMMA 2 If s ≺A u and u ∈ DS(t) hold, then s ∈ DS(t) also
holds.

PROOF. By definition of DS(t), u ∈ DS(t)⇔ u ≺AK t, and
A is divided to two subsets AK and AC . When s ≺A u, there are
three cases:

1. (s ≺AK u) ∧ (s ≺AC u): since s ≺AK u and u ≺AK t
hold, s ≺AK t also holds by transitivity.

2. (s ≺AK u) ∧ (s =AC u): since s ≺AK u and u ≺AK t
hold, s ≺AK t also holds by transitivity.

3. (s =AK u) ∧ (s ≺AC u): since s =AK u and u ≺AK t
hold, s ≺AK t also holds.

In all cases, s ≺AK t always holds. By definition of DS(u),
s ∈ DS(t) also holds.

COROLLARY 1 For a tuple t ∈ R, if s ≺A u and u ∈ DS(t)
hold, asking (t, u) is unnecessary in Q(t).

PROOF When asking (s, t), there exist two possible cases:

1. s ≺AC t or s =AC t: By Lemma 2, s ∈ DT (t) holds.
Because s ≺AK t, s ≺A t holds. In that case, t becomes a
complete non-skyline tuples regardless of asking (t, u).

2. t ≺AC s: Because s ≺A u, u ⊀AC s holds. In that case,
because u ⊀AC t always holds.

In both cases, asking (t, u) is unnecessary by asking (s, t).

In order to remove unnecessary questions for non-skyline tuples
by Corollary 1, it is essential to identify complete non-skyline tu-
ples as many as possible. That is, it is optimal if Q(t) is generated
after all tuples in DS(t) become complete. Toward this goal, we
decide the ordering of evaluating tuples in an iterative manner. We
first identify SKYAK (R) as complete tuples. Then, for a tuple
t ∈ R, we generate Q(t) with the following steps: (1) If any tuple
in s ∈ DS(t) is a complete non-skyline tuple, s is removed from
DS(t); (2) If all tuples in DS(t) are complete, Q(t) is generated
from DS(t); (3) Q(t) is asked until t is determined as a complete
tuple; (4) The complete tuple set is updated by appending t. We
repeat this process until all tuples become complete.

f

b

a d c g

le i

h k

Figure 2: Preference tree T in A3 until evaluating h

We now propose an efficient method that performs the iterative
strategy. Given two tuples s and t, Q(s) has to precede Q(t) if s ∈
DS(t). It is found that this condition is always satisfied if tuples
are evaluated by the ascending order of the size of dominating sets.
That is, if s ∈ DS(t), then |DS(s)| < |DS(t)| holds, implying
that the size of the dominating set increases monotonically if the
dominance relationship between tuples holds. That is, given s, t ∈
R,Q(s) such that s ∈ DS(t) is first asked before generatingQ(t).
Formally:

LEMMA 3 Given s, t ∈ R, if |DS(t)| ≥ |DS(s)|, then t ⊀AK s
holds.

PROOF We prove this by contradiction. Assume that there are two
tuples s and t such that t ≺AK s and |DS(t)| ≥ |DS(s)|. Be-
cause t ≺AK s, two conditions hold: (1) t ∈ DS(s) and (2)
DS(t) ⊆ DS(s). By combining them, |DS(t)| < |DS(s)| holds,
which contradicts the fact that |DS(t)| ≥ |DS(s)|.

EXAMPLE 4 (SORTING DOMINATING SETS) We continue to use
the toy dataset used in Example 3. Table 2(a) shows the dominating
sets sorted by |DS(t)| in Table 1(a). According to the ordering of
tuples in Table 2(a), the questions are sequentially generated from a
to j. Assuming that {a, g, d} have been determined as non-skyline
tuples, Table 2(b) illustrates questions for each tuple. When (a, b)
is asked and a is identified as a non-skyline tuple (i.e., b ≺A a), a is
removed from DS(c), DS(f), and DS(j). Similarly, after (g, e)
is asked, if g is a non-skyline tuple, g is removed from DS(h) and
DS(j). As a result, it only generates 18 questions by pruning 8
questions, i.e., {(c, a) (f, a), (j, a)}, {(h, g), (j, g)}, and {(f, d),
(h, d), (j, d)} for a, g, and d, respectively. 2

3.3 Pruning Questions for Non-skylines in AC

When generatingQ(t) fromDS(t), we can further reduceDS(t)
to SKYAC (DS(t)). For instance, after asking {(f, b), (f, e)} for
f , f has been determined as a complete skyline tuple, i.e., f ≺AC

b and f ≺AC e. In that case, the dominance relationship for f
can be used for pruning questions for other tuples. For tuple j,
Q(j) = {(j, b), (j, e), (j, f), (j, h), (j, i)} for j is asked in Ta-
ble 2(b). Because f ≺AC {b, e}, it is better to ask (j, f) instead
of asking (j, b) and (j, e). If j ≺AC f is obtained, we can infer
j ≺AC b and j ≺AC e by transitivity. Based on this property, we
can skip two questions (j, b) and (j, e) for Q(j).

LEMMA 4 For each tuple s ∈ SKYAC (DS(t)), if t ≺AC s

holds, then t ≺AC u such that u ∈ (DS(t) − SKYAC (DS(t)))
holds.

PROOF. By Definition 3, there exists that s ∈ SKYAC (DS(t))

dominates u ∈ (DS(t) − SKYAC (DS(t))) in AC . As a result,
if ∀s ∈ SKYAC (DS(t)) : t ≺AC s holds, t ≺AC u holds by
transitivity.
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Figure 3: An anti-correlated toy dataset for the crowd-enabled
skyline query with A = {A1, A2, A3}

COROLLARY 2 Given t /∈ SKYAC (DS(u)), (t, u) is unnecessary
in Q(u).

PROOF For each s ∈ SKYAC (DS(u)), if asking (s, u), there are
two cases:

1. s ≺AC u or s =AC u : Because s ≺AK u, s ≺A u holds,
and (t, u) is not needed.

2. u ≺AC s : Because s ≺AC t, u exists that u ≺AC t by
Lemma 4.

In both cases, (t, u) is not needed by asking (s, u).

We now adopt a preference tree T that visualizes the preferences
of tuples in AC in order to compute SKYAC (DS(t)) efficiently.
Each tuple t ∈ R is represented by a node in T . If s ≺AC t holds,
an edge s → t exists. If there exists a path from s to t connected
with multiple edges, then s ≺AC t also holds by transitivity. If
s ≺�AC t, there is no edge between s and t. After asking each
question, T is iteratively updated, and is used for identifying the
dominance relationships by checking the path between tuples.

EXAMPLE 5 (USING A PREFERENCE TREE) Continuing from Ex-
ample 4, Figure 2 depicts a snapshot of T after evaluating h in A3.
After removing non-skyline tuples, DS(j) is {b, e, f, h, i}. By
checking the dominance relationships between tuples in DS(j),
f ≺AC b, f ≺AC e, and h ≺AC i can be found in T . There-
fore, SKYAC (DS(j)) is identified as {f, h}, and only Q(j) =

{(j, f), (j, h)} is asked in Table 2(b). 2

3.4 Probing Dominating Sets
In general, our pruning methods of Corollaries 1 and 2 are more

effective if: (1) many tuples are determined as complete non-skyline
tuples, and (2) many dominance relationships between tuples are
inferred in AC . However, we observe that the pruning methods
may not work well if many non-skyline tuples in AK become sky-
line tuples in A, e.g., anti-correlated distribution. Figure 3(a) il-
lustrates a dataset with 10 tuples in AK = {A1, A2}. This can
be partitioned to two subsets {b, e, i, j} and {a, c, f, d, g, h}, i.e.,
the former is skyline tuples in AK , while the latter is non-skyline
tuples in AK . When all non-skyline tuples become skyline tuples,
our pruning methods cannot contribute to reduce the dominating
sets of {a, c, f, d, g, h}. Thus, we have to ask a total of 24 (= 4×6)
questions to crowds.

t P (t) Q(t) DS(t)

a - {(a, b)} {b}
g - {(g, e)} {e}
d {(b, e)} {(d, e)} {b, e}
k {(i, l)} {(k, i)} {i, l}
c - {(c, e)} {e}
f - {(f, e)} {e}
h {(e, i)} {(h, e)} {e, i}
j {(f, h)} {(j, f)} {f, h}

h

e

b c d g

l

k

f

j

a

i

(a) Questions asked per tuple (b) T in A3

Figure 4: Overall procedure of probing dominating sets

To overcome this problem, we progressively probe DS(t) for t
to minimize SKYAC (DS(t)). Specifically, in asking questions for
{b, e, i, j}, the dominance relationship can be used for reducing the
dominance sets of {a, c, f, d, g, h}. For instance, suppose that the
dominance relationships for {b, e, i, j} in Figure 3(b) are updated
after asking {(b, e), (i, j), (e, i)}. Since e dominates {b, i, j} in
AC , each single question for each tuple in {a, c, f, d, g, h} are gen-
erated, i.e., {(e, a), (e, c), (e, f), (e, d), (e, g), (e, h)}. As a result,
our probing method for DS(t) enables us to only ask 9 (= 3 + 6)
questions.

We now discuss how to generate questions for probing DS(t).
Given DS(t), the number of possible questions is

(|DS(t)|
2

)
. Be-

cause all possible ordering in probingDS(t) is exponential and the
dominance relationships of tuples in DS(t) are unpredictable, it is
non-trivial to decide the right ordering of probing DS(t). As one
of feasible solutions, we propose a greedy method using the fre-
quency of dominating tuples. Let P (t) denote a set of all possible
questions

(|DS(t)|
2

)
for probing DS(t). For each question (u, v) in

P (t), freq(u, v) is the number of tuples that are dominated by both
u and v, i.e., freq(u, v) = |{x ∈ R|u ≺AK x∧ v ≺AK x}|. As
freq(u, v) is higher, we suppose that the pruning power of (u, v)
gets stronger. We choose the question with the highest frequency in
P (t), and remove the questions for less preferred tuples from P (t).
This process repeats until no questions exist in P (t).

EXAMPLE 6 (PROBING DOMINATING SETS) The tuples are sorted
by the size of dominating sets as shown in Table 2(a). For each tu-
ple t ∈ R, DS(t) is first pruned by using the two pruning methods
in Corollaries 1 and 2. We then probe DS(t) before generating
Q(t). Figure 4(a) shows the questions asked per tuple. Before
asking Q(d), P (d) = {(b, e)} is first probed. When e ≺AC b
has been decided, b no longer needs to be compared, and thus the
questions for b such as (c, b), (f, b), (h, b), and (j, b) can be re-
moved for c, f , h, and j, respectively. Figure 4(b) depicts a pref-
erence tree T in A3 after all tuples become complete. By probing
dominating sets, we only ask 12 questions for identifying the final
crowd-enabled skyline {b, e, i, l, k, f, h}. 2

3.5 Algorithm Description
We present the pseudocode of our proposed algorithm, named

CrowdSky (Algorithm 1). Overall, CrowdSky works as the com-
bination of machine and crowds. That is, once the machine itera-
tively updates data structures and generates new questions, crowds
return the answers. Specifically: (1) As a degenerate case, it first
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Algorithm 1: CrowdSky(R)
1 foreach (s, t) ∈ R×R do
2 if ∀Aj ∈ AK : si = ti then
3 Ask (s, t) to crowds and remove a less preferred tuple from

R

4 Initialize a preference tree T inAC

5 For each tuple t ∈ R, compute DS(t)
6 SKYA(R)← {} // Initialize a skyline in A
// P1: Early pruning for non-skylines in A

7 SortR by ascending order of |DS(t)|
8 for t ∈ R do

// P2: Pruning non-skylines in AC

9 DS(t)← SKYAC (DS(t))

// P3: Probing into DS(t)
10 P (t)← {(u, v)|u, v ∈ DS(t), u 6= v}
11 Sort P (t) by ascending order of freq(u, v)
12 for (u, v) ∈ P (t) do
13 Ask (u, v) to crowds, and update T with (u, v)
14 if u ≺AC v in T then
15 For x ∈ DS(t), remove (v, x) from P (t)
16 DS(t)← DS(t)− {v}
17 else if v ≺AC u in T then
18 For x ∈ DS(t), remove (u, x) from P (t)
19 DS(t)← DS(t)− {u}

// Generating Q(t) from DS(t)
20 Q(t)← {(s, t)|s ∈ DS(t)}
21 for (s, t) ∈ Q(t) do
22 Ask (s, t) to crowds, and update T with (s, t)
23 if s ≺AC t in T then
24 break // t is a non-skyline tuple

25 if ∀s ∈ DS(t) : s ⊀AC t then
26 SKYA(R)← SKYA(R) ∪ {t}

27 return SKYA(R)

checks tuples with the same values in AK , and prunes less pre-
ferred tuples in AC (lines 1-3). (2) It then builds dominating sets,
and sorts them by |DS(t)|, incurring O(n2) in machine part (lines
6-7). (3) For each tuple t ∈ R,DS(t) is updated by SKYAC (DS(t))
to remove non-skyline tuples (line 9). (4) It then generates all pos-
sible questions P (t) to probe DS(t) by freq(u, v) (lines 10-11).
By asking questions in P (t), T is updated. In addition DS(t) and
P (t) are updated (lines 12-19). (5) After that, Q(t) is generated
from DS(t) (lines 20-24). (6) Finally, if t is not dominated by any
other tuples in DS(t), t is appended to SKYA(R) (lines 25-26).

THEOREM 1 (COMPLETENESS OF CROWDSKY) CrowdSky guar-
antees that all tuples inR are complete.

PROOF We prove this by contradiction. Assume that t exists that
is not determined as a complete tuple. This means a question (t, u)
exists for t to be complete. Because the questions in CrowdSky
are pruned by Corollaries 1 and 2, if (t, u) is not asked, a tuple v
exists such that v ≺AC u. In that case, (t, u) is unnecessary to
check if t is complete, which is a contradiction.

As a result, if crowds always return correct answers, CrowdSky
can identity all complete skyline tuples and the result is correct.

4. REDUCING LATENCY
In this section, we discuss how to reduce the number of rounds.

Although existing work [25] addresses a parallelization method for

asking multiple questions, it is based on a different problem for en-
tity resolution, thereby being inapplicable to our problem. We de-
velop two parallelization methods that are suitable for computing a
crowdsourced skyline. Specifically, we first propose a partitioning
method using dominating sets (Section 4.1), and then improve it
using skyline layers (Section 4.2).

4.1 Parallelization with Dominating Sets
Given two questions (s, t) and (u, v), if asking (s, t) is not re-

lated to prune (u, v) and vice versa, it is said that they are indepen-
dent. Meanwhile, if (s, t) can be pruned by asking (u, v), (s, t)
is said to be dependent on (u, v). In order to remove unneces-
sary questions using our pruning methods in CrowdSky, the de-
pendency of questions can happen as follows:

1. Dominance relationship inAK (C1): Given two tuples s and
t such that s ∈ DS(t), Q(s) needs to be asked before gen-
erating Q(t) by Corollary 1 (line 7 in CrowdSky). In other
words, when s is determined as a non-skyline tuple, (s, t) is
unnecessary in Q(t).

2. Overlap between DS(s) and DS(t) (C2): We suppose that
DS(s) and DS(t) share a common tuple u. When probing
DS(s) using the third pruning methods, u can be removed
from SKYAC (DS(t)) (line 9 in CrowdSky), and (u, t) can
be unnecessary in Q(t) by Corollary 2.

3. Questions forDS(t) (C3): WhenQ(t) is sequentially gener-
ated fromDS(t), t can be a non-skyline tuple (lines 20-24 in
CrowdSky), and remaining questions in Q(t) are no longer
needed.

Based on these observations, our idea of parallelizing questions
in CrowdSky is to identify independent questions as many as pos-
sible at each round. Specifically, we first develop a partitioning
method using dominating sets. First, R is partitioned into several
subsets of tuples with the same sizes of dominating sets. Given
s, t ∈ R, if |DS(s)| = |DS(t)|, s and t cannot dominate each
other (by Lemma 3). The questions for partitioned tuple sets can
be asked together by avoiding dependent questions by (C1). We
then check if dominating sets of tuples are disjoint. In that case,
probing dominating sets can be parallelized without (C2). Lastly,
because (C3) does not make parallelized questions,Q(t) is sequen-
tially generated from DS(t).

EXAMPLE 7 (PARTITIONING METHOD) After the dominating sets
are first computed,R is partitioned into {{a, g}, {d, k}, {c}, {f},
{h}, {j}} with the same sizes of dominating sets. For each par-
titioned set, it then checks if dominating sets are disjoint. Given
{a, g} and {d, k}, because DS(a)∩DS(g) and DS(d)∩DS(k)
are disjoint as illustrated in Figure 4(a), the questions for {a, g}
and {d, k} can be asked together. For {a, g}, {(a, b), (g, e)} is
asked in a round. For {d, k}, {(b, e), (i, l)} (in P (d) and P (k))
and {(d, e), (k, i)} (in Q(d) and Q(k)) are asked in 2 rounds. Be-
cause {c, f, h, j} is partitioned separatively, 6 questions are asked
in 6 rounds. As a result, our partitioning method generates 12 ques-
tions during 9 rounds by saving 3 rounds. 2

4.2 Parallelization with Skyline Layers
Although our partitioning method reduces the number of rounds,

the degree of parallelization is rather limited by keeping all de-
pendencies of questions. To alleviate this problem, we adopt sky-
line layers that effectively visualize the dominance relationships
between tuples in AK . Figure 5 depicts skyline layers for the
toy dataset in Figure 1(a). To build skyline layers, skylines are
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Figure 5: Skyline layers for the toy dataset in Figure 1(a)

computed in an iterative manner. Initially, SL1 is computed by
SKYAK (R). Then, the i-th layer is computed by SKYAK (R −⋃i−1

j=1 SLj) in an iterative manner.

DEFINITION 6 (SKYLINE LAYER) The i-th skyline layer SLi is a
set of skyline tuples in R −

⋃i−1
j=1 SLj , i.e., SLi = {t ∈ R −⋃i−1

j=1 SLj |∀s ∈ R−
⋃i−1

j=1 SLj : s ⊀AK t}.

After building all layers, the dominance relationship of tuples in
AK is constructed. Similar to a dominating graph [27], the dom-
inance relationship can be represented by a directed edge between
two tuples across different layers. In particular, our skyline layers
permit the dominance relationship between tuples in any two lay-
ers, e.g., e → c and i → h in Figure 5. Note that the dominance
relationship via transitivity can be inferred from multiple edges.

We now explain how to make use of skyline layers to reduce
the number of rounds. Let c(t) denote a set of tuples that directly
point to t, i.e., c(t) = {s ∈ R|s → t}. For each tuple t ∈ R, we
check if all tuples in c(t) are complete. If so, the questions for t
are asked independently of those of other tuples. When all tuples
in c(t) are determined as complete tuples, it implies that all tuples
in DS(t) are also complete. Because this method can effectively
check the dominance relationships of tuples in (C1), we can signif-
icantly improve the magnitude of parallelization. Meanwhile, it is
observed that (C2) is a main bottleneck for parallelizing questions.
We thus violate the dependency of questions in (C2), by generating
additional questions for (C2). (Our empirical study shows that the
number of additional questions is negligible.)

Algorithm 2 describes the procedure of parallelizing questions
using skyline layers. Let C be a set of complete tuples in R. (1) C
is initialized as SL1 (line 4). (2) For each tuple t ∈ R, if all tuples
in c(t) are complete, the questions for t are asked in parallel. (lines
5-7). (3) After asking questions for t, SKYA(R) and C are updated
(lines 8-10). This process continues until every tuple inR has been
determined as a complete tuple. Because this method is based on
the same pruning methods used in CrowdSky, our proposed par-
allelization methods can assure the correctness of crowd-enabled
skyline computation.

EXAMPLE 8 (PARALLELIZATION WITH SKYLINE LAYERS) Given
the skyline layers in Figure 5, Table 3 depicts the procedure of
parallelization using skyline layers. First, C is initialized as SL1,
i.e., C = {b, e, i, l}. Because c(a) = {b}, c(g) = {e}, c(d) =
{b, e} and c(k) = {i, l} are all complete tuples, {(a, b), (g, e),
(b, e), (i, l)} is asked in parallel (round 1), and C = {b, e, i, l, a, g}
is updated (underlines in Table 3). After that, because c(c) =
{a, e} is complete, {(d, e), (k, i)} is asked with {(c, e)}, and C =
{b, e, i, l, a, g, d, k, c} is updated (round 2). Because c(f) = {a, d}
and c(h) = {d, g, i} are complete, the questions for f and h are
asked (rounds 3-4), and C = {b, e, i, l, a, g, d, k, c, f, h} is up-
dated. Lastly, when c(j) = {f, h} is complete, the questions for

Algorithm 2: ParallelSL(R)
1 Execute lines 1-5 in Algorithm 1
2 SKYA(R)← {} // Initialize a skyline in A
3 Compute SL1, . . . , SLk forR
4 C ← SL1 // Initialize a complete tuple set
5 for t ∈ R do in parallel
6 if c(t) ⊆ C then
7 For t, execute lines 9-24 in Algorithm 1
8 if ∀s ∈ DS(t) : s ⊀A t then
9 SKYA(R)← SKYA(R) ∪ {t}

10 C ← C ∪ {t} // Update C

11 return SKYA(R)

Table 3: Procedure of asking questions using skyline layers in
Figure 4(a)

t c(t) 1 2 3 4 5 6
a {b} (a, b)

g {e} (g, e)

d {b, e} (b, e) (d, e)

k {i, l} (i, l) (k, i)

c {a, e} (c, e)

f {a, d} (f, e)

h {d, g, i} (e, i) (h, e)

j {f, h} (f, h) (j, f)

j are asked (rounds 5-6). As a result, our parallelization method
generates 12 questions during 6 rounds. 2

5. IMPROVING ACCURACY OF ANSWERS
Because the answers of crowds are often erroneous, how to im-

prove the accuracy is a central issue in crowdsourcing. As dis-
cussed in [24, 25], it was treated as a research problem orthogonal
to the problem of minimizing the number of questions. Existing
work [6, 11, 18] developed how to improve the accuracy for each
question using query-independent methods.

As the simplest method, majority voting is used by assigning
multiple workers per question. Let ω denote the number of work-
ers per question, and p denote the probability that each worker’s
answer is correct. The probability that question (u, v) is correct
can be modeled as the binomial distribution.

P (u, v) =

ω∑
i=dω

2
e

(
ω

i

)
pi(1− p)ω−i,

where ω is an odd integer. This method can improve the accuracy
per question, but does not consider the importance of questions in
computing a skyline. This method is called static voting. (In our
experiments, ω = 5 by default.)

As the query-dependent method, we develop a heuristic method
to reflect the importance of questions. When computing the sky-
line, it is observed that the questions with many dominance rela-
tionships in AK are more influential in identifying a more accu-
rate preference tree T in AC . Based on this observation, we pro-
pose to use the frequency of questions freq(u, v) for quantifying
the importance of (u, v), i.e., freq(u, v) = |{x ∈ R|u ≺AK

x∧v ≺AK x}|. That is, as freq(u, v) gets larger, (u, v) becomes
more important. Given question (u, v), the different numbers of
workers can be assigned, depending on freq(u, v). We refer to
this method as dynamic voting. Note that the dynamic voting can
help prevent the propagation of false dominance relationships.
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Table 4: Parameter settings over synthetic datasets

parameters value default

cardinality n 2K, 4K, 6K, 8K, 10K 4K
# of known attributes |AK | 2, 3, 4, 5 4
# of crowd attributes |AC | 1, 2, 3 1

data distribution IND, ANT

For instance, based on the idea of the dynamic voting, one may
dynamically assign the number of workers using two parameters α
and β (α < β and α, β ≥ 0) as follows. Given freq(u, v), we
choose the number of workers ω′ with the following inequalities.

ω′ =

 ω − 2, if freq(u, v) < α
ω, if α ≤ freq(u, v) < β

ω + 2, if freq(u, v) ≥ β

By considering the importance of questions, our dynamic voting
can improve the accuracy of the skyline result compared to the
static voting. Note that it can be easily extended for multiple cate-
gories with three or more cases.

6. EXPERIMENTS
In this section, we first evaluate our proposed algorithm over syn-

thetic datasets with extensive parameter settings (Section 6.1). We
show the performance of our proposed algorithm in terms of three
key factors. We then evaluate our algorithm using the Amazon Me-
chanical Turk over real-life datasets (Section 6.2).

6.1 Evaluation in Synthetic Datasets
We first evaluate our proposed algorithm over synthetic datasets.

Because real-life datasets are limited for evaluating extensive set-
tings, we adopted benchmark datasets [2] that are widely used in
skyline evaluation. In particular, we used two data distributions,
independent (IND) and anti-correlated (ANT) in [2]. All attribute
values were randomly generated from real values in [0, 1]. The val-
ues on crowd attributes were only used for obtaining the answers
of crowds for simulated questions. Table 4 summarizes parameter
settings over synthetic datasets.

We validate our proposed algorithm for three key factors: mon-
etary cost, latency, and accuracy (as discussed in Section 2.1). Be-
cause the running time in crowdsourcing part is much slower than
generating questions in machine part, we focus on evaluating the
number of rounds for latency. All experiments were conducted in
Windows 7 running on Intel Core i7 950 3.07 GHz CPU with 16GB
RAM. All the algorithms were implemented in C++. The average
values of 10 runs are reported for all experiments.

Monetary cost. When the fixed amount of a reward per question is
paid, the monetary cost is proportional to the number of questions
asked to crowds. We thus use the number of questions to measure
the monetary cost. As one of the sorting algorithms, tournament
sort is used as a baseline, denoted by Baseline. When the num-
ber of rounds is not limited, tournament sort can produce the total
order of tuples with the minimum number of questions. An exist-
ing work [12] studied crowd-enabled skyline queries, but focused
on selecting the most influential unary questions for a restricted
budget. Because the optimization methods in [12] are not effective
for reducing questions in our problem setting, the direct compari-
son between CrowdSky and [12] is not fair to [12]. As such, we
simulate the unary questions in [12] for comparing the accuracy,
and mainly focus on scrutinizing CrowdSky to quantify the advan-
tage of optimization methods. Specifically, it is divided into four

phases: DSet (Section 3.1), P1 (Section 3.2), P2 (Section 3.3),
and P3 (Section 3.4).

Figures 6(a) and 7(a) depict the number of questions over vary-
ing cardinality. Note that DSet is basically used for all pruning
methods. It is clear that P1+P2+P3 minimizes the number of
questions over all parameter settings, e.g., reducing the number
of questions 10 times more than that of Baseline over indepen-
dent distribution. In particular, several interesting observations are
found in Figures 6(a) and 7(a): (1) While DSet produces fewer
questions than Baseline in independent distribution, it is reversed
in anti-correlated distribution. This is because the number of sky-
line tuples increases exponentially with the cardinality over anti-
correlated distribution. (2) Both P1 and P2 can contribute to re-
ducing unnecessary questions. Notably, P2 (using the transitiv-
ity of tuples in AC ) is fairly effective over anti-correlated distribu-
tion. (3) As expected, P3 (probing dominating sets) reduces a more
number of unnecessary questions over anti-correlated distribution.

Figures 6(b) and 7(b) report the number of questions over vary-
ing |AK |. While Baseline shows a constant performance regard-
less of |AK |, our pruning methods reduce the number of questions
as |AK | increases. This is because the size of dominating sets tends
to decrease with |AK |. We also found two key observations: (1)
P1+P2+P3 minimizes the number of questions over all parameter
settings. (2) When |AK | is low, our pruning methods significantly
reduce unnecessary questions, and are much more effective over
anti-correlated distribution than independent distribution. When
|AK | = 2, P1+P2+P3 reduces the number of questions in DSet
by two orders of magnitude.

Figures 6(c) and 7(c) report the number of questions over varying
|AC |. When |AC | > 1, suppose that all methods simply generate
|AC | questions in AC . (It is possible to use a round-robin strategy
for multiple crowd attributes to reduce unnecessary questions as
they become incomparable in AC , but it is not applied to our eval-
uation.) (1) As |AC | increases, the number of questions increases
for all methods. (2) Interestingly, when |AC | = 2, P3 becomes
marginal. As AC increases, P3 becomes less effective for gener-
ating dominance relationships in AC . This implies that probing
dominating sets mainly incurs the questions for tuples with incom-
parable relationships. In high dimensionality in AC , we have to
consider to use P3 in CrowdSky.

Latency. In order to measure latency, we used the number of
rounds in performing an algorithm. We compared the following
four algorithms: (1) Baseline is tournament sort; (2) Serial asks
a single question in a round; (3) ParallelDSet is our paralleliza-
tion algorithm using dominating sets (Section 4.1); (4) ParallelSL
is our parallelization algorithm using skyline layers (Section 4.2).

Figure 8 reports the number of rounds over varying cardinal-
ity. Note that the y-axis is log-scaled. The gap between Serial
and ParallelDSet widens by one order of magnitude as cardinality
increases. In addition, ParallelSL outperforms ParallelDSet by
two orders of magnitude, e.g., ParallelSL only needs about 20-30
rounds in both distributions. Although we did not report the num-
ber of questions for parallelization, it is found that ParallelDSet
generates the same number of questions for Serial, and ParallelSL
generates approximately 10% more questions than ParallelDSet,
by violating the dependency of questions in (C2).

Figure 9 reports the number of rounds over varying dimension-
ality |AK |. Interestingly, while Serial incurs more rounds with
higher |AK |, ParallelDSet and ParallelSL decrease the number
of rounds with |AK |. This implies that the degree of paralleliza-
tion becomes higher as |AK | increases. As consistently observed
in Figure 8, ParallelSL significantly outperforms ParallelDSet by
two orders of magnitude in both distributions.
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Figure 6: Comparisons on the number of questions over independent distribution
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Figure 7: Comparisons on the number of questions over anti-correlated distribution
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Figure 8: Comparisons on the number of rounds over varying
cardinality

Accuracy. The crowdsourced skyline is defined as SKYA(R).
To measure the accuracy of skyline results, we only use a set of
newly retrieved skyline tuples by crowdsourcing, i.e., SKYA(R)−
SKYAK (R), with two metrics, precision and recall, which are
widely used in Information Retrieval.

We first compared two assignment methods, StaticVoting and
DynamicVoting in CrowdSky (as in Section 5). By default, we
set ω = 5 and p = 0.8. While StaticVoting equally assigns ω per
question, DynamicVoting assigns ω + 2, ω, ω − 2 depending on
the frequency of questions. For fair comparisons, we assigned the
same total number of workers in both methods. The assignment of
the number of workers in DynamicVoting is tuned as: the initial
30% questions are assigned to ω + 2, and the last 30% questions
are assigned to ω − 2. This implies that the initial questions in
DynamicVoting are more important than other questions.

Figure 10 reports the accuracy of two voting methods over vary-
ing cardinality. It is clear that DynamicVoting shows higher accu-
racy than StaticVoting for both metrics. Note that DynamicVoting
improves the overall accuracy by assigning more workers to more
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Figure 9: Comparisons on the number of rounds over varying
dimensionality of known attributes

important questions and by reducing the propagation for false pos-
tives/negatives. In addition, the precision is higher than the recall
in all parameter settings. While most of the skyline tuples are de-
cided correctly, some correct skyline tuples are determined as non-
skyline tuples. This is because our methods focus on asking ques-
tions for skyline candidates and do not perform an additional vali-
dation for non-skyline tuples.

We also compared the following three algorithms: (1) Baseline
generates the total order of tuples in AK by performing the tour-
nament sort, (2) Unary generates the total order of tuples by ask-
ing unary questions (as done in [12]), and (3) CrowdSky adopts
DynamicVoting. To simulate the unary questions in [12], we ran-
domly select a value from the normal distribution of actual value
in AC . In this setting, it is found that Unary is more accurate for
obtaining the total order of tuples than Baseline, i.e., it is more
favorable for Unary.

Figure 11 reports the accuracy of comparing CrowdSky and the
two existing methods. Interestingly, even though Baseline gen-
erates more numbers of questions than CrowdSky, Baseline is
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Figure 10: Accuracy comparisons of two voting methods in
CrowdSky over independent distribution
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Figure 11: Accuracy comparisons of CrowdSky with existing
methods (i.e., Unary as in [12]) over independent distribution

worse than CrowdSky. Because more questions in Baseline in-
cur wrong answers, the total order of tuples in Baseline is less
effective for identifying a correct skyline. In contrast, CrowdSky
generates questions more selectively for skyline candidates. While
Unary is better than Baseline, it is worse than CrowdSky. Be-
cause the pruning methods in [12] do not work well in our problem
setting, Unary is less effective for identifying correct skyline tu-
ples.

6.2 Evaluation in Real-life Datasets
We used three real-life datasets to validate our proposed algo-

rithms: (1) Rectangles, adopted from [14], contains 50 images
whose sizes are {(30 + 3i) × (40 + 5i)|i ∈ [0, 50)} and are
randomly rotated. (2) IMDb Movies includes 50 popular movies
released in 2000-2012 (http://www.imdb.com/). (3) MLB
players includes 40 baseball pitchers played in 2013 (http://
espn.go.com/mlb/stats/). For these datasets, we used small-
scale datasets in order to manage the monetary cost in real-life ex-
periments, and executed the following crowd-enabled skyline queries:

Q1: Find the skyline using rectangle data with AK = {width,
height} and AC = {area}. The larger values in AK and AC

are more preferred. As the ground truth for crowd attribute area
can be obtained using width and height, the accuracy of the
crowdsourced skyline can be measured.

Q2: Find the skyline using movie data withAK = {box_office,
release_year} and AC = {rating}. The larger values in
AK and AC are more preferred. Since IMDb shows aggregated
rating scores of movies, we compare the crowdsourced skyline (us-
ing preferences culled from crowds) against the IMDb rating-based
skyline.

Q3: Find the skyline using MLB player data with AK = {wins,
strikes_outs, ERA} and AC = {valuable}. The larger
values are more preferred, except for ERA. The crowd attribute
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Figure 12: Comparisons of three queries over real-life datasets

valuable is the preference of crowds on how valuable each pitcher
is. For this query, we indirectly compare the crowdsourced skyline
against the candidates of the “Cy Young" award, given to the best
pitchers annually.

The Amazon Mechanical Turk (AMT), a well-known crowd-
sourcing platform, was used for asking questions to crowds in real-
life datasets. The budget per question was set to $0.02, and 5 work-
ers were assigned for each question, i.e., ω = 5. Let r denote
the total number of rounds, and |Qi| denote the number of ques-
tions at the i-th round. The total monetary cost is thus calculated
as: 0.02× 5×

∑r
i=1 d

|Qi|
5
e, where 5 questions are issued at each

task. To filter out spam workers, we only permitted Masters work-
ers who are qualified as the most reliable workers in AMT.

Monetary cost. Figure 12(a) compares the monetary cost between
Baseline and CrowdSky. Note that CrowdSky saves the cost
of Baseline by 3-4 times. (Because the cardinality of real-life
datasets is smaller than that of synthetic datasets, the performance
gap between Baseline and CrowdSky is reduced.) For Q1 and
Q2, while Baseline needs more than 200 questions, CrowdSky
generates about 50 questions, where most questions are used for
validating non-skyline tuples.

Latency. Figure 12(b) compares the latency of three algorithms:
Baseline, ParallelDSet, and ParallelSL. For Q1, Q2, and Q3,
the average working time per HIT was 22 secs, 49 secs, and 1
min 33 secs, respectively, implying that Q3 is the most difficult
task. While Baseline incurs more than 140 rounds over all queries,
ParallelDSet and ParallelSL only generate less than 30 rounds. In
addition, ParallelSL generates 50% less rounds than ParallelDSet,
without increasing the cost for all queries. For Q3, while Baseline
and ParallelDSet need 140 and 19 rounds, ParallelSL computes
the skyline with only 6 rounds.

Accuracy. For Q1, CrowdSky identifies the same skyline as the
ground truth, yielding Precision = 1.0 and Recall = 1.0. For Q2,
the crowdsourced skyline includes 5 movies such as {Avatar, The
Avengers, Inception, The Lord of Rings: The Fellowship of the
Ring, The Dark Knight Rises}. Except for the existing skyline
{Avatar, The Avengers} in AK , we found that the average rating
of three skyline movies is very high (i.e., 8.7 out of 10.0) in IMDb,
indicating that crowds were able to find decent skyline movies. For
Q3, the skyline includes four players such as {Clayton Kershaw,
Bartolo Colon, Yu Darvish, Max Scherzer} who were Cy Young
award candidates, representing the best pitchers, in 2013. In par-
ticular, “Clayton Kershaw” and “Max Scherzer” were the winners
of the Cy Young award in 2013. As such, we claim that the crowd-
sourced skyline be reasonably accurate. Based on the results, we
argue that CrowdSky yields high accuracy while keeping the mon-
etary cost and the latency low.
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7. RELATED WORK
Skyline queries have been actively studied for assisting multi-

criteria decision making applications. Pioneered by [2], skyline
queries are used for various data settings such as distributed and
stream environments. Tuples are represented by incomplete and
probabilistic values, and data types vary from partially-ordered and
categorical attributes. Existing work focused on developing effi-
cient skyline computation with pre-defined preferences. In con-
trast, we aimed to collect missing preferences from crowds.

In recent years, in data management community, there have been
active investigations toward crowd-enabled algorithms. Some of
recent highlights include the following data operations with crowd-
sourcing embedded: selection [6, 18, 21], max [8, 22, 23], sort-
ing [14], top-k [4], top-k set [20], join [14, 24, 25, 26], and group
by [4]. Based on these advancements, our work combines the sky-
line queries with crowdsourcing.

In particular, our crowd-enabled skyline query is related to [12],
which is the first work to address the problem of skyline queries
with a crowdsourcing idea. However, our work has clear differ-
ences from [12] as follows:

• Problem formulation: While [12] used crowds to improve the
accuracy of incomplete skyline queries, our work addressed
a complete skyline by collecting all missing preferences in
crowd attributes.

• Optimization direction: While [12] mainly aimed at maxi-
mizing the accuracy of skyline results, we considered three
factors (monetary cost, latency, and accuracy) together.

• Formats of questions: Since [12] used the quantitative ques-
tions, it is inapplicable for crowd attributes with a large range.
On the contrary, since our work is based on the qualitative
questions, it is easier for crowds to evaluate tuples in crowd
attributes without any constraints.

Because the optimization methods in [12] are not effective for
reducing questions in our problem setting, the direct comparison
between CrowdSky and [12] would have been unfair to [12]. As
such, in Section 6, we have simulated the unary questions in [12]
for comparing the accuracy in our setting, and indirectly demon-
strated the superiority of CrowdSky with a strong evidence (i.e.,
Figure 11).

8. CONCLUSIONS
In this paper, we have studied the problem of computing sky-

line queries with crowdsourcing. Specifically, we dealt with three
key factors such as monetary cost, latency, and accuracy. Our pro-
posed algorithm first aimed to minimize the number of questions
with several pruning methods on top of the notion of a dominating
set. We then developed an algorithm to minimize the number of
rounds using skyline layers. We lastly improved the accuracy of a
crowdsourced skyline using dynamic majority voting. Our exper-
imental results showed that our proposed algorithm optimizes the
three key factors effectively over synthetic and real-life datasets.
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ABSTRACT
Keyword search is the most popular querying technique on
semistructured data. Keyword queries are simple and con-
venient. However, as a consequence of their imprecision,
there is usually a huge number of candidate results of which
only very few match the user’s intent. Unfortunately, the
existing semantics for keyword queries are ad-hoc and they
generally fail to “guess” the user intent. Therefore, the qual-
ity of their answers is poor and the existing algorithms do
not scale satisfactorily.

In this paper, we introduce the novel concept of cohesive
keyword queries for tree data. Intuitively, a cohesiveness
relationship on keywords indicates that they should form a
cohesive whole in a query result. Cohesive keyword queries
allow term nesting and keyword repetition. Cohesive key-
word queries bridge the gap between flat keyword queries
and structured queries. Although more expressive, they are
as simple as flat keyword queries and not require any schema
knowledge. We provide formal semantics for cohesive key-
word queries and rank query results on the proximity of
the keyword instances. We design a stack based algorithm
which efficiently evaluates cohesive keyword queries. Our
experiments demonstrate that our approach outperforms in
quality previous filtering semantics and our algorithm scales
smoothly on queries of even 20 keywords on large datasets.

1. INTRODUCTION
Keyword search has been by far the most popular tech-

nique for retrieving data on the web. The success of keyword
search relies on two facts: First, the user does not need
to master a complex structured query language (e.g., SQL,
XQuery, SPARQL). This is particularly important since the
vast majority of people who retrieve information from the
web do not have expertise in databases. Second, the user
does not need to have knowledge of the schema of the data
sources over which the query is evaluated. In practice, in the

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

web, the user might not even be aware of the data sources
which contribute results to her query. The same keyword
query can be used to extract data from multiple data sources
which have different schemas and they possibly adopt dif-
ferent data models (e.g., relational, tree, graph, flat docu-
ments).

There is a price to pay for the simplicity, convenience and
flexibility of keyword search. Keyword queries are imprecise
in specifying the query answer. They lack expressive power
compared to structured query languages. As a consequence,
there is usually a very large number of candidate results
from which very few are relevant to the user intent. This
weakness incurs at least two major problems: (a) because of
the large number of candidate results, previous algorithms
for keyword search are of high complexity and they cannot
scale satisfactorily when the number of keywords and the
size of the input dataset increase, and (b) correctly identi-
fying the relevant results among the plethora of candidate
results, becomes a very difficult task. Indeed, it is practi-
cally impossible for a search system to“guess”the user intent
from a keyword query and the structure of the data source.

The focus of this work is on keyword search over web data
which are represented as trees. Currently, huge amounts
of data are exported and exchanged in tree-structure form
[31, 33]. Trees can conveniently represent data that are
semistructured, incomplete and irregular as is usually the
case with data on the web. Multiple approaches assign
semantics to keyword queries on data trees by exploiting
structural and semantic features of the data in order to au-
tomatically filter out irrelevant results. Examples include
Smallest LCA [18, 40, 37, 10], Exclusive LCA [16, 41, 42],
Valuable LCA [11, 20], Meaningful LCA [24, 38], MaxMatch
[28], Compact Valuable LCA [20] and Schema level SLCA
[15]. A survey of some of these approaches can be found
in [29]. Although filtering approaches are intuitively rea-
sonable, they are sufficiently ad-hoc and they are frequently
violated in practice resulting in low precision and/or recall.
A better technique is adopted by other approaches which
rank the candidate results in descending order of their esti-
mated relevance. Given that users are typically interested
in a small number of query results, some of these approaches
combine ranking with top-k algorithms for keyword search.
The ranking is performed using a scoring function and is
usually based on IR-style metrics for flat documents (e.g.,
tf*idf or PageRank) adapted to the tree-structure form of
the data [16, 11, 3, 5, 21, 10, 38, 23, 29, 32]. Nevertheless,

 

 

Series ISSN: 2367-2005 137 10.5441/002/edbt.2016.15

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2016.15


scoring functions, keyword occurrence statistics and proba-
bilistic models alone cannot capture effectively the intent of
the user. As a consequence, the produced rankings are, in
general, of low quality [38].

Our approach. In this paper, we introduce a novel ap-
proach which allows the user to specify cohesiveness rela-
tionships among keywords in a query, an option not offered
by the current keyword query languages. Cohesiveness rela-
tionships group together keywords in a query to define in-
divisible (cohesive) collections of keywords. They partially
relieve the system from guessing without affecting the user
who can naturally and effortlessly specify such relationships.

For example, consider the keyword query {XML John Smith

George Brown} to be issued against a large bibliographic
database. The user is looking for publications on XML re-
lated to the authors John Smith and George Brown. If the
user can express the fact that the instances of John and
Smith should form a unit where the instances of the other
keywords of the query George, Brown and XML cannot slip
into to separate them (that is, the instances of John and
Smith form a cohesive whole), the system would be able to
return more accurate results. For example, it will be able
to filter out publications on XML by John Brown and George

Smith. It will also filter out a publication which cites a pa-
per authored by John Davis, a report authored by George

Brown and a book on XML authored by Tom Smith. This
information is irrelevant and no one of the previous filtering
approaches (e.g., ELCA, VLCA, CVLCA, SLCA, MLCA,
MaxMach etc.) is able to automatically exclude it from the
answer of the query. Furthermore, specifying cohesiveness
relationships prevents wasting time searching for these irrel-
evant results. We specify cohesiveness relationships among
keywords by enclosing them between parentheses. For ex-
ample, the previous keyword query would be expressed as
(XML (John Smith) (George Brown)).

Note that the importance of bridging the gap between
flat keyword queries and structured queries in order to im-
prove the accuracy (and possibly the performance) of key-
word search has been recognized before for flat text docu-
ments. Google allows a user to specify, between quotes, a
phrase which has to be matched intact against the text doc-
ument. However, specifying a cohesiveness relationship on
a set of keywords is different than phrase matching over flat
text documents in IR. Indeed, a cohesiveness relationship on
a number of keywords over a data tree does not impose any
syntactic restriction (e.g., the order of the keywords) on the
instances of these keywords on the data tree. It only requires
that the instances of these keywords form a cohesive unit.
We provide formal semantics for queries with cohesiveness
relationships on tree data in Section 2.

Cohesiveness relationships can be nested. For instance the
query (XML (John Smith) (citation (George Brown))) looks
for a paper on XML by John Smith which cites a paper by
George Brown. The cohesive keyword query language conve-
niently allows also for keyword repetition. For instance, the
query (XML (John Smith) (citation (John Brown))) looks
for a paper on XML by John Smith which cites a paper by
John Brown.

Cohesive queries better express the user intent while be-
ing as simple as flat keyword queries. However, despite their
increased expressive power, they enjoy both advantages of
traditional keyword search: they do not require any previous
knowledge of a query language or of the schema of the data

sources. The users can naturally and effortlessly specify co-
hesiveness relationships when writing a query. The benefits,
though, in query answer quality and performance compared
to other flat keyword search approaches are impressive.

Contribution. The main contributions of our paper are as
follows:
• We formally introduce a novel keyword query language

which allows for cohesiveness relationships, cohesiveness
relationship nesting and keyword repetition. Our seman-
tics interpret the subtrees rooted at the LCA of the in-
stances of cohesively related keywords in the data tree
as impenetrable units where the instances of the other
keywords cannot slip in.

• We rank the results of cohesive keyword queries on tree
data based on the concept of LCA size. The LCA size
reflects the proximity of keywords in the data tree and,
similarly to keyword proximity in IR, it is used to deter-
mine the relevance of the query results.

• We design an efficient multi-stack-based algorithm which
exploits a lattice of stacks—each stack corresponding to a
different partition of the query keywords. Our algorithm
does not rely on auxiliary index structures and, there-
fore, can be exploited on datasets which have not been
preprocessed.

• We show how cohesive relationships can be leveraged to
lower the dimensionality of the lattice and dramatically
reduce its size and improve the performance of the algo-
rithm.

• We analyze our algorithm and show that for a constant
number of keywords it is linear on the size of the input
keywords’ inverted lists, i.e., to the dataset size. Our
analysis further shows that the performance of our algo-
rithm essentially depends on the maximum cardinality of
the largest cohesive term in the keyword query.

• We run extensive experiments on different real and bench-
mark datasets to assess the effectiveness of our approach
and the efficiency and scalability of our algorithm. Our
results show that our approach largely outperforms pre-
vious filtering approaches, which do not benefit from co-
hesiveness relationships, achieving in most cases perfect
precision and recall. They also show that our algorithm
scales smoothly when the number of keywords and the
size of the dataset increase achieving interactive response
times even with queries of 20 keywords having in total
several thousands of instances on large datasets.

2. DATA AND QUERY MODEL
We consider data modeled as an ordered labeled tree. Ev-

ery node has an id, a label and possibly a value. For iden-
tifying tree nodes we adopt the Dewey encoding scheme [9],
which encodes tree nodes according to a preorder traversal
of the data tree. The Dewey encoding scheme naturally ex-
presses ancestor-descendant and parent-child relationships
among tree nodes and conveniently supports the processing
of nodes in stacks [16].

A keyword k may appear in the label or in the value of a
node n in the data tree one or multiple times, in which case
we say that node n constitutes an instance of k. A node may
contain multiple distinct keywords in its value and label, in
which case it is an instance of multiple keywords.

138



bib
1

author
JohnSmith

19

13

Title
Information 
retrieval in 

tree 
structured 

data

12

article
11

references

18

Title
A novel 
search 

algorithm

15

author
Mary Davis

16 author
George 

Williams

17

article
14

article
6

Title
XML 

Keyword 

search

7

author
Paul 

Simpson

8
author
Mary 

Cooper

9

author
Mark Davis

10

Title
Keyword 
search in 

XML data

3

article
2

author
Mary Davis

5

author
Paul Cooper

4
author

Paul 

Cooper

Figure 1: Example data tree D1

2.1 Cohesive semantics
A cohesive keyword query is a keyword query, which be-

sides keywords may also contain groups of keywords called
terms. Intuitively, a term expresses a cohesiveness relation-
ship on keywords and/or terms. More formally, a cohesive
keyword query is recursively defined as follows:

Definition 1 (Cohesive keyword query). A term is
a multiset of at least two keywords and/or terms. A cohe-
sive keyword query is: (a) a set of a single keyword, or
(b) a term. Sets and multisets are delimited within a query
using parentheses.

For instance, the expression ((title XML) ((John Smith)

author)) is a keyword query. Some of its terms are T1 =

(title XML), T2 = ((John Smith) author), T3 = (John

Smith), and T3 is nested into T2.
A keyword may occur multiple times in a query. For exam-

ple, in the keyword query ((journal (Information Sys-

tems) ((Information Retrieval) Smith)) the keyword In-

formation occurs twice, once in the term (Information

Systems) and once in the term (Information Retrieval).
In the rest of the paper, we may refer to a cohesive key-

word query simply as query. The syntax of a query Q is
defined by the following grammar where the non-terminal
symbol T denotes a term, and the terminal symbol k de-
notes a keyword:

Q → (k) | T
T → (S S)
S → S S | T | k

We now move to define the semantics of cohesive keyword
queries. Keyword queries are embedded into data trees. In
order to define query answers, we need to introduce the con-
cept of query embedding. In cohesive keyword queries, m
occurrences of the same keyword in a query are embedded
to one or multiple instances of this keyword as long as these
instances collectively contain at least m times this keyword.
Cohesive keyword queries may also contain terms, which,
as mentioned before, express a cohesiveness relationship on
their keyword occurrences. In tree structured data, the key-
word instances in the data tree (which are nodes) are rep-
resented by their LCA [36, 16, 29]. The instances of the

keywords of a term in the data tree should form a cohe-
sive unit. That is, the subtree rooted at the LCA of the
instances of the keywords which are internal to the term
should be impenetrable by the instances of the keywords
which are external to the term. Therefore, if l is the LCA
of a set of instances of the keywords in a term T , i is one of
these instances and i′ is an instance of a keyword not in T ,
then lca(i′, i) = lca(i′, l) 6= l.

As an example, consider query Q1 =(XML keyword search

(Paul Cooper) (Mary Davis)) issued against the data tree
D1 of Figure 1. In Figure 1, keyword instances are shown
in bold and the instances of the keywords of a term below
the same article are encircled. The mapping that assigns
Paul to node 8, Mary and Cooper to node 9 and Davis to
node 10 is not an embedding of Q1 since Mary slips into the
encircled subtree of Paul and Cooper rooted at article node
6: the two circles of article node 6 overlap. These ideas are
formalized below.

Definition 2 (Query embedding). Let Q be a key-
word query on a data tree D. An embedding of Q to D
is a function e from every keyword occurrence in Q to an
instance of this keyword in D such that:

a. if k1, . . . , km are distinct occurrences of the same keyword
k in Q and e(k1) = . . . = e(km) = n, then node n con-
tains keyword k at least m times.

b. if k1, . . . , kn are the keyword occurrences of a term T , k is
a keyword occurrence not in T, and l = lca(e(k1), . . . , e(kn))
then: (i) e(k1) = . . . = e(kn), or (ii) lca(e(k), l) 6= l.

Given an embedding e of a query Q involving the keyword
occurrences k1, . . . , km on a data tree D, the minimum con-
necting tree (MCT) M of e on D is the minimum subtree
of D that contains the nodes e(k1), . . . , e(km). Tree M is
also called an MCT of query Q on D. The root of M is
the lowest common ancestor (LCA) of e(k1), . . . , e(km) and
defines one result of Q on D. For instance, one can see that
the article nodes 2 and 11 are results of the example query
Q1 on the example tree D1. In contrast, the article node 6
is not a result of Q1.

We use the concept of LCA size to rank the results in
a query answer. Similarly to metrics for flat documents in
information retrieval, LCA size reflects the proximity of key-
word instances in the data tree. The size of an MCT is the
number of its edges. Multiple MCTs of Q on D with dif-
ferent sizes might be rooted at the same LCA node l. The
size of l (denoted size(l)) is the minimum size of the MCTs
rooted at l.

For instance, the size of the result article node 2 of query
Q1 on the data tree D1 is 3 while that of the result article
node 11 is 6 (note that there are multiple MCTs of different
sizes rooted at node 11 in D1).

Definition 3. The answer to a cohesive keyword query
Q on a data tree D is a list [l1, . . . , ln] of the LCAs of Q on
D such that size(li) ≤ size(lj), i < j.

For example, article node 2 is ranked above article node
11 in the answer of Q1 on D1.

2.2 Result ranking using cohesive terms
The LCA size naturally reflects the overall proximity of

the query keyword instances in the subtree of a result LCA.
Every result LCA contains partial LCAs corresponding to
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Figure 2: Lattices of keyword partitions for the query (XML Query John Smith) with different cohesiveness relationships

the nested cohesive terms in the query. These partial LCAs
contribute with their size to the overall size of the LCA.
However, we would like to take also into account how com-
pactly the keyword instances are combined to form partial
LCAs for each one of the nested cohesive terms. Consider,
for instance, Figure 1 and the query Q1 =(XML keyword

search (Paul Cooper) (Mary Davis)). Article node 2 is
an LCA for Q1 and author node 4 is a partial LCA for the
cohesive term (Paul Cooper) contributing with LCA size 0
to the total size of the LCA node 2. The fact that the key-
word instances of Paul and Cooper are compactly connected
to form a partial LCA of size 0 is also important, as is that
the total size of the result is small.

To reflect the importance of intra-cohesive-term proxim-
ity, we propose a new ranking scheme which takes also into
account the cohesive terms and their sizes in a query result.
Our ranking method does not require the preprocessing of
the dataset and does not constrain the result representation
to specific index terms [4].

We represent each query result as a vector in the cohesive
term space for a given query Q. Let Q be a query with m
cohesive terms, including the outermost term, i.e., the query
itself. Each LCA lj of a data tree D with respect to Q is
represented by the following vector:

−→
lj = (C1s1,j , C2s2,j , . . . , Cmsm,j)

where Ci is the weight of the term Ti in the query Q with
respect to the dataset D and si,j is the size of the the par-
tial LCA for the term Ti within the LCA lj . Intuitively, the
parameter Ci reflects the compactness of the term Ti in the
dataset D. That is, how closely the instances of the key-
words in Ti appear in the partial LCAs for Ti in the dataset
D. Let Pi be the set of the LCAs of a term Ti in D. Then,
Ci is defined as follows:

Ci =
|Pi|

1 +
∑

p∈Pi
size(p)

The smaller the average size of the LCAs of a term in a
dataset D the more compact the term is in D. The vector−→
lj of an LCA lj is used to define the score of lj :

score(lj) = |
−→
lj |

The query results are ranked in ascending order of their
score. The weight Ci rewards results which demonstrate
small sizes for non-compact terms and penalizes results that
demonstrate large sizes for terms, which are expected to be
compact.

3. THE ALGORITHM
We designed algorithm CohesiveLCA for keyword queries

with cohesiveness relationships. Algorithm CohesiveLCA
computes the results of a cohesive keyword query and ranks
them in descending order of their LCA size. The idea behind
CohesiveLCA is that LCAs of keyword instances in a data
tree can result from combining LCAs of subsets of these in-
stances (i.e., partial LCAs of the query) in a bottom-up way
in the data tree. CohesiveLCA progressively combines par-
tial LCAs to eventually return full LCAs of instances of all
query keywords higher in the data tree. During this process,
LCAs are grouped based on the keywords contained in their
subtrees. The members of these groups are compared among
each other in terms of their size. CohesiveLCA exploits a
lattice of partitions of the query keywords.

The lattice of keyword partitions. During the execu-
tion of CohesiveLCA, multiple stacks are used. Every stack
corresponds to a partition of the keyword set of the query.
Each stack entry contains one element (partial LCA) for ev-
ery keyword subset belonging to the corresponding partition.
Stack based algorithms for processing tree structured data
push and pop stack entries during the computation accord-
ing to a preorder traversal of the data tree. Dewey codes are
exploited to index stack entries which at any point during
the execution of the algorithm correspond to a node in the
data tree. Consecutive stack entries correspond to nodes
related with parent-child relationships in the data tree.

The stacks used by algorithm CohesiveLCA are naturally
organized into a lattice, since the partitions of the keyword
set (which correspond to stacks) form a lattice. Coarser
partitions can be produced from finer ones by combining
two of their members. Partitions with the same number
of members belong to the same coarseness level of the lat-
tice. Figure 2a shows the lattice for the keyword set of the
query (XML Query John Smith). CohesiveLCA combines par-
tial LCAs following the source to sink paths in the lattice.

Reducing the dimensionality of the lattice. The lat-
tice of keyword partitions for a given query consists of all
possible partitions of query keywords. The partitions reflect
all possible ways in which query keywords can be combined
to form partial and full LCAs. Cohesiveness relationships
restrict the ways keyword instances can be combined in a
query embedding to form a query result. Keyword instances
may be combined individually with other keyword instances
to form partial or full LCAs only if they belong to the same
term: if a keyword a is “hidden” from a keyword b inside a
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term Ta, then an instance of b can only be combined with
an LCA of all the keyword instances of Ta and not indi-
vidually with an instance of a. These restrictions result in
significantly reducing the size of the lattice of the keyword
partitions as exemplified next.

Figures 2b and 2c show the lattices of the keyword parti-
tions of two queries. The queries comprise the same set of
keywords XML, Query, John and Smith but involve different
cohesive relationships. The lattice of Figure 2a is the full
lattice of 15 keyword partitions and allows every possible
combination of instances of the keywords XML, Query, John
and Smith. The query of Figure 2b imposes a cohesiveness
relationship on John and Smith. This modification renders
several partitions of the full lattice of Figure 2a meaning-
less. For instance, in Figure 2b, the partition [XJ, Q, S]

is eliminated, since an instance of XML cannot be combined
with an instance of John unless the instance of John is al-
ready combined with an instance of Smith, as is the case
in the partition [XJS, Q]. The cohesiveness relationship on
John and Smith reduces the size of the initial lattice from 15
to 7. A second cohesiveness relationship between XML and
Query further reduces the lattice to the size of 3, as shown
in Figure 2c. Note that in this case, besides partitions that
are not permitted because of the additional cohesiveness re-
lationship (e.g., [XJS, Q]), some partitions may not be pro-
ductive, which makes them useless. [XQ, J, S] is one such
partition. The only valid combination of keyword instances
that can be produced from this partition is [XQ, JS], which
is a partition that can be produced directly from the source
partition [X, Q, J, S] of the lattice. The same holds also
for the partition [X, Q, JS]. Thus, these two partitions can
be eliminated from the lattice.

Algorithm description. Algorithm CohesiveLCA ac-
cepts as input a cohesive keyword query and the inverted
lists of the query keywords and returns all LCAs which sat-
isfy the cohesiveness relationships of the query, ranked on
their LCA size.

The algorithm begins by building the lattice of stacks
needed for the cohesive keyword query processing (line 2).
This process will be explained in detail in the next para-
graph. After the lattice is constructed, an iteration over the
inverted lists (line 3) pushes all keyword instances into the
lattice in Dewey code order starting from the source stack of
the lattice, which is the only stack of coarseness level 0. For
every new instance, a round of sequential processing of all
coarseness levels is initiated (lines 6-9). At each step, entries
are pushed and popped from the stacks of the current coarse-
ness level. Each stack has multiple columns corresponding
to and named by the keyword subsets of the relevant key-
word partition. Each stack entry comprises a number of
elements one for every column of the stack. The constructor
PartialLCA produces a partial LCA element taking as pa-
rameters the Dewey code of a node, the term corresponding
to a keyword partition, the size of the partial LCA and its
provenance. Popped entries contain partial LCAs that are
propagated to the next coarseness levels. An entry popped
from the sink stack (located in the last coarseness level)
contains a full LCA and constitutes a query result. After
finishing the processing of all inverted lists, an additional
pass over all coarseness levels empties the stacks producing
the last results (line 10).

Procedure push() pushes an entry into a stack after en-
suring that the top stack entry corresponds to the parent of

the partial LCA to be pushed (lines 11-16). This process
triggers pop actions of all entries that do not correspond
to ancestors of the entry to be pushed. Procedure pop()
is where partial and full LCAs are produced (lines 17-34).
When an entry is popped, new LCAs are formed (lines 21-
28) and the parent entry of the popped entry is updated to
incorporate partial LCAs that come from the popped child
entry (lines 29-34). The construction of new partial LCAs
is performed by combining LCAs stored in the same entry.

Construction of the lattice. The key feature of Cohe-
siveLCA is the dimensionality reduction of the lattice which
is induced by the cohesiveness relationships of the input
query. This reduction, as we also show in our experimental
evaluation, has a significant impact on the efficiency of the
algorithm. Algorithm CohesiveLCA does not näıvely prune
the full lattice to produce a smaller one, but wisely con-
structs the lattice needed for the computation from smaller
component sublattices. This is exemplified in Figure 3.

Consider the data tree depicted in Figure 1 and the query

Algorithm 1: CohesiveLCA

1 CohesiveLCA(Q: cohesive keyword query, invL: inverted
lists)

2 buildLattice()
3 while currentNode ← getNextNodeFromInvertedLists()

do
4 curPLCA ← PartialLCA(currentNode.dewey,

currentNode.kw, 0, null)
5 push(initStack, curPLCA)
6 for every coarsenessLevel cL do
7 while pl ← next partial LCA of cL do
8 for every stack S of cL containing pl.term

do
9 push(S, pl)

10 emptyStacks()

11 push(S: stack, pl: partial LCA)
12 while S.dewey not ancestor of pl.node do
13 pop(S)

14 while S.dewey 6= pl.node do
15 addEmptyRow(S)

16 replaceIfSmallerWith(S.topRow, pl.term, pl.size)

17 pop(S: stack)
18 p ← S.pop()
19 if S.columns = 1 then
20 addResult(S.dewey, p[0].size)

21 if S.columns > 1 then
22 for i←0 to S.columns do
23 for j←i to S.columns do
24 if p[i] and p[j] contain sizes and

p[i].provenance ∩ p[j].provenance = ∅ then
25 t ← findTerm(p[i].term, p[j].term)
26 sz ← p[i].size+p[j].size
27 prv ← p[i].provenance ∪ p[j].provenance
28 pLCA ← PartialLCA(S.dewey, t, sz, prv)

29 if S is not empty and S.columns > 1 then
30 for i=0 to S.columns do
31 if p[i].size+1 < S.topRow[i].size then
32 S.topRow[i].size ← p[i].size+1
33 S.topRow[i].provenance ←

{lastStep(S.dewey)}

34 removeLastDeweyStep(S.dewey)
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Figure 3: Component and final lattices for the query ((XML Keyword Search) (Paul Cooper) (Mary Davis)))

((XML Keyword Search) (Paul Cooper) (Mary Davis)))

issued on this data tree. If each term is treated as a unit,
a lattice of the partitions of three items is needed for the
evaluation of the query. This is lattice (iv) of Figure 3a.
Howerver, the input of this lattice consists of combinations
of keywords and not of single keywords. These three com-
binations of keywords each defines its own lattice shown in
the left side of Figure 3a (lattices (i), (ii) and (iii)). The
lattice to be finally used by the algorithm CohesiveLCA is
produced by composing lattices (i), (ii) and (iii) with lattice
(iv) and is shown in Figure 3b. This is a lattice of only 9
nodes, whereas the full lattice for 7 keywords has 877 nodes.

Function buildLattice() constructs the lattice for evaluat-
ing a cohesive keyword query. This function calls another
function buildComponentLattice() (line 8). Function build-
ComponentLattice() (lines 18-21) is a recursive and builds
all lattices for all terms which may be arbitrarily nested.
The whole process is controlled by the controlSets variable
which stores the keyword subsets admissible by the input
cohesiveness relationships. This variable is constructed by
the procedure constructControlSet() (lines 9-17).

3.1 Algorithm analysis
Algorithm CohesiveLCA processes the inverted lists of the

keywords of a query exploiting the cohesiveness relationships
to limit the size of the lattice of stacks used. The size of a
lattice of a set of keywords with k keywords is given by
the Bell number of k, Bk, which is defined by the recursive
formula:

Bn+1 =

n∑
i=0

(
n

i

)
Bi, B0 = B1 = 1

In a cohesive query containing t terms the number of sublat-
tices is t+ 1 counting also the sublattice of the query (outer
term). The size of the sublattice of a term with cardinality
ci is Bci . A keyword instance will trigger in the worst case
an update to all the stacks of all the sublattices of the terms
in which the keyword participates. If the maximum nesting
depth of terms in the query is n and the maximum cardinal-
ity of a term or of the query itself is c, then an instance will
trigger O(nBc) stack updates. For a data tree with depth d,
every processing of a partial LCA by a stack entails in the
worst case d pops and d pushes, i.e., O(d). Every pop from
a stack with c columns implies in the worst case c(c− 1)/2

Function buildLattice
1 buildLattice(Q: query)
2 singletonTerms ← {keywords(Q)}
3 stacks.add(createSourceStack(singletonTerms))

constructControlSet(Q) for every control set cset in
controlSets with not only singleton keywords do

4 stacks.add(createSourceStack(cset))

5 for every s in stacks do
6 buildComponentLattice(s)

7 constructControlSet(qp: query subpattern)
8 c ← new Set()
9 for every singleton keyword k in s do

10 c.add(k)

11 for every subpattern sqp in s do
12 subpatternTerm ← constructControlSet(sqp)
13 c.add(subpatternTerm)

14 controlSets.add(c)
15 return newTerm(c)

16 buildComponentLattice(s: stack)
17 for every pair t1, t2 of terms in s do
18 newS ← newStack(s, t1, t2)

buildComponentLattice(newS)

combinations to produce partial LCAs and c size updates to
the parent node, i.e., O(c2). Thus, the time complexity of
CohesiveLCA is given by the formula:

O(dnc2Bc

c∑
i=1

|Si|)

where Si is the inverted list of the keyword i. The maximum
term cardinality for a query with a given number of keywords
depends on the number of query terms. It is achieved by
the query when all the terms contain one keyword and one
term with the exception of the innermost nested term which
contains two keywords. Therefore, the maximum term car-
dinality is k − t − 1 and the maximum nesting depth is t.
Thus, the complexity of CohesiveLCA is:

O(dt(k − t− 1)2Bk−t−1

k∑
i=1

|Si|)

This is a paremeterized complexity which is linear to the size
of the input (i.e.,

∑
|Si|) for a constant number of keywords

and terms.
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DBLP XMark NASA PSD Baseball

size 1.15 GB 116.5 MB 25.1 MB 683 MB 1.1 MB
maximum depth 5 11 7 6 5
# nodes 34,141,216 2,048,193 530,528 22,596,465 26,432
# keywords 3,403,570 140,425 69,481 2,886,921 1984
# distinct labels 44 77 68 70 46
# dist. label paths 196 548 110 97 46

Table 1: DBLP, XMark, NASA, PSD and Baseball dataset statistics

4. EXPERIMENTAL EVALUATION
We implemented our algorithm and we experimentally

studied: (a) the effectiveness of the CohesiveLCA seman-
tics and (b) the efficiency of the CohesiveLCA algorithm.

The experiments were conducted on a computer with a
1.6GHz dual core Intel Core i5 processor running Mac OS
10.8. The code was implemented in Java.

4.1 Datasets and queries
We used four real datasets: the bibliographic dataset

DBLP1, the astronomical dataset NASA2, the Protein Se-
quence Database (PSD) 3 and the sports statistics dataset
Baseball 4. We also used a synthetic dataset, the benchmark
auction dataset XMark5. These datasets cover different ap-
plication areas and display various characteristics. Table 1
shows their statistics.

The DBLP is the largest and XMark the deepest dataset.
For the effectiveness experiments, we used the real datasets
DBLP, PSD, NASA and Baseball. For the efficiency eval-
uation, we used the DBLP, XMark and NASA datasets in
order to test our algorithm on data with different structural
and size characteristics. The keyword inverted lists of the
parsed datasets were stored in a MySQL database.

We selected five cohesive keyword queries for each one
of the four real datasets with an intuitive meaning. The
queries display various cohesiveness patterns and involve
3-6 keywords. They are listed in Table 2. The binary rele-
vance (correctness) and graded relevance assessments of all
the LCAs were provided by five expert users. For the graded
relevance, a 4-value scale was used with 0 denoting irrele-
vance. In order to avoid the manual assessment of each LCA
in the XML tree, which is unfeasible because the LCAs are
usually numerous, we used the tree patterns that the query
instances of these LCAs define in the XML tree. These pat-
terns show how the query keyword instances are combined
under an LCA to form an MCT, and how the LCA is con-
nected to the root of the data tree. Since they are bound
by the schema of a data set they are in practice much less
numerous than the LCAs. The relevance of an LCA is the
maximum relevance of the patterns with which the query
instances of the LCA comply.

4.2 Effectiveness of cohesive semantics
In this section we evaluate the effectiveness of cohesive

semantics both as a filtering and as a ranking mechanism.

Filtering cohesive semantics. We compared the Cohe-
siveLCA semantics with the smallest LCA (SLCA) [18, 40,

1
http://www.informatik.uni-trier.de/ ley/db/

2
http://www.cs.washington.edu/research/xmldatasets/www/

repository.html
3
http://pir.georgetown.edu/

4
http://ibiblio.org/xml/books/biblegold/examples/baseball/

5
http://www.xml-benchmark.org

DBLP

QD
1 (proof (Scott theorem))

QD
2 ((IEEE transactions communications) (wireless networks))

QD
3 ((Lei Chen) (Yi Guo))

QD
4 ((Wei Wang) (Yi Chen))

QD
5 ((VLDB journal) (spatial databases))

PSD

QP
1 ((african snail) mRNA)

QP
2 ((alpha 1) (isoform 3))

QP
3 ((penton protein) (human adenovirus 5))

QP
4 (((B cell) stimulating factor) (house mouse))

QP
5 ((spectrin gene) (alpha 1))

NASA

QN
1 ((ccd photometric system) magnitudes)

QN
2 ((stars types) (spectral classification))

QN
3 ((Astronomical (Data Center)) (Wilson luminosity codes))

QN
4 ((year 1968) (Zwicky Abell clusters))

QN
5 ((title Orion Nebula) (author Parenago))

Baseball

QB
1 (Matt Williams (third base))

QB
2 (team (Johnson (first base)) (Wilson pitcher))

QB
3 (player surname (0 errors))

QB
4 (player (relief pitcher) (0 losses))

QB
5 (player (0 errors) (7 games))

Table 2: Queries for the effectiveness experiments on various
datasets

37, 10], exclusive LCA (ELCA) [16, 41, 42], valuable LCA
(VLCA) [11, 20] and meaningful LCA [24] (MLCAs) filter-
ing semantics. These are the best known filtering semantics
discussed in the literature. An LCA is an SLCA if it is not
an ancestor of another LCA in the data tree. An ELCA is
an LCA of a set of keyword instances which are not in the
subtree of any descendant LCA. An LCA is a VLCA if it is
the root of an MCT which does not contain any label twice
except when it is the label of two leaf nodes of the MCT.
The MLCA semantics requires that for any two nodes na

and nb labeled by a and b, respectively, in an MCT, no node
n′b labeled by b exists which is more closely related to na

(i.e., lca(na, n
′
b) is descendant of lca(na, nb)). SLCA and

ELCA semantics are based purely on structural character-
istics, while VLCA and MLCA take also into account the
labels of the nodes in the data tree.

Table 3 displays the number of results for each query and
approach on the DBLP, PSD, NASA and Baseball datasets.
Notice that, with the exception of SLCA and ELCA which
satisfy a containment relationship (SLCA⊆ ELCA), all other
approaches are pairwise incomparable. That is, one might
return results that the other excludes and vice versa. The
CohesiveLCA approach returns all the results that satisfy
the cohesiveness relationships in the query. Since these re-
lationships are imposed by the user, any additional result
returned by another approach is irrelevant. For instance,
for query QP

5 , only 3 results satisfy the cohesiveness rela-
tionships of the user, and therefore, SLCA, VLCA, MLCA
return at least 37 and ELCA at least 40 irrelevant results.

The CohesiveLCA semantics is a ranking semantics and
ranks the results in layers based on their size. In order to
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Figure 4: Precision and F-measure of top size Cohesive LCA, SLCA and ELCA filtering semantics

compare its effectiveness with filtering semantics we restrict
the results to the top layer (top-1-size results). Recall that
these are the results with the minimum LCA size. The com-
parison is based on the widely used precision (P), recall (R)
and F-measure= 2P×R

P+R
metrics [4]. Figure 4 depicts the

results for the five semantics on the four datasets. Since
all approaches demonstrate high recall, we only show the
precision and F-measure results in the interest of space.

The diagram of Figure 4a shows that CohesiveLCA largely

dataset query # of results

CohesiveLCA SLCA ELCA VLCA MLCA

DBLP QD
1 2 3 4 3 3

QD
2 527 981 982 981 981

QD
3 2 3 4 3 3

QD
4 11 60 61 60 60

QD
5 5 8 9 8 8

PSD QP
1 3 2 3 3 3

QP
2 14 78 79 88 85

QP
3 2 4 4 3 3

QP
4 4 7 8 6 6

QP
5 3 40 43 40 40

NASA QN
1 17 22 24 25 20

QN
2 85 90 90 118 106

QN
3 1 3 4 2 1

QN
4 6 7 8 12 12

QN
5 9 10 11 18 15

Baseball QB
1 10 5 6 1 1

QB
2 7 4 5 0 0

QB
3 216 516 522 516 516

QB
4 145 335 335 335 335

QB
5 49 177 196 177 177

Table 3: Number of results of queries on various datasets

outperforms the other approaches in all cases. Top-1-size
CohesiveLCA shows perfect precision for all queries on all
datasets. This is not surprising since, CohesiveLCA can
benefit from cohesiveness relationships specified by the user
to exclude irrelevant results. CohesiveLCA also shows per-
fect F-measure on the DBLP and Baseball datasets. Its
F-measure on the PSD and NASA datasets is lower. This is
due to the following reason: contrary to the shallow DBLP
and Baseball datasets, the PSD and NASA datasets are deep
and complex with a large amount of text in their nodes. This
complexity leads to results of various sizes for most of the
queries. Some of the relevant results are not of minimum size
and they are missed by top-1-size CohesiveLCA. Neverthe-
less, any relevant result missed by top-1-size CohesiveLCA is
retrieved by CohesiveLCA which returns all relevant results,
as one can see in Table 4.

Table 4 summarizes the precision, recall and F-measure
values of the queries on all four datasets. The table dis-
plays values for the five filtering semantics but also for the
CohesiveLCA semantics (without restricting the size of the
results). Both CohesiveLCA and top-1-size CohesiveLCA
outperform the other approaches in all three metrics. Top-1-
size CohesiveLCA demonstrates perfect precision while Co-
hesiveLCA with a slightly lower precision guarantees perfect
recall. These remarkable results on the effectiveness of our
approach are obtained thanks to the cohesiveness relation-

CohesiveLCA top-1-size SLCA ELCA VLCA MLCA

CohesiveLCA

Precision % 67.4 100 25.1 27.6 32.6 35.7

Recall % 100 96.9 88.0 93.0 95.0 95.0

F-measure % 76.8 92.8 39.8 36.8 44.4 46.8

Table 4: Average precision, recall and F-measure values over all
queries and datasets for all semantics

144



0 2,000 4,000 6,000 8,000 10,000
0

500

1,000

1,500

total number of keyword instances

ti
m
e
(m

se
c)

DBLP

XMark

Nasa

(a) 10 keywords queries

0 2,000 4,000 6,000 8,000 10,00012,00014,00016,000
0

2,000

4,000

6,000

8,000

total number of keyword instances

ti
m
e
(m

se
c)

DBLP

XMark

Nasa

(b) 15 keywords queries

0 0.5 1 1.5 2

·104

0

5,000

10,000

15,000

20,000

total number of keyword instances

ti
m
e
(m

se
c)

DBLP

XMark

Nasa

(c) 20 keywords queries

Figure 5: Performance of CohesiveLCA for queries with 10, 15 and 20 keywords varying the number of instances

ships which are provided effortlessly by the user.

Ranking cohesive semantics We evaluated our result
ranking scheme by computing the Mean Average Precision
(MAP) [4] and the Normalized Discounted Cumulative Gain
(NDCG) [4] on the queries of Table 2. MAP is the average of
the individual precision values that are obtained every time
a correct result is observed in the ranking of the query. If
a correct result is never retrieved, its contributing precision
value is 0. MAP penalizes an algorithm when correct re-
sults are missed or incorrect ones are ranked highly. Given
a specific position in the ranking of a query result set, the
Discounted Cumulative Gain (DCG) is defined as the sum
of the grades of the query results until this ranking position,
divided (discounted) by the logarithm of that position. The
DCG vector of a query is the vector of the DCG values at the
different ranking positions of the query result set. Then, the
NDCG vector is the result of normalizing this vector with
the vector of the perfect ranking (i.e., the one obtained by
the grading of the result set by the experts). NDCG pe-
nalizes an algorithm when the latter favors poorly graded
results over good ones in the ranking.

MAP (%)

DBLP PSD NASA Baseball

94 99 94 97

NDCG (%)

DBLP PSD NASA Baseball

100 99 98 100

Table 5: MAP and NDCG measurements on the four datasets
for the queries of Table 2

Table 5 shows the MAP and NDCG values of the cohe-
sive ranking on the queries of Table 2. The excellent values
of NDCG show that the ranking in ascending order of the
scores of the result LCAs (which take into account the par-
tial LCA sizes and the cohesive term weights) is very close
to the correct ranking of the results provided by the expert
users. Most MAP values are slightly inferior to 100. This
means that a small number of non-relevant LCAs are ranked
higher than some relevant. However, the high NDCG val-
ues, guarantee that these LCAs are not highly located in the
total rank.

4.3 Efficiency of the CohesiveLCA algorithm
In order to study the efficiency of our algorithm we run

experiments to measure: (a) its performance scalability on
the dataset size, (b) its performance scalability on the query
maximum term cardinality and (c) the improvement in ef-
ficiency over previous approaches. We used collections of
queries with 10, 15 and 20 keywords issued against the DBLP,
XMark and NASA datasets. For each query size, we formed
10 cohesive query patterns. Each pattern involves a different
number of terms of different cardinalities nested in various
depths. For instance, a query pattern for a 10-keyword query
is (xx((xxxx)(xxxx))). We used these patterns to generate
keyword queries on the three datasets. The keywords were
chosen randomly. In order to stress our algorithm, they
were selected among the most frequent ones. In particular,
for each pattern, we generated 10 different keyword queries
and we calculated their average evaluation time. We gener-
ated, in total, 100 queries for each dataset. For each query,
we run experiments scaling the size of each keyword inverted
list from 100 to 1000 instances with a step of 100 instances.

Performance scalability on dataset size. Figure 5 shows
how the computation time of CohesiveLCA scales when the
total size of the query keyword inverted lists grows. Each
plot corresponds to a different query size (10, 15 or 20 key-
words) and displays the performance of CohesiveLCA on the
three datasets. Each curve corresponds to a different dataset
and each point in a curve represents the average computa-
tion time of the 100 queries that conform to the 10 different
patterns of the corresponding query size. Since the keywords
are randomly selected among the most frequent ones this fig-
ure reflects the performance scalability with respect to the
dataset size.

All plots clearly show that the computation time of Co-
hesiveLCA is linear on the dataset size. This pattern is fol-
lowed, in fact, by each one of the 100 contributing queries. In
all cases, the evaluation times on the different datasets con-
firm the dependence of the algorithm’s complexity on the
maximum depth of the dataset: the evaluation on DBLP
(max depth 5) is always faster than on NASA (max depth
7) which in turn is faster than on XMark (max depth 11).

It is interesting to note that our algorithm achieves inter-
active computation times even with multiple keyword queries
and on large and complex datasets. For instance, a query
with 20 keywords and 20,000 instances needs only 20 sec
to be computed on the XMark dataset. These results are
achieved on a prototype without the optimizations of a com-
mercial keyword search system. To the best of our knowl-
edge, there is no other experimental study in the relevant
literature that considers queries of such sizes.
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Performance scalability on max term cardinality. As
we showed in the analysis of algorithm CohesiveLCA (Sec-
tion 3.1), the key factor which determines the algorithm’s
performance is the maximum term cardinality in the input
query. The maximum term cardinality determines the size of
the largest sublattice used for the construction of the lattice
ultimately used by the algorithm (see Figure 3). This de-
pendency is confirmed in the diagram of Figure 6. We used
queries of 10, 15 and 20 keywords with a total number of
6000 instances each on the DBLP dataset. The x axis shows
the maximum term cardinality of the queries. The compu-
tation time shown by the bars (left y axis) is averaged over
all the queries of a query size with the corresponding max-
imum cardinality. The curve displays the evolution of the
size of the largest sublattice as the maximum term cardinal-
ity increases. The size of the sublattice is measured by the
number of the stacks it contains (right y axis).

It is interesting to observe that the computation time de-
pends primarily on the maximum term cardinality and to
a much lesser extent on the total number of keywords. For
instance, a query of 20 keywords with maximum term car-
dinality 6 is computed much faster than a query of 10 key-
words with maximum term cardinality 7. This observation
shows that as long as the terms involved are not huge, Co-
hesiveLCA is able to efficiently compute queries with a very
large number of keywords.

Performance improvement with cohesive relation-
ships. In order to study the improvement in execution time
brought by the cohesiveness relationships to previous algo-
rithms, we compare CohesiveLCA with algorithms which
compute a superset of LCAs and rank them with respect to
their size. In these cases, since taking into account cohesive-
ness relationships filters out irrelevant results, the quality
of the answer is improved. It is not meaningful to compare
with other algorithms since their result sets are incompara-
ble to that of CohesiveLCA (no result set is inclusive of the
other) and they do not rank their results on their size. For
the experiments we used the DBLP dataset—the results on
the other datasets are similar.

There are two previous algorithms that can compute the
full set of LCAs with their sizes: algorithm LCAsz [13, 14]
and algorithm SA [17]. LCAsz is an algorithm that com-
putes all the LCAs with their sizes which, similarly to Cohe-
siveLCA, exploits a lattice of stacks. The SA algorithm [17]
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Figure 6: Performance of CohesiveLCA on queries with 6000
keyword instances for different maximum term cardinalities
on the DBLP dataset

2 3 4 5 6 7

102

103

104

number of keywords

ti
m

e
(m

se
c)

CohesiveLCA LCAsz

Figure 7: Improvement of CohesiveLCA over LCAsz varying
the number of query keywords

computes all LCAs together with a compact form of their
matching MCTs, called GDMCTs, which allows determin-
ing the size of an LCA. We implemented algorithm SAOne
[17] which is a more efficient version of SA since it computes
LCAs without explicitly enumerating all the GDMCTs.

Figure 7 compares the execution time of LCAsz and Cohe-
siveLCA in answering keyword queries on the DBLP dataset
varying the number of keywords. The execution time of
LCAsz is averaged over 10 random queries with frequent
keywords. Various cohesiveness relationships patterns were
defined for CohesiveLCA (their number depends on the total
number of keywords), and for each one of them 10 random
queries of frequent keywords were generated. The execution
time for CohesiveLCA is averaged over all the queries gen-
erated with the same number of keywords. In all cases, each
keyword inverted list was restricted to 1000 instances.

As we can see in Figure 7, CohesiveLCA outperforms
LCAsz. The improvement in performance reaches an order
of magnitude for 6 keywords and increases for 7 keywords or
more. Further, CohesiveLCA scales smoothly compared to
LCAsz since, as explained above, its performance is depen-
dent on the maximum term cardinality, as opposed to the
total number of keywords that determines the performance
of LCAsz.

Figure 8 compares the execution times of CohesiveLCA,
LCAsz and SAOne for queries of 6 keywords varying the
total number of keyword instances. The measurements are
average execution times over multiple random queries and
cohesiveness relationships patterns (for CohesiveLCA) as in
the previous experiment. As one can see, CohesiveLCA
clearly outperforms all previous approaches. LCAsz, in turn,
largely outperforms SAOne which also scales worse than the
other two

5. RELATED WORK
Keyword queries facilitate the user with the ease of freely

forming queries by using only keywords. Approaches that
evaluate keyword queries are currently very popular espe-
cially in the web where numerous sources contribute data
often with unknown structure and where end users with no
specialized skills need to find useful information. However,
the imprecision of keyword queries results often in low pre-
cision and/or recall of the search systems. Some approaches
combine structural constraints with keyword search [11].
Other approaches try to infer useful structural information
implied by keyword queries by exploiting statistical informa-
tion of the query keywords on the underlying datasets [5, 22,
38, 25, 7]. These approaches require a minimum knowledge
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proaches for queries of 6 keywords

of the dataset or a heavy dataset preprocessing in order to be
able to accurately assess candidate keyword query results. A
great amount of previous work elaborates on keyword query
evaluation on graph data (e.g., RDF databases or graphs ex-
tracted from Relational databases) [18, 12, 30, 7]. However,
the focus of this work is on tree data.

The task of locating the nodes in a data tree which most
likely match a keyword query has been extensively studied
in [11, 18, 17, 20, 27, 41, 19, 22, 10, 13, 6, 23, 26, 38,
32, 2, 14, 1]. All these approaches use LCAs of keyword
instances as a means to define query answers. The smallest
LCA (SLCA) semantics [40, 28] validates LCAs that do not
contain other descendant LCAs of the same keyword set. A
relaxation of this restriction is introduced by exclusive LCA
(ELCA) semantics [16, 41], which accepts also LCAs that
are ancestors of other LCAs, provided that they refer to a
different set of keyword instances.

In a slightly different direction, semantic approaches ac-
count also for node labels and node correlations in the data
tree. Valuable LCAs (VLCAs) [11, 20] and meaningful LCAs
[24] (MLCAs) aim at“guessing”the user intent by exploiting
the labels that appear in the paths of the subtree rooted at
an LCA. All these semantics are restrictive and depending
on the case, they may demonstrate low recall rates as shown
in [38].

The efficiency of algorithms that compute LCAs as an-
swers to keyword queries depend on the query semantics
adopted. By design they exploit the adopted filtering seman-
tics to prune irrelevant LCAs early on in the computation.
Stack based algorithms are naturally offered to process tree
data. In [16] a stack-based algorithm that processes inverted
lists of query keywords and returns ranked ELCAs was pre-
sented. This approach ranks also the query results based on
precomputed tree node scores inspired by PageRank [8] and
IR style keyword proximity in the subtrees of the ranked
ELCAs. An algorithm that computes all the LCAs ranked
on LCA size is presented in [13, 14]. In [40], two efficient
algorithms for computing SLCAs are introduced, exploiting
special structural properties of SLCAs. This approach also
introduces an extension of the basic algorithm, so that it re-
turns all LCAs by augmenting the set of already computed
SLCAs. Another algorithm for efficiently computing SLCAs
for both AND and OR keyword query semantics is devel-
oped in [37]. The Indexed Stack [41] and the Hash Count
[42] algorithms improve the efficiency of [16] in computing
ELCAs. Finally, [5, 6] elaborate on sophisticated ranking
of candidate LCAs aiming primarily on effective keyword

query answering.
Filtering semantics are often combined with (i) structural

and semantic correlations [16, 21, 10, 38, 11, 2], (ii) statis-
tical measures [16, 11, 21, 10, 22, 38] and (iii) probabilistic
models [38, 32, 23] to perform a ranking to the results set.
Nevertheless, such approaches require expensive preprocess-
ing of the dataset which makes them impractical in the cases
of fast evolving data and streaming applications.

The most well known ranking models in the literature of
IR assume term independency [4]. Extensions of the basic
ranking models such as the generalized vector model [39] and
the set based vector model [34] represent queries and doc-
uments using sets of terms. However, the ranking scheme
in these models requires preprocessing of the data collec-
tion to compute tf ∗ idf style metrics for a representative
subset of the term vocabulary. The work in [35] enhances
keyword queries with structure to extract information from
knowledge bases. However, their approach targets graph
databases with semantic information and their queries are
schema dependent. In contrast, our cohesive queries only
contain groupings of the keywords expressing cohesiveness
relationships which are not related to any schema construct.
As such, the same cohesive query can be issued against any
type of dataset (flat text documents, trees, graphs, etc.).

6. CONCLUSION
Current approaches for assigning semantics to keyword

queries on tree data cannot cope efficiently or effectively with
the large number of candidate results and produce answers
of low quality. The convenience and simplicity offered to the
user by the keyword queries cannot offset this weakness. In
this paper, we claim that the search systems cannot guess
the user intent from the query and the characteristics of the
data to produce high quality answers on any type of dataset
and we introduce a cohesive keyword query language which
allows the users to naturally and effortlessly express cohe-
siveness relationships on the query keywords. We design an
algorithm which builds a lattice of stacks to efficiently com-
pute cohesive keyword queries and rank the results lever-
aging cohesiveness relationships to reduce the lattice dimen-
sionality. A theoretical analysis and experimental evaluation
show that our approach outperforms previous approaches
in producing answers of high quality and scales smoothly
succeeding to evaluate efficiently queries with a very large
number of frequent keywords on large and complex datasets
where previous algorithms for flat keyword queries fail.

We are currently working on alternative ways for defining
semantics for cohesive keyword queries on tree data and in
particular in defining skyline semantics which considers all
the cohesive terms of a query in order to rank the query
results.
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ABSTRACT 
XML and JSON have become the default formats to exchange the 
information for web application or within enterprises. Keyword 
Search over XML data has been motivated by the need to relieve 
users from writing difficult XQueries since otherwise users are 
required to know the complex XML schema. In existing XML 
keyword search techniques the XML nodes returned for a keyword 
query are the Lowest Common Ancestor (LCA) nodes for the query 
keywords. In this paper, we argue that the LCA based techniques 
still require users to be well versed with the XML schema and also 
the data to be able to obtain meaningful query results. 

To address these shortcomings, we present a novel system, Generic 
Keyword Search (GKS), - for a given keyword query Q, instead of 
identifying (and returning information) only from LCA nodes, 
GKS returns ‘meaningful’ information from any XML node, which 
contains a subset of keywords in the search query Q. GKS response 
includes LCA nodes, if any, that would have been returned by LCA 
based techniques.  

GKS is also able to find highly relevant keywords and XML 
schema elements, deeper analytical insights - called DI - in the 
XML data in the context of the user query. DI enables users to 
navigate the XML data and to refine their queries even if they are 
not familiar with the data and the schema. Our experiments on real 
data sets show that GKS is able to return highly relevant responses 
to keyword queries efficiently. 

1. INTRODUCTION 
Semi-structured data, e.g. XML and JSON, are default formats to 
represent and exchange data within and across enterprises and web 
[18]. XML data is represented as a labeled, ordered tree T as shown 
in Figure 1(i). The nodes in T are either XML schema elements or 
text nodes. In response to a given keyword query, XML keyword 
search systems return one or more nodes in T, each of which is a 
Lowest Common Ancestor (LCA) node for all the query keywords 
in the XML data tree T [2][5][6][16][17][4]. For instance, in Figure 
1, node x2 is the LCA node for query Q1. We refer to XML keyword 
search technique that return LCA nodes in the XML tree, in 
response to a given keyword query, as LCA based techniques. LCA 
based techniques follow the AND-semantics, i.e., each LCA node 
contains at least one instance of each query keyword [4].  

1.1  Motivation 
For a given keyword query Q={k1,..kn} (|Q|=n), instead of 
identifying LCA nodes and returning information only from these 
nodes, Generic Keyword Search (GKS) returns any node in the 
labeled tree T, if it contains s or more keywords in the search query 
Q (s≤n). More formally, the GKS problem is defined as follows: 
For a keyword query Q, an integer s ≥ 1, search returns all the XML 
nodes which contain at least min(s, |Q|), keywords from Q. The set 
of XML nodes returned by GKS in response to query Q is denoted 
by RQ (s). |RQ (s1)| ≤ |RQ (s2)| if s1 > s2 (cf. Section 2.2). 

There are many notions of LCA nodes in the literature but SLCA 
(Smallest LCA) [13] and ELCA (Exclusive LCA) [17], are most 
widely used. An SLCA node contains all the query keywords in its 
sub-tree and there is no node in its sub-tree which contains all the 
keywords. An ELCA set of nodes is a superset of the SLCA nodes. 
In Figure 1, for query Q1, node x1 is an ELCA node but not an 
SLCA node due to the presence of x2 in its sub-tree. In the figure, 
ki is an instance of keyword k (e.g. ais are instances of a). For 
different notions of LCA nodes, progressively faster algorithms 
have been proposed to retrieve them [16].  The nodes in GKS 
response set follow the semantics of SLCA.  

As pointed out by the authors of [19] “LCA based techniques work 
poorly for documents having irregular schema that have missing 
elements” because the schema allows certain XML nodes to be 
optional. Further noting that if a document is not complete, the 
resulting output could be different from the intended output. 
Authors of [19] develop an alternate approach whose basic premise 
is: for a given keyword search query, specific XML node types are 
targeted [15][19]. However, if the document has “missing XML 
elements”, nodes other than targeted nodes could also be returned 
due to the constraint on LCA based techniques (only LCA nodes 
are returned for the keyword query). Clearly, the motivation for 
[19] highlights that for LCA based techniques a) users need to be 
aware of the schema (i.e., users need to be aware which XML nodes 
to target); b) query keywords must be chosen by taking into account 
the semantic relationship between them (query must be formed 
such that the target nodes could be returned); and c) users need to 
be aware of the keywords in the XML document(s) and their 
distribution in XML tree T (otherwise nodes other than targeted 
nodes could become LCA nodes). In other words, in order to be 
able to effectively search the data using LCA based techniques, 
users have to be well acquainted with the data and the schema. 

AND-semantics constraints underlying LCA based techniques are 
further highlighted by the following example:  

Example 1: Consider keyword queries Q1, Q2, Q3, on the XML 
document in Figure 1(i). Each leaf node in the XML document is a 
text node (text node is an XML element directly containing its 
value). We have represented the document as shown in Figure 1(i) 
for brevity. Response of SLCA and ELCA based algorithms are 
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shown in Table 1. For query Q3, even though the user is able to 
select all the keywords present in the document, the response of 
LCA algorithms is root {r}. ‘r’ is not a meaningful response as it is 
available to the user even in the absence of any query. 

 

Figure 1. Labeled XML data tree and a set of queries.  

Table 1. Nodes returned for different queries on labeled XML 
tree by different keyword search algorithms 

Queries GKS (ranked)  ELCA SLCA 
Q1,s=|Q1| {x2} {x1, x2} {x2} 

Q2, s=2 {x2}, {x3} NULL NULL 

Q3, s=2 {x2,}, {x3}, {x4} {r} {r} 

Therefore, to construct meaningful queries, users need to know the 
keywords distribution in the document. To know the keyword 
distribution, it is imperative to know the semantic relationship 
between query keywords. In order to be aware of the semantic 
relationship between the query keywords, users must know the 
schema of the XML repository. Users must also know the schema 
to form the query such that targeted XML nodes are returned. 

MESSIAH [19] addresses the issues arising due to the AND-
semantics of LCA based techniques. Its authors propose an efficient 
FSLCA algorithm to identify intended nodes, in case of missing 
XML elements in the data. MESSIAH addresses the missing 
element problem, if the data is ‘imperfect’. However, the issues of 
‘missing data elements’ is still not handled in [19] if the user query 
is ‘imperfect’. For instance, if a query keyword occurs in the wrong 
sub-tree, it is difficult to determine the intended return nodes. 
Hence, for a keyword query, possibly containing semantically 
uncorrelated keywords, nodes other than targeted nodes will be 
returned by [19] even if the missing XML elements are identified. 

Consider the following scenario: User starts with query Q2 and Q3 
(shown in Figure 1). GKS returns a set of XML nodes to the user, 
as shown in Table 1, which contain a significant fraction of the 
query keywords but not necessarily all the query keywords (s=2). 
Besides returning these nodes, let us say, GKS system also suggests 
to the user that query Q2 can be morphed to {a, b, c} or {a, b, d} 
from {a, b, e} The user may not be aware of the existence of the 
keywords {‘c’, ‘d’} or their relevance in the context of the query. 
Similarly, for Q3, the system suggests that query be partitioned into 
{a, b, c} and {a, b, d}. Such refinements of the user queries are 
non-trivial. Overall, we are motivated by the following goals 1) to 
relax the need for users to know the XML data precisely; this 
enables them to browse the XML data in a manner similar to web 
search; 2) to relax the need for users to know the XML schema as 
user queries can be refined progressively (as for query Q3).   

1.2 Generic Keyword Search 
In this paper, we introduce a novel concept of Generic Keyword 
Search (GKS) over XML data to address the shortcomings listed 
above. It enables the users to navigate XML data with ease, as 
demonstrated with the help of an example on real data below run 
on the implemented GKS system [20]: 

Example 2: We have a DBLP dataset with more than 2.5 million 
articles. A query Qd = {"Peter Buneman" "Wenfei Fan" 

"Scott Weinstein" "Prithviraj Banerjee"} is run on this 
dataset. The user is most likely interested in articles jointly written 
by these authors. In its response, a total of 234 articles (for s=1) are 
found by GKS, i.e., GKS return all the articles by any of the authors 
in the keyword query since s=1.  

Since the response of GKS contains a large number of XML nodes  
(i.e., <inproceedings>), with different XML nodes in the response 
containing different number of authors, the results are ranked such 
that the more relevant XML nodes are ranked higher (cf. Section 
5). For query Qd, the <inproceedings> nodes with higher number 
of query keywords (i.e., author names) in their sub-tree are likely 
to be ranked higher. We use just <ip> for <inproceedings> later on. 

In the DBLP dataset, there is no article jointly written by 
Prithviraj Banerjee with any of the remaining authors. Of the 
five articles jointly written by the remaining three authors in DBLP 
dataset, 4 were returned as top 4 results in the ranked list of XML 
nodes by GKS. The remaining article was also in top 10 (it was 
ranked lower due to many co-authors, details Section 5). In the 
context of this example, we now explain how GKS overcomes the 
shortcomings of the LCA based techniques:  

GKS relaxes the need for users’ familiarity with the contents: 
For the given query, an LCA based technique would have returned 
{DBLP root}, containing millions of articles as the response due 
to the presence of one “wrong” keyword ‘Prithviraj 
Banerjee’ in the query. On the other hand, GKS produced a more 
“meaningful” response in the presence of “wrong” query 
keyword(s). This helps the users as follows;  

 a) With GKS, users can navigate the XML data without complete 
awareness with underlying data (for LCA based techniques, users 
need to know, which authors have published articles together). 
GKS returns a ranked list of most relevant XML nodes, in the 
context of the query, considerably enhancing the users’ ability to 
search the data with high precision and recall. 

 b)  More importantly, even when users are able to formulate the 
query precisely, there is a lot of information which could be of their 
interest, which are not returned by LCA based techniques due to 
the constraint that only LCA nodes must be returned. For instance, 
in Example 2, the articles by a large enough subset of authors in the 
query Qd could also be of interest to the user in the context of the 
query. Exposing such results in the data helps users navigate the 
data as well as to refine their queries (cf. Section 6.1). 

GKS relaxes the need for users’ familiarity with the schema: 
GKS identifies the XML nodes, which are not necessarily LCA 
nodes but that could be of interest to the user in the context of the 
query. This ability of GKS can be exploited to discover most 
relevant keywords and their semantics in the underlying XML data, 
in the context of the user query. This information is called deeper 
analytical insights or DI. For the query in Example 2, GKS exposes 
<ip: journal: SIGMOD Record>, <ip: year: 2001>, <ip: author: Alok 
N Choudhary> and <ip: booktitle: ICPP>, etc., as DI from the 
XML data in the context of the query (GKS returns a well-
constructed XML chunk. Truncated representation is due to lack of 
space). DI exposes the most relevant journals, year and authors in 
the query response. The user may not be aware of these keywords 
or their relevance in the context of the query. 

DI is defined formally in Section 2.3 (Def. 2.3.1). Discovery of DI 
(Section 6) enhances the users’ ability to navigate the data even if 
they are unaware of the schema details and the semantic 
relationship between the various data keywords.  To discover DI, 
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we exploit the XML schema, embedded in the structure of the XML 
data, in the context of a user query. A novel node categorization 
model is proposed that identifies certain XML node types as Least 
Common Entity nodes or LCE nodes (cf. Section 2.2). LCE nodes 
are central to our methodology to discover DI. A subset of XML 

nodes )(sRE QQ  in GKS response for query Q can be Least 

Common Entity (LCE) nodes; 0≤|EQ|≤|RQ(s)|. For an XML node u 
containing a sub-set of query keywords (of size ≥ s) in its sub-tree, 
its corresponding LCE node will be either u itself or its ancestor.  

In Example 2, <ip> node is an LCE node. GKS exposes the 
semantics of the DI keywords, i.e., 2001 is a <year> with the aid of 
XML elements on the path from the root of LCE node <ip> till the 
keyword “2001”. Semantics are important as in a different context, 
2001 could be a street number. Query keywords, either XML 
element names or text keywords, may carry different meaning in 
different context [9]. Exposing the relevant keywords and their 
semantic meaning helps users refine their queries in the absence of 
knowledge about the schema and the data.  

GKS returns meaningful response: The meaningfulness of the 
results of a search query is defined by their recall and precision. In 
LCA based search, a keyword query typically targets XML nodes 
belonging to specific schema elements E in the associated XML 
schema [19].  <E>E is an XML schema element. The target 
nodes are the LCA nodes of the query keywords. If the returned 
LCA nodes are of targeted schema element type(s), it constitutes a 
meaningful response. For the query Qd in Example 2, the 
meaningful LCA nodes for this query are all of type <ip> in the 
corresponding XML schema. 

However, due to imperfect data with missing XML elements or due 
to imperfect query, LCA based techniques often return LCA nodes 
other than the target XML elements type [19]. For instance, for 
query Qd, LCA based techniques will return the DBLP root. A more 
meaningful response is a ranked list of articles, jointly written by a 
sub-set of authors in the query, i.e., returning nodes of same type, 
which were targeted. For GKS system, all the XML nodes that 
contain any subset of keywords in a query (of size ≥ s) are returned. 
Therefore, recall of GKS is likely to be high since GKS query 
response is likely to have XML nodes which are instances of target 
XML schema element in E for a user query Q (any XML node 
containing s ≤|Q| keywords in its sub-tree is returned).  

In the context of a keyword query, the relevance of a XML node is 
high if it contains a large fraction of query keywords. The precision 
of the GKS system will be high if the most relevant XML nodes in 
the GKS query response are ranked higher. We present a novel 
ranking methodology (Section 4) to ensure high precision.  

1.3 Research Challenges and Contributions 
Similar to a web search engine, Generic Keyword Search has the 
twin objectives of: a) locating the most relevant XML nodes for the 
given keyword query efficiently; and b) ordering the search results 
to rank more meaningful results higher. 

GKS has three primary challenges; 1) Efficiency –GKS has much 
larger search space as opposed to LCA based techniques (Lemma 
3). Therefore, a major challenge for GKS is to be able to retrieve 
the relevant nodes efficiently (Section 4); 2) Ranking – Number of 
XML nodes retrieved by GKS could be large and the structure of 
the different XML nodes in the search results could be different. 
Therefore, it is imperative to rank the nodes such that more 
meaningful and relevant nodes are ranked higher (Section 5); 3) 
Analysis - GKS aims to enable the users to refine their queries 
without needing them to be familiar with schema and data. GKS 

meets this challenge by exposing relevant keywords in the data and 
their semantics in the context of the user query (Section 6). 

In this paper, we make the following contributions:  

1. Existing XML Keyword Search techniques work within LCA 
framework. We introduce Generic Keyword Search (GKS) 
that enables XML search beyond LCA framework. 

2. We propose a XML node categorization model. With the aid 
of this model, we expose most relevant XML elements and 
data keywords, called DI, in the context of a given keyword 
query. Users can refine their query with the aid of DI. DI is 
discovered because GKS does not impose the LCA constraint. 

3. We introduce a ranking methodology to rank more meaningful 
XML nodes, retrieved by GKS, higher. Node ranking is 
further exploited for DI discovery. 

4. We present an evaluation of GKS system on real data sets. Our 
results show that GKS is able to return highly relevant 
response for the given keyword queries efficiently. We further 
show that our system is able to find highly relevant DI that 
enables the users to navigate the XML data seamlessly. 

The organization of the paper is as follows. Section 2 introduces 
the GKS node categorization model along with the definitions of 
LCE nodes, DI and the GKS indexing structure. Related work is 
presented in Section 3. Our methodology to identify the relevant 
XML nodes efficiently is the subject of Section 4. In Section 5, we 
present a novel XML node ranking methodology. In Section 6, we 
discuss our mechanism to discover DI. In Section 7, we present 
experimental results followed by conclusion in Section 8. 

2. XML NODE CATEGORIZATION AND 
DEFINITIONS 
In this section, we first present a novel XML node categorization 
model. The XML node categorization helps us exploit the XML 
schema, embedded in the XML data, to identify relevant data 
keywords and XML schema elements in the context of a user query. 
We also present the definitions of LCE nodes and DI, GKS system 
architecture and the indexes maintained by GKS. 

2.1 Preliminaries  
An XML document is a rooted tree T as shown in Figure 2(a). 
Nodes in the tree are labeled with Dewey id [1]. Dewey id is a 
unique id assigned to a node that describes its position in the tree 
T. A node with Dewey id 0.2.3 is the fourth child of its parent node 

0.2. nid represents an XML node with Dewey id id. uv a denotes 

that node v is an ancestor of node u. uv a denote that uv a  or 

v=u. U represent a set of XML nodes (or keywords) in XML tree 
T. Uv lca denotes that v is the lowest common ancestor of nodes 

in set U. For a text keyword or XML node k, k v denotes that k 
occurs in the sub-tree rooted at XML node v and k v denotes that 
k does not occur in v’s sub-tree. u* denote that one or more siblings 
of node u exist in tree T with same XML element label. uv e

denotes that v is an entity node w.r.t. u (Def. 2.1.3) and u v or 
v=u. uv lce denotes that XML node v is the lowest common entity 

node (LCE) w.r.t. node u (Def. 2.2.1) and u v or v=u. 

2.2 Node Definitions 
We divide the XML nodes in the following categories, based on the 
structure of their sub-trees in T. 

2.1.1. Attribute Node (AN): A node which contains only one child 
that is its value. For instance, in Figure 2(a) node <Name> (n0.1.0) 
is an attribute node. Attribute nodes are also represented as ‘text 
nodes’ in XML data. The parent node of an attribute node is 
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considered the lowest ancestor for keyword(s) in its value (and not 
the attribute node itself). Thus, ancestor of ‘Databases’ is node n0.1. 

2.1.2. Repeating Node (RN): Let *uv lca , i.e., v is the lowest 

common ancestor of multiple instances of node u. u is called the 
repeating node w.r.t. node v. For instance, in Figure 2(a), nodes 
with label <Student> are repeating nodes w.r.t. <Students>. The 
repeating nodes most likely correspond to a physical world object 
which could be a concrete or an abstract object [3]. A node that 
directly contains its value and also has siblings with the same XML 
tag is considered a repeating node (and not an attribute node), i.e., 
<Student> nodes in Figure 2(a). 

2.1.3. Entity Node (EN): Let v be an XML node in XML tree T 

such that ** ,|),( uaAaAuv lca  . v is an entity node. A is a 

set of attribute nodes. An attribute node a A does not occur in any 
repeating node u, i.e., a does not have u in its XPath from root.  

An entity node v is a lowest common ancestor of repeating nodes u 
and one or more attribute nodes (|A|≥1). In Figure 2(a) <Area> (n0.1) 
is an entity node; it is the lowest common ancestor of attribute node 
<Name> (n0.1.0) and repeating nodes <Course> (n0.1.1.x). <Course> 
nodes are not the direct children of n0.1 (Attribute nodes and 
Repeating nodes can be indirect children of entity node). Similarly, 
<Course> nodes (n0.1.1.0, n0.1.1.1, n0.1.1.2, ..) are the entity nodes.  

2.1.4. Connecting Node (CN): Nodes which are in none of the 

above categories. In Figure 2(a), <Courses> (n0.1.1) is a connecting 
node.  

Table 2: Notation 

XML documents follow pre-order arrival of nodes. Hence, different 
node types are identified in a single pass over the data. GKS does 
not need the XML schema in order to categorize nodes. XML nodes 
are categorized at the instance level. This information is stored in 
an index (Section 2.4). Hence, each node is categorized based on 
the structure of its sub-tree. For example, all the instances of 
<Course> node in Figure 2(a) are entity nodes (Def. 2.1.3). 
However, if a <Course> node had just one student in its sub-tree, 
that instance would have been stored as ‘Connecting node’ in the 
index. GKS can be easily extended to take into account the XML 
schema to categorize the nodes. This is part of our future work.  

The node categories described above extend the node 
categorization model in [3]. It is argued in [3] that in the 
hierarchical structure of XML data, repeating nodes (Def. 2.1.2) 
capture the concept of physical world object. The physical object 
could be a concrete or an abstract object. In normalized XML data, 
attributes of an XML node that contains repeating nodes in its sub-
tree, represent the information that is common to these repeating 
nodes [14]. The fundamental design principle underlying the 
normalized XML schema is, the attribute nodes of an XML node 
define the context of the repeating nodes in its sub-tree through 
their values. In GKS node categorization model, such XML nodes 
are termed entity nodes (Def. 2.1.3). As shown in the experiment in 
Section 7.2, we count the total number of XML nodes and XML 

nodes that were labeled as entity nodes, attribute nodes and 
repeating nodes, respectively by GKS for many standard XML data 
repositories. The result shows that the real world data repositories 
are normalized. The note categories described above naturally 
capture the normalized XML data. 

A node can be an entity node and at the same time a repeating node 
for another entity node higher up in the hierarchy. For instance, in 
Figure 2(a), <Course> nodes are both entity nodes as well as 
repeating node within the sub-tree of node <Area> (n0.1). Let Q be 

a keyword query, |Q|>s, and QQ ' ; |Q’|≥s. Let LCA node u for 

Q’ is not an entity node and v is the lowest ancestor of node u such 
that uv e . Hence, node u can either be a connecting node or a 

repeating node w.r.t. v. Since u does not have the attribute nodes, 
as it is not an entity node, the context of the node u is most 
specifically defined by the attribute nodes of node v. In Figure 2(a), 
attribute <Course: Name: Data Mining> defines the context that 
<student> nodes in its sub-tree are registered in this course. 

For a given keyword query, the closer the entity node is to the query 
keywords in its sub-tree, the more specific the context would be for 
those keywords. As we move up in the hierarchy, the context of the 
corresponding sub-tree becomes more general. In Figure 2(a), 
<Dept> node and <Course> node both are entity nodes and both 
contain the query keywords for a query Q= {‘Karen, ‘Mike’}. 
However, the context of entity node <Dept> is much more general 
compared to more specific context of the node <Course>. Hence, 
to find the more meaningful response for a given query, we 
discover the entity node closest to the query keywords or Least 
Common Entity (LCE). LCE is formally defined below. 

Let Sc be a set of all the entity nodes in the sub-tree rooted at an 

entity node ec, i.e., cac Seee ; . Let Q be a keyword query, 

Q={k1,..kn}.  

Def 2.2.1 LCE Nodes: An entity node ec is an LCE node for query 

Q if ekSeekQk cc  ,| .  

Hence, for an entity node ec to be LCE node for a given query Q, 
there exists at least one keyword k Q in the sub-tree of ec, which 

is not contained in any other entity node e such that ee ac  .  

Keyword k is called an independent witness for LCE node ec. 
Similar to an SLCA node, an LCE node also needs at least one 
independent witness. 
 

 

Lemma 1: Let uv a denote a relationship that uv a or v=u. Let 

u be an XML node that is an LCA node for a set of keywords 

QQs  , |Qs|≥|s. Let v be an LCE node for keywords in Qs. uv a  

Proof: Obvious.            □ 

s Minimum number of keywords from a query that must 
appear in the sub-tree of a XML node. 

RQ(s) Set of XML nodes for a given s, returned by GKS in 
response of query Q 

R(e) For an LCE node eRQ(s), R(e) is a subset of text 
keywords, extracted from attribute nodes of e.  

Sw
Q Weighted set of text keywords, identified from the LCE 

nodes in set RQ(s). 

r
QR  Set of XML nodes, after recursively applying the GKS 

algorithm r times over the query results RQ(s).  
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For a given user query Q, GKS returns a set of XML nodes RQ (s) 
such that for each node u RQ (s), u contains at least s keywords 
from query Q. 

Lemma 2: For a keyword query Q and integers s1 and s2, |Q|≥s1>s2, 
|RQ (s1)| ≤ |RQ (s2)|. 

Proof: Since s1>s2, uvsRusRv aQQ |)(),( 21  . However, 

)( 2sRu Q there can be at most one )( 1sRv Q | .uv lce Thus, 

for )(, 1sRvv Q there exist a corresponding node in RQ (s2) but 

vice versa is not true. Thus, |RQ (s1)| ≤ |RQ (s2)|.                             □ 

Example 3: Let there be a user query Q4={student, karen, mike, 
john, harry}, s=2. The intent of the query is to find the information 
about these students. For the data shown in Figure 2(a), 3 courses 
contain the names of at least one of these students. The GKS 
response constitutes the XML nodes as shown in Figure 2 (b). The 
XML nodes are LCE nodes since they are the lowest entity nodes, 
w.r.t. query keywords. Attribute nodes of respective entity nodes 
exposes the context, i.e., name of the respective courses students 
are enrolled in. The XML nodes are ranked (cf. Section 5).  

As one can see, the user query in Example 3 is ‘imperfect’. To 
construct a ‘perfect’ query, for a LCA based technique, user needs 
to be aware which students are enrolled in same courses. User still 
has to run multiple queries to get the complete response. GKS 
returns the relevant and meaningful information in the context of 
this ‘imperfect’ query. We further enhance a user’s capability to 
refine an ‘imperfect’ query by exposing the deeper analytical 
insights in the query response as explained in the next section.  

2.3 Deeper Analytical Insights (DI) 
For the query in Example 3, let’s say user runs a ‘perfect’ query 
Q5={student, karen, mike, john}. The response of a LCA based 
technique [2][5] will be XML sub-tree rooted at node n0.1.1.0.1 
<Students> node. Even though the query is perfect, the response 
still does not yield any meaningful information. On the other hand, 
GKS response is node n0.1.1.0 for s=|Q| (n0.1.1.0 is an LCE node for 
Q5) with the aid of its node categorization model. Thus, GKS 
response exposes the information that the students are registered in 
‘Data Mining’ course. This information, <Couse: Name: ‘Data 
Mining’>, is called deeper analytical insights or DI. DI enables 
users to navigate the XML data by exposing relevant schema and 
the data elements that help users not only understand the query 
response but also help refine their queries. 

 

 

 

 

 

 

Figure 2(b). Response of the GKS System for Q4 
To discover DI, for a user query Q and s, GKS prepares a set of 
keywords Sw

Q from nodes in set RQ (s) as follows: For each node u 
  RQ(s), if u is an LCE node, GKS extracts the text keywords from 
its attribute nodes and put them in set Sw

Q. For instance, for the 
query in Example 3, entity nodes n0.1.1.0, n0.1.1.1 and n0.1.1.2 are the 
LCE nodes in the set RQ (s) (Figure 2(b)). Each of the entity nodes 
has an attribute node <Name: Data Mining>, <Name: AI> and 
<Name: Algorithms>. The set Sw

Q will contain keywords {“Data 
Mining”, “AI”, “Algorithm”}. R(e) represents the set of attribute 

nodes in the sub-tree of entity node e (see Table 2). Given a query 
response RQ(s), we prepare a set of keywords Sw

Q ={k1…kn} 
containing the text keywords embedded in the attribute nodes for 
each of the entity nodes in RQ(s).   

Def 2.3.1 DI: Let EQ RQ(s) be the set of all LCE nodes in GKS 

response for keyword query Q and let Sw
Q = QEeeR |)( .

w
QSDI  | QkDIk  ; .   

For a keyword k in DI, let e be its corresponding LCE node. For the 
keyword k, we also associate the XML elements in the path from 
node e till keyword k. The keywords and the associated XML 
elements with each keyword together form the DI.  

DI can also be discovered recursively for a user query as described 
below. We use only set RQ(s) and not EQ since context is clear. 

i) GKS parses the LCE nodes in set RQ(s), for a given keyword 
query Q and prepares a weighted set of keywords Sw

Q by identifying 
a subset of text keywords in each of the LCE nodes (Section 6.2).  

ii) Top-m most weighted keywords in the set Sw
Q  are fed to GKS as 

a query. GKS identifies a set of XML nodes w.r.t. these keywords 

from set Sw
Q. This set of XML nodes is denoted as )(1 sRQ . Set 

0 QR (0
w
QS )  is denoted by just RQ (s) (Sw

Q). 

The above steps can be applied recursively -- )(sRr Q represents 

the set of LCE nodes after rth recursion.  

iii) GKS prepares the set of keywordsr
w
QS from the nodes in

)(sRr Q . DIr  is extracted fromr
w
QS ; r ≥ 0.  

DI can be discovered recursively for a user query Q by extracting a 
ranked list of most relevant keywords and their semantics from 

i
w
QS at each step i of recursion.  In summary, DI is discovered 1) 

with the aid of GKS node categorization model; and 2) because 
GKS does not impose the LCA constraints and thus retrieves all the 
relevant XML nodes in the query context. These XML nodes help 
discover meaningful DI.  

2.4 GKS Architecture and Indexes  
In Figure 3, we depict the architecture of GKS. The GKS takes as 
input XML data and prepares an index on it. The XML data could 
be spread over multiple files. For a user query Q, GKS produces a) 
ranked search results on the data; b) deeper analytical insights (DI) 
by analyzing search results. GKS contains three modules; i) 
Indexing Engine; ii) Search Engine; iii) Search Analysis Engine. 

 

Figure 3. Architectural of the GKS System 

For a given XML data repository, we first prepare an index on it. 
This is a onetime activity. We keep the following indexes: 

Inverted Index for text keywords: For each unique text keyword 
that appears in the XML document repository, we keep an inverted 
index list. If text appearing under a ‘text node’ comprises multiple 
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keywords, a separate index entry is created for each of the 
keywords after stop words removal and stemming. A partial 
inverted index for document in Figure 2(a) is shown in Table 3. The 
inverted index list for a keyword ki contains the Dewey id of all the 
nodes which contain that keyword. Dewey id for each node has 
been appended with the document id ‘did’. Thus, GKS search is 
seamlessly expanded over multiple documents by prefixing Dewey 
ids with corresponding document id. For a keyword ki present in 
the XML document repository, Si denotes its inverted index list. 

Hash tables: We keep two hash tables corresponding to XML 
elements. Hash table 1, called ‘entityHash’, keeps the Dewey id of 
entity nodes. Hash table 2, called ‘elementHash’, keeps the Dewey 
ids of repeating nodes and connecting nodes. Both hash tables also 
store the number of direct children each node has. This information 
is used while computing the rank of a node (Section 5). If a XML 
element is both a ‘repeating node’ and an ‘entity node’, its entry is 
present in both the hash tables.  

Since XML nodes arrive pre-order (an ancestor of an XML node 
always appears before it), the hash tables and the inverted index are 
created in a single pass over XML data. 

Table 3. Partial inverted index for XML document in Fig 2(a). 

 We provide two functions: i) isEntity (Deweyid); ii) isElement 
(DeweyId). Both the functions return the number of direct children 
the given node has if true, null otherwise. 

3. EXISTING WORK in the GKS CONTEXT 
A large body of work exists to understand the user's intent for a 
keyword query over XML data. The work related to GKS can be 
divided into 3 categories: 1) Identifying meaningful return nodes 
for a keyword query, 2) Result type deduction techniques and 3) 
Ranking the XML nodes retrieved in response to a user query.  

Identifying meaningful return nodes: Users present their 
keyword query and the underlying algorithm interprets the user’s 
intent and tries to identify the return nodes accordingly [2][3] 
[5][6]. The existing approaches for identifying most relevant return 
nodes are based on first discovering SLCA nodes [13]. Different 
heuristics are applied on the set of SLCA nodes to identify 
meaningful return nodes. In XSeek [3], authors propose a technique 
that first finds the SLCA nodes for a given keyword query. The 
keywords in the query are understood as the 'where' clause whereas 
'return' nodes are inferred based on the semantics of ‘query 
keywords'. MaxMatch [11] and RTF [12] are SLCA based 
approaches to identify meaningful return nodes. In [11], irrelevant’ 
match results are filtered from each SLCA node. In [12], authors 
propose an improved algorithm to address redundancy and false 
positive problems of [11]. In all the approaches above, a set of 
SLCA nodes is identified for given keyword query. In [10] authors 
address the problem due to imprecise XPath queries. 

Deducing result types: Deducing return node types is also an 
important goal for GKS since for most keyword queries, users 
target certain node types. However, due to lack of knowledge about 
the distribution of keywords in the document, different semantic 
meaning of same keywords or due to lack of familiarity with the 
document schema, the query may not by semantically ‘perfect’. In 
[15][19], it is assumed that the keyword query is semantically 
correct and certain node types are the target nodes for a given query. 
XReal [9] and XBridge [4] address the problem of deducing the 
return nodes types. In [9] the authors count the confidence level to 
deduce the result node types. In [4] authors highlight the fact that 
keywords may exist in different context. XBridge automatically 

predicts the intended result types for XML keyword queries by 
considering the value and structural distributions of the data. The 
more generic solution to this problem is to enable users to further 
refine their queries. GKS approach is a step in that direction.  

Ranking the XML nodes: The XML ranking techniques are 
divided into IR [9][8] based methods and relevance score based 
[15][7] methods. XRank [7], XSEarch [8] are techniques to rank 
the keyword query search results based on LCA nodes. XRank 
takes into account the keyword proximity in the XML nodes 
whereas XSEarch computes the node rank based on TF-IDF based 
method. The basic differences between these methods and GKS 
technique is: In existing XML ranking methods, each of the XML 
nodes that is ranked contain a fixed set of all query keywords. XML 
nodes in GKS response contain varying number of query keywords. 
We have outlined the issue arising due to this difference in Section 
5 when we present GKS ranking methodology.  

4. SEARCHING GKS NODES 
The basic difference between the LCA based search and GKS- 
Search is: GKS has exponential search space compared to LCA 

based techniques. For query Q (|Q|=n), a total of ( 
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sub-sets, of size at least s, can be formed; s ≤ n. To identify GKS 
nodes, a naïve approach would be to create all the keyword subsets 
(of size ≥ s) for query Q, and for each of these keyword subsets, 
identify the LCA nodes. Together, all the LCA nodes thus 
discovered can be used to produce the GKS response. However, 
this approach results in an exponential number of sub-queries. 

Lemma 3: For a given query Q, |Q|=n,  2/ns  ; GKS has 

exponential search space w.r.t. an LCA based techniques. 

Proof: For a given query Q, |Q|=n, a total of U = 
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2 U 12  n . Therefore, an exponential 

number of sub-sets are formed when  2/ns   with each sub-set 

leads to one keyword query for an LCA based techniques.           □ 

Lemma 3 shows GKS has exponential search space w..r.t. LCA 
based techniques.  Further, the naïve approach does not discover 
the LCE nodes, in absence of GKS node categorization model, 
which allow GKS to expose DI in the context of the user query. 
Hence, LCA techniques cannot be applied as is for GKS-Search. In 
this section, we present an efficient method to find relevant XML 
nodes for GKS-Search. We call them GKS nodes. A subset of GKS 
nodes can be LCE nodes. We also present the correctness analysis 
and time complexity analysis of our method.   

4.1 Efficient Method to Search GKS nodes 
For the query keywords Qki  , we first merge their respective 

inverted index lists such that in the merged list, keywords follow 
their arrival order in the XML document. Since the Dewey ids of 
the XML nodes follow pre-order traversal, if the merged list is 
sorted on Dewey ids, we achieve such ordering. Let d be the depth 
of the XML tree T being queried.  Depth of the tree T is defined as 

Karen did.0.1.1.0.1.0 did.0.1.1.2.1.0 …… 

Mike did.0.1.1.0.2.0 did.0.1.1.2.2.0 ….. 
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the number of edges from the root of the tree to its deepest leaf. Let 
|Q|=n, i.e., n lists are merged. Let |Si| be the inverted index length 

for keyword Qki  . Let SL be the merged and sorted list. |SL| ≤ 




n

i

iS

1

|| . The time complexity to merge k sorted lists, of total 

length l, into a single sorted list in O(l.logk). Since the inverted 
index list for each keyword is sorted on its Dewey id, therefore the 
n lists are merged in a single sorted list SL in O(d|SL|log n).     

 
Figure 4. List of longest common prefixes for Dewey id blocks 

of size s=2 

Generating list of candidate GKS Nodes: Our next objective is 
to generate the list of candidate GKS nodes that have Qs Q 

keywords appearing in their subtree such that |Qs|≥s. Towards that 
end, in the merged list SL, longest common prefix is identified for a 
continuous block of s entries, as shown in Figure 4 (in Figure 4, 
s=2). We traverse the list SL from left to right. Since the list SL is 
sorted, the Dewey ids of the nodes in a common sub-tree occur next 
to each other, with an ancestor node preceding its descendent. 
Therefore, in SL, the longest common prefix of a block of s nodes 
will be the Dewey id of the common ancestor for the nodes in this 
block. There will be at most (|SL| – s) such prefixes. 

The prefixes are put in Longest Common Prefix (LCP) list as shown 
in Figure 4. With each prefix entry in LCP list, we associate a 
counter which is initialized to 1. If a prefix exists in the LCP list 
(i.e., more than s query keywords exist in its sub-tree), its counter 
is increased by 1. Since the block of s entries in the list SL slides to 
the right by 1 at a time, the counter can increase by only 1 at a time. 

 

Figure 5. Traversal of list SL 

The objective of GKS is to collect s unique keywords from query 
Q in the sub-tree of a GKS node. However, it is possible that not all 
s keywords in the continuous block of length s are unique. 
Therefore, we first collect a block such that there exist s unique 
keywords in it, as shown in Figure 5. For a block of length s, let l 
and r represent the left and right end of the block respectively. 
Function sU (l, r, s) returns true if there are s unique keywords in 
the range of l to r (with the aid of hash tables, Section 2.4). Until 
sU(.) is true, we just move r to the right, keeping l fixed. When 
sU(.) is true, range l and r represent a block containing s unique 
keywords. Once the correct block is found, the longest common 
prefix of the block is added to the LCP list.  

We generate the list of LCE nodes from LCP list. For each of the 
entries in LCP list, we check the entityHash, prepared at the time 
of parsing XML document repository. For each entry in the LCP 
list, we check if it is an entity node or any of its ancestors is an 
entity node (using Dewey id we can get the Dewey ids of all if its 
ancestors). If the node (or any of its ancestors) is found to be entity 
node, we add the corresponding Dewey id into a LCE node list. We 
also maintain a ‘Ranking array’ which has an entry corresponding 
to each GKS node. Each entry in the ranking array maintains two 
scores as shown in Figure 4. One is the number of keywords kiQ 
appearing in GKS node sub-tree and the other is its ranking score 
(computation of the ranking score is described in Section 5). The 
number of query keywords in the GKS sub-tree is (s+counter-1). 

Algorithm GKSNodes (Set Q) //Q contains query keywords 

      Merge the sorted inverted index list Si  for kiQ into list SL 
      //Find Longest Common Prefix (LCP) list 
      l=0; r=s-1; 
     Traverse SL from left to right 
           while (!sU (l, r, s)) r++; //Identify block of s unique entries 
           Find longest common prefix (LCP) of s unique entries; 
           Add LCP to LCP list; 
           if (sU (l, r, s)) r++; l++; 
      for each entry en in LCP list //Find LCE node list from LCP list 
           ec = null; 
           if ( isEntity (en) > 0)  
                Add en to LCE node list; ec = en; Remove en from LCP list; 

           else if (any ancestor na ee   & isEntity(e) & e LCE node list) 

                Add e to LCE node list; ec=e; Remove en from LCP list; 
           if (ec != null) 

                for ( ca ee  ) 

                     if (isEntity(e) > 0 & e  LCE node list) 
         Update LCE node (e); 
      Rank nodes in LCE/LCP node lists;  
      return ranked LCE/LCP lists; 

 

Figure 6: GKS algorithm for finding XML nodes 

Example 4: In Figure 4, did.0.1 is the longest common prefix (LCP) 
of block of first s nodes. Its entry is created in the LCP list with 
counter set to 1. In Figure 4, node did.0.1 is found to be entity node. 
An entry for it is created in LCE node list with keyword counter set 
to (s+counter-1=2). Similarly, the next entry in LCP list did.0.1.1.0 
is initiated with counter set to 1. While checking its ancestors, node 
did.0.1 is found to be an entity node. Since did.0.1 already exist in 
the LCE node list, its entry (i.e., number of keywords in its sub-
tree) is updated to 3 (since node did.0.1.1.0 appears in its sub-tree). 
Finally, the keyword count of node did.0.1 is incremented to 4 and 
for node did.0.1.1.0 to 3 (due to next keyword with Dewey id 
did.0.1.1.0.4). Once the LCE nodes list is computed along with the 
number of keywords in its sub-tree, we compute a ranking score ri 
for each LCE node, as explained in Section 5. It is also possible that 
for some node in LCP list, no corresponding LCE node is found.  

4.2 Correctness and Time Complexity 
In this section, we present the analysis of our method and prove the 
correctness of our methodology to discover the LCE nodes.  

For LCE node e, there must exist at least one keyword kQ that is 
not contained in any other entity node within its sub-tree (Def. 
2.2.1). k is called the independent witness of node e. Correctness is 
defined as discovering LCE nodes according to Def. 2.2.1. We now 
prove the correctness of our methodology to discover LCE nodes. 
To discover LCE nodes, LCP list is traversed from left to right. Let 
left and right pointers l and r of the current block under 
consideration are at position p1 and p2 respectively in list SL when 
entity node e is first time being added to the LCE list. 

Counter 

did, 1 
did.0.1.1.0, 2 

did.0.1.1.0.3, did.0.1.1.0.4, did.1.0.1, 

Ranking  Array 

Merged Dewey id list: SL 

LCE nodes List 

did.0.1.0.0, 

did.0.1, 1 

Longest Common Prefix (LCP) list 

did.0.1 did.0.1.1.0 did.1.0 

4, r1 2, r3 3, r2 

did.0.1.1.0.2, 

did.1.0, 1 

s 

s l r 
while (!sU (l, r, s)), shift r to right by 1  

if (sU (l, r, s)), shift l, r to right by 1 
l r 

List SL 

did.1.0.2 
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Lemma 4: For entity node e, just being added to the LCE list, only 
Dewey id of the keyword at position p1 or at position p2 can be the 
smallest Dewey id which is independent witness for node e.  

Proof: Omitted.            □ 

Let k be the independent witness for node e with smallest Dewey 
id. We associate the Deweyid of keyword, k, with node e. Let en be 
the LCE node added immediately after node e in the LCE list. If

na ee   and ke an  , the entity node e is removed from the LCE 

list. The reason is: k is the earliest keyword in document order 
which was an independent witness for node e at the time of its 
addition to LCE list. Since k itself appears in the sub-tree of its 
descendent entity node en, e is left with no independent witness and 
hence removed from the LCE list. Note, e can come back in LCE 
list if any other keyword is found to be an independent witness for 
it later in list SL. Any entity node e that survives has at least one 
independent witness. In Figure 4, entry did.0.1 survives in LCE 
node list at the time of addition of did.0.1.1.0 since it has an 

independent witness. If any entity node e, na ee  , of a newly added 

entity node en remained in the LCE list, we update its ranking array.  

Lemma 5: For each LCE node e that survives in LCE node list, 
there exists a keyword k that is an independent witness of e. 

Claim 1: Let e be a lowest common entity node for a block of s 
keywords. We claim that at least one of the keywords in the block 
is an independent witness for node e.  

Proof: Proof is by contradiction. Suppose no keyword in the block 
of s keywords is an independent witness for LCE node e. Hence 
there must exist another LCE node in the sub-tree of e, which 
contains all the keywords from the block.  Hence node e is not the 
lowest common entity node, contradicting the initial assumption. □ 

Claim 2: Any ancestor entity node e, of entity node en, which is not 
already present in the LCE node list at the time of addition of node 
en in the LCE list, is not the LCE node. 

Proof: As entity node e, na ee   , is not in LCE list, therefore it 

has no independent witness keyword at the time of addition of en. 
Since en is the lowest entity node for the current block of keywords, 
e cannot be an LCE node.               □ 

Thus, LCE node e that survives in LCE node list, there exists a 
keyword that is an independent witness. When the traversal of LCP 
list is complete, LCE list contains only true LCE nodes (Def. 2.2.1).  

Time complexity to generate the longest common prefix list is 
O(d.|SL|) due to Lemma 6 below (the worst case time complexity 
could be s.d.|SL| where s is a small constant). Since the Dewey ids 
are sorted, we just need to find the longest common prefix of first 
and last Dewey id in the block of s Dewey ids. There are O(|SL|) 
entries in longest common prefix list and depth of the document is 
d. Hence, time complexity to generate LCE nodes list is O(d.|SL|). 

Lemma 6: For lexically sorted block of s strings, the common 
prefix of first and last string is the longest common prefix for the 
strings in the block.             □ 

As the time complexity to generate merged Dewey id list is 
O(d.|SL|.log n), total time complexity to generate LCE node list, 
along with its ranking score list is O(d.|SL|.(log n)). Therefore, we 
efficiently identify LCE nodes in a single pass.  

For the LCA based search, the time complexity of the state of the 
art algorithm to find LCA nodes for query Q, |Q|=n, is 
O(d.n.|Smin|.log|Smax|) where |Smin|(|Smax|) is the length of the 
shortest (longest) inverted index list consisting the DeweyId of the 
keyword in query Q [6][16]. We see that the time complexity of our 
algorithm to find the GKS nodes is only marginally worse than the 

time complexity to find LCA nodes, even though the search space 
for GKS is exponential compared to LCA nodes.  

Nodes in Longest Common Prefix (LCP) list contain at least s 
keywords in their sub-tree. For each node u in LCP list we keep a 

mapping with its associated LCE node v in LCE list, uv a .  There 

may exist some nodes in LCP list such that no corresponding entity 
node is found for them due to the structure of the XML data.  

The XML nodes in LCE list along with those nodes in LCP list for 
which no corresponding LCE node exist together constitute the 
GKS response RQ(s). These nodes are ranked with the aid of 
ranking function presented in the next section.  

5. RANKING 
Node ranks help GKS construct a more meaningful response. 
Number of GKS nodes can be large and the response may comprise 
a variety of XML node types. The relevance of these nodes varies 
in the context of a given query. For LCA based techniques, each 
LCA node is the common ancestor of all the keywords in query Q.  

Due to the basic differences between GKS and LCA based search, 
existing ranking algorithms [8][15] are insufficient for GKS. 
Existing ranking methods work by using aggregated statistical 
information for entire XML repository. For a fixed set of keywords, 
nodes are ranked based on statistical relevance of a query keyword 
in the context of a given XML node. For GKS, any node containing 
a subset of keywords belonging to query (of size ≥ s) is the node of 
our interest. Further, GKS response may contain a variety of 
differently structured XML nodes. Therefore, any statistical 
method is insufficient to compare the relevance of one XML node 
w.r.t. other due to the structural difference in their sub-trees.  

Therefore, we introduce a novel ranking function that computes the 
rank of each XML node in RQ (s) for query Q based on i) the number 
of keywords from Q appearing in its sub-tree; and ii) the structure 
of the sub-tree rooted at that node.  

5.1 Ranking Methodology 
We use a potential flow model to compute the rank of the XML 
nodes in RQ(s). Potential of a node is like the amount of water 
present in a reservoir which flows in a network of pipes coming out 
from it. The potential flow model automatically incorporates the 
structure of the sub-tree rooted at an XML node. 

We assign an initial potential, P|e to each node e )(sRQ . P|e, for 

node e is equal to the number of unique query keywords kQs,

QQs  , present in its sub-tree.  

P|e=|Qs|; QQs  ; Q={k1,…,kn} 

P|e just accounts for the presence of a keyword kQ in the sub-
tree of node e. If the keyword k is present multiple times in node e, 
only its highest occurrence in its sub-tree is considered. This 
highest occurrence of a query keyword in the sub-tree is termed 
terminal point. If a keyword k is present multiple times at the 
highest level, each of its occurrences is considered a terminal point. 
For example, if a keyword kQ  is a repeating XML element name 
in the sub-tree of an LCE node, each of its occurrence will be 
considered as a terminal point (assuming that is the highest level at 
which keyword k occurs). Hence, for a user query Q={k1… kn}, each 
candidate XML node has a starting potential. As shown in Figure 
7, for node e1, the highest occurrence of keywords k1, k2, k3 are 
terminal points.  

The rank of a node e QR  is computed as follows: The potential of 

a node e is equally divided into each of its child nodes. For a node 
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e with potential (P|e), with m children, each of its child nodes will 
receive (P|e)/m potential, where m is the number of direct child the 
node e has. The rank of the node is sum of the total potential 
received by each of the terminal points.  

Let i→k denotes the relationship that node i is parent of node k. The 
rank of an entity node e is computed as follows: 

ki
m

p
Rank

Qk i

i
e 



|  

where k is a terminal point in the sub-tree of node e, pi is the 
potential received by its parent node i and mi is the total number of 
direct children node i has. The potential received at terminal points 
depends on the structure of the sub-tree rooted at the XML nodes. 

Intuitively, it implies that the number of distinct query keywords in 
its sub-tree and the structure of its sub-tree determine the rank of 
an XML node. Each LCE node is ranked independently, 
irrespective of its relative depth w.r.t. document root. 

 

Figure 7. LCE nodes containing keywords in set RQ(s) 

Example 5: We illustrate the computation of XML nodes rank with 
the example XML document shown in Figure 1. For query Q3= {a, 
b, c, d}, GKS returned 3 XML nodes x2, x3 and x4. The initial 
potential of node x2 is P|x2=3. The rank of node x2 is the potential 
received by the terminal nodes in its sub-tree, i.e., nodes a2, b1, c1. 

The rank of node x2 = 
Qk

n
xP 2|

= 3
3

33  . Similarly, for 

node x3, the initial potential P|x3 is 3. The three terminal nodes are 
nodes a3, b3, d3. Each of the three children of node x3 received 1/3rd 
of the initial potential. The potential received by x4 is further 
divided equally into its two children. Therefore, the total potential 
received by the terminal nodes, i.e., the rank of node x3 is, 

5.2
2

1
3

3
3

32  . Similarly, the rank of node x4 is 2. Hence, 

GKS ranking methodology ranks the nodes as x2> x3>x4.  

6. SEARCH RESULTS ANALYSIS 
GKS enables the users to refine their queries. The user query Q can 
be refined by either removing or adding the most relevant keywords 
to Q, in the context of the query. We now describe how GKS aids 
the users to refine their query by analyzing the search response.  

6.1 Query Refinement  
Let us consider the Example 1. For query Q3 = {a, b, c, d}, the 
response of GKS comprised nodes, x2, x3 and x4. GKS ranks the 
nodes such that most relevant nodes are ranked higher. The two top 
ranked nodes are x2 containing keywords {a, b, c} followed by x3 
containing keywords {a, b, d}. With this information, the user is 
exposed to the fact that there is no XML node that contains all the 
query keywords and that the distribution of the query keywords in 
the document is as shown in the query results. With this insight, 
users can refine their queries. In the example above, user can refine 
the query Q3 to {a. b, c} or {a, b, d} given the GKS response. 

Therefore, for a user query Q, the query can be refined seamlessly 
to one or more sub-queries Qrs with the aid of the GKS results. As 
one can see, for LCA based techniques [2][5][17], such refinement 
of the query Q is non-trivial as multiple sub-queries of Q needs to 
be run to collect the complete response.   

6.2 DI-Discovery from the LCE Nodes 
GKS enables the discovery of DI from the XML data in the context 
of the user query which can be used to refine the user query.  For a 
given query, the attribute nodes of a LCE node expose the context 
for the keywords appearing in its sub-tree and are regarded as the 
relevant DI (Def 2.3.1).  

A natural way to discover DI is by identifying top-m most popular 
attribute keywords in the LCE nodes present in the query response, 
i.e., identifying keywords that appear in maximum number of 
attribute nodes (m is tunable). At the same time, the DI must be 
relevant for most of the query keywords. However, these two goals 
may translate into two different set of top DI keywords. In response 
of the query in Example 2 (Section 1.2), the most popular keyword 
is found to be <booktitle: ICPP>. However, the keyword became 
most popular due to presence of keyword ‘Prithviraj Banerjee’. He 
is the only author who had published articles in this journal but total 
number of articles by him alone in this journal made it the most 
popular keyword in the query response. However, this keyword is 
not relevant for majority of the other query keywords. The keyword 
<journal: SIGMOD Record> is relevant for the largest sub-set of 
the query keywords (for remaining three authors) but it is not the 
most popular. Therefore, to identify most relevant keywords in the 
context of a query, we adopt the following approach.  

Rank of a LCE node is the function of number of query keywords 
present in its sub-tree. Each attribute node is assigned a weight 
equal to the rank of its LCE node. Therefore, each keyword in set 
Sw

Q is assigned its attribute weight and we prepare a weighted set 

Sw
Q. Let )(sRE QQ  be a set of all the entity nodes in RQ (s). 

})(;|:{ )( QkeattrkEeRankwwkS QeRk e
w
Q     

Each element of set Sw
Q is a tuple k: w, where k is the attribute 

keyword. k is assigned a weight that is sum of the rank of all the 
LCE nodes in set EQ that contain k. The top-m most weighted 
keywords constitute DI. If a keyword in the attribute node is part of 
the user query Q, it is not included in the set Sw

Q. We identify top-
m elements in set Sw

Q, total time complexity to identify DI is O(|Sw
Q 

|+ m.log| Sw
Q|) = O(|Sw

Q |) as |Sw
Q|>>m. Since |Sw

Q|=O(|RQ (s)|) and 
|RQ (s)|≤SL, the time complexity to identify DI is better by a factor 
of O(log|Q|) compared to the time complexity to identify LCE 
nodes and DI discovery does not constraint the system. In Example 
2, DI contained <year: 2001>, <booktitle: ICPP>, <author: Alok N 
Choudhary>, etc., as top DI keywords. Recursive DI can be 
discovered by preparing a keyword query using the text keywords 
identified from Sw

Q. The recursive DI may reveal deeper insights. 

Therefore, a user query Q can be refined seamlessly to Qr with the 
aid of DI. We see that with the aid of response produced by GKS 
and with the aid of DI, user queries can be refined by adding or 
removing the keywords from the initial keyword query.   

7. EXPERIMENTS 
We have built a prototype of GKS [20]. Observations in this section 
are based on experiments using this prototype over the XML data 
sets shown in Table 4 [21]. Shakespeare’s plays are distributed over 
multiple files. The experiments were carried out on a Core2 Duo 
2.1GHz, 4GB RAM machine running Windows 7 and Java. These 
data sets are used in many prior works [3][11][13][19]. The size of 
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Protein Sequence dataset is comparable to the biggest dataset used 
in a recent work [19]. Our DBLP dataset size is 100% bigger.  

Our experiments are designed to assess 1) Performance of GKS; 2) 
Appropriateness of the node categorization model given the real 
world XML repositories; 3) Effectiveness of GKS in finding the 
relevant results for keyword queries and to rank them; 4) Ability of 
GKS in finding the relevant DI; 5) User feedback. 

7.1 Performance of GKS 

7.1.1 Size of Index 
Creating the index is a onetime activity.  The size of index and the 
time taken to prepare them are presented in Table 4. Our technique 
is highly scalable as index preparation time increases linearly with 
the data size. The number of entity nodes for different datasets 
varied from 535 for Mondial to 2.62M for DBLP.  

Table 4. Index Size and Index Preparation Time 

Data Set Data Set 
Size 

Index 
Size 

XML 
Depth 

Index 
Preparation Time 

SIGMOD Records 483KB 416KB 6 0.15s 

Mondial 1.7MB 1.45MB 5 0.28s 

Plays 1.8MB 1.6MB 5 0.29s 

TreeBank 82MB 79MB 36 19.3s 

SwissProt 112MB 101MB 8 21.3s 

Protein Sequence 683MB 612MB 7 108s 

DBLP 1.45GB 1.13GB 6 238s 

7.1.2 Response Time 
In this experiment, we assess the response time (RT) of GKS for 
given user queries. We also validate GKS time complexity analysis 
to discover the XML nodes for the given queries. We give RT 
results for two datasets: i) NASA dataset containing astronomy  
data  (24MB)  and  ii)  SwissProt  dataset containing protein 
sequence data (112MB). In our first experiment, the number of 
keywords for each query (n) was fixed at 8. However, the size of 
the merged Dewey id list (SL) varied for each query. The average 
keyword depth d for the NASA dataset varied from 6.7-6.9 and 
from 3.1–3.5 for SwissProt dataset. Results are presented in Figure 
8. As shown in Section 4.2, for given d and n, the RT increases 
linearly with SL. Response time varies from 21.5ms to 139ms for 
different queries. Hence, the RT of GKS is only a few tens of ms, 
similar to LCA based algorithms on similar data. 

 
 Figure 8. Response Time Vs. Merged List Size 

In Figure 9, we plot the RT for queries by varying the number of 
query response keywords n from 2 to 16. The query response time 
validates our analysis (cf. Section 4.2). The list size |SL| for query 
on SwissProt dataset with n=16 was 102,233. In Figure 9, for the 
NASA dataset, when n is increased from 8 to 16 for a query, the 
increase in RT was less than twice, as the length of the list |SL| 
increased only marginally and the change in RT is logarithmic in n. 

For a query run on the DBLP dataset, the RT was found to be 2ms 
for |SL|= 213. Hence, RT depends on the query, i.e., depth d, n and 
SL (O(d. |SL|.log n) ), and not on the size of the data being queried. 

 
Figure 9. Response time vs. keywords in query response (n) 

7.1.3 Scalability 

 
Figure 10. Response time for different dataset sizes 

To assess the scalability of GKS, we replicated the Swiss Prot 
dataset to create three datasets of size 112MB, 225 MB and 336 
MB. For same query, the number of LCE nodes scales linearly. In 
Figure 10, we plot our results. We can see that query processing 
time is scaling linearly with data size, as expected. 

7.2 Validation of Node Categorization Model 
In this experiment, we analyze the structure of the real world data 
repositories. XML nodes are placed in different categories as 
described in Section 2.2. In Table 5, we show the number of 
different XML element types belonging to different node categories 
for various XML repositories. As we see, the fraction of nodes 
labeled as Connecting Nodes (CN) varies from around 15% for 
InterPro to less than 3% for DBLP dataset. In DBLP/Sigmod 
Records some nodes with similar schema as that of entity nodes 
(EN) are marked as CN because of the presence of just a single 
author. We compared the results of our analysis with the ground 
truth, i.e., with XML schema. For Sigmod Records, two XML 
elements, <articles> and <authors>, were the connecting nodes as 
per the XML schema. The count of <authors> node, was 1504, and 
count of <articles> node was 67 (remaining 447 XML nodes were 
marked CN due to presence of <article> nodes with a single 
author). The results show our node categorization model captures 
the structure of the real world data repositories very well. 

Table 5. Distribution of XML element  

Data Sets Count 
of AN 

Count 
of EN 

Count 
of RN 

Count 
of CN 

Total 
Nodes 

Sigmod 
Record 

10574 1022 3766 2018 15263 

DBLP 27.58M 2.62M 10.56M 972367 39.52M 
Mondial-3.0 7467 535 15074 663 22423 

InterPro 515316 32614 1472021 303079 2088766 

SwissProt 4044884 176128 1776676 187300 5166890 

7.3 Finding and ranking the XML nodes  
The purpose of this experiment is to assess the quality of GKS 
results. Therefore, some queries are designed for which SLCA 
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response is obviously inadequate (the response of an SLCA 
technique is either null or document root for these queries). For a 
few queries, SLCA returns meaningful response (QM1, QI1, QI2). 
Queries for different datasets are shown in Table 6. The number of 
keywords for the queries was varied from 2 to 8. We present the 
number of XML nodes retrieved by GKS and SLCA. We vary s, 
the minimum number of query keywords in the XML node sub-
tree. s is set to be 1 and |Q|/2 respectively.  

Table 6. Keyword queries run on different datasets 

 |Q| SIGMOD Records 
QS1 2 "Anthony I. Wasserman" "Lawrence A. Rowe" 
QS2 4 "S. Jerrold Kaplan" "Robert P. Trueblood" "David J. 

DeWitt" "Randy H. Katz" 
QS3 6 "Sakti P. Ghosh" "C. C. Lin" "Timos K. Sellis" "David 

A. Patterson" "Garth A. Gibson" "Randy H. Katz" 
QS4 8 "Barbara T. Blaustein" "Umeshwar Dayal" "Alejandro 

P. Buchmann" "Upen S. Chakravarthy" "M. Hsu" "R. 
Ledin" "Dennis R. McCarthy" "Arnon Rosenthal" 

 |Q| DBLP 
QD1 2 "Dimitrios Georgakopoulos" "Joe D. Morrison" 
QD2 4 "Peter Buneman" "Wenfei Fan" "Scott Weinstein" 

"Prithviraj Banerjee" 
QD3 6 "E. F. Codd" "Mark F. Hornick" "Frank Manola" 

"Alejandro P. Buchmann" "Dimitrios 
Georgakopoulos" "Joe D. Morrison" 

QD4 8 "E. F. Codd" "Kenneth L. Deckert" "Irving L. Traiger" 
"Vera Watson" "Jim Gray" "Chin-Liang Chang" "Nick 
Roussopoulos" "Jean-Marc Cadiou" 

 |Q| Mondial 
QM1 2 country Muslim 
QM2 3 Laos country name 
QM3 6 Polish Spanish German Luxembourg Bruges Catholic 
QM4 8 Chinese Thai Muslim Buddhism Christianity 

Hinduism Orthodox Catholic 
 |Q| InterPro 
QI1 2 Kringle Domain 
QI2 3 Publication 2002 Science 

Results for different queries are shown in Table 7. We see a large 
number of XML nodes returned for the queries by GKS (s=1) 
compared to SLCA response. Thus, a lot of information that could 
be of the interest to the user for the given keyword query is not 
returned by LCA based techniques. Further, the number of XML 
nodes for (s=|Q|/2), is non-zero for all the queries. When we 
compared GKS with FSLCA [19], the top XML node for both QI1 
and QI2 for GKS was present in FSLCA result set. For QM1, many 
XML nodes of FSLCA were among the top 10 nodes of GKS 
results. For QM2, no FSLCA node exists but GKS was able to find 
the XML nodes having subset of query keywords. There are no 
entity nodes which were relevant, i.e., contained at least s query 
keywords, but not identified by GKS. Therefore, GKS is able to 
find valid response for the given user queries, without binding them 
to LCA framework, enhancing the users’ ability to search the data. 

We next assess the ability of GKS to rank the discovered XML 
nodes. Since, the schema for DBLP and Sigmod Records is not very 
deep, the structure of all the XML nodes is similar for these two 
datasets. Hence, we adopt the measure that the higher the number 
of query keywords in an XML node sub-tree, the more relevant it 
is. Given this measure, we determine where GKS places the XML 
nodes with the highest number of query keywords in its ranking list.  

Let L be a ranked list of XML nodes, in set RQ(s), returned by GKS 
for a query Q and for a given s, |L| = p = | RQ(s)|. The nodes are 
numbered 1 to p according to their ranks. The XML nodes that 
contain the highest number of keywords from query Q in their sub-
tree are called the true XML nodes. Let L' (L'  L) be a set of true 

XML nodes. Let w be the lowest rank of a true XML node in the 
list of XML nodes L. To each true XML node, we assign a weight 
of (w+1-i) where i is the rank of the true XML node in the list L. 
We compute the aggregated weight of true XML nodes as 




;
)1(

wi
a iww for all the true XML nodes in the list L. The 

total score is computed as wt = w(w+1)/2. Finally, we compute a 
rank score as wa/wt. We penalize the rank score if a true XML node 
occurs lower in the list L. Score of 1 means that no true XML node 
is ranked lower than a XML node which is not in set L'. In Table 7, 
we show our results. The ranking score is computed for GKS 
response when s=1. We see that the aggregate weight, i.e., rank 
score is very high for all the queries. For every query, except QM3, 
the top-most result is always a true XML node. For QM3, it 
appeared at 3rd position. 

Table 7. Comparison with SLCA and Rank Score 

Query #GKS,
s=1 

#GKS,
s=|Q|/2 

SLCA Max keywords 
in a GKS node 

Rank 
Score 

QS1 8 NA 0 1 1 

QS2 43 13 0 2 1 

QS3 28 4 0 3 1 

QS4 36 2 1 8 1 

QD1 30 NA 1 2 1 

QD2 234 10 0 3 0.72 

QD3 190 7 0 5 1 

QD4 267 4 0 6 1 

QM1 230 NA 98 2 1 

QM2 234 NA 1 2 1 

QM3 37 4 0 3 0.17 

QM4 116 3 0 6 1 

QI1 8170 NA 8 2 0.893 

QI2 2517 2517 281 3 1 

In summary, we see that GKS is able to retrieve and appropriately 
rank the relevant XML nodes, in the context of the user queries.  

7.4 Quality of DI Discovered by GKS  
One of the most important attractions of GKS is its ability to 
discover DI in the data. In Table 8, we show the DI discovered for 
the queries in Table 6 for different values of s. This experiment 
highlights that the DI discovered by GKS is highly relevant for the 
given queries. For instance, for QD3, DI exposes the most relevant 
year (1999) and the most relevant ‘booktitle’ (ICCD). The 
keywords exposed as DI also help users understand GKS response 
since the DI keywords also represent the summary of the query 
response. For some queries, DI varies for different values of s.    

Table 8. DI discovered for different queries 

Query DI, s=1 DI, s=|Q|/2 

QS1 <title: Third-Generation 
Database System Manifesto > 

<title: Cache Consistency 
and Concurrency Control> 

QS2 <title: Chair’s Message> <title: Database Research 
Activities at the University of 
Wisconsin > 

QS3 <title: article title> <title: Implementation of a 
Prolog-INGRES Interface> 

QS4 <title: article title> NA 

QD1 NA <year:2000>,<journal:TCS> 

QD2 <year: 2001>, <journal: 
SigmodRecords> 

<year:1998>, <volume:2> 

QD3 <year: 1999>, <booktitle: 
ICCD> 

<journal: TCS>, <year: 
2001>, <number: 1> 

QD4 <year: 2001>, <journal: 
JACM> 

<journal:IBM Research 
Report>, <year: 2001> 
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QM1 <country:f0_475>, <Year : 
90> 

NA 

QM2 <Name : Zimbabwe>, 
<population_growth : 1.41> 

<Name:Zimbabwe>, 
<percentage : 100> 

QM3 <country:f0_337>,<year: 90> <country:f0_337>,<year:90> 

QM4 <country:f0_663>, 
<percentage:100> 

<country:f0_663>,<name:Br
unei> 

QI1 <author_list:Patthy L>, 
<taxon_data_name:Eukryot> 

NA 

QI2 <taxon_data_name:"Bacteria
>, <proteins_count : "1"> 

NA 

We now show, with the aid of query QD1, how DI helps refine 
queries. For QD1, GKS returned a total of 30 XML nodes (s=1). 
The DI was <author: Marek Rusinkiewicz>. After analyzing the 
query response, QD1 is refined to ("Dimitrios Georgakopoulos", 
“Marek Rusinkiewicz”). Interestingly, for the refined query we 
found that there were 10 articles jointly written by these two authors 
as opposed to just 1 joint article by authors in original query. This 
is an example of how GKS helps users refine their queries and 
guides them to navigate the data by recursive application of GKS. 

7.5 Crowd-Sourced Feedback: GKS & SLCA 
We asked 40 users to compare the 
GKS response with SLCA response 
on a scale of 1-4; 1 being ‘GKS Very 
Useful’ and 4 being ‘SLCA Very 
Useful’. Results are shown in the 
table below. For almost all the 
queries, GKS response is found to be 
either very useful (1) or better than 
SLCA (2). If we categorize the 
response as ‘GKS-better’ (rating 1 
or 2) and ‘SLCA-better’ (rating 3 or 
4), 430 out of 480 responses found 
the GKS response better (89.6%).   

7.6 GKS Performance for Hybrid Queries 
We further studied how well GKS behaves in the presence of 
clearly separable keywords in the query, i.e., subsets of the 
keywords in a query indeed refer to different entity type nodes. We 
call such queries ‘hybrid queries’. To study GKS performance for 
hybrid queries, we merged DBLP and Sigmod Record datasets into 
a single dataset (with a ‘common root’). We also increased the 
depth of Sigmod Record elements by introducing two connecting 
nodes between the ‘common root’ and the root of Sigmod Record 
data. We ran the query “Jean-Marc Meynadier" "Patrick 

Behm" "Lawrence A. Rowe" "Michael Stonebraker”, s=2. 
First two authors appeared together only in <inproceedings> 
entity node type in DBLP dataset and last two in <article> entity 
node type in Sigmod Record. Clearly, the keywords in the query 
target two different XML node types. GKS was able to return all 8 
corresponding XML nodes present in our dataset, 3 
<inproceedings> nodes in DBLP data by first 2 authors and 5 
<article> nodes in Sigmod Record data by last 2 authors. Thus, 
GKS returned correct response even when multiple XML node 
types were targeted by a single query. Note, only these 8 nodes 
were returned by GKS.  

Further, two <article> nodes, by last two authors, were ranked 
higher (as they were the only authors in all the three articles) despite 
higher relative depth w.r.t. root (articles by first 2 authors had 
multiple other authors). Hence, the entity nodes are ranked based 
on only the number of query keywords present in their sub-tree and 
the distribution of these keywords, and not according to their 
absolute depth in the XML tree, as analyzed in Section 5.  

Summary: In summary, experiments show that GKS is scalable, 
imposes low overhead and retrieves the XML nodes efficiently. 
The experiments validate our node categorization model and show 
that XML nodes and DI discovered by GKS are highly relevant 

8. CONCLUSION 
We presented a novel system GKS that enables generic keyword 
search over XML data and yields highly meaningful response 
without imposing the AND-Semantics of LCA based techniques. 
We show that our system exposes deeper analytical insights (DI) in 
the data in the context of user queries. GKS exploits the XML 
schema, embedded in the XML data, in the context of the query to 
find the most relevant data keywords and schema elements with the 
aid of a novel node categorization model. In conjunction with a 
novel XML node ranking method, GKS is able to expose the DI 
elegantly. One of our future research direction is to extend GKS to 
enable analytics over raw XML data.  
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ABSTRACT
Keyword search over relational databases has gained pop-
ularity as it provides a user-friendly way to explore struc-
tured data. Current research in keyword search has largely
ignored queries to retrieve statistical information from the
database. The work in [13] extends keywords by support-
ing aggregate functions in their SQAK system. However,
SQAK does not consider the semantics of objects and rela-
tionships in the database, and thus suffers from the problems
of returning incorrect answers. In this work, we propose a
semantic approach to answer keyword queries involving ag-
gregates and GROUPBY. Our approach utilizes the ORM
schema graph to capture the Object-Relationship-Attribute
(ORA) semantics in the database, and determines the var-
ious interpretations of a query before generating the cor-
responding SQL statements. These semantics enable us to
distinguish objects with the same attribute value and de-
tect duplications of objects in relationships to compute the
answers correctly. Our approach can also handle unnormal-
ized relations in the database and GROUPBY in keyword
queries which SQAK cannot. Experiments on the TPC-H
and ACM Digital Library publication datasets demonstrate
the advantages of the proposed semantic approach in retriev-
ing correct statistical information for users.

1. INTRODUCTION
As databases increase in size and complexity, the ability

for users to issue structured queries in SQLs has become
a challenge. Keyword search over relational databases has
gained traction as it enables users to query the database
without knowing the database schema or having to write
complicated SQL queries [7, 10, 8, 1, 2]. Research on rela-
tional keyword search has focused on the efficient computa-
tion of the minimal set of tuples that contain all the query
keywords [9, 6, 5, 4], and strategies to retrieve relevant
answers to the query [6, 10, 14, 3]. However, these works
do not handle keyword queries involving aggregate functions
and GROUPBY. We call these aggregate queries.

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

Aggregate queries is a powerful mechanism that provides
users with a summary of the data. The work in [13] devel-
oped a prototype system called SQAK that allows aggregate
queries to be expressed using simple keywords. An aggre-
gate query in SQAK comprises of a set of terms and one of
the terms is an aggregate function such as COUNT , SUM ,
AV G, MIN , or MAX. SQAK models the database schema
as a schema graph where each node represents a relation
and each edge represents a foreign key-key reference. Then
SQAK identifies the matches of each term in a query. A
relation is matched if a term matches its name, or the name
of one of its attributes, or the value of some of its tuples.
A set of minimal connected subgraphs of the schema graph
that contain the matched relations are generated. These
subgraphs are translated into SQL statements to retrieve
answers from the database. Note that an aggregate func-
tion(s) is applied to the attribute that follows the aggregate
term in the query.

Figure 1 shows a sample university database. Suppose
we want to know the total credits obtained by the student
Green. We can issue a keyword query Q1 = {Green SUM
Credit}, where the term SUM indicates the aggregate func-
tion SUM on the course credits, and SQAK will generate
the following SQL statement for the query:

SELECT S.Sname, SUM(C.Credit)

FROM Student S, Enrol E, Course C

WHERE E.Sid=S.Sid AND E.Code=C.Code

AND S.Sname=‘Green’ GROUP BY Sname

Course

Code Title Credit

c1 Java 5.0

c2 Database 4.0

c3 Multimedia 3.0

Lecturer

Lid Lname Did

l1 Steven d1

l2 George d1

Enrol

Sid Code Grade

s1 c1 A

s1 c2 B

s1 c3 B

s2 c1 A

s3 c1 A

s3 c3 B

Teach

Code Lid Bid

c1 l1 b1

c1 l1 b2

c1 l2 b1

c2 l1 b2

c2 l1 b3

c3 l2 b4

Textbook

Bid Tname Price

b1 Programming Language 10

b2 Discrete Mathematics 15

b3 Database Management 12

b4 Multimedia Technologies 20

Department

Did Dname Fid

d1 CS f1

Faculty

Fid Fname

f1 Engineering

Student

Sid Sname Age

s1 George 22

s2 Green 24

s3 Green 21

Figure 1: Example university database

We observe that SQAK may compute incorrect answers
when a query term matches multiple tuples. We see that the
term Green in Q1 matches the names of two students s2 and
s3 in Figure 1. This naturally implies that we should find
the sum of the credits obtained by each of these students,
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i.e., the total credits for s2 is 5 while the total credits for
s3 is 8. However, SQAK does not distinguish between these
two “different” name matches, and outputs a total credits of
13 for students called Green, which is incorrect.

Similarly, SQAK may return incorrect answers when a
query matches a relation that has more than 2 foreign keys.
For instance, the Teach relation in Figure 1 contains 3 for-
eign keys that reference the relations Course, Lecturer and
Textbook respectively, and depicts that a course can be
taught by more than one lecturer using different textbooks.
Suppose we have a query Q2 = {Java SUM Price}, where
the term Java matches a course title while the term Price
matches an attribute of the Textbook relation. This implies
that we should return the total price of the textbooks that
are used in the Java course. Based on the Teach relation,
there are 2 such textbooks b1 and b2 whose total price is 25.
But SQAK will generate the following SQL statement:

SELECT C.Title, SUM(B.Price)

FROM Course C, Teach T, Textbook B

WHERE T.Bid=B.Bid AND T.Code=C.Code

AND C.Title=‘Java’ GROUP BY C.Title

which returns 35 for total price because textbook b1 appears
2 times for the Java course (i.e., c1) in the Teach relation.
This answer is incorrect as a student does not need 2 copies
of the same textbook for a course.

In addition, many applications often denormalize their
databases to improve runtime performance. This denormal-
ization leads to data duplication which affects the database
schema graph. As SQAK does not consider unnormalized
relations in the database, it will return incorrect answers for
aggregate queries.

Figure 2 shows an unnormalized university database where
the Lecturer relation now has a foreign key that references
the Faculty relation. Consider the query Q3={Engineering
COUNT Department}, where the term Engineering matches a
faculty name while the term Department matches the name
of the Department relation. SQAK will find the number of
departments in Engineering faculty by joining the relations
Department, Lecturer and Faculty, and output an incor-
rect answer 2. This is because the values of attributes Did
and Fid in the Lecturer relation are duplicated.

Department

Did Dname

d1 CS

Faculty

Fid Fname

f1 Engineering

Lecturer

Lid Lname Did Fid

l1 Steven d1 f1

l2 George d1 f1

Figure 2: An unnormalized university database

We advocate that a relational database is essentially a
repository of objects that interact with each other via rela-
tionships that are embedded in foreign key-key references.
Since SQAK does not consider the semantics of objects and
relationships in the database, it will not be able to distin-
guish objects with the same attribute value (as in Q1), and it
will fail to detect the duplications of objects in relationships
(as in Q2). This leads to the incorrect computations of ag-
gregate queries. Further, if relations are unnormalized with
duplicate information of objects and relationships, SQAK
may compute the same information repeatedly and return
incorrect answers to aggregate queries (as in Q3).

In this paper, we propose a semantic approach to answer
keyword queries involving aggregates and GROUPBY on re-

lational databases. Our approach utilizes the ORM schema
graph introduced in [15] to capture the Object-Relationship-
Attribute (ORA) semantics in the database. Given an ag-
gregate query, we analyze the context of query keywords,
interpret the various interpretations of the query and then
apply aggregate functions and GROUPBY on the appropri-
ate attributes of objects/relationships based on the ORM
schema graph. Each query interpretation is denoted as a
minimal connected graph called annotated query pattern.
The top-k ranked annotated query patterns are translated
into SQL statements to compute the answers to the aggre-
gate query. By using the ORA semantics, we can distinguish
the objects with the same attribute value as well as detect
the duplications of objects in relationships in order to avoid
incorrect computations of aggregate functions. Otherwise,
it is impossible to answer aggregate queries correctly. We
also develop a mechanism to detect duplicate information
of objects/relationships arising from unnormalized relations
so that the aggregate functions will not repeatedly compute
statistics for the same information.

The contributions of our work are summarized as follows:

1. We examine how SQAK answers aggregate queries in
relational keyword search, and identify its problems of
returning incorrect answers due to its unawareness of
the ORA semantics in the database.

2. We extend the keyword query language to incorporate
aggregates and GROUPBY, and propose a semantic
approach to process aggregate queries. We show that
without the ORA semantics, it is impossible to process
the aggregate functions correctly.

3. By using the ORA semantics, we detect the duplica-
tions of objects and relationships arising from unnor-
malized relations, and extend our approach to handle
aggregate queries on unnormalized databases correctly.

4. We conduct extensive experiments to demonstrate the
correctness of our approach in retrieving statistical in-
formation for users.

2. PRELIMINARIES
The work in [15] extends the keyword query language to

include keywords that match meta-data, i.e., the names of
relations and attributes. These keywords reduce query am-
biguity by providing the context of subsequent keywords in
the query.

Consider the query {Lecturer George} on the database in
Figure 1. The keyword George can refer to a student name
or a lecturer name. However, since the keyword Lecturer
matches the name of the relation Lecturer and provides
the context of the keyword George, we deduce that the user
is more likely to be interested in a lecturer named George
rather than a student. Here, we further extend the query
language to incorporate aggregates and GROUPBY.

Definition 1. A keyword query Q is a sequence of terms
{t1 t2 · · · tn} where each term ti either matches a relation
name, an attribute name, a tuple value, GROUPBY or an
aggregate function MIN , MAX, AV G, SUM or COUNT .

In order to properly interpret a keyword query involving
aggregate functions and GROUPBY, we impose the follow-
ing constraints on the terms in the query:
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1. The last term tn cannot match an aggregate function
or GROUPBY.

2. For each term ti, i < n that matches the aggregate
function MIN , MAX, AV G or SUM , the next term
ti+1 should match an attribute name.

3. For each term ti, i < n that matches COUNT or
GROUPBY, the next term ti+1 should match either a
relation name or an attribute name.

A query that satisfies the last constraint is {COUNT Stu-
dent GROUPBY Course}. An SQL statement to find the
number of students in each course is generated as follows:

SELECT C.Code, COUNT(S.Sid) As numSid

FROM Student S, Enrol E, Course C

WHERE E.Sid=S.Sid AND E.Code=C.Code

GROUPBY C.Code

Note that the terms Student and Course match the names
of the Student and Course relations, and are mapped to
Sid and Code respectively.

2.1 Query Patterns
The work in [16] classifies the relations in a database into

object relations, relationship relations, mixed relations and
component relations. An object (relationship resp.) relation
captures the information of objects (relationships resp.), i.e.,
the single-valued attributes of an object class (relationship
type). Multivalued attributes of an object class (relation-
ship type) are captured in object/relationship component
relations. A mixed relation contains information of both ob-
jects and relationships, which occurs when we have a many-
to-one relationship. We call these semantics the Object-
Relationship-Attribute (ORA) semantics.

A keyword query is inherently ambiguous as each key-
word can have multiple matches. [15] introduces the notion
of query patterns to depict the interpretations of a keyword
query. These query patterns are generated from the Object-
Relationship-Mixed (ORM) schema graph of the database.
The ORM schema graph is an undirected graph that cap-
tures the ORA semantics in the database. Each node in the
ORM schema graph comprises of an object/relationship/
mixed relation and its component relations, and is associ-
ated with a type (object, relationship and mixed). Two
nodes are connected if there exists a foreign key - key refer-
ence between the relations in these two nodes.

In Figure 1, the relations Student, Course, Faculty and
Textbook are object relations while Enrol and Teach are re-
lationship relations. Relations Lecturer and Departement
are mixed relations because of the many-to-one relationships
between lecturers and departments, and the many-to-one re-
lationships between departments and faculties respectively.
Figure 3 shows the ORM schema graph of the database.

Object Node

Relationship Node

Legend:

Mixed NodeTextbook

Teach Course

Enrol Student

FacultyLecturer Department

Figure 3: ORM schema graph of Figure 1

A query pattern for the keyword query {Green George

Code} is shown in Figure 4. This pattern depicts the query
interpretation to find the common courses taken by students
Green and George. We generate this pattern by first identi-
fying the matches of each term in the query. The term Code
matches the name of an attribute in the Course relation,
while both terms Green and George match some tuple value
in the Student relation, specifically, the value of Sname at-
tribute. Based on these matches, we know that Green and
George refer to two student objects and Code refers to a
course object. Thus, we create 2 Student nodes and 1 Course
node to represent these objects. From the ORM schema
graph in Figure 3, we know that the Student node and the
Course node are connected via an Enrol node. Hence, we cre-
ate 2 Enrol nodes and obtain the query pattern in Figure 4.

Course
(Code)

Enrol EnrolStudent
Sname=Green

Student
Sname=George

Figure 4: Query pattern of {Green George Code}

Note that the term George can refer to a lecturer object
since it also matches some tuple value in the Lecturer rela-
tion. Hence, this keyword query has more than one query
pattern. We rank these query patterns and translate the
top-k ranked patterns into SQL statements.

In this work, we want to utilize these query patterns to
capture the interpretations of an aggregate query. However,
since we extend the keyword query to include GROUPBY
and aggregate functions, we need to annotate the nodes that
the GROUPBY and aggregate functions are applicable to.
Annotating the appropriate nodes is important as it will fa-
cilitate the translation of the query pattern into SQL state-
ments to retrieve the correct answers for the aggregate query.
We will discuss how we achieve this in the next section.

3. AGGREGATE QUERIES ON NORMAL-
IZED DATABASE

3.1 Simple Aggregate Queries
Given a keyword query Q = {t1 t2 · · · tn}, we first clas-

sify the terms ti into basic terms and operators. A basic
term matches a relation name, or an attribute name, or a
tuple value, while an operator matches GROUPBY or an
aggregate function. Then we process Q as follows:

1. Pattern generation and annotation. We utilize
the ORM schema graph of the database and the basic
terms in the query to generate a set of query patterns,
and annotate these patterns with the operators.

2. Pattern disambiguation. We disambiguate the query
patterns by annotating the object/mixed nodes with
GROUPBY. This is to distinguish objects with the
same attribute value in the database.

3. Pattern translation. We translate the top-k ranked
query patterns into SQL statements to compute the
aggregate functions in the query.

We explain the details of these steps next.

3.1.1 Pattern Generation and Annotation
We use the basic terms in a query to generate a set of

initial query patterns. Each pattern P contains a set of
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nodes that represent the objects or relationships referred
to by the basic terms. The nodes are connected based on
the ORM schema graph as described in [15]. A node is
annotated with the condition a = t if the basic term t refers
to the value of the attribute a of the object/relationship.

For each operator ti ∈ Q, we examine the matches of its
subsequent term ti+1 in Q to annotate query pattern P . We
have two cases:

a. ti+1 matches the name of some object/ mixed/ rela-
tionship relation.

This indicates that ti+1 refers to some object or rela-
tionship, and the operator ti is applied on the iden-
tifier id of this object/relationship. We annotate the
node that represents this object/relationship in P with
ti(id), id is given by the primary key of the relation.

b. ti+1 matches the name of a component relation or an
attribute name.

This indicates that ti+1 refers to some attribute a of
an object or relationship, and ti is applied on this ob-
ject/relationship attribute. We annotate the node that
represents this object/relationship in P with ti(a).

Example 1. Consider query Q4 = {Green George COUNT
Code}. Figure 4 shows a query pattern obtained using the ba-
sic terms Green, George and Code. For the operator COUNT,
its subsequent term Code matches an attribute name in the
Course relation. Hence, we annotate the Course node with
COUNT(Code). Figure 5(a) shows the annotated query pat-
tern P1 that depicts the query interpretation to find the total
number of courses taken by students Green and George. 2

Example 2. Query Q5 = {COUNT Lecturer GROUPBY
Course} has two basic terms Lecturer and Course. We gener-
ate a query pattern that contains a Teach relationship node
between the objects Lecturer and Course. For the operator
GROUPBY, since its subsequent term Course matches the
name of the Course relation, and refers to a course ob-
ject, we obtain the identifier of the course object and anno-
tate the corresponding Course node in the query pattern with
GROUPBY(Code). Similarly, operator COUNT has a subse-
quent term Lecturer that matches the name of the Lecturer
relation. We annotate the Lecturer node with COUNT(Lid)
and obtain the annotated query pattern P2 in Figure 5(b).
This query pattern indicates that the user is interested in the
number of lecturers for each course. 2

Course
COUNT(Code)

Enrol

Enrol

Student
Sname=Green

Student
Sname=George Course

GROUPBY(Code)

Teach

Lecturer
COUNT(Lid)

(a) P1 (b) P2

Figure 5: Annotated query patterns of Q4 and Q5

3.1.2 Pattern Disambiguation
After annotating the query pattern with operators, we

examine the object and mixed nodes in the pattern. An
object/mixed node with the condition a = t refers to an

object such that its value of attribute a matches the basic
term t. However, since this condition could be satisfied by
more than one object in the database, there are two different
interpretations of t in the context of the aggregate query:

1. Apply the aggregate function(s) for every distinct ob-
ject satisfying the condition a = t.

2. Apply the aggregate function(s) for all the objects sat-
isfying the condition a = t.

These two interpretations will lead to different results of
the aggregate function(s) and we need to distinguish them
in the annotated query pattern. Note that SQAK does not
distinguish objects satisfying the same condition, and thus
returns incorrect answers to the query.

Let P be an annotated query pattern for aggregate query
Q and U be a set of object/mixed nodes in P . We generate
a set of patterns S to indicate if objects with the same value
will be distinguished for aggregates. Initially, S only con-
tains the pattern P . For each node u ∈ U that is annotated
with the condition a = t, we check if more than one object
satisfies this condition in the database. If so, we create a
copy of each pattern in S to indicate if objects that satisfy
the condition a = t will be distinguished in these patterns.
Let P1 be a pattern in S and P2 be a copy of P1. We anno-
tate u in P2 with GROUPBY(id), where id is the identifier
of the object referred to by u. In particular, P1 indicates
that aggregate function(s) is applied for all the objects that
satisfy a = t, while P2 indicates that aggregate function(s)
is applied for every distinct object with a = t.

Example 3. Consider the query pattern P1 for the query
Q4 = {Green George COUNT Code} in Figure 5(a). This
pattern contains three object/mixed nodes: one Course node
and two Student nodes that are annotated with the condi-
tions Sname = Green and Sname = George respectively. For
the Student node imposed by the condition Sname = George,
we do not need to create new copies of query patterns as
there is only one student called George in Figure 1. How-
ever, for the Student node imposed by the condition Sname
= Green, we know that there are two students called Green in
Figure 1. Hence, we create a copy P3 of the pattern P1 and
annotate this node with GROUPBY(Sid) in P3. Figure 6
shows the query pattern P3. It indicates that the aggregate
function counts the number of courses enrolled by each stu-
dent called Green. In contrast, pattern P1 indicates that the
count aggregate is applied for both these two students. 2

Course
COUNT(Code)

Enrol

Enrol

Student
Sname=Green
GROUPBY(Sid)

Student
Sname=George

P3

Figure 6: A query pattern for Q4

Next, we rank the query patterns. [15] classifies nodes in a
query pattern into target nodes and condition nodes. A tar-
get node specifies the search target of the query, and a con-
dition node indicates the search conditions of the query. A
query pattern is ranked based on its number of object/mixed

164



nodes and the average distance between the target and con-
dition nodes. Patterns with fewer object/mixed nodes, and
a shorter average distance are ranked higher.

Here, we extend the definitions of target nodes and condi-
tion nodes to rank the query patterns of an aggregate query.
Let P be an annotated query pattern and u be a node in P .
We say u is a target node if u is annotated with an aggregate
function. Otherwise, u is a condition node if u is annotated
with a condition or GROUPBY. We can now use the same
method as [15] to rank the annotated query patterns.

3.1.3 Pattern Translation
Finally, we translate the top-k ranked query patterns into

SQL statements. A straightforward way to translate an an-
notated query pattern is to join the relations of all the nodes
in the pattern, select the tuples that satisfy the conditions
imposed by basic terms from the join result, and then ap-
ply GROUPBY and aggregate function(s) on the selected
tuples. However, this may generate an SQL statement that
gives an incorrect answer to the query.

Example 4. Consider the query pattern P2 for the query
Q5 = {COUNT Lecturer GROUPBY Course} in Figure 5(b).
If we simply translate P2 into an SQL statement that joins
the relations Teach, Lecturer and Course, and applies the
count aggregate on the lecturer id Lid after grouping the tu-
ples by the course code, we may obtain wrong answers as
the same lecturer may be counted multiple times. This is be-
cause the Teach node in P2 is in fact a ternary relationship
involving the objects course, lecturer and textbook (see the
ORM schema graph in Figure 3). Since different Bid may
have the same Lid and Code, we should project the Teach
relation on the foreign keys 〈Lid,Code〉 to remove duplicates
before joining with the relations Lecturer and Course. 2

The above example demonstrates the need to examine the
type of nodes in a query pattern if we want to generate the
SQL statement correctly. In particular, if the query pattern
contains a relationship node u, we should look at its corre-
sponding node v in the ORM schema graph to determine if a
projection is needed to remove duplicates. Note that SQAK
does not detect the duplications of objects in relationships,
and suffers from the problem of returning incorrect answers.

Given a query pattern P , we generate the clauses in an
SQL statement as follows:

SELECT clause. If a node u ∈ P is annotated with t(a)
and t matches an aggregate function, we include t in the
SELECT clause. t is applied on attribute a. If u is annotated
with GROUPBY (a), we include a in the SELECT clause to
facilitate user understanding of the aggregate function(s).

FROM clause. This clause includes the relations of all the
nodes in P . For each relationship node u ∈ P , we check
its corresponding node v in the ORM schema graph. Let
Nu = {u1, u2, · · · , ux} be a set of object/mixed nodes that
are directly connected to u in P , and Nv = {v1, v2, · · · , vy}
be the set of object/mixed nodes that are directly connected
to v in the ORM schema graph. If x < y, then this indicates
that P contains a subset of the participating objects of the
relationship v, and we project the foreign keys k1, k2, · · · , kx
in the relation of u such that ki references the relation of ui

in Nu, i ∈ [1, x]. This projection eliminates duplicates and
we replace the relation of u in the FROM clause with the
relation obtained by this projection.

WHERE clause. The WHERE clause joins all the rela-
tions in the FROM clause based on foreign key - key ref-
erences. For each node u ∈ P that is annotated with a
condition a = t, we include the condition “Ru.a contains t”
where Ru is the relation corresponding to u.

GROUPBY clause. If a node u is annotated with t(a)
and t matches GROUPBY, then we include the attribute a
in the GROUPBY clause.

Example 5. The query pattern P3 in Figure 6 for query
Q4 = {Green George COUNT Code} depicts the total num-
ber of courses enrolled by the student George and each of the
students called Green. The Course node is annotated with
COUNT(Code), thus we include COUNT (Code) in the SE-
LECT clause. The FROM clause contains the relations cor-
responding to each of the nodes in P3. Next, we add the con-
ditions to join these relations in the WHERE clause, as well
as the conditions in the two annotated Student object nodes.
Since the Student node imposed by the condition Sname =
Green is also annotated with GROUPBY to distinguish dif-
ferent students called Green, we include the id of its relation
in the GROUPBY clause, and obtain the SQL statement:

SELECT S1.Sid, COUNT(C.Code) AS numCode

FROM Course C, Enrol E1, Student S1, Enrol E2, Student S2

WHERE C.Code=E1.Code AND C.Code=E2.Code

AND S1.Sid=E1.Sid AND S1.Sname contains ‘Green’

AND S2.Sid=E2.Sid AND S2.Sname contains ‘George’

GROUP BY S1.Sid

By applying GROUPBY on student ids, we distinguish
students s2 and s3 who have the same name Green, and the
aggregate function COUNT is computed for the courses of
each student. 2

Example 6. The query pattern P2 in Figure 5(b) for query
Q5 = {COUNT Lecturer GROUPBY Course} depicts the num-
ber of lecturers for each course. The Lecturer node is anno-
tated with COUNT(Lid) while the Course node is annotated
with GROUPBY (Code). Hence, we include the aggregate
function COUNT (Lid) in the SELECT clause, and the at-
tribute Code in the GROUPBY clause. The Teach node in
P2 is connected to two object/mixed nodes, while the corre-
sponding Teach node in the ORM schema graph in Figure 3
is connected to three object/mixed nodes. We generate a
subquery “SELECT DISTINCT Lid, Code FROM Teach” to
project the attributes Lid and Code in the Teach relation.
The subquery has a DISTINCT keyword and thus eliminates
any duplicates of 〈Lid,Code〉 for different Bid. We use
the result of this subquery to join the other relations in the
FROM clause. The SQL statement generated is:

SELECT C.Code, COUNT(L.Lid) AS numLid

FROM Lecturer L, Course C,

(SELECT DISTINCT Lid, Code FROM Teach) T

WHERE T.Lid=L.Lid AND T.Code=C.Code

GROUP BY C.Code 2

3.2 Nested Aggregate Queries
So far, we have described how to handle keyword queries

involving simple aggregate functions and GROUPBY. In or-
der to maximize the power of aggregate queries, we also want
to support queries with nested aggregate functions.

Given a keyword query Q = {t1 t2 · · · tn}, we relax the
constraints on the terms so that if the term ti, i < n matches
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an aggregate function, the next term ti+1 can also match an
aggregate function. In this case, the aggregate function ti is
applied on the result of the aggregate function ti+1.

Let P be a query pattern obtained from basic terms in the
query. We annotate P with ti(f), where f is the attribute
name assigned to the result of aggregate function ti+1. Then
we generate a nested SQL statement for P . The inner query
computes the aggregate function ti+1, while the outer query
includes the inner query in the FROM clause and computes
the aggregate function ti.

Example 7. Suppose the user issues a query {AVG COUNT
Lecturer GROUPBY Course} to find the average number of
lecturers that teach a course. Both the terms AVG and COUNT
match some aggregate function. We obtain the query pattern
and annotate the operators COUNT and GROUPBY. For the
AVG operator, we annotate the pattern with AVG(numLid),
where numLid is the attribute name given to the result of the
aggregate function COUNT . Figure 7 shows the annotated
query pattern. We translate the query pattern by first gen-
erating an inner SQL query similar to that in Example 6.
Then we put it in the FROM clause of the outer SQL query
to compute the aggregate function AV G as follows:

SELECT AVG(R.numLid) AS avgnumLid

FROM ( SELECT C.Code, COUNT(L.Lid) AS numLid

FROM Lecturer L, Course C,

(SELECT DISTINCT Lid, Code FROM Teach) T

WHERE T.Lid=L.Lid AND T.Code=C.Code

GROUP BY C.Code) R 2

AVG(numLid)

Course
GROUPBY(Code)

TeachLecturer
COUNT(Lid)

Figure 7: Query pattern in Example 7

4. AGGREGATE QUERIES ON UNNORMAL-
IZED DATABASE

Relations in a relational database are often unnormalized
to reduce the number of joins and improve query processing
performance. A relational database that contains unnor-
malized relations is called an unnormalized database. The
denormalization process will duplicate information in the
database and SQAK may obtain incorrect results for key-
word queries involving aggregates.

Recall that in Figure 2, the Lecturer relation is denormal-
ized by adding a foreign key Fid that references the Faculty
relation. This allows queries that are frequently issued on
lecturers and their faculties to be answered quickly without
the need to join the Department relation. Given a query
Q3 = {Engineering COUNT Department}, SQAK will join the
relations Lecturer, Department and Faculty and return in-
correct number of departments in the Engineering faculty as
it does not handle unnormalized relations.

In order to generate SQL statements correctly for keyword
queries involving aggregates, we need to determine if rela-
tions are unnormalized. This can be done by examining the
functional dependencies that hold on the relations.

Consider the unnormalized relation Enrolment in Fig-
ure 8 that is obtained by joining the Student, Enrol and
Course relations in Figure 1. The following functional de-
pendencies hold on the Enrolment relation:

• Sid→ Sname,Age

• Code→ T itle, Credit

• Sid, Code→ Grade

We deduce that {Sid, Code} is the key of the Enrolment
relation, and it violates the second normal form (2NF) defi-
nition as Sname and Age only depend on Sid.

Enrolment

Sid Sname Age Code Title Credit Grade

s1 George 22 c1 Java 5.0 A

s1 George 22 c2 Database 4.0 B

s1 George 22 c3 Multimedia 3.0 B

s2 Green 24 c1 Java 5.0 A

s3 Green 21 c1 Java 5.0 A

s3 Green 21 c3 Multimedia 3.0 B

Figure 8: An unnormalized relation

A naive approach to handle a keyword query involving ag-
gregate functions on the unnormalized database is to gener-
ate a copy of the database where every relation is normalized
and then process the query as described in Section 3. How-
ever, this approach is expensive and not feasible in practice.

We observe that although the relations are unnormalized,
the information of objects and relationships in the database
remain the same. Hence, if we can keep track of the objects
and relationships information in an unnormalized database,
then we can continue to process keyword queries involving
aggregates and GROUPBY correctly.

Recall that the ORM schema graph captures the informa-
tion of objects and relationships in the database by classi-
fying the relations into different types. These relations are
assumed to be in 3NF. Thus, we generate a normalized view
of the unnormalized database comprising of a minimal set
of relations in 3NF. Then we classify the relations in this
normalized view and construct the ORM schema graph to
represent the ORA semantics in the unnormalized database.

Let D = {R1, R2, · · · , Rj} be the set of relations in the
original unnormalized database schema, and D′ be the set
of relations in the normalized view. For each Ri ∈ D, 1 ≤
i ≤ j, if Ri is in 3NF, then we add it to D′. Otherwise, we
normalize Ri into a set of relations in 3NF and add them to
D′. Finally, relations in D′ with the same key are merged.
We use relational algebra operators to express the mappings
of the relations from D to D′, and vice versa.

Example 8. Let us generate the normalized view of the
unnormalized database in Figure 8. The database consists of
a single relation Enrolment and has the schema D below:

Enrolment(Sid, Code, Sname,Age, T itle, Credit,Grade)

Since the Enrolment relation is not in 3NF, we decom-
pose it into 3NF relations Student′, Enrol′ and Course′.
Thus, the normalized view D′ will have the relations:

Student′(Sid, Sname,Age)

Enrol′(Sid, Code,Grade)

Course′(Code, T itle, Credit)

Based on D′, we construct the ORM schema graph of the
unnormalized database as shown in Figure 9. Table 1 shows
the mappings of the relations in D and D′. 2
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Legend:

Mixed Node

Course'

Enrol' Student'

Figure 9: ORM schema graph of Figure 8

Table 1: Mappings of relations in Example 8

Student′ = ΠSid,Sname,Age(Enrolment)
Enrol′ = ΠSid,Code,Grade(Enrolment)
Course′ = ΠCode,T itle,Credit(Enrolment)

(a) From original schema D to normalized view D′

Enrolment = Student′ ./ Enrol′ ./ Course′

(b) From normalized view D′ to original schema D

After obtaining the normalized view D′ and the ORM
schema graph G of the unnormalized database with schema
D, we can proceed to evaluate an aggregate query Q on D
correctly as follows:

First, we identify the matches of each basic term in the
unnormalized database. Let R be the relation in D such
that a basic term t matches the relation name of R, or the
name of an attribute in R, or the value of some tuples in R.
We obtain the corresponding relations of R in D′ based on
the mappings from D to D′.

Next, we utilize the relations in D′ to generate the query
patterns based on G, and annotate these patterns with the
operators in the query as described in Section 3. Note that
the generated query patterns are based on the normalized
view D′, since G is constructed from D′.

Finally, we translate the annotated query patterns into
SQL statements to be executed over the original unnormal-
ized database. This requires us to map the relations in D′

back to their corresponding relations in D. Depending on
the mappings, a relation R′ that corresponds to a node in
the query pattern may become a subquery in SQL.

Example 9. Consider query Q4 = {Green George COUNT
Code} on the unnormalized database in Figure 8. The terms
Green and George match the Sname attribute values of some
tuples in the Enrolment relation, while the term Code matches
the name of an attribute in Enrolment.

Based on Table 1(a), these matches correspond to 2 Student′

relations and 1 Course′ relation in the normalized view of
the database respectively, indicating that Green and George
refer to two student objects, while Code refers to a course
object. Based on the ORM schema graph in Figure 9, we
generate a query pattern that connects 2 Student’ nodes and
1 Course’ node via 2 Enrol’ nodes, and annotate it with op-
erators COUNT and GROUPBY.

Figure 10 shows the query pattern obtained. It depicts the
query interpretation to find the total number of courses taken
by the student George and each student called Green. We use
the mappings in Table 1(b) to translate the query pattern and
obtain an SQL statement with 5 subqueries, namely, 2 sub-
queries for Student′ relation, 2 subqueries for Enrol′ rela-
tion, and 1 subquery for Course′ relation in the normalized
view of the database.

Course'
COUNT(Code)

Enrol'

Enrol'

Student'
Sname=Green
GROUPBY(Sid)

Student'
Sname=George

Figure 10: Query pattern in Example 9

SELECT S1’.Sid, COUNT(C’.Code) AS numCode FROM

(SELECT DISTINCT Code, Title, Credit FROM Enrolment) C’,

(SELECT Sid, Code, Grade FROM Enrolment) E1’,

(SELECT DISTINCT Sid, Sname, Age FROM Enrolment) S1’,

(SELECT Sid, Code, Grade FROM Enrolment) E2’,

(SELECT DISTINCT Sid, Sname, Age FROM Enrolment) S2’

WHERE C’.Code=E1’.Code AND C’.Code=E2’.Code

AND S1’.Sid=E1’.Sid AND S1’.Sname contains ‘Green’

AND S2’.Sid=E2’.Sid AND S2’.Sname contains ‘George’

GROUP BY S1’.Sid 2

4.1 Query Rewriting
The generated SQL statement may contain a lot of sub-

queries since the mapping from a relation R′ ∈ D′ to a
relation R ∈ D for a node in P often involves a subset of the
attributes of R. Joining relations obtained from subqueries
is time consuming due to the lack of indexes. Hence, it is
crucial to rewrite the SQL to improve query performance.

We observe that some attributes in the SELECT clause of
subqueries are never used, and can be removed. In Example
9, we can rewrite the subquery “SELECT DISTINCT Code,
Title, Credit FROM Enrolment” to “SELECT DISTINCT Code
FROM Enrolment”, since Title and Credit are not used.

Further, some select conditions in the SQL statement can
be moved to the WHERE clause of subqueries so that tu-
ples can be filtered out before the join, e.g., we can rewrite
the subquery “SELECT DISTINCT Sid, Sname, Age FROM
Enrolment” to “SELECT DISTINCT Sid, Sname, Age FROM
Enrolment WHERE Sname contains ‘Green’” to filter out the
students whose names are not Green.

Finally, relations are unnormalized to reduce the num-
ber of joins. We can try to use the unnormalized rela-
tion to replace the joining of relations obtained from sub-
queries. For example, the Enrolment relation is equiva-
lent to the joins of relations obtained from the subqueries
“SELECT DISTINCT Code, Title, Credit FROM Enrolment”,
“SELECT Sid, Code, Grade FROM Enrolment”, and “SELECT
DISTINCT Sid, Sname, Age FROM Enrolment”. Hence, we
can use the Enrolment relation to replace these subqueries.

Based on the above observations, We derive the following
heuristics to rewrite an SQL statement sql for the unnor-
malized database:

Rule 1: If a subquery projects an attribute that does not
appear in the SELECT and WHERE clause of sql, then
remove this attribute.

Rule 2: If a subquery projects an attribute a that appears
in the condition “a contains t” of sql, then put this condition
in the WHERE clause of the subquery.

Rule 3: Let s1, s2, · · · , sm be a set of subqueries in sql. If
there exists a relation R such that s1 ./ s2 ./ · · · ./ sm =
ΠL(R), where L is a superkey of R, then replace s1 ./ s2 ./
· · · ./ sm with R.
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Example 10. Consider the SQL statement in Example 9.
Since the joins of the subqueries “SELECT DISTINCT Code,
Title, Credit FROM Enrolment”, “SELECT Sid, Code, Grade
FROM Enrolment”, and “SELECT DISTINCT Sid, Sname, Age
FROM Enrolment” is equivalent to the Enrolment relation,
we replace C′ ./ E1′ ./ S1′ by the Enrolment relation.
Further, we see that the joins of the subqueries “SELECT
Sid, Code, Grade FROM Enrolment” and “SELECT DISTINCT
Sid, Sname, Age FROM Enrolment” is equivalent to a relation
obtained by projecting a super key (Sid, Code, T itle, Credit,
and Grade) of the Enrolment relation. Hence, we can also
replace E2′ ./ S2′ by the Enrolment relation, and obtain:

SELECT R1.Sid, COUNT(R1.Code) AS numCode

FROM Enrolment R1, Enrolment R2

WHERE R1.Code=R2.Code AND R1.Sname contains ‘Green’

AND R2.Sname contains ‘George’

GROUP BY R1.Sid 2

5. ALGORITHMS
Algorithm 1 generates a normalized view D′ of the database

schema D, if D is not normalized. For each relation R in
D, if R is in 3NF, we add it into D′ directly, otherwise we
normalize R into a set of 3NF relations and add them into
D′. After checking the relations in D, we enumerate each
pair of relations R′

1 and R′
2 in D′. If R′

1 and R′
2 have the

same key, then we merge them into a single relation R′.
After generating the database schema D and the normal-

ized view D′, we obtain the mappings between D and D′.
We call Algorithm 2 to process a keyword query Q and gen-
erate SQL statements. If the schema D is normalized, we
construct the ORM schema graph G based on D. For each
basic term t in Q, we find its matches in the database and
create a tag for each of the matches to capture the inter-
pretation of t. We insert these tags into a tag set taglist
(Lines 4-7). Based on taglist and G, we generate a list of
query patterns ptnlist as described in [15], and annotate
these patterns with the operators in Q (Lines 8-9). Then we
translate each pattern P in ptnlist into an SQL statement
sql according to D, and insert it into sqllist (Lines 10-12).

If the schema D is unnormalized, we construct the ORM
schema graph G based on D′. For each basic term t, we
create tags for t based on the matches in D and the mappings
in D′. We generate a list of query patterns ptnlist based on
the tags and the ORM schema graph, and annotate each
pattern P in ptnlist with the operators. Then we translate
each pattern P into an SQL statement sql based on D′,
and map the relations of D′ back to the relations of D in
sql. Finally, we rewrite sql to sql′ to reduce the number of
subqueries and insert sql′ into sqllist (Lines 14-26).

Algorithm 3 annotates the query patterns. For each pat-
tern P in ptnlist, we annotate P with operators. For each
operator t in Q, let t′ be the next term of t in Q. If t′ is a
basic term, we check its matches in D. Let u be a node in
P and R be the relation of u. If t′ matches the name of R,
then we annotate u with t(R.key); otherwise if t′ matches an
attribute a of R, we annotate u with t(R.a). If t′ is also an
operator, then we annotate pattern P with t(t′) to indicate
that t is a nested aggregate function (Lines 3-12). Next, we
check the annotated nodes in the patterns. For each pat-
tern P in ptnlist, we create a set S and add P into S. For
each object/mixed node u in P , if u is annotated with the
condition a = t, we find a set of tuples T that satisfy this

Algorithm 1: NormalizeDB

Input: database schema D
Output: normalized view D′

1 D′ ← ∅;
2 foreach relation R in D do
3 if R is in 3NF then
4 Add R into D′;
5 else
6 Normalize R into a set of 3NF relations F ;
7 foreach relation R′ in F do
8 Add R′ into D′;
9 foreach pair of relations R′

1 and R′
2 in D′ do

10 if R′
1.key = R′

2.key then
11 Merge R′

1 and R′
2 into R′;

12 return D′;

Algorithm 2: Keyword Search

Input: Query Q, database schema D, normalized view D′

Output: a list of SQL statements sqllist
1 sqllist← ∅; ptnlist← ∅; taglist← ∅;
2 if D is normalized then
3 G = createORMGraph(D);
4 foreach basic term t in Q do
5 matches = findMatch(t, D);
6 tagset = createTag(matches, G);
7 Insert tagset into taglist;
8 ptnlist = createPattern(taglist, G);
9 ptnlist = annotatePattern(Q, ptnlist);

10 foreach Pattern P in ptnlist do
11 sql = translate(P , D);
12 Insert sql into sqllist;

13 else
14 G = createORMGraph(D′);
15 foreach basic term t in Q do
16 matches = findMatch(t, D);
17 Map matches of D into matches′ of D′;
18 tagset = createTag(matches′, G);
19 Insert tagset into taglist;
20 ptnlist = createPattern(taglist, G);
21 ptnlist = annotatePattern(Q, ptnlist);
22 foreach Pattern P in ptnlist do
23 sql = translate(P , D′);
24 Map the relations of D′ to the relations of D in sql;
25 sql′ = rewrite(sql);
26 Insert sql′ into sqllist;
27 return sqllist;

condition in the relation of u. If T contains more than one
tuple, we generate new copies of patterns in S to distinguish
the objects that satisfy the same condition. For each pat-
tern P in S, we create a copy P ′ of P , annotate node u in
P ′ with GROUPBY(R.key), and add P ′ into S. Finally, we
add the patterns in S into the list aptnlist (Lines 13-24).

6. PERFORMANCE STUDY
In this section, we evaluate the performance of our ap-

proach to process keyword queries involving aggregates and
GROUPBY. We implement the algorithms in Java and carry
out experiments on a 3.40 GHz CPU with 8 GB RAM.
We use the relational databases TPC-H (TPCH) and ACM
Digital Library publication (ACMDL). Table 2 shows the
schemas of these databases. Tables 3 and 4 show the queries
we constructed for each database and the corresponding de-
scriptions (or search intentions).
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Algorithm 3: Annotate Pattern

Input: query Q and a list of patterns ptnlist
Output: a list of annotated patterns aptnlist

1 aptnlistist← ∅;
2 foreach Pattern P in ptnlist do
3 foreach operator t in Q do
4 Let t′ be the next term of t in Q;
5 if t′ is a basic term then
6 Let u be a node in P and R be the relation of u;
7 if t′ matches the name of R then
8 Annotate u with t(R.key);
9 else if t′ matches an attribute a in R then

10 Annotate u with t(R.a);
11 else if t′ is an operator then
12 Annotate P with t(t′);
13 foreach Pattern P in ptnlist do
14 S = {P};
15 foreach Object/Mixed node u in P do
16 if u is annotated with condition a = t then
17 Let R be the relation of u and T be the tuples

satisfying a = t in R;
18 if |T | > 1 then
19 foreach Pattern P in S do
20 Create a copy P ′ of P ;
21 Annotate u in P ′ with

GROUPBY(R.key);
22 Add P ′ into S;
23 Add the patterns in S into aptnlistist;

24 return aptnlistist;

6.1 Effectiveness Experiments
Our approach utilizes the ORM schema graph to capture

the ORA semantics in the database, and generates a list
of annotated query patterns from the ORM schema graph
to represent the various interpretations of a keyword query.
Based on these patterns, we distinguish the objects with the
same value and detect duplicate objects in relationships in
order to compute the answers correctly.

We compare our approach with SQAK [13], the state-of-
the-art relational keyword search engine that processes ag-
gregate queries without considering the ORA semantics.

SQAK takes an aggregate query and finds a set of relations
that are matched by query terms. A relation is matched if
a term matches the name of the relation, or the name of
one of its attributes, or the relation tuples. Based on these
relations, it generates a set of minimal connected graphs
called simple query networks (SQN). The SQNs are used to
generate the SQL statements to return the answers.

6.1.1 Results for TPCH Database
We use the generated SQL statements that best match

the query descriptions in Table 3 to compute the query an-
swers. Table 5 shows the results returned by SQAK and
our approach, as well as explanations for these answers. Al-
though both SQAK and our approach give the same answer
for queries T1 and T2, they differ greatly for the rest.

Queries T3 and T4 show that our approach is able to
distinguish the various interpretations of query terms that
match objects with the same value. For query T3, our ap-
proach returns the number of orders for each “royal olive”
part, while SQAK returns the number of orders for all the
“royal olive” parts. This is because we differentiate parts
with the same name by their object identifiers partkey. Sim-
ilarly, for T4, our approach returns the maximum account

Table 2: Database schemas
TPCH
Part(partkey, pname, type, size, retailprice)
Supplier(suppkey, sname, nationkey, acctbal)
Lineitem(partkey, suppkey, orderkey, quantity)
Order(orderkey, custkey, amount, date, priority)
Customer(custkey, cname, nationkey, mktsegment)
Nation(nationkey, nname, regionkey)
Region(regionkey, rname)

ACMDL
Paper(paperid, procid, date, ptitle)
Author(authorid, fname, lname)
Editor(editorid, fname, lname)
Proceeding(procid, acronym, title, date, pages, publisherid)
Publisher(publisherid, code, name)
Write(paperid, authorid)
Edit(editorid, procid)

balance of suppliers for each “yellow tomato” part, whereas
SQAK returns the maximum account balance among all the
suppliers that supply a “yellow tomato”. Note that our ap-
proach can also generate query patterns to compute aggre-
gates without distinguishing objects with the same value.

Queries T5 and T6 show that by examining the relation-
ships and their participating objects, our approach is able to
detect duplicate objects in relationships and generate SQL
statements that compute the aggregates correctly. For query
T5, our approach returns 4 for the number of suppliers that
supply “Indian black chocolate”. SQAK counts the same
suppliers multiple times for different orders and returns 22, a
value that is way above the actual number. Similarly for T6,
our approach detects the duplicates of suppliers for different
orders, and returns the correct number of parts supplied by
each supplier, while SQAK returns incorrect answers.

Queries T7 and T8 demonstrate that our approach can an-
swer aggregate queries that SQAK does not handle. Query
T7 requires an SQL statement that contains 2 aggregate
functions in the SELECT clause. However, SQAK restricts
that the SELECT clause of a generated SQL statement spec-
ifies exactly one aggregate function. Query T8 requires an
SQL statement to join 2 Part relations, but SQAK does not
generate SQL statements that contain self joins of relations.

6.1.2 Results for ACMDL Database
Table 6 shows the answers and explanations for the queries

on the ACMDL database. Query A1 is relatively straightfor-
ward, and both our approach and SQAK return the correct
answer. For A2, SQAK also gives the correct answer be-
cause the term SIGMOD matches a proceeding acronym and
there is no proceedings with the same acronym.

However, for queries A3 and A4, there are 61 editors with
name Smith and 36 authors with name Gill in the database.
Since SQAK does not distinguish the editors and authors
with the same name, it returns incorrect number of pro-
ceedings and the most recent date of papers respectively.

Similarly, for query A5, our approach returns 6 answers
while SQAK only returns 4 answers, as it mixes some papers
with the same title.

Query A6 involves 2 aggregate functions. Queries A6 and
A7 require self joins of two Author relations and two Editor
relations respectively. SQAK is unable to process these
queries, while our approach returns the correct answers.
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Table 3: Queries for TPCH database
# Query Description
T1 order AVG amount Find the average amount of orders
T2 MAX COUNT order GROUPBY nation Find the maximum number of orders among nations
T3 COUNT order “royal olive” Find the number of orders that contains the “royal olive”
T4 supplier MAX acctbal “yellow tomato” Find the maximum balance of suppliers that supply the“yellow tomato”
T5 COUNT supplier “Indian black chocolate” Find the number of suppliers for “Indian black chocolate”
T6 COUNT part GROUPBY supplier Find the number of parts supplied by each supplier

T7
COUNT order SUM amount GROUPBY mktseg-
ment

Find the number of orders and their total amount for each market
segment

T8 COUNT supplier “pink rose”“white rose” Find the number of suppliers for “pink rose” and “white rose”

Table 4: Queries for ACMDL database
# Query Description
A1 proceeding AVG pages Find the average pages of proceedings
A2 COUNT paper GROUPBY proceeding SIGMOD Find the number of papers in each ‘SIGMOD’ proceeding
A3 COUNT proceeding editor Smith Find the number of proceedings edited by ‘Smith’
A4 paper MAX date Gill Find the date of the latest papers written by ‘Gill’
A5 COUNT author “database tuning” Find the number of authors for each “database tuning” paper
A6 COUNT paper MAX date IEEE Find the number of papers published by ‘IEEE’ and most recent date
A7 COUNT paper author John Mary Find the number of papers co-authored by ‘John’ and ‘Mary’
A8 COUNT editor SIGIR CIKM Find the number of editors that edit proceedings ‘SIGIR’ and ‘CIKM’

6.1.3 Queries on Unnormalized Databases
Next, we denormalize the ACMDL and TPCH databases,

and obtain the unnormalized database schemas in Table 7.
We use the queries in Tables 3 and 4 on the unnormalized
databases and compare the results returned by SQAK and
our approach.

Tables 8 and 9 show that our approach continues to return
correct answers to the queries. In contrast, SQAK either re-
turns incorrect answers or does not handle the queries. For
queries T1 and T2, SQAK returns the values 1.78 × 105

and 26485 respectively because the information of orders
are duplicated in the unnormalized relation Ordering. Sim-
ilarly, SQAK returns the answer 637 for A1, and 2000, 408,
14858, etc. (totally 36 answers) for A2, both of which are
incorrect as the information of proceedings and papers are
duplicated in the unnormalized relations EditorProceeding
and PaperAuthor. Note that these queries are answered
correctly by SQAK when the database is normalized.

For queries T3 to T6 and queries A3 to A5, SQAK returns
the incorrect answers for the same reason as discussed in
Section 6.1.1 and Section 6.1.2.

This set of experiments clearly demonstrate that the ORA
semantics are important to distinguish the various interpre-
tations of keyword queries so that the generated SQL state-
ments will compute statistical information correctly.

6.2 Efficiency Experiments
Finally, we compare the time taken by our approach and

SQAK to generate SQL statements. Figure 11 shows the
results for TPCH and ACMDL queries in Tables 3 and 4.

We observe that our approach is slightly slower than SQAK
for most of the queries. This is because SQAK does not an-
alyze the interpretations of keyword queries but only finds
SQNs containing all the query terms. It also does not dis-
tinguish objects with the same attribute value or detect the
duplicate objects in relationships. Besides, it does not con-
sider the duplications arising from unnormalized relations.

Take query A7 for example. We first parse this query
into basic terms (paper, author, John, Mary) and operators
(COUNT). Then, we generate a query pattern with one Paper

Table 7: Unnormalized database schemas
TPCH’
Ordering(partkey, suppkey, orderkey, pname, type, size,

retailprice, sname, nationkey, regionkey, acctbal,
custkey, amount, date, priority, quantity)

Customer(custkey, cname, nationkey, regionkey, mktsegment)
Nation(nationkey, nname)
Region(regionkey, rname)

ACMDL’
PaperAuthor(paperid, authorid, procid, date, title,

fname, lname)
EditorProceeding(editorid, procid, fname, lname,

acronym, title, date, pages, publisherid)
Publisher(publisherid, code, name)

node, two Write nodes and two Author nodes. We annotate
the Paper node with the Count operator, and distinguish
the authors called John and the authors called Mary respec-
tively. Finally, we detect if information of paper and author
objects are duplicated in write relationships, and translate
the patterns into SQL statements. In contrast, SQAK does
not handle the query because both the terms John and Mary
match the values of some tuples in the Author relation.

As the SQL execution time dominates the overall process-
ing time (in seconds), we see that the extra time (in ms)
required by our approach to interpret the keyword queries
and detect the duplicates is a good tradeoff and important
to retrieve correct answers from the databases.

7. RELATED WORK
Existing works on keyword search in relational databases

can be classified into data graph approach and schema graph
approach. In data graph approach, the relational database is
modeled as a graph where each node represents a tuple and
each edge represents a foreign key-key reference. BANKS [8]
defines an answer to a keyword query as a Steiner tree that
contains all the keywords, and proposes a backward expan-
sion search to find the Steiner trees. [9] uses bidirectional
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Table 5: Answers of queries for normalized TPCH database
# SQAK Our Proposed Approach

Answer Explanation Answer Explanation
T1 AVG amount: 1.42× 105 average amount of orders AVG amount: 1.42× 105 average amount of orders

T2
MAX COUNT order:
6568

maximum number of orders
among nations

MAX COUNT order:
6568

maximum number of orders
among nations

T3 1 answer: 229
incorrect answer:
mix all “royal olive” parts

8 answers: 23, 22, 29, 27,
33, 35, 33, 27

number of orders for each “royal
olive” part

T4 1 answer: 9844.00
incorrect answer:
mix all “yellow tomato” parts

13 answers: 6361.20,
9538.15, ..., 7916.56

maximum account balance
of suppliers for each “yellow
tomato” part

T5 COUNT supplier: 22
incorrect answer:
same suppliers are counted
multiple times for various orders

COUNT supplier: 4
number of suppliers that supply
“Indian black chocolate”

T6
1000 answers:
593, 571, 595, 606, ...

incorrect answers:
same parts are counted multiple
times for various orders

1000 answers:
80, 80, 79, 80, ...

number of parts supplied for each
supplier

T7 N.A.
do not handle more than one ag-
gregate

5 answers:
〈2.99× 104, 4.26× 109〉, ...,
〈3.03× 104, 4.33× 109〉

one answer for each market seg-
ment

T8 N.A.
do not handle self joins of rela-
tions

3 answers: 1, 1, 1
number of suppliers that supply
a particular “pink rose” and a
particular “white rose”

Table 6: Answers of queries for normalized ACMDL database
# SQAK Our Proposed Approach

Answer Explanation Answer Explanation
A1 AVG ages: 297 average pages of proceedings AVG ages: 297 average pages of proceedings

A2 36 answers: 84, 84, 82, ...
number of papers for each ‘SIG-
MOD’ proceeding

36 answers: 84, 84, 82, ...
number of papers for each ‘SIG-
MOD’ proceeding

A3 1 answer: 62
incorrect answer:
mix all editors named ‘Smith’

61 answers: 1, 1, 2, ...
number of proceedings edited by
each editor named ‘Smith’

A4 1 answer: 2011-06-13
incorrect answer:
mix all authors named ‘Gill’

36 answers:
1994-05-01, 1998-08-01, ...

most recent date of papers writ-
ten by each author named ‘Gill’

A5 4 answers: 2, 4, 6, 4
incorrect answers:
mix papers with the same title

6 answers: 2, 2, 2, 6, 2, 2
number of authors for each
“database tuning” paper

A6 N.A.
do not handle more than one ag-
gregate

4 answers:
〈4011, 2011-01-25〉, ...

number of papers published by
‘IEEE’ and their most recent
date

A7 N.A.
do not handle self joins of rela-
tions

46 answers: 1, 32, 8, 1, ...
number of papers co-authored by
a particular author ‘John’ and a
particular author ‘Mary’

A8 N.A.
do not handle self joins of rela-
tions

2 answers: 1, 1
number of editors that edit a ‘SI-
GIR’ and a ‘CIKM’ proceeding

Table 8: Query answers on unnormalized TPCH
(Our approach returns the same answer as Table 5)

# SQAK Explanation

T1
AVG amount:
1.78× 105

incorrect answer:
count duplicate orders

T2
MAX COUNT order:
26485

incorrect answer:
count duplicate orders

T3 1 answer: 229

incorrect answers:
The same reason as Table 5

T4 1 answer: 9844.00
T5 COUNT supplier: 22

T6
1000 answers:
593, 571, ...

T7 N.A.
T8 N.A.

expansion to reduce the search space. [4] employs dynamic
programming to identify the top-k minimal group Steiner
trees. [12] finds a subgraph that contains all the keywords
within a given distance to be a query answer, and captures
more information than a Steiner tree.

Table 9: Query answers on unnormalized ACMDL
(Our approach returns the same answer as Table 6)

# SQAK Explanation

A1 AVG ages: 637
incorrect answers:
count duplicate proceedings

A2
36 answers:
2000, 408, 14858, ...

incorrect answers:
count duplicate papers

A3 1 answer: 62

incorrect answers:
The same reason as Table 6

A4 1 answer: 2011-06-13

A5
4 answers:
2, 4, 6, 4

A6 N.A.
A7 N.A.
A8 N.A.

In schema graph approach, the database schema is mod-
eled as a graph where each node represents a relation and
each edge represents a foreign key - key constraint. DIS-
COVER [7] proposes a breadth-first traverse on the schema
graph to generate a set of SQL statements. Each SQL joins
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Figure 11: Comparison of the time taken by our approach and SQAK to generate SQL statements

a minimal number of relations and outputs tuples that con-
tain all the keywords. [6] and [10] relax the requirement
that output tuples should contain all the query keywords,
and develop top-k keyword query techniques to improve ef-
ficiency of [7]. [1] exploits the relative positions of keywords
in a query and auxiliary external knowledge to generate SQL
statements that satisfy users’ search intention.

The above works only examine tuples that contain query
keywords and try to link them by foreign key-key references.
[17] studies the problem of aggregate keyword search on a
universal relation. Given a keyword query, it finds a set of
tuples that are grouped by a minimal number of attributes
and contain all the keywords. [11] classifies query keywords
into dimensional and general keywords, and computes sub-
graphs that contain all dimensional keywords and some gen-
eral keywords. These subgraphs are grouped based on di-
mensional keywords to compute the statistical information
of the subgraphs. However, none of these works can answer
queries involving aggregate functions and GROUPBY.

SQAK [13] generates a set of SQL statments from a key-
word query containing reserved keywords to indicate the ag-
gregate functions in SQL statements. But, it does not con-
sider the ORA semantics, and thus returns incorrect answers
as we have highlighted. Moreover, SQAK cannot handle
queries when relations in the database are unnormalized.

8. CONCLUSION
In this paper, we have studied the problem of answer-

ing keyword queries involving aggregates and GROUPBY
on relational databases. Existing work does not consider
the ORA semantics, and thus fails to distinguish objects
with the same attribute value and detect duplications of
objects in relationships. This leads to incorrect computa-
tion of aggregate queries. To avoid these problems, we uti-
lize the ORM schema graph to capture the ORA seman-
tics, and propose a semantic approach to answer aggregate
queries. Given an aggregate query, we generate a set of an-
notated query patterns to represent various interpretations
of the query. Based on these patterns, we distinguish objects
with the same attribute value and detect duplications of ob-
jects in relationships. The top-k ranked patterns are trans-
lated into SQL statements which apply aggregate functions
to compute the statistical information correctly. Further,
we develop a mechanism to detect duplications arising from
unnormalized relations, and extend our approach to handle
aggregate queries on unnormalized databases. Experimen-
tal results demonstrate the our approach returns correct an-
swers to aggregate queries both on normalized and unnor-
malized databases.
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ABSTRACT
The detection of communities in social networks is a chal-
lenging task. A rigorous way to model communities consid-
ers maximal cliques, that is, maximal subgraphs in which
each pair of nodes is connected by an edge. State-of-the-art
strategies for finding maximal cliques in very large networks
decompose the network in blocks and then perform a dis-
tributed computation. These approaches exhibit a trade-off
between efficiency and completeness: decreasing the size of
the blocks has been shown to improve efficiency but some
cliques may remain undetected since high-degree nodes, also
called hubs, may not fit with all their neighborhood into a
small block. In this paper, we present a distributed approach
that, by suitably handling hub nodes, is able to detect maxi-
mal cliques in large networks meeting both completeness and
efficiency. The approach relies on a two-level decomposition
process. The first level aims at recursively identifying and
isolating tractable portions of the network. The second level
further decomposes the tractable portions into small blocks.
We demonstrate that this process is able to correctly de-
tect all maximal cliques, provided that the sparsity of the
network is bounded, as it is the case of real-world social net-
works. An extensive campaign of experiments confirms the
effectiveness, efficiency, and scalability of our solution and
shows that, if hub nodes were neglected, significant cliques
would be undetected.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscella-
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1. INTRODUCTION
The detection of groups of densely connected nodes, usu-

ally called communities, is used to reveal fundamental prop-
erties of networks in a variety of domains such as sociology,
bibliography, and biology [13, 18, 29]. A rigorous way to
model communities considers maximal cliques, that is, max-
imal subgraphs in which any pair of nodes is connected by an
edge. Maximal clique enumeration (MCE) is a paradigmatic
problem in computer science and, due to its known com-
plexity, several solutions have been proposed to deal with
real-world scenarios [6, 14, 16, 33, 34].

When very large networks are involved, state-of-the-art
strategies consist of decomposing the network into blocks
that are independently processed in a distributed and par-
allel environment [8, 10, 14, 20, 31, 36, 38]. A crucial aspect
of this approach is the choice of the size m of the blocks.
Clearly, m is bounded by the dimension of the memory, but
it has been shown that artificially reducing m to values as
low as 1/100 or 1/1000 of the available memory results in
a more efficient computation [8, 9, 10]. On the other hand,
if the size of the blocks is too small, the effectiveness of the
approach is compromised. In fact, consider a node n such
that the graph induced by its neighborhood does not fit into
a block. We call such a node hub. In any block of the de-
composition a portion of the neighborhood of n will be nec-
essarily omitted and, consequently, some maximal cliques
involving n may remain undetected and some non-maximal
cliques could be erroneously found.

Hence, while fixing the size of the blocks, state-of-the-
art decomposition approaches also need to find a trade-off
between efficiency and effectiveness. Even if efficiency is not
an issue, effectiveness can be jeopardized since real-world
social networks often contain nodes whose degree (i.e., the
number of incident edges) is so high that their neighborhood
does not fit into main memory altogether.

Actually, high degree nodes are connatural in scale-free
networks, where the degree distribution of the nodes follows
a power law. This property implies that the number of nodes
with h connections to other nodes decreases exponentially as
h increases and that the set of nodes with arbitrary high de-
gree is not empty [2]. Several works in literature show that
social networks, such as Facebook and Twitter, are scale-
free [12, 35]. It has also been shown that scale-freeness is
exhibited whenever the network has a growth mechanism
based on preferential attachment [3, 11], that is, when new
connections are distributed among nodes according to how
many connections they already have. Hence, as social net-
works grow, this property is expected to be exacerbated.
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In this paper, we address these limitations by proposing
an approach to the problem of maximal clique enumeration
in very large social networks that meets both the require-
ments of completeness and efficiency. The approach lever-
ages on sparsity, another property of real-world networks,
which basically means that the network can have very dense
areas but, overall, nodes and edges are of the same order of
magnitude.

Our solution is based on a two-level decomposition of
the network. The first-level decomposition aims at recur-
sively identifying and isolating tractable portions involving
non-hub nodes only. Intuitively, this operation allows us to
“brake” hub nodes by progressively decreasing their degree.
The second-level decomposition suitably splits tractable por-
tions of the network into small blocks that can be handled
separately. Within a block, we then select the most promis-
ing state-of-the-art algorithm for enumerating its maximal
cliques. A suitable procedure allows us to recognize and fil-
ter out those that are not maximal for the overall network.
We formally show that this process is able to correctly de-
tect all maximal cliques, provided that the sparsity of the
network is bounded, as it is the case of real-world social
networks.

We have performed a large number of experiments over
data from real-world social networks showing that our ap-
proach is effective, efficient, and scalable. The experimenta-
tion confirms that in order to have an efficient computation
it is convenient to choose a relatively small size of the blocks,
which further increases the number of hub nodes. The ex-
periments also confirm that, if hub nodes were neglected,
significant cliques would remain undetected.

Summarizing, the contributions of this paper are the fol-
lowing.

• We propose a distributed approach to maximal clique
enumeration in large social networks based on a novel
decomposition strategy that, by suitably handling
high-degree nodes, is able to progressively identify and
isolate tractable portions of the network;

• We formally prove the correctness and the complete-
ness of the approach;

• We provide experimental evidence of the efficiency and
scalability of our solution and show that, if high-degree
nodes were neglected, significant cliques would be un-
detected.

The rest of the paper is organized as follows. In Section 2
we provide a general overview of our technique. Section 3
describes in depth the two-level decomposition algorithm,
Section 4 describes the computation of the maximal clique
on a single block of the decomposition, and Section 5 pro-
vides the theoretical basis for the whole approach. In Sec-
tion 6 we illustrate our campaign of experiments. Section 7
surveys the related work and Section 8 contains our conclu-
sions.

2. OVERVIEW AND INTUITION
Our approach is based on a decomposition of the input

network in smaller subgraphs called blocks that can par-
tially overlap with each other. As we have discussed in the
Introduction, this requires a careful choice of the size of the
blocks, depending on hardware limitations and performance
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Z
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Y

W U

Figure 1: Feasible nodes (white) and hub nodes
(red) when m = 5.

issues. Whichever the choice, let m be the maximum number
of nodes that can fit in a block. The value of m identifies two
types of nodes in the network: (i) the set Nh of hub nodes
having degree greater or equal than m (i.e., those nodes that
would not fit into a block with all their neighbors) and (ii)
the set Nf of feasible nodes having degree less than m.

Consider, for example, the network in Figure 1 and sup-
pose m = 5. The set Nh consists of the red-coloured nodes
D, S, and E of degree 7, 5, and 5 respectively, whereas Nf

consists of the remaining white nodes.
Now, let Cf be the set of all maximal cliques of G involving

at least one node in Nf and let Ch be the set of all maximal
cliques in the network Gh induced1 by the nodes in Nh.
For example, in the network in Figure 1 we have that Cf

includes the cliques {A, J,H} and {H,F,D}, as they both
involve feasible nodes, while Ch includes the clique {D, S,E},
since Gh consists only of the nodes D, S, E and of the edges
between them.

Our approach is based on the intuition that the set of all
maximal cliques of the network G can be obtained from Cf

and Ch alone. This is confirmed by Lemma 1 in Section 5,
which establishes that the set of the maximal cliques of G
is the union of Cf and the set C′h obtained by filtering out
from Ch any clique that is contained into a clique of Cf .

This result suggests that if we process separately the nodes
in Nf and the nodes in Nh, no clique is left out. We then
obtain an effective decomposition strategy which is also effi-
cient since the neighbors of a feasible node fit into a block of
size m by definition, while the degree of the nodes in the in-
duced graph Gh is strongly reduced since Gh only involves
a limited number of nodes in scale free networks. For in-
stance, in the network of Figure 1, Gh is the cycle {D, S,E}
and its maximum degree is two.

Regarding the computation of the cliques in Cf and Ch

we proceed as follows.

Cf : As in [10], we compute a suitable partition of Nf and
add to each set S of the partition the neighborhood
in G of the nodes in S. The obtained sets of nodes,
together with the edges between them, form the blocks
of the decomposition. Observe that a node (including

1We recall that the subgraph of G = (N,E) induced by a
set of nodes N ′ ⊆ N is the restriction of G to the nodes in
N ′ and the edges between them.
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the hub ones) may be included into several blocks as a
neighbor node, together with a subset of its edges. Dif-
ferently from [10], we allow for blocks of heterogeneous
size and high connectivity that can be processed inde-
pendently in an efficient way. Then, taking advantage
of a decision tree, we apply on each block the most
promising MCE algorithm based on the block charac-
teristics. For instance, if the block is sparse, we find
the maximal cliques with the algorithm in [17], while
if the block is dense we adopt the algorithm described
in [34].

Ch: We apply the whole approach recursively to Gh by
partitioning its nodes Nh into two sets N ′f and N ′h of
feasible and hub nodes, respectively. This is possible
since the degree of the nodes in Nh is strongly reduced.
The recursion produces a sequence of sets N ′f , N ′′f ,
N ′′′f , . . . of decreasing size until there are no more hub
nodes remaining.

In Section 5 we prove that, under the hypothesis that the
input graph is sparse enough, this recursive process con-
verges, in the sense that it ends with a bipartition involving
only tractable nodes. In addition, in Section 6, we report
that in all our experiments on real-world data sets the pro-
cess needed at most a few recursive steps.

Summarizing, our approach consists of the following.

1. First level decomposition: we identify the set Nf

of feasible nodes of G, whose degree is less than m, and
the set Nh of hub nodes of G, whose degree is greater
or equal than m.

2. Recursive call: if Nh is not empty, we build the sub-
graph Gh of G induced by the nodes in Nh and apply
recursively the whole process to Gh.

3. Second level decomposition: given a set of feasible
nodes Nf we compute a set of blocks by partitioning
Nf and by adding to each node of a block its neighbors.

4. Block analysis: we apply a suitable MCE algorithm
to each block generated by the second level decompo-
sition to compute all its maximal cliques. The MCE
algorithm is chosen from a collection of alternatives,
taken from the literature, based on the properties of
the block, as described in Section 4.

5. Filtering: the output is obtained by taking the union
of the maximal cliques computed in step 4 and those
computed in step 2, filtering out redundant cliques.

In the following sections we will describe in more detail the
various steps of this strategy.

3. NETWORK DECOMPOSITION
Algorithm 1 (FIND-MAX-CLIQUES) describes our recursive

procedure for computing maximal cliques. The CUT proce-
dure (line 1) performs the first-level decomposition while the
BLOCKS procedure (line 2) performs the second-level decom-
position. In this section we describe in detail both of them.

Algorithm BLOCK-ANALYSIS (line 5) is discussed in Sec-
tion 4. Procedure induced (line 6) accepts as input a graph
G and a subset Nh of its nodes and computes the subgraph
of G induced by Nh. Procedure filter (line 7) accepts as
input two sets Ch and Cf of cliques and outputs all cliques
in Ch that are not contained into some clique of Cf .

Algorithm 1: FIND-MAX-CLIQUES: Overall algorithm

Input : A graph G = 〈N,E〉 and a block size m.
Output: The set C of the maximal cliques of G.

〈Nf , Nh〉 ← CUT(G,m); /* 1st level decomp. */1

B ← BLOCKS(G, Nf , m); /* 2nd level decomp. */2

Cf ← ∅;3

foreach b ∈ B do4

Cf ← Cf∪ BLOCK-ANALYSIS(b);5

Ch ← FIND-MAX-CLIQUES(induced(G,Nh),m);6

C′h ← filter(Ch, Cf);7

return Cf ∪ C′h;8

3.1 First level decomposition
Algorithm 2 describes the CUT procedure that is respon-

sible of identifying the set Nf of feasible nodes and the set
Nh of hub nodes. This is done by means of the procedure
isfeasible (also called by procedure BLOCKS) that takes as
input a set of nodes, the graph G and the maximum block
size m and checks whether the union of the given nodes and
all their neighborhoods in G has less than m elements. The
set Nh of hub nodes is simply obtained, at line 5, as the
difference between the nodes of G and Nf .

Algorithm 2: CUT: First-level decomposition

Input : A graph G = 〈N,E〉 and a block size m.
Output: The sets Nf and Nh of feasible and hub nodes

of G, respectively.

Nf ← ∅;1

foreach n ∈ N do2

if isfeasible({n},G,m) then3

Nf ← Nf ∪ {n};4

Nh ← N −Nf ;5

return 〈Nf , Nh〉;6

3.2 Second level decomposition
Algorithm 3 describes the BLOCKS procedure, responsible

of decomposing the input graph G into tractable blocks of
maximum size m. The input graph G is assumed to have
maximum degree m − 1. Here, we model blocks similarly
to [10] but allow for blocks of heterogeneous sizes and lever-
age the adjacency of the nodes to put dense subgraphs into
the same block. Hence, this step, in addition to distribut-
ing the computational load into tasks that could be accom-
plished separately in a distributed environment, also pre-
processes the input producing internally homogeneous and
compact chunks.

Blocks are defined sequentially in a greedy way. Each
block will have kernel nodes, border nodes, and visited
nodes. Each node of Nf is kernel node in exactly one block
(i.e., kernel nodes form a partition of Nf ). All the nodes of
G that are adjacent to at least one kernel node of a block B
and that are not kernel nodes of B are divided into border
nodes and visited nodes of B, where visited nodes are those
nodes that have been already used as kernel nodes for some
previously defined block. The block is completed with all
the edges among its nodes, irrespectively of the type.

For instance, consider again the network in Figure 1.
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Figure 2: An example of graph decomposition ob-
tained by focusing on the feasible nodes of the net-
work of Figure 1.

Nodes D, E, and S are identified as hub nodes by proce-
dure FIND-MAX-CLIQUES and will be processed in a subse-
quent recursive call of the same procedure. Figure 2 shows
a possible decomposition of the network in eleven blocks ob-
tained by focusing on the remaining non-hub nodes. In the
figure kernel nodes are white, border nodes are green and vis-
ited nodes are double-marked. Note that all feasible nodes
(white-filled in Figure 1) occur in exactly one block as ker-
nel nodes (white-filled in Figure 2). Also, observe that each
block of Figure 2 includes all the neighborhood of the kernel
nodes. However, the hub nodes (D,E, and S) never occur
as kernel nodes in any block. Instead, their neighborhood
has been distributed among the various blocks. Finally, note
that every maximal clique occurs in at least one block: this
is an important property that allows us to independently
process each block. If a maximal clique occurs in more than
one block, only the occurrence without visited nodes will be
considered. This is the case, for instance, for the maximal
clique {H,F, D} that is detected both when processing B1
and when processing B2, but is discarded in the latter case
since it contains a visited node.

We start to build a block B by picking a node n from Nf

(line 4 of Algorithm 3) and adding it to the set K of kernel
nodes of B (line 8). We then build: (i) the set V of visited
nodes (line 9), composed of neighbors of nodes in K that are
already used as kernel nodes in a previously defined block
(we maintain these latter nodes in K̄, which is updated at
line 7), and (ii) the set H of border nodes (line 10), composed
of neighbors of K that are not yet visited. Then we proceed
by selecting one node of Nf that is a border node of B
and transforming it into a kernel node of B (line 10). In
order to produce blocks that correspond to dense graphs,
we order the candidate border nodes based on the number
of their adjacency with kernel nodes, and we stop either if
we exceed the limit m by adding further nodes (line 5) or if
all candidate border nodes have a number of adjacency with
kernel nodes below a specified threshold.

4. MAXIMAL CLIQUES COMPUTATION
In order to find all maximal cliques in a block of the de-

composition, we rely on a framework that leverages on a
collection of algorithms taken from the literature with the
goal of improving the overall performance of the computa-
tion.

The MCE problem has been subject of extensive study
since the early 70’s [6, 8, 10, 17, 21, 23, 34]. None of the

Algorithm 3: BLOCKS: Second-level decomposition

Input : A graph G = 〈N,E〉, a set Nf of feasible
nodes, and a block size m.

Output: A set of blocks B.

K̄ ← ∅; B ← ∅;1

while Nf 6= ∅ do2

K,H, V ← ∅;3

n← select(Nf);4

while isfeasible(K ∪ {n},G,m) do5

Nf ← Nf − {n};6

K̄ ← K̄ ∪ {n};7

K ← K ∪ {n};8

V ← N(n) ∩ K̄;9

H ← N(n)− V ;10

n← select(Nf ∩H);11

B ← B ∪ induced(G, K ∪H ∪ V );12

return B;13

available algorithms outperforms the others in every pos-
sible instance of the problem. However, some approaches
tend to excel on graphs having specific properties. For ex-
ample Eppstein et al. [17] propose an algorithm that runs in
near-optimal time on graphs having small degeneracy2. On
the contrary, this algorithm does not perform well on dense
graphs where the degeneracy tends to be higher. On these
graphs, the algorithm proposed by Tomita et al. [34] tends
to be more efficient.

Our approach attempts at predicting, for each block, the
best-fit among the available MCE algorithms, that is the
one that achieves the best performance on it. The intuition
behind this approach is that large heterogeneous networks
yield blocks with very different characteristics, so that any
algorithm would be suboptimal in a non-negligible portion
of the blocks.

In order to efficiently predict the best-fit algorithm for a
block, we first identified a set of easy-to-compute parame-
ters to describe the block properties. Second, we selected a
set of supporting data-structure and state-of-the-art MCE
algorithms. Third, we measured the performance of each
combination of data-structure/algorithm on a collection of
heterogeneous graphs. Finally, we used the results as a train-
ing set to produce a decision tree aimed at selecting the best
combination for a given block.

The parameters we used to classify blocks are the follow-
ing: (a) number of nodes; (b) number of edges; (c) density;
(d) degeneracy; and (e) the maximum value d∗ for which
the graph has at least d∗ nodes with degree greater or equal
than d∗. Parameter d∗ can be computed in linear time and,
intuitively, provides an estimate of the size of the densest
portion of the graph, which we expect to dominate the per-
formance of a search algorithm.

We considered three different data structures to represent
the graph: adjacency matrices, bitsets, and adjacency lists
(the latter including the inverted-table structure described
in [17]).

As for the MCE algorithms, we implemented the follow-
ing:

• BKPivot: one of the original algorithms proposed by

2See Section 5 for a formal definition of degeneracy.
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Algorithm Matrix Lists BitSets
BKPivot [6] 7 0 2
Tomita [34] 5 3 12
Eppstein [17] 0 2 0

XPivot 7 12 0

Table 1: Performance of the MCE algorithms.

Bron and Kerbosch [6]. It uses a pivot to avoid redun-
dant recursive calls. The node of highest degree in the
candidate set P is chosen as the pivot.

• Tomita: a variation of BKPivot by Tomita et al. [34].
It uses as pivot the node u that maximizes the size of
N(u)∩P , where N(u) denotes the neighborhood of u.

• Eppstein: the algorithm by Eppstein and Strash [17].
It is based on a degeneracy ordering of the nodes to
achieve a better complexity on sparse graphs.

• XPivot: a variation of BKPivot proposed by us. Like
Tomita, it chooses the node that maximizes the size
of N(u) ∪ P , but the node u is chosen from the set of
already visited nodes.

In Table 1 we show a performance comparison of the data-
structure/algorithm combinations described above on a col-
lection of 50 graphs, both synthetic (generated according
to the models of Erdös-Renyi, Barabási-Albert and Watts-
Strogatz models [2]) and real-world (taken from the SNAP
project [22]). In particular, the table shows how many times
a specific combination resulted the best performing among
all the alternatives. It is apparent that no algorithm out-
performs all the others in all cases.

Table 2 shows the maximum and minimum values of the
adopted parameters in the collection and confirms that the
graphs have heterogeneous properties.

Metric Min value Max value
nodes 50 685230
edges 199 6649470
density 0.00027 0.89

degeneracy 10 266
d∗ 15 713

Table 2: Ranges of adopted parameters for the cho-
sen graphs.

We divided the graph collection in training and testing set
with an 80/20 ratio. We then used the training set and the
above parameters to generate the decision tree in Figure 3,
launching the recursive partitioning algorithm in [32]. Each
internal node of the tree contains a predicate on the param-
eters and has two children, associated with the predicate be-
ing true or false on the current block. Each leaf of the deci-
sion tree contains a data-structure/algorithm combination.
Traversing the tree from the root to a leaf according to the
values of the predicates yields the data-structure/algorithm
combination that is the best-fit for the block.

The testing set was used to evaluate the effectiveness of
this approach. Figure 4 shows the total time taken by our
approach to process the testing set and the five best per-
forming combinations. Note that the use of the decision

degeneracy > 25

#nodes < 8558 [Matrix / XPivot]

falsetrue

degeneracy > 52

[BitSets / Tomita] [Matrix / BKPivot]

falsetrue

true

[Lists / XPivot]

false

Figure 3: The decision tree for selecting the most
suitable MCE algorithm.
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Figure 4: Times to compute cliques with or without
a decision tree.

tree achieves better performance than any other algorithm
taken singularly.

Algorithm 4 describes in detail the BLOCK-ANALYSIS pro-
cedure that computes all maximal cliques of the block given
as input.

First, a suitable MCE procedure is identified by using the
decision tree described above (line 1).

As described in Section 3.2, the purpose of Algorithm 4
is to find all maximal cliques that have at least one node in
K, but no node in the set V of visited nodes of the input
block. In line 3 we initialize V̄ with V . For each node k
in the set K of kernel nodes of the input block, Algorithm
MCE(k, P, V̄ ) enumerates all maximal cliques that contain k
and no node in V̄ as long as all the neighbors of k are in
P ∪ V̄ . One can observe that all neighbors of k are either
in the set H of border nodes of the input block, or in K
or in V̄ . Therefore, procedure BLOCK-ANALYSIS detects all
maximal cliques containing a node of K and no node in V .
Finally, after k is visited, it is added to V̄ since all cliques
containing k have been found.

5. THEORETICAL BASIS
In this section we prove under what conditions our ap-

proach is correct and complete. Namely, Lemma 1 proves
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Algorithm 4: BLOCK-ANALYSIS: Clique detection

Input : A block 〈N = K ∪H ∪ V,E〉.
Output: The maximal cliques C of B that have at least

one node in K, but no node in V .

MCE← bestfit(B);1

P ← K ∪H;2

V̄ ← V ;3

foreach k ∈ K do4

Nk ← N(k) ∩ P ;5

C ← C ∪ MCE(k, P ∩Nk, V̄ ∩Nk);6

P ← P − {k};7

V̄ ← V̄ ∪ {k};8

return C;9

that FIND-MAX-CLIQUES (Algorithm 1 in Section 3) actually
computes all maximal cliques of the input network. Theo-
rem 1, instead, shows that FIND-MAX-CLIQUES terminates its
recursive calls whenever the input network is sparse.

Sparsity is a well known property of social networks and
can be formally measured in terms of their low degener-
acy [35]. The degeneracy of a network, also called coreness,
is the highest value d for which the network contains a d-
core3. Hence, a network with a low degeneracy is inherently
sparse. The degeneracy of a network can be easily com-
puted, even in a distributed environment (see, e.g., [4]), and
it is usually much lower than the maximum degree of the
network. Indeed, real-world social networks have low de-
generacy [35].

Lemma 1. Let N1 and N2 be any bipartition of the nodes
of a graph G. Let C1 be the set of the maximal cliques of G
containing at least one node of N1 and let C2 be the set of
maximal cliques of the subgraph of G induced by the nodes in
N2. The set of the maximal cliques of G is the union of C1

and the set C′2 obtained by filtering out from C2 any clique
that is contained into a clique of C1.

Proof. Let K be a maximal clique of the network. We
show that K is in C1 ∪ C′2. We have two cases: (i) at least
one node of K is in N1 or (ii) all nodes of K are in N2. In
the first case K belongs to C1 and, hence, it is also in the
union of C1 and C′2. In the second case K is in C2 and, since
by hypothesis K is maximal, it is also in C′2, and hence in
the union of C1 and C′2.

Conversely, let K be a clique in the union of C1 and C′2.
We show that K is a maximal clique. Suppose, for a con-
tradiction, that K′ is a clique containing K and having a
vertex v in addition to the vertices of K. One of the follow-
ing three cases applies: (a) at least one node of K belongs
to N1; (b) all nodes of K belong to N2 and v also belongs
to N2; or (c) all nodes of K belong to N2 and v belongs to
N1. In Case (a), both K and K′ belong to C1, contradicting
the hypothesis that C1 is composed of maximal cliques. In
Case (b), both K and K′ belong to C2, contradicting the
hypothesis that C2 is composed of maximal cliques. Finally,
in Case (c), K belongs to C2 while K′ belongs to C1. How-
ever, since K is contained into K′, K does not belong to C′2,
contradicting the hypothesis that K belongs to the union of
C1 and C′2.

3The d-core of a graph is obtained by recursively removing
nodes with degree less than d.

v1 v2 v3 v4 v5 v6 v7 v8

H5

. . .

Figure 5: The construction for m = 4 of graph Hn

used to prove Statement 2 of Theorem 1.

The following theorem shows that, if the network is sparse,
the recursive algorithm FIND-MAX-CLIQUES converges, in the
sense that it ends with a bipartition involving only tractable
nodes.

Theorem 1. Let G be a graph and let Gi, with i =
1, 2, 3 . . . be a sequence of subgraphs of G such that G1 = G
and Gi, for i > 1 is the graph induced by the nodes of Gi−1

of degree greater or equal than m. Let the degeneracy d of
G be strictly less than m + 1.

1. There is a value q such that all Gj, with j ≥ q, are
empty graphs.

2. There exists a graph with n nodes for which q is Ω(n).

Proof. Statement 1 is proved by observing that graphs
Gi, with i > 1, are obtained from G by iteratively removing
nodes of degree less or equal than m. For i large enough,
such iterative removal coincides with a recursive removal
and, hence, leads by definition to the (m + 1)-core of G,
which is the empty graph since d < m + 1.

Statement 2 is proved by producing a graph Hn with n
nodes and whose degeneracy is d < m+1 such that q ∈ Ω(n),
as follows. Start from H1 composed of the isolated node v1
and, for j = 2, 3, . . . , n, obtain Hj by adding a node vj to
Hj−1. For j ≤ m + 1 connect vj to all previously inserted
nodes, so that, Hj , with j ≤ m + 1, is a complete graph on
the first j nodes (see Figure 5 where m = 4). For j > m+ 1
connect vj to the previous m nodes that have lower degree.
It is easy to check that:

(a) vj has degree m in Hj , for any j > m+1. For example,
in Figure 5 node v6 has degree 4 in H6.

(b) vj−1 has degree m + 1 in Hj , for any j > m + 2. For
example, in Figure 5 node v6 has degree 5 in H7.

(c) v1, v2, . . . , vj−2 have degree greater than m in Hj , for
any j > m + 3. For example, in Figure 5 nodes
v1, v2, . . . , v6 have degree greater than 4 in H8.

Therefore, for j > m+3, the three conditions (a),(b), and (c)
hold and the removal of all nodes of degree less or equal than
m from Hj only removes vj , yielding Hj−1. This implies
that: (i) recursively removing all nodes of degree less or
equal than m from Hn yields the empty graph, i.e., the
degeneracy of Hn is less than m + 1 and (ii) Ω(n) removals
are needed to obtain the empty graph from Hn.
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Network # of nodes # of edges Maximum degree
twitter1 2,919,613 12,887,063 39,753
twitter2 6,072,441 117,185,083 338,313
twitter3 17,069,982 476,553,560 2,081,112
facebook 4,601,952 87,610,993 2,621,960
google+ 6,308,731 81,700,035 1,098,000

Table 3: The data sets used in the experimentation.

Theorem 1 proves that, in order to guarantee that all max-
imal cliques are detected, FIND-MAX-CLIQUES only requires
that m is chosen to be greater than d − 1, where d is the
degeneracy of the network (Section 6 shows how to pick
a good value for m). We remark that, although the very
special graph described in the proof of Theorem 1 requires
Ω(n) recursive steps, in all our experiments with real-world
data sets the process needed at most a few of them (see
Section 6).

6. EXPERIMENTAL RESULTS
We implemented our approach for maximal clique enu-

meration into a C++ system using OpenMPI v1.8 library.
This section reports the results of the experimentation of
the system.

6.1 Benchmark Environment
We deployed our system on a 10-nodes time-shared clus-

ter, where each machine is equipped with 8 GB DDR3 RAM,
4 CPUs 2.67 GHz Intel Xeon with 4 cores and 8 threads,
running Scientific Linux 5.7, with the TORQUE Resource
Manager process scheduler. The system is provided with the
Lustre file system v2.1. The performance of our system has
been measured with respect to data loading (i.e., decomposi-
tion), and all maximal cliques computation time (i.e., block
analysis).

For our experiments we used some of the largest avail-
able social networks (see Table 3) taken from SNAP [22]
and from the Koblenz Konect repositories4. In particular
we considered three portions of the “follower network” of
Twitter (labeled twitter1, twitter2 and twitter3 in Ta-
ble 3), the friendship network of Facebook enriched with
posts to user’s wall (labeled facebook), and “circles” data
from Google+ (labeled google+). All these data sets are
scale-free networks and provide a significant number of hub
nodes. Figure 6 shows a truncated degree distribution of all
considered data sets: as discussed in the Introduction, all
networks follow a power law for which most of the nodes
(i.e. 91% of the total, on average) provide a degree included
in the range [1, 20]. Nevertheless, on average, in each data
set the amount of possible hub nodes (i.e. they provide the
maximum degree) represents the 3% of the total set of nodes.

6.2 Network Decomposition
We distributed the input data set among the ten machines

of our cluster: each data set is locally split into files whose
records contain triples in the format 〈n1, e, n2〉, where n1

and n2 are the labels of the nodes and e is the label of the
edge between them. To speed-up the process we encoded
node and edge labels with hashes.

4Available at http://konect.uni-koblenz.de/downloads/
\#rdf
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Figure 6: Truncated degree distribution of data sets.

On each data set we ran Algorithm FIND-MAX-CLIQUES

three times on each machine and measured the average time
used to produce the blocks (including the I/O time). Fig-
ure 7 shows for each data set the average time to perform
the two-level decomposition with respect to the ratio m/d,
where m is the maximum number of nodes in a block and d is
the maximum node degree. In the experiment we considered
five ratios (i.e. 0.9, 0.7, 0.5, 0.3, and 0.1) obtained by de-
creasing m. As the block size limit decreases, the number of
blocks increases and consequently it increases also the time
to perform the decomposition. It also causes the increase
of the number of hub nodes as well as the increase of the
number of maximal cliques involving hubs (see Section 6.3).

We remark that for m/d ∈ {0.5, 0.9} all data sets re-
quired two iterations of the first-level decomposition, while
for m/d ∈ {0.1, 0.3} all data sets were decomposed after
three iterations. This confirms what formally enunciated in
Theorem 1. The results in Figure 7 confirm the feasibility
of the approach.
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Figure 7: Times to compute the decomposition.

6.3 Clique computation
For evaluating the computation times of our approach we

ran Algorithm BLOCK-ANALYSIS three times on all blocks and
measured the average overall time (including the I/O time).
Figure 8 shows the average response time in seconds to com-
pute all maximal cliques with respect to the values 0.9, 0.7,
0.5, 0.3, and 0.1 for m/d. All times refer to a serial pro-
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Figure 8: Times to compute all maximal cliques.

cessing (i.e., they do not account for the speed-up due to
simultaneous computations on distributed platforms).

Efficiency. Our experiments confirm that the running
times benefit from relatively small values of m. The fact that
the overall performance is improved when smaller blocks are
involved is likely due to the efficiency of the clique detec-
tion algorithms on small instances. Hence, it can be argued
that the decomposition phase is playing the role of a pre-
processing step for the MCE problem, producing blocks that
can be regarded as approximate solutions to be refined by
an exact MCE algorithm.

For small values of m/d (i.e., 0.3 and 0.1) we have many
blocks and the performance of the entire process are affected
by an increasing overlap among the neighborhood of each
block and an increasing communication overhead among the
machines of the cluster. As shown in Figure 8, the value
m/d = 0.5 is a common “saddle point” for all data sets.

Effectiveness. Figure 9.(a) and Figure 10.(a) show the
number of cliques computed with respect to the same five
ratios used above and Figure 9.(b) and Figure 10.(b) show
the average size of the cliques. In all the figures, white bars
denote maximal cliques computed from the blocks built from
the feasible nodes, while gray bars refer to maximal cliques
computed from the blocks built from the hub nodes. Fig-
ure 9.(a) and Figure 10.(a) clearly show the contribution of
our approach: in all the experiments we had a non-negligible
number of maximal cliques involving hub nodes only, that
could be omitted or could induce the erroneous detection of
non-maximal cliques if the techniques described in this pa-
per were not adopted. In particular, as the ratio between
the block size and the maximum node degree decreases, the
portion of maximal cliques involving only hub nodes is sig-
nificantly increased (i.e. reducing m artificially increases the
number of hub nodes).

Figure 9.(b) and Figure 10.(b) focus on the size of the
produced cliques. It turns out that the sizes of the cliques
involving only hub nodes are comparable with (and, in aver-
age, greater than) the sizes of the cliques involving feasible
nodes. This is more apparent when the ratio m/d is smaller

(i.e., 0.3 and 0.1). Furthermore, observe that the cliques
involving only hub nodes are comparable in size with the
biggest cliques contained in the network. Hence, even when
the cliques computed on the hub nodes are a small percent-
age, they are among the most significant when their size is
considered.

In order to better estimate how much significant are the
maximal cliques composed exclusively of hub nodes, we fo-
cused on the 200 largest maximal cliques. Figure 11 shows
the percentage of maximal cliques computed on the feasi-
ble nodes and the percentage of maximal cliques computed
on the hub nodes (with respect to the same five values
of m/d used for Figures 9 and 10). The percentage of
maximal cliques computed on the hub nodes grows signif-
icantly around the value 0.5m/d. In particular, for values
of m/d ∈ [0.1, 0.5], the percentage of maximal cliques com-
puted on hub nodes is between 20% and 80% for all data
sets. This confirms that decreasing the block size for boost-
ing efficiency has a dramatic impact on the number of sig-
nificant maximal cliques that would be lost if the techniques
described in this paper were not adopted.

7. RELATED WORK
Despite a long research history, the MCE problem has re-

cently re-emerged as one of the key research topics of graph
mining. Due to the NP-completeness of the problem, tradi-
tional algorithms for enumerating maximal cliques rely on
pruning techniques in order to reduce the search space and
speed up the execution [27, 33]. With the increasing dimen-
sion of nowadays social networks such algorithms are not
satisfactory anymore because the size of the input network
often exceeds the available memory.

To address this issue, new approaches have been intro-
duced [8, 10, 30, 36, 38, 7]. They usually rely on a decompo-
sition phase that splits the graph into (partially overlapping)
blocks and on distributed computation on the independent
blocks to detect all the maximal cliques therein.
ExtMCE [8, 38] is the first algorithm that handles graphs

that do not fit into main memory. It starts the search
for maximal cliques from a sub-portion of the whole graph,
called H*-graph. However, ExtMCE works under the assump-
tion that the H*-graph fits into main memory, which may
be again too restrictive with real-world networks.

The same authors improved their approach introducing
the EmMCE algorithm [10] that takes advantage of paralleliza-
tion to reduce I/O overhead and to distribute computation
loads. As confirmed also by our experimentation, in [10] it
is shown that producing blocks of much smaller size than
the available memory yield better time performance. At
the same time, though, algorithm EmMCE assumes that the
neighborhood of each node fits within a block. This clearly
poses a trade-off between efficiency and correctness. In fact
when the neighborhood of a node does not fit into a sin-
gle block some of its maximal cliques may be discarded and
some non-maximal cliques could be erroneously detected.
Furthermore, even if efficiency was not an issue, correctness
and completeness are lost whenever the graph has nodes
of degree so high that their neighborhood does not fit into
main memory. Trying to address this problem in [10] it is
suggested to decompose the graph considering nodes in in-
creasing degree order. This results into artificially augment-
ing the size of a graph fitting into a block, since, when a hub
node is chosen as a kernel node, its neighborhood would be
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Figure 9: The results of the experimentation on twitter1, twitter2, and twitter3 data sets. White bars refer
to cliques computed from the feasible nodes while gray bars refer to cliques containing only hub nodes.
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Figure 10: The results of the experimentation on facebook and google+ data sets. White bars refer to cliques
computed from the feasible nodes while gray bars refer to cliques containing only hub nodes.
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largely composed by visited nodes, and edges among visited
nodes could be omitted from the block. Nevertheless, all
neighbors of a hub node need to be stored into the block as
before, and the block size limit still hinder correctness.

Chang et al. [7] find all maximal cliques in polynomial
delay: cliques are found one after the other and the time-
complexity of finding the next clique in the sequence is poly-
nomial. They improve over the previously polynomial-delay
fastest algorithm for MCE [24] by using a strategy that par-
titions the graph into low and high degree nodes.

The authors in [38] focus on the skews of the parallel com-
putation of cliques, since the analysis of few blocks takes
far more time than the rest. They also propose algorithms
that can incrementally update the maximal cliques when the
graph is updated.

Xing et al. [36] use a recursive algorithm, called BMC, for
partitioning the network into blocks. Then, they use an algo-
rithm based on MapReduce to compute the cliques present
in each block. Since BMC generates blocks having similar
size, inter-block cliques are skipped and the approach is not
complete. Gregori et al. [20] and Rossi et al. [30] find the
maximal k-cliques and the largest cliques in a parallel way,
respectively. These approaches can not be adapted to find
all maximal cliques.

Computations over massive networks often take advan-
tage of distributed graph processing systems such as Graph-
Lab/PowerGraph [19] and Pregel/Giraph [25]. They pro-
vide: (a) a fault-tolerant infrastructure for processing dis-
tributed data; (b) a graph partitioning technique; and (c) an
abstract computational model for implementing algorithms.
While we could benefit from the infrastructures and abstract
models, the partitioning techniques of such systems (point
(b) above) are not suitable in the MCE context. They usu-
ally use random partitioning (i.e., hash partitioning) which
is proven to be the worst possible partitioning for scale-free
networks [15]. Instead, as shown in Section 6, we benefit
from a decomposition that produces dense chunks of differ-
ent size.

Maximal Clique Enumeration is especially used for detect-
ing communities in social networks. Several approaches for
community detection, rely on a relaxed concept with respect
to the enumeration of maximal cliques and consider each
subgraph that approximates a clique as a community [29,
39, 28, 1]. In the remaining part of this section we briefly
review some of them.
WalkTrap [28] computes random traversals to individuate

communities. The heuristic idea of WalkTrap is that a ran-
dom path would likely stay “trapped” inside a subgraph of
highly connected nodes. The random path cliques do not
give any warranty on the quality of the solutions as, choos-
ing randomly, they might not retrieve a tight community.

There are several approaches that find communities as the
subgraphs resulting from the clustering of the edges in the
network (see, for example, [1]). They uniquely assign each
individual to a cluster. Clearly, this assumption is not suit-
able for social networks where an individual may belong to
multiple communities. To face this aspect, a series of works
have been proposed in order to allow overlapping communi-
ties (see the survey in [37]).

Differently from all approaches mentioned above, SCD [29]
employs a parallel strategy to detect the subgraphs that
maximize the number of contained triangles, since this mea-
sure is indicative of how tight is a community. In [39] it is

introduced the concept of k-mutual-friend to find communi-
ties and, additionally, it is described a system to browse the
communities in a visual manner.

Finally, there are approaches that retrieve communities in
terms of k-plexes, which are relaxations of cliques in which
a node can miss at most k neighbours [5, 26].

8. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a novel technique for

computing all the maximal cliques of an arbitrarily large
network in a distributed environment. The approach re-
lies on a two-level decomposition strategy that allows us to
achieve efficiency by suitably lowering the size of the blocks
without jeopardizing completeness. This is confirmed by a
number of theoretical results showing the correctness and
completeness of the technique over sparse graphs, a natural
property of real-world social networks.

An extensive campaign of experiments conducted over
real-world scenarios has shown the efficiency and scalability
of our proposal. We have also demonstrated experimentally
that, if our technique was not adopted, a significant portion
of the most relevant cliques would have been lost.

In the future, we plan to explore the possibility of extend-
ing our approach to relaxed definitions of communities, such
as k-cliques, k-clubs, k-clans, and k-plexes. We are also in-
terested in studying an incremental version of our approach
that takes into account the evolution of the social network.
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ABSTRACT
Time series classification is an important problem that has
received a great amount of attention by researchers and prac-
titioners in the past two decades. In this work, we propose
a novel algorithm for time series classification based on the
discovery of class-specific representative patterns. We define
representative patterns of a class as a set of subsequences
that has the greatest discriminative power to distinguish
one class of time series from another. Our approach rests
upon two techniques with linear complexity: symbolic dis-
cretization of time series, which generalizes the structural
patterns, and grammatical inference, which automatically
finds recurrent correlated patterns of variable length, pro-
ducing an initial pool of common patterns shared by many
instances in a class. From this pool of candidate patterns,
our algorithm selects the most representative patterns that
capture the class specificities, and that can be used to effec-
tively discriminate between time series classes. Through an
exhaustive experimental evaluation we show that our algo-
rithm is competitive in accuracy and speed with the state-
of-the-art classification techniques on the UCR time series
repository, robust on shifted data, and demonstrates excel-
lent performance on real-world noisy medical time series.

1. INTRODUCTION
Massive amount of time series data are generated daily in

areas as diverse as medicine, astronomy, industry, sciences,
and finance, to name just a few. Even with the explosion
of interest in time series data mining during the past two
decades, and increasing popularity of new emerging topics
such as motif discovery, classification of time series still re-
mains one of the most important problems with many real-
world applications in diverse disciplines.

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

While many classification algorithms have been proposed
for time series, it has been shown that the nearest neigh-
bor classifier, albeit simple in design, is competitive with
the more sophisticated algorithms like SVM [32]. As a re-
sult, many existing techniques on time series classification
focus on improving the similarity measure, an essential part
of the nearest neighbor classifier [4]. Recently, the notion
of time series shapelets—time series subsequences that are
“maximally representative” of a class—has been proposed.
Shapelets generalize the lazy nearest neighbor classifier to
an eager, decision-tree-like classifier [36][10], which typically
improves the classification speed and interpretability of the
results.

In this work, we focus on a similar problem of finding the
most representative patterns for the classification task. We
call our algorithm RPM (Representative Pattern Mining).
The key motivation is that the identification of a small set of
distinctive and interpretable patterns of each class allows us
to exploit their key characteristics for discriminating against
other classes. In addition, we hypothesize that the classifi-
cation procedure based on a set of highly class-characteristic
short patterns will provide high generalization performance
under noise and/or translation/rotation, i.e. it shall be ro-
bust and shift/rotation invariant.

Figure 1: An illustration of the best patterns discovered
by rival subsequence-based techniques on Cricket data [20].

Our work is significantly different from existing subse-
quence-based techniques such as K-shapelet discovery and
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classification algorithms. Specifically, one major difference
lies in our definition of representative patterns. We define
representative patterns to be class-specific prototypes, i.e.
each class has its own set of representative patterns, whereas
in shapelets some classes may share a shapelet. Figure 1
shows the patterns/shapelets identified by different algo-
rithms on the Cricket dataset [20]. Note that SAX-VSM [31]
captures visually similar short patterns of the same length in
both classes. Fast Shapelets [27] selects a single subsequence
to build a classifier. Our algorithm, RPM, selects different
patterns that capture the data specificity (characteristic left
and right hand movements) for each class.

The methodology employed by our approach is also very
different from existing shapelet-based techniques. Contrast-
ing with a decision-tree-based shapelet classification which
finds the best splitting shapelet(s) via the exhaustive candi-
date elimination and explicit distance computation, we rely
on the grammar induction (GI) procedure that automatically
(i.e. by the algorithm’s design) and without computing any
distance explicitly [17][30] discovers frequent subsequences
(motifs) of variable length, which we consider as represen-
tative pattern candidates. The number of candidates for
the exhaustive shapelet search approach is O(nm2) (n is the
number of time series, m is their length) [27], since the algo-
rithm examines all possible subsequences. For our method,
the number of candidates considered is much smaller: O(K),
where K is the number of motifs since only patterns that
frequently occur in a class can be representative.

In addition to speeding up the algorithm, grammar in-
duction, by design, grows the lengths of the initial patterns
when constructing grammar rules, thus eliminating the need
for searching an optimal pattern length exhaustively – a
procedure that is common to most of sliding window-based
shapelet techniques [36][10][27].

Since GI requires discrete input, our algorithm transforms
real-valued time series into discrete values using Symbolic
Aggregate approXimation (SAX) [18]. The algorithm op-
erates in the approximate symbolic space inferring a gram-
mar and generating a set of candidate patterns through the
analysis of the grammar hierarchy in linear time. Next, the
algorithm maps the discovered patterns back into real val-
ues and continues with pattern refinement using clustering.
The cluster centroids (or medoids) are then reported as the
best class-specific motifs, among which we select the most
representative ones by verifying their classification power at
the final step.

Figures 2 and 3 show examples of representative patterns
discovered by our technique in two datasets: CBF, a syn-
thetic dataset [22], and Coffee, a real dataset [2]. Represen-
tative patterns discovered in CBF highlight the most distinc-
tive features in each of the three classes: a plateau followed
by the sudden rise then followed by a plateau in Cylinder,
the increasing ramp followed by a sudden drop in Bell, and a
sudden rise by a decreasing ramp in Funnel. Representative
patterns discovered in the Coffee dataset also correspond to
the most distinctive natural features which not only include
the discriminative caffeine and chlorogenic acid bands, but
the spectra corresponding to other constituents such as car-
bohydrates, lipids, etc. [2].

Since we use a different selection criterion, the representa-
tive patterns discovered by our technique are different from
the shapelets or patterns found by other subsequence-based
techniques, thus providing a complementary functionality

that can be used for exploratory studies. For example,
the representative patterns discovered in CBF and Coffee
datasets by our approach are different from the shapelets
discovered by Fast Shapelets [27], a well-known shapelet dis-
covery algorithm which we use for experimental comparison.
For the CBF dataset, Fast Shapelets reports two branching
shapelets that correspond to sudden rises in Cylinder and
Funnel classes. For the Coffee dataset, Fast Shapelets re-
ports a single branching shapelet corresponding to the caf-
feine spectra band (Arabica).

Note that the discovery of class-specific motifs, which is an
integral part of our algorithm, also offers a unique advantage
that extends beyond the classification task. Differing from
the traditional notion of time series motifs [17][3], which can
either be repeated subsequences of a fixed length within a
long time series, or repeated time series instances within a
group of data (e.g. shape motifs [16]), our class-specific mo-
tifs are variable-length sub-patterns that occur frequently
in many time series of a data group. They are, in a sense,
related to time series subspace clusters [15]. Therefore, our
approach provides an efficient mechanism to discover these
subspace patterns without exhaustively searching through
all subsequences. Throughout the paper, we will use the
terms ”class-specific subspace motifs” and ”class-specific mo-
tifs” interchangeably.
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Figure 2: The Cylinder-Bell-Funnel (CBF) dataset and the
best representative patterns for its classes discovered with
the proposed technique.
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Figure 3: Two classes from the Coffee dataset and the best
representative patterns.

As we shall demonstrate, in addition to the excellent ex-
ploratory characteristics, our approach achieves competi-
tive classification accuracy compared to the state-of-the-
art techniques: nearest neighbor classifiers, characteristic
subsequence-based classifier (SAX-VSM), and shapelet-based
classifiers, while maintaining great efficiency.

The rest of the paper is organized as follows: Section 2 dis-
cusses related work and background materials. We describe
our approach for finding representative patterns in Section
3, and discuss parameter optimization in Section 4. Section
5 presents experimental results. We demonstrate the utili-
ties of our approach with two case studies in Section 6, and
conclude in Section 7.

2. RELATED WORK AND BACKGROUND
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2.1 Notation and definition
To precisely state the problem at hand, and to relate our

work to previous research, we will define the key terms used
throughout this paper. We begin by defining our data type,
time series:

Time series T = t1, . . . , tm is a set of scalar observations
ordered by time.

Since we focus on finding local patterns that are represen-
tative of a class, we consider time series subsequences:

Subsequence S of time series T is a contiguous sampling
tp, . . . , tp+n−1 of points of length n << m where p is an
arbitrary position, such that 1 ≤ p ≤ m− n+ 1.

Typically subsequences are extracted from a time series
with the use of a sliding window:

Sliding window subsequence extraction: for a time se-
ries T of length m, and a user-defined subsequence length
n, all possible subsequences of T can be found by sliding a
window of size n across T .

Given two time series subsequences S1 and S2, both of
length n, the distance between them is a real number that
accounts for how much these subsequences are different,
and the function which outputs this number when given
S1 and S2 is called the distance function and denoted
Dist(S1, S2). One of the most commonly used distance func-
tions is the Euclidean distance, which is the square root
of the sum of the squared differences between each pair of
the corresponding data points in S1 and S2.

Closest (i.e. best) match: Given a subsequence S and
a time series T , the time series subsequence Tp of length |S|
starting at position p : 0 < p < |T |−|S| is the closest match
of S if Dist(S, Tp) ≤ Dist(S, Tk), where Tk is a subsequence
of T starting at any position k : 0 ≤ k < |T | − |S|, and
k 6= p. The Dist(S, Tp) is the closest match distance.

Time series pattern is a subsequence that possesses
certain interesting characteristics. For example it can be a
subsequence that occurs frequently, i.e. whose observance
frequency is above some arbitrary threshold t. A frequently
occurring subsequence is also called time series motif.

Class-specific motif : Given a class C and a set of train-
ing instances XC , a class-specific motif M for C is a subse-
quence pattern S in C consisting of a set of similar subse-
quences from different training instances such that count(S) ≥
(γ · |XC |), where 0 < γ ≤ 1. This states that a pattern is
considered frequent if it appears in at least γ of the training
instances in the class. We will describe what we mean by
“similar” in a later section.

Representative patterns: The most discriminative sub-
sequences among the class motifs for class C are selected as
the representative patterns for the class. The number of the
representative patterns for each class is dynamically deter-
mined by the algorithm.

We will describe how to measure the “representativeness”
and discriminative power of the candidate patterns in a later
section.

Time Series Transformation: The set of the closest
match distances between a time series T and the (candidate)
representative patterns can be viewed as a transformation
of T ∈ Rn·m into T ′ ∈ Rn·K , where K is the total number
of the representative patterns from all classes.

2.2 Related work
Classification of time series has attracted much interest

from the data mining community in the past two decades

[4][36][5][13][21][28][25][33][20][35][34]. Nevertheless, to date,
the simple nearest neighbor classification is the most popu-
lar choice due to its simplicity and effectiveness [32]. There-
fore, a large body of work on time series classification has
focused on the nearest neighbor classification improvement
by developing new data representations or distance measures
[32]. To date, a nearest neighbor classification with an effec-
tive distance measure like Dynamic Time Warping (DTW)
outperforms many existing techniques [32].

Among the proposed alternatives, many methods focus on
finding local patterns in time series as predictive features of
the class [5]. Recently, Ye and Keogh introduced a novel
concept called time series “shapelet”. A shapelet is an exact
time series subsequence that is “maximally representative”
of a class [36]. Once found, a shapelet-based technique clas-
sifies an unlabeled time series by computing its similarity to
the shapelet. The original shapelet technique proposed by
the authors constructs a decision tree-based classifier which
uses the shapelet similarity as the splitting criterion. While
effective and interpretable, the original shapelet discovery
technique is computationally intensive.

Numerous improvements were proposed. The Logical Shape-
lets [20] extends the original work by improving the efficiency
and introducing an augmented, more expressive shapelet
representation based on conjunctions or disjunctions of shape-
lets. Fast Shapelets [27] improves the efficiency of the origi-
nal shapelets algorithm by exploiting the projections into a
symbolic representation. Learning Shapelets [7] proposes a
new mathematical formalization that iteratively reduces the
shapelet search space by computing a classification precision-
based objective function.

The “Shapelet Transform” [10] technique finds the best
K-shapelets and transforms the original time series into a
vector of K features, each of which represents the distance
between a time series and a shapelet. This technique can
thus be used with virtually any classification algorithm.

SAX-VSM [31] is another approximate algorithm that en-
ables the discovery of local class-characteristic (representa-
tive) patterns based on the similar pattern-discrimination
principle via tf∗idf -based patterns ranking [29]. While sim-
ilar to our notion of representative patterns, the length of
SAX-VSM-generated patterns equals to the sliding window
length. In addition, the algorithm makes no additional ef-
fort to prune the discovered patterns, yielding a large sparse
matrix of pattern weights.

Our algorithm can be related to the concept of mining in-
teresting frequent patterns reviewed in [9], as it is essentially
the selection of “interesting” pattern subset from a frequent
pattern set. In our case, we regard the representative power
of a pattern as its interestingness measure.

3. RPM: REPRESENTATIVE PATTERN
MINING FOR CLASSIFICATION

The classification algorithm we propose consists of two
stages: (a) Learning the representative patterns. (b) Clas-
sification using the representative patterns.

In the training stage, the algorithm identifies the most
representative patterns for each class from the training data
by 3 steps: (i) pre-processing training data; (ii) generating
representative pattern candidates from processed data; (iii)
selecting the most representative patterns from candidates.

Once the representative patterns are learned, we trans-
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form the training data into a new feature space, where each
representative pattern is a feature and each training time se-
ries is represented as a vector of distances to these patterns.
We can then build a classifier from the transformed training
data.

We will describe the algorithm in detail below, starting
with the classification stage.

3.1 Time series classification using represen-
tative patterns

To classify a time series using the representative patterns
learned from the training stage, the first step is to transform
the test data T ∈ Rn·m into a feature space representation
T ′ ∈ Rn·K by computing distances from T to each of the
K representative patterns from all classes. The transformed
time series is thus represented as a fixed-length vector – a
universal data type which can be used with many of the
traditional classification techniques. In this paper, we use
SVM [24] for its popularity, but note that our algorithm can
work with any classifier.

3.2 Training stage: Finding representative
patterns

As mentioned previously, our goal is to find the most rep-
resentative and distinctive patterns for each of the time se-
ries classes. These class-specific patterns should satisfy two
requirements: (i) they should be class-specific motifs, i.e.
shared by at least γ (a fraction) of the time series in the
class; and (ii) they should enable the discrimination between
the current and other classes – the capacity measured with
a scoring function discussed below.

At the high level, the algorithm can be viewed as a suc-
cession of three steps. First, the algorithm performs data
pre-processing for each class in the training data, by con-
catenating all instances from the same class into a long time
series, and discretizing the concatenated time series. Sec-
ond, the algorithm finds frequent patterns via grammar in-
ference and forms the candidate pool for each class. Third,
it refines the candidates pool by eliminating redundant and
non-discriminating patterns, and outputs patterns that rep-
resent the class the best, i.e., the representative patterns.

In our previous work, we proposed GrammarViz (v2.0),
which uses time series discretization and grammar inference
for time series motif discovery and exploration [17][30]. We
observe that the same approach can be leveraged to find
class-specific subspace motifs, thus enabling the classifica-
tion as well.

3.2.1 Step 1: Pre-processing
We prepare the training data for subspace pattern discov-

ery by concatenating all training time series from the same
class into a single long time series. We note that the con-
catenation step is not required for our learning algorithm
and can in fact be skipped. The reason for concatenating
the training instances is for visualization purpose only, as
will be shown in Figure 4.

Next, we discretize the concatenated time series into a
sequence of tokens for grammar induction using Symbolic
Aggregate approXimation (SAX) [18]. More specifically, we
apply SAX to subsequences extracted from the concatenated
time series of a training class via a sliding window. SAX
performs subsequence discretization by first reducing the di-
mensionality of the subsequence with Piecewise Aggregate

Approximation (PAA) [12]. Towards that end, it divides
z -normalized subsequence into w equal-sized segments and
computes a mean value for each segment. It then maps these
values to symbols according to a pre-defined set of break-
points dividing the distribution space into α equiprobable
regions, where α is the alphabet size specified by the user.
This subsequence discretization process outputs an ordered
list of SAX words, where each word corresponds to the left-
most point of the sliding window. Two parameters affect the
SAX transform granularity – the number of PAA segments
(PAA size) and the SAX alphabet size.

Since neighboring subsequences extracted via a sliding
window share all points except one, they are similar to each
other and often have identical SAX representations. To pre-
vent over-counting a pattern, we apply numerosity reduction
[17]: if in the course of discretization, the same SAX word
occurs more than once consecutively, instead of placing ev-
ery instance into the resulting string, we record only its first
occurrence.

As an example, consider the sequence S0 where each word
(e.g. aba) represents a subsequence extracted from the con-
catenated time series via a sliding window and then dis-
cretized with SAX. The subscript following each word de-
notes the starting position of the corresponding subsequence
in the time series.
S0 = aba1 bac2 bac3 bac4 cab5 acc6 bac7 bac8 cab9 . . .
With numerosity reduction, S0 becomes:
S1 = aba1 bac2 cab5 acc6 bac7 cab9 . . .
Numerosity reduction not only reduces the length of the

input for the next step of the algorithm (hence making it
more efficient and reducing its space requirements) and sim-
plifies the identification of non-overlapping time series motifs
by removing “noise” from overlapping subsequences. Most
importantly, numerosity reduction enables the discovery of
representative patterns of varying lengths as we show next.

3.2.2 Step 2: Generating representative pattern can-
didates

In this step, we use grammar induction to identify re-
peated patterns in the concatenated time series, and gen-
erate a representative pattern candidates pool from these
patterns. The algorithm is outlined in Algorithm 1. The
sequence of SAX words obtained from the pre-processing
step is fed into a context-free grammar induction algorithm
(Algorithm 1, Line 7). We use Sequitur, a string compres-
sion algorithm that infers a context-free grammar in linear
time and space [23]. We choose Sequitur due to its efficiency
and reasonably good compression capability, but note that
our technique also works with other (context-free) GI algo-
rithms. When applied to a sequence of SAX words, Sequitur
treats each word as a token and recursively reduces all di-
grams, i.e. consecutive pairs of tokens (terminals or non-
terminals), occurring more than once in the input string to
a single new non-terminal symbol representing a grammar
rule.

Consider the grammar induced by Sequitur from the input
string S1 :

Grammar Rule Expanded Grammar Rule
R0 → aba R1 acc R1 aba1 bac2 cab5 acc6 bac7 cab9
R1 → bac cab bac cab

In this grammar, R1 describes a simplified version of the
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Figure 4: RPM pre-processing visualization with GrammarViz 2.0 [30]. The time series from Class 4 of SwedishLeaf dataset
were concatenated, discretized, Sequitur grammar was inferred, and one of the frequent motifs selected. Note that the grammar
rule-corresponding subsequences vary in length from 72 to 80. The length of the original time series before concatenation is
128 as indicated by dotted lines. Note that one of time series does not contain the pattern and another contains it twice.

repeated pattern [bac cab], which concurrently maps to two
substrings of different lengths from S0: [bac2 bac3 bac4 cab5]
(length of 4) and [bac7 bac8 cab9] (length of 3), respectively.

By keeping SAX words’ offsets throughout the procedures
of discretization and grammar induction, we are able to map
rules and SAX words back to their original time series subse-
quences. Since each SAX word corresponds to a single point
of the input time series (a subsequence starting point), R1
maps to subsequences of variable lengths ([2-5] and [7-9]).
Figure 4 shows an example of the recurrent subsequences
found in the concatenated time series from Class 4 of the
Swedish Leaf dataset. Note, that when processing a con-
catenated time series, the algorithm does not consider the
subsequences that span time series junction points in order
to avoid concatenation process artifacts.

Algorithm 1 Finding repeated patterns

1: function FindCandidates(Train, SAXParams, γ)
2: candidates← ∅
3: allCandidates← ∅
4: for each TrainClassI in Train do
5: cTS ← ConcatenateTS(TrainClassI)
6: // {build grammar avoiding junctions (see Fig. 4)}
7: allRepeats← modifiedGI(cTS, SAXParams)
8: refinedRepeats← ∅
9: // {r is repeated subsequences from a row in Fig. 4}

10: for each r in allRepeats do
11: clusters← Clustering(r)
12: refinedRepeats.addAll(clusters)

13: for each cluster in refinedRepeats do
14: if cluster.size > γ · |I| then
15: centroid← GetCentroid(cluster)
16: // {candidates for class I}
17: candidates.add(centroid)

18: // {candidates for all classes}
19: allCandidates.add(candidates)

20: return (allCandidates)

Refining repeated subsequences: Every grammar rule
induced from Sequitur describes an approximate repeated
pattern (our candidate motif) observed in time series; how-
ever, corresponding exact subsequences may differ signifi-
cantly depending on the SAX granularity. To select the most
representative of the frequent symbolic patterns (and essen-

tially of the training class), we use hierarchical clustering al-
gorithm (complete-linkage) to cluster all rule-corresponding
subsequences based on their similarity (Algorithm 1, Line
11). Note that the purpose of applying clustering here is to
handle the situation where a candidate motif found by gram-
mar induction algorithm may contain more than one group
of similar subsequences. In this case, we should partition the
subsequences into sets of clusters, each of which corresponds
to one motif. To determine the appropriate number of clus-
ters, we first set the number of clusters as two. If the cluster
sizes are drastically different, e.g. one of the clusters con-
tains less than 30% of subsequences from the original group,
we do not split the original group. If both clusters contain
sufficient numbers of subsequences, we will continue to split
them into smaller groups. The partitioning stops when no
group can be further split (Algorithm 1, Line 12).

Consistent with Section 3.2 requirement (i), if the size of a
cluster is smaller than the specified threshold γ, the cluster
is discarded. If a cluster satisfies the minimum size require-
ment, its centroid is added to the representative patterns
candidates pool for a class (Algorithm 1, Line 14-15). Note
an alternative is to use the medoid instead of centroid. As
outlined in Algorithm 1, this refinement procedure outputs
a list of representative pattern candidates for all classes.

3.2.3 Step 3: Selecting the most representative pat-
terns

The candidate patterns obtained so far are the frequent
patterns that occur in a class. However, some of them may
not be class-discriminative if they also occur in other classes.
Addressing this issue, we prune the candidate patterns pool
with Algorithm 2 whose input is the pool of candidate pat-
terns identified from the previous step, and the entire train-
ing dataset. The algorithm outputs the set of class-specific
patterns.

Remove Similar Patterns: The representative pattern
candidates are repeated patterns found by the grammar in-
duction algorithm applied to the discretized time series. Due
to the aggregation, some structurally similar subsequences
may be mapped to slightly different SAX strings, e.g. differ
by one letter. Feeding such patterns to the subsequent step
(selecting representative patterns) will slow down the search
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Algorithm 2 Find distinctive patterns

1: function FindDistinct(Train, allCandidates)
2: candidates← ∅
3: τ ← ComputeThreshold
4: // {Remove similarities in allCandidates}
5: for each c in allCandidates do
6: isNonSimilar ← true
7: for each cns in candidates do
8: // {c and cns may have different length}
9: dist← ComputeClosestMatchDist(c, cns)

10: if dist < τ then
11: if cns.frequent < c.frequent then
12: // {The frequency in concatenated TS}
13: candidates.remove(cns)
14: candidates.add(c)
15: isNonSimilar ← false
16: break();

17: if isNonSimilar then
18: candidates.add(c)

19: // {Transform TS into new feature space where each fea-
ture is the distance between time series and a candidate}

20: TransformedTrain← Transform(Train, candidates)
21: // {Perform feature selection algorithm on new data}
22: selectedIndices← FSalg(TransformedTrain)
23: // {Select patterns according to indices }
24: patterns← Select(candidates, selectedIndices)
25: return (patterns)

when removing correlated patterns in feature selection step.
In order to resolve this issue, our algorithm removes simi-

lar candidates from the candidate set, as shown in Algorithm
2, Lines 5 – 18. Before the removal, it computes a threshold
used to determine if two patterns are similar. The threshold
(Alg. 2, Line 3) is determined as follows: (i) Compute pair-
wise distances of subsequences within each refined grammar
rule (i.e. the final clusters from Algorithm 1). (ii) Sort the
distances in ascending order. (iii) Take the distance at the
30-th percentile as the threshold τ for similarity. We will
show the effect on accuracy and running time with different
values of τ in the experimental section.

Select Representative Patterns: After refining the
representative pattern candidates pool from the previous
steps, we transform the original time series into a distance
feature vector by computing the closest match distance be-
tween each time series and all the candidate patterns. As an
example, two patterns in dataset ECGFiveDays are shown
in Figure 5, and the transformed training data is shown in
Figure 6. The original time series from the two classes look
visually similar. However, once we transform the raw time
series into the two-dimensional feature vector (one feature
from each class in this case), it is easy to separate the two
classes. As can be seen in Figure 6, the transformed data is
linearly separable.

Since the transformation uses all the candidates as new
features, a feature selection step is needed to select the most
distinctive features. Each feature represents the distance
from the original time series to one of the candidate pat-
terns. Thus, the features selected represent the most rep-
resentative patterns. Any feature selection algorithms can
be applied here. In this work, we use the correlation-based
feature selection from [8], since it is capable of identifying
features that are highly correlated with the class. After fea-
ture selection, the selected patterns will be used to classify
future time series. Note that the number of selected patterns
for each class is dynamically determined by the feature se-
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Figure 5: Two classes from the ECGFiveDays dataset and
the best representative patterns.
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lection algorithm.

4. PARAMETER SELECTION AND CLAS-
SIFICATION WITH DIFFERENT SAX PA-
RAMETERS

As shown in Algorithm 1, there is a parameter vector
SAXParams in the input. The vector consists of three SAX
discretization parameters, namely the sliding window size,
PAA size, and the SAX alphabet size. In this section, we
shall describe our algorithm for the optimal SAX parame-
ters selection. Since time series data in different classes may
have varying characteristics, a parameter set that is optimal
for one class may not be optimal for another. Therefore, the
parameter optimization is performed for each class.

4.1 Search for the best SAX parameters ex-
haustively

One way to find the optimal parameter set is by brute
force grid search – as shown in Algorithm 3. The algo-
rithm tests all parameter combinations within a specified
range and selects the optimal set (the one that results in
the best F1 measure score from five-fold cross validation on
the validation data set). For each parameter combination
candidate, the grid search algorithm first divides the origi-
nal training data into training and validation data 5 times
for 5 different splits. For each split, the algorithm invokes
Algorithms 1 and 2 to obtain the representative patterns
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(Lines 8-9). The validation is performed on the validation
data set (Line 12) with a five-fold cross validation. The F1
measure is computed using the classification result for each
class. The parameter combination with the best F1 measure
for each class is selected as the optimal parameters for the
class.

Algorithm 3 SAX Parameter selection (Brute-Force)

1: function ParamsSelect(ParamsRange,OriginalTrain)
2: for each Class I do
3: bestSoFarForI ← 0
4: for each SAXPs in ParamsRange do
5: // {Repeat 5 times for different splits}
6: while iteration < 5 do
7: {train, validate} ← Split(OriginalTrain)
8: candidates← FindCandidates(train, SAXPs, γ)
9: patterns← FindDistinct(train, candidates)

10: validatet ← Transform(validate, patterns)
11: // {fMeasure is the f1 measure of each class}
12: fMeasure← 5foldsCV(validatet)
13: for each Class I do
14: if fMeasure.i > bestSoFarForI then
15: bestParamForClassI ← SAXPs
16: bestSoFarForI ← fMeasure.i

17: iteration++
18: for each Class I do
19: bestParams.add(bestParamForClassI)

20: return (bestParams)

Instead of running Algorithm 3 completely to find the best
parameter set, pruning can be performed by the observed
number of repeated patterns. In Line 8 of Algorithm 3,
if no candidate for a class is returned because all repeated
patterns for that class have frequency below the specified
threshold (γ), the algorithm abandons the current iteration
and proceeds with the next parameter combination. The
intuition rests upon the fact that given the number of time
series in the training data, we can estimate the required
minimal frequency for the repeated patterns.

4.2 Searching for the best SAX parameters us-
ing DIRECT

We optimize the search for the best discretization param-
eters set by using the DIviding RECTangles (DIRECT) al-
gorithm [11] which is a derivative-free optimization scheme
that possesses local and global optimization properties, con-
verges quickly, and yields a deterministic optimal solution.
DIRECT is designed to deal with optimization problems of
the form:

min
x

f(x), f ∈ R, x,XL, XU ∈ R, whereXL ≤ x ≤ XU

where f(x) is the objective (error) function, and x is a pa-
rameters vector. The algorithm begins by scaling the search
domain to a unit hypercube. Next, it iteratively performs a
sampling procedure consisting of two steps: (i) partitioning
the hypercube into smaller hyper-rectangles and (ii) identi-
fying a set of potentially-optimal hyper-rectangles by sam-
pling their centers. Iterations continue until the error func-
tion converges. DIRECT is guaranteed to converge to the
global optimal function value as the number of iterations
approaches infinity and the function is continuous in the
neighborhood of a global optimum [11]. If interrupted at
any iteration, for example after exhausting a time limit, the
algorithm reports the best-so-far parameters set.

Since SAX parameters are integer values, we round the
values reported by DIRECT to the closest integers when op-
timizing their selection for our cross validation-based error
function (one minus fMeasure, as described in Section 4.1).
While rounding affects the DIRECT convergence speed, this
approach is not only much more efficient than the exhaus-
tive search, but is also able to perform a time-constrained
parameter optimization by limiting the number of iterations.

4.3 Classification with class-specific trained pa-
rameters

With the best SAX parameters learned from Section 4.2,
the representative patterns can be obtained by calling Algo-
rithms 1 and 2. To classify future instances, we follow the
classification procedure described in Section 3.1. However,
with the class-specific parameter optimization, we need to
add more steps to the classification procedure to account for
the adaptive parameter sets for different classes. Different
classes may have different best SAX parameter combinations
(SPCs). We learn the best SPCs for each class respectively
as described previously. Then we apply Algorithms 1 and
2 to obtain the representative patterns for each SPC. We
combine all these representative patterns together and re-
move the correlated patterns by applying feature selection
again. We then obtain the final set of representative pat-
terns, which will be used as the input for the algorithm
described in Section 3.1 to classify test data.

5. EXPERIMENTAL EVALUATION

5.1 Setup and Baseline
We evaluate the classification performance of our tech-

nique on the standard time series archive from the UCR
repository [14]. Information on the datasets is shown in
Table 1. The code and datasets used for the case study
(discussed next section) are available on [1]. We compare
our method Representative Pattern Mining (RPM) with five
other classification techniques, among which are two nearest-
neighbor classifiers based on the global distance measures:
Euclidean distance (1NN-ED) and DTW with the best warp-
ing window (1NN-DTWB), and three classifiers based on
the use of class-characteristic local patterns: Fast Shapelets
(FS) [27], SAX-VSM [31] and Learning Shapelets (LS) [7].
These three subsequence-based techniques rely on different
numbers of patterns for classification – while Fast Shapelets
uses a minimal number of patterns to build a classification
tree, SAX-VSM accounts for all patterns extracted via slid-
ing window in each of the class-representing weight vectors.
Learning Shapelets has the best accuracy so far.

5.2 Classification Accuracy
Table 1 shows the classification error rates for all six meth-

ods on the UCR datasets. The best error rate for each
dataset is denoted with boldface. In addition, Figure 7
shows the summary comparison of our proposed technique
with other methods. The results shown are with parame-
ter optimization, and the γ (minimum cluster size) is set
to be 20% of the training size for the class. From the re-
sults, our method is the second best on classification ac-
curacy among these six methods. We slightly lose to the
Learning Shapelets method, which has the most “wins” in
classification. However, the p-value of wilcoxon test is 0.834
> 0.05, so the difference is not significant with a confidence
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Table 1: Datasets description and the classification error rates.

Dataset Classes Train Test Length 1NN-
ED

1NN-
DTWB

SAX-
VSM

FS LS RPM

50words 50 450 455 270 0.369 0.242 0.374 0.483 0.232 0.242
Adiac 37 390 391 176 0.389 0.391 0.417 0.425 0.437 0.355
Beef 5 30 30 470 0.333 0.333 0.233 0.467 0.240 0.233
CBF 3 30 900 128 0.148 0.004 0.010 0.092 0.006 0.001
ChlorineConcentration 3 467 3840 166 0.352 0.350 0.341 0.667 0.349 0.355
CinC ECG torso 4 40 1380 1639 0.103 0.070 0.344 0.225 0.167 0.125
Coffee 2 28 28 286 0.000 0.000 0.000 0.071 0.000 0.000
Cricket X 12 390 390 300 0.423 0.252 0.308 0.549 0.209 0.236
Cricket Y 12 390 390 300 0.433 0.228 0.318 0.495 0.249 0.379
Cricket Z 12 390 390 300 0.413 0.238 0.297 0.533 0.201 0.190
DiatomSizeReduction 4 16 306 345 0.065 0.065 0.121 0.078 0.033 0.069
ECG200 2 100 100 96 0.120 0.120 0.140 0.250 0.126 0.170
ECGFiveDays 2 23 861 136 0.203 0.203 0.001 0.000 0.000 0.000
FaceAll 14 560 1690 131 0.286 0.192 0.245 0.408 0.218 0.231
FaceFour 4 24 88 350 0.216 0.114 0.114 0.091 0.048 0.045
FacesUCR 14 200 2050 131 0.231 0.088 0.109 0.296 0.059 0.034
Fish 7 175 175 463 0.217 0.154 0.017 0.189 0.066 0.065
Gun Point 2 50 150 150 0.087 0.087 0.013 0.040 0.000 0.027
Haptics 5 155 308 1092 0.630 0.588 0.584 0.610 0.532 0.562
InlineSkate 7 100 550 1882 0.658 0.613 0.593 0.733 0.573 0.535
ItalyPowerDemand 2 67 1029 24 0.045 0.045 0.089 0.063 0.031 0.044
Lightning2 2 60 61 637 0.246 0.131 0.213 0.361 0.177 0.262
Lightning7 7 70 73 319 0.425 0.288 0.397 0.397 0.197 0.219
MALLAT 8 55 2345 1024 0.086 0.086 0.199 0.054 0.046 0.020
MedicalImages 10 381 760 99 0.316 0.253 0.516 0.443 0.271 0.262
MoteStrain 2 20 1252 84 0.121 0.134 0.125 0.202 0.087 0.113
OliveOil 4 30 30 570 0.133 0.133 0.133 0.300 0.560 0.100
OSULeaf 6 200 242 427 0.479 0.388 0.165 0.421 0.182 0.211
SonyAIBORobotSurface 2 20 601 70 0.304 0.305 0.306 0.315 0.103 0.058
SonyAIBORobotSurfaceII 2 27 953 65 0.141 0.141 0.126 0.211 0.082 0.114
SwedishLeaf 15 500 625 129 0.211 0.157 0.278 0.229 0.087 0.070
Symbols 6 25 995 398 0.101 0.062 0.109 0.091 0.036 0.042
synthetic control 6 300 300 60 0.120 0.017 0.017 0.107 0.007 0.007
Trace 4 100 100 275 0.240 0.010 0.000 0.000 0.000 0.000
Two Patterns 4 1000 4000 128 0.093 0.002 0.004 0.741 0.003 0.005
TwoLeadECG 2 23 1139 82 0.253 0.132 0.014 0.075 0.003 0.048
uWaveGestureLibrary X 8 896 3582 315 0.261 0.227 0.323 0.316 0.200 0.226
uWaveGestureLibrary Y 8 896 3582 315 0.338 0.301 0.364 0.412 0.287 0.303
uWaveGestureLibrary Z 8 896 3582 315 0.350 0.322 0.356 0.353 0.269 0.279
Wafer 2 300 3000 426 0.005 0.005 0.001 0.003 0.004 0.013
WordsSynonyms 25 267 638 270 0.382 0.252 0.440 0.542 0.340 0.353
Yoga 2 300 3000 426 0.170 0.155 0.151 0.335 0.150 0.165

# of best (including ties) 2 9 7 2 19 15

Wilcoxon Test p-values
(RPM vs Other)

0.006 0.287 0.217 0.002 0.834 -
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Figure 7: Our technique and current state of the art classifiers performance comparison.
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of 95%. Moreover, as we can visually inspect from Figure
7, the error rate difference between Learning Shapelets and
RPM is very small — most of the points are located around
the diagonal. In the next section, we will show that our
method is much faster than the Learning Shapelets method.

5.3 Efficiency
The pre-processing, discretization and Sequitur grammar

induction all have linear time complexity in the size of train-
ing data and, in practice, can be done simultaneously, since
they process data sequentially. To select the best repre-
sentative patterns for each class, we need to first cluster
the candidate motifs identified by the grammar rules. The
time required for clustering depends on the number of mo-
tif instances identified. Suppose there are (on average) u
motif instances in each grammar rule, then the complex-
ity is O(u3 · |rules|) for hierarchical clustering. The cen-
troids of the qualifying clusters are the pattern candidates.
For each pattern candidate, we perform subsequence match-
ing to identify the best matches (O(|Candidates| · |Train|)).
Even though the number of pattern candidates for each class
is relatively small compared to the training size, this step
seems to be the bottleneck of the training stage due to the re-
peated distance call. We use early abandoning strategy [32]
to speed up the subsequence matching, but other options are
possible such as approximate matching. The training needs
to be repeated for each class. Thus, the training complexity
is O(|Train|+c·(u3 ·|rules|+|Candidates|·|Train|)), where
c is the number of classes, and u is the average number of
motif instances in each grammar rule.

If the best SAX parameters are known, our algorithm is
fast — in this case, simply using the classification method
described in Section 3.1 completes the classification task. To
get the best SAX parameters, we evaluated cross-validation
based parameter selection techniques, exhaustive search and
DIRECT described in section 4.1 and 4.2. Exhaustive search
was found time-consuming even with early abandoning, there-
fore we use DIRECT. The overall running time using DI-
RECT in the worst case is O((|Train| + c · (u3 · |rules| +
|Candidates| · |Train|)) ·R), where R is the number of SAX
parameters combinations tested by DIRECT algorithm. From
the experiments on 42 UCR time series datasets, the average
value for R is less than 200, which is smaller than the aver-
age time series length 363. In most of the R evaluations, the
program terminated search early because of the minimum
motif frequency requirement (Sec. 3.2). The classification
time, compared to training, is negligible.

We compare the total running time of our algorithm us-
ing DIRECT with that of Fast Shapelets (FS) and Learn-
ing Shapelets (LS), and the results are shown in Table 2.
Even when accounting for parameter selection, our algo-
rithm is comparable to Fast Shapelets in running time, and
as shown in Table 1, our method is significantly more accu-
rate than Fast Shapelets (p-value equals 0.002). Compared
to Learning Shapelets, our method is a lot faster. The great-
est speedup we achieve through these 42 datasets is 1587X
on dataset Adiac, and the average speedup is 178X. The
experiment results show that our method is comparable to
the fastest algorithm in speed and to the most accurate al-
gorithm in accuracy.

In Section 3.2.3, we use τ as the threshold to remove sim-
ilar patterns. We choose the value at the 30th percentile of
the pair-wise distances as the threshold. We also compare

the results using the 10th, 50th, 70th, and 90th percentiles.
The running time and classification error changes are shown
in Figure 9. The average running time and classification er-
ror changes on the 42 UCR data set are shown in Table 3.
The average standard deviation for running time is 268.71
seconds, and 0.014 for classification error .

Table 2: Running time and classification accuracy compar-
ison between Fast Shapelets, Learning Shapelets and Rep-
resentative Pattern Mining

Running Time (Seconds)

Dataset LS FS RPM

50words 3396298 1666 4221
Adiac 1551130 290 977
Beef 5971 175 202
CBF 275 7 32
ChlorineConcentration 7668 572 347
CinC ECG torso 46979 3521 1636
Coffee 293 15 98
Cricket X 252834 2286 438
Cricket Y 249889 2378 1208
Cricket Z 260107 2611 594
DiatomSizeReduction 1013 17 69
ECG200 224 12 55
ECGFiveDays 41 3 20
FaceAll 93442 538 2139
FaceFour 1853 69 43
FacesUCR 30516 195 2141
Fish 42766 802 755
Gun Point 209 6 34
Haptics 81751 8100 1575
InlineSkate 314244 43930 4970
ItalyPowerDemand 14 1 9
Lightning2 1657 1212 373
Lightning7 7923 219 93
MALLAT 65920 1645 267
MedicalImages 19864 136 555
MoteStrain 22 1 13
OliveOil 2499 123 287
OSULeaf 31181 2337 154
SonyAIBORobotSurface 34 1 6
SonyAIBORobotSurfaceII 44 1 10
SwedishLeaf 83656 317 3312
Symbols 3043 69 328
synthetic control 2616 37 18
Trace 6104 115 185
Two Patterns 11219 601 1241
TwoLeadECG 24 1 19
uWaveGestureLibrary X 267727 5060 274
uWaveGestureLibrary Y 373482 4429 567
uWaveGestureLibrary Z 409494 4230 619
Wafer 2746 217 1585
WordsSynonyms 852394 877 2271
Yoga 4414 2388 642

# best (including ties) 0 24 18
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Figure 8: Runtime comparison between Representative
Patterns, Fast Shapelets, and Learning Shapelets classifiers.

The average classification accuracy change with different
τ values is below 1%. That means this parameter does not
affect the classification result too much. The user can set a
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Table 3: The average running time and classification error
changes for different similar threshold on 42 UCR data. Pos-
itive value means increase, negative value means decrease.

10% -
30%

30% -
50%

50% -
70%

70% -
90%

Running Time Change (%) -4.66 -12.38 -15.09 -1.17
Error Change (%) -0.14 0.74 0.72 0.28
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Figure 9: The running time and accuracy with different
similarity threshold τ .

higher value for this parameter to achieve a fast speed and
still could maintain a high accuracy.

The τ value used for the experiment results (classification
error and running time) shown in Tables 1 and 2 is set as
30% because it gives the best accuracy and still has a fast
running speed.

6. CASE STUDY
In this section we demonstrate the application of our method

to classification of rotated time series data and Medical
Alarm data. We compare results with 1NN Euclidean dis-
tance, 1NN DTW with the best warping window, SAX-
VSM, Fast Shapelets, and Learning Shapelets classifiers.

6.1 Rotation invariance
Many global-distance-based techniques do not work well if

the time series data are shifted or out of phase. One type of
time series data that is particularly susceptible to this kind
of distortion is shape-converted time series [19], e.g. by ra-
dial scanning of the shape profile to convert the image into
a “time series.” Several datasets in the UCR repository are
shape-converted time series, e.g. OSU Leaf, Swedish Leaf,
Shields, etc. In this section we demonstrate the rotation-
or shift-invariance of our technique on a number of shifted
datasets. To shift or “rotate” a time series, we randomly
choose a cut point in the time series, and swap the sec-
tions before and after the cut point. This transformation
is equivalent to starting the radial scanning of the shape at
a different position on the shape profile. The out-of-phase
phenomenon is also common in many other real-world time
series data such as video. Figure 10 illustrates the original
GunPoint dataset time series and their rotation.

In our experiments, we leave the training set unmodified,
and shift only the test data. The rationale is that while it is
not uncommon for one to pre-process and create a “cleaned”
version of training data to build a good model, it is less
reasonable to expect that the test data will be in the same
cleaned format. In other words, we learn the patterns on
existing training data, but modify the test data to create
rotation distortion, in order to evaluate the robustness of
our technique.

It is possible that the rotation cuts the best matching sub-
sequence of the test time series. To handle this, we introduce

Table 4: Classification error rate on shifted time series

Dataset 1NN-
ED

1NN-
DTWB

SAX-
VSM

LS RPM

Coffee 0.536 0.460 0.000 0.036 0.000
Face Four 0.682 0.625 0.125 0.080 0.045
Gun point 0.460 0.493 0.047 0.200 0.047
Swedish Leaf 0.872 0.821 0.430 0.371 0.246
OSU Leaf 0.595 0.479 0.107 0.186 0.157

# best (including ties) 0 0 3 0 4
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Figure 10: Shifted GunPoint dataset and the best repre-
sentative patterns.

a new strategy to the test time series transformation step to
make our algorithm rotation invariant. When transforming
a raw time series into the new feature space of the closest
match distances, our algorithm needs to calculate the dis-
tance between the time series to each representative pattern.
In order to solve the aforementioned problem, our algorithm
will build another time series. For example, when transform-
ing a rotated time series A, we generate another new time
series B by cutting A from its midpoint and swapping the
first and the second halves. By doing so, B will contain the
concatenation of A’s tail and head. If the best-matching
subsequence happens to be broken up due to the rotation
(A), then by rotating it again at the midpoint, one of A
or B will contain the entirety of the best-matching subse-
quence. When computing the distance of A to a pattern p,
besides calculating a distance da between A and p, the algo-
rithm will also calculating another best match distance db
between B and p. The minimal distance of these two will be
used as the distance from A to p. This solution overcomes
the potential problem that arises when the best matching
pattern is cut into different parts due to the rotation.

The classification error rates of the rotated data are shown
in Table 4. The accuracy of our method or SAX-VSM does
not change very much from the unrotated version (though
our technique seems to be more robust, with 4 wins), while
the error rates of 1NN Euclidean distance and 1NN DTWB
increase drastically.

6.2 Medical Alarm
In this case study, we use the medical alarm data from

Intensive Care Unit (ICU) database (MIMIC II database
from PhysioNet) [6]. We used arterial blood pressure (ABP)
waveforms to create the dataset used in this work.

6.2.1 Normal or Alarm
We selected two types of ABP series segments: those that

triggered an alarm and those that did not. The data used are
all from the same patient. The selected dataset contains 52
time series of length of 2126. Each of the time series repre-
sents a segment of arterial blood pressure (ABP) waveform
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in a 17 second time range. The Normal class consists of
segments without any alarms, whereas the Alarm class con-
sists of segments that triggered the bedside patient monitors
and were verified by the domain expert as true alarms. The
dataset contains 26 time series in class Normal and 26 in
class Alarm. Training and test data are split into sets of 16
and 36 time series respectively. Examples of medical alarm
data from each class are shown in Figure 11.

The first row of Table 5 shows the accuracy of competing
classification techniques. Figure 11 shows the representa-
tive patterns from medical alarm time series and their best
matches on test data. Our method (RPM) achieves the best
accuracy on this dataset.

Table 5: Classification error rate on Medical Alarm data

Dataset 1NN-
ED

1NN-
DTWB

SAX-
VSM

FS LS RPM

NormalOrAlarm 0.333 0.333 0.167 0.306 0.111 0.056
FiveAlarmTypes 0.760 0.360 0.350 0.485 0.260 0.300
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Figure 11: Normal or Alarm data and the best represen-
tative patterns.

6.2.2 Five types of alarm
In PhysioNet’s MIMIC II database, there are five cate-

gories of critical arrhythmia alarms produced by a commer-
cial ICU monitoring system: Asystole, Extreme Bradycardia,
Extreme Tachycardia, Ventricular Tachycardia, and Ventric-
ular Fibrillation/Tachycardia. We collected a dataset by
taking the segments of an arterial blood pressure waveform.
Each segment contains a verified alarm. The objective is to
classify the alarm time series into one of the five types of
alarms.

The training set has 50 examples, 10 for each class. The
test set has 100 examples, 20 for each class. All time series
have the same length of 2126 (17 seconds). The time se-
ries example of each class, the representative patterns, and
the best matches are shown in Figure 12. Table 5 shows
the accuracy of competing classification techniques for this
dataset.

Our method (RPM) has the second best accuracy on this
dataset. We lose slightly to Learning Shapelets since we
have 30 incorrectly classified instances compare to 26 with
LS. However, our method finished in 1373 seconds compare
to 86195 seconds of LS. The speedup of our algorithm over
LS is 63X on this dataset.

7. CONCLUSIONS
In this work, we propose a novel method to discover rep-

resentative patterns of time series, specifically for the prob-
lem of classification. We demonstrate through extensive
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Figure 12: Five type of Medical Alarm and the best rep-
resentative patterns.

experimental evaluation that our technique achieves com-
petitive classification accuracy on the standard UCR time
series repository, and is able to discover meaningful sub-
space patterns. The accuracy of our technique remains sta-
ble even when the data are shifted, while NN classifiers with
global distance measures suffer from shift distortion. We
also demonstrate that our technique outperforms existing
techniques on a real-world medical alarm data that is ex-
tremely noisy.

In terms of efficiency, while our approach is competitive or
better than other techniques, there are other optimization
strategies that we can consider to speed up the algorithm
even further. From profiling, we identified the bottleneck
of the algorithm, which can be improved by adapting the
state-of-the-art subsequence matching strategies [26]. Also,
we used Euclidean distance as the base distance function for
pattern matching. We will consider a more robust distance
measure such as DTW in future work.
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ABSTRACT
Traditional temporal association mining systems, once sup-
plied with a specific parameter setting such as time periods
of interest, minimum support and confidence, generate the
rule set from scratch. This one-at-a-time paradigm forces
the analysts to perform successive trial-and-error iterations
to finally discover interesting temporal patterns. This pro-
cess is not only prohibitively time and resource consuming,
but also ineffective in providing meaningful feedback for im-
proving the desired rule outcome.

In this work, we introduce the first solution to interac-
tively explore temporal associations from evolving data at
multiple levels of abstraction, henceforth referred to as temp-
oral association rule analytics (TARA). The offline rule
preparation phase of the TARA infrastructure extracts the
temporal associations from the raw data and compresses
them into a knowledge-rich yet compact evolving parameter
space (EPS) structure. The online exploration phase of
TARA leverages this EPS structure to offer rich classes
of novel exploration operations from parameter recommen-
dations and time-travel queries to the discovery of hidden
insights of associations with near instantaneous responsive-
ness. As demonstrated by our extensive experiments on real-
world data sets, TARA accomplishes three to five orders
of magnitude improvement over state-of-the art approaches
while offering a rich interactive exploration experience.

1. INTRODUCTION

1.1 Motivation
Nowadays batches of data are continuously transmitted

from a rich variety of sources including websites, mobile de-
vices and other data sources, henceforth referred to as evolv-
ing datasets. Discovering associations and their dynamics

∗This work was partly supported by the National Science
Foundation under grants IIS-1117139, CRI-1305258, IIS-
0812027 and CCF-0811510 and Fulbright program.

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
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15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
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Creative Commons license CC-by-nc-nd 4.0

hidden in such large evolving datasets has been recognized
as critical for domains ranging from market products analy-
sis, stock trend monitoring, targeted advertising to weather
forecasting.

For example, in the retail businesses, the arrival of new
fashions or gadgets may boost unprecedented sales while sea-
sonal products may gain or lose customers’ interest. Some
products are purchased together more frequently in the days
leading to a large sports event or during a traditional holi-
day like Thanksgiving. Companies such as Amazon, eBay,
Walmart and other retail businesses apply temporal associ-
ation mining techniques to their transaction logs to identify
popular product combination at specific times and their be-
havior over time. Such information is critical for deciding
the times when products can be placed together on a web
page or configured into attractive bundle-offers to be used
for recommendations to encourage sales.

Interactive data mining models, crucial for discovering
knowledge from data, enable analysts to actively engage in
the analysis process. State-of-the-art temporal association
mining systems [2, 9, 14, 18], once supplied with a specific
parameter setting, tend to generate the ruleset for each re-
quest from scratch. This one-at-the-time request model suf-
fers from severe limitations described below.

1.2 Limitations of State-of-the-Art
Lack of instantaneous responsiveness. Lag in re-

sponsiveness is known to risk losing an analyst’s attention
during the exploration process. In applications like targeted
ad placement such delay in decision making may prove to
be the cause of missed business opportunities and thus a
potentially huge loss in profit. Unfortunately, temporal as-
sociation mining algorithms [2, 14] are known to be compu-
tationally intensive. To overcome this challenge, [18] pre-
generates the intermediate itemsets that are subsequently
used to derive the temporal associations instead of extract-
ing them from the huge raw data store. With this promising
one-time preprocessing strategy, the response time has been
shown to be greatly reduced. However, the process of the
final rule derivation remains a query-time task. This re-
sults in the shortcoming that the response times for mining
such requests are not sufficient to support truly interactive
exploration as confirmed by our experiments (Sec. 8).

Lack of parameter recommendations. Temporal as-
sociation mining algorithms are parametrized not only by
traditional measures like support and confidence but also
by time-variant measures [11, 16, 17]. Parameter settings
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used for one batch of data may produce insignificant rules
for a newly incoming data batch. Thus the data analysts
often must perform numerous successive trial-and-error it-
erations to find an appropriate parameter configuration out
of a seemingly infinite number of possible settings. Exist-
ing state-of-the-art models tend to correspond to a black-
box [2, 6, 9, 14, 18] - providing little to no feedback about
which parameter settings best capture the analyst’s inter-
est. To tackle this, [10] incorporates an indexing technique
to swiftly produce parameter recommendations. However it
is restricted to static data and thus does not support time
variant operations essential for temporal association mining.

Lack of evolving ruleset comparison. Analysis of the
data in finer time granularity may reveal that associations
exist only in certain time periods. Some may fluctuate as
new data arrives while others may remain stable. Further-
more, two seemingly similar parameter settings can generate
different results. Systems like [2, 6, 14, 18] independently
generate the ruleset for each parameter settings. Worse yet,
analysts then have to go through a tedious process to manu-
ally investigate the results generated by different parameter
settings to extract their differences. This can be extremely
tedious and impractical for large data sets.

Lack of insights into the evolving associations. Given
a parameter configuration, a system often generates a huge
number of rules. Analysts would benefit from being able to
quickly identify the most interesting ones, such as the most
stable rules [11] within the last week, the most significant
rules that occur every weekend, or the rules concerning spe-
cific products. Offering such rich insights into time-variant
rule behavior would provide the analysts with the opportu-
nity to leverage their domain knowledge to drive the discov-
ery process. Unfortunately, most existing parameter-driven
exploration systems [10, 16, 18] do not support the analyst
in the discovery of such useful time-sensitive insights.

1.3 Research Challenges
To develop an interactive temporal analytic system, the

following research challenges must be tackled.
Processing time-variant evolving data. Given a time-

variant data set containing n unique items, the maximum
number of possible associations are bounded by 3n − 2n + 1
[10]. The significance of associations may vary over time,
as newly incoming data may bring new items and associa-
tions. Being able to quickly extract these associations and
their behavior w.r.t different time horizons to answer ana-
lysts’ requests is the key to providing an interactive mining
experience. However, it is almost impossible to pre-generate
all such information. Thus the system must have an efficient
preprocessing strategy that pregenerates a minimal yet suf-
ficient amount of information as its critical knowledge store
to support interactive temporal association exploration.

Managing temporal associations for all parame-
ters. Typical input parameters, such as minimum support
and confidence, can be configured using any real number re-
stricted to a certain range. Similarly, the time specification
can be composed of one or multiple time periods along the
continuous timeline. Clearly, an infinite number of possible
parameter settings exists. Maintaining the corresponding
ruleset for each parameter setting individually thus is im-
practical. Therefore, an efficient mechanism is needed to
map the pregenerated temporal associations to the space of
parameter settings.
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Figure 1: The TARA Approach

Maintaining parameter values for different time
periods. The prominence level of an association may vary
significantly for some associations while remaining stable for
others. Such time-variant properties of parameter values
may reveal important evolving patterns of an association
in the evolving dataset. Yet keeping each single historical
parameter value for each association is inefficient, result-
ing in large storage and search space. Therefore, a compact
archive structure is needed to efficiently maintain the param-
eter values of the associations across time while supporting
fast system access to retrieve any desired information.

Supporting advanced temporal association explo-
ration. Rule mining algorithms tend to generate too many
rules - making it extremely hard for the analysts to quickly
identify the interesting ones. The problem of interesting-
ness of temporal rules has been previously investigated [12,
17]. An interactive temporal association exploration system
must integrate such interestingness measures to provide crit-
ical insights about the associations such as their evolving
behaviors across time. The retrieved rules w.r.t particular
parameter settings must be efficiently evaluated using these
measures so that the instant responsiveness of the system is
safeguarded.

1.4 The TARA Approach
We propose a novel temporal association rule analytics

(TARA) framework that addresses the above challenges.
The TARA infrastructure depicted in Fig. 1 employs an of-
fline preprocessing phase composed of Association Generator
and Knowledge Base Constructor followed by TARA Online
Explorer that enables analysts to interactively explore the
evolving data with support by the knowledge base.

The Association Generator extracts temporal associations
from the evolving data and compactly stores them in the
Temporal Association Rule Archive (TAR Archive) of TARA
knowledge base. Later, by request, the parameter values of a
particular association w.r.t various fine granularities can be
quickly computed without processing the raw data again.
These pregenerated temporal associations are compressed
into a knowledge-rich yet compact evolving parameter space
(EPS) that encodes the relationships among the temporal
associations. Next, the TARA knowledge base explicitly ex-
tracts and then models the distribution of the pregenerated
temporal associations with respect to their parameters, e.g.
support, confidence and time periods.

Beyond achieving speedup in response time, the online
processing strategies leverage the EPS index to offer ana-
lysts an innovative “rule-centric panorama” into the tempo-
ral associations present within the evolving dataset. The
framework supports rich classes of novel exploration opera-
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tions from time-travel queries and parameter recommenda-
tions to evolving ruleset comparisons.

1.5 Contributions
Key contributions of this work include:
• We propose the first interactive temporal association

rule mining analytics framework called TARA that enables
analysts to explore associations across time and pinpoint
appropriate parameter settings in a systematic way.
• The TARA model organizes the temporal associations

in the space of query parameters. It abstracts the temporal
associations at the coarse granularity of time-aware stable
regions across multiple time periods.
• The TARA model is supported by evolving parameter

space (EPS) index structure that indexes time-aware stable
regions along with the associated domination graph. TARA
offers efficient algorithms for offline EPS index construction.
• For the rules generated, we design a temporal associa-

tion rule archive, called TAR Archive, that compactly en-
codes the parameter values of each rule across time. Our
specially designed encoding and decoding strategies achieve
fast access to the requested information from this archive.
•We propose a rich set of novel temporal rule exploration

operations beyond traditional temporal rule mining. Effec-
tive strategies for the online processing of the proposed op-
erations that leverage our precomputed TARA index struc-
tures are provided.
• TARA framework supports the exploration of the asso-

ciations at coarser or finer time granularities by roll-up and
drill down operations. We provide a theoretical bound on
the approximation of the solution under roll-up operations.
• Our extensive experiments using IBM Quest [1], retail

[3] and webdocs [13] datasets demonstrate that TARA is 3
to 5 orders of magnitude faster than its state-of-the-art com-
petitors for traditional temporal association mining, while in
addition supporting novel analytics within milliseconds.

2. PRELIMINARIES OF TEMPORAL
ASSOCIATION

T = {..., ti, ..., tj , ...} denotes a set of times, countably
infinite, over which a linear order <T is defined, where ti <T
tj means ti occurs strictly before tj . Let I = {i1, i2, ..., in}
represent a set of items. D = {d1, d2, ..., dm} is a collection
of subsets of I called the transaction database. Each
transaction di in D is a set of items such that di ⊆ I.
Each di has an associated timestamp tj , denoted by di.time
= tj . Let X ⊆ I be a set of items, called itemset. If X ⊆ di,
di contains X . If the cardinality of X is k, X is called a k-
itemset. Given a closed time period [ti, tj ] where ti <T
tj , then the set of transactions in the range [ti, tj ] of D that
contain X is indicated by F(X ,D, [ti, tj ]) = {dk | dk ∈ D ∧
ti ≤ dk.time ≤ tj ∧ X ⊆ dk}.

Definition 1. A temporal association rule is an ex-
pression of the form R[ti,tj ] ≡ (X ⇒ Y), where X ⊆ I,
Y ⊆ I \ X , and [ti, tj ] indicates that R is derived from all
the transactions in D whose timestamps fall into [ti, tj ].

A temporal association rule defaults to the traditional
association rule if the time period is set to the entire time-
line. This time restriction [ti, tj ] empowers the data analysts
to discover associations that are not significant throughout
the entire data set. Moreover, an association may reappear

Table 1: Example of pregenerated temporal association rule

(a) Item set (min supp = 0.05)

Itemset!
Support!

T1! T2!

a! 0.36 ! 0.44!

b! 0.45 ! 0.22!

c! 0.36 ! 0.44!

ab! 0.18 ! 0.11!

ac! 0.18 ! 0.33!

bc! 0.09 ! 0.11!

Rule!
(Support, Confidence)!

T1! T2!

R1: a->b! (0.18, 0.5)! (0.11, 0.25)!

R2: b->a! (0.18, 0.4)! (0.11, 0.5)!

R3: a->c! (0.18, 0.5)! (0.33, 0.75)!

R4: c->a! (0.18, 0.5)! (0.33, 0.75)!

R5: c->b! (0.09, 0.25)! (0.11, 0.25)!

R6: b->c! -! (0.11, 0.5)!

(b) Rule (min conf = 0.25)

Itemset!
Support!

T1! T2!

a! 0.36! 0.44!

b! 0.45! 0.22!

c! 0.36! 0.44!

ab! 0.18! 0.11!

ac! 0.18! 0.33!

bc! 0.09! 0.11!

Rule!
(Support, Confidence)!

T1! T2!

R1: a->b! (0.18, 0.5)! (0.11, 0.25)!

R2: b->a! (0.18, 0.4)! (0.11, 0.5)!

R3: a->c! (0.18, 0.5)! (0.33, 0.75)!

R4: c->a! (0.18, 0.5)! (0.33, 0.75)!

R5: c->b! (0.09, 0.25) ! (0.11, 0.25)!

R6: b->c! -! (0.11, 0.5)!

in multiple time periods expressing some periodicity. Fur-
thermore, the association may behave differently in terms of
its measured values. The evolution of the associations over
time can lead to insightful observations [11].

Many measurements [17] have been proposed to evaluate
the interestingness of associations. Out of these measure-
ments, we work with the most common measures of sup-
port and confidence to demonstrate the key principles of
our framework, though others can be plugged in the future.

Support(R[ti,tj ]) =
|F(X ∪ Y,D, [ti, tj ])|
|F(∅,D, [ti, tj ])|

(1)

Confidence(R[ti,tj ]) =
|F(X ∪ Y,D, [ti, tj ])|
|F(X ,D, [ti, tj ])|

(2)

The support defined in Formula 1 describes the propor-
tion of the transactions within the defined time period that
contains all items in the association. The confidence de-
fined in Formula 2 describes the probability of finding the
consequent Y of the association within the defined time
period under the condition that these transactions also con-
tain the antecedent X .

3. THE TARA MODEL
We now introduce our TARA model framework for inter-

active exploration of associations from evolving data.

3.1 Time Dimension of the TARA Model

F(Ø, D, T4)!

F(Ø, D, T3)!

F(Ø, D, T2)!

F(Ø, D, T1)!D1!

D2!

D3!

D4!

T1! T2! T3! T4!

t1! t10! t20! t30! t40! t50! t60! t70! t80!

Figure 2: Tumbling Window Model of TARA

Data analysts often are interested in exploring the asso-
ciations that hold in particular time periods, such as an
hour or a day. Coarser time specifications can be broken
down to ranges of smaller granularities. Moreover, the mea-
sures of an association in a longer time period can then be
computed based on the measures of the associations in the
shorter periods that are part of this longer period. Based
on this observation, TARA partitions the data set into dis-
joint time periods, called windows. Mining queries with a
coarser time granularity settings than this basic window size
are then supported using roll-up operations.

Let D be the evolving data set and w be the basic window
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size that represents the minimum granularity. Therefore, the
set of times T contains disjoint but consecutive time periods
each of size w denoted by T = {..., Ti, ..., Tj , ...}, (∀Ti, Tj),
if Ti 6= Tj , and Ti ∩ Tj = ∅. The evolving data set D is
partitioned into small chunks according to each time pe-
riod Ti in T denoted by D = {...,Di, ...,Dj , ...} where Di =
F(∅,D, Ti). In Fig. 2, for example we set the window size
w = 20. That is, the time frame is partitioned into a set
of time periods of length 20, e.g T2 = [t21,t40]. The evolv-
ing data set D is partitioned into time-oriented data subsets
Di according to these time periods, e.g. D2 = F(∅,D, T2).
For each data partition Di, TARA pregenerates the asso-
ciations off-line (See Sec. 4). Table 1.(b) shows an example
of the associations generated for the time periods T1 and T2.
TARA processes the raw data D once to pregenerate the
temporal associations held in these windows. A query with
the coarser time specification can then be answered based
on these pregenerated associations.

Definition 2. Time availability: Let w be the finest
time granularity. Then T w = {..., T w

i , ..., T w
j , ...} corresponds

to the basic time periods of T that are generated by TARA
through time partitioning by w. A time specification Tk sup-
ported in TARA thus is Tk =

⋃j
m=i T w

m , where i ≤ j.

This strategy allows us to support roll-up and drill-
down of time periods at run time such as days, months
or years to support long and short term goals.

3.2 Evolving Parameter Space Model
In association rule mining, the input parameter values of

minimum support and confidence can be any real number
within [0,1]. Each combination, referred to as parameter
setting, corresponds to a set of rules generated by using this
parameter setting. We now extend this into the notion of
an Evolving Parameter Space (EPS) that models relation-
ships and distribution of rules across the multi-dimensional
temporal parameter space.
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ABSTRACT
Analytics of time-variant data sets to derive actionable in-
sights has become critical to gain a competitive edge for
many modern applications. While recent advances to sup-
port interactive exploration of the associations derived from
static data exist, interactive analysis of time-variant pat-
terns of associations has been overlooked. In this work,
we introduce the first such technology, called EPSTAR
(Evolving Parameter Space Framework for Interactive Temporal
Association Rule Analytics), that enables analysts to e↵ec-
tively explore the evolution of the associations across time at
multiple levels of abstraction, henceforth referred to as tem-
poral association rule analytics. EPSTAR features three
core innovations. First, EPSTAR o↵ers an innovative in-
teractive temporal association model that provides a ‘rule-
centric panorama’ into evolving data sets along with rich
exploration operations. Second, the EPSTAR preprocess-
ing phase extracts the time-variant associations from evolv-
ing data sets and compresses them into a knowledge-rich
yet compact Evolving Parameter Space (EP-Space). This
EP-Space pre-codes the core interrelationships of temporal
associations, which are critical for e�cient on-line temporal
association analytics. Third, supported by this EP-Space
structure, our EPSTAR infrastructure incorporates online
processing strategies that e�ciently implement the on-line
temporal association analytics. As demonstrated by our ex-
tensive experiments on real-world data sets, temporal asso-
ciation analytics is supported within a milliseconds response
time.
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2. INTRODUCTION

2.1 Motivation
As opposed to finite static datasets, evolving data takes

the form of continuously transmitted batches of data from
mobile devices or data services. Mining of associations and
correlation hidden in such large evolving datasets has been
recognized as an increasingly critical technology for applica-
tions ranging from cross product analysis, dynamic tracing
of stock fluctuation, web usage analysis to network tra�c
analysis and forecasting. For example, companies such as
Amazon, eBay, Walmart and other retail businesses apply
data mining techniques to their transaction logs to iden-
tify products that are frequently purchased together. Such
products can be placed together, made into bundle-o↵ers
or used for recommendations when users search for one of
the products. Products may lose attraction over time as
their popularity wanes; The arrival of new fashions or gad-
gets may boost the unprecedented sales and seasonal prod-
ucts may change from time to time. In many cases, de-
tecting and reacting to changes of patterns and their trends
over time are clearly of utmost urgency. By identifying and
analyzing these time-sensitive associations and correlations,
data analysts could construct adaptive and responsive busi-
ness models. However, data mining algorithms are known
to be prohibitively compute-intensive, parameterized, and
sometimes generating too many patterns. To facilitate such
time-sensitive pattern discovery process, we describe three
properties critical for e↵ective interactive temporal associa-
tion analytics system.

Motivation 1: Recommendations for parameter
configurations. Like many other data mining techniques,
association rule mining algorithms are also parametrized,in
this case, configuring support and confidence. This means
that even without considering the temporal context, there
exists infinite number of possible settings. Data analysts
often must perform numerous successive trial-and-error it-
erations and compare the results produced by varying pa-
rameter configurations until a satisfactory result is found.
Unfortunately, existing temporal rule mining models tend
to be blackboxes[5, ?] providing no feedback knowledge of
which parameter settings best capture the analyst’s inter-
est. A mining system capable of making recommendations
for parameter tuning would o↵er a competitive advantage
to the analysts as it would significantly reduce the number
of trial-and-error cycles.
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Figure 3: Evolving Parameter Space

Definition 3. Evolving Parameter Space: Let D be
an evolving data set, Di be a partition of D by a basic time
granularity Ti, ∀Ti ∈ T . Let pj be one of the n parameters.
The (n+1)-dimensional space, denoted by E = { p1,...,pn,
T } and called Evolving Parameter Space (EPS), orga-

nizes the rules {R}T where {R}T =
⋃k

i=1{R}Ti and k is the

total number of time partitions of D. A temporal associa-
tion rule R is associated with its temporal parametric lo-
cations (R.value(p1),..., R.value(pn))Ti where R.value(pj)
denotes the value of the jth parameter for rule R in time Ti.

For simplicity, we use two parameters, namely support and
confidence while others could be defined as well. Thus hence-
forth, the EPS E is a 3-dimensional space with support, con-
fidence and time as its dimensions. A temporal parametric
location depicting a rule R in time Ti, denoted as R(supp,
conf)Ti , is represented as a line segment indicating the pa-
rameter values of R in Ti. Fig. 3 shows the EPS for the
rules in Table 1(b). Rules R1, R3 and R4 map to the same
temporal parametric location (0.18, 0.5)T1 in the time period
T1. However in time T2, R1 travels in the space so that now
it maps to same location as R5(0.11, 0.5)T2 .
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Figure 4: Evolving Parameter Space slice at Time T2

Lemma 3.1. Let L denote a temporal parametric location
in the EPS E, L.pi be the value of parameter pi for location
L. Given a set of temporal parametric locations in the same
time period Ti, ∀Lm,Ln ∈ {L}, where m 6= n, if there exists
a pi such that Lm.pi 6= Ln.pi, then the temporal association
rules that map to Lm are guaranteed to be distinct from those
that map to Ln.

Proof. Rules’ temporal parametric locations in time Ti
are generated from the same data partition Di. Any given
rule at time Ti cannot have two distinct values for one pa-
rameter. Therefore, a rule R cannot map to two distinct
temporal parametric locations within the same time.

Each rule’s temporal parametric location can either remain
steady or change over multiple time periods. We call this
stream of locations the trajectory of the association.

Definition 4. Trajectory of an association: Given a
sequence of time periods {T } = {T1..., Tm}, the trajectory
of an association R in {T } is the set of temporal paramet-
ric locations that represent its parameter values in the time
periods in {T }.

This trajectory of a rule allows us to compute different
measures about the rule that summarize its evolving pat-
terns like coverage [16], stability [11] and standard devia-
tion. These measures can be computed for each individual
rule or even for a set of rules to provide individual or global
summarization respectively.

Given a data set with n unique items, the maximum num-
ber of rules is finite, bounded by 3n−2n +1 [10]. Therefore,
some set of parameter settings must correspond to same set
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of rules. Fig. 4 shows a slice of the evolving parameter
space for time T2. Rules with identical parameter values are
represented by the same point in this space. These points
partition the space into 4 regions marked by dashed lines.
If a user specified minimum support and confidence config-
uration for mining falls into region S3, then regardless of
its actual position within the region, the output ruleset is
always {R3,R4}. This observation is inspired by the work
presented in [10]. Thus the entire evolving parameter space
at a time Ti can be partitioned into a finite set of regions
referred to as time-aware stable regions. This notion of time-
aware stable regions forms our coarse granularity abstraction
of the temporal association rules generated from an evolving
data set D.

Definition 5. Time-Aware Stable Regions: Given an
EPS E of n parameters {p1,...,pn} and times T as (n + 1)
dimensions for an evolving data set D, then a time-aware
stable region in a time period Ti is a closed hyper-box de-

noted by STi (upper(p1),...upper(pn))

{(lower(p1),...lower(pn))} with its boundary spec-

ified by locations (S.upper(p1),...,S.upper(pn))Ti and {(S
.lower(p1),...,S.lower(pn))Ti} within each of which no mat-
ter how the parameter values are adjusted, the set of rules
generated from Di remains unchanged.

Considering the 3-dimensional EPS in Fig. 3, a time-
aware stable region is bounded by an upper location
(suppu,confu)Ti and k lower locations {(supplj ,conflj )Ti}
where j ∈ [1, k]. The support and confidence values of the
upper location will always be greater than those of all its
lower points, i.e., ∀j (suppu ≥ supplj ) and (confu ≥ conflj ).
The upper location of a time-aware stable region is called its
cut location.

Definition 6. Cut Location: Let EPS E be a 3-dimensi-
onal space with support x, confidence y and time z as its
dimensions, {X} be a set of the intersections formed by the
perpendicular projections of each temporal parametric loca-
tion onto x and y planes. The cut locations within E are
then denoted by {C}, where {X} = {C} ∪ {L}.

Fig. 3 depicts time-aware stable regions ST1 (0.18,0.5)

(0,0.4) and

ST2 (0.11,0.5)

(0,0) . For region ST 1
(0.18,0.5)

(0,0.4) , the cut location is (0.18,

0.5)T1 . It is bounded by the parametric locations (0.18,0.5)T1

and (0,0.4)T1 and contains rules R1, R3 and R4.

Lemma 3.2. Given a set of time-aware stable regions {S}
for the same Ti, ∀ Sm, Sn ∈ {S}, where m 6= n, the associ-
ations that map to the cut location of Sm are guaranteed to
be distinct from the ones that map to the cut location of Sn.

Proof. By Lemma 3.1, rules generated in the same time
period but map to different temporal parametric locations
are guaranteed to be distinct. The locations in {X} either
belong to {L} or have no rule. Therefore, within a time pe-
riod Ti, rules that map to different time-aware stable regions
are guaranteed to be distinct.

Definition 7. Dominating Stable Region: A time-
aware stable region Sm dominates region Sn where m 6=
n, if and only if ∀pi ∈ P Sm.C.pi ≤ Sn.C.pi, and Sm and
Sn are in same Ti where Sm.C refers to the cut location of
stable region Sm.

Lemma 3.3. Considering two time-aware stable regions
Sm and Sn where m 6= n. If Sm dominates Sn, then rules
valid within the dominated region Sn are also valid in the
dominating region Sm but not vice versa.

Proof. A temporal rule Ri is in the final output ruleset
if in the specified Tk, ∀ pj , Ri.value(pj) ≥ min parameters
where pj ∈ {p1,...,pn}. IfRi belongs to region Sn, the tempo-
ral parametric location ofRi is the upper location of Sn. Be-
cause Sm dominates Sn, ∀ pj , Sm.upper(pj) ≤ Sn.upper(pj),
meaning ∀ pj , Sm.upper(pj) ≤ Ri.value(pj). So Ri is valid
in Sm as well. However, vice versa is not true, as can be
trivially shown.

Consider S1 = ST1 (0.18,0.5)

(0,0.4) and S2 = ST1 (0.09,0.25)

(0,0) in Fig

3. Based on Def. 7, S2 dominates S1 because every param-
eter value in the upper location of S2 is smaller than the
corresponding value of S1.

If the rules in region ST1 (0.09,0.25)

(0,0) are included in the final

result, then region must also contain the rules that are valid

in ST1 (0.18,0.5)

(0,0.4) . By Lemma 3.3, given a user-specified pa-

rameter setting, once a region is identified as a valid region
to produce the final ruleset, all its dominated regions should
then also be included in the user output.

Using this concept of dominating stable regions [10], each
rule is stored once in the stable region and by iterating over
its dominating regions the final ruleset can simply be ob-
tained for a given pair of support and confidence values.

3.3 Supported Queries on TARA Model
We now propose TARA operations that offer a rich classes

of novel temporal analytical queries.
Temporal Association Mining. Given a parameter set-
ting and time periods, Q1 returns the associations that sat-
isfy the minimum parameters, such as minimum support and
confidence. The evolving trajectory and measures of asso-
ciations for each of the specified time periods are also re-
turned. The Measures including coverage [16], stability [11]
and standard deviation summarize the evolving patterns.
Exact match option returns the associations that are con-
sistently valid in all of the specified time periods. Single
match returns the associations that are valid in exactly one
of the specified time periods. Fuzzy match returns the asso-
ciations that are valid in at least one or more of the specified
time periods. Q2 returns the differences of associations with
regards to two different parameter settings.

Q1 RETURN Rule, Trajectory, Measures

FROM Evolving Data Set D
PARAMETER

∧
n

i=1 MinParameteri = Pi

IN-TIME = Time Periods & Granularity

MATCH = Exact|Single(Time Period)|Fuzzy

Use Case for Temporal Association Mining. In the
retail dataset [3], over the time period of one year broken
in windows of a week, Q1 may return the rule (turkey =⇒
pumpkin pie) with relatively low support and confidence
value (0.4,0.5) throughout the year. However, this rule peri-
odically rises to high support and confidence value of (0.6,0.7)
in the week before Thankgiving. If we had examined this
rule in the roll-up view over the complete data (whole year),
it’s support and confidence would overall have been too low.
With Q1, an analyst can find the rules that are frequent
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only within certain intervals. It also allows to find all time
periods during which this rule was more popular.

Q2 RETURN Rule, Trajectory, Measures

FROM EPS E
PARAMETER

∧
n

i=1 MinParameter1i = P1i

COMPARE-TO
∧

n
i=1 MinParameter2i = P2i

IN-TIME = Time Periods & Granularity

MATCH = Exact|Single(Time Period)|Fuzzy

Use Case of Unnoticeable Changes. For a dense data
set like webdocs [13], the size of the returned rulesets is
huge, making it difficult for the analysts to perform man-
ual inspection of the differences produced by two different
parameter settings. To effectively tune the best parameter
setting that includes the most important associations across
the specified time intervals, analyst would benefit from be-
ing able to quickly explore the differences in the results. Q2
allow to find all rules that were generated in last month by
parameter configuration setting like (0.4, 0.8) but not by
configuration setting (0.5, 0.95).
Stable Region Exploration. These queries provide meta
information about the time-aware stable regions. In partic-
ular, Q3 returns the sets of stable regions identified for the
given parameter settings across the time periods specified
by the match clause. Q4 returns region parameters that
contain the specified associations.

Q3 RETURN Stable Region

FROM EPS E
PARAMETER

∧
n

i=1 MinParameteri = Pi

IN-TIME = Time Periods & Granularity

MATCH = Exact|Single(Time Period)|Fuzzy

Use Case of Parameter Recommendation. For a sparse
dataset like retail [3], often despite submitting several suc-
cessive mining requests with different parameter settings,
the system repeatedly returns the same set of rules due to
a sparse distribution of rules. This trial and error process
can be avoided by using query Q3. For example for the re-
tail dataset [3] broken in windows of a week, Q3 can easily
inform an analyst that during the last week of a month, the
same set of rules will be generated for all parameter config-
urations within (0.88, 0.76) and (0.91,0.78).

Q4 RETURN Region

FROM Ruleset
⋃

n
i=1 Ri

IN-TIME = Time Periods & Granularity

MATCH = Exact|Single(Time Period)|Fuzzy

Time Specification: Roll-up and Drill-down. For each
of the above queries, a time granularity must be specified.
For example, a time period Ti can refer to a particular hour,
a day, or a week.
Rule Search. As [12] pointed out, supporting content-
based rule search can leverage analysts’ domain knowledge
to efficiently narrow down the result into a more manageable
smaller set. Q5 allows analysts to filter a ruleset, generated
by any of the above queries, based on the absence or pres-
ence of certain items given in the MATCH clause.

Q5 RETURN Rule

FROM Ruleset
⋃

n
i=1 Ri

MATCH {I}+ ∪ {I}−

Use Case of Content-based Association Exploration.
In the retail dataset using query Q1 with Single match op-
tion and the time equal to week before Christmas returns a
huge number of rules for the support and confidence values
of (0.4,0.5). With Q5 an analyst can quickly find all the
rules that contains “Ipads” and do not include “Laptops”.

4. OFF-LINE EPS-INDEX CONSTRUCTION
Our proposed Evolving Parameter Space (EPS) Index con-

struction is composed of three tasks that are performed off-
line. Task 1 generates the temporal association rules; task 2
computes the time-aware stable regions and constructs the
domination graph, and task 3 constructs the EPS-Index.
These tasks three are explained below (See Algo. 1).
Task 1: Temporal Association Rule Generation. TA-
RA first pre-generates the rules from the evolving dataset
using the lowest meaningful parameter settings, called the
primary support θ and the confidence λ, to prevent excess
pre-generation [12]. Based on the minimum time granular-
ity, TARA mines the rules from the current window, whose
support and confidence value exceed θ and λ. The rules
and their parameter values w.r.t to the transactions within
this window are then archived (See Sec. 5). In our work, we
plug in FP-Tree [7] as the rule generation algorithm. The
rule mining module in TARA framework is extendable to
any incremental or parallel rule mining solution [8].
Task 2: Time-Aware Stable Region. To construct the
time-aware stable regions (see Def. 5), TARA first com-
putes the cut locations using a two step approach. In the
first step, the temporal parametric locations of rules gener-
ated in the previous task are initialized as the first set of cut
locations. Each cut location maintains a set of references to
its rules. In the second step, let x, y, and z be the axes
representing support, confidence and time measures and o
be the origin of all measures. The intersections formed by
the perpendicular projections of each point onto the x and
y planes are added to the cut location set.

By Lemma 3.2, each cut location identifies a unique time-
aware stable region. For each cut location, the lower bounds
are computed to form a complete time-aware stable region.
Simultaneously, the immediate dominated regions are iden-
tified and connected to construct the domination graph.
Upon user request, the time-aware stable regions can be con-
structed for the coarser time granularity over basic granu-
larity used by the system. New parameter values of rules
forming these time-aware stable regions are computed by
Formulas 4 & 5.
Task 3: EPS-Index Construction. Within each time-
aware stable region, all rules are indexed by their respec-
tive attributes, called a region shard. Next, the two layered
Evolving Parameter Space Index (EPS-Index) is created to
efficiently answer the TARA model requests. The top level
of the EPS-Index facilitates the search to locate a partic-
ular time-aware stable region given its input parameters.
Regions are indexed separately by different time periods.
For regions within a single time period, a grid-based spatial
index is utilized to partition the EPS into equal-sized grid
cells. The time-aware stable regions are then allocated to
their respective positions in the grid. The stable regions in
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Algorithm 1: Offline EPS Construction

Input: Dataset D
begin

for each Di from D do
{R} ←− ∅; {S} ←− ∅;
{R} ←− RuleGenerator(Di, θ, λ);
{S} ←− RegionAbstractor({R});
E ←− EPSIndexConstructor({S+},{R});

1.A: RuleGenerator
Input: Di, θ, λ
Output: RuleSet {R}
begin
{R} ←− ∅;
{R} ←− FP-Tree(Di, θ, λ);
Archive({R});

1.B: RegionAbstractor
Input: {R}
Output: RegionSet {S}
begin
{C} ←− ∅; /*Initial cut location set*/
{S} ←− ∅;
{C} ←− GetCutLocation({R});
for each Ci ∈ {C} do
S ←− ConstructShard(Ci);
S ←− GetRegion(Ci, {C});
S ←− ConnectDominatedRegion(S,{C});
{S} ←− {S} ∪ S;

1.C: EPSIndexConstructor
Input: {S}
Output: EPS-Index E
begin

GridIndexer({S});
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Figure 5: The EPS-Index

each cell point to the corresponding nodes in the next level
of the EPS-Index. Fig. 5 shows the spatial index of the
time-aware stable regions for T1.

Using the proposed grid structure, the online search for a
stable region can be performed in near constant time. The
online processing of our TARA exploration using this index
is described in Sec. 7.

The second level of the EPS-Index, namely, the region
domination graph (Fig. 5), is designed to expedite the col-
lection of rules from dominating regions [10]. Each stable
region forms a node in the graph with each node linked to
its closest dominating neighbors. The region domination
graph enables us to locate the closest dominating neighbor
regions in near constant time and also produce complete rule
sets in linear time in the number of rules involved.

5. TEMPORAL ASSOCIATION ARCHIVE
As explained before, the rules themselves can be huge.

We describe an efficient storage structure for managing the
rules generated across time called temporal association rule
archive (TAR Archive).

5.1 TAR Archive Design
Our proposed archive structure consists of a directory and

a number of index entries. The directory contains all tempo-
ral association rules. Each rule in the directory has a pointer
to its index entry. The index entry stores the history of its
parameters w.r.t a specific time granularity. The index entry
can be implemented using a time sequence [6] as illustrated
in Fig. 6. For simplicity only one parameter is shown. The
size of the time sequence is equal to the number of basic
windows. The advantage of using such naive time sequence
is that every element in this structure maps to a parameter
value of the rule within a specific window. Given a window
and rule id, the search of the parameter value takes only
O(1) time.
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Figure 6: Rule Index with Time Sequence

Interestingly, [15] observed that daily updates in transac-
tion databases more often than not affect only a small part
of the ruleset. [6] also indicates that parameter values of the
frequent patterns mined from the data stream often remain
stable within a period of time. In Fig. 6, R1,R2 and R3

are stable over several consecutive windows. Therefore, the
time sequence structure may contain redundant values.
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Figure 7: Rule Index with Compact Time Sequence

To avoid the above problems while still achieving efficient
access, we propose the TAR Archive with compact time se-
quence structure as depicted in Fig. 7. Each compact time
sequence for one parameter consists of a binary code B and
an array of distinct parameter values, called value sequence,
denoted as V = {v1, ...vn}. The ith bit from the lowest order
indicates whether or not the parameter value within the ith
window is identical to the value within the previous window.
The encoding strategy is shown in Formula 3.

Bit(R.pji ) =

{
0 if R.pji = R.pj−1

i

1 otherwise
(3)

For example, in Fig. 6 the parameter values of R1 are
stable in the first three windows with only the value in the
latest window being different. “1001” denotes the evolution
of this parameter across 4 windows. The lowest order digit
represents the parameter value in the oldest window and
the highest order digit represents the parameter value in the
newest window. In this case, the parameter values in T1, T2
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and T3 only need to be stored once in the structure because
they are identical.

5.2 TAR Archive Operations
Next we discuss the supported operations, namely append,

access, purge and merge on the TAR Archive.
Append: As the new window is being processed, rules are
added into the TAR Archive. We distinguish between three
cases when a rule is being appended: (1) The new rule al-
ready exists in the archive; (2) The new rule does not exist
in the archive; (3) A rule that is in the archive does no longer
appear in the newly generated ruleset.

For case 1, if the new value of the rule is different than
in the last window, then “1” is added to the binary code
otherwise no action is needed. To address case 2, first, this
new rule is inserted in the rule directory. Second, for each
parameter, if the current window is the very first window,
the binary code is set to “1” and p0i is inserted into the
empty value sequence. If j > 0, the binary code is first
initialized as“1”and“0.0” is inserted into the value sequence.
Then the procedure in case 1 is followed to process the new
information. To address case 3, the system simply appends
the parameter value“0.0”to all parameters of such rule. The
append procedure is the same as the procedure for case 1.
Access: Our decoding strategy for compact time sequence
structure allows to search TAR Archive takes O(1) time.
Given a window id j, the parameter value pji from Vi is
retrieved. For instance, in Fig. 7, forR1, if j = 3, the system
needs to locate the correct value p3 in the value sequence.
In Bi, the count of “1” is the length of the value sequence
because every time a bit is set to “1”, a new value is then
appended to the value sequence. Finding the offset of the
element in the sequence value corresponding to the queried
window j is equivalent to counting “1”s up until the jth bit
in Bi. For the previous example, if j = 3, the binary code
up until 3rd bit in B is “001” which only has 1 bit set to
“1”. So s1 in the value sequence represents the value of p3.
Given a j, we calculate the offset of the element in the value
sequence as follows Offset(j) = HammingWeight(B AND (2j

- 1)). HammingWeight is a O(1) algorithm for bit counting.
Purge: As parameter values begin to accumulate, the size of
the archive grows bigger and bigger. For some applications,
historical information inserted at the very beginning may
become insignificant. Therefore, an operation that purges
such data is necessary. Specifically, the operator deletes the
parameter values of the entire ruleset in the archive w.r.t a
set of consecutive windows from T1 to Tk where k ≤ total
number of windows. For each rule R, the purge operation
performs a two-step procedure: (1) Delete the values that
correspond to < D1, ...,Dk > for each parameter from the
value sequence. (2) Update the binary code so that it reflects
the changes of the parameter within the rest of the windows.
For an input k, if Offset(k) equals to Offset(k+ 1) which
means the values of a parameter in Dk and Dk+1 are mapped
to the same si in S, then {sj |1 ≤ j ≤ i − 1} are removed
from S. The corresponding B is right shifted i − 1 times
and the first bit of the modified B′ is set to “1”. If the
results of Offset(k) and Offset(k + 1) are not identical,
then {sj |1 ≤ j ≤ i, i = Offset(k)} are removed from S.
The corresponding B vector is right shifted i times.
Merge: For some applications, analysts may be interested in
recent changes at a fine granularity, but longer term changes
at a coarse granularity. To support such time-sensitive roll-

up, also called Natural tilted-time window or logarithmic
tilted-time window [6] an efficient merge operation is needed
for the TAR Archive.
{R}i denotes the ruleset generated from Di. The merge

operation unions the rulesets,
⋃j

w=i{R}w, that correspond
to the set of consecutive windows [Ti, Tj ] and computes the
new parameter value for each rule in the merged window.
[Ti, Tj ] denotes a set of consecutive windows that are re-
quested to be merged, |Dj | denotes the total number of
transactions in Tj . The support and confidence of a rule
in the merged window is computed as follows:

Support(R) =

j∑
w=i

|Dw| × R.suppw

j∑
w=i

|Dw|
(4)

Confidence(R) =

j∑
w=i

|Dw| × R.suppw

j∑
w=i

|Dw| × R.suppw

R.confw

(5)

Based on the definition of support and confidence, For-
mula 4 describes the proportion of the transactions within
the merged window that contains all items of the associ-
ation; Formula 5 describes the ratio of the number of the
transactions that contains all items of the association to the
number of the transactions that contains antecedent items
in the merged window. With these new values, the merge
operator then further updates both the binary encodings Bi

and value sequences Vi in the rule entry. For a particular
parameter of a rule, if the windows from i to j are merged,
then the bits from ith to jth position in its binary code are
also merged into one bit. The value of this new bit and
(i+ 1)th bit depends on whether the represented parameter
value is different from its last parameter value.For example,
in Fig. 7 when T2 and T3 are requested to be merged, the
new binary code becomes “11” and value is 0.3.

6. ROLL-UP SUPPORT ACROSS TIME
In the rule generation step, rules with parameter val-

ues below minimal system thresholds are not maintained.
Therefore, we may not have the exact parameter values for
each rule when multiple windows are merged.The parameter
value of a rule in a coarser time period (merged window) is
computed based on its parameter values in all periods that
compose the window. The calculation is described in For-
mula 4 & 5. For example, let θ be 0.1, support values of R
in T1 and T2 be 0.2 and 0.08 respectively. If T1 and T2 are
requested to be merged, the exact support of R in the new

window is |D1|×0.2+|D2|×0.08
|D1|+|D2| . However, let us assume that

R had been withdrawn from T2 because 0.08 < θ. Therefore
the support value of R in T2 becomes unknown and thus is
treated as 0. As a result, we no longer have the exact pa-
rameter value of rules in a merged coarser-time-granularity
window, rather only an approximate value. Rules withdrawn
from a window may fall into 3 cases depending on whether
they either fail to satisfy one of the system thresholds or
both. The margin of error of the parameters value in merged
windows varies case by case. Since the withdrawn rules are
absent from the system, the exact reason of the withdrawal
becomes unknown. Therefore, we introduce the worst sce-
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nario below:
Let [Ti, Tj ] be a set of consecutive windows that are re-

quested to be merged, R be a rule that at least appears
once in any of these windows, T ′ be the windows in which
R is absent, T ′′ be the windows in which R appears, S(R)
and C(R) be the approximated support and confidence of

R calculated based on Formulas 4&5, Ŝ(R) and Ĉ(R) be
the exact support and confidence of R. The worst scenario
arises where all absents of R are caused by R.supp ≥ θ and
R.conf < λ.

In this case, R has a qualified support. In order to have
a confidence value smaller than the threshold, R’s support
must be larger than θ, however, smaller than λ. Therefore,

S(R) ≤ Ŝ(R) ≤

m∑
k=1

|D′k| × λ+
n∑

k=1

|D′′k| × R.suppD′′
k

j∑
w=i

|Dw|
(6)

The error in confidence is caused by miss counting the with-
drawn support of R, as well as miss counting of the with-
drawn support of the antecedent of R. The confidence with
maximum margin of errors is the following:

margin =

m∑
k=1

|D′k| × λ+
n∑

k=1

|D′′k| × R.suppD′′
k

m∑
k=1

|D′k|+
n∑

k=1

|D′′k| ×
R.suppD′′

k
R.confD′′

k

(7)

Note that this value does not guarantee to be smaller or
larger than Ĉ(R), because the errors are both introduced in
the numerator and denominator.

Formula 6 gives the worst scenario for the approximation
of support and Formula 7 the worst scenario for the approx-
imation of confidence. The smaller θ and λ are, the more
accurate our approximation will be. Because with a smaller
system threshold, less rules would be withdrawn from the
window reducing the chance of miss counting.

7. ONLINE QUERY PROCESSING
In this section, we explain how the analytical TARA queries

introduced in Section 3 are handled by the TARA frame-
work (Algo. 2). Depending upon the query type, the appro-
priate subroutine is invoked. Q1, Q2 and Q3 are handled
by subroutines 2.A, 2.B, 2.C respectively. For Q4 once the
ruleset is selected by any of the subroutines, routine 2.C is
used to return the stable region.

The response time for query processing mainly consists
of 3 components, namely, Cost(SearchRegion), Cost(GetRule)
and Cost(GetDominatedRegions). The TARA storage struc-
tures namely EPS-Index and TAR Archive are in-memory
structures. The cost for a region search against EPS-Index
is O(1). As illustrated in Fig. 5, locating the regions within
the same time interval takes O(1). By converting input pa-
rameters into offsets, the appropriate cell can be found in
O(1) as well. Thus Cost(SearchRegion) = O(1). Note
that the system must generate the stable regions for such
time periods in which they don’t exist. To iteratively col-
lect all the immediate dominated regions in the domination
graph, a breadth-first search (BFS) is required starting at
the node containing (minsupp,minconf) in T . The time
complexity of BFS is O(|V | + |E|). In our case, E ≤ (2 ×
V) as each vertex has a fanout of at most two edges. Thus,

Algorithm 2: Online Temporal Association Exploration

2.A: Temporal Association Mining Query
Input: s,c,{T },matchtype
Output: Ruleset
begin
{R} ←− ∅; {S} ←− ∅;
switch matchtype do

case single(T )
{S} ←− SearchRegion(s, c, T );
{S} ←− {S} ∪ GetDominatedRegion({S});

case exact
T ←− any T ∈ {T };
{S} ←− SearchRegion(s, c, T );
{S} ←− {S} ∪ GetDominatedRegion({S});

case fuzzy
for each Ti ∈ {T } do
{S} ←− SearchRegion(s, c, Ti);
{S} ←− {S} ∪ GetDominatedRegion({S});

{R} ←− GetRule({S});

2.B Ruleset Comparison Query
Input: s1,c1,s2,c2,T ,matchtype
Output: Rulesets {R}1,{R}2
begin

sc ←− max(s1, s2); cc ←− max(c1, c2);
{S}1 ←− SearchRegion(s1, c1, T );
{S}2 ←− SearchRegion(s2, c2, T );
//Collect the regions till it reaches a parameter value
for i = 1 ; i ≤ 2 ; i++ do

if si 6= sc then
{S}i ←− GetDominatedRegion(Si, sc);

if ci 6= cc then
{S}i ←− GetDominatedRegion(Si, cc);

{R}1 ←− GetRule({S}1);
{R}2 ←− GetRule({S}2);

2.C Stable Region Query
Input: s,c,{T },matchtype
Output: Region S
begin
{S} ←− ∅;
switch matchtype do

case single(T )
S ←− SearchRegion(s,c,T );

case exact or fuzzy
for each Ti ∈ {T } do
{S} ←− SearchRegion(s,c,T );

Cost(GetDominatedRegions) =O(|V |). If the trajectory of
a rule cannot be obtained from the retrieved regions (exact
or single match), GetRule searches the parameter values of
the rule in the specified periods in the TAR Archive. If the
granularity of the specified time periods is coarser than the
ones available in the archive, GetRule finds the windows
that are contained in coarser time periods and computes
the parameter value for the merged window. See Sec. 5 for
the complexity analysis of accessing the TAR Archive and
the computation for obtaining the parameter value in the
merged window.

8. EXPERIMENTAL EVALUATION
Experimental Setup. Experiments are conducted on a

OS X machine with 2.4 GHz Intel Core i5 processor and 8
GB RAM. The system and its competitors are implemented
in C++ using Qt Creator with Clang 64-bit compiler.

Datasets. We select a variety of datasets with diverse
characteristics here. The benchmark datasets, T5kL50N100
and T2kL100N1k, are generated by the IBM Quest data
generator [1] modeling transactions in a retail store. We
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Table 2: Datasets

100retail T5k T2k webdocs
Transactions 8,816,200 5,000,000 2,000,000 1,692,082
Unique Items 16,470 23,870 30,551 5,267,656

Avg Len of Tran 10 50 100 177
Size 416.8 MB 1.48 GB 1.38 GB 1.48 GB

Table 3: Thresholds for Indexes

Dataset H-Mine TARA&PARAS (supp, conf)
retail 0.0002 (0.0002, 0.1)
T5k 0.0012 (0.0012, 0.2)
T2k 0.001 (0.001, 0.2)

webdocs 0.1123 (0.1123, 0.2)

partition these datasets into 5 equal-sized batches to form
the evolving data sources. The retail dataset [3] contains
88,163 transactions collected from a Belgian retail super-
market store in 5 months. To study scalability, we repli-
cate this retail dataset 100 times. The webdocs dataset [13]
is built from a spidered collection of web html documents.
Both of these real datasets are partitioned into 10 equal-
sized batches to form evolving data sources.The statistics of
the datasets are summarized in Tab. 2.
Alternate State-of-the-art Techniques. The performance
of TARA is compared against three competitors. DCTAR
[9] derives the ruleset directly from the raw data given a pa-
rameter configuration. It computes the associations from
scratch whenever a new batch of data arrives. H-Mine [18]
instead pregenerates the intermediate frequent item sets of-
fline. For specific parameter settings, the algorithm utilizes
the itemsets to generate the associations online instead of
extracting them from the raw data. PARAS [10] pregener-
ates frequent itemsets and rules offline for the entire data set
assuming all data is static and given apriori. That is, time
is ignored. For our experiments, we construct the PARAS
index for a single time period. However at online time if
request comes for different periods it then generates the as-
sociations from scratch.

Experimental Methodologies: The performance of our
approach and state-of-the-art algorithms is measured by:
Offline Preprocessing Time. We measure the single and
multiple data batches preprocessing time for TARA, H-
Mine and PARAS. Since DCTAR does not involve any pre-
processing, it is excluded from this measurement.
Online Processing Time. We measure the online process-
ing time for a query averaged over multiple runs (explained
in Sec 8.2) to evaluate the speedup.
Size of Pregenerated Information. We compare the
sizes of the preprocessed information. DCTAR is again ex-
cluded. The size of the tree structure in H-Mine and the size
of the TAR Archive in TARA are thus compared.

8.1 Evaluation of Preprocessing Time
We first compare the preprocessing times for H-Mine, PAR-

AS and TARA. In the offline step, as the window slides, H-
Mine (1) precomputes the frequent item sets and (2) stores
them along with their associated support value into a tree
structure. Whereas TARA (1) precomputes the frequent
item sets, (2) derives the ruleset, (3) archives them along
with the associated support and confidence values and (4)
updates the EPS -Index. PARAS proceeds with the same
process as TARA except that it does not utilize the archive
nor does it keep the pregenerated information from the pre-
vious windows. Therefore, the total preprocessing time of
PARAS is similar to TARA except for the archival time.

Fig. 10 compares the preprocessing time of H-Mine and
TARA for all windows for the retail, T5kL50N100, T2kL100N1k
datasets, with the system threshold settings summarized in
Tab. 3. As shown, frequent item set generation occupies
a relatively large portion of the preprocessing time as com-
pared to other tasks. This confirms prior works [7] that rule
generation is more efficient compared to frequent itemset
generation. Overall, the additional preprocessing tasks in
TARA require no more than 20% extra time than H-Mine.
This extra time gives significant advantage to TARA in
terms of truly interactive online performance and support
of many advanced exploration operations.

8.2 Evaluation of Online Processing Time
Next, we compare the online processing times (y-axis in

log scale) for our proposed operations. The user-specified
parameters, namely minsupp, minconf and time periods, are
varied. The examined queries fall into two categories: (1)
Rule trajectory and parameter recommendation queries and
(2) Ruleset comparison queries. In the first experiment, we
test the performance of TARA against the three competi-
tors using several query types, namely Q1 and Q3 in single
match mode. Second, we use Q2 in exact match mode to
test the performance of TARA against others. We choose
Q1, Q2 and Q3 because they cover the major exploration
operations and subroutines in the online processing phase.

8.2.1 Trajectory and Parameter Recommendation
To process Q1, the system needs to find the rules that

satisfy minsupp and conf in a single time period and examine
their parameter values in other specified time periods. For
DCTAR, it mines the rules from the transactions that fall
into the last window and examines their parameter values
by processing the transactions that fall into the 3 previous
windows. For PARAS, the process is identical except that
the rules are retrieved from the PARAS index built based
upon the newest window. For H-Mine, the rules are derived
and examined by using its item set index.
Impact of Varying Support and Confidence. To deter-
mine the effect of minsupp, we conduct several experiments
by fixing minconf to a constant value and varying the min-
supp value. Fig. 8 illustrate the query processing times
for retail, T5kL50N100, T2kL100N1k and webdocs datasets
with fixed minconf 0.4, 0.2, 0.2 and 0.4, respectively.

We observe that, TARA consistently outperforms DC-
TAR and PARAS by 6,7,7 and 5 orders and H-Mine by
3, 4, 4 and 4 orders of magnitude for retail, T5kL50N100,
T2kL100N1k and webdocs datasets respectively. TARA-S
stands for the implementation of TARA with the rule in-
dex inside each time sensitive stable region to support con-
tent based exploration (Q5). The merging of indexes when
dominated regions are being collected incurs extra costs as
compared to the TARA system without these rule indexes.
Especially when the number of rules in the result is small,
this extra cost results in similar or slower response time com-
pared to H-Mine as shown in Figs. 8(b) and (c). The reason
of the fast response of TARA is that it prepares sufficient
amount of information in the offline stage, so that answering
such queries is simply about searching the TARA index.

TARA-R shows the response time of returning the time-
sensitive stable region which answers Q3. Since PARAS al-
ways builds the index for the latest window, in this par-
ticular experiment, it achieves the same response time as
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Figure 8: Rule Trajectory and Parameter Recommendation: Varying Support
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Figure 9: Rule Trajectory and Parameter Recommendation: Varying Confidence
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Figure 10: Preprocessing Time

TARA because only regions that fall into the latest win-
dow are considered. All other systems are not capable of
answering Q3. That is, using DCTAR and H-Mine, an ana-
lyst would need to generate all possible rules in the specified
time period and then investigate all to find the answer.
Impact of Varying Confidence. Next, we fix the minsupp
to a constant value and vary the minconf value. Fig. 9 il-
lustrates the query processing times for retail, T5kL50N100,
T2kL100N1k and webdocs datasets with fixed minsupp 0.0002,
0.0012, 0.0012 and 0.1123, respectively. Overall, both TARA
and TARA-S consistently perform several orders of magni-
tude better than the three competitors.

8.2.2 Ruleset Comparison Queries
Q2 returns the differences of the rulesets w.r.t two param-

eter settings that share the same time specification. In this
particular experiment, the query is configured with the ex-
act match mode. It returns the differences of two parameter
setting across 4 windows. Since the DCTAR and H-Mine
do not support such query, we implement a subroutine in
their rule derivation module to determine if the parameter
value of the rule satisfies one setting but not the other. This
subroutine is optimized so that it does not generate the over-
lapping ruleset w.r.t 2 different settings. In this experiment,
we either fix minsupp or minconf and vary the other one.
Impact of Varying 2nd Support. Fig. 11 illustrates the
query processing times for retail, T5kL50N100, T2kL100N1k
and webdocs datasets. The fixed min parameters for these
datasets are (minsupp1, minconf1, minconf2): (0.0002,
0.4, 0.4), (0.0012, 0.2, 0.2), (0.0012, 0.2, 0.2) and (0.1123,
0.4, 0.4), respectively. The query processing times increase

with an increase in the minsupp because the increase of the
deviation from minsupp1 to minsupp2 results in larger dif-
ferences between the two parameter settings. In particular,
TARA outperforms DCTAR and PARAS by 6,7,6 and 6 or-
ders, H-Mine by 4, 5, 4 and 4 orders for retail, T5kL50N100,
T2kL100N1k and webdocs datasets, respectively.
Impact of Varying 2nd Confidence. Fig. 12 illustrates
the query processing times for retail, T5kL50N100, T2kL100N1k
and webdocs datasets. The fixed min parameters for these
four datasets are (minsupp1, minconf1, minsu
pp2): (0.0002, 0.4, 0.0002), (0.0012, 0.2, 0.0012), (0.0012,
0.2, 0.0012) and (0.1123, 0.4, 0.1123), respectively. TARA
consistently performed several orders of magnitude better
than the three competitors.

8.3 Evaluation of Archive Size
We compare the sizes of the pregenerated information in

TARA, H-Mine and PARAS. For H-Mine, the size of the
structure is determined by the number of frequent item sets
times the number of processed partitions, while the size of
pre-stored information in TARA is determined by the size
of the TAR Archive. PARAS only pregenerates the associa-
tion in a single window. Its maximum size is 3n−2n+1 where
n is the unique items in that particular window. The actual
index sizes can be estimated by multiplying the number of
instances with the average space required per instance.

Fig 13 shows the size of the H-Mine Index, TAR Archive
and the actual number of uncompressed rule parameter val-
ues for our four datasets with the system threshold settings
summarized in Tab. 3. As TARA pre-generates rules in-
stead of only the item sets, the size of the TAR Archive is
larger than the H-Mine index. However, our encoding tech-
nique achieves favorable compression as compared to un-
compressed rule parameter values.

9. RELATED WORK
Temporal association mining. Adding the time di-

mension in the context of association rules was first men-
tioned in [14]. However, while more follow-on works [6, 9,
18] improve the efficiency of temporal association mining by
maintaining intermediate frequent item sets, all of these ap-
proaches require the user to input a specific parameter set-
ting. This one-at-a-time approach not only limits efficiency,
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but also provides very limited feedback for the user.
Interestingness of temporal associations. [12, 17]

identify the importance of analyzing the interestingness mea-
sures of associations. In the context of time-variant data,
[11] measures the changes of the interestingness of the asso-
ciation w.r.t its histories. It is suggested that the interest
in the rule itself is primarily determined by the interesting-
ness of its change over time. Neither of these works tackle
interactive mining through precomputation. In contrast, we
explore the space of interestingness parameters for prestor-
ing data mining results to facilitate fast online mining.

Interactive association mining. Prior works [4, 5, 10]
have explored the space of parameters for handling data min-
ing requests. However this work is restricted to static data.
These approaches do not consider the time dimension as
a property of the pattern. Instead we now study the prob-
lem of incorporating the time dimension into the association
mining exploration process.

10. CONCLUSION
We present the first framework for interactive temporal

association analytics. Our TARA framework employs a
novel evolving parameter space model for pre-generating
rules such that near real-time performance is guaranteed for
online mining. In a variety of tested cases, TARA outper-
forms the three state-of-the-art competitor techniques, each
by several orders of magnitude, while offering a holistic ex-
ploration experience supporting new classes of time-variant
rule analytics.
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ABSTRACT
Record linkage, the process of identifying similar records
that correspond to the same real-world entities across
databases, is a well-established research problem in the
database, data mining, and information retrieval communi-
ties. Computing distances between string values of records
is the key component in order to determine the similarity of
the represented entities. Due to the typically large volumes
of records, a two-step process is followed. A blocking mech-
anism is first applied for grouping similar records together,
and then a matching mechanism is performed for compar-
ing the records which have been inserted into the same
block. However, there does not exist any efficient block-
ing/matching mechanism which provides theoretical guaran-
tees for identifying similar records which consist of strings.
Towards this end, we put forth the novel notion of embed-
ding string-based records into a Hamming space, where such
a mechanism exists. The size of these embeddings is kept
as small as needed in order to guarantee the correspondence
of distances in that space to the types of errors that ex-
ist between strings, e.g., a missing or a modified character.
We build embeddings whose size is 120 bits for represent-
ing accurately four fields of a publicly available data set.
We also present a distance threshold-aware blocking tech-
nique for higher accuracy rates compared to blocking ap-
proaches which ignore the specified threshold. Our empirical
study conducted on real-world data sets shows the efficacy
achieved by our embedding method as compared to several
existing solutions.

1. INTRODUCTION
The integration of data from disparate sources is increas-

ingly being required as an important step towards the iden-
tification of similar entities across different sources. Known
as entity resolution, record linkage, and data matching, the
process of integrating data is an important problem in many
data mining and knowledge engineering applications [10]. A
wide range of real-world applications, including health-care,

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

government services, crime and fraud detection, national se-
curity, and businesses, require entity resolution techniques in
order to enrich data quality and empower accurate decision
making [2].

Since unique entity identifiers, which would allow a simple
join between records, are often not available in databases,
a common practice is to use personal identifying attributes,
such as names and addresses. Due to the quadratic complex-
ity of the number of comparisons required and the commonly
large volumes of records, a two-step process is followed [29].
In the first step, a blocking mechanism is applied, which
reduces the comparison space efficiently by creating blocks
with potentially similar records. Then, in the second step,
only the records within the same block are compared with
each other. Moreover, the values of these attributes, which
are well correlated with the entities being linked, often con-
tain variations, errors, and misspellings which require the
use of approximate matching solutions [2].

A widely adopted criterion that is used to determine the
similarity between the string values of these attributes is
their edit distance [20], which is the minimum number of
character edit operations required to transform one string
value into the other. Unfortunately, thus far there does not
exist an efficient blocking/matching mechanism that works
directly on records, which contain string values, and simul-
taneously provides theoretical guarantees for identifying all
similar record pairs using the edit distance as the metric for
determining their similarity. Furthermore, computing the
edit distances for a large number of record pairs imposes a
considerable non-negligible overhead. This can be tolerated
for the traditional context of an off-line process but is not
suitable for many emerging recent applications that require
nearly real-time analysis, especially if they involve streaming
data [5, 33].

For these reasons, a common practice is to embed string
values into a metric space where such an efficient block-
ing/matching solution exists. For example, Hamming [17]
and Jaccard [18] Locality-Sensitive Hashing (LSH) based
blocking/matching mechanisms work in a Hamming and in a
Jaccard space, respectively. Representing a string as a small-
sized binary sequence in a Hamming space results in a partic-
ularly lightweight structure. Moreover, Hamming distance,
which is the number of bits in which two binary sequences
differ, can be computed very fast. These two features render
those embeddings a perfect fit for distributed and real-time
settings. One such example of a real-world application is a
health surveillance system that continuously integrates data
from hospitals and pharmacy stores by performing a large
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number of distance computations in real-time.
Also, during the matching step, it is common practice

to follow a decision model by applying to each record pair
a rule, which classifies a pair of records as a matching or
as a non-matching pair according to some distance thresh-
olds specified for each attribute. Setting such a threshold
arbitrarily or on an empirical basis may either impose ad-
ditional unnecessary running time or generate incomplete
results. LSH-based blocking mechanisms [17, 18] consider
each record as an entity ignoring completely such classifi-
cation rules during the blocking step. This record-level ap-
proach falls short in the presence of such rules, especially
when different thresholds are specified for each attribute.

In this paper, we propose an embedding method of strings
into a compact binary Hamming space where both the em-
beddings are of small size and the distances in that space
correspond to certain types of errors, e.g., an accidentally
deleted character, between strings. Therefore, one can spec-
ify accurately the threshold(s) required by the used block-
ing/matching mechanism in the embedding space. Further-
more, we adapt the blocking mechanism to the used clas-
sification rule and report the formal guarantees provided
for identifying any similar pair by using the newly adapted
mechanism. To the best of our knowledge, such an attribute-
level LSH-based blocking/matching technique has not been
proposed in the literature before.

The contributions of this paper are:

• An efficient embedding method of strings into a com-
pact Hamming space resulting in lightweight, in terms
of size, embeddings.

• A guaranteed correspondence of distances in the em-
bedding space to certain types of errors between strings.

• An attribute-level LSH-based blocking scheme, which
adapts to the used classification rule.

• An experimental evaluation of the proposed method
compared with existing embedding solutions and using
real-world data sets.

In the next section, we review the relevant literature, and
in Section 3 we formulate the problem and motivate its im-
portance. We outline the building components of our pro-
posed method in Section 4, and in Section 5 we describe this
method in detail. We empirically evaluate and compare our
approach with existing embedding solutions in Section 6,
and we conclude this paper with future research directions
in Section 7.

2. RELATED WORK
A long line of research has been conducted in record link-

age and various methods for computing similarities between
records in an approximate manner have been proposed. We
refer the interested reader to some recent surveys [2, 10].
Many techniques have been developed for the blocking and
matching step aimed at reducing the comparison space and
identifying as many similar record pairs as possible [3, 10].

For the blocking step, several approaches [6, 8, 12, 34]
have been developed with the aim of being scalable to large
data sets without sacrificing quality. Nevertheless, there are
two methods which had great impact on the research com-
munity. The first is the sorted neighborhood method [12],

including all its variants, which first sorts all records from
the participating data sets and then uses a fixed-sized sliding
window over the sorted records in order to compare the pairs
which are formulated within that window. The second is the
canopy clustering technique [6] that relies on the idea of us-
ing a computationally cheap clustering approach to create
high-dimensional overlapping clusters, from which blocks of
candidate record pairs can then be generated. These meth-
ods though do not provide any guarantees for identifying
record pairs that are similar nor scale well to large volumes
of records.

Recently, randomized blocking/matching techniques,
which mainly rely on Locality-Sensitive Hashing (LSH) [1],
have received much attention [9, 15, 17, 18]. These tech-
niques work in some metric space into which string values
are embedded preserving their initial distances as accurately
as possible. The most appealing property of these distance-
based randomized techniques is that they provide theoreti-
cal guarantees for identifying each similar record pair in the
embedding space with high probability.

For the matching step, a large body of work has also
been conducted on similarity joins [35, 36, 11, 21, 24, 25,
30, 31, 32] where efficient and scalable approximate joins
are facilitated by using several metrics during the match-
ing step such as the edit, Jaccard, and cosine metrics [2].
Especially, the authors in [35, 21, 25, 30, 31] have devised
efficient techniques for finding similar string values using
the edit distance metric, however they focus on individual
such values, whereas our work proposes a solution for find-
ing similar records, which usually consist of multiple strings.
All the above-mentioned metrics though use strings or high-
dimensional vectors of integers, which are not suitable struc-
tures for highly demanding environments either in terms of
communication or of computational cost. Three other state-
of-the-art embedding methods, introduced in [14, 18, 27],
are used as our competitors and are presented in detail in
Section 6.

3. PROBLEM DEFINITION
Let us assume that two data custodians, who own databases

A and B, respectively, engage themselves into a process for
identifying the common entities among their records. They
are allowed to make use of the services offered by an indepen-
dent party, whom we call Charlie. The two data custodians
agree to use a common set of nf attributes, each denoted by
fi where i = 1, . . . , nf , based on which they can exchange

and compare their records. We denote by u
(fi)
E the distances

between the values of attribute fi, and by ϑ
(fi)
E the speci-

fied threshold for this attribute. They also need to provide
an additional attribute, let us call it Id, for the role of an
identifier of each record. The data custodians submit their
records to Charlie whose duty is to identify any pairs of
similar records that belong to different data sets.

Definition 1 (A Similar record pair). A record
pair rA ∈ A and rB ∈ B is considered as similar if for each

attribute fi, it holds that u
(fi)
E ≤ ϑ

(fi)
E in the metric space

(E , dE), where E is the original space in which the string
values of all records of A and B exist, and dE is the edit
distance used as the metric on E.

Due to the generally large size of the data sets at hand,
Charlie will use a randomized blocking/matching mecha-
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Algorithm 1 Mapping a q-gram to a position of a q-gram
vector.

Input: a q-gram gr.
Output: The index ind in the q-gram vector.
1: ind = 0
2: for i = 1, . . . , q do
3: ch = gr[i] // Extract each character ch from gr.
4: ind = ind + ord(ch) × |S|q−i // Function ord(·)

returns the order (zero-based) of character ch in S.
5: end for

nism, which both handles efficiently large volumes of data,
and provides theoretical guarantees of performance in ap-
proximate matching by identifying each similar record pair
with a specified (high) probability. However, such known
mechanisms work in different metric spaces than E . For
this reason, Charlie embeds the string values into a Ham-
ming metric space (H, dH), where such a mechanism already
exists. Additionally, there should exist a guaranteed corre-
spondence between distances in H and the type of errors
in E by keeping the size of the embeddings in H as small as
possible. Given this correspondence, the thresholds required
can be easily specified in H, which will result in identifying
each pair of records regarded as similar in E .

Definition 2 (An Efficient Embedding Method).
Given an efficient blocking/matching mechanism in H, con-
struct an embedding method of strings from E into H, where
errors in E are identifiable in H separately for each attribute
fi using embeddings whose sizes are as small as possible
depending on the lengths of the strings in fi.

4. BACKGROUND
In this section, we outline the building blocks utilized by

our proposed scheme.

4.1 q-gram Vectors
A q-gram vector is a deterministic structure for repre-

senting a string value in the Hamming space. Such struc-
tures have been used in [18] and [19] for representing dis-
tinct attribute values and whole records, respectively. Each
position of a q-gram vector represents a distinct q-gram
which is a group of q consecutive characters in a string
value. By assuming that the alphabet S of q-grams is the
set of the upper-case letters, the size of a q-gram vector
is m = |S|q = 26q positions. Let us denote a bijection
F : {gr1, gr2, . . . , grm} → {0, . . . ,m − 1}, which maps each
q-gram for a certain alphabet S to an integer, termed also
as the index ind of that q-gram. The logic behind F is il-
lustrated in Algorithm 1. Therefore, by this mapping, we
obtain a set of indexes, denoted by Us, that indicates which
positions of the respective q-gram vector will be set to 1.
Figure 1 illustrates how a string is represented by a bigram1

vector. A record-level q-gram vector is built by concatenat-
ing the corresponding attribute-level q-gram vectors and its
size is m = nf ×m. The space in which these record-level
q-gram vectors exist is H = {0, 1}m.

4.2 Hamming LSH-based Blocking/Matching
Due to the large number of records that occur in many

of today’s databases, the randomized Hamming Locality-
Sensitive Hashing (LSH) technique [1], denoted by HB, is

1Bigrams are the q-grams with q = 2.

1...00

JO OH HN

...1...1...BV =

 indexes of the positions

For s=’JOHN’, F(‘JO’)=248, F(‘OH’)=371, and F(‘HN’)=195. 
Thus, Us={248, 371, 195}.

0-th  1-st  ... 195-th 248-th 371-st... ...

...
AA AB HN JO OH

Figure 1: Representing the string ‘JOHN’ as a bigram vector
denoted by BV .

Table 1: Interpretation of the most used variables through-
out this paper.

Tl An independent blocking group where l =
1, . . . , L used by the HB.

hl A composite hash function used to specify the
bucket of some Tl into which a c-vector, de-
fined in Section 5.2, is stored.

K The number of base hash functions used by a
hl.

Us The set of indexes of the respective q-grams of
a string s.

dS The metric applied on space S where S ∈
{H, Ĥ, E,J}.

uS Distance measured by using metric dS .

ϑS The specified distance threshold in space S.

mopt The optimal size of a record-level c-vector.

nf The number of common attributes which par-
ticipate in the linkage process.

fi An attribute where i = 1, . . . , nf . When used
as a superscript in parentheses, it denotes the

attribute-level value, e.g., u
(fi)
H , K(fi), h

(fi)
l

etc.
b(fi) The average number of q-grams of the values

of the corresponding attribute fi.

used as the blocking/matching technique in order to iden-
tify each similar pair of record-level q-gram vectors, which
exist in H, with high probability. Mechanism HB utilizes
L independent hash tables, termed also as blocking groups.
Each hash table, denoted by Tl where l = 1, . . . , L, consists
of key-bucket pairs where a bucket hosts a linked list which
is aimed at grouping similar q-gram vectors. Moreover, each
hash table has been assigned a composite hash function hl

which consists of a fixed number K of base hash functions.
A base hash function applied to a q-gram vector returns the
value of its j-th position where j ∈ {0, . . . ,m − 1} chosen
uniformly at random.

Definition 3 (A Hamming LSH family). A family φ
of composite hash functions has the following key prop-
erty for any pair of record-level q-gram vectors denoted by
QV1,QV2 ∈ H whose Hamming distance is uH [1]:

If uH ≤ ϑH then Pr[hl(QV1) = hl(QV2)] ≥ pK , (1)

where p denotes the success probability of a base hash func-
tion and is equal to p = 1− ϑH

m
.

Intuitively, the smaller the Hamming distance is, the higher
the probability for a hl to produce the same result. The re-
sult of a hl, which constitutes the blocking key, applied to
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<0011>

<0111>

h1=< 0, 50,100, 301 >

h2=< 0, 51, 100,301 >

10...0 ...1...1...BV=

0111
...
...

0011
...
...

A1
T1

T2

A1

Figure 2: Hashing a record-level bigram vector BV, with
Id=‘A1’, by h1 and h2. For illustration purposes, we set
K = 4 and L = 2.

a q-gram vector specifies into which bucket, termed also as
block, this q-gram vector will be stored2. Figure 2 illustrates
how a record-level bigram vector is hashed.

During the matching step, we scan the buckets of each Tl

and formulate pairs of q-gram vectors, which belong to dif-
ferent data sets. By using this redundant blocking scheme,
we amplify the probability of identifying similar q-gram vec-
tors, but we also increase both the utilized space and the
running time in order to store the generated Tl’s. We there-
fore determine the optimal number of the Tl’s that should
be utilized by setting [1]:

L = d ln(δ)

ln(1− pK)
e. (2)

Each similar q-gram vector pair will be returned with high
probability 1 − δ, as δ is usually set to a small value, say
δ = 0.1. The value for K can be set empirically since the
correctness of the scheme is guaranteed by setting L appro-
priately. In [16], a method for choosing the optimal value for
K is presented, where the authors by sampling record pairs
and by experimenting with several values for K, choose the
value that minimizes the estimated running time. The value
of K can be set empirically since the completeness, with
respect to the identification of the matching pairs, of the
mechanism is guaranteed by Equation (2), by deriving the
optimal value for L. The value of K should be sufficiently
large because otherwise the blocking keys will not reflect the
variations of the bit sequences of the q-gram vectors. The
direct side-effect of this deficiency will be the generation of
a small number of buckets in each Tl, which will be over-
populated by mostly dissimilar pairs.

Not surprisingly though, q-gram vectors render inefficient
and cumbersome the HB mainly due to their sparsity as
will be explained in Section 5.2. In that section, towards
mitigating this sparsity and reducing their size, we propose
an alternative embedding scheme of the string values into H
in order to leverage the efficiency of HB.

5. AN EFFICIENT EMBEDDING METHOD
In this section, we instantiate our method, termed as cBV-

HB, which relies on embedding string values by using their
respective q-grams into a compact Hamming space. The
reason for choosing this space is twofold. Firstly, we argue
that by corresponding types of errors in E to distances in
H, one can easily specify the distance threshold(s) required
by HB. Secondly, the HB mechanism is a fast and accu-
rate method as experimentally demonstrated in [17], and it

2More precisely, we store only the corresponding Id ’s.

1...1...

JO ON ES

...1...1...BV1 =

s1=’JONES’, Us1={248, 377, 342, 122}
NE

JO ON AS

s2=’JONAS’, Us2={248, 377, 338, 18}

NA

1...1... ...1...1...BV2 =

JO ON NS

1...1... ...1...BV2 =

s2=’JONS’, Us2={248, 377, 356}

(a) substitute operation

(b) delete (insert) operation

122-nd 248-th 342-nd 377-th

18-th 248-th 338-th 377-th

248-th 356-th 377-th

Figure 3: The indexes in bold indicate the differing bigrams
between s1 and s2, which result in distances being equal to 4
and 3 in H for the substitute and delete (insert) operations,
respectively (m = 676).

works in Hamming spaces. We next (a) illustrate the cor-
respondence between distances in H and types of errors in
E by using the q-gram vectors, (b) propose an embedding
method which can be used by HB for efficient identification
of similar record pairs, and (c) present an attribute-level
LSH-based blocking technique which brings the importance
of the classification rule into the blocking step.

5.1 Corresponding Types of Errors in E to Dis-
tances in H

An error between a pair of string values is formally quan-
tified by edit distance. In the literature, several variants of
edit distance exist using different perturbation operations, as
the errors are termed in the edit distance context3. We con-
sider the basic perturbation operations (substitute, insert,
and delete) defined for the Levenhstein distance [20] and cor-
respond these basic operations to distances inH by using the
q-gram vectors. We present an illustrative running exam-
ple where the initial error-free string value is s1=‘JONES ’,
unless otherwise stated and we set q = 2 (bigrams). The
perturbed values are stored in variable s2. In this example,
we use two bigram vectors, denoted by BV1 and BV2 for
representing s1 and s2, respectively.

Substitute perturbation operation: This type of per-
turbation operation changes a single character in s1 and ma-
terializes the main reason for errors and misspellings com-
monly found in string values. Assume the value s2=‘JONAS’,

3We use the terms perturbation operation and error inter-
changeably. Usually, a perturbation operation occurs inten-
tionally and an error unintentionally.
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the distance uH between BV1 and BV2 is 4, as shown in
Figure 3, due to the 4 differing bigrams, which are ‘NE’
and ‘ES’ in s1 and ‘NA’ and ‘AS’ in s2

4. Distance may
be smaller in case a differing bigram overlaps with a com-
mon bigram. For instance, by perturbing s1 = ‘SHANNEN’
as s2 = ‘SHENNEN’, we produce two differing bigrams in
s1, which are ‘HA’ and ‘AN’, and two more in s2 namely
‘HE’ and ‘EN’. The latter though overlaps with a common
bigram found in both s1 and s2. Therefore, only bigrams
‘HA’, ‘AN’, and ‘HE’ affect uH which in this case is 3.
We conclude that for this type of perturbation operation
uH ≤ 4× uE .

Delete and insert perturbation operations: Another
common error that emerges when typing string values is the
omission of a character. This causes the generation of a
smaller number of bigrams for s2. As an illustration, by
setting s2 = ‘JONS’, we get two differing bigrams in s1,
which are ‘NE’ and ‘ES’ and only 1 in s2, which is ‘NS’
(see Figure 3). Hence, for the delete operation, it holds that
uH ≤ 3 × uE . Likewise, the insert is quite similar to the
delete operation (s2 = ‘JONEAS’) since it is essentially as
a delete operation in s1.

The above-mentioned observations, which hold for any q-
gram vector pair with q ≥ 2, lead to the definition of an
upper bound for a distance uE which corresponds to a uH
scaled by a constant factor α:

uH ≤ α× uE . (3)

The factor α depends on the type of the applied pertur-
bation operation, as explained before, and determines the
deviation between distances from E to H, commonly termed
as distortion [13].

In the Jaccard space J , which consists of the sets Us where
s stands for each possible string value, by using the Jac-
card metric [2] the distance between s1 = ‘JONES’ and
s2 = ‘JONAS’ is uJ = 1 − |Us1 ∩ Us2 |/|Us1 ∪ Us2 | '
0.667. Comparing though s1 = ‘WASHINGTON’ with s2 =
‘WASHANGTON’, the distance is affected by the length of
the strings resulting in uJ ' 0.364. In contrast, the Ham-
ming distance is constantly uH = 4 in both cases. Hence
using the Jaccard metric, one should take into account the
length of strings in order to set the threshold appropriately.
This task is not easy or sometimes is not feasible at all.

5.2 Embedding Strings into a Compact
Space

In this subsection, we propose an embedding method,
which preserves the distances from E , into a compact space
that consists of small-sized embeddings. These embeddings
can be particularly useful in highly demanding distributed
environments, which deal with large volumes of records, for
efficient communication. Our method adapts the size of the
q-gram vectors to the expected number of characters that
a record holds as needed. For example, the average num-
ber of bigrams for the LastName attribute of the NCVR
database [4], which is a large publicly available data set
that we will use in our experiments in Section 6, is only
5.0 bigrams. Therefore, the generated attribute-level bigram
vectors would be quite sparse due to the few bigrams pro-
duced by each string value. This sparsity though has neg-
ative effects during the application of the HB. The hl’s by

4We pad the first and the last character, e.g., ‘ JONES ’ in
order to include all the characters in 2 bigrams.

1...10

JO OH HN
g(195)

g(248)
g(371)

...1...cBV =

indexes of the positions 

s=’JOHN’, Us={248, 371, 195} 

0-th 1-st ... 10-th ... 35-th ...

Figure 4: Representing the string ‘JOHN’ as a c-vector de-
noted by cBV .

sampling randomly bit positions from such q-gram vectors
mostly choose 0’s, which has as a side-effect the formula-
tion of a small number of overpopulated buckets. Thus, the
HB boils down to an inefficient all-pairs comparison process.
Moreover, by assuming nf attributes, the size of a record-
level q-gram vector would be quite large, namely O(nf ×m)
bits. On account of these drawbacks, we embed the string

values of each attribute into a new space Ĥ which also uses
the Hamming metric. This space consists of compact q-gram
vectors, termed as c-vectors, which are of size m(fi) � |S|q,
that will be exactly specified later, for each attribute fi.
We introduce the dependency of the size of c-vectors on the
average number b(fi) of q-grams of the values of the cor-
responding attribute fi. This dependency will allow us to
be as efficient as possible by adjusting the sizes accordingly
and simultaneously preserving the distances from H. To-
wards this end, we hash the indexes in Us of a string value s
by randomly chosen, pairwise independent hash functions of
the form g(x) = [(ax+b) mod P ] mod m, where x ∈ Us, P
is a large prime number (e.g., 231−1) and a, b are randomly
chosen integers from (0, P ).

Figure 4 shows the creation of a c-vector by hashing the
bigrams of a string. However, during the hash operations
of the elements of Us, a number of collisions may occur if
two elements of Us hash to the same index in the c-vector.
This happens because the number of all possible q-grams is
much larger than m(fi). A collision is formally defined as
g(x) = g(y) for any x, y ∈ Us with x 6= y and the probabil-
ity Pr[g(x) = g(y)] is 1

m(fi)
. By considering the guarantees

quoted in the previous section, the collisions, in which dif-
fering q-grams of a pair of c-vectors participate, affect the

distances in Ĥ. These collisions result in misleadingly clas-
sifying non-matching as matching pairs.

As an illustration, let us assume the c-vectors with q = 2,
generated by the values s1 = ‘JONES’ and s2 = ‘JONAS’ of

an attribute fi. We expect the distance to be u
(fi)
H = u

(fi)

Ĥ
=

4 due to the differing bigrams generated by the suffices ‘NES’
and ‘NAS’. However, if during the hash operations of s2, the
results corresponding to the bigrams ‘NA’ and ‘AS’ collide,

then the u
(fi)

Ĥ
will be 1 bit less than the u

(fi)
H . Therefore, the

value for m(fi) should be adequately specified so that both
the HB can be efficiently applied and the distances should
be preserved.

The phenomenon of collisions is described in the Birthday
Paradox Problem [23] on which the following lemma relies.
In the calculations below, we drop superscript (fi) for better
readability.
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Lemma 1. The expected number of collisions E[c] by hash-
ing b q-grams for attribute fi to a c-vector with size m is:

E[c] = b− E[v], (4)

where E[v] denotes the expected number of positions which
both hold 1 and no collisions have occurred.

Proof. The indexes of positions of a c-vector, represent-
ing a string s of an attribute fi, are uniformly chosen by
g(·), therefore the probability of choosing any position for
each x ∈ Us is 1

m
. Let the indicator variable Ij denote for

the position with index j, where j ∈ {0, . . . ,m−1}, the con-
tent in that position. The probability that a certain position
with index j is not chosen (Ij = 0) after hashing b q-grams
is:

Pr[Ij = 0] = (1− 1

m
)b. (5)

Thus, the probability that the position with index j is finally
chosen is Pr[Ij = 1] = 1− Pr[Ij = 0]. The expected number
v of positions holding 1 is:

E[v] =

m−1∑
j=0

E[Ij ] = mE[Ij ] = m(1− (1− 1

m
)b). (6)

Then, by subtracting E[v] from b, we arrive at the desired
result.

Let us denote by ρ the maximum number of collisions we
can tolerate during the generation of the c-vectors. Then,
using ρ and the above lemma, we state the following theo-
rem:

Theorem 1. By expecting b q-grams in the corresponding
strings, the optimal size of the c-vectors for some attribute
fi is:

mopt = d b− ρ
1− e−r

e, (7)

where E[c] ≤ ρ with confidence 1− r.

Proof. We first specify the value of ρ and expand Equa-
tion (4) by using Equation (6) as follows:

E[c] = b−m(1− (1− 1

m
)b) ≤ ρ⇒

m(1− (1− 1

m
)b) ≥ b− ρ.

(8)

By using the fact that −(1 − 1
m

)b ≥ −e
−b
m , we derive an

upper bound for the left hand side of the second inequality in
(8) which is written as:

m(1− e−
b
m ) ≥ b− ρ. (9)

We then substitute b
m

with a constant r, where r < 1 since
it always holds that b < m. This constant denotes the ratio
between the number of q-grams to the size m. Intuitively,
smaller values for r increase our confidence, quantified as
1−r, that collisions will not occur at the cost of a larger size
m. Finally, we solve for m in (9), and derive the optimal
size, as illustrated in Equation (7), where we keep only the
equal sign, since we want to be as optimal as possible.

In Section 6, we show experimentally that by setting r <
1/3, we just increase mopt without earning a lot in terms of
accuracy.

Algorithm 2 Matching the c-vector pairs formulated in the
buckets of the Tl’s.

Input: cBVB ∈ B
1: C ← new UniqueCollection()
2: // C is a collection of unique Id ’s.
3: for l = 1, . . . , L do
4: Id list← Tl.get(hl(cBVB))
5: // Object Id list is a linked list of Id ’s.
6: for i = 1, . . . , Id list .size() do
7: Id← Id list[i]
8: if (not C.contains(Id)) then
9: cBVA ← retrieve(Id)

10: rule(cBVA, cBVB)
11: // A classification rule applied for each c-vector pair.
12: C.add(Id)
13: end if
14: end for
15: end for

Table 2: Primitive operations used by Algorithm 2.

get(x ) Return the linked list, to which the specified
key x is mapped.

size() Return the size of a linked list.

contains(x ) Return true if the unique collection contains
element x.

retrieve(x ) Retrieve a c-vector with Id = x from the data
store.

add(x ) Add value x to a unique collection.

For example, by assuming b(f1) = 5.1 and b(f3) = 20.0
from Table 3, by setting in (7) ρ = 1 and r = 1/3, we derive

values m
(f1)
opt = 15 and m

(f3)
opt = 68, respectively. We use the

ceiling function d·e to m
(fi)
opt because the size of a c-vector

should be an integer.
For each attribute, Charlie transforms the strings he re-

ceives from Alice and Bob into c-vectors using the optimal

size m
(fi)
opt by sampling randomly and uniformly strings from

the data sets and computing b(fi). By concatenating the
attribute-level c-vectors, Charlie then builds the record-level
structures, whose size mopt is compact and adapted to the
needs of each attribute.

5.3 Outline of the Blocking/Matching Step
Let us denote by cBVA and cBVB the record-level c-

vectors which belong to data sets A and B, respectively.
We first hash each cBVA and store its Id in the buckets
of the Tl’s. Then, we hash each cBVB to the Tl’s in or-
der to formulate c-vector pairs for performing the distance
computations. Due to the redundant blocking model that
we follow, certain pairs of c-vectors might be formulated in
several Tl’s. On account of this redundancy, we incorporate
a de-duplicating mechanism in HB in order to prevent the
repetitive distance computations of duplicate pairs as can
be seen in Algorithm 2. For each bucket that cBVB maps
to, we retrieve the Id’s already stored therein (line 4), and
query them against a collection of unique elements5 (line
8). If an Id is not found in that collection, then the cor-
responding distance computation is performed otherwise it
is dropped. Table 2 quotes a description of each primitive
operation used by Algorithm 2. We have to note that our
method is capable of handling an arbitrary number of data

5This collection is instantiated by a HashSet object in Java
programming language.
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sets (two or more) belonging to different data custodians.

5.4 Attribute-level LSH-based Blocking
Mechanism HB assumes record-level c-vectors where by

sampling randomly and uniformly their bits builds the Tl’s.
During the matching step, a decision model is applied in
order to classify the formulated record pairs as matching
or as non-matching. In its simplest form, a decision model
might be a classification rule, which applies a logical con-
dition to the values of each attribute by comparing them
to an attribute-level threshold. Therefore, there is no guar-
antee that c-vector pairs are formulated according to the
classification rule during the blocking step. For instance, by
using the attributes in Table 3, a classification rule might
be (uf1 ≤ 4) ∧ (uf2 ≤ 8)6. This rule is more strict to errors
in the values of the first attribute while being more tolerant
to errors in the values of the second attribute. HB though
is unaware of that rule, and uses the underlying values of
attributes on an equal basis. In this subsection, we propose
a method for adjusting the HB mechanism to the classifica-
tion rule. This adjustment has as a result the formulation
of c-vector pairs which are much closer in terms of distance
to the logic of the classification rule.

To begin with, the hash functions during the blocking step
should use each attribute separately rather than sampling
bits uniformly from the record-level c-vectors. To this end,
we choose a value for each attribute-level K(fi), in the same
sense as we have described in Section 4.2. A K(fi) specifies

the number of base hash functions for each h
(fi)
l which work

on the attribute-level c-vectors corresponding to attribute
fi. By assuming (a) nc attributes, where nc ≤ nf , that
participate in each rule, (b) independence among the string
values of each attribute, and (c) the attribute-level success

probability of a base hash function is p(fi) = 1 − ϑ(fi)

m
(fi)
opt

, we

state the following definitions for any pair of record-level
c-vectors that exhibit distances u(fi) ≤ ϑ(fi) as follow:

Definition 4 (AND operator). By using the AND
operator (∧) on certain attributes in the classification rule,
the probability of a record-level c-vector pair to collide into
the same bucket of a Tl is:

p∧ ≥
nc∏
i=1

(p(fi))K
(fi)

. (10)

Using the AND operator, the structure of the blocking
groups used, described in Section 4.2, is maintained. The
blocking keys for each fi are concatenated resulting in a
compound blocking key that is finally inserted into some Tl.

Definition 5 (OR operator). By using the OR op-
erator (∨) on certain attributes in the classification rule, the
probability of a record-level c-vector pair to collide into the

same bucket of any T
(fi)
l is:

p∨ ≥ (p(f1))K
(f1)

+ (p(f2))K
(f2)

− (p(f1))K
(f1)

× (p(f2))K
(f2)

.
(11)

Without loss of generality, in Equation (11), we show only
the case where nc = 2 attributes. For a larger number nc

of attributes, the inclusion-exclusion principle [22] should be
used.
6We drop the space subscript from distances and thresholds,

since from now on we focus on Ĥ.
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Figure 5: Applying attribute-level hashing to a c-vector cBV
which consists of 2 attribute-level c-vectors. For illustration
purposes, we set K = 4 (K(fi) = 2) and L = 2.

When using the OR operator, the structure of the blocking
groups changes considerably. For each attribute fi, which is
part of the OR rule, for each blocking group, we build an

independent hash table, denoted by T
(fi)
l , that stores the

blocking keys of this specific attribute. Therefore, given nc

attributes in the OR rule, we end up with L×nc hash tables.
Intuitively, one would classify a c-vector pair as a matching

one, if this pair is formulated in at least one T
(fi)
l , regardless

of the remaining outcomes.

Definition 6 (NOT operator). By using the NOT
operator (¬) on a certain attribute, the probability of any
pair of record-level c-vectors not to collide into the same

bucket of a T
(fi)
l is:

p¬ ≥ 1− (p(fi))K
(fi)

. (12)

The NOT operator assumes one attribute fi and thus one
hash table for each blocking group. One would assume the
true value as outcome, if a certain pair has not been formu-

lated in the corresponding T
(fi)
l ’s.

These revised probability bounds adjust the number L
of the blocking groups7 used by substituting pK in Equa-
tion (2). The new value of L is larger using an AND rule,
and smaller using an OR rule than the standard record-
level LSH-based blocking approach. Using these operators,
we build the basic classification rules which are depicted in
Figure 5. The blocking group of the NOT operator does not
include any modifications because we just change what we
consider as a true outcome.

In addition, by using these basic rules and their corre-
sponding blocking groups, we may compose compound clas-
sification rules which consist of several subrules. Such com-
pound rules might be:

• C1 = [(u(f1) ≤ ϑ(f1)) ∧ (u(f2) ≤ ϑ(f2))] ∨ [(u(f3) ≤
ϑ(f3)) ∧ (u(f4) ≤ ϑ(f4))] where two separate blocking
structures for the AND subrules should be built. The
first blocking structure comprises the blocking groups
of attributes f1, and f2, while the second one con-
tains the attributes f3, and f4. During the blocking
mechanism, the blocking keys will be built from the

7The value of L may vary among the blocking structures
used.
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corresponding attribute-level c-vectors and will be in-
serted into the corresponding Tl’s. Since an OR oper-
ator joins the two subrules, a pair will be returned if it
will be formulated in the blocking structure of either
subrule. Thus, during the matching phase, for each c-
vector from data set B, we formulate all possible pairs
in all the corresponding buckets. Then, a pair is con-
sidered as a matching one, if it is formulated in either
blocking structure.

• C2 = [(u(f1) ≤ ϑ(f1)) ∨ [(u(f2) ≤ ϑ(f2))] ∧ [(u(f3) ≤
ϑ(f3)) ∨ (u(f4) ≤ ϑ(f4))] where four separate blocking
structures for the OR operators should be built. The
main difference between C1 and C2 is that using C2, a
pair should be formulated in both blocking structures
of the subrules in order to be considered as a matching
pair.

• C3 = (u(f1) ≤ ϑ(f1)) ∧ [¬(u(f2) ≤ ϑ(f2))]. Using C3, a
pair is returned if it is formulated in the blocking struc-
ture for f1, but not found in the blocking structure for
f2.

The space needed for building the blocking groups of a
rule using an AND operator is O(L), while using an OR
operator is O(nc × L).

6. EVALUATION
In this section, we describe the experimental settings, the

baseline methods, the data sets used, as well as the achieved
results. We conducted experiments using two publicly avail-
able real-world databases which are (a) the NCVR database
[4] and (b) the DBLP bibliography database8. By using
both these data sets, which exhibit different properties such
as the average lengths of string values, we obtain several in-
sights through the experimental results. The attributes used
are listed in Table 3.

We developed a software prototype which by using as in-
put the above-mentioned databases, extracts records and
creates two data sets, denoted by A and B, respectively,
where one can specify the perturbation frequency, number
of perturbation operations, and number of perturbed records
inB for each chosen record inA. We apply (a) a light pertur-
bation scheme, termed as PL, where we perturb the values
of one randomly chosen attribute, and (b) a heavy scheme,
termed as PH, where we apply one perturbation to the values
of the first two attributes and two perturbations to the val-
ues of the third attribute. We notate the thresholds for each
perturbation scheme as ϑ

(fi)
PL and ϑ

(fi)
PH regardless of the used

space. The number of records in A (and B) is 1, 000, 000,
while the probability of choosing a record from A in order to
apply a perturbation scheme and then place it in B, is set to
0.5. The experiments were executed on a dual-core Pentium
PC with 32 GB of main memory. The software components
are developed using the Java programming language (JDK
1.7) and are available from the authors.

Quality measures. The Pairs Completeness (PC ), Pairs
Quality (PQ), and Reduction Ratio (RR) measures [3] are
employed to evaluate the quality of both our method and
the baseline methods which are discussed in detail below.
The set of truly matching record pairs is denoted by M

8http://dblp.uni-trier.de/xml/

Table 3: Attribute-level parameters used for each type of
data set by using bigrams.

attribute b(fi) m
(fi)
opt K(fi)

NCVR f1=FirstName 5.1 15 5
f2=LastName 5.0 15 5
f3=Address 20.0 68 10
f4=Town 7.2 22

mopt = 120

DBLP f1=FirstName 4.8 14 5
f2=LastName 6.2 19 5
f3=Title 64.8 226 12
f4=Year 3.0 8

mopt = 267

and the set of identified matching pairs by M. The accu-
racy in finding the matching record pairs is indicated by
the PC measure, which is equal to PC = |M ∩ M |/|M |.
The PQ measure shows the efficiency in generating mostly
matching pairs with respect to candidate pairs, namely
PQ = |M ∩ M |/|CR|, where CR is the set of candidate
pairs. The RR metric indicates the percentage in the re-
duction of the comparison space A × B, which is equal to
RR = 1.0−|CR|/|A×B|. We ran each experiment 50 times
and plotted the average values of these measures in the fig-
ures shown below.

6.1 Baseline Methods
We compare our approach cBV-HB with three state-of-

the-art embedding approaches for record linkage. The first is
the h-CC algorithm of HARRA [18], where two de-duplicated
data sets are linked. In this approach, all attribute values of
a record are represented by a single bigram vector. However,
setting the same position of a bigram vector by identical bi-
grams, which belong to different attributes, may lead to am-
biguous evaluation of distances and consequently to reduced
accuracy. HARRA employs the Min-Hash LSH-based block-
ing/matching mechanism which uses the Jaccard metric, as
described in Section 5.1, for performing the distance com-
putations. Since HARRA selects arbitrary values for K and
L, by experimenting for better results, we set L = 30 and
L = 90 (K = 5) for each perturbation scheme, respectively.
We performed several distance computations using the vec-
tor space that HARRA works, where one cannot focus on
separate attributes, using perturbed string values and ended
up choosing ϑPL = 0.35 and ϑPH = 0.459 as a nice balance
between accuracy and efficiency. During the blocking phase,
we hash those vectors by applying random permutations of
their indexes and we choose the index of the minimum non-
zero element of these permutations as the result of each base
hash function. However, we mostly end up with an index
holding 0, which implies that more elements of each permu-
tation should be used until we find an index that is set to 1.
As a result, similar records are inserted into different buck-
ets. The blocking and matching mechanisms are conducted
iteratively and separately for each Tl. When two records are
classified as a matching pair, they are subsequently excluded
from the remaining iterations.

9All thresholds are set after experimenting exhaustively us-
ing the initial and corresponding perturbed values.
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Another method we compare our approach with is BfH
presented in [17], which uses the HB, as described in Sec-
tion 4.2, on Bloom filters. A Bloom filter is a data structure
used to represent the elements of a set in order to support
membership queries efficiently in terms of time and space
required. It has been shown in [27] that by embedding
string values into Bloom filters, distances from the origi-
nal space are preserved. More specifically, a Bloom filter is
a bitmap array initialized with zeros and created by hashing
the bigrams of a string value by using independent compos-
ite cryptographic hash functions such as MD5 and SHA1
[26]. Field-level Bloom filters are created using a size of 500
bits by using 15 cryptographic hash functions for each bi-
gram, as proposed in [27]. We set K = 30 and δ = 0.1 while

thresholds are set as ϑ
(fi)
PL = 45 (L = 4), ϑ

(f1)
PH = ϑ

(f2)
PH = 45,

and ϑ
(f3)
PH = 90 (L = 43). We have to note that these

attribute-level thresholds are used only during the matching
step. A key observation for the Bloom filter space, which
is a high-dimensional binary Hamming space, is that dis-
tances are affected by the number of bigrams. For exam-
ple, using the field-level Bloom filters, described before, the
Hamming distance between ‘JOHN’ and ‘JAHN’ is 54. In
contrast, the Hamming distance between ‘SCALABILITY’
and ‘SCELABILITY’ is equal to 37. This variation in dis-
tance, although in both cases there exists a single error in
the initial string values, causes difficulties in specifying ef-
fectively the distance threshold.

Finally, we compare cBV-HB with the StringMap al-
gorithm [14] which is used to embed string values into a
Euclidean space. Initially for each attribute, StringMap it-
erates the strings of both data sets in order to form d or-
thogonal directions (axes). Each such direction is specified
by two strings, termed as pivots, whose distances are as far
from each other as possible. Yet, the process of specifying
the pivot values is quite expensive since it includes several
iterations of the data sets. Then, for each string, we com-
pute its coordinates on these d axes, which results in a vector
of values of dimensionality d. As the authors suggest [14],
dimensionality d is set to 20 for each attribute and thresh-

olds ϑ
(fi)
PL = 4.5, ϑ

(f1)
PH = ϑ

(f2)
PH = 4.5, and ϑ

(f3)
PH = 7.7, for

each scheme respectively. We utilize the Euclidean LSH-
based blocking/matching mechanism [17], specifically devel-
oped for finding similar points in Euclidean spaces. As in
BfH, the above-mentioned thresholds are used only during
the matching step. The value ofK is set to 5 which generates
L = 29 and L = 194 blocking groups [7] for each perturba-
tion scheme, respectively. We call this method SM-EB due
to the combination of StringMap and the blocking/matching
mechanism used.

6.2 Experimental Results
Accuracy. In the first series of experiments, for the rules:

• C1 = (u(f1) ≤ ϑ(f1)) ∧ (u(f2) ≤ ϑf2) ∧ (u(f3) ≤ ϑ(f3)),

• C2 = [(u(f1) ≤ ϑ(f1))∧(u(f2) ≤ ϑ(f2))]∨(u(f3) ≤ ϑ(f3)),
and

• C3 = (u(f1) ≤ ϑ(f1)) ∧ [¬(u(f2) ≤ ϑ(f2))],

we measured the PC and PQ rates of our attribute-level
blocking and compare them with the rates of the standard
LSH-based approach, which, as described in Section 4.2,
during the blocking phase samples bits uniformly from the
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Figure 6: Attribute-level Pairs Completeness and Pairs
Quality evaluation using the NCVR-based data sets.
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Figure 7: Evaluation of accuracy by setting several values
to confidence r, from Equation (7), and measuring the PC
rates using the NCVR-based data sets (K = 35).

whole record-level c-vector. Clearly, Figure 6(a) shows that
by using this rule-aware blocking phase, the PC rates are
constantly higher than those using the standard LSH-based
blocking approach. Nevertheless, the largest difference lies
in C3 where the standard approach is unable to articulate
the NOT operator, comparing and discarding rather late
any such non-matching pairs. Conversely, those pairs, in
the rule-aware blocking phase, are not formulated at all and
are never brought for comparison. The PQ rates, illustrated
in Figure 6(b), for C1 are lower than the standard approach
due to the larger number of blocking groups required. For
C2, the utilization of two hash tables in a blocking group, be-
cause of the OR operator, drops initially the PQ rates which
balance later, during the matching phase, due to the better
quality of the formulated pairs. We then experimented by
setting several values to confidence r, for less collisions from
Equation (7), and measured the corresponding PC rates.
Since we want to be as optimal as possible, the choice of
r = 1/3 exhibits both high PC rates and the sizes of the
c-vectors are kept to a desired level. As can be seen in Fig-
ure 7, we do not gain a lot in terms of accuracy by setting
r < 1/3.

Running time. By choosing several values for K we
measure the elapsed running time. Specifically, for both per-
turbation schemes we vary K between 20 and 40, which re-
sults in generating different values for L10 (blocking groups).
Figure 8(a) clearly illustrates that there is a near-optimal
value of K, which is 30 for both perturbation schemes, that
minimizes the running time. This is quite reasonable be-
cause by increasing K we adjust the selectivity of our block-

10As shown in Section 4.2, L depends on K, δ, ϑĤ, and mopt .
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Figure 8: Running time evaluation using the NCVR-based
data sets.

ing mechanism, i.e., buckets are populated with Id ’s corre-
sponding mostly to similar c-vectors. The consequence of
higher selectivity is a decrease in running time due to the
smaller number of the formulated c-vector pairs. Neverthe-
less, there is a value for K (K = 35) where the time needed
for building the blocking groups dominates the total running
time which starts to increase.

Comparison with the baseline methods. For the
next set of experiments, we first measured the average num-
ber b(fi) of bigrams of string values for each attribute listed
in Table 3. We underline the difference in the values of b(fi)

between the two sources of data sets and evaluate its impact
on the experimental results which follow below. For scheme
PL, since there is a single perturbation operation, we set

K = 30, δ = 0.1, and ϑ
(fi)
PL = 4, which generate L = 6,

and L = 3 blocking groups, without applying attribute-level
blocking, for each source of data sets used. For scheme PH,
we apply attribute-level blocking by using the rule C1, as
defined previously, and the parameters in Table 3. We set

the thresholds as ϑ
(f1)
PH = ϑ

(f2)
PH = 4, and ϑ

(f3)
PH = 8, which

yield L = 178 and L = 62 blocking groups, respectively.
In Figure 8(b), we evaluate the time needed in order to

embed the data sets into the space required by each method.
The bigram vectors used by HARRA require the least amount
of time because a single vector is used for the bigrams gen-
erated of the whole record with the side-effects in accuracy,
which will be discussed below. The vectors utilized by SM-
EB exhibit a large amount of time due to the distance com-
putations performed for specifying the pivots.

Figures 9(a) and 9(b) show that the PC rates of our
method are constantly above 95% by using both sources of
data sets. These figures also indicate that cBV-HB is the
only method which exhibits stable PC rates regardless of
the source of data sets used. Furthermore, by applying PH
in the presence of a certain classification rule our method
adjusts to it during the blocking step by generating the re-
quired number of blocking groups separately for each at-
tribute as the rule defines. However, this attribute-level ad-
justment requires a larger number of blocking groups, which
results in reduced PQ rates due to the larger number of the
formulated pairs (Figures 10(a) and 10(b)).

The PC rates of SM-EB are rather low, as Figure 9(a)
suggests, especially when using PH. This happens due to the
insufficient distance-preserving property of the used embed-
ding method. This insufficiency has also another drawback,
which is the population of blocks with truly non-matching
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Figure 9: Pairs Completeness (accuracy) evaluation.
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Figure 10: Pairs Quality evaluation.

pairs. These pairs, although being similar in the Euclidean
space, exhibit large distances in the original space, which
results in low PQ rates, as can be clearly seen in Figures
10(a) and 10(b).

In HARRA, the early removal of records in each itera-
tion may lead to missed matching pairs as well, since those
records do not participate in the subsequent iterations. Ini-
tially, the PC rates of HARRA were below 0.77. We had to
increase considerably the number of blocking groups11 in or-
der to achieve better rates, which were approximately equal
to 0.82 as shown in Figure 9(a). However, the side-effect of
increasing the number of blocking groups was the low PQ
rates as illustrated in Figures 10(a) and 10(b). Especially
by using the DBLP-based data sets, the larger number of
bigrams combined with the utilization of a single bigram
vector for all attributes in a record increased considerably
the probability of comparing bigram vectors with identical
bigrams belonging to different attributes. This disambigua-
tion, as expected, deteriorated the PC rates which fell below
0.75 (Figure 9(b)).

The Bloom filters, which are used by BfH, seem to pre-
serve the initial distances from the original space, as con-
firmed by the high PC rates. However, the accuracy guar-
antees, provided by the HB, refer to the Bloom filter space
and there is no study in the literature that corresponds dis-
tances from that space to distances in E with a specified
distortion. The authors in [17] provide only some empiri-
cal observations with respect to this correspondence without
any rigorous justifications. The dependency of distances, in
the Bloom filter space, on the length of the initial string

11We actually doubled the number of blocking groups in or-
der to give more chances to similar records to be grouped
together.
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Figure 12: Evaluating the efficiency of each method by using
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values, as demonstrated previously, explains the increased
accuracy by using the DBLP-based data sets (Figure 9(b)).

On the contrary, distances in Ĥ depend only on the type of
error and by no means on the length of the initial string val-
ues. The PQ rates of BfH are slightly higher than cBV-HB
mainly due to the larger number of the cryptographic hash
functions used for creating the Bloom filters, which results
in a larger number of positions set to 1. These bit patterns
hashed by the hl’s produce a larger number of buckets in
each Tl, which host a smaller number of pairs than cBV-
HB.

Another factor that does not affect the PC rates of our
method is the type of the applied perturbation operation as
demonstrated in Figures 11(a) and 11(b) by applying PL
and PH, respectively. Our method attains excellent perfor-
mance and the PC rate barely falls below 0.95 only when
applying the substitute operations. In general, we observe
that all methods exhibit a lower PC rate for pairs which
have been perturbed by the substitute operation, which in-
dicates a higher distortion in all spaces. For PH, only BfH
exhibits comparable performance, as can be seen in Figure
11(b). However, the two operations performed in the val-
ues of the Address attribute resulted in missing some pairs
especially when both were substitute operations.

Figure 12(a) illustrates together the RR and the PC rates
so that one can easily evaluate the efficiency of each method.
RR is high for all the compared methods except for SM-

EB where the formulated blocks are overwhelmed by non-
matching pairs. The reduction of the comparison space
though keeps up with high accuracy only for cBV-HB and
BfH, where our method performs better than BfH in terms
of accuracy by at least 5%. Overall, this provides additional
validation of the robustness and practicality of our method.
These high RR rates affect the running time positively which
is below 5 minutes for PL for both methods, as depicted in
Figure 12(b). By applying PH though, the running time
increases due to the larger number of blocking groups gen-
erated for this perturbation scheme. In HARRA, the early
pruning of records in each iteration reduces the running time
but the results are far from accurate. As expected, SM-EB
exhibits the highest running time by a large margin among
all the compared methods due to the large number of the
formulated vector pairs.

7. CONCLUSIONS AND FUTURE EXTEN-
SIONS

In this paper we have proposed a method to embed strings
into a compact binary Hamming space in order to apply HB
which is an efficient blocking/matching mechanism. The
embeddings are of small size, e.g., a record of four strings is
represented by 120 bits, and simultaneously the initial dis-
tances are preserved as the supporting set of experiments
confirmed. Furthermore, we have adapted the LSH-based
blocking mechanism to the used classification rule for highly
accurate results. We have considered and provided formal
guarantees for rules using the AND, OR, and NOT oper-
ators. In addition, we have also demonstrated the use of
compound classification rules, which include several sub-
rules. For the future, we aim to investigate a distance-
preserving and lightweight embedding method for the Jaro-
Winkler metric, which was specifically developed for mea-
suring distances between attributes that denote personal in-
formation such as names, surnames, or addresses. We also
aim to extend the experimental part by comparing the ef-
fectiveness of our method with the baselines in identifying
records with missing or non-standardized values. The initial
results indicate that by applying PH, the gain in accuracy
compared to the baselines is larger. Another interesting re-
search avenue could be the adaptation of our method to the
privacy-preserving context by applying two-party techniques
[28]. The compact data structures used for representing the
records could be an ideal fit in the protocols introduced in
[17, 19] which are used for comparing those records in a
secure manner.
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ABSTRACT
Entity Resolution constitutes a quadratic task that typically scales
to large entity collections through blocking. The resulting blocks
can be restructured by Meta-blocking in order to significantly in-
crease precision at a limited cost in recall. Yet, its processing can
be time-consuming, while its precision remains poor for configura-
tions with high recall. In this work, we propose new meta-blocking
methods that improve precision by up to an order of magnitude at
a negligible cost to recall. We also introduce two efficiency tech-
niques that, when combined, reduce the overhead time of Meta-
blocking by more than an order of magnitude. We evaluate our
approaches through an extensive experimental study over 6 real-
world, heterogeneous datasets. The outcomes indicate that our new
algorithms outperform all meta-blocking techniques as well as the
state-of-the-art methods for block processing in all respects.

1. INTRODUCTION
A common task in the context of Web Data is Entity Resolution

(ER), i.e., the identification of different entity profiles that pertain
to the same real-world object. ER suffers from low efficiency, due
to its inherently quadratic complexity: every entity profile has to
be compared with all others. This problem is accentuated by the
continuously increasing volume of heterogeneous Web Data; LOD-
Stats1 recorded around 1 billion triples for Linked Open Data in De-
cember, 2011, which had grown to 85 billion by September, 2015.
Typically, ER scales to these volumes of data through blocking [4].

The goal of blocking is to boost precision and time efficiency
at a controllable cost in recall [4, 5, 21]. To this end, it groups
similar profiles into clusters (called blocks) so that it suffices to
compare the profiles within each block [7, 8]. Blocking methods
for Web Data are confronted with high levels of noise, not only in
attribute values, but also in attribute names. In fact, they involve an
unprecedented schema heterogeneity: Google Base2 alone encom-
passes 100,000 distinct schemata that correspond to 10,000 entity
types [17]. Most blocking methods deal with these high levels of

1http://stats.lod2.eu
2http://www.google.com/base
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Figure 1: (a) A set of entity profiles, and (b) the corresponding
blocks produced by Token Blocking.

schema heterogeneity through a schema-agnostic functionality that
completely disregards schema information and semantics [5]. They
also rely on redundancy, placing every entity profile into multiple
blocks so as to reduce the likelihood of missed matches [4, 22].

The simplest method of this type is Token Blocking [21]. In
essence, it splits the attribute values of every entity profile into to-
kens based on whitespace; then, it creates a separate block for every
token that appears in at least two profiles. To illustrate its function-
ality, consider the entity profiles in Figure 1(a), where p1 and p2

match with p3 and p4, respectively; Token Blocking clusters them
in the blocks of Figure 1(b). Despite the schema heterogeneity and
the noisy values, both pairs of duplicates co-occur in at least one
block. Yet, the total cost is 13 comparisons, which is rather high,
given that the brute-force approach executes 15 comparisons.

This is a general trait of redundancy-based blocking methods:
in their effort to achieve high recall in the context of noisy and
heterogeneous data, they produce a large number of unnecessary
comparisons. These come in two forms [22, 23]: the redundant
ones repeatedly compare the same entity profiles across different
blocks, while the superfluous ones compare non-matching profiles.
In our example, b2 and b4 contain one redundant comparison each,
which are repeated in b1 and b3, respectively; all other blocks en-
tail superfluous comparisons between non-matching entity profiles,
except for the redundant comparison p3-p5 in b8 (it is repeated in
b6). In total, the blocks of Figure 1(b) involve 3 redundant and 8
superfluous out of the 13 comparisons.

Block Processing. To improve the quality of redundancy-based
blocks, methods such as Meta-blocking [5, 7, 22], Comparison
Propagation [21] and Iterative Blocking [27] aim to process them
in the optimal way (see Section 2 for more details). Among these
methods, Meta-blocking achieves the best balance between preci-
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Figure 2: (a) A blocking graph extracted from the blocks in
Figure 1(b), (b) one of the possible edge-centric pruned block-
ing graphs, and (c) the new blocks derived from it.

sion and recall [22, 23], and is the focus of this work.
Meta-blocking restructures a block collection B into a new one

B′ that contains a significantly lower number of unnecessary com-
parisons, while detecting almost the same number of duplicates.
It operates in two steps [7, 22, 23]: first, it transforms B into the
blocking graph GB, which contains a vertex vi for every entity pro-
file pi in B, and an edge ei, j for every pair of co-occurring profiles pi

and p j (i.e., entity profiles sharing at least one block). Figure 2(a)
depicts the graph for the blocks in Figure 1(b). As no parallel edges
are constructed, every pair of entities is compared at most once,
thus eliminating all redundant comparisons.

Second, it annotates every edge with a weight analogous to the
likelihood that the incident entities are matching. For instance,
the edges in Figure 2(a) are weighted with the Jaccard similarity
of the lists of blocks associated with their incident entity profiles.
The lower the weight of an edge, the more likely it is to connect
non-matching entities. Therefore, Meta-blocking discards most su-
perfluous comparisons by pruning the edges with low weights. A
possible approach is to discard all edges with a weight lower than
the overall mean weight (1/4). This yields the pruned graph in Fig-
ure 2(b). The restructured block collection B′ is formed by creating
a new block for every retained edge – as depicted in Figure 2(c).
Note that B′ maintains the original recall, while reducing the com-
parisons from 13 to just 5.

Open issues. Despite the significant enhancements in efficiency,
Meta-blocking suffers from two drawbacks:

(i) There is plenty of room for raising its precision, especially
for the configurations that are more robust to recall. The reason is
that they retain a considerable portion of redundant and superfluous
comparisons. This is illustrated in our example, where the restruc-
tured blocks of Figure 2(c) contain 3 superfluous comparisons in
b′3, b′4 and b′5.

(ii) The processing of voluminous datasets involves a significant
overhead. The corresponding blocking graphs comprise millions of
nodes that are strongly connected with billions of edges. Inevitably,
the pruning of such graphs is very time-consuming; for example, a
graph with 3.3 million nodes and 35.8 billion edges requires 16
hours, on average, on commodity hardware (see Section 6.3).

Proposed Solution. In this paper, we describe novel techniques
for overcoming both weaknesses identified above.

First, we speed up Meta-blocking in two ways:
(i) We introduce Block Filtering, which intelligently removes

profiles from blocks, in which their presence is unnecessary. This
acts as a pre-processing technique that shrinks the blocking graph,
discarding more than half of its unnecessary edges, on average. As
a result, the running time is also reduced to half, on average.

(ii) We accelerate the creation and the pruning of the blocking
graph by minimizing the computational cost for edge weighting,
which is the bottleneck of Meta-blocking. Our approach reduces
its running time by 30% to 70%.

In combination, these two techniques restrict drastically the over-
head of Meta-blocking even on commodity hardware. For example,
the blocking graph mentioned earlier is now processed within just
3 hours, instead of 16.

Second, we enhance the precision of Meta-blocking in two ways:
(i) We redefine two pruning algorithms so that they produce re-

structured blocks with no redundant comparisons. On average, they
save 30% more comparisons for the same recall.

(ii) We introduce two new pruning algorithms that rely on a
generic property of the blocking graph: the reciprocal links. That
is, our algorithms retain only the edges that are important for both
incident profiles. Their recall is slightly lower than the existing
techniques, but precision raises by up to an order of magnitude.

We analytically examine the performance of our methods using
6 real-world established benchmarks, which range from few thou-
sands to several million entities. Our experimental results designate
that our algorithms consistently exhibit the best balance between
recall, precision and run-time for the main types of ER applica-
tions among all meta-blocking techniques. They also outperform
the best relevant methods in the literature to a significant extent.

Contributions & Paper Organization. In summary, we make
the following contributions:
•We improve the running time of Meta-blocking by an order of

magnitude in two complementary ways: by cleaning the blocking
graph from most of its noisy edges, and by accelerating the estima-
tion of edge weights.
•We present four new pruning algorithms that raise precision by

30% to 100% at a small (if any) cost in recall.
•We experimentally verify the superior performance of our new

methods through an extensive study over 6 datasets with different
characteristics. In this way, our experimental results provide in-
sights into the best configuration for Meta-blocking, depending on
the data and the application at hand. The code and the data of our
experiments are publicly available for any interested researcher.3

The rest of the paper is structured as follows: Section 2 delves
into the most relevant works in the literature, while Section 3 elab-
orates on the main notions of Meta-blocking. In Section 4, we in-
troduce two methods for minimizing its running time, and in Sec-
tion 5, we present new pruning algorithms that boost the precision
of Meta-blocking at no or limited cost in recall. Section 6 presents
our thorough experimental evaluation, while Section 7 concludes
the paper along with directions for future work.

2. RELATED WORK
Entity Resolution has been the focus of numerous works that

aim to tame its quadratic complexity and scale it to large volumes
of data [4, 8]. Blocking is the most popular among the proposed ap-
proximate techniques [5, 7]. Some blocking methods produce dis-
joint blocks, such as Standard Blocking [9]. Their majority, though,
yields overlapping blocks with redundant comparisons in an effort
to achieve high recall in the context of noisy and heterogeneous
data [4]. Depending on the interpretation of redundancy, blocking
methods are distinguished into three categories [22]:

(i) The redundancy-positive methods ensure that the more blocks
two entity profiles share, the more likely they are to be matching.
In this category fall the Suffix Arrays [1], Q-grams Blocking [12],
Attribute Clustering [21] and Token Blocking [21].

(ii) The redundancy-negative methods ensure that the most sim-
ilar entity profiles share just one block. In Canopy Clustering [19],
for instance, the entity profiles that are highly similar to the cur-

3See http://sourceforge.net/projects/erframework for
both the code and the datasets.
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rent seed are removed from the pool of candidate matches and are
exclusively placed in its block.

(iii) The redundancy-neutral methods yield overlapping blocks,
but the number of common blocks between two profiles is irrelevant
to their likelihood of matching. As such, consider the single-pass
Sorted Neighborhood [13]: all pairs of profiles co-occur in the same
number of blocks, which is equal to the size of the sliding window.

Another line of research focuses on developing techniques that
optimize the processing of an existing block collection, called block
processing methods. In this category falls Meta-blocking [7], which
operates exclusively on top of redundancy-positive blocking meth-
ods [20, 21]. Its pruning can be either unsupervised [22] or su-
pervised [23]. The latter achieves higher accuracy than the former,
due to the composite pruning rules that are learned by a classifier
trained over a set of labelled edges. In practice, though, its utility
is limited, as there is no effective and efficient way for extracting
the required training set from the input blocks. For this reason, we
exclusively consider unsupervised Meta-blocking in this work.

Other prominent block processing methods are the following:
(i) Block Purging [21] aims for discarding oversized blocks that

are dominated by redundant and superfluous comparisons. It auto-
matically sets an upper limit on the comparisons that can be con-
tained in a valid block and purges those blocks that exceed it. Its
functionality is coarser and, thus, less accurate than Meta-blocking,
because it targets entire blocks instead of individual comparisons.
However, it is complementary to Meta-blocking and is frequently
used as a pre-processing step [22, 23].

(ii) Comparison Propagation [21] discards all redundant com-
parisons from a block collection without any impact on recall. In a
small scale, this can be accomplished directly, using a central data
structure H that hashes all executed comparisons; then, a compar-
ison is executed only if it is not contained in H. Yet, in the scale
of billions of comparisons, Comparison Propagation can only be
accomplished indirectly: the input blocks are enumerated accord-
ing to their processing order and the Entity Index is built. This is
an inverted index that points from entity ids to block ids. Then, a
comparison pi-p j in block bk is executed (i.e., non-redundant) only
if it satisfies the Least Common Block Index condition (LeCoBI
for short). That is, if the id k of the current block bk equals the
least common block id of the profiles pi and p j. Comparison Prop-
agation is competitive to Meta-blocking, but targets only redundant
comparisons. We compare their performance in Section 6.4.

(ii) Iterative Blocking [27] propagates all identified duplicates
to the subsequently processed blocks so as to save repeated com-
parisons and to detect more duplicates. Hence, it improves both
precision and recall. It is competitive to Meta-blocking, too, but it
targets exclusively redundant comparisons between matching pro-
files. We employ it as our second baseline method in Section 6.4.

3. PRELIMINARIES
Entity Resolution. An entity profile, p, is defined as a uniquely

identified collection of name-value pairs that describe a real-world
object. A set of profiles is called entity collection, E. Given E,
the goal of ER is to identify all profiles that describe the same real-
world object; two such profiles, pi and p j, are called duplicates
(pi≡p j) and their comparison is called matching. The set of all
duplicates in the input entity collection E is denoted by D(E), with
|D(E)| symbolizing its size (i.e., the number of existing duplicates).

Depending on the input entity collection(s), we identify two ER
tasks [4, 21, 22]: (i) Dirty ER takes as input a single entity col-
lection with duplicates and produces as output a set of equivalence
clusters. (ii) Clean-Clean ER receives two duplicate-free, but over-
lapping entity collections, E1 and E2, and identifies the matching

entity profiles between them. In the context of Databases, the for-
mer task is called Deduplication and the latter Record Linkage [4].

Blocking improves the run-time of both ER tasks by grouping
similar entity profiles into blocks so that comparisons are limited
between co-occurring profiles. Placing an entity profile into a block
is called block assignment. Two profiles, pi and p j, assigned to the
same block are called co-occurring and their comparison is denoted
by ci, j. An individual block is symbolized by b, with |b| denoting
its size (i.e., number of profiles) and ||b|| denoting its cardinality
(i.e., number of comparisons). A set of blocks B is called block
collection, with |B| denoting its size (i.e., number of blocks) and ||B||
its cardinality (i.e., total number of comparisons): ||B|| =

∑
b∈B ||b||.

Performance Measures. To assess the effectiveness of a block-
ing method, we follow the best practice in the literature, which
treats entity matching as an orthogonal task [4, 5, 7]. We assume
that two duplicate profiles can be detected using any of the avail-
able matching methods as long as they co-occur in at least one
block. D(B) stands for the set of co-occurring duplicate profiles
and |D(B)| for its size (i.e., the number of detected duplicates).

In this context, the following measures are typically used for es-
timating the effectiveness of a block collection B that is extracted
from the input entity collection E [4, 5, 22]:

(i) Pairs Quality (PQ) corresponds to precision, assessing the
portion of comparisons that involve a non-redundant pair of dupli-
cates. In other words, it considers as true positives the matching
comparisons and as false positives the superfluous and the redun-
dant ones (given that some of the redundant comparisons involve
duplicate profiles, PQ offers a pessimistic estimation of precision).
More formally, PQ = |D(B)|/||B||. PQ takes values in the interval
[0, 1], with higher values indicating higher precision for B.

(ii) Pairs Completeness (PC) corresponds to recall, assessing the
portion of existing duplicates that can be detected in B. More for-
mally, PC = |D(B)|/|D(E)|. PC is defined in the interval [0, 1], with
higher values indicating higher recall.

The goal of blocking is to maximize both PC and PQ so that the
overall effectiveness of ER exclusively depends on the accuracy of
the entity matching method. This requires that |D(B)| is maximized,
while ||B|| is minimized. However, there is a clear trade-off between
PC and PQ: the more comparisons are executed (higher ||B||), the
more duplicates are detected (higher |D(B)|), thus increasing PC;
given, though, that ||B|| increases quadratically for a linear increase
in |D(B)| [10, 11], PQ is reduced. Hence, a blocking method is
effective if it achieves a good balance between PC and PQ.

To assess the time efficiency of a block collection B, we use two
measures [22, 23]:

(i) Overhead Time (OTime) measures the time required for ex-
tracting B either from the input entity collection E or from another
block collection B′.

(ii) Resolution Time (RTime) is equal to OTime plus the time
required to apply an entity matching method to all comparisons in
the restructured blocks. As such, we use the Jaccard similarity of
all tokens in the values of two entity profiles for entity matching –
this approach does not affect the relative efficiency of the examined
methods and is merely used for demonstration purposes.

For both measures, the lower their value, the more efficient is the
corresponding block collection.

Meta-blocking. The redundancy-positive block collections place
every entity profile into multiple blocks, emphasizing recall at the
cost of very low precision. Meta-blocking aims for improving this
balance by restructuring a redundancy-positive block collection B
into a new one B′ that contains a small part of the original unneces-
sary comparisons, while retaining practically the same recall [22].
More formally, PC(B′) ≈ PC(B) and PQ(B′) � PQ(B).
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Weighting Schemes  Pruning Algorithms 

1) Aggregate Reciprocal Comparisons (ARCS)  1) Cardinality Edge Pruning (CEP) 

2) Common Blocks (CBS)  2) Cardinality Node Pruning (CNP) 

3) Enhanced Common Blocks (ECBS)  3) Weighted Edge Pruning (WEP) 

4) Jaccard Similarity (JS)  4) Weighted Node Pruning (WNP) 

5) Enhanced Jaccard Similarity (EJS) 

Figure 3: All configurations for the two parameters of Meta-
blocking: the weighting scheme and the pruning algorithm.
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Figure 4: The formal definition of the five weighting schemes.
Bi ⊆ B denotes the set of blocks containing pi, Bi, j ⊆ B the set of
blocks shared by pi and p j, and |vi| the degree of node vi.

Central to this procedure is the blocking graph GB, which cap-
tures the co-occurrences of profiles within the blocks of B. Its
nodes correspond to the profiles in B, while its undirected edges
connect the co-occurring profiles. The number of edges in GB is
called graph size (|EB|) and the number of nodes graph order (|VB|).

Meta-blocking prunes the edges of the blocking graph in a way
that leaves the matching profiles connected. Its functionality is con-
figured by two parameters: (i) the scheme that assigns weights to
the edges, and (ii) the pruning algorithm that discards the edges
that are unlikely to connect duplicate profiles. The two parameters
are independent in the sense that every configuration of the one is
compatible with any configuration of the other (see Figure 3).

In more detail, five schemes have been proposed for weighting
the edges of the blocking graph [22]. Their formal definitions are
presented in Figure 4. They all normalize their weights to [0, 1] so
that the higher values correspond to edges that are more likely to
connect matching profiles. The rationale behind each scheme is the
following: ARCS captures the intuition that the smaller the blocks
two profiles share, the more likely they are to be matching; CBS
expresses the fundamental property of redundancy-positive block
collections that two profiles are more likely to match, when they
share many blocks; ECBS improves CBS by discounting the effect
of the profiles that are placed in a large number of blocks; JS esti-
mates the portion of blocks shared by two profiles; EJS improves
JS by discounting the effect of profiles involved in too many non-
redundant comparisons (i.e., they have a high node degree).

Based on these weighting schemes, Meta-blocking discards part
of the edges of the blocking graph using an edge- or a node-centric
pruning algorithm. The former iterates over the edges of the block-
ing graph and retains the globally best ones, as in Figure 2(b); the
latter iterates over the nodes of the blocking graph and retains the
locally best edges. An example of node-centric pruning appears
in Figure 5(a); for each node in Figure 2(a), it has retained the in-
cident edges that exceed the average weight of the neighborhood.
For clarity, the retained edges are directed and outgoing, since they
might be preserved in the neighborhoods of both incident profiles.
Again, every retained edge forms a new block, yielding the restruc-
tured block collection in Figure 5(b).

Every pruning algorithm relies on a pruning criterion. Depend-
ing on its scope, this can be either a global criterion, which applies
to the entire blocking graph, or a local one, which applies to an
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Figure 5: (a) One of the possible node-centric pruned blocking
graphs for the graph in Figure 2(a). (b) The new blocks derived
from the pruned graph.

individual node neighborhood. With respect to its functionality,
the pruning criterion can be a weight threshold, which specifies the
minimum weight of the retained edges, or a cardinality threshold,
which determines the maximum number of retained edges.

Every combination of a pruning algorithm with a pruning crite-
rion is called pruning scheme. The following four pruning schemes
were proposed in [22] and were experimentally verified to achieve
a good balance between PC and PQ:

(i) Cardinality Edge Pruning (CEP) couples the edge-centric
pruning with a global cardinality threshold, retaining the top-K
edges of the entire blocking graph, where K=b

∑
b∈B |b|/2c.

(ii) Cardinality Node Pruning (CNP) combines the node-centric
pruning with a global cardinality threshold. For each node, it re-
tains the top-k edges of its neighborhood, with k=b

∑
b∈B|b|/|E|-1c.

(iii) Weighted Edge Pruning (WEP) couples edge-centric prun-
ing with a global weight threshold equal to the average edge weight
of the entire blocking graph.

(iv) Weighted Node Pruning (WNP) combines the node-centric
pruning with a local weight threshold equal to the average edge
weight of every node neighborhood.

The weight-based schemes, WEP and WNP, discard the edges
that do not exceed their weight threshold and typically perform a
shallow pruning that retains high recall [22]. The cardinality-based
schemes, CEP and CNP, rank the edges of the blocking graph in
descending order of weight and retain a specific number of the top
ones. For example, if CEP retained the 4 top-weighted edges of
the graph in Figure 2(a), it would produce the pruned graph of Fig-
ure 2(b), too. Usually, CEP and CNP perform deeper pruning than
WEP and WNP, trading higher precision for lower recall [22].

Applications of Entity Resolution. Based on their performance
requirements, we distinguish ER applications into two categories:

(i) The efficiency-intensive applications aim to minimize the re-
sponse time of ER, while detecting the vast majority of the dupli-
cates. More formally, their goal is to maximize precision (PQ) for
a recall (PC) that exceeds 0.80. To this category belong real-time
applications or applications with limited temporal resources, such
as Pay-as-you-go ER [26], entity-centric search [25] and crowd-
sourcing ER [6]. Ideally, their goal is to identify a new pair of
duplicate entities with every executed comparison.

(ii) The effectiveness-intensive applications can afford a higher
response time in order to maximize recall. At a minimum, recall
(PC) should not fall below 0.95. Most of these applications corre-
spond to off-line batch processes like data cleaning in data ware-
houses, which practically call for almost perfect recall [2]. Yet,
higher precision (PQ) is pursued even in off-line applications so as
to ensure that they scale to voluminous datasets.

Meta-blocking accommodates the effectiveness-intensive appli-
cations through the weight-based pruning schemes (WEP, WNP)
and the efficiency-intensive applications through the cardinality-
based schemes (CEP, CNP).
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Figure 6: (a) The block collection produced by applying Block
Filtering to the blocks in Figure 1(b), (b) the corresponding
blocking graph, (c) the pruned blocking graph produced by
WEP, and (d) the corresponding restructured block collection.

4. TIME EFFICIENCY IMPROVEMENTS
We now propose two methods for accelerating the processing of

Meta-blocking, minimizing its OTime: (i) Block Filtering, which
operates as a pre-processing step that reduces the size of the block-
ing graph, and (ii) Optimized Edge Weighting, which minimizes
the computational cost for the weighting of individual edges.

4.1 Block Filtering
This approach is based on the idea that each block has a differ-

ent importance for every entity profile it contains. For example, a
block with thousands of profiles is usually superfluous for most of
them, but it may contain a couple of matching entity profiles that
do not co-occur in another block; for them, this particular block
is indispensable. Based on this principle, Block Filtering restruc-
tures a block collection by removing profiles from blocks, in which
their presence is not necessary. The importance of a block bk for
an individual entity profile pi ∈ bk is implicitly determined by the
maximum number of blocks pi participates in.

Continuing our example with the blocks in Figure 1(b), assume
that their importance is inversely proportional to their id; that is,
b1 and b8 are the most and the least important blocks, respectively.
A possible approach to Block Filtering would be to remove every
entity profile from the least important of its blocks, i.e., the one
with the largest block id. The resulting block collection appears in
Figure 6(a). We can see that Block Filtering reduces the 15 origi-
nal comparisons to just 5. Yet, there is room for further improve-
ments, due to the presence of 2 redundant comparisons, one in b′2
and another one in b′4, and 1 superfluous in block b′5. Using the
JS weighting scheme, the graph corresponding to these blocks is
presented in Figure 6(b) and the pruned graph produced by WEP
appears in Figure 6(c). In the end, we get the 2 matching compar-
isons in Figure 6(d). This is a significant improvement over the 5
comparisons in Figure 2(c), which were produced by applying the
same pruning scheme directly to the blocks of Figure 1(b).

In more detail, the functionality of Block Filtering is outlined in
Algorithm 1. First, it orders the blocks of the input collection B
in descending order of importance (Line 3). Then, it determines
the maximum number of blocks per entity profile (Line 4). This
requires an iteration over all blocks in order to count the block
assignments per entity profile. Subsequently, it iterates over all
blocks in the specified order (Line 5) and over all profiles in each
block (Line 6). The profiles that have more block assignments than
their threshold are discarded, while the rest are retained in the cur-
rent block (Lines 7-10). In the end, the current block is retained
only if it still contains at least two entity profiles (Lines 11-12).

The time complexity of this procedure is dominated by the sort-
ing of blocks, i.e., O(|B|·log |B|). Its space complexity is linear with
respect to the size of the input, O(|E|), because it maintains a thresh-
old and a counter for every entity profile.

Algorithm 1: Block Filtering.
Input: B the input block collection
Output: B′ the restructured block collection

1 B′ ← {};
2 counter[]← {}; // count blocks per profile
3 orderBlocks(B); // sort in descending importance
4 maxBlocks[]← getThresholds(B); // limit per profile

5 foreach bk ∈ B do // check all blocks
6 foreach pi ∈ bk do // check all profiles
7 if counter[i] > maxBlocks[i] then
8 bk ← bk \ pi; // remove profile
9 else

10 counter[i]++; // increment counter

11 if |bk | > 1 then // retain blocks with
12 B′ ← B′ ∪ bk; // at least 2 profiles

13 return B′;
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Figure 7: (a) Using Block Filtering for pre-processing the
blocking graph of Meta-blocking, and (b) using Block Filter-
ing as a graph-free Meta-blocking method.

The performance of Block Filtering is determined by two factors:
(i) The criterion that specifies the importance of a block bi. This

can be defined in various ways and ideally should be different for
every profile in bi. For higher efficiency, though, we use a criterion
that is common for all profiles in bi. It is also generic, applying
to any block collection, independently of the underlying ER task
or the schema heterogeneity. This criterion is the cardinality of
bi, ||bi||, presuming that the less comparisons a block contains, the
more important it is for its entities. Thus, Block Filtering sorts a
block collection from the smallest block to the largest one.

(ii) The filtering ratio (r) that determines the maximum number
of block assignments per profile. It is defined in the interval [0, 1]
and expresses the portion of blocks that are retained for each pro-
file. For example, r=0.5 means that each profile remains in the first
half of its associated blocks, after sorting them in ascending cardi-
nality. We experimentally fine-tune this parameter in Section 6.2.

Instead of a local threshold per entity profile, we could apply
the same global threshold to all profiles. Preliminary experiments,
though, demonstrated that this approach exhibits low performance,
as the number of blocks associated with every profile varies largely,
depending on the quantity and the quality of information it con-
tains. This is particularly true for Clean-Clean ER, where E1 and
E2 usually differ largely in their characteristics. Hence, it is difficult
to identify the break-even point for a global threshold that achieves
a good balance between recall and precision for all profiles.

Finally, it is worth noting that Block Filtering can be used in two
fundamentally different ways, which are compared in Section 6.4.

(i) As a pre-processing method that prunes the blocking graph
before applying Meta-blocking – see Figure 7(a).

(ii) As a graph-free Meta-blocking method that is combined only
with Comparison Propagation – see Figure 7(b).

The latter workflow skips the blocking graph, operating on the
level of individual profiles instead of profile pairs. Thus, it is ex-
pected to be significantly faster than all graph-based algorithms. If
it achieves higher precision, as well, it outperforms the graph-based
workflow in all respects, rendering the blocking graph unnecessary.
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Algorithm 2: Original Edge Weighting.
Input: B the input block collection
Output: W the set of edge weights

1 W ← {};
2 EI ← buildEntityIndex( B );
3 foreach bk ∈ B do // check all blocks
4 foreach ci, j ∈ bk do // check all comparisons
5 Bi ← EI.getBlockList ( pi );
6 B j ← EI.getBlockList ( p j );
7 commonBlocks← 0;
8 foreach m ∈ Bi do
9 foreach n ∈ B j do

10 if m < n then break; // repeat until
11 if n < m then continue; // finding common id
12 if commonBlocks = 0 then // 1st common id
13 if m , k then // it violates LeCoBI
14 break to next comparison;

15 commonBlocks++;

16 wi, j ← calculateWeight ( commonBlocks, Bi, B j );
17 W ← W ∪ {wi, j};

18 return W;

4.2 Optimized Edge Weighting
A complementary way of speeding up Meta-blocking is to accel-

erate its bottleneck, i.e., the estimation of edge weights. Intuitively,
we want to minimize the computational cost of the procedure that
derives the weight from every individual edge. Before we explain
in detail our solution, we give some background, by describing how
the existing Edge Weighting algorithm operates.

The blocking graph cannot be materialized in memory in the
scale of million nodes and billion edges. Instead, it is implemented
implicitly. The key idea is that every edge ei, j in the blocking graph
GB corresponds to a non-redundant comparison ci, j in the block
collection B. In other words, a comparison ci, j in bk∈B defines an
edge ei, j in GB as long as it satisfies the LeCoBI condition (see Sec-
tion 2). The condition is checked with the help of the Entity Index
during the core process that derives the blocks shared by pi and p j.

In more detail, the original implementation of Edge Weighting
is outlined in Algorithm 2. Note that Bi stands for the block list
of pi, i.e., the set of block ids associated with pi, sorted from the
smallest to the largest one. The core process appears in Lines 7-15
and relies on the established process of Information Retrieval for
intersecting the posting lists of two terms while answering a key-
word query [18]: it iterates over the blocks lists of two co-occurring
profiles in parallel, incrementing the counter of common blocks for
every id they share (Line 15). This process is terminated in case the
first common block id does not coincide with the id of the current
block bk, thus indicating a redundant comparison (Lines 12-14).

Our observation is that since this procedure is repeated for ev-
ery comparison in B, a more efficient implementation would sig-
nificantly reduce the run time of Meta-blocking. To this end, we
develop a filtering technique inspired by similarity joins [14].

Prefix Filtering [3, 14] is a prominent method, which prunes dis-
similar pairs of strings with the help of the minimum similarity
threshold t that is determined a-priori; t can be defined with re-
spect to various similarity metrics that are essentially equivalent,
due to a set of transformations [14]. Without loss of generality, we
assume in the following that t is normalized in [0, 1], just like the
edge weights, and that it expresses a Jaccard similarity threshold.

Adapted to edge weighting, Prefix Filtering represents every pro-
file pi by the b(1 − t)·|Bi|c+1 smallest blocks of Bi. The idea is that
pairs having disjoint representations cannot exceed the similarity

Algorithm 3: Optimized Edge Weighting.
Input: B the input block collection, E the input entity collection
Output: W the set of edge weights

1 W ← {}; commonBlocks[]← {}; f lags[]← {};
2 EI ← buildEntityIndex( B );
3 foreach pi ∈ E do // check all profiles
4 Bi ← EI.getBlockList ( pi );
5 neighbors← {}; // set of co-occurring profiles
6 foreach bk ∈ Bi do // check all associated blocks
7 foreach p j(, pi) ∈ bk do // co-occurring profile
8 if f lags[j] , i then
9 f lags[j] = i;

10 commonBlocks[j] = 0;
11 neighbors← neighbors ∪ {p j};

12 commonBlocks[j]++;

13 foreach p j ∈ neighbors do
14 B j ← EI.getBlockList ( p j );
15 wi, j ← calculateWeight ( commonBlocks[j], Bi, B j );
16 W ← W ∪ {wi, j};

17 return W;

threshold t. For example, for t=0.8 an edge ei, j could be pruned
using 1/5 of Bi and B j, thus speeding up the nested loops in Lines
8-9 of Algorithm 2. Yet, there are 3 problems with this approach:

(i) For the weight-based algorithms, the pruning criterion t can
only be determined a-posteriori – after averaging all edge weights
in the entire graph (WEP), or in a node neighborhood (WNP). As a
result, the optimizations of Prefix Filtering apply only to the prun-
ing phase of WEP and WNP and not to the initial construction of
the blocking graph.

(ii) For the cardinality-based algorithms CEP and CNP, t equals
the minimum edge weight in the sorted stack with the top-weighted
edges. Thus, its value is continuously modified and cannot be used
for a-priori building optimized entity representations.

(iii) Preliminary experiments demonstrated that t invariably takes
very low values, below 0.1, for all combinations of pruning algo-
rithms and weighting schemes. These low thresholds force all ver-
sions of Prefix Filtering to consider the entire block lists Bi and B j

as entity representations, thus ruining their optimizations.
For these reasons, we propose a novel implementation that is in-

dependent of the similarity threshold t. Our approach is outlined
in Algorithm 3. Instead of iterating over all comparisons in B, it
iterates over all input profiles in E (Line 3). The core procedure in
Lines 6-12 works as follows: for every profile pi, it iterates over
all co-occurring profiles in the associated blocks and records their
frequency in an array. At the end of the process, commonBlocks[ j]
indicates the number of blocks shared by pi and p j. This informa-
tion is then used in Lines 13-16 for estimating the weight wi, j. This
method is reminiscent of ScanCount [16]. Note that the array f lags
helps us to avoid reallocating memory for commonBlocks in every
iteration, a procedure that would be costly, due to its size, |E| [16];
neighbors is a hash set that stores the unique profiles that co-occur
with pi, gathering the distinct neighbors of node ni in the blocking
graph without evaluating the LeCoBI condition.

4.3 Discussion
The average time complexity of Algorithm 2 is O(2·BPE·||B||),

where BPE(B)=
∑

b∈B |b|/|E| is the average number of blocks as-
sociated with every profile in B; 2·BPE corresponds to the aver-
age computational cost of the nested loops in Lines 8-9, while ||B||
stems from the nested loops in Lines 3-4, which iterate over all
comparisons in B.
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Block Filtering improves this time complexity in two ways:
(i) It reduces ||B|| by discarding a large part of the redundant and

superfluous comparisons in B.
(ii) It reduces 2·BPE to 2·r·BPE by removing every profile from

(1−r)·100% of its associated blocks, where r is the filtering ratio.4

The computational cost of Algorithm 3 is determined by two pro-
cedures that yield an average time complexity of O(||B|| + ¯|v|·|E|):

(i) The three nested loops in Lines 3-7. For every block b, these
loops iterate over |b|-1 of its entity profiles (i.e., over all profiles
except pi) for |b| times – once for each entity profile. Therefore,
the process in Lines 8-12 is repeated |b|·(|b|-1)=||b|| times and the
overall complexity of the three nested loops is O(||B||).

(ii) The loop in Lines 13-16. Its cost is analogous to the average
node degree ¯|v|, i.e., the average number of neighbors per profile. It
is repeated for every profile and, thus, its overall cost is O( ¯|v|·|E|).

Comparing the two algorithms, we observe that the optimized
implementation minimizes the computational cost of the process
that is applied to each comparison: instead of intersecting the asso-
ciated block lists, it merely updates 2-3 cells in 2 arrays and adds
an entity id in the set of neighboring profiles. The former process
involves two nested loops with an average cost of O(2·BC), while
the latter processes have a constant complexity, O(1). Note that
Algorithm 3 incorporates the loop in Lines 13-16, which has com-
plexity of O( ¯|v|·|E|). In practice, though, this is considerably lower
than both O(2·BPE·||B||) and O(||B||), as we show in Section 6.3.

5. PRECISION IMPROVEMENTS
We now introduce two new pruning algorithms that significantly

enhance the effectiveness of Meta-blocking, increasing precision
for similar levels of recall: (i) Redefined Node-centric Pruning,
which removes all redundant comparisons from the restructured
blocks of CNP and WNP, and (ii) Reciprocal Pruning, which in-
fers the most promising matches from the reciprocal links of the
directed pruned blocking graphs of CNP and WNP.

There are several reasons why we exclusively focus on improv-
ing the precision of CNP and WNP:

(i) Node-centric algorithms are quite robust to recall, since they
retain the most likely matches for each node and, thus, guarantee
to include every profile in the restructured blocks. Edge-centric
algorithms do not provide such guarantees, because they retain the
overall best edges from the entire graph.

(ii) Node-centric algorithms are more flexible, in the sense that
their performance can be improved in generic, algorithmic ways.
Instead, edge-centric algorithms improve their performance only
with threshold fine-tuning. This approach, though, is application-
specific, as it is biased by the characteristics of the block collection
at hand. Another serious limitation is that some superfluous com-
parisons cannot be pruned without discarding part of the matching
ones. For instance, the superfluous edge e5,6 in Figure 2(a) has a
higher weight than both matching edges e1,3 and e2,4.

(iii) There is more room for improvement in node-centric algo-
rithms, because they exhibit lower precision than the edge-centric
ones. They process every profile independently of the others and
they often retain the same edge for both incident profiles, thus
yielding redundant comparisons. They also retain more superfluous
comparisons than the edge-centric algorithms in most cases [22].
As an example, consider Clean-Clean ER: every profile from both

4This seems similar to the effect of Prefix Filtering, but there are
fundamental differences: (i) Prefix Filtering does not reduce the
number of executed comparisons; it just accelerates their pruning.
(ii) Prefix Filtering relies on a similarity threshold for pairs of pro-
files, while the filtering ratio r pertains to individual profiles.
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Figure 8: (a) The undirected pruned blocking graph corre-
sponding to the directed one Figure 5(a), and (b) the corre-
sponding block collection.

entity collections retains its connections with several incident nodes,
even though only one of them is matching with it.

Nevertheless, our experiments in Section 6.4 demonstrate that
our new node-centric algorithms outperform the edge-centric ones,
as well. They also cover both efficiency- and effectiveness-intensive
ER applications, enhancing both CNP and WNP.

5.1 Redefined Node-centric Pruning
We can enhance the precision of both CNP and WNP without

any impact on recall by discarding all the redundant comparisons
they retain. Assuming that the blocking graph is materialized, a
straightforward approach is to convert the directed pruned graph
into an undirected one by connecting every pair of neighboring
nodes with a single undirected edge – even if they are reciprocally
linked. In the extreme case where every retained edge has a recip-
rocal link, this saves 50% more comparisons and doubles precision.

As an example, the directed pruned graph in Figure 5(a) can be
transformed into the undirected pruned graph in Figure 8(a); the
resulting blocks, which are depicted in Figure 8(b), reduce the re-
tained comparisons from 9 to 5, while maintaining the same recall
as the blocks in Figure 5(b): p1-p3 co-occur in b′1 and p2-p4 in b′4.

Yet, it is impossible to materialize the blocking graph in mem-
ory in the scale of billions of edges. Instead, the graph is implicitly
implemented as explained in Section 4.2. In this context, a straight-
forward solution for improving CNP and WNP is to apply Compar-
ison Propagation to their output. This approach, though, entails a
significant overhead, as it evaluates the LeCoBI condition for every
retained comparison; on average, its total cost is O(2·BPE·||B′||).

The best solution is to redefine CNP and WNP so that Com-
parison Propagation is integrated into their functionality. The new
implementations are outlined in Algorithms 4 and 5, respectively.
In both cases, the processing consists of two phases:

(i) The first phase involves a node-centric functionality that goes
through the nodes of the blocking graph and derives the pruning
criterion from their neighborhood. A central data structure stores
the top-k nearest neighbors (CNP) or the weight threshold (WNP)
per node neighborhood. In total, this phase iterates twice over every
edge of the blocking graph – once for each incident node.

(ii) The second phase operates in an edge-centric fashion that
goes through all edges, retaining those that satisfy the pruning cri-
terion for at least one of the incident nodes. Thus, every edge is re-
tained at most once, even if it is important for both incident nodes.

In more detail, Redefined CNP iterates over all nodes of the
blocking graph to extract their neighborhood and calculate the cor-
responding cardinality threshold k (Lines 2-4 in Algorithm 4). Then
it iterates over the edges of the current neighborhood and places the
top-k weighted ones in a sorted stack (Lines 5-8). In the second
phase, it iterates over all edges and retains those contained in the
sorted stack of either of the incident profiles (Lines 10-13).

Similarly, Redefined WNP first iterates over all nodes of the
blocking graph to extract their neighborhood and to estimate the

227



Algorithm 4: Redefined Cardinality Node Pruning.
Input: (i) Gin

B the blocking graph, and
(ii) ct the function defining the local cardinality thresholds.

Output: Gout
B the pruned blocking graph

1 S ortedS tacks[]← {}; // sorted stack per node

2 foreach vi ∈ VB do // for every node
3 Gvi ← getNeighborhood( vi, GB );
4 k← ct( Gvi ); // get local cardinality threshold

5 foreach ei, j ∈ Evi do // add every adjacent edge
6 S ortedS tacks[i].push( ei, j ); // in sorted stack
7 if k < S ortedS tacks[i].size() then
8 S ortedS tacks[i].pop(); // remove last edge

9 Eout
B ← {}; // the set of retained edges

10 foreach ei, j ∈ EB do // for every edge
11 if ei, j ∈ S ortedS tacks[i]
12 OR ei, j ∈ S ortedS tacks[ j] then // retain if in
13 Eout

B ← Eout
B ∪ { ei, j }; // top-k for either node

14 return Gout
B = {VB, Eout

B ,WS };

corresponding weight threshold (Lines 2-4 in Algorithm 5). Then,
it iterates once over all edges and retains those exceeding the weight
thresholds of either of the incident nodes (Lines 6-9).

For both algorithms, the function getNeighborhood in Line 3
implements the Lines 4-16 of Algorithm 3. Note also that both
algorithms use the same configuration as their original implemen-
tations: k= b

∑
b∈B |b|/|E| − 1c for Redefined CNP and the average

weight of each node neighborhood for Redefined WNP. Their time
complexity is O(|VB|·|EB|) in the worst-case of a complete blocking
graph, and O(|EB|) in the case of a sparse graph, which typically
appears in practice. Their space complexity is dominated by the
requirements of Entity Index and the number of retained compar-
isons, i.e., O(BPE·|VB|+||B′||), on average.

5.2 Reciprocal Node-centric Pruning
This approach treats the redundant comparisons retained by CNP

and WNP as strong indications for profile pairs with high chances
of matching. As explained above, these comparisons correspond
to reciprocal links in the blocking graph. For example, the edges
~e1,3 and ~e3,1 in Figure 5(a) indicate that p1 is highly likely to match

with p3 and vice versa, thus reinforcing the likelihood that the two
profiles are duplicates. Based on this rationale, Reciprocal Prun-
ing retains one comparison for every pair of profiles that are re-
ciprocally connected in the directed pruned blocking graph of the
original node-centric algorithms; profiles that are connected with a
single edge, are not compared in the restructured block collection.

In our example, Reciprocal Pruning converts the directed pruned
blocking graph in Figure 5(a) into the undirected pruned block-
ing graph in Figure 9(a). The corresponding restructured blocks
in Figure 9(b) contain just 4 comparisons, one less than the blocks
in Figure 8(b). Compared to the blocks in Figure 5(b), the overall
efficiency is significantly enhanced at no cost in recall.

In general, Reciprocal Pruning yields restructured blocks with
no redundant comparisons and less superfluous ones than both the
original and the redefined node-centric pruning. In the worst case,
all pairs of nodes are reciprocally linked and Reciprocal Pruning
coincides with Redefined Node-centric Pruning. In all other cases,
its precision is much higher, while its impact on recall depends on
the strength of co-occurrence patterns in the blocking graph.

Reciprocal Pruning yields two new node-centric algorithms: Re-
ciprocal CNP and Reciprocal WNP. Their functionality is almost

Algorithm 5: Redefined Weighted Node Pruning.
Input: (i) Gin

B the blocking graph, and
(ii) wt the function defining the local weight thresholds.

Output: Gout
B the pruned blocking graph

1 weights[]← {}; // thresholds per node

2 foreach vi ∈ VB do // for every node
3 Gvi ← getNeighborhood( vi, GB );
4 weights[i]← wt( Gvi ); // get local threshold

5 Eout
B ← {}; // the set of retained edges

6 foreach ei, j ∈ EB do // for every edge
7 if weights[i] ≤ ei, j.weight
8 OR weights[ j] ≤ ei, j.weight then // retain if it
9 Eout

B ← Eout
B ∪ { ei, j }; // exceeds either threshold

10 return Gout
B = {VB, Eout

B ,WS };
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Figure 9: (a) The pruned blocking graph produced by apply-
ing Reciprocal Pruning to the graph in Figure 5(a), and (b) the
restructured blocks.

identical to Redefined CNP and Redefined WNP, respectively.
The only difference is that they use conjunctive conditions instead
of disjunctive ones: the operator OR in Lines 11-12 and 7-8 of Al-
gorithms 4 and 5, respectively, is replaced by the operator AND.
Both algorithms use the same pruning criteria as redefined meth-
ods, while sharing the same average time and space complexities:
O(|EB|) and O(BPE·|VB|+||B′||), respectively.

6. EXPERIMENTAL EVALUATION
We now examine the performance of our techniques through a

series of experiments. We present their setup in Section 6.1 and in
Section 6.2, we fine-tune Block Filtering, assessing its impact on
blocking effectiveness. Its impact on time efficiency is measured
in Section 6.3 together with that of Optimized Edge Weighting.
Section 6.4 assess the effectiveness of our new pruning algorithms
and compares them to state-of-the-art block processing methods.

6.1 Setup
We implemented our approaches in Java 8 and tested them on a

desktop machine with Intel i7-3770 (3.40GHz) and 16GB RAM,
running Lubuntu 15.04 (kernel version 3.19.0). We repeated all
time measurements 10 times and report the average value so as to
minimize the effect of external parameters.

Datasets. In our experiments, we use 3 real-world entity col-
lections. They are established benchmarks [15, 21, 24] with sig-
nificant variations in their size and characteristics. They pertain
to Clean-Clean ER, but are used for Dirty ER, as well; we simply
merge their clean entity collections into a single one that contains
duplicates in itself. In total, we have 6 block collections that lay the
ground for a thorough experimental evaluation of our techniques.

To present the technical characteristics of the entity collections,
we use the following notation: |E| stands for the number of pro-
files they contain, |D(E)| for the number of existing duplicates, |N|
for the number of distinct attribute names, |P| for the total number
of name-value pairs, |p̄| for the mean number of name-value pairs
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Original Block Collections After Block Filtering
D1C D2C D3C D1D D2D D3D D1C D2C D3C D1D D2D D3D

|B| 6,877 40,732 1,239,424 44,097 76,327 1,499,534 6,838 40,708 1,239,066 44,096 76,317 1,499,267
||B|| 1.92·106 8.11·107 4.23·1010 9.49·107 5.03·108 8.00·1010 6.98·105 2.77·107 1.30·1010 2.38·107 1.37·108 2.31·1010

BPE 4.65 28.17 17.56 10.67 32.86 14.79 3.63 22.54 14.05 8.54 26.29 11.83
PC(B) 0.994 0.980 0.999 0.997 0.981 0.999 0.990 0.976 0.998 0.994 0.976 0.997
PQ(B) 1.19·10−3 2.76·10−4 2.11·10−5 2.43·10−5 4.46·10−5 1.12·10−5 3.28·10−3 8.06·10−4 6.86·10−5 9.62·10−5 1.62·10−4 3.86·10−5

RR 0.988 0.873 0.984 0.953 0.610 0.986 0.637 0.659 0.693 0.749 0.727 0.711
|VB| 61,399 50,720 3,331,647 63,855 50,765 3,333,356 60,464 50,720 3,331,641 63,855 50,765 3,333,355
|EB| 1.83·106 6.75·107 3.58·1010 7.98·107 2.70·108 6.65·1010 6.69·105 2.52·107 1.14·1010 2.11·107 9.76·107 2.00·1010

OTime(B) 2.1 sec 5.6 sec 4 min 2.2 sec 5.7 sec 5 min 2.3 sec 6.4 sec 5 min 2.5 sec 6.5 sec 6 min
RTime(B) 19 sec 65 min ∼350 hrs 13 min 574 min ∼660 hrs 9 sec 24 min ∼110 hrs 3 min 174 min ∼190 hrs

(a) (b)
Table 1: Technical characteristics of (a) the original block collections, and (b) the ones restructured by Block Filtering with r=0.80.

|E| |D(E)| |N| |P| |p̄| ||E|| RT(E)

D1C
2,516 2,308 4 1.01·104 4.0 1.54·108 26 min

61,353 4 1.98·105 3.2

D2C
27,615 22,863 4 1.55·105 5.6 6.40·108 533 min
23,182 7 8.16·105 35.2

D3C
1,190,733 892,579 30,688 1.69·107 14.2 2.58·1012 ∼21,000 hrs
2,164,040 52,489 3.50·107 16.2

(a) Entity Collections for Clean-Clean ER
D1D 63,869 2,308 4 2.08·105 3.3 2.04·109 272 min
D2D 50,797 22,863 10 9.71·105 19.1 1.29·109 1,505 min
D3D 3,354,773 892,579 58,590 5.19·107 15.5 5.63·1012 ∼47,000 hrs

(b) Entity Collections for Dirty ER

Table 2: Technical characteristics of the entity collections. For
D3C and D3D, RT (E) was estimated from the average time re-
quired for comparing two of its entity profiles: 0.03 msec.

per profile, ||E|| for the number of comparisons executed by the
brute-force approach and RT (E) for its resolution time; in line with
RTime(B), RT (E) is computed using the Jaccard similarity of all
tokens in the values of two profiles as the entity matching method.

Tables 2(a) and (b) present the technical characteristics of the
real entity collections for Clean-Clean and Dirty ER, respectively.
D1C contains bibliographic data from DBLP (www.dblp.org) and
Google Scholar (http://scholar.google.gr) that were matched
manually [15, 24]. D2C matches movies from IMDB (imdb.com)
and DBPedia (http://dbpedia.org) based on their ImdbId [22,
23]. D3C involves profiles from two snapshots of English Wikipedia
(http://en.wikipedia.org) Infoboxes, which were automatically
matched based on their URL [22, 23]. For Dirty ER, the datasets
DxD with x∈[1, 6] were derived by merging the profiles of the indi-
vidually clean collections that make up DxC , as explained above.

Measures. To assess the effectiveness of a restructured block
collection B′, we use four established measures [4, 5, 22]: (i) its
cardinality ||B′||, i.e., total number of comparisons, (ii) its recall
PC(B′), (iii) its precision PQ(B′), and (iv) its Reduction Ratio (RR),
which expresses the relative decrease in its cardinality in compari-
son with the original block collection, B: RR(B, B′) = 1−||B′||/||B||.
The last three measures take values in the interval [0, 1], with higher
values, indicating better effectiveness; the opposite is true for ||B′||,
as effectiveness is inversely proportional to its value (cf. Section 3).

To assess the time efficiency of a restructured block collection
B′, we use the two measures that were defined in Section 3: (i) its
Overhead Time OTime(B′), which measures the time required by
Meta-blocking to derive it from the input block collection, and (ii)
its Resolution Time RTime(B′), which adds to OTime(B′) the time
taken to apply an entity matching method to all comparisons in B′.

6.2 Block Collections
Original Blocks. From all datasets, we extracted a redundancy-

positive block collection by applying Token Blocking [21]. We also
applied Block Purging [21] in order to discard those blocks that
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Figure 10: The effect of Block Filtering’s ratio r on the blocks
of D5C and D5D with respect to RR and PC.
contained more than half of the input entity profiles. The technical
characteristics of the resulting block collections are presented in
Table 1(a). Remember that |VB| and |EB| stand for the order and
the size of the corresponding blocking graph, respectively. RR has
been computed with respect to ||E|| in Table 2, i.e., RR=1-||B||/||E||.

We observe that all block collections exhibit nearly perfect re-
call, as their PC consistently exceeds 0.98. They also convey sig-
nificant gains in efficiency, executing an order of magnitude less
comparisons than the brute-force approach (RR>0.9) in most cases.
They reduce the resolution time to a similar extent, due to their very
low OTime. Still, their precision is significantly lower than 0.01 in
all cases. This means that on average, more than 100 comparisons
have to be executed in order to identify a new pair of duplicates.
The corresponding blocking graphs vary significantly in size, rang-
ing from tens of thousands edges to tens of billions, whereas their
order ranges from few thousands nodes to few millions.

Note that we experimented with additional redundancy-positive
blocking methods, such as Q-grams Blocking. All of them involved
a schema-agnostic functionality that tackles effectively the schema
heterogeneity. They all produced blocks with similar character-
istics as Token Blocking and are omitted for brevity. In general,
the outcomes of our experiments are independent of the schema-
agnostic, redundancy-positive methods that yield the input blocks.

Block Filtering. Before using Block Filtering, we have to fine-
tune its filtering ratio r, which determines the portion of the most
important blocks that are retained for each profile. To examine
its effect, we measured the performance of the restructured blocks
using all values of r in [0.05, 1] with a step of 0.05. We consider
two evaluation measures: recall (PC) and reduction ratio (RR).

Figure 10 presents the evolution of both measures over the orig-
inal blocks of D5C and D5D – the other datasets exhibit similar pat-
terns and are omitted for brevity. We observe that there is a clear
trade-off between RR and PC: the smaller the value of r, the less
blocks are retained for each profile and the lower is the total cardi-
nality of the restructured blocks ||B′||, thus increasing RR; this re-
duces the number of detected duplicates, thus decreasing PC. The
opposite is true for large values of r. Most importantly, Block Fil-
tering exhibits a robust performance with respect to r, with small
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Original Block Collections After Block Filtering
D1C D2C D3C D1D D2D D3D D1C D2C D3C D1D D2D D3D

||B′ || 1.43·105 7.14·105 2.63·107 3.41·105 8.34·105 2.47·107 1.10·105 5.72·105 2.11·107 2.73·105 6.67·105 1.97·107

PC(B′) 0.966 0.860 0.724 0.765 0.522 0.535 0.948 0.871 0.748 0.823 0.641 0.566
PQ(B′) 0.016 0.028 0.025 0.005 0.014 0.019 0.020 0.035 0.032 0.007 0.022 0.026
OT (B′) 395 ms 49 sec 9.4 hrs 22 sec 16 min 17.2 hrs 142 ms 12 sec 2.0 hrs 5 sec 4 min 3.7 hrs

(a) Cardinality Edge Pruning (CEP)
||B′ || 2.34·105 1.41·106 4.95·107 6.38·105 1.62·106 4.63·107 1.69·105 1.10·106 3.95·107 5.10·105 1.31·106 3.63·107

PC(B′) 0.975 0.946 0.973 0.949 0.880 0.951 0.955 0.942 0.965 0.936 0.888 0.942
PQ(B′) 0.010 0.015 0.018 0.003 0.012 0.018 0.013 0.020 0.022 0.004 0.016 0.023
OT (B′) 899 ms 83 sec 18.6 hrs 58 sec 17 min 35.2 hrs 310 ms 25 sec 4.7 hrs 13 sec 6 min 8.6 hrs

(b) Cardinality Node Pruning (CNP)
||B′ || 4.32·105 1.48·107 6.64·109 1.38·107 7.81·107 1.19·1010 1.63·105 5.50·106 2.11·109 3.99·106 2.26·107 4.06·109

PC(B′) 0.977 0.963 0.977 0.987 0.970 0.973 0.953 0.947 0.967 0.964 0.944 0.965
PQ(B′) 1.08·10−2 2.62·10−3 6.66·10−4 2.99·10−4 7.30·10−4 3.54·10−4 2.92·10−2 6.54·10−3 1.49·10−3 9.51·10−4 1.62·10−3 7.27·10−4

OT (B′) 588 ms 92 sec 17.1 hrs 40 sec 26 min 31.7 hrs 193 ms 23 sec 3.7 hrs 8 sec 7 min 6.9 hrs
(c) Weighted Edge Pruning (WEP)

||B′ || 1.11·106 2.81·107 1.60·1010 3.41·107 1.54·108 3.00·1010 4.64·105 1.05·107 5.38·109 9.84·106 5.29·107 9.49·109

PC(B′) 0.988 0.972 0.997 0.993 0.971 0.995 0.979 0.964 0.997 0.979 0.959 0.992
PQ(B′) 2.32·10−3 1.14·10−3 1.44·10−4 1.13·10−4 3.11·10−4 7.63·10−5 5.13·10−3 3.01·10−3 3.56·10−4 3.42·10−4 6.79·10−4 1.94·10−4

OT (B′) 862 ms 85 sec 18.6 hrs 55 sec 16 min 35.0 hrs 303 ms 24 sec 4.7 hrs 13 sec 5 min 9.0 hrs
(d) Weighted Node Pruning (WNP)

Table 3: Performance of the existing pruning schemes, averaged across all weighting schemes, before and after Block Filtering.

variations in its value leading to small differences in RR and PC.
To use Block Filtering as a pre-processing method, we should

set its ratio to a value that increases precision at a low cost in re-
call. We quantify this constraint by requiring that r decreases PC
by less than 0.5%, while maximizing RR and, thus, PQ. The ra-
tio that satisfies this constraint across all datasets is r=0.80. Ta-
ble 1(b) presents the characteristics of the restructured block col-
lections corresponding to this configuration. Note that RR has been
computed with respect to the cardinality of the original blocks.

We observe that the number of blocks is almost the same as in
Table 1(a). Yet, their total cardinality is reduced by 64% to 75%,
while recall is reduced by less than 0.5% in most cases. As a result,
PQ rises from 2.7 to 4.0 times, but still remains far below 0.01.
There is an insignificant increase in OTime and, thus, RTime de-
creases to the same extent as RR. The same applies to the order of
the blocking graph |EB|, while its size |VB| remains almost the same.
Finally, BPE is reduced by (1-r)·100%=20% across all datasets.

6.3 Time Efficiency Improvements
Table 3 presents the performance of the four existing pruning

schemes, averaged across all weighting schemes. Their original
performance appears in the left part, while the right part presents
their performance after Block Filtering.

Original Performance. We observe that CEP reduces the exe-
cuted comparisons by 1 to 3 orders of magnitude for the smallest
and the largest datasets, respectively. It increases precision (PQ) to
a similar extent at the cost of much lower recall in most of the cases.
This applies particularly to Dirty ER, where PC drops consistently
below 0.80, the minimum acceptable recall of efficiency-intensive
ER applications. The reason is that Dirty ER is more difficult than
Clean-Clean ER, involving much larger blocking graphs with many
more noisy edges between non-matching entity profiles.

CNP is more robust to recall than CEP, as its PC lies well over
0.80 across all datasets. Its robustness stems from its node-centric
functionality, which retains the best edges per node, instead of the
globally best ones. This comes, though, at the cost of a much higher
computational cost: its overhead time is larger than that of CEP
by 44%, on average. Further, CNP retains almost twice as many
comparisons and yields a slightly lower precision than CEP.

For WEP, we observe that its recall consistently exceeds 0.95,
the minimum acceptable PC of effectiveness-intensive ER appli-
cations. At the same time, it executes almost an order of magni-

tude less comparisons than the original blocks in Table 1(a) and en-
hances PQ to a similar extent. These patterns apply to all datasets.

Finally, WNP saves 60% of the brute-force comparisons, on av-
erage, retaining twice as many comparisons as WEP. Its recall re-
mains well over 0.95 across all datasets, exceeding that of WEP to
a minor extent. As a result, its precision is half that of WEP, while
its overhead time is slightly higher.

In summary, these experiments verify previous findings about
the relative performance of pruning schemes [22]: the cardinality-
based ones excel in precision, being more suitable for efficiency-
intensive ER applications, while the weight-based schemes excel in
recall, being more suitable for effectiveness-intensive applications.
In both cases, the node-centric algorithms trade higher recall for
lower precision and higher overhead.

Block Filtering. Examining the effect of Block Filtering in the
right part of Table 3, we observe two patterns:

(i) Its impact on overhead time depends on the dataset at hand,
rather than the pruning scheme applied on top of it. In fact, OTime
is reduced by 65% (D1C) to 78% (D1D), on average, across all prun-
ing schemes. This is close to RR and the reduction in the order of
the blocking graph |EB|, but higher than them, because Block Fil-
tering additionally reduces BPE by 20%.

(ii) Its impact on blocking effectiveness depends on the type
of the pruning criterion used by Meta-blocking. For cardinality
thresholds, Block Filtering conveys a moderate decrease in the re-
tained comparisons, with ||B′|| dropping by 20%, on average. The
reason is that both CEP and CNP use thresholds that are propor-
tional to BPE, which is reduced by (1-r)·100%. At the same time,
their recall is either reduced to a minor extent (<2%), or increases
by up to 10%. The latter case appears in half the datasets and in-
dicates that Block Filtering cleans the blocking graph from noisy
edges, enabling CEP and CNP to identify more duplicates with
fewer retained comparisons.

For weight thresholds, Block Filtering reduces the number of
retained comparisons to a large extent: ||B′|| drops by 62% to 71%
for both WEP and WNP. The reason is that their pruning criteria
depends directly on the size and the structure of the blocking graph.
At the same time, their recall gets lower by less than 3% in all
cases, an affordable reduction that is caused by two factors: (i)
Block Filtering discards some matching edges itself, and (ii) Block
Filtering reduces the extent of co-occurrence for some matching
entity profiles, thus lowering the weight of their edges.
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Redefined Node-centric Pruning Reciprocal Node-centric Pruning
D1C D2C D3C D1D D2D D3D D1C D2C D3C D1D D2D D3D

||B′ || 1.63·105 8.52·105 3.36·107 3.91·105 1.02·106 2.92·107 6.54·103 2.50·105 5.88·106 1.19·105 2.86·105 7.12·106

PC(B′) 0.955 0.942 0.965 0.936 0.888 0.942 0.880 0.886 0.912 0.847 0.650 0.868
PQ(B′) 0.014 0.025 0.026 0.006 0.020 0.029 0.312 0.084 0.142 0.017 0.057 0.111
OT (B′) 339 ms 5 sec 2.1 hrs 5 sec 23 sec 4.9 hrs 329 ms 5 sec 2.1 hrs 5 sec 23 sec 4.9 hrs

(a) Redefined Cardinality Node Pruning (b) Reciprocal Cardinality Node Pruning
||B′ || 3.72·105 7.52·106 3.96·109 7.23·106 3.26·107 6.96·109 9.30·104 2.96·106 1.41·109 2.61·106 2.02·107 2.54·109

PC(B′) 0.979 0.964 0.994 0.979 0.959 0.992 0.953 0.949 0.977 0.964 0.924 0.971
PQ(B′) 6.53·10−3 4.79·10−3 5.01·10−4 4.91·10−4 1.09·10−3 2.74·10−4 3.16·10−2 8.78·10−3 1.47·10−3 1.14·10−3 1.78·10−3 7.88·10−4

OT (B′) 582 ms 10 sec 5.6 hrs 9 sec 45 sec 10.7 hrs 576 ms 10 sec 5.4 hrs 9 sec 45 sec 10.5 hrs
(c) Redefined Weighted Node Pruning (d) Reciprocal Weighted Node Pruning

Table 4: Performance of the new pruning schemes on top of Block Filtering over all datasets, averaged across all weighting schemes.
D1C D2C D3C D1D D2D D3D

CEP 117 ms 4 sec 1.5 hrs 3 sec 14 sec 1.8 hrs
CNP 246 ms 6 sec 2.2 hrs 6 sec 25 sec 4.3 hrs
WEP 150 ms 6 sec 2.7 hrs 5 sec 25 sec 3.8 hrs
WNP 257 ms 8 sec 4.4 hrs 7 sec 33 sec 7.5 hrs

Table 5: OTime of Optimized Edge Weighting for each prun-
ing scheme, averaged across all weighting schemes, over the
datasets in Table 1(b), i.e., after Block Filtering.

We can conclude that Block Filtering enhances the scalability of
Meta-blocking to a significant extent, accelerating the processing of
all pruning schemes almost by 4 times, on average. It also achieves
much higher precision, while its impact on recall is either negligible
or beneficial. Thus, it constitutes an indispensable pre-processing
step for Meta-blocking. For this reason, the following experiments
are carried out on top of Block Filtering.

Optimized Edge Weighting. Table 5 presents the overhead time
of the four pruning schemes when combined with Block Filtering
and Optimized Edge Weighting (cf. Algorithm 3). Comparing it
with OTime in the right part of Table 3, we observe significant
enhancements in efficiency. Again, they depend on the dataset at
hand, rather than the pruning scheme. In fact, the higher the BPE
of a dataset after Block Filtering, the larger is the reduction in over-
head time: OTime is reduced by 19% for D1C , where BPE takes the
lowest value across all datasets (3.63), and by 92% for D2D, where
BPE takes the highest one (26.29). The reason is that Optimized
Edge Weighting minimizes the computational cost of the process
that is applied to every comparison by Original Edge Weighting
(cf. Algorithm 2) from O(2·BPE) to O(1).

Also interesting is the comparison between OTime in Table 5 and
OTime in the left part of Table 3, i.e., before applying Block Filter-
ing to the input blocks. On average, across all datasets and pruning
schemes, OTime is reduced by 87%, which is almost an order of
magnitude. Again, the lowest (72%) and the highest (98%) average
reductions correspond to D1C and D2D, respectively, which exhibit
the minimum and the maximum BPE before Block Filtering. We
can conclude, therefore, that the two efficiency optimizations are
complementary and indispensable for scalable Meta-blocking.

6.4 Precision Improvements
To estimate the performance of Redefined and Reciprocal Node-

centric Pruning, we applied the four pruning schemes they yield to
the datasets in Table 1(b). Their performance appears in Table 4.

Cardinality-based Pruning. Starting with Redfined CNP, we
observe that it maintains the recall of the original CNP, while con-
veying a moderate increase in efficiency. On average, across all
weighting schemes and datasets, it retains 18% less comparisons,
increasing PQ by 1.2 times. With respect to OTime, there is no
clear winner, as the implementation of both algorithms is highly
similar, relying on Optimized Edge Weighting. Hence, the origi-
nal CNP is just 2% faster, on average, because it does not store all

retained edges per node in memory.
For Reciprocal CNP, OTime is practically identical with that of

Redefined CNP, as they only differ in a single operator. Yet, Re-
ciprocal CNP consistently achieves the highest precision among
all versions of CNP at the cost of the lowest recall. On average, it
retains 82% and 78% less comparisons than CNP and Redefined
CNP, respectively, while increasing precision by 7.9 and 6.9 times,
respectively; it also decreases recall by 11%, but exceeds the mini-
mum acceptable PC for efficiency-intensive applications (0.80) to a
significant extent in most cases. The only exception is D2D, where
PC drops below 0.80 for all weighting schemes. Given that the
corresponding Clean-Clean ER dataset (D2C) exhibits much higher
PC, the poor recall for D2D is attributed to highly similar (i.e.,
noisy) entity profiles in one of the duplicate-free entity collections.

It is worth comparing at this point the new pruning schemes with
their edge-centric counterpart: CEP coupled with Block Filtering
(see right part of Table 3). We observe three patterns: (i) On aver-
age, CEP keeps 33% less comparisons than Redefined CNP, but
lowers recall by 18%. Its recall is actually so low in most datasets
that Redefined CNP achieves higher precision in all cases except
D1C and D2C . (ii) Reciprocal CNP typically outperforms CEP in
all respects of effectiveness. On average, it executes 67% less com-
parisons, while increasing recall by 8%. D1C is the exception that
proves this rule: Reciprocal CNP saves more than an order of mag-
nitude more comparisons, but CEP achieves slightly higher recall.
(ii) The overhead time of CEP is lower by 44%, on average, than
both algorithms, because it iterates once instead of twice over all
edges in the blocking graph.

On the whole, we can conclude that Reciprocal CNP offers the
best choice for efficiency-intensive applications, as it consistently
achieves the highest precision among all cardinality-based pruning
schemes with PC≥0.8. However, in datasets with high levels of
noise, where many entity profiles share the same information, Re-
defined CNP should be preferred; it is more robust to recall than
CEP and Reciprocal CNP, while saving 30% more comparisons
than CNP. In any case, Block Filtering is indispensable.

Weight-based Pruning. As expected, Redefined WNP main-
tains the same recall as the original implementation of WNP, while
conveying major enhancements in efficiency. On average, across
all weighting schemes and datasets, it reduces the retained com-
parisons by 28% and increases precision by 1.5 times. It is also
faster than WNP by 7%, but in practice, the method with the lowest
OTime varies across the datasets.

Reciprocal WNP performs a deeper pruning that consistently
trades a lower number of executed comparisons for a lower recall.
On average, it reduces the total cardinality of WNP by 72% and the
recall by 2%. Its mean PC drops slightly below 0.95 in D2C , but this
does not apply to all weighting schemes; two of them exceed the
minimum acceptable recall of effectiveness-intensive applications
even for this dataset. As a result, Reciprocal WNP enhances the
precision of WNP by 3.9 times. Its overhead is slightly lower than
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R1D R2D R3D R1C R2C R3C

||B′ || 4.22·104 7.47·105 4.86·108 4.53·105 2.10·106 2.12·109

PC(B′) 0.870 0.862 0.963 0.862 0.804 0.965
PQ(B′) 0.048 0.026 0.002 0.004 0.009 4.07·10−4

OTime(B′) 24 msec 86 msec 1 min 62 msec 150 msec 2 min
(a) Efficiency-intensive Graph-free Meta-blocking (r=0.25)

||B′ || 2.21·105 6.16·106 8.52·109 4.73·106 2.36·107 3.55·1010

PC(B′) 0.973 0.959 0.998 0.980 0.954 0.965
PQ(B′) 1.02·10−2 3.56·10−3 1.05·10−4 4.78·10−4 9.24·10−4 2.51·10−5

OTime(B′) 30 msec 221 msec 6 min 146 msec 650 msec 25 min
(b) Effectiveness-intensive Graph-free Meta-blocking (r=0.55)

||B′ || 1.76·106 1.32·107 2.34·1010 9.07·107 4.08·108 4.81·1010

PC(B′) 0.994 0.980 0.999 0.997 0.981 0.999
PQ(B′) 1.31·10−3 1.70·10−3 3.81·10−5 2.54·10−5 5.49·10−5 1.85·10−5

OTime(B′) 76 msec 2 sec 1.9 hrs 5 sec 1 min 11.1 hrs
(c) Iterative Blocking

Table 6: Performance of the baseline methods over all datasets.

Redefined WNP, because it retains less comparisons in memory.
Thus, it is faster than WNP by 9%, on average.

Compared to WEP, Redefined WNP exhibits lower precision,
but is more robust to recall, maintaining PC well above 0.95 under
all circumstances. In contrast, WEP violates this constraint in all
datasets for at least one weighting scheme. Reciprocal WNP scores
higher precision than WEP, while being more robust to recall, as
well. For this reason, it is the optimal choice for effectiveness-
intensive applications. Again, for datasets with high levels of noise,
Redefined WNP should be preferred.

Baseline Methods. We now compare our techniques with the
state-of-the-art block processing method Iterative Blocking [27]
and with Graph-free Meta-blocking (see end of Section 4.1). The
functionality of the former was optimized by ordering the blocks
from the smallest to the largest cardinality; its functionality was
further optimized for Clean-Clean ER by assuming the ideal case
where two matching entities are not compared to other co-occurring
entities after their detection. The configuration of Graph-free Meta-
blocking was also optimized by setting r to the smallest values
in [0.05, 1.0] with a step of 0.05 that ensures a recall higher than
0.80 and 0.95 across all real datasets; this resulted in r=0.25 and
r=0.55 for efficiency- and effectiveness-intensive applications, re-
spectively. Table 6 presents the performance of the two methods.

Juxtaposing Efficiency-intensive Graph-free Meta-blocking and
Reciprocal CNP, we notice a clear trade-off between precision
and recall. The latter approach emphasizes PQ, retaining 85%
less comparisons at the cost of 5% lower PC, on average. The
only advantage of Graph-free Meta-blocking is its minimal over-
head: its lightweight functionality is able to process datasets with
millions of entities within few minutes even on commodity hard-
ware. Similar patterns arise when comparing Reciprocal WNP
with Effectiveness-intensive Graph-free Meta-blocking: the former
executes 58% less comparisons at the cost of a 2% decrease in re-
call, thus achieving higher precision. This behaviour can be ex-
plained by the fine-grained functionality of Reciprocal Pruning:
unlike Graph-free Meta-blocking, which operates on the level of
individual entities, it considers pairwise comparisons, thus being
more accurate in their pruning.

Compared to Iterative Blocking, Reciprocal WNP retains less
comparisons by a whole order of magnitude at the cost of slightly
lower recall. Thus, it achieves significantly higher precision. The
overhead of Iterative Blocking is significantly lower in most cases,
but it does not scale well to large datasets, even though Iterative
Blocking does not involve a blocking graph. The reason is that
it goes through the input block collection several times, updating
the representation of the duplicate entities in all blocks that contain
them, whenever a new match is detected.

7. CONCLUSIONS
In this paper, we introduced two techniques for boosting the effi-

ciency of Meta-blocking along with two techniques for enhancing
its effectiveness. Our thorough experimental analysis verified that
in combination, our methods go well beyond the existing Meta-
blocking techniques in all respects and simplify its configuration,
depending on the data and the application at hand. For efficiency-
intensive ER applications, Reciprocal CNP processes a large het-
erogeneous dataset with 3 millions entities and 80 billion compar-
isons within 2 hours even on commodity hardware; it also man-
ages to retain recall and precision above 0.8 and 0.1, respectively.
For effectiveness-intensive ER applications, Reciprocal WNP pro-
cesses the same voluminous dataset within 5 hours on commodity
hardware, while retaining recall above 0.95 and precision close to
0.01. In both cases, Block Filtering and Optimized Edge Weighting
are indispensable. In the future, we plan to adapt our techniques for
Enhanced Meta-blocking to Incremental Entity Resolution.
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ABSTRACT
Exchange-repair semantics (or, XR-Certain semantics) is a
recently proposed inconsistency-tolerant semantics in the
context of data exchange. This semantics makes it possi-
ble to provide meaningful answers to target queries in cases
in which a given source instance cannot be transformed into
a target instance satisfying the constraints of the data ex-
change specification. It is known that computing the an-
swers to conjunctive queries under XR-Certain semantics is
a coNP-complete problem in data complexity. Moreover,
this problem can be reduced in a natural way to cautious
reasoning over stable models of a disjunctive logic program.

Here, we explore how to effectively perform XR-Certain
query answering for practical data exchange settings by
leveraging modern sophisticated solvers for disjunctive logic
programming. We first present a new reduction, accompa-
nied by an optimized implementation, of XR-Certain query
answering to disjunctive logic programming. We then eval-
uate this approach on a benchmark that we introduce here
and which is modeled after a practical data exchange prob-
lem in computational genomics. Specifically, we present a
benchmark scenario that mimicks a portion of the UCSC
Genome Browser data import process. Our initial results,
based on real genomic data, suggest that the solvers we ap-
ply fail to take advantage of some critical exploitable struc-
tural properties of the specific instances at hand. We then
develop an improved encoding to take advantage of these
properties using techniques inspired by the notion of a re-
pair envelope. The improved implementation utilizing these
techniques computes query answers ten to one thousand
times faster for large instances, and exhibits promising scal-
ability with respect to the size of instances and the rate of
target constraint violations.

Categories and Subject Descriptors
H.2 [Database Management]: Systems—relational
databases, rule based databases, query processing
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1. INTRODUCTION
Data exchange is the task of transforming data structured

under a source schema into data structured under a target
schema in such a way that all constraints in a fixed set of
source-to-target constraints and in a fixed set of target con-
straints are satisfied. During the past decade, there has been
an extensive and multifaceted investigation of data exchange
(see the monograph [1]). There are two main algorithmic
problems in data exchange: the problem of materializing an
instance that, together with a given source instance satisfies
all constraints (such an instance is a called a solution of the
given source instance) and the problem of computing the
certain answers to a query over the target schema, i.e., the
intersection of the answers to the query over all solutions of
a given source instance. In data exchange settings with a
non-empty set of target constraints, it frequently happens
that a given source instance has no solution. In particular,
this may happen when the source instance at hand contains
inconsistencies or conflicting information that is exposed by
the target constraints. The standard data exchange frame-
works are not able to provide meaningful answers to target
queries in such circumstances; in fact, the certain answers to
every target query trivialize. To address this problem and
to give meaningful answers to target queries, we recently
introduced the framework of exchange-repair semantics (or,
XR-Certain semantics) [8]. This is an inconsistency-tolerant
framework that is based on the notion of source repairs,
where, informally, a source repair is a source instance that
differs minimally from the original source data, but has a
solution. In turn, source repairs give rise to the notion of
the XR-Certain answers to target queries, which, by defini-
tion, are the intersection of the answers to the query over all
solutions of all source repairs of the given source instance. It
should be noted that inconsistency-tolerant semantics have
also been investigated in the context of data integration (see,
e.g., [7, 17]) and in the context of ontology-based data ac-
cess (OBDA) (see, e.g., the recent survey [5]). In [9], which
is the full version of [8], we provided a detailed comparison
between the XR-Certain semantics and the inconsistency-
tolerant semantics in these two other frameworks. In partic-
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ular, we showed that, as regards consistent query answering,
the exchange-repairs framework and the OBDA framework
can simulate each other.

A data exchange task is specified using a schema map-
ping M = (S,T,Σst,Σt), where S is the source schema,
T is the target schema, Σst is a set of constraints between
S and T, and Σt is a set of constraints on T. The most
extensively studied schema mappings are the ones in which
Σst is a set of source-to-target tuple-generating dependen-
cies (s-t tgds) and Σt is a weakly-acyclic set of target tuple-
generating dependencies (target tgds) and target equality-
generating dependencies (target egds) [11]. Note that tuple-
generating dependencies are also known as GLAV (global-
and-local as view) constraints; as special cases, they contain
the classes of GAV (global-as-view) constraints and LAV
(local-as-view) constraints. In [8], it was shown that com-
puting the XR-Certain answers to target conjunctive queries
is a coNP-complete problem in data complexity; in fact, this
intractability persists even in the case in which Σst is a set
of GAV constraints and Σt is a set of egds. Moreover, a con-
nection with disjunctive logic programming was unveiled in
[8] by showing that the XR-Certain answers of conjunctive
queries can be rewritten as the cautious answers of a union
of conjunctive queries with respect to the stable models of a
disjunctive logic program over a suitably defined expansion
of the source schema.

Here, our main aim is to explore how to effectively perform
XR-Certain query answering for practical data exchange set-
tings by leveraging modern sophisticated solvers for disjunc-
tive logic programming. Disjunctive logic programming is
a suitable formalism for coping with the intractability of
XR-Certain query answering because it goes beyond the nat-
ural expressiveness of SQL while still remaining in a declara-
tive framework. Our first technical result is a new improved
reduction, accompanied by an optimized implementation, of
the problem of computing the XR-Certain answers of queries
in the context of data exchange to the problem of comput-
ing the certain answers of queries with respect to the stable
models of disjunctive logic programs. We then evaluate this
approach on a benchmark that we introduce here and which
is modeled after a practical data exchange problem in com-
putational genomics. Specifically, we present a benchmark
scenario that mimics a portion of the data import process of
the UCSC Genome Browser (https://genome.ucsc.edu/),
a widely used genomics resource that “contains the reference
sequence and working draft assemblies for a large collection
of genomes.” We believe that data sets from computational
sciences, such as computational genomics, are particularly
in need of concepts and techniques that, like XR-Certain
answers, eliminate the unquantifiable uncertainty that arise
from constraint violations.

We carry out two experimental evaluations using real ge-
nomic data. The first is based on what we call a monolithic
approach, which generates a disjunctive logic program from
a given query and source instance, and then runs the clingo
solver from the Potassco collection [12]. The results of this
evaluation suggest that the solver fails to take advantage
of some critical exploitable structural properties of the spe-
cific instances at hand. Intuitively, the cost of transforming
the data from the source schema into the target schema is
embedded in the execution cost of running each individual
query, which causes large instances to become unworkable
even for simple queries. In view of this, we develop a dif-

ferent segmentary approach that utilizes an improved en-
coding to take advantage of the aforementioned structural
properties using techniques inspired by the notion of a repair
envelope. The improved implementation utilizing these tech-
niques computes query answers ten to one thousand times
faster than the monolithic approach for large instances, and
exhibits promising scalability with respect to the size of in-
stances and the rate of target constraint violations.

2. PRELIMINARIES
This section contains definitions of basic notions and a

minimum amount of background material on data exchange
and on disjunctive logic programming. More detailed infor-
mation about schema mappings and certain answers can be
found in [1, 11].

Instances, Queries, and Homomorphisms. Fix an infi-
nite set Const of elements, and an infinite set Nulls of ele-
ments such that Const and Nulls are disjoint. A schema R
is a finite set of relation symbols, each having a designated
arity. An R-instance is a finite database I over the schema
R whose active domain is a subset of Const∪Nulls. A fact
of an R-instance I is an expression of the form R(a1, . . . , ak),
where R is a relation symbol of arity k in R and (a1, . . . , ak)
is a member of the relation RI on I that interprets the sym-
bol R. Every R-instance can be identified with the set of
its facts. We say that an R-instance I ′ is a sub-instance of
an R-instance I if I ′ ⊆ I, where I ′ and I are viewed as sets
of facts. If I is an R-instance and R′ ⊆ R, then by the R′-
restriction of I we will mean the subinstance of I containing
only those facts that involve relations from R′.

We assume familiarity with conjunctive queries (CQs) and
unions of conjunctive queries (UCQs). The answers to a
query q in an instance I are denoted by q(I), and we denote
by q↓(I) the answers of q on I that contain only values from
Const.

The active domain of an instance I is the set of values from
Const∪Nulls that occur in facts of I. By a homomorphism
from an R-instance I to another R-instance I ′, we mean a
map h from the active domain of I to the active domain of I ′,
such that h(c) = c for all c ∈ Const, and such that for every
fact R(v1, ..., vn) ∈ I we have that R(h(v1), . . . , h(vn)) ∈ I ′.

Schema Mappings. A tuple-generating dependency (tgd)
over a schema R is an expression of the form ∀x(φ(x) →
∃yψ(x,y)), where φ(x) and ψ(x,y) are conjunctions of
atoms over R. Tgds are also known as GLAV (global-and-
local-as-view) constraints. Two important special cases are
the GAV constraints and the LAV constraints. A GAV con-
straint is a tgd of the form ∀x(φ(x) → P (x)) (that is, the
right-hand side of the implication consists of a single atom
without existential quantifiers) and a LAV constraint is a
tgd of the form ∀x(R(x) → ∃yψ(x,y)) (that is, the left-
hand side of the implication consists of a single atom).

Let S and T be disjoint schemas, called the source schema
and the target schema. A source-to-target tgd (s-t tgd, or,
source-to-target GLAV constraint) is a tgd as defined above,
where φ(x) is a conjunction of atoms over S and ψ(x,y) is
a conjunction of atoms over T.

An equality-generating dependency (egd) over a schema R
is an expression of the form ∀x(φ(x) → xi = xj) with φ(x)
a conjunction of atoms over R.
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For the sake of readability, we will frequently drop univer-
sal quantifiers when writing tgds and egds.

A schema mapping is a quadruple M = (S,T,Σst,Σt),
where S is a source schema, T is a target schema, Σst is a
finite set of s-t tgds, and Σt is a finite set of tgds and/or
egds over the target schema. We will also call such schema
mappings glav+(glav, egd) schema mappings. In the spe-
cial case where Σst consists of (source-to-target) GAV con-
straints and Σt consists of GAV constraints and/or egds, we
will say that M is a gav+(gav, egd) schema mapping.

Universal Solutions and Certain Answers. Let M =
(S,T,Σst,Σt) be a schema mapping, and let I be a source
instance. As usual in data exchange, we will assume that
the source instances we consider do not contain null values.

A target instance J is a solution for a source instance I
w.r.t. M if the pair (I, J) satisfies the constraints of M,
that is, I and J together satisfy Σst, while J satisfies Σt.
In general, a source instance may have many solutions. A
universal solution for I (with respect to M) is a solution
J for I such that for all solutions J ′ of I, there is a homo-
morphism h from J to J ′. Universal solutions are considered
the preferred solutions in data exchange. One reason for this
is that universal solutions can be used to compute certain
answers to target queries.

If q is a query over the target schema T, then the certain
answers of q with respect to I and M are defined as

certain(q, I,M) =⋂
{q(J) : J is a solution for I w.r.t. M}

It was shown in [11] that, if J is a universal solution for a
source instance I w.r.t. a schema mappingM, then for every
conjunctive query q, it holds that certain(q, I,M) = q↓(J).

Weak Acyclicity and the Chase. If M = (S,T,Σst,Σt)
is an arbitrary glav+(glav, egd) schema mapping, then a
given source instance may have no solution or it may have a
solution, but no universal solution. For this reason, in [11]
the concept of weak acyclicity was introduced, and it was
shown that, when Σt is the union of a weakly acyclic set of
target tgds and a set of egds, then, for all source instances
I, a solution exists if and only if a universal solution exists.
Moreover, the chase procedure can be used to determine in
polynomial time (data complexity) whether a solution for
I exists and, if so, to construct a universal solution for I
in time polynomial in the size of I. The obtained solution,
which we will denote by chase(I,M) (when it exists), is
known as the canonical universal solution of I. We refer to
[11] for more details, including the definition of weak acyclic-
ity and of the chase procedure.

By a glav+(wa-glav, egd) schema mapping we will
mean a schema mapping M = (S,T,Σst,Σt), where Σst

is a finite set of s-t tgds, and Σt is the union of a weakly
acyclic set of target tgds and a set of egds. We spell out
here two basic facts that are used in several arguments in
this paper: let M be any glav+wa-glav schema mapping
(without egds). Then (i) every source instance I has a solu-
tion (and hence has a canonical universal solution), and (ii)
whenever I ′ ⊆ I, then chase(I ′,M) ⊆ chase(I,M). The
latter is also known as the monotonicity of the chase.

Disjunctive Logic Programming. A disjunctive logic pro-
gram (DLP program) Π over a schema R is a finite collection
of rules of the form

α1 ∨ . . . ∨ αn ← β1, . . . , βm,¬γ1, . . . ,¬γk.

where n,m, k ≥ 0 and α1, . . . , αn, β1, . . . , βm, γ1, . . . , γk are
atoms formed from the relations in R ∪ {=, 6=}, using the
constants in Const and first-order variables. A DLP pro-
gram is said to be ground if it consists of rules that do not
contain any first-order variables. A model of Π is an R-
instance I over the domain Const that satisfies all rules of
Π (viewed as universally quantified first-order sentences). A
minimal model of Π is a model M of Π such that there does
not exist a model M ′ of Π where the facts of M ′ form a
strict subset of the facts of M . For a ground DLP Π over a
schema R and an R-instance M over the domain Const, the
reduct ΠM of Π with respect to M is the DLP containing,
for each rule α1 ∨ . . .∨ αn ← β1, . . . , βm,¬γ1, . . . ,¬γk, with
M 6|= γi for all i ≤ k, the rule α1 ∨ . . .∨αn ← β1, . . . , βm. A
stable model of a ground DLP Π is an R-instance M over the
domain Const such that M is a minimal model of the reduct
ΠM . See [13] for more details. The cautious answers to a
query q, w.r.t. a DLP program Π (under the stable model
semantics) are defined as⋂

{q(s) | s is a stable model of Π} .

The stable model semantics is the most widely used seman-
tics of DLP programs, and many solvers have been developed
that support reasoning over stable models. In particular,
stable models of disjunctive logic programs have been well-
studied as a way to compute database repairs ([18] provides
a thorough treatment).

3. EXCHANGE REPAIR FRAMEWORK
We briefly recall here the exchange-repair framework that

was introduced in [8]. The development of this framework
was motivated by the observation that the definition of
certain(q, I,M) trivializes when a source instance I has no
solution w.r.t. a given schema mappingM. XR-Certain an-
swers were proposed as a semantics that provides meaningful
answers to queries in such cases.

Definition 1. [8] Let M = (S,T,Σst,Σt) be a schema
mapping, let I be an S-instance.

1. A source instance I ′ is said to be a source repair of
I with respect to M if I ′ ⊆ I, I ′ has a solution with
respect to M, and no instance I ′′ with I ′ ( I ′′ ⊆ I
has a solution with respect to M.

2. We say that a pair (I ′, J ′) is an exchange-repair so-
lution (or XR-Solution) for I with respect to M if I ′

is a source repair of I with respect to M and J ′ is a
solution for I ′ with respect to M.

3. For a query q over the target schema T, the XR-certain
answers to q in I w.r.t. M is the set

XR-Certain(q, I,M) =⋂
{q(J ′) | (I ′, J ′) is an XR-Solution for I w.r.t. M}.

Note that, whenever a source instance I does have so-
lutions w.r.t. M, then, for all queries q, we have that
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XR-Certain(q, I,M) = certain(q, I,M). While the XR-
Certain semantics takes inspiration from the well-established
notions of database repairs and consistent query answers [2,
4], the precise definition of the semantics reflects impor-
tant assumptions that are specific to the context of data
exchange. Specifically, the definitions of XR-Solution and
XR-Certain reflect the fact that in a data exchange setting,
it is preferred to make tgds satisfied by deriving additional
facts, rather than by deleting facts; and the data used to
answer target queries should derive from coherent sets of
source facts.

It was shown in [8] that, in the case of glav+(wa-glav,
egd) schema mappings, the data complexity of XR-Certain
query answering for conjunctive queries is coNP-complete
(note that the restriction to weakly acyclic schema map-
pings is necessary here, since it follows from results in [11]
that the same problem is undecidable for arbitrary glav+
(glav, egd) schema mappings). Furthermore, several ap-
proaches to query answering were studied in [8]. In partic-
ular, it was shown that, for glav+(wa-glav, egd) schema
mappings, XR-certain answers can be computed by means
of a disjunctive logic program. We discuss this approach in
the next section.

4. BASIC APPROACH TO QUERY AN-
SWERING

Based on the initial results in [8], we pursue here the devel-
opment of a practical system for XR-Certain query answer-
ing via disjunctive logic programming, leveraging modern
sophisticated solvers. Note that the emergence of such pow-
erful solvers for NP-hard problems has already enabled prac-
tical solutions for many other computationally hard prob-
lems in industry. Concretely, in this section, we present a
first implementation of XR-Certain query answering based
on a translation along the lines of [8], that takes as input a
schema mapping M and a source instance I, and produces
a single, typically large, DLP program whose stable mod-
els describe the XR-solutions of I w.r.t. M. We refer to
this as the monolithic approach, in order to contrast it with
another approach, which will be presented in Section 6, in-
volving multiple DLP programs of smaller size.

The first step in this approach consists of a reduction from
the general case of glav+(wa-glav, egd) schema mappings
to the case of gav+(gav, egd) schema mappings.

Theorem 1 ([8]). If M = (S,T,Σst,Σt) is a glav+
(wa-glav, egd) schema mapping and q a conjunctive query
over T, then there exist a gav+(gav, egd) schema map-

ping M̂ and union of conjunctive queries q̂ such that
XR-Certain(q, I,M) = XR-Certain(q̂, I,M̂).

The resulting schema mapping may in general be exponen-
tially larger than the original. However, as we will see in
Section 5.2, our implementation incurs only a modest in-
crease when applied to our benchmark.

Next, in [8], we present a very natural and concise encod-
ing of XR-Certain for gav+(gav, egd) schema mappings as
the cautious answers over the parallel circumscription of a
disjunctive logic program Π. In [15] it was shown that the
problem of finding such models can be subsequently reduced
to that of computing stable models of a translation of Π into
a new disjunctive logic program. However, the translation
involved requires the explicit representation of the herbrand

base of the source instance, which can be prohibitively large
even for small source instances. We now present an im-
proved, direct reduction of XR-Certain to the cautious an-
swers over stable models of a disjunctive logic program.

In order to facilitate the discussion below, it is convenient
to introduce the notion of a canonical XR-Solution. An
XR-Solution (I ′, J ′) for I w.r.t. M is said to be a canon-
ical XR-Solution if J ′ is a canonical universal solution for I ′

w.r.t. M, that is, J ′ = chase(I,M).
For any gav+(gav, egd) schema mapping M =

(S,T,Σst,Σt), let ΠM be the DLP program given in Fig-
ure 1. Observe that the schema of the program ΠM con-
tains multiple distinct copies of each relation from S ∪ T.
The program in Theorem 2 intends to describe the canoni-
cal XR-Solutions of a source instance. Suppose (I ′, J ′) is a
canonical XR-Solution for some source instance I w.r.t. a
gav+(gav, egd) schema mapping M = (S,T,Σst,Σt), and
let J be the canonical universal solution for I w.r.t. the tgds
of M. The program introduces three predicates for each
source relation, one with the original name meant to con-
tain the facts of I, one subscripted with d (“deleted”) meant
to contain the facts of I \I ′, and one subscripted with r (“re-
mains”) meant to contain the facts of I ′. The program also
introduces these same three predicates for each target rela-
tion, plus a fourth subscripted with i (“incidentally deleted”)
meant to contain the target facts in J \J ′ that are also con-
tained in some subset J ′′ ⊇ J ′ of J that is consistent with
Σt (that is, they are not in a canonical XR-Solution but they
may appear in some other XR-Solution).

For every stable model M of ΠM, we denote by IM and
JM the S-instance and T-instance consisting of those facts
R(a) in the relevant schema for which Rr(a) ∈M .

Theorem 2. Let M = (S,T,Σst,Σt) be a gav+(gav,
egd) schema mapping and I a source instance. The XR-
solutions of I w.r.t. M are precisely those pairs of instances
that are of the form (IM , JM ) for some stable model M of
ΠM ∪ I.

Corollary 1. Let M be a gav+(gav, egd) schema
mapping. For every union of conjunctive queries q and for
every source instance I,

XR-Certain(q, I,M) =⋂
{qr(s) | s a stable model of ΠM ∪ I}

where qr is the query formed from q by replacing every oc-
currence of a relation R with Rr.

With this new encoding, we can now compute XR-Certain
using the disjunctive logic program ΠM∪I, whose size is lin-
ear in the combined size of the source instance and schema
mapping. The DLP generated using the prior approach
of [8], in contrast, is lower-bounded in size by |adom(I)|s,
where s is the maximum arity of the relations in the source
schema.

5. SCENARIO: GENOME BROWSER
Scientific data is a potentially important application of

XR-Certain query answering because research decisions and
discoveries are often made based on data drawn from a vari-
ety of sources, and because unquantifiable uncertainty must
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For each tgd (R1(x,y) ∧ ... ∧ Rn(x,y)→ T(x)) ∈ (Σst∪Σt),
construct a chase rule, deletion rule, and target remainder
rule respectively:

T(x) ← R1(x,y), ..., Rn(x,y).
R1d(x,y) ∨ ... ∨ Rnd(x,y) ← Td(x), R1(x,y), ..., Rn(x,y),

¬R1i(x,y), ...,¬Rni(x,y).
Tr(x) ← R1r(x,y), . . . , Rnr(x,y).

For each egd (R1(x) ∧ ... ∧ Rn(x)→ xi = xj) ∈ Σt, con-
struct a deletion rule:

R1d(x) ∨ ... ∨ Rnd(x) ← R1(x), . . . , Rn(x), xi 6= xj ,
¬R1i(x), ...,¬Rni(x).

For each relation R ∈ S, construct a source remainder rule:

Rr(x) ← R(x),¬Rd(x)

For each relation R ∈ T, construct an incidental deletion
rule, and the one-of-three rules:

Ri(x) ← R(x),¬Rr(x),¬Rd(x)
⊥ ← Rr(x), Rd(x)
⊥ ← Rr(x), Ri(x)
⊥ ← Rd(x), Ri(x)

Figure 1: Procedure to construct the disjunctive logic pro-
gram ΠM

be eliminated from the data before a decision or discovery is
made. The guarantee given by XR-Certain query answers –
that all possible repairs of the source instance agree on them
– is a natural fit for these circumstances.

Inspired by the UCSC Genome Browser, we present a
benchmark that uses real data: a loose simulation of the
genome browser data import process. The UCSC Genome
Browser database is constructed using a variety of algo-
rithms and public data sources. Our benchmark focuses
on the human gene model, a set of genomic sequences which
putatively capture the portion of the human genome that
encodes proteins. The UCSC Genome Browser algorithms
compute these sequences from a reference genome by com-
puting alignments for known/observed proteins and tran-
scripts from the UniProt and GenBank databases [14]. For
our purposes, we treat the set of transcripts as given (that
is, as a source instance rather than the result of a compu-
tation), and we provide a schema mapping mimicking how
this data, plus a significant volume of data from the Ref-
Seq, Entrez Gene, and UniProt databases, are combined
and transformed into the UCSC Genome Browser database.
Our schema mapping makes several loose approximations of
scientific reality which serve to maximize the portion of the
genome browser schema that we populate, but which also in-
troduce some inconsistency to the data. It is for this reason
that we say our schema mapping merely mimicks the true
UCSC Genome Browser data import process, even though
our target schema is faithful to the real database.

The RefSeq and EntrezGene databases are not avail-
able for download in a flat relational format. The RefSeq
database is offered in a text file format, within which the
data are arranged in a nested fashion with transcripts as the
top-level elements. Every transcript has associated source
and reference information (documenting how and by whom

Table 1: Source Instances

total # of total # of
Database Relations Attributes Tuples
UCSC* 2 13 165,920
RefSeq 5 38 706,923
EntrezGene 1 3 431,114
UniProt 1 3 4,405,573
*Transcript alignments and crossreference only.

it was observed), and each may have subsections specify-
ing what protein it encodes and what gene it is transcribed
from. These subsections often link to other databases us-
ing external protein and gene identifiers. Our ETL step
places transcripts, sources, references, genes, and proteins
into five separate respective relations, all keyed by transcript
accession identifier. The EntrezGene database is available
in ASN.1 format, which we first convert to xml using the
gene2xml tool from the NCBI ToolBox [19]. From the re-
sulting xml, we extract the desired fields into a single table
using the xtract tool from NCBI Entrez Direct [20].

Our complete schema mapping is available for down-
load at https://users.soe.ucsc.edu/~rhalpert/

xr-benchmarks/. Table 1 summarizes the data sources.
We represent the given part of UCSC’s gene model with

two tables, ComputedAlignments, which holds data about
the transcripts themselves, and ComputedCrossref, which
holds a cross-reference between UCSC“known gene IDs”(re-
ferred to here as “transcripts”) and the closest correspond-
ing external database transcript identifier (usually a RefSeq
accession) and protein identifier (usually a UniProt or Ref-
Seq accession). Our hand-written schema mapping specifies
how these tables and the RefSeq, EntrezGene, and UniProt
databases are used to populate the target schema. It also
applies a key constraint to each target relation, per industry
best-practice. Many of the key constraints are specified by
the Genome Browser’s schema, while some are not specified
but are reasonable constraints that are in fact satisfied by
the Genome Browser data.

The true Genome Browser’s process computes a single
coherent truth which may differ from that represented in
the external databases. Our schema mapping, on the other
hand, consolidates these sources into the target schema, and
this gives rise to some inconsistency. The key constraints on
the knownGene and kgXref tables prove critical in this re-
gard: they enforce that each transcript have exactly one
value for the exon count, and one gene symbol, respectively.
Since values from both the UCSC gene model and from the
other sources are used to populate the relevant attributes,
this effectively gives rise to constraint violations when the
UCSC gene model disagrees with RefSeq on the number of
exons, and when RefSeq and EntrezGene collectively list
more than one gene symbol. These two circumstances are
expected to arise a small fraction of the time. The relevant
parts of the schema mapping are depicted in Figure 2.

The knownIsoforms relation groups transcripts into clus-
ters, where each cluster represents a gene. The Genome
Browser computes this relation based on genomic coordi-
nates [14]. Our schema mapping populates the knownIso-
forms relation using a naive simplification of this approach:
transcripts that share either an Entrez Gene ID or a gene
symbol are made to reside in the same cluster. These two
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(A)

Acc

ExonCount

...

ComputedAlignments

exonCount

...

knownGene

name

exonCount

...

(B)

Gene

Symbol

...

GenBankToEntrez

Symbol

...

refLink

name

...

kgXref

kgID

geneSymbol

...

(C)

knownToLocusLink ./ knownIsoforms

kgID

entrez

clusterId

kgXref ./ knownIsoforms

kgID

geneSymbol

...

clusterId

Figure 2: Critical parts of the schema mapping. Single ar-
rows represent value propagation via tgds, and double ar-
rows represent functional dependencies (egds). Keys (also
egds) are underlined. (A) Competing values for the exon
count. (B) Competing values for the gene symbol. (C) Clus-
tering of transcripts according to Entrez Gene ID and gene
symbol. The indicated egds give rise to equalities between
nulls.

approaches are incomparable. Ours relies on existing gene
symbol annotations from Entrez and UniProt, as well as
crossreference annotations on UCSC transcripts, all of which
have different levels of rigor and completeness. The known-
Isoforms table is thus included in our schema mapping pri-
marily to exercise the interaction of existentially quanti-
fied values with egds, which is a differentiating feature of
weakly acyclic schema mappings versus other types of syn-
tactic restrictions of glav+(glav, egd) schema mappings
(e.g., gav+(gav, egd) or separable [6] schema mappings).
This part of the schema mapping is depicted in Figure 2.

5.1 Benchmark Data and Queries
We wish to test the scalability of our implementation rel-

ative to two factors: the instance size and the proportion of
the source tuples “involved” in egd violations (called “sus-
pect” tuples), which we make precise with the notion of a
source repair envelope defined in Section 6.2). To this end,
we define a set of instances having specified sizes and ra-
tios of suspect to total source tuples. In order to construct
our test instances, we chase the unmodified source instances
with the schema mapping and compute which source tuples
are suspect. We call this the raw result. Then, each test in-
stance is produced by selecting a randomized subset of the
source instances with the desired size and ratio of suspect
to total tuples in one particular table (ComputedCrossref),
which we use as a rough proxy for the ratio for the entire
source. Thus, for the largest size (“full”), the maximum ratio
is the ratio found in the raw result (2.9%), and there is only
one such instance. For the smaller instances, we are able to
select enough suspect tuples to produce larger ratios. We
use a randomized selection procedure to materialize a set of
instances for each profile; six (at 3% suspect) for small and
medium instances, three per ratio for large instances, and,
necessarily, just one full instance (at 2.9% suspect). The
characteristics of these instances are given in Table 2.

Table 2: Test instances have sizes small (S), medium (M),
large (L), and full (F), and 0, 3, 9, or 20 percent of their
transcripts suspect.

instance: L0 L3 L9 L20
source tuples 321k 322k 316k 301k
total tuples 716k 724k 731k 748k
suspect transcripts 0% 3% 9% 20%
suspect tuples* 0% 2.0% 5.8% 13.4%

instance: S3 M3 L3 F3
source tuples 3.5k 36k 322k 1,846k
total tuples 7.9k 77k 724k 5,354k
suspect transcripts 3% 3% 3% 2.9%
suspect tuples* 1.8% 1.8% 2.0% 3.4%
*includes source and target

Table 3 lists our query suite. Queries labeled “epN” are
adapted from the EQUIP query suite [16]: five of the 21
queries given there are applicable to our target schema. Ad-
ditional queries labeled “xrN” are new queries created to
exercise the critical parts of the schema mapping, including
what is XR-Certain knowledge in the knownGene relation,
and what pairs of transcripts reside in the same cluster in
the knownIsoforms relation. In our experiments, we run the
queries sequentially.

5.2 Monolithic Implementation and Results
Using the reduction given in Theorem 2, we have imple-

mented a monolithic approach to XR-Certain query answer-
ing. Our monolithic implementation takes as input a glav+
(wa-glav, egd) schema mapping (encoded as text), an ar-
bitrary source instance (via a JDBC connection string), and
a union of conjunctive queries over the target schema (also
text). The schema mapping is transformed into a gav+(gav,
egd) schema mapping using an optimized version of the re-
duction in Theorem 1, and the query is transformed into a
new union of conjunctive queries using the same reduction.
These transformations take an average of 18.7 seconds com-
bined, and the resulting schema mapping is approximately
seven times larger than the original (from 33 tgds and 26
egds to 339 tgds and 67 egds). We generate a separate dis-
junctive logic program for each query and instance, and run
them using clingo 4.4.0, a solver from the Potsdam Answer
Set Solving Collection[12] (Potassco).

All experiments are run on an 8-core Intel Core i7-2720QM
CPU @2.20GHz with 16GB RAM, running Ubuntu 14.04
LTS (Linux 3.13.0 SMP x86 64). The plots of Figure 3 de-
pict the runtime for these programs versus the percentage
of suspect tuples and versus the instance size, respectively,
with a line for each query. The latter is a log-log plot, since
each instance size is an order of magnitude larger than the
last.

These results illustrate a significant problem with this
monolithic logic program approach: the cost of transform-
ing the data from the source schema into the target schema
is embedded in the execution cost of each individual query,
which causes large instances to become unworkable even for
simple queries. Additionally, the rapid increase in query
runtimes as instance size increases, even for queries whose
answers should be easy to compute, suggest that this imple-
mentation fails to take advantage of some exploitable struc-
ture in the instance and schema mapping. This is perhaps
a symptom of the fact that the disjunctive logic program’s
rules are no simpler for areas of the source and target in-
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Table 3: Query Suite, with approximate answer counts for the large-size instances.

Query Answers
ep1() :- refLink(symbol, , acc, protacc, , , , ), kgXref(ucscid, , spid, , symbol, , , , , ) 1*
ep2(protacc) :- refLink(symbol, , acc, protacc, , , , ), kgXref(ucscid, , spid, , symbol, , , , , ) 6,000
ep3(protacc,spid) :- refLink(symbol, , acc, protacc, , , , ), kgXref(ucscid, , spid, , symbol, , , , , ) 12,000
ep15(symbol) :- kgXref(ucscid, , , , symbol, refseq, , , , ), refLink( , product, refseq, , , , entrez, ) 1,500
ep16(symbol,entrez) :- kgXref(ucscid, , , , symbol, refseq, , , , ), refLink( , product, refseq, , , , entrez, ) 1,500
xr1() :- knownGene(kgid, ch, sd, txs, txe, cs, ce, exc, exs, exe, pac, alignid) 1*
xr2(kgid) :- knownGene(kgid, ch, sd, txs, txe, cs, ce, exc, exs, exe, pac, alignid) 10,000
xr3(kgid, ch, sd, txs, txe, cs, ce, exc, exs, exe, pac, ai) :- knownGene(kgid, ch, sd, txs, txe, cs, ce, exc, exs, exe, pac, ai) 10,000**
xr4() :- knownIsoforms(cluster, transcript1), knownIsoforms(cluster, transcript2) 1*
xr5(transcript1) :- knownIsoforms(cluster, transcript1), knownIsoforms(cluster, transcript2) 10,000
xr6(transcript1, transcript2) :- knownIsoforms(cluster, transcript1), knownIsoforms(cluster, transcript2) 35,000
*boolean **projection-free

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0  2  4  6  8  10  12  14

se
co

n
d
s

percent suspect

Query Duration vs. Suspect Percentage, L0, L3, L9, L20 instances

ep15
ep16
ep1
ep2
ep3
xr1
xr2
xr3
xr4
xr5
xr6

 0.1

 1

 10

 100

 1000

 10000

 100000

 1000  10000  100000  1e+06  1e+07

se
co

n
d
s

total source and target tuples

Query Duration vs. Instance Size, S3, M3, L3, F3 instances

ep15
ep16
ep1
ep2
ep3
xr1
xr2
xr3
xr4
xr5
xr6

Figure 3: Performance of XR-Certain query answering using clingo.

stances that are unaffected by egd violations than for those
that are affected. In the following section, we will develop
techniques to identify and exploit such structure by ground-
ing the egds.

6. ENHANCED APPROACH TO QUERY
ANSWERING

Although the monolithic approach serves as a precise,
straightforward specification of XR-Certain answers, it does
not lend itself to fine-grained optimization. In this sec-
tion, we present practical adaptations and optimizations to
XR-Certain query answering that are motivated by our ex-
perimentation with the monolithic implementation, and that
draw on techniques described in the literature for query an-
swering over inconsistent databases, specifically, the notion
of repair envelopes introduced by Eiter et al. [10]. We split
query answering into two phases. The first, the “exchange
phase”, is a tractable-time query-independent preprocessing
step, which enables the second, the “query phase”, in which
XR-Certain answers to a particular query are computed by
solving a collection of small disjunctive logic programs. Al-
though the problem at hand is coNP-complete, this new
segmentary approach allows us to answer queries by solving
many small hard problems rather than one large one. At the
end of this section, we evaluate an implementation based on
this enhanced approach.

6.1 Candidate Answers
The following definition of candidate answers effectively

provides an upper bound on the set of XR-Certain answers
of a query, in the sense that the latter is always a subset of
the former.

Definition 2. Let M = (S,T,Σst,Σt) be a gav+(gav,
egd) schema mapping.

1. We denote by Mtgd the schema mapping
(S,T,Σst,Σ

tgd
t ) where Σtgd

t consists of the tgds
from Σt. That is, all egds are dropped.

2. The canonical quasi-solution of a source instance I
w.r.t. M is the canonical universal solution of I
w.r.t. Mtgd.

3. For every UCQ q over T, the candidate answers to q
w.r.t. I and M are q(J), where J is the canonical
quasi-solution of I w.r.t. M.

Proposition 1. LetM = (S,T,Σst,Σt) be a gav+(gav,
egd) schema mapping. Let I be an S-instance. Let J be the
canonical quasi-solution of I w.r.t. M.

1. For all canonical XR-Solutions (I ′, J ′) for I w.r.t. M,
it holds that J ′ ⊆ J .

2. For every UCQ q, we have that XR-Certain(q, I,M) ⊆
q(J). That is, every XR-Certain answer is indeed a
candidate answer.

Proof. Let (I ′, J ′) be a canonical XR-Solution for I
w.r.t.M. SinceM is gav+(gav, egd) and J ′ is the canoni-
cal universal solution for I ′ w.r.t.M, J ′ is simply the closure
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of I ′ w.r.t. the tgds of M. Therefore J ′ is also the canoni-
cal universal solution for I ′ w.r.t. Mtgd. Finally, since the
chase procedure is monotone [11] and I ′ ⊆ I, we have that
J ′ ⊆ J .

The second item follows directly from the first, since
UCQs are monotone queries.

6.2 Source Repair Envelopes
It is often possible to exclude a large portion of the

database from high-complexity computations. We will de-
fine a notion similar to a repair envelope from [10] but suited
to the setting of data exchange.

Definition 3. Let M be a glav+(wa-glav, egd) schema
mapping and I a source instance. A subset E of I is a source
repair envelope if (I \ I ′) ⊆ E for all source repairs I ′.

We will now see that we can restrict our attention within
a source repair envelope when computing source repairs.

Proposition 2. Let M be a glav+(wa-glav, egd)
schema mapping, I a source instance, and E ⊆ I a source
repair envelope for I w.r.t. M. Then {I ′ | I ′ is a source
repair of I w.r.t. M} = {E′ ∪ (I \E) | E′ is a source repair
of E w.r.t. M}.

Proof. Claim: I ′ ∩ E is a source repair of E.
Suppose for the sake of contradiction that I ′ ∩ E is not a
source repair of E. Then either I ′∩E has no solution (which
cannot be the case due to monotonicity of the chase) or I ′∩E
is strictly contained in a source repair E′′ of E. But then
E′′ must be contained in a source repair I ′′ of I. However,
the definition of a source repair envelope tells us that I ′′

contains all of E′′ ∪ (I \ E). Hence it contains I ′, so I ′

wasn’t a source repair of I after all.
Claim: if E′ is a source repair of E then E′ ∪ (I \E) is a

source repair of I.
Indeed, E′ must be contained in a source repair of I, and
by the definition of a source repair envelope, that source
repair of I must contain all of (I \E). Therefore it contains
E′ ∪ (I \ E). However, it cannot be a strict superset of
E′ ∪ (I \ E) because then E′ could be extended to a larger
source repair of E.

There are many ways to calculate a source repair enve-
lope (e.g., I is a trivial source repair envelope). Consider
the ideal source repair envelope, given by I −

⋂
{I ′ | I ′ is

a source repair for I w.r.t. M}. Equivalently, the ideal
source repair envelope is the minimal source repair envelope
for I w.r.t.M. The next result tells us that computing this
envelope is hard.

Theorem 3. Fix a schema mappingM. Let the intersec-
tion of source repairs membership problem be the following
decision problem: given a source instance I, and a fact f
of I, is f contained in the intersection of all source repairs
(that is, is f ∈

⋂
{I ′ | I ′ is a source repair for I w.r.t. M})?

There is a gav+(gav, egd) schema mapping for which this
problem is coNP-hard.

Proof. The result is proven by reduction from the com-
plement of 3-colorability. Let G = (V,E) be a graph,
with edge set E = {e1, . . . , en}. IG is the source instance,
with active domain V ∪{1, . . . , n}, containing, for each edge
ei = (a, b) the fact E(a, b, i, i+1); for each vertex a ∈ V , the

facts Cr(a), Cg(a), Cb(a); and one additional fact, namely
F (n, 1).
M is the schema mapping consisting of the source-to-

target tgds

• E(x, y, u, v) ∧ Cz(x)→ E′(x, y) (for z ∈ {r, g, b})

• E(x, y, u, v) ∧ Cz(x)→ F ′(u, v) (for z ∈ {r, g, b})

• Pz(x)→ P ′
z(x) (for z ∈ {r, g, b})

• F (u, v)→ F ′(u, v)

and target constraints

• E′(x, y) ∧ P ′
z(x) ∧ P ′

z(y) ∧ F ′(u, v) → u = v (for all
z ∈ {r, g, b})

• F ′(u, v) ∧ F ′(v, w)→ F ′(u,w)

• F ′(u, u) ∧ F ′(v, w)→ v = w

Note that I has no solutions with respect to M, regardless
of whether G is 3-colorable. This is because a solution J of I
has to contain a directed cycle of F ′-edges (of length n), and
F ′ must be transitive, which means that J would have to
include facts of the form F ′(i, i), leading to an egd violation.
Indeed, every source-repair of I must either (i) omit at least
one of the E-facts, or (ii) omit all Pz-facts (z ∈ {r, g, b}) for
some vertex or (iii) omit the F (n, 1) fact. It is then not hard
to see that G is 3-colorable if and only if some source repair
omits F (n, 1). Note that, if G is 3-colorable, then there is
a source repair that retains all E-facts and that retains at
least one Pz-fact for each vertex (z ∈ {r, g, b}). This source
repair must then omit the F (n, 1) fact. If, on the other hand,
G is not 3-colorable, then every source repair has to satisfy
(i) or (iii) and, consequently, will include F (n, 1).

The hardness established in Theorem 3 shows that com-
puting the ideal source repair envelope is not helpful, given
that the purpose of a source repair envelope is to help reduce
the need for high-complexity computations. Our next result
pertains to a source repair envelope that can be computed
in PTIME.

First, we introduce the notion of support sets for a target
fact. For an egd or GAV tgd σ and an instance I, we denote
by ground(σ, J) the set of all groundings of σ using values
from the active domain of I (that is, quantifier-free formulas
that can be obtained from σ by replacing universally quan-
tified variables by values from the active domain of I). Note
that, if J is a canonical quasi-solution for a source instance
I w.r.t. a gav+(gav, egd) schema mapping, then the active
domain of J is already included in the active domain of I.

Definition 4. Let M = (S,T,Σst,Σt) be a gav+(gav,
egd) schema mapping. Let I be an S-instance with canon-
ical quasi-solution J , and let f ∈ J be a fact.

• A support set for f is a set of the form {f1, . . . , fn}
where (f1 ∧ · · · ∧ fn → f) ∈ ground(Σst ∪ Σt, I), and
(I, J) |= f1 ∧ · · · ∧ fn. The set of all support sets of f
is denoted by support sets(f, I,M).

• The support closure for a set F of facts, denoted as
support*(F, I,M), is the smallest set containing F
such that whenever g ∈ support*(F, I,M), then all
facts that belong to a support set of g belong to
support*(F, I,M) as well.
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Definition 5. Let M = (S,T,Σst,Σt) be a gav+(gav,
egd) schema mapping. Let J be the canonical quasi-solution
of I. Let

violations(I,M) =

{
f

∣∣∣∣ f occurs in the body of some
σ ∈ ground(Σt, I) with J 6|= σ

}
We say that a source fact f ∈ I is suspect (w.r.t. M) if it

belongs to support*(violations(I,M), I,M), and that it is
safe otherwise. The set of suspect facts of I is denoted by
Isuspect and the set of safe facts of I is denoted by Isafe.

The violation set is, intuitively, the set of facts that are
directly involved in an egd violation, while the violation clo-
sure is, intuitively, the set of facts that are, possibly in-
directly, involved in an egd violation. The notation Isafe
and Isuspect assumes that it is clear from the context which
schema mapping is being referred to.

Proposition 3. Let M be a gav+(gav, egd) schema
mapping and I a source instance. Then Isuspect is a source
repair envelope for I (w.r.t. M). Moreover, Isuspect can be
computed in polynomial time (data complexity).

To see that this proposition holds, suppose that some f ∈
I is omitted by a source repair I ′ of I. Then I ′ ∪{f} has no
solution. It follows that f must be in the violation closure
of I w.r.t.M (with the steps of the chase of I ′∪{f} serving
as proof of such). Therefore, f belongs to Isuspect.

The following example reminds us that Isuspect is not nec-
essarily a minimal source repair envelope.

Example 1. Let I = {P (a, b), P (a, c), Q(b, c)}, and let
M = ({P,Q}, {P ′, Q′}, {P (x, y) → P ′(x, y), Q(x, y) →
Q′(x, y)}, {P ′(x, y)∧P ′(x, y′)→ y = y′, P ′(x, y)∧P ′(x, y′)∧
Q′(y, y′)→ y = y′}). Then

Isuspect = {P (a, b), P (a, c), Q(b, c)}

However, the key constraint on P ′ forces every XR-Solution
to have at most one of P (a, b), P (a, c), so the second egd in
Σt is satisfied without eliminating Q(b, c). Indeed, the ideal
source repair envelope for I is {P (a, b), P (a, c)}.

Nonetheless, Isuspect is a potentially useful source repair
envelope: we vary the proportion of facts in Isuspect versus
Isafe in our test instances in order to evaluate the importance
of this measure.

We will now extend the notion of a source repair envelope
to include target instances.

Definition 6. Let M be a gav+(gav, egd) schema map-
ping, and I a source instance. Let J be the canonical quasi-
solution of I. Two sets E ⊆ I and F ⊆ J of facts, to-
gether comprise an exchange repair envelope (E,F ) if, for
all canonical XR-Solutions (I ′, J ′) of I w.r.t. M, we have
that (I \ I ′) ⊆ E and (J \ J ′) ⊆ F .

It follows from Theorem 3 that computing the minimal
exchange repair envelope is hard. We will now see how to
extend an existing source repair envelope to the target, in
polynomial time.

Definition 7. Let M = (S,T,Σst,Σt) be a gav+(gav,
egd) schema mapping, and I be an S-instance. Let J be
the canonical quasi-solution of I w.r.t. M. Define the in-
fluence of a set of facts E ⊆ I, denoted influence(E, I,M),

as the smallest set containing E such that whenever g ∈
influence(E, I,M), every fact f that has a support set con-
taining g also belongs to influence(E, I,M).

Proposition 4. Let M be a gav+(gav, egd) schema
mapping and I a source instance. Let J be the canonical
quasi-solution of I w.r.t. M. Let E be a source repair enve-
lope for I w.r.t. M, and let F = influence(E, I,M). Then
(E,F ) is an exchange repair envelope for I w.r.t. M.

In particular, (Isuspect, Jsuspect) is an exchange repair en-
velope for I, where Jsuspect = influence(Isuspect, I,M).

Proof. Let (I ′, J ′) be a canonical XR-Solution for I
w.r.t. M. Let t be a fact in J \ J ′. Since t is not in (I ′, J ′),
there must be some fact f in support*({t}, I,M) in I \ I ′.
Therefore, f is contained in the source repair envelope E, so
by definition we have that t ∈ influence(E, I,M).

Fact 1. The following two statements hold, where F is an
arbitrary set of target facts:

• The influence of the source restriction of the support
closure of F contains the support closure of F ; and

• A support closure of F and its influence are equal over
their source restrictions.

In light of the above, we can refer to violation influ-
ences instead of violation closures whenever we wish to work
with exchange repair envelopes rather than source repair en-
velopes. It is important to notice that a fact may have one
support set which places it in a violation influence, but also
another support set whose facts are not contained in any vi-
olation influence. Such facts lie in the difference between the
violation influence and the ideal exchange repair envelope,
but are nonetheless easy to identify.

6.3 Violation Clusters
Violation clusters are a concept that will help us fur-

ther reduce the combinatorial complexity of computing
XR-Certain answers. We start with a motivating example.

Example 2. Let I = {P1(a, b), P1(a, c), P2(a, b), P2(a, c),
. . . , Pn(a, b), Pn(a, c)}, and let

M = ({P1, . . . , Pn}, {Q1, . . . , Qn},
{P1(x, y)→ Q1(x, y), . . . Pn(x, y)→ Qn(x, y)},

{Q1(x, y) ∧Q1(x, y′)→ y = y′, . . . ,

Qn(x, y) ∧Qn(x, y′)→ y = y′})

There are 2n source repairs, which can be built by choosing
one source atom from each of the n relations, in every pos-
sible combination. In this sense, the set of source repairs for
this example is highly structured.

Now consider the query q(x):- Q1(x, y). Every source re-
pair of I w.r.t. M contains either P1(a, b) or P1(a, c), so we
can conclude that q(a) ∈ XR-Certain(q, I,M) by consider-
ing just the two possibilities for the the P1 relation. In so
doing, we ignore the other n− 1 relations and avoid having
to consider 2n source repairs.

In this section, we will generalize the above observation
and demonstrate that it can be used to reduce the size of
instances and schema mappings for which we must explore
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all source repairs. To do so, we introduce a notion of inde-
pendence that captures when particular egd violations are
sufficiently isolated from each other to be processed sepa-
rately.

To simplify the presentation, it will be convenient to con-
sider schema mappingsM = (S,T,Σst,Σt) in which Σt may
contain grounded egds (where universally quantified vari-
ables have been replaced by constants). This will allow us
to more easily describe how an instance is carved up into
segments that can be processed independently. Intuitively,
each grounding of an egd describes one potential violation
of that egd. The notions of solutions, universal solutions,
source repairs, and exchange repair solutions all apply with-
out modification to schema mappings containing grounded
egds.

As a slight abuse of notation, when D is a set of target
constraints, we will writeM∪D to denote the schema map-
ping obtained by adding the constraints in D to the target
constraint set of a schema mapping M.

Definition 8. Let M = (S,T,Σst,Σt) be a gav+(gav,
egd) schema mapping. Let I be an S-instance. Let J be
the canonical quasi-solution for I w.r.t. M. Let σ1, σ2 ∈
ground(Σt, I) be distinct grounded egds with J 6|= σ1 and
J 6|= σ2. Let E1 be the ideal source repair envelope for I
w.r.t (Mtgd ∪ {σ1}), and let E2 be the ideal source repair
envelope for I w.r.t (Mtgd ∪ {σ2}). We say σ1 and σ2 are
pairwise-independent if source repairs(I,Mtgd ∪{σ1, σ2}) =
{(I \ (E1 ∪ E2)) ∪ E′

1 ∪ E′
2 | E′

1 ∈ source repairs(I ∩
E1,Mtgd ∪ {σ1}) and E′

2 ∈ source repairs(I ∩ E2,Mtgd ∪
{σ2})}. We say σ1 and σ2 are pairwise-dependent if they are
not pairwise-independent.

Consider the graph of all egd violations in the quasi-
solution and connect each pair of pairwise dependent egd
violations by an edge. Each connected component of this
graph is called a violation cluster. If σ1 and σn reside in
distinct violation clusters then we say σ1 and σn are inde-
pendent.

If a pair of violations is independent, by definition, their
XR-Solutions can be processed separately, then suitably re-
combined. Note that the above definition of violation clus-
ters does not provide us with a way to compute them ef-
ficiently, because the definition involves ideal source repair
envelopes. The following proposition provides an approxi-
mation.

Proposition 5. LetM = (S,T,Σst,Σt) be a gav+(gav,
egd) schema mapping. Let I be an S-instance. Let J be the
canonical quasi-solution I w.r.t. M. Let σ1, σ2 be distinct
grounded egds in ground(Σt, I) such that J 6|= σ1 and J 6|=
σ2. Let E1, E2 be ideal source repair envelopes for I w.r.t.
M∪σ1 and M∪σ2, respectively. If E1 and E2 are disjoint,
then σ1 and σ2 are pairwise-independent.

Proof. Suppose E1∩E2 = ∅, and let (I ′, J ′) be a canon-
ical XR-Solution for I w.r.t.M∪{σ1, σ2}. Let E′

1 = E1∩ I ′
and let E′

2 = E2 ∩ I ′. By definition of a source repair enve-
lope, (I\E1)∪E′

1 is an XR-Solution for I w.r.t.M∪{σ1}, and
likewise (I\E2)∪E′

2 is an XR-Solution for I w.r.t.M∪{σ2},
and since E1 and E2 are disjoint, it is easy to see that E′

1

is an XR-Solution for E1 w.r.t. M∪ {σ1, σ2} and E′
2 is an

XR-Solution for E2 w.r.t. M∪ {σ1, σ2}. Finally, since gav
chase is monotone, we have that (I \E1 \E2) ∪ (E′

1) ∪ (E′
2)

has a solution w.r.t. M∪ {σ1, σ2}, and there is no instance
I ′′ ⊂ I which strictly contains (I \ E1 \ E2) ∪ (E′

1) ∪ (E′
2)

and also has a solution w.r.t. M∪ {σ1, σ2}.

We can, in polynomial time, compute the support closure
for each egd violation, then compute an overapproximation
of the violation clusters based on the restriction to the source
schema of those closures. The next proposition follows sim-
ply from the definition of a support closure, but provides
some intuition and gives a shortcut for computing a source
repair envelope for a violation cluster.

Proposition 6. LetM = (S,T,Σst,Σt) be a gav+(gav,
egd) schema mapping. Let I be an S-instance. Let J be the
canonical quasi-solution for I w.r.t. M. Let σ1, . . . , σn be
a violation cluster (so each σi is a ground egd where J 6|=
σi), with support closures E1, . . . , En. Then E1 ∪ . . . ∪ En

is the support closure of the facts in σ1, . . . , σn, and its S-
restriction is a source repair envelope for I w.r.t. Mtgd ∪
{σ1, . . . , σn}

We have now seen how to compute a conservative ap-
proximation of the violation clusters for an instance w.r.t. a
given schema mapping. Proposition 6 makes clear the fact
that distinct violation clusters have disjoint source repair en-
velopes, and are therefore pairwise-independent themselves.
Definition 8 tells us that we can thus compute the source
repairs for an entire instance by computing separately the
source repairs for the envelope of each violation cluster. We
will now see how this supports query answering.

6.4 Answering Queries
We now show how to use the techniques introduced in the

previous sections to compute XR-Certain answers for unions
of conjunctive queries. In fact, without loss of generality, we
can restrict attention to projection-free atomic queries: Let
q(x):- φ1(x,y) ∨ . . . ∨ φn(x,y) be a union of conjunctive
queries with n clauses. Define t1, . . . , tn to be a set of new
gav tgds, where the head of each tgd is the head of q, and
the body of each tgd tk is φk(x,y). If we extend a canonical
quasi-solution J with the new relation symbol q, and chase
with t1, . . . , tn, the result will be J ∪{q(J)}. We will use the
notation XR-Certain(I,M∪ {t1, . . . , tn}) to denote the set
of facts in the intersection of all exchange repair solutions
for I w.r.t. M∪ {t1, . . . , tn}, and the term candidate facts
to refer to the tuples of any relation in T ∪ q.

Consider the definition of support sets in Section 6.2, and
suppose f is a candidate fact. By definition, f is XR-Certain
if it is contained in every exchange repair solution. Since ex-
change repair solutions satisfy the constraints of the schema
mapping, it is easy to see that f is XR-Certain if it has at
least one support set in every XR-Solution, or equivalently,
in every canonical XR-Solution.

Proposition 6 naturally extends to exchange repair en-
velopes. Thus we define a violation cluster influence to refer
to the union of the influences of the violations in a cluster.

Example 3. This example illustrates that a can-
didate fact f may belong to the influences of
multiple distinct violation clusters. Let I =
{P (a1, a2), P (a1, a3), Q(a1, a2), Q(a1, a3)}, and let
M = ({P,Q}, {R,S, T}, {P (x, y) → R(x, y), Q(x, y) →
S(x, y)}, {R(x, y)∧S(x, z)→ T (x, y, z), R(x, y)∧R(x, y′)→
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y = y′, S(x, y), S(x, y′) → y = y′}). Then the violation
cluster influence for {R(a1, a2), R(a1, a3)} is{

P (a1, a2), P (a1, a3), R(a1, a2), R(a1, a3),
T (a1, a2, a3), T (a1, a3, a2), T (a1, a2, a2), T (a1, a3, a3)

}
and the violation cluster influence for S(a1, a2), S(a1, a3) is{

Q(a1, a2), Q(a1, a3), S(a1, a2), S(a1, a3),
T (a1, a2, a3), T (a1, a3, a2), T (a1, a2, a2), T (a1, a3, a3)

}
which are disjoint in their restriction to the source schema,
yet both contain the target facts T (a1, a2, a3), T (a1, a3, a2),
T (a1, a2, a2), and T (a1, a3, a3).

This example illustrates how distinct target violations
with non-overlapping source repair envelopes may jointly af-
fect target tuples; we cannot determine the status of tuples
in T without considering violations of both key constraints.

Suppose f is a candidate fact in T . Each support set
for f may be contained in only certain combinations of
XR-Solutions from the violation cluster influences contain-
ing f . So, to determine if f has at least one support set in
every XR-Solution w.r.t. the broader schema mapping, it is
necessary to consider all combinations of XR-Solutions from
the violation cluster influences containing f . We call the set
of violation clusters whose influences contain f the signature
of f , denoted signature(f). Recall that Isafe denotes the set
of source facts that are safe, that is, not suspect (Defini-
tion 5). In the following, let Jsafe denote chase(Isafe,M).

Theorem 4. Let M = (S,T,Σst,Σt) be a gav+(gav,
egd) schema mapping. Let I be an S-instance. Let J
be the canonical quasi-solution for I w.r.t. M. Let f be
a candidate fact in J . Let If-focus and Jf-focus be, respec-
tively, the source and target parts of

⋃
{V | V the influ-

ence for a violation cluster in signature(f)}. Then f ∈
XR-Certain(I,M) ↔ f ∈

⋂
{chase(J ′

f-focus ∪ Jsafe,Σt) |
J ′
f-focus ∈ XR-Solution(If-focus,M)}.
Proof Sketch. By definition, the violations in the

clusters in signature(f) are contained in Jf-focus. Thus
(If-focus, Jf-focus) is an exchange repair envelope for I w.r.t.
Mtgd augmented with those violations. Furthermore, all
of the violations in Jf-focus are pairwise independent of all
of the violations in J \ Jf-focus, from which we conclude
that every fact in every support set for f is contained in
(If-focus, Jf-focus) or in (Isafe, Jsafe).

This result gives us the following algorithm for computing
XR-Certain for an instance I and schema mappingM, using
a (hopefully large) Jsafe combined with, for each signature,
a (hopefully small) Jfocus. For the exchange phase: Chase
I with Mtgd, compute the violation set of I w.r.t. M, and
compute the support closure of each violation. Then mark
source facts safe if they do not reside in any violation closure,
chase Isafe with Mtgd, and mark every resulting fact safe.
Lastly, compute violation clusters, and the influence of each
cluster. For the query phase: Compute the candidate facts,
marking safe those with support sets in Jsafe. Next, com-
pute the signature of each unmarked candidate fact. Finally,
generate and solve a grounded disjunctive logic program to
compute XR-Certain w.r.t. M for (Ifocus, Jfocus) for each
signature. This program is the restriction to (Ifocus, Jfocus)
of the grounding of the program from Theorem 2. Facts in
(Ifocus, Jfocus)∩ (Isafe, Jsafe) may be represented by the value
true in the program.

6.5 Segmentary Implementation and Results
Using the techniques developed in this section, we have

implemented a segmentary approach to XR-Certain query
answering using Java 1.7.0 80, MySQL 5.5.42, and clingo
4.4.0. Our segmentary implementation takes as input a
glav+(wa-glav, egd) schema mapping (encoded as text),
an arbitrary source instance (via a JDBC connection string),
and a union of conjunctive queries over the target schema
(also text). As with the monolithic implementation, the
schema mapping is transformed into a gav+(gav, egd)
schema mapping. Additionally, the query is transformed
into an atomic query using the reduction described at the
beginning of Section 6.4.

Using the above algorithm, query answering is done in
two phases: the exchange phase, and the query phase. The
exchange phase materializes the target instance in MySQL
using a chase procedure written in Java. The detailed im-
plementation of the chase procedure is immaterial: here, we
use a semi-näıve chase. The exchange phase next computes
violation cluster influences, fact signatures, and the “safe”
part of the source and target instances (also in MySQL, run
from Java). The query phase appends candidate answers to
the target instance, marks “safe” candidates, and generated
disjunctive logic programs as explained in Section 6.4, which
are then solved using clingo. The results obtained from
clingo are used to mark each candidate either “accepted” or
“rejected”. The “safe” candidates and “accepted” candidates
together comprise the XR-Certain query answers.

Table 4: Duration of the exchange phase, in seconds.

instance L0 L3 L9 L20
duration 150.7 196.7 235.7 297.3

instance S3 M3 L3 F3
duration 36.5 50.8 196.7 2229.7

Table 4 gives the runtime of the exchange phase for each
instance. Notice that for large instances, the exchange phase
compares very favorably against the per-query runtime of
the monolithic approach described in Section 5.2. The plots
in Figure 4 give the performance of each query as we scale
the rate of violations and the instance size, respectively, with
the latter on a log-log scale. These results improve consider-
ably on the monolithic approach: the query phase runtimes
are between ten times and one thousand times faster for
large and full instances.

7. CONCLUDING REMARKS
We have implemented XR-Certain query answering and

evaluated it on real data using a benchmark that mimicks
the UCSC Genome Browser data import process. Our ex-
periments suggest that using the reduction from XR-Certain
to disjunctive logic programming to create a monolithic logic
program is not a viable approach using today’s best-of-breed
solvers. However, by efficiently computing a suitable overap-
proximation, our segmentary approach computes query an-
swers ten to one thousand times faster for larger instances,
and exhibits promising scalability with respect to both in-
stance size and the rate of target constraint violations.

We note that significant progress has recently been made
toward broadly applicable, reproducible schema mapping
benchmarks, in particular iBench [3]. We intend as fu-
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Figure 4: Performance of XR-Certain query answering using MySQL along with clingo.

ture work to further evaluate our segmentary implementa-
tion on such benchmarks. Nonetheless, our success with
our Genome Browser benchmark serves as evidence that
XR-Certain query answering may be efficiently computable
in practice for realistic applications.
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ABSTRACT
RDF is a standard for the conceptual description of knowl-
edge, and SPARQL is the query language conceived to query
RDF data. The RDF data is cherished and exploited by
various domains such as life sciences, Semantic Web, social
network, etc. Further, its integration at Web-scale compels
RDF management engines to deal with complex queries in
terms of both size and structure. In this paper, we propose
AMbER (Attributed Multigraph Based Engine for RDF
querying), a novel RDF query engine specifically designed
to optimize the computation of complex queries. AMbER
leverages subgraph matching techniques and extends them
to tackle the SPARQL query problem. First of all RDF
data is represented as a multigraph, and then novel index-
ing structures are established to efficiently access the in-
formation from the multigraph. Finally a SPARQL query
is represented as a multigraph, and the SPARQL querying
problem is reduced to the subgraph homomorphism prob-
lem. AMbER exploits structural properties of the query
multigraph as well as the proposed indexes, in order to tackle
the problem of subgraph homomorphism. The performance
of AMbER, in comparison with state-of-the-art systems, has
been extensively evaluated over several RDF benchmarks.
The advantages of employing AMbER for complex SPARQL
queries have been experimentally validated.

1. INTRODUCTION
In the recent years, structured knowledge represented in

the form of RDF data has been increasingly adopted to im-
prove the robustness and the performances of a wide range
of applications with various purposes. Popular examples are
provided by Google, that exploits the so called knowledge
graph to enhance its search results with semantic informa-
tion gathered from a wide variety of sources, or by Facebook,
that implements the so called entity graph to empower its
search engine and provide further information extracted, for

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

instance by Wikipedia. Another example is supplied by re-
cent question-answering systems [4, 15] that automatically
translate natural language questions in SPARQL queries and
successively retrieve answers considering the available infor-
mation in the different Linked Open Data sources. In all
these examples, complex queries (in terms of size and struc-
ture) are generated to ensure the retrieval of all the required
information. Thus, as the use of large knowledge bases, that
are commonly stored as RDF triplets, is becoming a com-
mon way to ameliorate a wide range of applications, efficient
querying of RDF data sources using SPARQL is becoming
crucial for modern information retrieval systems.

All these different scenarios pose new challenges to the
RDF query engines for two vital reasons: firstly, the au-
tomatically generated queries cannot be bounded in their
structural complexity and size (e.g., the DBPEDIA SPARQL
Benchmark [12] contains some queries having more than 50
triplets [1]); secondly, the queries generated by retrieval sys-
tems (or by any other applications) need to be efficiently
answered in a reasonable amount of time. Modern RDF
data management, such as x-RDF-3X [13] and Virtuoso [7],
are designed to address the scalability of SPARQL queries
but they still have problems to answer big and structurally
complex SPARQL queries [2]. Our experiments with state
of-the-art systems demonstrate that they fail to efficiently
manage such kind of queries (Table 1).

Systems AMbER gStore Virtuoso x-RDF-3X

Time (sec) 1.56 11.96 20.45 >60

Table 1: Average Time (seconds) for a sample of 200 com-
plex queries on DBPEDIA. Each query has 50 triplets.

In order to tackle these issues, in this paper, we introduce
AMbER (Attributed Multigraph Based Engine for RDF
querying), which is a graph-based RDF engine that involves
two steps: an offline stage where RDF data is transformed
into multigraph and indexed, and an online step where an ef-
ficient approach to answer SPARQL query is proposed. First
of all RDF data is represented as a multigraph where sub-
jects/objects constitute vertices and multiple edges (predi-
cates) can appear between the same pair of vertices. Then,
new indexing structures are conceived to efficiently access
RDF multigraph information. Finally, by representing the
SPARQL queries also as multigraphs, the query answering
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Prefixes: x= http://dbpedia.org/resource/ ;  y=http://dbpedia.org/ontology/

Subject  Predicate Object

x:London y:isPartOf x:England

x:England y:hasCapital x:London

x:Christophar_Nolan y:wasBornIn x:London

x:Christophar_Nolan y:LivedIn x:England

x:Christophar_Nolan y:isPartOf x:Dark_Knight_Trilogy

x:London y:hasStadium x:WembleyStadium

x:WembleyStadium y:hasCapacityOf “90000”

x:Amy_Winehouse y:wasBornIn x:London

x:Amy_Winehouse y:diedIn x:London

x:Amy_Winehouse y:wasPartOf x:Music_Band

x:Music_Band y:hasName “MCA_Band”

x:Music_Band y:FoundedIn “1994”

x:Music_Band y:wasFormedIn X:London

x:Amy_Winehouse y:livedIn x:United States

x:Amy_Winehouse y:wasMarriedTo x:Blake Fielder-Civil

x:Blake Fielder-Civil y:livedIn x:United States

(a) RDF tripleset
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(b) Graph representation of RDF data
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Figure 1: (a) RDF data in n-triple format; (b) graph representation (c) attributed multigraph G

task can be reduced to the problem of subgraph homo-
morphism. To deal with this problem, AMbER employs
an efficient approach that exploits structural properties of
the multigraph query as well as the indices previously built
on the multigraph structure. Experimental evaluation over
popular RDF benchmarks show the quality in terms of time
performances and robustness of our proposal.

In this paper, we focus only on the SELECT/WHERE clause
of the SPARQL language1, that constitutes the most impor-
tant operation of any RDF query engines. It is out of the
scope of this work to consider operators like FILTER, UNION
and GROUP BY or manage RDF update. Such operations can
be addressed in future as extensions of the current work.

The paper is organized as follows. Section 2 introduces
the basic notions about RDF and SPARQL language. In
Section 3 AMbER is presented. Section 4 describes the
indexing strategy while Section 5 presents the query pro-
cessing. Related works are discussed in Section 6. Section 7
provides the experimental evaluation. Section 8 concludes.

2. BACKGROUND AND PRELIMINARIES
In this section we provide basic definitions on the interplay

between RDF and its multigraph representation. Later, we
explain how the task of answering SPARQL queries can be
reduced to multigraph homomorphism problem.

2.1 RDF Data
As per the W3C standards 2, RDF data is represented

as a set of triples <S,P,O>, as shown in Figure 1a, where
each triple <s, p, o> consists of three components: a subject,
a predicate and an object. Further, each component of the
RDF triple can be of any two forms; an IRI (International-
ized Resource Identifier) or a literal. For brevity, an IRI is
usually written along with a prefix (e.g., <http://dbpedia.

1http://www.w3.org/TR/sparql11-overview/
2http://www.w3.org/TR/2014/
REC-rdf11-concepts-20140225/

org/resource/isPartOf> is written as ‘x:isPartOf’), whereas
a literal is always written with double quotes (e.g., “90000”).
While a subject s and a predicate p are always an IRI, an
object o is either an IRI or a literal.

RDF data can also be represented as a directed graph
where, given a triple <s, p, o>, the subject s and the object
o can be treated as vertices and the predicate p forms a
directed edge from s to o, as depicted in Figure 1b. Further,
to underline the difference between an IRI and a literal, we
use standard rectangles and arc for the former while we use
beveled corner and edge (no arrows) for the latter.

2.1.1 Data Multigraph Representation
Motivated by the graph representation of RDF data (Fig-

ure 1b), we take a step further by transforming it to a data
multigraph G, as shown in Figure 1c.

Let us consider an RDF triple <s, p, o> from the RDF
tripleset <S,P,O>. Now to transform the RDF tripleset
into data multigraph G, we set four protocols: we always
treat the subject s as a vertex; a predicate p is always treated
as an edge; we treat the object o as a vertex only if it is an
IRI (e.g., vertex v2 corresponds to object ‘x:London’); when
the object is a literal, we combine the object o and the cor-
responding predicate p to form a tuple <p, o> and assign it
as an attribute to the subject s (e.g., <‘y:hasCapacityOf’,
“90000”> is assigned to vertex v4). Every vertex is assigned
a null value {-} in the attribute set. However, to realize this
in the realms of graph management techniques, we main-
tain three different dictionaries, whose elements are a pair
of ‘key’ and ‘value’, and a mapping function that links them.
The three dictionaries depicted in Table 2 are: a vertex dic-
tionary (Table 2a), an edge-type dictionary (Table 2b) and
an attribute dictionary (Table 2c). In all the three dictio-
naries, an RDF entity represented by a ‘key’ is mapped to a
corresponding ‘value’, which can be a vertex/edge/attribute
identifier. Thus by using the mapping functions -Mv,Me,
andMa for vertex, edge-type and attribute mapping respec-
tively, we obtain a directed, vertex attributed data multi-
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graph G (Figure 1c), which is formally defined as follows.

Definition 1. Directed, Vertex Attributed Multigraph.
A directed, vertex attributed multigraph G is defined as a
4-tuple (V,E, LV , LE) where V is a set of vertices, E ⊆
V ×V is a set of directed edges with (v, v′) 6= (v′, v), LV is a
labelling function that assigns a subset of vertex attributes A
to the set of vertices V , and LE is a labelling function that
assigns a subset of edge-types T to the edge set E.

To summarise, an RDF tripleset is transformed into a data
multigraph G, whose elements are obtained by using the
mapping functions as already discussed. Thus, the set of ver-
tices V = {v0, . . . , vm} is the set of mapped subject/object
IRI, and the labelling function LV assigns a set of vertex at-
tributes A = {-, a0, . . . , an} (mapped tuple of predicate and
object-literal) to the vertex set V . The set of directed edges
E is a set of pair of vertices (v, v′) that are linked by a pred-
icate, and the labelling function LE assigns the set of edge
types T = {t0, . . . , tp} (mapped predicates) to these set of
edges. The edge set E maintains the topological structure of
the RDF data. Further, mapping of object-literals and the
corresponding predicates as a set of vertex attributes, results
in a compact representation of the multigraph. For exam-
ple (in Fig. 1c), all the object-literals and the corresponding
predicates are reduced to a set of vertex attributes.

2.2 SPARQL Query
A SPARQL query usually contains a set of triple patterns,

much like RDF triples, except that any of the subject, pred-
icate and object may be a variable, whose bindings are to
be found in the RDF data 3. In the current work, we ad-
dress the SPARQL queries with ‘SELECT/WHERE’ option,
where the predicate is always instantiated as an IRI (Fig-
ure 2a). The SELECT clause identifies the variables to appear
in the query results while the WHERE clause provides triple
patterns to match against the RDF data.

2.2.1 Query Multigraph Representation
In any valid SPARQL query (as in Figure 2a), every triplet

has at least one unknown variable ?X, whose bindings are to
be found in the RDF data. It should now be easy to observe
that a SPARQL query can be represented in the form of
a graph as in Figure 2b, which in turn is transformed into
query multigraph Q (as in Figure 2c).

In the query multigraph representation, each unknown
variable ?Xi is mapped to a vertex ui that forms the ver-
tex set U component of the query multigraph Q (e.g., ?X6

is mapped to u6). Since a predicate is always instantiated
as an IRI, we use the edge-type dictionary in Table 2b, to
map the predicate to an edge-type identifier ti ∈ T (e.g.,
‘isMarriedTo’ is mapped as t8). When an object oi is a lit-
eral, we use the attribute dictionary (Table 2c), to find the
attribute identifier ai for the predicate-object tuple <pi, oi>
(e.g., {a0} forms the attribute for vertex u4). Further, when
a subject or an object is an IRI, which is a not a variable, we
use the vertex dictionary (2a), to map it to an IRI -vertex
uiri
i (e.g., ‘x:United States’ is mapped to uiri

0 ) and maintain
a set of IRI vertices R. Since this vertex is not a variable
and a real vertex of the query, we portray it differently by a
shaded square shaped vertex. When a query vertex ui does

3http://www.w3.org/TR/2008/
REC-rdf-sparql-query-20080115/

s/o Mv(s/o)
x:Music Band v0

x:Amy Winehouse v1

x:London v2

x:England v3

x:WembleyStadium v4

x:United States v5

x:Blake Fielder-Civil v6

x:Christopher Nolan v7
x:Dark Knight Trilogy v8

(a) Vertex Dictionary

p Me(p)
y:isPartOf t0

y:hasCapital t1
y:hasStadium t2

y:livedIn t3
y:diedIn t4

y:wasBornIn t5
y:wasFormedIn t6
y:wasPartOf t7

y:wasMarriedTo t8

(b) Edge-type Dictionary

<p, o> Ma(<p, o>)
<y:hasCapacityOf, “90000”> a0

<y:wasFoundedIn, “1994”> a1

<y:hasName, “MCA Band”> a2

(c) Attribute Dictionary

Table 2: Dictionary look-up tables for vertices, edge-types
and vertex attributes

not have any vertex attributes associated with it (e.g., u0,
u1, u2, u3, u6), a null attribute {-} is assigned to it. On
the other hand, an IRI -vertex uiri

i ∈ R does not have any
attributes. Thus, a SPARQL query is transformed into a
query multigraph Q.

In this work, we always use the notation V for the set of
vertices of G, and U for the set of vertices of Q. Conse-
quently, a data vertex v ∈ V , and a query vertex u ∈ U .
Also, an incoming edge to a vertex is positive (default), and
an outgoing edge from a vertex is labelled negative (‘-’).

2.3 SPARQL Querying by Adopting
Multigraph Homomorphism

As we recall, the problem of SPARQL querying is ad-
dressed by finding the solutions to the unknown variables
?X, that can be bound with the RDF data entities, so that
the relations (predicates) provided in the SPARQL query
are respected. In this work, to harness the transformed
data multigraph G and the query multigraph Q, we reduce
the problem of SPARQL querying to a sub-multigraph ho-
momorphism problem. The RDF data is transformed into
data multigraph G and the SPARQL query is transformed
into query multigraph Q. Let us now recall that finding
SPARQL answers in the RDF data is equivalent to finding
all the sub-multigraphs of Q in G that are homomorphic.
Thus, let us now formally introduce homomorphism for a
vertex attributed, directed multigraph.

Definition 2. Sub-multigraph Homomorphism. Given
a query multigraph Q = (U,EQ, LU , L

Q
E) and a data multi-

graph G = (V,E, LV , LE), the sub-multigraph homomor-
phism from Q to G is a surjective function ψ : U → V
such that:

1. ∀u ∈ U,LU (u) ⊆ LV (ψ(u))

2. ∀(um, un) ∈ EQ, ∃ (ψ(um), ψ(un)) ∈ E, where (um, un)

is a directed edge, and LQ
E(um, un) ⊆ LE(ψ(um), ψ(un)).

Thus, by finding all the sub-multigraphs in G that are
homomorphic to Q, we enumerate all possible homomorphic
embeddings of Q in G. These embeddings contain the solu-
tion for each of the query vertex that is an unknown variable.
Thus, by using the inverse mapping function M−1

v (vi) (in-
troduced already), we find the bindings for the SPARQL
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SELECT  ?X0 ?X1  ?X2  ?X3  ?X4  ?X5  ?X6  WHERE  { 
?X0 y:livedIn ?X1 .
?X1 y:isPartOf ?X2 . 
?X2 y:hasCapital ?X1 . 
?X1 y:hasStadium ?X4 .
?X3 y:wasBornIn ?X1 .
?X3 y:diedIn ?X1 .
?X3 y:isMarriedTo ?X6 .
?X3 y:wasPartOf ?X5 .
?X5 y:wasFormedIn ?X1 .
?X4 y:hasCapacity “90000” .
?X5 y:hasName “MCA_Band” .
?X5 y:foundedIn “1934” . 
?X3 y:livedIn x:United States . }

(a) SPARQL Query

“MCA_Band”“1934”

hasCapital

isPartOf

hasStadium

isMarriedTowasPartOf

wasBornIn

diedIn

foundedIn wasForm
edIn

ha
sA

Nam
e

“90000”

hasCapacityOf

X:United_States

livedIn

wasBornIn

?X6

?X1

?X2

?X3?X5

?X0

?X4

(b) Graph representation of SPARQL
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(c) Equivalent Multigraph Q

Figure 2: (a) SPARQL query representation; (b) graph representation (c) attributed multigraph Q

query. The decision problem of subgraph homomorphism
is NP-complete. This standard subgraph homomorphism
problem can be seen as a particular case of sub-multigraph
homomorphism, where both the labelling functions LE and
LQ

E always return the same subset of edge-types for all the
edges in both Q and G. Thus the problem of sub-multigraph
homomorphism is at least as hard as subgraph homomor-
phism. Further, the subgraph homomorphism problem is a
generic scenario of subgraph isomorphism problem where,
the injectivity constraints are slackened [11].

3. AMBER: A SPARQL QUERYING ENGINE
We now present an overview of our proposal - AMbER

(Attributed Mulitgraph Based Engine for RDF querying).
AMbER contains two different stages: (i) an offline stage
during which, RDF data is transformed into multigraph G
and then a set of index structures I is constructed that cap-
tures the necessary information contained in G; (ii) an online
stage during which, a SPARQL query is transformed into a
multigraph Q, and then by exploiting the subgraph match-
ing techniques along with the already built index structures
I, the homomorphic matches of Q in G are obtained.

Given a multigraph representation Q of a SPARQL query,
AMbER decomposes the query vertices U into a set of core
vertices Uc and satellite vertices Us. Intuitively, a vertex
u ∈ U is a core vertex, if the degree of the vertex is more
than one; on the other hand, a vertex u with degree one is a
satellite vertex. For example, in Figure 2c, Uc = {u1, u3, u5}
and Us = {u0, u2, u4, u6}. Once decomposed, we run the
sub-multigraph matching procedure on the query structure
spanned only by the core vertices. However, during the pro-
cedure, we also process the satellite vertices (if available)
that are connected to a core vertex that is being processed.
For example, while processing the core vertex u1 , we also
process the set of satellite vertices {u0, u2, u4} connected to
it; whereas, the core vertex u5 has no satellite vertices to
be processed. In this way, as the matching proceeds, the
entire structure of the query mulitgraph Q is processed to
find the homomorphic embeddings in G. The set of indexing
structures I are extensively used during the process of sub-
multigraph matching. The homomorphic embeddings are
finally translated back to the RDF entities using the inverse
mapping function M−1

v as discussed in Section 2.

4. INDEX CONSTRUCTION
Given a data multigraph G, we build the following three

different indices: (i) an inverted list A for storing the set
of data vertex for each attribute in ai ∈ A (ii) a trie index
structure S to store features of all the data vertices V (iii)
a set of trie index structures N to store the neighbourhood
information of each data vertex v ∈ V . For brevity of rep-
resentation, we ensemble all the three index structures into
I := {A,S,N}.

During the query matching procedure (the online step),
we access these indexing structures to obtain the candidate
solutions for a query vertex u. Formally, for a query vertex
u, the candidate solutions are a set of data vertices Cu =
{v|v ∈ V } obtained by accessing A or S or N , denoted as
CAu , CSu and CNu respectively.

4.1 Attribute Index
The set of vertex attributes is given by A = {a0, . . . , an}

(Section 2), where a data vertex v ∈ V might have a subset
of A assigned to it. We now build the vertex attribute index
A by creating an inverted list where a particular attribute
ai has the list of all the data vertices in which it appears.

Given a query vertex u with a set of vertex attributes
u.A ⊆ A, for each attribute ai ∈ u.A, we access the index
structure A to fetch a set of data vertices that have ai. Then
we find a common set of data vertices that have the entire
attribute set u.A. For example, considering the query vertex
u5 (Fig. 2c), it has an attribute set {a1, a2}. The candidate
solutions for u5 are obtained by finding all the common data
vertices, in A, between a1 and a2, resulting in CAu5

= {v0}.

4.2 Vertex Signature Index
The index S captures the edge type information from the

data vertices. For a lucid understanding of this indexing
schema we formally introduce the notion of vertex signature
that is defined for a vertex v ∈ V , which encapsulates the
edge information associated with it.

Definition 3. Vertex signature. For a vertex v ∈ V ,
the vertex signature σv is a multiset containing all the di-
rected multi-edges that are incident on v, where a multi-edge
between v and a neighbouring vertex v′ is represented by
a set that corresponds to the edge types. Formally, σv =⋃

v′∈N(v) LE(v, v′) where N(v) is the set of neighbourhood
vertices of v, and ∪ is the union operator for multiset.
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Data vertex Signature Synopses
v σv f+

1 f+
2 f+

3 f+
4 f−1 f−2 f−3 f−4

v0 {{−t6}, {t7}} 1 1 -7 7 1 1 -6 6
v1 {{−t3}, {−t7}, {−t8}, {−t4,−t5}} 0 0 0 0 2 5 -3 8
v2 {{−t0}, {t1}, {−t2}, {t5}, {t6}, {t4, t5}} 2 4 -1 6 1 2 0 2
v3 {{t0}, {t3}, {−t1}} 1 2 0 3 1 1 -1 1
v4 {{t2}} 1 1 -2 2 0 0 0 0
v5 {{t3}, {t3}} 1 1 -3 3 0 0 0 0
v6 {{t8}, {−t3}} 1 1 -8 8 1 1 -3 3
v7 {{−t0}, {−t3}, {−t5}} 0 0 0 0 1 3 0 5
v8 {{t0}} 1 1 0 0 0 0 0 0

Table 3: Vertex signatures and the corresponding synopses for the vertices in the data multigraph G (Figure 1c)

The index S is constructed by tailoring the information
supplied by the vertex signature of each vertex in G. To ex-
tract some interesting features, let us observe the vertex sig-
nature σv2 as supplied in Table 3. To begin with, we can rep-
resent the vertex signature σv2 separately for the incoming
and outgoing multi-edges as σ+

v2 = {{t1}, {t5}, {t6}, {t4, t5}}
and σ−v2 = {{−t0}{−t2}} respectively. Now we observe that
σ+
v2 has four distinct multi-edges and σ−v2 has two distinct

multi-edges. Now, lets think that we want find candidate
solutions for a query vertex u. The data vertex v2 can be a
match for u only if the signature of u has at most four in-
coming (‘+’) edges and at most two outgoing (‘-’) edges; else
v2 can not be a match for u. Thus, more such features (e.g.,
maximum cardinality of a set in the vertex signature) can be
proposed to filter out irrelevant candidate vertices. Thus, for
each vertex v, we propose to extract a set of features by ex-
ploiting the corresponding vertex signature. These features
constitute a synopses, which is a surrogate representation
that approximately captures the vertex signature informa-
tion.

The synopsis of a vertex v contains a set of features F ,
whose values are computed from the vertex signature σv. In
this background, we propose four distinct features: f1 - the
maximum cardinality of a set in the vertex signature; f2 -
the number of unique dimensions in the vertex signature;
f3 - the minimum index value of the edge type; f4 - the
maximum index value of the edge type. For f3 and f4, the
index values of edge type are nothing but the position of the
sequenced alphabet. These four basic features are replicated
separately for outgoing (negative) and incoming (positive)
edges, as seen in Table 3. Thus for the vertex v2, we obtain
f+
1 = 2, f+

2 = 4, f+
3 = −1 and f+

4 = 7 for the incoming
edge set and f−1 = 1, f−2 = 2, f−3 = 0 and f−4 = 2 for the
outgoing edge set. Synopses for the entire vertex set V for
the data multigraph G are depicted in Table 3.

Once the synopses are computed for all data vertices, an
R-tree is constructed to store all the synopses. This R-tree
constitutes the vertex signature index S. A synopsis with
|F | fields forms a leaf in the R-tree.

When a set of possible candidate solutions are to be ob-
tained for a query vertex u, we create a vertex signature
σu in order to compute the synopsis, and then obtain the
possible solutions from the R-tree structure.

The general idea of using an R-tree is as follows. A
synopsis F of a data vertex spans an axes-parallel rectan-
gle in an |F |-dimensional space, where the maximum co-
ordinates of the rectangle are the values of the synopses

fields (f1, . . . , f|F |), and the minimum co-ordinates are the
origin of the rectangle (filled with zero values). For example,
a data vertex represented by a synopses with two features
F (v) = [2, 3] spans a rectangle in a 2-dimensional space in
the interval range ([0, 2], [0, 3]). Now, if we consider synopses
of two query vertices, F (u1) = [1, 3] and F (u2) = [1, 4], we
observe that the rectangle spanned by F (u1) is wholly con-
tained in the rectangle spanned by F (v) but F (u2) is not
wholly contained in F (v). Thus, u1 is a candidate match
while u2 is not.

Lemma 1. Querying the vertex signature index S con-
structed with synopses, guarantees to output at least the en-
tire set of candidate solutions.

Proof. Consider the field f±1 in the synopses that rep-
resents the maximum cardinality of the neighbourhood sig-
nature. Let σu be the signature of the query vertex u and
{σv1 , . . . , σvn} be the set of signatures on the data vertices.
By using f1 we need to show that CSu has at least all the
valid candidate matches. Since we are looking for a superset
of query vertex signature, and we are checking the condition
f±1 (u) ≤ f±1 (vi), where vi ∈ V , a vertex vi is pruned if it
does not match the inequality criterion since, it can never
be an eligible candidate. This analogy can be extended to
the entire synopses, since it can be applied disjunctively.

Formally, the candidates solutions for a vertex u can be
written as CSu = {v|∀i∈[1,...,|F |]f±i (u) ≤ f±i (v)}, where the
constraints are met for all the |F |-dimensions. Since we
apply the same inequality constraint to all the fields, we
negate the fields that refer to the minimal index value of the
edge type (f+

3 and f−3 ) so that the rectangular containment
problem still holds good. Further to respect the rectangular
containment, we populate the synopses fields with ‘0’ val-
ues, in case, the signature does not have either positive or
negative edges in it, as seen for v1, v3, v4, v5 and v7.

For example, if we want to compute the possible candi-
dates for a query vertex u0 in Figure 2c, whose signature is
σu0 = {−t5}, we compute the synopsis which is [0 0 0 0 1
1 5 5]. Now we look for all those vertices that subsume this
synopsis in the R-tree, whose elements are depicted in Ta-
ble 3, which gives us the candidate solutions CSu0

= {v1, v7},
thus pruning the rest of the vertices.

The S index helps to prune the vertices that do not re-
spect the edge type constraints. This is crucial since this
pruning is performed for the initial query vertex, and hence
many candidates are cast away, thereby avoiding unneces-
sary recursion during the matching procedure. For example,
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for the initial query vertex u0, whose candidate solutions are
{v1, v7}, the recursion branch is run only on these two start-
ing vertices instead of the entire vertex set V .

4.3 Vertex Neighbourhood Index
The vertex neighbourhood index N captures the topologi-

cal structure of the data multigraph G. The index N com-
prises of 1-neighbourhood trees built for each data vertex
v ∈ V . Since G is a directed multigraph, and each vertex
v ∈ V can have both the incoming and outgoing edges, we
construct two separate index structures N+ and N− for in-
coming and outgoing edges respectively, that constitute the
structure N .

To understand the index structure, let us consider the data
vertex v2 from Figure 1c, shown separately in Figure 3a. For
this vertex v2, we collect all the neighbourhood information
(vertices and multi-edges), and represent this information by
a tree structure, built separately for incoming (‘+’) and out-
going (‘-’) edges. Thus, the tree representation of a vertex v
contains the neighbourhood vertices and the corresponding
multi-edges, as shown in Figure 3b, where the vertices of the
tree structure are represented by the edge types.
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Figure 3: Building Neighbourhood Index for data vertex v2

In order to construct an efficient tree structure, we take
inspiration from [14] to propose the structure - Ordered Trie
with Inverted List (OTIL). To construct the OTIL index as
shown in Figure 3b, we insert each ordered multi-edge that
is incident on v at the root of the trie. Consider a data
vertex vi, with a set of n neighbourhood vertices N(vi).
Now, for every pair of incoming edge (vi, N

j(vi)), where
j ∈ {1, . . . , n}, there exists a multi-edge {ti, . . . , tj}, which
is inserted into the OTIL structure N+. Similarly for every
pair of outgoing edge (N j(vi), vi), there exists a multi-edge
{tm, . . . , tn}, which is inserted into the OTIL structure N−
maintaining two OTIL structures that constitute N . Each
multi-edge is ordered (w.r.t. increasing edge type indexes),
before inserting into the respective OTIL structure, and the
order is universally maintained for all data vertices. Further,
for every edge type ti, we maintain a list that contains all
the neighbourhood vertices N+(vi)/N

−(vi), that have the
edge type ti incident on them.

To understand the utility of N , let us consider an illus-
trative example. Considering the query multigraph Q in
Figure 2c, let as assume that we want to find the matches
for the query vertices u1 and u0 in order. Thus, for the ini-
tial vertex u1, let us say, we have found the set of candidate
solutions which is {v2}. Now, to find the candidate solutions
for the next query vertex u0, it is important to maintain the
structure spanned by the query vertices, and this is where
the indexing structure N is accessed. Thus to retain the
structure of the query multigraph (in this case, the struc-
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Figure 4: Decomposing the query multigraph into core and
satellite vertices

ture between u1 and u0), we have to find the data vertices
that are in the neighbourhood of already matched vertex v2
(a match for vertex u1), that has the same structure (edge
types) between u1 and u0 in the query graph. Thus to fetch
all the data vertices that have the edge type t5, which is
directed towards v2 and hence ‘+’, we access the neighbour-
hood index trie N+ for vertex v2, as shown in Figure 3.
This gives us a set of candidate solutions CNu0

= {v1, v7}. It
is easy to observe that, by maintaining two separate index-
ing structures N+ and N−, for both incoming and outgoing
edges, we can reduce the time to fetch the candidate solu-
tions.

Thus, in a generic scenario, given an already matched data
vertex v, the edge direction ‘+’ or ‘-’, and the set of edge
types T ′ ⊆ T , the index N will find a set of neighbourhood
data vertices {v′|(v′, v) ∈ E ∧ T ′ ⊆ LE(v′, v)} if the edge
direction is ‘+’ (incoming), while N returns {v′|(v, v′) ∈
E ∧ T ′ ⊆ LE(v, v′)} if the edge direction is ‘-’ (outgoing).

5. QUERY MATCHING PROCEDURE
In order to follow the working of the proposed query match-

ing procedure, we formalize the notion of core and satellite
vertices. Given a query graph Q, we decompose the set of
query vertices U into a set of core vertices Uc and a set of
satellite vertices Us. Formally, when the degree of the query
graph ∆(Q) > 1, Uc = {u|u ∈ U ∧ deg(u) > 1}; however,
when ∆(Q) = 1, i.e, when the query graph is either a vertex
or a multiedge, we choose one query vertex at random as a
core vertex, and hence |Uc|= 1. The remaining vertices are
classified as satellite vertices, whose degree is always 1. For-
mally, Us = {U \ Uc}, where for every u ∈ Us, deg(u) = 1.
The decomposition for the query multigraph Q is depicted
in Figure 4, where the satellite vertices are separated (ver-
tices under the shaded region in Fig. 4a), in order to obtain
the query graph that is spanned only by the core vertices
(Fig. 4b).

The proposed AMbER-Algo (Algorithm 3) performs re-
cursive sub-multigraph matching procedure only on the query
structure spanned by Uc as seen in Figure 4b. Since the en-
tire set of satellite vertices Us is connected to the query
structure spanned by the core vertices, AMbER-Algo pro-
cesses the satellite vertices while performing sub-multigraph
matching on the set of core vertices. Thus during the re-
cursion, if the current core vertex has satellite vertices con-
nected to it, the algorithm retrieves directly a list of possible
matching for such satellite vertices and it includes them in
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the current partial solution. Each time the algorithm exe-
cutes a recursion branch with a solution, the solution not
only contains a data vertex match vc for each query vertex
belonging to Uc, but also a set of matched data vertices Vs

for each query vertex belonging to Us. Each time a solu-
tion is found, we can generate not only one, but a set of
embeddings through the Cartesian product of the matched
elements in the solution.

Since finding SPARQL solutions is equivalent to finding
homomorphic embeddings of the query multigraph, the ho-
momorphic matching allows different query vertices to be
matched with the same data vertices. Recall that there is
no injectivity constraint in sub-multigraph homomorphism
as opposed to sub-multigraph isomorphism [11]. Thus dur-
ing the recursive matching procedure, we do not have to
check if the potential data vertex has already been matched
with previously matched query vertices. This is an advan-
tage when we are processing satellite vertices: we can find
matches for each satellite vertex independently without the
necessity to check for a repeated data vertex.

Before getting into the details of the AMbER-Algo, we
first explain how a set of candidate solutions is obtained
when there is information associated only with the vertices.
Then we explain how a set of candidate solutions is obtained
when we encounter the satellite vertices.

5.1 Vertex Level Processing
To understand the generic query processing, it is necessary

to understand the matching process at vertex level. When-
ever a query vertex u ∈ U is being processed, we need to
check if u has a set of attributes A associated with it or any
IRI s are connected to it (recall Section 2.2).

Algorithm 1: ProcessVertex(u,Q,A,N )

1 if u.A 6= ∅ then

2 CA
u = QueryAttIndex(A, u.A)

3 if u.R 6= ∅ then

4 CI
u =

⋂
uiri
i

∈u.R
( QueryNeighIndex(N , LQ

E(u, uiri
i ), uiri

i ) )

5 CandAttu = CA
u ∩ CI

u /* Find common candidates */
6 return CandAttu

To process an arbitrary query vertex, we propose a proce-
dure ProcessVertex, depicted in Algorithm 1. This algo-
rithm is invoked only when a vertex u has at least, either a
set of vertex attributes or any IRI associated with it. The
ProcessVertex procedure returns a set of data vertices
CandAttu, which are matchable with u; in case CandAttu
is empty, then the query vertex u has no matches in V .

As seen in Lines 1-2, when a query vertex u has a set
of vertex attributes i.e., u.A 6= ∅, we obtain the candidate
solutions CA

u by invoking QueryAttIndex procedure, that
accesses the index A as explained in Section 4.1. For exam-
ple, the query vertex u5 with vertex attributes {a1, a2}, can
only be matched with the data vertex v0; thus CA

u5
= {v0}.

When a query vertex u has IRI s associated with it, i.e.,
u.R 6= ∅ (Lines 3-4), we find the candidate solutions CI

u by
invoking the QueryNeighIndex procedure. As we recall
from Section 2.2, a vertex u is connected to an IRI vertex
uiri
i through a multi-edge LQ

E(u, uiri
i ). An IRI vertex uiri

i

always has only one data vertex v, that can match. Thus,
the candidate solutions CI

u are obtained by invoking the
QueryNeighIndex procedure, that fetches all the neigh-
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Figure 5: A star structure in the query multigraph Q

bourhood vertices of v that respect the multi-edge LQ
E(u, uiri

i ).
The procedure is invoked until all the IRI vertices u.R are
processed (Line 4). Considering the example in Figure 2c,
u3 is connected to an IRI -vertex uiri

0 , which has a unique
data vertex match v5, through the multi-edge {−t3}. Using
the neighbourhood index N , we look for the neighbourhood
vertices of v5, that have the multi-edge {−t3}, which gives
us the candidate solutions CI

u3
= {v1}.

Finally in Line 5, the merge operator ∩ returns a set of
common candidates CandAttu, only if u.A 6= ∅ and u.R 6= ∅.
Otherwise, CA

u or CI
u are returned as CandAttu.

5.2 Processing Satellite Vertices
In this section, we provide insights on processing a set

of satellite vertices Usat ⊆ Us that are connected to a core
vertex uc ∈ Uc. This scenario results in a structure that
appears frequently in SPARQL queries called star structure
[8, 10].

A typical star structure depicted in Figure 5, has a core
vertex uc = u1, and a set of satellite vertices Usat = {u0, u2, u4}
connected to the core vertex. For each candidate solution
of the core vertex u1, we process u0, u2, u4 independently of
each other, since there is no structural connectivity (edges)
among them, although they are only structurally connected
to the core vertex u1.

Lemma 2. For a given star structure in a query graph,
each satellite vertex can be independently processed if a can-
didate solution is provided for the core vertex uc.

Proof. Consider a core vertex uc that is connected to
a set of satellite vertices Usat = {u0, . . . , us}, through a
set of edge-types T ′ = {t0, . . . , ts}. Let us assume vc is
a candidate solution for the core vertex uc, and we want
to find candidate solutions for ui ∈ Usat and uj ∈ Usat,
where i 6= j. Now, the candidate solutions for ui and uj

can be obtained by fetching the neighbourhoods of already
matched vertex vc that respect the edge-type ti ∈ T ′ and
tj ∈ T ′ respectively. Since two satellite vertices ui and uj

are never connected to each other, the candidate solutions
of ui are independent of that of uj . This analogy applies to
all the satellite vertices.

Given a core vertex uc, we initially find a set of candidate
solutions Canduc , by using the index S. Then, for each
candidate solution vc ∈ Canduc , the set of solutions for all
the satellite vertices Usat that are connected to uc are re-
turned by the MatchSatVertices procedure, described in
Algorithm 2. The set of solution tuple Msat defined in Line
1, stores the candidate solutions for the entire set of satel-

lite vertices Usat. Formally, Msat = {[us, Vs]}|Usat|
s=1 , where

us ∈ Usat and Vs is a set of candidate solutions for us.
In order to obtain candidate solutions for us, we query the
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Algorithm 2: MatchSatVertices(A,N , Q, Usat, vc)

1 Set: Msat = ∅, where Msat = {[us, Vs]}|Usat|
s=1

2 for all us ∈ Usat do

3 Candus = QueryNeighIndex(N , LQ
E(uc, us), vc)

4 Candus = Candus ∩ ProcessVertex(us, Q,A,N )
5 if Candus 6= ∅ then
6 Msat = Msat ∪ (us, Candus ) /* Satellite solutions */

7 else
8 return Msat := 0 /* No solutions possible */

9 return Msat /* Matches for satellite vertices */

neighbourhood index N (Line 3); the QueryNeighIndex
function obtains all the neighbourhood vertices of already
matched vc, that also considers the multi-edge in the query
multigraph LQ

E(uc, us). As every query vertex us ∈ Usat

is processed, the solution set Msat that contains candidate
solutions grows until all the satellite vertices have been pro-
cessed (Lines 2-8).

In Line 4, the set of candidate solutions Candus are re-
fined by invoking Algorithm 1 (VertexProcessing). After
the refinement, if there are finite candidate solutions, we up-
date the solution Msat; else, we terminate the procedure as
there can be no matches for a given matched vertex vc. The
MatchSatVertices procedure performs two tasks: firstly,
it checks if the candidate vertex vc ∈ Candus is a valid
matchable vertex and secondly, it obtains the solutions for
all the satellite vertices.

5.3 Arbitrary Query Processing
Algorithm 3 shows the generic procedure we develop to

process arbitrary queries.
Recall that for an arbitrary query Q, we define two dif-

ferent types of vertexes: a set of core vertices Uc and a set
of satellite vertices Us. The QueryDecompose procedure
in Line 1 of Algorithm 3, performs this decomposition by
splitting the query vertices U into Uc and Us, as observed
in Figure 4.

To process arbitrary query multigraphs, we perform recur-
sive sub-mulitgraph matching procedure on the set of core
vertices Uc ⊆ U ; during the recursion, satellite vertexes con-
nected to a specific core vertex are processed too. Since the
recursion is performed on the set of core vertices, we propose
a few heuristics for ordering the query vertices.

Ordering of the query vertices forms one of the vital steps
for subgraph matching algorithms [11]. In any subgraph
matching algorithm, the embeddings of a query subgraph
are obtained by exploring the solution space spanned by the
data graph. But since the solution space itself can grow
exponentially in size, we are compelled to use intelligent
strategies to traverse the solution space. In order to achieve
this, we propose a heuristic procedure VertexOrdering
(Line 2, Algorithm 3) that employs two ranking functions.

The first ranking function r1 relies on the number of satel-
lite vertices connected to the core vertex, and the query ver-
tices are ordered with the decreasing rank value. Formally,
r1(u) = |Usat|, where Usat = {us|us ∈ Us ∧ (u, us) ∈ E(Q)}.
A vertex with more satellite vertices connected to it, is rich
in structure and hence it would probably yield fewer can-
didate solutions to be processed under recursion. Thus, in
Figure 4, u1 is chosen as an initial vertex. The second rank-
ing function r2 relies on the number of incident edges on
a query vertex. Formally, r2(u) =

∑m
j=1 |σ(u)j |, where u

has m multiedges and |σ(u)j | captures the number of edge
types in the jth multiedge. Again, Uord

c contains the ordered
vertices with the decreasing rank value r2. Further, when
there are no satellite vertices in the query Q, this ranking
function gets the priority. Despite the usage of any rank-
ing function, the query vertices in Uord

c , when accessed in
sequence, should be structurally connected to the previous
set of vertices. If two vertices tie up with the same rank,
the rank with lesser priority determines which vertex wins.
Thus, for the example in Figure 4, the set of ordered core
vertices is Uord

c = {u1, u3, u5}.

Algorithm 3: AMbER-Algo (I, Q)

1 QueryDecompose: Split U into Uc and Us

2 Uord
c = VertexOrdering(Q,Uc)

3 uinit = u|u ∈ Uord
c

4 CandInit = QuerySynIndex(uinit, S)
5 CandInit = CandInit ∩ ProcessVertex(uinit, Q,A,N )

6 Fetch: Usat
init = {u|u ∈ Us ∧ (uinit, u) ∈ E(Q)}

7 Set: Emb = ∅
8 for vinit ∈ CandInit do
9 Set: M = ∅,Ms = ∅,Mc = ∅

10 if Usat
init 6= ∅ then

11 Msat = MatchSatVertices(A,N , Q, Usat
init, vinit)

12 if Msat 6= ∅ then
13 for [us, Vs] ∈ Msat do
14 Update: Ms = Ms ∪ [us, Vs]

15 Update: Mc = Mc ∪ [uinit, vinit]

16 Emb = Emb ∪ HomomorphicMatch(M, I, Q, Uord
c )

17 else
18 Update: Mc = Mc ∪ (uinit, vinit)

19 Emb = Emb ∪ HomomorphicMatch(M, I, Q, Uord
c )

20 return Emb /* Homomorphic embeddings of query multigraph */

The first vertex in the set Uord
c is chosen as the initial ver-

tex uinit (Line 3), and subsequent query vertices are chosen
in sequence. The candidate solutions for the initial query
vertex CandInit are returned by QuerySynIndex proce-
dure (Line 4), that are constrained by the structural prop-
erties (neighbourhood structure) of uinit. By querying the
index S for initial query vertex uinit, we obtain the can-
didate solutions CandInit ∈ V that match the structure
(multiedge types) associated with uinit. Although some can-
didates in CandInit may be invalid, all valid candidates are
present in CandInit, as deduced in Lemma 1. Further, Pro-
cessVertex procedure is invoked to obtain the candidates
solutions according to vertex attributes and IRI informa-
tion, and then only the common candidates are retained.

Before getting into the algorithmic details, we explain how
the solutions are handled and how we process each query
vertex. We define M as a set of tuples, whose ith tuple is
represented as Mi = [mc,Ms], where mc is a solution pair
for a core vertex, and Ms is a set of solution pairs for the
set of satellite vertices that are connected to the core vertex.
Formally mc = (uc, vc), where uc is the core vertex and vc
is the corresponding matched vertex; Ms is a set of solution
pairs, whose jth element is a solution pair (us, Vs), where
us is a satellite vertex and Vs is a set of matched vertices.
In addition, we maintain a set Mc whose elements are the
solution pairs for all the core vertices. Thus during each
recursion branch, the size of M grows until it reaches the
query size |U |; once |M |= |U |, homomorphic matches are
obtained.

For all the candidate solutions of initial vertex CandInit,
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we perform recursion to obtain homomorphic embeddings
(lines 8-19). Before getting into recursion, for each initial
match vinit ∈ CandInit, if it has satellite vertices connected
to it, we invoke the MatchSatVertices procedure (Lines
10-11). This step not only finds solution matches for satellite
vertices, if there are, but also checks if vinit is a valid can-
didate vertex. If the returned solution set Msat is empty,
then vinit is not a valid candidate and hence we continue
with the next vinit ∈ CandInit; else, we update the set of
solution pairs Ms for satellite vertices and the solution pair
Mc for the core vertex (Lines 12-15) and invoke Homomor-
phicMatch procedure (Lines 17). On the other hand, if
there are no satellite vertices connected to uinit, we update
the core vertex solution set Mc and invoke Homomorphic-
Match procedure (Lines 18-19).

Algorithm 4: HomomorphicMatch(M, I, Q, Uord
c )

1 if |M |= |U | then
2 return GenEmb(M)

3 Emb = ∅
4 Fetch: unxt = u|u ∈ Uord

c
5 Nq = {uc|uc ∈ Mc} ∩ adj(unxt)
6 Ng = {vc|vc ∈ Mc ∧ (uc, vc) ∈ Mc}, where uc ∈ Nq

7 Candunxt =
⋂|Nq|

n=1 (QueryNeighIndex(N , LQ
E(un, unxt), vn))

8 Candunxt = Candunxt∩ ProcessVertex(unxt, Q,A,N )
9 for each vnxt ∈ Candunxt do

10 Fetch: Usat
nxt = {u|u ∈ Vs ∧ (unxt, u) ∈ E(Q)}

11 if Usat
nxt 6= ∅ then

12 Msat = MatchSatVertices(A,N , Q, Usat
nxt, vnxt)

13 if Msat 6= ∅ then
14 for every [us, V s] ∈ Msat do
15 Update: Ms = Ms ∪ [us, V s]

16 Update: Mc = Mc ∪ (unxt, vnxt)

17 Emb = Emb ∪ HomomorphicMatch(M, I, Q, Uord
c )

18 else
19 Update: Mc = Mc ∪ (unxt, vnxt)

20 Emb = Emb ∪ HomomorphicMatch(M, I, Q, Uord
c )

21 return Emb

In the HomomorphicMatch procedure (Algorithm 4),
we fetch the next query vertex from the set of ordered core
vertices Uord

c (Line 4). Then we collect the neighbourhood
vertices of already matched core query vertices and the cor-
responding matched data vertices (Lines 5-6). As we recall,
the set Mc maintains the solution pair mc = (uc, vc) of each
matched core query vertex. The set Nq collects the already
matched core vertices uc ∈ Mc that are also in the neigh-
bourhood of unxt, whose matches have to be found. Fur-
ther, Ng contains the corresponding matched query vertices
vc ∈ Mc. As the recursion proceeds, we find those match-
able data vertices of unxt that are in the neighbourhood of
all the matched vertices v ∈ Ng, so that the query structure
is maintained. In Line 7, for each un ∈ Nq and the corre-
sponding vn ∈ Ng, we query the neighbourhood index N ,
to obtain the candidate solutions Candunxt , that are in the
neighbourhood of already matched data vertex vn and have
the multiedge LQ

E(un, unxt), obtained from the query multi-
graph Q. Finally (line 7), the set of candidates solutions that
are common for every un ∈ Nq are retained in Candunxt .

Further, the candidate solutions are refined with the help
of ProcessVertex procedure (Line 8). Now, for each of the
valid candidate solution vnxt ∈ Candunxt , we recursively call
the HomomorphicMatch procedure. When the next query
vertex unxt has no satellite vertices attached to it, we update

the core vertex solution set Mc and call the recursion pro-
cedure (Lines 19-20). But when unxt has satellite vertices
attached to it, we obtain the candidate matches for all the
satellite vertices by invoking the MatchSatVertices pro-
cedure (Lines 11-12); if there are matches, we update both
the satellite vertex solution Ms and the core vertex solution
Mc, and invoke the recursion procedure (Line 17).

Once all the query vertices have been matched for the
current recursion step, the solution set M contains the so-
lutions for both core and satellite vertices. Thus when all
the query vertices have been matched, we invoke the Gen-
Emb function (Line 2) which returns the set of embeddings,
that are updated in Emb. The GenEmb function treats
the solution vertex vc of each core vertex as a singleton
and performs Cartesian product among all the core vertex
singletons and satellite vertex sets. Formally, Embpart =

{v1c}× . . .×{v
|Uc|
c }×V 1

s × . . .×V
|Us|
c . Thus, the partial set

of embeddings Embpart is added to the final result Emb.

6. RELATED WORK
The proliferation of semantic web technologies has influ-

enced the popularity of RDF as a standard to represent
and share knowledge bases. In order to efficiently answer
SPARQL queries, many stores and API inspired by rela-
tional model were proposed [7, 3, 13, 5]. x-RDF-3X [13],
inspired by modern RDBMS, represent RDF triples as a big
three-attribute table. The RDF query processing is boosted
using an exhaustive indexing schema coupled with statistics
over the data. Also Virtuoso[7] heavily exploits RDBMS
mechanism in order to answer SPARQL queries. Virtuoso
is a column-store based systems that employs sorted multi-
column column-wise compressed projections. Also these sys-
tems build table indexing using standard B-trees. Jena
[5] supplies API for manipulating RDF graphs. Jena ex-
ploits multiple-property tables that permit multiple views
of graphs and vertices which can be used simultaneously.

Recently, the database community has started to inves-
tigate RDF stores based on graph data management tech-
niques [6, 16, 11]. The work in [6] addresses the problem of
supporting property graphs as RDF, since majority of the
graph databases are based on property graph model. The
authors introduce a property graph to RDF transformation
scheme and propose three models to address the challenge
of representing the key/value properties of property graph
edges in RDF. gStore [16] applies graph pattern match-
ing techniques using filter-and-refinement strategy to answer
SPARQL queries. It employs an indexing schema, named
VS∗-tree, to concisely represent the RDF graph. Once the
index is built, it is used to find promising subgraphs that
match the query. Finally, exact subgraphs are enumerated
in the refinement step. Turbo Hom++ [11] is an adapta-
tion of a state of the art subgraph isomorphism algorithm
(TurboISO[9]) to the problem of SPARQL queries. Exploit-
ing the standard graph isomorphism problem, the authors
relax the injectivity constraint to handle the graph homo-
morphism, which is the RDF pattern matching semantics.

Unlike our approach, TurboHom++ does not index the
RDF graph, while gStore concisely represents RDF data
through VS∗-tree. Another difference between AMbER and
the other graph stores is that our approach explicitly man-
ages the multigraph induced by the SPARQL queries while
no clear discussion is supplied for the other tools.
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7. EXPERIMENTAL ANALYSIS
In this section, we perform extensive experiments on the

three RDF benchmarks. We evaluate the time performance
and the robustness of AMbER w.r.t. state-of-the-art com-
petitors by varying the size, and the structure of the SPARQL
queries. Experiments are carried out on a 64-bit Intel Core
i7-4900MQ @ 2.80GHz, with 32GB memory, running Linux
OS - Ubuntu 14.04 LTS. AMbER is implemented in C++.

7.1 Experimental Setup
We compare AMbER with the four standard RDF en-

gines: Virtuoso-7.1 [7], x-RDF-3X [13], Apache Jena [5] and
gStore [16]. For all the competitors we employ the source
code available on the web site or obtained by the authors.
Another recent work TurboHOM++ [11] has been excluded
since it is not publicly available.

For the experimental analysis we use three RDF datasets
- DBPEDIA, YAGO and LUBM. DBPEDIA constitutes the
most important knowledge base for the Semantic Web com-
munity. Most of the data available in this dataset comes
from the Wikipedia Infobox. YAGO is a real world dataset
built from factual information coming from Wikipedia and
WordNet semantic network. LUBM provides a standard
RDF benchmark to test the overall behaviour of engines.
Using the data generator we create LUBM100 where the
number represents the scaling factor.

Dataset # Triples # Vertices # Edges # Edge types

DBPEDIA 33 071 359 4 983 349 14 992 982 676
YAGO 35 543 536 3 160 832 10 683 425 44
LUBM100 13 824 437 2 179 780 8 952 366 13

Table 4: Benchmark Statistics

The data characteristics are summarized in Table 4. We
can observe that the benchmarks have different character-
istics in terms of number of vertices, number of edges, and
number of distinct predicates. For instance, DBPEDIA has
more diversity in terms of predicates (∼700) while LUBM100
contains only 13 different predicates.

The time required to build the multigraph database as
well as to construct the indexes are reported in Table 5.
We can note that the database building time and the cor-
responding size are proportional to the number of triples.
Regarding the indexing structures, we can underline that
both building time and size are proportional to the number
of edges. For instance, DBPEDIA has the biggest number
of edges (∼15M) and, consequently, AMbER employs more
time and space to build and store its data structure.

Dataset Database Index I

Building Time Size Building Time Size

DBPEDIA 307 1300 45.18 1573
YAGO 379 2400 29.1 1322
LUBM100 67 497 18.4 1057

Table 5: Offline stage: Database and Index Construction
time (in seconds) and memory usage (in Mbytes)

7.2 Workload Generation
In order to test the scalability and the robustness of the

different RDF engines, we generate the query workloads con-
sidering a similar setting as in [8, 1, 9]. We generate the
query workload from the respective RDF datasets, which
are available as RDF tripleset. In specific, we generate two
types of query sets: a star-shaped and a complex-shaped
query set; further, both query sets are generated for varying
sizes (say k) ranging from 10 to 50 triplets, in steps of 10.

To generate star-shaped or complex-shaped queries of size
k, we pick an initial-entity at random from the RDF data.
Now to generate star queries, we check if the initial-entity
is present in at least k triples in the entire benchmark, to
verify if the initial-entity has k neighbours. If so, we choose
those k triples at random; thus the initial entity forms the
central vertex of the star structure and the rest of the en-
tities form the remaining star structure, connected by the
respective predicates. To generate complex-shaped queries
of size k, we navigate in the neighbourhood of the initial-
entity through the predicate links until we reach size k. In
both query types, we inject some object literals as well as
constant IRI s; rest of the IRI s (subjects or objects) are
treated as variables. However, this strategy could choose
some very unselective queries [8]. In order to address this
issue, we set a maximum time constraint of 60 seconds for
each query. If the query is not answered in time, it is not
considered for the final average (similar procedure is usually
employed for graph query matching [9] and RDF workload
evaluation [1]). We report the average query time and, also,
the percentage of unanswered queries (considering the given
time constraint) to study the robustness of the approaches.

7.3 Comparison with RDF Engines
In this section we report and discuss the results obtained

by the different RDF engines. For each combination of query
type and benchmark we report two plots by varying the
query size: the average time and the corresponding percent-
age of unanswered queries for the given time constraint. We
remind that the average time per approach is computed only
on the set of queries that were answered.

The experimental results for DBPEDIA are depicted in
Figure 6 and Figure 7. The time performance (averaged
over 200 queries) for Star-Shaped queries (Fig. 6a), affirm
that AMbER clearly outperforms all the competitors. Fur-
ther the robustness of each approach, evaluated in terms
of percentage of unanswered queries within the stipulated
time, is shown in Figure 6b. For the given time constraint,
x-RDF-3X and Jena are unable to output results for size 20
and 30 onwards respectively. Although Virtuoso and gStore
output results until query size 50, their time performance
is still poor. However, as the query size increases, the per-
centage of unanswered queries for both Virtuoso and gStore
keeps on increasing from ∼0% to 65% and ∼45% to 95%
respectively. On the other hand AMbER answers >98%
of the queries, even for queries of size 50, establishing its
robustness.

Analyzing the results for Complex-Shaped queries (Fig.
7), we underline that AMbER still outperforms all the com-
petitors for all sizes. In Figure 7a, we observe that x-RDF-
3X and Jena are the slowest engines; Virtuoso and gStore
perform better than them but nowhere close to AMbER.
We further observe that x-RDF-3X and Jena are the least
robust as they don’t output results for size 30 onwards (Fig. 7b);
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(a) Time performance (b) % Unanswered queries

Figure 6: Evaluation of (a) time performance and
(b) robustness, for Star-Shaped queries on DBPEDIA.

(a) Time performance (b) % Unanswered queries

Figure 7: Evaluation of (a) time performance and
(b) robustness, for Complex-Shaped queries on DBPEDIA.

on the other hand AMbER is the most robust engine as it
answers >85% of the queries even for size 50. The percent-
age of unanswered queries for Virtuoso and gStore increase
from 0% to ∼80% and 25% to ∼70% respectively, as we
increase the size from 10 to 50.

The results for YAGO are reported in Figure 8 and Fig-
ure 9. For the Star-Shaped queries (Fig. 8), we observe
that AMbER outperforms all the other competitors for any
size. Further, the time performance of AMbER is 1-2 or-
der of magnitude better than its nearest competitor Vir-
tuoso (Fig. 8a), and the performance remains stable even
with increasing query size (Fig. 8b). x-RDF-3X, Jena are
not able to output results for size 20 onwards. As observed
for DBPEDIA, Virtuoso seems to become less robust with
the increasing query size. For size 20-40, time performance
of gStore seems better than Virtuoso; the reason seems to
be the fewer queries that are being considered. Conversely,
AMbER is able to supply answers most of the time (>98%).

Coming to the results for Complex-Shaped queries (Fig. 9),
we observe that AMbER is still the best in time perfor-
mance; Virtuoso and gStore are the closest competitors.
Only for size 10 and 20, Virtuoso seems robust than AMbER.
Jena, x-RDF-3X do not answer queries for size 20 onwards,
as seen in Figure 9b.

The results for LUBM100 are reported in Figure 10 and
Figure 11. For the Star-Shaped queries (Fig. 10), AMbER
always outperforms all the other competitors for any size
(Fig. 10a). Further, the time performance of AMbER is

(a) Time performance (b) % Unanswered queries

Figure 8: Evaluation of (a) time performance and
(b) robustness, for Star-Shaped queries on YAGO.

(a) Time performance (b) % Unanswered queries

Figure 9: Evaluation of (a) time performance and
(b) robustness, for Complex-Shaped queries on YAGO.

2-3 orders of magnitude better than its closest competitor
Virtuoso. Similar to the YAGO experiments, x-RDF-3X,
Jena are not able to manage queries from size 20 onwards;
the same trend is observed for gStore too. Further, Virtuoso
always looses its robustness as the query size increases. On
the other hand, AMbER answers queries for all sizes.

Considering the results for Complex-Shaped queries (Fig. 11),
we underline that AMbER has better time performance as
seen in Figure 11a. x-RDF-3X, Jena and gStore did not sup-
ply answer for size 30 onwards (Fig. 11b). Further, Virtuoso
seems to be a tough competitor for AMbER in terms of ro-
bustness for size 10 and 20. However, for size 30 onwards
AMbER is more robust.

To summarise, we observe that Virtuoso is enough robust
for Complex-Shaped smaller queries (10-20), but fails for big-
ger (>20) queries. x-RDF-3X fails for queries with size big-
ger than 10. Jena has reasonable behavior until size 20, but
fails to deliver from size 30 onwards. gStore has a reasonable
behavior for size 10, but its robustness deteriorates from size
20 onwards. To summarize, AMbER clearly outperforms, in
terms of time and robustness, the state-of-the-art RDF en-
gines on the evaluated benchmarks and query configuration.
Our proposal also scales up better than all the competitors
as the size of the queries increases.

8. CONCLUSION
In this paper, a multigraph based engine AMbER has
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(a) Time performance (b) % Unanswered queries

Figure 10: Evaluation of (a) time performance and
(b) robustness, for Star-Shaped queries on LUBM100.

(a) Time performance (b) % Unanswered queries

Figure 11: Evaluation of (a) time performance and
(b) robustness, for Complex-Shaped queries on LUBM100.

been proposed in order to answer complex SPARQL queries
over RDF data. The multigraph representation has be-
stowed us with two advantages: on one hand, it enables
us to construct efficient indexing structures, that ameliorate
the time performance of AMbER; on the other hand, the
graph representation itself motivates us to exploit the valu-
able work done until now in the graph data management
field. Thus, AMbER meticulously exploits the indexing
structures to address the problem of sub-multigraph homo-
morphism, which in turn yields the solutions for SPARQL
queries. The proposed engine AMbER has been extensively
tested on three well established RDF benchmarks. As a re-
sult, AMbER stands out w.r.t. the state-of-the-art RDF
management systems considering both the robustness re-
garding the percentage of answered queries and the time per-
formance. As a future work, we plan to extend AMbER by
incorporating other SPARQL operations and, successively,
study and develop a parallel processing version of our pro-
posal to scale up over huge RDF data.

9. ACKNOWLEDGMENTS
This work has been funded by Labex NUMEV (NUMEV,

ANR-10-LABX-20).

10. REFERENCES
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ABSTRACT
Analytical queries are crucial for many emerging Semantic Web
applications such as clinical-trial recruiting in Life Sciences that
incorporate patient and drug profile data. Such queries compare
aggregates over multiple groupings of data which pose challenges
in expression and optimization of complex grouping-aggregation
constraints. While these challenges have been addressed in rela-
tional models, the semi-structured nature of RDF introduces addi-
tional challenges that need further investigation. Each grouping re-
quired in an RDF analytical query maps to a graph pattern subquery
with related groups leading to overlapping graph patterns within the
same query. The resulting algebraic expressions for such queries
contain large numbers of joins, groupings and aggregations, posing
significant challenges for present-day optimizers.

In this paper, we propose an approach for supporting efficient
and scalable RDF analytics that follows the well known technique
of simplifying algebraic expressions of RDF analytical queries in a
way that enables better optimization. Specifically, the approach
is based on a refactoring of analytical queries expressed in the
relational-like SPARQL algebra based on a new set of logical op-
erators. This refactoring achieves shared execution of common
subexpressions that enables parallel evaluation of groupings as well
aggregations, leading to reduced I/O and processing costs, partic-
ularly beneficial for scale-out processing on distributed Cloud sys-
tems. Experiments on real-world and synthetic benchmarks con-
firm that such a rewriting can achieve up to 10X speedup over
relational-style SPARQL query plans executed on popular Cloud
systems.

1. INTRODUCTION
Growing amount of linked open data is enabling interesting ap-

plications that combine data from different domains for analysis.
For example, the ReDD-Observatory [38] discusses a study report-
ing the total number of deaths and the number of clinical trials for
Tuberculosis and HIV/AIDS in all countries, to analyze the dispar-

∗Majority of the work was done when the first author was a stu-
dent at the Department of Computer Science, North Carolina State
University

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

SELECT ?country ?feature ((?sumF  (?cntT  ?cntF)) /
(?cntF  (?sumT  ?sumF)) As ?priceRatio)     

{{ 
SELECT  ?country (count(?price) As ?cntT) (sum(?price) As ?sumT)
{  

?product  rdf:type PT18.
?offer       bsbm:product ?product ;

bsbm:price ?price ;  
bsbm:vendor ?vend .

?vend       bsbm:country ?country .
} 

GROUP BY ?country  
} 
{ 

SELECT  ?country ?feature 
(count(?price2) As ?cntF)  (sum(?price2) As ?sumF)

{

?product2  rdf:type PT18 ;
bsbm:productFeature ?feature .

?offer2      bsbm:product ?product2 ;
bsbm:price ?price2 ;
bsbm:vendor ?vend2 .

?vend2      bsbm:country ?country .
} 
GROUP BY ?country ?feature 

}}

For all products 

of type 'PT18', 

compute the 

count and total 

price per country.

For all products of 

type 'PT18', 

compute the count 

and total price per 

feature and country.

?country (GP1)

AggrcntT, sumT

?country, ?feature (GP2) 

AggrcntF, sumF

⋈

(4 overlapping  joins)

GP2

GP1

(?country = ?country)

(4 joins) (5 joins)

(Query 1) For each country, retrieve product

features with the highest ratio between price

with and without that feature

Figure 1: (AQ1): An example SPARQL analytical query, For each
country, retrieve product features with the highest ratio between
price with that feature and price without that feature

ity between biomedical research and the disease burden in devel-
oping countries. This study involved information about clinical tri-
als and effectiveness of treatment options from ClinicalTrials.gov,
statistics about mortality for different countries from the Global
Health Observatory (GHO), published by the World Health Or-
ganization and biomedical research (MEDLINE publications and
other life science journals) available in the PubMed. The results
need to be grouped based on both country and disease, followed by
aggregations on the number of clinical trials and deaths due to the
concerned disease in each country, using the grouping-aggregation
constructs in SPARQL 1.1 [22]. Another Semantic Web appli-
cation, AlzPharm [26], queries several semantically-linked neu-
roscience datasets to find information relevant to neurodegenera-
tive diseases, e.g., identify the different groups of drugs used for
Alzheimer’s Disease when grouped by their molecular targets and
clinical usage.

Non-trivial analytical queries require multiple aggregations over
different groupings of data, some of which may be related, resulting
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SELECT ?country ?feature ((?sumF  (?cntT  ?cntF)) /
(?cntF  (?sumT  ?sumF)) As ?priceRatio)     

{{ 
SELECT  ?country (count(?price) As ?cntT) (sum(?price) As ?sumT)
{  

?product  rdf:type PT18.
?offer       bsbm:product ?product ;

bsbm:price ?price ;  
bsbm:vendor ?vend .

?vend       bsbm:country ?country .
} 

GROUP BY ?country  
} 
{ 

SELECT  ?country ?feature 
(count(?price2) As ?cntF)  (sum(?price2) As ?sumF)

{

?product2  rdf:type PT18 ;
bsbm:productFeature ?feature .

?offer2      bsbm:product ?product2 ;
bsbm:price ?price2 ;
bsbm:vendor ?vend2 .

?vend2      bsbm:country ?country .
} 
GROUP BY ?country ?feature 

}}

For all products 

of type 'PT18', 

compute the 

count and total 

price per country.

For all products of 

type 'PT18', 

compute the count 

and total price per 

feature and country.

?country (GP1)

AggrcntT, sumT

?country, ?feature (GP2) 

AggrcntF, sumF

⋈

(4 overlapping  joins)

GP2

GP1

(?country = ?country)

(4 joins) (5 joins)

(Query 1) For each country, retrieve product

features with the highest ratio between price

with and without that feature

Figure 2: A relational-algebra based query plan for AQ1

in redundant scans and joins over large relations. Consider an ex-
ample SPARQL analytical query AQ1 shown in Figure 1, adopted
from the Berlin SPARQL BI benchmark [1]. The query involves
two descriptions GP1 and GP2 for products of type ‘PT18’ with
grouping constraints on country and (country, feature) com-
binations, respectively. Each grouping constraint is defined over a
graph pattern (a combination of one or more triple patterns1 that
specifies constraints to retrieve relevant subgraphs). Queries with
multiple groupings involve multiple graph patterns. Further, if the
groupings are related then there is a significant amount of over-
lap in the graph pattern subqueries. Figure 2 shows a summarized
query plan with two major subqueries using the traditional evalu-
ation technique: a subquery for GP1 with four joins that matches
subgraphs about offers for products of type PT18, their price and
vendor information, followed by a grouping on vendor’s country.
The second subquery contains a similar graph pattern GP2 with five
joins (an extra join due to the addition of product feature) followed
by a grouping on country-feature. Answers from the two sub-
queries are then joined to compute the final price ratio, resulting in
a total of 10 joins and 2 grouping operations.

In contrast, in the relational model, such OLAP queries are eval-
uated over suitably organized (star or snowflake) schemas consist-
ing of n-ary relations. Different optimization strategies ranging
from specialized query constructs [20, 9, 10], efficient indexing [31,
37], materialized views [21, 12], and efficient evaluation in dis-
tributed data warehouses [7, 6] have been proposed. In the ab-
sence of such schema organizations for RDF, a naive approach is
to decompose the evaluation into two distinct phases: a graph pat-
tern evaluation phase that constructs a suitable set of n-ary rela-
tions, followed by relational-style optimizations. However, such an
approach prevents the possibility of optimizations across the two
phases, e.g., early projections, partial aggregations, etc. Therefore,
a holistic optimization strategy is likely to be more advantageous.

A promising direction is based on the observation made in [10]
that relational expressions tightly couple grouping and aggregation
specifications, often resulting in complex algebraic expressions that
confound query optimizers. The approach in this paper has a sim-
ilar spirit, i.e., grouping-aggregation specifications in RDF analyt-

1RDF data is modeled as a set of triples = (Subject, Property, Object). A triple pattern
is a triple with at least one variable denoted by a leading ‘?’

ical queries are decoupled to optimize subqueries. Further, with
a focus to support large scale RDF analytics, the paper overviews
how such a query reformulation can be evaluated on Cloud plat-
forms such as MapReduce [17]. The challenges with evaluating
complex queries with many join operations have been addressed
in several papers [4, 23, 33], and can be summarized as long, ex-
pensive execution workflows with multiple I/O and network data
transfer phases. Many techniques have been proposed to mitigate
these costs by sharing scans and computations [30, 28, 33] during
MapReduce-based processing. In this paper, we present a holistic
optimization that integrates the work on algebraic optimization of
graph pattern queries with algebraic optimization of OLAP queries.
Specifically, we make the following contributions:

• An algebraic rewriting of overlapping graph patterns (in a SPARQL
analytical query) using a composite graph pattern based on com-
mon substructures. A decoupled reformulation of the grouping-
aggregation definitions in a SPARQL analytical query expressed
using a composite graph pattern.

• A set of logical and physical operators for efficient evaluation of
a composite graph pattern, as well as parallel evaluation of inde-
pendent aggregations on a composite graph pattern. The suite of
operators and optimizations are integrated into RAPIDAnalytics,
an extension of Apache Pig.

• A comprehensive evaluation of RAPIDAnalytics using basic and
multi-aggregation SPARQL analytical queries on real-world as
well as synthetic benchmark datasets.

The rest of the paper is organized as follows: Section 2 provides
a background on complex OLAP queries and specific challenges in
processing such queries over the RDF data model. Section 3 intro-
duces an algebraic rewriting of SPARQL analytical queries based
on a non-relational data model and algebra, followed by formal
definitions of newly introduced logical operators. Section 4 de-
scribes the physical operators and optimizations to execute such a
query plan on MapReduce-based platforms. Section 5 presents the
comparative evaluation results between RAPIDAnalytics and other
popular approaches, and Section 6 presents concluding remarks.

2. BACKGROUND AND CHALLENGES

2.1 Optimization of Complex OLAP Queries
There has been a body of work to enable better expression and

evaluation [20, 19, 10, 6, 11] of complex OLAP queries includ-
ing introduction of constructs such as the CUBE BY [20], grouping
sets [9], etc., that allow the user to have a finer control over the
grouping and aggregation specifications. An earlier work on MD-
Join [10] showed that decoupling of the grouping definition and
aggregation computations not only allows more succinct expres-
sion of complex OLAP queries, but can also eliminate redundant
scans and joins over large fact tables.

Parallel / Distributed Evaluation of Relational OLAP Queries.
An earlier work on parallel evaluation of aggregates proposed adap-
tive algorithms [35] to handle a range of grouping selectivities (ra-
tio of result size to input size) across queries. Subsequent research [6]
on distributed evaluation of OLAP queries identified optimizations
that exploit knowledge about data distributions to reduce the amount
of data transfer between the local sites and the centralized coordi-
nator. In the context of MapReduce, an overlapping redistribution
scheme [14] was proposed to enable parallel evaluation of corre-
lated aggregations with sliding windows. MR-Cube [29] distributes
the cube computation of partially algebraic measures on MapRe-
duce. It also introduced a value-partitioning scheme to deal with
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reducer-unfriendly (cube) groups that tend to increase the load on
a reducer. The work on MR-Cube was integrated into Apache Pig2

and Apache Hive3 (GROUPING SETS, CUBE and ROLLUP clauses).
Such operations assume the existence of a fact relation on which
CUBE and other operations can be applied, which does not hold true
in the case of the RDF data model where triples are commonly rep-
resented as binary or ternary relations.

Expression and Evaluation of RDF Analytical Queries. The
RDF Data Cube vocabulary (QB) [16] was provided as a recom-
mendation to enable publication of statistical data in RDF adher-
ing to Linked data principles. The work on Open Cubes vocab-
ulary [18] enables representation of multidimensional data using
RDF Schema (RDFS). Other extensions [24] propose a multi di-
mensional model based on QB to support OLAP queries, mapping
them to SPARQL. Recent work on RDF analytics [15] proposed
a way to define an analytical schema on RDF graphs and formal-
ize analytical queries over such an analytical schema, by separat-
ing the grouping-aggregation definitions, similar to the relational
MD-Join [10] operator. An earlier work [36] extended Pig’s query
primitives to support MapReduce based execution of the MD-Join
operator.

Discussion. The MD-Join approach to eliminate redundant scans
and joins involving large fact relations, translates to reduction in
I/O and network transfer costs in MapReduce-based processing of
complex analytical queries. However, specifics of RDF analyt-
ics make it challenging to adopt such an approach. Unlike tra-
ditional OLAP systems where the fact and dimension tables are
available and suitably organized into star or snowflake schema,
the fine-grained data model in RDF necessitates several join op-
erations to reassemble the relevant fact and dimension informa-
tion, e.g., fact relation described by GP1 requires four join oper-
ations. A relational-style query plan that computes the detail rela-
tions described by GP1 and GP2, compiles into a lengthy MapRe-
duce execution workflow with 9 map-reduce cycles (one per star-
join). Such a sequential execution limits opportunities to share in-
put scans in general. Furthermore, RDF analytical queries often
involve (slightly) different join expressions for detail relations (re-
fer to GP1 and GP2). Thus, in order to fully exploit the benefit of a
decoupled reformulation using the MD-Join approach, we require
additional optimizations that enable shared execution of the graph
patterns in an RDF analytical query.

2.2 Shared Execution of Graph Pattern Queries
A commonly occurring pattern in OLAP queries involves com-

paring subtotals across multiple dimensions, which results in sub-
queries that compute groupings over an overlapping subset of di-
mensions, e.g., GP2 computes groupings on country-feature,
while GP1 is a roll-up on ALL features. In the context of RDF, re-
lated groupings result in subqueries with common subexpressions
(graph patterns with overlapping structure) enabling opportunities
for shared execution. For example, if two graph patterns in a query
have the same structure (same join expression), then the graph pat-
tern can be evaluated only once. In cases where graph patterns have
subsumption relationship in join expressions, there may be oppor-
tunities to rewrite the query in a way that allows shared execution
of common substructures. Even with structurally different graph
patterns, there may be sharing opportunities within a MapReduce
cycle.

Several techniques have been proposed to enable sharing of scans
and computations across a MapReduce workload in order to reduce
the associated I/O and network transfer costs, e.g., MRShare [30]
2
https://pig.apache.org/

3
https://hive.apache.org/

proposes sharing of input scans, sharing map functions and map
output, while executing a batch of grouping queries on a common
input table. YSmart [28] groups correlated operations in complex
queries, e.g., Joins and GROUP BYs accessing the same table, into
a single MapReduce job to reduce redundant scans, computations,
and network transfers (integrated into Hive 0.12.0).

A previous work [27] on multi-query optimization (MQO) of
SPARQL queries, rewrites the input graph pattern queries into a
set of queries QOPT using the SPARQL OPTIONAL4 clause. Given
a set of graph pattern queries Q with common substructures, the
basic idea of SPARQL MQO is to (i) rewrite the input queries into
a set of queries QOPT with OPTIONAL clauses (representing non-
overlapping structures), (ii) evaluate queries QOPT over the RDF
graph, and (iii) distribute the results ofQOPT to input queries inQ.
For example, two queries with the following set of triple patterns:
Q1:(?s p1 ?o)

Q2:(?s1 p1 ?o1)(?s1 p2 ?o2)

can be expressed using the OPTIONAL clause as follows:
QOPT :(?s p1 ?o) OPTIONAL(?s p2 o2)

where the non-overlapping triple pattern in Q2 is specified as op-
tional, i.e., resulting tuples may have NULL values for bindings
of second triple pattern. Results matching original queries are ex-
tracted from results of QOPT . Note that multi-valued properties in
the optional component may introduce duplicity and require special
handling.

Discussion. A possible strategy to optimize RDF analytical queries
is to rewrite and evaluate the individual graph patterns using the
SPARQL MQO approach, extract answers to original graph pat-
terns, and compute groupings over extracted subquery results. While
such a rewriting seems beneficial when compared to sequential
evaluation of individual graph patterns on MapReduce, our exper-
iments on Hive showed that evaluating QOPT ahead of time pre-
vents optimizations such as early projection and partial aggrega-
tions. This is becauseQOPT would need to be evaluated and stored
as an intermediate table, since Hive neither supports logical views
involving complex queries with multiple joins, nor does it support
materialized views.

2.3 Rationale of Our Approach
We argue that it is necessary to approach the problem of optimiz-

ing RDF analytics holistically, rather than a two-step approach of
independently optimizing the graph pattern matching phase and the
grouping-aggregation phases. Given that RDF analytical queries
often involve repeated computations over slightly different graph
patterns, query plans that enable shared execution of common sub-
patterns are likely to compile into efficient execution plans. An
important factor in this regard is the choice of algebra, the associ-
ated data model and the set of operators. One may use a relational-
like algebra or alternatives such as the Nested TripleGroup Data
Model and Algebra (NTGA) [33, 25]. We chose to use NTGA due
to its underlying “groups of triples” or triplegroup model that en-
ables concurrent computation of star-shaped join subpatterns (star-
joins) in a query. The NTGA query plans not only enable sharing of
scans and computations across multiple star subpatterns (resulting
in shortened map-reduce execution workflows), but also concisely
represent intermediate results in a denormalized form. In the next
section, we build on the foundations of sharing that is already inher-
ent in the NTGA approach and enhance its benefits by optimizing
complex grouping-aggregation constraints.

4The OPTIONAL clause is used in SPARQL to allow querying of predicates that
may not exist, i.e., answer is returned if there is a subgraph matching the OPTIONAL
graph pattern, else it is ignored.
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GP1 GP2 Does GP1 Overlap GP2? Composite GP’

AQ2 SELECT ?s1… WHERE
{  

?s1 ty PT18.(jtpa)

?s2 pr ?s1 .(jtpb)

?s2 pc ?o1 .

?s2 ve ?o2 .

} 

SELECT ?s1… WHERE
{

?s1 ty PT18 .(jtpα)

?s1 pf ?o3  .

?s2 pr ?s1  .(jtpβ)

?s2 pc ?o4  . 

} 

• { ty } in overlap of Stpa and Stpα
• { pr, pc } in overlap of Stpb and Stpβ
• Property of jtpa and jtpα match
• Property of jtpb and jtpβ match

• Role of ?s1 ∈ jtpa (subject) is same as role 
of ?s1 ∈ jtpα (subject)

• Role of ?s1 ∈ jtpb (oject) is same as role 

of ?s1∈ jtpβ (object)
Hence, GP1 overlaps GP2

SELECT ?s1… WHERE
{

?s1 ty PT18 .

?s1 pf ?o6 .

?s2 pr ?s1 . 

?s2 pc ?o7 .

?s2 ve ?s3 . 

} 

AQ3 SELECT ?s3… WHERE
{  

?s3 pr ?s1 . 

?s3 pc ?o5 .

?s3 ve ?s4 .(jtpc)

?s4 cn ?o6 .(jtpd)

} 

SELECT ?s3… WHERE
{  

?s3 pr ?s1 . 

?s3 pc ?o5 .

?s3 ve ?o6 .(jtpγ)

?s4 cn ?o6 .(jtpδ)

} 

• { pr, pc, ve } in overlap of Stpc and Stpγ
• { cn } in overlap of Stpd and Stpδ
• Property of jtpc and jtpγ match
• Property of jtpd and jtpδ match

• Role of ?s4∈ jtpc (object) is same as 
role of ?o6 ∈ jtpγ (object)

• Role of ?s4 ∈ jtpd (subject) is NOT same as 
role of ?o6 ∈ jtpδ (object)

Hence, GP1 does NOT overlap GP2

Not Applicable

Stpa

Stpb

Stpα

Stpβ

Stp’a

Stp’b

Stpc

Stpd

Stpγ

Stpδ

Figure 3: Structural overlap in graph patterns

Table 1: Quick Reference

Symbol Description
tp Triple pattern
jtpi Joining triple pattern in Stpi
jvij Variable joining tpi and tpj
GP Graph pattern
Stp Subject-rooted star subpattern
Stpabc Star pattern with property-set { a, b, c }
Stpabc Star pattern with primary properties a and b,

and secondary (optional) property c
Pprim Set of primary properties
Psec Set of secondary properties
tg Triplegroup
TG Set of triplegroups
TGabc Set of triplegroups with property-set { a, b, c }

Function Returns
var(tp) Set of variables in triple pattern tp
role(?v) Role of variable ?v (subject, property, or object)
prop(tp) Property of triple pattern tp
props(Stpi) Set of properties in Stpi
δ(?v) Variable substitution in a triple matching tp

3. ALGEBRAIC REWRITING OF SPARQL
ANALYTICAL QUERIES

We reformulate SPARQL analytical queries with multiple grouping-
aggregation constraints by, (i) identifying overlaps between graph
patterns in a query based on structural constraints, (ii) evaluating
a composite graph pattern that retrieves answers for original graph
patterns, and (iii) computing required groupings and aggregations
based on the composite graph pattern. Common notations and con-
venience functions used in this paper are summarized in Table 1.

Definition 3.1 (Overlapping Star Patterns) Let Stp1 and Stp2 be
two subject-rooted star subpatterns and let L be the intersection of
their property sets, i.e., L = props(Stp1) ∩ props(Stp2). Then,
Stp1 and Stp2 are considered to overlap if the following holds:

• Intersection of their property sets is non-empty, i.e., L 6= ∅.

• For any triple pattern tp1 = (s1, rdf:type, o1) ∈ Stp1, there
exists some tp2 = (s2, rdf:type, o2) ∈ Stp2, with the same object
component, i.e., o1 = o2.

Figure 3 represents two analytical queries AQ2 and AQ3, each
consisting of two graph patterns GP1 and GP2 (properties abbrevi-
ated). In the case of query AQ2, star pattern Stpa ∈ GP1 overlaps
with Stpα ∈ GP2 since both match on the object of rdf : type
triple. Similarly, star patterns Stpb and Stpβ overlap. The graph
patterns in AQ4 also have two overlapping star patterns, i.e., Stpc
structurally overlaps with Stpγ , and Stpd overlaps with Stpδ .

Additionally, analytical queries may contain FILTER clauses that
need to be considered while determining overlap between star pat-
terns. For example, consider a filter on GP1 to retrieve a subset
of products with price (property abbreviated as pc) > 5000, i.e.,
FILTER(?o5 > 5000). A possible strategy is to compute general-
ized composite star patterns (without filter) and apply restrictions
prior to the aggregation phase. Pushing the filter to a later phase in
the workflow may have implications on I/O and network transfer
costs associated with materialization of some irrelevant intermedi-
ate results. Another interesting case is that of unbound-property
star patterns containing triple patterns such as (?s1 ?p o1), used
to query unknown or don’t care relationships. Such queries need
special handling, specifically if the unbound-property triple pattern
participates in a join with other star patterns. Advanced optimiza-
tions for both these cases are out of scope of this paper. For the
rest of this paper, we consider optimization of multi-graph-pattern
queries involving bound-property star patterns with same filter con-
straints or filter constraints on a non-intersecting property.

Next, we generalize the notion of overlap to graph patterns by
capturing similarity of join structures between star patterns. In or-
der to do so, we introduce the concept of role-equivalence of join
variables. Given two triple patterns tp1 and tp2, a join variable jv1
is a variable in var(tp1) ∩ var(tp2). A join variable jv1 ∈ tp1 is
said to be role-equivalent to join variable jv3 ∈ tp3 if, (i) the cor-
responding triple patterns agree on the property component, i.e.,
prop(tp1) = prop(tp3), and (ii) the join variables play the same
role (subject, property, or object), i.e., role(jv1) in tp1 is the same
as role(jv3) in tp3.

Definition 3.2 (Overlapping Graph Patterns) Let graph pattern
GP1 involve star subpatterns Stpa, Stpb,..., such that jvab de-
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(a) Optional Group Filter:   

 σ  
({product, price}, {validFrom, validTo})(TG) 

  
 = 
 
 
 
 
 
 
 
 
 
 
 
 

 = TG’ 

tg1 =  (offer1,  product,  prod1), 
          (offer1,  price,       108),  
          (offer1,  validTo,   “08/08/2014”) 

tg2 =  (offer2,  product,  prod3), 
          (offer2,  price,       121) 

tg3 =  (offer3,  product,     prod1), 
          (offer3,  validFrom,  “02/08/2014” ),  
          (offer3,  validTo,       “08/08/2014”) 

tgall 

tgall 

(b) n-split: Example1 
χ({product, price}, { { validFrom}, {validTo} })(TG’)  
 
 
= 
 

                                                         

 
 

tg42 =   (offer8, product,  prod3), 
             (offer8,  price,       360), 
             (offer8, validTo,   “11/..”) 

tg12 =   (offer1, product,  prod1), 
             (offer1,  price,       108), 
             (offer1,  validTo,  “08/..”) 

tg21 =   (offer2,  product,  prod3), 
             (offer2,  price,       121) 

tg4 =  (offer8,  product,     prod3), 
          (offer8,  price,           360 ),  
          (offer8,  validFrom, “01/01/2014”), 
          (offer8,  validTo,      “11/01/2014”) 
 

tgall 

(c) n-split: Example2 
χ({product, price}, { {  }, {validTo} })(TG’)  
 
 
=                           

tg41 =   (offer8, product,  prod3), 
             (offer8,  price,       360), 
             (offer8, validFrom,“01/..”) 

tg11 =  (offer1,  product,  prod1), 
            (offer1,  price,       108) 

tg12 =   (offer1, product,  prod1), 
             (offer1,  price,       108), 
             (offer1,  validTo,  “08/..”) 

tg42 =   (offer8, product,  prod3), 
             (offer8,  price,       360), 
             (offer8, validTo,   “11/..”) 

tg41 =   (offer8, product,  prod3), 
             (offer8,  price,       360) 

opt 

Figure 4: NTGA logical operators to evaluate composite graph patterns

notes the variable that joins a triple pattern jtpa ∈ Stpa with jtpb
∈ Stpb. Let graph pattern GP2 involve star subpatterns Stpα,
Stpβ ,.... such that jvαβ denotes the variable that joins a triple
pattern jtpα ∈ Stpα with jtpβ ∈ Stpβ . Then, the graph patterns
GP1 andGP2 are said to overlap if the following conditions hold:

• Each star pattern Stpa ∈ GP1 overlaps with some star pattern
Stpα ∈ GP2

• Given a pair of overlapping star patterns Stpa and Stpα, their
join variables jvab and jvαβ are role-equivalent.

In the case of AQ2, graph patterns GP1 and GP2 overlap since
both star patterns overlap and have the same join structure, e.g.,
subject-object join between Stpa and Stpb in GP1 matches the join
structure between Stpα and Stpβ in GP2. In the case ofAQ3, both
star patterns overlap. However, Stpc joins Stpd using an object-
subject join, where as Stpγ joins Stpδ using an object-object join.
Since the join structures are not similar, we consider GP1 and GP2

to be non-overlapping. Though there may be possibilities to share
some scans and computations across non-overlapping graph pat-
terns, for the rest of the paper we consider optimization of overlap-
ping graph patterns.

Construction of a Composite Graph Pattern. Overlapping
graph patterns GP1 and GP2 can be re-written as a composite graph
pattern GP′ that captures the (non) overlapping substructures. For a
pair of overlapping star patterns Stpa ∈ GP1 and Stpα ∈ GP2,
we define a composite star pattern Stp′i such that:

• props(Stp′i) = Pprim ∪ Psec

• Pprim = props(Stpa) ∩ props(Stpα), set of primary proper-
ties defining common substructures across star patterns.

• Psec = { pi | pi ∈ props(Stpa) ∪ props(Stpα), pi /∈Pprim},
set of secondary properties defining non-overlapping structures.

For example, Stpa ∈ GP1 and Stpα ∈ GP2 can be rewritten as
Stp′a such that props(Stp′a) = { ty18, pf }, where ty18 (short for
rdf : type PT18) is the primary property and pf is the secondary
property (underlined). Similarly, Stpb ∈ GP1 and Stpβ ∈ GP2 can
be expressed as Stp′b with set of properties { pr, pc, ve}. Query
AQ1 can be re-written using a composite graph pattern:

GP′ = (Stp′1 1 Stp′2 1 Stp′3)

where props(Stp′1) = { ty18, pf }, props(Stp′2) = { pr, pc, ve},
and props(Stp′3) = { cn }.

Answers matching a composite graph pattern may contain super-
fluous subtuples that do not match either of the original patterns,
resulting in wrong aggregates. Hence, we need a way to validate
join combinations.

An NTGA-based rewriting of a SPARQL analytical query re-
quires support to compute and manipulate triplegroups that match
composite star patterns and composite graph patterns. Specifically,
we need support for the following operations – (i) A specialized
triplegroup-filter operator that validates secondary (optional) prop-
erties in a composite star pattern; (ii) An operator to extract subsets
of a triplegroup that match n original star patterns; (iii) A special
join operator that restricts joins on valid combinations of composite
star patterns; (iv) An operator in the spirit of MD-Join to compute
grouping-aggregations on triplegroups. Next, we formally define
the triplegroup-based logical operators. We assume our input to be
a set of subject triplegroups (triples grouped on subject column).

3.1 Logical Operators

Definition 3.3 (Optional Group Filter) Given a set of subject triple-
groups TG and a star pattern Stp containing a set of primary
properties Pprim, and a set of optional properties Popt, the op-
tional group-filter operator σγopt returns the subset of triplegroups
in TG that contains a non-empty subset of triples matching all
properties in Pprim and may contain triples matching properties
in Popt. Specifically,

σ
γopt
(Pprim,Popt)

(TG) := { tgi ∈ TG |
Pprim ⊆ props(tgi) ⊆ (Pprim ∪ Popt) }

where props(tgi) returns the set of properties in a triplegroup tgi.
Essentially, σγopt ensures that triplegroups contain a matching triple
for each of the primary properties and may contain matches for
properties inPopt. For example, given Pprim = {product, price},
triplegroup tg1, tg2, and tg4 are valid results for the σγopt expres-
sion in Figure 4(a). However, tg3 does not contain a matching
triple for the primary property price, and hence gets filtered out.
Note that valid triplegroups may have triples matching zero or more
of the two optional properties Popt = {validFrom, validTo}.
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Table 2: Evaluating composite graph patterns using α-Join

GP1 GP2 GP’ 1
γ
(α1∨α2)

(...)
Stp1:Stp2 Stp1:Stp2 Stp′1:Stp′2 α1 α2

ab:de ab:de ab:de − −
ab:de ab:def ab:def f =∅ f6=∅
ab:de abc:def abc:def c =∅ ∧ f=∅ c6=∅ ∧ f6=∅
abc:de ab:def abc:def c6=∅ ∧ f=∅ c =∅ ∧ f6=∅
abc:de ab:defg abc:defg c6=∅ ∧ f=∅ c =∅ ∧ f6=∅

∧ g=∅ ∧ g 6=∅

Definition 3.4 (n-split) Given a set of triplegroups TG, a set of
primary propertiesPprim, and n sets of secondary properties {Psec1 ,
Psec2 ,..., Psecn}, the n-split operator χ creates a set of n triple-
groups as follows:

χ(Pprim,{Psec1
,Psec2

,...,Psecn})(TG):= { tg′i, i ∈ [1, n]}

such that:

• tg′i = tgprim ∪ tgseci , where tgprim, tgseci ⊆ tg, tg ∈ TG

• props(tgprim) = Pprim and props(tgseci ) = Pseci

The n-split operator extracts n subsets of a triplegroup based
on n sets of secondary properties, one for each of the original
star patterns. Figure 4(b) shows triplegroups resulting from an n-
split operation on TG′ (n=2), with Pprim = {product, price},
and two sets of secondary properties – Psec1 = {validFrom},
and Psec2 = {validTo}. While triplegroup tg41 conforms to
the first pattern combination with properties { product, price,
validFrom }, triplegroups tg12 and tg42 match the second com-
bination { product, price, validTo}. Figure 4(c) shows an-
other example of the n-split operation with Psec1 = {} and Psec2={
validTo }, i.e., the first combination contains only primary (no
secondary) properties.

Let GPabcde and GPabdef be original graph patterns in a query and
let Stpabc and Stpdef be composite star patterns. The join (Stpabc
1 Stpdef) may result in pattern combinations such as abde that
do not match either of the original patterns and should be avoided.
We encode valid pattern combinations using α conditions, a set of
structural constraints on a TG equivalence class based on its sec-
ondary properties. For example, to ensure pattern combinations
abcde, triplegroups in TGabc must contain at least one triple with
property c, represented as a constraint α: c 6= ∅, for brevity.

Definition 3.5 (α-Join) Let TGx and TGy be two triplegroup equiv-
alence classes that join on variables jvx and jvy belonging to join-
ing triple patterns tpx and tpy , resp. Let α1, α2,...,αm be m con-
ditions involving secondary properties in the equivalence classes.
Then the α-Join operator 1

γ
{α1∨...∨αm} creates a joined triple-

group involving tgx ∈ TGx and tgy ∈ TGy if the following holds:

• Triplegroup tgx contains a matching triple for tpx, and triple-
group tgy contains a matching triple for tpy , such that their
variable substitutions match.

• tgx and tgy satisfy at least one of the α conditions.

Table 2 shows examples of graph patterns GP1 and GP2, their
composite graph pattern GP′, and α constraints for the α-Join oper-
ator. For example, conditions α1 and α2 in row (5) correspond to
the original graph patterns abcde and abdefg respectively, hence
avoiding materialization of triplegroups matching irrelevant pat-
terns such as abde, abdef, abdeg, abcdef, abcdefg, etc.

dtg1 = (Pr1.Off1.V1,    ty,      PT18),
(Pr1.Off1.V1,    pf,      Feat1),
(Pr1.Off1.V1,   pr ,     Prod1),
(Pr1.Off1.V1,    pc,     108),
(Pr1.Off1.V1,    ve,      V1),
(Pr1.Off1.V1,    cn,      UK)

 AgJ (TGBase, TG{ty18, pf, pr, pc, ve, cn}, l, , )  = TG{sumF, countF}

where  l = {SUM(?price), COUNT(?price)} and  = { pf != ⌀ }

dtg2 = (Pr2.Off2.V1,    ty,      PT18),
(Pr2.Off2.V1,    pr ,     Prod2),
(Pr2.Off2.V1,    pc,     360),
(Pr2.Off2.V1,    ve,      V1),
(Pr2.Off2.V1,    cn,      UK)

dtg3 = (Pr3.Off3.V2,     ty,      PT18),
(Pr3.Off3.V2,     pf,     {Feat1

Feat2},
(Pr3.Off3.V2,    pr ,     Prod3),
(Pr3.Off3.V2,    pc,     1008),
(Pr3.Off3.V2,    ve,      V2),
(Pr3.Off3.V2,    cn,      US)

Detail: TG{ty18, pf, pr, pc, ve, cn}

agtg1 = (Feat1.UK,   sumF,     414),
(Feat1.UK,   countF,  2)

agtg2 = (Feat1.US,   sumF,    1008),
(Feat1.US,   countF,  1)

agtg4 = (Feat2.US,   sumF,    1008),
(Feat2.US,   countF, 1)

TG{sumF, countF}

btg1 = (Feat1.UK,   sumF,     0),
(Feat1.UK,   countF,  0)

btg2 = (Feat1.US,   sumF,     0),
(Feat1.US,   countF,  0)

Base: TGBase

btg3 = (Feat2.UK,   sumF,     0),
(Feat2.UK,   countF,  0)

btg4 = (Feat2.US,   sumF,      0),
(Feat2.US,   countF,   0)

dtg4 = (Pr1.Off4.V1,    ty,      PT18),
(Pr1.Off4.V1,    pf,      Feat1),
(Pr1.Off4.V1,    pr ,     Prod1),
(Pr1.Off4.V1,    pc,     306),
(Pr1.Off4.V1,    ve,      V1),
(Pr1.Off4.V1,    cn,      UK)

agtg3 = (Feat2.UK,   sumF,     0),
(Feat2.UK,   countF,  0)

Figure 5: Example Triplegroup Agg-Join operation that computes
groupings based on feature-country combination

Definition 3.6 (TG Agg-Join) Let TGbase and TGdetail be two
triplegroup equivalence classes, θ be a condition involving vari-
able substitutions in TGbase and TGdetail, and let l be a list of ag-
gregation functions (f1, f2,...,fm) over aggregation variables a1,
a2, ..., am, respectively. Let α be a condition involving one of the
secondary properties in TGdetail. Then the triplegroup Agg-Join
operator,

γAgJ ( TGbase, TGdetail, l, θ, α)

creates a set of aggregated triplegroups ATG, where any aggre-
gated triplegroup agtgi ∈ ATG satisfies the following conditions:

• Each base triplegroup btgi ∈ TGbase is associated with a set of
triplegroups in TGdetail, using the following function :

RNG(btgi, TGdetail, θ, α) = { dtg ∈ TGdetail }

such that triplegroups btgi and dtg satisfy conditions in θ and α.

• Then, for each base triplegroup btgi ∈ TGbase, an aggregated
triplegroup agtgi ∈ ATG is produced with triples tik ∈ agtgi
that contain values corresponding to some aggregation function
fk and variable ak such that :

tik = (grpKey, createProp(fk, ak), fk_agtgi_ak)

whose values are computed as follows :

– grpKey is the subject of btgi; createProp(fk, ak) returns a
unique property based on combination of aggregation func-
tion and variable.

– Aggregate fk_agtgi_ak is computed by applying the function
fk on variable substitutions of ak in triplegroups matching
RNG(btgi, TGdetail, θ, α).
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σ


(TGSub, {ty18, pf} V {pr, pc, ve} V {cn})

⋈ (TGty18, pf, TGpr, pc, ve)
(1 V 2)

MR1

χ{prim}{sec}  (TGty18, pf, pr, pc, ve, cn)

MR3

MR4

MR5
⋈ (TGsumT, countT, TGsumF, countF )

⋈ (TGty18, pf, pr, pc, ve, TGcn)
(1 V 2)

MR2

 AgJ (TGcn,TGty18, pr,…,cn, l1, 1, 1)

 AgJ (TGpf,cn,TGty18,pf,…,cn, l2, 2, 2)

Optional group-filtering
Stp’1, Stp’2, Stp’3

-Join 
(Stp’1 ⋈ Stp’2)

Split into TGs matching 
GP1 and GP2

-Join 
(Stp’1 ⋈ Stp’2) ⋈ Stp’3

Agg-Join 
G2-Aggr2 (GP2)

Join aggregated TGs

Agg-Join 
G1-Aggr1 (GP1)

opt

MR1

MR2

Optional group-filter
Stp’1, Stp’2, Stp’3

-Join
(Stp’1 ⋈ Stp’2)

-Join
(Stp’1 ⋈ Stp’2) ⋈ Stp’3

 AgJ (TGpf,cn, TGty18,pf,…,cn, (l1, l2), (1,2), (1,2) )

Join aggregated TGs

MR3

MR4

Agg-Join
G’-Aggr’ (GP’)

σ


(TGSub, {ty18, pf} V {pr, pc, ve} V {cn})opt

⋈ (TGty18, pf, TGpr, pc, ve)
(1 V 2)

⋈ (TGty18, pf, pr, pc, ve, TGcn)
(1 V 2)

⋈ (TGsumT, countT, TGsumF, countF)

(a) (b)

Figure 6: Translation to MapReduce execution workflows: (a) Sequential and (b) Parallel evaluation of aggregations on a composite graph
pattern GP ′. Properties: ty18 (rdf : type PT18), pf (productFeature), pr (product), pc (price), ve (vendor), cn (country)

A base triplegroup btgi ∈ TGbase corresponds to a distinct group-
ing key and produces an aggregated triplegroup agtgi ∈ ATG.
Subset of triplegroups in TGdetail that contribute to an aggregated
triplegroup agtgi is computed using functionRNG(btgi, TGdetail,
θ, α), that returns the set of triplegroups in TGdetail that satisfy the
join condition θ as well as the α condition with respect to the base
triplegroup btgi. The α condition defines restrictions based on sec-
ondary properties in TGdetail.

Figure 5 illustrates an example TG Agg-Join operation between
TG equivalence classes TGBase (base) and TG{ty18,pf,pr,pc,ve,cn}
(detail), to compute groupings based on feature and country. The
RNG of a base triplegroup is calculated based on value bindings
of the grouping variables ?feature and ?country in detail triple-
groups (encoded as join condition θ). For triplegroup dtg1, bind-
ings δ1(?feature)={ Feat1 } and δ1(?country)={ UK }. The α
condition pf 6=∅ ensures the presence of the secondary property pf

(product feature). Triplegroup dtg2 does not satisfy theα condition
and hence does not contribute to any of the aggregated triplegroups.
The RNG of base triplegroups is as follows:

RNG(btg1, TG{ty18,pf,pr,pc,ve,cn}, θ, α) = { dtg1, dtg4}
RNG(btg2, TG{ty18,pf,pr,pc,ve,cn}, θ, α) = { dtg3 }
RNG(btg3, TG{ty18,pf,pr,pc,ve,cn}, θ, α) = ∅
RNG(btg4, TG{ty18,pf,pr,pc,ve,cn}, θ, α) = { dtg3 }

Given a base triplegroup btgi, the aggregated triplegroup is com-
puted by aggregating triplegroups in RNG of btgi. For example,
agtg1 is an aggregation of triplegroups dtg1 and dtg4 (RNG of
btg1). Note that RNG of btg3 is empty and the aggregated triple-
group agtg3 retains default values.

4. QUERY EXECUTION ON MAPREDUCE
In MapReduce, data processing tasks (or queries) are encoded

as a sequence of map-reduce function pairs which are executed
in parallel on a cluster of machines. Extended MapReduce sys-
tems such as Apache Hive and Pig support high-level query prim-
itives that are automatically compiled into a MapReduce execu-
tion workflow. The proposed logical operators were integrated into
an NTGA-based extension of Apache Pig, called RAPID+ [33,
25]. The extended system, called RAPIDAnalytics, includes pro-

posed optimizations to evaluate multi-aggregation SPARQL analyt-
ical queries. Both systems parse graph pattern queries in SPARQL
and support a set of logical and physical operators for both Pig and
NTGA. Interested readers can refer to [25] for architectural details
of RAPID+.

4.1 Translation to MapReduce Plans
As with other relational-style Hadoop extensions, query compi-

lation process in RAPIDAnalytics begins with a logical plan, which
is compiled into a physical plan with physical operators. A phys-
ical operator is either a single function or a function pair that cor-
responds to map and reduce phases of the logical operator. For
example, the optional group-filtering operator TG_OptGrpFilter
(σγopt ) is a single function and can be pipelined with other oper-
ators in either the map or the reduce phases. However, operators
such as the triplegroup Agg-Join TG_AgJ which require redistribu-
tion of input, are defined as map-reduce function pairs. The assign-
ment of the physical operators to MapReduce cycles constitutes a
MapReduce plan.

Next, we summarize the execution workflow of our example
queryAQ1 on MapReduce. As described earlier, overlapping graph
patterns GP1 and GP2 are re-written as a composite graph pattern:

GP′: Stpty18,pf 1 Stppr,pc,ve 1 Stpcn

Let TGSub be a set of subject triplegroups (set of triples grouped
by Subject column). Figure 6(a) shows the query plan with the as-
signment of operators to map-reduce (MR) cycles. The optional
group-filtering operator creates three sets of triplegroup equiva-
lence classes – TG{ty18,pf}, TG{pr,pc,ve}, and TG{cn}, that match
the composite star patterns. The two α-Join operators compute the
α-join between triplegroups to compute matches to the composite
graph pattern. The n-split operator extracts matches to the origi-
nal graph patterns GP1 and GP2. Subsequently, the two TG Agg-
Join operators (γAgJ ) compute the aggregations per country and
per feature-country, resp. The final ratio is computed by joining the
aggregated TG equivalence classes using a map-only phase.

An useful optimization [10, 5] is that a series of aggregations
on the same detail relation can be evaluated in parallel if they are
independent, i.e., the θ conditions of the second Agg-Join does not
involve values generated by the first Agg-Join. Figure 6(b) shows
the NTGA query plan and MapReduce execution plan that enables
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parallel execution of the TG Agg-Join operator by combining them
as a generalized operator (executed in MR cycle MR3):

γAgJ (TGg1, TG{ty18,pf,pr,pc,ne,cn}, (l1, l2), (θ1, θ2), (α1, α2))

4.2 Algorithms for Physical Operators
Algorithm 1 gives an overview of the job flow for key phases in

RAPIDAnalytics – Jobi, that computes the join between the triple-
group equivalence classes, and Jobk, that computes the aggregate
join between the triplegroup equivalence classes. If there is a struc-
tural overlap in the input graph patterns, the triplegroup equiva-
lence classes are computed based on the composite graph pattern.
This is achieved by evaluating the optional group-filtering operator,
TG_OptGrpFilter, based on the required and optional properties
in the composite graph pattern. Below are map-reduce algorithms
for the physical operators.

Algorithm 1: MR job workflow in RAPIDAnalytics
//Jobi:α-Join between TG equivalence classes
Map:

TG’← TG_OptGrpFilter(TG, <EC,{Pprim, Popt}>);
TG_AlphaJoin(TG′).Map();

Reduce:
TG”← TG_AlphaJoin(TG’).Reduce();

//Jobk:Agg-Join on TG equivalence classes
Map:

TG_AgJ(TG”).Map();
Reduce:

AggTG← TG_AgJ(TG”).Reduce();
//Jobn:Join Aggregated TGs
Map:

TG_Join(AggTG);

TG_AlphaJoin: The input to this operator is a set of annotated
triplegroups (matching a composite subpattern) whose join is to be
computed. In order to eliminate pattern combinations that do not
match any of the original graph patterns, all valid combinations
are encoded as a list of α conditions, one for each of the original
graph patterns. Algorithm 2 shows the map-reduce functions for
the TG_AlphaJoin operator that integrates α-based filtering of ir-
relevant triplegroups during the join between equivalence classes.

In the map phase, an input triplegroup is tagged either on the
Subject or Object value, based on the type of join. Each reduce()
receives annotated triplegroups corresponding to the same join key.
The algorithm iterates through triplegroups in the left equivalence
class (leftEC) and right equivalence class (rightEC), and computes
the join only if at least one of the α conditions is satisfied. For
example, two triplegroups with properties ab and de, are not joined
if the valid pattern combinations are abcde and abdef.
TG_AgJ: The input to this operator is a set of annotated triple-

groups that match the composite graph pattern. The output is a set
of aggregated triplegroups that contain the required aggregations.
Algorithm 3 shows the map-reduce functions for the TG_AgJ op-
erator. In order to reduce the number of intermediate triplegroups
that are shuffled to the reducers, we implement a hash-based aggre-
gation per mapper, i.e., instead of generating map output for each
map input triplegroup, we partially aggregate the triplegroups at
each mapper. The triplegroups are aggregated into a hashmap mul-
tiAggMap that is accessible across different map() invocations at a
mapper. This hash-based aggregation resembles a local combiner
within each mapper.

Each Agg-Join agj (identified by id) contains a θ condition,
from which the grouping key grp is extracted. In the map phase,

Algorithm 2: TG_AlphaJoin (Triplegroup α-Join)
Map (key:null, val: AnnTG atg)

if join on Subj then
emit 〈 atg.Sub, atg 〉;

else if join on Obj then
objList← extract objects corr. to join property from atg;
foreach obj ∈ objList do

emit 〈 obj, atg 〉;
Reduce (key:joinKey, val:List of AnnTGs TG′) ;

αList < α1, ..., αn >← α restrictions for current join;
leftList← extract leftEC AnnTGs from TG′;
rightList← extract rightEC AnnTGs from TG′;
foreach ltg ∈ leftList do

foreach rtg ∈ rightList do
if ∃ α ∈ αList such that ltg and rtg satisfy α then

emit 〈 joinTGs(ltg, rtg)〉;

as each input triplegroup atg is processed, aggregations are com-
puted if the α condition is satisfied. Once all aggregations for agj
are computed, triplegroup currAggTg is aggregated with existing
values in the mapper’s global hashmap multiAggMap. Once the
map() functions are complete, pre-aggregated entries in the global
hashmap multiAggMap are output. Each reduce() receives pre-
aggregated triplegroups corresponding to the same id-grp combi-
nation and further aggregates them.

Algorithm 3: TG_AgJ (Triplegroup Agg-Join)
Map (k:null, v: AnnTG atg)

//Initialize multiAggMap for Map()
//aggregation
foreach agj< id, aggList, theta, alpha > ∈ agjList do

if atg satisfies alpha then
grp← extract agj.theta from atg ;
curAggTg← Aggregate atg based on aggList;
Aggregate curAggTg to multiAggMap(k:id#grp);

Map.clean ()
Emit pre-aggregated entries in multiAggMap;

Reduce (k:id#grp, v:List of AggTGs TG) ;
grpAggTg← Aggregate TG based on aggList;
Emit aggregated triplegroup grpAggTg;

5. EMPIRICAL EVALUATION
This section presents a comprehensive evaluation of the proposed
algebraic optimizations for RDF analytical queries. The perfor-
mance of RAPIDAnalytics with two Hive approaches, (i) Hive (Naive),
SPARQL query translated into HiveQL, and (ii) Hive (MQO), an
MQO-based rewriting [27] of graph patterns using left outer joins,
followed by a second HiveQL query to compute associated group-
ing and aggregations. Evaluation also included RAPID+ (Naive) [25],
NTGA-based sequential evaluation of multiple graph patterns and
grouping-aggregation phases.

5.1 Setup
Experiments were conducted on NCSU’s VCL [34], where each

node in the cluster was a dual core Intel X86 machine with 2.33GHz
processor speed, 4GB memory, running Red Hat Linux. 10, 50, and
60-node Hadoop clusters (block size 128MB, 1GB heap-size for
child jvms) were used with Hive release 0.12.0 and Hadoop 0.20.2.

Testbed - Dataset and Queries. Two synthetic datasets were
generated by the Berlin SPARQL Benchmark (BSBM) [1] data
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Query GP1* Group BY GP2* Group BY

MG1:lo, 
MG2:hi

3:2 {feature} 2:2 ALL

MG3:lo, 
MG4:hi

3:3:1 {feature, country} 2:3:1 {country}

MG6 4:2:2 {cid, gene} 4:2:2 {cid}

MG7 4:2:2 {cid, drug} 4:2:2 {cid}

MG8 4:2:2 {cid, gene} 4:2:2 ALL

MG9 2:1 {gene} 2:1 ALL

MG10 3:1 {disease,  gene} 2:1 {gene}

MG11 2:2 {country} 2:1 ALL

MG12 2:2 {country, pubType} 2:1 {country}

MG13 3:1 {author,pubType} 3:1 {pubType}

MG14 3:1 {author,pubType} 3:1 {pubType}

MG15:lo 3:1 {authorlastname} 3:1 ALL

MG16:hi 3:1 {authorlastname} 3:1 ALL

MG17 3:2 {country} 3:1 ALL

MG18 3:2 {author, country] 2:2 {country}

* No. of triple patterns in Stp1 : Stp2 : … 

Figure 7: Evaluated RDF Analytical Queries

generator tool – BSBM-500K (43GB, 500K Products,∼175M triples)
and BSBM-2M (172GB, 2M Products, ∼700M triples). Evaluation
of real-world RDF analytical queries was conducted on a chemoge-
nomics RDF data warehouse, Chem2Bio2RDF [13], that is an ag-
gregation of data from multiple chemical, biological, and chemoge-
nomics data sources that link chemical compounds with targets,
genes, side-effects, diseases, and publications (60GB,∼340M triples).
Additional experiments were conducted on a second real-world dataset,
PubMed (Bio2RDF release 2) [8] (230GB, ∼1.7B triples).

The evaluation tested simple (G1-G9) as well as multi-grouping
queries (MG1-MG18) with varying selectivities, varying granu-
larity of groupings (GROUP BY ALL vs. GROUP BY feature), and
varying structures of associated graph patterns, as summarized in
Figure 7. Queries G1-G4 and MG1-MG4 were adapted from the
BSBM Business Intelligence Use Case 3.1 [1], an e-commerce use
case. Queries G5-G9 and MG6-MG10 were adapted based on
case studies [13] on the Chem2Bio2RDF dataset, with use cases
such as disease-specific drug discovery. Queries MG11-MG18
involve PubMed records. Additional details about all evaluated
queries in SPARQL and Hive scripts are available on the project
website [2].

Pre-processing. For Hive approaches, triples were vertically
partitioned (VP) [3] and loaded into Hive tables with property-
object partitions for rdf:type triples. All Hive tables were stored as
Optimized Row Columnar (ORC)5 file format which aggressively
compresses data (∼80-96% reduction in data size with default com-
pression) and has optimizations such as light-weight indexes to skip
row groups for predicate-based filtering, column-level aggregates
etc. For RAPIDAnalytics and RAPID+, triples were grouped on
subject column to generate subject triplegroups, stored in text files
based on equivalence class (set of properties). Further, rdf:type
triples with ProductType objects were grouped based on prefixes to
avoid creation of multiple small files. Additional details about the
5
https://cwiki.apache.org/confluence/display/Hive/

LanguageManual+ORC

pre-processing phase is available on the project website [2].

Query
BSBM Query Chem2Bio2RDF

500K 2M Hive R.A.
Hive R.A. Hive R.A. G5 144 124

G1:lo 1023 209 3261 215 G6 99 102
G2:hi 974 182 3002 158 G7 105 118
G3:lo 1632 287 6088 302 G8 142 104
G4:hi 1112 183 5419 170 G9 535 91

Table 3: Performance comparison of Hive and RAPIDAnalytics
(R.A.) with varying structures of groupings (in seconds)

5.2 Evaluation Results
Varying Structure of Groupings. Four single-grouping queries

were evaluated with varying selectivity of graph patterns and group
granularity (G1-G2 with GROUP BY ALL and G3-G4 with GROUP

BY feature). Queries G1 and G3 pertain to ProductType1 (low se-
lectivity), whileG2 andG4 pertain to ProductType9 (high selectiv-
ity). Table 3 shows a performance comparison of Hive and RAPI-
DAnalytics for BSBM-500K (10-node cluster). Hive requires 4 MR
cycles for all queries (MR1-MR2 for star patterns, MR3 to join
the stars, and MR4 to compute grouping-aggregation). In cases
where (n-1) of the joining relations are small enough to fit in mem-
ory, Hive uses a map-join (map-only MR cycle), e.g., all subqueries
involving ProductType1 and ProductType9. Also Hive enables op-
timizations such as push down of PROJECTs and partial aggregation
during preceding join operations. RAPIDAnalytics executes all four
queries in 2 cycles (MR1 for graph pattern processing and MR2

for the Agg-Join operation), with a consistent performance gain of
∼80% over Hive for all four queries.

Multiple Grouping-Aggregation Constraints. Figure 8(a-b)
shows a performance comparison of all four approaches for queries
MG1-MG4 with lo (low) and hi (high) query selectivity. Queries
MG1-MG2 require 3 MR cycles per graph pattern in Hive, fol-
lowed by 2 cycles for the grouping-aggregation (total 9 cycles).
MQO-based Hive approach executes the composite graph pattern
in 3 cycles, followed by 4 MR cycles to extract the distinct com-
binations matching the original patterns and compute the aggrega-
tions (total 7 cycles). RAPID+ requires 2 MR cycles per subquery
(1 MR for graph pattern matching, 1 MR for grouping-aggregation)
and a map-only cycle to join the aggregated results (total 5 MR cy-
cles). RAPIDAnalytics evaluatedMG1-MG2 in 3 cycles (MR1 to
compute the composite graph pattern, MR2 for parallel evaluation
of the two grouping-aggregations and a map-only MR3 to join the
aggregated triplegroups).

Queries MG3-MG4 involve complex graph patterns with 3 star
patterns. Sequential graph pattern processing in naive Hive re-
sults in a total of 11 MR cycles, while MQO-based Hive approach
takes half the number of cycles for evaluating the composite graph
pattern (8 MR cycles). RAPID+ requires 2 MR cycles per graph
pattern (7 MR cycles), while RAPIDAnalytics further reduces the
number of cycles to 4 by parallel evaluation of the two grouping-
aggregations. In general, the algebraic optimization in RAPIDAna-
lytics to group and aggregate on a composite graph pattern showed
30-45% gains over sequential evaluation of the different phases us-
ing naive RAPID+.

Scalability Study. Table 3 and Figure 8(b) show performance
comparisons of 8 queries on a larger dataset BSBM-2M. The com-
pression of input and intermediate results using the ORC File for-
mat, initializes less number of mappers (incur the overhead of de-
compression). RAPID+ and RAPIDAnalytics initiate more number
of mappers for most MR cycles leading to better utilization of re-
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Figure 8: A performance comparison for multi-grouping SPARQL analytical queries

sources. For multi-grouping queries, Hive (MQO) did better than
Hive for most cases with larger dataset due to higher savings in ma-
terialization of intermediate results, associated I/Os, and network
transfers. RAPIDAnalytics showed 90-93% performance gains over
Hive (MQO) for queries MG1-MG2 on BSBM-500K, which fur-
ther increased to 97% with BSBM-2M. Similar increase was seen
for queries MG3-MG4, where performance gains of RAPIDAn-
alytics over Hive (MQO) increased from 78-81% to 93% with the
larger setup.

Real-world RDF Analytics. Table 3 shows results for queries
G5-G9 on Chem2Bio2RDF. Query G5 with 6 join operations was
evaluated by Hive using map-only joins (due to small size VP ta-
bles). Similar optimizations were enabled by Hive for G6-G8,
with clear benefits seen in the case of G7, where RAPIDAnalyt-
ics takes 12 additional seconds when compared to Hive. Query
G9 involves medline properties with large VP tables, forcing Hive
to use full map-reduce cycles. RAPIDAnalytics shows 83% per-
formance gain over Hive for G9. Figure 8(c) shows results for
multi-aggregation queries, i.e., MG6-MG8 with high selectivity
(small VP relations), while queries MG9-MG10 involve large VP
relations. Naive Hive evaluates query MG6 using 13 MR cycles
(11 map-only), while MQO-based Hive approach requires 8 MR
cycles (6 map-only). RAPID+ evaluates MG6 using 7 MR cy-
cles (all map-reduce), with execution times almost comparable with
Hive (MQO). RAPIDAnalytics requires a total of 4 MR cycles. In
general, even though the Hive-based approaches evaluate most of
the joins in MG6 −MG8 as map-joins, RAPIDAnalytics shows
a performance gain of 40-50% over Hive (MQO) and 60% gains
over naive Hive for queries MG6-MG8. In case of queries MG9-
MG10, the findings are similar to BSBM datasets, with RAPID-
Analytics showing close to 90% performance gain over Hive ap-
proaches.

Results for the Pubmed dataset are summarized in Table 4. Queries
MG11 −MG12 and MG17 −MG18 compute groupings over
PubMed records, the associated grants, and the countries where
the grants are issued. Queries MG13-MG16 compute groupings
based on publication type and authors of PubMed records and ag-
gregate the number of Medical Subject (MeSH) Headings (query
MG13) or associated chemicals (queries MG14-MG16). Fur-
ther, selectivity of the queries were varied by querying different
types of publications, e.g., MG15 and MG16 have similar query
structure except that MG15 retrieves PubMed records with publi-
cation type “Journal Article” while MG16 concerns publications
of type “News” (higher selectivity than journal article). Across
all queries, RAPIDAnalytics showed improvements of above 93%
over both Hive approaches. Hive performed the worst for queries

Query PubMed (230GB dataset, 60-node cluster)
Hive Hive RAPID+ RAPID

(Naive) (MQO) (Naive) Analytics
MG11 2111 1753 229 124
MG12 2771 2898 229 126
MG13 120min* 15060 1102 651
MG14 18713 9124 756 462
MG15 13746 7320 619 338
MG16 10777 5795 464 237
MG17 2210 1851 226 118
MG18 5654 4817 306 202
* Eventually failed due to insufficient HDFS disk space.

Table 4: Evaluation of real-world queries on PubMed dataset (exe-
cution time in seconds)

MG13-MG16 that involve large VP relations (MeSH heading and
chemical), due to the initiation of less number of mappers based on
compressed (ORC) file sizes. Furthermore, while the Hive MQO
approach eventually finished execution for query MG13, the naive
Hive approach failed while computing the second graph pattern due
to insufficient disk space. This is because one of the star-join cy-
cles produces join output of size 190GB, which is materialized
twice in the case of sequential execution of graph patterns, thus in-
creasing the overall demand of required HDFS disk space. On the
contrary, RAPIDAnalytics benefits from the concise representation
of intermediate results using the NTGA approach while represent-
ing join results involving the multi-valued property MeSH heading.
Further, the shared execution of graph patterns in RAPIDAnalytics,
results in less number of materialization steps and less demand on
required disk space. Overall, RAPIDAnalytics resulted in 40-48%
performance gains over the sequential execution of graph patterns
in RAPID+.

Discussion. Though Hive(MQO) compiles into a shorter exe-
cution workflow when compared to naive Hive, in some cases the
performance is worse than sequential execution of subqueries. This
is because of Hive’s lack of support for materialized views or views
with complex join expressions, forcing the evaluation of the com-
posite graph pattern as a separate HiveQL query. A direct impli-
cation of this is that optimizations based on the final query such as
early projections and partial aggregations, which reduce the I/O and
materialization in the intermediate phases, are not applicable. An-
other observation is that vertical-partitioning coupled with the ORC
file format can be beneficial for queries that involve high-selectivity
properties. Irrespective of the selectivity of the involved properties,
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the algebraic optimization techniques in RDFAnalytics were found
to be beneficial for multi-grouping queries by enabling shared exe-
cution of graph patterns as well as the required aggregations. RAPI-
DAnalytics can further benefit by integration of optimizations such
as map-side joins and partial aggregations. While SPARQL ana-
lytical queries with unbound properties were not considered in this
work, proposed optimizations in this paper can be extended based
on NTGA-based optimizations in [32] to support composite graph
patterns involving unbound-property triple patterns.

6. CONCLUSION AND FUTURE WORK
In this paper, we presented an algebraic optimization of SPARQL

analytical queries that enables shared execution of common subex-
pressions across related groupings. Such a refactoring allows par-
allel evaluation of independent aggregations with savings in I/O
and processing costs, a critical requirement while supporting large
scale RDF analytics on Cloud platforms. Experiments on real-
world and synthetic benchmark datasets showed promising results
for SPARQL queries with multi-aggregation constraints. A natural
extension of this work is to support more complex OLAP queries
on RDF data models.
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APPENDIX
A. SPARQL ANALYTICAL QUERIES

In this section, we provide a subset of evaluated SPARQL analytical
queries with multiple grouping-aggregation constraints. The complete set
of evaluated queries and Hive scripts are available on the project website [2].
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G5. Retrieve drug-like compounds in PubChem that share common targets
with Dexamethasone in the DrugBank (count targets per compound).
SELECT ?cid (COUNT(?cid) as ?active_assays {
?b CID ?cid; outcome ?a; Score ?s1; gi ?gi .
?u gi ?gi; geneSymbol ?g .
?di gene ?g; DBID ?dr .
?dr Generic_Name "Dexamethasone" .
} GROUP BY ?cid

G6. Retrieve compounds in PubChem that are active towards targets in a
given pathway (MAPK signalling pathway) in KEGG pathway dataset.
SELECT ?cid (COUNT(?cid) as ?active_assays) {
?b CID ?cid; outcome ?a; Score ?s1; gi ?gi .
?u gi ?gi .
?pathway protein ?u; Pathway_name ?pname .
FILTER regex(?pname,"MAPK signaling pathway","i")
} GROUP BY ?cid

G7. Retrieve pathways in the KEGG dataset that contain targets with drugs
associated with hepatotoxicity (analyse side-effect hepatomegaly).
SELECT ?pid (COUNT(?pid) as ?count) {
?sider side_effect ?se; cid ?cid .
FILTER regex(?se,"hepatomegaly","i")
?dr CID ?cid .
?target DBID ?dr; SwissProt_ID ?u .
?pathway kegg:protein ?u; pathwayid ?pid .
} GROUP BY ?pid

MG1. Compare the average price of products per feature vs. price across
all features (ProductType1).
SELECT ?f ?sumF ?cntF ?sumT ?cntT {
{ SELECT ?f (COUNT(?pr2) ?cntF) (SUM(?pr2) ?sumF)
{?p2 type ProductType1; label ?l2; productFeature ?f.
?off2 product ?p2; price ?pr2 .

} GROUP BY ?f
}
{ SELECT (COUNT(?pr) As ?cntT) (SUM(?pr) As ?sumT)
{?p1 type ProductType1; label ?l1 .
?off1 product ?p1; price ?pr .

} } }

MG3. Compare the average price of products per country-feature vs. price
per country across all features (for products of type ProductType1).
SELECT ?f ?c ?sumF ?cntF ?sumT ?cntT {
{ SELECT ?f ?c (COUNT(?pr2) ?cntF) (SUM(?pr2) ?sumF)
{?p2 type ProductType1; label ?l2; productFeature ?f.
?off2 product ?p2; price ?pr2; vendor ?v2 .
?v2 country ?c .

} GROUP BY ?f ?c
}
{ SELECT ?c (COUNT(?pr) As ?cntT) (SUM(?pr) As ?sumT)
{?p1 type ProductType1; label ?l1 .
?off1 product ?p1; price ?pr; vendor ?v1 .
?v1 country ?c .

} GROUP BY ?c
} }

MG6. Compare the count of targets for a chemical compound and gene
combination vs. targets per compound (across all genes).
SELECT ?cid ?g1 ?aPerCG ?aPerC {
{ SELECT ?cid ?g1 (COUNT(?cid) as ?aPerCD)
{?b1 CID ?cid; outcome ?a1; Score ?s1; gi ?gi1 .
?u1 gi ?gi1; geneSymbol ?g1 .
?di1 gene ?g1; DBID ?dr1 .

} GROUP BY ?cid ?g1
}
{ SELECT ?cid (COUNT(?cid) as ?aPerG)
{?b CID ?cid; outcome ?a; Score ?s; gi ?gi .
?u gi ?gi; geneSymbol ?g .
?di gene ?g; DBID ?dr .

} GROUP BY ?cid
} }

MG9. Compare no. of medline publications per gene vs. total count.
SELECT ?gs ?pPerGene ?pT {
{ SELECT ?gs (COUNT(?gs) as ?pPerGene)
{?g geneSymbol ?gs .
?pmid gene ?g; side_effect ?se .

} GROUP BY ?gs
}
{ SELECT (COUNT(?gs1) as ?pT)
{?g1 geneSymbol ?gs1 .
?pmid1 gene ?g1; side_effect ?se1 .

} } }

MG11. Compare the count of journals funded by grant agencies of a coun-
try with the total count of journals published.
SELECT ?c ?cntC ?cntT {
{ SELECT ? (COUNT(?g) as ?cntC)
{?pub journal ?j; grant ?g .
?g grant_agency ?ga; grant_country ?c .

} GROUP BY ?c
}
{ SELECT (COUNT(?g1) as ?cntT)
{?pub1 journal ?j1; grant ?g1 .
?g1 grant_agency ?ga1 .

} } }

MG13. Compare the number of medical subject headings (MeSH) associ-
ated per author and publication type with total MeSH per publication type.
SELECT ?a ?pty ?perPT ?perAPt {
{ SELECT ?a ?pty (count(?m) as ?perAPT)
{?pub pub_type ?pty; mesh_heading ?m; author ?a .
?a last_name ?ln .

} GROUP BY ?a ?pty
}
{ SELECT ?pty (count(?m1) as ?perPT)
{?p1 pub_type ?pty; mesh_heading ?m1; author ?a1 .
?a1 last_name ?ln1.

} GROUP BY ?pty
} }

MG16. Compare the number of compounds associated with publications
of type “News” (higher selectivity than Journal Articles).
SELECT ?ln ?perA ?allA {
{ SELECT ?ln (count(?chem) as ?perA)
{?pub pub_type “News”; chemical ?ch; author ?a .
?a last_name ?ln .

} GROUP BY ?ln
}
{ SELECT (count(?chem1) as ?allA)
{?pub1 pub_type “News”; chemical ?ch1; author ?a1 .
?a1 last_name ?ln1.

} } }

MG18. Count journal articles per author and grant-awarding country and
compare with total journal articles per county (across authors).
SELECT ?c ?a ?perC ?perAC {

{ SELECT ?c ?a (count(?g) as ?perAC)

{?p pub_type “Journal Article”; author ?a; grant ?g.

?g grant_agency ?ga; grant_country ?c .

} GROUP BY ?c ?a

}

{ SELECT ?c (count(?g1) as ?perC)

{?pub1 pub_type “Journal Article”; grant ?g1 .

?g1 grant_agency ?ga1; grant_country ?c .

} GROUP BY ?c

} }
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ABSTRACT
Knowledge bases that summarize web information in RDF triples
deliver many benefits, including providing access to encyclopedic
knowledge via SPARQL queries and end-user interfaces. As the
real world evolves, the knowledge base is updated and the evolu-
tion history of entities and their properties becomes of great inter-
est to users. Thus, users need query tools of comparable power
and usability to explore such evolution histories or flash-back to
the past. An integrated system that supports user-friendly queries
and efficient query evaluation on the history of knowledge bases is
required. In this paper, we introduce (i) SPARQLT, a temporal ex-
tension of SPARQL that expresses powerful structured queries on
temporal RDF graphs, (ii) an efficient in-memory query engine that
takes advantage of compressed multiversion B+ trees to achieve
fast evaluation of SPARQLT queries, and (iii) a query optimizer that
improves selectivity estimation of temporal queries and generates
efficient join orders using the statistics of temporal RDF graphs.
The performance and scalability of our system are validated by ex-
tensive experiments on real world datasets, which shows significant
performance improvement comparing with other approaches.

1. INTRODUCTION
Knowledge bases that summarize valuable information in the

RDF format are rapidly growing in terms of scale and significance
and playing a crucial role in many applications such as seman-
tic search and question answering. The extraordinary success of
crowdsourcing and text mining for knowledge discovery makes
it easy to generate and update the information in the knowledge
bases. In fact, large knowledge bases undergo frequent changes.
Table 1 lists the statistics of Wikipedia Infobox edit history, which
shows that updates are quite common in many properties: e.g., on
average each value in the population property of the city pages is
updated more than 7 times. This is not specific to Wikipedia, but
also happens in other knowledge repositories.

The management of historical information has emerged as a crit-
ical issue for knowledge bases. In fact, timestamping is an impor-
tant part of the provenance information that is associated with each
RDF triple in the knowledge base. The evolution history of knowl-

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

Category Property Average Number of Updates
Software Release 7.27

Player Club 5.85
Country GDP(PPP) 11.78

City Population 7.16

Table 1: Statistics of Wikipedia Infobox Edit History

edge bases captures and describes the change of real world entities
and properties, and thus is of great interest to users. However, the
size of the history is very large and the schema of knowledge base is
also under evolution, which presents challenges in query language,
query processing and indexing.

As the RDF model for representing knowledge bases is gain-
ing great popularity, the importance of managing and querying the
evolution history of knowledge bases is also recognized. Gutier-
rez et al. [17] extended the RDF model with time elements and
several approaches [16, 29, 30, 32] have been proposed to support
the queries on temporal RDF datasets. Most previous works em-
ploy relational databases and RDF engines to store temporal RDF
triples and rewrite temporal queries into SQL/SPARQL for eval-
uation. The languages proposed in these works use an interval-
based temporal model which leads to complex expressions for tem-
poral queries, e.g., those requiring joins and coalescing [12, 33].
At the physical level, previous approaches exploit indexes such as
tGrin [30] to accelerate the processing of simple temporal queries,
but they do not explore the use of general temporal indices and
query optimization techniques. This limits their scalability and per-
formance on large knowledge bases and for complex queries.

In this paper, we describe a vertically integrated system RDF-
TX (RDF Temporal eXpress) that efficiently supports the data man-
agement and query evaluation of large temporal RDF datasets while
simplifying the temporal queries for SPARQL programmers and
consequently, for end-user interfaces facilitating the expression of
the same queries. To support the queries over the evolution his-
tory of knowledge bases, we propose efficient storage and index
schemes for temporal RDF triples using multiversion B+ tree [7]
and implement a query engine which achieves fast query evalua-
tion by taking advantage of comprehensive indices. We also build
a query optimizer that generates efficient join orders using a cost-
based model and the statistics of temporal RDF graphs.

We propose a general and scalable solution for the problem of
managing and querying massive temporal RDF data based on three
main contributions:
• We propose SPARQLT , a temporal extension of the struc-

tured query language SPARQL based on a point-based tem-
poral model which simplifies the expression of temporal joins
and eliminates the need for temporal coalescing. This ap-
proach makes possible end-user interfaces, such as those in [6,
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15], where queries are entered via simple by-example condi-
tions in the infoboxes of Wikipedia pages.
• We present an efficient main memory system RDF-TX for

managing temporal RDF data and evaluating SPARQLTqueries.
Our system uses multiversion B+ tree (MVBT) to store and
index temporal RDF triples. An effective delta encoding
scheme is introduced to reduce the storage overhead of in-
dices. The algorithms on MVBT are extended and optimized
to exploit the characteristics of the compression scheme and
query patterns. Experimental evaluation demonstrates supe-
rior performance and scalability of RDF-TX compared with
other approaches.
• We implement a query optimizer that generates the efficient

join orders of SPARQLT query patterns using the statistics of
temporal RDF graphs. To manage temporal statistics, we in-
troduce compressed Multi-Version SB Trees (MVSBT) that
provide highly accurate estimation of statistics with a small
storage overhead.

The rest of this paper is organized as follows. Section 2 provides
an overview of RDF-TX system and temporal RDF model. Then
we present the SPARQLTquery language in Section 3. Section 4 de-
scribes our storage model and index compression techniques. The
query evaluation techniques are discussed in Section 5. Section 6
introduces a query optimizer for join order optimization. We eval-
uate our system on real world datasets in Section 7, and discuss
related work in Section 8. Finally, we conclude in Section 9.

2. OVERVIEW AND DATA MODEL
In this section, we discuss the challenges of supporting temporal

queries against the history of knowledge bases and provide a gen-
eral overview of the RDF-TX system. Then we review the temporal
RDF model introduced in [17].

2.1 Overview
The addition of temporal information to the basic RDF model

poses difficult challenges that parallel those encountered by re-
searchers working on extending the relational model with temporal
information. A first lesson learned from that experience is that sup-
porting temporal event information is simple, but state-based tem-
poral information presents many challenges. In fact, timestamps
can be associated with temporal events via standard RDF predicates
(e.g. birthDate and establishedYear). Then they can be queried as
any ordered domain.

Supporting state information is much more complex, as demon-
strated by the many temporal representations and constructs pro-
posed [12, 13, 25, 33] and the rich set of interval-based operators
required [5]. For instance, answering a simple query such as “Who
was the president of University of California on 9/9/2009?” re-
quires determining the time interval that contains 9/9/2009. In a
valid time temporal database, the curators are responsible for sup-
plying these timestamps, thus creating a valid-time history. How-
ever, in DBpedia and other web repositories, the curators do not up-
date timestamps directly: instead they update web pages and asso-
ciated Infoboxes to reflect the changes that occurred in the domain
they describe. Thus, readers of the web page will notice a change
of the president name from Mark Youdof to Janet Napolitano. The
date and time of this change, i.e. the timestamp in which the up-
date was executed by the system, is known as transaction time (or
system time) and, as such, it is constructed from the system log.

Whereas tardy curators will eventually enter the correct valid
time, any tardiness of their actions adds permanently to the im-
precision of a transaction time databases. Nevertheless, when as in

Figure 1: RDF-TX Architecture

the case of Wikipedia, valid time histories are not available, trans-
action time history will provide a reasonable substitute. Indeed,
since the varying tardiness with which Wikipedia Infoboxes are re-
freshed has not damaged their popularity, it is reasonable to expect
that databases describing their system time history will be equally
popular, particularly when users are given tools to compensate for
temporal imprecision1.

Moreover, there are other scenarios in which transaction time
histories are needed:
• History Browsing and Analyzing [14, 15]. The history of

knowledge base captures the revisions of knowledge, which
is of great interest for editors and users to understand how
the knowledge is evolved and updated.
• Knowledge Auditing and Verification [35]. Timestamping, as

an important part of provenance, is important for ensuring the
quality of facts in many applications. A system with tempo-
ral query support also provides administrators with previous
states of knowledge bases for auditing purposes.
• Backup and Recovery. The history of knowledge bases can

be used to backup and recover missing information.
In this paper we present query extensions and an efficient system
for managing and querying the transaction time history of knowl-
edge bases. However, the user model and query constructs apply
to valid-time histories as well. At the physical level, although the
storage structure is designed for the transaction time model, our
implementation remains effective for most valid-time histories as
discussed in our technical report [2].

Figure 1 shows the high level architecture of our system, which
can be divided into two main components as follows.
Historical Query Compiler. To express queries against the his-
tory of knowledge bases, we introduce a temporal extension of
SPARQL called SPARQLT . Users can write and submit SPARQLT

queries through our interface. Then the SPARQLT queries are com-
piled to query plans represented as graphs of query patterns and
passed to the temporal query optimizer. The optimized query plans
are submitted to the Execution Engine for evaluation.
Execution Engine. In our engine, the historical information is rep-
resented as temporal RDF triples and stored using compressed MVBT
indices that support fast query processing. The query processor
transforms the query plans from compiler to execution plans ex-
pressed in query operators (e.g. temporal selection and join) and
executes them on the compressed MVBT indices.
1Provenance annotations that record the tardiness of refreshes can
go a long way to cure this problem.
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Predicate Object Timestamp

president
Mark Yudof 06/16/2008 . . . 09/29/2013

Janet Napolitano 09/30/2013 . . . now
endowment

(billions)
10.3 07/01/2013 . . . 06/30/2014
13.1 07/01/2014 . . . now

undergraduate
184,562 05/14/2013 . . . 01/29/2015
188,300 01/30/2015 . . . now

staff
18,896 08/29/2013 . . . 01/29/2015
19,700 01/30/2015 . . . now

budget
(billions)

22.7 01/30/2013 . . . 01/29/2015
25.46 01/30/2015 . . . now

Table 2: Temporal RDF Triples for University of California

2.2 Data Model
Knowledge bases such as DBpedia [10] and Yago2 [18] can be

represented as RDF graphs which consist of RDF triples in the for-
mat (subject, predicate, object). The subject and predicate of an
RDF triple are elements from the set of Uniform Resource Identi-
fiers U , while the object is a URI from U or a value from the set
of literals L. For example, the RDF triple for “The president of
University of California is Mark Yudof.” is:

• subject: http://www.w3.org/edu/University_of_California
• predicate: http://www.w3.org/elements/president
• object: http://www.w3.org/people/Mark_Yudof

For the sake of simplicity, we do not discuss the concept of blank
nodes and assume the prefix parts of URI (e.g. http://www.w3.org/
edu/) are given. Above RDF triple is represented as (University of
California, president, Mark Yudof ).

Since the basic RDF model is designed for static information,
we represent the evolution history of knowledge bases using the
temporal RDF model proposed in [17] that extends the RDF model
with temporal elements. Each RDF triple is annotated with a tem-
poral element to represent the time when this triple is valid. For-
mally, given a point-based temporal domain T , a Temporal RDF
Graph consists of a set of temporal RDF triples where each tempo-
ral RDF triple is a RDF triple (s, p, o) annotated with a temporal
element t ∈ T . A set of temporal RDF triples with consecutive
time points {(s, p, o) [t] | ts ≤ t ≤ te} are encoded using the
interval-based expression as: (s, p, o) [ts . . . te].

The evolution history of subject University of California is rep-
resented as a set of temporal RDF triples, as shown in Table 2. All
the triples share the same subject University of California. We use
DAY as the granularity of time and now as the current time. Typi-
cally, one triple is valid over several days, which we represent with
. . . between the start day and the end day (start and end included):
e.g. [07/01/2013 . . . 06/30/2014] represents all the days between
07/01/2013 and 06/30/2014.

3. SPARQLT QUERY LANGUAGE
To support temporal queries over the history of knowledge bases,

we propose a temporal extension of SPARQL called SPARQLT.
One main difference between SPARQLT and previous works is the
choice of the temporal model. Many existing works [29, 30, 32]
use the interval-based model because of efficiency considerations.
However, to express temporal queries, the interval-based represen-
tation requires additional operators such as temporal interval over-
lap, intersect and coalesce, which introduce complications and dif-
ficulties [12, 42], particularly for casual users working with friendly
wysiwyg interfaces. Therefore, we use a point-based temporal model
that resolves these problems at the logical level; however at the
physical level we retain the interval representation for efficiency

reasons. Queries on the point-based model can be easily mapped
into equivalent ones on the interval-based model for execution.

3.1 SPARQLT Syntax
SPARQLTextends SPARQL with temporal patterns and constructs

to query temporal RDF data. To simplify our presentation, we first
review the standard syntax of SPARQL [28] and then explain our
temporal extension.
SPARQL graph patterns are defined as follows:
• A SPARQL graph pattern is a triple {s p o} from (U ∪ L ∪
V)× (U ∪ V)× (U ∪ L ∪ V) where V is a set of variables.
• If S and S′ are SPARQL graph patterns and F is a filter

clause, (S AND S′), (S OPT S′), (S UNION S′) and (S
FILTER F ) are also graph patterns.

where (S AND S′), (S OPT S′) and (S UNION S′) denote the
conjunction, optional and union graph patterns.

Temporal queries against the history of knowledge bases are ex-
pressed as SPARQLT graph patterns.
SPARQLT graph patterns are defined as follows:
• A SPARQLT graph pattern is a tuple {s p o t} from (U ∪
L ∪ V)× (U ∪ L)× (U ∪ L ∪ V)× (T ∪ V).
• If P and P ′ are two SPARQLTgraph patterns and F ′ is a filter

clause, (P AND P ′) and (P FILTER F ′) are also SPARQLT

graph patterns.
Where F ′ is constructed using the elements from U ∪ L ∪ T ∪ V ,
comparison symbols, logical connectors and the temporal built-in
functions discussed next. In SPARQL, there are 8 types of graph
patterns as: S, P, O, SP, SO, PO, SPO, and full scan. For example,
SP refers to a query pattern in which subject and predicate are con-
stants and object is a variable. SPARQLTsupports 16 types of graph
patterns, which enable the expression of many interesting queries
over temporal RDF graphs.

(P UNION P ′) and (P OPT P ′) are not supported in current
SPARQLT, and their implementation is planned for the future. In
current state, SPARQLT supports efficiently all the queries described
in this paper, including the applications discussed in Section 2.1.
In passing we observe that they follow the patterns of (i) retrieving
information from a previous version of knowledge bases, and (ii)
joining the information with similar keys and timestamps. These
two scenarios correspond to two operators: single graph pattern
matching and temporal join that are supported very efficiently in
our system.
Time Representation and Functions. In SPARQLT , timestamp is
from a discrete time domain with a minimum unit as chronon [13].
We define two temporal types: dateTime and period. dateTime cor-
responds to a single timestamp. period corresponds to a set of con-
secutive timestamps, represented as a pair of two datetime points.
For timestamps, SPARQLT is equipped with YEAR/MONTH/DAY
functions to enable flexible temporal conditions. For periods, we
define two built-in functions TSTART and TEND to return the first
and last element in a set of consecutive timestamps.

Many temporal queries involve the reasoning of duration. Thus
we define a built-in function LENGTH that counts the number of
time units (we use DAY as the minimum unit in this paper) within
the same consecutive period of time. If one fact is associated with
multiple intervals, we return the length of max duration. Another
similar function TOTAL_LENGTH is defined to compute the total
length of all intervals.

3.2 Semantics and Examples
SPARQLT is a graph matching language for querying temporal

RDF data. The input of a SPARQLT query is a temporal RDF
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graph and the output is a set of mappings that replace the variables
with values from the input temporal RDF graph. The operators
of SPARQL are extended to manipulate the temporal element t of
SPARQLTgraph patterns. For single pattern matching, the query re-
sult is the set of temporal RDF triples that match the graph pattern
and the filter clause. If there are two or more patterns in the query,
the results of single pattern matching are joined. Due to space lim-
itations, we omit the discussion of formal semantics which can be
instead found in our technical report [2]. All the syntax discussed in
previous section are implemented in RDF-TX . Next we illustrate
the usage of SPARQLT via several examples.

Temporal Selection. We first discuss temporal selection queries
that have one query pattern (a four-element tuple {s, p, o, t}). An
example of temporal selection query is the “when” query that re-
trieves the valid timestamps of given facts. Users only need to spec-
ify the values for (s, p, o) and a variable for the temporal element.

EXAMPLE 1. When did Janet Napolitano serve as the president
of University of California.
SELECT ?t

{University_of_California president Janet_Napolitano ?t}
In the query result, the timestamps will be displayed in the com-

pact format [ts . . . te]. Running Example 1 against the temporal
RDF graph in Table 2 returns [09/30/2013 . . . now]. Another com-
mon type of temporal selection queries retrieves information from
a previous version of the knowledge base. The temporal constraints
(e.g. within a period) can be specified in the FILTER clause.

EXAMPLE 2. Find the budget of University of California in
2013.
SELECT ?budget
{University_of_California budget ?budget ?t .
FILTER(YEAR(?t) = 2013) }

EXAMPLE 3. Find each person who served as the president of
University of California for more than one year before 2010.
SELECT ?person ?t
{ University_of_California president ?person ?t .
FILTER(YEAR(?t) <= 2010 && LENGTH(?t) > 365 DAY)}
Temporal Join. More complex queries often use temporal joins

which, in SPARQLT , are expressed by multiple query patterns that
share the same temporal element. General temporal join may in-
volve both key and temporal dimensions.

EXAMPLE 4. Find the name of the university in which Mark
Yudof served as the president and the number of undergraduate
students when he was in office.
SELECT ?university ?number ?t
{?university undergraduate ?number ?t .
?university president Mark_Yudof ?t . }

Queries using multiple temporal joins are rather simple to ex-
press in SPARQLT, whereas in languages based on an interval-based
temporal model, such queries tend to be much more complex. For
example, if users want to search the number of undergraduate and
graduate students when Mark Yuodf was in office, we only need to
add one more query pattern: {?university graduate ?number2 ?t}
to Example 4. If we switch to interval-based model, the query will
consist of three query patterns and three temporal conditions: ?I1
overlap ?I2, ?I1 overlap ?I3, ?I2 overlap ?I3 where ?I1, ?I2, ?I3
are three variables for intervals.

Besides temporal join, the point-based query patterns also sup-
port the expression of other temporal operations such as MEET and
CONTAIN using the built-in functions TSTART and TEND.

EXAMPLE 5. Find who succeeded Mark Yudof as the president
of University of California.

SELECT ?successor
{ University_of_California president Mark_Yudof ?t1 .

University_of_California president ?successor ?t2 .
FILTER(TEND(?t1) = TSTART(?t2)) . }

4. STORAGE AND INDEXING
Since the performance of query engines is heavily influenced by

its use of indices, it is important to choose an appropriate index
structure as well as storage schema for the temporal RDF data.

A natural approach followed by previous works [29] consists in
managing temporal RDF triples using existing RDBMS. However,
for searching both RDF information and temporal information, two
sets of indices are required, and this results in significant costs in
storage and retrieval time, which are shown in Section 7. A second
natural approach will be using RDF engines, such as Jena and Vir-
tuoso, which have seen recent improvements in performance and
functionality. However, this requires the standard RDF reification
approach in which a temporal RDF triple is represented as an entity
instance with five properties: subject, predicate, object, start time
and end time. Thus we need to use five triples for each temporal
fact, whereby the space cost increases along with complexity of the
queries and time required to optimize and execute them.

Therefore, rather than modifying and extending existing systems
we design and build a new system that integrates advanced indexing
and data compression techniques into an architecture conceived for
efficient support of SPARQLT queries

4.1 Index Scheme
Many index structures [7, 19, 22, 24] have been proposed for

temporal data. Each index has its own strength and they have
shared issues such as space overhead and limited support for gen-
eral temporal queries.2 In this project, we employ Multiversion
B+ Tree (MVBT) to index temporal RDF data for the following
reasons. First, MVBT is a bi-dimensional index with asymptotic
worst-case guarantee and delivers good performance in real world
datasets. Second, we propose an effective approach to compress
MVBT which greatly reduces the space cost. The algorithms [8,
41] are extended and optimized on compressed MVBT to enable
fast index scan and join. Next we briefly review the structure of
MVBT and discuss the index scheme in RDF-TX system.

4.1.1 MVBT
Multiversion B+ Tree [7] is a temporal index structure with op-

timal worst case guarantees for data insert, update, and delete. The
complexity of a temporal query in version i is asymptotically equal
to the complexity of the query on a B+ tree that maintains all the
data valid in version i. Rather than a single tree, an MVBT is ac-
tually a forest of trees. It has multiple root nodes and each of them
corresponds to a temporal partition of data, as shown in Figure 2(a).
An entry in the MVBT node can be represented as (key, start ver-
sion, end version, data value/pointer) where key is unique for a
given version and start version and end version together denote the
live period of data. An entry that stores data inserted in version i
carries a period of (i, now). We denote an entry with end version
now as a live entry. The delete operation modifies the end version
of a live entry.

A simple example of MVBT insertion/deletion is shown in Fig-
ure 2(b). We first insert five values into an empty MVBT in Version
1, which results in an MVBT tree (i). Then we insert key 14 in Ver-
sion 2 and delete key 46 in Version 3. The MVBT index becomes

2A detailed discussion of temporal index can be found in Section 8.
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Figure 2: MVBT Example (a) Index Structure; (b) Data Insertion and Deletion; (c) Node Structure Changes.

(ii) with <14, 2, *> added to Node A and <46, 1, *> changed to
<46, 1, 3> in Node B.

To guarantee the performance, MVBT has weak version condi-
tion that there must be at least k live entries in a live node. When
there are too many entries or not enough live entries (weak version
underflow) in an MVBT node, node structure changes (version split
or merge) are triggered. After structure changes, the number of live
entries in a node should be in the range [kl, kh] (strong version
condition), which prevents long sequences of split and merge oper-
ations.

There are four types of node structure changes in MVBT, illus-
trated in Figure 2(c). We assume that an insertion results in too
many entries in a node O. Then a Version Split is performed that
copies all the live entries in O to a new node N. If node N has more
than kh entries, then an additional key split is performed that splits
N into two nodes, as shown in Version & Key Split. If N has less
than kl entries, Merge is triggered.

Assume we need to perform Merge operation on the node O1.
MVBT identifies a live sibling node O2, performs version split and
copies the live entries into the new node N. If node N has more
than kh live entries, a key split is performed immediately, as shown
in Merge & Key Split. Due to the space limitation, we address the
readers to [7] for more details of MVBT node structure changes.

4.1.2 Indexing Temporal RDF
In RDF-TX all the data and indices are stored in the main mem-

ory. We implement in-memory MVBT to index the temporal RDF
triples. The insertion of an interval-encoded RDF triple {(s, p, o)
[ts, te]} on MVBT index M is decomposed into two operations :
(i) insert data item (s, p, o) into M at time ts; (ii) delete data item
(s, p, o) at time te.

Since the variable may be located in any position of (s, p, o),
we create four MVBT indices (SPO, SOP, POS, OPS) for differ-
ent orders of keys (s, p, o). These MVBT indices cover all 16
SPARQLT graph patterns. For example, the MVBT index for tem-
poral RDF triples in POS order can cover four patterns: P, PT, PO,
POT. In query evaluation, the query engine parses the SPARQLT

prefix patterns to identify the corresponding MVBT index.
We employ dictionary encoding in the index construction, which

reduces the index size and avoids the slow comparison between
long string literals. Thus RDF-TX replaces the literals with dic-
tionary IDs, and the triples that consist of IDs and timestamps are
inserted into our indices. The mapping relations are maintained
in our in-memory dictionary for index update and query evalua-
tion. Since the main space cost in our indices is the large number
of MVBT entries, dictionary encoding only reduces space cost by
10% - 20%. After dictionary encoding, we exploit delta compres-
sion which significantly reduces the space cost of MVBT indices.

4.2 Index Compression
For the Wikipedia Infobox History, the size of one standard MVBT

index implemented in Java is 1.5–2.2 times of the raw data. More-

over, a temporal RDF graph requires four MVBT indices. If a naive
approach is used, comprehensive indexing of temporal RDF data
becomes prohibitively expensive. Thus effective compression tech-
niques are needed for large scale datasets.

We observe two characteristics of MVBT. First, the entries in
the MVBT node are sorted and neighboring entries often share the
same prefix, which could be utilized to reduce space cost. Second,
all the node structure operations start from version split. This guar-
antees the query performance but leads to a lot of long intervals.
Given these characteristics, we introduce an effective delta encod-
ing method to compress MVBT indices.

4.2.1 Compression Techniques
We design a compression scheme for variable delta encoding of

MVBT entry. An MVBT entry for temporal RDF data consists of
five values: (v1, v2, v3, ts, te) where v1, v2, v3 are elements in RDF
triples. We store the minimum values for keys and timestamps in
each node as base values. Since the data entries are sorted by start
version (ts) and key, most entries have very close start versions.
Therefore for ts, we only keep the minimal value of each node, and
compute and store the delta start versions. For te, the compression
rules are as follows: (i) if the valid interval (ts, te) is a short inter-
val, te is stored as the length of intervals; (ii) if the valid interval
is long, te is stored as the delta value between te and minimum te
in the node; (iii) if the valid interval is a live interval (te is now),
a special flag is set and te is stored as empty. Other values (v1,
v2, v3) are compressed as the delta values (i) between current value
and the value in neighbor entry or (ii) between current value and
minimum value in leaf node.

The compressed values are stored in a compact byte array. Fig-
ure 3(a) illustrates the format of compressed MVBT entry. Every
entry consists of three parts: header, key block (v1, v2, and v3),
and time block (ts and te). A normal header (2 bytes) contains a
flag (H Flag, 1 bit) for header type (normal/compact), a payload
(13 bits in total, 7 bits for key block and 6 bits for time block) that
stores the number of bytes for each delta value, and the te flag (2
bits) that records the compression rule for te. For the delta values
in key block, we use 1 bit to record how the delta is computed (with
neighbor or with node minimum value).

We observe that in large datasets, it is very common that two
neighboring MVBT entries (i) share at least one element in key
block; (ii) have very close ts (delta size ≤ 4 bytes) (iii) both te are
now. Thus for these entries, we propose a compact header which
consists of 1 bit header type and 7 bits payload (for two delta values
in key block and ts delta value).

There is a trade-off between the compression ratio and query
performance. Since the number of index nodes is much smaller
than the number of leaf nodes and the index nodes are accessed
more frequently than leaf nodes, we only compress the leaf nodes
of MVBT indices. As shown in evaluation (Section 7), the size of
compressed MVBT is about 24% of standard MVBT.

We build MVBT indices for different subsets of Wikipedia dataset
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(a)
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(b)

Figure 3: (a) Compressed MVBT Entry (b) Compression Time

and then test the time for compressing MVBT entries, as shown in
Figure 3(b). The result shows that it takes very little time to apply
the delta encoding technique. Given an MVBT index built from 30
million temporal RDF triples, the time for compressing all the leaf
nodes is only 7.25 seconds.

4.2.2 Index Maintenance
An important principle of index compression is to reduce the

storage overhead while maintaining the performance of index up-
date and search. For data insertion, we first look up index nodes and
identify the leaf node to be updated. In the leaf node, we decom-
press the start versions (ts) to find the position of input start version
i and compute the delta values of input data. Then we modify the
(i + 1)th entry if its delta values are changed. One issue is that we
need to scan from the beginning of all entries. To address this is-
sue, we add a checkpoint in each node that stores the position of
MVBT entry with largest ts. Then in data insertion, since the ts
of input data must be larger than existing ts, we only decompress
the entries after checkpoint. Deletion in MVBT only updates the
end version of a live entry. Thus we simply scan all the entries and
modify the te of the matched entry. As shown in Section 7, inser-
tion/deletion on compressed MVBT only takes 5% more time than
standard MVBT.

5. QUERY PROCESSING
In this section, we present the design and implementation of

RDF-TX query engine, which makes use of MVBT to process the
temporal operations of the language.

5.1 Compiling SPARQLT Query
The overall evaluation of SPARQLTqueries consists of four steps:

• Parse the input query and translate point-based query pat-
terns to interval-based query patterns.
• Construct a query plan. The plan is represented as a graph in

which each node is an interval-based query pattern.
• When the query contains multiple temporal joins, optimize

the query plan to improve the join order.
• Translate the query plan to an execution plan that is evaluated

on compressed MVBT indices.

Next we elaborate each step with more details.
Translating Query Patterns. Since the temporal RDF graph

is stored as interval-based temporal RDF triples, we translate the
point-based SPARQLT query patterns to the interval-based patterns
that can be converted to range queries and executed on MVBT. For
key elements, we take the literals as prefix and convert the unknown
parts to key ranges. For temporal element (t), if there exist temporal
constraints in the FILTER clause, we generate time ranges based

time

key

A
C

B
D

E

Figure 4: An Example of MVBT Backward Link

on the constraints; otherwise, the default range is [0, now] where
0 refers to the minimum time point. Consider the query pattern
{University of California budget ?budget ?t} (YEAR(?t) = 2013)
in Example 2. The interval-based query pattern can be described as
a query region with key range and time range as follows:
• key range: (University of California, budget, _ ) – (Univer-

sity of California, budget,∞)
• time range: 01/01/2013 – 12/31/2013

Here _ and∞ denote the extrema of the string domain.
Constructing and Optimizing Query Plan. The query engine

generates a query plan that consists of interval-based query patterns
from the first step. This query plan can be represented as a graph
in which the edges between the nodes are added when two query
patterns share the same variable. If there are multiple join opera-
tions, the query optimizer (discussed in Section 6) is called to find
efficient query plans using the statistics of temporal RDF graphs.

Executing the query plan on MVBT. Lastly, the optimized plan
is translated to an execution plan which is similar to the query plan
in relational databases. Every query pattern is converted to an in-
dex scan operator on MVBT indices. Then the join operators are
added based on the optimized join order. Finally, appropriate filter
operators are added using the FILTER clause of SPARQL.

5.2 Executing Query Plan
Next we describe the implementation of index scan and tempo-

ral join in RDF-TX . Other operators (e.g. filter) are implemented
similar to their counterparts of existing engines thus omitted.

5.2.1 Index Scan
We perform an index scan for each interval-based query pattern.

For the index scan on MVBT, we employ the link-based range-
interval algorithm [8] which introduces Backward Link in MVBT to
process the range queries. The MVBT leaf nodes are equipped with
backward links that point to the temporal predecessors. The index
scan is performed as: (i) search all the nodes that intersect the right
border of query region; (ii) follow the backward links of the nodes
to find all the nodes that intersect query region; (iii) scan the leaf
nodes found in the first two steps to retrieve the entries. An example
of linked index scan is shown in Figure 4. The shadowed rectangle
represents a query. MVBT nodes D and E are first visited. Then
as the predecessor of D and E, node B is checked. Lastly, node A
is visited.

5.2.2 Temporal Join
Temporal join represents one of the most expensive operations

in the temporal query language, especially when the size of knowl-
edge base is very large. Therefore we explore three types of joins:
Merge Join, Hash Join, and Synchronized Join.

Merge join is very popular and widely used in existing SPARQL
engines [27, 38]. These systems build indices for all permuta-
tions so that the optimizer leverages the indices to perform order-
preserving merge joins. However, this does not work for MVBT
index since the entries are sorted by time. We mainly use Hash
Join in our query engine.

274



When the size of result is large, the cost of building a hash table
may be very expensive. Thus we extend the synchronized join [41].
The basic idea of synchronized join is as follows: (i) synchronously
find the set of all MVBT node pairs (e1, e2) that intersect each other
and the right border of query region; (ii) join e1 and e2; (iii) join the
predecessors of e1 and e2 by following the backward links. This al-
gorithm avoids materializing the intermediate result, but it is much
slower than hash-based join since one page and its predecessors are
visited many times. So we optimize this algorithm by caching re-
cently visited records; that is, given a page e from step (i), we cache
the records in e and its predecessors, and perform joins between e
and other pages. This optimized synchronized join is used when
the query pattern in the join accesses a large portion of index (e.g.
find all the triples valid in a certain period).

6. OPTIMIZATION
In RDF-TX , improper join orders may generate large interme-

diate results and slow down execution. Therefore, a natural step
is to optimize complex SPARQLT queries by finding efficient join
orders. The key of join optimization is to efficiently estimate the
costs of different join orders, which is not a trivial task for tempo-
ral queries. In this section, we present a query optimizer that uses
estimated statistics of temporal RDF graph to optimize the orders
of temporal joins in SPARQLT queries.

6.1 RDF-TX Query Optimizer
For queries that involve multiple temporal joins, we implement

a query optimizer that uses the bottom-up dynamic programming
strategy [23] to find the cost-optimal query plans. Our optimizer
generates multiple query plans and finds the plan with lowest esti-
mated cost. A large query plan is generated by joining two small
optimal query plans. The cost is computed based on the cardinali-
ties of query patterns and intermediate results.

The cardinality estimation is a well-studied problem in relational
databases and SPARQL engines [26, 27, 31]. To estimate the cardi-
nality of join result, an effective approach is characteristic set [26].
In a RDF graph R, the characteristic set SC(s) of a subject s is the
set of related predicates: SC(s) = {p|∃o, (s, p, o) ∈ R}.

The idea of characteristic set is that semantically similar sub-
jects (e.g. University of California and University of Michigan)
usually have the same characteristic set. For every characteristic
set, the number of distinct subjects that belong to the characteristic
set, and the number of occurrences of the predicates in these sub-
jects are recorded and used to estimate the cardinality. For exam-
ple, given a characteristic set {president, undergraduate}, there are
100 distinct subjects belong to this characteristic set. The numbers
of occurrences for president and undergraduate are 150 and 110
respectively. Consider a SPARQL query with two query patterns:

SELECT ?s ?o1 ?o2 .
{?s president ?o1 .

?s undergraduate ?o2 . }
Suppose that only this characteristic set contains both predicates

in the query. Then the result cardinality is estimated as: 100 × 150
100

× 110
100

= 165.
Characteristic sets provide highly accurate estimation of cardi-

nality. But it can not be used to estimate the cardinality of SPARQLT

queries since the statistics of temporal RDF graph vary on different
time points. Consider following SPARQLT query:

SELECT ?s ?o1 ?o2 ?t
{?s president ?o1 ?t.

?s undergraduate ?o2 ?t.
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Figure 5: An Example of MVSBT Entry Split

FILTER(?t ≤ 01/01/2013) . }
To estimate the cardinality of this SPARQLT query, we need to

know the number of subjects that (i) belong to the set of temporal
RDF triples valid in the period [0, 01/01/2013] and (ii) share the
the characteristics set {president, undergraduate}. These statistics
change with time and none of existing data structures can provide
estimation of these statistics. Thus we introduce a temporal his-
togram to maintain the statistics of temporal RDF data in next Sec-
tion. With temporal histogram, the characteristics sets can be easily
integrated into our query optimizer.

6.2 Temporal Histogram
The problem of estimating the statistics of temporal RDF data

is similar to the temporal aggregation that computes the aggregate
value in a certain period. Thus we propose Compressed MVSBT that
extends the temporal aggregate index Multiversion SB Tree to main-
tain the statistics of characteristic sets.

6.2.1 MVSBT
MVSBT [39, 40] is a temporal index that combines the features

of MVBT and SB Tree [37] and supports the dominance-sum query.
Given key k and time t, it returns the aggregation value of data
records with keys less than k and timestamps smaller than t.

Similar to MVBT, MVSBT is a forest of trees with multiple root
nodes and each of them points to an SB Tree for a temporal partition
of data. Each entry in MVSBT corresponds to a rectangle in the
key-time space. The structure of MVSBT entry is as follows:

• Leaf Entry: < ks, ke, ts, te, v >
• Index Entry: < ks, ke, ts, te, v, ptr >

A leaf entry has a key range (ks, ke), an interval (ts, te), and a value
v. The key range and the interval represent the rectangle covered by
this entry in the key-time space. v maintains the aggregate value.
The index entry has one additional pointer ptr that points to a child
node. The rectangles of the entries are mutually disjoint and the
union of all the rectangles is equal to the whole key-time space.

The node structure of MVSBT is similar to MVBT while the in-
sertion algorithm is quite different. First we need to review two
concepts introduced in [39]. Given a point (k, t), and max key
value max_key, an entry is referred as partly covered entry if its
key range intersects the range [k, max_key] but not contained in
this range; an entry is referred as fully covered entry if its key range
is contained by the range [k, max_k]. When a new point p (k, t) is
inserted into a node N , the fully covered entries are vertically split
at t. If there exists a partly covered entry, then p is inserted into the
child page. If node N is in the leaf level, the partly covered entry
is split into three entries based on point p. The node structure oper-
ations of MVSBT are similar to the ones of MVBT (Section 4.1.1)
thus omitted.

An example of MVSBT for aggregate COUNT is shown in Fig-
ure 5. Figure 5(a) shows the initial entry of an empty MVSBT. The
aggregate value is 0 since no point is inserted. Then one point with
key 30 and timestamp 2 is inserted. The initial entry is split into
three entries as shown in Figure 5(b). The entry on the top right
corner has aggregate value 1 and other entries has aggregate value
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Algorithm: leafEntrySplit(nf , r, q)
Input: CMVSBT leaf node nf , entry r, new point p (k, t)
1: r.c = r.c + 1
2: if p.k > r.km then
3: r.km = p.k
4: r.tm = p.t
5: if r.c = cm then
6: if r.km 6= r.ks and r.tm 6= r.ts then
7: // Split r to three entries
8: v′ = r.c/2 + r.v
9: r1 = new entry(r.ks,r.km,r.tm,r.te,ks,tm,v′,0)

10: r2 = new entry(r.km,r.ke,r.tm,r.te,km,tm,r.c/2,0)
11: nf .add(r1); nf .add(r2)
12: r.te = r.tm
13: else
14: // Split r to two entries, similar to step 7 - 11, omit

Algorithm: indexEntrySplit(ni, r, p)
Input: CMVSBT index node ni, entry r, new point p (k, t)
1: r.list.add(p)
2: if length(r.list) == lm then
3: r1 = new entry(r.ks,r.ke,p.t,r.te,new list(),r.ptr,r.c)
4: ni.add(r1)
5: r.te = p.t

Figure 6: Algorithms for Entry Split in CMVSBT

0 since all the points in top right entry are larger than split point
(30, 2). Suppose we have two queries (10, 1) and (40, 5). The first
query point falls in the left entry and returns 0. The second query
points falls in the top right entry and thus gets the result 1.

6.2.2 Compressed MVSBT
Although MVSBT has good performance on temporal aggrega-

tion, it takes too much space for storage. Since query optimization
does not require very accurate estimates, we can trade accuracy
with efficiency. Compressed MVSBT (CMVSBT) is based on the
idea that instead of accurately recording the points and splitting en-
tries for every new point, a CMVSBT entry contains m (m ≥ 1)
points. Then we can estimate the aggregate value using the ratio of
covered space to full space. Instead of storing the exact values of
points, we store the statistic values such as total number of points
and max value. The structure of CMVSBT entry is as follows:

• Leaf Entry: < ks, ke, ts, te, km, tm, v, c >
• Index Entry: < ks, ke, ts, te, list, ptr, c >

where ks, ke, ts,te are for the key range and associated time inter-
val. km and tm store the max key value and time value of the points
located in the rectangle of this entry; list is a list of points; ptr is
the pointer to a CMVSBT node; v and c are fixed and current statis-
tic values. fixed statistic value refers to the aggregate value, while
current statistic value refers to the aggregate value computed over
the points contained in the current entry. The final statistic value is
estimated by combining both values (discussed in Section 6.3).

Since the index nodes are visited more frequently than leaf nodes,
we store the exact values of points in a list in the index nodes,
while in leaf nodes we only maintain three statistics (km, tm, c).
The algorithm for data insertion in CMVSBT is similar to the one
for MVSBT. Instead of splitting the entry for every input point,
CMVSBT entry is split when the number of points in an entry is
larger than the threshold. The split point is (km, tm). The algo-
rithm for entry splitting in CMVSBT for COUNT is shown in Fig-
ure 6. Let cm and lm denote the thresholds for the number of points
in leaf nodes and index nodes. When a new point p (k, t) is inserted
into compressed MVSBT, we look up the index nodes to find a set
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Figure 7: An Example of CMVSBT Entry Split

of nodes N whose rectangles cover this point. In a leaf node nf ,
if p falls in the rectangle, c is increased by 1, and the max values
(km, tm) are updated if p.k > km or p.t > tm. Then if c = cm,
we split the entry based on the position (km, tm). After split, the
statistical values (v) of new entries will be equal to (i) c/2 + v
if the new entry has the same ks with old one; (ii) c/2 otherwise
(based on the logical splitting in MVSBT [40]). We use c/2 since
we assume the points are uniformly distributed in the entry. The c
of new entries are initialized to be 0. In an index node ni ∈ N , if
ri is the lowest entry that fully covers p, p is appended to the end of
list. Like MVSBT, compressed MVSBT also assumes that the data
items come in nondecreasing time order. Thus list is automatically
sorted by time. If length(list) = lm, the entry is split on p.t and
c is copied to new entry. If r.km = r.k or r.tm 6= r.ts, the split
point (r.km, r.tm) falls on the borders of rectangle. Then r is split
into two entries. When we set cm = 1 and lm = 1, the algorithm
in Figure 6 is the same with the split algorithm of MVSBT. More
details about CMVSBT construction are available in our technical
report [2].

Here we prepare a simple example to illustrate the process of
entry split in CMVSBT. We assume that we have inserted six points
into a compressed MVSBT, as shown in Figure 7(a). The threshold
cm is set to be 6. The max key r1.km is 30 and the max time
r1.tm is 6. Although the rectangle of r1 is the whole space, all the
points fall in the effective rectangle rec (key range:[0, km], time
range:[0, tm]). Since r1.c ≥ 6, we split it into three rectangles as
shown in Figure 7(b). The values of r1 are not changed since all the
points still fall in r1. r2.v is approximated by the number of points
covered by the virtual center of r2 (the red point). As we can see,
the red rectangle covers half of rec, so r2.v = r1.c/2 + r1.v = 3,
r3.v = r1.c/2 = 3.

For each characteristic set, we need to maintain: (i) the number
of distinct subjects and (ii) the number of predicate occurrences.
As discussed in next section, each type of statistic values requires
two CMVSBTs: one for start points and one for end points. Thus
our temporal histogram consists of four CMVSBTs and the schema
of characteristic sets. In RDF-TX , we set the max size of temporal
histogram as 10% of raw data. If the size of temporal histogram
is larger than the threshold, we increase cm and lm and merge the
neighbor entries until the temporal histogram is small enough.

6.3 Statistics Estimation
Given a query q (k, t), compressed MVSBT estimates the statis-

tics of data records with keys less than k and timestamps smaller
than t. The query algorithm consists of two main steps: (i) starting
from root node, we look up the CMVSBT nodes whose rectan-
gle covers q; (ii) in each node, we find all the rectangles whose
time range contains t and ks ≤ k, and accumulate the approxi-
mate statistic value va of these rectangles. In a CMVSBT entry,
va equals to the sum of fixed statistics value v and current statistic
value ve. ve is approximated by multiplying c by the proportion
of query region in the rectangle ratio, as c × ratio where ratio
= ratiok × ratiot. If q.k ≥ r.k, ratiok = 1; otherwise, ratiok
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Figure 8: (a) Compression Saving for MVBT Index; (b) Index Size Comparison. The size of dictionary is included in the results.

= (r.km − q.k)/(r.km − r.ks). And ratiot can be computed in a
similar way.

The query pattern in SPARQLT is translated to a range query
which is not supported by CMVSBT. Thus we use the query reduc-
tion approach [40] which reduces one range query into four point
queries. In this approach, we need two CMVSBTs for the start
points and end points of temporal RDF triples. Then the statistics
in the query region (key: [k1, k2], time: [t1, t2]) is calculated as:
Qs(k2, t2) - Qe(k2, t1) - Qs(k1, t2) + Qe(k1, t1)

whereQs(k, t) andQe(k, t) refer to the point queries on the CMV-
SBT of start points and end points respectively.

During query optimization, we cache all the statistics to reduce
the time on scanning CMVSBTs. When one statistic value is re-
quired, we first search the statistics cache. If it is not cached, then
we use the CMVSBTs to estimate the statistic value.

7. EXPERIMENTAL EVALUATION
RDF-TX is implemented in Java as a sequential main memory

query engine. To evaluate the performance of our system, we con-
duct experiments on several real world datasets and compare results
with alternative approaches.

7.1 Experiment Setup

7.1.1 Dataset
Wikipedia. Wikipedia [4] is a real world dataset extracted from
the edit history of English Wikipedia. We parse the raw file and
generate 38 million temporal RDF triples as our test benchmark.
This dataset contains the history of 1.8 million subjects and 3500
frequent predicates (used in more than 500 triples).
GovTrack. GovTrack [1] is a public dataset that contains the infor-
mation about congressmen, votes, bills and committees. There are
20 million historical records for 0.4 million subjects and 60 related
events (e.g. conressman election or bill voting). We parse the XML
source files to temporal RDF triples as our test dataset.
Yago2. Yago2 [18] is a knowledge base derived from Wikipedia,
WordNet and GeoNames with more than 30 million temporal RDF
triples. Due to space limit and the fact that the evaluation results
on Yago2 are very similar to Wikipedia and Govtrack, we leave the
results on Yago2 in our technical report.

7.1.2 Implementation and Configuration
RDF Reification. RDF reification provides a way to store RDF
triple and its meta knowledge in standard RDF model by represent-
ing annotated RDF triple as an entity with following properties:
subject, predicate, object, meta knowledge. Similarly, we represent
a temporal RDF triple as an entity with five properties: subject,
predicate, object, start time, end time. Then SPARQLT queries are

easily rewritten to SPARQL queries. We evaluate the reification ap-
proach in three well known RDF engines: Jena v2.13 [36], Virtuoso
v7.20 [3] and RDF-3X v0.3.8 [27].
RDBMS-based Approach. Temporal RDF triples can be stored in
a relational table with five columns subject, predicate, object, start
time, end time. We choose MySQL memory engine (v5.5) in our
evaluation since it supports in-memory B+ tree index. We build
four B+ tree indices on SPO, SOP, PSO, OPS and two additional
indices on start/end time for evaluation of temporal constraints.
Named Graphs. Named graph [11] is an extension of RDF model
that identifies graphs with URLs and allows graph metadata such
as provenance and trust. We implement the approach described
in [32] that stores temporal information as graph metadata using
Jena Named Graph implementation. We also test Ng4j v0.9.3 im-
plementation [9], but it is much slower than Jena and other ap-
proaches, so we leave the results on Ng4j in our technical report [2].
In the rest of this paper, we use “Jena Ref” and “Jena NG” to de-
note Jena Reification and Jena Named Graph respectively.
RDF-TX . Our query engine is a single-thread implementation us-
ing compressed MVBT as indices. Only the construction of com-
pressed MVBT is paralleled (using at most four threads).

All the experiments are performed on a machine with 4 AMD
Opteron 6376 CPUs (64 cores) and 256GB RAM running Ubuntu
12.04 LTS 64-bit. The index decompression time is included in the
query execution time. The execution time reported is calculated by
taking the average of 5 runs. The datasets and queries are available
in our website [2].

7.2 Index Space
We first investigate the effectiveness of our delta encoding tech-

niques (Section 4.2). We implement the standard MVBT indices (4
indices: SPO, SOP, POS, OPS) with numeric keys as baseline. Fig-
ure 8 (a) shows the space costs of standard MVBT and compressed
MVBT in Wikipedia dataset. On average, our delta encoding tech-
nique reduces the space cost of MVBT by 76%.

Then we compare the space overhead of compressed MVBT and
other types of index in Wikipedia, as shown in Figure 8 (b). Since
Wikipedia has a large number of unique timestamps, most named
graphs are very small (≤ 5 triples). Thus indexing named graph in-
curs a lot of overhead and Jena Named Graph takes far more space
than other approaches. The space cost of MySQL memory engine
and Jena Reification are similar, which are 3-4 times of raw data.
The index space of our implementation is almost the same with
Virtuoso and RDF-3X, while the query performance is much better
as shown in Section 7.3. On average, the space of our comprehen-
sive indices (4 compressed MVBT + dictionary) is about 1.8 times
of raw data. The results for GovTrack dataset are similar and thus
omitted.
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Figure 9: Query Running Time in (a - c) Wikipedia; (d - f) GovTrack.

7.3 Query Performance
To evaluate the query performance of our system, we created

three sets of queries: (a) Temporal selection queries, as Example 2
in Section 3; (b) Temporal join queries, as Example 4; (c) Complex
queries (2 or more temporal joins). We use the first two query sets
to evaluate the performance as the dataset size increases, and the
third query set to evaluate the performance as the query pattern
size increases. For all the implementations, we report the average
warm-cache query execution time.
Temporal Selection and Join. We create 10 temporal selection
and 10 temporal join queries for each dataset and conduct the ex-
periments as the size of dataset N increases (N : 5-30 million in
Wikipedia and 4-20 million in GovTrack).

Figure 9(a) shows the query execution time for temporal selec-
tion in Wikipedia. RDF-TX and MySQL show similar performance
in small datasets. As the size of dataset increases, RDF-TX shows
better performance than MySQL. In the largest dataset (30 million),
RDF-TX is about 3X faster than MySQL and 10X faster than Virtu-
oso. Jena Named Graph and Reification are 2 orders of magnitude
slower than SPARQLT engine due to the slow index scan.

RDF-3X is much slower than other systems due to its poor sup-
port of constraints. Most historical queries involve temporal con-
straints. For instance, consider Example 2 in Section 3 that searches
the budget of University of California in 2013. This query has one
temporal constraint that the valid period of temporal RDF triple
should overlap (01/01/2013, 12/31/2013). This constraint can be
expressed as: ?ts ≤ 12/31/2013 && ?te ≥ 01/01/2013. In
RDF-3X, the numbers are encoded as strings. So for temporal con-
straints, RDF-3X converts strings back to integers at running time
to evaluate the constraints, which is inefficient.

The results of temporal join in Wikipedia are shown in Figure 9(b).
RDF-TX is about 2 orders of magnitude faster than MySQL and
Jena, and 6X faster than Virtuoso. RDF-3X is still slow since
the condition of temporal join (e.g. OVERLAP and MEET) is ex-
pressed as constraints in FILTER clause.

Figure 9 (d) (e) show the query execution time for temporal se-
lection and join in GovTrack. These approaches take more time to
execute since the query patterns (e.g. P and PT) return much more

results in GovTrack due to the reduction of predicates. The RDF-3x
performs better than Jena on this dataset since it has a smaller num-
ber of distinct time periods (∼ 10000) and predicates. MySQL and
Virtuoso are about 1 order of magnitude slower than RDF-TX on
selection and 2 orders of magnitude slower on Join.

RDF-TX performs 1-2 orders of magnitude faster than most com-
petitors for selection and join. An important reason behind this
is that MVBT can process two-dimensional (key and time) range
query in one operation, while SPARQL and SQL engines need ad-
ditional join and index scan.
Complex Queries. We generate 25 complex queries for each dataset
with increasing query pattern size (3-7). The generation process is
as follows: a set of 5 queries is created initially, and each query
has 3 query patterns; then we incrementally add query patterns to
existing queries until the size of query patterns reaches 7. The ex-
periment is conducted on two datasets (each has 20 million triples)
and the optimizers are enabled in all compared approaches.

The evaluation results in Wikipedia are shown in Figure 9 (c)3.
Jena Named Graph and RDF-3X are not reported since they are
much slower than other approaches so we omit them. For RDF en-
gine and RDBMS, a query with more patterns is translated to more
joins, which increases the complexity of parsing and optimization.
On average, RDF-TX is 2 orders of magnitude faster than MySQL
and Jena, and 1 order of magnitude faster than Virtuoso.

The evaluation results for GovTrack are shown in Figure 9 (f).
A notable change in this graph is that Jena is not reported in this
experiment. Jena is too slow compared to other approaches on
GovTrack since the query patterns usually cover a large portion
of dataset, which leads to slow execution time if an inefficient join
order is generated; meanwhile, the column-store traits of Virtuoso
excel in this small predicate cardinality case. On average, our sys-
tem is still about 2 orders of magnitude faster.

7.4 Effectiveness of Query Optimizer
In this section, we explore the impact of query optimizer in the

3The query running time of Virtuoso on pattern size 6/7 is averaged
over four queries since Virtuoso generates a very inefficient join
order for one query which takes more than 1 hour to finish.
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Figure 10: (a) Query Execution Time of the best/worst plans, and the plan generated by SPARQLT optimizer for complex queries in
Wikipedia (b) Index Construction Time (c) Index Maintenance Time

query evaluation. We enumerate all the possible query plans of the
complex queries (Section 7.3) in Wikipedia and find the best and
worst execution times. Figure 10 (a) shows the query execution
times of best/worst plans and the plan generated by RDF-TX query
optimizer (blue bar) in a Wikipedia set with 20 million triples. The
result shows that the plan generated by our query optimizer is very
close to the best performing execution plan. On average, the execu-
tion time of optimized query plan is about half of the time used by
worst plan. In the relatively simple queries (3 query patterns), the
difference between the best plan and the worst plan is small. As the
number of query patterns increases, the difference becomes much
larger. Thus, the optimizer is important for scaling up towards com-
plex queries with a lot of query patterns. We also measure the time
used for query optimization, which varies from 3.5 to 10 millisec-
onds as the size of query increases.

Then we measure the storage overhead of temporal histogram.
The CMVSBTs for temporal statistics are built using the dictio-
nary IDs. As discussed in Section 6.2, we merge CMVSBT entries
and increase cm and lm until the size is small enough. In this exper-
iment, the size of temporal histogram is 177.5 MB, which is about
8.5% of raw data size.

7.5 Index Construction & Maintenance
For large datasets, we first build standard MVBT and then com-

press the MVBT indices. In RDF-TX , the process of index con-
struction is paralleled using at most 4 threads. We evaluate the
index construction time for compressed MVBT time on different
sizes of subsets of Wikipedia in Figure 10 (b) (compression time
included). The time for index construction is approximately lin-
ear with the size of datasets, and it increases slightly faster in the
datasets with 25 million and 30 million triples due to degraded per-
formance caused by JVM garbage collection .

RDF-TX also supports the index update on compressed MVBT,
which is important for real-time applications. Thus we further mea-
sure the average index maintenance time on a compressed MVBT
index built from a 25 million subset of Wikipedia. We perform
1 million updates (68% insert, 32% delete) which simulates the
changes in real Wikipedia edit history. Figure 10 (c) shows the re-
sults by comparing maintenance time of compressed MVBT with
the time used on standard MVBT. Our compression technique shows
a decent performance. Comparing with the update on MVBT, the
update on compressed MVBT only takes 5% more time. This little
overhead is negligible w.r.t. 76% space saved using compression.

8. RELATED WORK
Temporal Index. There has been a large body of research on

temporal index in the literature [7, 19, 22, 24, 34]. MAP21 [24]
is an index over B+Tree by mapping time ranges to one dimen-

sional points, thus time intervals/points can be used as keys and
queried in a B+Tree. OB+tree [34] organizes B+Trees in a ver-
sioned way with shared nodes whose contents do not change over
versions. However, MAP21 and OB+tree only support single di-
mension query. BT-tree [19] enables branched versions along with
the temporal index, while the time in our system is linear, i.e. no
branching. MVBT [7] and TSB-Tree [22] are bi-dimensional in-
dices, which satisfy our requirements exactly. TSB-Tree is a tem-
poral index very similar to MVBT and implemented in Immortal
DB [21] on Microsoft SQL Server, with better integration to SQL
Server’s existing index structures. The major difference between
these two is that TSB-Tree migrates old data to a historical store
during node splitting, while MVBT moves new data. Since MVBT
is a general approach which is not targeted on specific platforms,
we adopt and extend it in RDF-TX .

Query Languages and Systems for Temporal RDF. Several
query languages [16, 29, 30, 32] have been proposed for temporal
RDF triples. T-SPARQL [16] is a temporal extension of SPARQL
based on a multi-temporal RDF model. The RDF triple is annotated
with a temporal element that represents a set of temporal intervals.
Thus a temporal join is expressed using additional functions (e.g.
OVERLAP). At the best of our knowledge, no actual implementa-
tion of T-SPARQL is available. The τ -SPARQL system reported
in [32] uses the temporal RDF model [17] and augments SPARQL
query patterns with two variables ?s and ?e to bind the start time
and end time of temporal RDF triples and express temporal queries.
The evaluation is done by rewriting τ -SPARQL queries to standard
SPARQL queries. Perry et al. [29] propose a framework to sup-
port temporal and spatial semantic queries. Simple selection and
join queries are expressed using two temporal operators. These
operators are implemented in Oracle by extending Oracle Seman-
tic Data Sore and SQL functions. These works rely on relational
databases/RDF engine to store and query temporal RDF triples,
which results in complex SPARQL and SQL queries.

The tRDF system [30] extends the temporal RDF model [17]
with indeterminate temporal annotations. The temporal queries are
evaluated using tGrin index that clusters the temporal RDF triples
based on graphical-temporal distance. However, tRDF only sup-
ports a subset of temporal queries discussed in this paper. Most
significantly, temporal joins are not supported since tGrin index re-
lies on the temporal distance to filter the triples, while the temporal
distance between two temporally joined patterns can not be deter-
mined. STUN [20] system supports queries on annotated RDF, but
it is not scalable for large temporal datasets.

9. CONCLUSION
In this paper, we present SPARQLTand its system RDF-TX which

supports powerful queries over the history of knowledge bases.
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SPARQLTenables the expression of a wide variety of temporal queries
via simple extension of SPARQL graph patterns and built-in func-
tions. SPARQLT queries are efficiently evaluated in the backend
query engine that achieves excellent performance by exploiting M-
VBT as index and leveraging fast algorithms for range selection and
temporal join. RDF-TX also features a query optimizer that uses
the statistics of temporal RDF graphs to find the efficient join or-
ders for complex SPARQLT queries. Extensive experiments on real
world datasets show that RDF-TX outperforms other approaches
that use state-of-art RDF engines and relational databases in all
kinds of queries and delivers 1 - 2 orders of magnitude performance
improvement in complex queries. This confirms the effectiveness
and superior performance of RDF-TX .
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ABSTRACT
Multidimensional data are published in the web of data un-
der common directives, such as the Resource Description
Framework (RDF). The increasing volume and diversity of
these data pose the challenge of finding relations between
them in a most efficient and accurate way, by taking into ad-
vantage their overlapping schemes. In this paper we define
two types of relationships between multidimensional RDF
data, and we propose algorithms for efficient and scalable
computation of these relationships. Specifically, we define
the notions of containment and complementarity between
points in multidimensional dataspaces, as different aspects
of relatedness, and we propose a baseline method for com-
puting them, as well as two alternative methods that target
speed and scalability. We provide an experimental evalua-
tion over real-world and synthetic datasets and we compare
our approach to a SPARQL-based and a rule-based alterna-
tive, which prove to be inefficient for increasing input sizes.

Categories and Subject Descriptors
H.2.8 [Information Systems Applications]: Database
Management—Database Applications

Keywords
RDF, Multidimensional Data,OLAP, Information Extrac-
tion, Algorithms, Performance

1. INTRODUCTION
Over the past few years, a wide range of public and private

bodies such as statistical authorities, academic institutions,
financial organizations and pharmaceutical companies adopt
RDF and the Linked Data (LD) paradigm [9, 31] to enable

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0
.

public access to multidimensional data in a variety of do-
mains, including socio-economics, demographics, enterprise
OLAP, clinical trials and health data. The published data
enables third parties to combine information, perform ana-
lytics over different datasets and gain insights to assist data
journalism, industry data management, and evidence-based
policy making [25, 4, 27].

Multidimensional data are usually treated under the OLAP
prism, where they are represented as observations that are
instantiated over pre-defined dimensions and measures [7].
The dimensions provide context to the measures and are
structured in hierarchies of different granularity levels. For
example, a dataset that measures population broken down
by locations and time periods, will consist of two dimensions,
namely location and time-period, pertaining to granularity
levels, such as countries, regions, and cities, or decades, years
and quarters, respectively. A combination of fixed dimension
levels is referred to as a cube; it contains the set of observa-
tions that instantiate these levels, such as the populations of
EU countries in the last decade, or the unemployment of EU
cities in 2014. All different combinations of dimension lev-
els form a hierarchical cube lattice, where cubes are related
with ancestry links.

In the context of Linked Data, the modelling recommen-
dation is the Data Cube Vocabulary (QB) [9]. This provides
a common meta-schema for mapping multidimensional data
to RDF, enabling the representation of datasets, dataset
schemas, dimensions, dimension hierarchies (e.g. codelists),
measures, observations and slices (parts of datasets). An ex-
ample observation can be seen in Listing 1, in which observa-
tion obs1 measures the population of Germany in 2001. The
values for 2001 (ex:Y2001) and Germany (ex:DE) are URIs
from an example code list. The reuse of common URIs for
handling multidimensional elements across different sources
enables sharing of terms and the use of SPARQL for feder-
ating queries over remote datasets, laying the basis for the
application of OLAP analytics at web scale.

Currently, there are few works on definitions and tech-
niques for the discovery and classification of relationships
between multidimensional observations in RDF settings [18,
32]. Such relationships can provide useful information to the
analyst, such as whether an observation contains aggregated
data with respect to other observations, and when two ob-
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servations measuring different phenomena are complemen-
tary and can be combined. Assume that a data journalist
is working on the issue of unemployment in different parts
of the world and wants to explore whether unemployment
rates relate to the population of a city or a country. As-
sume now that our journalist obtains dozens of datasets on
the topic from various sources and wants to see whether and
how they can be combined to facilitate his task. Although
the journalist has defined his own reference dimension hier-
archies1 as shown in Figure 1, and converted the incoming
data values to them via a simple script, it is still unclear to
him that among the dozens of datasets he has collected (D1,
D2 and D3 of Figure 2), coming from different RDF sources,
can be combined to support his task.

In our example, observation o11 shares the same dimension
values with o31, but they measure two different facts, which
can be complemented. Furthermore, observations o21, o22
that measure unemployment for 2011 in Greece and Italy,
respectively, contain observations o32, o33 that measure un-
employment in Athens and Rome for a sub-period of the
same year, although o21, o22 measure poverty as well. The
resulting table can be seen in Figure 3. This knowledge gives
insights on how observations are related across datasets,
how OLAP operations (roll-ups, drill-downs) can be ap-
plied in order to navigate and explore remote cubes, make
observations comparable, provide recommendations for on-
line browsing and quantify the degree of relatedness between
data sources. Furthermore, materialization of these relation-
ships helps speed up online exploration, and computation of
k-dominance as defined in [6], and skylines or k-dominant
skylines. Especially in the case of skylines, computation
of containment between observations provides a means to
directly access skyline, or k-dominant skyline points in col-
lections of large web data.

However, placing different data into the same context and
finding hidden knowledge is difficult and computationally
challenging [4]. The detection of pair-wise relationships be-
tween observations is inherently a quadratic task; typically
every observation from one dataset must be compared to all
others within the same or from different datasets. The use of
traditional ways such as SPARQL- or rule-based techniques
becomes inefficient as the number of observations and the
number of cubes increases. Our preliminary experiments
employing recursive SPARQL queries with property paths
and negation, indicate that even for 20k observations from 7
datasets it can take more than one hour to complete in com-
modity hardware, while the same tasks time-out for larger
numbers of instances. The same holds when inference-based
techniques are used: OWL-based reasoning lacks the expres-
sivity for complex property-based inference, while rule-based
reasoning such as SWRL [15] and Jena Rules [5] does not
scale adequately due to the transitive nature of the rela-
tionships and the universal quantification needed to encode
the conditions; the search space expands exponentially [12].
From the above, there is a clear need for establishing new
efficient methods for computing pair-wise relationships be-

1In realistic settings, schema alignment is often necessary.
Two prominent cases where it is used in practice include:
(a) traditional BI environments, where all dimensions pro-
vide a reconciled dimension bus, and (b) user-initiated data
collections from the web. In both cases, incoming data have
to be translated to a reference vocabulary, before being used
for further analysis.

ex:obs1 a qb:Observation ;
qb:dataSet ex:dataset ;
ex:time ex:Y2001 ;
sdmx -attr:unitMeasure ex:unit ;
ex:geo ex:DE ;
ex:population "82 ,350 ,000"^^ xmls:integer .

Listing 1: Example RDF Data Cube observation

Figure 1: Hierarchical code list for the dimensions in Figure
2.

tween RDF observations that can scale up to the numbers
and variety of datasets currently published on the web of
data.

Approach Overview. In this paper, we address the
problem of efficiently computing containment and comple-
mentarity between RDF observations, extending the prelim-
inary work presented in [22]. Specifically, given an observa-
tion og, and a set of observations O from different sources, we
define two relationships, namely containment and comple-
mentarity. A containment relationship captures whether an
observation contains aggregated information with respect to
other observations. It determines if values from the dimen-
sions of og contain fully or partially values of the dimensions
of another observation, thus enabling rollup and drilldown
operations, directly or indirectly, as well as assigning them a
hierarchy-based similarity metric. A complementarity rela-
tionship captures whether the measures of two observations
can be combined together, providing comparable data for
the same points in the multidimensional space. More specif-
ically, we extend the notion of schema complement, defined
in [10] and apply it at the instance level to discover comple-
mentary observations.

We first present a O(n2) baseline technique to calculate
these properties. Then, we introduce two alternatives that
prove to be more efficient and scalable in terms of compu-
tation time. The first performs observation clustering and
limits comparisons between observations in the same clus-
ters. The second uses a multidimensional lattice to assign
observations to specific permutations of dimensions and lev-
els, and prune the search space by checking for restrictions at
the schema-level. We experimentally evaluate these 3 tech-
niques over a set of 7 real-world multidimensional datasets
and compare them in terms of efficiency with traditional
techniques, namely with a SPARQL-based and a rule-based
approach. Finally, we evaluate the scalability of our ap-
proach in an artificially generated dataset.

Contributions. The contributions of this paper can be
summarized as follows:

• we extend the notions of full and partial containment
between two observations defined in [22] as deriva-
tives of the hierarchical relationships between their di-
mension values, and observation complementarity as a
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Figure 2: Candidate relationships between observations.

Figure 3: Derived containment and complementarity relationships from datasets D1, D2 and D3 of Figure 2.

means of correlation between data points,

• we present a baseline, data-driven technique for com-
puting these properties in memory,

• we introduce two alternative techniques that target ef-
ficiency,

• we evaluate our techniques in terms of efficiency and
scalability over real-world and synthetic datasets, and
we perform comparisons between them, as well as with
a SPARQL-based and a rule-based approach.

The remainder of this paper is organized as follows. Sec-
tion 2 presents preliminaries and formulates the problem
of containment and complementarity computation between
RDF cubes. Section 3 presents the baseline algorithm and
two proposed improvements for computing the defined re-
lationships. Section 4 describes the performed experiments
and evaluation. Finally, section 5 discusses related work and
section 6 concludes this paper.

2. PRELIMINARIES
The problem space is composed of n datasets, each of

which contains a number of observations, structured in one
or more cubes. A single dataset is composed of the schema
part (i.e. dimensions, measures and attributes), and the
data part (i.e. observations or facts). Dimension values are
provided by code lists with hierarchical structure, whereas
flat code lists pertain to dimensions with exactly one level.

Definition 1 (Dataset Structure): Let D = {D1, . . . , Dn}
be the set of all input datasets. A dataset Di ∈ D is com-
posed by the set of observations, Oi, and the set of schema
definitions, Si, and O ={O1, . . . , On} and S ={S1, . . . , Sn}
are the sets of all observations and schema definitions in D.
Furthermore, a schema Si consists of the sets of dimensions
Pi and measures Mi defined in Di, i.e., Si = {Pi,Mi}. Let
P =

⋃n
i=1 Pi =p1,p2,. . . ,pk and M =

⋃n
i=1 Mi =m1,m2,. . . ,ml

be the set of all k distinct dimensions and l measure proper-
ties in D. Any pj ∈ P,mj ∈M can belong to more than one

Si, as dimension and measure properties are reused among
sources. In our example, S1, S2 and S3 are the schemata
of datasets D1, D2 and D3, and dimensions refArea and
refPeriod belong to all three schemata. Similarly, measure
ex:unemployment belongs to both M2 and M3. An observa-
tion o ∈ Oi is an entity that instantiates all dimension and
measure properties defined in Si. The value that observa-
tion oi has for dimension pj is hj

i . In the example, the values
in the white cells represent dimension values (e.g. ”Athens”
is a value for dimension refArea), while grey cells represent
measured values (e.g. 10% unemployment).

Definition 2 (Hierarchies): Each dimension pj ∈ P takes
values from a code list, i.e. a set of fixed values coded by
URIs, C(pj) = {c(pj)1, . . . c(pj)m}, j = 1 . . . k, (for simplic-
ity we write cji instead of c(pj)i). Each code list defines a
hierarchy such that when cji � cjm, then cji is an ancestor
of cjm. Furthermore, we define cjroot as the top concept in
the code list of pj , i.e., an ancestor of all other terms in the
coded list, such that ∀cji : cjroot � cji. This kind of ances-
try is reflexive, i.e. ∀cji : cji � cji. In Figure 2, sample code
lists are depicted for the three dimensions shown in Figure
1. In our example, Greece � Athens, Ioannina and Italy �
Rome.

A complementarity relationship captures whether two ob-
servations measure different facts about the same set of di-
mension instances. In the motivating example of Figure 1,
o11 and o31 are complementary because they measure differ-
ent facts (population and unemployment respectively) about
the city of Athens in 2001. The fact that o11 refers to all
values from the sex dimension does not provide any further
specialization and is inherently found in o31 as well. This is
captured in the following definition.

Definition 3 (Observation Complement): Given two ob-
servations oa and ob and their dimensions Pa and Pb, oa
complements ob when the following conditions hold:

∀pi ∈ Pa ∩ Pb : hi
a = hi

b (1)

∀pj ∈ Pb \ Pa : hj
b = cjroot (2)
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Therefore, (1) ∧ (2) ⇒ Compl(oa, ob). We denote this with
Compl(oa, ob). Definition 1 states that the shared dimen-
sions must have the same values as stated in (1), and all
other dimension values of ob must be equal to the root of
the dimension hierarchy, providing no further specialization,
as stated in (2). For example, an observation measuring
poverty in Greece is observation complement with an ob-
servation measuring the population in Greece for all human
genders. In our example, observations o11 and o31 are com-
plementary, in that they measure different things for Athens
in 2001. Condition (2) holds for o31 in the sex dimension,
where absence of the dimension implies existence of the root
value cjroot (i.e. no specialization).

A containment relationship captures whether an observa-
tion aggregates the measures of the contained observations.
For example, measuring the population of Greece implic-
itly contains all the populations of Greece’s sub-regions. We
distinguish between full and partial containment. The for-
mer denotes that all contained observations must be aggre-
gated (e.g., a roll-up operation) for being observation com-
plement with the containing one, while the latter denotes
that both contained and containing observation must be
rolled-up on their disjoint dimensions for becoming comple-
mentary. These two concepts are defined as follows.

Definition 4 (Partial and full containment): Given two
observations oa and ob, their dimensions Pa and Pb and their
measures Ma and Mb, partial containment between oa and
ob exists when the following conditions hold:

Ma ∩Mb 6= ∅ (3)

∃pi ∈ Pa ∩ Pb : hi
a � hi

b (4)

Therefore, (3) ∧ (4) ⇒ Contpartial(oa, ob). An observation
oa partly contains ob when there is at least one Mi shared
between oa and ob as stated in (3), and there exists at least
one dimension whose value for oa is a hierarchical ancestor
of the value of the same dimension in ob, as stated in (4).
We denote this as Contpartial(oa, ob). In the example, ob-
servation o21 partially contains o31, because Greece contains
Athens but 2001 does not contain 2011. By rolling up on
the refPeriod dimension, the two observations become com-
plementary.

Similarly, full containment between oa and ob exists when
the same preconditions (3)-(4) hold along with a universal
restriction on (4) for all dimension values, i.e:

∀pi ∈ Pa ∩ Pb : hi
a � hi

b (5)

Therefore, (3) ∧ (4) ∧ (5) ⇒ Contfull(oa, ob). An observa-
tion oa fully contains ob when there is one Mi shared between
oa and ob as stated in (3), and values of all dimensions for
oa are hierarchical ancestors of the values for the same di-
mensions in ob as stated existentially in (4) and universally
in (5). We denote this with Contfull(oa, ob). Observe that
the containment property is not symmetric and that given
Contfull(oa, ob), then Contfull(ob, oa) is not implied. In the
example, o21 fully contains o32 and o34. The notation is
summarized in Table 1. Based on the above, our problem is
formulated as follows.

Problem: Given a set D of source dataset, and a set O
of observations in D, for each pair of observations oi, oj ∈
O, i 6= j, assess whether a) Contfull(oi, oj) , b) Contpartial(oi, oj)
and c) Compl(oi, oj). In the following section, we provide
our techniques for computing these properties.

Table 1: Notation
Notation Description

oi The i-th observation in a set O
Pi The set of dimensions for observation oi
pi The i-th dimension in a set Pk

Mi The set of measures for observation oi
hi
a Value of dimension pi for observation oa

hi
a � hi

b hi
a is a parent of hi

b
cjroot The root value (ALL) for dimension pj

Compl(oa, ob) Observation oa complements ob
Contfull(oa, ob) Observation oa fully contains ob

Contpartial(oa, ob) Observation oa partially contains ob

3. ALGORITHMS
In this section, we present three approaches for computing

containment and complementarity relationships. We first
present a baseline method of O(n2) complexity and then we
propose two alternatives in order to achieve scalable and fast
solutions.

3.1 Baseline
Our baseline algorithm performs pair-wise computations

between all pairs of observations in a given data space. To
achieve this, we model observations as bit vectors in a mul-
tidimensional data space represented by an occurrence ma-
trix OM, where rows represent observations and columns
are values in their dimensions as well as ancestor values in
their dimension hierarchies. OM encodes the occurrence of
a dimension value in an observation as well as the hierarchy
in which this value belongs to, by setting the value of 1 to
all columns that are ancestors of this value.

Dimension alignment is often required to take place before
this step, in order to have a reconciled dimension bus in the
feature space. As discussed later on in the experiments sec-
tion, we employ a state-of-the-art tool for performing the in-
terlinking of dimension values across different datasets. Note
that this procedure is orthogonal to the work presented in
this paper. The problem of dimension alignment, and record
linkage in general, is a separate research problem and is not
underestimated; however, (a) data conversion is feasible and
amortized over time (esp., if data collection from ”favorite”
sources is recurring), and (b) the focus of this paper is on
analytics and not data integration.

Constructing the Occurrence Matrix. Each obser-
vation oi defines a bit vector oi and all oi ∈ O comprise the
occurrence matrix OM of |O| × |C| dimensions, defined by
the occurrences of code list values in the respective dimen-
sions. Each value cji ∈ Cj corresponding to dimension pj is
a feature, i.e., a column in OM. Hierarchical containment
is encoded into OM using a bottom-up algorithm that as-
signs a value of 1 in column cji and all of its parents, if the
value hj

a of the dimension pj of oa is equal to the feature cji.
Finally, we set the cjroot columns of all observations that do
not contain pj in their schema. This means that dimensions
not appearing in a schema are mapped to the top concept
(i.e. root term), including all possible values.

Matrix OM can be further broken down in separate sub-
matrices for each code list, i.e., OM = [OM1, . . . ,OM|C|]
for all dimensions, where OMi is a sub-matrix that repre-
sents occurrences for all values of dimension pi. Matrix OM
for the example of Figure 2, given the hierarchies shown in
Figure 1, is shown in Table 2. OM is used as an input for our
algorithm that computes a containment matrix. The latter
is used for assessing both complementarity and containment
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properties.
Computation of containment. A containment matrix

CMi captures pair-wise containment between observations,
for dimension pi. If a cell CMi[a, b] > 0, then oa and ob
are related via containment for pi. To compute CMi, we
apply a conditional function between pairs of rows, as bit
vectors. Containment exists if the logical AND operation
between the bit vectors of the rows returns one of the two
bit vectors. We define this check as the following conditional
function applied on oa and ob:

sf(oa, ob) |(pi)=

{
1, if a ∧ b = b

0, otherwise

Notice that we apply sf for oa and ob for dimension pi in
OMi. Application of this function for each dimension re-
turns a set of |P | containment matrices, CM1, . . . ,CMk.
By adding these we get the Overall Containment Matrix
OCM:

OCM =

∑k
i=1 uiCMi∑k

i=1 ui

OCM values are normalized; we derive full containment
when a cell has a value of 1, and partial containment when
a cell has a value between 0 and 1 (non-inclusive) To assert
which particular dimensions exhibit containment in a partial
relationship, we examine the cells in CMi being equal to 1.
The occurrence of a 0 value indicates that full containment
and complementarity can not hold. Note also that measure
overlaps can be easily detected with a simple lookup. The
construction of the OCM matrix is explained in Algorithm
1 computeOCM. We then calculate containment and com-
plementarity using the OCM-based Algorithm 2 baseline.

Computation of complementarity. Following the def-
inition of observation complementarity, and given that the
non-appearing values are set to cjroot, we use OCM to as-
sess whether a pair of observations exhibits full containment
in both directions, i.e. Contfull(oa, ob) and at the same time
Contfull(ob, oa).

Analysis. The baseline algorithm has Θ(n2) time com-
plexity for n observations, because it visits each pair of ob-
servations exactly once, if all three types of relationships
are to be retrieved. The occurrence matrix OM requires
Θ(nk) space for n observations and k features, given a sim-
ple array implementation. However, for large k the matrix
tends to become sparse, therefore a sparse matrix imple-
mentation would yield a significant decrease in the required
space. In practice, if at least one 0 is found in the CM ma-
trices, the pair under comparison is no longer candidate for
either full containment or complementarity. We keep this
in an index table to avoid meaningless comparisons in the
next step, if only full containment or complementarity is to
be computed. Finally, if we are not interested in identifying
the particular dimensions that exhibit containment in a par-
tial containment relationship, we skip iterating through the
CMi matrices and identifying the zero values, and just keep
the value as a metric of the degree of partial containment
that the pair exhibits.

3.2 Computation with Clustering
The baseline algorithm becomes inefficient for large datasets

and does not scale due to its quadratic complexity. For
this reason, we improve its performance by applying a pre-
processing step that prunes the search space by limiting

Algorithm 1 computeOCM

Input: An occurrence matrix OM with N rows and |C|
columns, a set P of dimensions and their start indices in
OM
Output: A NxN overall containment matrix OCM

1: initialize OCM[][]
2: for each pi ∈ P do
3: initialize CMpi[][] . one containment matrix per

dimension
4: for each oj ∈ OMpi do . pi defines a start index
5: for each ok ∈ OMpi do
6: if oj AND ok == oj then
7: CMpi[j][k]← 1
8: else
9: CMpi[j][k]← 0

10: OCM[j][k]← OCM[j][k] + (CM(pi)/ |P |) .
normalize for # of dimensions
return OCM

Algorithm 2 baseline

Input: A NxN overall containment matrix OCM.
Output: SF , Sp, Sc sets of fully, partial containment and
complementarity relationships, and optionally a map of par-
tial containment relationships mapP with the dimensions
they exhibit containment in.

1: initialize SF , Sp, Sc

2: for each oi ∈ OCM do
3: for each oj ∈ OCM && oj 6= oi do
4: if OCM[i][j] == 1 then
5: SF = SF ∪ (oi, oj)
6: if OCM[j][i] == 1 then
7: SC = SC ∪ (oi, oj)

8: else if OCM[i][j] > 0 then
9: SP = SP ∪ (oi, oj)

10: for each pi ∈ P do
11: if CMpi[i][j] == 1 then
12: mapP (oi, oj , pi) = true
13: else continue

return SF , SP , SC ,mapP

comparisons. Algorithm 3 presents our approach. It takes
as input the occurrence matrix containing the bit vectors
for the observations and applies a clustering algorithm that
splits the matrix into smaller occurrence matrices. It then
applies the computeOCM and baseline algorithms to each
separate cluster. This way comparisons between pairs of
observations are limited within each cluster. This is shown
in Algorithm 3.

Clustering configuration. In order to compute clus-
ters, state-of-the-art clustering algorithms can be employed.
We have experimented with k/x-means [26], bottom-up hi-
erarchical clustering and fast canopy clustering [21] for the
purposes of evaluating our algorithms. To avoid introducing
extra time overhead in the containment and complemen-
tarity computation stage, we approximate the algorithm by
clustering a sample of the data and assigning the remaining
points to the identified clusters.

Analysis. Time and space complexity of the clustering
step depends on the complexity of the chosen clustering al-
gorithm, the number of clusters and the distribution of ob-
servations in the clusters. The baseline algorithm will run
times equal to the number k of clusters. However, the dis-
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Table 2: Matrix OM for the example of Figure 2
refArea refPeriod sex

WLD EUR AM GR IT Ath Rom US TX Aus ALL 2001 2011 Jan11 Feb11 T F M
obs11 1 1 0 1 0 1 0 0 0 0 1 1 0 0 0 1 0 0
obs12 1 0 1 0 0 0 0 1 1 1 1 0 1 0 0 1 0 1
obs21 1 1 0 1 0 0 0 0 0 0 1 0 1 0 0 1 0 0
obs22 1 1 0 0 1 0 0 0 0 0 1 0 1 1 0 1 0 0
obs31 1 1 0 1 0 1 0 0 0 0 1 1 0 0 0 1 0 0
obs32 1 1 0 1 0 1 0 0 0 0 1 0 1 1 0 1 0 0
obs33 1 1 0 0 1 0 1 0 0 0 1 0 1 0 1 1 0 0

Table 3: (a) Matrix CM1 for dimension refArea of the example of Figure 1, (b) Matrix OCM for the example of Figure 1
(a)

obs11 obs12 obs21 obs22 obs31 obs32 obs33
obs11 1 0 0 0 1 1 0
obs12 0 1 0 0 0 0 0
obs21 1 0 1 0 1 1 0
obs22 0 0 0 1 0 0 1
obs31 1 0 0 0 1 1 0
obs32 1 0 0 0 1 1 0
obs33 0 0 0 0 0 0 1

(b)

obs11 obs12 obs21 obs22 obs31 obs32 obs33
obs11 1 0 0.33 0.33 1 0.66 0.33
obs12 0.33 1 0.66 0.66 0.33 0.66 0.66
obs21 0.66 0.33 1 0.66 0.66 1 0.66
obs22 0.33 0 0.33 1 0.33 0.66 0.66
obs31 1 0 0.33 0.33 1 0.66 0.33
obs32 0.66 0 0.33 0.66 0.66 1 0.33
obs33 0.33 0.33 0.66 0.33 0.33 0.33 1

Algorithm 3 clustering

Input: An occurrence matrix OM with N rows and |C|
columns.
Output: SF , Sp, Sc sets for fully, partial containment and
complementarity relationships.

1: clusters[]← cluster(OM, . . . ) . e.g. k-means
2: initialize OCM← 0
3: for i = 1 to clusters.size do
4: OCMi ← computeOCM(clusters[i], P )
5: SFi, SPi, SCi ← baseline(OCMi)
6: SF , SP , SC ← (SF , SPSC) ∪ (SFi, SPi, SCi)

return SF , SP , SC

tribution of observations in clusters is not known for a given
collection of datasets. In the centroid-based case (canopy,
k/x-means), assuming an equal distribution of n

k
observa-

tions per cluster, then the time complexity for each cluster

is Θ(n
k

)2 thus making the total time complexity Θ(n2

k
) .

Following a rule of thumb where k =
√

n
2

, this becomes

Θ(n1.5), at the cost of information loss, as will be shown in
the experiments.

3.3 Computation with Cube Masking
The efficiency achieved by the clustering approach can re-

sult in lower recall levels as observations that are likely to
be related might end up in different clusters. In this section,
we propose a scalable algorithm that greatly increases speed
and at the same time maintains 100% recall. The approach
is based on the hierarchical characteristics of the dimension
values. We first construct a lattice of all possible level com-
binations for all the dimension values that appear at least
once in the input. Then, we map all observations to their
respective lattice nodes (i.e. cubes) and check if the lattice
nodes, rather than the observations, meet the containment
and complementarity criteria. If so, comparisons need only
be performed between observations belonging to these lat-
tice nodes. To demonstrate this further, consider the lattice
shown in Figure 3 that corresponds to the dimension hierar-
chies of Figure 2. Each node corresponds to a combination
of the levels of all dimensions. Therefore, node ”210” repre-

sents the cube of all observations that pertain to values at
level 2 for refArea, level 1 for refPeriod and level 0 for sex.
In the cases of full containment and complementarity, we
do not need to compare observations that belong to lattice
nodes that are not hierarchically related, such as node ”121”
with node ”311”. In the case of partial containment we look
for at least one dimension inclusion (i.e. path) in the lattice
before comparing the contents.

Based on these observations, we propose the cubeMasking
algorithm (Algorithm 4) that works in the following steps:
i) It first identifies cubes in the input datasets and populate
the lattice; ii) it maps observations to cubes; iii) it iterates
through cubes and does a pair-wise check for the contain-
ment criterion and finally iv) it compares observations be-
tween pairs of cubes that fulfils this criterion. In order to
perform these steps, we use a hash table to ensure that a
value’s level can be checked in constant time. We then go
on to identify the cubes and build the lattice by iterating
through all observations and extracting their unique combi-
nations of dimensions and levels. To do so, we apply a hash
function on each observation that both identifies and popu-
lates its cube at the same step. Finally, we iterate through
the identified cubes and by doing a pair-wise check for the
containment and complementarity criteria, all meaningful
observation comparisons are identified. This can be seen in
Algorithm 4.

Analysis. Instance-level comparisons are limited between
pairs of comparable cubes that are identified by the algo-
rithm. At worst, the maximum number of cubes for a set of
input datasets is the number of permutations of dimensions
and levels, i.e. k(|P |), where k is the maximum level of all
hierarchies and |P | is the number of dimensions. Checking

for potentially comparable pairs of cubes costs O(k(2|P |)) in

the worst case, but for an average of bk(|P |) present cubes in
the input, and abk(|P |) number of comparable cubes, where
a and b are constants between 0 and 1, the algorithm will
require ab2n2 comparisons instead of n2.

4. PERFORMANCE EVALUATION
Datasets. We have experimented with seven real-world

datasets taken from the statistics domain. Eurostat Linked
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Example Observations:
[Rome, Jan2011, Female]
[Athens, Jan2011, Male]
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111021 201 210 300

121
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010 001 100

000

o12 o32,o33

o11, o31

o21,o22

Example Observation:
[World, All, Total]

Figure 4: The lattice for the three hierarchies of Figure 2.
Observations in Figure 1 are mapped to the appropriate
node. The number in each node corresponds to the level
of each dimension.

Data Wrapper, the Eurostat database, linked-statistics.gr
and World Bank2 were used as the dataset sources. The
datasets were either in RDF form, or converted to RDF. In
the case of datasets in CSV format, we follow the approach
of [28] for producing RDF QB datasets, although many other
popular tools can be used, such as CSV2RDF3, OpenCube4

and Open Refine5. We converted CSV column headers to
dimension URIs, and rows to observations, by automatically
matching cell values to existing code list terms based on
their IDs. The datasets contain information of European
authorities on unemployment, resident population, number
of households, births, deaths and gross domestic product
(GDP) on a multitude of dimensions that include locations,
dates, citizenship, sex, household size, education level and
economic activity. In total, the datasets amount to 250k
observations and 2.6k distinct hierarchical values. These
exhibit an overlap of 11 dimensions pertaining to common
coded lists, and 6 measures.

In our experiments, we consider a separate preprocess-
ing step for the alignment of the schemas and the mapping
of the dimension values across the input datasets. In this
work we have used LIMES [24], a state-of-the-art link dis-
covery framework commonly used for entity matching tasks
in the Web of Data. LIMES is configurable to use SPARQL
query restrictions on input data (e.g. only match nodes of
type skos:Concept), and has a rule language that enables

2http://estatwrap.ontologycentral.com/ , http:
//data.worldbank.org/ , http://linked-statistics.gr/
, http://epp.eurostat.ec.europa.eu/portal/page/
portal/statistics/search_database
3http://www.w3.org/TR/csv2rdf/
4http://opencube-toolkit.eu/
5http://refine.deri.ie/

Algorithm 4 cubeMasking

Input: A list C with all code list terms as they appear in the
datasets, a hash table levels with a mapping of hierarchical
values to their levels, and a list O of N observations with
their descriptions.
Output: SF , Sp, Sc sets for full, partial containment and
complementarity relationships.

1: hierarchy ← createHierarchyTree(C) .
iterate through observations once to identify cubes and
map observations to cubes

2: initialize cubeLevels, observationsInCubes
3: for each oi ∈ O do
4: initialize cube
5: for each pj ∈ P do
6: cube.pj ← levels(oi, pj)

7: cubeLevels.add(cube) . hashing ensures no
duplicates

8: observationsInCubes(oi)← cube

9: for each cubej , cubek ∈ cubeLevels do
10: for each pi ∈ P do
11: if not(cubej .pi ≺ cubek.pi) then break

12: for each oi ∈ cubej do
13: for each oj ∈ cubek do
14: SF[oi, oj ]← checkFullCont(oi, oj)
15: SP[oi, oj ]← checkPartialCont(oi, oj)
16: SC[oi, oj ]← checkCompl(oi, oj)

return SF , SP , SC

17: procedure createHierarchyTree(C)
18: initialize hierarchyTree
19: for each ci ∈ C do
20: hierarchyTree.add(ci)
21: for each ci.parent do
22: hierarchyTree.addParent(ci, ci.parent)

return hierarchyTree

23: procedure checkFullCont(oi, oj)
24: for each pi ∈ P do
25: if not hierarchy.isParent(oi.pi, oj .pi) then re-

turn false
return true

26: procedure checkPartialCont(oi, oj)
27: for each pi ∈ P do
28: if hierarchy.isParent(oi.pi, oj .pi) then return

true
return false

29: procedure checkCompl(oi, oj)
30: if checkFullCont(oi.pi, oj .pi) &&

checkFullCont(oj .pi, oi.pi) then return true
return false

the user to select combinations of distance functions (e.g.
the maximum of the cosine and levenshtein distances). We
configured LIMES to match hierarchy nodes by adding their
URIs as literal values, and used their cosine distance in order
to find close matches based on the identifiers usually found
in the suffix part of a URI. The details for each dataset are
summarized in Table 4.

Metrics. The goal of the experiments was to assess and
compare the performance of the proposed algorithms with
respect to execution time and recall of computed relation-
ships. Execution time is measured as the time needed for
data pre-processing and for computing complementarity and
containment properties. Recall is calculated as the ratio of
computed relationships to actual relationships. However,
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Table 4: Dataset dimensions, amount of observations and respective measures
Dataset
(# of obs)

refArea refPeriod sex unit age economic
activi-
ties

citizenship education household
size

measure

D1 (58k) Y Y Y Y Y N Y N N Population
D2 (4.2k) Y Y N Y N N N N Y Members
D3 (6.7k) Y Y Y Y Y N N Y N Population
D4 (15k) Y Y N Y N N N N N Births
D5 (68k) Y Y Y Y Y N Y N N Deaths
D6 (73k) Y Y N Y N N N N N GDP
D7 (21.6k) Y Y N N N Y N N N Compensation

it is relevant only to the clustering algorithm, as the base-
line and the cubeMasking algorithms achieve 100% recall.
Note, also, that the precision is 100% for all algorithms as a
derivative of the determinism in the relationship definitions.
In order to derive recall, we have compared the output of
the clustering method with the ground truth taken from the
baseline output. Note that we do not consider any decrease
in recall induced by the tool used in the dimension alignment
step. Since the recall of our approach is not dependent to the
result of the alignment process, we assume that the output
of the linking tool (in our case LIMES) achieves 100% recall
correctly matching schema elements and dimension values
across all datasets.

Experimental Setting. Our approach was implemented
in Java 1.7, and all experiments were performed on a server
with Intel i7 3820 3.6GHz, running Debian with kernel ver-
sion 3.2.0 and allocated memory of 16GB. We implemented
the approaches and performed a series of comparisons be-
tween them, starting from an input size of 2k observations,
over the original fixed size of dimensions. We continued the
experiment with an input size of 20k and then we further
increased it with a 20k step. For the clustering method, we
have experimented with canopy clustering, hierarchical clus-
tering and x-means, all applied on a 10% random sample of
the original datasets and empirical studies showed that x-
means outperformed the other two methods greatly in terms
of recall achieved in comparable time frames. Based on the
bit-vector approach, we used the Jaccard coefficient as a sim-
ilarity metric for our binary feature space. The cubeMasking
algorithm has been further optimized to limit the number
of cube comparisons by storing for each cube, the full set of
its children in memory.

SPARQL-based. We have experimented with SPARQL
queries over a Virtuoso 7.1 instance for computing the re-
lationships. Note that universal quantification as well as
recursive querying (i.e. property paths) are necessary to
compute full containment and complementarity. Property
paths are directly supported by SPARQL 1.1, however, uni-
versal quantification must be mimicked by using a negation
construct that includes a nested recursion, which makes the
queries costly. Furthermore, occurrence of partial contain-
ment can be detected by SPARQL queries easily, but it is
complicated and costly to quantify it. The SPARQL ap-
proach is composed of three SPARQL queries; for simplicity,
we are only interested in detecting the underlying existence
of the containment and complementarity relationships, and
we do not quantify it like in the computation of the OCM
matrix. In the case of partial containment, the query for
detecting pairs of observations is as follows:

SELECT DISTINCT ?o1, ?o2

WHERE {
?o1 a qb:Observation .
?o2 a qb:Observation .
?o1 ?d1 ?v1.
?o2 ?d1 ?v2.
?v1 skos:broaderTransitive/skos:

broaderTransitive* ?v2
FILTER (?o1 != ?o2)

}

The above query will select pairs of ?o1 and ?o2 that have
at least one dimension with ancestral values; ?v1 must be a
parent of ?v2. The above query does not privie the number
of dimensions that participate in the partial containment ;
this would make the query more complicated. In the case
of complementarity, we tested the data against the following
SPARQL query:

SELECT ?o1, ?o2
WHERE {

?o1 a qb:Observation .
?o2 a qb:Observation .
FILTER NOT EXISTS {

?o1 ?d1 ?v1.
?o2 ?d1 ?v2.
FILTER (?v1!=?v2)

}
FILTER (?o1 != ?o2)

}

The query will be matched against pairs of observations
whose shared dimensions do not have different values. In
both queries, we have relaxed the conditions presented in
section 2 regarding the observations’ schema.

Rule-based. The rule-based approach consists of three
forward-chaining rules implemented in Jena, as the Jena
generic rule reasoner is simple to use and offers the required
expressivity. The rule for computing full containment is as
follows:

observation(o1) ∧ observation(o2)
∧ (o1 6= o2)
∧ ∃p.( has_dimension_value(o1,p,v1)

∧ has_dimension_value(o2,p,v2)
∧ is_ancestor(v1,v2))

∧ ∀p.( has_dimension_value(o1,p,v1)
∧ has_dimension_value(o2,p,v2)
∧ is_ancestor(v1,v2))

⇒ full_containment(o1,o2)

In essence, we are checking for pairs of different observations
that exhibit both existential and universal quantification in
having dimension values subsume each other. The existen-
tial quantification is needed to ensure that there exists at
least one such relationship, while the universal is needed to
ensure that all relationships hold true. Similarly, the rule for
partial containment checks the existential restriction; that
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is, we need at least one pair of dimension values to exhibit a
containment relationship between o1 and o2. Therefore, the
rule is as follows:

observation(o1) ∧ observation(o2)
∧ (o1 6= o2)
∧ ∃p.( has_dimension_value(o1,p,v)

∧ has_dimension_value(o2,p,v))
⇒ partial_containment(o1,o2)

The rule for complementarity is activated when two differ-
ent observations have the same values for all of their shared
dimensions and is summarized in the following:

observation(o1) ∧ observation(o2)
∧ (o1 6= o2)
∧ ∃p.( has_dimension_value(o1,p,v)

∧ has_dimension_value(o2,p,v))
∧ ∀p.( has_dimension_value(o1,p,v)

∧ has_dimension_value(o2,p,v))
⇒ complement(o1,o2)

All datasets along with the experiment code are available
online at http://github.com/mmeimaris .

4.1 Experimental Results
Our experiments indicate that the quadratic baseline al-

gorithm is improved substantially by our two proposed al-
ternative methods, i.e. clustering and cubeMasking. Specif-
ically, we have achieved improvement by roughly one order
of magnitude for the computation of full containment and
complementarity by using the cubeMasking algorithm, while
we find that the clustering algorithm exhibits a trade-off be-
tween execution time and relationship recall. The results can
be seen in Figure 5.

Baseline. The baseline behaves as expected, performing
n2 comparisons for n observations. The partial containment
relationships are quantified with a value between 0 and 1,
non-inclusive, which increases monotonically in proportion
with the number of dimensions that a pair of observations
exhibits containment in. The results for computing the re-
lationships can be seen in Figure 5(a-c). However, as can be
seen in the Figure, it is cheaper to compute only full contain-
ment and complementarity because the cases where these do
not apply can quickly be ruled out in the computeOCM step.
This approach does not scale with respect to input size, as
all pairs of rows in the OCM matrix, representing obser-
vations, have to be visited in order to detect and quantify
containment and complementarity. It should be noted that,
when having computed full containment, complementarity
can be detected a posteriori by iterating through the fully
contained pairs and checking for mutual (i.e. bi-directional)
full containment.

Clustering. In the case of clustering, we have experi-
mented with three different clustering algorithms, one ag-
glomerative and two centroid-based, namely hierarchical,
canopy and x-means respectively. Figure 5(d) shows the
recall levels of the three algorithms. We have found that
x-means, even when applied to a random 10% sample of
the data, outperforms the other two in the resulting recall.
Overall, the clustering method shows promising results and
leaves room for improvement as far as the clustering step is
concerned. Note that by definition, the baseline algorithm
is equivalent to clustering with exactly one cluster. A large
number of clusters k will limit the total number of compar-
isons, and consequently make the computations faster, but

the process will be lossy, ultimately achieving lower recall
levels.

Cube Masking. The cubeMasking algorithm is the fastest
of all the approaches we experimented with, mainly because
of the linear cost of identifying and assigning observations to
cubes, and the reduced number of performed comparisons.
This is a consequence of the fact that it takes advantage of
the distributions of dimension levels and values, and reduces
the needed comparisons to a minimum with respect to the
baseline and clustering algorithms, while maintaining full
recall. Furthermore, the experiments on synthetic data, as
well as the observation that the ratio of cubes per input size
tends to decrease as input size increases as depicted in Fig-
ure 5(f), show that it is scalable for big datasets. In essence,
Figure 5(f) shows that the number of cubes in a collection
of datasets will increase in a lower rate than the number of
input observations. This implies that as the input size in-
creases, the cubeMasking algorithm will usually not result
in intractable pair-wise comparisons.

With cubeMasking, we need to check for parent-child re-
lationships between cubes. The brute-force way to achieve
this is to iterate through all pairs of cubes and check for
pair-wise ancestry. This ancestry exists when all dimension
levels of the first cube are equal or less than their respec-
tive dimension levels of the second cube. By pre-fetching
and storing all children of each cube in memory, we intro-
duce a conditional optimization that yields roughly 15-20%
faster execution time for any input size as can be seen in
Figure 5(g). However, creating this mapping implies either
an explicit iteration of all cubes, which is costly, or an un-
avoidable iteration for one of the relationship types, which
can be taken advantage of for the other two. Furthermore,
keeping a list with the children of any given cube node adds
an extra memory overhead, however in this work we are not
interested in the memory footprint of each method.

SPARQL and Rule-based. These approaches perform
adequately for small inputs, as shown in Figure 5(a), (b) and
(c), but either hit the time-out limits or consume all mem-
ory resources quickly, which renders them unusable for the
computations of such relationships over real world datasets.
This is mainly due to the fact that the multi-transitive na-
ture of the containment relationships creates an intractable
search space, which is compensated by the dedicated speci-
ficities of our approach. From a reasoning-based perspective,
it has been argued in the literature that dedicated reasoners
tend to out-perform general purpose ones [8]; a fact that is
supported by our experiments.

4.2 Scalability
In order to test scalability of our methods, we have cre-

ated a synthetic dataset of 2.5M observations, following a
similar approach as in [11]; the creation of synthetic data
was based on fixing the number of dimensions and creating
observations that follow a projected distribution of the data
w.r.t to the real-world datasets. More specifically, we calcu-
lated the projected number of lattice nodes to reflect Figure
4(f), where the change in active lattice nodes is shown as the
input size increases. Then, we populated the lattice nodes
evenly.

Experiments in the datasets show that the approaches uti-
lizing SPARQL querying and rule inferencing do not scale
adequately, even for small input sizes. Figure 5(e) shows
how the three proposed methods scale in respect to the in-
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(a) Execution time (hours) for complementarity (b) Execution time (hours) for full containment

(c) Execution time (hours) for partial containment (d) Recall for three clustering algorithms w.r.t. input size

(e) log-log time and input size (f) ratio of discovered cubes per observation count

(g) Rate of execution time with children pre-fetching vs
normal for full containment

Figure 5: (a) Execution time (hours) for complementarity, (b) full containment, (c) partial containment (note that in the
SPARQL based approach, partial containment is only detected and not quantified), (d) recall for three clustering algorithms
w.r.t. input size, (e) log-log time and input size, (f) ratio of discovered cubes per observation count. o/m=out of memory, (g)
rate of execution time with children pre-fetching vs normal for full containment.
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put size. While the values for clustering and cubeMasking
are based on measured values on the synthetic data, the
value for the baseline method for 2.5m records is a projec-
tion of the quadratic analysis; it took more than 7 days to
complete.

The results indicate that both clustering and cubeMasking
scale better than the baseline, with the latter having a more
clear advantage because of the reduced number of needed
comparisons in conjunction with the fact that it is lossless.
However, in extreme cases where the number of cubes is
large and the distribution of observations in these cubes is
sparse, the cubeMasking method will resemble the baseline.
In these cases, the clustering method yields a more realistic
advantage, especially when efficiency is more important than
recall.

5. RELATED WORK
In this paper, we extend the work presented in [22], where

we introduce preliminary notions of containment and com-
plementarity, we outline a method of computing these no-
tions, and define an RDF vocabulary as an extension of RDF
QB for containment and complementarity between multidi-
mensional observations across sources.

The problem of finding related observations in multidi-
mensional spaces has been addressed within several contexts.
Online Analytical Mining (OLAM) refers to the application
of data mining in OLAP, and addresses OLAP classification
[20], outlier detection[1], intelligent querying [28] and recom-
mendation for OLAP exploration, which is based on either
query formulation or instance similarity [2, 3]. These ap-
proaches enable discovery of latent information, exploratory
analysis [13] and efficient querying [20].

In [14] the authors discuss how queries containing group-
ing and aggregation, which in our case is similar to observa-
tion containment, can be facilitated by materialized views.
Partial containment is referred to as k-dominance in [6],
where it is used to define partial skylines in multidimen-
sional datasets.

Skyline computation in multidimensional datasets uses
the notion of dominance, or observation containment, in or-
der to assert whether a point is part of a dataset’s skyline
[33, 30, 19]. Skyline points are essentially top-level observa-
tions, i.e. observations that are not contained by other ob-
servations. However, these approaches are concerned with
only skyline data points, rather than computation of all con-
tainment relationships. Skyline computation is, however, a
direct derivative of containment computation.

Aligon et al.[2] address similarities between OLAP ses-
sions by defining distance functions over query features. They
experiment with Levenshtein, Dice’s coefficient, tf-idf and
Smith-Waterman, with the latter being the best for their
purposes, whereas in our approach the Jaccard Coefficient
addresses the binary nature of our feature space directly.
Baikousi et al.[3] define distance functions for dimension hi-
erarchies. However, they address observation similarity in
general, rather than computing strict relationships as in our
case. Hsu et al. [16] apply multidimensional scaling meth-
ods and hierarchical clustering in a hybrid approach in order
to measure similarity between reports in the same cubes.

Business model ontologies have been deployed in the con-
text of OLAP cubes in [29], where the authors define notions
such as merge and abstraction of cubes. The abstraction no-
tion is of particular interest to our work, as it resembles the

containment relationship, however the setting and motiva-
tion behind this work is representational rather than com-
putational.

In the context of RDF, finding related cubes in multi-
dimensional contexts is addressed in [18], where the work
is focused in extending the Drill-Across operator to address
different sources. The authors define conversion and merging
correspondences between remote cubes in order to quantify
the degree of their overlap and enable meaningful combina-
tions of datasets. However, they do not address specific re-
lationships at the instance level. The need for RDF-specific
workflows is addressed in [17], where the authors argue that
analytical processing of RDF cubes requires more than the
capabilities offered by SPARQL engines for querying, explo-
ration and analysis, and are best complemented with OLAP-
to-SPARQL engines that use RDF aggregate views and par-
tial materialization. This is in favour of our approach that
tackles efficient materialization of batch relationships.

The more general problem of finding similarity between re-
sources is a main component in entity resolution, record link-
age and interlinking [23, 24, 32]. These approaches deal with
discovering links between nodes from different datasets by
using distance-based techniques. To the best of our knowl-
edge, this is the first work that addresses the definition, rep-
resentation and computation of relationships between indi-
vidual multidimensional observations.

6. CONCLUSIONS AND FUTURE STEPS
In this paper, we have presented and compared three novel

approaches for discovering relationships between observa-
tions of multidimensional RDF data. We have defined new
relationships, namely full and partial containment, and com-
plementarity between observations as derivatives of the hi-
erarchical relationships between their dimension values, and
as a means of comparison and correlation of their measures.
We performed an experimental evaluation and comparison
between them and with a SPARQL-based and a rule-based
technique and we show that our methods outperform the
traditional approaches in both execution time and scalabil-
ity. As this work is based on batch analysis, in the future we
plan to study and define efficient incremental techniques, as
well as hybrid probabilistic methods that take into advan-
tage the positive points of the clustering and cubeMasking
algorithms. We will also address space efficiency and exam-
ine the behaviour of our approaches on settings with memory
restrictions. Finally, we intend to examine the performance
of our algorithms in distributed and parallel contexts.

Acknowledgements. This work is supported by the EU-
funded ICT project ”DIACHRON”(agreement no 601043).

7. REFERENCES
[1] C. C. Aggarwal and P. S. Yu. Outlier detection for

high dimensional data. In ACM Sigmod Record,
volume 30(2), pages 37–46. ACM, 2001.

[2] J. Aligon, M. Golfarelli, P. Marcel, S. Rizzi, and
E. Turricchia. Similarity measures for olap sessions.
Knowledge and information systems, 39(2):463–489,
2014.

[3] E. Baikousi, G. Rogkakos, and P. Vassiliadis.
Similarity measures for multidimensional data. In Data
Engineering (ICDE), 2011 IEEE 27th International
Conference on, pages 171–182. IEEE, 2011.

291
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ABSTRACT
During the life of a database, systematic and frequent vi-
olations of a given constraint may suggest that the repre-
sented reality is changing and thus the constraint should
evolve with it. In this paper we propose a method and a
tool to (i) find the functional dependencies that are violated
by the current data, and (ii) support their evolution when
it is necessary to update them. The method relies on the
use of confidence, as a measure that is associated with each
dependency and allows us to understand ”how far” the de-
pendency is from correctly describing the current data; and
of goodness, as a measure of balance between the data satis-
fying the antecedent of the dependency and those satisfying
its consequent. Our method compares favorably with liter-
ature that approaches the same problem in a different way,
and performs effectively and efficiently as shown by our tests
on both real and synthetic databases.

1. INTRODUCTION
The information related to a certain reality of interest is

represented in a database by means of data, a vital resource
on which decision-making processes are based. The data
stored in a database must satisfy the semantic conditions
expressed by the schema plus integrity constraints. Specify-
ing and enforcing constraints grants us better data qual-
ity, maintenance, query optimization, view updating and
database integration and exchange; in particular, functional
dependencies have been widely applied to these aims and,
from the 70s on, their knowledge has been used to support
database design and management, reverse engineering and
query optimization. The number of application scenarios
they are used in has grown over time including, more re-
cently, automated DB analysis such as knowledge discovery
and data mining. A functional dependency (FD) is a con-
straint between two sets X and Y of attributes in a relation

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
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R of a database: R is said to satisfy the functional depen-
dency X → Y if each X value is associated with precisely
one Y value.

Nowadays, huge amounts of data are generated daily and
may come from different applications and sources where con-
straints are not equally enforced, thus the original datasets
may be inconsistent with each other or even by themselves
[1, 2]. Once a database designer or administrator is able to
understand that a constraint no longer holds, he/she can de-
cide what to do. Most systems that deal with discrepancies
of this kind re-establish consistency by changing the data
that violate the constraints. In our work we allow for a differ-
ent interpretation. Indeed, from our point of view, changes
in the data might also mean that their semantics is evolv-
ing for some reason, like for instance law or policy changes.
Therefore, once the DB administrator has ascertained that
this is the case, s/he will be able to re-establish consistency
by appropriately modifying the violated constraints. Note
that the new constraints capture a succinct representation
of the new semantics of the data, thus, this kind of analysis
is interesting for knowledge discovery purposes.

This paper’s main goal is to propose a method to modify
functional dependencies so as to adjust them to the evolu-
tions of the modeled reality that may occur during database
life. The method we propose provides a way to understand
which FDs are violated and, if needed, to modify them by
adding, to their antecedent, a minimal set of attributes that
makes them consistent with the data.

Running example Consider the relation Places in Figure 1
and assume that the following FDs be defined on it:

F1 : [District, Region]→ [AreaCode]

F2 : [Zip]→ [City, State]

F3 : [PhNo,Zip]→ [Street]

All the tuples in Places violate F1; tuples t1, t2 and t3 violate
F2 and tuples t10 and t11 violate F3. Thus, these three FDs
are not satisfied by the data. If the DBMS is able to detect
that (e.g. by means of periodic or continuous checks of FDs
validity) then it can present it to the designer. Suppose the
designer realizes that an FD not being satisfied by the data
is not a mistake but a symptom of a real-world situation
which is no more reflected by the semantics of the FDs, at
this point s/he can decide to integrate some of the candidate
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tid

t1
t2
t3
t4
t5
t6
t7
t8
t9
t10

t11

District
Brookside

Alexandria

Brookside
Brookside
Brookside
Brookside

Alexandria
Alexandria
Alexandria
Alexandria
Alexandria

Region
Granville

Moore Park

Granville
Granville
Granville
Granville

Moore Park
Moore Park
Moore Park
Moore Park
Moore Park

Municipal
Glendale

Guildwood

NapaHill

QueenAnne

Glendale
Glendale

Guildwood

NapaHill
NapaHill

QueenAnne
QueenAnne

AreaCode
613
613
613
515
515
415
415
415
517
517
517

PhNo
974-2345
974-2345
299-1010
220-1200
220-1200
220-1200
930-2525
555-1234
888-5152
888-5152
888-5152

Street
Boxwood
Boxwood
Westlane

Squire
Squire
Napa
Main
Tower
Main
Main
Bay

Zip
10211
10211
10211
02215
02215
60415
60415
60415
60415
60601
60601

City
NY
NY
NY

Boston
Boston
Chicago
Chicago
Chester
Chicago
Chicago
Chicago

State
NY
NY
MA
MA
MA
IL
IL
IL
IL
IL
IL

Figure 1: Running example: relation Places

changes into the database. Thus, the idea of the paper is to
find a way to change the constraints instead of the data and
make them valid again. How can we repair an FD? First of
all, without loss of generality we can assume that all FDs
are decomposed so that their consequent contains a single
attribute. In this way it is easy to see that modifying the
consequent is a no-issue. What we can do instead is acting
upon the antecedent: of course deleting attributes from it
cannot repair the FD but adding attributes might. Thus, our
aim is to identify the FDs violated by the data, find possible
repairs and present them to the designer to be evaluated. The
method can be used periodically on the data in order to keep
them consistent with the constrains.

The paper is organized as follows: in Section 2 we re-
view the state of the art, Section 3 introduces the technical
notions and the considerations at the basis of our proposal,
while Section 4 presents our proposal to evolve violated FDs.
In Section 5 we formally compare our approach with a pro-
posal which has the same aim as ours, but is based on the
notion of entropy to measure how much an FD is far from
being exact, while for the same aim we use the (simpler)
notion of confidence. In Section 6 we explain the experi-
mental results we have obtained on both real and synthetic
datasets and finally in Section 7 we draw the conclusions of
our work.

2. RELATED WORK
In the last years, research involving FDs has taken a dif-

ferent turn with respect to the past; today, automated data
analysis has become fundamental for knowledge discovery
and data mining and FDs in particular provide invaluable
intensional knowledge on the relation instances. As a conse-
quence, the concept has been used in a wide range of appli-
cation scenarios, which in turn originated many extensions
and variants [3], including: Conditional FDs (CFDs) [4], Ap-
proximate FDs (AFDs) [5], Approximate Conditional FDs
(ACFDs) [6], Temporal FDs (TFDs) [7], Approximate Tem-
poral FDs (ATFDs) [8], and others.

CFDs [4], have been introduced that specify FDs that do
not hold on the whole relation but just on a subset of its
data.

Both FDs and CFDs are exact, i.e., they hold for all the
instances in the relation (in the case of FDs) or for certain
subsets of it (for CFDs). These rules may easily break in the

sense that even small errors or minor changes to the rela-
tion instance may cause that the constraint no longer holds.
However, as time passes by and the lifecycle of a database
goes on, reality may change and so should the constraints
defined on the data. It is thus appropriate to monitor data
evolution as a mirror of reality in order to get useful insights
about the way data are evolving in time. To this aim, allow-
ing some exceptions in the table makes it possible to obtain
a better understanding of the data. In fact, a few rows might
contain errors due to various noise factors or simply be an
exception to the rule, and being able to detect the presence
of unexpected exceptions may inform us that something has
changed in the data semantics. To deal with this scenario,
AFDs have been introduced, that is, FDs that are associated
with some degree of approximation. AFDs are FDs that al-
low some rows to contain “errors” as exceptions to the rules;
the more errors they allow, the more approximate they are,
that is, their “approximation degree” changes. Thus, AFDs
“bend but do not break” and coherently ACFDs have been
introduced as an extension of CFDs.

The problem of constraint violation has been faced in the
literature in different ways. Works such as [9, 10, 11, 12, 13,
14] propose strategies to query inconsistent databases trying
to re-establish consistency by changing the facts that violate
the constraints. Thus, the problem of inconsistent databases
is considered from a query-answering point of view, that is,
the data that can produce inconsistency with respect to the
integrity constraints imposed at design time are discarded.
By contrast, we aim at modifying the integrity constraints so
the semantics of the database will adhere as much as possible
to the changing reality. Therefore, the data that violate
the constraints are not considered as abnormal facts but are
used to update obsolete constraints. A similar approach was
developed in [15] whose authors used data mining techniques
to repair tuple constraints. In this work we extend their
methodology to deal with functional dependencies.

FDs have been used as means to enforce data quality
through data profiling and cleaning. In [16] the authors pro-
pose an algorithm for discovering Denial Constraints (which
include functional dependencies) without supposing that any
constraint has been specified on the database at design time.
In order to apply the proposal in [16] to update the con-
straints on a given database when they are not up to date,
one has: (i) first to discover all the possible constraints from
data, then (ii) relax the constraints, considered as if they
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have been specified at design time on the database schema,
that do not hold on the current instance. This approach
is rather impractical when the FDs, though obsolete, have
been originally defined by a designer, first because of ef-
ficiency reasons, and second because, as we have noticed
testing the on-line algorithm of [16] the inferred constraints
not always include extensions of the ones specified by the
designer.

Not many works have been proposed in the literature that,
in the case of inconsistency, try to change the constraints in-
stead of the data. The authors of [17, 18] have for the first
time introduced a model that considers functional depen-
dency repair. They illustrate a method to extend, by adding
one attribute, the body of a violated FD in order to obtain a
new dependency that is not violated anymore. In particular,
given a functional dependency F : X → Y over a relation
R, each attribute of R (other than X and Y ) is evaluated
as a candidate using the notion of entropy for comparing
clusterings of tuples. As a result, a ranked list of candidate
attributes is given to the designer. Given an FD that is vi-
olated by the data, the strategy in [17]: i) first computes a
ground truth clustering of the data, based on the attributes
in the FD; ii) then, for each attribute A, not present in
the FD, computes a clustering of the data based on A and
finally iii) computes the relative entropy (see Section 3) be-
tween this clustering and the ground truth clustering, which
means comparing all its clusters with those in the ground
truth clustering. The metric used in the work, which is the
information variation requires frequent clustering of tuples
in order to understand how good a candidate attribute is.
We propose a very simple approach based on confidence and
a measure of goodness that only require to count tuples. In
Section 5 we explain the details of [17] and give a theoretical
comparison between this work and ours. An experimental
comparison between the two approaches was unfortunately
impossible due to the unavailability of the tool presented
in [17].

3. BASIC NOTIONS
Let U be a finite set of attribute names; we denote at-

tributes by capital letters from the beginning of the alpha-
bet (e.g., A, B, C, A1, etc.), while capital letters from the
end of the alphabet (e.g., U , X, Y , Z, X1, etc.) are used
to denote sets of attributes. Let D be a finite set of do-
mains, each containing atomic values for the attributes; the
domain Dj contains the possible values for the attribute Aj .
A relation schema R(A1, A2, ..., An) describes the structure
of a relation whose name is R and whose set of attributes is
A1, A2, ..., An. A relation instance r of relation R, is a finite
set of tuples t1, t2, . . . , tm of the form th = (v1, v2, ..., vn),
where each value vk, 1 ≤ k ≤ n, is an element of Dk. t[Ai]
denotes the value assumed by the attribute Ai in the tuple
t (i.e., vi). Given an instance r of a relation R, we denote
by |r| the number of tuples in r and |R| the number of at-
tributes in R. Moreover, πX(r) is the projection of r on the
attributes of X. The structure of a functional dependency
is defined as follows:

Definition 1 (Syntax) Given a relation schema R, a func-
tional dependency F over R has the form F : X → Y where
X and Y are sets of attributes in R.

We use XY to denote the union of X and Y , moreover
|F | = |XY | is the number of attributes in the FD and, given

two FDs F1 and F2, |F1 ∩ F2| is the number of attributes
common to F1 and F2. An instance r of a relation schema
R can either satisfy an FD or not, according to Definition 2.

Definition 2 (Semantics) Given an instance r of a rela-
tion R, r satisfies F if, for every pair of tuples t1, t2 in r,
if t1[X] = t2[X] then t1[Y ] = t2[Y ].

We say that an instance r is inconsistent with respect to F
if it does not satisfy Definition 2.

Let us introduce a useful characterization of the notion of
FD with the introduction of confidence and goodness.

Definition 3 Let r be an instance of a relation R defined
over a set of attributes S. Let X and Y be subsets of S and
F : X → Y a functional dependency over R. The confidence
of F w.r.t. r is:

cF,r =
|πX(r)|
|πXY (r)|

while the goodness of F w.r.t. r is:

gF,r = |πX(r)| − |πY (r)|

Moreover, based on the value of the confidence of an FD,
we have the following definition:

Definition 4 Given a relation R, an instance r of R, a
functional dependency F over R and its confidence cF,r, we
say that F is an exact functional dependency iff cF,r = 1,
otherwise it is an approximate functional dependency.

All three FDs from Example 1 are approximate and have
the following confidence and goodness values: cF1,P laces =
0.5 and gF1,P laces = −2; cF2,P laces = 0.667 and gF2,P laces =
−1; cF3,P laces = 0.889 and gF3,P laces = 1. Note that the
confidence of an FD reflects the average number of values of
Y that are associated with each value of X in r. When the
confidence is 1 it means that, for each distinct value of X,
exactly one value of Y is associated with X, thus it is easy
to see that exact FDs are the classical FDs of Definition 1:

The notion of functional dependency can be also formal-
ized as a function between clusters of tuples.

Definition 5 (Clustering) Given an instance r of a rela-
tion R and a set X of attributes of R, we call X-clustering
a partition CX = {C1, C2, ..., CK} of r into mutually disjoint
subsets Ci, with i ∈ {1, . . . ,K}, called classes (or clusters),
such that each class Ci contains all the tuples of r that have
the same value for the attributes in X.

Given F : X → Y , there are two clusterings naturally
generated by F : CX and CY . Intuitively, if each cluster in
CX is associated with only one cluster in CY (that is, if there
is a function between classes in CX and classes in CY ) then
F is satisfied, otherwise it is not. Consider as an example

F1 : [District, Region]→ [AreaCode]
The two clusterings CDistrict,Region and CAreaCode are shown
in Figure 2a. As we can see, the relation between the two
clusterings is not a function because there are some tuples,
having the same value of District, Region that are associ-
ated with sets having different values of AreaCode. In fact,
F1 is violated by the data.

To understand whether F is satisfied or not, we consider
the two clusterings CX and CXY . Since CXY is finer-grained
than CX we always have: |CXY | ≥ |CX |. When |CXY | > |CX |,
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(a) F1: [District (D), Region (R)] --> [AreaCode (A)] (b) F': [District, Region, Municipal] --> [AreaCode] (c) F'': [District, Region, PhNo] --> [AreaCode]

Figure 2: FDs clusterings

it means that there exists at least one class Cx in CX whose
tuples form more than one class in CXY , thus, the relation
between CX and CY is not a function. Only when |CXY | =
|CX |, we have that each class in CX forms one class in CY
and therefore F is satisfied. If there is a function between
CX and CY , such function is surjective, because each tuple in
the database contains values for both X and Y 1, thus each
value of Y is necessarily associated with at least one value of
X. Now, the function could be injective (and thus bijective)
or not. In particular, we introduce the following definition:

Definition 6 (Proper association) Given two clusterings
CX and CY , we say that a class Cx in CX is properly asso-
ciated with a class Cy in CY , when Cy is the unique class in
CY such that Cx ⊆ Cy.

The concept of proper association is crucial for defining
an FD in terms of a function between two given clusterings.
Given F : X → Y , when for every class Cx in CX there
is a class Cy in CY which is properly associated with Cx
(i.e. Cy is the unique class that contains Cx), one usually
says that the clustering CX is homogeneous with respect to
CY . Accordingly, we say that there is a well-defined function
between the classes in CX and those in CY . Intuitively, a
well-defined function is bijective.

From our point of view, FDs that allow us to obtain a
well-defined function are to be preferred to other FDs. Con-
sider F ′ : [District, Region,Municipal] → [AreaCode] and

F
′′

: [District, Region, PhNo] → [AreaCode]; the cluster-
ings CX and CY generated by the two FDs are shown in Fig-
ure 2b and Figure 2c respectively. As we can see, in both
cases there is a function between CX and CY , however, F ′ al-
lows us to obtain a well-defined function while F ′′ does not.
Intuitively speaking, the municipality is “a better choice”
than the phone number.

To explain this intuition, consider again that a non-satisfied
F : X → Y generates two clusterings CX and CY where the
number of clusters in CX is smaller than the number of clus-
ters in CY . To obtain a function between the two clusterings,
we need to “further fragment” CX so that there is the same
number of clusters as in CY , or more: in our method we do
this by adding attributes to X.

Note that the number of clusters in CX gives us an idea of
how “specific” is a set of attributes X, that is, if the number

1Note that attributes involved in FDs do not contain NULL
values

of clusters is 1 all the tuples in the relation are put in the
same cluster, while, in the extreme case where each tuple is
assigned to a distinct cluster, X is actually a candidate key.

This second case will surely happen if, while repairing F ,
we add to its antecedent an attribute that has the property
of being UNIQUE in the relation. Adding a UNIQUE at-
tribute allows to repair any FD because this attribute alone
determines Y thus it practically makes X “useless” in the
FD. Something very close to this case happens with the two
dependencies F ′ and F ′′ above: F ′ is “better” than F ′′ be-
cause adding the municipality to the antecedent allows to
generate two clusterings that are associated by a function
such that the specificity of the domain is as much as possi-
bile similar to the specificity of the codomain, while, due to
the high specificity of the phone number, adding it would
make the antecedent too specific (also making the other at-
tributes “almost useless”). We will see that our repairing
method discourages the addition of such attributes (they
are penalized through the goodness coefficient) and instead
prefers those attributes that fragment CX just as much as it
is necessary to reach the same specificity as CY .

Notice the relationship between these concepts and the
confidence and goodness of an FD F :

• F is exact when there is a well-defined function from
CX to CY , that is, the confidence coefficient of an FD
somehow measures the “degree of being a function”
(cF,r ≤ 1).

• When this pleasant fact happens (cF,r = 1), then the
goodness coefficient measures how far our function is
from being injective. In fact it is injective when gF,r =
0. In any case, when cF,r is different from 1, the good-
ness coefficient measures the distance of our approxi-
mate FD from having the domain with the same car-
dinality of the co-domain.

Therefore the case {cF,r = 1, gF,r = 0} is such that to each
class in CX is associated one and only one class in CY : the
corresponding FD allows to obtain a bijective function be-
tween the two clusterings and so it is the best function which
cannot be further improved. In fact, from a well-known re-
sult on functions 2, since the correspondence F is surjective
and |πX(r)| = |πY (r)|, it is therefore bijective. Finally we

2Let f : X −→ Y be a function. If |X| = |Y |, then f is
injective if and only if f is surjective.
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notice that the goodness coefficient can be positive or neg-
ative. It is positive when the domain cardinality is higher
than the co-domain one and negative instead when the car-
dinality of the domain is smaller.

As a final remark, notice that, if the DB schema is in
a higher normal form, the only non-trivial FDs are those
determining candidate keys. However, we believe this to
be a strong assumption, especially nowadays, since NoSQL,
semi-structured and other types of poorly organized data are
widely used. Thus, we do not rely on the assumption that
a database is in a higher normal form and obtaining some
insight about the data becomes very important in such a
scenario.

4. EVOLVING FUNCTIONAL DEPENDEN-
CIES

The goal of our method is to: (i) understand which FDs
are violated and (ii) repair these FDs by adding attributes
to the antecedent of the dependency.

Objective Given an FD F : X → Y , not satisfied by the
data, our aim is to find a minimal set of attributes U such
that the new FD FU : XU → Y is satisfied by the data.

Given a relation schema R, an instance r of R, and all the
FDs defined on it, for each FD, F : X → Y , we compute its
confidence. If the result is lower than 1 then the FD is not
satisfied and, to repair it, we look for a set of attributes U in
R \XY such that, if added to the antecedent of F , generate
a new dependency FU : XU → Y whose confidence is 1.

4.1 FD ordering
If an instance r of a relation R violates more than one

constraint we need to decide the order in which they should
be repaired. To do this, similarly to [17], for each FD F we
compute a rank that is the average of two indicators:

1. icF,r: the “degree of inconsistency” of F with respect
to the relation r: icF,r = 1− cF,r

2. cfF : the “conflict score” of F with respect to the other
FDs defined on R, which is independent of any specific
instance and depends on the number of attributes that
F has in common with these FDs:

cfF =

∑
F ′∈F

|F∩F ′|
max(|F |,|F ′|)

|F|

where F is the set of FDs defined on R.

The final rank is the average of these two indicators:

OF =
icF,r + cfF

2

Given a set F of FDs, we sort F according to the rank OF
of each F ∈ F and then follow this order to repair the FDs.
Consider the relation in Figure 1 and the three FDs F1, F2

and F3 in Example 1. The constraints should be examined
in the following order: F1 (0.25), F2 (0.167), F3 (0.056).

4.2 Candidate-repair ordering for an FD
Given an instance r of a relation R, an FD F : X → Y and

an attribute A which is a candidate to extend the antecedent

of FD, we first compute the confidence of the candidate FD
FA : XA→ Y as:

cFA,r =
|πXA(r)|
|πXAY (r)|

and then provide an ordered list of candidate attributes
sorted in descending order of cFA,r. However, this ranking
does not allow us to distinguish which attribute is better
when the FDs they produce have the same confidence. Con-
sider F1 : [District, Region]→ [AreaCode] defined on table
Places. Intuitively, if we add the attribute Municipal to
the antecedent of F1 we obtain an exact FD and, similarly,
if we instead add the attribute PhNo we also obtain an ex-
act FD. Now, is it more reasonable to add the municipality
or the phone number as attribute that is part of a functional
dependency? Which one is better and why?

To provide a better ranking, following the intuition ex-
plained in Section 3 we use the goodness of FA, which de-
pends on the number of distinct values A assumes, as shown
in Definition 3:

gFA,r = |πXA(r)| − |πY (r)|

Once we have computed both the confidence and the good-
ness of each attribute in R \ XY , we produce, for each
violated FD, a ranked list of candidate attributes, sorted
first according to cFA,r and then, as secondary sorting key,
according to gFA,r. Consider F1 : X → Y with X =
[District, Region] and Y = [AreaCode]. The confidence
and goodness of F1 are:

cF1,P laces =
|πDistrict,Region(Places)|

|πDistrict,Region,AreaCode(Places)|
=

2

4
= 0.5

gF1,P laces = |πDistrict,Region(Places)| − |πAreaCode(Places)| =
= 2− 4 = −2

F1 is not satisfied by the tuples in Places, thus, for each
candidate attribute A in relation Places we compute the two
parameters cFA

1 ,P laces
and gFA

1 ,P laces
(Table 1 shows the

results). The two candidate attributes Z1 = [Municipal]

A cFA
1 ,P laces

gFA
1 ,P laces

Municipal 4/4 = 1 0
PhNo 7/7 = 1 3
Street 7/8 = 0.875 3

Zip 4/5 = 0.8 0
City 4/5 = 0.8 0
State 3/5 = 0.6 −1

Table 1: Evolving F1 : [District, Region]→ [AreaCode]

and Z2 = [PhNo] allow us to obtain new exact FDs, while
every other attribute does not. Moreover, attribute Z1 has
a better rank because it allows to discriminate the distinct
values ofDistrict, Region,AreaCode in a homogeneous way.

4.3 When more than one attribute is needed
Until now we have assumed that we repair an FD by

adding only one attribute to its antecedent. Of course, it
might happen that adding only one attribute is not enough
to obtain an exact new FD. In this case, we can either stop or
try to find a“more specific”FD by adding more attributes to
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its antecedent. We handle this scenario as an iterative pro-
cess where, at each step of iteration, the method presented
so far is applied. Thus, at each step we have to choose the
next attribute to be added to the antecedent and we do so by
adding the attribute that produces the candidate FD with
the highest rank. Consider F4 : X → Y with X = [District]
and Y = [PhNo], whose confidence and goodness are:

cF4,P laces =
|πDistrict(Places)|

|πDistrict,PhNo(Places)|
=

2

7
= 0.29

gF4,P laces = |πDistrict(Places)| − |πPhNo(Places)| =
= 2− 6 = −4

Thus, F4 is not satisfied, and Table 2 shows the ranking of
the attributes which are candidates to extend it.

A cFA
4 ,P laces

gFA
4 ,P laces

Street 0.875 1
Municipal 0.571 -2
AreaCode 0.571 -2

City 0.571 -2
Zip 0.5 -2

State 0.429 -3
Region 0.286 -4

Table 2: Evolving F4 : [District]→ [PhNo]

As we can see, there is no attribute that allows us to obtain
an exact new FD thus we proceed by adding the attribute
that generates the candidate FD with the highest rank. We
obtain a new FD which is still not exact and then apply our
method again to look for attributes that can be added to
its antecedent. Therefore, we add attribute Street to the
antecedent of F4 and obtain FStreet4 : [District, Street] →
[PhNo]. Table 3 shows the ranking of the attributes which
are the candidates to extend FStreet4 .

B c
F

Street,B
4 ,P laces

g
F

Street,B
4 ,P laces

Municipal 1 4
AreaCode 1 4

Zip 0.889 4
City 0.875 4
State 0.875 3

Table 3: Evolving FStreet4 : [District, Street]→ [PhNo]

We have found two attributes, Municipal and AreaCode,
that allow to extend F4′ and obtain an exact new FD. There-
fore, the two pairs Street, Municipal and Street, AreaCode
allow to extend the antecedent of F4 and obtain an exact new
FD. They score the same value also for the goodness thus
they are actually equivalent w.r.t. our aim. In such a case,
it is for the designer to choose which one is more significant
w.r.t. the application scenario.

4.4 Algorithm
Our approach is formalized by Algorithm 1 which receives

as input a relation R (both instance and schema) and the
set F of FDs defined over R. First of all, the function Or-
derFDs (line 2) orders all FDs according to the rank intro-
duced in Section 4.1. Then, for each functional dependency

F , the algorithm computes its confidence cF,r (line 4) in or-
der to understand whether the FD is satisfied or not. If it
is not satisfied, it calls the ExtendByOne function that
computes the confidence and goodness (w.r.t. F) of all at-
tributes in R other than those that are already in F (lines 3
and 4 in Algorithm 2) and returns the set of all candidates
sorted according to their rank. Finally, if the considered at-
tribute allows to obtain an exact new FD, it is added to the
set of exact new FDs (line 9 in Algorithm 1).

Algorithm 1 FindFDRepairs (pseudocode).

Input: R the schema of a relation
r the instances of R
F the functional dependecies defined on R

Output: Exact the set of exact FDs obtained

1: Exact = 〈〉;Cand = 〈〉
2: FDs = OrderFDs(F)
3: for all F : X → Y ∈ F do
4: cF,r = |πX (r)|

|πXY (r)|
5: if cF,r < 1 then
6: Cand = ExtendByOne(F, R, r)
7: for all 〈F ′, cF ′,r, gF ′,r〉 ∈ Cand do
8: if cF ′,r = 1 then
9: Exact =addInOrder(Exact, 〈F ′, cF ′,r, gF ′,r〉)

10: end if
11: end for
12: end if
13: end for
14: return Exact

Notice that the computation of confidence and goodness
can be implemented using SQL queries. In fact, the val-
ues |πX(r)|, |πXY (r)|,|πXA(r)|, |πXAY (r)|, |πXY (r)|, |πA(r)|
used in the algorithm are computed by counting the num-
ber of distinct tuples over the set of attributes involved in
the antecedent and consequent of the FD. For example, the
confidence of F1, is the ratio between the results of:

Q1: select count(distinct District, Region)

from Places

Q2: select count(distinct District, Region, AreaCode)

from Places

The computation of these queries heavily depends on the
query plan implemented by the DBMS and on the presence
of supporting data structure such as indices. What we can
say is that, considering the worst case scenario where no op-
timization techniques are implemented, we have a O(n logn)
complexity because counting the distinct values corresponds
to a sorting (O(n logn)) followed by counting (O(n)). More-
over, looking for a single attribute at a time to extend the
antecedent of an FD is linear with respect to the number of
attributes in the relation.

However, when looking for repairs that contain more than
one attribute, things get more complicated because the num-
ber of candidate repairs grows exponentialy with respect to
the number of attributes. To limit this problem we use a
greedy algorithm that chooses the FD candidates accord-
ing first to the number of attributes in their antecedent and
then to their rank. To this aim, we modify Algorithm 1 by
introducing a queue that contains candidate repairs sorted
by increasing cardinality of the antecedent and decreasing
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Algorithm 2 ExtendByOne (F, R, r) pseudocode.

1: Cand = 〈〉
2: for all A ∈ R \XY do

3: cFA,r = |πXA(r)|
|πXAY (r)|

4: gFA,r = |πXA(r)| − |πY (r)|
5: if cFA,r = 1 then

6: Cand = addInOrder(Cand, 〈FA, cFA,r, gFA,r〉)
7: end if
8: end for
9: return Cand

rank: given an FD F that needs to be evolved, Algorithm 3
first generates all the candidates obtained by adding one at-
tribute to the antecedent of F (line 1) and inserts them into
a queue ordered by decreasing rank (line 2). Then, one at
the time, it removes the first candidate in the queue (line
4); if its confidence is 1, it adds it to the set of candidates
that allow to find an exact FD (line 6), otherwise it gener-
ates all the candidates obtained by adding one attribute to
the antecedent of the FD (line 8) and inserts them into the
queue, again sorted first by increasing cardinality of their
antecedent and then by decreasing rank (line 9). The pro-
cess is repeated while there are still candidates left in the
queue and, at the end of the process, the algorithm returns
the set of all candidates that allow to obtain an exact FD
(line 12). Notice two things: (i) the stop condition of the
algorithm can be easily changed to end when the first re-
pair is found (in this way the algorithm does not need to
explore the whole search space); (ii) since the candidates
in the queue are ordered first according to the number of
attributes in their antecedent (and then according to their
rank), the first repair found is also a minimal one, that is, it
contains the minimum number of attributes that need to be
added to the antecedent of the considered FD to repair it.

Algorithm 3 Extend (F, R, r) (pseudocode).

1: Cand = ExtendByOne(F,R, r)
2: addInOrder(QueueF , Cand)
3: while QueueF not empty do
4: 〈F ′, cF ′,r, gF ′,r〉 = removeF irst(QueueF )
5: if cF ′,r=1 then
6: addInOrder(Exact, 〈F ′, cF ′,r, gF ′,r〉)
7: else
8: Cand = ExtendByOne(F ′, R, r)
9: addInOrder(QueueF , Cand)

10: end if
11: end while
12: return Exact

The complexity of managing the queue corresponds to the
complexity of a sorting algorithm. Of course, the number
of candidates inserted into the queue is exponential with re-
spect to the number of attributes in the relation. In order
to find all candidates that allow to obtain an exact FD we
need to explore the whole search space. However, this does
not happen if we decide to stop when we find the first can-
didate instead. In the latter case, given the ordering we use
to explore the search space, we can ensure that we reach our
objective, as stated at the beginning of Section 4, that is,
that we are able to find a minimal repair for a given FD.

Notice that a minimal repair might not always be the

best choice. Suppose we are trying to repair a given FD
F : X → Y and suppose there are two ways to do it: i)
we can add attribute A which has the property of being
UNIQUE and ii) we can add the two attributes B and C,
neither of whom is UNIQUE. Of course, since we privilege
shorter repairs, the algorithm will privilege the first repair
which unfortunately goes against what we have discussed in
Section 3. To address this drawback we are currently investi-
gating the use of a user-specified maximum goodness thresh-
old. The idea is to use it to privilege those repairs whose
goodness is lower than the threshold. In particular, we are
currently considering combining such a threshold with our
confidence and goodness measures in order to provide an
objective function that guides our repair strategy.

5. THEORETICAL COMPARISON WITH
THE ENTROPY-BASED APPROACH

The technique presented in [17] finds attributes that are
good candidates to extend the antecedent of an FD, based
on its variation of information, which in its turn is based on
the entropy measure. In this section we dub this Entropy-
Based method EB, and compare it with ours (CB) which is
based mainly on the Confidence measure.

Even though the aim of the EB method is the same as
ours, there are some differences between them: the first dif-
ference is that CB easily supports the evolution of an FD
by adding more than one attribute in its antecedent; sec-
ond, and more important, to understand if an attribute is
a good candidate to extend the FD, we only compute its
confidence, while with EB more complex computations are
needed. To discuss this, we need to introduce formally the
notion of Entropy.

Given two clusterings C and C′, we can compute the Vari-
ation of Information (VI) [19] between them as the sum of
the two conditional entropies:

V I(C, C′) = H(C|C′) +H(C′|C)

where the conditional entropy of C given C′ is defined as:

H(C|C′) = −
K∑
k=1

K′∑
k′=1

P (k, k′)logP (k|k′)

where: P (k, k′) =
|Ck∩C′

k′ |
n

is the joint probability distribu-
tion associated to the pair (C, C′),

P (k|k′) =
P (k, k′)

P (k′)
=
|Ck ∩ C′k′ |
|C′k′ |

is the conditional probability distribution associated to C
given C′, and P (k′) =

|Ck′ |
n

the marginal probability distri-
bution associated to C′. Note that V I(C, C′) is symmetric
with respect to the two clusterings.

Given F : X → Y , the EB method creates a ground truth
clustering CXY and then looks for an attribute A that, when
added to the antecedent of F , allows to obtain a clustering
CXA that is either homogeneous or, preferably, homogeneous
and complete w.r.t. CXY (i.e., with VI equal to zero).

Note that, with EB, for each FD, the algorithm computes
a ground truth clustering that is obtained by scanning all
tuples and grouping them according to the attributes in the
FD; then, for each attribute A in the relation, the algorithm
computes the clustering CA of the relation in the same man-
ner; and finally the two clusterings must be compared by
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computing the intersections of all pairs of clusters in order
to determine the variance of information. This last action
requires, for each cluster in the ground truth clustering, to
scan all clusters in CA. Thus, the EB method requires to
store the tuples in order to be able to perform the intersec-
tions between clusters while with the CB technique we do
not keep trace of all tuples in the groups but only of their
amount.

We now show that the confidence and goodness parame-
ters introduced in Section 3 can be successfully used instead
of the conditional entropies and that these two simple pa-
rameters give rise to a measure which is equivalent to the
VI measure.

Given F : X → Y , the EB method chooses CXY as the
ground truth clustering and, for each attribute A, consid-
ers the clustering CA in order to understand how well it
matches CXY . This is done by taking advantage of the two
conditional entropies involved in the definition of VI, but not
symmetrically. In fact, a modified version of the VI is in-
troduced that considers first the conditional entropy of CXY
given CXA, i.e. H(CXY |CXA), and then the conditional en-
tropy of CA given CXY , i.e. H(CA|CXY ). Then, the EB
approach selects the attribute A that has the lowest value of
H(CXY |CXA) and, in the case of a tie, the attribute A with
the lowest value of H(CA|CXY ).

The first conditional entropy H(CXY |CXA) measures the
non homogeneity property of CXA with respect to CXY . In
fact, it is easy to see that when a class Cxa ∈ CXA is such
that Cxa ⊆ Cxy for some Cxy ∈ CXY , then

logP (Cxy|Cxa) = log
P (Cxy ∩ Cxa)

P (Cxa)
= log

P (Cxa)

P (Cxa)
= 0

Thus, when CXA is homogeneous with respect to CXY , the
relative conditional entropy H(CXY |CXA) is zero. Similarly,
the second conditional entropy H(CA|CXY ) is zero when
every class Cxy ∈ CXY is such that Cxy ⊆ Ca for some
Ca ∈ CA. When this happens, the completeness property
for CA versus CXY is verified.

The best attribute found by the EB technique is both
homogeneous and complete implying that the VI is zero.

In the following we propose a slight variation of the EB
approach of [17], based on the original definition on VI as in
[19], i.e.

V I(CXY , CXA) = H(CXY |CXA) +H(CXA|CXY )

This allows us to make the comparison clearer, while not
affecting the results. Note that, given F : X → Y , VI can
be seen as a measure, denoted by εV I := V I, on all FDs
FA : XA → Y , where A is, as introduced in Section 4.2, a
candidate attribute to repair F . This measure is equal to
zero when there is homogeneity and completeness between
the two clusterings CXA and CXY . Let us also introduce the
measure εCB , based on our confidence and goodness coeffi-
cients of Definition 3:

εCB := icFA + ĝFA

where icFA := 1−cFA is the “degree of inconsistency” intro-
duced in Section 4.1 and ĝFA := |gFA | is the absolute value
of the goodness coefficient. This measure is equal to zero
when FA allows to generate a bijective function between
the classes of CXA and those of CY . We can state that the
two measures are equivalent, i.e. they have the same null

sets (the sets where they assume the null value) and, conse-
quently, the same support sets (the sets where the measures
assume a strictly positive value):

Theorem 1 Let R be a relation schema and FZ : XZ → Y
a functional dependency defined on R as above. Then the
measures εCB and εV I are equivalent.

Proof 1 First we observe that the CB best case {cFZ =
1, gFZ = 0} corresponds to {εCB = 0} and the EB best case
{V I = 0} corresponds to {εV I = 0}.

Let us recall that given two measures P and Q, the mea-
sure P is absolutely continuous w.r.t. the measure Q ( or
P is dominated by Q) if for all A such that Q(A) = 0 one
has that P (A) = 0, i.e. when the null sets of Q are also null
sets of P . Moreover in this case by Radon-Nikodym theorem
(see [20]) there exists a (positive) density f such that in dif-
ferential form one has that dP = fdQ. If in addition Q is
also absolutely continuous w.r.t. P , then the two measures
are called equivalent. In particular in this case one can show
that dQ = f−1dP ( [20]).

We prove that εV I is absolutely continuous w.r.t. εCB.
We put B = FZ : XZ → Y and suppose that εCB(B) = 0.
Then {cFZ = 1} and {gFZ = 0}. When the confidence
is equal to one we also have the homogeneity property of
CXZ versus CXY . In fact when {cFZ = 1} there is a proper
association for every Cxz ∈ CXZ , that is:

∀Cxz ∈ CXZ ∃! Cy ∈ CY s.t. Cxz ⊆ Cy

Thus, CXZ is homogeneous with respect to CY and it follows
that CXZ is homogeneous also with respect to CXY , i.e.:

∀Cxz ∈ CXZ ∃! Cxy ∈ CXY s.t. Cxz ⊆ Cxy

In fact if there exists a Cxz whose tuples are contained in
more than one class Cxy, it would be |CXZ | < |CXY | ≤
|CXZY |. But this cannot happen, since

{cFZ = 1} ⇔ |CXZ | = |CXZY |

Therefore, also the confidence coefficient of the CB method is
a measure of the homogeneity property of CXZ versus CXY :
there is homogeneity when the confidence coefficient is one.

Moreover, when in addition also the goodness coefficient is
zero, the clustering CXZ has also the completeness property
versus CXY , in the sense that H(CXZ |CXY ) = 0. In fact, we
recall that a clustering has the cited completeness property
when

∀Cxy ∈ CXY ∃! Cxz ∈ CXZ s.t. Cxy ⊆ Cxz

If there exists a class Cxy whose tuples are in part contained

in some Cxz and in part in some other Ĉxz, then it would
be |CY | ≤ |CXY | < |CXZ |. But this cannot happen, since

{gFZ ,r = 0} ⇔ |CXZ | = |CY |

Since the homegeneity plus completeness properties between
the two clusterings implies εV I = 0 we have proved that the
measure εV I is dominated by the measure εCB.

We show that εCB is dominated by εV I . Let us suppose
that εV I(B) = 0. Then V I = 0, which implies that the
homogeneity and the completeness properties hold. As a
conseuence the two clusterings are exactly equal, i.e. ev-
ery single class in correspondence contains the same subset
of tuples. In particular this means that: a) |CXY | = |CXZ |

b) ∀y ∃! (x, z) and therefore |CXZ | = |CY |
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c) ∀(x, z) ∃! y = z and therefore |CXZY | = |CXZ |
and this implies icFZ = 0 and gFZ = 0, i.e. εCB(B) = 0.
Finally the two measures are equivalent: they have the

same null sets and, consequently, the same support sets (that
is the sets where the measures assume strictly positive val-
ues). Moreover by Radon-Nikodym theorem there exists a
positive density f, such that

dεCB(B) = f(B)dεV I(B), dεV I(B) = f−1(B)dεCB(B).

The proof of Theorem 1 shows that the two measures have
the same support sets (i.e. the sets where a measure assumes
strictly positive values).

We remark that the measures εV I and εCB can be consid-
ered as acting on a general F : X → Y , with X and Y sets
of attributes in R, and in this case they assume respectively
the form

εV I(F ) = H(CXY |CY ) +H(CY |CXY )

and

εCB(F ) := icF + ĝF .

Moreover it can be proved, in the same way as for Theorem
1, that they are equivalent measures.

Usually the equivalence relation between measures is rather
weak: they have the same support sets but the values they
assume can be very different. Since in our case the num-
ber of possible FDs is finite and our measures are finite too,
the absolutely continuity property is a sort of continuity
property between the two measures; more precisely, one can
prove that, in our finite case, the mutual absolutely conti-
nuity property of εCB and εV I is equivalent to the following
ε− δ property:
∀ε ∃δ s.t. εCB(A) < ε for each A with εV I(A) <

δ (and the same relation holds with εCB and εV I inter-
changed).

As a consequence, our measures are equivalent and assume
comparable values in their support sets. Moreover both EB
and CB are based on algorithms which are looking for ex-
actly the sets where the two measures assume the value zero.

We want to stress the fact that the CB method is indeed
simpler than the EB approach both from the conceptual
and computational point of view. First, because CB uses the
classical framework of set functions with well-known elemen-
tary mathematical concepts. Moreover, with CB we have to
perform only a few cardinality computations of the notable
clusterings associated to a given FD in order to achieve our
ranked list of attributes, i.e. with no need to enter in the
detailed structure of the involved clusterings.

We have compared our CB approach only with the EB
method in [17]. We think that this comparison is sufficient
for the following reasons. In [21] it has been shown that from
an axiomatic point of view the best approximation measure
for FDs is the information dependency measure. One can
easily prove that the measure introduced in [21] for an ar-
bitrary FD F : X → Y is a normalized version of the first
conditional entropy entering in the VI, that is H(CXY |CX).
We observe that also what we call “degree of inconsistency”
icF = 1 − cF can be seen as an approximation measure of
how far the given FD is from generating an exact function
and that from the proof of Theorem 1 one can deduce that
our measure icF is equivalent to the approximation measure
given by H(CXY |CX). Since in [21] there is also an accurate
and complete review of the approximation measures in the

literature, we finally conclude that the comparison of our CB
method with the EB approach proposed in [17] is sufficient.
It is now quite clear that the CB method grants results that
are fully comparable with those obtained by means of the
EB method, with the important difference that the basic
concepts and the required computations are much simpler.

6. EXPERIMENTAL RESULTS
We implemented our method in a Java prototype tool.

Initially, users connect to a MySQL database and visualize
its relations and all FDs defined on each relation; then, they
are allowed to add other FDs to the ones that are already
defined, and finally they can start the process of FD valida-
tion.

We tested the tool on both real and synthetic databases
and studied the time needed to find FD repairs. Our study
was conducted varying both the FDs and the number of
attributes and tuples in the relations.

All the experiments were run on a Core i5 2.6 GHz PC
with 4 GB of memory and Windows 8 x64 operating system.

6.1 Synthetic databases
We used DBGEN to independently generate three syn-

thetic databases of different sizes: Table 4 shows the features
of the generated relations in terms of numbers of attributes
and tuples. For each instance of the three databases, we
defined one FD on each relation and run our algorithm to
understand how execution time varies depending on the di-
mension of the dataset. Notice that, as shown in Table 5,
all FDs have one attribute in the antecedent and one in the
body and by processing time we mean the time it took for
the algorithm to find all possible repairs for the given FD.

100MB 250MB 1GB

Table arity card. card. card.

customer 8 15 000 30 043 150 249
lineitem 16 601 045 1 196 929 6 005 428
nation 4 25 25 25
orders 9 149 622 301 174 1 493 724
part 9 20 000 40 098 199 756
partsupp 5 80 533 160 611 779 546
region 3 5 5 5
supplier 7 1 000 2 000 10 000

Table 4: TPC-H Databases Overview

Figure 3 shows, for the 1GB synthetic database, how the
processing time varies depending on the number of attributes
(Figure 3a), number of tuples (Figure 3b) and overall dimen-
sion of the table (Figure 3c).

We report only the plots related to the 1GB database be-
cause of space limitations. However, we noticed that the
time needed to repair the FDs is higher for bigger datasets,
but the trend is the same. In fact, the trends for the 100MB
and 250MB databases are very similar to the one for the 1GB
database, although on a smaller scale. This happens because
the structure of the three datasets is the same, thus what
changes is only the number of tuples. Synthetic datasets
tend to behave in a somehow “uniform” way, thus we per-
formed a study on real datasets, with the aim of understand-
ing in what way the number of attributes and the number

301



100MB 250MB 1GB

Table FD processing time processing time processing time

customer [name]→ [address] 1s 276ms 2s 873ms 20s 657ms

lineitem [partkey]→ [suppkey] 9m 42s 708ms 21m 20s 599ms 1h 59m 19s 884ms

nation [name]→ [regionkey] 5ms 5ms 6ms

orders [custkey]→ [orderstatus] 8s 621ms 19s 726ms 1m 57s 103ms

part [name]→ [mfgr] 1s 3ms 1s 983ms 18s 561ms

partsupp [suppkey]→ [availqty] 4s 450ms 10s 570ms 1m 3s 909ms

region [name]→ [comment] 3ms 3ms 3ms

supplier [name]→ [address] 74ms 141ms 717ms

Table 5: FindFDRepairs processing times

Figure 3: Processing times for the 1GB synthetic database

of tuples in a relation influence the algorithm.

6.2 Real-life databases
We conducted our experiments using the relations listed

in Table 6, which also summarizes, for each of them, the
number of attributes and tuples. On each relation we defined
an FD containing one attribute in the antecedent and one
in the consequent and then run our algorithm to find one
possible repair (that is, the algorithm stops when it finds
the first repair). Table 6 shows the results in terms of the
time needed to execute the task.

Table arity card. FD process time

Places 9 10 257ms

Country3 15 239 32ms

Rental4 7 16044 588ms

Image5 14 124768 2m 52s

PageLinks6 3 842159 4s 678ms

Veterans7 481 95412 29m 45s

Table 6: Real Databases Overview and processing times

We can see that relations with a higher number of at-
tributes take longer time to be processed while the same
does not hold in general for relations with high amounts of
tuples. In fact, as we will see in the next Section, the time
grows exponentially with the number of attributes while tu-
ples do not influence it so much.
3http://dev.mysql.com/doc/index-other.html
4http://dev.mysql.com/doc/index-other.html
5http://dumps.wikimedia.org/backup-index.html
6http://dumps.wikimedia.org/backup-index.html
7http://kdd.ics.uci.edu/databases/kddcup98/
kddcup98.html

There are many factors that influence execution time:
these mainly concern the content of the tables (e.g. num-
ber of null values, number of candidates at one level that
improve confidence, etc . . . ), whose impact on computation
time needs to be studied in details. For example, in the re-
sults shown in Table 6 we have that even though Places
is a smaller relation than Country (both in terms of at-
tributes and tuples) it took longer to compute the results.
This happens because for the first relation, longer repairs
were needed, in fact, for table Places, the algorithm added
2 attributes to repair the given FD while for relation Coun-
try it added only 1 attribute. Moreover, we can see that
even though table PageLinks is the biggest one in terms of
tuples, it took less time to repair it than the Image table.
This happens because the PageLinks relation has only three
attributes, and since the FD defined on it has already two
attributes (one in the antecedent and one in the consequent)
the algorithm had to consider only the third one in the table.
On the other hand, in the Image table, the algorithm had
to add 2 attributes to the antecedent of the FD to repair it.

Nr. of attributes

Nr. of tuples 10 20 30

10K 26s 4m16s 17m34s

20K 38s 7m56s 35m1s

30K 57s 11m47s 51m48s

40K 2m13s 15m29s 1h28m12s

50K 2m44s 19m34s 1h48s

60K 3m17s 22m51s 1h56m3s

70K 5m13s 36m36s 2h23m8s

Table 7: Processing times for the Veterans relation – find all
repairs
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6.2.1 Case study
To better understand how the number of attributes and

the number of tuples in a relation influence our algorithm,
we performed a case study using the Veterans relation (see
Table 6) which has 481 attributes (323 of which do not have
null values) and 95412 tuples containing only non-null val-
ues. Notice that, since the attributes occurring in an FD
are not allowed to contain NULL values, when generating
candidate repairs, we only consider the addition of those
attributes that do not contain NULLs. We created several
instances of this relation, each containing a different num-
ber of attributes and tuples. We defined an FD containing
one attribute in the antecedent and one in the consequent
and then run our algorithm to find: (i) all possible repairs
(Table 7 shows the results) and (ii) the first repair (results
in Table 8). From these results we can confirm the evidence
of the synthetic dataset study, namely, that execution time
grows much quicker with the number of attributes in the
relation than with the number of tuples. Computation time
grows exponentially with the number of attributes while an
increase in the number of tuples implies longer query pro-
cessing times, but does not affect the algorithm processing
time so much. Moreover, we can see that processing times
are much smaller if the algorithm stops when it finds the first
repair instead of exploring the whole search space. However,
it might happen that the two times are very similar (e.g. in
the 70K tuples DB with 10 attributes) when the algorithm
is not able to find a repair for the given FD.

Nr. of attributes

Nr. of tuples 10 20 30

10K 8s76ms 53s96ms 2m23s

20K 18s22ms 1m30s 4m10s

30K 27s64ms 2m15s 6m12s

40K 1m25s 3m4s 8m18s

50K 1m47s 3m46s 10m38s

60K 2m10s 4m44s 12m51s

70K 5m23s 5m57s 16m10s

Table 8: Processing times for the Veterans relation – find
the first repair

During the experiments we noticed that there are other
parameters, generally application-dependent, that influence
our method. Just to name a few: (i) the number of distinct
values of an attribute: the more distinct values there are, the
more time is needed to compute the queries; (ii) the initial
confidence of an FD: as can be expected, the smaller the
initial confidence, the greater the probability that a longer
repair is needed, that is, the more attributes should be added
in the antecedent, thus requiring more time; (iii) the average
length of the repairs: if an FD needs repairs that add many
attributes to the antecedent it will require more computation
time. These parameters are related to each other, depend
on the domain of application and are very difficult to control
and predict.

6.3 Quality of results
We claim that our criterion for choosing the order in which

attributes are added to the antecedent of functional depen-
dencies favours the quality of the results we obtain. Indeed,

as we have already discussed, our method privileges the ad-
dition of attributes that allow us to obtain functions that are
“as well defined as possible”, by approximating the goodness
to 0. This is because we try to construct an FD that re-
sembles as much as possible a bijective function, mapping
the clusters generated by the antecedent of the FD to the
clusters generated by the consequent of the FD. This choice
allows us to:

• discourage the addition of a UNIQUE attribute: in-
deed, that would make the rest of the antecedent use-
less, because that attribute alone determines the con-
sequent of the FD;

• along the same line of thought, encourage the addi-
tion of attributes that make the “specificity” of the
antecedent of the FD is as much as possible similar to
the “specificity” of the consequent;

• support indexing and query optimization, because, when
the method manages to find “invertible” FDs, not only
the antecedent determines the consequent but also vice-
versa; thus, an index built on the antecedent of an FD
can be used to efficiently access the attributes in the
consequent (if we know the correspondence between
the clusters in the antecedent and the clusters in the
consequent).

7. CONCLUSION
In this paper we proposed a new method for repairing FD

violations that works at the intensional level: rather than
changing the data, it repairs the FD by adding one or more
attributes to its antecedent. To this aim we have used the
notions of confidence and goodness of an FD, as measures
to estimate if an FD is violated by the data and to what
extent. In future we intend to extend the method to other
kinds of constraints and to make a more extensive study on
the parameters that influence the processing time and on
the impact they have when examining a database.
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ABSTRACT
Data profiling is the discipline of examining an unknown
dataset for its structure and statistical information. It is a
preprocessing step in a wide range of applications, such as
data integration, data cleansing, or query optimization. For
this reason, many algorithms have been proposed for the
discovery of different kinds of metadata. When analyzing
a dataset, these profiling algorithms are often applied in
sequence, but they do not support one another, for instance,
by sharing I/O cost or pruning information.

We present the holistic algorithm Muds, which jointly
discovers the three most important metadata: inclusion de-
pendencies, unique column combinations, and functional de-
pendencies. By sharing I/O cost and data structures across
the different discovery tasks, Muds can clearly increase the
efficiency of traditional sequential data profiling. The al-
gorithm also introduces novel inter-task pruning rules that
build upon different types of metadata, e.g., unique column
combinations to infer functional dependencies. We evalu-
ate Muds in detail and compare it against the sequential
execution of state-of-the-art algorithms. A comprehensive
evaluation shows that our holistic algorithm outperforms the
baseline by up to factor 48 on datasets with favorable prun-
ing conditions.

Categories and Subject Descriptors
H.2.8 [Information Systems]: Database Applications; H.3.3
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General Terms
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unique column combination

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0
EDBT 2016 Bordeaux, France

1. DEPENDENCY DISCOVERY
With the ever growing amount of digitally recorded in-

formation, the need to maintain, link, and query these in-
formation becomes increasingly hard to fulfill. For many
applications, such as data mining, data linkage, query op-
timization, schema matching, or database reverse engineer-
ing, it is crucial to understand the data and, in particular,
its structure and dependencies [13]. In biological research,
for instance, scientists create large amounts of genome data
that grow rapidly every year [2]. Originating from differ-
ent genome sequencers, the data needs to be analyzed and
linked to other datasets. This task requires knowledge of
several structural properties of the data.

Usually, the reason why data becomes difficult to access
is that metadata about the datasets’ structure or their de-
pendencies is missing. Therefore, various profiling algo-
rithms have been proposed for the computationally inten-
sive discovery of metadata, such as inclusion dependencies
(INDs) [4, 8], unique column combinations (UCCs) [1, 9, 10,
16], and functional dependencies (FDs) [11, 14]. The algo-
rithms Spider [4] for the discovery of INDs, Ducc [10] for
UCCs and Fun [14] for FDs are among the most efficient
algorithms in their respective problem domain. The idea of
all these discovery algorithms is to reduce the tremendous
search spaces with so called pruning rules: A pruning rule
allows to infer the (in)validity of certain unchecked metadata
candidates from already checked ones. Each algorithm, how-
ever, computes only one type of metadata. While this might
be sufficient for some applications, most applications like
data exploration or data integration require different types
of metadata at the same time [13]. Therefore, current data
profiling processes run several highly complex algorithms in
a row. Considering that these algorithms and the metadata
they discover have many commonalities, the sequential exe-
cution is a waste of time and resources.

Some existing profiling algorithms, such as HCA [1] or
Fun [14], already leverage some knowledge about other types
of metadata to reduce the discovery time (pruning). How-
ever, the combination of different profiling algorithms, i.e.,
a holistic algorithm, can utilize many more interleavings to
increase its overall efficiency: First, it can facilitate new
pruning rules using all collected information at once. In this
way, fewer validity checks on the actual data are required.
Second, it can share common costs like those required for
I/O operations and iteration cycles. Third, it can combine
similar data structures from different profiling tasks into one
holistic data structure reducing overall memory consump-
tion and initialization costs.
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In this paper, we describe new inter-task pruning capa-
bilities and analyze their impact on the algorithm’s run-
time. We also develop and evaluate a novel holistic al-
gorithm called Muds, which jointly discovers unary INDs,
minimal UCCs, and minimal FDs in one execution while fa-
cilitating all three opportunities for performance optimiza-
tion mentioned above. If a dataset has favorable pruning
conditions – which is true for most real-world datasets –
Muds improves upon the sequential execution of profiling
algorithms by up to a factor of 48. In our evaluation, we in-
vestigate dataset characteristics that lead to good and poor
runtime behavior.

Contributions. We first analyze INDs, UCCs, and FDs
for their commonalities and examine state-of-the-art pro-
filing algorithms (Section 2). We then discuss different ap-
proaches for holistic data profiling and possible pruning rules
across profiling tasks (Section 3). Next, we describe how dif-
ferent types of FDs can be discovered or pruned if minimal
UCCs are already known (Section 4). Based on the discov-
ery and pruning techniques, we present the novel algorithm
Muds, which utilizes inter-task pruning rules (Section 5).
Muds derives FDs directly from discovered minimal UCCs
and facilitates a new depth-first traversal strategy that is
based on minimality pruning and the knowledge about non-
dependencies (unlike previous level-wise approaches for FDs
that solely rely on minimality pruning). Finally, we com-
pare Muds with the sequential execution of state-of-the-art
algorithms and with a holistic adaption of the algorithms
Spider and Fun (Section 6). Our evaluation shows that
Muds usually not only considerably outperforms the base-
line algorithms but also outperforms common FD discovery
algorithms on datasets with more than 10 columns.

2. PROFILING TASKS
For our holistic approach, we focus on three common and

computationally intensive profiling tasks: The discovery of
all unary inclusion dependencies, all unique column com-
binations, and all functional dependencies in a given data-
set. This section defines the three tasks and explains one
state-of-the-art algorithm for each of them. The chosen al-
gorithms are among the most efficient algorithms for their
specific task and exhibit favorable features to combine them
into a holistic algorithm. At the end of this section, we com-
pare the nature of the profiling tasks and their search space
complexities.

2.1 Inclusion dependencies
An inclusion dependency (IND) X ⊆ Y between attribute

sets X and Y describes that the projection of Y contains all
values of the projection of X, i.e., all values in X are also
contained in Y . Attribute set X is called the dependent and
Y is called the referenced. INDs with only one attribute
in the sets X and Y are called unary INDs. Because only
these unary INDs are of interest for the holistic discovery of
other metadata types, we only consider them in our holistic
algorithm. Without any loss of generality, we could discover
n-ary INDs as well, but these would not contribute to the
holistic discovery. We also artificially restrict the IND dis-
covery to a single relation, because the two other metadata
types UCCs and FDs are defined on only one relation. The
search space for a relation with n attributes, hence, com-
prises n · (n− 1) unary IND candidates.

Spider is the currently most efficient algorithm for the de-
tection of unary INDs. The algorithm developed by Bauck-
mann et al. [4] consists of two phases: A sorting phase and a
comparison phase. In the first phase, Spider sorts the values
of each column, eliminates duplicate values, and stores the
sorted values in separate lists (Tables 1.1 and 1.2). In the
second phase, Spider initially assumes that all attributes
are included in one another. Then, it iterates simultane-
ously over the sorted lists in order to invalidate IND can-
didates (Tables 1.3 and 1.4). For the invalidation, Spider
selects the group of attributes that all contain the currently
smallest value. In our example A and C both contain w.
By set intersection, the algorithm then excludes INDs from
the candidates: The attributes in this group can only be
included in one another, because they exclusively contain a
value. So, A can still depend on C, but A cannot depend on
B, because B does not contain w. The algorithm continues
with next smallest values until only valid INDs remain.

1. 2. 3. 4.
A B C A B C A B C A B C
w z x w w →w →w w w
w x x x x x x →x x →x →x →x
x z w y y y
y z z z z z z z z

Table 1: Example execution of Spider

2.2 Unique column combinations
A set X of attributes is a unique column combination

(UCC) if the projection of X does not contain duplicates;
otherwise, it is a non-unique column combination (non-UCC).
UCCs are also called key candidates, because the values of
the projection of a UCC uniquely define all records. X is
a minimal unique column combination (minimal UCC) if it
is a UCC and no proper subset of X is a UCC. The num-
ber of possible candidates for UCCs in a relation R with n
attributes is 2n − 1. We can visualize the search space of
UCC candidates as a lattice of attribute sets, i.e., a Hasse
diagram (Figure 1). Each node represents a set of attributes
and each edge a superset/subset relationship.

A B C D E 

AB AC AD AE BC  BD BE CD CE DE 

ABC ABD ABE ACD ACE BCD BCE BDE CDE ADE 

ABCD ABCE ABDE ACDE BCDE 

ABCDE 

Figure 1: Attribute lattice for five columns

The Ducc algorithm is among the most efficient algo-
rithms for detecting UCCs [10]. It applies a combination of
depth-first and random walk strategies to traverse the lattice
of UCC candidates. Thereby, Ducc uses the information
about both discovered UCCs and non-UCCs for pruning.
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The traversal starts from the bottom of the lattice. Every
time the algorithm detects a non-UCC, it generates all di-
rect supersets and picks one randomly as its next candidate;
if the algorithm detects a UCC, the next candidate is a ran-
dom direct subset. While traversing, Ducc prunes subsets
of non-UCCs and supersets of UCCs from the search space,
because subsets of non-UCCs are also non-UCCs, and super-
sets of UCCs cannot be minimal. It is possible that some col-
umn combinations remain unvisited after the random walk.
The reason for such “holes” in the lattice is the combination
of upwards and downwards pruning. Ducc identifies and
fills these holes by comparing the found minimal UCCs with
the complement of the found maximal non-UCCs.

During traversal, the algorithm has to check whether a
column combination is a UCC or a non-UCC. This check
is performed by constructing a position list index (PLI, also
called stripped partition) for the column combination. A
PLI is a list that contains sets of tuple ids [11]. These tuple
ids belong to tuples of the column combination that contain
the same value. If a PLI contains no id-set of size two or
larger, the column combination contains no duplicate value
and is, hence, unique. Because only id-sets of size two or
larger are necessary for this test, all id-sets of size one can
be removed, i.e., stripped from the PLI. So if the PLI is
empty, all values are unique and the column combination is
a UCC. To calculate the PLI for an unvisited lattice node
AB, Ducc intersects the PLIs of the nodes A and B by
pair-wise intersecting their id-sets.

2.3 Functional dependencies
Given a relation R, a functional dependency (FD) X → A

between a set of attributes X and an attribute A exists if
the values of X uniquely determine the values of A [6]. We
call X the left hand side and A the right hand side. An
FD is called trivial if A ∈ X. The FD is minimal if no
proper subset of X determines A. A set of attributes X
can determine multiple other attributes Y . In the following,
we use the short notation X → Y to denote FDs with one
or more right hand side attributes. In the lattice shown in
Figure 1, every edge represents a potential FD. For exam-
ple, the edge between ABC and ABCD represents the FD
candidate ABC → D. To count all FD candidates for n
attributes, we count the edges in each level k with k = 1...n.
Starting with attribute sets of size one, the sets are extended
by one attribute in each level until the set in the highest level
contains all attributes. In each level k we find

(
n
k

)
nodes.

Each node in level k can be connected to n− k nodes in the
next level without generating duplicate connections. The
number of FD candidates in a relation with n attributes is
therefore

∑n
k=1

(
n
k

)
· (n− k).

Among the many FD discovery algorithms, Fun is one
of the fastest algorithms [14]. Fun discovers FDs in a re-
lation R by traversing the attribute lattice level-wise with
a bottom-up strategy. While exploring the attribute lat-
tice, FUN generates PLIs for each traversed attribute set.
The algorithm then derives the cardinality of attributes and
attribute combinations from their PLIs. This information
is used to efficiently detect FDs by partition refinement as
described in Lemma 1 (from [14]). In a relation R and a
relation instance r, let |X|r denote the cardinality of the
projection of X over r.

Lemma 1. ∀X ⊆ R,A ∈ R : X → A⇔
|X|r = |X ∪ {A}|r

Fun classifies column combinations into free sets and non-
free sets. A free set X contains only those attributes that
are not functionally dependent on any other attribute in X.
A non-free set contains at least one functionally dependent
attribute. Definition 1 describes the set of free sets FSr:

Definition 1. The set of free sets FSr is defined as
∀X ⊆ R : X ∈ FSr ⇔ @X ′ ⊂ X : |X ′|r = |X|r.

The Fun algorithm has a pruning advantage in compari-
son to other FD algorithms like Tane [11], because it omits
certain PLI intersect operations and retrieves missing cardi-
nality information from a node’s child nodes. So instead of
performing a PLI intersect, Fun infers the cardinality of a
pruned non-free set with a recursive look-up in the non-free
set’s subsets.

2.4 Comparison of profiling tasks
The discovery of INDs inherently differs from the discov-

ery of UCCs and FDs: For INDs, the attribute values are
of interest whereas for FDs and UCCs only the position of
equal values is relevant. Hence, UCC and FD algorithms use
quite different data structures than IND algorithms; these
data structures do not allow the reconstruction of values
(e.g., PLIs), but improve the algorithms’ efficiency. How-
ever, several relationships between FDs and UCCs can be
used for pruning (see Sec. 3).

To determine the complexity of a holistic algorithm, we
need to inspect the search spaces of the different sub-tasks:
A relation with n attributes contains n · (n− 1) unary IND
candidates. IND discovery is, hence, in O(n2). In the same
relation, the number of UCC candidates is

∑n
k=1

(
n
k

)
, which

places the search space of UCCs in O(2n). The number
of FD candidates is

∑n
k=1

(
n
k

)
· (n − k) so that FD discov-

ery is in O(n · 2n). The search space for FDs, therefore,
clearly dominates the overall discovery cost. The exponen-
tial search spaces of UCCs and FDs in particular dominate
the quadratic search space of unary INDs. Our evaluation
in Sec. 6.4 shows that the time spent on IND discovery is in-
deed negligible in comparison to the time spent on UCC and
FD discovery. For this reason, INDs can best be calculated
as a byproduct in the starting phase of a holistic algorithm.

3. HOLISTIC APPROACH
As we described in Section 2.4, IND discovery differs greatly

from the discovery of UCCs and FDs. Therefore, INDs are
discovered while the input data is read and the values are
still accessible. The discovery uses the Spider algorithm
and mainly profits from sharing its I/O costs with the UCC
and FD algorithms, i.e., the data is read only once and then
used for the discovery of all three types of matadata. Spider
additionally profits from the initial PLI-construction that is
performed for both the UCC and FD discovery: At construc-
tion time, PLIs map values to positions so that Spider can
retrieve duplicate-free value lists from this mapping, which
are more efficient to sort.

If the input dataset contains two identical rows, i.e., du-
plicate records, then it cannot contain any UCC and, hence,
most inter-task pruning rules would not apply. Therefore,
we assume that duplicate records, which are forbidden in
most database systems anyway, have been removed in a pre-
processing step.

We now discuss three basic approaches for the holistic
discovery of INDs, UCCs, and FDs.
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3.1 FDs first
By discovering minimal FDs first, we can derive all mini-

mal UCCs from the discovered FDs [15]. The UCC inference
follows Lemma 2. Under the assumption that each row in
R is distinct, every column combination that functionally
determines all other attributes of the relation R is a key in
R and, hence, a UCC:

Lemma 2. ∀U ⊆ R : U → R \ U ⇒ U is a UCC

Thus, all UCCs can be inferred from the set of minimal FDs.
Without describing an actual algorithm for UCC inference,
it is clear that the inference and minimization of UCCs in-
troduces an additional overhead. As several FD discovery
algorithms (e.g., Fun and Tane) exist that already find all
minimal UCCs while discovering FDs, we do not pursue this
FDs-first approach for a holistic algorithm. Instead, we fo-
cus on approaches that improve the overall runtime by avoid-
ing this additional overhead and by leverageing pruning.

3.2 FDs and UCCs simultaneously
To discover FDs and UCCs simultaneously, we analyzed

several FD discovery algorithms and evaluated their extensi-
bility towards UCC discovery. As already described in Sec-
tions 2.3 and 2.4, Fun uses an attribute lattice for pruning
that is very similar to Ducc’s way of calculating minimal
UCCs. Furthermore, Fun traverses all unpruned free sets.
The following Lemma 3 shows that all minimal UCCs are
“free sets” in Fun’s sense. Therefore, Fun must traverse the
minimal UCCs for FD discovery, enabling the discovery of
minimal UCCs with little impact on the overall runtime. In
a relation instance r, Ur is the set of all minimal UCCs in r.

Lemma 3. ∀U ∈ Ur : U ∈ FSr

Proof. Let X ∈ Ur be a minimal UCC and let X /∈
FSr be a non-free set. According to Definition 1, X ′ ⊂ X
with |X ′|r = |X|r exists. X ′ has the same distinct count
as X. Therefore, X ′ is a UCC. This contradicts the initial
assumption that X is a minimal UCC and, therefore, no
subset of the minimal UCC X can be a UCC.

In the original version of Fun, minimal UCCs are detected
and used for key-pruning, which is a common pruning rule
for FD discovery: The supersets of UCCs can be pruned,
because they cannot be the left hand side of a minimal FD.
This pruning rule is applied in FD discovery algorithms like
Tane and Fun. With small adaptions, it is possible to store
the minimal UCCs and return them when the algorithm ter-
minates. This does not impair the runtime of Fun, because
no further checks are necessary. We implemented this algo-
rithm and call it Holistic Fun.

3.3 UCCs first
If a holistic algorithm first discovers all minimal UCCs, it

can leverage this information for the discovery of minimal
FDs, due to the key-pruning rule. As we explain in Sec-
tion 4.1, many left hand sides of minimal FDs are subsets
of minimal UCCs. This observation can be used to discover
and minimize relevant FDs faster. It can further be used for
pruning, because applying this rule reduces the number of
traversed column combinations in comparison to level-wise
FD discovery algorithms. Several rules can derive the inva-
lidity of certain FDs from the known minimal UCCs. We
present these rules in more detail in Section 4 and use them
in the implementation of our algorithm Muds in Section 5.

4. DISCOVERING FDS BASED ON UCCS
In this section, we present pruning and inference rules

that allow for a fast FD discovery based on known UCCs.
These rules lay the foundation for our Muds algorithm de-
scribed in Section 5. We show in Section 6 that an algo-
rithm using these rules is usually faster than current state-
of-the-art FD discovery algorithms. We first describe the
UCC-based pruning rules for FDs. The following three sub-
sections then match the three sub-algorithms of Muds’ FD
discovery: minimize FDs, calculate R\Z, and shadowed FDs.

Figure 2 categorizes the attributes of a relation R into
the set Z :=

⋃
U∈U U , which is the union of all minimal

UCCs, and the set R \ Z, which contains all columns that
are not contained in any minimal UCC. In the following,
we describe the two situations, shown in Figure 2, where
the non-existence of functional dependencies can be inferred
from the set of UCCs.

1 

R: R\Z 

mUCC1 mUCC2 

1. 2. 

Figure 2: Possible FDs in R with two minimal UCCs

1. FDs fully contained in a minimal UCC: An FD
cannot exist if it is fully contained in a minimal UCC (both
left and right hand side are subsets of the same minimal
UCC). The right hand side of an FD carries only information
that could be inferred from the left hand side. Therefore,
if a functional dependency existed that is contained in a
minimal UCC, the right hand side can be removed from the
minimal UCC without changing the uniqueness property.
This contradicts the minimality of the UCC.

2. FDs with a lhs in R\Z and rhs in Z: Consider an FD
X → A with a left hand side X ⊆ R \ Z and a right hand
side A ∈ U with U ∈ U. A is determined by X; hence, A can
be substituted by X in U . This yields at least one unique
Usubs = X ∪ U \ A. Thus, a minimal unique Umin must
exist that is subset of Usubs. Umin must still contain one
or more attributes of X (otherwise U could not have been
minimal, as A could have been omitted). It follows that a
part of X is contained in a minimal UCC, which contradicts
the proposition that X is a subset of R \ Z. Thus, no such
FD may exist.

In the following, we present rules and operations that en-
able the discovery of FDs using the two pruning rules de-
scribed above. In Section 4.1, we first describe how to dis-
cover FDs that have left and right hand sides in overlapping
minimal UCCs.

4.1 FDs between minimal UCCs
A UCC functionally determines all other columns of the

same relation. Thus, FDs can be inferred from a discovered
UCC. Not all of these FDs are minimal. To find the minimal
FDs, the substitution pruning rule can be applied:

Substitution rule: For every FD that has an attribute
of a minimal UCC as right hand side, we can infer a new
UCC, by substituting that attribute in the UCC with the
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left hand side of the FD. If the inferred UCC does not exist,
the corresponding FD cannot hold and must not be checked.
This insight is used to validate FD candidates by checking
for corresponding UCCs. For instance, given a relation R =
{A,B,C,D,E, F}, the minimal UCCs ABC and DEF , and
the FD candidate BC → D that we need to check. The
UCC BCEF follows by substituting D with BC. Now, a
subset of BCEF that is also a proper superset of EF must
be a minimal UCC. As this minimal UCC does not exist,
we know that the FD BC → D cannot exist.

It follows that valid FDs between minimal UCCs must
fulfill the following condition: The left hand side and the
right hand side of valid FD must be subsets of different and
intersecting minimal UCCs. We use this insight in the Muds
algorithm, using an operation that we call connector lookup.
We describe this operation in detail in Section 5.1.

4.2 FDs with right hand sides in R \ Z
Tane and similar algorithms for FD discovery traverse

the attribute lattice bottom-up. In the traversal, these al-
gorithms utilize pruning rules based on the minimality of
dependencies. If a left hand side is known to yield only non-
minimal FDs (e.g., it already contains an FD), this left hand
side is pruned from the lattice and the traversal is contin-
ued with a reduced candidate set (upwards pruning). We
now propose a traversal strategy that operates similarly to
the random walk strategy in the UCC discovery algorithm
Ducc. For this traversal, pruning of subsets (downwards
pruning) is necessary. This pruning is based on a property
of FDs: If X → A does not hold, A cannot be functionally
dependent on any subset of X.

Lemma 4. ∀X ⊆ R, ∀A ∈ R, ∀X ′ ⊆ X :
X 9 A⇒ X ′ 9 A

Lemma 4 can be used to prune downwards. To facilitate
this pruning, we traverse a sub-lattice for each possible right
hand side. A sub-lattice is a lattice created for a specific
right hand side attribute, which is omitted from the lattice.
The nodes in the sub-lattice contain only the different left
hand side candidates. All sub-lattices for an exemplary re-
lation with columns A,B,C,D are shown in Figure 3. In
the sub-lattices, the above mentioned pruning rule applies,
because of the fixed right hand side.

A B C 

AB AC BC 

ABC D 

A B D 

AB AD BD 

ABD C 

A C D 

AC AD CD 

ACD B 

B C D 

BC BD CD 

BCD A 

Figure 3: Sub-lattices for the right hand side
columns A, B, C, and D

The example in Figure 3 shows that some column com-
binations are represented in multiple lattices. The column
combination CD, for example, is contained in the first and
in the second lattice. Such column combinations are only
fully pruned, i.e., we do not need to calculate their PLIs, if
the column combination is pruned in all sub-lattices. In the
best case, entire sub-lattices can be pruned.

Section 5.2 presents an algorithm that leverages the sub-
lattice pruning. The algorithm also assures that only columns
of R \ Z are used as right hand sides of FD candidates.

4.3 Shadowed FDs
Section 4.1 describes how FDs can be deduced from mini-

mal UCCs. Unfortunately, not all minimal FDs can be found
in this way. If a minimal UCC U and a column combination
X ⊆ U exist and the FD X → A holds, a column A may
be shadowed in U : A can be part of a left hand side with
only other columns of U . As our algorithm would not con-
sider this left hand side, we call the left hand side and the
resulting FD shadowed. To still find all minimal FDs, a post-
processing step is needed that explicitly checks all left hand
sides containing attributes from different minimal UCCs or
even R\Z. We explain the algorithm in Section 5.3 but first
give an example of how shadowed attributes arise:

Let BCD, CDE, and AD be the only minimal UCCs in
a dataset for the relation R = {A,B,C,D,E}. Suppose
that the minimal UCCs directly contain the minimal FDs,
i.e., BCD → AE, CDE → AB, and AD → BCE. Now,
assume that there is an additional minimal functional de-
pendency AC → B. The inference rule from Section 4.1
cannot find this FD, because the left hand side AC can-
not be deduced from the minimal UCCs BCD, CDE, or
AD. Thus, AC → B is never checked. The existence of
the minimal FDs BCD → A indicates that A is shadowed
in every subset of BCD. C is shadowed analogously in ev-
ery subset of AD by the minimal FD AD → C. Therefore,
every attribute that is determined by a subset of BCD or
AD may also be determined by a subset of ABCD or ACD
containing A and C.

For each minimal FD Y →W , we must find all shadowed
attributes S. The shadowed attributes are added to the left
hand side of the functional dependency. This results in the
FD Y ∪S →W , which holds, but is not necessarily minimal.
The FD must be minimized and we provide pseudo-code for
a minimization algorithm in Section 5.3.

5. THE MUDS ALGORITHM
In this section, we develop a holistic profiling algorithm

called Muds, which jointly discovers unary INDs, minimal
UCCs, and minimal FDs facilitating pruning across the dif-
ferent profiling tasks. The acronym Muds is a composition
of the algorithms key features: “Mu” for Minimizing UCCs,
“d” for the Depth-first approach that is used to find FDs
with right hand side in R \ Z, and “s” for shadowed FDs.

The algorithm uses the following execution strategy: While
reading the input dataset, Muds directly applies the Spider
algorithm described in Section 2.1 to calculate INDs (one
shared I/O operation). Since this algorithm already requires
to read and sort all records, Muds also builds the PLIs in
this step. Afterwards, Muds runs the Ducc algorithm, de-
scribed in Section 2.2, using the previously calculated PLIs
to identify all minimal UCCs. Finally, it executes a novel
FD discovery algorithm that is based on the concepts ex-
plained in Section 4. The FD discovery takes advantage
of the known minimal UCCs (inter-task pruning) and the
already calculated PLIs (shared data structures).

The FD discovering part of Muds consists of three phases:
In the first phase, Muds discovers the FDs among over-
lapping minimal UCCs (Section 5.1). In the second phase,
the algorithm finds FDs with right hand sides in the set of
columns that are non-minimal UCCs (R \ Z) (Section 5.2).
In the third phase, Muds discovers and minimizes the re-
maining FDs that have a shadowed left hand side (Sec-
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tion 5.3). Because the FD validations in the Muds algorithm
perform many superset look-ups to find minimal UCCs for
left hand side column combinations, we introduce a prefix
tree of UCCs that ensures fast look-up times (Section 5.4).

5.1 FDs in connected minimal UCCs
Muds is a “Unique Column Combinations First” algo-

rithm. So it first discovers all minimal UCCs to use them
for the FD discovery. So when starting the FD discovery,
all minimal UCCs are already known. Now, the first part
of Muds’ FD discovery analyzes only those FDs whose left
and right hand side columns are included in minimal UCCs.
For an FD X → Y , we call the complete set of functionally
determined attributes Y the closure of X. Suppose U is a
minimal UCC in the relation R; then, the closure of U is
R, because U functionally determines all other attributes.
It is possible that some of the attributes in the closure of
U are non-minimally determined, which means that they
are also determined by a subset of U . To minimize the left
hand sides of the non-minimal FDs, we check whether the
direct subsets of U functionally determine attributes in the
closure. In the following, we present an algorithm that min-
imizes the left hand sides, starting from the minimal UCCs
in a top-down manner.

Recursive minimization. In order to minimize the left
hand sides of the FDs deduced from minimal UCCs, we start
from the UCCs themselves and recursively analyze subsets
of the UCCs. Algorithm 1 shows the pseudocode for the
recursive minimization. minimizeFDs takes two input pa-
rameters: the set U of all minimal UCCs discovered in the
previous step and the union Z of all attributes that appear
in at least one minimal UCC. The algorithm iterates over all
minimal UCCs U ∈ U, generates FD candidates from them,
and then creates minimization tasks for the generated FDs
(lines 2-3). We use tasks and a queue of tasks to avoid recur-
sive method calls, which uses heap memory instead of stack
memory.

For every task, we know the valid right hand sides from the
parent closure, but the minimality of these FDs is not yet
known. To determine the minimal right hand sides, min-
imizeFDs iterates over the left hand side’s direct subsets
and checks which FDs are also valid in the subsets U ′ ⊂ U
(line 8). To this end, the algorithm determines the subset’s
connector C := U \ U ′ and performs the connector look-
up (lines 9-10). We describe this connector look-up below.
Then, minimizeFDs tests the candidate FDs using partition
refinement (line 11). If it finds an FD, minimizeFDs re-
moves the corresponding attribute from the closure of the
current left hand side, because the left hand side cannot be
minimal (line 12). Finally, we create new tasks for all direct
subsets with the valid right hand side (line 15). The valid
right hand sides contain all attributes that are still function-
ally determined by the current subset. After checking the
FDs in all subsets, the closure of the current left hand side
contains only those right hand sides for which the current
left hand side is minimal. The minimizeFDs function then
outputs these minimal FDs (line 16).

Connector look-up. Muds generates the right hand side
candidates using an operation that we call connector look-
up. The connector look-up ensures that the left and right
hand side are subsets of different minimal UCCs and that
the minimal UCCs overlap. We already discussed the princi-

Algorithm 1 Calculate FDs from minimal UCCs

Require: minimal UCCs U, union of all minimal UCCs Z
1: function minimizeFDs(U, Z )
2: for U ∈ U do
3: tasks.add(〈lhs←U, rhs←Z \ U, mUcc←U 〉)
4: FDs ← new Map<ColumnComb,ColumnComb>()
5: while !tasks.isEmpty() do
6: task ← tasks.remove()
7: currentRhs ← tasks.rhs
8: for lhsSubset ∈ task.lhs.getDirectSubsets() do
9: connector ← task.mUcc\lhsSubset

10: potentialRhs ← connectorLookup(connector\
getImpossibleColumns(lhsSubset))

11: validRhs ← checkFDs(task.lhs, potentialRhs)
12: currentRhs ← currentRhs \ validRhs
13: if validRhs.isEmpty then
14: continue
15: tasks.add(〈lhs←lhsSubset, rhs←validRhs,

mUcc←task.mUcc〉)
16: FDs[lhs] ← FDs[lhs] ∪ currentRhs

17: return FDs

ples used for this operation in Section 4.1. We now describe
the connector look-up in an example shown in Table 2. To
perform the connector look-up for a column combination,
Muds splits the minimal UCCs into a potential left hand
side and a connector. In our example, we split the mini-
mal UCC AFG into the potential left hand side A and the
connector FG. Then, we use the connector to perform a
look-up on the minimal UCCs: All minimal UCCs that are
supersets of the connector, are candidates for the right hand
side. Table 2 lists all minimal UCCs of our example in the
mUCCs column. In the matched column, Table 2 depicts
the retrieved UCCs. The subset of the matching UCCs that
is not the connector is printed in bold font. The result of the
look-up is the union of these columns; these columns serve
as right hand sides for the next FD candidates.

mUCCs matched
AFG AFG
BDFG BDFG
DEF -
CEFG CEFG

union: ABCDE

Table 2: Connector look-up with connector FG

After the connector look-up, the algorithm removes all left
hand side columns of the new FD candidate from the right
hand side columns, because trivial FDs do not need to be
checked. So in the example, we would remove A from the
union ABCDE. Additionally, the algorithm checks whether
the union of the left and right hand side is a subset of a min-
imal UCC; such dependencies cannot exist, because minimal
UCCs cannot contain FDs in themselves.

In the following, we describe the minimization of FDs for
the example minimal UCC AFG. Figure 4 depicts the tra-
versed graph. Note that for conciseness, we describe the
recursion in only one branch. At first, Muds initializes the
closure of the minimal UCC AFG to R \ {AFG}, which in
this case is BCDE. Then, the algorithm splits AFG into its
direct subsets, i.e., left hand sides for new FD candidates,
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and the connector (the connector is shown in round brack-
ets). At node AF , Muds performs the connector look-up,
which yields the potential right hand sides BD. By checking
the FDs AF → B and AF → D using partition refinement
(see Section 2.3), the algorithm finds that both FDs still
hold. Therefore, it can remove the FDs’ right hand sides
from the superset closure in node AFG, because these can-
not be minimal at AFG. Then, Muds computes the direct
subsets of AF and again performs the connector look-up.
For the column A, the look-up yields BD, whose dependen-
cies are then tested. In the test, the algorithm finds only
A→ B to be valid, which invalidates the minimality of the
parent FD AF → B. After completing an entire level, Muds
outputs the previous level’s remaining right hand sides as
valid minimal FDs. The algorithm terminates when no po-
tential right hand sides remain or the list of direct subsets
is empty. Upon termination, the algorithm has discovered
and minimized all FDs among connected minimal UCCs.
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AFG
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Figure 4: Example for recursive FD minimization

5.2 Graph traversing for R \ Z
This section focusses on those FDs whose right hand side

is in R \ Z. The set R \ Z contains all columns that are
not element of any minimal UCC. Hence, the previous step
did not find these FDs. In contrast to existing FD discov-
ery algorithms, we can restrict possible right hand sides to
columns that belong to R \ Z, because the previous step
has already found all minimal FDs with right hand side in
Z. Therefore, not all columns in the relation need to be
analyzed as potential right hand sides.

As discussed in Section 4.2, Muds uses one sub-lattice
for each potential right hand side to profit from downwards
pruning. The algorithm traverses each sub-lattice using a
random walk strategy that is based on the traversal strategy
of the UCC discovery algorithm Ducc, which we already
introduced in Section 2.2: Suppose that we search for FDs
with right hand side A. Muds first constructs the lattice of
left hand side candidates for A using the attributes R \ A.
Then the random walk starts at a random seed node on
the first level of this lattice. At each node, we check if the
column combination in that node determines A.

Suppose we are at the node that contains the column com-
bination X. If X determines A, we continue the traversal by
choosing a random subset of X, because the discovered FD
X → A might not be minimal. All supersets of X also deter-
mine A, but are minimal. Therefore, we prune all supersets
of X. If the column combination X does not determine A,
the next traversal step chooses a random superset of X. All
subsets of X can then be pruned, because they cannot de-
termine A (Lemma 4). As noted in Section 2.2, the lattice
might contain holes of unvisited nodes, which have to be

discovered in the end. For this task, Muds uses the same
approach as Ducc [10].

The mayor difference of this traversal strategy to Ducc’s
traversal strategy lies in the check that decides which nodes
are traversed next: Ducc checks the uniqueness of the node’s
column combination by inspecting the cardinality of the
node’s PLI; Muds checks whether the node’s column combi-
nation functionally determines the sub-lattice’s right hand
side A by testing for partition refinement as described in
Lemma 1 in Section 2.3.

Before Muds starts the graph traversal for R \ Z, it has
already determined several minimal FDs (see Section 5.1).
These known FDs are used for additional pruning in the
lattice: The combination of a left hand side with its right
hand side can never be the left hand side of an already known
minimal FD (see Section 2.3). The random walk on a sub-
lattice terminates when all candidates are checked or pruned.
Then, Muds continues with the remaining sub-lattices until
all FDs with right hand sides in R \ Z are found.

5.3 Shadowed FD discovery
The two previously described sub-algorithms of Muds’

FD discovery part do not yet find all FDs. This is due to the
fact that some FDs are shadowed (see Section 4.3). In the
following, we present an algorithm that finds and minimizes
these shadowed FDs by first extending and then minimizing
the left hand sides of already discovered FDs.

Shadowed FD discovery: Algorithm 2 shows the discov-
ery of the (not necessarily minimal) shadowed FDs. At first,
the algorithm calculates the potentially shadowed columns.
The columns are shadowed, because they occur in a right
hand side of an FD and, thus, are not discovered when the
algorithm deduces the FDs from UCCs in a previous step.

To find the missing FDs, the algorithm iterates over all
previously discovered FDs in line 2 of Algorithm 2. For
each FD, the algorithm iterates over the subsets in line 3
and creates a connector in line 4 that is used for a lookup
of potentially shadowed columns in line 5. With these shad-
owed columns, the algorithm creates a new left hand side
from the union of the current left hand side and the shad-
owed columns in line 6. The FD newLhs → fd.rhs obvi-
ously holds, because fd.lhs → fd.rhs holds and newLhs =
fd.lhs ∪ shadowedRhs. However, the FD newLhs→ fd.rhs
is not minimal and FDs that were previously not discov-
ered might be deduced by minimizing the FD newLhs →
fd.rhs. newLhs can contain many columns and be larger
than UCCs. Thus, the amount of columns can be reduced
prior to the minimization of the FD. This is a powerful prun-
ing step, which is shown in line 7-8 of Algorithm 2. The

Algorithm 2 Discover shadowed FDs

Require: map(lhs,rhs) of minimal FDs, minimal UCCs U
1: procedure discoverShadowedFDs(FDs, U)
2: for fd ∈ FDs do
3: for subset ∈ fd.lhs.getAllSubsets() do
4: connector ← fd.lhs \ subset
5: shadowedRhs ← FDs[connector ]
6: newLhs ← fd.lhs ∪ shadowedRhs
7: for reduceLhs ∈ removeUCCs(newLhs, U) do
8: shadowedTasks.add(reduceLhs, fd.rhs)

9: minimizeFDs(shadowedTasks)
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Algorithm 3 Remove UCCs from the left hand side

Require: column combination to minimize lhs, minimal
UCCs U

1: function removeUCCs(lhs, U)
2: reducedLhs ← {}
3: tasks.add(〈pos←0, remCol←{}〉)
4: subsetUniques ← U.getSubsetsOf(lhs)
5: while !tasks.isEmpty() do
6: task ← tasks.remove()
7: if task.pos ≥ subsetUniques.size() then
8: reducedLhs.add(lhs \ task.remCol)
9: continue

10: unique ← subsetUniques[task.pos]
11: if (task.remCol ∩ unique).isEmpty() then
12: tasks.add(〈pos←task.pos + 1,

remCol←task.remCol〉)
13: continue
14: for column ∈ unique.columns do
15: tasks.add(〈pos←task.pos + 1,

remCol←task.remCol ∪ column〉)
16: return reducedLhs

method removeUCCs() compares the FD to the previously
discovered UCCs. If newLhs contains at least a single UCC,
a part of the UCC is removed and multiple reducedLhs are
returned that do not contain any UCC. This is possible be-
cause no left hand side that contains a UCC can yield a
minimal FD. This approach allows the algorithm to skip
steps in the minimization of the FD, because the initial left
hand sides are already smaller. In line 9, the algorithm min-
imizes the reduced left hand sides. After this step, all FDs
in the dataset are discovered. In the following, we describe
the methods removeUCCs() and minimizeFDs() in detail.

Shadowed FD pruning: As previously described, we are
not interested in left hand sides that contain UCCs, because
they cannot yield minimal FDs. Algorithm 3 shows the min-
imization of left hand sides by removing parts of UCCs. The
resulting left hand sides do not contain any UCC. For a sin-
gle non-minimized left hand side multiple reduced left hand
sides may be generated.

We use tasks and a queue to avoid recursive method calls
that is shown in line 3. Then, the algorithm calculates all
UCCs that are contained in the left hand side in line 4. For
each task, we save the next UCC that must be removed (pos)
and the columns that should be removed from the initial left
hand side to create a UCC-free left hand side(remCol). The
algorithm iterates over the tasks in line 5-15. Lines 7-9 show
a task that already iterated over all contained UCCs. Thus,
the calculation of the reduced left hand side is finished and
the reduced left hand side is added to the result in line 8.
If at least a single UCC must be removed from the current
left hand side, the algorithm obtains this UCC in line 10.
Lines 11-13 check if the current UCC is completely removed
due to the columns in remCol. If this is the case, Muds
continues with the next UCC by adding the task with an
increased pos index in line 12. Lines 13-15 show the ac-
tual removal of columns. The algorithm iterates over the
columns in the UCC in line 14. For each column, a new
task is generated in line 15, where the current column is re-
moved. When all tasks are processed, the algorithm returns
the reduced left hand sides in line 16.

Algorithm 4 Discover and minimize potential FDs

Require: shadowed Tasks tasks, map(lhs,rhs) of minimal
functional dependencies FDs

1: procedure minimizeFds(tasks, FDs)
2: while !tasks.isEmpty() do
3: task ← tasks.remove()
4: currentRhs = task.rhs
5: for subset ∈ task.lhs.getDirectSubsets() do
6: validFD ← checkFDs(subset, task.rhs)
7: if validFDs.isEmpty() then
8: continue
9: currentRhs ← currentRhs \ validFDs

10: tasks.add(〈lhs←subset, rhs←validFDs〉)
11: FDs[task.lhs] ← FDs[task.lhs] ∪ currentRhs

Shadowed FD minimizing: Muds calls Algorithm 4 in
Algorithm 2 to minimize FDs. The algorithm also uses a
task queue to avoid recursive method calls. For every shad-
owed FD task containing a potential left and right hand side,
Muds generates all direct left hand side subsets (line 5).
These subsets might already determine the right hand side.
Afterwards, the algorithm checks, which FDs actually hold
on the current subset’s left hand side and then removes these
dependencies from the superset’s right hand side, because
they are not minimal (lines 6-9). Then, Muds creates new
tasks for all direct subsets (lines 10). The set of minimal FDs
is updated with the known superset’s minimal FDs (line 11).
When all tasks have been processed, the algorithm termi-
nates. At this stage, all shadowed FDs have been discovered
and minimized.

5.4 Subset pruning tree
As described in Section 5.3, Muds also finds shadowed

FDs. For each left hand side X, it needs to look-up all min-
imal UCCs that are subsets of X. The näıve implementa-
tion of this operation iterates over the list of minimal UCCs
and performs a subset check for each minimal UCC. With
an increasing number of attributes, the number of minimal
UCCs increases as well, which makes this operation increas-
ingly expensive. Therefore, we organize all minimal UCCs
in a prefix tree that guarantees an efficient look-up of UCC
subsets.

The concept of prefix trees was first presented by De La
Briandais [7]. For the construction of our prefix tree, we
assume that the columns in all column combinations are
sorted (e.g. by their position in the dataset). Figure 5 de-
picts an exemplary prefix tree for UCCs. Level 1, which is
the root node of the prefix tree, stores all columns that oc-
cur as the first column in any column combination. For each
entry in level 1, a node in level 2 may exist. These nodes
store the second columns of column combinations that share
the same first column. This pattern continues for the other
levels. The last column of a column combination can be
identified as an entry that has no child node.

The Muds algorithm uses the prefix tree to efficiently find
subsets of minimal UCCs: Given a column combination X,
we need to find all subsets of X that are contained in the
prefix tree. To find them, we iterate over the sorted columns
of X. For each column in X, we check whether the column
is contained in level 1 of the prefix tree. If the column is not
contained, we discard that column and continue with the
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Figure 5: Prefix tree for seven column combinations

next column of X. If it is contained, we visit the associated
node in level 2. There, we perform the same check with
the remaining columns of X. Then, we go to level 3 and
so on. Two conditions can stop the search: First, we find
a matching node entry that has no associated node in the
next level. This means that we found a subset of X. Second,
there are no remaining columns in X, because we discarded
all of them, but we have not reached the end of a path in
the prefix three. Then, the current path does not lead to a
valid subset of X. In both cases, we need to trace back and
start over with the remaining columns of X.

6. EVALUATION
We compare Muds (Sec. 5), Holistic Fun (Sec. 3.2), and

the composition of baseline algorithms (Sec. 2) using the
Metanome data profiling framework1. The framework pro-
vides a standardized execution environment for pre-packaged
profiling algorithms. In this way, common tasks like file I/O,
user interaction, and result handling are decoupled from the
algorithms allowing for fair comparisons. Metanome and all
algorithms use OpenJDK 1.7 64-Bit. We show that the al-
gorithms have different characteristics and sweet spots, but
that Muds is preferable in general.

Hardware. We execute our experiments on a Dell Pow-
erEdge R620 with CentOS 6.4. The machine has 128 GB
DDR3 RAM, of which 120 GB are assigned to the Java
virtual machine, and two Intel Xeon E5-2650 (2.00 GHz,
Octa-Core) CPUs. Because the implementations of our al-
gorithms are all single threaded, only one of the cores is
actually used.

Datasets. For the row scalability experiment in Section 6.1,
we use the Universal Protein Resource2 (uniprot) dataset. It
is a public dataset about protein sequences and their func-
tions and contains 539,165 rows and 223 columns. For the
column scalability experiment in Section 6.2, we use the
ionosphere [3] dataset. This dataset contains radar data
of the ionosphere and features 351 rows and 34 columns
(and many dependencies). Our third dataset, the North
Carolina Voter Registration Statistics3 (ncvoter) dataset,
contains non-confidential data about 7,503,575 voters from
North Carolina and features 94 columns. We use this data-
set for the evaluation in Section 6.4. For our experiments
described in Section 6.3, we use additional real world data-
sets from the UCI machine learning repository [3]. The
section also compares the performance of Muds with the

1www.metanome.de
2www.uniprot.org Accessed: 2015-03-03
3ftp://alt.ncsbe.gov/data/ Accessed: 2015-03-03

performance of Tane [11], the most popular FD discovery
algorithm, to show that Muds can also compete with non-
holistic FD algorithms. Finally, we discuss dataset proper-
ties that Muds’ FD discovery is optimized for in Section 6.5.

6.1 Scalability on rows
In the following experiment, we evaluate the scalability

of our algorithms Muds and Holistic Fun with respect
to the number of rows in the input dataset and compare
them to the baseline algorithm, which is the sequential ex-
ecution of Spider, Ducc, and Fun. Because of its length,
the uniprot dataset is best suited for row-scalability experi-
ments. Figure 6 depicts the execution times of the different
algorithms on uniprot with ten columns while varying the
dataset’s number of rows.
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Figure 6: Scalability with regard to the number of
rows on the uniprot dataset

The measurements show that all three algorithms scale
almost linearly with the number of rows. On this particular
dataset, Holistic Fun is the fastest algorithm; it is about
1/3 faster than the baseline, because Holistic Fun shares
the cost for I/O among the three profiling tasks and discov-
ers UCCs directly with the FDs. Muds, on the contrary, is
the slowest algorithm on uniprot, because the discovery of
shadowed FDs is particularly expensive on this dataset; if
many shadowed FDs are to be discovered, the costs for this
step also scale linearly with the number of rows.

6.2 Scalability on columns
The following experiment evaluates the algorithms with

regard to the number of columns: Using the ionosphere
dataset, we successively include more and more columns
from the original dataset in each run. The ionosphere data-
set is particularly interesting for column-scalability experi-
ments, because it contains many and large FDs – a challenge
for any FD discovery algorithm and a test of its pruning ca-
pabilities. The results are shown in Figure 7, which also
presents the number of discovered FDs in the dataset.

The experiment shows that the execution times of all three
algorithms scale exponentially with the number of columns,
which is due to the fact that the search space for UCCs
and FDs also grows exponentially. However, Muds scales
clearly better with the number of columns on the ionosphere
dataset than both Holistic Fun and the baseline, because
due to the UCC-first discovery approach Muds searches a
much smaller search space and the number of shadowed FDs
is manageable on ionosphere. The baseline and Holistic
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Figure 7: Scalability over the number of columns on
the ionosphere dataset.

Fun both spend 99% of their runtime on FD discovery for
23 columns, which gives Muds’ improved FD discovery a
significant advantage. For the same reason, Holistic Fun
performs only slightly better than the baseline; it optimizes
those algorithmic parts that make up only 1% of the overall
runtime.

6.3 Performance on various Datasets
The scalability experiments evaluated the performance of

Holistic Fun and Muds on the uniprot and the ionosphere
dataset. To verify the observations that we made on these
two datasets, we now evaluate the algorithms on various
real-world datasets from the UCI machine learning reposi-
tory [3]. These UCI datasets have been used in most related
work benchmarks and thus allow for comparability of re-
sults. We also add the Tane algorithm to this comparison
in order to investigate how Muds performs in comparison to
state-of-the-art non-holistic FD discovery. Table 3 lists the
execution times of the four profiling algorithms.

As in the scalability experiments, Holistic Fun always
performs slightly better than the baseline algorithm showing
that a holistic approach should always be preferred over the
sequential execution of individual profiling algorithms. The
experiment also shows that it strongly depends on the prop-
erties of the given input dataset whether Muds or Holis-
tic Fun is the overall best algorithm: For small numbers
of columns and higher numbers of rows, Holistic Fun ap-
pears to be the faster algorithm and for higher numbers of
columns and small numbers of rows, Muds performs best.
The number of columns, thereby, determines the algorithms’
performance much stronger than the number of rows as the
adult and the letter dataset show, on which Muds is up to
factor 48 faster than Holistic Fun.

When analyzing the algorithms’ performance on the dif-
ferent datasets in detail, we find that some minimal FDs in
datasets where Muds is clearly faster than Holistic Fun
have very large left hand sides. The Holistic Fun algo-
rithm, then, must traverse many nodes in the lattice, which
is expensive. Muds, in contrast, utilizes the minimal UCCs
for pruning and the depth first search strategy in order to
traverse a much smaller part of the lattice. This leads to
a clear performance advantage. So in general, the perfor-
mance of Holistic Fun and Muds depends on the position
of the FDs in the lattice. If the minimal FDs have small
left hand sides, Holistic Fun is the better algorithm, be-

Dataset Col Row FDs basel. Hfun Muds Tane
iris 5 150 4 .1s .1s .1s .6s
balance 5 625 1 .3s .1s .1s .9s
chess 7 28k 1 2.0s .9s 1.5s 2.0s
abalone 9 4k 137 1.3s .6s 1.1s 1.0s
nursery 9 12k 1 2.3s 1.9s 3.1s 3.1s
b-cancer 11 699 46 .8s .6s .5s 1.4s
bridges 13 108 142 .8s .7s .6s 1.3s
echocard 13 132 538 1.0s .6s 1.6s .8s
adult 14 48k 78 126s 118s 9.9s 81.2s
letter 17 20k 61 706s 636s 13.2s 326.0s
hepatitis 20 155 8k 462s 450s 88.1s 10.9s

Table 3: Runtime comparison on 11 real world data-
sets

cause the overhead of finding shadowed FDs in Muds is un-
proportionately large. But if there are FDs with large left
hand sides in the dataset, Muds is more efficient. Because
the average size of minimal FDs correlates with number of
columns, we can choose Muds or Holistic Fun based on
the number of columns. Section 6.5 discusses the difference
between Holistic Fun and Muds in more detail.

When comparing the runtimes of Muds with the run-
times of Tane, we observe up to 8 times slower runtimes
on the hepatitis dataset, where many shadowed FDs exist.
However, we also see that the holistic algorithm can outper-
form the non-holistic algorithm by orders of magnitude: It
is 8 times faster on the adult dataset and 24 times faster on
the letter dataset. This is possible if Muds finds favorable
pruning conditions, i.e., FDs with large left hand sides. The
algorithm can, then, prune much more efficiently than Tane,
which makes Muds also the better FD algorithm here.

6.4 Analysis of MUDS’ phases
Our previous experiments identified Muds’ last phase,

namely the discovery of shadowed FDs, to be its most com-
putationally expensive phase. We now analyze the different
phases in more detail. Figure 8 depicts the execution time
for each phase of the algorithm. We ran this experiment on
20 columns and 10,000 rows of the ncvoter dataset.
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Figure 8: Runtime of Muds’ different phases on the
ncvoter dataset with 10,000 rows and 20 columns

As the measurement show, the computational effort spent
on Spider and Ducc is almost negligible. The last two
phases that detect shadowed FDs, however, are the perfor-
mance bottleneck of Muds in this experiment. We observe a
22 times higher execution time than in the previous phases.
The generate shadowed tasks phase iterates over the already
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found FDs and creates tasks for possibly shadowed FDs.
Each task immediately checks if the FDs holds. These FD
checks consume 78% of the time in this phase. Because the
found FDs are not necessarily minimal, Muds then mini-
mizes the valid FDs in the minimize shadowed tasks phase.
The FD checks in this phase take 90% of the phase’s time.
If the number of discovered shadowed FDs is high, the min-
imization is very expensive, because minimizing FDs corre-
sponds to a top-down FD discovery that scales exponentially
with the number of columns. In both phases, the primary
time-consuming operation is the PLI intersect, which is nec-
essary to check whether an FD holds. However, the exe-
cution time distribution between the phases of the Muds
algorithm is dataset specific and especially disadvantageous
in this experiment. Nevertheless, we observed that the shad-
owed FD finding part is the most expensive phase of Muds
on all datasets.

6.5 Favorable dataset properties for MUDS
From our previous experiments, we learned that Muds

usually performs best on datasets with ten or more columns.
But the number of columns is only one possible indicator for
the performance of Muds over Holistic Fun. In both algo-
rithms, the discovery of FDs is the most expensive part. So
to understand the difference between these two approaches
better, we have to compare the two FD search strategies in
more depth. Depending on the size of these search spaces
on the given dataset, one or the other algorithm is superior.

Holistic Fun searches for FDs by starting at the bottom
of the lattice and, then, traverses the nodes level-wise until
all minimal FDs are found. Thereby, it classifies visited ele-
ments into free sets and non-free sets to prune non-minimal
FD candidates. The size of Holistic Fun’s search space is,
hence, defined by the height of the lattice levels that hold
the minimal FDs; the higher the algorithm has to search,
the longer it takes

Muds first computes all minimal UCCs and, then, searches
for FDs in two different search spaces: The first search starts
from the minimal UCCs and traverses the lattice in a top-
down strategy until all minimal FDs are found (see Sec-
tion 5.1). All nodes that Muds traverses in this way are
subsets of minimal UCCs and non-free sets in the classifi-
cation of Fun. Because this search space approaches the
minimal FDs from the top down, it differs greatly from the
search space of Holistic Fun. The second search space of
Muds uses only the columns in R\A for the construction of
sub-lattices that are then traversed bottom-up, depth-first
(see Section 5.2). This search space overlaps with Holis-
tic Fun’s search space, but it is much smaller depending
on the size of R \A. Furthermore, Muds’ depth-first search
reaches minimal FDs on high lattice levels much faster than
Holistic Fun’s breath-first search.

So Muds also performs best, if the minimal FDs and min-
imal UCCs are located on low lattice levels. In comparison
to Holistic Fun and any bottom-up, breath-first FD dis-
covery algorithm Muds performs best when:

1. The minimal UCCs lie close to the minimal FDs in the
lattice.

2. The minimal UCCs lie on high lattice levels so that
the minimal FDs lie on high lattice levels as well.

3. Many columns participate in at least one minimal UCC,
i.e., the column set R \A is small.

Criterion 1 is intuitively clear, because the size of Muds’
first search space shrinks with the distance of minimal UCCs
and FDs. Criterion 2 seems to be a disadvantage for Muds,
because it increases the size of the second search space; but
Muds’ second search space is (a) much smaller than Holis-
tic Fun’s search space and (b) the depth-first search out-
performs the breath-first search if this search depth is large.
Criterion 3 is a big advantage for Muds, because its bottom-
down search is much faster than the bottom-up search (see
Section 6.4).

So now it becomes clear, why Muds scales better with
the number of columns than Holistic Fun: The average
distance between minimal UCCs and minimal FDs growths
only slightly with the number of columns so that Criterion 1
always holds; the average height and number of both min-
imal UCCs and minimal FDs growths constantly so that
Criterion 2 becomes increasingly advantageous for Muds;
the chances for columns being part of some minimal UCC
with some other columns also increases with the number of
columns so that the size of column set R \A increases only
slightly making Criterion 3 hold.

The number of columns is, however, only an indirect indi-
cator for the performance of Muds. If the Criteria 1 to 3 do
not hold in a particular dataset or if the dataset comprises
many rows (see Section 6.1), a lot more columns would be
needed to make Muds faster than Holistic Fun. So we
could, instead, use the number and size of minimal UCCs
to choose the FD discovery strategy: Because Muds calcu-
lates the minimal UCCs before it starts the FD discovery,
one could choose Muds’ FD discovery part if many, large
UCCs have been found or the Fun algorithm if few, small
UCCs are found. In practice, however, making the decision
based on the number of columns is easier and similarly pre-
cise, because the properties “many” and “large” depend on
the actual number of rows and columns so that they are
non-trivial to define.

7. RELATED WORK
Many data profiling applications, such as data integration

and data exploration, need to calculate various metadata at
once, but almost all existing algorithms focus on only one
task. We already introduced the most important related
algorithms for holistic data profiling in Section 2, so we now
give a more comprehensive overview on existing IND, UCC,
and FD discovery algorithms:

De Marchi et al. [8] presented one of the first algorithms
for IND detection. The algorithm constructs an inverted
index upon the values of all attributes to check them for
inclusions. This technique has been outperformed by the
Spider algorithm [4] that discards attributes early on. As
Spider is the currently most efficient algorithm for IND de-
tection, we integrated it in our holistic approaches.

The algorithms for UCC discovery can be separated in
two groups: row-based and column-based techniques. Gian-
nella et al. [9] presented a column-based algorithm that ge-
nerates relevant column combinations to check their unique-
ness. An improved version of this algorithm, HCA [1], uses
an optimized candidate generation and additional statisti-
cal pruning to find UCCs. In both algorithms the check for
uniqueness is costly. Gordian [16], in contrast, is a row-
based UCC discovery algorithm that organizes the data in
a prefix tree to check for UCCs. It traverses the tree to
determine maximal non-UCCs, which are then used to cal-
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culate the minimal UCCs. This is also costly if the number
of maximal non-UCCs is large. The currently most efficient
UCC algorithm Ducc [10] implements a combination of row-
based and column-based techniques: It builds upon efficient
data structures and uses UCCs and non-UCCs simultane-
ously for pruning. Due to the efficiency of Ducc’s random
walk strategy, we used it in our holistic algorithms.

While Tane [11], proposed by Huhtala et al., is the most
popular FD algorithm, it is often outperformed by Fun [14].
Tane and Fun both use partition refinement to identify FDs
and apriori-gen to traverse the search space. As Fun addi-
tionally incorporates a cardinality inference method that re-
duces the necessary partition intersect operations, it needs
to traverse an overall smaller number of candidates. The
CORDS algorithm by Ilyas et al. [12] is capable of identi-
fying various correlations and soft FDs. As the algorithm’s
identification process builds upon sampling techniques, it
only approximates the real result.

Although current profiling algorithms focus on one spe-
cific profiling task, there are some algorithms that already
leverage the knowledge about one type of metadata to draw
conclusions about another. The first work in this context
was contributed by Beeri and Bernstein [5] who used the
defined FDs in a relational database to find additional keys.
The algorithms Fun and HCA both use dependencies be-
tween FDs and UCCs for pruning. However, they use dis-
covered FDs to derive UCCs, while our algorithm Muds uses
discovered UCCs to derive FDs.

8. CONCLUSION
We investigated the problem of simultaneously discover-

ing three types of metadata: INDs, UCCs, and FDs. By in-
terleaving their calculation, we demonstrated how to share
common costs for I/O operations and the traversal of data
structures in order to reduce the overall profiling time. Fur-
thermore, we introduced new inter-task pruning and infer-
ence rules, in particular rules that derive possible FDs from
discovered UCCs. For the analysis of our holistic techniques,
we proposed the two algorithms Holistic Fun and Muds,
which jointly discover unary INDs, minimal UCCs, and min-
imal FDs. Holistic Fun always outperforms the sequential
execution of the Spider, Ducc, and Fun, the fastest of algo-
rithms for the respective tasks, by avoiding duplicate work.
The Muds algorithm, on the other hand, also facilitates the
additional inter-task pruning and inference rules giving it
a significant performance advantage on different real world
datasets: Our evaluation shows that Muds is up to 48 times
faster than Holistic Fun and the baseline if favorable (and
common) pruning conditions (many FDs and UCCs with
long left hand sides) are given. On such datasets, Muds
performs even faster than the fastest pure FD algorithm.
The number of columns and the size of discovered UCCs
can both be used to decide whether Muds or Holistic Fun
should be used.
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ABSTRACT
Due to the increase of GPS enabled devices and a lot of location-
based services, spatial objects are continuously generated. This pa-
per addresses a problem of monitoring MaxRS (Maximizing Range
Sum) in spatial data streams. Given a set of weighted spatial (2-
dimensional) objects, this problem is to monitor a location of a
given user-specified sized rectangle where the sum of the weights
of the objects covered by the rectangle is maximized. Many real life
applications obtain a benefit from monitoring MaxRS, e.g., traffic
analysis and event detection in urban sensing, but this problem has
not yet been addressed so far. Although some algorithms for static
objects have been proposed, executing such an algorithm whenever
new objects are generated is computationally expensive. These mo-
tivate us to develop an efficient algorithm that can monitor MaxRS
efficiently. In this paper, we first design a basic algorithm that is
based on an index framework and incrementally updates the result.
We then enhance the algorithm and show that the enhanced algo-
rithm can deal with error-guaranteed approximation and monitor-
ing top-k MaxRS. Our experimental results confirm the efficiency
of our approach.

1. INTRODUCTION
Due to the increase of GPS enabled devices such as smartphones

and tablet machines, a lot of location-based services are used in
many real life applications. From this fact, spatio-temporal databases
have been receiving significant attention recently. Supporting spa-
tial queries is therefore becoming more important, and many stud-
ies developed techniques for efficient spatial query processing [13,
15]. These studies can be classified into spatial objects retrieval
problems [3, 24] and location finding problems [10, 32, 33]. For ex-
ample, kNN query processing, which retrieves the k nearest neigh-
bor objects w.r.t. a given query point, is the representative of the
spatial objects retrieval problems. In the location finding problems,
on the other hand, some queries have been proposed, for exam-
ple, optimal location queries [10, 33], bichromatic reverse nearest
neighbor queries [14, 35], and MaxRS (Maximizing Range Sum)
queries [6, 8, 9, 25]. This paper focuses on a kind of MaxRS prob-
lem.

c⃝2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

Figure 1: An example of a MaxRS query

Motivation. Given a set of weighted spatial (2-dimensional) ob-
jects and a user-specified sized rectangle, a MaxRS query finds a
location of the rectangle where the sum of the weights of the ob-
jects covered by the rectangle is maximized.

EXAMPLE 1.1. Figure 1 shows an example of a MaxRS query.
In Figure 1, the rectangle with dashed line, the black points, and
the rectangles with solid line show a general monitoring space,
spatial objects with weight 1, and user-specified sized rectangles,
respectively. The MaxRS query identifies the location of the shaded
rectangle as one of the optimal results because it covers the largest
number of objects, i.e., the sum of the weights of objects covered by
the rectangle is the maximum.

This query is useful because it can automatically find an impor-
tant place without specifying any query points [8, 9]. In this pa-
per, we address a novel problem of monitoring MaxRS in spatial
data streams. In other words, we address a problem of continu-
ous MaxRS query processing over sliding-window. Since a large
amount of spatio-temporal objects are continuously generated [2,
5], e.g., in the context of location-based service usages, one-time
finding an important location does not make sense but continuously
monitoring an important location is required. A continuous MaxRS
query can achieve this and has the following real life applications.

EXAMPLE 1.2. Consider urban sensing. A system, e.g., base-
station, continuously collects spatio-temporal objects, e.g., gener-
ated by devices with GPS, in an urban city. Such objects can be
represented as < x, y, w > where x, y, and w are latitude, lon-
gitude, and weight, respectively. If w is communication traffic, a
continuous MaxRS query can monitor an area where traffic is con-
centrated. In this case, the system can notify the users holding
mobile devices in the area of warning about communication delay.

Example 1.2 shows that continuous MaxRS queries can help to ana-
lyze communication errors and also support decision making, e.g.,
where to place Wi-Fi access points. We next consider location-
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based games in which continuous MaxRS queries are useful for
decision making.

EXAMPLE 1.3. In BotFighters, players try not to be attacked by
other players [4], and in Ingress, players try to occupy places.
Let w in Example 1.2 represent the strength or level of a given
player, and players keep checking the area monitored by a contin-
uous MaxRS query. This can detect an event, e.g., a competition by
many and/or high-level players, and support to plan a strategy.

Other examples include mobile sensor networks [27] that a base-
station continuously collects sensor readings. By employing con-
tinuous MaxRS queries, the base-station may be able to detect sen-
sor failures and over-concentration of mobile sensor nodes.

Technical challenge and overview. Some techniques for exact
MaxRS query processing on static objects have been developed in
the past. [12, 18] proposed in-memory algorithms while [8, 9] pro-
posed an external-memory algorithm. The computation (I/O) com-
plexity of the in-memory (external-memory) algorithm is shown to
be optimal. These algorithms however focus on one-time computa-
tion, so they are not efficient for continuous MaxRS queries. This
is because computing the result from scratch whenever new ob-
jects are generated is obviously computationally expensive, mean-
ing that an approach which can incrementally update the result is
required.

In this paper, we first propose a basic algorithm that exploits a
graph in grid index, namely G2. G2 integrates graph and grid struc-
tures, thus its storage cost isO(|V |+ |E|), where V corresponds to
a set of objects on a given sliding-window and E is a set of edges.
(The details are described in Section 4). One of the properties of
G2 is that no overhead incurs when objects expire. We then en-
hance both the basic algorithm and G2, and propose aggregate G2,
aG2, and a branch-and-bound algorithm that exploits aG2. This
algorithm eliminates unnecessary update computation as much as
possible and accelerates the query processing efficiency.

Interestingly, the branch-and-bound algorithm can deal with error-
guaranteed approximation. Let w∗ and ϵ respectively be the maxi-
mum range sum and a user-tolerance error rate. Also, let w be the
weight of the area monitored by the algorithm, and we can guaran-
tee that w ≥ (1 − ϵ)w∗. We show that the relationship between
query processing efficiency and ϵ is trade-off but the practical er-
ror rate is much less than ϵ. In addition to the approximation, we
consider a problem of monitoring top-k MaxRS. For example, Ex-
amples 1.2 and 1.3 may require not only a single area but k (e.g., 5)
areas with the largest range sum. This requirement is satisfied by a
simple modification of the branch-and-bound algorithm.

Contributions and organization. We summarize our contribu-
tions as follows.

• We address a novel problem of continuous MaxRS query
processing in spatial data streams (Section 2). To the best of
our knowledge, we are the first to investigate this problem.

• We design a basic algorithm for a continuous MaxRS query
(Section 4). This algorithm incrementally updates the result
by exploiting an efficient index framework.

• We enhance the basic algorithm and propose a more efficient
index and branch-and-bound algorithm (Section 5). This al-
gorithm prunes unnecessary computation and accelerates the
computation efficiency.

• We show that the branch-and-bound algorithm can deal with
error-guaranteed approximation and efficient continuous top-
k MaxRS query processing (Section 6).

• We conduct extensive experiments using both synthetic and
real datasets that confirm the efficiency of our approach (Sec-
tion 7).

In addition to the above contents, we review some related literatures
in Section 3, and Section 8 concludes this paper.

2. PRELIMINARY
We are given a set of spatial stream objects in a general mon-

itoring space, as shown in Figure 1. A spatial object oi is repre-
sented by oi =< x, y, w > where i is its identifier, < x, y >
shows the location that oi is generated, and w is a non-negative
value (weight), i.e., oi.w ∈ R+. We assume a spatial stream en-
vironment, thus consider a sliding-window model [1] because it
is usual that many applications are interested only in recent ob-
jects. Count- and time-based sliding-window models are widely
accepted. The count-based sliding-window considers the most re-
cent n objects, and in this model, m new objects generations lead
to the expirations of the m oldest objects. The time-based sliding-
window, on the other hand, considers the objects generated within
the last T time-units. Selection of a suitable sliding-window model
depends on applications, and our algorithms can deal with both the
models. So, without loss of generality, we assume the count-based
sliding-window in this paper. Let O be the set of the most recent n
objects, and O residents in-memory because real-time continuous
query processing generally requires main memory computation [4,
17].

Let P be an infinite set of points in the general monitoring space.
Given a user-specified sized rectangle r, the weight of a point p ∈
P , p.w, is defined by

p.w =
∑

oi.w,

where oi ∈ O is covered by r centered at p. We are now ready to
formally define the monitoring MaxRS problem.

DEFINITION 1 (MONITORING MAXRS PROBLEM). Given a set of
objects on a sliding-window O, an infinite set of points in the gen-
eral monitoring space, and a user-specified sized rectangle r, the
goal of the monitoring MaxRS problem is to continuously monitor
a location p∗ ∈ P that satisfies.

p∗ = argmax
p∈P

p.w.

It is infeasible to find and monitor p∗ from such infinite points,
but as the literatures [8, 9, 25] introduce, MaxRS problems can
be solved by transformation to an alternative problem. Given a
user-specified sized rectangle r, let ri be the weighted rectangle
of the same size of r centered at < oi.x, oi.y > (oi ∈ O and
ri.w = oi.w). Consider oi, oj ∈ O, and if ri overlaps with rj , it
is not difficult to see that the weight of the overlapped space s is
s.w = ri.w + rj .w. We formally define this space weight.

DEFINITION 2 (SPACE WEIGHT [8]). Given O, we have a set of
rectangles each of which is centered at the location of the corre-
sponding object. The weight of a space s is the sum of the weights
of the rectangles covering s.

Then the alternative problem is to find s with the maximum weight
denoted by s∗. Interestingly but not surprisingly, p∗ exists in s∗,
that is, any points in s∗ can be p∗.

EXAMPLE 2.1. Figure 2 shows the alternative problem of Figure
1. The center of each rectangle is at the corresponding object. Note
that the size of each rectangle is the user-specified size. Recall that
the weight of each object is 1, and the shaded overlapped space has
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Figure 2: An example of the alternative problem of Figure 1

the maximum weight. We know that the weights of other overlapped
spaces are less than 4. The center of the shaded rectangle in Figure
1 exists in the shaded space.

Therefore, monitoring s∗ is equivalent to monitoring p∗. We here
define continuous MaxRS queries that solve the monitoring MaxRS
problem.

DEFINITION 3 (CONTINUOUS MAXRS QUERY). Given a set of
objects on a sliding-window O and a user-specified sized rectan-
gle r, each weighted object is converted to a weighted rectangle
centered at the location of the object. A continuous MaxRS query
monitors s∗ that satisfies

s∗ = argmax
s∈S

s.w, (1)

where S is the set of overlapped spaces.

We also consider a problem of monitoring top-k MaxRS to sup-
port the applications that require not only a single space but also
k spaces with the maximum weight. The definition of monitoring
top-k MaxRS problem is given by extending Definition 1, thus we
formally define continuous top-k MaxRS queries below.

DEFINITION 4 (CONTINUOUS TOP-K MAXRS QUERY). Given a
set of objects on a sliding-window O and a user-specified sized
rectangle r, each weighted object is converted to a weighted rect-
angle centered at the location of the object. A continuous top-k
MaxRS query monitors the set S∗ that satisfies |S∗| = k and
∀s ∈ S∗ and ∃s′ ∈ S\S∗, s.w ≥ s′.w where S is the set of
overlapped spaces, and ties are arbitrarily broken.

Since applications that execute continuous queries basically re-
quire real-time monitoring [3, 4, 17], algorithms that process such
queries have to update query results efficiently. Our objective of
this paper is therefore to minimize computation time to update s∗,
which is incurred by generations and expirations of objects. Table
1 summarizes the symbols frequently used in this paper.

3. RELATED WORK
As introduced in Section 1, many spatial queries have been de-

veloped. This section reviews related works of the monitoring
MaxRS problem. In particular, we introduce spatial preference
queries and facility location queries in which MaxRS queries are
categorized. We then review the existing studies of MaxRS query
processing.

Before introducing the above queries, we should make it clear
that MaxRS queries are different from range aggregation queries.
The goal of range aggregation queries is to return the aggregate
result (e.g., values and points) from (i) the set of points in a given
rectangle with fixed location [19, 21, 23] or (ii) the set of values in a
given interval [26]. On the other hand, the goal of MaxRS queries is

Table 1: Overview of symbols
Symbol Description

oi The weighted spatial object with identifier i
m The number of objects generated at the same time
s∗ The space with the maximum weight
ri The weighted rectangle centered at the location of oi

ri.E The set of edges held by ri
N(ri) The set of neighboring vertices (rectangles) of ri
si The space with the maximum weight covered by ri
ci,j The cell with identifier (i, j)
Gi,j The graph maintained by ci,j
Vi,j The set of vertices (rectangles) of Gi,j

ci,j .w The upper-bound weight of ci,j

to find a location from an infinite set of points. In the same sense,
continuous spatial queries [15, 16, 17] that monitor not locations
but objects are different from our problem.

Spatial preference queries. Spatial preference query processing
problem is one of location selection problems. Given a 2-dimensional
point p and a distance constraint d, a top-k spatial preference query
[22, 29] determines the score of p by the sum of the weights of the
feature objects existing within d from p. [28] studies a problem of
finding top-t most influential sites. The influential score of a given
site is defined as the sum of weights of its reverse nearest neighbor
objects. In the above queries, the scores of the target points are
defined by a kind of range sum function. However, the locations
of the target points are already known, which is different from our
problem.

Facility location queries. The objective of this problem is to find
an optimal location w.r.t. a given condition. It is often the case that
a set of customers (or clients) with weights and a set of facilities
are given [11]. Then a facility location query retrieves a facility
that maximizes the total weight of its reverse (k) nearest neighbor
customers [35]. [10] proposed optimal location queries, and the
extension version of the optimal location queries, min-dist optimal
location queries, has been studied in [20, 32]. Such optimal loca-
tion queries have also been studied in road networks [7].

The monitoring MaxRS problem is also one of the facility lo-
cation problems. We are interested in continuously monitoring a
location that maximizes the total weight of objects covered by a
user-specified sized rectangle. As introduced in Section 1, this
is useful in monitoring applications in spatial data streams. The
main deference between MaxRS and the above queries is their cat-
egories: monotonic (e.g., MaxRS queries) and bichromatic (e.g.,
optimal location queries).

MaxRS queries. To the best of our knowledge, the existing works
of MaxRS problems and the variants are [6, 8, 9, 12, 18, 25]. An
external-memory algorithm for exact MaxRS queries has been pro-
posed in [8, 9], while [25] proposed a randomized sampling algo-
rithm that bounds the error with high probability. That is, given a
tolerance error ϵ, the approximate algorithm returns a space with
the weight w that satisfies w ≥ (1− ϵ)w∗ with probability 1− 1

n
.

(w∗ is the weight of the optimal result and n is the number of ob-
jects.) Rotating MaxRS queries have been proposed in [6]. This
literature assumes that a given rectangle is rotatable, but we do not
assume this case and assume the usual case, as well as [8, 9, 12, 18,
25].

We now focus on the in-memory algorithms [12, 18] because
we also consider an in-memory algorithm for continuous MaxRS
queries. It is notable that the algorithm in [18] solves a max-
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Figure 3: An example of processing a plane-sweep algorithm

enclosing rectangle problem, to which the MaxRS problem can be
converted, based on well-known plane-sweep strategy, and actually
the external-memory and the approximate algorithms [8, 25] also
employ this strategy. (The algorithm proposed in [12] also em-
ploys the same strategy and the computation cost is the same as
[18].) The plane-sweep algorithm [18] employs a horizontal line,
and given a set of rectangles, this line is swept from bottom to top of
the rectangles while counting the weights of intersecting intervals
on the sweeping line. Figure 3 shows an instance when sweeping
the dashed line. Let the weight of each rectangle in Figure 3 be 1,
and we can see that the weights of intervals AB, BC, and CD are 1,
2, and 3, respectively. In the plane-sweep algorithm, when a sweep-
ing line reaches the bottom edge of a rectangle, a newly generated
interval is inserted into a binary-tree, while when reaching the top
of the rectangle, the expired interval is deleted from the binary-tree.
During these procedures, the counts of intervals are also updated.
This algorithm returns the interval with the maximum weight, and
the complexity of this algorithm is O(n logn) [18], where n is the
number of objects (rectangles). This is because the algorithm ex-
ecutes 2n binary-tree updates (n insertions and n deletions) that
takeO(logn) time. (This algorithm also can return a set of k inter-
vals with the maximum weight without sacrificing its computation
efficiency.)

The above algorithm is shown to be an optimal solution for the
MaxRS problem on static objects. However, it is inefficient to com-
pute s∗ from scratch by this algorithm even in the case where the
number of newly generated objects is not large, which is shown by
our experimental results. From the next section, we describe our
solutions that efficiently update and monitor the result over stream
data.

4. BASIC SOLUTION
The generations and the expirations of objects lead to additions

and eliminations of overlapped spaces. This suggests that S in
Equation (1) is dynamic, in other words, the ranking of range sum
is dynamic, thereby efficient s∗ monitoring is not trivial. In spite
of this nature, our index framework enables to design a simple but
efficient algorithm.

4.1 G2: Graph in Grid Index
We first present our index framework Graph in Grid index (or

G2). Recall that our objective is to achieve real-time monitoring of
MaxRS in a stream environment, meaning that unnecessary com-
putations have to be avoided. A dynamic graph, where a vertex is
a rectangle and an edge shows the overlap between given two ver-
tices, realizes this. If the weight of each vertex (rectangle) is 1, we
can see that s∗ is a part of the vertex with the largest number of
edges. To monitor s∗ with using the dynamic graph, the basic op-
eration that we have to do is just to check the updated parts of the
dynamic graph. This is because only the updated parts may affect
s∗. Motivated by this observation, we develop G2.

As described, the first idea is to maintain n rectangles on a sliding-
window by a graph. Vertices of the graph are the rectangles, and if
two rectangles overlap each other, there is an edge between them.

𝑟1

𝑟2

𝑟3
𝑟4

𝑟6

𝑟5

Figure 4: The graph constructed from the rectangles in Figure
3

Table 2: Edge and neighbor sets of the vertices of the graph in
Figure 4

Vertex ri Edge ri.E Neighbor set N(ri)

r1 (r1, r2), (r1, r3) {r2, r3}
r2 (r2, r3) {r3}
r3 (r3, r4) {r4}
r4 (r4, r5) {r5}
r5 (r5, r6) {r6}
r6 ∅ ∅

We define our graph and provide a concrete example below.

DEFINITION 5 (GRAPH G). G = (V,E) is a dynamic graph. V
is a set of rectangles of a given size on a sliding-window, and E is
a set of direct edges. Given two vertices ri, rj ∈ V overlapping
each other, where ri was generated earlier than rj , there is a direct
edge between them, (ri, rj), and this edge is held by the vertex
(rectangle) that was generated earlier than the other, i.e., ri. (Ties
are broken by identifiers.)

EXAMPLE 4.1. We construct a graph G from the set of rectangles
in Figure 3, and Figure 4 shows G. Assume that the rectangles are
generated in order of identifiers. Since r2 overlaps with r1, there
is (r1, r2) that represents a direct edge from r1 to r2. r1 maintains
the edges (r1, r2) and (r1, r3).

When context is clear, we use vertices and rectangles interchange-
ably since they are the same, as Definition 5 describes. We de-
note ri.E the set of edges held by the vertex ri ∈ V . The set
of neighbors of a vertex ri ∈ V is also denoted by N(ri) =
{∀rj | ∃(ri, rj) ∈ ri.E}. Table 2 shows an example that uses Fig-
ure 4 in terms of r.E and N(r). Then we obtain the spaces on ri
covered by the rectangles in N(ri). ri maintains si, the space with
the maximum weight among the spaces. That is, si is definitely the
subspace on ri, which provides the following property.

PROPERTY 1. Given ri, rj ∈ V , we have that si ̸= sj .

The proof is straightforward since ∄ri ∈ N(rj) if ∃rj ∈ N(ri).
How to obtain si is explained later, but it is not difficult to see the
following property.

PROPERTY 2. Let SG be the set of si maintained by ri on a sliding-
window, we have that

s∗ = argmax
si∈SG

si.w. (2)

Furthermore, even if some vertices (rectangles) expire, other ver-
tices need no maintenances, because the corresponding edges are
held by older vertices.

PROPERTY 3. Given ri ∈ V , and when the older vertices than ri
expire, si does not change.

We next have to consider the case where m new rectangles (ob-
jects) are generated. Due to the graph structure, we need to check
whether the m rectangles overlap with the existing rectangles. It is
obvious that simple computation takes O(mn) time. To alleviate
this, we employ a grid structure like the one shown in Figure 5,
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Figure 5: An example of G2

which is the second idea. When dataset updates frequently occur,
grid structure is more suitable than complex structures like R-tree
and Quad-tree [4]. Each cell in the gird is assigned an identifier and
its size is fixed, as shown in Figure 5. Note that each cell ci,j main-
tains the graph constructed by the mapped rectangles, denoted by
Gi,j = (Vi,j , Ei,j). Therefore, Definition 5 is rewritten as follows.

DEFINITION 6 (GRAPH Gi,j ). Gi,j = (Vi,j , Ei,j) is a dynamic
graph maintained by ci,j of a grid. Vi,j is a set of given sized
rectangles that are mapped to ci,j and on a sliding-window, and
Ei,j is a set of direct edges. The condition of direct edges follows
Definition 5.

For example, Figure 5 illustrates an example of a G2 and G3,0.
When m new rectangles are generated, we map them to the cells
with which they overlap. (So, a new rectangle may be mapped to
multiple cells.) We then update the graphs in the cells where new
objects are mapped.

Complexities. The time complexity of the rectangle mapping is
O(m). Let c′ and m′ respectively be the number of cells where
new objects are mapped and the average number of new objects
mapped to the cells. Also, let n′ be the average number of vertices
in the cells where new objects are mapped, and the time complexity
of the graph update is O(c′m′n′). In practice, we have that n′ ≪
n. We next consider storage cost. Let V be the set of all vertices
in the grid, then we know that |V | =

∑
|Vi,j |. Similarly, |E| =∑

|Ei,j |, where E is the set of all edges in the grid. Recall that
each vertex ri maintains si and its storage cost is O(|V |). We can
therefore conclude that the storage cost of G2 is O(|V |+ |E|).

4.2 Monitoring Algorithm with G2
We design an online monitoring algorithm using G2, and Algo-

rithm 1 illustrates the high level algorithm.

Algorithm description. Consider an instance when m new rectan-
gles are generated and the m oldest rectangles expire. As described
in Section 4.1, we first update G2 (lines 1–3). Lines 4–6 are de-
signed based on the following idea. Given the set S of the spaces
each of which (i.e., si) is maintained by ri ∈ V , we know that si
has to be correct due to Equation (2). In addition, if a new edge is
inserted to ri.E, si may change because N(ri) varies. We there-
fore need to compute si if ri.E is updated. The plane-sweep al-
gorithm is an optimal solution to find the space with the maximum
weight covered by the given rectangles [12]. Hence, we employ the
plane-sweep algorithm to compute si (line 6). Note that the input
of this plane-sweep algorithm is only N(ri) ∪ {ri}. To summa-
rize, for ∀ri ∈ V , where ri.E has new edges and V is the vertex
set maintained by a given cell c of G2, Algorithm 1 executes the
plane-sweep algorithm locally, denoted by Local-Plane-Sweep(·)
(lines 4–6). After that, we can correctly monitor s∗.

Algorithm 1: Monitoring algorithm using G2
1 Mapping(R) // R is the set of new rectangles
2 C′ ← the set of the cells where new objects are mapped
3 G2-Update(C′) // rectangle overlap computation
4 for ∀c ∈ C′ do
5 for ∀ri ∈ c.V where r has new edges do
6 si ← Local-Plane-Sweep(N(ri) ∪ {ri})

7 s∗ ← argmaxsi∈Ssi.w

8 return s∗

Recall that given a set of rectangles, the plane-sweep algorithm
sweeps a horizontal line from the bottom to the top among the rect-
angles. To obtain si, however, we only need to sweep the hori-
zontal line from the bottom to the top of ri. Local-Plane-Sweep(·)
in Algorithm 1 (line 6) is optimized to do so. Although the time
complexity does not vary, the practical execution time is reduced.

The following simple example highlights the efficiency of our
incremental approach.

EXAMPLE 4.2. Assume that the graph in Figure 4 is the graph
maintained by one of the cells in Figure 5. Assume further that
m = 1 and r6 is the new rectangle mapped to the cell. Algo-
rithm 1 checks the vertices overlapping with r6, and in this case,
(r5, r6) is inserted to r5.E. Algorithm 1 next executes Local-Plane-
Sweep({r5, r6}) and obtains s5. If s5.w > s∗.w, s∗ is replaced
by s5.

Time complexity. As discussed before, lines 1–3 take O(c′m′n′)
time. Let v be the number of vertices to which new edges are in-
serted. Also, let e be the average number of edges of the above
vertices, then lines 4–6 take O(ve log e) time since Local-Plane-
Sweep(·) for a vertex takes O(e log e) time. Therefore, when m
new objects are generated, Algorithm 1 takesO(c′m′n′+ve log e)
time.

5. ENHANCED SOLUTION
Algorithm 1 can identify where to update and compute si main-

tained by ri efficiently since N(ri) is easily obtained by the graph
representation. In fact, however, the most time consuming opera-
tion in Algorithm 1 is Local-Plane-Sweep(·) (line 6). Algorithm
1 executes Local-Plane-Sweep(·) whenever ri.E is updated, thus
it is intuitively seen that the approach degrades the performance in
the case where the number of r.E updates is large. We observe the
following usual cases that motivate to enhance G2.

1. The ri.E update increases si.w but it is less than s∗.w.

2. The ri.E update does not increase si.w.

To consider a more concrete situation, we give Example 5.1, and
Table 3 shows the weights of each vertex ri and si of the graph in
Figure 4.

Table 3: Weights of vertex ri and si of the graph in Figure 4

Vertex ri ri.w si.w

r1 10 55
r2 30 45
r3 15 40
r4 25 45
r5 20 25
r6 5 5
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(a) An instance when the rectangle over-
lap computation has been executed.
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(b) An instance when new rectangles are
mapped to c3,0.
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(c) An instance when the rectangle over-
lap computation between V3,0 and R3,0

in Figure 6(b) has been executed.

Figure 6: An example of G3,0 (followed by Figure 5) and R3,0 of c3,0 in an aG2 and its dynamic update where the weight of each
vertex is 1.

EXAMPLE 5.1. Assume the same situation as Example 4.2 and
s∗ = s1. Before (r5, r6) is inserted to r5.E, s5.w = 20, and
after the insertion, we obtain s5.w = 25. However, it is obvious
that the edge (r5, r6) insertion to r5.E does not affect s∗, which
corresponds to the case 1. In addition, even if r6 overlaps with
r2 and does not overlap with r3, s2 keeps the same and does not
become s∗. This corresponds to the case 2.

The observation in Example 5.1 suggests that we may not have to
compute si even when ri.E is updated. Therefore, by enhancing
G2, we aim at eliminating such unnecessary computation and im-
proving query processing efficiency. The enhanced solution achieves
this by an upper-bounding technique.

5.1 Aggregate G2
It has been shown in the past that data structures considering

aggregate results work well for query processing which deal with
aggregate functions such as sum and count [30]. The monitoring
MaxRS problem considers sum function, then we know that G2
can be extended to deal with aggregate values like aR-tree [19].

We propose aG2 (aggregate G2), which is essentially G2. The
main difference between G2 and aG2 is that aG2 employs upper-
bound weights. Given a graph in an aG2, each vertex ri of the
graph maintains si.w, which is the upper-bound weight of si. How
to compute si.w depends on algorithms, so we briefly introduce our
approach to compute si.w here (the detail is described in Section
5.2). Given the graph Gi,j = (Vi,j , Ei,j) maintained by a cell ci,j
in an aG2, we have a vertex ri′ ∈ Vi,j and si′ . Consider rectangles
rj′ where (ri′ , rj′) is newly inserted to ri′ .E, si′ .w is computed
by the following Equation.

si′ .w = si′ .w +
∑

rj′ .w (3)

Not only the vertices but also the cells in aG2 maintain upper-bound
weights. Before we introduce the upper-bound weight maintained
by ci,j , we have to note that in aG2, ci,j maintains

• Gi,j : the graph defined by Definition 6, and

• Ri,j : a set of rectangles that have been mapped to ci,j but
have not yet been checked whether they overlap with vertices
in Vi,j or not (denoted by rectangle overlap computation).

The new rectangles mapped to ci,j are initially maintained in Ri,j .
When we execute the rectangle overlap computation, the rectan-
gles in Ri,j are moved to Vi,j . Now we introduce how to compute

ci,j .w, i.e., the upper-bound weight maintained by ci,j . Basically,
ci,j .w is set as follows.

ci,j .w = max
si′ ∈Si,j

si′ .w, (4)

where Si,j is the set of si′ maintained by ri′ ∈ Vi,j . Given a set of
new rectangles r′ that are mapped to ci,j , ci,j .w is updated by the
following equation.

ci,j .w ← ci,j .w +
∑

r′.w (5)

We give a simple example of how to dynamically update upper-
bound weights below.

EXAMPLE 5.2. Figure 6 shows an example of G3,0 and R3,0 where
c3,0 follows Figure 5. We first assume the situation of Figure 6(a),
and note that the value shown next to each vertex is the upper-
bound weight. Then we see that c3,0.w = 4, which is the maximum
value among the upper-bound weights of V3,0. Next we assume that
three new rectangles are mapped to c3,0, which are maintained in
R3,0, as shown in Figure 6(b). From Equation (5), c3,0.w is up-
dated to 7. We finally assume Figure 6(c), where the three rectan-
gles in R3,0 have been checked whether they overlap with the ver-
tices (rectangles) in V3,0 or not. Note that the upper-bound weight
maintained by each vertex is updated and c3,0.w is also updated to
4 as the result of the rectangle overlap computation.

From Equations (3)–(5), we have the following property.

PROPERTY 4. ci,j .w ≥ si′ .w ≥ si′ .w for ∀ri′ ∈ Vi,j .

Because of generations and expirations of rectangles, those upper-
bound weights may vary dynamically, but our branch-and-bound
algorithm (introduced later) dynamically updates the upper-bound
weights so that Property 4 is kept. At the same time, this property
provides the correctness of our branch-and-bound algorithm.

As well as G2, we discuss about the storage cost of an aG2 below.

PROPERTY 5. An aG2 has the same storage cost as a G2, i.e.,
O(|V | + |E|) where V and E are respectively the sets of all the
vertices and the edges in the (a)G2.

PROOF. To prove Property 5, we have to discuss about the storage
costs of vertices, edges, and upper-bound weights. Let ni,j and
n′
i,j be the size of Vi,j in G2 and aG2, respectively. Because Vi,j ∩

Ri,j = ∅ in aG2, we have that ni,j = n′
i,j + |Ri,j |, thereby |V | =∑

(n′
i,j + |Ri,j |). The number of edges in aG2 may be less than

that of G2 but it takes O(E) cost. Let V ′ be the set of Vi,j of
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aG2, and |V | > |V ′| =
∑

n′
i,j . The storage cost of upper-bound

weights maintained by vertices isO(|V ′|). Let C be the set of cells
of an aG2, and the storage cost of upper-bound weights maintained
by the cells is O(|C|). We know that |C| ≪ |V ′| in practice.
Therefore we can complete the proof. □

5.2 Branch-and-Bound Algorithm
As described in Section 5.1, each cell and vertex in an aG2 main-

tain the upper-bound weights. This enables us to process a con-
tinuous MaxRS query while pruning unnecessary computations.
Specifically, we can obtain two pruning rules, which can reduce
the number of executions of Local-Plane-Sweep(·). Assume an
instance when m new rectangles are generated, the upper-bound
weight of each cell is obtained by Equation (5). Given s∗, we first
obtain the following pruning rule.

PRUNING RULE 1. Given a cell ci,j in the aG2, and if ci,j .w <
s∗.w, all the vertices in Vi,j do not have s∗. Therefore we do not
need to compute the exact si′ of ri′ ∈ Vi,j .

The above case efficiently prunes the computation of the exact si′ .
However, we are likely to hold the case where ci,j .w ≥ s∗.w,
since ci,j .w is the maximum value among the set of the upper-
bounds maintained by vertices in Gi,j or more (See Equation(5)).
In this case, we focus on each vertex in Vi,j , and then apply the
next pruning rule.

PRUNING RULE 2. Given a cell ci,j in the aG2, and we assume
that ci,j .w ≥ s∗.w. Given a vertex ri′ ∈ Vi,j , if si′ .w < s∗.w, ri′
does not have s∗, thus we do not need to compute the exact si′ .

From the above pruning rules, we can focus only on cells and ver-
tices with non-zero probability to have s∗. Note that the above
pruning rules assume that s∗ is given, although s∗ might expire. If
s∗ expires, we first obtain a temporal s∗, and the temporal s∗ is
retrieved from the cell c that satisfies

c = argmax
ci,j ∈C

ci,j .w, (6)

where C is the set of cells in the aG2. To keep the efficiency of the
pruning rules, the weight maintained by the temporal s∗ should be
large as much as possible. It is intuitive that a cell with large upper-
bound weight probably has the space with large weight, thereby
we employ this heuristic. From the above discussion, we design
a branch-and-bound algorithm, which efficiently updates s∗ and is
illustrated in Algorithm 2.

Algorithm description. Consider an instance when m new rectan-
gles are generated and the m oldest rectangles expire. We first map
the newly generated rectangles to the corresponding cells ci,j while
updating the upper-bound weight ci,j .w and Ri,j (lines 1–5). Next,
we update (or find a temporal) s∗ to enhance the pruning efficiency
(line 6–10). Let c is the cell holding s∗ (if s∗ expires, we retrieve
c that satisfies Equation (6)), we execute OverlapComputation(c)
(line 9), which is illustrated in Algorithm 3. OverlapComputation(c)
updates the graph in c and c.w. More specifically, we check whether
rectangles in R of the cell c overlap with the rectangles (vertices)
in V , and if overlap, new edges are inserted while updating the
upper-bound weights maintained by the vertices and c (lines 3–8
in Algorithm 3). After that, ExactWeightComputation(s∗, c) is ex-
ecuted (line 10 in Algorithm 2), which is illustrated in Algorithm
4. In ExactWeightComputation(s∗, c), we apply Pruning rule 2 to
each vertex ri. If si.w > s∗.w, we execute Local-Plane-Sweep(·)
for ri, and update s∗ if necessary (lines 6–10 in Algorithm 4). Also,
c.w is kept so that it satisfies Equation (4). From the above proce-
dures, we obtain the updated (or temporal) s∗, and then a branch-

Algorithm 2: Branch-and-bound algorithm using aG2
1 Rnew ← the set of newly generated rectangles
2 for ∀r ∈ Rnew do
3 if r is mapped to ci,j then
4 ci,j .w ← ci,j .w + r.w
5 Ri,j ← Ri,j ∪ {r}

6 c← {ci,j | s∗ is in ci,j}
7 if s∗ expired (c = ∅) then
8 c← argmax

ci,j∈C
ci,j .w // C is the set of cells in aG2

9 OverlapComputation(c)
10 s∗ ← ExactWeightComputation(s∗, c)
11 for ∀ci,j ∈ C\{c} do
12 if ci,j .w > s∗.w then
13 OverlapComputation(ci,j)

14 if ci,j .w > s∗.w then
15 s∗ ← ExactWeightComputation(s∗, ci,j)

16 return s∗

Algorithm 3: OverlapComputation(ci,j)
Input: ci,j // a cell in aG2

1 ci,j .w ← 0
2 for ∀r′ ∈ Ri,j do
3 for ∀r ∈ Vi,j do
4 if r′ overlaps with r then
5 r.E ← r.E ∪ {(r, r′)}
6 s.w ← s.w + r′.w

7 if ci,j .w < s.w then
8 ci,j .w ← s.w

9 if ci,j .w < r′.w then
10 ci,j .w ← r′.w

11 s′.w ← r′.w
12 Vi,j ← Vi,j ∪ {r′}
13 Ri,j ← Ri,j\{r′}

and-bound approach is employed (lines 11–15 in Algorithm 2) to
guarantee the correct s∗.

Given a cell ci,j , we first apply Pruning rule 1, and if ci,j .w >
s∗.w, we update (i.e., decrease) ci,j .w by OverlapComputation(ci,j)
(lines 12–13). Again we apply Pruning rule 1 to ci,j , and if ci,j .w >
s∗.w again, ExactWeightComputation(s∗, ci,j), which we explained
above, is executed. In the case where we compute the exact si′
maintained by ri′ ∈ Vi,j , in ExactWeightComputation(s∗, ci,j),
and si′ .w > s∗.w, s∗ is updated (line 10 in Algorithm 4). These
operations are executed for ∀ci,j ∈ C\{c}, and after that, we can
keep monitoring the correct s∗.

Time complexity. OverlapComputation(ci,j) takesO(|Vi,j ||Ri,j |).
Let C′ be the set of the cells that OverlapComputation(·) is ex-
ecuted, and the amortized time to compute the rectangle overlap-
ping is O(|C′||Vi,j ||Ri,j |). Let v′ be the number of the vertices
that Local-Plane-Sweep(·) is executed. Also let e′ be the aver-
age number of edges of the above vertices, and the total cost of
ExactWeightComputation(·, ·) is O(v′e′ log e′). When m new ob-
jects are generated, Algorithm 2 takesO(|C′||Vi,j ||Ri,j |+v′e′ log e′)
(amortized) time. Recall the time complexity of Algorithm 1, and
note that |C′||Vi,j ||Ri,j | ≤ c′m′n′ and v′e′ log e′ < ve log e.

Correctness. The correctness of Algorithm 2 is proven by Prop-
erty 4. In Algorithms 2–4, we define the condition that we cannot
prune OverlapComputation(·) and ExactWeightComputation(·, ·)
as “>” instead of “≥,” e.g., line 12 of Algorithm 2. This is because
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Algorithm 4: ExactWeightComputation(s∗, ci,j)
Input: s∗, ci,j // ci,j is a cell in aG2

1 ci,j .w ← 0
2 for ∀ri′ ∈ Vi,j do
3 ρ← 0
4 if s∗ ̸= ∅ then
5 ρ← s∗.w

6 if si′ .w > ρ then
7 si′ ← Local-Plane-Sweep(N(ri′ ∪ {ri′}))
8 si′ .w ← si′ .w
9 if si′ .w > s∗.w then

10 s∗ ← si′

11 if ci,j .w < si′ .w then
12 ci,j .w ← si′ .w

13 return s∗

we monitor one of the spaces with the maximum weight, thus if
s∗.w = ci,j .w for example, we keep monitoring s∗, and this does
not sacrifice the correctness. If applications require all spaces with
the maximum weight like the AllMaxRS problem [9], we just need
to define the condition as “≥.”

5.3 Discussion
To demonstrate the efficiency and practicality of Algorithm 2,

we review the following conceivable approaches that can tight the
upper-bound weights maintained by rectangles more than Algo-
rithm 2.

1. An approach that all rectangles ri maintain all the overlapped
spaces on ri.

2. An additional approach of Algorithm 2 that computes the
maximum space weight among the common spaces on ri and
rj when (rj , ri) is inserted to ri.E.

3. An additional approach of Algorithm 2 that tries to decrease
si.w when si.w > s∗.w.

We show that these approaches do not guarantee the reduction of
time complexity, rather, the worst-case time complexity becomes
worse than Algorithm 2.

Approach 1. Given a rectangle ri, we assume that Si is the set
of the overlapped spaces on ri. Since ri maintains all the over-
lapped spaces on ri, we can compute the tightest si.w. How-
ever, given m′ new rectangles overlapping with ri, we need at least
O(m′ log |Si|) time in practice1 to compute the tightest si.w. Be-
cause |Si| ≥ |ri.E|, we may have thatO(m′ log |Si|) is larger than
the time cost of the plane-sweep algorithm, i.e.,O(|ri.E| log |ri.E|).
To bound the worst time complexity, we execute Local-Plane-Sweep(·),
if O(m′ log |Si|) > O(|ri.E| log |ri.E|) (if we can estimate this
situation). Then the worst-case time complexity is the same as Al-
gorithm 1, thus is worse than Algorithm 2. Note that this approach
is impractical because we cannot bound the number of spaces main-
tained by rectangles.

Approach 2. Recall that an optimal way to compute the maximum
space weight is the plane-sweep algorithm, thereby this approach is
equivalent to the exact si computation. That is, this approach does
not make sense.

Approach 3. Given a vertex ri in an aG2, and when si.w > s∗.w,
this approach tries to decrease si.w. This approach is illustrated
1In the case where Si is indexed by an R-tree or a Quad-tree.

Algorithm 5: UpperboundUpdate(ri)
Input: ri // a vertex of a given cell.

1 R(ri)← the set of vertices that are included in N(ri) but have not
been executed Plane-Sweep(·)

2 τ ← si.w
3 for ∀r ∈ R(ri) do
4 if r overlaps with si then
5 τ ← τ + r.w
6 if τ > s∗.w then
7 si.w ← τ
8 break

9 else
10 ρ← r.w + ri.w
11 for r′ ∈ N(ri)\{r} do
12 if r overlaps with r′ then
13 ρ← ρ+ r′.w

14 if τ < ρ then
15 τ ← min(τ + r.w, ρ)
16 if τ > s∗.w then
17 si.w ← τ
18 break

by Algorithm 5, which may be executed after line 6 of Algorithm
4. Assume an instance when si is computed, and let R(ri) be the
set of vertices that are included in N(ri) after the instance. In
other words, si has been computed based on N(ri)\R(ri). In
a nut shell, this approach computes si.w by checking whether a
given r ∈ R(ri) overlaps with si (line 4) or the rectangle r′ ∈
N(r)\{r} (line 12). Due to the latter case, this approach does not
necessarily add r.w to si.w, which may result in less si.w than
the original Algorithm 4. This approach however needs an extra
O(|R(ri)||N(ri)|) time for each ri where si.w > s∗.w. Recall
that Local-Plane-Sweep(N(ri)∪{ri}) takesO(|N(ri)| log |N(ri)|)
time, and we may have thatO(|R(ri)||N(ri)|) > O(|N(ri)| log |N(ri)|).
It would be better to execute Algorithm 5 only in the case where
|R(ri)||N(ri)| < 2|N(ri)| log |N(ri)| (since the plane-sweep al-
gorithm needs 2n logn operations). We can therefore see that this
approach does not work well if |R(ri)| is large. Also, this ap-
proach increases the worst-case time complexity, which means no
guarantee to reduce the time complexity of Algorithm 2. Our ex-
perimental results also show that this approach does not guarantee
the acceleration of query processing.

From the above discussion, we see that more storage and non-
reasonable computational costs are required to tight the upper-bound
weights. The upper-bounding cost of Algorithm 2 is reasonable and
the worst-case time complexity is better than the above approaches.

6. APPLICATION TO RELATED PROBLEMS
In this section, we address two problems of approximate moni-

toring MaxRS and monitoring top-k MaxRS. We solve these prob-
lems efficiently by employing the branch-and-bound algorithm us-
ing aG2 with simple extensions.

6.1 Approximate Monitoring MaxRS
To improve query processing efficiency, some applications re-

quire not the exact but approximate results [25]. In this case, it is
important to bound the error rate, thus, given a user-tolerance error
ϵ (0 ≤ ϵ < 1), the objective of this problem is to continuously
monitor a space s with the weight s.w that satisfies

s.w ≥ (1− ϵ)s∗.w.
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Algorithm 2 can deal with this problem by respectively replacing
Pruning rules 1 and 2 with Pruning rules 3 and 4, which are shown
below.

PRUNING RULE 3. Given a cell ci,j in the aG2 and the space s
monitored by our approximate algorithm, if (1 − ϵ)ci,j .w < s.w,
we do not compute the exact si′ of ri′ ∈ Vi,j .

PRUNING RULE 4. Given a cell ci,j in the aG2 and the space
s monitored by our approximate algorithm, if (1 − ϵ)ci,j .w ≥
s.w, we cannot prune OverlapComputation(ci,j) by Pruning rule
3. Given a vertex ri′ ∈ Vi,j , if (1 − ϵ)si′ .w < s.w, we do not
compute the exact si′ .

We demonstrate that our approximate algorithm (which is the
approximate version of Algorithm 2) guarantees the error bound.

THEOREM 1. Our approximate algorithm always guarantees that
s.w ≥ (1− ϵ)s∗.w.

To prove Theorem 2, we need to introduce the following lemmas.

LEMMA 1. Assume that we are monitoring s that satisfies s.w ≥
(1 − ϵ)s∗.w before applying Pruning rule 3 to a cell ci,j . It is
guaranteed that Pruning rule 3 does not lose that s.w ≥ (1 −
ϵ)s∗.w.

PROOF. If ci,j .w < s∗.w and (1 − ϵ)ci,j .w < s.w, it is trivial
that (1− ϵ)s∗.w ≤ s.w due to the assumption. On the other hand,
if ci,j .w ≥ s∗.w, we have that (1 − ϵ)ci,j .w ≥ (1 − ϵ)s∗.w.
Therefore if s.w > (1− ϵ)ci,j .w, s.w > (1− ϵ)s∗.w. □
LEMMA 2. Assume that we are monitoring s that satisfies s.w ≥
(1 − ϵ)s∗.w before applying Pruning rule 4 to a vertex ri′ . It is
guaranteed that Pruning rule 4 does not lose that s.w ≥ (1 −
ϵ)s∗.w.

PROOF. Essentially the same as the proof of Lemma 1. □
Now, we are ready to prove Theorem 1.

PROOF. As long as we are monitoring s that satisfies s.w ≥ (1 −
ϵ)s∗.w, Pruning rules 3 and 4 do not lose the bound, which can be
seen from Lemmas 1 and 2. We here assume that we are monitor-
ing s that satisfies s.w < (1 − ϵ)s∗.w. Let c∗ be the cell hold-
ing s∗, and we have that s∗.w ≤ s∗.w ≤ c∗.w. Therefore, in
this case, we definitely cannot prune OverlapComputation(c∗) and
ExactWeightComputation(s∗, c∗) by Pruning rules 3 and 4, and s
is replaced by s∗. This means that s cannot be the result, thus we
conclude that Theorem 2 is true from the contradiction. □

6.2 Monitoring Top-k MaxRS
If the requirement is to monitor not only a single space but multi-

ple spaces with the largest weight, a continuous top-k MaxRS query
is a promising solution. This query achieves the requirement while
controlling the result size as Definition 4 describes.

We know that Pruning rules 1 and 2 are based on a threshold,
and the threshold is s∗.w, i.e., the (temporal) top-1 weight. It is
intuitively known that the threshold is set as the kth largest weight
in continuous top-k MaxRS queries.

Algorithm 6 illustrates the high level algorithm. Although the
algorithm for continuous top-k MaxRS queries is essentially the
same as Algorithm 2, the main modification is to deal with the set
S∗ of the k spaces with the maximum weight. We do not show
OverlapComputation(C′) and ExactWeightComputation(S∗, C′) be-
cause they are also essentially the same as Algorithms 3 and 4, re-
spectively.

7. EXPERIMENTS

Algorithm 6: Branch-and-bound algorithm using aG2 for con-
tinuous top-k MaxRS queries

1 Execute lines 1–5 in Algorithm 2
2 C′ ← {∀ci,j | ∃s ∈ S∗ is in ci,j}
3 if C′ = ∅ (all spaces in S∗ expire) then
4 C′ ← argmax

ci,j∈C
ci,j .w // C is the set of cells in aG2

5 OverlapComputation(C′)
6 S∗ ← ExactWeightComputation(S∗, C′)
7 for ∀ci,j ∈ C\C′ do
8 Execute lines 12–15 in Algorithm 2

9 return S∗

Table 4: Configuration of parameters

Parameter Values
Window-size, n [×1000] 100, 250, 500, 750, 1000

Generation rate, m 50, 100, 200, 500, 1000
Side length of a rectangle, l 100, 500, 1000, 1500, 2000

Error rate, ϵ 0, 0.1, 0.2, 0.3, 0.4, 0.5
k 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50

This section provides our experimental results on the perfor-
mances of our algorithms. Recall that this is the first work of mon-
itoring MaxRS problem, so there is no existing algorithm that can
deal with this problem. Therefore, to show the efficiency of the
incremental approach of our algorithms, we use an algorithm with
non-incremental approach as comparison. That is, we evaluated
naive plane-sweep [12, 18], the algorithm using G2 (Section 4),
and the branch-and-bound algorithms using aG2 (Sections 5 and
6). For easy recognition, our algorithms are represented by G2 and
aG2. Recall that naive plane-sweep is an optimal in-memory algo-
rithm for computing s∗ from scratch, and the algorithm proposed in
[8, 9] also uses naive plane-sweep in the case where all objects fit
in the main memory. All algorithms were implemented in C++, and
all experiments were conducted on a PC with 3.4GHz Intel Core i7
processor and 32GB RAM.

7.1 Setting
Datasets. We used a synthetic dataset and three real datasets. In
the synthetic dataset, we generated objects under uniform distribu-
tion. The cardinality of this synthetic dataset is 10,000,000, and the
range of each coordinate is [0, 1000000]. The three real datasets are
T-Drive [31], Geolife [34], and Roma2, which are the sets of con-
tinuously generated GPS data. The objects in the real datasets exist
over a very wide range, thus we selected the objects existing around
respective main areas. The cardinalities of T-Drive, Geolife, and
Roma are 5,037,794, 3,662,876, and 8,368,858, respectively. The
objects in the datasets are sorted in order of generation time, and
we normalized the range of each coordinate to [0, 1000000]. In
the above four datasets, the weight of a given object is a real-value
randomly chosen from [0, 1000].

Parameters. Table 4 summarizes the parameters used in the ex-
periments and bold values are default values. Note that a given
rectangle is a square in the experiments, thus the size of a rectangle
is l × l, i.e., 1000× 1000 by default.

Evaluation. In Section 7.2, we investigate the impact of Algorithm
5. In Section 7.3, to investigate the performances of the algorithms
w.r.t. monitoring MaxRS, we varied three parameters, n, m, and l,

2http://crawdad.org/index.html
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Figure 8: Impact of m

Table 5: Computation time [msec]
Algorithm Synthetic T-Drive Geolife Roma

Algo. 2 0.799 6.547 152.644 55.196
Algo. 5 with cond. 0.796 5.952 202.127 49.245

Algo. 5 0.812 6.229 217.541 54.837

and measured the average computation time to update s∗. We also
measured the practical error rate and computation time of aG2 by
varying ϵ to investigate the performance of our approximate algo-
rithm in Section 7.4. Let s be the space monitored by our approxi-
mate algorithm, and the practical error is defined by 1−s.w/s∗.w.
Finally, we measured the average computation time to update S∗

by varying k in Section 7.5.

7.2 Impact of Algorithm 5
We first study the impact of Algorithm 5 in our default setting.

Table 5 shows the result. In Table 5, “Algo. 5 with cond.” is
denoted by Algorithm 2 with Algorithm 5 in the case where the
upper-bounding cost is less than the plane-sweep algorithm. We
can see that Algorithm 5 provides a trivial impact for all the four
datasets and does not outperform Algorithm 2. We observed that
|R(ri)| in Algorithm 5 is large in Geolife, thus Algorithm 5 pro-
vides a negative impact. Therefore we do not employ Algorithm 5
since it is not scalable .

7.3 Results on monitoring MaxRS
Impact of n. We study the impact of the number of objects on
a sliding-window, and Figure 7 shows the results. All the algo-
rithms need longer computation time as n increases. In terms of
naive plane-sweep, this is intuitive since its cost is O(n logn).
It is also intuitive that the increase of the number of overlapped
spaces due to the increase of n is likely to lose the chances which
avoid OverlapComputation(·) and ExactWeightComputation(·, ·),

thus our algorithms also need longer computation time. However,
we can see that our algorithms are more efficient than naive plane-
sweep in the four datasets, as expected. Naive plane-sweep is not
scalable, which is shown in the case of large n. Moreover, aG2
scales better than G2 (the computation time is shown in log-scale).
aG2 updates the result more than 2 times faster than G2 in the four
datasets.

Impact of m. Next, we study the impact of the generation rate,
i.e., the number of objects generated at the same time. Although
the practical average generation rates of the three real datasets are
less than 50 objects (per second), we employ larger generation rates
to investigate the scalability of our algorithms. Figure 8 shows the
results. Because naive plane-sweep computes s∗ from scratch, it
is not affected by m basically. The computation time of our algo-
rithms increases as m increases. When m is large, the upper-bound
weights maintained by cells and vertices are likely to become large,
which results in the same observation as large n. Note that even a
case of large m, e.g., m = 1000, we can observe that aG2 still
updates the result faster than naive plane-sweep.

Impact of l. User-specified rectangle size also has impacts on
the performances of continuous MaxRS query processing, because
large rectangles tend to overlap with others. Figure 9 shows the re-
sults. We can see that aG2 keeps outperforming naive plane-sweep,
but the tendencies are different between the datasets. In the uniform
distribution, i.e., Figure 9(a), G2 and aG2 are not much affected by
l, but in the real datasets, the computation time of our algorithms
(and naive plane-sweep) increase as l increases. We observed that
the distributions of the real datasets are skewed. Therefore many
rectangles overlap with each other, then G2 and aG2 are likely to
encounter the case that Local-Plane-Sweep(·) is not avoided.

7.4 Results on monitoring Approximate MaxRS
We evaluated our approximate branch-and-bound algorithm us-

326



0 500 1000 1500 2000
10

−1

10
0

10
1

10
2

10
3

10
4

Side length of rectangle (Synthetic)

C
o

m
p

u
ta

ti
o

n
 t

im
e

 [
m

s
e

c
]

naive plane−sweep G2 aG2

(a) Synthetic

0 500 1000 1500 2000
10

0

10
1

10
2

10
3

10
4

Side length of rectangle (T−Drive)

C
o

m
p

u
ta

ti
o

n
 t

im
e

 [
m

s
e

c
]

naive plane−sweep G2 aG2

(b) T-Drive

0 500 1000 1500 2000
10

0

10
1

10
2

10
3

10
4

Side length of rectangle (Geolife)

C
o

m
p

u
ta

ti
o

n
 t

im
e

 [
m

s
e

c
]

naive plane−sweep G2 aG2

(c) Geolife

0 500 1000 1500 2000
10

0

10
1

10
2

10
3

10
4

Side length of rectangle (Roma)

C
o

m
p

u
ta

ti
o

n
 t

im
e

 [
m

s
e

c
]

naive plane−sweep G2 aG2

(d) Roma
Figure 9: Impact of l

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Epsilon (Synthetic)

C
o
m

p
u
ta

ti
o
n
 t
im

e
 [
m

s
e
c
]

aG2

(a) Comp. time (Synthetic)

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

6

7

Epsilon (T−Drive)

C
o
m

p
u
ta

ti
o
n
 t
im

e
 [
m

s
e
c
]

aG2

(b) Comp. time (T-Drive)

0 0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

100

120

140

160

Epsilon (Geolife)

C
o
m

p
u
ta

ti
o
n
 t
im

e
 [
m

s
e
c
]

aG2

(c) Comp. time (Geolife)

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

50

60

Epsilon (Roma)

C
o
m

p
u
ta

ti
o
n
 t
im

e
 [
m

s
e
c
]

aG2

(d) Comp. time (Roma)

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

Epsilon (Synthetic)

E
rr

o
r 

ra
te

aG2

(e) Error rate (Synthetic)

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

Epsilon (T−Drive)

E
rr

o
r 

ra
te

aG2

(f) Error rate (T-Drive)

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

Epsilon (Geolife)

E
rr

o
r 

ra
te

aG2

(g) Error rate (Geolife)

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

Epsilon (Roma)

E
rr

o
r 

ra
te

aG2

(h) Error rate (Roma)
Figure 10: Impact of ϵ

ing aG2 by varying ϵ. Although an approximate algorithm for one-
time computation of MaxRS queries has been proposed in [25],
this algorithm cannot be used for comparison due to three reasons.
First, this algorithm is based on randomized sampling, thus the an-
swers returned by this algorithm and our algorithm are different.
Second, the answer returned by this algorithm varies every time,
which is not suitable as monitoring algorithm. Last, repeating such
one-time computation is shown to be inefficient in Section 7.3. We
therefore focus on our algorithm, and the experimental results are
shown in Figure 10.

From Figures 10(a)–10(d), although its impact is different be-
tween the datasets, we can see that the computation time decreases
as ϵ increases. This result satisfies the requirement that needs faster
computation with an approximate answer. In the synthetic dataset,
it seems that the computation time does not decrease so much (Fig-
ure 10(a)), but even when ϵ = 0, the computation time is about
0.8 [msec], which is fast enough. From Figures 10(e)–10(h), we
can see that as ϵ increases, the practical error also increases but
is less than ϵ. The results show that the relationship between the
query processing efficiency and the quality of the result is trade-
off, but an interesting observation is that the practical error rates in
the cases of the real datasets are very small.

7.5 Results on monitoring Top-k MaxRS
To evaluate our branch-and-bound algorithm for continuous top-

k MaxRS queries, we conducted an experiment by varying k. We
compare our algorithm with naive plane-sweep. Although naive
plane-sweep is for one-time computation, this algorithm can deal
with top-k MaxRS queries without sacrificing the computation cost.
We do not evaluate G2 since its performance is not better than aG2.

Figure 11 shows the results. Again, naive plane-sweep is not
affected by k since it scans all rectangles on a sliding-window. As
k increases, the computation time of aG2 increases, but we can see
that the increase of the computation time of aG2 is slight for all
the four datasets. These results confirm that the pruning rules keep
efficient and avoid unnecessary computation.

8. CONCLUSION
In this paper, we addressed a novel problem of monitoring MaxRS

and its variants, i.e., monitoring approximate MaxRS and top-k
MaxRS. In the environments where spatio-temporal objects are gen-
erated frequently, monitoring and analysis of objects are often re-
quired, and a continuous MaxRS query is useful to support such
requirements. Unfortunately, the existing solutions [8, 25] focus
on static objects, thus are not efficient in our problem. Motivated
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by this, we proposed the first algorithm that can incrementally up-
date the exact result. This algorithm incorporates our index frame-
work G2 (Graph in Grid index) which supports efficient query pro-
cessing. We extended G2 and proposed aG2 (aggregate G2) and
a branch-and-bound algorithm using aG2. The branch-and-bound
algorithm accelerates the query processing efficiency. Moreover,
we showed that the branch-and-bound algorithm can deal with the
monitoring approximate MaxRS and the top-k MaxRS problems
with simple modifications. To demonstrate the efficiency of our al-
gorithms, we conducted experiments using synthetic and real datasets.
The results show that the branch-and-bound algorithm using aG2 is
superior to the one-time computation approach and the algorithm
using G2.

As shown (but not theoretically) in Section 5.3, we need extra
computation and storage costs to tight the upper-bound weights
more. Hence, it is interesting to theoretically explore (or clarify
the impossibility of) an approach that can tight the upper-bound the
most without sacrificing the computational cost and storage cost. It
is also interesting to develop an efficient algorithm that can deal
with multiple continuous MaxRS queries at the same time. These
are the works that need to be considered in the future.
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ABSTRACT
User-generated content on the Web increasingly has a geospa-
tial dimension, opening new opportunities and challenges in
location-based services and location-based social networks
for mining and analyzing user behaviors and patterns. The
applications of such analysis range from recommendation
systems to geo-marketing. Motivated by these needs, query-
ing and analyzing spatio-textual data has received a lot of
attention over the last years. In this paper, we address the
problem of matching point sets based on the spatio-textual
objects they contain. This is highly relevant for users associ-
ated with geolocated photos and tweets. We formally define
this problem as a Spatio-Textual Point-Set Join query, and
we introduce its top-k variant. For the efficient treatment
of such queries, we extend state-of-the-art algorithms for
spatio-textual joins of individual points to the case of point
sets. Finally, we extensively evaluate the proposed meth-
ods using large scale, real-world datasets from Flickr and
Twitter.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Spatial databases and GIS

General Terms
Algorithms

Keywords
spatio-textual join, spatio-textual point sets, similarity search

1. INTRODUCTION
Social media platforms such as Twitter, Flickr, Facebook

and Foursquare have attracted billions of active users. In
the case of Twitter 500 million tweets are exchanged every

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

u1, o1, {shop,jeans}

u2, o2, {football,match,stadium}

u3, o3, {shop,market}

u2, o5, {hurry, tube, time}

u1, o4, {tube,ride}

u3, o6, {thames,bridge}

u3, o7, {bus,ride}

spatial threshold

u2, o8, {football,derby}

Figure 1: STPSJoin query scenario. Multiple objects are
spatially or textually similar, but only users u1 and u3 have
objects which are mutually similar.

day from 100 million active users. User activities in these
platforms generate content that has textual component, e.g.,
status updates, short messages, or tags, and, following the
widespread adoption of GPS in mobile devices, a geospatial
component, e.g., geotagged tweets, photos, and user check-
ins. Thus, the actions of users are documented by their
messages in social networks and as such generate “traces”,
which consist of spatio-textual objects.

Efficient indexing and querying of spatio-textual data has
received a lot of attention over the past years, due to the
high importance of such content in location-based services,
such as nearby search and recommendations. In particu-
lar, multiple types of spatio-textual queries have been ex-
tensively studied, including boolean range queries, top-k
queries, k-nearest neighbor queries, and more recently, spatio-
textual similarity joins [11, 7]. Nevertheless, in existing
works, spatio-textual entities are typically treated as isolated
observations. A typical example query is to find nearby
restaurants or hotels matching certain criteria.

The work in [7] deals with finding pairs of entities that
are both spatially close and textually similar. Example use
cases are de-duplicating Points-of-Interest across datasets,
or finding matching photos taken at roughly the same loca-
tion and having similar tags.

Now consider looking for similar users in social networks.
Here, a user is characterized by the messages they generate
and, if available, respective location information. As such,
each message can be considered a spatio-textual object, e.g.,
a geotagged photo or tweet. With each user being character-
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ized by a set of spatio-textual objects, to find similar users,
one needs to examine the similarity of these respective sets.
Effectively, this characterizes users by what and where they
tweet. An example of such a scenario is depicted in Figure 1.
To that effect, this work addresses the problem of similarity
search for spatio-textual entities, with an entity being char-
acterized by a set of spatio-textual objects. We introduce the
Spatio-Textual Point-Set Similarity Join (STPSJoin) query.
Given sets of spatio-textual objects, each one belonging to
a specific entity, this query seeks pairs of entities that have
similar spatio-textual objects.

The STPSJoin can naturally model the search for entities
exhibiting similar behavior according to the spatio-textual
objects they generate. With social media users posting mes-
sages at various locations, the STPSJoin allows us to dis-
cover users that exhibit similar “geo-textual” behavior. This
holds especially true for location-based social media sites,
e.g., Foursquare, where users report on the places they visit.
Following the general observation that spatio-textual object
sets can be used to define the context of a user, e.g. has fam-
ily because of frequent toy store visits, the STPSJoin can be
used to discover such groups of similar users.

To efficiently process (top-k) STPSJoin, we adapt and ex-
tend the state-of-the-art algorithms for processing similarity
joins for single points [7]. The proposed algorithms make use
of spatio-textual indexes in conjunction with an early ter-
mination and a filter-and-refinement strategy to effectively
prune the search space, thus reducing the execution time by
orders of magnitude. More specifically, the contributions of
our work are as follows.

• We formally define the spatio-textual point set simi-
larity join (STPSJoin) query, which extends and gen-
eralizes the spatio-textual similarity join for the case
of point sets, and its top-k variant.

• We first derive a baseline algorithm for the STPSJoin

query by adapting the state-of-the-art PPJ-C algorithm
[7] to work for point sets. Then, we propose two opti-
mized algorithms, S-PPJ-B and S-PPJ-F, which apply
an early termination and a filter-and-refinement strat-
egy, respectively, to drastically prune the search space.
This significantly reduces the number of comparisons
required, both in terms of pairs of entities and in terms
of individual points for each candidate pair.

• In addition, we present an alternative version of S-

PPJ-F, denoted as S-PPJ-D, which relies on an R-tree
instead of a grid for the spatial indexing.

• We adapt our methods to efficiently treat the top-k
STPSJoin query. We provide a direct adaptation of our
best performing algorithm, and extended it in order to
allow additional pruning of the search space.

• Finally, we perform an extensive experimental evalu-
ation using three large, real-world datasets. The re-
sults of the experimental evaluation demonstrate that
the proposed algorithms achieve an order of magni-
tude and above improvement in terms of execution
time when compared to the baseline method.

The remainder of this work is structured as follows. Sec-
tion 2 reviews related work. The STPSJoin query and its
top-k variant are formally introduced in Section 3. The

algorithms for the efficient evaluation of (top-k) STPSJoin

queries are presented in Section 4. Section 5 presents an ex-
perimental evaluation of the proposed approaches. Finally,
Section 6 gives conclusions and directions for future work.

2. RELATED WORK
First, we review recent advances on spatio-textual search,

which exploit spatial and textual characteristics in order to
efficiently prune the search space while searching for similar
objects. Then, we detail the state-of-the-art in similarity
joins, in order to establish the basis for our work on point
set joins. Finally, we present related literature on user rec-
ommendations using location histories.

2.1 Spatio-Textual Search
A large amount of web documents nowadays contain both

spatial and textual information, characteristics which are ex-
ploited by modern applications to provide enhanced location-
based services. Such applications rely on spatio-textual in-
dexing for efficient computation.

Spatio-textual indexes. Current research enables the
combination of spatial and textual indexes into hybrid spatio-
textual indexes that explicitly support geographically aware
search. Established spatial indexes, such as R-trees [22],
regular grids, and space-filling curves, are integrated with
textual indexes, such as inverted files or signature files. For
example, SPIRIT [36] uses regular grids as spatial indexes
and inverted files for the indexing of the documents. [43]
proposed different approaches to hybrid indexing that em-
ploy R*-trees [6] for spatial indexing and inverted files for
textual indexing. [12] follows a similar approach, but uti-
lizes space-filling curves for spatial indexing. [15] combines
R-trees with signature files, which are stored internally in
the nodes of the tree. The IR-tree index [13, 26], lever-
ages inverted files for each node of the tree, in order to keep
aggregate information of the textual characteristics of the
relevant objects, while [33] uses aR-Trees [30] in combina-
tion with inverted files. Spatio-textual search is employed in
order to answer a range of queries. An overview of the per-
formance of the most commonly used spatio-textual indexes
in such queries can be found in [11].

Spatial group keyword queries. Another type of spatio-
textual queries is spatial group keyword queries [40, 41, 9,
29]. These aim at finding groups of spatio-textual objects
that collectively satisfy a number of given keywords, while
minimizing the collective distances between points in the
group and the given query point.

Although the aforementioned queries involve searching for
groups of objects, they differ from the problem addressed
in this paper. The STPSJoin query is not constrained by
an input query point nor a given textual description. In
addition, groups of objects are predefined according to the
user they are associated with. STPSJoin considers spatial
and textual distances of objects across groups, rather than
within groups. Finally, STPSJoin deals with the problem
of spatio-textual join, which is fundamentally different from
range and kNN queries.

2.2 Similarity Joins
Similarity joins seek to identify pairs of objects from given

sets that satisfy a predefined similarity threshold.
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Set similarity joins. The set similarity join task is compu-
tationally challenging; a naive approach requires the consid-
eration of the similarity between every possible pair of ob-
jects across sets. Set similarity joins have been extensively
studied, especially with respect to textual characteristics,
and multiple optimizations have been proposed. [34] uses
an inverted index based probing method to reduce the num-
ber of potential candidates. [10] observes that the prefixes
of potential candidates must satisfy a minimal overlap. The
ALL-PAIRS algorithm proposed by [5] further optimizes the
size of the inverted index. [37] presents Adapt-Join and [38]
proposes PPJOIN+ which are the state-of-the-art algorithms
for set similarity joins. PPJOIN+ builds on ALL-PAIRS and
introduces a positional filtering principle which exploits the
ordering of tokens, and operates both on the prefix and the
suffix of the tokens of objects. PPJOIN+ is internally used as
the final step of our algorithms in order to efficiently com-
pute textual similarity joins. An experimental analysis and
evaluation on string similarity joins can be found in [24].

Spatial joins. Data structures and algorithms for spatial
joins have been widely studied in the literature. A relevant
survey can be found in [23]. Spatial joins have been used
in combination both with space partitioning as well as with
data partitioning structures. The state of the art algorithm
for spatial joins has been proposed in [8]. We utilize this
algorithm to prune the search space when searching for spa-
tially relevant users using an R-Tree (see Section 4.1.4).

The problem of spatial joins over point sets has not re-
ceived much attention. Adelfio et al. [2, 1] focus on similar-
ity search for a collection of spatial point set objects based
on the Hausdorff distance. The motivation behind their
work is highly relevant to the STPSJoin query. However,
there are important differences. We consider web objects
with spatio-textual characteristics and measure the distance
among point sets using a different similarity measure. The
Hausdorff distance measures the maximum discrepancy be-
tween two point sets, whereas in our work we use a mea-
sure inspired by the Jaccard coefficient which focuses on the
amount of objects from different point sets that are similar.

Spatio-textual joins. Spatio-textual joins have attracted
some attention recently with a specific focus on joins for
spatio-textual points. This process is primarily executed
for the purpose of duplicate detection. The work in [3] is
one of the first examples of spatio-textual join methods.
They propose the SpSJoin query that follows the MapRe-
duce paradigm for scalable computation of spatio-textual
join queries. The spatio-textual join query has been also
studied in the form of spatial regions associated with tex-
tual descriptions ([27, 28, 20]). Pruning strategies, based
on spatial and textual signatures of objects, are employed
to filter the number of candidates. [32] presents grid and
quad tree based indexes in order to efficiently partition the
database either in a local or global fashion. They also ex-
plore different dimensions of the problem, including the use
of PPJOIN+ and All-Pairs for text similarity joins, as well
as single and multi-threaded approaches.

Bouros et al. [7] propose the state of the art spatio-textual
join algorithms. Their work builds on top of PPJ, a base-
line method that extends PPJOIN+ to account for objects
with spatio-textual characteristics and a given spatial dis-
tance threshold. The algorithms PPJ-C and PPJ-R extend
PPJ by leveraging a grid and an R-Tree based index respec-

tively. These methods provide the basis for our work; thus,
we revisit them in more detail in Section 4.1.1.

Work on spatio-textual joins is highly relevant to our ap-
proach. However, the focus is different. To the best of
our knowledge, current research in the field has focused
on spatio-textual similarity joins among points. On the
contrary, our work introduces spatio-textual similarity joins
among point sets. Point sets are relevant when objects are
grouped with respect to a common characteristic. In this
case, the focus is on identifying similarities among groups,
rather than single elements. For instance, in the case of web
objects, a group consists of objects associated with the same
user. In this case, point-set joins identify user similarity in-
stead of object similarity.

2.3 User Recommendation Systems
Matching users based on their location history is one of

the main tasks of recommendation engines in location-based
social networks [4]. User location histories have been used
for identifying local experts, recommending friends, and ex-
tracting local communities. It has been revealed by several
studies that location information plays a vital role in deter-
mining such relationships [14, 16].

Typically, these approaches take into consideration ad-
ditional information, such as location ratings, semantics of
location descriptions and tags, sequence of visit or dura-
tion of stay. [25] identifies users with similar traveling pat-
terns based on matching sequences of locations visited by
the users. Similar works ([25, 42, 39]) deal with finding
users with similar patterns in behavior. [21] study several
features to identify users that are similar to a given user.
Their methods are based on a logistic regression model. Ac-
cording to their work, a single and in many cases imprecise
user location feature (such as city or country) is not effective.

In this paper, we focus on multiple geo-tagged objects for
each user, which may provide a better insight into location-
based user similarity.

3. PROBLEM DEFINITION
We assume a database D of spatio-textual objects created

by different users U . A spatio-textual object o ∈ D is a
triple o = 〈u, loc, doc〉, where u ∈ U is the user associated
with this object, loc = 〈x, y〉 is a spatial point and doc is a
set of keywords. We refer to the user, location and keywords
associated with an object o using the notation o.u, o.loc and
o.doc respectively. In addition, we use Du to denote the set
of objects belonging to user u.

The spatial distance δ(o, o′) between two objects is calcu-
lated as the Euclidean distance between their spatial loca-
tions. Moreover, the textual similarity τ(o, o′) is measured
according to the Jaccard similarity of their keywords:

τ(o, o′) =
|o.doc ∩ o′.doc|
|o.doc ∪ o′.doc| .

Given a spatial threshold εloc and a textual threshold εdoc ,
we say that two objects o, o′ ∈ D match if their spatial dis-
tance is below εloc and their textual similarity is above εdoc .
Matching between objects is defined using the predicate µ:

µ(o, o′) =

{
True if δ(o, o′) ≤ εloc and τ(o, o′) ≥ εdoc
False otherwise.

For brevity, we overload µ to account for matching an object
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with a set of objects D ⊆ D:

µ(o,D) =

{
True if there exists o′ ∈ D such that µ(o, o′)
False otherwise.

Furthermore, let two spatio-textual point-sets D and D′.
Function M (D,D′) returns the set of objects in D that
match with at least one object in D′:

M(D,D′) = {o ∈ D such that µ(o,D′)} .

We then use M to define the similarity of point-sets D and
D′. In particular, this is measured as the fraction of the
matched points from one set to the other divided by the
total number of points in the two sets. Formally:

σ(D,D′) =
|M(D,D′)|+ |M(D′, D)|

|D|+ |D′| .

The employed measure is inspired by the Jaccard similarity,
which is not directly applicable since it does not support par-
tial similarity between elements. More elaborate similarity
metrics over point sets can be found in [19, 31].

We can now define the Spatio-Textual Point Set Join query
(STPSJoin). STPSJoin identifies all pairs of users U which
are associated with sets of spatio-textual objects that have
a match higher than a specified threshold εu. We assume a
total ordering over U (i.e. ≺U ) to avoid returning duplicate
pairs. Formally, the STPSJoin query is defined as follows.

Definition 1. Given a database D of spatio-textual ob-
jects belonging to a set of users U , the STPSJoin query is
a tuple Q = 〈εloc , εdoc , εu〉 which returns a set R contain-
ing all pairs of users (u, u′) such that u, u′ ∈ U , u ≺ u′,
and σ(Du, Du′) ≥ εu with respect to the spatial and textual
thresholds εloc and εdoc.

An extension of the STPSJoin query in which we seek only
the k best pairs of users, in terms of spatial and textual simi-
larity of their objects, is the top-k STPSJoin query. Formally,
the top-k STPSJoin query is defined as follows.

Definition 2. Given a database D of spatio-textual ob-
jects belonging to a set of users U , the top-k STPSJoin query
is a tuple Q = 〈εloc , εdoc , k〉 which returns a set R contain-
ing k pairs of users (u, u′) such that u, u′ ∈ U , u ≺ u′, and
for any pair of users (v, v′) 6∈ R it holds that σ(Du, Du′) ≥
σ(Dv, Dv′) for each (u, u′) ∈ R with respect to the spatial
and textual thresholds εloc and εdoc.

4. ALGORITHMS
This section presents algorithms for the evaluation of the

STPSJoin query and the top-k STPSJoin query. First, we
present a baseline algorithm, and then we introduce methods
that exploit a filter and refine strategy in combination with
spatio-textual indexes in order to direct the search. Then,
we explain how our methods can be adapted to account for
the top-k STPSJoin query.

4.1 Algorithms for STPSJoin

4.1.1 Baseline Approach
Preliminaries. The straightforward method for evaluating
an STPSJoin query is to find, for every pair of users, the set
of matching objects, and then to check whether the resulting
similarity score σ exceeds the specified threshold εu. Thus,
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(a) PPJ-C traversal.
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(b) PPJ-B traversal.

Figure 2: PPJ-C and PPJ-B grid traversal strategies ex-
amples. Objects associated with user u (u′) are depicted
by squares (diamonds). Matched objects are painted black,
objects that do not match are painted white, while objects
whose state has not been determined are painted grey. PPJ-
B has determined the state of every object in cells 1 to 15,
while PPJ-C only the objects until cell 10.

for a pair of users (u, u′), the problem can be cast as a
spatio-textual similarity join query, ST-SJOIN(D, εloc , εdoc),
which has been studied in [7]. This query returns all pairs
of objects (o, o′) in D such that o, o′ ∈ D, δ(o, o′) ≤ εloc
and τ(o, o′) ≥ εdoc . Based on this, we can find the objects
of u that match with those of u′, and vice versa, and then
proceed with computing the score σ for this pair of users.

For this purpose, we adapt the PPJ-C algorithm from
[7] for the purposes of ST-SJOINs. PPJ-C uses a grid to
partition the space, in order to limit the search to those
candidates that can satisfy the spatial predicate of the join.
The grid is constructed dynamically at query time, using
cells that have an extent in each dimension that equals the
spatial distance threshold εloc . The cells are assigned ids in
a row-wise order from bottom to top (see Figure 2a).

PPJ-C visits the cells in ascending order of their ids, tak-
ing advantage of the spatial filtering, since the objects in
each visited cell c need to be joined only with those in c and
in the cells adjacent to c. In fact, to avoid duplicates, only
the adjacent cells with ids lower than c need to be examined.
Thus, for each cell, one self-join operation and at most four
non-self join operations need to be performed. These are
performed using the PPJ algorithm, that in turn extends
the set similarity join algorithm PPJOIN [38] by including
an additional check on the spatial distance of two objects.

The S-PPJ-C algorithm. Using PPJ-C as basis, we can de-
rive a baseline algorithm, denoted as S-PPJ-C (Set-PPJ-C),
for the STPSJoin query. S-PPJ-C is presented in Algorithm 1.
During the construction of the grid, we maintain the follow-
ing additional information: (a) for each cell c, we maintain
the contained objects in separate lists according to the user
they belong to; we denote by Du

c the set of objects of user
u that are contained in c; (b) for every user u, we maintain
a list of cells Cu that contain objects belonging to u; Cu is
sorted according to cell ids in ascending order.

The S-PPJ-C algorithm loops through all pairs of users,
taking into consideration the total ordering ≺U of the user
set U . For each pair of users (u, u′), S-PPJ-C executes a non-
self join version of the PPJ-C algorithm from [7] presented
above. The difference with the standard PPJ-C, lies in the
fact that in this case pairs with objects from both users are
returned. To do so, first the lists Cu and Cu′ containing
the cells for u and u′ respectively are gathered. Next, the
algorithm iteratively selects from either list the cell c with
the lowest id that has not been selected yet. Assume that
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Algorithm 1: S-PPJ-C Algorithm

Input: D, U , εdoc , εloc , εu
Output: Pairs of matched users R

1 R← ∅
2 selectedUsers ← ∅
3 G← createGridIndex (D,U, εloc)
4 foreach u1 ∈ U do
5 foreach u2 ∈ selectedUsers do
6 r ← PPJ-C(u1, u2, εdoc , εloc)

7 σ ← |r|
|Du1

|+|Du2
|

8 if σ ≥ εu then
9 R.add(〈u2, u1〉)

10 selectedUsers.add(u1)

11 return R

the next selected cell c is from the list of user u. For every
cell c′ in Cu′ with c′.id ≥ c.id , a non-self join version of PPJ
is executed with input the spatio-textual point sets Dc

u and

Dc′
u′ . Since Cu and Cu′ may both contain the cell c, we avoid

the duplicate execution of PPJ for c.
The results of PPJ-C are used to compute the user similar-

ity score σ (line 6-7). Pairs of users that achieve a similarity
score above the threshold εu are collected in the result set.

4.1.2 The S-PPJ-B Algorithm
The drawback of the S-PPJ-C algorithm is that for each

pair of users it finds all their matching points and computes
the exact value of their similarity score σ before checking
whether this exceeds the given threshold. Instead, since we
are only interested in finding those pairs with a similarity
that exceeds εu, we can reduce the execution time of the
algorithm by terminating the computation for a pair of users
as soon as it can be decided that their similarity is below
εu. Following this observation, we derive a more efficient
algorithm, denoted as S-PPJ-B (where B stands for bound).
S-PPJ-B operates in the same manner as S-PPJ-C, with

the only difference that it replaces the execution of PPJ-C

with a modified process, denoted as PPJ-B. PPJ-B leverages
the use of an upper bound on the number of unmatched
objects for a pair of users to effectively prune the search
on the spatial grid. More specifically, the intuition behind
PPJ-B is the following. While examining two users, PPJ-B
leverages the user similarity threshold εu and the number of
objects belonging to each user in order to compute an upper
bound on the number of unmatched objects between the two
users, above which the user similarity cannot exceed εu. In
the following, we first derive this upper bound, and then we
explain the process followed by PPJ-B in order to allow for
early termination during the examination of two users.

For a pair of users (u, u′), let βu,u′ denote the number of
objects from user u and user u′ that do not match with the
other user, i.e.:

βu,u′ = |Du|+ |Du′ | − |M(Du, Du′)| − |M(Du′ , Du)|

An upper bound for βu,u′ is derived as follows.

Lemma 1. For a pair of users (u, u′), if βu,u′ > (1− εu) ·
(|Du|+ |Du′ |) then σ(Du, Du′) < εu.

Proof. The proof is derived from the definition of the

cell/leaf tokens users

shop u1 u3

jeans u1
football u2

users objects
u1
u2
u3

o1
o2 o8
o3

match u2

stadium u2

market u3
u2, o5, {hurry, tube, time}

u1, o4, {tube,ride}

u3, o6, {thames,bridge}
u3, o7, {bus,ride}

spatial threshold

derby u2u3, o3, {shop,market}

u2, o8, {football,derby}

u1, o1, {shop,jeans}

u2, o2, {football,match,stadium}

Figure 3: Spatio-textual structure for S-PPJ-F and S-PPJ-D.

similarity score between two users, as follows:

σ(Du, Du′ ) ≥ εu ⇒
|M(Du, Du′ )|+ |M(Du′ , Du)|

|Du|+ |Du′ |
≥ εu ⇒

|Du|+ |Du′ | − βu,u′

|Du|+ |Du′ |
≥ εu ⇒ 1−

βu,u′

|Du|+ |Du′ |
≥ εu ⇒

βu,u′ ≤ (1− εu) · (|Du|+ |Du′ |)

Upon traversing a cell c, PPJ-C checks for potential matches
in cells with ids lower than c.id . Therefore, we cannot be
certain that objects that have not been matched so far will
also not match with objects in cells with higher ids (i.e. in
the next cell or row). Therefore, the bound may be used
within PPJ-C, but only with respect to the objects discov-
ered from the beginning of the grid until the previous row.
The objects that were traversed in the current row have to
be excluded from calculation.

To that end, PPJ-B devises a different grid traversal strat-
egy that allows the pruning mechanism to utilize every ob-
ject appearing in cells traversed when the bound evaluation
is executed. Specifically, this strategy traverses the rows
from bottom to top (considering the id of the bottom row
as 1), and depending on whether the id of a row is odd or
even, different treatment is followed. If a cell ci,j belongs to
a row with odd id, i.e. j is odd, then the objects contained
in it are matched with objects from all surrounding cells,
except the cell directly on the right, i.e. ci+1,j . Matching
is done by executing PPJoin. Otherwise, if the cell belongs
to an even row, then we match its objects only with objects
from the other user from the cell that is directly on the left,
i.e. ci−1,j . This process is illustrated in Figure 2b.

Following this traversal strategy, PPJ-B allows for early
termination using the bound β, while still maintaining the
property of PPJ-C to avoid duplicate examination of the
same pair of cells. Indeed, when PPJ-B traverses the last
cell of an odd row, it has considered every potential match
for any object it has encountered up to that point. Thus,
it checks whether the number of objects that have not been
matched exceeds the calculated bound β. If so, the search
stops, since it is impossible to result in a user similarity score
that exceeds εu. Note that, in practice, since the grid may be
rather sparse, some rows may be empty. In that case, when
the next visited cell belongs to a row that is not directly
above the previous one, the same check can be performed,
even if the last examined row was even, since previously
encountered objects cannot have any future matches.

4.1.3 The S-PPJ-F Algorithm
The S-PPJ-B algorithm presented above exploits an up-

per bound on the number of unmatched objects between two
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users in order to allow for early termination when comparing
each pair of users. In the following, we present the S-PPJ-F

algorithm that further increases efficiency by following a fil-
ter and refine strategy that concentrates the search on those
pairs of users that are promising candidates, while pruning
others that can not exceed the similarity threshold εu.

Algorithm 2: S-PPJ-F Algorithm

Input: D, U , εdoc , εloc , εu
Output: Pairs of matched users R

1 R← ∅
2 G← initialiseSTGridIndex (D, εloc)
3 foreach u ∈ U do
4 foreach c ∈ Cu do
5 T ← calculateTokens(u, c)

6 foreach c′ ∈ G.getRelevantCells(c) do
7 foreach t ∈ T do
8 foreach u′ ∈ G.getTokenUsers(c′, t) do

9 Mu
u′ .add(c), Mu′

u′ .add(c′)

10 G.addUser(u)

11 foreach u′ ∈M.keys() do

12 m←
∑

c∈Mu
u′
|Dc

u|+
∑

c′∈Mu′
u′
|Dc′

u′ |

13 σ̄ ← m
|Du|+|Du′ |

14 if σ̄ ≥ εu then
15 σ ← PPJ-B(Du, Du′ , G, εdoc , εloc , εu)
16 if σ ≥ εu then
17 R.add(〈u′, u〉)
18 return R

S-PPJ-F is outlined in Algorithm 2. It operates on top
of a spatio-textual index structure that is constructed at
runtime. In every iteration, the algorithm selects a new
user u, searches for potential matches with the users that
have been selected in previous steps, and updates the spatio-
textual index with the objects in Du.

The spatio-textual index is a dynamic grid enhanced with
an inverted index for every cell. This list maintains for ev-
ery token that appears in objects in a cell, the users that
are associated with these objects. An example is depicted
in Figure 3. The grid structure additionally maintains the
objects associated with every user within a cell.

The search for matches follows the filter and refine prin-
ciple. After a user u is selected, the algorithm traverses
through every cell c ∈ Cu which contains objects associated
with u, and calculates the set of tokens T that appear in any
one of these objects. This set is then utilized to identify can-
didate users in c and its surrounding cells (lines 6-9). Every
user u′ with objects that appear in one of these cells that at
least one keyword from T is considered to be a candidate.
Mu

u′ maintains cells that contain objects from u that po-
tentially match (both spatially and textually) with objects

from u′. Respectively, Mu′
u′ maintains the relevant for u′.

For every user u and candidate user u′, the algorithm
calculates an upper bound σ̄ of their user similarity score
(lines 12-13). This is performed by assuming that all of
their objects which are contained in the same or adjacent
cells match. Formally, σ̄ is computed as follows:

σ̄ =

∑
l∈Mu

u′
|Dl

u|+
∑

l′∈Mu′
u′
|Dl′

u′ |

|Du|+ |Du′ | .

If σ̄ < εu, then this pair can be safely pruned. Otherwise,
a refinement step follows, during which the PPJ-B algorithm
is executed to identify whether the exact similarity score for
the pair exceeds the user similarity threshold.

4.1.4 The S-PPJ-D Algorithm
In the following, we consider databases that are already

partitioned by a data partitioning scheme. In particular,
we consider data partitioning schemes induced by an R-tree
structure combined with a textual index similar in fashion
to the index outlined with respect to S-PPJ-F. The main
difference is that instead of indexing grid cells, in this case,
we index the leaf nodes of the R-tree.
S-PPJ-D implements a filter and refinement strategy sim-

ilar to S-PPJ-F, based on a given data partitioning and a
spatio-textual index I that is constructed at runtime. I
maintains an entry for every leaf node l in the tree. This
entry holds an inverted list that maps a token t U l

t (i.e.
users with objects in l that contain t). In addition, every
leaf node l maintains a mapping between users and their
objects within l, denoted by Dl

u. Finally, the intersections
among the extended MBRs of the leaf nodes in the tree are
precomputed by performing a spatial join using the process
described in [8].

The filter step iterates over the leaf nodes Lu of a user u.
For every leaf node l, it calculates the set of tokens T that ap-
pear in objects within l that are associated with u (i.e. Dl

u).
These tokens are then used to probe the spatio-textual index
and identify the candidate users that are associated with ob-
jects containing tokens from T . This is performed for each
leaf node that intersects with the εloc-extended bounding
box of l. To avoid duplicates, we only search for candidate
users which are higher in the user ordering. M maintains
for every candidate u′ the leaf nodes of u′ containing objects
that can potentially match objects associated with user u

Mu′

u′ , as well as the leaf nodes of the relevant objects from u
Mu

u′ . S-PPJ-D calculates for every candidate u′ a bound on
the similarity score between u and u′. This is calculated by

considering the extreme case in which all objects from Mu′

u′

and Mu
u′ match. The refinement step uses PPJ-D in order to

calculate the exact similarity between candidate users.
Algorithm 3 outlines PPJ-D. PPJ-D leverages the spatio-

textual index in combination with an appropriate leaf node
traversal strategy in order to return the similarity score be-
tween two users. PPJ-D functions similar to PPJ-B for the
context of a data-driven partitioning scheme. Given two
users u1 and u2, two lists L1 and L2 are maintained for
their leaf nodes ordered with respect to a predefined order-
ing (e.g. in ascending order of their ids). The algorithm
proceeds iteratively, and selects the lowest (with respect to
the ordering) unvisited leaf node l from L1 and L2.

Let user u be the user from which the element was se-
lected, and u′ the other user. The index is used to identify
every leaf node l′ that is spatially relevant to l, and contains
objects from u′. Spatially relevant leaf nodes are nodes with
intersecting εloc-extended MBRs. For every l′ we execute
PPJoin to identify the exact similarity between the objects

Dl
u and Dl′

u′ . This is performed by focusing only on objects
that belong within the intersection A of the εloc-extended
MBRs of l and l′ (lines 11-12, 18-19). This optimisation is
based on the observation that objects which are not con-
tained in A do not satisfy the spatial threshold εloc .
PPJ-D follows a similar pruning strategy with PPJ-B. The
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Algorithm 3: PPJ-D Algorithm

Input: Du1 , Du2 , I, εdoc , εloc , εu
Output: Similarity score for users u1, u2

1 β ← (1− εu) · (|Du1 |+ |Du2 |)
2 J ← ∅ // joined objects

3 L1 ← I.getLeafs(u1) // sorted

4 L2 ← I.getLeafs(u2)
5 i1 ← 0, i2 ← 0
6 t← 0

7 while ii < |L1| or i2 < |L2| do
8 if L1[ii] ≤ L2[i2] then
9 foreach l2 ∈ I.getRelevantLeafs(l1) do

10 if l2 ≥ l1 and l2 ∈ L2 then
11 A← I.extend(l1, εloc) ∩ I.extend(l2, εloc)

12 PPJoin(Dl1
u1
∩A,Dl2

u2
∩A, J)

13 t← t+ |Dl1
u1
|

14 else if Lu2 [i2] ≤ L1[i1] then
15 l2 ← L2[i]

16 foreach l1 ∈ I.getRelevantLeafs(l2) do
17 if l1 > l2 and l1 ∈ L1 then
18 A← I.extend(l1, εloc) ∩ I.extend(l2, εloc)

19 PPJoin(Dl1
u1
∩A,Dl2

u2
∩A, J)

20 t← t+ |Dl2
u2
|

21 if t− |J | > β then
22 return 0

23 if L1[ii] <= L2[i2] then i1 ← i1 + 1

24 if L2[i2] <= L1[i1] then i2 ← i2 + 1

25 σ ← |J |/(|Du1 |+ |Du2 |)
26 if σ ≥ εu then return σ
27 else return 0

objects of every leaf node for user u are evaluated against
every potential candidate from Du′ that falls within a leaf
node that is higher in the given ordering. Therefore, after an
iteration that visits an object, candidate matches from leaf
nodes, both higher and lower in the ordering, are considered.
This observation is the basis of a pruning step (lines 21-22)
that calculates the number of objects t−|J | that are already
found to fail to satisfy the thresholds. If this number is lower
that a computed bound, the search is pruned since the users
fail to satisfy the user similarity threshold.

4.2 Algorithms for top-k STPSJoin
Next, we extend our methods to support the top-k STPSJoin

query. The main intuition behind our approach is that the
algorithm must keep track of the top-k pairs identified thus
far, and utilise the exact user similarity score of the kth best
pair to update the user similarity threshold.

4.2.1 TOPK-S-PPJ-F
Algorithm 4 outlines TOPK-S-PPJ-F, which modifies S-

PPJ-F for the purposes of the top-k STPSJoin query. The
main modifications with respect to S-PPJ-F relate to the
maintenance of intermediate results and the update of the
user similarity threshold. Results are stored in a fixed ca-
pacity priority queue of size k, which is updated whenever a
pair that is better than the kth pair in the queue is identi-
fied. The user similarity threshold εu is set as the similarity
score of the kth best pair in the queue. Accordingly, the

Algorithm 4: TOPK-S-PPJ-F Algorithm

Input: D, U , εdoc , εloc , k
Output: Top-k Pairs of matched users R

1 R← ∅
2 εu ← −1

3 G← initialiseSTGridIndex (D, εloc)

4 foreach u ∈ sorted(U) do
5 foreach c ∈ Cu do
6 T ← calculateTokens(u, c)

7 foreach c′ ∈ G.getRelevantCells(c) do
8 foreach t ∈ T do
9 foreach u′ ∈ G.getTokenUsers(c′, t) do

10 Mu
u′ .add(c), Mu′

u′ .add(c′)

11 G.addUser(u)

12 foreach u′ ∈M.keys() do

13 m←
∑

c∈Mu
u′
|Dc

u|+
∑

c′∈Mu′
u′
|Dc′

u′ |

14 σ̄ ← m
|Du|+|Du′ |

15 if σ̄ > εu then
16 σ ← PPJ-B(Du, Du′ , G, εdoc , εloc , εu)
17 if σ > εu then
18 R.update(〈u′, u〉)
19 if |R| = k then
20 εu ← R.getTail()

21 return R

threshold εu is updated whenever a new pair is introduced
in the results queue (lines 18-20). The user similarity thresh-
old is used in the filtering phase of the algorithm in a similar
manner with S-PPJ-F. The same principle can be straight-
forwardly applied to S-PPJ-D. Pseudocode for the resulting
algorithm is omitted due to lack of space.
TOPK-S-PPJ-F orders users in an ascending order of the

size of their object-sets. This strategy is based on the obser-
vation that the treatment of users with larger object-sets
requires more computations than the evaluation of users
with fewer objects. By the time the algorithm reaches the
most computationally demanding users, the user similarity
threshold has been updated to reflect the best pairs identi-
fied so far, increasing the possibility that pairs that do not
belong to the top-k result set are filtered out.

4.2.2 TOPK-S-PPJ-S
TOPK-S-PPJ-S operates similarly with TOPK-S-PPJ-F. How-

ever, it uses a heuristic strategy in order to decide the order
by which users are evaluated. User objects are placed in a
spatial grid and each cell in the grid c is given a score by
counting the amount of users whose object-sets belong to
c or its adjacent cells. Users are then assigned a score by
summing, for every object o associated with them, the score
of the cell that o is contained in. Formally, cell scores sc are
calculated as follows:

sc = | ∪c′∈G.getRelevantCells(c) G.getUsers(c′)|

where G is the spatial grid, c is a cell in the grid, G.getUsers
returns the users with objects in c and G.getRelevantCells(c)
returns the cells that are adjacent to c (including c).

Accordingly, users are assigned scores su according to the
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following formula:

su =
∑

o∈Du

soc

Du denotes the object-set for user u and oc describes the
cell that object o is located in.

Therefore the rationale behind TOPK-S-PPJ-S is to start
the search with users whose objects are placed in popular
areas. This strategy aims at quickly identifying high scor-
ing pairs, in order to increase the user similarity threshold
quickly, and improve the efficiency of the filtering step.

4.2.3 TOPK-S-PPJ-P
The TOPK-S-PPJ-P algorithm introduces an additional fil-

tering step. Users are selected in ascending order of the size
of their object-sets. For every user u, we calculate an upper
bound on the similarity score between u and any user u′ that
was selected in a previous iteration. To do so, we identify
the objects from Du that match with any object from DU′ ,
i.e. the union of the objects of every user that was selected
in previous iterations. This is denoted as M(Du, DU′). This
allows the calculation of an upper bound on σ(u, u′) for ev-
ery u′ that was selected prior to u. Formally, this bound is
calculated as follows:

σ̄u =
|
⋃

u′∈U′ M(Du, Du′)|+ maxu′∈U′ |Du′ |
|Du|+ maxu′∈U′ |Du′ |

If the users are selected in an ascending order of the size
of their object-sets, we show that σ̄u is an upper bound on
the similarity score between u and a user u′ with fewer or
equal objects.

Lemma 2. Let a user u and a set of users U ′. If for every
user u′ ∈ U ′ |Du′ | ≤ |Du|, then it holds that σ(u, u′) ≤ σ̄u.

Proof. Let for any user u′ ∈ U , mu = |
⋃

u′′∈U′ M(Du, Du′′)|,
mu′

u = |M(Du, Du′)|, mu
u′ = |M(Du′ , Du)|, du = |Du| and

dU′ = maxu′′∈U′ |Du′ |. Then, since mu ≥ mu′
u and du′ ≥

mu′ it holds that

mu + du′

du + du′
≥ σ(u′, u) .

We show that:

σ̄u =
mu + du′′

du + du′′
≥
mu + du′

du + du′
.

mu + du′′

du + du′′
≥
mu + du′

du + du′
⇒

mu · du +mu · du′+du′′ · du + du′′ · du′ ≥
mu · du +mu · du′′+du′ · du + du′ · du′′ ⇒

(du′′ − du′ ) · du ≥(du′′ − du′ ) ·mu, .

This holds since du′′ ≥ du′ and du ≥ mu.

In order to avoid the computation of exact similarity scores
among user objects, and speed up the bound calculation pro-
cess, we follow the same principle with the filtering step from
the S-PPJ-F algorithm. We utilise the spatio-textual index
described in Figure 3 and place in M(Du, DU′) every object
with a token that appears (due to a previously selected user)
in the same or adjacent cell. This process provides a fast es-
timation of the σ̄u bound. Since this process overestimates,
the resulting score is still an upper bound on the actual user

similarity score and can be used to prune the search space.
This process yields relaxed bounds, which are irrelevant for a
fixed user similarity threshold (as in the case of STPSJoin).
However, it is useful with respect to the top-k algorithms
that quickly increase the user similarity threshold.

5. EXPERIMENTAL EVALUATION
Next, we present our experimental evaluation of the pro-

posed algorithms. We first describe the datasets used and
the parameters involved, and then we present the results.

5.1 Experimental Setup
Datasets. We have used three real-world datasets of spatio-
textual web objecs for our experiments. The Flickr dataset
is derived from the Flickr Creative Commons dataset pro-
vided by Yahoo [35]. The whole dataset contains about 99.3
million images, about 49 million of which are geotagged. For
our experiments, we concentrate on objects from the geo-
graphical boundaries of London, UK and we filtered out im-
ages that do not contain coordinates or tags as well as those
that are created by stationary users. The resulting dataset
contains 11,306 users and 1,116,348 objects. The GeoText
dataset [18] is a geotagged microblog corpus available on-
line.1 It comprises 377,616 posts by 9,475 different users
within the US. Finally, the Twitter dataset is a collection
of geotagged tweets from the geographical area of London,
UK, that we have collected and is part of the dataset used
in [17]. It contains 9,724,579 tweets generated by 40,000
different users in 2014.

The NLTK toolkit2 was employed to identify named enti-
ties from the text associated with the objects. The extracted
named entities were used in combination with other related
information, such as tokens, hashtags and mentions, as key-
words associated with the respective objects. The charac-
teristics of the three datasets are summarized in Table 1.

Evaluation measures and parameters The purpose of
the experimental evaluation is to compare the performance
of the proposed algorithms in terms of the execution time
in different settings. For the case of the STPSJoin query, we
investigate the effect of the following parameters: (a) the
dataset size N in terms of number of users, (b) the query
thresholds for spatial distance (εloc), textual similarity (εdoc)
and user similarity (εu) and (c) the fanout parameter of the
R-tree structure. The effect of these parameters on the re-
sults of the STPSJoin query in the experimental datasets
are described in Table 2. The largest deviation is observed
on the Flickr dataset. This is consistent with the nature of
this dataset, since popular POIs are often described using
similar textual descriptions as well as photographs depicting
these POIs are usually captured in nearby locations. On the
contrary, the other datasets contain tweets, which are signif-
icantly more diverse both with respect to spatial locations
and textual descriptions. For the top-k STPSJoin query, we
investigate the effect of the parameter k on execution time.

All algorithms were implemented in Java, and the exper-
iments were executed on a machine with an Intel Core i5
2400 CPU and 16GB RAM, running on Ubuntu Linux. Dur-
ing the experiments, 15GB of memory were allocated to the
JVM. All plots report running time in a logarithmic scale.

1http://www.ark.cs.cmu.edu/GeoText/
2http://www.nltk.org/
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Dataset Objects Users Tokens per Object Objects per Token Objects per User

Twitter 9,724,579 40,000 2.08 (1.43) 6.25 (141.80) 243.11 (344.86)
Flickr 1,116,348 11,306 8.04 (8.15) 26.41 (1,191.09) 98.73 (419.92)
GeoText 165,733 9,461 1.64 (1.01) 3.53 (39.36) 17.52 (12.99)

Table 1: Experimentation datasets, number of objects and users, and mean (standard deviation) for descriptive metrics.

Figure 4: Scalability results for the GeoText, Flickr and Twitter datasets (parameter defaults: GeoText: εloc = 0.001,
εdoc = 0.3, εu = 0.3; Flickr εloc = 0.001, εdoc = 0.6, εu = 0.6; Twitter: εloc = 0.001, εdoc = 0.4, εu = 0.4).

GeoText Flickr Twitter

Scalability 27.00 (8.51) 54.20 (46.22) 13.50 (6.54)
Tuning 18.00 (36.90) 326.00 (633.89) 14.14 (9.98)

Table 2: Mean (std-dev) of result-set sizes

5.2 Scalability
The scalability experiments evaluate the performance of

our methods in datasets of different sizes. We divided the
Twitter, Flickr and GeoText datasets for variable numbers
of users. The resulting datasets range from 4,000 users with
72,094 objects to 40,000 users with 9,724,579 objects. Dif-
ferent parameter values are used for different datasets, in or-
der to account for different sizes and token selectivity across
datasets. Lower thresholds are set for the GeoText dataset
in order to avoid empty result sets, whereas higher thresh-
olds are set for the Flickr dataset to account for the higher
similarity between user objects. This is due to the fact that
a large amount of Flickr photos represent popular POIs that
are described by similar textual content and are geo-located
close to the location of the corresponding POIs.

Figure 4 shows the scalability evaluation results. The re-
sults clearly show that S-PPJ-F outperforms the other meth-
ods by several orders of magnitude. This is consistent for
all datasets, irrespective of size. The efficiency of S-PPJ-F
compared to the other approaches is attributed to the effect
of the filter and refinement scheme, in combination with the
suitability of the dynamic grid partitioning over the objects.
The grid partitioning is tailor made to the spatial threshold
parameter εloc , which allows the search for matching objects
to be limited exclusively in adjacent cells. Additionally, the
inverted lists maintained within each cell of the grid, allow
the effective filtering of candidate user pairs associated with
spatially similar, but textually diverse, objects.

The performance of S-PPJ-B does not compare favourably
against S-PPJ-F. This result is expected since S-PPJ-F builds
on S-PPJ-B by leveraging the filter and refinement scheme.

Nevertheless, the comparison between S-PPJ-B and S-PPJ-C

allows the evaluation of the early termination strategy, as
well as the traversal mechanism, differentiating S-PPJ-B from
S-PPJ-C. The results indicate that S-PPJ-B offers a consis-
tent improvement in execution time compared to S-PPJ-C,
confirming that the proposed techniques manage to prune
the search space for similarity search among two point sets.

Finally, the results show that S-PPJ-D outperforms the
baseline methods, but it is not comparable to the grid-based
S-PPJ-F, which follows the same principles. The discrepancy
in execution time can be attributed to the use of different
spatial indexes. The data driven-partitioning imposed by
the R-tree is independent of the spatial threshold given as a
parameter to the STPSJoin query. As a result, the imposed
partitioning leads to an ineffective division of the database.
Inspection of the performance of S-PPJ-D shows that both
partition size and overlap may lead to subpar performance,
since objects within large partitions tend to be spatially ir-
relevant, and overlaps require the evaluation of multiple join
operations. We revisit this issue in Section 5.4.

5.3 Effect of similarity thresholds
In the following experiments, we vary the parameters and

evaluate the proposed algorithms for different combinations
of textual, spatial and user similarity thresholds. Similar
to the scalability experiments, different ranges in threshold
values are used across datasets.

Figure 5 presents the results. We observe that the dom-
inant parameter is the spatial threshold εloc . High values
on εloc result in significantly higher execution times. This
is particularly obvious for the Flickr and Twitter datasets,
which contain significantly larger amounts of objects. When
the spatial distance threshold reaches metropolitan level dis-
tances, the majority of the objects fall into adjacent parti-
tions. As a result, the filtering step of S-PPJ-F and S-PPJ-D

returns a high number of candidates. In these cases, the
overhead imposed by the additional indexing maintained by
S-PPJ-F and S-PPJ-D is apparent. We observe a peak in
the case of S-PPJ-D, especially with respect to the Flickr
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Figure 5: Results for varying similarity thresholds (GeoText: 6, 000 users, 107, 941 objects; Flickr: 6, 000 users, 597, 008
objects; Twitter: 20, 000 users, 4, 988, 090 objects).

dataset. In this case, inspection shows that the R-tree par-
titioning does not manage to result in an efficient partition
of the object database.

This does not apply for GeoText, mainly due to the fact
that the objects in GeoText are scattered in the significantly
larger area of the whole of USA. The results show that the
proposed pruning strategies are highly functional in com-
bination with a grid-based partitioning scheme. S-PPJ-F

outperforms the other methods in every scenario, and apart
from the case of the Flickr dataset with εloc = 0.01, its per-
formance is independent of the parameter values.

5.4 Effect of Fanout on S-PPJ-D
An important parameter for data partitioning schemes

based on R-trees is the fanout parameter. This parame-
ter is associated with the number of objects that reside in a
node of the R-tree. The effect of the fanout parameter on
the performance of S-PPJ-D is twofold. First of all, S-PPJ-D
executes a spatial distance join in order to identify spatial
relations among the leaf nodes of the tree, which are treated
by the algorithm as spatial data partitions. Since the fanout
parameter affects both the depth and the breadth of the R-
tree, it also affects the performance of the spatial join. Sec-
ond, S-PPJ-D is built on top of the partitioning imposed by
the leaf nodes. Therefore, the fanout affects both the num-
ber and the size of leaf nodes, which are relevant to S-PPJ-D.

In order to experimentally evaluate the effects of the fanout
parameter, experiments with values ranging from 50 to 250
were conducted. The results are shown in Figure 6. The
results verify that S-PPJ-D is sensitive to the fanout value.
Even though no single fanout value achieves the best results
in all datasets, we observe that an appropriate fanout value
for STPSJoin queries falls within the range of 100 to 200.

Figure 6: Tuning the R-Tree fanout parameter.

5.5 Evaluation of top-k STPSJoin
In the following, we evaluate the proposed algorithms for

the top-k STPSJoin query. We vary the result size k in order
to study the behaviour of the algorithms. Figure 7 shows
the results of the experiments. The baseline TOPK-S-PPJ-F

is competitive and is the better performing algorithm in
the Flickr dataset. The poor performance of TOPK-S-PPJ-S
shows that the simple ordering of the users based exclusively
on the size of their object-sets is more efficient than the sta-
tistical approach that it follows, compared to the overhead
that the additional computation imposes. TOPK-S-PPJ-P ex-
ploits an additional pruning step and offers a better perfor-
mance in the cases of GeoText and Twitter. In the case
of Flickr, while it is outperformed by TOPK-S-PPJ-F, it re-
mains competitive. This is due to the fact the the Flickr
dataset contains objects with very high similarity, mainly
because of the nature of the Flickr service (ie. people de-
scribe popular places with nearly the same keywords). The

338



Figure 7: Results for the top-k STPSJoin algorithms on GeoText, Flickr and Twitter datasets with varying k (GeoText:
εloc = 0.001, εdoc = 0.3, εu = 0.3; Flickr εloc = 0.001, εdoc = 0.6, εu = 0.6; Twitter: εloc = 0.001, εdoc = 0.4, εu = 0.4).

very high textual similarity between objects leads to high
user similarities. Therefore, the additional filtering step of
TOPK-S-PPJ-P cannot disqualify large numbers of user pairs.

5.6 Parameter Tuning
The STPSJoin query requires εloc, εdoc, and εu to be pro-

vided as input. The values of these thresholds define what
is “near” in terms of spatial, textual and user similarity,
and are determined by the nature of the data and task in
hand. In order to tackle situations in which there is no prior
knowledge that can be used to determine the values of these
thresholds, we present an automated process in order to dis-
cover sensible thresholds. In this case, the necessary input
is an acceptable result set size.

The tuning algorithm is initialised with relaxed initial
thresholds. Our experiments show that these can be prede-
fined values regardless of the dataset. The only requirement
is that they are relaxed enough to guarantee a result-set
larger than the input value. Threshold steps are calculated
as fractions of the initial values.

The algorithm follows a greedy strategy. Initially, it exe-
cutes S-PPJ-F using the starting thresholds and populates a
result-set. Then, the process traverses the parameter com-
bination space in a depth-first manner. At any given step
the algorithm selects probabilistically which parameter to
tighten (an alternative strategy is to modify the least mod-
ified threshold). Tightening the parameters monotonically
decreases the results-set that was the outcome of the pre-
vious step. As a result, S-PPJ-F is not executed again for
the different parameters. Instead, PPJ-C is used to iden-
tify which pairs from the previous step adhere to the new
thresholds. If the result set size reaches the desired value,
the algorithm stops and the current threshold values are
returned. If a step brings about thresholds that yield no
results, the process backtracks to the previous step, and an
alternative threshold is tightened.

S-PPJ-F Tuning

Result size 5 25 50

GeoText 2,229 145 (8) 124 (4) 110 (3)
Flickr 24,363 738 (23) 693 (17) 1,066 (10)
Twitter 82,412 1,278 (10) 3,085 (7) 1,439 (2)

Table 3: Parameter tuning including S-PPJ-F time and tun-
ing time in ms (number of iterations) for varying result-sets.

Table 3 shows the time required for parameter tuning after
the initial execution of S-PPJ-F. Initial thresholds were the
minimum thresholds used in Section 5.3, and the datasets
were those with the minimum number of users used in Sec-
tion 5.2. It is worth noting that the initial running time of
S-PPJ-F consumes a significant amount of the overall time.

5.7 Summary
Our experimentation verifies the superiority of the pro-

posed algorithms for the treatment of the STPSJoin query,
in terms of execution time for all datasets used. The prun-
ing strategy employed by S-PPJ-F manages to significantly
boost the algorithm’s performance. Furthermore, the S-PPJ-D
algorithm which induces data partitioning is efficient enough
to be considered as a viable choice in cases when the data are
already partitioned with an R-tree (or any other data parti-
tioning method). Our experimentation shows that S-PPJ-F

can be directly modified to efficiently handle the top-k STPSJoin
query variant. Nevertheless, we propose an additional prun-
ing strategy in top-k STPSJoin that performs even better
with datasets of lower degrees of similarity. Even in the case
of the Flickr dataset, which does not fall into this category,
TOPK-S-PPJ-P achieves competitive results. The experimen-
tal analysis is conducted on three real datasets of varied size
(the two of them are publicly available) and different pa-
rameter settings have been examined in order to reach to
the optimum configurations. The results show that the al-
gorithms scale well in very large databases and can therefore
be used effectively in real-world scenarios.

6. CONCLUSIONS
This paper studies the problem of similarity search on

spatio-textual point sets. We formally define this problem
as STPSJoin and present its top-k variant. STPSJoin queries
identify pairs of similar users, with respect to web documents
such as tweets and photographs associated with these users.

In order to efficiently process (top-k) STPSJoin queries, we
propose algorithms that leverage different spatio-textual in-
dexes, and integrate early termination pruning mechanisms
with filter and refinement approaches. We conducted large-
scale experiments on real-world datasets for multiple val-
ues on the problem parameters. The better performing al-
gorithm S-PPJ-F is orders of magnitude more efficient in
terms of execution time than the baseline methods. Finally,
S-PPJ-D shows improvement over the baseline methods for

339



the case of data-driven partitioned databases, even though
it is significantly outperformed by S-PPJ-F. For the case
of the top-k STPSJoin query, the TOPK-S-PPJ-P algorithm
offers the best results in the majority of the datasets, but
also remains competitive in the case of the Flickr dataset,
which contains significantly larger amounts of similar spatio-
textual objects.

In the future, we plan to focus on distributed architectures
in order to further enhance the efficiency of our methods.
Furthermore, we intend to integrate additional character-
istics in STPSJoin queries, which are often associated with
web objects, such as temporal information.
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ABSTRACT
In this paper, we study a novel type of spatial queries, namely Near-
est Window Cluster (NWC) queries. For a given query location q,
NWC (q, l,w,n) retrieves n objects within a window of length l
and width w, where the distance between the query location q to
these n objects is the shortest. To facilitate efficient NWC query
processing, we identify several properties and accordingly develop
an NWC algorithm. Moreover, we propose several optimization
techniques to further reduce the search cost. To validate our ideas,
we conduct a comprehensive performance evaluation using both
real and synthetic datasets. Experimental results show that the pro-
posed NWC algorithm, along with the optimization techniques, is
very efficient under various datasets and parameter settings.

Keywords: Nearest window cluster query, spatial query process-
ing, location-based service, spatial database.

1. INTRODUCTION
Spatial queries have received tremendous attention from the re-

search community in past decades. In the past several years, owing
to the emerging location-based services, a number of new spatial
queries have been proposed to meet various application needs [16]
[11][7][13][22][9]. However, many interesting/important applica-
tions still are not well supported by existing spatial queries. The
following is an example.

• Suppose Bob is attending a business meeting in a foreign
city. He wishes to buy some souvenirs for his family. With
only a rough idea of what to buy (e.g., some local-brand
clothes), he would like to search for some, say n, nearby
clothes shops which are close to each other in a small area
so he can walk around these clothes shops to find the sou-
venirs.

In this example, Bob aims to find the nearest area with sufficient
choices (i.e., n clothes shops) clustered in the area so he can go
around to compare products and prices and even have fun doing
some bargaining. Figure 1 illustrates the example above where each

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

Figure 1: Example of a nearest window cluster query.

bubble indicates a clothes shop. Ideally, a location-based service
would be able to suggest the clothes shops within the window back
to Bob. Unfortunately, existing spatial queries such as kNN, trip-
planning queries [15] and collective spatial keyword queries [2] do
not meet Bob’s need effectively and efficiently. To the best of our
knowledge, no previous work on spatial queries address the query
problem arising in the example scenario.

In this paper, we propose a novel type of spatial queries, namely
Nearest Window Cluster (NWC) queries that finds a clustered of
objects located in a spatial window nearest to a query point, e.g.,
the query issuer’s location. Given a query point q, window length
l and window width w, and the number of objects to find n, NWC
(q, l,w,n) returns n objects located within a window of length l
and width w, where the distance from these n objects to q is the
shortest.1

Two main challenges arise in processing the NWC queries. First,
while the locations of data objects are given, the locations of qual-
ified windows are unknown in advance.2 Second, the number of
qualified windows may be huge. To address these challenges, we
identify several properties that allow us to find qualified windows
quickly. Accordingly, we develop an NWC algorithm that itera-
tively finds the nearest qualified window to return the objects within
the qualified window. To facilitate efficient visits of data objects,
we adopt R-tree to index the data objects.

Observing that the bottleneck of the NWC algorithm lies in find-
ing the nearest qualified window, we propose four optimization
techniques, namely search region reduction (SRR), distance-based
pruning (DIP), density-based pruning (DEP) and incremental win-
dow query processing (IWP) to accelerate searching the nearest

1We will discuss distance measures in Section 2.
2A window is considered as qualified if it contains n objects.
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qualified window, thereby improving the efficiency of the NWC
algorithm. The SRR technique takes advantage of the distance of
the best objects found so far to shrink the search regions of quali-
fied windows and prune some objects from further processing. The
DIP technique uses the distance of the best objects found so far
to safely prune the index nodes distant from the query location q,
thereby reducing the I/O cost. Inspired by the clustering effect of
spatial objects [1] (e.g., certain objects such as clothes shops are
usually clustered in some hot areas), the DEP technique maintains
a density grid of the whole object space that records the number
of objects in each grid cell. With the density grid, the DEP tech-
nique is able to prune the index nodes with insufficient objects and
to avoid redundant window queries incurred during query process-
ing. Finally, to alleviate the cost of window queries generated by
the NWC algorithm, the IWP technique inserts backward and over-
lapping pointers into the leaf nodes and some intermediate nodes
of the R-tree. With these pointers, fewer index nodes are involved
for window queries, thereby achieving better performance.

The rest of this paper is organized as follows. In Section 2, we re-
view related work and present the problem definition. In Section 3,
we elaborate the properties of NWC queries and develop the NWC
algorithm based on these properties. In addition, four optimiza-
tion techniques are proposed to accelerate NWC query processing.
The performance of the NWC algorithm is analyzed in Section 4,
while the experimental results of the NWC algorithm are reported
in Section 5. Finally, we conclude this paper in Section 6.

2. PRELIMINARIES

2.1 Problem Formulation and Transformation
Based on the application scenario discussed earlier, we consider

a set of static data objects, denoted as P, in two-dimensional Eu-
clidean space.3 The nearest window cluster query is formally de-
fined as below.

Definition 1 (Nearest Window Cluster (NWC) Query) Given a query
point q, a spatial window area specified by length l and width w,
and the number of data objects n, a nearest window cluster query
NWC(q, l,w,n) aims to retrieve n objects satisfying the following
criteria:

1. these n objects are clustered within a spatial window of length
l and width w, and

2. the distance from the window with these n objects reside to
q is the shortest among all other windows with n objects sat-
isfying (1).

To facilitate our discussion, we define the notion of qualified
window with respect to an NWC query as follows.

Definition 2 (Qualified Window) Given an NWC query (q, l,w,n),
a qualified window, denoted as qwin, is a window of length l and
width w that contains data objects Sqwin = {p1, p2, . . . , p|Sqwin|}⊆P,
where |Sqwin| ≥ n.

Let MINDIST (q,qwin) be the distance from q to the closest
point in the qualified window qwin covering {p1, p2, . . . , pn}. As
the distance measure mentioned above aims to measure the dis-
tance between q and these n objects, denoted as {p1, p2, . . . , pn},
we consider the following in our algorithm.
3We focus on 2D data objects in accordance with real-world appli-
cations. The proposed algorithms could be easily adjusted to three
dimensional space.

• Minimum distance:

distmin(q,{p1, p2, . . . , pn}) = min
i=1,2,...,n

dist(q, pi) (1)

• Maximum distance:

distmax(q,{p1, p2, . . . , pn}) = max
i=1,2,...,n

dist(q, pi) (2)

• Average distance:

distavg(q,{p1, p2, . . . , pn}) =
1
n

n

∑
i=1

dist(q, pi) (3)

• Nearest window distance:

distnearest(q,{p1, p2, . . . , pn}) =

min
∀qwin∈qwins

(
MINDIST (q,qwin)

)
, (4)

where qwins is a set of all qualified windows containing {p1,
p2, . . . , pn}.

With the above definitions, we can transform the problem of
NWC query processing as below.

Problem Transformation. When MINDIST (q,qwin) is always
smaller than or equal to dist(q,{p1, p2, . . . , pn}), the processing of
an NWC query can be performed by incrementally finding the next
nearest qualified window to q and using the distance of the best
objects found so far, denoted as distbest , to prune the search space
until no better qualified window is found.

Specifically, we can solve the NWC query by the following steps.

Step 1: Set distbest to ∞ and set ob js to /0.

Step 2: Find the nearest qualified window qwin.

Step 3: If qwin is found and MINDIST (q,qwin) < distbest , per-
form Steps 4-6. Otherwise, go to Step 7.

Step 4: Let {p1, p2, . . . , pn} be the n objects in qwin of the shortest
distance to q.

Step 5: If dist(q,{p1, p2, . . . , pn})< distbest , set ob js to {p1, p2, . . . , pn}
and distbest to dist(q,{p1, p2, . . . , pn}).

Step 6: Find the next nearest qualified window qwin and go to Step
3.

Step 7: Return ob js.

Clearly, MINDIST (q,qwin) is always smaller than or equal to min-
imum, maximum, average and nearest window distances between
q and {p1, p2, . . . , pn} (see Equations (1), (2), (3) and (4), respec-
tively). As the bottleneck of the above procedure is in finding the
nearest qualified window, we will focus on nearest qualified win-
dow search for the rest of this paper. The advantages of using near-
est qualified window search to process an NWC query are twofold.
First, the above procedure can be used for other distance measures
as long as MINDIST (q,qwin) can be used as the lower bound of
the employed distance measures. Second, the properties of nearest
qualified window search can be used to efficiently process NWC
queries.
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Table 1: List of used symbols
Symbol Description
P Data object set
TP R-tree on P
q query location
n the desired number of data objects
SRp search region of object p
qwinp best qualified window of p
Sqwinp the set of the data objects inside qwinp
|Sqwinp | the cardinality of Sqwinp

dist(q,{p1, p2, . . . , pn}) the distance between q and {p1, p2, . . . , pn}
ob js the best objects found so far
distbest the distance of the best objects found so far

2.2 Related Work
In the past two decades, a large number of spatial queries have

been proposed and studied by researchers in the database commu-
nity. Here we focus on the variants of NN queries due to their
relevance to our work. Constrained NN [8] queries find the near-
est neighbor(s) constrained to a specific region instead of the entire
data space. Nearest surround (NS) queries [13] consider the ob-
ject orientation and retrieve the nearest neighbors at different an-
gles with respect to the query location q. A reverse NN (RNN)
query [12][21] finds all the data objects with q as their nearest
neighbor. RkNN queries [19][3] search for all the data objects
that have q as one of their k nearest neighbors. The ranked RNN
(RRNN) query [14] allows to identify and rank the t data objects
most influenced by q. Different from typical RNN queries, RFN [22]
queries find the objects that have q as their furthest neighbor. With
RFN queries, a plant producing hazardous gas could be constructed
at a point with fewest residents being affected.

Group NN (GNN) queries [16] (also known as aggregate NN [17]
queries) retrieve the data object(s) with the smallest sum of dis-
tance to Q where Q is the set of query points. GNN queries are
useful when a group of friends intend to find a meeting restaurant
with the minimum distances to them. Group nearest group (GNS)
queries [6], a generic version of GNN queries, return more objects
for gathering to reduce the traveling costs of users. With data ob-
ject set P and target object set Q, optimal-location-selection (OLS)
queries [9] find q ∈Q outside a specific region R with maximal op-
timality where the optimality metric is determined by to the number
of data objects in R and the accumulated distances to q. OLS query
is useful for applications like optimal lifeguard station selection.
Range NN (RangeNN) queries [11][5] search for the NNs for ev-
ery point in a rectangle. It could be used to offer location privacy
and computation saving. Given a specified window size, the maxi-
mizing range sum (MaxRS) problem [4] is to find the window win
with the largest sum of weights of all objects within win among all
candidate windows of the specified window size. Although bearing
similarity to the proposed NWC queries, the MaxRS problem does
not consider any query location and thus is naturally different from
the proposed NWC query.

3. PROCESSING NEAREST WINDOW CLUS-
TER QUERIES

In this section, we elaborate the NWC query processing based
on the procedure of nearest qualified window search mentioned in
Section 2.1. First, we identify some unique properties of the near-
est qualified windows in Section 3.1. Based on these properties, we
develop an NWC algorithm to find the nearest qualified window of

the NWC query in Section 3.2. To improve the efficiency of NWC
search, in Section 3.3, we further propose four optimization tech-
niques, including (i) search region reduction, (ii) distance-based
pruning, (iii) density-based pruning and (iv) incremental window
query processing to reduce the search cost. To facilitate better read-
ability, the symbols used throughout this paper are listed in Table 1.

3.1 Properties of the Nearest Qualified Win-
dows

In this section, we introduce the following properties regarding
the nearest qualified window to facilitate efficient NWC search.

Lemma 1 The nearest qualified window of an NWC query, or one
of its equivalent qualified windows, has at least one object on one
vertical edge and at least one object on one horizontal edge.

PROOF. The proof is omitted for the interest of space.

A qualified window qwin is said to be generated by a data object
p when p is on at least one edge of qwin. Therefore, we use data ob-
jects as the basis to generate qualified windows and consider only
those qualified windows generated by some data objects for NWC
query processing. In other words, we consider only those qualified
windows generated by data objects on one vertical or horizontal
edge based on the relative position of q and object p. Furthermore,
based on Lemma 1, we can utilize the lying quadrant of p (with
q as the origin) to determine that we merely need to evaluate the
qualified windows with p on the right or left edge (top or bottom
edge) by the following two observations.

1. Consider a qualified window, say qwin, generated by data
object p on one of the vertical edges (denoted by eR or eL).
When p is in the first or fourth quadrant with respect to the
origin q, p must be on the right edge eR of qwin; when p is
in the second or third quadrant, p must be on the left edge eL
of qwin.

2. Consider a qualified window, say qwin, generated by data
object p on one of the horizontal edges (denoted by eT or
eB). When p is in the first or second quadrant with respect to
the origin q, p must be on the top edge eT of qwin; when p is
in the third or fourth quadrant, p must be on the bottom edge
eB of qwin.

3.2 NWC Algorithm
With the above properties and the steps discussed in Section 2.1,

we present the NWC algorithm which incrementally finds the next
qualified window to q and uses the distance of the best object found
so far (distbest ) to prune the search space until no better qualified
window is found. Since the bottleneck of the NWC algorithm lies
in finding the nearest qualified window, we focus on nearest quali-
fied window search. The idea of the NWC algorithm is as follows.
The NWC algorithm visits all data objects based on their distance
to the query location q in ascending order. To facilitate efficient
visits of data objects, we adopt R-tree to index the data objects.
When visiting an object p, the NWC algorithm creates the search
region for object p (denoted as SRp) to cover all qualified windows
generated by p, and then find all qualified windows generated by p
(i.e., qualified windows within SRp). When a qualified window, say
qwinp, is discovered and MINDIST (q,qwinp)< distbest , the NWC
algorithm retrieves the n objects, say {p1, p2, · · · , pn}, in qwinp
of the shortest distance to q and checks whether dist(q,{p1, p2,
· · · , pn})< distbest . If so, the NWC algorithm sets ob js and distbest
to {p1, p2, · · · , pn} and dist(q,{p1, p2, · · · , pn}), respectively. The
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NWC algorithm repeats the above steps until no better qualified
window is found.

We now discuss how to build SRp covering all qualified windows
generated by p. According to the observations in Section 3.1, p has
to be on the vertical and horizontal edges in order to guarantee all
potential qualified windows generated by p are contained in SRp.
In fact, we consider p only on either the vertical or the horizontal
edge for building SRp because the other case is handled naturally
while processing other objects. Specifically, if SRp is built on the
condition that p is on the vertical edge, the other potential quali-
fied windows on the condition that p is on the horizontal edge will
be contained within the search region of another object p′ on the
vertical edge (i.e., SRp′ ). To avoid redundant computation, when
visiting data object p, we consider p only on the vertical edge for
SRp construction. Due to space limitation, we mainly explain the
case where p is in the first quadrant with respect to the origin q (i.e.,
p is on the right edge) since the other cases are able to be addressed
similarly.

With p on the right edge, the four vertexes v1, v2, v3 and v4 of
SRp are defined below, where xp and yp are the x and y coordinates
of p, respectively.

xv1 = xp− l yv1 = yp−w xv2 = xp yv2 = yp−w

xv3 = xp yv3 = yp +w xv4 = xp− l yv4 = yp +w

It is obvious that all windows generated by p are inside SRp.
Therefore, the NWC algorithm is able to evaluate only data objects
inside SRp for identifying the qualified windows generated by p. To
do so, the NWC algorithm retrieves all the objects within SRp by is-
suing a window query with SRp as the query window. To efficiently
obtain the qualified windows generated by p, the NWC algorithm
first reorders the objects in SSRp based on their y coordinates in as-
cending order and then skips the objects with y coordinates lower
than p. The data objects below p are skipped because their asso-
ciated qualified windows would not contain p. Finally, the NWC
algorithm sequentially visits each object remaining in SSRp , say p′,
to consider the window, say qwinp, with p on the right edge and p′

on the top edge for each p′.
When a window qwinp is considered, the NWC algorithm evalu-

ates whether qwinp is qualified. If the number of objects within
qwinp is smaller than n (i.e., |Sqwinp | < n), qwinp is not quali-
fied and the NWC algorithm skips qwinp. When qwinp is qual-
ified, (i.e., |Sqwinp | ≥ n), the NWC algorithm retrieves the n ob-
jects, say {p1, p2, · · · , pn}, in qwinp of the shortest distance to q. If
dist(q,{p1, p2, · · · , pn})< distbest , the NWC algorithm sets distbest
and ob js to dist(q,{p1, p2, · · · , pn}) and {p1, p2, · · · , pn}, respec-
tively. Otherwise, the NWC algorithm skips qwinp and considers
another window generated by p.

We use the example in Figure 2 to illustrate the process of iden-
tifying qualified windows in SRp. Let’s consider an intermediate
step, where p5 is the candidate data object under examination. To
find qwinp5 , the NWC algorithm first builds SRp5 based on the
residing quadrant of p5 to q and retrieves all data objects within
SRp5 . Since p5 is in the first quadrant, the NWC algorithm sorts
all data objects within SRp5 based on their y coordinates in ascend-
ing order. As shown, the y coordinate of p4 is smaller than that
of p5, so the NWC algorithm skips p4 and sequentially considers
p5, p6, and p7 on the top edge. Suppose that the desired number
of objects in a qualified window is three (i.e., n = 3). When p5
is considered, the window with p5 on the right and top edges is
not qualified since this window contains only two objects. When
p6 is evaluated, the window with p5 on the right edge and p6 on

q
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Figure 2: Discover qwinp from SRp.

the top edge is set to qwinp5 since this window contains three ob-
jects. The NWC algorithm retrieves the three objects of the shortest
distance to q from qwinp5 (i.e., {p4, p5, p6}) and checks whether
dist(q,{p4, p5, p6}) < distbest . If so, distbest and ob js are set to
dist(q,{p4, p5, p6}) and {p4, p5, p6}, respectively. Then the NWC
algorithm continues to find the next window in SRp until all win-
dows in SRp have been evaluated.

3.3 Optimization Techniques
While being able to answer NWC queries, the NWC algorithm

suffers from costly and redundant evaluations of objects and index
nodes. In light of this, we design the following optimization tech-
niques to mitigate the cost of NWC search.

• Search region reduction (SRR): The search region reduction
technique exploits the distance between q and the best ob-
jects found so far (i.e., distbest ) to reduce the search regions
of the remaining data objects, thereby saving the cost of qual-
ified window discovery. Besides, with distbest , SRR tries to
exclude those objects that are unlikely to create closer qual-
ified windows to q, eliminating the redundant evaluation of
those objects.

• Distance-based pruning (DIP): The distance-based pruning
technique takes advantage of distbest to save the access to
the index nodes that are too distant to create closer qualified
windows, thereby achieving reductions in I/O cost.

• Density-based pruning (DEP): We propose to build a density
grid that maintains the number of objects residing in each
grid cell. With the density grid, we propose a density-based
pruning technique to prune the index nodes with insufficient
objects (compared with the numbers of objects requested by
NWC queries) to eliminate unnecessary I/O cost. In addition,
DEP is able to prune some redundant window queries which
do not produce any qualified window.

• Incremental window query processing (IWP): To reduce the
I/O cost to process the window queries generated by the NWC
algorithm, we propose to enhance the R-tree by inserting
backward pointers and overlapping points into the leaf nodes
and some intermediate nodes, respectively. We design the
incremental window query processing technique to use these
backward pointers and overlapping pointers to efficiently pro-
cess these window queries with less I/O costs.

The details of these optimization techniques are described in the
following subsections.

3.3.1 Search Region Reduction
To identify each qualified window qwinp generated by object p,

the NWC algorithm issues a window query with the search region
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Figure 3: Reduced SRp5 with distbest .

SRp of p as the query window. Obviously, the smaller SRp is, the
lower the I/O cost is. Thus, we propose the search region reduction
technique (abbreviated as SRR) to 1) avoid evaluations of unneces-
sary search regions or 2) reduce the sizes of the search regions by
exploiting the following two observations.

• Object p may be so distant to q that all qualified windows
generated by p having distances greater than distbest . For
such object p, building SRp is unnecessary and thus no win-
dow query is issued.

• The qualified windows in the specific portions of SRp may
never have a distance smaller than distbest . Thus, SRp can be
shrunk, leading to smaller query windows.

With distbest , when processing object p, SRR first checks whether
the creation of SRp is necessary based on xp or yp. Specifically,
let the coordinates of the bottom-left vertex of SRp, say v1, be
(xv1 ,yv1). When the distance from q to v1 is greater than distbest ,
there is no need to build SRp since no qualified window generated
by p will be closer to q than distbest . Thus, the reduced search re-
gion of p, denoted as SR′p, is set to be empty. Otherwise, the build-
ing of SRp is necessary. Then, SRR tries to utilize distbest to shrink
SRp into a smaller search region SR′p so that the distance of each
qualified window in SR′p is shorter than distbest . The coordinates of
the four vertices of SR′p are calculated below.

x′v1
= xp− l y′v1

= yp−w x′v2
= xp y′v2

= yp−w

x′v3
= xp y′v3

= yp +w′ x′v4
= xp− l y′v4

= yp +w′

It is clear that w′ is the maximal value making the following two
equations satisfied.

0≤ w′ ≤ w (5)

(xp− l− xq)
2 +(yp +w′−w− yq)

2 ≤ dist(q,qwinbest)
2 (6)

Equation (5) indicates that p should be within SR′p, while Equa-
tion (6) indicates that the minimum distance from q to each win-
dow of length l and width w in SR′p should be shorter than distbest .
According to Equations (5) and (6), the value of w′ is

w′ = min
(

w,
√

dist2
best − (xp− l− xq)2− (yp−w− yq)

)
.

In Figure 3, SSR helps to reduce SRp5 with w′ being only√
dist2

best − (xp5 − l− xq)2− (yp5 −w− yq).

3.3.2 Distance-Based Pruning
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Figure 4: Node N2 can be safely pruned based on distbest .

In addition to reducing search regions of objects, distbest is able
to be used to safely prune some index nodes as long as all qualified
windows created by any object inside these pruned index nodes are
guaranteed to be of distances to q greater than distbest . For example,
index node N2 in Figure 4 can be safely pruned because any qual-
ified window created by any object inside N2 is unlikely to have
the distance to q smaller than distbest . Based on this observation,
we propose the distance-based pruning technique (abbreviated as
DIP) to facilitate the pruning of unvisited index nodes. DIP defines
a pruning region (denoted as PR) based on distbest , l, and w. If
an unvisited index node N is completely inside PR, N is able to be
safely pruned without being visited. With distbest , PR is defined as
below.

PR1 = {(x,y)|x≥ xq +distbest + l,yq ≤ y≤ yq +w}
PR2 = {(x,y)|xq ≤ x≤ xq + l,y≥ yq +distbest +w}
PR3 = {(x,y)|x≥ xq + l,y≥ yq +w

\(x− (xq + l))2 +(y− (yq +w))2 ≤ dist2
best}

PR = PR1∪PR2∪PR3

(7)

As defined in Equation (7), PR is composed of three subregions:
PR1, PR2, and PR3. PR1 guarantees that each qualified window
generated by each object in PR1 has the vertical distance to q greater
than distbest , while PR2 ensures that the horizontal distance be-
tween q and each qualified window generated by each object in PR2
is greater than or equal to distbest . PR3 excludes the region where
an object can be used to generate a qualified window with the dis-
tance to q smaller than distbest . Hence, if index node N is totally
contained within PR, no closer qualified window can be generated
by each object in N and thus N can be safely pruned to reduce I/O
cost.

3.3.3 Density-Based Pruning
The spatial clustering effect in practice leads objects like clothes

shops to be clustered in certain areas. Thus, an index node may
be so sparse that all windows generated by each object in the index
node are not qualified. With this observation, we devise the density-
based pruning technique (abbreviated as DEP) to save I/O cost by
avoiding visits to sparse index nodes. To facilitate DEP, the whole
object space is divided into a gd × gd density grid and each grid
cell is associated with the number of objects within the cell. When
processing an index node, DEP first extends the MBR of the index
node and checks whether the summation of the objects in the grid
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cells intersecting the extended MBR is smaller than n. If so, this
index node will be pruned. We now describe the method to extend
an MBR in the first quadrant with respect to the origin q, and the
other cases can be handled in a similar manner. Suppose that the
counterclockwise order of the four vertices of the MBR is v1,v2,v3
and v4, and v1 is the bottom-left vertex of the MBR. The MBR
can be extended as follows to ensure that all windows generated by
each object within the MBR must be within the extended MBR.

x′v1
= xv1 − l y′v1

= yv1 −w x′v2
= xv2 y′v2

= yv2 −w

x′v3
= xv3 y′v3

= yv3 +w′ x′v4
= xv4 − l y′v4

= yv4 +w′

Besides, it is possible that the search region of an object does not
contain enough objects to generate any qualified window. DEP also
utilizes this observation to eliminate the window queries of such
objects with the aid of the density grid. Specifically, before issuing
a window query for the currently processing object p, DEP checks
whether the summation of the objects in the grid cells intersecting
the search region SRp is smaller than n. If so, DEP cancels the
window query since SRp never contains any qualified window.

3.3.4 Incremental Window Query Processing
As mentioned in Section 3.2, the NWC algorithm issues a win-

dow query with query window SRp (SR′p when SRR is used) to
identify the qualified windows generated by object p. With tradi-
tional window query processing, solving a window query requires
to access the R-tree from root node to some leaf nodes. However,
we observe that some index nodes in the R-tree, especially the in-
dex nodes close to the root node, are usually unnecessary to visit
when processing the window queries issued by the NWC algorithm.
In view of this, we propose to add some backward pointers into
each leaf node of the R-tree and some overlapping pointers into
the nodes pointed by backward pointers. Based on backward and
overlapping pointers, we design an incremental window query pro-
cessing technique (abbreviated as IWP) to allow window queries to
be processed from intermediate nodes instead of root node, thereby
reducing the I/O cost.

Consider an R-tree with height h. Each leaf node is with depth h.
Suppose that there are r backward pointers (denoted as (bp1,mbrb

1),

(bp2,mbrb
2), . . . ,(bpr,mbrb

r )) for each leaf node. It is obvious that
SR′p is very likely to be totally covered by the intermediate nodes

op1, mbro
1 op2, mbro

2

The overlapping pointers and MBRs of 
other intermediate nodes are omitted.

Node Ni

Figure 6: An illustrative example of overlapping pointers

close to the leaf node containing p. Thus, inspired by Exponential
Index [20], for a leaf node s, the backward pointers are set by the
following rules.

1. The first backward pointer bp1 points to s.

2. bpi, where 1 < i < r, points to the ancestor of s with depth
h−2i−2.

3. The last backward pointer bpr points to the root node.

4. mbrb
i , where 1 ≤ i ≤ r, is the MBR of the node pointed by

bpi.

According to the third rule, r is the smallest integer making the
following equation true.

h−2r−2 ≤ 0

Thus, we can obtain that r = dlog2 h+2e.
Figure 5 shows an illustrative example of backward pointers.

Only part of an R-tree with height eight is shown for better readabil-
ity. Since h = 8, each leaf node is of r = dlog2 8+2e= 5 backward
pointers (i.e., gray squares in Figure 5). bp1 points to the leaf node,
while bp2, bp3, bp4 and bp5 point to the ancestors of the leaf node
with depth 7, 6, 4 and 0, respectively.

Since most variants of R-tree do not guarantee the MBRs of in-
termediate nodes in the same depth level to be non-overlapped, us-
ing only backward pointers to incrementally process window queries
may lead to wrong query results. Therefore, some overlapping
pointers are needed for the nodes pointed by backward pointers (ex-
cept the root node) to facilitate correct incremental window query
processing. We use the example in Figure 6 to illustrate the over-
lapping pointers. Since overlapping with two other nodes with the
same depth, the node Ni is of two overlapping pointers ((op1,mbro

1),
(op2,mbro

2)) where op j is the pointer pointing to the j-th interme-
diate node with the same depth as Ni and overlapping with Ni, and
mbro

j is the MBR of the node pointed by op j.
With backward pointers and overlapping pointers, a window query

can be incrementally processed as follows. When an object p is
inserted into the priority queue PQ, the backward pointers of the
leaf node where p is stored are also inserted into PQ along with p.
When processing the window query with SR′p as the query window,
instead of searching from the root node of the R-tree, IWP retrieves
the corresponding backward pointers, finds the smallest value of i
so that SR′p is totally covered by mbrb

i , and searches from the node
pointed by bpi. In addition, for each overlapping pointer op j of the
node pointed by bpi, IWP also executes the window query from the
node pointed by op j when mbro

j overlaps with the query window.
Finally, the NWC algorithm enhanced with optimizations as well

as some companion functions are given in Algorithms 1, 2 and 3.

3.4 k Nearest Window Cluster Query Process-
ing

An NWC query is to provide the user with an area with n objects
(choices). In practice, it is possible that the user even would like
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Algorithm 1: NWC algorithm enhanced with optimizations
Data: NWC query (q, l,w,n), priority queue PQ
Result: a set of n objects

1 distbest ← ∞, ob js← /0, PR← /0 ;
2 PQ.enqueue(Root of TP) ;
3 while |PQ|> 0 do
4 p← PQ.dequeue() ;
5 if p is an index node then
6 MBRp← the MBR of p ;
7 Extend MBRp as MBR′p based on DEP ;
8 if MBRp−PR 6= /0 and isPrunedByDEP(MBR′p) is FALSE then
9 for each child c of p do

10 PQ.enqueue(c) ;

11 else
// p is an object

12 determine the lying quadrant of p with respect to q ;
13 determine whether p is on the left or right edge ;
14 build SRp and reduce SRp as SR′p by SRR ;
15 if SR′p 6= /0 and isPrunedByDEP(SR′p) is FALSE then
16 SSR′p ← IWP (SR′p) ;

17 sort SSR′p in ascending/descending order of y coordinates ;

18 remove pi from SSR′p when the y coordinate of pi is

smaller/larger than the y coordinate of p ;
19 for i = 1 to |SSR′p | do
20 build qwinp by setting p on the right/left edge and pi on the

top/bottom edge ;
21 if |Sqwinp | ≥ n and MINDIST (q,qwinp)< distbest then
22 let {p1, p2, . . . , pn} be the n objects in qwinp of the

shortest distance to q ;
23 if dist(q,{p1, p2, . . . , pn})<distbest then
24 distbest ← dist(q,{p1, p2, . . . , pn}) ;
25 ob js←{p1, p2, . . . , pn} ;
26 update PR accordingly ;

27 return ob js ;

Algorithm 2: Function isPrunedByDEP (rect, n)
Data: a rectangle rect
Result: whether rect is pruned by DEP

1 ub← 0 ;
2 for each cell cell in the density grid do
3 if cell intersects rect then
4 ub← ub+the number of objects in cell;

5 if ub < n then
6 return TRUE;

7 else
8 return FALSE;

Algorithm 3: Function IWP (rect)
Data: a rectangle rect
Result: the set of objects within rect

1 result← /0, nodes← /0 ;
2 fetch the backward pointers associated with p ;
3 for i=1 to r do
4 if rect ⊆ mbrb

i then
5 Ni← the index node pointed by bpi ;
6 insert Ni into nodes ;
7 break ;

8 for each overlapping pointer op j of Ni do
9 if mbro

j ∩ rect 6= /0 then
10 insert the index node pointed by op j into nodes ;

11 for each node N in nodes do
12 perform traditional window query processing with query window rect

starting from N ;
13 insert the resultant objects into result ;

14 return result ;

to retrieve multiple areas so that the user is able to pick a proper
area from them. To satisfy such needs, we extend NWC queries to
kNWC queries that enable users to retrieve k object groups where
each group consists of n objects located within a window of length
l and width w. It is obvious that the user is not willing to get k
object groups and each pair of groups consist of almost the same
objects. Thus, we introduce a new parameter m which allows a user
to specify the maximal number of identical objects allowed in each
pair of groups. The formal definition of a kNWC query is given
below.

Definition 3 (kNWC Query) Given a query location q, a spatial
window area specified by length l and width w, the number of data
objects n, and the maximal number of identical objects, say m, in
any two object groups, a k nearest window cluster (kNWC) query
(k,q, l,w,n,m) retrieves k object groups, ob js1,ob js2, . . . ,ob jsk,
satisfying the following criteria.

• Each object group consists of n objects within a window of
length l and width w.

• For each pair of object groups, ob js1 and ob js2, there are
at most m objects in both ob js1 and ob js2 (i.e., |ob js1 ∩
ob js2| ≤ m).

• The k object groups are ordered by their distances to q in
ascending order. That is, dist(q,ob jsi)≤ dist(q,ob js j) ∀i, j
where i < j.

• For each group of n objects, say ob j′, within a window of
length l and width w and ob j′ 6= ob ji where i = 1,2, . . . ,k, at
least one of the following conditions should be satisfied.

1. dist(q,ob jsk)≤ dist(q,ob js′).

2. There exists an integer i (1≤ i≤ k) so that dist(q,ob ji)≤
dist(q,ob j′) and |ob ji∩ob j′|> m.

It is obvious that Lemma 1 also holds for kNWC queries. To
answer kNWC queries, similar to NWC queries, we are allowed
to consider only those qualified windows with objects on their ver-
tical and horizontal edges. Based on Lemma 1, we now design
the kNWC algorithm, an extension of the NWC algorithm, to sup-
port kNWC queries as below. The kNWC algorithm maintains the
k object groups {ob js1,ob js2, . . . ,ob jsk} found so far in groups
and sorts the k object groups by their distances to query location q
in ascending order. The optimization techniques proposed in Sec-
tion 3.3 can also be used to mitigate the I/O cost of identifying the
nearest qualified windows of a given kNWC query. Specifically,
when k object groups are obtained, the distance between q and the
k-th object group (i.e., dist(q,ob jsk)) is employed in SRR to re-
duce the search regions of remaining objects and in DIP to prune
remaining index nodes. When finding a qualified window qwinp,
the kNWC algorithm performs the following steps to handle qwinp.

• Step 1: Let ob jsp = {p1, p2, . . . , pn} be the n objects in qwinp
of the shortest distance to q.

• Step 2: Scan groups in reverse order to find the first object
group, say ob jsi, which is of distance shorter than ob jsp. In
case that no such i exists, set i to 0 and go to Step 4. If i = k,
drop ob jsp and stop this procedure.

• Step 3: Check whether |ob jsp ∩ ob js j| ≤ m for each ob js j,
j = 1,2, . . . , i. If not, drop ob jsp and stop this procedure.

• Step 4: Remove ob jsk from groups and insert ob jsp into
groups at position i+1 (i.e., as ob jsi+1 = ob jsp).
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• Step 5: Check whether |ob jsp ∩ ob js j| ≤ m for each ob js j,
j = i+ 2, i+ 3, . . . ,k− 1. Remove ob js j from groups when
|ob jsp∩ob js j|> m.

4. THEORETICAL ANALYSIS

4.1 Time Complexity Analysis of NWC Algo-
rithm

In this section, we develop a cost model to analyze the I/O cost
of the NWC algorithm. To facilitate the following discussion, as
shown in Figure 7, the space is divided into multiple disjoint rect-
angles of height l and width w. Since the NWC algorithm visits the
objects according to their distances to q in ascending order [10], it
is very likely that the NWC algorithm visits the objects in all level-
i rectangles and then visits the objects in all level-i+ 1 rectangles
until the best objects are found.

We assume that the objects in an area are Poisson distributed with
mean λ . For simplicity, we also assume that the probability that a
window is not qualified is independent of the probability of any
other window. Thus, the average number of objects in a window of
length l and width w is λ × l×w and the probability that a window
is not qualified is

P = P{X ≤ n−1}= e−λ×l×w
n−1

∑
i=0

(λ × l×w)i

i!
. (8)

An object in a level-i rectangle is called a level-i object, while a
qualified window generated by a level-i object is called a level-i
qualified window. Due to the effect of DIP, we also assume that the
objects within a level-i qualified window can be verified as the best
objects only when 1) there is no level- j qualified window, where
j = 1,2, · · · , i− 1, and 2) all level-i qualified windows have been
checked.

Consider an object p. The NWC algorithm issues a window
query to retrieve all objects within the search region of p (i.e.,
SRp) and the average number of objects in the upper-half of SRp
is λ × l×w. For each object p′ on the upper-half of SRp, the NWC
algorithm then generates one window with p on the right edge and
p′ on the top edge and checks whether the window is qualified or
not. Thus, the average number of windows generated by an object
is λ × l×w, and the probability that an object cannot generate a
qualified window is Pλ×l×w.

Let N(i) be the number of level-i rectangles and it is clear that

N(i) = (2i)2− (2(i−1))2 = 8i−4. (9)

We can obtain that the average number of level-i objects is N(i)×
λ × l×w. Denote the probability that there is no level-i qualified
window (that is, all windows generated by all level-i objects are not
qualified) to be Q(i). Since there is no level-0 rectangle, Q(0) = 1.

For each positive integer i, we can derive that

Q(i) =
N(i)×λ×l×w

∏
j=1

Pλ×l×w = PN(i)×(λ×l×w)2
.

The probability that the qualified window consisting of the best
objects is a level-i qualified window is (1−Q(i))×∏

i−1
j=0 Q( j).

Consider the case that the qualified window consisting of the
best objects is a level-i qualified window. All level- j objects, where
j = 1,2, . . . i, should be retrieved. Let the average number of objects
to be retrieved in this case be O(i). We can obtain

O(i) =
i

∑
j=1

N(i)×λ × l×w = 2× i2×λ × l×w. (10)

Since these objects are retrieved in accordance with their distances
to q, the average I/O cost to retrieve them is close to the average
I/O cost of using K nearest neighbor query to retrieve O(i) objects.
For each retrieved object p, the NWC algorithm issues a window
query to get the objects within SRp, and thus, the average number
of issued window queries is O(i). Let the average I/O cost to use
K nearest neighbor query to retrieve K objects be KNN(K), and
let the average I/O cost of a window query of length l and width
w be WIN(l,w). The average I/O cost when the qualified window
consisting of the best objects is a level-i qualified window is O(i)×
WIN(l,w)+KNN(O(i)).

Suppose that the whole space contains at most level-MaxLV rect-
angles. The average I/O cost of the NWC algorithm is

MaxLV

∑
i=1

{[
(1−Q(i))×

i−1

∏
j=0

Q( j)

]
×
[
O(i)×WIN(l,w)+KNN(O(i))

]}
,

where WIN(l,w) can be obtained from [18] and KNN(K) can be
obtained from [10].

4.2 Time Complexity Analysis of kNWC Algo-
rithm

Let the probability that a window is not qualified be P where P
can be obtained by Equation (8). Let the probability that a quali-
fied window consists of at most m identical objects with each ob-
ject group in groups be Pr(m,k). Thus, the probability that the
objects within a window cannot be inserted into groups be P′ =
1− [(1−P)×Pr(m,k)]. Suppose that the object group within a
level-i qualified window will not be removed from groups due to
the insertion of any object group within a level- j qualified win-
dow where j > i. Therefore, when the object group within a level-i
qualified window becomes the k-th nearest object group, the kNWC
algorithm will terminate when all object groups within level-i qual-
ified windows have been checked.

We now derive the probability that the k-th nearest object group
is within a level-i qualified window. Due to the effect of SRR and
DIP, we assume that the k-th nearest object group is within a level-i
qualified window only when 1) the number of object groups within
level- j, where j = 1,2, . . . , i− 1, qualified windows inserted into
qwinsbest is smaller than k and 2) the number of object groups
within level- j, where j = 1,2, . . . , i, qualified windows inserted into
qwinsbest is larger than or equal to k.

As shown in Equation (10), the average number of all level- j
objects, where j = 1,2, . . . , i, is O(i). Since the average number
of windows generated by an object is λ × l ×w, the probability
that there are a object group within level- j, where j = 1,2, . . . , i,
qualified windows inserted into groups is

R(i,a) =CO(i)×λ×l×w
a × (1−P′)a×P′O(i)×λ×l×w−a.
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Figure 8: Distributions of the used datasets

Table 2: Description of datasets
Dataset Cardinality Description
CA 62,556 Real places in California
NY 255,259 Real places in New York
Gaussian 250,000 Generated by Gaussian distribution

According to Equation (9), there are N(i) level-i rectangles and the
average number of level-i objects is N(i)× λ × l×w. Therefore,
the probability that there are at least b object groups within level-i
qualified windows inserted into groups is

S(i,b) = 1−
b−1

∑
d=1

[
CN(i)×(λ×l×w)2

d × (1−P′)d ×P′N(i)×(λ×l×w)2−d
]
.

Therefore, the probability that the k-th nearest object group within
a level-i qualified window is

k−1

∑
j=0

[
R(i−1, j)×S(i,k− j)

]
.

When the k-th nearest object group is within a level-i qualified
window, the kNWC algorithm visits all objects in all level- j rectan-
gles, where j = 1,2, . . . , i. Similar to the derivations in the previous
subsection, the average I/O cost when the k-th nearest object group
is a level-i qualified window is O(i)×WIN(l,w) +KNN(O(i)).
Suppose that space contains at most level-MaxLV rectangles. The
average I/O cost of the kNWC algorithm is

MaxLV

∑
i=1

{[
k−1

∑
j=0

[
R(i−1, j)×S(i,k− j)

]]
×

[
O(i)×WIN(l,w)+KNN(O(i))

]}
.

5. PERFORMANCE EVALUATION
In this section, we conduct experiments to evaluate the perfor-

mance of the proposed NWC algorithm and the proposed optimiza-
tion techniques. All algorithms are implemented in Java. Three
datasets, two real and one synthetic, are used in the evaluation. The
CA dataset contains 62,556 places in California4, while the NY5

dataset contains 255,259 places in New York. The data space for
these two real datasets are normalized to a square of width 10,000.
The synthetic dataset is created based on Gaussian distribution with
mean 5000 and standard deviation 2000. The cardinality of the
Gaussian dataset is default at 250,000. These datasets are summa-
rized in Table 2, while Figure 8 depicts the object distributions of

4http://www.chorochronos.org/
5http://www.census.gov/geo/www/tiger

Table 3: Description of schemes
Optimization Technique(s) Used

Scheme SRR DIP DEP IWP
NWC - - - -
SRR X - - -
DIP - X - -
DEP - - X -
IWP - - - X
NWC+ X X - -
NWC* X X X X
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2000 1750 1500 1250 1000
Standard Deviation

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

I/
O

 C
o
st

NWC
SRR

DIP
DEP

IWP
NWC+

NWC*

Figure 10: Effect of object
distribution

these datasets.
All datasets are indexed by R∗-trees with the page size set to

4096 bytes. The maximum number of entries in a node is 50. The
default value of n is 8 and the window length and width are both
8. The grid cell size is set to 25. Similar to [18][10], we consider
I/O cost as the performance metric, which is the number of R∗-tree
nodes visited, since I/O cost dominates the total execution time of
the NWC algorithm. We run 25 queries for each experiment and
report the average as the experimental result. To measure the ben-
efit of each optimization technique, we separately run the exper-
iments of the NWC algorithm augmented with each optimization
technique (labelled as SRR, DIP, DEP and IWP, respectively). In
addition, we devise a scheme NWC+ by enabling only SRR and
DIP (which do not incur extra storage overhead). Finally, we de-
vise a scheme NWC* which enables all optimization techniques
proposed in this work. The schemes compared in the experiments
are summarized in Table 3. In the following, we show our experi-
mental results by varying various parameter settings, including grid
size, object distribution, number of objects and window size.

5.1 Effect of Grid Size
In this experiment, we investigate the effect of the grid size by

varying the grid size from 25 to 400. Since only scheme DEP uses
the density grid, we present only the experimental results of scheme
DEP here. Figure 9 shows that for the CA and Gaussian datasets,
the I/O cost increases along with the grid size. With the smaller
grid size, the granularity of the density grid gets finer. Thus scheme
DEP is able to obtain tighter upper bounds during query process-
ing, thus achieving better pruning effect. For the NY dataset, it is
interesting to see that the I/O cost of scheme DEP stays nearly con-
stant regardless of the grid size, as depicted in Figure 9. The reason
is that the objects in the NY dataset are highly clustered in certain
areas, resulting in less effective pruning even when the grid size is
small. This result indicates that scheme DEP could not benefit from
the density grid for extremely clustered data distributions.

5.2 Effect of Object Distribution
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Figure 11: Effect of the number of search objects
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Figure 12: Effect of window size

We study the effect of the object distribution on the performance
of all the schemes in this experiment by generating five Gaussian
datasets. We fix the same mean 5,000 but varying standard devia-
tions from 2,000 to 1,000. As shown in Figure 10, the I/O cost of
scheme NWC increases as the standard deviation decreases. When
the standard deviation gets smaller, the data objects are more clus-
tered and more objects are within search regions. Thus, scheme
NWC has to access more nodes to process these window queries is-
sued for the search regions. On the contrary, for schemes SRR, DIP,
and NWC+, their I/O costs decrease as the standard deviation gets
smaller. In our experiment, the I/O cost reduction rates of schemes
SRR, DIP and NWC+ over scheme NWC increase from 57% to
93% as the standard deviation decreases from 2000 to 1000. This is
because the more clustered object distribution leads these schemes
to be able to find locally best qualified windows (a qualified window
qwin is called locally best if MINDIST (q,qwin) < distbest when
qwin is discovered) more easily, achieving better pruning effect.
It is not surprising that scheme NWC+ outperforms schemes SRR
and DIP by using SRR and DIP together.

On the other hand, the I/O costs of schemes DEP and IWP in-
crease as the standard deviation decreases. As discussed above,
scheme DEP performs well in nearly uniformly distributed datasets,
but achieves relatively poor performance when the object distribu-
tion is highly clustered. In our experiment, the I/O cost reduction
rate of scheme DEP over scheme NWC decreases from 54.8% to
14.1% along with the decrease of the standard deviation. Regard-
ing scheme IWP, the performance downgrades owing to that the
more highly clustered data objects cause more index nodes to over-
lap together and thus increases the number of overlapping pointers.
The more overlapping pointers are, the more index nodes scheme
IWP accesses. In our experiment, the I/O cost reduction rate of
scheme IWP over scheme NWC decreases from 59.5% to 55.6%
as the standard deviation decreases from 2000 to 1000. From the

experimental result, we can observe that the proposed optimization
techniques are complementary with each other. SRR and DIP per-
form well on highly clustered datasets (i.e., with small standard de-
viations) while DEP and IWP outperform SRR and DIP on nearly
uniformly distributed datasets (i.e., with large standard deviations).
By combining the advantages of all the optimization techniques,
scheme NWC* performs the best in terms of I/O cost and signifi-
cantly reduces 98.3% I/O cost compared with scheme NWC. More-
over, the I/O cost reduction of scheme NWC* over scheme NWC+
is ranging from 73.8% to 79.7%, showing that the small storage
overhead produced by DEP and IWP really pays off especially on
the cases not suitable for SRR and DIP.

We now evaluate the storage overheads of scheme DEP and scheme
IWP. When the grid size is set to 25, the density grid is of 160000
grids. As we use short integer to store the number of object in each
cell, the storage overhead of DEP (the size of the density grid) is
about 312KB. On the other hand, it is obvious that the numbers
of backward and overlapping pointers are proportional of object
numbers. The numbers of backward and overlapping pointers for
the CA, NY and Gaussian datasets are 26473, 6236 and 29037, re-
spectively. Suppose that the size of one pointer is 4 bytes. The
storage overheads of IWP (the size of these pointers) in the CA,
NY and Gaussian datasets are about 103KB, 24KB and 113KB,
respectively. These storage overheads are acceptable.

5.3 Effect of the Number of Searched Objects
This experiment evaluates the effect of the number of searched

objects n. In the experiment, we vary the value of n from 8 to 128.
Note that we set the y axis in logarithmic scale in this and the fol-
lowing experiments due to the varied scale of I/O cost. Figure 11
shows that the I/O cost of scheme NWC almost stays constant be-
cause scheme NWC accesses all the objects in R*-tree regardless of
the value of n. The other schemes suffer from higher I/O costs with
the value of n increasing, because a larger value of n causes more
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index nodes to be accessed in order to find the locally best qualified
windows. When the value of n is too large to find any qualified win-
dow, schemes SRR, DIP and NWC+ would degenerate to scheme
NWC since no pruning is achieved. As shown in Figure 11a, the
I/O costs of scheme SRR, DIP, and NWC+ are equal to the I/O cost
of scheme NWC when the value of n is larger than or equal to 32.
Similarly, Figure 11c shows that schemes SRR, DIR, and NWC+
incur the same I/O cost as scheme NWC when the value of n is 8
or larger. These three schemes degenerate faster in the Guassian
dataset because the data objects are nearly uniformly distributed in
the Gaussian dataset. Different from the CA and Gaussian datasets,
schemes SRR, DIP, and NWC+ still outperform scheme NWC in
the NY dataset even when the value of n is 128. The reason is that
the highly clustered objects in the NY dataset allow these schemes
to find locally best qualified windows quickly even for large values
of n.

On the other hand, schemes DEP and IWP are more resilient to
the increase of the value of n. For scheme DEP, it prunes more in-
dex nodes and search regions when the value of n gets larger. Thus,
scheme DEP remains to perform well in the Gaussian dataset as
long as the value of n is large to a certain extent. As shown in
Figure 11c, when n increases from 8 to 128, the I/O cost reduction
rate of scheme DEP over scheme NWC in the Gaussian dataset in-
creases from 18% to 99.1%, showing the benefit of scheme DEP.
For scheme IWP, a larger value of n only affects the performance
slightly because IWP mainly focuses on saving the I/O cost of win-
dow query processing. As such, scheme IWP is able to reduce
the I/O cost in the case that schemes SRR, DIP and DEP per-
forms poorly (e.g., n = 8 in the Gaussian dataset). We can ob-
serve from Figure 11c that the I/O cost reduction rate of scheme
IWP over scheme NWC keeps in 59.6% when n increases from
8 to 128. Due to the complementary advantages of the optimiza-
tion techniques, scheme NWC* performs the best in all the cases,
and compared with scheme NWC, is able to reduce 95.7%∼99.4%,
97.6%∼99.9% and 88.2%∼99.1% I/O costs in the CA, NY and
Gaussian datasets, respectively.

5.4 Effect of the Window Size
In this experiment, we explore the effect of the window size

on I/O costs for all schemes by increasing the window length and
width from 8 to 128. We can see in Figure 12 that the I/O cost
of scheme NWC gets larger as the window size increases. This is
because the larger window sizes result in larger search regions and
more data objects involved in the discovery of qualified windows.
On the contrary, as the window size increases, it is easier to find
locally best qualified windows. With more locally best qualified
windows, schemes SRR and DIP achieve better performance. We
can see in Figure 12c that schemes SRR and DIP degenerate to
scheme NWC in the Gaussian dataset when window size is set to
8. Setting window size to 8 is too small to find any qualified win-
dow in the Gaussian dataset since distribution of the objects in the
Gaussian dataset is close to uniform distribution. Except for such
an extreme case, the I/O cost reduction rates of schemes SRR and
DIP over scheme NWC increase from 93.7% to 99.8% and from
95.5% to 99.9% in the CA and Gaussian datasets, respectively, as
the window size gets from 16 to 128. As depicted in Figure 12b,
the I/O cost reduction rates of schemes SRR and DIP over scheme
NWC in the NY dataset keep in 99.5%∼99.9%. The reason is that
in the NY dataset, there are a large number of data objects and these
data objects are highly clustered. Schemes SRR and DIP are still
able to get enough locally best qualified windows even window size
is set to 8. Thus, increasing the window size does not significantly
increase I/O costs of scheme SRR and DIP. Similar to previous ex-
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Figure 13: Effect of k

periments, scheme NWC+ outperforms schemes SRR and DIP in
all cases.

On the contrary, schemes DEP and IWP do not benefit from
larger window sizes. When the window size gets larger, the number
of qualified windows increases, thereby reducing the pruning effect
of DEP. As the window size is large to a certain extent, scheme DEP
could not achieve any pruning and thus will degenerate to scheme
NWC, referring to Figure 12a and Figure 12b. For scheme IWP, the
large window size results in more overlapping index nodes when
processing window queries, reducing the benefit of scheme IWP.
As such, scheme IWP is less effective for large window sizes. For-
tunately, DEP and IWP are still able to reduce some I/O costs when
SRR and DIP are used. Therefore, scheme NWC* achieves the best
performance and the I/O cost reduction rates of scheme NWC* over
scheme NWC+ are from 88.1% to 21.4%, 21% to 0.6% and 65.8%
to 11.9% in the CA, NY and Gaussian datasets, respectively, when
window size gets from 8 to 128.

5.5 Effect of k
We now evaluate the performance of these schemes for kNWC

queries. We can observe from the above experiments that scheme
NWC+ is of the best performance when extra storage except R-tree
is not available. On the other hand, scheme NWC* performs the
best when extra storage is available. Thus, we only compare the
performance of scheme kNWC+ and scheme kNWC* (extensions
of scheme NWC+ and scheme NWC*, respectively, for kNWC
queries) in this and the following experiments.

Figure 13 shows the effect of k on the CA and NY datasets. It
is obvious that when k gets larger, both schemes need to spend
more time in exploring more qualified windows. As shown in Fig-
ure 13, the I/O costs for both schemes almost linearly increase. As
mentioned in Section 5.4, since the NY dataset is of many highly
clustered objects, the I/O costs of both scheme in the CA dataset
are higher than the I/O costs in the NY dataset. In addition, due to
the effect of DEP and IWP, scheme kNWC* outperforms scheme
kNWC+ in both datasets. Since both schemes perform well in the
NY dataset, the I/O cost reduction rate of scheme kNWC* over
scheme kNWC+ in the CA dataset is higher than that in the NY
dataset. In our experiment, the average I/O cost reduction rates of
scheme kNWC* over scheme kNWC+ in the CA and NY datasets
are around 84.3% and 35.3%, respectively.

5.6 Effect of m
Figure 14 shows the effect of m on the CA and NY datasets.

Setting m to a larger value means that users accept more iden-
tical objects in the nearest qualified windows. When a nearest
qualified window is found, the qualified windows nearby are of
high likelihood to be the qualified windows. Thus, it is easier
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for both schemes to find k nearest qualified windows when m gets
larger. Similarly, both schemes are of higher I/O costs in the CA
dataset than in the NY dataset. Fortunately, with the aid of DEP
and IWP, scheme kNWC* outperforms scheme kNWC+ in both
datasets. In our experiment, the average I/O cost reduction rates of
scheme kNWC* over scheme kNWC+ in the CA and NY datasets
are around 83.8% and 33.9%, respectively.

6. CONCLUSIONS
In this paper, we propose a novel type of spatial queries, namely

nearest window cluster (NWC) queries. To process NWC queries,
we identify several properties to find qualified windows, leading
to the development of the NWC algorithm. To further accelerate
NWC search, we present four optimization techniques to reduce
I/O cost. We conduct several experiments to evaluate the perfor-
mance of the NWC algorithm and the proposed optimization tech-
niques. Experimental results show that these optimization tech-
niques are complementary with each other, and the NWC algorithm
with these optimization techniques performs the best in terms of
I/O cost.
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ABSTRACT
With the rise of multi-core CPU platforms, their optimal utilization
for in-memory OLAP workloads using column store databases has
become one of the biggest challenges. Some of the inherent limi-
tations in the achievable query parallelism are due to the degree of
parallelism dependency on the data skew, the overheads incurred by
thread coordination, and the hardware resource limits. Finding the
right balance between the degree of parallelism and the multi-core
utilization is even more trickier. It makes parallel plan generation
using traditional query optimizers a complex task.

In this paper we introduce adaptive parallelization, which ex-
ploits execution feedback to gradually increase the level of paral-
lelism until we reach a sweet-spot. After each query has been exe-
cuted, we replace an expensive operator (or a sequence) by a faster
parallel version, i.e. the query plan is morphed into a faster one. A
convergence algorithm is designed to reach the optimum as quick
as possible.

The approach is evaluated against a full-fledged column-store
using micro-benchmarks and a subset of the TPC-H and TPC-DS
queries. It confirms the feasibility of the design and proofs to be
competitive against a statically optimized heuristic plan generator.
Adaptively parallelized plans show optimal multi-core utilization
and up to five times improvement compared to heuristically paral-
lelized plans on the workload under evaluation.

1. INTRODUCTION
Column store databases are designed with a focus on analytical

workloads. Almost all database vendors these days have a column
store implementation. A recent study by Microsoft showed that a
majority of real world analytic jobs process less than 100 GB of
input [3]. This can be accommodated by an in-memory solution on
a single high-end server. They come with an abundance of CPU
power using tens of cores [27, 23]. Query parallelization is one of
the ways to utilize multi-cores. This calls for a renewed look at the
traditional query parallelization techniques, such as the exchange
operator based parallelization [15], since the state of the art column
store systems such as IBM BLU accelerator [24], HyPer [30] use
work stealing based approach for multi-core scalability.

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0
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Figure 1: Response time variations due to varying degree of par-
allelism under concurrent workload (32 hyper-threaded cores).

An important issue is the degree of parallelism (DOP) of a plan
which reflects the maximum number of parallel operator execu-
tions. With tens of cores on CPUs, finding the optimal degree of
parallelism of a query plan using heuristic and cost model based
exchange operator approach is difficult [2]. Some of the promi-
nent problems are a huge multi-core aware plan search space, par-
allelism aware accurate cost model estimations, and the optimal
placement of exchange operators in the plan. The degree of par-
allelism problem becomes even more difficult under a concurrent
workload due to competition for shared resources, such as CPU
cores, memory, and memory controllers. This forces many sys-
tems to take a conservative approach towards plan parallelization
decisions, as a sub-optimal parallel plan could often degrade per-
formance. Often a serial plan is preferred as long as it ensures a
robust performance [1].

For example, consider Figure 1, which shows execution of three
TPC-H heuristically parallelized queries for different DOP under
a heavy concurrent CPU bound workload, which ensures 0% CPU
core idleness (Scale factor 10 on 256 GB RAM with 32 hyper-
threaded cores). The queries show varying performance under dif-
ferent DOP. The traditional plan generation approaches based on
heuristic and cost model [10] fall short, as the plans do not reflect
runtime resource variations, making them suboptimal under a con-
current workload.

We introduce adaptive parallelization, a new mechanism to gen-
erate range partitioned parallel plans using query execution feed-
back, while taking into account the run-time resource contention.
Adaptive parallelization generates a better plan (P1) from an old
plan (P0) in a greedy manner, by parallelizing the most expensive
operator from P0, under repeated query invocations. The inspi-
ration is derived from the observation that in real world systems
the same query templates get reused multiple times only changing
some parameters. Starting with a serial plan, each successive query
invocation results in a new parallel plan, until a near minimal exe-
cution time parallel plan is detected, which ensures a near optimal
DOP. Adaptive parallelization under concurrent workload reflects
resource contention, making adaptive parallelized plans resource
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contention aware [11]. The success of adaptive parallelization de-
pends on its ability to converge quickly, while ensuring a near min-
imal execution parallel plan.

Adaptive parallelization also allows to analyze the relation be-
tween DOP and multi-core utilization. Multi-core utilization rep-
resents the fraction of actual CPU cores used versus the available
cores during query processing. Maximum multi-core utilization
however need not improve performance, as it might lead to mem-
ory bandwidth pressure due to parallel operator executions [22].
Hence, finding the right balance between the DOP and multi-core
utilization is important. Since adaptive parallelization generates
new parallel plans incrementally, it enables us to analyze the rela-
tion between DOP and multi-core utilization. Adaptive parallelized
plans have minimal multi-core utilization and a near optimal degree
of parallelism, which helps in achieving better response time during
concurrent workloads.
We summarize our main contributions as follows.

• We introduce adaptive parallelization, a new execution feed-
back based parallel plan generation technique, that ensures
near optimal degree of parallelism.

• We introduce an adaptive parallelization convergence algo-
rithm for different scenarios.

• We analyze the parameters affecting the speedup of the core
relational algebra operators.

• A near optimal DOP allows adaptive parallelized plans to
show up to five times response time improvement compared
to heuristically parallelized plans.

Paper outline: The paper is structured as follows. In Section 2 we
describe the architecture of adaptive parallelization. We also pro-
vide parallelization heuristics for operators and illustrate the dy-
namic partitioning scheme and discuss related problems. Section
3 describes the convergence algorithm to find the near minimal
execution parallel plan along with various convergence scenarios.
In Section 4 we provide a detailed experimental evaluation. Re-
lated work is described in Section 5. We conclude citing the major
lessons learned in Section 6.

2. ARCHITECTURE

Figure 2: Adaptive parallelization workflow.

Adaptive parallelization could be used by any columnar database
system as long as its plan representation allows identification of
individual expensive operators.
Run-time environment: It consists of a scheduler, an interpreter,
and a profiler. The scheduler uses a data-flow graph based schedul-
ing policy, where an operator is scheduled for execution once all its
input sources are available. While an interpreter per CPU core exe-
cutes the scheduled operators, the profiler gathers performance data
on an executed operator basis. The profiling overhead is minimal
due to vectorized nature of execution. The profiled data consists
of operator’s execution time, memory claims, and thread affiliation
id. Cost model based plan generation approaches often suffer from
incorrect cardinality estimates. We use a heuristic plan generation
approach where parallelization decisions are based on execution
time feedback, without a need for operator’s cardinality statistics.

The execution time is a good metric for parallelization deci-
sions as it reflects the system state such as the memory bandwidth
pressure and the processor usage. Though the presence of system
noise might affect execution time, such disturbances level out dur-
ing adaptation.
Infrastructure components: The Adaptive Parallelization (AP)
infrastructure is implemented using the following components a)
operator stubs to morph a plan based on past behavior, b) the plan
administration policies to choose a suitable plan from the plan his-
tory, and c) the AP convergence algorithm, which we describe in
Section 3.
Workflow: The adaptive parallelization work-flow is summarized
in Figure 2. The first phase is similar to most systems [16] where
an optimal serial plan (Figure 3 Plan 1) is generated. Our approach
differs in the second phase where the the query is cached, plan is fed
to the framework, executed, and the profiling information such as
the query execution time, the operator execution time, the number
of invocations, etc. are stored. On the next query invocation a new
parallel plan (Figure 3 Plan 2) is derived from the immediate old
plan (Plan 1) by parallelizing the most expensive operator (Select
on input A). The AP process iterates by invoking the same query
again and generating parallel plans in an incremental manner by
parallelizing the most expensive operators in successive steps. The
number of iterations to find the minimal execution time parallel
plan is controlled by a convergence algorithm described in Section
3. As the book keeping and compilation time is minimal we only
report the execution time.

Why feedback based approach? Like parallel databases, multi-
core CPUs make the parallel plan search difficult [19]. The main
problem is finding the optimal number of partitions per operator for
an optimal input serial plan. Finding an optimal input serial plan is
out of the scope of this paper. During parallelization when an oper-
ator’s data is partitioned, there are combinatorial possible choices
for the partition size. For example, in the worst case, each opera-
tor’s data could be partitioned in a single tuple, such that the total
number of operators equal the number of tuples. In the best case
a single operator could work on the entire non-partitioned input.
The possible partition size choices for different operators represent
multiple parallel plans with different execution times, making this
a combinatorial plan search problem. The plan search space explo-
ration is usually done using a combination of both the heuristic and
the cost model based approach. It allows to prune the search space
for an efficient search. Overall, finding an optimal multi-core aware
parallel plan using traditional approaches is difficult. In compari-
son the feedback based approach we propose is relatively easy, as
the assumption is the input serial plan we start with is an optimal
plan. Since the approach explores the search space in a guided way
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by parallelizing only the most expensive operator, we avoid a large
space of uninterested plans.

2.1 Plan mutation
We refer to the process described in the workflow as plan muta-

tion. Plan mutation could be guided by different policies. In this pa-
per we use parallelization of the expensive operator in a plan as the
guiding principle. An operator is considered expensive if its execu-
tion time is the highest amongst all operators. Based on the com-
plexity, we categorize mutation in three types as Basic, Medium,
and Advanced.

Figure 3: Basic mutation.

Basic: Basic mutation involves paral-
lelization of an expensive operator by
introducing two new operators of the
same type, called expensive operator’s
cloned operators. The cloned opera-
tors work on the expensive operator’s
partitioned data. Partitioning is cheap when it involves no data
copy, but introducing range partitioned sliced view of the colum-
nar data. (Value / hash based partitioning needs the presence of a
partition operator, about which we discuss in Section 5.) An ex-
change union operator (either a newly introduced or an existing
one) combines the result of the cloned operators. In Figure 3 we
see one such example for select operator parallelization.

Figure 4: Join parallelization.

The two most popular al-
gorithms for the join oper-
ator are the hash join and
the sort merge join. We an-
alyze the hash join imple-
mentation as it suits most
workloads due to the om-
nipresence of non-sorted
data. We consider adaptive
parallelization of the join operator plan (Figure 4 Plan 1) when only
the larger (outer) input is split into equi-range partitions on consec-
utive runs. Figure 4 Plan 2 shows the parallelized plan with the two
new join cloned operators. An exchange union operator combines
the output of the cloned operators.

Figure 5: Medium
mutation.

Medium: Medium mutation handles plan
parallelization when the exchange union op-
erator (U) itself turns out to be expensive,
as a result of intermediate data copying due
to low selectivity input. This mutation stage
arises, when the exchange union operator is
introduced as a result of the basic mutation.

Figure 5 shows one such example where
Plan 1 with an expensive exchange union op-
erator is mutated into Plan 2. The mutation process involves prop-
agating the inputs to the exchange union operator, to its data flow
dependent operators. The data flow dependent operators are cloned
to match the exchange union operator’s input. Finally a newly in-
troduced exchange union operator combines the result of the cloned
operator’s output.

Figure 6: Advanced mu-
tation.

Advanced: Advanced mutation in-
volves parallelization of operators such
as group-by and sort, that do not ex-
hibit the filtering property (selectivity
= 0).

Figure 6 shows parallelization of a
group-by operator with the advanced
mutation. The expensive operator
(group-by) is parallelized by introduc-

function user.s1_14(A0,A1,A2,A3,A4,A5,A6,A7);

    X_43 := calc.*(A0,X_42);

    X_170 := batstr.like(X_166,A1);     X_171 := batstr.like(X_167,A1);    X_172 := batstr.like(X_168,A1);     X_173 := batstr.like(X_169,A1);

    X_30 := calc.lng(A2,15,2);

    X_34 := calc.lng(A3,19,4);

    X_40 := calc.lng(A4,15,2);

    X_110 := algebra.uselect(X_93,A5,X_23,true,false);     X_111 := algebra.uselect(X_95,A5,X_23,true,false);    X_112 := algebra.uselect(X_96,A5,X_23,true,false);     X_113 := algebra.uselect(X_97,A5,X_23,true,false);

    X_23 := mtime.addmonths(A6,A7);

    sql.exportValue(1,".","promo_revenue","decimal",19,2,8,X_43,"");

    X_174 := batcalc.isnil(X_170);

    X_178 := batcalc.ifthenelse(X_174,false:bit,X_170);

    X_175 := batcalc.isnil(X_171);

    X_179 := batcalc.ifthenelse(X_175,false:bit,X_171);

    X_176 := batcalc.isnil(X_172);

    X_180 := batcalc.ifthenelse(X_176,false:bit,X_172);

    X_177 := batcalc.isnil(X_173);

    X_181 := batcalc.ifthenelse(X_177,false:bit,X_173);

    X_208 := batcalc.-(X_30,X_204);     X_211 := batcalc.-(X_30,X_205);    X_213 := batcalc.-(X_30,X_206);     X_215 := batcalc.-(X_30,X_207);

    X_220 := batcalc.ifthenelse(X_178,X_216,X_34);     X_221 := batcalc.ifthenelse(X_179,X_217,X_34);    X_222 := batcalc.ifthenelse(X_180,X_218,X_34);     X_223 := batcalc.ifthenelse(X_181,X_219,X_34);

    X_235 := batcalc.-(X_40,X_204,false,true);     X_236 := batcalc.-(X_40,X_205,false,true);    X_237 := batcalc.-(X_40,X_206,false,true);     X_238 := batcalc.-(X_40,X_207,false,true);

    X_114 := algebra.markT(X_110,4,0);     X_120 := algebra.markT(X_111,4,1);    X_124 := algebra.markT(X_112,4,2);     X_128 := algebra.markT(X_113,4,3);

    X_43 := nil:lng;

barrier X_268 := language.dataflow();

exit X_268;

    X_10 := sql.mvc();

    X_93:bat[:oid,:date]  := sql.bind(X_10,"sys","lineitem","l_shipdate",0,0,4);

    X_79:bat[:oid,:oid]  := sql.bind_idxbat(X_10,"sys","lineitem","lineitem_l_partkey_fkey",0,0,4);

    X_16:bat[:oid,:int]  := sql.bind(X_10,"sys","part","p_partkey",0);

    X_13:bat[:oid,:str]  := sql.bind(X_10,"sys","part","p_type",0);

    X_98:bat[:oid,:lng]  := sql.bind(X_10,"sys","lineitem","l_extendedprice",0,0,4);

    X_103:bat[:oid,:lng]  := sql.bind(X_10,"sys","lineitem","l_discount",0,0,4);

    X_95:bat[:oid,:date]  := sql.bind(X_10,"sys","lineitem","l_shipdate",0,1,4);

    X_84:bat[:oid,:oid]  := sql.bind_idxbat(X_10,"sys","lineitem","lineitem_l_partkey_fkey",0,1,4);

    X_100:bat[:oid,:lng]  := sql.bind(X_10,"sys","lineitem","l_extendedprice",0,1,4);

    X_105:bat[:oid,:lng]  := sql.bind(X_10,"sys","lineitem","l_discount",0,1,4);

    X_96:bat[:oid,:date]  := sql.bind(X_10,"sys","lineitem","l_shipdate",0,2,4);

    X_88:bat[:oid,:oid]  := sql.bind_idxbat(X_10,"sys","lineitem","lineitem_l_partkey_fkey",0,2,4);

    X_101:bat[:oid,:lng]  := sql.bind(X_10,"sys","lineitem","l_extendedprice",0,2,4);

    X_106:bat[:oid,:lng]  := sql.bind(X_10,"sys","lineitem","l_discount",0,2,4);

    X_97:bat[:oid,:date]  := sql.bind(X_10,"sys","lineitem","l_shipdate",0,3,4);

    X_91:bat[:oid,:oid]  := sql.bind_idxbat(X_10,"sys","lineitem","lineitem_l_partkey_fkey",0,3,4);

    X_102:bat[:oid,:lng]  := sql.bind(X_10,"sys","lineitem","l_extendedprice",0,3,4);

    X_107:bat[:oid,:lng]  := sql.bind(X_10,"sys","lineitem","l_discount",0,3,4);

    X_136 := algebra.leftjoin(X_132,X_79);

    X_18 := bat.mirror(X_16);

    X_166 := algebra.leftjoin(X_161,X_13);     X_167 := algebra.leftjoin(X_162,X_13);    X_168 := algebra.leftjoin(X_163,X_13);     X_169 := algebra.leftjoin(X_164,X_13);

    X_200:bat[:oid,:lng]  := algebra.leftjoin(X_260,X_98);

    X_204:bat[:oid,:lng]  := algebra.leftjoin(X_260,X_103);

    X_137 := algebra.leftjoin(X_133,X_84);

    X_201:bat[:oid,:lng]  := algebra.leftjoin(X_261,X_100);    X_205:bat[:oid,:lng]  := algebra.leftjoin(X_261,X_105);

    X_138 := algebra.leftjoin(X_134,X_88);

    X_202:bat[:oid,:lng]  := algebra.leftjoin(X_262,X_101);    X_206:bat[:oid,:lng]  := algebra.leftjoin(X_262,X_106);

    X_139 := algebra.leftjoin(X_135,X_91);

    X_203:bat[:oid,:lng]  := algebra.leftjoin(X_263,X_102);    X_207:bat[:oid,:lng]  := algebra.leftjoin(X_263,X_107);

    X_132 := bat.reverse(X_114);

    X_260 := algebra.leftjoin(X_196,X_132);

    X_140 := algebra.join(X_136,X_19);

    X_145 := bat.reverse(X_140);     X_186 := algebra.markT(X_140,4,0);

    X_19 := bat.reverse(X_18);

    X_141 := algebra.join(X_137,X_19);    X_143 := algebra.join(X_138,X_19);     X_144 := algebra.join(X_139,X_19);

    X_146 := bat.reverse(X_141);     X_189 := algebra.markT(X_141,4,1);    X_147 := bat.reverse(X_143);     X_191 := algebra.markT(X_143,4,2);     X_148 := bat.reverse(X_144);     X_193 := algebra.markT(X_144,4,3);

    X_149 := algebra.markT(X_145,4,0);     X_196 := bat.reverse(X_186);

    X_161 := bat.reverse(X_149);

    X_225 := algebra.selectNotNil(X_220);

    X_216 := batcalc.*(X_200,X_208,false,true);     X_239 := batcalc.*(X_200,X_235,true,true);

    X_243 := algebra.selectNotNil(X_239);

    X_217 := batcalc.*(X_201,X_211,false,true);    X_218 := batcalc.*(X_202,X_213,false,true);     X_219 := batcalc.*(X_203,X_215,false,true);     X_240 := batcalc.*(X_201,X_236,true,true);    X_241 := batcalc.*(X_202,X_237,true,true);     X_242 := batcalc.*(X_203,X_238,true,true);

    X_252 := aggr.sum(X_243);

    X_226 := algebra.selectNotNil(X_221);    X_227 := algebra.selectNotNil(X_222);     X_228 := algebra.selectNotNil(X_223);

    X_230 := aggr.sum(X_225);

    X_229 := mat.pack(X_230,X_231,X_232,X_233);

    X_234 := algebra.selectNotNil(X_229);

    X_133 := bat.reverse(X_120);

    X_261 := algebra.leftjoin(X_197,X_133);

    X_154 := algebra.markT(X_146,4,1);     X_197 := bat.reverse(X_189);

    X_162 := bat.reverse(X_154);

    X_246 := algebra.selectNotNil(X_240);

    X_253 := aggr.sum(X_246);

    X_231 := aggr.sum(X_226);

    X_134 := bat.reverse(X_124);

    X_262 := algebra.leftjoin(X_198,X_134);

    X_157 := algebra.markT(X_147,4,2);     X_198 := bat.reverse(X_191);

    X_163 := bat.reverse(X_157);

    X_248 := algebra.selectNotNil(X_241);

    X_254 := aggr.sum(X_248);

    X_232 := aggr.sum(X_227);

    X_135 := bat.reverse(X_128);

    X_263 := algebra.leftjoin(X_199,X_135);

    X_159 := algebra.markT(X_148,4,3);     X_199 := bat.reverse(X_193);

    X_164 := bat.reverse(X_159);

    X_250 := algebra.selectNotNil(X_242);

    X_255 := aggr.sum(X_250);

    X_233 := aggr.sum(X_228);

    X_37:lng  := aggr.sum(X_234);

    X_38 := calc.lng(4,X_37,19,8);

    X_42 := calc./(X_38,X_41);

    X_251 := mat.pack(X_252,X_253,X_254,X_255);

    X_256 := algebra.selectNotNil(X_251);

    X_41:lng  := aggr.sum(X_256);

end s1_14;

Figure 7: Complex operator dependencies in TPC-H Q14 par-
allel plan. Rectangles represent operators, and edges between
them represent the dependencies. The graph is only meant to
give a high level perspective of the plan’s complexity, abstract-
ing individual operator details. [12] shows graphs where oper-
ators are visible.

ing two cloned operators on its equi-
range partitioned data. Next the aggregation operators such as sum
and average are parallelized by introducing two aggregation cloned
operators. The cloned operators (group-by) result is propagated
to the aggregation cloned operators (sum). Finally, an exchange
union operator combines the parallelized aggregation operators re-
sult. Since the aggregation cloned operators always show very high
filtering property, the exchange union operator combining their re-
sult is cheap.

Summary: A relational operator gets parallelized in two cases. In
the first case, the operator itself might be expensive and gets par-
allelized using either the basic or the advanced mutation. In the
second case, operator parallelization occurs as a result of using the
medium mutation, where the operator is in the data flow dependent
path of the expensive exchange union operator. In both cases identi-
fying and resolving the parallelizable operator’s output propagation
dependency across the entire plan is an essential step.

The three mutation schemes we described cover all possible mu-
tations as an operator could either get parallelized due to its own
expensiveness or as a result of its presence in the data flow path of
another parallelizable operator.

2.2 Making plans simpler to mutate
Most columnar systems [1, 4, 7, 18] use a simple representa-

tion of plan with operators represented using physical algebra. The
operators use standardized interfaces for individual columnar data
and related argument passing. Column store specific functional-
ity such as operations on multiple columns and tuple reconstruc-
tion are mostly hidden away as the internal logic in the execution
engine framework. Some column stores like the open-source sys-
tem MonetDB, however use an abstract language to represent plans
[6], where column store specific functionality such as the tuple re-
construction and other columnar operations is exposed in the plan
representation itself. Use of operators with different semantics and
specialized operators such as the tuple reconstruction operators is
common. Figure 7 shows one such plan with complex data flow
dependencies.

Plan mutations using either the medium or advanced mutation in-
volves resolving parallelized operator’s propagation dependencies.
Hence, care has to be taken to resolve parallelized operator’s prop-
agation dependencies. To make plan mutations simpler, modifica-
tion of some of the operator’s semantic representation is needed.
We describe the related aspects in the rest of the section.
Adaptive parallelization and operator semantics: Operators can
have different semantics depending on primitives being used. Adap-
tive parallelization could further add more information such as as
the partition under use, total number of partitions, etc. Plan muta-
tions thus generate combination of different operator semantics.
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Figure 8: Column A dynamically partitioned with iterations.
For example, consider the case of the filter operator which can

have two representations. One which accepts normal columnar in-
put and the other which accepts column and also a bit vector from
another selection operator’s output. Hence, the filter operator could
be represented using two primitives depending on the number and
the type of inputs. Depending on the data flow dependency, a suit-
able filter operator gets parallelized during plan mutations.

Adaptive parallelization uses different parallelization rules catered
to different operator semantics. Since any operator could be ex-
pensive, resulting in its parallelization, the challenge for different
mutation schemes lies in how well they are able to resolve the data
flow dependencies across different operator semantics.

Plan rewriting: One of the techniques to ease the mutation process
is to modify the original input serial plan from the SQL compiler
using a query rewriter. The rewriter substitutes original operators
(for example, aggregation operators and tuple reconstruction oper-
ators) with new adaptively parallelization aware operators. These
new operators use modified implementation of operators such as
group-by, aggregation operators (sum, avg), and sort, by keeping
their original semantics, but with changed arguments ordering, to
resolve possible operator propagation dependencies. For systems
with simple plan representations the operator propagation depen-
dencies due to multiple columns could be handled in the execution
engine framework logic.

2.3 Adaptive parallelization aware partition-
ing

In a column store the operators operate on an array or vector
representation of the data. For readability, we consider the array
representation with range partitioning. It involves creating read
only slices on the base or the intermediate column. Creating slices
involves marking the boundary ranges for the base or intermedi-
ate columnar data and is cheap, as there is no data copying in-
volved. This technique could be also used during vectorized ex-
ecution where the vectors are derived from the partitioned range of
the base and intermediate input. We briefly describe a value based
partitioning approach use case in Section 5.
Dynamic partitioning: Adaptive parallelization generates dynam-
ically sized partitions on the base or intermediate column, as any
operator could be parallelized during successive iterations. In con-
trast a heuristically parallelized plan often uses a fixed number of
partitions based on the available CPU cores. To explain dynamic
partitioning of a column using a select operator, we use Figure 8.

When the select operator on the column in 8A turns expensive,
the column is sliced in two partitions represented by 8B. When the
select operator on partition 1 in 8B turns expensive, two new parti-
tions are introduced, represented by 2nd and 3rd in 8C. Now there
are three select operators, one on 0th partition of 8B and two on
2nd and 3rd partition of 8C. When the select operator on 2nd par-
tition in 8C becomes expensive, it is divided further and two new
partitions 4th and 5th in 8D are introduced. So now there are total
4 select operators working on 0th partition of 8B, 3rd partition of
8C and 4th,5th partition of 8D. Please note that the partitions are
of different sizes and their boundaries are aligned on the base col-
umn in 8A. Maintaining the alignment during dynamic partitioning
is important, as misalignment could lead to problems such as a)
repetition of data b) omission of the data across different operator

Figure 9: Different alignment scenarios between columns dur-
ing tuple reconstruction due to dynamic partitioning.

partitions. Thus, dynamic partitioning allows the operators to work
on different sized partitions of the same column in parallel.

Dynamic partitioning and tuple reconstruction: Tuple recon-
struction is a well known problem in column stores [17] and is im-
plemented as join lookup. Column stores use either early or late
materialization strategies for column projection using tuple recon-
struction, which involves using row-ids to fetch values from the
column that needs projection. For example, consider the colum-
nar representations in Figure 10, which shows head (H) and tail
(T) columns grouped as Left (L) and Right (R). The head column
(LH / RH) contains row-ids, whereas the tail column contains ei-
ther row-ids (LT) or actual values (RT). The @ indicates a row-id.
When the head column (LH / RH) contains consecutive row-ids, it
is not materialized and used as a virtual column. During tuple re-
construction, the row-ids in the left tail (LT) are used as an index in
(RH) to fetch the corresponding values from the right tail (RT). For
example, row-ids 2, 4, 5, 7 from LT are probed in the RH, whose
corresponding values in RT are 12, 11, 20, and 13.

One important aspect is the effect dynamic partitioning has on
the tuple reconstruction due to possible misalignment between LT
and RH. When row-ids from LT are used as an index to fetch values
from RT, the row-ids in LT should be a subset of row-ids in RH. If
not, then a lookup using row-id in LT, for the row-id index in RH
does not exist, resulting in an invalid access.

Figure 10: Tuple reconstruction between two columns.

Since adaptive parallelization generates variable sized partitions,
it gives rise to different alignment scenarios as shown in Figure 9
(B,C,...F). Consider the mis-alignment example in Figure 10. Here
LT start row-id=2, which is greater than RH start row-id=1, and
LT end row-id=8, which is greater than RH end row-id=7. Hence,
LT’s upper boundary starts after RH’s upper boundary, whereas
LT’s lower boundary extends beyond RH’s lower boundary as rep-
resented in Figure 9D. In Figure 9 the lengths of columns provide
just a logical representation of over and undershooting of bound-
aries, and do not represent the actual content. To maintain the
alignment the lower boundary of LT is adjusted by removing row-
id=8, to match the lower boundary of RH. The correct boundary
alignment is represented by dashed lines in Figure 9D. Adaptive
parallelization depending on the operator semantics uses one of the
alignment scenarios, to make sure that the partitions align correctly.
Fixed size partitions always lead to correct alignment (See Figure
9A), resulting in a valid access.

Another important aspect arises when the output of operators
working on the dynamically partitioned data is packed together.
Here the exchange union operator must maintain the correct or-
dering to avoid the incorrect results. The correct ordering is main-
tained, as the operators whose results are packed follow the muta-
tion sequence order, hence the results being packed together fol-
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low the same order. Adaptive parallelized plans could become
very large due to successive partitioning and operator propagation,
which could make partition misalignment related problems, if any,
hard to identify and resolve.

Plan explosion: As adaptive parallelization involves propagating
the parallelized operator’s output on its dependent operators, the
plans could quickly grow large. Plan explosion results as a side
effect of the exchange union operator removal during the medium
mutation. For example, when a descendant of the same type of
operator stays expensive during successive invocations, it gets par-
allelized and a single exchange union operator combines the output
of all such parallelized operators. As a result the number of in-
put parameters to the exchange union operator could become very
large. Eventually if the exchange union operator itself turns ex-
pensive, it is removed using the medium mutation. This leads to a
plan explosion, as the medium mutation propagates inputs of the
exchange union operator on its data flow dependent operators. For
each operator in the data flow path, new instructions (operators)
which equals the number of the exchange union operator inputs are
added in the plan. Hence, if the number of input parameters to the
exchange union operator is large, the plans could grow very large.

The growth of large plans is suppressed by not removing the ex-
change union operator if its input parameters cross a certain thresh-
old. The threshold in the current implementation is 15 parameters,
chosen on the basis of empirical observations from different paral-
lelization cases. Suppressing the exchange union operator removal
however stops further plan parallelization, as the exchange union
operator stays the most expensive operator in all further query in-
vocations.

We have described adaptive parallelization aware infrastructure
changes so far. Obtaining a minimal execution parallel plan how-
ever depends on how fast the adaptive parallelization process con-
verges. In the next section we describe a new algorithm that ensures
convergence in different scenarios.

3. ALGORITHM
In this section we introduce the heuristics for the global mini-

mum execution identification from the set of available plans and
the corresponding convergence algorithm. The algorithm is loosely
inspired by the hill climbing approach [26]. Figure 11 shows dif-
ferent cases of the presence of minima, plateaus, and up-hills in the
execution times, during adaptive parallelized runs of a join opera-
tor plan. We refer to the minimal execution time amongst them as
the global minimum execution (GME). Like most systems that gen-
erate parallel plans, our base assumption is an optimal input serial
plan. Hence, the focus of parallelization is to identify the optimal
number of partitions for operator’s data in the input plan. Problems
such as sub-optimal parallel plans due to poor join ordering which
might require backtracking are not considered, as the input is an
optimal serial plan.

The convergence algorithm should be able to find the GME in
all cases of minima, plateaus, and up-hills in the execution time,
and converge in minimal number of runs. Next we formally define
the GME first, the convergence algorithm next, and then illustrate
different convergence scenarios.

3.1 Global minimum execution (GME)
As the runs progress, the GME is the minimal execution time amongst
so far observed runs, and keeps on changing, during an active adap-
tive parallelization instance.

We denote the current run’s execution time as CurExec. The
execution time improvement (CurExecImprv) at the current run is
calculated with respect to 0th run’s (SerialExec) execution time.

 0

 20

 40

 60

 80

 0  5  10  15  20  25  30  35

T
im

e
 (

S
e
c
o
n
d
s
)

Number of runs

Figure 11: Adaptive parallelization convergence algorithm sce-
narios for join operator parallelization.

CurExecImprv = |(SerialExec−CurExec)|/SerialExec.

To calculate the first GME improvement, we initialize GME to the
first run’s execution time after the serial execution (0th run).

GMEimprv = |(SerialExec−GME)|/SerialExec.

As the runs progress, new GME needs to be identified. A new
run’s exuection time becomes the new GME, if the run’s execution
time improvement is better than the current GME’s execution time
improvement by a certain threshold.

GME = CurExec
{if(CurExecImprv −GMEimprv) > threshold}.

As the runs progress, the new execution times could be slightly
lower than the existing GME, hence, selecting the correct threshold
is important in discarding such new execution times, which other-
wise could become the new GME. For example, consider a hypo-
thetical adaptive parallelization instance. Let CurExecImprv at the
8th run be 96%, GMEimprv at the 3rd run = 90%, and threshold =
5%, then (CurExecImprv - GMEimprv) >5. Hence, the Current run
Execution time at the 8th run is considered the new Global Mini-
mum Execution (GME). Correct tuning of the threshold parameter
is thus crucial as it helps to discard multiple possible GMEs and to
chose the optimal execution time amongst them, as the new GME.

Finding GME could be also difficult due to the presence of many
local minima, about which we illustrate next.
The global minimum detection problem: The problem could
be formally stated as finding the global minimum execution from
many local minima that occur as the runs progress. When the exe-
cution time of a run is more than its previous run, a local minimum
results at the previous run. For example, a local minimum occurs
at the 4th run in Figure 11. The convergence algorithm has to over-
come many such local minima during its exploration of the global
minimum. We use the rate of improvement in the execution time of
the runs as a heuristic, to avoid the local minimas.

The execution time of consecutive runs could improve or worsen
depending on the run-time conditions (execution skew, operating
system interference), giving rise to positive or negative rate of ex-
ecution time improvement (ROI). The ROI of a run is defined with
respect to its previous run’s execution time (PrevExec). We define
ROI as follows.

ROI = (PrevExec−CurExec)/MAX(CurExec, PrevExec).

In Section 3.2 while describing the core convergence algorithm,
we illustrate how to use ROI to avoid local minimas. Finding GME
is difficult, however, another equally difficult task is to find it in the
minimal convergence runs, about which we illustrate next.
The minimal run convergence problem: The problem could be
formally stated as finding GME in a minimal number of runs, dur-
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ing consecutive query invocations. Too few runs have a risk of non-
occurrence of the global minimum and the algorithm converging on
a local minimum. Too many runs might ensure a global minimum
at the cost of a slow convergence. Hence, finding the right balance
between the minimum convergence runs and the GME is of prime
importance for the convergence algorithm.

3.2 Convergence algorithm
We describe the convergence algorithm using the context de-

scribed so far in Section 3. The aim is to find the GME in minimal
number of convergence runs. We model the number of convergence
runs (Convergence_Runs) using the parameters credit and debit. A
credit reflects the number of runs accumulated at each run due to
a positive ROI. A debit reflects the number of runs accumulated at
each run due to a negative ROI.

Credit = Credit+ (ROI ∗Number_Of_Cores).
Debit = Debit+ (|(ROI)| ∗Number_Of_Cores).

The value of (credit - debit) at each run reflects the balance (Con-
vergence_Runs) available for the system to converge. Hence, the
next run is allowed only if the balance is positive i.e. ((credit -
debit) >0).

Convergence_Runs = Credit−Debit = f(ROI).

The algorithm starts with the value of credit = 1 and debit = 0.
When parallelism reduces the execution time, the ROI of the first
run is positive and very high (Figure 11 - The algorithm starts with
the 0th run). With an increase in runs, the ROI decreases. During
the initial few runs the algorithm should ensure availability of suf-
ficient runs as a balance, to avoid premature convergence. During
the later runs, as the ROI slows down, the algorithm should ensure
as few balance runs as possible, to ensure fast convergence. From
the formula above, as both credit and debit are dependent on ROI,
they are a function of ROI, which makes the Convergence_Runs
also a function of ROI. The algorithm convergence is hence guaran-
teed, since the heuristic Credit - Debit >0, which decides the avail-
able Convergence_Runs becomes invalid eventually. Next we de-
scribe various convergence scenarios and how the heuristic Credit
- Debit >0 becomes invalid, which guarantees the algorithm’s con-
vergence.

3.3 Convergence scenarios
We identify three scenarios during which the algorithm should

ensure the convergence, 1. No premature convergence in a local
minimum before identifying a global minimum. 2. No extended
convergence, and 3. The convergence in a noisy environment. We
expect these scenarios to cover the entire spectrum as the aim is to
find the global minimum, and the possible problems for the conver-
gence algorithms could be its early termination, late termination,
and termination during noisy environment. We describe these sce-
narios next.

3.3.1 No premature convergence
When parallelism improves the execution time, the first run al-

ways has a very high ROI (Figure 11 - The algorithm starts with the
0th run). Hence, the credit accumulated after the first run is very
high with an upper limit of (Number_Of_Cores + 1). This ensures
that there are sufficient runs available as a balance in the system
during the initial stages to overcome plateaus and up-hills. Each
run after the first run contributes more credit, ensuring more runs.
This is also analogous to the concept of accumulation of the poten-
tial energy by a body when it falls from great heights. The greater
the height, the higher the potential energy. The energy allows the
body to keep moving in plateaus and climb high hills, as long as

there is a balance energy.

3.3.2 No extended convergence
Accumulation of high credit in the few initial runs on a stable

system could result in a state where the algorithm never converges.
In a stable system the execution time variations are minimal, lead-
ing to fewer debits being made. In such a system, the proportion of
accumulated credit will always be much higher than the accumu-
lated debit after a few initial runs. For example, consider Figure 11.
After 15 runs the ROI is minimal, ensuring that no new significant
credit or debit is introduced. However, the accumulated credit till 7
runs is very high, as the ROI till 7 runs is very high. This situation
leads to non-convergence as there are always balance runs available
i.e. (credit - debit<= 0) is never true.
Leaking debit: To ensure the algorithm converges in a finite num-
ber of runs we introduce the concept of leaking debit. In this
scheme after a threshold on the number of runs is crossed, a con-
stant debit gets deducted from the available credit at each run. It
ensures the available credit is drained to 0, so that the algorithm
converges in a finite number of runs. Hence, leaking debit is a func-
tion of the available credit at the threshold run. The threshold run
value is calibrated to be the Number_Of_Cores on the CPU. It en-
sures at least those many runs are used to find the optimal execution
time. The Leaking_Debit is calculated by dividing the available
credit at the threshold run amongst the possible remaining number
of runs during the global minimum search.

Remaining_Runs = Extra_Runs ∗Number_Of_Cores.
Leaking_Debit = Credit/Remaining_Runs.

Based on plan complexity, some queries converge early, while
some take longer after crossing the threshold run reference. To
avoid premature convergence, the system specific tunable parame-
ter Extra_Runs is used, which ensures that the remaining number
of runs to search the global minimum are sufficient. Note that Re-
maining_Runs is just an approximate bound. Plan representations
vary considerably across systems. Hence, based on empirical ob-
servations from different parallelization cases, and multiple exper-
imental runs (five), for the current platform, Extra_Runs=eight is
considered a safe boundary value to avoid the premature conver-
gence. Higher values result in an extended convergence.

3.3.3 Convergence in a noisy environment
Depending on the stability of the run-time environment (oper-

ating system process interference, memory flushes, etc.) the exe-
cution time of an individual run could vary considerably. The ex-
ecution time of some of the runs in a noisy environment is often
greater than the serial plan execution time. One such peak is visi-
ble in Figure 11 at the 30th run. Most peak executions are followed
and preceded by a normal execution. If care is not taken such peaks
will make the algorithm halt immediately as the debit due to peak
ascent will be higher than the accumulated credit. Hence, the algo-
rithm should converge gracefully in such a noisy environment.

Our solution is to mark all such unique peaks as outliers, and
ignore their presence. The algorithm incorporates this by allowing
the immediate next run to execute. This ensures the balance runs
stay unaffected, as the debit made during the peak ascent is com-
pensated by an equivalent credit during the peak descent, during the
next run. Concurrent workload could also affect the convergence,
however, tuning the Extra_Runs parameter to find the leaking debit
should take care of it.

3.3.4 Global minimum plan identification proof
The convergence algorithm should ensure a global minimum plan

while converging in a reasonable number of runs. The lower bound
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Table 1: System configuration
CPU Sockets Threads L1 cache L2 cache Shared L3 cache Memory OS
Intel Xeon E5-2650@ 2.00GHz 2 32 32KB 256 KB 20MB 256GB Fedora 20
Intel Xeon E5-4657Lv2@ 2.40GHz 4 96 32KB 256KB 30MB 1TB Fedora 20

on the convergence runs is Number_Of_Cores + 1, while the upper
bound approximates between (Number_Of_Cores + 1 + Remain-
ing_Runs) and extra runs added to the previous upper bound, if
any, due to a large credit accumulation. The convergence runs are
directly influenced by the Leaking_Debit, and credit / debit accu-
mulation.

The global minimum plan’s existence beyond the upper bound
of the convergence runs is not possible. We provide a proof by
contradiction. If such a plan exists then its execution should be sig-
nificantly better. In that case the corresponding expensive operator
should have been identified much earlier, even before the first upper
bound on the convergence runs is reached. If multiple such plans
exists, then that indicates improved execution with each run. Such
improvement should then add extra runs (more credit) to the first
upper bound on the convergence runs, which would prolong the
global minimum search further, to find a more optimal plan. Hence,
no matter the situation, a near global minimum plan is identified in
the available convergence runs. In all the convergence scenarios
when the heuristic Credit - Debit >0, that decides available Con-
vergence_Runs, turns invalid, the algorithm converges.

4. EXPERIMENTS
Adaptive parallelization is implemented in MonetDB, being the

only full fledged open-source columnar system, with memory mapped
columnar representation for the base and the intermediate data. The
operators are represented in an intermediate language called Mon-
etDB Assembly Language (MAL) [6], with their implementation
in C. The operators have variable number of arguments depending
on their semantics, and form complex data flow patterns in MAL
plans, as shown in Figure 7.

Table 1 summarizes our experimental hardware platform, which
consists of two types of machines, with two and four socket CPUs
each. All experiments, unless mentioned, use in-memory data (with-
out disk IO) on the two socket machine. Heuristic parallelization
unless mentioned uses 32 threads. Each graph plots an average of
four runs of the same experiment. We use the four socket machine
to test one of the workload’s scalability from NUMA perspective.

The experimental section is divided into two broad categories.
In the first we analyze how parallelization gets affected by vari-
ous operator level parameters. In the second we analyze it at the
SQL query level. We use a mix of micro-benchmarks, simple, and
complex SQL queries to gain parallelization behavior insights.

We use TPC-H and TPC-DS workload for SQL query level per-
formance comparison. We observe the TPC-H isolated execution
of both the adaptive and the heuristic parallelization shows similar
performance. However, adaptive plans are better as they use fewer
number of cores, which helps during concurrent workload. Adap-
tive plans show better performance than the heuristic plans for the
TPC-DS workload isolated execution, due to optimal number of
partitions, and the presence of the skewed data. In the rest of the
section we describe the experimental details.

4.1 Operator level analysis
Adaptive parallelization helps to analyze the role of individual

operators in influencing parallelized execution, as it uses expen-
sive operator parallelization as a heuristic. Getting insights into the
issues such as the execution skew becomes easier. An operator’s
execution time varies on the basis of type of computation, data dis-
tribution, amount of data being read / written, type of data access
(serial / random), and memory hierarchy of the access (cache / main
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Figure 12: Parallelized select operator execution on skewed
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memory / disk IO). We analyze some of these factors next.
4.1.1 Data skew

This experiment highlights the role of dynamic sized partitions
to avoid execution skew during parallelized execution, when the
data distribution is non-uniform (skewed). The execution skew oc-
curs when at least one of the parallelized operators takes longer to
execute than the rest.

Static partitioning (equi-range partitioning) of skewed data leads
to execution skew as some partitions have more matches than the
rest. Adaptive parallelization performs well in skewed data sce-
nario as the operator with the skewed partition turns expensive, and
gets parallelized until expensiveness balances out.

Figure 12 shows the execution time when parallel select op-
erators work on statically or dynamically (adaptively) partitioned
skewed column of type long (8 bytes). The number of tuples in
the input column are 1000 million (M) (size = 8GB). Figure 13
shows the column’s data distribution with 500 million random tu-
ples in the first half. The second half contains skewed data with
5 sequential clusters of 100 million identical tuples. We vary the
select operator’s condition to generate the execution skew.

Figure 13: Data distribution for a skewed column.

Figure 12 shows execution with 8 threads on 8 dynamically sized
partitions (blue) is up to 60% better than the execution with 8 threads
on 8 static partitions (khaki). One may argue that the work steal-
ing approach [5] could solve the problem of execution skew due to
the static partitions. We analyze it by creating a large number of
smaller partitions (128) operated upon by 8 threads. Large number
of smaller partitions allows those threads that finish work early to
operate on remaining partitions, while threads on skewed partitions
stay busy. Identifying the optimal combination of static partitions
and threads is however non trivial, as in some cases more partitions
might lead to plan blow-up resulting in scheduling overheads. In
contrast we observe that the dynamic sized (adaptive) partitioning
approach with 8 threads and just 8 partitions fares competitively
with static 8 threads, 128 partitioned approach.

Summary: Skew handling is a natural property of adaptive paral-
lelization. It is a result of dynamically sized range partition cre-
ation, and a side effect of the expensive operator parallelization
heuristic.

4.1.2 Selectivity, Input size and Exchange union operation
This experiment analyzes the effect of selectivity, input size, and

the exchange union operation on the parallelized execution of select
and join operators, in terms of their speed-up. Speedup is defined
as the ratio of serial to parallel plan execution time. The experi-
ment also allows to analyze the speed-up effect when the number
of threads varies from 1 to 32. This is possible since with each it-
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Figure 14: Effect of variations of data size and selectivity on the
speedup of the adaptively parallelized Select operator plan.

Table 2: Select operator plan speedup (compared to serial execu-
tion) using adaptive and heuristic parallelization.

AP = Adaptive, HP = Heuristic parallelization
Selectivity

0% 50% 100%
Size (GB) AP HP AP HP AP HP
100 10 10 8.5 10 7 9
20 10.5 12 8.5 12 8 12
10 16 11 14.5 11 12 9.5

eration one more partition gets added and is available for one more
execution thread (from a pool of 32 threads) to operate in parallel.

Exchange union operation: Many systems use the exchange oper-
ator based parallelism [15], where one of the concerns is to iden-
tify the correct placement of the exchange operator in a plan to
minimize its overhead [2]. Most systems use a cost model based
approach for this decision. A good example is [30], where Vec-
torwise is shown to have a limited speed-up due to the exchange
operator overheads.

As the exchange union operator combines parallelized operator’s
result, its expensiveness varies depending on the size of the data
being packed. Low selectivity reflects more matching data, hence
more data to be packed. The packing overhead is minimized by
pushing the exchange union operator as high as possible. It ensures
the final data to be packed is relatively small, as it gets filtered by
the intermediate operators.

Adaptive parallelization (AP) enables to analyze the exchange
union operator’s placement with successive iterations of parallelized
plans, as it directly affects the speed-up. In the next two experi-
ments we observe that the AP plan’s speed-up is comparable to the
speed-up of the heuristically parallelized (HP) plans. The speed-up
gets hindered due to operator dependencies that form critical paths,
which can not be parallelized. However, the AP plans benefit by
their optimal multi-core utilization due to less partitions, which en-
sures improved concurrent execution performance, as described in
Section 4.2.5.

Select operator adaptive parallelization: We use query 6 from the
TPC-H benchmark to analyze the speedup of the select operator
(See Table 2). Query 6 is a simple query with only selection predi-
cates on the Lineitem table. We vary the selectivity by varying the
parameter l_quantity from the selection predicate. Figure 14 plots
the execution time of AP plans on the Y axis with respect to iter-
ations (X axis), when selectivity is varied from 0% (all output) to
100% (no output), and scale factor is varied from 10 GB to 20 GB.
We do not plot the graph for 100GB for readability purpose, and
only list its speedup in Table 2.

From Table 2 as the selectivity increases the speedup decreases.
During low selectivity a single select operator in a serial plan writes
a large number of output tuples, as compared to its parallel plan
counterparts. This results in the large speedup as serial execution
time is much higher, whereas parallel execution time is much lower.
During highest selectivity (100%) since there is no output the serial
execution is less expensive as compared to 0% selectivity serial ex-
ecution. This results in lower speedup. The speedup increases with
a decrease in the input size. This is a result of lower minimum time
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during parallel execution, due to less input data. With increased
selectivity the speedup for AP is less compared to HP. This is due
to the presence of less expensive exchange union operators, which
do not get pushed higher in the plan.
Table 3: Join operator plan speedup (compared to serial execution)
using adaptive and heuristic parallelization.

AP = Adaptive, HP = Heuristic parallelization

Size (MB) 64 16 (Smaller Input)

(Larger Input) AP HP AP HP

3200 15.75 14 18.5 18

2000 15 13.5 17.75 17.75

640 13.75 13 17 15

Join operator adaptive parallelization: For the join operator (hash)
plan parallelization analysis, we partition the outer input and build
up the hash table on the inner input. We use a micro-benchmark
for a fine grained control, where the outer input has 400 M, 250
M, and 80 M (M = Millions) random tuples of type long (8 bytes),
and the inner input has 8 M and 2 M tuples. The outer inputs stay
larger than the inner input of size 16 MB (2 M tuples) even after 32
partitions (threads on CPU). The 16 MB input fits in the shared L3
cache (20 MB).

Figure 15 shows the join operator plan speedup and Table 3
quantifies it. The speedup of 16 MB input join is more than the
64 MB input join, as the 16 MB input join’s hash table fits par-
tially in the L3 cache (20 MB), which improves the probe phase,
due to reduced cache thrashing. Speedup also decreases as the
outer table size decreases, as the serial execution time is directly
proportional to the outer table size. For all sizes the best speedup
is obtained when the number of partitions are 32, with 32 threads
(hyper-threading enabled). Maximum speed-up observed is around
the number of physical cores (16). Both AP and HP show a similar
performance unlike the previous select operator plan analysis case,
as the join plan contains only join and union operators.
Summary: Adaptive parallelization works for both the select and
the join operator and these operators scale linearly with the number
of physical cores. Input size, selectivity, and properties such as
cache consciousness affects the speedup.

Having analyzed how individual operators affect parallel execu-
tion, in the next section we focus on holistic SQL query level anal-
ysis, from execution performance and convergence perspective.

4.2 SQL query level analysis
4.2.1 TPC-H queries

Since the TPC-H benchmark is considered the de-facto work-
load for performance comparison, in this section we use a subset
of queries (see Table 4) from TPC-H (scale factor 10). TPC-H has
uniformly distributed data. The adaptively parallelized group-by
operator implementation at present supports single attribute group-
by queries. Hence, we modify some queries so that they have a
single attribute group-by representation. Since we use the same
set of queries to evaluate multiple parallelization approaches, the
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Figure 16: Heuristic vs adaptive parallelization performance in
isolated and concurrent environment for MonetDB and Vector-
wise.
comparison is fair. We plot an average of four executions using the
experimental set-up described towards beginning of Section 4.

Table 4: TPC-H queries.
Simple Q6 Q14
Complex Q4 Q8 Q9 Q19 Q22

We compare adaptive parallelization (AP) with heuristic paral-
lelization (HP), the default parallelization technique in MonetDB,
under isolated execution setting. HP uses parameters such as the
number of threads, physical memory size, and the largest table size
to identify the number of partitions for the largest table in the se-
rial plan. A plan re-writer generates a parallel plan from a serial
plan by propagating the partitions to data flow dependent opera-
tors. Though both HP and AP start with the same serial plan, the
final parallel plan is different for both techniques as in AP only the
most expensive operator gets parallelized unlike in HP, where all
possible parallelizable operators are parallelized. In Figure 16 the
first two bars show HP vs AP performance when queries execute
in isolation. All AP queries except Q9 and Q19 show similar per-
formance as HP. Q9 and Q19 show a degraded performance due to
the presence of some non-parallelizable operators, which prolong
the query execution. The robustness of individual query execu-
tion could be observed in Figure 18C, where queries show minimal
execution time variations. Though the execution performance of
adaptive plans is similar to the heuristic plans, the adaptive plans
are better as they use much fewer number of partitions (See Table
5). It helps during concurrent workload execution, where adaptive
plans exhibit better execution performance due to better resource
utilization. Table 5: AP and HP Q14 plan statistics.

AP HP
# Select operators 10 65
# Join operators 16 32
% Multi-core Utilization 35 75

4.2.2 TPC-DS queries
TPC-DS benchmark has 25 tables, out of which 6 tables are rel-

atively large (above 1GB in size), in a scale factor 100 dataset. The
benchmark supports 99 query templates. We use a few modified
queries. These queries are a subset of the original TPC-DS queries
and are chosen such that they contain the large tables and a few
smaller dimension tables. Since we compare both the adaptive and
the heuristic parallelization technique with the same queries, the
comparison gives a perspective of their respective performance.

We experiment on both the two socket and the four socket ma-
chine (See Table 1 for configuration) with 100GB dataset, to get
a perspective of the NUMA effects. Graphs in Figures 17a and
17b show the comparison. Adaptive plans exhibit a maximum
of 5 times better performance compared to heuristic plans, which
could be attributed to correct partitioning by adaptive paralleliza-
tion compared to heuristic parallelization and the skewed data dis-
tribution. The execution time for both two and four socket machine
shows similar time, which indicates minimal NUMA effects. As
authors in [14] observe, since MonetDB uses a memory mapped
representation for the buffer data, as the number of partitions in-
crease, we expect them to get assigned to the memory modules of
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Figure 17: Isolated execution performance of TPS-DS queries
on a) 2 socket machine with 2.00 GHz CPU b) 4 socket machine
with 2.40 GHz CPU, on 100GB data.
the sockets on which operator execution gets scheduled. We also
observe a limit on the execution improvement, even though a higher
number of cores are used, which indicates increased parallelism
need not improve performance beyond a threshold.

4.2.3 Concurrent workload execution
This experiment highlights the effectiveness of adaptively paral-

lelized plans compared to heuristically parallelized plans in a con-
current workload setting. Concurrent query executions in batch
workload leads to resource contention, which in turn affects the
degree of parallelism of individual queries under execution. Re-
source contention varies with random workload, however for the
current set-up we consider a homogeneous concurrent workload.
In Figure 16 the 4th and 5th bar shows HP vs AP execution under
a concurrent workload. The workload consists of random simple
and complex queries from the TPC-H benchmark (10GB), where
32 clients invoke queries repeatedly. AP Q8 shows 50% improved
execution compared to HP Q8. Simple queries such as Q6 and Q14
show around 90% execution improvement in AP. HP plans have
too many partitions compared to the AP plans as shown in Table
5. AP plans also reflect the resource contention through execution
feedback. Hence, AP plans are more robust and better performing
under a concurrent workload, compared to statically generated HP
plans. In [11] authors discuss HP vs AP plans comparison under
different concurrent workload resource contention scenarios in a
detailed manner.
4.2.4 Comparison with Vectorwise

We compare the concurrent workload performance of Vector-
wise (version 3.5.1 with histogram build feature enabled to gen-
erate optimized plans), a leading analytical columnar database us-
ing pipelined vectorized execution [7], with adaptive paralleliza-
tion in MonetDB. Vectorwise uses cost model based exchange op-
erator dependent parallel plans. The resources are allocated based
on the number of connected clients and the system load. During
a heavy concurrent workload (32 clients invoking random TPC-H
queries repeatedly on 10GB data), the first client’s query gets all
the resources, while the queries from the remaining clients get less
resources based on an admission control scheme. Figure 16 shows
MonetDB adaptive parallelized query execution performance is bet-
ter than the Vectorwise execution performance, during the concur-
rent workload. MonetDB does not have explicit resource control
based plan generation scheme, which helps in the current case. We
hypothesize that as workload queries are invoked repeatedly, Vec-
torwise queries under analysis execute serially due to lack of re-
sources.
4.2.5 Multi-core utilization

This experiment highlights that an AP plan is better than a HP
plan from the multi-core utilization perspective. Multi-core uti-
lization represents the fraction of actual CPU cores used versus
the available cores during query processing. AP ensures minimal
multi-core utilization as each operator is parallelized with a differ-
ent degree of parallelism unlike HP. Figures 19 and 20 visualize
AP vs HP plan execution of TPC-H Q14, in an isolated execution
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parallelized query execution. Graph D shows most queries converge quickly after detection of the global minimum.
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algebra.join 
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algebra.leftfetchjoin 
4 calls: 78.242 ms 

algebra.selectNotNil 
2 calls: 153 us 

algebra.subselect 
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batcalc.* 
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language.* 
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mat.pack 
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sql.projectdelta 
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sql.* 
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*.* 
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 176 MAL instructions executed; total CPU core time: 1.880 s ; parallelism usage 35.7 %

Figure 19: Adaptive parallelization multi-core utilization (35%)
during isolated execution of TPC-H Q14. Green- Select, Blue-
Join, Brown- Exchange union operator.

setting. The length of a colored box represents an operator’s execu-
tion interval (In an operator-at-a-time execution model an operator
executes completely. Blue- join, Green-select, Brown- exchange
union operator.) A whitespace indicates no execution. The amount
of whitespace in Figure 19 is much more than in Figure 20, indicat-
ing lower multi-core utilization for AP. In the HP execution (Figure
20) the length of the join operators is much longer than the corre-
sponding operators in the AP execution (Figure 19), which hints at
the memory bandwidth pressure. In [13] authors analyze parallel
plans in detail using this visual scheme.

The degree of parallelism per operator thus influences the overall
multi-core utilization. For example, while only ten select operators
execute in AP, many more execute in HP (See Table 5). Since AP
shows lower multi-core utilization (35%) during isolated execution,
the spare resources ensure better response time during concurrent
workload, as further elaborated in [11].

4.3 Convergence algorithm robustness
Adaptive parallelization not only should converge in minimal

number of runs, but also should exhibit robustness. The robust-
ness implies during multiple adaptive parallelization invocations of
a query a) the total number of convergence runs b) the run at which
the global minimum occurs, and c) the global minimum execution
time should not show much variations. In this experiment we test
the robustness of the convergence algorithm in an isolated execu-
tion setting. Graphs in Figure 18 (A,B,C) show these three cases.

Graph 18(A) shows the number of convergence runs to find the
optimal execution time for three invocations. Except for Q6 and
Q22 all other queries show minimal variations for convergence runs.
Q6 is the most simple query in the given set of queries. It shows the
most speed-up amongst all queries, but that also makes it vulnera-
ble to external factors such as operating system noise interference,
etc. Since the global minimum time is very low, even small inter-
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 1372 MAL instructions executed; total CPU core time: 6.964 s ; parallelism usage 72.2 %
Figure 20: Heuristic parallelization multi-core utilization (75%)
during isolated execution of TPC-H Q14. Green- Select, Blue-
Join, Brown- Exchange union operator.

ference affects its performance. Q22 is a complex query where join
operator is always the most expensive operator.

Graph 18(B) shows the run where the global minimum time oc-
curs during three invocations of the query set under evaluation. De-
pending on the resource contention and the run-time interference
from the operating system we get small variations across different
runs for all queries. The highest difference is observed between the
first and the third run for Q19. However, overall the number of runs
do not show much deviations.

Graph 18(C) shows the global minimum time for adaptively par-
allelized queries for three invocations. The global minimum time
for all queries is almost stable across multiple invocations. This
indicates the robustness of the generated plans.

Graph 18(D) shows that the queries 4, 6, 9, 19 converge quickly
after detection of the global minimum. Different types of queries
show different convergence properties and the algorithm gets tuned
to converge in the least possible number of runs. For example,
Q8, Q14, and Q22 show the global minimum with fewer than 40
runs, while the total convergence runs are around 100. The slow
convergence is a result of the Leaking_Debit being too low, which
leads to the credit getting drained slowly. The convergence runs are
close to 60 for the same global minimum, when the Leaking_Debit
is high.
How to lower number of convergence runs? At present plan par-
allelization introduces only a single new operator per invocation,
which results into a higher number of convergence runs, as the ex-
ecution skew introduced by a single new operator needs to level
out. The number of runs could be made much lower if more and
even number of operators are introduced per invocation. We avoid
it at present to analyze the parallel plan evolution with each new
operator addition.
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5. RELATED WORK AND APPLICABILITY
TO OTHER SYSTEMS

The basic optimizer approach of “optimize once and execute
many” as proposed by System R has reached its limits [28]. Hence,
adaptive query processing techniques are being proposed to ad-
dress query optimization problems due to unreliable cardinality es-
timates, data skew, parameterized query execution, changing work-
load, complex queries with many tables, etc. [9]. In this section we
describe some state of the art adaptive techniques.
Adaptive aggregation is used by the authors in [8] to handle dif-
ferent group-by based parallelization cases. The operator performs
a lightweight sampling of the input to choose the best aggregation
strategy with high accuracy, at runtime. Algorithmic approaches
are based on using independent and shared hash tables with lock-
ing and atomic primitives to minimize hash table access contention.
Three cases are identified that affect performance based on the av-
erage run-length of identical group-by values, locality of references
to the aggregation hash table, and frequency of repeated access to
the same hash table location. This work targets adaptivity from a
single operator’s perspective, whereas our work targets it at the plan
level. The approach used here could be combined with our adaptive
approach to improve per operator performance.

Vectorwise uses micro-adaptivity to improve query execution time
by using run-time execution feedback [25]. Micro-adaptivity is de-
fined as the ability to choose the most promising execution primi-
tive at run-time, based on real time statistics. Most methods, like
adaptive parallelization, use plan level modification, whereas micro-
adaptivity uses the available execution primitives at run time. It
chooses primitives based on the platform, instance, and call adap-
tivity using parameters such as compiler, branch prediction, selec-
tivity, loop unrolling, etc.

The Learning Optimizer (LEO) in DB2 uses query execution feed-
back for cardinality estimation corrections [29]. It uses learning
and feedback based infrastructure to monitor query execution and
generates feedback for correction in the cardinality estimation and
related statistics. More learning helps in better cost model predic-
tions. LEO has improved query execution performance by orders
of magnitude. MonetDB does not use cardinality related statistics,
however if used with the statistics correction methods, the selection
of operator’s to parallelize could be improved further.

In [4] authors illustrate adaptive parallel execution in Oracle for
big data analytics. In Oracle problems such as reliance on query
optimizer estimates are handled by changing the data distribution
decisions adaptively, during query execution.

Column store architectures differ in various aspects such as plan
representation, partitioning strategy, scale out support, etc. Encom-
passing all the requirements in a single architecture is not possible
due to their architectural confinements. While describing the re-
lated state of the art column stores, we also describe the possibility
of adaptive parallelization’s application to them.
Vertica uses a value based partitioning approach [18]. It uses a
Read Optimized Store (ROS), where the data is stored in multi-
ple ROS containers on a standard file system. Two files per col-
umn within a ROS container are stored, one with the actual column
data and the other with position index. This representation is very
similar to the representation in Figure 10, where RH is the index,
while RT is the actual value. Vertica also supports grouping mul-
tiple columns together in a file, however this hybrid row-column
storage is rarely used in practice because of the performance and
compression penalty it incurs.

Vertica execution engine uses a multi-threaded pipelined vector-

ized execution where the execution plan consists of standard re-
lational algebra operators. Operators such as StorageUnion are
used for partitioning data across operators. Hence, StorageUnion is
equivalent to a partition operator. Operators such as ParallelUnion
are used for directing execution to multiple threads and to combine
the parallelized operator’s results. Hence, ParallelUnion is equiva-
lent to an exchange union operator.

To understand the feasibility of applying adaptive parallelization
in Vertica, let’s assume that the execution starts with a serial plan
and incrementally introduces value based partitions to partition the
expensive operator’s data. For example, when a select operator be-
comes expensive and needs to be parallelized, a partition operator is
introduced which creates two value based partitions, which would
be consumed by two new select operators. The two new select op-
erator’s output is combined using an exchange union operator. This
is similar to the basic mutation scheme with the addition of a parti-
tion operator that feeds two newly introduced select operators.

When one of the newly introduced select operators itself be-
comes expensive, we further partition that operator’s data into two
more value based partitions, by introducing a new partition opera-
tor in the data flow path after the previous partition operator, and
before the input of the expensive select operator. Thus in a hypo-
thetical case when one of the select operators stays expensive dur-
ing consecutive invocations, new partition operators would keep on
getting added to the existing plan. We expect the cost of the parti-
tioning operator to be small considering its presence in the existing
Vertica execution plans. Quantifying the exact cost is difficult due
to lack of sufficient references. Similar logic could be applied for
other operator’s parallelization.

Apollo creates column store indexes in a traditional row store database
like SQL server [20]. It is the first database which uses the existing
row store to create new column store indexes. The method involves
creation of batches of rows to create segments from which individ-
ual columns are stored in individual column representations. The
column segments information is stored in the directory structure,
with a catalog.

The columns are compressed and encoded using different types
of encoding. New operators called batch operators are introduced
which get called if there is bulk data to be processed. The valid
rows to process are noted down in bitvector formats.

Apollo uses range partitioning of data. Since traditional SQL
server uses cost model based exchange operator induced paralleliza-
tion, Apollo leverages the existing SQL server parallelization tech-
nique using the exchange operator based parallelization.

To understand how adaptive parallelization might be applied in
Apollo type of column store, we need to find similarities between
adaptive parallelization and Apollo architecture. Both do range par-
titioning of data, hence the fundamental assumption of range parti-
tioned access stays the same, and could change in the way individ-
ual operators are implemented. For example, the operations like the
join operator consists of separate build and probe operators, where
build uses a shared hash table, where all threads build a hash table,
and then probe operator probes it in parallel. As Apollo extends the
exchange operator based parallelization as used in SQL server, we
expect adaptive parallelization to be useful, due to its dependence
on the exchange operator based parallelization.

Hyper uses LLVM [21] generated Just In Time (JIT) compiled
plans. The longest pipeline in a plan is identified, by looking for a
pipeline breaker operator. The operators in the longest pipeline are
fused using JIT compilation such that their highly efficient machine
language code represents a single task. The fusing allows tuples to
be kept in registers to process them without generating intermedi-
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ate results. Hyper’s morsel driven parallelism uses work stealing
based approach to assign the fused pipeline tasks to a fixed number
of pre-created threads. The task allocation based approach allows
controlling the number of tasks executing in parallel dynamically,
at run-time, and allows better control over resource allocation dur-
ing concurrent execution of queries.

Adaptive parallelization technique is based on the fundamental
assumption that an expensive operator is always identifiable in an
execution plan. This is a basic requirement since plan paralleliza-
tion is a result of incrementally parallelizing the expensive operator
during successive query invocations, until a global minimum plan
is identified.

Identification of a single expensive operator is not feasible in
Hyper’s execution plans due to the JIT compiled fused nature of
operator’s pipeline, which prevents a direct application of adaptive
parallelization. However, in a broader sense if the entire task is
considered to be expensive and treated as an expensive operator,
application of the adaptive parallelization logic could be possible.
Hence, the feasibility of adaptive parallelization technique in Hyper
depends on how to categorize the expensiveness metric.

DB2 BLU accelerator [24] uses evaluator chains, which comprises
DB2 BLU operators working on columnar data. The data is ac-
cessed in strides. It uses novel data structures that minimize latch-
ing allowing seamless scaling with multi-cores. Parallelism in-
volves cloning of evaluator chains once per thread, where the num-
ber of threads is decided by cardinality estimates, system resources
and system load. Each thread requests strides for its evaluator
chains until no more strides are available. DB2 BLU also uses
work stealing based approach where worker threads operate on
tasks comprising of evaluator chain based work.

6. CONCLUSION
Adaptive parallelization uses query execution feedback to gen-

erate resource contention and skew aware range partitioned multi-
core parallel plans. It helps in finding the right balance between
the multi-core utilization and the degree of parallelism for the ex-
change operator based parallel plans. We observe a near linear
speedup with the number of cores while analyzing the parallel plan
evolution using parameters such as the input size and selectivity.
During TPC-DS isolated workload execution, the adaptively paral-
lelized plans show up to five times better performance compared to
heuristically parallelized plans. During TPC-H concurrent work-
load, they show minimal multi-core utilization, allowing better re-
source utilization. They also fare competitively with work stealing
based scheduling approach.

Using different convergence scenarios we show that the adaptive
parallelization convergence algorithm behaves robustly, and con-
verges in a reasonable number of runs.
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ABSTRACT
With the explosion of large, dynamic graph datasets from various
fields, graph partitioning and repartitioning are becoming more and
more critical to the performance of many graph-based Big Data ap-
plications, such as social analysis, web search, and recommender
systems. However, well-studied graph (re)partitioners usually as-
sume a homogeneous and contention-free computing environment,
which contradicts the increasing communication heterogeneity and
shared resource contention in modern, multicore high performance
computing clusters. To bridge this gap, we introduce PARAGON,
a parallel architecture-aware graph partition refinement algorithm,
which mitigates the mismatch by modifying a given decomposition
according to the nonuniform network communication costs and the
contentiousness of the underlying hardware topology. To further
reduce the overhead of the refinement, we also make PARAGON
itself architecture-aware.

Our experiments with a diverse collection of datasets showed
that on average PARAGON improved the quality of graph decom-
positions computed by the de-facto standard (hashing partitioning)
and two state-of-the-art streaming graph partitioning heuristics (de-
terministic greedy and linear deterministic greedy) by 43%, 17%,
and 36%, respectively. Furthermore, our experiments with an MPI
implementation of Breadth First Search and Single Source Short-
est Path showed that, in comparison to the state-of-the-art stream-
ing and multi-level graph (re)partitioners, PARAGON achieved up to
5.9x speedups. Finally, we demonstrated the scalability of PARAGON
by scaling it up to a graph with 3.6 billion edges using only 3 ma-
chines (60 physical cores).

1. INTRODUCTION
It is well-known that graph (re)partitioning has been extensively

studied in the area of scientific simulations [14, 34]. Yet, its impor-
tance is continuously increasing due to the explosion of large graph
datasets from various fields, such as the World Wide Web, Pro-

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

tein Interaction Networks, Social Networks, Financial Networks,
and Transportation Networks. This has led to the development of
graph-specialized parallel computing frameworks, e.g., Pregel [21],
GraphLab [19], and PowerGraph [13].

Pregel, as a representative of these computing frameworks, em-
braces a vertex-centric approach where the graph is partitioned across
multiple servers for parallel computation. Computations are often
divided into a sequence of supersteps separated by a global syn-
chronization barrier. During each superstep, a user-defined func-
tion is computed against each vertex based on the messages it re-
ceived from its neighbors in the previous step. The function can
change the state and outgoing edges of the vertex, send messages
to the neighbors of the vertex, or even add or remove vertices/edges
to the graph.

Traditional Graph Partitioners Clearly, the distribution of the
graph data across servers may impact the performance of target ap-
plications significantly. Graph partitioning has been studied for
decades [14, 34], attempting to provide a good partitioning of the
graph data, whereby both the skewness and the communication
(edge-cut) among partitions are minimized as much as possible,
in order to minimize the total response time for the entire compu-
tation. However, classic graph partitioners such as METIS [23] and
Chaco [7] do not scale well with large graphs.

Streaming Graph Partitioners Streaming graph partitioners (e.g.,
DG/LDG [39], arXiv’13 [11], and Fennel [42]) have been proposed
in order to overcome the scalability challenges of classic graph
partitioners, by examining the graph incrementally. One of the
main shortcomings of these approaches is that they also assume
uniform network communication costs among partitions as classic
graph partitioners do. That is, they all assume that the communica-
tion cost is proportional only to the amount of data communicated
among partitions. This assumption is no longer valid in modern
parallel architectures due to the increasing communication hetero-
geneity [47, 8]. For example, on a 4 ∗ 4 ∗ 4 3D-torus interconnect,
the distance to different nodes starting from a single node varies
from 0 to 6 hops.

Architecture-Aware Graph Partitioners Architecture-aware graph
partitioners [24, 8, 46] have been proposed to improve the map-
ping of the application’s communication patterns to the underlying
hardware topology. Chen et al. [8] (SoCC’12) took architecture-
awareness a step further, by making the partitioning algorithm itself
partially aware of the communication heterogeneity. However, both
[8] and [24] (ICA3PP’08) are built on top of existing heavyweight
graph partitioners, namely, METIS [23] and PARMETIS [30], which
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Figure 1: Classification of all graph partitioners/re-partitioners ac-
cording to their features vs performance profile.

are known to be the best graph partitioners and repartitioners in
terms of partitioning quality but have poor scalability. Finally, al-
though Xu et al. [46] (TKDE’15) proposed a lightweight architecture-
aware streaming graph partitioner, the partitioner may lead to sub-
optimal performance for dynamic graphs [43].
Traditional Graph Repartitioners Most real-world graphs are
often non-static, and continue to evolve over time. Because of this
graph dynamism, both the quality of the initial partitioning and the
mapping of the application communication pattern to the underly-
ing hardware topology will continuously degrade over time, lead-
ing to (a potentially significant) load imbalance and additional com-
munication overhead. Considering the sheer scale of real-world
graphs, repartitioning the entire graph from scratch using [46, 8,
24], even in parallel, is often impractical, either because of the
long partitioning time or the huge volume of data migration the
repartitioning may introduce. To address this, several graph repar-
titioning algorithms have been proposed, such as Zoltan [1, 6] and
PARMETIS [30, 33]. Although they are able to greatly reduce the
data migration cost, they are all architecture-agnostic and do not
scale well with massive graphs.
Parallel/Lightweight Graph Repartitioners Parallel lightweight
graph repartitioners (e.g., CatchW [37], xdgp [43], Hermes [26],
Mizan [17], arXiv’13 [11], and LogGP [45]) have been proposed
to improve the performance and scalability of graph repartitioning.
Instead of seeking an optimal partitioning at once, these algorithms
adapt the graph decomposition to changes efficiently by incremen-
tally migrating vertices from one partition to another based on some
local heuristics. However, they are all oblivious of the nonuniform
network communication costs among partitions.
Limitations of the State-of-the-Art Despite the plethora of graph
partitioners and repartitioners (Figure 1), the current state-of-the-
art is suffering from two main problems:
• Graph (re)partitioners either consider architecture-awareness (for

CPU/network heterogeneity) or consider performance (i.e., par-
allel/lightweight implementation), but never both. This is illus-
trated in Figure 1, where the top-right corner is empty (except
for PARAGON, which is presented in this paper).
• No existing graph (re)partitioner considers the issue of shared

resource contention in modern multicore high performance com-
puting (HPC) clusters. Shared resource contention is a well-
known issue in multicore systems and has received a lot of at-
tention in system-level research [15, 41].

Our prior work We have previously presented an architecture-
aware graph repartitioner, ARAGONLB [48]. Although ARAGONLB
considers the communication heterogeneity for target applications,
it disregards the issue of shared resource contention, and the repar-
titioning itself is not architecture-aware. Moreover, the refinement
algorithm that ARAGONLB uses to improve the mapping of the ap-
plication communication pattern to the underlying hardware topol-
ogy requires the entire graph to be stored in memory by a single
server, which is infeasible for large graphs. Furthermore, the re-
finement algorithm is performed sequentially, which may become
a performance bottleneck. Finally, ARAGONLB assumes that com-
pute nodes used for parallel computation have the same number of
cores and memory hierarchies, which may not always be true.
Contributions In this paper, we present PARAGON, which over-
comes both limitations of the current state-of-the-art graph reparti-
tioners by extending ARAGONLB in the following aspects.
1. We separate the refinement algorithm, ARAGON, from ARAGONLB

as an independent component, and develop a parallelized ver-
sion of ARAGON, PARAGON, for large graphs (Section 3, 4, 5).
We further reduce the overhead of PARAGON by making it aware
of the nonuniform network communication costs (explained in
Section 2.1).

2. We identify and consider the issue of shared resource contention
in modern HPC clusters for graph partitioning (Section 2.2 & 6).

3. We perform an extensive experimental study of PARAGON with
a diverse set of 13 datasets and two real-world applications,
demonstrating the effectiveness and scalability of PARAGON
(Section 7).

2. MOTIVATION
In this section we explain the importance of architecture-awareness

(i.e., communication heterogeneity and shared resource contention)
for efficient graph (re)partitioners.

2.1 Communication Heterogeneity
For distributed graph computations on multicore systems, com-

munication can be either inter-node (i.e., among cores of different
compute nodes) or intra-node (i.e., among cores of the same com-
pute node). In general, intra-node communication is an order of
magnitude faster than inter-node communication. This is because
in many modern parallel programming models like MPI [27, 25], a
predominant messaging standard for HPC applications, intra-node
communication is implemented via shared memory/cache [16, 5],
while inter-node communication needs to go through the network
interface. Additionally, both inter-node and intra-node communi-
cation are themselves nonuniform.
Nonuniform Inter-Node Network Communication Modern par-
allel architectures, like supercomputers, usually consist of a large
number of compute nodes linked via a network. Consequently, the
communication costs among compute nodes vary a lot because of
their varying locations. For example, in the Gordon supercom-
puter [28], the network topology is a 4x4x4 3D torus of switches
with 16 compute nodes attached to each switch. As a result, the dis-
tance to different compute nodes starting from a single node varies
from 0 to 6 hops. Also, supercomputers often allow multiple jobs
to concurrently run on different compute nodes and contend for
the shared network links, limiting the effective network bandwidth
available for each job and thus amplifying the heterogeneity.
Nonuniform Intra-Node Network Communication Communi-
cation among cores of the same compute node is also nonuniform
because of the complex memory hierarchy. Communication among
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Figure 2: Example Architectures of Modern Compute Nodes

cores sharing more cache-levels can achieve lower latency and higher
effective bandwidth than cores sharing fewer cache-levels. For ex-
ample, in the architecture described by Figure 2a, communication
among cores sharing L2 caches (e.g., between the first and second
core of Socket 0) offers the highest performance, while commu-
nication among cores of the same socket but not sharing any L2
cache (e.g., between the first and third core of Socket 0) delivers
the next highest performance. Communication among cores of dif-
ferent sockets performs the worst. Similarly, in Figure 2b, cores
of the same socket (intra-socket communication) usually commu-
nicate faster than cores residing on different sockets (inter-socket
communication). This is because intra-socket communication can
be achieved via the shared caches, while inter-socket communica-
tion has to go through the front-side bus and the off-chip memory
controller (Figure 2a) or the inter-socket link controller (Figure 2b).
Take-away To improve the performance of graph-based big-data
applications, we should not only minimize the number of edges
across different partitions (edge-cut), but also the number of edge-
cuts among partitions having higher network communication costs
(hop-cut). This is the major difference between architecture-agnostic
solutions (that only minimize edge-cut) and architecture-aware ones
(that try to minimize both edge-cut and hop-cut).

2.2 Intra-Node Shared Resource Contention
As mentioned above, MPI intra-node communication is imple-

mented via shared memory, which can either be user-space or kernel-
based [16, 5]. Current MPI implementations often use the former
for small messages and the latter for large messages. The user-
space approach requires two memory copies. The sender first needs
to load the send buffer into its cache and then write the data to the
shared buffer (which may require loading the shared buffer block
into the sender’s cache first). Then, the receiver reads the data from
the shared memory (which may demand loading the shared mem-
ory block and receiving buffer into the receiver’s cache first). For
kernel-based approaches, the receiver first loads the send buffer di-
rectly to its cache with the help of the OS kernel. Then, the receiver
writes the data to the receiving buffer (which may require loading
the receiving buffer into its cache first). Clearly, kernel-based ap-
proaches reduce the number of memory copies to be one, mitigating
the traffic on the memory subsystem. However, it demands a trap
to the kernel on both the sender and receiver, making it inefficient
for small messages. As can be seen, intra-node communication
generates lots of memory traffic and cache pollution, which may
saturate the memory subsystem if we put too much communica-
tion within each compute node. This issue is further amplified by
the increasing contentiousness of the shared resources in modern
multicore systems. Table 1 summarizes the resources that different
cores may have to compete for when they are communicating with
each other for the architectures presented in Figures 2a and 2b. The

Table 1: Intra-Node Shared Resource Contention
Cores/Resources Sharing Contention

Core Groups Socket LLC LLC FSB/QPI(HT) Memory Controller
G1 X X X X X

UMA G2 X X X
Fig. 2a G3 X

NUMA G1 X X X X
Fig. 2b G2 X

summary is based on whether the cores are on the same socket and
whether they share the last level cache (LLC).
Take-away Focusing solely on placing neighboring vertices as close
as possible is not sufficient to achieve superior performance. In
fact, putting too much communication within each compute node
may even hurt the performance due to the traffic congestion on
memory subsystems. Counter-intuitively, offloading a certain amount
of intra-node communication across compute nodes may some-
times achieve better performance. This is because inter-node com-
munication is often implemented using Remote Direct Memory
Access (RDMA) and rendezvous protocols [40], which allow a
compute node to read data from the memory of another compute
node without involving the processor, cache, or operating system
of either node, thus alleviating the traffic on memory subsystems
and cache pollution. Additionally, it is reported in [3] that modern
RDMA-enabled networks can deliver comparable network band-
width as that of memory channels. This requires us to examine the
impact of multi-core architecture on graph partitionings more care-
fully, especially for small HPC clusters, since the network may no
longer be the bottleneck.

3. PROBLEM STATEMENT
Let G = (V,E) be a graph, where V is the vertex set and E is

the edges set, and P be a partitioning of G with n partitions, where

P = {Pi : ∪ni=1Pi = V and Pi ∩ Pj = φ for any i 6= j} (1)

and let M be the current assignment of partitions to servers, where
Pi is assigned to server M [i]. The server can be either a hardware
thread, a core, a socket, or a machine.
Architecture-aware graph partition refinement aims to improve
the mapping of the application communication pattern to the un-
derlying hardware topology by modifying the current partitioning
of the graph, such that the communication cost of the target appli-
cation, given the specific hardware topology, is minimized. The
modification usually involves migrating vertices from one partition
to another partition. Hence, in addition to the communication cost,
the refinement should also minimize the data migration cost among
partitions. Also, to ensure balanced load distribution in terms of the
computation requirement, the refinement should keep the skewness
of the partitioning as small as possible.
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We define the communication cost of a partitioning P as:

comm(G,P ) = α ∗
∑

e=(u,v)∈E
and u∈Pi and v∈Pj and i6=j

w(e) ∗ c(Pi, Pj) (2)

where α specifies the relative importance between communication
and migration cost, which is usually set to be the number of su-
persteps carried out between two consecutive refinement/reparti-
tioning steps, w(e) is the edge weight, indicating the amount of
data communicated along the edge per superstep, and c(Pi, Pj)
can be either the relative network communication cost, the degree
of shared resource contentiousness between Pi and Pj or a hybrid
of both. Existing architecture-agnostic graph (re)partitioners usu-
ally assume c(Pi, Pj) = 1.

The migration cost of the refinement is defined as:

mig(G,P, P ′) =
∑
v∈V

and v∈Pi and v∈P ′
j and i6=j

vs(v) ∗ c(Pi, P ′j) (3)

where vs(v) is the vertex size, reflecting the amount of application
data represented by v, and P ′ denotes the partitioning after being
refined/repartitioned.

The skewness of a partitioning, P , is defined as:

skewness(G,P ) =
max{w(P1), w(P2), · · · , w(Pn)}∑n

i=1 w(Pi)

n

(4)

wherew(Pi) =
∑
v∈Pi

w(v) withw(v) denoting the vertex weight
(i.e., the computation requirement of the vertex).

Self Architecture-Awareness In fact, the refinement algorithm it-
self should be architecture-aware (during its execution), since the
refinement may also result in a lot of communication.

4. OUR PRIOR WORK: ARAGON
ARAGON is a serial, architecture-aware graph partition refine-

ment algorithm proposed by us in [48]. It is a variant of the Fiduccia-
Mattheyses (FM) algorithm [12]. It tries to reduce the application
communication cost by modifying the current decomposition ac-
cording to the nonuniform network communication costs of the un-
derlying hardware topology. Each time it takes as input two par-
titions of the n-way decomposition and the relative network com-
munication costs among partitions. For each input partition pair,
it attempts to improve the mapping of the application communi-
cation pattern to the underlying hardware topology by iteratively
moving vertices between them. During each iteration, it tries to
find a single vertex such that moving it from its current partition
to the alternative partition would lead to a maximal gain, where the
gain is defined as the reduction in the communication and migration
cost. Upon each movement of a vertex, v, it also updates the gain
of v’s neighbors of the partition pair. This process is repeated until
all vertices are moved once or the decomposition cannot be fur-
ther improved after a certain number of vertex movements. Since

ARAGON can only refine one partition pair at a time, it is repeatedly
applied to all partition pairs sequentially.

The gain of moving vertex v from its current partition, Pi, to its
refinement partner, Pj , is defined as:

gi,j(v) = gi,jstd(v) + gi,jtopo(v) + gi,jmig(v) (5)

Here, gi,jstd(v) considers the impact of the movement on the com-
munication between Pi and Pj , defined as:

gi,jstd(v) = α ∗ (dext(v, Pj)− dext(v, Pi)) ∗ c(Pi, Pj) (6)

where dext(v, Pi) denotes the amount of data v communicates with
vertices of partition Pi, formally defined as

dext(v, Pi) =
∑

e=(v,u)∈E
and v∈Pi and u∈Pj and i6=j

w(e) (7)

The second term of Equation 5, gi,jtopo(v), considers the impact of
the movement on the communication between v and its neighbors
in other partitions in addition to Pi and Pj . We define it as:

gi,jtopo(v) = α∗
n∑
k=1

and k 6=i and k 6=j

dext(v, Pk)∗(c(Pi, Pk)−c(Pj , Pk))

(8)
The third term of Equation 5, gi,jmig(v), considers the impact of the
movement on migration cost, which is defined as:

gi,jmig(v) = vs(v) ∗ (c(Pi, Pk)− c(Pj , Pk)) (9)

where Pk is the owner of v in the original decomposition. The
current owner of v, Pi, may be different from its original owner,
Pk, due to the refinement.
Example In the decomposition shown in Figure 3, we have a graph
with unit weights and sizes and is initially distributed across 3 ma-
chines: N1, N2, and N3. The relative network communication
costs among partitions are shown in Figure 6. Clearly, the number
of edges among partitions goes from 4 in Figure 3, to 3 in Fig-
ure 4. In fact, if we assume uniform network communication costs
among partitions, Figure 4 would be the optimal decomposition of
the graph. However, if we consider the case where all network
costs are not equal (as in Figure 6), then the decomposition in Fig-
ure 4 can be further improved by moving vertex a to P2 (Figure 5).
Even though moving vertex a from P1 to P2 increases the com-
munication cost between P1 and P2 by 1, it actually reduces the
communication cost between a and j by 5, since the relative net-
work communication cost between P1 and P3 is 6, while that of P2

and P3 is 1. For the same reason, moving a to P2 also decreases
the migration cost of a by 5, since vertex a was originally in P3.

5. PARAGON
Motivation Clearly, one naive implementation of ARAGON could
be as follows: server M [i] is responsible for the refinement of Pi
with all its partners Pi+1, Pi+2, · · · , Pn, and server M [i + 1] can
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not start its refinement for Pi+1 until server M [i] finishes its re-
finement. One major issue of this approach is that it requires the
entire graph to be sent across network n−1

2
times. An advantage of

this approach is that each server only needs to hold two partitions
in memory at a time (one for its local partition and the other one
for the refinement partner). In our prior work [48], ARAGON goes
for another extreme, where all servers send their local partitions to
a single server that is responsible for the refinement of all partition
pairs. By doing this, ARAGON only needs to send the entire graph
over network once, significantly reducing the communication traf-
fic. One drawback of this approach is that it requires the server to
store the entire graph in memory. Another issue is that the server
can easily become a performance and scalability bottleneck.

Overview Based on the observation above, PARAGON takes a mid-
dle point of the two extremes, where it allows multiple servers to
do the refinement in parallel, each of which is responsible for the
refinement of a group of partitions. In this way, we can enjoy the
benefits of both extremes without worrying about their drawbacks.
Algorithm 1 describes the main idea of PARAGON. During refine-
ment, each server runs an instance of the algorithm with its local
partition Pl and the relative network communication cost matrix c
as its input. The algorithm first selects a server as master node (Line
1), and then computes everything needed by the master node to
make the parallization decision (Line 2). The master node decides
how to split partitions into groups such that each group can be re-
fined independently on different servers and the selection of group
servers (Line 4–6). The group servers take responsibility of the re-
finement of each group. Once the decision has been made, each
server will send their vertices to the corresponding group servers
(Line 7). Upon receiving all the vertices from their group members,
group servers will start to do the refinement of each group indepen-
dently (Line 8–13). After finishing the refinement of its group,
group servers will notify their group members about the new loca-
tions of their vertices (Line 15). Then, each server will physically
migrate vertices to their new owners accordingly (Line 16).

Partition Grouping To assign a partition to a group, we con-
sider three factors: (1) to minimize the refinement time, each group
should have roughly equal number of partitions; (2) members of
each group should be carefully selected, since the gain of refining
each partition pair may vary a lot. Thus, to maximize the effective-
ness of refinement, we should group together partitions leading to
high refinement gain; and (3) we should minimize the cross-group
refinement interference, because the gain of refining one partition
pair heavily relies on the amount of data they communicate with
other partitions. This is different from the standard FM algorithms,
which solely compute the gain of migrating each vertex based on
the data it communicates with vertices of the partition pair. For
example, in the decomposition of Figure 4, the communication be-
tween vertex a and j contributes most to the gain of moving a from
P1 to P2 for PARAGON. However, for standard FM algorithms, the
gain of migrating a toP2 will be -1, since a has two neighbors inP1

and 1 in P2. Unfortunately, there is no clear way to do the group-
ing, since we could not use the state-of-the-art graph partitioners
(i.e., METIS) to compute a high-quality initial decomposition, due
to their poor scalability. As a result, the input decomposition to
PARAGON will probably have edge-cuts across all partitions. For-
tunately, we find that random grouping along with the shuffle re-
finement (the remedy technique presented below) works quite well.

Shuffle Refinement To mitigate the impact of cross-group refine-
ment interference and increase the gain of the refinement, we per-
form an additional round of refinement once all the group servers
finish the refinement of their own groups. We call this shuffle refine-

Algorithm 1: PARAGON

Data: Pl, c
Result: new locations of vertices of Pl

1 masterNodeSelection(c)
2 partitionStat(Pl, ps)
3 if server M [l] is master node then
4 pg = partitionGrouping()
5 gs = optGroupServerSelection(pg, ps, c)
6 partitionGroupServerBcast(gs);

7 sendPartitionToGroupServers(Pl, gs)
8 if server M [l] is a group server then
9 pg = recvPartitionsFromMyGroupMembers(gs)

10 foreach Pi ∈ pg do
11 foreach Pj ∈ pg do
12 if i 6= j then
13 AragonRefinement(Pi, Pj , c)

14 shuffleRefinement(pg)
15 vertexLocationUpdate(pg)

16 physicalDataMigraton(Pl)

ment. In this round, each group server first exchanges the changes
it made to the decompositions such that each group server has the
up-to-date load information of each partition and the up-to-date lo-
cations of the neighbors of each vertex. Then, each group server
swaps some of its partitions randomly with other group servers.
Subsequently, each group server starts another round of refinement
with the new grouping.

The reason why shuffle refinement is a remedy to the above is-
sue is because it increases the number of partition pairs refined by
PARAGON and thus the solution space that PARAGON explores. For
example, for a graph with 4 partitions and 2 groups, PARAGON
originally only refines 2 out of the 6 partition pairs. However, if the
group servers swap one of their partitions, PARAGON will refine 4
partition pairs instead of 2. In fact, we can repeat this shuffle refine-
ment multiple times to further expand the solution space PARAGON
explores, thus further alleviating the impact of cross-group refine-
ment interference and increasing the gain we can obtain.

The idea of shuffle refinement is very straightforward, but it is
not easy to efficiently implement, especially the propagation of the
changes that each group server made. One easy way to achieve
this is to use a distributed data directory, like the one provided by
Zoltan [1]. In this scheme, each group server only needs to make
an update to the data directory first, and then all the group servers
can pull the up-to-date locations for the neighbors of their vertices.
We found that this approach is very inefficient for really big graphs
in terms of both memory footprint and execution time. It requires
around O(|V |+|E|) data communication.

Another way to achieve this is to maintain an array at each group
server, forming a mapping from vertex global identifiers1 to their
locations. In this way, the exchange can easily be achieved via a
single (MPI) reduce operation, requiring onlyO(|V |) data commu-
nication. This approach is much more efficient than the distributed
data directory approach in terms of execution time, but it is not
memory scalable for large graphs.

In our implementation, we adopt a variant of the second ap-
proach. That is, we first chunk the entire global vertex identifier
space into multiple smaller equal sized regions. Each region con-
tains vertices within a contiguous range. By default, the region size

1In distributed graph computation, each vertex has a unique
global identifier across all partitions and a unique local identifier
within each partition.
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equals k = min{226, |V |}, where V is the vertex set of the entire
graph. Correspondingly, the exchange is split into multiple rounds.
Each round only exchanges the locations of vertices of one region.
With this scheme, we only need to maintain a smaller array at each
group sever and thus the amount of data communication remains
unchanged. Although this scheme requires scanning the edge lists
of each partition multiple times, it is much more efficient than the
distributed data directory approach.

Degree of Refinement Parallelism Theoretically, the number of
groups we can have can be any integer between 1 and n

2
, where

n is the number of partitions of the graph. Clearly, if the number
of groups equals 1, PARAGON degrades to ARAGON, in which all
servers will send their local partitions to a single group server for
sequential refinement. The reason why there is an upper bound is
because each group needs to have at least 2 partitions for the re-
finement to proceed. Typically, the higher the number is, the faster
the refinement will finish. However, there is a tradeoff between the
degree of parallelism and the quality of the resulting decomposi-
tion we can have. This is because the higher the number is, the
fewer partitions each group will have and thus the fewer partition
pairs will be refined. Given a graph with n partitions andm groups,
PARAGON only refines n(n−m)

2m
partition pairs, while ARAGON re-

fines all n(n−1)
2

partition pairs. In other words, ARAGON will even-
tually select an optimal migration destination among all partitions
for each vertex, whereas PARAGON only considers a subset of the
partitions for each vertex. This also explains the reason why the re-
sulting decompositions computed by PARAGON are usually poorer
than those of ARAGON. Fortunately, the shuffle refinement tech-
nique we proposed helps to address the issue.

Group Server Selection Once the master node finishes the group-
ing process, it will select an optimal server for each group, such
that the cost of sending partitions of the group to the group server
is minimized. For example, in case of Figure 4, where we assume
that P1, P2, and P3 are of one group, we should select server M [2]
as the group server intuitively since c(P1, P2) = c(P2, P3) = 1
while c(P1, P3) = 6. To achieve this, we define the cost of select-
ing server M [s] as the group server for group g as:∑

Pi∈g

ps[i] ∗ c(Pi, Ps) ∗ (1 +
σ(s)

drp
) (10)

Here, ps[i] denotes the number of edges associated with vertices
of Pi, which is a good approximation for the amount of data each
server needs to send to their group servers. σ(s) is the number of
group servers that have been designated on the compute node that
server M [s] belongs to. It should be noticed that server M [s] can
be a hardware thread, a core, a socket, or a machine. drp is the
degree of refinement parallelism (number of group servers). The
last term (1 + σ(s)

drp
) is the penalty that is added to avoid the con-

centration of multiple group servers into a single compute node,
reducing the chance of memory exhaustion. Once all group servers
are selected, the master node will broadcast the group servers of all
groups to all slave nodes. Then, each server will send its vertices
(as well as their edge lists) to their corresponding group servers,
after which the group servers will start to refine partitions of their
own groups independently.

Reducing Communication Volume Clearly, PARAGON with the
shuffle refinement disabled requires the entire graph to be sent over
the network once, and PARAGON with the shuffle refinement en-
abled demands more data communication. For really big graphs,
the communication volume may get very high. Thus, we follow
the same approach proposed in [35] to reduce the communication

volume. Specifically, instead of sending the entire partition to their
group servers, each server only needs to send vertices that can be
reached by a breadth-first search from boundary vertices of each
partition within k-hop traversal. Boundary vertices are vertices that
have neighbors in other partitions. The rationale behind this is that
if a vertex is very far from the boundary vertex, the chance that it
get moved by PARAGON to another partition to improve the decom-
position is very small. Surprisingly, we find that PARAGON is not
sensitive to k in terms of the partitioning quality, and that a larger
k does not always lead to partitionings of higher quality. However,
it may increase the refinement time greatly. Thus, in our imple-
mentation, we set k = 0 by default. In other words, we only send
boundary vertices of each partition to the group servers.

In fact, [35] has presented a solution to parallellize the standard
FM algorithms [12]. However, it may require a graph with n parti-
tions to be sent over the network n− 1 times in case the initial de-
composition has edge-cuts across all partition pairs. Furthermore,
the presence of communication heterogeneity complicates things
greatly. First, ARAGON has to be applied to all partition pairs,
whereas standard FM algorithms, which assume uniform network
communication costs, only need to refine partition pairs that have
edge-cuts between them. Second, during each refinement iteration
of a single partition pair, standard FM algorithms only need to con-
sider migrating vertices of both partitions that have neighbors in the
alternative partition. On the other hand, PARAGON has to consider
migrating all boundary vertices.

Master Node Selection As presented so far, each server (slave
node) needs to send some auxiliary data (i.e., the number of ver-
tices/neighbors) of their local partitions to the master node for the
parallelization decision, and the master needs to broadcast the deci-
sion it made to all slave nodes. To reduce the communication cost
between the master node and the slave nodes, we also select the
master node in an intelligent way using the following heuristic:

min
m∈[1,n]

n∑
i=1 and i6=m

c(Pi, Pm) (11)

The heuristic tries to find a server M [m] that will result in minimal
network communication cost as the master node. For example, in
case of Figure 4, we should select server M [2] as the master node.
Clearly, the selection of master node can be made locally by each
server without synchronizing with each other.

Physical Data Migration To support efficient distributed com-
putation, we also provide a basic migration service for graph work-
loads. Considering that physical data migration is highly application-
dependent, the migration service only takes responsibility for the
redistribution of the graph data itself. It is the users who are re-
sponsible for the migration of any application data associated with
each vertex. That is, the users should save the application context
before using our migration service and restore the context after-
wards. For example, in breadth first search, each vertex is usually
associated with a value indicating its current distance to the source
vertex. Users need to keep track of the distance value of each vertex
while migrating. For complicated workloads, users can exploit the
migration service provided by Zoltan [1] to simplify the migration.

6. CONTENTION AWARENESS
So far, we have presented how we parallelize ARAGON. In this

section, we will cover how we make PARAGON aware of the issue
of shared resource contention in multicore systems. We know that,
guided by a given network communication cost matrix, PARAGON
is able to gather neighboring vertices as close as possible, and that
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the contention is caused by the fact that we put too much commu-
nication within the compute nodes. Hence, to avoid serious intra-
node shared resource contention, we can simply penalize intra-node
network communication costs by a score. The score is computed
based on the degree of contentiousness between the communica-
tion peers. By doing this, the amount of intra-node communication
will decrease accordingly. In our implementation, we refine the
intra-node communication costs as follows:

c(Pi, Pj) = c(Pi, Pj) + λ ∗ (s1 + s2) (12)

where Pi and Pj are two partitions collocated in a single compute
node; λ is a value between 0 and 1, denoting the degree of con-
tention; and s1 denotes the maximal inter-node network commu-
nication cost, while s2 equals 0 if Pi and Pj reside on different
sockets and equals the maximal inter-socket network communica-
tion cost otherwise. Clearly, if λ = 0, PARAGON will only consider
the communication heterogeneity, and λ = 1 means that intra-node
shared resource contention is the biggest performance bottleneck,
which should be prioritized over the communication heterogeneity.
It should be noticed that PARAGON with any λ ∈ (0, 1] considers
both the contention and the communication heterogeneity. Consid-
ering the impact of both resource contention and communication
heterogeneity is highly application- and hardware-dependent, users
will need to do simple profiling of the target applications on the ac-
tual computing environment to determine the ideal λ for them.

7. EVALUATION
In this section, we first evaluate the sensitivity of PARAGON to

varying input decompositions computed by different initial parti-
tioners and the impact of its two important parameters: the degree
of parallelism and the number of shuffle refinement times (Sec-
tion 7.1). We then validate the effectiveness of PARAGON using two
real-world graph workloads: Breadth-First Search (BFS) [4] and
Single-Source Shortest Path (SSSP) [20], which we implemented
using MPI (Section 7.2). Finally, we demonstrate the scalability of
PARAGON via a billion-edge graph (Section 7.3).

Datasets Table 2 describes the datasets used. By default, the
graphs were (re)partitioned with vertex weights (i.e., computational
requirement) set to be their vertex degree, with vertex sizes (i.e.,
amount of the data of the vertex) set to be their vertex degree, and
with edge weights (i.e., amount of data communicated) set to 1.
The degree of each vertex is often a good approximation of the
computational requirement and the migration cost of each vertex,
while a uniform edge weight of 1 is a close estimation of the com-
munication pattern of many graph algorithms, like BFS and SSSP.
Given the fact that communication cost is usually more impor-
tant than migration cost, all the experiments were performed with
α = 10 (Eq. 2). Unless explicitly specified, all the graphs were
initially partitioned by DG (deterministic greedy heuristic), a state-
of-the-art streaming graph partitioner [39], across cores of the com-
pute node used (one partition per core). The partitionings were then
improved by PARAGON. During the (re)partitioning, we allowed
up to 2% load imbalance among partitions. For fairness, DG/LDG
were extended to support vertex- and edge-weighted graphs.

Platforms We evaluated PARAGON on two clusters: PittMPIClus-
ter [32] and Gordon supercomputer [28]. PittMPICluster had a flat
network topology, with all 32 compute nodes connected to a single
switch via 56GB/s FDR Infiniband. On the other hand, the Gordon
network topology was a 4x4x4 3D torus of switches connected via
8GB/s QDR Infiniband with 16 compute nodes attached to each
switch. Table 3 depicts the compute node configuration of both
clusters. The results presented were the means of 5 runs, except the

Table 2: Datasets used in our experiments
Dataset |V | |E| Description

wave [38] 156,317 2,118,662 2D/3D FEM
auto [38] 448,695 6,629,222 3D FEM

333SP [10] 3,712,815 22,217,266 2D FE Triangular Meshes
CA-CondMat [2] 108,300 373,756 Collaboration Network

DBLP [18] 317,080 1,049,866 Collaboration Network
Email-Eron [2] 36,692 183,831 Communication Network

as-skitter [2] 1,696,415 22,190,596 Internet Topology
Amazon [2] 334,863 925,872 Product Network

USA-roadNet [9] 23,947,347 58,333,344 Road Network
PA-roadNet [2] 1,090,919 6,167,592 Road Network
YouTube [18] 3,223,589 24,447,548 Social Network

com-LiveJournal [2] 4,036,537 69,362,378 Social Network
Friendster [2] 124,836,180 3,612,134,270 Social Network

Table 3: Cluster Compute Node Configuration
Node Configuration PittMPICluster

(Intel Haswell Processor)
Gordon

(Intel Sandy Bridge Processor)
Sockets 2 2
Cores 20 16

Clock Speed 2.6 GHz 2.6 GHz
L3 Cache 25 MB 20 MB

Memory Capacity 128 GB 64 GB
Memory Bandwidth 65 GB/s 85 GB/s

execution of SSSP on Gordon (Section 7.2) and the scalability test
(Section 7.3).
Network Communication Cost Modelling The relative network
communication costs among partitions (cores) were approximated
using a variant of the osu_latency benchmark [29]. To ensure the
correctness of the cost matrix, each MPI rank (process) was bound
to a core using the mechanism provided by MVAPICH2 1.9 [25] on
Gordon and OpenMPI 1.8.6 [27] on PittMPICluster. MVAPICH2
and OpenMPI were two different MPI implementations available
on the clusters.

7.1 MicroBenchmarks

7.1.1 Varying Degree of Parallelism
Configuration In this experiment, we examined the impact of the
degree of parallelism in terms of both the refinement time (i.e.,
the time that the refinement took) and the refinement quality (i.e.,
the communication cost of the resulting decomposition). Towards
this, we first partitioned the com-lj dataset into 40 partitions using
DG across 2 compute nodes of PittMPICluster, and then applied
PARAGON to the decompositions with varying degree of refinement
parallelism but with shuffle refinement disabled.
Results (Figures 7a & 7b) Figure 7a plots the runtime of PARAGON
on the com-lj dataset for various degrees of parallelism. As ex-
pected, the higher the degree of parallelism, the faster the refine-
ment would finish, and PARAGON significantly reduced the refine-
ment time of ARAGON (PARAGON with degree of parallelism of 1).
However, the speedup was achieved at the cost of higher communi-
cation cost of the resulting decompositions (Figure 7b). The com-
munication costs presented were normalized to that of the initial
decomposition computed by DG. However, in the end, PARAGON
still resulted in lower communication cost in all cases when com-
pared to the initial decompositions.

7.1.2 Impact of Shuffle Refinement
Configuration In our second experiment, we were interested to see
whether the shuffle refinement technique could address the issue we
identified in the previous experiment. Towards this, we repeated the
same experiment but with a fixed degree of refinement parallelism
(8) and varying number of shuffle refinement times (from 8 to 15).
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Figure 7: Refinement time and communication costs of the com-lj decompositions after being refined with varying degree of refinement
parallelism on two 20-core compute nodes. The communication costs presented were normalized to that of the initial decomposition.
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Figure 8: Y-axis corresponds to the communication costs of the
com-lj decompositions after being refined with varying number of
shuffle refinement times on two 20-core compute nodes when they
were normalized to that of the decompositions refined by ARAGON;
X-axis denotes the corresponding refinement time; the labels on
each data point were the number of refinement times.

Results (Figure 8) Figure 8 shows the corresponding refinement
time and the normalized communication costs of resulting decom-
positions with the decompositions computed by ARAGON as the
baseline. As shown, PARAGON (with shuffle refinement enabled)
not only produced decompositions of lower communication costs
than ARAGON (when the number of shuffle refinement times was
greater than 11), but also completed the refinement faster (ARAGON
took around 33s to finish the refinement vs 8.12s by PARAGON with
11 shuffle refinement times).

7.1.3 Impact of Initial Partitioners
Configuration This experiment examined the refinement overhead
and the quality of the resulting decompositions, when PARAGON
was provided with decompositions computed by four different par-
titioners: (a) HP, the default graph partitioner of many parallel
graph computing engines; (b) DG and LDG, two state-of-the-art
streaming graph partitioning heuristics [39]; and (c) METIS, a state-
of-the-art multi-level graph partitioner [23]. The graphs were ini-
tially partitioned across the same two machines used in our prior
experiments but with both the degree of refinement parallelism and
the number of shuffle refinement times set to 8.
Quality of the Initial Decompositions (Figure 9) Figure 9 de-
notes the communication cost of the initial decompositions com-
puted by HP, DG, LDG, and METIS for a variety of graphs. As
anticipated, METIS performed the best and HP the worst. How-
ever, METIS is a heavyweight serial graph partitioner, making it in-
feasible for large-scale distributed graph computation either as an
initial partitioner or as an online repartitioner (repartitioning from
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Figure 9: Communication cost of the initial decompositions com-
puted by HP, DG, LDG, and METIS across cores of two 20-core
compute nodes for a variety of graphs.

scratch). It was reported in prior work [42] that METIS took up
to 8.5 hours to partition a graph with 1.46 billion edges. Unex-
pectedly, DG outperformed LDG, the best streaming partitioning
heuristic among the ones presented in [39]. This was probably be-
cause the order in which the vertices were presented to the parti-
tioner favored DG over LDG (the results of DG and LDG rely on
the order in which vertices are presented). This was also the reason
why we picked DG as the default initial partitioner for PARAGON.

Quality of the Resulting Decompositions (Figures 10a & 10b)
Figures 10a and 10b show the corresponding communication cost
of the resulting decompositions and the improvement achieved by
PARAGON in terms of the communication cost when compared to
the initial decompositions. As shown, the better the initial decom-
position was, the better the resulting decomposition would be. In
comparison with the initial decompositions computed by HP, DG,
and LDG, PARAGON reduced the communication cost of the de-
compositions by up to 58% (43% on average), 29% (17% on aver-
age), and 53% (36% on average), respectively. Although PARAGON
did not improve significantly the decompositions computed by METIS
for easily partitioned FEM and road networks (left 7 datasets), it
achieved an improvement of up to 4.5% for complex networks (right
5 datasets). Given the size of the dataset, the improvement was still
non-negligible. Fortunately, we found that PARAGON with DG
as its initial partitioner can achieve even better performance than
METIS on real-world workloads (Section 7.2).

Refinement Overhead (Figures 11a & 11b) We also noticed
that the quality of the initial decomposition impacted the refine-
ment overhead greatly. Figures 11a and 11b plot the migration
cost (Eq. 3) and the refinement time. Clearly, the poorer the initial
decomposition was, the higher the migration cost and the longer
the refinement time would be. Finally, for decompositions, which
PARAGON failed to make much improvement, PARAGON only led
to a very small amount of overhead.
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Figure 10: PARAGON’s sensitivity to varying initial decompositions in terms of the communication cost for a variety of graphs, which were
initially partitioned by HP, DG, LDG, and METIS across cores of two 20-core compute nodes.

  0

  1

  2

  3

  4

  5

  6

  7

wave
auto

333SP

roadNet−PA

USA−road−d

CA−CondMat

com−dblp

com−amazon

Email−Enron

YouTube

as−skitter

com−ljM
i
g
r
a
t
i
o
n
 
C
o
s
t
 
(
1
0
^
7
)

PARAGON+HP
PARAGON+DG
PARAGON+LDG
PARAGON+METIS

(a) Migration Cost

  0

  5

  10

  15

  20

  25

  30

  35

wave
auto

333SP

roadNet−PA

USA−road−d

CA−CondMat

com−dblp

com−amazon

Email−Enron

YouTube

as−skitter

com−lj

R
e
f
i
n
e
m
e
n
t
 
T
i
m
e
(
s
)

PARAGON+HP
PARAGON+DG
PARAGON+LDG
PARAGON+METIS

(b) Refinement Time
Figure 11: Overhead of the refinement on varying decompositions that were initially partitioned by HP, DG, LDG, and METIS across cores
of two 20-core compute nodes.

7.2 Real-World Applications (BFS & SSSP)
Configuration This experiment evaluated PARAGON using BFS
and SSSP on the YouTube, as-skitter, and com-lj datasets. Initially,
the graphs were partitioned across cores of three compute nodes of
two clusters using DG. Then, the decomposition was improved by
PARAGON with the degree of refinement parallelism and the num-
ber of shuffle refinement times both set to 8. During the execution
of BFS/SSSP, we grouped multiple (8 for YouTube and as-skitter
dataset and 16 for com-lj dataset) messages sent by each MPI rank
to the same destination into a single one.

Resource Contention Modeling To capture the impact of resource
contention, we carried out a profiling experiment for BFS and SSSP
with the 3 datasets on both clusters by increasing λ gradually from
0 to 1. Interestingly, we found that intra-node shared resource con-
tention was more critical to the performance on PittMPICluster,
while inter-node communication was the bottleneck on Gordon.
This was probably caused by the differences in network topolo-
gies (flat vs hierarchical), core count per node (20 vs 16), mem-
ory bandwidth (65GB vs 85GB), and network bandwidth (56GB vs
8GB) between the two clusters, and that BFS/SSSP had to compete
with other jobs running on Gordon for the network resource, while
there was no contention on the network communication links on
PittMPICluster. Hence, we fixed λ to be 1 on PittMPICluster and 0
on Gordon for the experiment.

Job Execution Time (Tables 4 & 5) Tables 4 and 5 show the
overall execution time of BFS and SSSP with 15 randomly selected
source vertices on the three datasets and the overhead of PARAGON.
The execution time of a distributed graph computation is defined as:
JET =

∑n
i=1 SET (i), where n is the number of supersteps the

job has, while SET (i) denotes the execution time of the ith super-

step and is defined as the ith superstep execution time of the slowest
MPI rank. In the table, DG and METIS mean that BFS/SSSP was
performed on the datasets without any repartitioning/refinement,
PARMETIS is a state-of-the-art multi-level graph repartitioner [30],
UNIPARAGON was a variant of PARAGON that assumes homoge-
neous and contention-free computing environment, and the num-
bers within the parentheses were the overhead of repartitioning/re-
fining the decomposition computed by DG.

As expected, PARAGON beat DG, PARMETIS, and UNIPARAGON
in all cases. Compared to DG, PARAGON reduced the execution
time of BFS and SSSP on Gordon by up to 60% and 62%, respec-
tively, and up to 83% and 78% on PittMPICluster, respectively. If
we time the improvements by the number of MPI ranks (48 for
Gordon and 64 for PittMPICluster), the improvements were more
remarkable. Yet, the overhead PARAGON exerted (the sum refine-
ment time and physical data migration time) was very small in com-
parison to the improvement it achieved and the job execution time.
By comparing the results of UNIPARAGON with DG, we can con-
clude that PARAGON not only improved the mapping of the appli-
cation communication pattern to the underlying hardware, but also
the quality of the initial decomposition (edge-cut). Also, if we com-
pare the execution time of BFS/SSSP on both clusters, we would
find that the speedup PARAGON achieved by increasing the number
of cores from 48 to 60 was much higher than that of DG. What we
did not expect was that PARAGON with DG as its initial partitioner
outperformed the gold standard, METIS, in 4 out the 6 cases and
was comparable to METIS in other cases.

Communication Volume Breakdown (Figures 12 & 13) To fur-
ther confirm our observations, we also collected the total amount of
data remotely exchanged per superstep by BFS and SSSP among
cores of the same socket (intra-socket communication volume),
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Table 4: BFS Job Execution Time (s)
Algorithm/Dataset YouTube as-skitter com-lj

PittMPICluster
DG 30 59 218

METIS 8.50 67 27
PARMETIS 29 (21.00) 59 (9.65) 185 (4.71)

UNIPARAGON 25 (2.70) 27 (2.26) 159 (7.54)
PARAGON 8 (4.00) 10 (3.31) 40 (10.00)

Gordon
DG 322 577 4319

UNIPARAGON 264 (2.70) 350 (2.07) 3310 (6.98)
PARAGON 220 (3.83) 228 (2.96) 2586 (9.08)

Table 5: SSSP Job Execution Time (s)
Algorithm/Dataset YouTube as-skitter com-lj

PittMPICluster
DG 2136 1823 5196

METIS 545 822 955
PARMETIS 1842 (19.00) 582 (9.28) 3268 (4.50)

UNIPARAGON 1805 (2.45) 1031 (2.07) 3136 (6.98)
PARAGON 468 (3.88) 472 (3.14) 1549 (9.71)

Gordon
DG 3436 7092 10732

UNIPARAGON 3402 (2.76) 3355 (2.13) 7831 (9.75)
PARAGON 2838 (3.89) 2731 (2.97) 6841 (29.00)

  0

  500

  1,000

  1,500

  2,000

  2,500

DG METIS

PARMETIS

uniPARAGON

PARAGON

DG METIS

PARMETIS

uniPARAGON

PARAGON

DG METIS

PARMETIS

uniPARAGON

PARAGON

C
o
m
m
 
V
o
l
u
m
e
(
M
B
)

YouTube as−skitter com−lj

Inter−Node
Inter−Socket
Intra−Socket

Figure 12: The breakdown of the accumulated communication volume
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Figure 13: The breakdown of the accumulated communication volume
across all supersteps for BFS on Gordon.

among cores of the same compute node but belonging to differ-
ent sockets (inter-socket communication volume), and among cores
of different compute nodes (inter-node communication volume).
Since we observed similar patterns for BFS and SSSP in all the
cases, we only present the breakdown of the accumulated commu-
nication volume across all supersteps for BFS here.

As shown in Figures 12 (for PittMPICluster) and 13 (for Gor-
don), PARAGON and UNIPARAGON have much lower remote com-
munication volume than DG in all cases, and PARAGON has the
lowest inter-node communication volume and highest intra-node
(inter-socket & intra-socket) communication volume on Gordon
(vice versa on PittMPICluster), which was expected given our choice
for λ. It is worth mentioning that on PittMPICluster, intra-node
data communication was the bottleneck. Another interesting thing
was that in spite of its higher total communication volume when
compared to METIS, PARMETIS, and UNIPARAGON, PARAGON
still outperformed them in most cases due to the reduced commu-
nication on critical components.

Graph Dynamism (Figure 14) To further validate the effective-
ness of PARAGON in the presence of graph dynamism, we split the
YouTube dataset (a collection of YouTube users and their friend-
ship connections over a period of 225 days) into 5 snapshots with
an interval of 45 days. Thus, snapshot Si denotes the collection
of YouTube users and their friendship connections appearing dur-
ing the first 45 ∗ i days. We then ran BFS on snapshot S1 across
three 20-core machines and injected vertices newly appeared in
each snapshot to the system using DG whenever BFS finished its
computation for every 15 randomly selected vertices. The injec-
tion also triggered the execution of PARAGON, UNIPARAGON, and
PARMETIS on the decomposition.

Figure 14 plots the BFS execution time for 15 randomly selected
source vertices on each snapshot. As shown, both architecture-
awareness and the capability to cope with graph dynamism were
critical to achieve superior performance. This is especially true as
the graph changes a lot from its original version: at snapshot S5,
PARAGON performed 90% better than DG, 85% better than METIS,
73% better than PARMETIS, and 89% better than UNIPARAGON.

7.3 Billion-Edge Graph Scaling
Configuration In this experiment, we investigated the scalabil-
ity of PARAGON as the graph scale increased. Towards this, we
generated three additional datasets by sampling the edge list of the
friendster dataset (3.6 billion edges). We denote the datasets gen-
erated as friendster-p, where p was the probability that each edge
was kept while sampling. Hence, friendster-p would have around
3.6∗p billion edges. Interestingly, the number of vertices remained
almost unchanged in spite of the sampling. We ran the experiment
on three compute nodes of PittMPICluster with the degree of re-
finement parallelism, the number of shuffle refinement times, and
the message grouping size set to 10, 10, and 256, respectively.
Results (Figures 15 & 16) Figures 15 and 16 present the execu-
tion time of BFS with 15 randomly selected source vertices and
the overhead of PARAGON at different graph scales. As shown,
PARAGON not only led to lower job execution times, but also to
lower speed in which the job execution time increased as the graph
size increased. It should be noticed that PARAGON reduced the
execution time of all machines (3*20 cores) not just one. Also,
the refinement time increased at a much slower rate (from 140s, to
236s, to 312s, and to 410s) than that of the graph size. The rea-
son why we did not present the results of METIS or PARMETIS
here was because they failed to (re)partition the graphs (even for
the first dataset, of 0.9 billion edges).

8. RELATED WORK
Graph partitioning and repartitioning are receiving more and more

attention in recent years due to the proliferation of large graph
datasets. In this section, we categorize existing approaches of graph
(re)partitioners into three types: (a) heavyweight, (b) lightweight,
and (c) streaming, which are presented next.
Heavyweight Graph (Re)Partitioning Graph partitioning and repar-
titioning has been studied for decades (e.g., METIS [23], PARMETIS [30],
Scotch [36], Chaco [7], and Zoltan [1]). These graph (re)partitioners
are well-known for their capability of producing high-quality graph
decompositions. However, they usually require full knowledge of
the entire graph for (re)partitioning, making them scale poorly against
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large graphs even if performed in parallel. Furthermore, they are
all architecture-agnostic. Although [24], a METIS variant, consid-
ers the communication heterogeneity, it is a sequential static graph
partitioner, which is inapplicable for massive graphs or dynamic
graphs. Several recent works [48, 8] have been proposed to cope
with the heterogeneity and dynamism. However, they are also too
heavyweight for massive graphs because of the high communica-
tion volume they generate. As a consequence, they are not ap-
propriate for online graph repartitioning in large-scale distributed
graph computation. Furthermore, they disregard the issue of re-
source contention in multicore systems.

Lightweight Graph Repartitioning As a result of the shortcom-
ings of heavyweight graph (re)partitioners, many lightweight graph
repartitioners [37, 43, 26, 17, 45] have been proposed. They ef-
ficiently adapt the partitioning to changes by incrementally mi-
grating vertices among partitions based on some heuristics (rather
than repartitioning the entire graph). Nevertheless, they are not
architecture-aware. Also, many of them assume uniform vertex
weights and sizes, and some [43, 26] even assume uniform edge
weights, which may not always be true.

In fact, work [17] is a Pregel-like graph computing engine, which
migrates vertices based on runtime characteristics of the workload
(i.e., # of message sent/received by each vertex and response time)
instead of the graph structure (i.e., the distribution of vertex neigh-
bors, edge weights, and vertex sizes). Paper [45] also presents
a repartitioning system that migrates vertices on-the-fly based on
some runtime statistics (i.e., the average compute and communica-
tion time of each superstep and the probability of a vertex becoming
active in the next superstep).

Recently, a novel distributed graph partitioner, Sheep [22], has
been proposed for large graphs. It is similar in spirit to METIS.
That is, they both first reduce the original graph to a smaller tree or
a sequence of smaller graphs, then do a partition of the tree or the
smallest graph, and finally map the partitioning back to the origi-
nal graph. In terms of partitioning time, Sheep outperforms both
METIS and streaming partitioners. For partitioning quality, Sheep
is competitive with METIS for a small number of partitions and is
competitive with streaming graph partitioners for larger numbers
of partitions. However, Sheep is unable to deal with both weighted
and dynamic graphs, and it is architecture-agnostic.

Streaming Graph Partitioning Recently, a new family of graph
partitioning heuristics, streaming graph partitioning [39, 11, 42],
has been proposed for online graph partitioning. They are able to
produce partitionings comparable to the heavyweight graph par-
titioner, METIS, within a relative short time. However, they are
architecture-agnostic. Although [46] has presented a streaming
graph partitioner with awareness of both compute and communi-
cation heterogeneity, it may lead to suboptimal performance in the
presence of graph dynamism.

Vertex-Cut Graph Partitioning Several vertex-cut graph parti-
tioners [44, 31, 13] were also proposed to improve the performance
of distributed graph computation. Vertex-cut solutions partition

the graph by assigning edges of the graph across partitions in-
stead of vertices. It has been shown that vertex-cut solutions re-
duce the communications with respect to edge-cut ones, especially
on power-law graphs. However, it also has to deal with the issue
of communication heterogeneity and the issue of shared-resource
contention, since vertices appearing in multiple partitions need to
communicate with each other during the computation. Neverthe-
less, its discussion is beyond the scope of this paper.

Overview of Related Work Table 6 visually classifies the state-
of-the-art graph (re)partitioners according to algorithm and graph
properties. In terms of algorithm properties, we characterize each
approach as to whether it (a) runs in parallel and (b) is architecture-
aware (i.e., CPU heterogeneity, network cost non-uniformity, and
resource contention). In terms of graph properties, we charac-
terize each approach as to whether it can handle graphs with (a)
dynamism, (b) weighted vertices (i.e., nonuniform computation),
(c) weighted edges (i.e., nonuniform data communication), and (d)
vertex sizes (i.e., nonuniform data sizes on each vertex).

9. CONCLUSIONS
In this paper, we presented PARAGON, a parallel architecture-

aware graph partition refinement algorithm that bridges the mis-
match between the application communication pattern and the un-
derlying hardware topology. PARAGON achieves this by modify-
ing a given decomposition according to the nonuniform network
communication costs and consideration of the contentiousness of
the underlying hardware. To further reduce its overhead, we made
PARAGON itself architecture-aware. Compared to the state-of-the-
art, PARAGON improved the quality of graph decompositions by
up to 53%, achieved up to 5.9x speedups on real workloads, and
successfully scaled up to a 3.6 billion-edge graph.
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ABSTRACT
As the volume of the RDF data becomes increasingly large, it is
essential for us to design a distributed database system to manage
it. For distributed RDF data design, it is quite common to partition
the RDF data into some parts, called fragments, which are then dis-
tributed. Thus, the distribution design consists of two steps: frag-
mentation and allocation. In this paper, we propose a method to
explore the intrinsic similarities among the structures of queries in
a workload for fragmentation and allocation, which aims to reduce
the number of crossing matches and the communication cost during
SPARQL query processing. Specifically, we mine and select some
frequent access patterns to reflect the characteristics of the work-
load. Based on the selected frequent access patterns, we propose
two fragmentation strategies, vertical and horizontal fragmentation
strategies, to divide RDF graphs while meeting different kinds of
query processing objectives. Vertical fragmentation is for better
throughput and horizontal fragmentation is for better performance.
After fragmentation, we discuss how to allocate these fragments to
various sites. Finally, we discuss how to process a query based on
the results of fragmentation and allocation. Extensive experiments
confirm the superior performance of our proposed solutions.

1. INTRODUCTION
As a standard model for publishing and exchanging data on the

Web, Resource Description Framework (RDF) has been widely
used in various applications to expose, share, and connect pieces
of data on the Web. In RDF, data is represented as triples of the
form 〈subject, property, object〉. An RDF dataset can be naturally
seen as a graph, where subjects and objects are vertices connected
by named relationships (i.e., properties). SPARQL is a structured
query language proposed by W3C to access RDF repository. As
we know, answering a SPARQL query Q is equivalent to finding
subgraph matches of query graph Q over an RDF graph G [31].
Figures 1 and 2 show an RDF graph and a set of SPARQL query
graphs used as the running example in this paper.

As RDF repositories increase in size, evaluating SPARQL queries

∗corresponding author: zoulei@pku.edu.cn
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15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

is beyond the capacity of a single machine. For example, DBpedia,
a project aiming to extract structured content from Wikipedia, con-
sists of 2.46 billion RDF triples [4]; according to the W3C, the
numbers of triples in some commercial RDF datasets have been
more than 1 trillion [6]. The large-scale of RDF data volume in-
creases the demand of designing the high performance distributed
RDF database system.

In distributed database design, the first issue is “data fragmenta-
tion and allocation” [18]. We need to divide an RDF graph into sev-
eral parts, called fragments, and then distribute them among sites.
One important issue during data fragmentation and allocation in
a distributed system is how to reduce the communication cost be-
tween different fragments during distributed query evaluation (as-
suming different fragments are resident at different sites). To min-
imize the communication cost, many existing graph fragmentation
strategies maximize the global goal (such as min-cut [12]). How-
ever, evaluating a SPARQL query is a subgraph (homomorphism)
match problem. The subgraph match computation often does not
involve all vertices in graph G, and the communication cost of sub-
graph match computation depends on not only the RDF graph but
also the query graph. In other words, subgraph match computa-
tion exhibits strong locality. There is no direct relation between
minimizing the communication cost (in subgraph match computa-
tion) and maximizing the global goal. Hence, we propose a local
pattern-based fragmentation strategy in this paper, which can re-
duce the communication cost of subgraph match computation.

The intuition behind the local pattern-based fragmentation is as
follows: if a query “satisfies” a local pattern and all its matches are
in a single fragment, then the query can be evaluated on the single
fragment and no communication cost is needed to answering the
query. The key issue in local pattern-based fragmentation is how
to define the “local patterns”. Different from the existing methods,
we consider the query workload-driven “local pattern” definition.

1.1 Why Query Workload Matters ?
The workload-driven distributed data fragmentation has been well

studied in relational databases [18]. However, few RDF data frag-
mentation proposals consider the query workload except for [8, 6].
We will review these related papers in Section 9. Here, we discuss
why the query workloads is important for RDF data fragmentation.

We study one real SPAQRL query workload, the DBpedia query
workload, which records 8,151,238 SPARQL queries issued in 14
days of 20121. For this workload, if we set the minimum support
threshold as 0.1% of the total number of queries, we mine 163 fre-
quent subgraph patterns. The most surprising is that 97% query
graphs are isomorphic to one of the 163 frequent subgraph pat-

1http://aksw.org/Projects/DBPSB.html
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Figure 2: Example SPARQL Query Graphs

terns. Thus, if we use these frequent subgraph patterns as the basic
fragmentation units, 97% SPARQL queries do not lead to commu-
nication cost, since their matches are resident at one fragment.

1.2 Our Solution
According to the above motivation, we propose a workload-driven

data fragmentation for distributed RDF graph systems. Specifi-
cally, we first mine frequent subgraph patterns, named frequent ac-
cess patterns, in the query workload. We treat these frequent access
patterns as the implicit schemas for the underlying RDF data. Then,
we propose two fragmentation strategies based on these implicit
schemas. We study the following technical issues in this paper.

Frequent Access Pattern Selection. Given a frequent access pat-
tern, we build a fragment by collecting all its matches in the RDF
graph. In this way, we can reduce the communication cost (i.e.,
improve query performance) if a SPARQL query satisfies the fre-
quent access pattern. However, if we simply select all frequent
access patterns as the implicit schemas, it may lead to expensive
space cost due to the data replication, since different frequent ac-
cess patterns may involve share the same edges. In other words, we
have a tradeoff between performance gain and space cost during se-
lecting frequent access patterns. We formalize the frequent access
pattern selection problem (Section 4.1) and prove that it is a NP-
hard problem (Theorem 1). Thus, we propose a heuristic algorithm
which can guarantee the data integrity and the approximation ratio
(Theorem 2). This algorithm also achieves the good performance
(See experiments in Section 8).

Vertical and Horizontal Fragmentation. Based on the selected
frequent access patterns (i.e., implicit schemas), we design two

fragmentation strategies, i.e, vertical and horizontal fragmentation.
These two fragmentation strategies are adaptive to different query
processing objectives. The objective of vertical fragmentation strat-
egy is to improve the query throughout, and requires that all struc-
tures involved by one frequent access pattern should be placed to
the same fragment. Instead, the horizontal fragmentation strategy
distributes the structures involved by one frequent access pattern
among different fragments to maximize the parallelism of query
evaluation, namely, reducing the query response time for a single
query. To perform the horizontal fragmentation over RDF graphs,
we extend the concept of “minterm predicate” in [18] to “structural
minterm predicate” (see Section 5.2), which consider the structures
of both RDF graphs and workloads. Different applications have
different requirements, so we provide customizable options that can
be used for different RDF graphs and SPARQL query workloads.

Query Decomposition. As we know, the query decomposition
always depends on the fragmentation. In traditional vertical and
horizontal fragmentation in RDBMS and XML, the query decom-
position is unique, since there is no overlap between different frag-
ments. As mentioned before, there are some data replications in
our fragmentation strategies for RDF graphs. Thus, we may have
multiple decomposition results for a query. A cost model driven
selection is proposed in this paper.

The contributions of this paper can be summarized as follows:

• We analyze the characteristics of the real SPARQL query
workload and use the intrinsic similarities of queries in the
workload to mine and select some frequent access patterns
for distributed RDF data design. Although we prove that the
problem of frequent access pattern selection is NP-hard, we
propose a heuristic method to achieve the good performance.

• Based on the above scheme, we propose two fragmentation
strategies, vertical and horizontal fragmentation, to divide
the RDF graph into many fragments and a cost-aware allo-
cation algorithm to distribute fragments among sites. The
two fragmentation strategies provide customizable options
that are adaptive to different applications.

• We propose a cost-aware query optimization method to de-
compose a SPARQL query and generate a distributed exe-
cution plan. With the decomposition results and execution
plan, we can efficiently evaluate the SPARQL query.

• We do experiments over both real and synthetic RDF datasets
and SPARQL query workloads to verify our methods.

2. PRELIMINARIES
In this section, we review the terminologies used in this paper

and formally define the problem to be addressed.

2.1 RDF and SPARQL
RDF data can be represented as a graph according to the follow-

ing definition.

DEFINITION 1. (RDF Graph) An RDF graph is denoted as G =
{V(G), E(G), L}, where (1) V(G) is a set of vertices that correspond
to all subjects and objects in RDF data; (2) E(G) ⊆ V(G)×V(G) is
a set of directed edges that correspond to all triples in RDF data;
and (3) L is a set of edge labels. For each edge e ∈ E(G), its edge
label is its corresponding property.

Similarly, a SPARQL query can also be represented as a query
graph Q. For simplicity, we ignore FILTER statements in SPARQL
syntax in this paper.
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DEFINITION 2. (SPARQL Query) A SPARQL query is denoted
as Q = {V(Q), E(Q), L′}, where (1) V(Q) ⊆ V(G) ∪ VVar is a set
of vertices, where V(G) denotes vertices in RDF graph G and VVar

is a set of variables; (2) E(Q) ⊆ V(Q) × V(Q) is a set of edges in
Q; and (3) L′ is also a set of edge labels, and each edge e in E(Q)
either has an edge label in L (i.e., property) or the edge label is a
variable.

In this paper, we assume that Q is a connected graph; otherwise,
all connected components of Q are considered separately. Given
a SPARQL query Q over RDF graph G, a SPARQL match is a
subgraph of G that is homomorphic to Q [31]. Thus, answering a
SPARQL query is equivalent to finding all subgraph matches of Q
over RDF graph G. The set of all matches for Q over G is denoted
as ~Q�G

In this work, we study a query workload-driven fragmentation.
A query workload Q = {Q1,Q2, ...,Qq} is a set of queries that users
input in a given period.

2.2 Fragmentation & Allocation
In this paper, we study an efficient distributed SPARQL query

engine. There are many issues related to distributed database sys-
tem design, but, the focus of this work is “data fragmentation and
allocation” for RDF repository. We formalize two important prob-
lems as follows.

DEFINITION 3. (Fragmentation) Given an RDF graph G, a
fragmentation F of G is a set of graphs F = {F1, ..., Fn} such that:
(1) each Fi is a subgraph of G and called as a fragment of RDF
graph G; (2) E(F1) ∪ ... ∪ E(Fn) = E(G); and (3) V(F1) ∪ ... ∪
V(Fn) = V(G), where E(Fi) and V(Fi) denote the edges and ver-
tices in Fi (i = 1, .., n).

In our work, we allow the overlaps between different fragments.
Given a fragmentation F , the next issue is how to distribute these
fragments among different sites (i.e., computing nodes). This is
called allocation.

DEFINITION 4. (Allocation) Given a fragmentationF = {F1, ...,
Fn} over an RDF graph G and a set of sites S = {S 1, S 2, ..., S m}

(usually m < n), an allocation A = {A1, ..., Am} of fragments in F
to S is a partitioning of F such that (1) A j ⊆ F , where 1 ≤ j ≤ m;
(2) A j1 ∩ A j2 = ∅, where 1 ≤ j1 , j2 ≤ m; (3) A1 ∪ ... ∪ Am = F ;
and (4) All fragments in A j are stored at site S j, where 1 ≤ j ≤ m.

Given an RDF graph G, a query workload Q and a distributed
system consisting of sites S, the goal of this paper is to first de-
compose G into a fragmentation F and then finding the allocation
A of F to S.

3. OVERVIEW
This paper studies a SPARQL query workload-driven data frag-

mentation and allocation problem. Some observations on the real
query workload tell us that some RDF properties have few ac-
cess frequencies. For example, few users input queries contain the
properties like imageS kyline and wikiPageUsesTemplate in Fig-
ure 1. As well, the classical distributed database design suggests a
“80/20” rule, meaning the active “20%” of query patterns account
for “80%” of the total query input [24]. Therefore, we divide the
whole RDF repository into two parts: “hot graph” and “cold graph”
as follows.

DEFINITION 5. (Infrequent and Frequent Property) Given a
query workload Q = {Q1, ...Qn}, if a property p occurs in less than
θ queries in Q, where θ is an user specified parameter, p is an
infrequent property; otherwise, p is a frequent property.
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DEFINITION 6. (Hot and Cold Graphs) Given an edge e =
−−→uiu j ∈ E(G) with property p, if property p is a frequent property, e
is a hot edge; otherwise, e is a cold edge.

Given an RDF graph G, it is divided into two parts: hot graph H
and cold graph C, where H consists of all hot edges and C consists
of all cold edges.

The goal of this work is how to partition “hot graph” to achieve
performance improvement. We regard the cold graph as a “black
block”. The cold graph does not overlap to the hot graph, since the
cold graph contains different edges with different kinds of proper-
ties from the hot graph. Any existing approach can be utilized for
the cold graph. We only consider the cold graph in the SPARQL
query processing (Section 7), since some queries may involve “in-
frequent” properties. Moreover, both the cold graph and the hot
graph may be disconnected.

Figure 3 illustrates our system architecture. In the offline phase,
we mine the frequent access patterns (see Section 4) in the work-
load. Each frequent access pattern can correspond to one or more
fragments. Generating a fragment from all matches of a frequent
access pattern make many queries be answered efficiently without
cross-fragments joins, while it may also replicate some hot edges
and increase the space cost. Thus, we should select an appropriate
subset of frequent access patterns to balance the efficiency and the
space cost. Since we find out that selecting an appropriate set of
patterns is a NP-hard problem (Section 4.1), we propose a heuristic
pattern selection solution while guaranteeing both the data integrity
and the approximation ratio. Based on these selected frequent ac-
cess patterns, we study two different data fragmentation strategies,
i.e., vertical and horizontal fragmentation (Section 5). The vertical
fragmentation is to improve the query throughput, and the hori-
zontal fragmentation is to reduce a single query’s response time.
Fragments are distributed among different sites. Meanwhile, we
maintain the metadata in a data dictionary.

In the online phase, we study how to decompose a query into
several subqueries on different fragments and generate an efficient
execution plan. A cost model for guiding decomposition is pro-
posed (Section 7.2). Finally, we execute the plan and return the
matches of the query.

4. FREQUENT ACCESS PATTERNS
As mentioned before, we believe that a query often contains

some patterns in the previously issued queries, so we mine some
patterns with high access frequencies and use these patterns as the
fragmentation units. Then, if a query Q can be decomposed to
some subgraphs isomorphic to the frequent access patterns, Q can
be answered while avoiding some joins across multiple fragments.

Before we mine frequent access patterns, we first normalize the
query graphs in the workload to avoid overfitting. For each SPARQL
query, we remove all constants (strings and URIs) at subjects and
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objects and replace them with variables. The FILTER expressions
are also removed. By doing this, we extract a general representa-
tion of a SPARQL query from the workload. Figure 4 shows the
generalized query graphs of query graphs in Figure 2. We assume
that the generalized query in Figure 4 graphs are also frequent ac-
cess patterns.

To mine patterns with high access frequencies, we need to first
count the number of queries in the workload where a pattern p is
a subgraph. We define the frequent access pattern usage value to
record the access frequencies of the frequent access patterns.

DEFINITION 7. (Frequent Access Pattern Usage Value) Given
a SPARQL query Q and a frequent access pattern p, we associate
a frequent access pattern usage value, denoted as use(Q, p), and
defined as follows:

use(Q, p) =
{

1 i f pattern p is a subgraph o f Q

0 otherwise

Then, given a workload Q = {Q1,Q2, ...,Qq} and a pattern p, we
define the access frequency, acc(p), as the number of queries in Q
where a pattern p is a subgraph.

acc(p) =
q∑

k=1

use(Qk, p)

A pattern p is frequent access pattern if its access frequency is no
less than a threshold, minS up.

The frequent access patterns can be easily generated by exist-
ing frequent graph mining algorithms [17]. Given a workload of
SPARQL queries Q = {Q1,Q2, ..., Qq} in a given period, we denote
the set of frequent access patterns that we find as P = {p1, p2, ..., px}.
In practice, the size of P is often limited. For example, if we set
minS up as 0.1% of the total access frequency, there are only 163
frequent access patterns for DBPedia.

4.1 Frequent Access Pattern Selection
Obviously, it is not necessary to generate fragments from all fre-

quent access patterns due to high space cost. For two similar fre-
quent access patterns p and p′, if they are contained by similar
queries of the workload, then selecting both p and p′ for building
fragments will not be able to provide more information than select-
ing one of p and p′. Hence, it is often sufficient to only select a
subset of all frequent access patterns to generate fragments.

To select a subset of all frequent access patterns, there are two
factors that we should consider.

1. (Hitting the Whole Workload) We should select frequent ac-
cess patterns to hit the query workload as much as possible.
This is because that when we select a frequent access pattern
to generate a fragment, all queries isomorphic to this pattern
can be answered directly, which improve the efficiency.

2. (Satisfying the Storage Constraint) The total storage of the
system in real applications is limited, so selecting too many
frequent access patterns is not desirable.

The above two factors contradict each other. Hitting the whole
workload requires to select as many frequent access patterns as pos-
sible, while the storage constraint requires to select not too many
frequent access patterns. There should be a tradeoff between the
two factors.

In the following, we propose a cost model to combine these two
factors for selecting a subset of all frequent access patterns.

4.1.1 Hitting the Whole Workload
If a fragment is generated from the graph induced by matches

of a frequent access pattern, then evaluating all queries containing
the pattern can be speeded up by using this fragment. The more
queries a frequent access pattern hits, the more gains we obtain
during query processing. Therefore, the benefit of selecting a fre-
quent access pattern to generate its corresponding fragment should
be defined based on the number of queries that the frequent access
pattern hits.

In addition, if two similar frequent access patterns are contained
by the same set of queries in the workload, it is probably wise to
include only one of them. Generally speaking, among similar fre-
quent access patterns contained by the same number of queries, it is
often sufficient to materialize only the largest frequent access pat-
tern. That is to say, if p′, a subgraph of p, is contained by the same
set of queries as p, p is more beneficial than p′ to be selected as
building fragments. This is because that if we select the larger pat-
tern, a query is more probable to be decomposed to fewer number
of subqueries during query processing. Fewer subqueries can avoid
some distributed joins, which can improve the efficiency of query
processing.

The above observation implies that larger frequent access pat-
terns are more beneficial to be selected as building fragments. This
above criterion on the selection of frequent access patterns is for-
mally defined as size-increasing benefit.

DEFINITION 8. (Size-increasing Benefit) Given a frequent ac-
cess pattern p, the benefit of selecting p for hitting the query Q,
Bene f it(p,Q), is denoted as follows.

Bene f it(p,Q) = |E(p)| × use(Q, p)

Furthermore, a query in the workload may contain multiple se-
lected frequent access patterns. This means that the query can
be decomposed into multiple sets of subqueries if we evaluate the
query. Each set of subqueries can map to an execution plan. Since
only one execution plan is finally selected to evaluate the query, a
query in the workload should only be limited to contribute to the
benefits of some particular frequent access patterns once. Based
on this observation, we limit a query to only contribute the largest
frequent access pattern that the query contains.

DEFINITION 9. (Benefit of a Frequent Access Pattern Set) Given
a set of frequent access patterns P′ ⊆ P, the benefit of selection of
P′ over the workload Q is the sum of the maximum benefit of its
frequent access patterns over Q.

Bene f it(P′,Q) =
∑
Q∈Q

max
p∈P′
{Bene f it(p,Q)}

4.1.2 Satisfying the Storage Constraint
Furthermore, the total storage of the system in real applications

is limited, so selecting too many frequent access patterns is not
desirable. The selection of frequent access patterns should meet
some constraints. When the size of all fragments is larger than
the storage constraint, we cannot further select any more frequent
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access patterns. We normalize the storage capacity of the system to
a value S C. Then, we have the constraint as:∑

p∈P′
|E(~p�G)| ≤ S C

Here, we assume that S C is larger than the number of edges in
the hot graph, so each hot edge can have at least one copy. This
assumption guarantees the completeness of the RDF graph.

4.1.3 Combining the Two Factors
Then, our optimization objective is to maximize the benefit sub-

ject to the storage constraint. We can prove that this benefit function
(Definition 9) is submodular as follows, so this problem is NP-hard.

THEOREM 1. Finding a set of frequent access patterns with the
largest benefit while subject to the storage constraint is NP-hard.

PROOF. Here, we prove that the benefit function Bene f it(P′,Q) =∑
Q∈Qmaxp∈P′ {|E(p)| × use(Q, p)} is submodular. In other words,

for every P1 ⊆ P2 and a frequent access pattern p < P2, we need to
prove that 4Bene f it(p|P1) ≥ 4Bene f it(p|P2).

For pattern p, we assume that Q′ is the set of queries containing
p in the workload. There are three kinds of queries in Q′: the set Q1

of queries not containing any patterns in P2, the set Q2 of queries
containing patterns in (P2 − P1), and the set Q3 of queries only
containing patterns in P1.

Since any query in Q1 and Q3 does not concern patterns in (P2 −

P1), Bene f it({p}∪P1,Q1∪Q3) = Bene f it({p}∪P2,Q1∪Q3). Hence,
the marginal gains of p for P1 and P2 over Q1 and Q3 are the same.

For Q2, 4Bene f it(p|P1) > 4Bene f it(p|P2), if there exist at least one
query Q∗ meeting all the two following conditions: 1) the largest
pattern contained by Q∗ over P2 is in (P2 − P1) and has larger size
than p; 2) the largest pattern contained by Q∗ over P1 has smaller
size than p. The above two conditions mean that p can only in-
crease the benefit of P1 over Q2 but not the benefit of P2 over Q2.
Otherwise, for Q2, 4Bene f it(p|P1) = 4Bene f it(p|P2).

In conclusion, 4Bene f it(p|P1) ≥ 4Bene f it(p|P2) and the function
Bene f it(P′,Q) is submodular. Since the problem of maximizing
submodular functions is NP-hard [3], the problem is NP-hard.

4.1.4 Our Solution
As proved in Theorem 1, frequent access pattern selection is NP-

complete problem. We propose a greedy algorithm as outlined in
Algorithm 1. Note that, to guarantee data integrity of distributed
RDF data fragmentation, each hot edge should be contained in at
least one fragment. Hence, we initialize a pattern of one edge for
each frequent property and compute out its corresponding fragment
(Line 3-6).

After we select all patterns with one edge, we enumerate all fea-
sible frequent access pattern sets containing one pattern of more
than one edge. Let P1 be a feasible set of cardinality one that
has the largest benefit (Line 7). Then, we iteratively select one
of the remaining frequent access patterns p′ to maximize the value
of Bene f it({p′}∪P′ ,Q)−Bene f it(P′ ,Q)

|E(~p′�G )| until we meet the storage constraint or
cannot find a frequent access pattern to increase the benefit (Line 8-
14). Let P2 be the solution obtained in the iterative phase. Finally,
the algorithm outputs P′∪P1 if Bene f it(P′∪P1,Q) ≥ Bene f it(P′∪
P2,Q) and P′ ∪ P2 otherwise (Line 15-17).

THEOREM 2. Algorithm 1 obtains a set of frequent access pat-
terns of benefit at least min{ 1

(maxp∈P |E(p)|) ,
1
2 (1 − 1

e )} times the value
of an optimal solution.

PROOF. There are two parts in Algorithm 1: initialization and
greedy selection of frequent access patterns.

Algorithm 1: Frequent Access Pattern Selection Algorithm
Input: A set of frequent access patterns P = {p1, p2, ..., px}

Output: A set P′ ⊆ P to generate fragments
1 P′ ← ∅;
2 TotalS ize← 0;
3 for each p ∈ P and p has only one edge do
4 P′ ← P′ ∪ {p};
5 P← P − {p};
6 TotalS ize← TotalS ize + |E(~p�G)|;
7 P1 ← argmax{ Bene f it({pi},Q)

|E(~pi�G )| : pi ∈ P, |E(~pi�G)| + TotalS ize ≤
S C ∧ |E(pi)| > 1};

8 P2 ← ∅;
9 TotalS ize′ ← 0;

10 while TotalS ize′ ≤ S C − TotalS ize do
11 Find the frequent access pattern p′ ∈ P − P′ with the largest

additional value of Bene f it({p′}∪P′ ,Q)−Bene f it(P′ ,Q)
|E(~p′�G )| ;

12 P2 ← P2 ∪ {p′};
13 P← P − {p′};
14 TotalS ize′ ← TotalS ize′ + |E(~p′�G)|;
15 if Bene f it(P′ ∪ P1,Q) ≥ Bene f it(P′ ∪ P2,Q) then
16 Return P′ ∪ P1;
17 Return P′ ∪ P2;

For initialization (Line 3-6 in Algorithm 1), all selected patterns
only contain one edge, so |E(p)| = 1. Therefore, the benefit of pat-
terns only having one edge of a frequent property is

∑
Q∈Qmaxp∈P′ {1×

use(Q, p)}. Since the hot edges hit almost all queries in the work-
load,

∑
Q∈Qmaxp∈P′ {1×use(Q, p)} is approximately equal to the size

of the workload, |Q|. On the other hand, in the worst case, the op-
timal solution is that all queries in the workload contain the largest
frequent access pattern. Then, the benefit of the optimal solution
is

∑
Q∈Q{|E(pmax)| × use(Q, p)}, where pmax is the frequent pattern

with the largest size. Hence, the benefit of the selected patterns in
the initial phase is at least 1

(maxp∈P |E(p)|) of the optimal benefit.
For the phase of greedily selecting frequent access patterns (Line

7-14 in Algorithm 1), since the problem of selecting the optimal set
of frequent access patterns is a problem of maximizing a submod-
ular set function subject to a knapsack constraint as discussed in
Theorem 1, we directly apply the greedy algorithm in [11] to iter-
atively select frequent access patterns. [11] proves that the worst-
case performance guarantee of the greedy algorithm is 1

2 (1− 1
e ), so

the benefit of the selected patterns in this phase is at least 1
2 (1 − 1

e )
of the optimal benefit.

In summary, the final performance guarantee of our algorithm is
min{ 1

(maxp∈P |E(p)|) ,
1
2 (1 − 1

e )}.

5. FRAGMENTATION
In this section, we present two fragmentation strategies: vertical

and horizontal.

5.1 Vertical Fragmentation
For vertical fragmentation, we put matches homomorphic to the

same frequent access pattern into the same fragment. Because a
query graph often only contains a few frequent access patterns and
matches of one frequent access pattern are put together, other ir-
relevant fragments can be filtered out during query evaluation and
only sites stored relevant fragments need to be accessed to find
matches. Filtering out irrelevant fragments can improve the query
performance. Furthermore, sites not storing relevant fragments can
be used to evaluate other queries in parallel, which improves the
total throughput of the system. In summary, the vertical fragmen-
tation strategy utilizes the locality of SPARQL queries to improve
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both query response time and throughput. Experimental results in
Section 8 also confirm the above argument.

Given a frequent access pattern p, it can then be transformed
into a SPARQL query, resulting in a vertical fragment of the RDF
graph. We use the results ~p�G of a selection operation based on
p to generate a vertical fragment. All vertical fragments generated
from our selected frequent access patterns construct a vertical frag-
mentation. Given a set of frequent access patterns P, we formally
define its corresponding vertical fragmentation over an RDF graph
G as follows.

DEFINITION 10. (Vertical Fragmentation) Given an RDF graph
G and a frequent access pattern p, a vertical fragment F generated
from p is defined as F = {V(F), E(F), L′′}, where (1) V(F) ⊆ V(G)
is the set of vertices occurring in ~p�G; (2) E(F) ⊆ E(G) is the set
of edges occurring in ~p�G; and (3) L′′ ⊆ L is the set of edge labels
occurring in ~p�G.

Then, given a set of frequent access patterns P = {p1, p2, ..., px},
the corresponding vertical fragmentation is F = {Fi|0 ≤ i ≤ x and
Fi is the vertical fragment generated from pi.}

EXAMPLE 1. Given the frequent access pattern p3 in Figure 4,
Figure 5 shows the corresponding vertical fragment.
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Figure 5: Example Vertical Fragment

5.2 Horizontal Fragmentation
For horizontal fragmentation, we put matches of one frequent ac-

cess pattern into the different fragments and distribute them among
different sites. Then, a query may involve many fragments and
each fragment has a few matches. The size of a fragment is often
much smaller than the size of the whole data, so finding matches of
a query over a fragment explores smaller search space than finding
matches over the whole data. If the fragments involved by a query
are allocated to different sites, then each site finds a few matches
over some fragments with the smaller size than the whole data. This
strategy is to utilize the parallelism of clusters of sites to reduce the
query response time. The above argument is also confirmed by the
experimental results in Section 8.

In this section, we extend the concepts of simple predicate and
minterm predicate originally developed for relational systems [18]
to divide the RDF graph horizontally.

5.2.1 Structural Minterm Predicate
First, we define the structural simple predicate. Each structural

simple predicate corresponds to a frequent access pattern with a
single (in)equality. Given a frequent access pattern p with variables
set {var1, var2, ..., varn}, a structural simple predicate sp defined on
D has the following form.

sp : p(vari) θ Value

where θ ∈ {=,,} and Value is a constant constraint for vari chosen
from a query containing p in Q.

EXAMPLE 2. Let us consider the query graph Q3 in Figure
2 and its corresponding frequent access pattern p3 in Figure 4.
We can generate four structural simple predicates: (1). sp1 :
p3(?x1) = Aristotle; (2). sp2 : p3(?x1) , Aristotle; (3). sp3 :
p3(?x2) = Ethics; (4). sp4 : p3(?x2) , Ethics.

Then, we define the structural minterm predicate as the conjunc-
tion of structural simple predicates of the same frequent access pat-
tern. We can obtain all structural minterm predicates by enumerat-
ing all possible combinations of structural simple predicates. Given
a set of structural simple predicates S P = {sp1, sp2, ..., , spy} for
frequent access pattern p, the set of structural minterm predicates
M = {mp1,mp2, ...,mpz} for p is defined as follows.

M = {mpi|
∧

spk∈S P

sp∗k, 1 ≤ k ≤ y}

where sp∗k = spk or sp∗k = ¬spk. So each structural simple predi-
cate can occur in a structural minterm predicate either in its natural
form or its negated form.

Similar to the frequent access pattern, we can also define the
structural minterm predicate usage value and access frequency to
record the access frequency of a structural minterm predicate. We
can prune the minterm predicates with small access frequencies.

DEFINITION 11. (Structural Minterm Predicate Usage Value)
Given a SPARQL query Q and a structural minterm predicate mp,
we associate a structural minterm predicate usage value, denoted
as use(Q,mp), and defined as follows:

use(Q,mp) =
{

1 i f predicate mp is a subgraph o f Q

0 otherwise

Then, given a set of SPARQL queries Q = {Q1,Q2, ...,Qq}, we
define the access frequency of a structural minterm predicate mp as
follows.

acc(mp) =
k=q∑
k=1

use(Qk,mp)

In practice, there may exist many minterm predicates. It is too
expensive to enumerate all minterm predicates. Therefore, we prune
some minterm predicates with too small access frequencies.

Given a structural minterm predicate mp, it can then be trans-
formed into SPARQL queries, resulting in a horizontal fragment
of the RDF graph. We use the results ~mp�G of a selection opera-
tion based on mp to generate a horizontal fragment. All horizontal
fragments generated from the structural minterm predicates that we
obtain construct a horizontal fragmentation. Given a set of minterm
predicates M, we formally define its corresponding horizontal frag-
mentation over an RDF graph G as follows.

DEFINITION 12. (Horizontal Fragmentation) Given an RDF
graph G and a structural minterm predicate mp, a horizontal frag-
ment F generated from mp is defined as F = {V(F), E(F), L′′},
where (1) V(F) ⊆ V(G) is the set of vertices occurring in ~mp�G;
(2) E(F) ⊆ E(G) is the set of edges occurring in ~mp�G; and (3)
L′′ ⊆ L is the set of edge labels occurring in ~mp�G.

Then, given a set of structural minterm predicates M = {mp1,mp2,
...,mpy}, the corresponding horizontal fragmentation isF = {Fi|0 ≤
i ≤ y and Fi is the vertical horizontal generated from mpi.}

EXAMPLE 3. Given the structural simple predicates in Exam-
ple 2, we can get all structural minterm predicates from frequent
access pattern p3 as follows: (1). mp1 : p3(?x0) = Aristotle ∧
p3(?x1) = Ethics; (2) mp2 : p3(?x0) = Aristotle ∧ p3(?x1) ,
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Figure 6: Example Horizontal Fragments

Ethics; (3). mp3 : p3(?x0) , Aristotle ∧ p3(?x1) = Ethics; (4).
mp4 : p3(?x0) , Aristotle ∧ p3(?x1) , Ethics.

Figure 6 shows all horizontal fragments generated from the above
structural minterm predicates.

6. ALLOCATION
After fragmenting the RDF graph, the next step is to allocate all

fragments on several sites. In real applications, some frequent ac-
cess patterns or structural minterm predicates are usually accessed
together, so their corresponding fragments should be placed in one
site to further avoid the cross-fragments joins. There is a need
for some measures evaluating precisely the notion of “together-
ness”. This measure is the affinity of fragments, which indicates
how closely related the fragments are.

We define fragment affinity metric to measure the togetherness
between two frequent access patterns or structural minterm predi-
cates as follows:

DEFINITION 13. (Fragment Affinity Metric) The fragment affin-
ity metric between two fragments F and F′ with respect to the
workload Q = {Q1,Q2, ..., Qq} is defined as follows

• a f f (F, F′) =
∑q

k=1 use(Qk, p) × use(Qk, p′), if F and F′ are
vertical fragments generated from frequent access patterns p
and p′;

• a f f (F, F′) =
∑q

k=1 use(Qk,mp) × use(Qk,mp′), if F and F′

are horizontal fragments generated from structural minterm
predicates mp and mp′;

Based on the fragment affinity metric, we can show how closely
related the fragments are. If the affinity metric of two fragments
is large, it means that these two fragments are often involved by
the same query. Some fragments are so related that they should
be placed together to reduce the number of cross-sites joins. Here,
we group all fragments into some clusters. The result of clustering
corresponds to an allocationA, and each cluster corresponds to an
element of A, which means that all fragments in the cluster are
placed into the same site.

There are many clustering algorithms to cluster all fragments and
we need to select one of them. In this paper, we extend a graph
clustering algorithm, PNN [5], to cluster all fragments into an allo-
cation A = {A1, A2, ..., Am}. All fragments of the same cluster are
put into one site.

First, we build the allocation graph as follows.

DEFINITION 14. (Allocation Graph) Given a fragmentationF =
{F1, F2, ..., Fn}, the corresponding allocation graph AG = {V(AG),
E(AG), fW } is defined as follows:

• V(AG) is a set of vertices that map to all fragments;

• E(AG) is a set of undirected edges that vv′ ∈ E(VG) if and
only if the fragment affinity metric between the correspond-
ing fragments of v and v′ is larger than 0;

• fW is a weight function fW : E(AG) → N+. If v and v′

correspond to fragments F and F′, fW (vv′) = a f f (F, F′).

Then, the allocation problem is equivalent to cluster all frag-
ments in m clusters, and all fragments in a cluster are connected
in AG. We define the density of a cluster Ai in AG to rate the qual-
ity of Ai as follows.

δ(Ai) =

∑
vi∈Ai∧v j∈Ai∧viv j∈E(AG)

fW (viv j)(
|Ai|

2

)
where

∑
vi∈Ai∧v j∈Ai∧viv j∈E(AG)

fW (viv j) is the sum of weights of all edges

in Ai and
(
|Ai|

2

)
is the maximum possible number of edges.

The objective of our allocation algorithm is to search for m sub-
graphs of AG that have the highest densities. Unfortunately, this
problem is NP-complete [20], so we propose a heuristic solution as
Algorithm 2. Algorithm 2 is a variant of PNN and picks the locally
optimal choice of merging two vertices in AG at each step. Because
our objective function can guarantee the locally optimal choice is
also the optimal choice for the overall solution, Algorithm 2 can
find out the optimal clustering result of AG.

Generally speaking, we initialize a cluster for each fragment.
Then, we repeatedly picks the two clusters (singletons or larger)
that have the highest weight value to be merged. The weight be-
tween two clusters are the density value of merging them. Such
merging is iterated until the size of the allocation graph has been
reduced to m.

Algorithm 2: Allocation Algorithm
Input: The allocation graph AG and the preset threshold θ
Output: An allocationA = {A1, A2, ..., Am}

1 for each vertex vi in V(VG) do
2 Ai ← {vi};
3 Find the edge emax with the highest weight in E(AG);
4 Initialize AG′ that is the same to AG;
5 while |V(AG′)| , m do
6 Generating AG′ from AG by merging emax = AiA j to Ai j;
7 for each Ak adjacent to Ai j in E(AG′) do

8 fW (AkAi j)←

∑
vi∈Ak∧(v j∈Ai∨v j∈A j )∧viv j∈E(AG)

fW (viv j) |A′k |2


9 Find the edge emax with the highest weight in E(AG′);

7. DISTRIBUTED QUERY PROCESSING
In this section, we discuss how to process a SPARQL query. For

query processing, the metadata is necessary and we introduce how
to maintain the metadata in a data dictionary in Section 7.1. Then,
we discuss how to decompose a query into some subqueries in Sec-
tion 7.2. Last, we discuss how to produce a distributed execution
plan and execute all subqueries based on the plan in Section 7.3.
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Figure 7: A New Input Query and Its Example Valid Decompositions

7.1 Data Dictionary
After fragmentation and allocation, the results of fragmentation

and allocation need to be stored and maintained by the system.
This information is necessary during distributed query processing.
This information is stored in a data dictionary. The data dictio-
nary stores a global statistics file generated at fragmentation and
allocation time. It contains the following information: fragment
definitions, their sizes, site mappings, access frequencies and so
on.

Since each fragment corresponds to a frequent access pattern or a
structural minterm predicate, the data dictionary uses the frequent
access pattern with/without constraints as the representative of a
fragment. Each frequent access pattern with/without constraints
corresponds to a fragment and is associated with all statistics of
the fragment. The data dictionary need to fast retrieve all frequent
access patterns with/without constraints to determine the relevant
frequent access pattern for a query.

We build a hash table to achieve the above objective. We first
use the DFS coding [26] to translates frequent access patterns into
sequences. With the DFS code of a frequent access pattern, we can
map any frequent access pattern to an integer by hashing its canon-
ical label. Then, we use the hash table to locate frequent access
patterns and retrieve the statistics of their corresponding fragments

7.2 Query Decomposition
When users input a query Q, the system first uses the data dic-

tionary to determine which fragments are involved in the query and
decomposes the query into some subqueries on fragments.

Given a query Q, a decomposition of Q is a set of subqueries
D = {q1, q2, ..., qt} such that (1) each qi is a subgraph of Q and qi

maps to a frequent access pattern or structural minterm predicate;
(2) V(q1)∪...∪V(qt) = V(Q); and (3) E(q1)∪...∪E(qt) = E(Q)∧∀i ,
j, E(qi) ∩ E(q j) = ∅.

Since we partition the RDF graph based on the frequent access
patterns, we also decompose the query based on the frequent access
patterns. In other words, we decompose the query into subqueries
that are homomorphic to frequent access patterns. If a query in-
volves infrequent properties that cannot be decomposed into sub-
queries homomorphic to any frequent access patterns, then each
connected subgraph of the query that only contains infrequent prop-
erties corresponds to a subquery. We define the valid decomposi-
tion as follows.

DEFINITION 15. (Valid Decomposition) Given a SPARQL query
Q, a valid decomposition D = {q1, q2, ..., qt} of Q should meet the
following constraint: if qi (1 ≤ i ≤ t) is not homomorphic to any
frequent access patterns, all edges in qi should be cold edges.

There exist at least one valid decompositions. A possible decom-
position is the decomposition of all subqueries of a single edge.

Because we select all frequent access patterns of one edge, the de-
composition of all subqueries of a single edge is valid. Besides the
valid decomposition, there may also exist some other valid decom-
positions. Hence, we propose a cost-model driven selection and
the best valid decomposition is the valid decomposition with the
smallest cost.

Here, we assume that the cost of a decomposition is the cost of
joining all matches of the subqueries in D and each pair of sub-
queries’ matches can join together. The assumption is the worst
case, so that we can quantify the worst-case performance. Then,
we define the cost of a decomposition as follows.

cost(D) =
∏
qi∈D

card(qi)

where card(qi) is the number of matches for qi, which can be esti-
mated by looking up the data dictionary.

EXAMPLE 4. Assume that an user inputs a new query Q4 as
shown in Figure 7(a). Given frequent access patterns in Figure
4, there can be two valid decompositions D1 and D2 as shown in
Figures 7(b) and 7(c). For vertical fragmentation, q23 in D2 is
evaluated on the vertical fragment of p3 (Figure 5); for horizontal
fragmentation, q23 is evaluated on the horizontal fragment of mp2

(Figure 6(b)).
Whether in vertical or in horizontal fragmentation, it is obvious

thatD2 has fewer subqueries thanD1 and card(q23) < card(q13)×
card(q14) × card(q15). Hence, cost(D2) is smaller than cost(D1),
andD2 is more of a priority as the final decomposition.

Based on the above definitions, we propose the query decom-
position algorithm as Algorithm 3. Because the SPARQL query
graphs in real applications usually contain 10 or fewer edges, we
can use a brute-force implementation to enumerate all possible de-
compositions and find the decomposition with the smallest cost.

Algorithm 3: Query Decomposition Algorithm
Input: A query Q
Output: A valid decompositionD = {q1, q2, ..., qt} of query Q

1 MinCost ← +∞;
2 InitializeD as the decomposition of all subqueries of a single edge;
3 for each possible valid decompositionD′ = {q1, ..., qt} do
4 CurrentCost ← 1;
5 for each query qi inD′ do
6 Estimate the number of results for qi as card(qi) based on the

data dictionary;
7 CurrentCost ← CurrentCost × card(qi)
8 if MinCost > CurrentCost then
9 D ← D′;

10 MinCost ← CurrentCost;
11 ReturnD;

384



7.3 Query Optimization and Execution
After decomposing the query, the next step is to find an execution

plan for the query which is close to optimal. In this section, we dis-
cuss the major optimization issue of finding execution plan, which
deals with the join ordering of subqueries. We extend the algorithm
of System-R [2] to find the optimal execution plan for distributed
SPARQL queries. The algorithm is described in Algorithm 4.

Generally speaking, Algorithm 4 is a variant of System-R style
dynamic programming algorithm. It firstly generates the best exe-
cution plan of n − 1 subqueries, and then join the matches of n − 1
subqueries with the matches of n-th subquery. The cost of an execu-
tion plan can also be estimated based on the number of subqueries’
results, which is stored in the data dictionary.

Finally, each subquery is executed in the corresponding sites in
parallel. The optimization of each subquery uses the existing meth-
ods in centralized RDF database systems. After the matches of all
subqueries are generated, we join them together according to the
optimal execution plan.

Algorithm 4: Query Optimization Algorithm
Input: A decompositionD = {q1, q2, ..., qt} of query Q
Output: An execution plan (...((qi1 Z qi2) Z qi3) Z ... Z qit)

1 for each two subqueries (qi) and (q j) where 1 ≤ i , j ≤ t do
2 Initialize an execution plan qi Z q j and estimate its cost;
3 Store all execution plans and their costs in a table T2;
4 for i = 3 to t do
5 for each execution plan pl j in Ti−1 do
6 for each subquery qk that is not contained by pl j do
7 Build execution plan pl j Z qk and estimate its cost;
8 Store this execution plan and its costs in a table Ti;
9 for each two plans pl j and plk in Ti do

10 if pl j and plk map to the same set of subqueries then
11 Eliminate one of pl j and plk that has the larger cost;
12 Return the execution plan with the minimum cost;

8. EXPERIMENTAL EVALUATION
We conducted extensive experiments to test the effectiveness of

our proposed techniques on a real dataset, DBPedia, and a synthetic
dataset, WatDiv. In this section, we report the setting of test data
and various performance results.

8.1 Setting
DBPedia. DBPedia2 is an RDF dataset extracted from Wikipedia.

The DBPedia contains 163, 977, 110 triples. We use the DBpe-
dia SPARQL query-log as the workload. This workload contains
queries posed to the official DBpedia SPARQL endpoint in 14 days
of 2012. After removing some queries that cannot be handled, there
are 8, 151, 238 queries in the workload.

WatDiv. WatDiv [1] is a benchmark that enable diversified stress
testing of RDF data management systems. In WatDiv, instances of
the same type can have the different sets of attributes. For testing
our methods, we generate five datasets varying sizes from 50 mil-
lion to 250 million triples. By default, we use the RDF dataset with
100 million triples. In addition, WatDiv can generate a workload
by instantiating some templates with actual RDF terms from the
dataset. WatDiv provides 20 templates to generate test queries. We
use these benchmark templates to generate a workload with 2000
test queries.

We conduct all experiments on a cluster of 10 machines running
Linux, each of which has one CPU with four cores of 3.06GHz.
Each site has 16GB memory and 150GB disk storage. We select
one of these sites as a control site. At each site, we install gStore
2http://km.aifb.kit.edu/projects/btc-2012/dbpedia/

[31] to find matches. We use MPICH-3.0.4 running on C++ to join
the results generated by subqueries.

For fair performance comparison, we use gStore and MPICH-
3.0.4 to re-implement two recent distributed RDF fragmentation
strategies. The first one is SHAPE [14], which defines a vertex
and its neighbors as a triple group and assigns the triple groups
according to the value of its center vertices. There are many dif-
ferent kinds of triple groups in [14] and we use the subject-object-
based triple groups in this paper. The second one is WARP [8].
WARP first uses METIS [12] to divide the RDF graph into frag-
ments. Then, it replicates all matches of a query pattern that cross
two fragments in one fragment. We use all frequent access patterns
to extend the fragments in WARP.

8.2 Parameter Setting
Our frequent access patterns selection method uses a parameter:

minS up. In this subsection, we discuss how to set up minS up to
optimize query processing. Note that, since the numbers of query
templates and queries per query template in WatDiv are specified
by users, the parameters can also be determined beforehand. Thus,
we only discuss how to set the parameters for DBPedia.

Given a workload Q, we set the support threshold, minS up, to
find patterns whose access frequencies are larger than minS up. It
is clear that the smaller minS up is, the larger number of frequent
access patterns there are. More frequent access patterns mean that
a query in the workload may have a higher possibility to contain
some frequent access patterns.
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Figure 8: Effect of Frequent Access Patterns
Figure 8(a) shows the impact of minS up. As minS up increases,

the number of frequent access patterns (FAPs) decreases. Hence,
when we set minS up as 0.1% of the total number of queries in
the workload, there are 163 frequent access patterns for DBPedia.
When minS up is 1% of the total number of queries, the number
of frequent access patterns is reduced to 44 for DBPedia. Further-
more, fewer frequent access patterns means that fewer queries in
the workload are hit, as shown in Figure 8(b).

Even if we set minS up as 0.1% of the total number of queries,
the number of frequent access patterns is not large. Hence, in the
following, we set minS up as 0.1% of the total number of queries
for DBPedia by default.

8.3 Throughput
In this experiment, we test the throughput of different fragmen-

tation strategies. We sample 1% of all queries in the workload and
measure the throughput in queries per minute. Figure 9 shows the
number of queries answered in one minute of different fragmenta-
tion strategies.

For SHAPE and WARP, each query concerns all fragments, so
queries are still processed sequentially. Since WARP is more bal-
anced than SHAPE, the throughput of WARP is a little better than
SHAPE. WARP can handle about 32 and 82 queries in one minute
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Figure 9: Throughput Comparison

for DBPedia and WatDiv, while SHAPE can handle 24 and 75
queries.

For the vertical fragmentation strategy (VF), since a query of-
ten only contains a few frequent access patterns, it only involves
a few fragments. Two queries involving different fragments can
be evaluated in parallel. Hence, about 46 queries and 533 queries
can be answered in one minute for DBPedia and WatDiv, respec-
tively. For the horizontal fragmentation strategy (HF), each fre-
quent access pattern specified by the query may map to many struc-
tural minterm predicates and the corresponding fragments of these
structural minterm predicates may be allocated to different sites.
Hence, the throughput of the horizontal fragmentation strategy is a
little worse than the vertical fragmentation strategy, and 38 and 385
queries can be answered in one minute for DBPedia and WatDiv.

8.4 Response Time
In this experiment, we test the query performance of different

fragmentation strategies. We also sample 1% of all queries in the
workload and compute the average query response time of a query.
Figure 10 shows the performance results.

SHAPE and WARP partition the RDF graph into some subgraphs,
and distributes these subgraphs among different sites. The query
should be processed in many sites in parallel. Hence, SHAPE is
less balanced and sometime need cross-fragment joins, so SHAPE
needs about 2.5 and 0.79 seconds to answer a query for DBPedia
and WatDiv, while WARP takes 1.8 and 0.72 seconds.

For the vertical fragmentation strategy, only relevant fragments
are searched for matches and the search space is reduced. There-
fore, a query can be answered in about 0.8 seconds for DBPedia and
0.3 seconds for WatDiv. For the horizontal fragmentation strategy,
we can filter out all irrelevant fragments mapping to the structural
minterm predicates not specified by the query, which can further re-
duce the search space. Hence, a query can be answered with about
0.6 seconds for DBPedia and 0.15 seconds for WatDiv.
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Figure 10: Performance Comparison

8.5 Scalability Test
In this experiment, we investigate the impact of dataset size on

our fragmentation strategies. We generate five WatDiv datasets
varying the from 50 million to 250 million triples to test our strate-

gies. Figure 11 shows the results. Generally speaking, as the size of
RDF datasets gets larger, the average response times of one query
increase and the numbers of queries answered in one minute de-
crease accordingly. However, the rates of increase and decrease are
slow, and we can say that the query performance and throughput
are scalable with RDF graph size on the datasets.
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Figure 11: Varying Size of Datasets

8.6 Redundancy
Table 1 shows the redundancy ratio of the number of edges in

all generated fragments to the total number of edges in the original
RDF graph for each fragmentation strategy. For SHAPE, if a frag-
ment contains a vertex with high degree, all adjacent edges of the
high degree vertex are introduced. Most of these introduced edges
are redundant, and cause the redundancy ratios of SHAPE nearly 3
for DBPedia and 1.74 for WatDiv. WARP divides the RDF graph
while minimizing the edge cut, so the number of edges crossing
two fragments for WARP is smaller than the number for SHAPE.
Therefore, the redundancy ratio of WARP is smaller. Note that,
WatDiv is much denser than DBPedia, so the minimum cut-set for
WatDiv contains a higher proportion of edges. Hence, the redun-
dancy ratio of WatDiv is 1.54, but the ratio of DBPedia is only 1.01.

DBPedia WatDiv

SHAPE 2.99 1.74
WARP 1.01 1.54

VF 1.38 1.04
HF 1.42 1.06

Table 1: Redundancy (Ratio to original dataset)
Our fragmentation strategies find and materialize some frequent

access patterns (or structural minterm predicates). As discussed
in Section 8.2, the number of frequent access patterns is limited.
Hence, the redundancy ratios of our fragmentation strategies are
limited. Note that, the horizontal strategy has a little larger redun-
dancy ratio than the vertical fragmentation strategy. This is because
that different structural minterm predicates derived from the same
frequent access patterns share some common triple patterns. These
common triple patterns may cause more redundant edges.

8.7 Offline Performance
Table 2 shows the data partitioning and loading time of the datasets

for different fragmentation strategies. Although SHAPE has an al-
most perfect uniform distribution, its redundancy ratio is too large
and each fragment contains too many redundant edges. Hence,
loading fragments in SHAPE also takes much time. WARP uses
METIS [12]. Since DBPedia is sparse (i.e. |(E(G)|/|V(G)| ≈ 1),
METIS can guarantee that there are a few redundant edges and all
fragments have a nearly uniform distribution. Then, WARP has less
loading time than SHAPE. However, for WatDiv, the data graph
is dense (i.e. |(E(G)|/|V(G)| � 1), so the fragmentation result of
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Figure 12: Query Performance of Benchmark Queries

METIS is unbalanced. Then, WARP takes more loading time than
SHAPE to load the largest fragments.

Since nearly half of all edges for DBPedia are infrequent edges,
loading the cold graph of DBPedia is the bottleneck in our fragmen-
tation strategies. However, in WatDiv, there are not so many infre-
quent edges. Then, the loading time of our fragmentation strategies
for WatDiv is more acceptable. Note that, because the structural
minterm predicates are derived from the frequent access patterns,
the cold graphs for the vertical and horizontal fragmentation strate-
gies are the same. Thus, the loading times for the vertical and hor-
izontal fragmentation strategies are the same.

DBPedia WatDiv

Strategies Partitioning Loading Total Partitioning Loading Total
SHAPE 41 30 71 20 19 49
WARP 43 28 71 33 46 79

VF 50 97 147 31 28 59
HF 58 97 139 34 28 62

Table 2: Partitioning and Loading Time (in min)

8.8 Experiments for Benchmark Queries
In this experiment, we compare our methods with other fragmen-

tation strategies on benchmark queries provided by WatDiv. There
are 20 benchmark queries in WatDiv, and these queries can be clas-
sified into 4 structural categories: linear (L), star (S), snowflake (F)
and complex (C). Figure 12 shows the performance of different ap-
proaches. Generally speaking, we find out that our methods outper-
forms other two methods in most cases. This is because that each
benchmark query can be decomposed into some frequent access
patterns or structural minterm predicates. Hence, our fragmenta-
tion strategies can filter out many irrelevant fragments. In contrast,
SHAPE and WARP always concern all fragments, and SHAPE fur-
ther needs some cross-fragment joins for complex queries.

Let us look deeper into Figure 12 and analyze each individual
fragmentation strategy. SHAPE has to involve all fragments for any
queries, so its performance is always worse than our fragmentation
strategies. In particular, for star queries (S 1 to S 7), the difference
between the query response times of SHAPE and our fragmentation
strategies is not very large, because the subject-object-based triple
groups that we use can guarantee that there is no intermediate re-
sult and all star queries can be answered at each fragment locally.
However, for other shapes of queries, SHAPE has to decompose
the queries and do cross-fragment joins to merge the intermediate
results. Then, the performance of SHAPE decreases greatly. Es-
pecially for the unselective queries (L1, F1, F2, F3, F4, F5, C1 and
C2), the performance of SHAPE is an order of magnitude worse
than our fragmentation strategies.

Since WARP also use patterns to replicate triples for avoiding
cross-fragment joins in complex queries, WARP has better perfor-
mance that SHAPE in most case. However, WARP still always
concerns all fragments in all sites for any kind of queries. The

search space of WARP for a query is higher than our fragmenta-
tion strategies. Thus, our fragmentation strategies always result
in better performance. Especially for the query of very complex
structure (C2), our fragmentation strategies can filter out many ir-
relevant fragments, which can result in much smaller search space
than WARP. Hence, for C2, our strategies is twice as fast as WARP.

Since all benchmark queries are generated from instantiating bench-
mark templates with actual RDF terms, these benchmark queries al-
ways correspond to a limited number of minterm predicates.Hence,
the horizontal fragmentation is always faster than the vertical frag-
mentation.

9. RELATED WORK
For both the general graph and the RDF graph, as the graph size

grows beyond the capability of a single machine, many works [6,
8, 9, 10, 29, 14, 15, 7, 23, 12, 30, 22, 25] have been proposed about
graph fragmentation and allocation. We can divide all these meth-
ods into two categories: global goal-oriented graph fragmentation
methods and local pattern-based graph fragmentation methods.

Global Goal-Oriented Graph Fragmentation. For this kind of
methods [12, 9, 30, 22, 16], they divide G into several fragments
while maximizing some goal function. They first transform a large
graph into a small graph; then, apply some graph partitioning al-
gorithms on the small graph; finally, the partitions on the small
graph are projected back to the original graph. These methods of-
ten apply some existing methods (such as KL [13]) directly on the
transformed graph in the second step. If we track the transforming
step, the partitions on the small graph can be easily projected back
to the original graphs in the third step. Hence, the largest difference
among different graph coarsening-based methods is how to coarsen
the original graph into a small graph.

In particular, METIS [12] uses the maximal matching to coarsen
the graph. A matching of a graph is a set of edges that no two edges
share an endpoint. A maximal matching of a graph is a matching to
which no more edges can be added and remain a matching. Graph-
Partition [9] directly uses METIS in the RDF graph. WARP [8]
uses some frequent structures in workload to further extend the re-
sults of GraphPartition. EAGRE [30] coarsens the RDF graph by
using the entity concept in RDF data. It considers an entity to be a
subject and its complete description. By grouping the entities of the
same class, an RDF graph can be compressed as a compressed RDF
entity graph. MLP [22] designs a method to coarsen the graph by
label propagation. Vertices with the same label after the label prop-
agation are coarsened to a vertex in the coarsened graph. Sheep
[16] transform the graph into a elimination tree via a distributed
map-reduce operation, and then partition this tree while reducing
communication volume. Tomaszuk et. al. [21] briefly survey how
to apply existing graph fragmentaion solutions from the theory of
graphs to RDF graphs.

Global goal-oriented graph fragmentation methods assume that
if there are few edges crossing different fragments, the communi-
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cation cost is little. If an application involves nearly all vertices in
the graph, few cross-fragments edges indeed result in little commu-
nication. A typical application suitable for graph coarsening-based
methods is PageRank.

In some applications, one static fragmentation cannot fit all. Hence,
Sedge [28] maintains many fragmentations with different crossing
edges, while Shang et. al. [19] move some vertices of one frag-
ment to another fragment during graph computing according to the
workload. Yan et. al. [27] propose a indexing scheme based on
fragmentation to help query engine fast locate the instances.

Local Pattern-based Graph Fragmentation. For this kind of
methods [10, 29, 14, 15, 7, 23, 25] , they first find certain patterns
as the fragmentation units to cover the whole graph; then, they dis-
tribute these patterns into sites. The local pattern-based methods
mainly differ in their definitions of the fragmentation unit.

HadoopRDF [10] groups triples with the same property together
and each group corresponds to a fragmentation unit. Then, they
store all fragmentation units over HDFS. Yang et. al.[29] define
some special query patterns, and subgraphs of a pattern are con-
sidered as a fragmentation unit. Lee et. al. [14, 15] define the
fragmentation unit as a vertex and its neighbors, which they call
a triple group. The triple groups are distributed based on some
heuristic rules. For each vertex, SketchCluster [23] identifies the
set of labeled vertices reachable within its one-hop neighborhood
as its features and employs the KModes algorithm to group related
vertices based on the features. Partout [6] extends the concepts of
minterm predicates in relational database systems, and uses the re-
sults of minterm predicates as the fragmentation units. TriAD [7]
uses METIS [12] to divide the RDF graph into many partitions.
Then, each result partition is considered as a unit and distributed
among different sites based on a hash function. PathPartitioning
[25] uses paths in RDF graphs as fragmentation units.

Local pattern-based graph fragmentation methods assume that
some real applications only concerns a part of the whole graph. If
an application only concerns the vertices of some certain patterns,
these methods only access the relevant fragments and reduce the
communication cost across fragments. A typical example applica-
tion is subgraph homomorphism checking.

10. CONCLUSION
In this paper, we discuss how to manage the large RDF graph

in a distributed environment. First, we mine and select some fre-
quent access patterns to partition the RDF graph into many smaller
fragments. Then, we propose an allocation algorithm to distribute
all fragments over different sites. Last, we discuss how process the
query based on the results of fragmentation and allocation. Exten-
sive experiments verify our approaches.
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ABSTRACT

The rapid increase in generation and dissemination of online
video data has recently raised the demand on efficient and ef-
fective query processing techniques in large video databases.
In this paper, we first introduce a novel compact video rep-
resentation model to achieve high effectiveness, and then
propose to alleviate computational time complexity of the
well-known Earth Mover’s Distance by introducing a filter
approximation analyzing earth flows locally and restricting
the number of flows globally, ensuring completeness. More-
over, extensive experimental evaluation performed on high
dimensional real world datasets points out high efficiency
and effectiveness of the proposals, significantly reducing the
number of Earth Mover’s Distance computations and out-
performing the state of the art by up to two orders of mag-
nitude with respect to selectivity and query processing time.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval; H.2.4 [Database Management]: Sys-
tems—Multimedia databases

General Terms

Theory, Performance, Experimentation

Keywords

Earth Mover’s Distance, Lower Bound, Filter Distance, Ef-
ficient Query Processing

1. INTRODUCTION
With increasing ubiquity of the internet and rich diver-

sity of multimedia capture devices and social networking
and data sharing web sites, recent years have witnessed an
explosion in generation and collection of multimedia data,
in particular videos. As reported in [26], 100 hours of video
are uploaded to YouTube every minute, and over 6 billion

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

hours of video are watched each month on the same web-
site. The resulting enormous amount of video data in the
technological world today makes efficient and effective query
processing indispensable for large video databases.

The Earth Mover’s Distance (EMD) [15] denoting strong
human perceptual similarity is proven to be a very effec-
tive distance-based similarity measure in various domains.
The EMD determines the dissimilarity between two data
objects by the minimum amount of work required to trans-
form one feature representation into another one. Each data
object, for example a video clip, can be represented by a sig-
nature denoting individual object-specific features, or by a
histogram consisting of shared features in the feature space
where histograms expose a special case of signatures. Signa-
tures which are also referred to as adaptive binning or indi-
vidual binning can be used to represent a wide spectrum of
data types, such as uncertain [3], medical [2], probabilistic
[25], and multimedia data [15, 24, 21, 22], as well as events
[19] and molecules [6]. The major advantage of the utiliza-
tion of the signatures is the high quality of content approxi-
mation coupled with similarity search and query processing
in various type of databases.

A signature is basically defined as a set of features, also
found as representatives in the literature, in a feature space.
Each feature is assigned a real-valued weight denoting the
number of features related to that corresponding feature.
This is carried out by first extracting the features and then
clustering them by using a clustering algorithm, such as k-
means algorithm. The resulting counters of the features in
the clusters form a signature which we refer to as an abso-
lute signature exhibiting individual total weights. Absolute
signatures are appropriate for applications for which differ-
ent characteristics and properties of data are of high impor-
tance, such as different image resolution or different video
clip length. Many applications rely on an additional prepro-
cessing step by which the absolute signatures are normal-
ized, leading to relative signatures exposing a uniform total
weight among all data objects. Below, we will immediately
show the limitations caused by this normalization step, and
how important the usage of absolute signatures is, partic-
ularly if partial similarity is involved. Overall, this paper
aims at efficient similarity query processing for absolute sig-
natures which is supported only little by existing work.

Relative signatures have often been utilized in numerous
applications [15, 1, 24, 21], however, absolute signatures and
similarity search using them are still unexplored. The di-
agnosis of various types of cancer or neurological diseases,
such as Alzheimer’s Disease [9] require absolute signatures
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Figure 1: Given images I1 and I2, the absolute sig-
nature S2 is found to be a part of the absolute signa-
ture S1 which consider individual absolute weights.
However, a normalization step results in relative sig-
natures R1 and R2 which are detected as non-similar.

in (bio)medical image classification and similarity search.
Rough and coarse boundaries of a cell makes it difficult to
determine if it is a cancer/tumor cell. Such biomedical im-
ages are commonly stored in fuzzy object databases where
each image is partitioned in a specific number of shells where
the assignment of a certain probability to each pixel is es-
sential, i.e. the absolute number of pixels for each shell is
important to store [20]. An extra normalization step af-
ter the feature extraction would lead to inappropriate fuzzy
object representation of the cells and, thus, to irrelevant re-
sults. In biotechnology, the metabolite identification and
quantification is an important task for which data normal-
ization results in obscuring variation of data where the chem-
ical properties cannot be preserved any more [10]. In addi-
tion, normalizing the metabolomic data affects its covariance
structure which is undesired by the experts.

To contribute to the reader’s understanding, we illustrate
the absolute and relative signatures in Figure 1. A common
task in partial similarity search is to determine if a particular
part of a given data object exists in the target dataset. Each
signature comprises representatives visualized by circles and
is based on the characteristic information of the presented
image, such as color. Image I1 comprises various fruits in-
cluding also a lemon, while the image I2 shows only a lemon
where the user intends to determine if a lemon exists in the
image I1. When the absolute signatures S1 and S2 are con-
sidered, S2 is found to be similar to S1, since it is detected as
a part of S1. However, if an additional normalization step is
applied to attain the relative signatures R1 and R2, they are
detected as non-similar. A closer look reveals that the two
images are evaluated as different images due to the utiliza-
tion of the normalization step after the feature extraction,
i.e. normalizing absolute signatures does not carry out the
required partial similarity search task. Another example is
the currently attractive and vital domain of video similarity
search, in particular near-duplicate video detection, where a
typical subclip video detection task [8], required for various
purposes as copyright protection and management, entails
the need to utilize absolute signatures so that a query subclip
can be detected in a given video dataset. Hence, depending
on the application, it is explicitly crucial to utilize absolute
signatures for queries and datasets, as normalization does

not attain partial similarity search tasks formulated and de-
manded by the user.

Since the empiric time complexity of the EMD is super-
cubic with respect to feature dimensionality, database com-
munity has devised research to propose efficient query pro-
cessing techniques for the EMD [15, 4, 1, 24, 25, 21]. While
existing efficiency improvement techniques for the EMD have
been successfully utilized on relative signatures, nevertheless
most of them have unfortunately the shortcoming that they
can only be applied to fixed-binned relative signatures. Fur-
thermore, they cannot be applied to absolute signatures de-
noting individual total weights which come up in numerous
applications and domains, such as in computer vision [13, 4],
multimedia databases [11], fuzzy object databases [20], and
biotechnology [10]. While the lower-bounding technique IM-
Sig (Independent Minimization for Signatures) [21] is proven
to result in efficient results, it can only be applied to relative
signatures, not to absolute signatures.

In this paper, we introduce a lower-bounding filter ap-
proximation technique IM-Sig∗ which is applicable to both
fixed-binned and adaptive-binned absolute and relative sig-
natures. In particular, our approach computes the same
filter distance as for IM-Sig on relative signatures, and on
top of this, our proposal can also be applied to the abso-
lute signatures, hence, filling the gap with respect to lower-
bounding the EMD on absolute signatures. To this end, we
focus on efficient query processing with the EMD on both
relative and absolute signatures in order to introduce a com-
prehensive solution, which is carried out by analyzing earth
flows locally and restricting the number of flows globally.
In addition, we take the video domain as an example in this
paper, however, it is noteworthy that our efficiency improve-
ment technique can be applied to all domains where complex
data objects need to be represented by relative or absolute
signatures, as mentioned above. The main contributions of
our paper are listed as follows:

• We introduce an adaptive-binning video representation
model applicable to the EMD (Section 3).

• We propose an analytic solution IM-Sig∗ for adaptive-
binned signatures without any weight restriction (Sec-
tion 5.1-5.2).

• We show the optimality of our solution leading to the
lower-bounding property of the IM-Sig∗, ensuring ex-
act query processing with the EMD (Section 5.3).

• We develop an algorithm for our proposal and analyze
the computational time complexity (Section 5.4).

• Experiments on real world data show the efficiency and
efficacy of our approach (Section 6).

2. RELATED WORK
Efficient Query Processing with the EMD. Various

efficient query processing techniques have been proposed for
the EMD on histograms, i.e. fixed-binned signatures. [1]
proposed to lower-bound the EMD via Lp-based distances
and constraint relaxation. [24] developed dimensionality re-
duction techniques for the EMD where reduced cost matri-
ces are utilized relying on the original cost matrix. Further-
more, [25] derived a lower bound of the EMD by utilizing
the primal-dual theory in linear programming on top of B+-
trees. In addition, [16] proposed to lower-bound the EMD by
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Table 1: Overview of the lower bounds to the Earth
Mover’s Distance regarding feature representations

signatures
lower bounds individual
to the EMD adaptive binning signature weight
Lp-based [1]
RedEMD [24]
PrimalDual [25]
Rubner [15] �
IM-Sig [21] �
Pemd [4] � �
IM-Sig∗ � �

projecting histograms on a vector and approximating their
distance by a normal distribution. It is noteworthy that
the limitation of all aforementioned approaches is that they
are applicable to histograms sharing the same features in
a feature space, not to adaptive-binned signatures denoting
individual features per data object. As mentioned in the
previous section, since histograms denote a special case of
signatures by utilizing shared features instead of individual
features per data object, it is of vital importance to pro-
pose comprehensive methods applicable to signatures. [15]
proposed to lower-bound the EMD by computing the dis-
tance between mean signatures. Although the filter time
is remarkably low, the efficiency of the query processing is
hampered by the worse selectivity resulting in high refine-
ment time. Moreover, a considerable limitation lies in the
fact that it cannot be applied to absolute signatures, as will
be presented in Section 4. Another efficiency improvement
technique for signatures is proposed by [21], which is based
on the relaxation of the target constraint of the EMD by
local examination of each feature in the source signature.
While this method indicates high efficiency improvement,
it is nevertheless not applicable to absolute signatures with
individual total weights. Furthermore, [4] proposed to lower-
bound the EMD on signatures by computing the EMD val-
ues for projected signatures each of which comprises features
projected on an individual dimension of the feature space.
Note that the latter approach is applicable to both relative
and absolute signatures. The overview of the applicability
of existing lower-bounding methods and our approach IM-
Sig∗ with respect to feature representations is depicted in
Table 1.

Video Similarity Search Models. Video similarity
search in video databases has been a challenging research
area where there have been numerous attempts to provide
effective similarity search techniques. [18] (vitri) summa-
rizes each video into a small number of clusters each of which
includes similar frames. The similarity between two videos
is determined by simply estimating the number of similar
frames, neglecting the temporal information. [27] (fras) is
another approach which is an improvement of [18], symboliz-
ing video sequences on a frame basis. The limitation of both
approaches lies in the determination of a threshold which is
supposed to specify the similarity between any two frames.
[8] (vdt) proposes to transform a video from a sequence of
histograms denoting frames into a one-dimensional distance
trajectory where the distance is determined via a reference
point. This model is contingent upon frame elements which
may lead to performance limitations regarding generation of

(a) video clip (b) video signature

(c) video subclip (d) subclip signature

Figure 2: Illustration of a video clip and a subclip
with the visualization of their video signatures.

video representations of a high number of frames, and the
segmentation of linear segments requires the determination
of a threshold regarding the distance between two consec-
utive frames, which is not robust to outliers. [7] (bcs) is
another video clip representation model utilizing the princi-
pal component analysis in order to specify a bounded range
of data projections along each coordinate axis. This method
neglects temporal information causing a restriction, in par-
ticular for long video clips. Not least, all aforementioned
approaches propose to represent each frame only by a his-
togram in RGB color space.

3. NOVEL VIDEO REPRESENTATION
In this section, we propose our novel video model Video

Signature (vis) which utilizes the determination of indi-
vidual features and related weights denoting the number
of assigned features, leading to a particular compact video
clip representation. Unlike frame-based and sequence-based
models [7, 8, 18, 27], our model is not contingent upon
frames or keyframes, attaining great flexibility via exploiting
any requested feature types, such as color, position, contrast,
and coarseness. On top of this, the proposal implicitly takes
the temporal information into consideration which does not
require extra effort at all, since the temporal information is
utilized as an individual dimension of the underlying feature
space. Mathematically, let (F, δ) be a feature space where F
is a set of features coupled with a ground distance function
δ : F × F → R. Any video clip is represented by a finite
set of features x1, . . . , xn ∈ F. We refer to a video signature
as a finite set of features (so-called representatives) each of
which is assigned a non-negative real number corresponding
to the number of features assigned to that representative.
The formal definition is given below.

Definition 1 (Video Signature). Given a feature
space (F, δ), a video signature V is defined as V : F → R≥0,
subject to |RV | < ∞ , where RV := {x ∈ F |V (x) > 0} ⊆ F
denotes the set of representatives of V .
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According to the definition above, each representative con-
tributes to the video representation by taking a positive real
number V (x) ∈ R≥0 as weight. Any video signature, hence,
includes an individual set of representatives and weights
which leads to an appropriate video representation.

The illustration of a video clip and a subclip with their
corresponding video signature visualizations are depicted
in Figure 2. The signatures comprise 50 representatives
which are visualized as spheres based on position, color,
texture, and temporal information. In the visualization,
positional (X,Y) and temporal (T) dimensions are explic-
itly utilized to contribute to the reader’s understanding,
where the size of each sphere refers to the weight of that
representative. This figure epitomizes the video approxi-
mation and modeling with respect to subclip video detec-
tion: Obviously, the individual total weight of the abso-
lute signature of the video clip (b) is greater than that for
the subclip video (d) which facilitates the utilization of the
EMD to determine the dissimilarity between them in order
to solve the desired subclip detection task. If they were
normalized, the desired task would not be solved, since the
EMD would then determine total similarity between the two
videos, which does not correspond to the user’s intention.
In the upcoming sections, the term signature refers to a
video signature. As will be presented in Section 6, mod-
eling videos as video signatures highly contributes to effec-
tiveness results. For the sake of simplicity, in the follow-
ing sections, we utilize the class of non-negative signatures
S+ := {V |V ∈ RF∧0 < |RV | < ∞∧∀x ∈ F : V (x) ∈ R≥0} in-
cluding video signatures whose representatives denote non-
negative weights. In the following section, we present the
EMD and the utilized filter-and-refine architecture.

4. EARTH MOVER’S DISTANCE
In this section, we present the well-known Earth Mover’s

Distance which can be utilized in a filter-and-refine archi-
tecture in order to boost the query processing. Initally in-
troduced in the computer vision domain, the Earth Mover’s
Distance (EMD) [15] computes the dissimilarity between two
signatures by transforming one signature into another one.
The formal definition is given below.

Definition 2. Let X,Y ∈ S+ be two signatures over a
feature space (F, δ) and δ : F× F → R be a ground distance
function. The Earth Mover’s Distance EMD : S+×S+ → R
between X and Y is defined as a minimum-cost flow of all
possible flows F = {f |f : F× F → R} = RF×F as:

EMD(X,Y ) = min
f∈F

⎧⎪⎨
⎪⎩

∑
x∈F

∑
y∈F

f(x, y) · δ(x, y)

min{∑
x∈F

X(x),
∑
y∈F

Y (y)}

⎫⎪⎬
⎪⎭ ,

subject to constraints NC ∧ SC ∧ TAC ∧ FC with:
NC: ∀x, y ∈ F f(x, y) ≥ 0, SC: ∀x ∈ F

∑
y∈F

f(x, y) ≤ X(x),

TAC: ∀y ∈ F
∑
x∈F

f(x, y) ≤ Y (y), and

FC:
∑
x∈F

∑
y∈F

f(x, y) = min{∑
x∈F

X(x),
∑
y∈F

Y (y)}.

The EMD is the minimum cost required to transform
one signature into another one by guaranteeing the non-
negativity (NC), source (SC), target (TAC), and total flow
constraints (FC), as given above. Hence, the EMD denotes
a linear optimization problem and can be solved by simplex
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Figure 3: (a) The EMD between absolute signatures
X and Y is EMD(X,Y ) = 1. (b) Rubner(X,Y ) =
δ(x′, y′) = 2 � EMD(X,Y ) holds, i.e. Rubner filter
is not a lower bound to the EMD on absolute signa-
tures denoting individual total weights.

algorithms. Figure 3(a) illustrates an example EMD com-
putation between two signatures X,Y where 1 unit earth is
transferred from x2 ∈ RX with a distance of 1, resulting in
the EMD value of 1×1 = 1. It is worth noting that the abso-
lute signatures X and Y exhibit individual total weights of 2
and 1, respectively, where the total flow constraint FC guar-
antees that the minimum of the total weights is transferred
from the source signature X to the target signature Y .

Given two signatures X,Y with total weights mX , mY ,
and a norm-based ground distance function δ, the Rubner
filter distance [15] is defined as: δ

(
(
∑

x∈RX
X(x) · x)/mX ,

(
∑

y∈RY
Y (y) · y)/mY

)
, as depicted in Figure 3(b): x′ and

y′ refer to weighted mean features of X and Y from (a), re-
spectively. The Rubner filter computes δ(x′, y′) = 2 which,
however, does not lower-bound the EMD. As illustrated by
this example, the restriction of the Rubner filter is that it
cannot be applied to absolute signatures.

Filter-and-refine Architecture. One of the efficiency
improvement methods utilized in k-nearest-neighbor (k-nn)
query processing is the filter-and-refine architecture model
comprising filter and refinement steps [5, 17, 12], as summa-
rized in Figure 4. In the filter step, a filter LBd generates a
set of candidates which is then refined in the refinement step
by utilizing the exact distance d (here EMD). A filter ideally
fulfills the following properties: First, its computation is at-
tained more efficiently than for the exact distance computa-
tion (efficiency). Second, LBd lower-bounds d, i.e. the final
refined set includes all objects from the result set, guarantee-
ing no false dismissals, as it holds ∀x, y : LBd(x, y) ≤ d(x, y)
(completeness). Third, the generated set of candidates is
smaller if LBd is tighter, leading to lower computation cost.
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Figure 4: Multistep query processing

In this paper, we utilize a multistep approach which is
proven to be optimal in the number of candidates [17]. Af-
ter a ranking is generated by using a filter distance, it is
processed as long as the filter distance does not exceed the
exact distance of the current kth-nearest neighbor where the
result set and the kth-nearest neighbor distance are contin-
uously updated. After giving the EMD and filter-and-refine
architecture, we below present our proposed technique IM-
Sig∗ applicable to both absolute and relative signatures.
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5. LOWER-BOUNDING THE EMD

ON SIGNATURES
In this section, we first deal with the shortcoming of the

existing approach IM-Sig, and then present our proposed
comprehensive lower-bounding technique IM-Sig∗ on signa-
tures, irrespective of any prior information about their total
weights. Then, we theoretically show that our analytic so-
lution is both feasible and optimal, which is thus a lower
bound to the EMD on all type of signatures including ab-
solute and relative signatures with individual and uniform
total weights, respectively. We finally present the computa-
tional algorithm of our technique and its complexity analy-
sis.

Our approach has two attractive advantages: First, it is
applicable to both relative and absolute signatures, yielding
high flexibility with respect to query processing and explicit
user-driven tasks, such as subclip video detection, as men-
tioned before. Second, it is a generic solution regarding ef-
ficient query processing which is not restricted to the video
domain, and, hence, can be applied to any other domain,
such as multimedia, computer vision, and medicine.

5.1 IM-Sig
∗

and the Limitations of IM-Sig
The filter approximation technique Independent Minimiza-

tion for Signatures (IM-Sig) [21], based on target constraint
relaxation of the EMD, was originally proposed to lower-
bound the EMD on signatures with uniform total weight.
Below, we first give the formal definition of the comprehen-
sive lower-bounding technique IM-Sig∗, irrespective of any
prior information about the total weights of signatures, and
then present the shortcoming of IM-Sig via illustrative ex-
amples.

Definition 3 (IM-Sig∗ Filter Distance). Let (F, δ)
be a feature space with a distance function δ and X,Y ∈ S+

be two non-empty positive signatures with weights mX =∑
x∈F

X(x) and mY =
∑
y∈F

Y (y). The comprehensive filter dis-

tance Independent Minimization for Signatures IM-Sig∗ :
S+ × S+ → R≥0 between X and Y is defined as a mini-
mization over all possible flows F = {f |f : F× F → R}:

IM-Sig∗(X,Y ) = min
f∈F

⎧⎨
⎩
∑
x∈F

∑
y∈F

δ(x, y)

min(mX ,mY )
f(x, y)

⎫⎬
⎭ ,

subject to constraints NC ∧ SC ∧ TC ∧ FC with:
NC: ∀x, y ∈ F f(x, y) ≥ 0, SC: ∀x ∈ F

∑
y∈F

f(x, y) ≤ X(x),

TC: ∀x, y ∈ F : f(x, y) ≤ Y (y), and
FC:

∑
x∈F

∑
y∈F

f(x, y) = min{∑
x∈F

X(x),
∑
y∈F

Y (y)}.

While the non-negativity (NC), source (SC), and total
flow constraints (FC) remain unchanged for the EMD and
IM-Sig∗, the target constraint (TC) of IM-Sig∗ relaxes that
for the EMD by allowing that any single incoming flow (in-
stead of total incoming flows) may not exceed the target ca-
pacity. If the signatures exhibit uniform total weights, i.e. if
they are relative signatures, the approach IM-Sig [21] can be
applied. However, in other cases an appropriate solution is
required for the computation of the filter approximation on
any kind of signatures with relative or absolute weights. For
all possible cases, we propose to compute the comprehen-
sive IM-Sig∗ by analyzing earth flows locally and restricting
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(b) IM-Sig flow (2. option)
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(d) EMD flow

Figure 5: IM-Sig, IM-Sig∗, and EMD flows illus-
trated on two absolute signatures. Since IM-Sig is
not defined on absolute signatures exhibiting indi-
vidual total weights, there is neither a deterministic
solution nor a computable minimum-cost flow (a-b).
IM-Sig∗ flow (c) computes an optimal flow which ful-
fills the minimum-cost property, lower-bounding the
EMD (d) on both absolute and relative signatures.

the number of flows globally. In other words, our approach
IM-Sig∗ computes the same flow as for IM-Sig for relative
signatures and on top of this, IM-Sig∗ can be applied to the
absolute signatures to lower-bound the EMD.

In order to give the underlying basic notion and to clar-
ify the difference between our approach IM-Sig∗ and IM-Sig,
we examine the illustrations given in Figure 5. Numbers 1-5
denote the positions in the 1-dimensional feature space, and
the ground distance between any representatives with posi-
tions i and j is computed via |i − j|, such as δ(x2, y2) = 1.
The signatures X,Y are illustrated with 2 representatives
each, where their weights are denoted in buckets. Since IM-
Sig is not defined on absolute signatures, there does not
exist a computable minimum-cost flow. Nonetheless, if we
try to apply the naive IM-Sig algorithm to these absolute
signatures denoting individual total weights, we face two
main problems: First, there exists no deterministic solution
since IM-Sig basically transfers earth from each represen-
tative xi to its nearest neighbors in the target signature
Y . Since there is no specific predefined order of the rep-
resentatives for the earth transfer from X to Y , one can
arbitrarily start with any representative. The first non-
deterministic solution of IM-Sig (Fig. 5(a)) would transfer
earth from x1 to its nearest neighbors y1 and y2, resulting
in IM-Sig(X,Y ) = 1

2
× (1 · 1 + 1 · 2) = 1.5. Another non-

deterministic solution of IM-Sig (Fig. 5(b)) would transfer
earth from x2 to its nearest neighbors y2 and y1, resulting in
IM-Sig(X,Y ) = 1

2
×(1·1+1·4) = 2.5. Second, the computed

IM-Sig values do not necessarily yield optimal solutions,
which can be inferred from the application of the optimal
IM-Sig∗ on the example (Fig. 5(c)): Our approach first ranks
the representative pairs (xi, yj) with respect to their ground
distance values in ascending order, and then the earth is
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transferred from X to Y by taking this order into considera-
tion, as well as all constraints given in Def. 3. Hence, we con-
sider the permutation of ((x1, y1), (x2, y2), (x1, y2), (x2, y1))
with the ground distance values of 1,1,2, and 4. In this way,
first 1 unit earth is transferred from x1 to y1 and then again
1 unit earth is transferred from x2 to y2 after which the op-
timal solution is attained, fulfilling the IM-Sig∗ constraints:
IM-Sig∗(X,Y ) = 1

2
×(1 ·1+1 ·1) = 1. In addition, the EMD

(Fig. 5(d)) is computed as EMD(X,Y ) = 1
2
× (1 ·1+1 ·1) =

1, where we observe that the IM-Sig∗ computes not only
the minimum-cost flow but also the feasible solution, lower-
bounding the EMD on these absolute signatures. As a re-
sult, this example illustrates that IM-Sig is unfortunately
not applicable to absolute signatures with individual total
weights and there is demand on novel efficient query pro-
cessing techniques to solve the existing problem.

So far, we have seen the shortcomings of IM-Sig and de-
duce that there is need for new comprehensive lower-bounding
techniques applicable to any kind of signatures without any
restriction. Below, we present our novel analytic solution
with respect to the computation of IM-Sig∗. For the defini-
tions and theoretical analysis in the remainder of the paper,
we assume that a feature space (F, δ) is given with a distance
function δ, and we refer to non-empty positive signatures
X,Y ∈ S+.

5.2 Analytic Solution
In order to propose our novel analytic solution for IM-Sig∗,

we first give the definitions of the local feasible set, extensive
flow, and global feasible set which are required to define the
IM-Sig∗ flow, as will be given in Definiton 7. The local
feasible set of a representative x in the source signature X
exhibits the greatest set of nearest neighbors in the target
signature Y , where the total weight of its nearest neighbors
may not exceed the capacity of x. The formal definition is
given below.

Definition 4 (Local Feasible Set). Given two sig-
natures X,Y ∈ S+, let (y1, . . . , yl) be a permutation of RY

with respect to a feature x ∈ F such that i ≤ j ⇒ δ(x, yi) ≤
δ(x, yj). The local feasible set Sx

X,Y ⊆ RY is defined as
the greatest set of nearest neighbors of x in RY whose total
weight does not exceed X(x): yi ∈ Sx

X,Y ⇔ ∑i
j=1 Y (yj) <

X(x). Let further k = |Sx
X,Y | be the greatest index in Sx

X,Y ,
then ŷx /∈ Sx

X,Y is defined as the feature directly following yk
regarding the same permutation:

ŷx =

{
yk+1 if k < l = |RY |
y∗ ∈ F\RY else

Note that if |Sx
X,Y | = |RY |, i.e. the cardinality of the local

feasible set of the representative x is the same as that for
the representative set of the target signature Y , ŷx /∈ RY is
an arbitrarily chosen feature in the feature space which does
not belong to RY , since the capacity of x exceeds the total
signature weight of the target signature, i.e. X(x) > mY .
The aim of the extensive flow fe is to transfer earth from

the source signature X to the target signature Y by filling
up the nearest neighbors of each x ∈ RX in the target sig-
nature so that for each x all the earth it owns is completely
transferred to its nearest neighbors in the target signature.
Note that the extensive flow does not take the individual
total weights of the signatures into consideration. Techni-

cally, the local feasible set Sx
X,Y is utilized to define the flow

whose definition is given as follows.

Definition 5 (Extensive Flow). Given two signatures
X,Y ∈ S+, let SX,Y (x) be the local feasible set for any fea-
ture x ∈ F (Def. 4). The extensive flow fe : F × F → R is
defined as follows:

fe(x, y) =

⎧⎪⎪⎨
⎪⎪⎩
Y (y) if y ∈ Sx

X,Y

X(x)− ∑
y′∈Sx

X,Y

Y (y′) if y = ŷx ∧ ŷx ∈ RY

0 else

The extensive flow fulfills three constraints of IM-Sig∗,
namely the non-negativity, source, and IM-Sig∗ target con-
straint, which can be summarized in Corollary 1 as follows.

Corollary 1. Given two signatures X,Y ∈ S+, fe ful-
fills the following constraints: non-negativity(NC): ∀x, y ∈
F fe(x, y) ≥ 0, source(SC): ∀x ∈ F

∑
y∈F

fe(x, y) ≤ X(x),

IM-Sig∗ target(TC): ∀x, y ∈ F fe(x, y) ≤ Y (y).

The corollary above directly follows from Def. 4 and Def. 5.
After defining the local feasible set and extensive flow, we
now define global feasible set which is required for IM-Sig∗

flow. The global feasible set SX,Y exhibits the greatest set
including pairs (xi, yj) of representatives from both signa-
tures, where the set includes all pairs for which the cor-
responding representative yj receives a positive amount of
earth from xi. An important condition which needs to be
fulfilled is that the pairs (xi, yj) are ranked according to
their ground distance values in ascending order. Hence, the
pairs are tracked at a global level, i.e. both signatures’ rep-
resentatives are taken into consideration, not only those of
the target signature.

Definition 6 (Global Feasible Set). Given two sig-
natures X,Y ∈ S+, let p = ((x1, y1), . . . , (xn, yn)) be a
permutation of RX × RY such that i ≤ j ⇒ δ(xi, yi) ≤
δ(xj , yj). The global feasible set SX,Y ⊆ RX × RY is the

greatest set satisfying (xi, yi) ∈ SX,Y ⇔ ∑i
j=1 fe(xj , yj) <

min(mX ,mY ), where k = |SX,Y | is the greatest index in
SX,Y and (x̂, ŷ) /∈ SX,Y is defined as (x̂, ŷ) = (xk+1, yk+1)
which directly follows (xk, yk) regarding p.

The global feasible set SX,Y comprises all pairs from RX×
RY sorted according to their ground distances in ascending
order where the total amount of the flow coupled with such
pairs may not exceed the minimum of the total weights of
the signatures. The pair (x̂, ŷ) is concerned in denoting the
last possible flow in the permutation p so that the total flow
constraint is guaranteed.

Recall that our goal is to introduce a solution for any
pair of signatures, including both relative and absolute total
weights, and overcome current limitations. To this end, we
explicate our proposed technique IM-Sig∗ flow which trans-
fers the minimum amount of total weights of given two sig-
natures from the source signature X to the target signature
Y . This is achieved by transferring earth by the utiliza-
tion of the global feasible set which tracks the pairs of rep-
resentatives allowing for appropriate flows with respect to
non-negativity, source, and target constraints. IM-Sig∗ flow
additionally takes the total flow constraint into considera-
tion which is significantly required to yield both feasible and
optimal solution to the IM-Sig∗ minimization problem. The
formal definition of IM-Sig∗ flow is given below.
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(b) EMD flow

Figure 6: Illustration of the novel IM-Sig∗ flow and
the EMD flow on signatures.

Definition 7 (IM-Sig∗ flow). Given two signatures
X, Y ∈ S+, let SX,Y be the global feasible set with m =
min(mX , mY ). For any x, y ∈ F IM-Sig∗ flow is defined as:

fS(x, y) =

⎧⎪⎪⎨
⎪⎪⎩
fe(x, y) if (x, y) ∈ SX,Y

m− ∑
(x′,y′)∈SX,Y

fe(x
′, y′) if (x, y) = (x̂, ŷ)

0 else

In order to contribute to the reader’s understanding, we
illustrate the novel comprehensive IM-Sig∗ flow by means
of an example in Figure 6(a). Numbers 1-7 expose the po-
sitions in the 1-dimensional feature space, and the ground
distance between any representatives with positions i and j
is computed via |i− j|. Two signatures X,Y are illustrated
with 2 representatives each, where their weights are de-
picted in buckets. The required permutation is given as p =
((x1, y1), (x2, y1), (x2, y2), (x1, y2)) with distances 1,2,3,6, re-
spectively. The global feasible set SX,Y = {(x1, y1), (x2, y1)}
is then determined as the greatest set whose total flow may
not reach the minimum of the total weights of X,Y , i.e.
1 + 1 < min(10, 6) = 6. Thus, the pair (x̂, ŷ) = (x2, y2) is
the last element in the permutation which allows for flow
with an amount of only 4 to fulfill the total flow constraint.
Hence, IM-Sig∗ is computed as 1

6
×(1×1+2×1+3×4) = 2.5 .

Not least, when compared with the EMD (Figure 6(b)) com-
puted as 1

6
× (1 × 1 + 3 × 5) = 2.66, it is obvious that the

novel IM-Sig∗ flow leads to a very tight lower bound to the
EMD on absolute signatures.

So far, we have seen that the analytic solution IM-Sig∗

flow can be introduced in order to boost the query process-
ing with the EMD on signatures irrespective of their total
weights. Below, we would like to show that our analytic
solution is feasible and optimal with respect to the IM-Sig∗

constraints which leads to the conclusion that the utilization
of IM-Sig∗ flow indeed leads to a lower bound to the EMD
on any kind of signatures.

5.3 Theoretical Investigation
Now, we investigate our proposal with respect to its fea-

sibility and optimality regarding IM-Sig∗ constraints. First,
we show that the proposed IM-Sig∗ flow is a feasible flow
fulfilling 4 constraints of non-negativity, source, IM-Sig∗ tar-
get, and total flow, which is given by Theorem 1. Then, we
show that IM-Sig∗ flow is an optimal flow, i.e. there exists
no other flow which results in lower overall cost than that
for IM-Sig∗ flow (Theorem 2). Finally, by the utilization of
both theorems, we deduce that the utilization of the pro-
posed IM-Sig∗ flow leads to the lower bound to the EMD on
signatures, irrespective of their total weights.

Feasibility Analysis. In order to show the feasibility
of our approach, we consider the constraints in Def. 3 and
show that these constraints are fulfilled.

Theorem 1 (Feasibility of IM-Sig∗ flow). Given
signatures X,Y ∈ S+ with total weights mX =

∑
x∈F

X(x)

and mY =
∑
y∈F

Y (y), IM-Sig∗ flow fS fulfills the follow-

ing constraints: non-negativity (NC): ∀x, y ∈ F fS(x, y) ≥
0, source (SC): ∀x ∈ F

∑
y∈F

fS(x, y) ≤ X(x), IM-Sig tar-

get (TC): ∀x, y ∈ F fS(x, y) ≤ Y (y), and total flow (FC):∑
x∈F

∑
y∈F

fS(x, y) = min(mX ,mY ).

Proof. For the proof we consider each constraint given
above and show that they are fulfilled regarding the defini-
tion of IM-Sig∗ flow given in Def. 7. For any pair of features
x, y, IM-Sig∗ flow between these features does not exceed
the extensive flow between them, i.e. given two signatures
X,Y ∈ S+, for any x, y ∈ F it holds: fS(x, y) ≤ fe(x, y),
following from Def 5 and Def. 7. We denote this fact by
the notation � and use it below, where necessary. NC:
∀x, y ∈ F : fS(x, y) ≥ 0. There exist three cases to examine:
Case 1 : (x, y) /∈ SX,Y ∧ (x, y) = (x̂, ŷ). ⇒ fS(x, y) = 0.
Case 2 : (x, y) ∈ SX,Y . ⇒ fS(x, y) = fe(x, y) ≥ 0, by
Cor. 1. Case 3 : (x, y) = (x̂, ŷ). Since

∑
(x,y)∈SX,Y

fe(x, y) <

min(mX ,mY ) holds for any two signatures X and Y , we can
write the following statement:∑

(x′,y′)∈SX,Y
fe(x

′, y′) < min(mX ,mY ) ⇒ min(mX ,mY )−∑
(x′,y′)∈SX,Y

fe(x
′, y′) > 0

Def. 7⇒ fS(x, y) ≥ 0. SC: ∀x ∈

F :
∑
y∈F

fS(x, y) ≤ X(x).
∑
y∈F

fS(x, y)
(�)

≤ ∑
y∈F

fe(x, y)
SC Cor.1≤

X(x). TC: ∀x, y ∈ F : fS(x, y) ≤ Y (y). fS(x, y)
(�)

≤
fe(x, y)

TC Cor.1≤ Y (y).
FC:

∑
x∈F

∑
y∈F

fS(x, y) = min(mX ,mY ).
∑
x∈F

∑
y∈F

fS(x, y) =

∑
(x,y)∈RX×RY

fS(x, y) =
∑

(x,y)∈SX,Y

fS(x, y) + fS(x̂, ŷ)
Def.7
=∑

(x,y)∈SX,Y

fe(x, y) +min(mX ,mY )− ∑
(x′,y′)∈SX,Y

fe(x
′, y′) =

min(mX ,mY ).

Optimality Analysis. To prove that IM-Sig∗ with the
proposed flow lower-bounds the EMD, we present that it
yields the minimum overall cost among all possible flows by
showing that any arbitrarily chosen feasible flow f results in
a higher or equal overall cost than that for the IM-Sig∗ flow.

Theorem 2 (Optimality of IM-Sig∗ flow). Given
signatures X,Y ∈ S+ with mX =

∑
x∈F

X(x), mY =
∑
y∈F

Y (y),

and set of all possible flows F , fS is the minimum-cost flow
minimizing the overall cost with respect to IM-Sig∗:

fS = argmin
f∈F

{∑
x∈F

∑
y∈F

δ(x,y)
min(mX ,mY )

f(x, y)

}
.

Proof. We show that any arbitrarily chosen flow f differ-
ent from the proposed flow fS does not lead to lower over-
all cost. Due to space limitations, we present the idea of
the proof instead of giving all the theoretical details. Since
f and fS are feasible, the total amount of earth moved is
min(mX ,mY ). Let RX = E ∪ L ∪ M , where E, L, M in-
clude features from which fS transfers an equal, smaller, or
greater amount of earth than f , respectively:
E := {x ∈ RX | ∑

y∈RY

fS(x, y) =
∑

y∈RY

f(x, y)}
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L := {x ∈ RX | ∑
y∈RY

fS(x, y) <
∑

y∈RY

f(x, y)}
M := {x ∈ RX | ∑

y∈RY

fS(x, y) >
∑

y∈RY

f(x, y)}.

For any x ∈ RX and any amount of earth m ≤ X(x), the
minimum-cost local earth distribution regarding the target
constraint is attained by transferring earth from x to its
nearest neighbors y1, . . . , yl in RY where it holds 1 ≤ i ≤
j ≤ l ⇒ δ(x, yi) ≤ δ(x, yj), which can also be inferred from
[21]. We refer this fact via the notation � below, where re-
quired. Now, we consider 3 cases:
Case 1: For any x ∈ E, the amount of earth transferred
by fS is the same as that of f . By Def.7, fS transfers earth
from any x to its nearest neighbors in RY , and by (�) it
is guaranteed that it yields the lowest cost regarding any
x ∈ E. Thus, we can conclude:∑
x∈E

∑
y∈RY

δ(x, y) · fS(x, y) ≤ ∑
x∈E

∑
y∈RY

δ(x, y) · f(x, y).
Case 2: For any x ∈ M , the total amount of earth fS
transfers from x exceeds that of f . We partition the amount
of earth X(x) belonging to the feature x into two parts:
m=

M (x) is the amount of earth which each flow transfers to
the features in RY . The remaining X(x) −m=

M (x) amount
of earth is then transferred only by fS so that it totally
transfers more earth than f . Regarding m=

M (x), by (�) fS
attains the minimum cost by filling up its nearest-neighbors
in RY (consideration of local distance order of y ∈ RY ). By
Def.7, fS only transfers earth regarding the pairs (x, y) with
δ(x, y) ≤ δ(x̂, ŷ) (consideration of the global distance order
of (x, y) ∈ RX ×RY ).
Case 3: For any x ∈ L, the total amount of earth fS trans-
fers from x is smaller than that of f . We partition the
amount of earth X(x) belonging to the feature x into two
parts: m=

L(x) is the amount of earth which each flow trans-
fers to the features in RY . The remaining X(x) − m=

L(x)
amount of earth is then transferred by only f so that it to-
tally transfers more earth than fS. Regarding m=

L(x), by
(�) fS attains the minimum cost by filling up its nearest-
neighbors in RY (consideration of local distance order of
y ∈ RY ). We know fS can only transfer earth regarding
pairs (x, y) with δ(x, y) ≤ δ(x̂, ŷ), and it does not transfer all
the earth from x. In addition, it fills up the features y ∈ RY

regarding all pairs (x, y) with x ∈ L and δ(x, y) < δ(x̂, ŷ).
In best case, f distributes m=

L(x) amount of earth as fS dis-
tributes, or f distributes it in another way. In the latter case,
the last pair (x′, y′) used for the distribution by f satisfies
δ(x̂, ŷ) ≤ δ(x′, y′). Thus, the only place where f transfers
the remaining X(x)−m=

L(x) amount of earth involves only
the pairs (x, y) satisfying δ(x̂, ŷ) ≤ δ(x′, y′) ≤ δ(x, y) (con-
sideration of the global distance order again).
By the facts elucidated in Case 2 and 3, and the constraint
FC, it is concluded:

∑
x∈M

∑
y∈RY

δ(x, y) · (fS(x, y)− f(x, y)) ≤∑
x∈L

∑
y∈RY

δ(x, y) · (f(x, y)− fS(x, y)). As a result, after con-

sidering all the facts, we attain the final statement as follows:∑
x∈RX

∑
y∈RY

δ(x, y) · fS(x, y) ≤ ∑
x∈RX

∑
y∈RY

δ(x, y) · f(x, y) ,
which indicates that the overall cost induced by any fea-
sible flow f does not lead to lower overall cost than that of
fS. In other words, the proposed flow fS is proven to be the
minimum-cost flow.

As mentioned above, Theorem 2 states that IM-Sig∗ flow
is an optimal flow by showing that there exists no other flow

resulting in lower overall cost than that for IM-Sig∗ flow.
Lower-bounding the EMD with IM-Sig∗. After pre-

senting that IM-Sig∗ flow is feasible and optimal, we be-
low show the third significant theoretical result (Theorem 3)
from which we deduce that the utilization of IM-Sig∗ flow
leads to the lower bound to the EMD on signatures, regard-
less of their total weights.

Theorem 3 (Lower-bounding EMD). Given any two
signatures X,Y ∈ S+ with total weights mX , mY , it holds:

IM-Sig∗(X,Y ) ≤ EMD(X,Y ).

Proof. By Theorem 1 and 2, fS (Def. 7) is a feasible and
minimum-cost flow regarding constraints of IM-Sig∗. Hence,
there exists no other flow leading to smaller overall cost.

Consequently, the theoretical results provide confirmatory
evidence that the proposed IM-Sig∗ flow can be utilized as
a filter distance function lower-bounding the EMD on sig-
natures, including both absolute and relative signatures. To
this end, we can present a computational algorithm to com-
pute IM-Sig∗ between any signatures, given as below.

5.4 Computational Algorithm

Algorithm 1: IM-Sig∗ computation

input : signatures X, Y , ground distance δ
output: IM-Sig∗ between signatures X and Y

1 cost = 0
2 construct minHeap for RX ×RY regarding δ
3 minWeight = min(mX ,mY )
4 initialize sourceCap(x) = X(x) for each x ∈ RX

5 remainingEarth = minWeight
6 while remainingEarth > 0 do
7 (x, y) = minHeap.poll()
8 if sourceCap(x) > 0 then
9 if Y (y) ≥ remainingEarth then

10 earth = min{remainingEarth, sourceCap(x)}
11 else
12 earth = min{sourceCap(x), Y (y)}
13 end
14 cost = cost+ δ(x, y) · earth
15 sourceCap(x) = sourceCap(x)− earth
16 remainingEarth = remainingEarth− earth

17 end

18 end
19 return cost/minWeight

Algorithm. The pseudo code of IM-Sig∗ computation for
both absolute and relative signatures with our proposed flow
construction is depicted in Algorithm 1. After a min-heap is
constructed over RX ×RY with respect to distance values in
ascending order (line 2), the algorithm extracts (x, y) with
the smallest distance from the min-heap (line 7), until earth
in an amount of the minimum weight of both signatures is
transferred to Y totally (line 6). Each extracted pair from
the min-heap refers to an element in the global feasible set
SX,Y , and the amount of earth transferred is determined
by taking the remaining earth, current source capacity of x,
and target capacity of y into consideration (lines 8-17).

Complexity Analysis. Assuming n = |RX |,m = |RY |,
the min-heap construction is performed in computation time
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Figure 7: Precision-recall graphs.

complexity O(n ·m). For each pair extraction from the min-
heap, in worst case log(n · m) many steps are required to
ensure the heap property again.

Note that for any given signatures X,Y , it holds that
|SX,Y | < |RX ×RY |, i.e. the global feasible set SX,Y which
is the greatest set whose total flow may not reach the mini-
mum of the total weights of both signatures, and hence, its
cardinality is smaller than the number of all possible pairs
of representatives in the signatures X and Y . Since the
number of extractions from the min-heap is contingent on
min(mX ,mY ) and is bounded by |SX,Y | < |RX ×RY |, only
t many pair extractions are required with t < n ·m. Thus,
the filter distance computation can be carried out in time
complexity O(t · log(n ·m)) with the proposed IM-Sig∗ flow.

6. EXPERIMENTAL EVALUATION
Experimental Setup. Results presented in this section

expose averages over a query workload of 50 where queries
are randomly chosen. All methods are implemented in JAVA
and evaluated on a single-core 2.3 GHz machine with Win-
dows Server 2008 and 10 GB of main memory, without par-
allelization. While we utilize Manhattan distance as ground
distance, our approach can, nevertheless, be combined with
any ground distance function.

We use three real world datasets. First, we take the data
in [14] of 3636 videos and generate approximately 100 near-
duplicate copies for each video by altering brightness, con-
trast, playback speed, resolution, frame order, adding over-
lay text, borders, and modifying content by frame deletion,
yielding a database (NDVINE) of 350,000 videos with 3636
ground truth categories. Second, we use WORLD consist-
ing of 1020 videos we downloaded from vine.co(Vine) and
youtube.com, sorted manually into 34 categories (such as
soccer, beach, and forest) of videos which are determined as
visually similar according to human perception. For effec-
tiveness experiments, we use the aforementioned databases
incorporating video category information. Third, we use
the dataset from [23] including 250,000 public social videos
of Vine, which we refer as PUBVID. We conduct efficiency
experiments with the latter and NDVINE to attain appropri-

Table 2: Single distance computation time (ms)

Distance
Dim. Fdbq Fqdb Fmax Pemd Rubner EMD
4 0.0018 0.0023 0.0037 0.0068 0.0005 0.0266
8 0.0051 0.0052 0.0102 0.0070 0.0004 0.0331
16 0.0224 0.0229 0.0452 0.0137 0.0006 0.0858
32 0.1021 0.1035 0.2053 0.0287 0.0012 0.4784
64 0.4740 0.4801 0.9535 0.0651 0.0022 3.9208

ate evaluation regarding data cardinality. We generate video
signatures of different dimensionalities as described in Sec-
tion 3 with position, color, contrast, coarseness and temporal
information, while for effectiveness experiments we generate
2 different types of video signatures to recognize the contri-
bution of the temporal information to results: vis t and vis
denote our novel video signature model with and without
temporal information, respectively. In addition, since for
any signatures X,Y , IM-Sig∗(X,Y ) ≤ max(IM-Sig∗(X,Y ),
IM-Sig∗(Y,X)) ≤ EMD(X,Y ) holds, we implement 3 vari-
ations of the algorithm from [17] to evaluate efficiency of
query processing, and let Fqdb, Fdbq, Fmax refer to fil-
ter distance functions with our proposed flow computation
where earth is transferred from query signatures to database
signatures, from database signatures to query signatures,
and where the maximum of both filter distances is utilized in
multistep algorithm, respectively. Furthermore, in efficiency
experiments we set k=100 for k-nearest-neighbor query pro-
cessing. The databases used here are available upon request.

Effectiveness Experiments. Figure 7 shows precision-
recall graphs of our novel video signature models (vis t,
vis), in comparison to four state-of-the-art methods: video
triplets (vitri) [18], frame-sequence symbolization (fras) [27],
bounded coordinate systems (bcs) [7], and video distance
trajectories (vdt) [8]. Results summarized in Figure 7(a)-
(b) provide confirmatory evidence that our model outper-
forms the state of the art for both near-duplicate detection
(NDVINE) and visual similarity search (WORLD). Consid-
ering temporal dimension in the signature model yields bet-
ter precision for NDVINE, since videos in the same cate-
gory exhibit a similar temporal ordering. As illustrated in
Figure 7(c)-(d), the precision of our models increases with
higher signature dimensionality (10-50), as we expected.

Efficiency Experiments. It is noteworthy to remind
again that our approach computes the same filter distance
as for IM-Sig on relative signatures, and it corresponds to
Fdbq in the experimental results presented in this section.
First, we evaluate the influence of signature dimensionality
on processing time of single distance computation on PUB-
VID dataset (Table 2). Note that Pemd and Rubner refer to
the existing methods of projected EMD filter [4] and Rub-
ner filter [15]. Since EMD can be computed in super-cubic
time in signature dimensionality, it exhibits the highest val-
ues, while Fmax’ performance is almost 2 times slower than
Fqdb abd Fdbq, corresponding to our expectation. Rubner
shows the lowest time cost by only computing the ground
distance among average signatures.

Figure 8 presents efficiency results of the state of the art
(Rubner, Pemd) and our methods (Fqdb, Fdbq, Fmax).
With increasing data cardinality, Rubner exhibits the high-
est time cost, directly followed by Pemd, which are sub-
stantially outperformed by our methods regarding selectivity
and overall query time. In particular, Fmax computes 49.9

397



0

16

32

48

6 12 24 48

nu
m

be
r o

f E
M

D 
 

co
m

pu
ta

tio
ns

 (x
10

00
) 

database size (x1000) 

PUBVID; signature dimensionality 16 
Pemd Rubner
Fqdb Fdbq
Fmax

(a)

0

2

4

6

6 12 24 48

qu
er

y 
tim

e 
[s

ec
] 

database size (x1000) 

PUBVID;  signature dimensionality 16 
Pemd Rubner
Fqdb Fmax
Fdbq

(b)

0

16

32

48

4 8 16 32 64

nu
m

be
r o

f E
M

D 
 

co
m

pu
ta

tio
ns

 (x
10

00
) 

signature dimensionality 

PUBVID; database size 48K 

Pemd Rubner
Fqdb Fdbq
Fmax

(c)

0

80

160

240

4 8 16 32 64

qu
er

y 
tim

e 
[s

ec
] 

signature dimensionality 

PUBVID; database size 48K 

Pemd Rubner
Fqdb Fdbq
Fmax

(d)

0

4

8

12

20 40 60 80 100

nu
m

be
r o

f E
M

D 
 

co
m

pu
ta

tio
ns

 (x
10

00
) 

query parameter k 

PUBVID; database size 12K; dim. 8 

Pemd Rubner
Fqdb Fdbq
Fmax

(e)

0

0.3

0.6

0.9

20 40 60 80 100

qu
er

y 
tim

e 
[s

ec
] 

query parameter k 

PUBVID; data size 12K; dim. 8 

Pemd Rubner Fqdb
Fdbq Fmax

(f)

Figure 8: Selectivity and efficiency results with the
state of the art.

and 36.1 times less EMD computations than Rubner and
Pemd at data cardinality 48K, respectively. Another result
matching our expectation is the constant behavior of Rub-
ner with the worst selectivity, irrespective of dimensionality,
while efficiency deterioration of Pemd is remarkable at a very
high rate with increasing dimensionality, where, again, our
methods outperform both existing approaches. The reason
behind these observations is that Rubner simply utilizes dis-
tance between average signatures, and Pemd considers single
EMD computations performed on each projected dimension,
neglecting flow approximation, as given in Section 2. In con-
trast, our methods explicitly approximate the original EMD
flow at a global level by tracking source and target capacity
of representatives, and ensuring constraints given in Def. 3,
attaining very high efficiency improvement. Furthermore,
experiments analyzing the effect of query parameter k for k-
nn query processing point out higher efficiency improvement
of our proposals. Moreover, we conduct experiments to in-
vestigate the applicability to absolute signatures by using
video subclip query signatures with varying total weights
(0.1-1.0), while ensuring that the weight of any database
video signature remains as 1 (Figure 9). Recall that Rubner
is not a lower bound here, as illustrated in Section 4, and
we observe considerably high selectivity difference between
Pemd and our methods, confirming our methods’ successful
application on absolute signatures. In particular, Pemd re-
fines 99% of all videos between query weights 0.1-0.4, while
Fmax refines only at most 0.1%, performing 432 times less
EMD computations than Pemd, attaining a selectivity im-
provement by two orders of magnitude. Note that query
time results regarding Figure 9 are omitted, since they ex-
pose very similar behavior as those for the number of EMD
computations.

After observing that our methods outperform the state
of the art, we below perform extensive experiments for our
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Figure 9: Results with the state of the art regard-
ing selectivity vs. individual total weight of query
signatures (absolute signatures).
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Figure 10: Results regarding selectivity and effi-
ciency on PUBVID database.

methods, by varying signature dimensionality, database car-
dinality, and query parameter k for k-nn query processing.

Figure 10 summarizes the efficiency improvement achieved
on PUBVID: Fmax indicates the best selectivity, in compar-
ison to other proposed variations, exhibiting the lowest num-
ber of EMD computations with increasing data cardinality
(50K-250K), and signature dimensionality(4-64), resulting
from the computation of a tighter lower bound in the ranking
phase of the multistep filter-and-refine algorithm [17]. Since
Fmax shows higher filter time, its overall time cost is higher
than that for the other two methods. Fqdb shows similar
selectivity results, but its lower filter time cost than that for
Fmax leads to the fact that Fqdb achieves the highest effi-
ciency improvement regarding database size, dimensionality,
and query parameter.

As depicted in Figure 11, evaluation results on NDVINE
first indicate an almost constant selectivity behavior for Fqdb
and Fmax regardig increasing data size, when compared to
Fdbq. This can be elucidated by the intrinsic essence of
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Figure 11: Results regarding selectivity and effi-
ciency on NDVINE database.

this database: With increasing data size near-duplicates of
videos emerging via various editing tasks can have similar
distances to each other, which affects the filter step. Hence,
the higher the data cardinality of near-duplicate video data-
bases, it is more worth using Fqdb to attain an almost
constant, low time cost, yielding a considerable advantage.
Second, with increasing signature size at a constant data
cardinality (250K), the number of promising objects pass-
ing Fdbq decreases after dimensionality 40, while Fmax and
Fqdb show lower time cost, in particular 1.3 % of selectiv-
ity at dimensionality 50 for Fmax. Third, we observe that
for all query parameters k (20-100), Fqdb and Fdbq show
almost constant behavior for query time due to their lower
filter time, matching our expectation.

For both databases, interestingly, Fdbq results in a higher
number of EMD computations than for Fqdb. To expound
this result, we perform experiments on another real world
dataset which we omit due to space limitations, and recog-
nize that selectivity results of Fdbq and Fqdb do not nec-
essarily differ from each other at a high rate. Hence, the
observed difference in selectivity and query time can be at-
tributed to the feature distributions of these databases and
the utilized queries, which cause Fqdb flow to be more sim-
ilar to the EMD flow than that for Fdbq. A future research
direction involves in further investigating this issue in detail.

Figure 12(a)-12(b) exhibit the effect of individual query
signature weights on the number of EMD computations by
fixing the total weight of any database video signature to 1.
In particular for Fqdb, the number of EMD computations
decreases with decreasing query weight, expounded by the
fact that the smaller the query weight, the closer Fqdb ap-
proximates the EMD flow. To understand it in more detail,
we analyze relative approximation error of Fqdb and Fdbq
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(b) NDVINE
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Figure 12: (a)-(b): Selectivity vs. individual to-
tal weight of query signatures. (c)-(d): Relative
approximation error vs. individual total weight of
query signatures for example signature pairs.

on example pairs of video signatures, summarized in Figure
12(c)-12(d). For smaller query weights, EMD distributes
the weight of query representatives more locally among rep-
resentatives of the database video, since capacities of target
representatives are far greater than those for query repre-
sentatives. Accordingly, since Fqdb distributes earth opti-
mally for each query representative, its flow is similar to the
EMD flow, allowing for a better approximation of the EMD
than for Fdbq, which meets our expectation. Note that the
flow approximation error increases especially after the query
weight of 0.5 for both variations. Analogously, the higher
the query weight, the better Fdbq approximates the EMD,
as a higher query weight causes the EMD to distribute the
weight of the database representatives more locally among
those of query, resulting in a similar flow to that for Fdbq.

Figure 13 summarizes absolute filter and refinement dis-
tances for 10-nn queries on an example from PUBVID at
a data cardinality of 1000 and dimensionality 16. Unlike
comprehensive overall results for PUBVID, we observe that
Fqdb leads to a higher number of refinements (75 in ranking
according to filter distance), while Fdbq and Fmax perform
50 and 43 EMD computations, respectively. A significant
result gathered from these figures is Fmax leads to the low-
est number of exact distance computations, irrespective of
the fact how well the other variants approximate the EMD
flow. All query time cost results depicted in aforementioned
figures point out the advantage of Fqdb with respect to di-
mensionality, data cardinality, and query parameter k.

7. CONCLUSION
In this paper, we presented how efficient and effective

query processing can be performed on high dimensional video
databases. We introduced a new compact video represen-
tation model, and proposed to alleviate computational time
complexity of the Earth Mover’s Distance (EMD) by a novel
filter approximation guaranteeing completeness (no false dis-
missals). Furthermore, we presented both an extensive the-
oretical analysis of our techniques and a computational al-
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(a) (b) (c)

Figure 13: Filter and refinement distance values on an example from PUBVID dataset for 10-nn queries.

gorithm. Moreover, proposed techniques expose two vital
advantages: First, they are applicable to both relative and
absolute signatures exhibiting uniform and individual total
weights, respectively, yielding high flexibility with respect to
query processing and explicit user-driven tasks, such as sub-
clip video detection. Second, they exhibit a comprehensive
solution which is not restricted to the video domain, and,
hence, can be applied to other domains, such as biotechnol-
ogy and biomedicine. Extensive experimental evaluation on
real world data indicates high efficiency, significantly reduc-
ing the number of EMD computations and outperforming
the state of the art by up to two orders of magnitude re-
garding selectivity and query time. As future work, we plan
to integrate our filter approximation in relational databases.
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ABSTRACT
Strings form a fundamental data type in computer systems. String
searching has been extensively studied since the inception of com-
puter science. Increasingly many applications have to deal with
imprecise strings or strings with fuzzy information in them. String
matching becomes a probabilistic event when a string contains un-
certainty, i.e. each position of the string can have different prob-
able characters with associated probability of occurrence for each
character. Such uncertain strings are prevalent in various applica-
tions such as biological sequence data, event monitoring and auto-
matic ECG annotations. We explore the problem of indexing un-
certain strings to support efficient string searching. In this paper we
consider two basic problems of string searching, namely substring
searching and string listing. In substring searching, the task is to
find the occurrences of a deterministic string in an uncertain string.
We formulate the string listing problem for uncertain strings, where
the objective is to output all the strings from a collection of strings,
that contain probable occurrence of a deterministic query string. In-
dexing solution for both these problems are significantly more chal-
lenging for uncertain strings than for deterministic strings. Given
a construction time probability value τ , our indexes can be con-
structed in linear space and supports queries in near optimal time
for arbitrary values of probability threshold parameter greater than
τ . To the best of our knowledge, this is the first indexing solution
for searching in uncertain strings that achieves strong theoretical
bound and supports arbitrary values of probability threshold pa-
rameter. We also propose an approximate substring search index
that can answer substring search queries with an additive error in
optimal time. We conduct experiments to evaluate the performance
of our indexes.

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

1. INTRODUCTION
String indexing has been one of the key areas of computer sci-

ence. Algorithms and data structures of string searching finds ap-
plication in web searching, computational biology, natural language
processing, cyber security, etc. The classical problem of string in-
dexing is to preprocess a string such that query substring can be
searched efficiently. Linear space data structures are known for this
problem which can answer such queries in optimal O(m + occ)
time, where m is the substring length and occ is the number of
occurrences reported.

Growth of the internet, digital libraries, large genomic projects
have contributed to enormous growth of data. As a consequence,
noisy and uncertain data has become more prevalent. Uncertain
data naturally arises in almost all applications due to unreliability
of source, imprecise measurement, data loss, and artificial noise.
For example sequence data in bioinformatics is often uncertain and
probabilistic. Sensor networks and satellites inherently gather noisy
information.

Existing research has focused mainly on the study of regular or
deterministic string indexing. In this paper we explore the problem
of indexing uncertain strings. We begin by describing the uncertain
string model, possible world semantics and challenges of searching
in uncertain strings.

Current literature models uncertain strings in two different ways:
the string level model and the character level model. In string level
model, we look at the probabilities and enumerate at whole string
level, whereas character level model represents each position as a
set of characters with associated probabilities. We focus on the
character level model which arises more frequently in applications.
Let S be an uncertain string of length n. Each character c at po-
sition i of S has an associated probability pr(ci). Probabilities at
different positions may or may not contain correlation among them.
Figure 1(a) shows an uncertain string S of length 5. Note that, the
length of an uncertain string is the total number of positions in the
string, which can be less than the total number of possible char-
acters in the string. For example, in Figure 1(a), total number of
characters in string s with nonzero probability is 9, but the total
number of positions or string length is only 5.

"Possible world semantics" is a way to enumerate all the possi-
ble deterministic strings from an uncertain string. Based on pos-
sible world semantics, an uncertain string S of length n can gen-
erate a deterministic string w by choosing one possible character
from each position and concatenating them in order. We call w
as one of the possible world for S. Probability of occurrence of
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w = w1w2 . . . wn is the partial product pr(w1
1)× pr(w2

2)× · · · ×
pr(wnn). The number of possible worlds for S increases exponen-
tially with n. Figure 1(b) illustrates all the possible worlds for the
uncertain string S with their associated probability of occurrence.

A meaningful way of considering only a fraction of the possible
worlds is based on a probability threshold value τ . We consider
a generated deterministic string w = w1w2 . . . wn as a valid oc-
currence with respect to τ , only if it has probability of occurrence
more than τ . The probability threshold τ effectively removes lower
probability strings from consideration. Thus τ plays an important
role to avoid the exponential blowup of the number of generated
deterministic strings under consideration.

Character S[1] S[2] S[3] S[4] S[5]
a .3 .6 0 .5 1
b .4 0 0 0 0
c 0 .4 0 .5 0
d .3 0 1 0 0

(a) Uncertain string S
w Prob(w) w Prob(w) w Prob(w)

w[1] aadaa .09 w[5] badaa .12 w[9] dadaa .09
w[2] aadca .09 w[6] badca .12 w[10] dadca .09
w[3] acdaa .06 w[7] badca .08 w[11] dcdaa .06
w[4] acdca .06 w[8] badca .08 w[12] dcdca .06

(b) Possible worlds of S

Figure 1: An uncertain string S of length 5 and its all possible
worlds with probabilities.

Given an uncertain string S and a deterministic query substring
p = p1 . . . pm, we say that p matched at position i of S with re-
spect to threshold τ if pr(pi1)× · · ·× pr(pi+m−1

m ) ≥ τ . Note that,
O(m+ occ) is the theoretical lower bound for substring searching
where m is the substring length and occ is the number of occur-
rence reported.

1.1 Formal problem definition
Our goal is to develop efficient indexing solution for searching

in uncertain strings. In this paper, we discuss two basic uncertain
string searching problems which are formally defined below.

PROBLEM 1. Substring Searching: Given an uncertain string
S of length n, our task is to index S so that when a deterministic
substring p and a probability threshold τ come as a query, report
all the starting positions of S where p is matched with probability
of occurrence greater than τ .

PROBLEM 2. Uncertain String Listing: LetD={d1,. . . ,dD} be
a collection of D uncertain strings of n positions in total. Our
task is to index D so that when a deterministic substring p and a
probability threshold τ come as a query, report all the strings dj
such that dj contains atleast one occurrence of p with probability
of occurrence greater than τ .

Note that the string listing problem can be naively solved by run-
ning substring searching query in each of the uncertain string from
the collection. However, this naive approach will take O(

∑
di∈D

search time on di) time which can be very inefficient if the ac-
tual number of documents containing the substring is small. Fig-
ure 2 illustrates an example for string listing. In this example, only
the string d1 contains query substring "BF" with probability of oc-
currence greater than query threshold 0.1. Ideally, the query time
should be proportionate to the actual number of documents reported
as output. Uncertain strings considered in both these problems can
contain correlation among string positions.

String collection D = {d1, d2, d3}:
d1[1] d1[2] d1[3] d2[1] d2[2] d2[3] d3[1] d3[2] d3[3]

A .4 B .3 F .5 A .6 B .5 B .4 A .4 I .3 A 1
B .3 L .3 J .5 C .4 F .3 C .3 F .4 L .3
F .3 F .3 J .2 E .2 P .2 P .3

J .1 F .1 T .3

Output of string listing query (”BF”, 0.1) on D is: d1

Figure 2: String listing from an uncertain string collection D =
{d1, d2, d3}.

1.2 Challenges in uncertain string searching
We summarize some challenges of searching in uncertain strings.

• An uncertain string of length n can have multiple charac-
ters at each position. As the length of an uncertain string in-
creases, the number of possible worlds grows exponentially.
This makes a naive technique that exhaustively enumerates
all possible worlds infeasible.

• Since multiple substrings can be enumerated from the same
starting position, care should be taken in substring searching
to avoid possible duplication of reported positions.

• Enumerating all the possible sequences for arbitrary proba-
bility threshold τ and indexing them requires massive space
for large strings. Also note that, for a specific starting posi-
tion in the string, the probability of occurrence of a substring
can change arbitrarily (non-decreasing order) with increas-
ing length, depending on the probability of the concatenated
character This makes it difficult to construct index that can
support arbitrary probability threshold τ .

• Correlated uncertainty among the string positions is not un-
common in applications. An index that handles correlation
appeals to a wider range of applications. However, handling
the correlation can be a bottleneck on space and time.

1.3 Related work
Although, searching over clean data has been widely researched,

indexing uncertain data is relatively new. Below we briefly mention
some of the previous works related to uncertain strings.

Algorithmic approach: Li et al. [19] tackled the substring search-
ing problem where both the query substring and uncertain sequence
comes as online query. They proposed a linear time and linear
space dynamic programming approach to calculate the probability
that a substring is contained in the uncertain string.

Approximate substring matching: Given as input a string p, a
set of strings {xi|1 ≤ i ≤ r}, and an edit distance threshold k, the
substring matching problem is to find all substrings s of xi such
that d(p, s) ≤ k, where d(p, s) is the edit distance between p and
s. This problem has been well studied on clean texts (see [22] for a
survey). Most of the ideas to solve this problem is based on parti-
tioning p. Tiangjian et al. [12] extended this problem for uncertain
strings. Their index can handle strings of arbitrary lengths.

Frequent itemset mining: Some articles discuss the problem of
frequent itemset mining in uncertain databases [6, 7, 3], where an
itemset is called frequent if the probability of occurrence of the
itemset is above a given threshold.

Probabilistic database: Several works [5, 26, 25] have devel-
oped indexing techniques for probabilistic databases, based on R-
trees and inverted indices, for efficient execution of nearest neigh-
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bor queries and probabilistic threshold queries. Dalvi et al. [8]
proposed efficient evaluation method for arbitrary complex SQL
queries in probabilistic database. Later on efficient index for ranked
top-k SQL query answering on a probabilistic database was pro-
posed ([24, 18]). Kanagal et al. [16] developed efficient data struc-
tures and indexes for supporting inference and decision support
queries over probabilistic databases containing correlation. They
use a tree data structure named junction tree to represent the cor-
relations in the probabilistic database over the tuple-existence or
attribute-value random variables.

Similarity joins: A string similarity join finds all similar string
pairs between two input string collections. Given two collections
of uncertain strings R, S, and input (k, τ), the task is to find string
pairs (r, s) between these collections such that Pr(ed(R,S) ≤
k) > τ i.e., probability of edit distance between R and S being
at most k is more than probability threshold τ . There are some
works on string joins, e.g., [4, 13, 17], involving approximation,
data cleaning, and noisy keyword search, which has been discussed
in the probabilistic setting [15]. Patil et al. [23] introduced filtering
techniques to give upper and (or) lower bound on Pr(ed(R,S) ≤
k) and incorporate such techniques into an indexing scheme with
reduced filtering overhead.

1.4 Our approach
Since uncertain string indexing is more complex than determin-

istic string indexing, a general solution for substring searching is
challenging. However efficiency can be achieved by tailoring the
data structure based on some key parameters, and use the data struc-
ture best suited for the purposed application. We consider the fol-
lowing parameters for our index design.

Threshold parameter τmin: The task of substring matching in
uncertain string is to find all the probable occurrences, where the
probable occurrence is determined by a query threshold parameter
τ . Although τ can have any value between 0 to 1 at query time,
real life applications usually prohibits arbitrary small value of τ .
For example, a monitoring system does not consider a sequence of
events as a real threat if the associated probability is too low. We
consider a threshold parameter τmin, which is a constant known at
construction time, such that query τ does not fall below τmin. Our
index can be tailored based on τmin at construction time to suit
specific application needs.

Query substring length: The query substring searched in the un-
certain string can be of arbitrary length ranging from 1 to n. How-
ever, most often the query substrings are smaller than the indexed
string. An example is a sensor system, collecting and indexing big
amount of data to facilitate searching for interesting query patterns,
which are smaller compared to the data stream. We show that more
efficient indexing solution can be achieved based on query sub-
string length.

Correlation among string positions: Probabilities at different po-
sitions in the uncertain string can possibly contain correlation among
them. In this paper we consider character level uncertainly model,
where a probability of occurrence of a character at a position can
be correlated with occurrence of a character at a different position.
We formally define the correlation model and show how correlation
is handled in our indexes.

Our approach involves the use of suffix trees, suffix arrays and
range maximum query data structure, which to the best of our knowl-
edge, is the first use for uncertain string indexing. Succinct and
compressed versions of these data structures are well known to have

good practical performance. Previous efforts to index uncertain
strings mostly involved dynamic programming and lacked theoret-
ical bound on query time. We also formulate the uncertain string
listing problem. Practical motivation for this problem is given in
Section 6. As mentioned before, for a specific starting position of
an uncertain string, the probability of occurrence of a substring can
change arbitrarily with increasing length depending on the proba-
bility of the concatenated character. We propose an approximate
solution by discretizing the arbitrary probability changes with con-
junction of a linking structure in the suffix tree.

1.5 Our contribution:
In this paper, we propose indexing solutions for substring search-

ing in a single uncertain string, searching in a uncertain string col-
lection, and approximate index for searching in uncertain strings.
More specifically, we make the following contributions:

1. For the substring searching problem, we propose a linear
space solution for indexing a given uncertain string S of
length n, such that all the occurrences of a deterministic
query string p with probability of occurrence greater than a
query threshold τ can be reported. We show that for frequent
cases our index achieves optimal query time proportional to
the substring length and output size. Our index can be de-
signed to support arbitrary probability threshold τ ≥ τmin,
where τmin is a constant known at index construction time.

2. For the uncertain string listing problem, given a collection of
uncertain strings D = {d1, . . . , dD} of total size n, we pro-
pose a linear space and near optimal time index for retrieving
all uncertain strings that contain a deterministic query string
p with probability of occurrence greater than a query thresh-
old τ . Our index supports queries for arbitrary τ ≥ τmin,
where τmin is a constant known at construction time.

3. We propose an index for approximate substring searching,
which can answer substring searching queries in uncertain
strings for arbitrary τ ≥ τmin in optimal O(m+ occ) time,
where τmin is a constant known at construction time and ε
is the bound on desired additive error in the probability of a
matched string, i.e. outputs can have probability of occur-
rence ≥ τ − ε.

1.6 Outline
The rest of the paper is organized as follows. In section 2 we

show some practical motivations for our indexes. In section 3 we
give a formal definition of the problem, discuss some definitions
related to uncertain strings and supporting tools used in our index.
In section 4 we build a linear space index for answering a special
form of uncertain strings where each position of the string has only
one probabilistic character. In section 5 we introduce a linear space
index to answer substring matching queries in general uncertain
strings for variable threshold. Section 6 discusses searching in an
uncertain string collection. In section 7, we discuss approximate
string matching in uncertain strings. In section 8, we show the
experimental evaluation of our indexes. Finally in section 9, we
conclude the paper with a summary and future work direction.

2. MOTIVATION
Various domains such as bioinformatics, knowledge discovery

for moving object database trajectories, web log analysis, text min-
ing, sensor networks, data integration and activity recognition gen-
erates large amount of uncertain data. Below we show some prac-
tical motivation for our indexes.
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Biological sequence data: Sequence data in bioinformatics is of-
ten uncertain and probabilistic. For instance, reads in shotgun se-
quencing are annotated with quality scores for each base. These
quality scores can be understood as how certain a sequencing ma-
chine is about a base. Probabilities over long strings are also used
to represent the distribution of SNPs or InDels (insertions and dele-
tions) in the population of a species. Uncertainty can arise due to a
number of factors in the high-throughput sequencing technologies.
NC-IUB committee standardized incompletely specified bases in
DNA to address this common presence of uncertainty [20]. An-
alyzing these uncertain sequences is important and more compli-
cated than the traditional string matching problem.

We show an example uncertain string generated by aligning ge-
nomic sequence of Tree of At4g15440 from OrthologID and deter-
ministic substring searching in the sequence. Figure 3 illustrates
the example.

S[1] S[2] S[3] S[4] S[5] S[6] S[7] S[8] S[9] S[10] S[11]
P 1 S .7 F 1 P 1 Q .5 P 1 A .4 I .3 A 1 S .5 A 1

F .3 T .5 F .4 L .3 T .5
P .2 P .3

T .3

Figure 3: Example of an uncertain string S generated by aligning
genomic sequence of the tree of At4g15440 from OrthologID.

Consider the uncertain string S of Figure 3. A sample query can
be {p = ”AT”, τ = 0.4}, which asks to find all the occurrences of
string AT in S having probability of occurrence more than τ = .4.
AT can be matched starting at position 7 and starting at position 9.
Probability of occurrence for starting position 7 is 0.4×0.3 = 0.12
and for starting position 9 is 1× 0.5 = 0.5. Thus position 9 should
be reported to answer this query.

Automatic ECG annotations: In the Holter monitor application,
for example, sensors attached to heart-disease patients send out
ECG signals continuously to a computer through a wireless net-
work( [9]). For each heartbeat, the annotation software gives a
symbol such as N (Normal beat), L (Left bundle branch block beat),
and R, etc. However, quite often, the ECG signal of each beat may
have ambiguity, and a probability distribution on a few possibilities
can be given. A doctor might be interested in locating a pattern
such as âĂIJNNAVâĂİ indicating two normal beats followed by an
atrial premature beat and then a premature ventricular contraction,
in order to verify a specific diagnosis. The ECG signal sequence
forms an uncertain string, which can be indexed to facilitate deter-
ministic substrings searching.

Event monitoring: Substring matching over event streams is im-
portant in paradigm where continuously arriving events are matched.
For example a RFID-based security monitoring system produces
stream of events. Unfortunately RFID devices are error prone and
associate probability with the gathered events. A sequence of events
can represent security threat. The stream of probabilistic events can
be modeled with uncertain string and can be indexed so that deter-
ministic substring can be queried to detect security threats.

3. PRELIMINARIES

3.1 Uncertain string and deterministic string
An uncertain string S = s1 . . . sn over alphabet Σ is a sequence

of sets si, i = 1, . . . , n. Every si is a set of pairs of the form
(cj , pr(c

i
j)), where every cj is a character in Σ and 0 ≤ pr(cij) ≤

1 is the probability of occurrence of cj at position i in the string.
Uncertain string length is the total number of positions in the string,

which can be less than the total number of characters in the string.
Note that, summation of probability for all the characters at each
position should be 1, i.e.

∑
j pr(c

i
j) = 1. Figure 3 shows an

example of an uncertain string of length 11. A deterministic string
has only one character at each position with probability 1. We can
exclude the probability information for deterministic strings.

3.2 Probability of occurrence of a substring in
an uncertain string

Since each character in the uncertain string has an associated
probability, a deterministic substring occurs in the uncertain string
with a probability. Let S = s1 . . . sn is an uncertain string and p
is a deterministic string. If the length of p is 1, then probability
of occurrence of p at position i of S is the associated probabil-
ity pr(pi). Probability of occurrence of a deterministic substring
p = p1 . . . pk, starting at a position i in S is defined as the par-
tial product pr(pi1)× · · · × pr(pi+k−1

k ). For example in Figure 3,
SFPQ has probability of occurrence 0.7× 1× 1× 0.5 = 0.35 at
position 2.

3.3 Correlation among string positions
We say that character ck at position i is correlated with character

cl at position j, if the probability of occurrence of ck at position
i is dependent on the probability of occurrence of cl at position j.
We use pr(cik)+ to denote the probability of cik when the corre-
lated character is present, and pr(cik)− to denote the probability of
cik when the correlated character is absent. Let xg . . . xh be a the
substring generated from an uncertain string. cik,g ≤ i ≤ h is a
character within the substring which is correlated with cjl . Depend-
ing on the position j, we have 2 cases:

Case 1, g ≤ j ≤ h : The correlated probability of (cik) is expressed
by (cjl =⇒ a , ¬cjl =⇒ b), i.e. if cjl is taken as an
occurrence, then pr(cik) = pr(cik)+, otherwise pr(cik) =
pr(cik)−. We consider a simple example in Figure 4 to il-
lustrate this. In this string, z3 is correlated with e1. For
the substring eqz, pr(z3) = .3, and for the substring fqz,
pr(z3) = .4.

Case 2, j < g or j > h : cjl is not within the substring. In this
case, pr(cik)=pr(cjl )*pr(cik)++(1 − pr(cjl ))*pr(cik)+. In
Figure 4, for substring qz, pr(z3) = .6 ∗ .3 + .4 ∗ .4.

S[1] S[2] S[3]
e: .6 q: 1 z: e1 =⇒ .3,¬e1 =⇒ .4
f: .4

Figure 4: Uncertain string S with correlated characters.

3.4 Suffix tree and generalized suffix tree
The suffix tree [28, 21] of a deterministic string t[1 . . . n] is a

lexicographic arrangement of all these n suffixes in a compact trie
structure of O(n) words space, where the i-th leftmost leaf repre-
sents the i-th lexicographically smallest suffix of t. For a node i
(i.e., node with pre-order rank i), path(i) represents the text ob-
tained by concatenating all edge labels on the path from root to
node i in a suffix tree. The locus node ip of a string p is the node
closest to the root such that the p is a prefix of path(iP ). The
suffix range of a string p is given by the maximal range [sp, ep]
such that for sp ≤ j ≤ ep, p is a prefix of (lexicographically) j-th
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smallest suffix of t. Therefore, ip is the lowest common ancestor
of sp-th and ep-th leaves. Using suffix tree, the locus node as well
as the suffix range of p can be computed in O(p) time, where p
denotes the length of p. The suffix array A of t is defined to be
an array of integers providing the starting positions of suffixes of
S in lexicographical order. This means, an entry A[i] contains the
position of i-th leaf of the suffix tree in t. For a collection of strings
D = {d1, . . . , dD}, let t = d1d2 . . . dD be the text obtained by
concatenating all the strings in D. Each string is assumed to end
with a special character $. The suffix tree of t is called the general-
ized suffix tree (GST) of D.

4. STRING MATCHING IN
SPECIAL UNCERTAIN STRINGS

In this section, we construct index for a special form of uncer-
tain string which is extended later. Special uncertain string is an
uncertain string where each position has only one probable char-
acter with associated non-zero probability of occurrence. Special-
uncertain string is defined more formally below.

DEFINITION 1. A special uncertain string X = x1 . . . xn over
alphabet Σ is a sequence of pairs. Every xi is a pair of the form
(ci, pr(c

i
i)), where every ci is a character in Σ and 0 < pr(cii) ≤ 1

is the probability of occurrence of ci at position i in the string.

Before we present an efficient index, we discuss a naive solution
similar to deterministic substring searching.

4.1 Simple index
Given a special uncertain string X = x1 . . . xn, construct the

deterministic string t = c1 . . . cn where ci is the character in xi.
We build a suffix tree over t. We build a suffix array A which maps
each leaf of the suffix tree to its original position in t. We also
build a successive multiplicative probability arrayC, whereC[j] =∏j
i=1 Pr(c

i
i), for j = 1, . . . , n. For a substring xi . . . xi+j , prob-

ability of occurrence can be easily computed by C[i+ j]/C[i− 1].
Given an input (p, τ ), we traverse the suffix tree for p and find the
locus node and suffix range of p in O(m) time, where m is the
length of p. Let the suffix range be [sp, ep]. According to the
property of suffix tree, each leaf within the range [sp, ep] con-
tains an occurrence of p in t. Original positions of the occur-
rence in t can be found using suffix array, i.e., A[sp], . . . , A[ep].
However, each of these occurrence has an associated probability.
We traverse each of the occurrence in the range A[sp], . . . , A[ep].
For an occurrence A[i], we find the probability of occurrence by
C[A[i] + m − 1]/C[A[i] − 1]. If the probability of occurrence is
greater than τ , we report the position A[i] as an output. Figure 5
illustrates this approach.

Handling correlation: Correlation is handled when we check
for the probability of occurrence. If A[i] is a possible occurrence,
then we need to consider any existing character within the sub-
string xi . . . xi+m−1, that is correlated with another character. Let
ck is a character at position j within xi . . . xi+m−1, which is cor-
related with character cj

′

l , i.e. if cj
′

l is included in the substring,
then pr(cjk)=pr(cjk)+, or else pr(cjk)=pr(cjk)−. To find the correct
probability of (cjk), if j′ we check the j′-th position (j′ depth char-
acter on the root to locus path in the suffix tree) of the substring.
If the j′-th character is cl, then C[A[i] + m − 1]/C[A[i] − 1] is
the correct probability of occurrence for xi . . . xi+m. Otherwise,
C[A[i] + m − 1]/C[A[i] − 1] contains the incorrect probability
of cjk. Dividing C[A[i] + m − 1]/C[A[i] − 1] by pr(cjk)+ and
multiplying by pr(cjk)− gives the correct probability of occurrence

Position:

X : (b,0.4),(a,0.7),(n,0.5),(a,0.8),(n,0.9),(a,0.6)

1 2 3 4 5 6
T : b a n a n a

a a
n

b
a
n
a
n
a

$

$

n
a

n
a
$$

$

n
a

$

1 2 3 4 5 6

Suffix array A: 6 4 2 1 5 3

C : 0.4 0.28 0.14 0.11 0.10 0.06

Query: (”ana”, 0.3)

Suffix range: 4 2

Procc: 0.43 0.28

Output: 4

Figure 5: Simple index for special uncertain strings.

in this case. If cl falls before or after the substring xi . . . xi+m−1,
pr(cjk)=pr(cj

′

l )*pr(cjk)++(1−pr(cj
′

l ))*pr(cjk)−. DividingC[A[i]+

m − 1]/C[A[i] − 1] by pr(cjk)+ and multiplying by pr(cjk) gives
the correct probability of occurrence. Note that, we can identify
and group all the characters with existing correlation, and search in
the suffix tree in one scan for improved efficiency.

The main drawback in this approach is the query time. Within
the suffix range [sp, ep], possibly very few number of positions can
qualify as output because of τ . So spending time on each element
of the range [sp, ep] is not justifiable.

4.2 Efficient index:
Bottleneck of the simple index comes from traversing each ele-

ment within the suffix range. For the efficient index, we iteratively
retrieve the element with maximum probability of occurrence in
the range in constant time. Whenever the next maximum probabil-
ity of occurrence falls below τ , we conclude our search. We use
range maximum query (RMQ) data structure for our index which
is briefly explained below.

Range Maximum Query: Let B be an array of integers of
length n, a range maximum query(RMQ) asks for the position
of the maximum value between two specified array indices [i, j].
i.e., the RMQ should return an index k such that i ≤ k ≤ j and
B[k] ≥ B[x] for all i ≤ x ≤ j. We use the result captured in
following lemma for our purpose.

LEMMA 1. [10, 11] By maintaining a 2n + o(n) bits struc-
ture, range maximum query(RMQ) can be answered in O(1) time
(without accessing the array).

Every leaf of the suffix tree denotes a suffix position in the orig-
inal text and a root to leaf path represents the suffix. For uncer-
tain string, every character in this root to leaf path has an associ-
ated probability which is not stored in the suffix tree. Let yij , for
j = 1, . . . , n denote a deterministic substring which is the i-length
prefix of the j-th suffix,i.e. the substring on the root to i-th leaf
path. Let Y i is the set of yij , for j = 1, . . . , n.

For i = 1, . . . , n, we define Ci as the successive multiplicative
probability array for the substrings of Y i. j-th element of Ci is the
successive multiplicative probability of the i-length prefix of the j-
th suffix. More formally Ci[j] =

∏A[j]+i−1

k=A[j] Pr(ckk) = C[A[j] +

i−1]/C[A[j]−1](1 ≤ j ≤ n). For each Ci(i = 1, . . . , logn) we
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use range maximum query data structure RMQi of n bits over Ci
and discard the original array Ci. We convert Ci into an integer ar-
ray by multiplying each element by a sufficiently large number and
then build the RMQi structure over it. We obtain logn number of
such RMQ data structures resulting in total space of O(n logn)
bits orO(n) words. We also store the global successive multiplica-
tive probability array C, where C[j] =

∏j
i=1 Pr(c

i
i). Given a

query (p, τ), idea is to use RMQi for iteratively retrieving maxi-
mum probability of occurrence elements in constant time each and
validate using C. To maintain linear space, we can support query
substring length ofm = 0, . . . , logn in this approach. Algorithm 1
illustrates the index construction phase for short substrings.

Query answering for short substrings (m ≤ logn): Given an
input (p, τ), we first retrieve the suffix range [l, r] in O(m) time
using suffix tree, where m is the length of p. We can find the max-
imum probability occurrence of p in O(1) time by executing query
RMQm(l, r). Let max be the position of maximum probabil-
ity occurrence and max′ = A[max] be the the original position
in t. We can find the corresponding probability of occurrence by
C[max′ + i − 1]/C[max′ − 1]. If the probability is less that τ ,
we conclude our search. If it is greater than τ , we report max′ as
an output. For finding rest of the outputs, we recursively search
in the ranges [l,max − 1] and [max + 1, r]. Since each call to
RMQm(l, r) takes constant time, validating the probability of oc-
currence takes constant time, we spend O(1) time for each output.
Total query time is optimal O(m + occ). Algorithm 2 illustrates
the query answering for short substrings. Note that, correlation is
handled in similar way as described for the naive index, and we
omit the details here.

Algorithm 1: Special-Short-Substring-Index-Construction
input : A special uncertain string X
output: suffix tree, suffix array A, successive multiplicative

probability array C, RMQi (i = 1, . . . , logn)
Build deterministic string t from X
Build suffix tree over t
Build suffix array A over t
// Building successive multiplicative

probability array

C[1] = Pr(c11)
for i = 2; i ≤ n; i+ + do

C[i] = C[i− 1]× Pr(cii)
end
// Building Ci array for i = 1, . . . , logn
for i = 1; i ≤ logn; i+ + do

for j = 1; j ≤ n; j + + do
Ci[j] = C[A[j] + i− 1]/C[A[j]− 1]
// Handling correlated characters

for all character cka in t[A[j] . . . t[A[j] + i− 1] that
are correlated with another character clb do

if (A[j] ≤ l ≤ [A[j] + i− 1] and clb is not within
t[A[j] . . . t[A[j] + i− 1])
Ci[j] = Ci[j]/Pr(c

k
a)+ ∗ Pr(cka)−

else
pr(cka)=pr(clb)*pr(cka)++(1− pr(clb))*pr(cka)−

Ci[j] = Ci[j]/Pr(c
k
a)+ ∗ Pr(cka)

end
end

end
Build RMQi over Ci

end

Algorithm 2: Special-Short-Substring-Query-Answering
input : Query substring p, probability threshold τ)
output: Occurrence positions of p in X with probability of

occurrence greater than τ
m = length(p)
call RecursiveRmq(m, 1, n)

function RECURSIVERMQ(i, l, r) . Recursive RMQ method
max = RMQm(l, r)
max′ = A[max]
if C[max′ + i− 1]/C[max′ − 1] > τ then
Output max′

Call RecursiveRmq(m, l,max− 1)
Call RecursiveRmq(m,max+ 1, r)

end

Query answering for long substrings (m > logn): We use a
blocking scheme for answering long query substrings (m > logn).
Since exhaustively enumerating all possible substrings and storing
the probabilities for each of them is infeasible, we only store selec-
tive probability values at construction time and compute the others
at query time. We partition the entire suffix range of suffix array
into different size blocks. More formally, for i = logn, . . . , n,
we divide the suffix range [1, n] of suffix arrayA[1, n] intoO(n/i)
number of blocks each of size i. LetBi be the set of length i blocks,
i.e. Bi={[A[1]...A[i]], [A[i+1]...A[2i]], . . . [A[n− i+1]...A[n]]}
and let B={Blogn, . . . , Bn}. For a suffix starting at A[j] and
for Bi, we only consider the length i prefix of that suffix, i.e.
A[j . . . j + i]. The idea is to store only the maximum probability
value per block. For Bi, i = logn, . . . , n, we define a probability
array PBi containing n/i elements. PBi[j] is the maximum prob-
ability of occurrence of all the substrings of length i belonging to
the j-th block of Bi. We build a range maximum query structure
RMQi for PBi. RMQi takesO(n/i) bits, total space is bounded
by

∑
i

O(n/i) = O(n logn) bits or O(n) words.

For a query (p, τ), we first retrieve the suffix range [l, r]. This
suffix range can spread over multiple blocks ofBm. We useRMQm
to proceed to next step. Note that RMQm consists of N/m bits,
corresponding to the N/m blocks of Bm in order. Our query pro-
ceeds by executing range maximum query in RMQm(l, r), which
will give us the index of the maximum probability element of string
length m in that suffix range. Let the maximum probability el-
ement position in RMQm is max and the block containing this
element is Bmax. Using C array, we can find out if the proba-
bility of occurrence is greater than τ . Note that, we only stored
one maximum element from each block. If the maximum proba-
bility found is greater than τ , we check all the other elements in
that block in O(m) time. In the next step, we recursively query
RMQm(l,max − 1) and RMQ(max + 1, r) to find out subse-
quent blocks. Whenever RMQ query for a range returns an ele-
ment having probability less than τ , we stop the recursion in that
range. Number of blocks visited during query answering is equal
to the number of outputs and inside each of those block we check
m elements, obtaining total query time of O(m× occ).

In practical applications, query substrings are rarely longer than
logn length. Our index achieves optimal query time for substrings
of length less than logn. We show in the experimental section that
on average our index achieves efficient query time proportional to
substring length and number of outputs reported.
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5. SUBSTRING MATCHING IN
GENERAL UNCERTAIN STRING

In this section we construct index for general uncertain string
based on the index of special uncertain string. The idea is to convert
a general uncertain string into a special uncertain string, build the
data structure similar to the previous section and carefully eliminate
the duplicate answers. Below we show the steps of our solution in
details.

5.1 Transforming general uncertain string
We employ the idea of Amihood et al [1] to transform general

uncertain string into a special uncertain string. Maximal factor of
an uncertain string is defined as follows.

DEFINITION 2. A maximal factor of a uncertain string S start-
ing at location i with respect to a fixed probability threshold τc is a
string of maximal length that when aligned to location i has prob-
ability of occurrence at least τc.

For example in figure 3, maximal factors of the uncertain string S
at location 5 with respect to probability threshold 0.15 are "QPA",
"QPF", "TPA", "TPF".

An uncertain string S can be transformed to a special uncertain
string by concatenating all the maximal factors of S in order. Suffix
tree built over the concatenated maximal factors can answer sub-
string searching query for a fixed probability threshold τc. But
this method produces a special uncertain string of Ω(n2) length,
which is practically infeasible. To reduce the special uncertain
string length, Amihood et al. [1] employs further transformation
to obtain a set of extended maximal factors. Total length of the
extended maximal factors is bounded by O(( 1

τc
)2n).

LEMMA 2. Given a fixed probability threshold value τc(0 <
τc ≤ 1), an uncertain string S can be transformed into a special
uncertain string X of length O(( 1

τc
)2n) such that any determinis-

tic substring p of S having probability of occurrence greater than
τc is also a substring of X .

Simple suffix tree structure for answering query does not work
for the concatenated extended maximal factors. A special form
of suffix tree, namely property suffix tree is introduced by Ami-
hood et al. [1]. Also substring searching in this method works only
on a fixed probability threshold τc. A naive way to support arbi-
trary probability threshold is to construct special uncertain string
and property suffix tree index for all possible value of τc, which is
practically infeasible due to space usage.

We use the technique of lemma 2 to transform a given general un-
certain string to a special uncertain string of length O(( 1

τmin
)2n)

based on a probability threshold τmin known at construction time,
and employ a different indexing scheme over it. LetX be the trans-
formed special uncertain string. A running example is shown in
Appendix B in the full version of this paper [27]. Following sec-
tion elaborates the subsequent steps of the index construction.

5.2 Index construction on the
transformed uncertain string

Our index construction is similar to the index of section 4. We
need some additional components to eliminate duplication and po-
sition transformation.

Let N = |X| be the length of the special uncertain string X .
Note that N = O(( 1

τmin
)2n) = O(n), since τmin is a constant

known in construction time. For transforming the positions of X
into the original position in S, we store an array Pos of size N ,

where Pos[i]=position of the i-th character of X in the original
string S. We construct the deterministic string t = c1 . . . cN where
ci is the character in Xi. We build a suffix tree over t. We build a
suffix arrayA which maps each leaf of the suffix tree to its position
in t. We also build a successive multiplicative probability array C,
where C[j] =

∏j
i=1 Pr(c

i
i), for 1 ≤ j ≤ N . For a substring of

length j starting at position i, probability of occurrence of the sub-
string inX can be easily computed byC[i+j−1]/C[i−1]. For i =
1, . . . , n, we define Ci as the successive multiplicative probability
array for substring length i i.e. Ci[j] =

∏A[j]+i−1

k=A[j] Pr(ckk) =

C[A[j] + i− 1]/C[A[j]− 1] (1 ≤ j ≤ n). Appendix B of the full
version [27] shows Pos array and C array after transformation of
an uncertain string. Below we explain how duplicates may arise in
outputs and how to eliminate them.

Possible duplicate positions in the output arises because of the
general to special uncertain string transformation. Note that, dis-
tinct positions in X can correspond to the same position in the
original uncertain string S, resulting in same position possibly re-
ported multiple times. A key observation here is that for two dif-
ferent substrings of length m, if the locus nodes are different than
the corresponding suffix ranges are disjoint. These disjoint suffix
ranges collectively cover all the leaves of the suffix tree. For each
such disjoint ranges, we need to store probability values for only
the unique positions of S. Without loss of generality we store the
value for leftmost unique position in each range.

For any node u in the suffix tree, depth(u) is the length of the
concatenated edge labels from root to u. We define by Li as the set
of nodes uji such that depth(uji ) ≥ i and depth(parent(uji )) ≤
i. For Li = u1

i , . . . , u
k
i , we have a set of disjoint suffix ranges

[sp1i , ep
1
i ], . . . , [sp

k
i , ep

k
i ]. A suffix range [spji , ep

j
i ] can contain

duplicate positions of S. Using the Pos array we can find the
unique positions for each range and store only the values corre-
sponding to the unique positions in Ci.

We use range maximum query data structure RMQi of n bits
over Ci and discard the original array Ci. Note that, RMQ data
structure can be built over an integer array. We convert Ci into an
integer array by multiplying each element by a sufficiently large
number and then build the RMQi structure over it. We obtain
logn number of suchRMQ data structures resulting in total space
of O(n logn) bits or O(n) words. For long substrings (m >
logn), we use the blocking data structure similar to section 4. De-
tailed construction phase is shown in Algorithm 3 of Appendix A
in the full version of this paper [27].

5.3 Query answering
Query answering procedure is almost similar to the query an-

swering procedure of section 4. Only difference being the trans-
formation of position which is done using the Pos array. Detailed
query answering Algorithm for short query substrings is included
in Appendix A of the full version of this paper [27]. See Appendix
B for an illustrative example of query answering.

5.4 Space complexity
For analyzing the space complexity, we consider each compo-

nent of our index. Length of the special uncertain string X and
deterministic string t are O(n), where n is the number of posi-
tions in S. Suffix tree and suffix tree each takes linear space.
We store a successive probability array of size O(n). We build
probability array Ci for i = 1, . . . , logn, where each Ci takes
of O(n). However we build RMQi of n bits over Ci and dis-
card the original array Ci. We obtain logn number of such RMQ
data structures resulting in total space of O(n logn) bits or O(n)
words. For the blocking scheme, we buildRMQi data structure for
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i = logn, . . . , n. RMQi takes n/i bits, total space is
∑
i n/i =

O(n logn) bits orO(n) words. Since each component of our index
takes linear space, total space taken by our index is O(n) words.

5.5 Proof of correctness
In this section we discuss the correctness of our indexing scheme.

Substring conservation property of the transformation: At first
we show that any substring of S with probability of occurrence
greater than query threshold τ can be found in t as well. According
to lemma 2, a substring having probability of occurrence greater
than τmin in S is also a substring of the transformed special uncer-
tain string X . Since query threshold value τ is greater than τmin,
and entire character string of X is same as the deterministic string
t, a substring having probability of occurrence greater than query
threshold τ in S will be present in the deterministic string t.

Complete set of ocurrences are outputted: For contradiction, we
assume that an occurrence position z of substring p in S having
probability of occurrence greater than τ is not included in the out-
put. From the aforementioned property, p is a substring of t. Ac-
cording to the property of suffix tree, z must be present in the suffix
range [sp, ep] of p. Using RMQ structure, we report all the occur-
rence in [sp, ep] in their decreasing order of probability of occur-
rence value in S and stop when the probability of occurrence falls
below τ , which ensures inclusion of z.

No incorrect occurrence appears in output: An output z can be
incorrect occurrence if it is not present in uncertain string S or its
probability of occurrence is less than τ . We query only the occur-
rences in the suffix range [sp, ep] of p, according to the property
of suffix tree all of which are valid occurrences. We also validate
the probability of occurrence for each of them using the successive
multiplicative probability array C.

6. STRING LISTING FROM
UNCERTAIN STRING COLLECTION

In this section we propose an indexing solution for problem 2.
We are given a collection ofD uncertain stringsD = {d1, . . . , dD}
of n positions in total. Let i denotes the string identifier of string
di. For a query (p, τ), we have to report all the uncertain string
identifiers j such that dj contains p with probability of occurrence
more than τ . In other words, we want to list the strings from a col-
lection of a string, that are relevant to a deterministic query string
based on probability parameter.

Relevance metric: For a deterministic string t and an uncer-
tain string S, we define a relevance metric, Rel(S, t). If t does
not have any occurrence in S, then Rel(S, t)=0. If s has only one
occurrence of t, then Rel(S, t) is the probability of occurrence of
t in S. If s contains multiple occurrences of t, then Rel(S, t) is
a function of the probability of occurrences of t in S. Depending
on the application, various functions can be chosen as the appropri-
ate relevance metric. A common relevance metric is the maximum
probability of occurrence, which we denote by Rel(S, t)max. The
OR value of the probability of occurrences is another useful rele-
vance metric. More formally, if a deterministic string t has nonzero
probable occurrences at positions i1, . . . , ik of an uncertain string
S, then we define the relevance metric of t in S as Rel(S, t)OR =∑ik
j=i1

pr(tj) −
∏ik
j=i1

pr(tj), where pr(tj) is the probability of
occurrence of t in S at position j. Figure 6 shows an example.

Practical motivation: Uncertain string listing finds numerous
practical motivation. Consider searching for a virus pattern in a
collection of text files with fuzzy information. The objective is to

Uncertain string S:
S[1] S[2] S[3] S[4] S[5] S[6]
A .4 B .3 A .5 A .6 B .5 A .4
B .3 L .3 F .5 B .4 F .3 C .3
F .3 F .3 J .2 E .2

J .1 F .1

Rel(S, ”BFA”)max=.09
Rel(S, ”BFA”)OR=(.06 + .09 + .048)− (.06 ∗ .09 ∗ .048)

=.19786

Figure 6: Relevance metric for string listing.

quarantine the files that contain the virus pattern. This problem
can be modeled as a uncertain string listing problem, where the
collection of text files is the uncertain string collection D, the virus
pattern is the query pattern P , and τ is the confidence of matching.
Similarly, searching for a gene pattern in genomic sequences of
different species can be solved using uncertain string listing data
structure.

The index: As explained before, a naive search on each of
the string will result in O(

∑
i search time on di) which can be

much larger than the actual number of strings containing the string.
Objective of our index is to spend only one search time and time
proportional to the number of output strings. We construct a gener-
alized suffix tree so that we have to search for the string only once.
We concatenate d1, . . . , dD by a special symbol which is not con-
tained in any of the document and obtain a concatenated general
uncertain string S = d1$ . . . $dD . Next we use the transformation
method described in previous section to obtain deterministic string
t, construct suffix tree and suffix array for t. According to the prop-
erty of suffix tree, the leaves under the locus of a query substring
t contains all the occurrence positions of t. However, these leaves
can possibly contain duplicate positions and multiple occurrence
of the same document. In the query answering phase, duplicate
outputs can arise because of the following two reasons:

1. Distinct positions in t can correspond to the same position in
the original uncertain string S

2. Distinct positions in S can correspond to the same string
identifier dj which should be reported only once

Duplicate elimination is important to keep the query time propor-
tional to the number of output strings. At first we construct the suc-
cessive multiplicative probability array Ci similar to the substring
searching index, then show how to incorporate Rel(S, t) value for
the multiple occurrences cases in the same document and duplicate
elimination.

Let yij , for j = 1, . . . , n denote a deterministic substring which
is the i-length prefix of the j-th suffix,i.e. the substring on the root
to i-th leaf path. Note that, multiple yij can belong to the same locus
node in the suffix tree. Let Y i is the set of yij , for j = 1, . . . , n. The
i-depth locus nodes in the suffix tree constitutes disjoint partitions
in Y i. For i = 1, . . . , n, we define Ci as the successive multi-
plicative probability array for the substrings of Y i. j-th element of
Ci is the successive multiplicative probability of the i-length prefix
of the j-th suffix. More formally Ci[j] =

∏A[j]+i−1

k=A[j] Pr(ckk) =

C[A[j] + i− 1]/C[A[j]− 1](1 ≤ j ≤ n).
The i-depth locus nodes in the suffix tree constitutes disjoint par-

titions in Ci. Let u be a i-depth locus node having suffix range
[j . . . k] and root to u substring t. Then the partition Ci[j . . . k]
belongs to u. For this partitions, we store only one occurrence of
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a string dj with the relevance metric value Rel(S, t), and discard
the other occurrences of dj in that range. We buildRMQ structure
similar to section 5.

Query answering: We explain the query answering for short
substrings. Blocking scheme described in previous section can be
used for longer query substrings. Given an input (p, τ), we first
retrieve the suffix range [l, r] inO(m) time using suffix tree, where
m is the length of p. We can find the maximum relevant occur-
rence of p in O(1) time by executing query RMQm(l, r). Let
max be the position of maximum relevant occurrence andmax′ =
A[max] be the the original position in t. For relevance metric
Rel(S, t)max, we can find the corresponding probability of occur-
rence by C[max′+ i−1]/C[max′−1]. In case of the other com-
plex relevance metric, all the occurrences need to be considered to
retrieve the actual value ofRel(S, t). If the relevance metric is less
that τ , we conclude our search. If it is greater than τ , we report
max′ as an output. For finding rest of the outputs, we recursively
search in the ranges [l,max − 1] and [max + 1, r]. Each call to
RMQm(l, r) takes constant time. For simpler relevance metrics
(such as Rel(S, t)max), validating the relevance metric takes con-
stant time. Total query time is optimal O(m + occ). However,
for more complex relevance metric, all the occurrences of t might
need to be considered, query time will be proportionate to the total
number of occurrences.

7. APPROXIMATE SUBSTRING
SEARCHING

In this section we introduce an index for approximate substring
matching in an uncertain string. As discussed previously, several
challenges of uncertain string matching makes it harder to achieve
optimal theoretical bound with linear space. We have proposed in-
dex for exact matching which performs near optimally in practical
scenarios, but achieves theoretical optimal bound only for shorter
query strings. To achieve optimal theoretical bounds for any query,
we propose an approximate string matching solution. Our approx-
imate string matching data structure answers queries with an addi-
tive error ε, i.e. outputs can have probability of occurrence≥ τ−ε.

At first we begin by transforming the uncertain string S into a
special uncertain string X of length N = O(( 1

τmin
)2n) using the

technique of lemma 2 with respect to a probability threshold value
τmin. We obtain a deterministic string t from X by concatenating
the characters of X . We build a suffix tree for t. Note that, each
leaf in the suffix tree has an associated probability of occurrence
≥ τmin for the corresponding suffix. Given a query p, substring
matching query for threshold τmin can now be answered by simply
scanning the leafs in subtree of locus node ip. We first describe the
framework (based on Hon et. al. [14]) which supports a specific
probability threshold τ and then extend it for arbitrary τ ≥ τmin.

We begin by marking nodes in the suffix tree with positional in-
formation by associating Posid ∈ [1, n]. Here, Posid indicates the
starting position in the original string S. A leaf node l is marked
with a Posid = d if the suffix represented by l begins at posi-
tion d in S. An internal node u is marked with d if it is the low-
est common ancestor of two leaves marked with d. Notice that a
node can be marked with multiple position ids. For each node u
and each of its marked position id d, define a link to be a triplet
(origin, target, Posid), where origin = u, target is the lowest
proper ancestor of u marked with d, and Posid = d. Two crucial
properties of these links are listed below.

• Given a substring p, for each position d in S where pmatches
with probability ≥ τmin, there is a unique link whose origin

is in the subtree of ip and whose target is a proper ancestor
of ip, ip being the locus node of substring p.

• The total number of links is bounded by O(N).

Thus, substring matching query with probability threshold τmin
can now be answered by identifying/reporting the links that origi-
nate in the subtree of ip and are targeted towards some ancestor of
it. By referring to each node using its pre-order rank, we are inter-
ested in links that are stabbed by locus node ip. Such queries can
be answered in O(m+ occ), where |p| = m and occ is the number
of answers to be reported (Please refer to [14] for more details).

As a first step towards answering queries for arbitrary τ ≥ τmin,
we associate probability information along with each link. Thus
each link is now a quadruple (origin, target, Posid, prob) where
first three parameters remain same as described earlier and prob
is the probability of prefix(u) matching uncertain string S at po-
sition Posid = d. It is evident that for substring p and arbitrary
τ ≥ τmin, a link stabbed by locus node ip with prob ≥ τ cor-
responds to an occurrence of p in S at position d with probability
≥ τ . However, a link stabbed by ip with prob < τ can still pro-
duce an outcome since prefix(iP ) contains additional characters
not included in p, which may be responsible for matching prob-
ability to drop below τ . Even though we are interested only in
approximate matching this observation leads up the next step to-
wards the solution. We partition each link (origin = u, target =
v, Posid = d, prob) into multiple links (or1 = u, tr1, d, prob1),
(or2 = tr1, tr2, d, prob2), . . . , (ork = trk−1, trk = v, d, probk)
such that probj − probj−1 ≤ ε for 2 ≤ j ≤ k. Here or2, . . . , ork
may not refer to the actual node in the suffix tree, rather it can be
considered as a dummy node inserted in-between an edge in suffix
tree. In essence, we move along the path from node u = or1 to-
wards its ancestors one character at a time till the probability differ-
ence is bounded by ε i.e., till we reach node tr1. The process then
repeats with tr1 as the origin node and so on till we reach the node
v. It can be see that the total number of links can now be bounded
by O(N/ε). In order to answer a substring matching query with
threshold τ ≥ τmin, we need to retrieve all the links stabbed by ip
with prob ≥ τ . Occurrence of substring p in S corresponding to
each such link is then guaranteed to have its matching probability
at-least τ − ε due to the way links are generated (for any link with
(u, v) as origin and target probability of prefix(v) matching in S
can be more than that of prefix(v) only by ε at the most).

8. EXPERIMENTAL EVALUATION
In this section we evaluate the performance of our substring search-

ing and string listing index. We use a collection of query substrings
and observe the effect of varying the key parameters. Our experi-
ments show that, for short query substrings, uncertain string length
does not affect the query performance. For long query substrings,
our index fails to achieve optimal query time. However this does
not deteriorate the average query time by big margin, since the
probability of match also decreases significantly as substring gets
longer. Index construction time is proportional to uncertain string
size and probability threshold parameter τmin.

We have implemented the proposed indexing scheme in C++.
The experiments are performed on a 64-bit machine with an Intel
Core i5 CPU 3.33GHz processor and 8GB RAM running Ubuntu.
We present experiments along with analysis of performance.

8.1 Dataset
We use a synthetic datasets obtained from their real counterparts.

We use a concatenated protein sequence of mouse and human (al-
phabet size |Σ| = 22), and break it arbitrarily into shorter strings.
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Figure 7: Substring searching query time for different string lengths (n), query threshold value τ , construction time threshold parameter
τmin and query substring length m.
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Figure 8: String listing query time for different string lengths (n), query threshold value τ , construction time threshold parameter τmin and
query substring length m.

For each string s in the dataset we first obtain a set A(s) of strings
that are within edit distance 4 to s. Then a character-level proba-
bilistic string S for string s is generated such that, for a position i,
the pdf of S[i] is based on the normalized frequencies of the letters
in the i-th position of all the strings in A(s). We denote by θ the
fraction of uncertain characters in the string. θ is varied between
0.1 to 0.5 to generate strings with different degree of uncertainty.
The string length distributions in this dataset roughly follows a nor-
mal distribution in the range of [20, 45]. The average number of
choices that each probabilistic character S[i] may have is set to 5.

8.2 Query time for different string lengths (n)
and fraction of uncertainty (θ)

We evaluate the query time for different string lengths n, ranging
from 2K to 300K and θ ranging from 0.1 to 0.5. Figure 7(a) and
Figure 8(a), shows the query times for substring searching and
string listing. Note that, n is number of positions in the uncertain
string where each position can have multiple characters. We take
the average time for query lengths of 10,100,500,1000. We use
τmin = 0.1 and query threshold τ = 0.2. As shown in the figures,
query times does not show much irregularity in performance when
the length of string goes high. This is because for shorter query
length, our index achieves optimal query time. Although for longer
queries, our index achieves O(m× occ) time, longer query strings
probability of occurrence gets low as string grows longer resulting
in less number of outputs. However when fraction of uncertainty(θ)
increases in the string, performance shows slight decrease as query
time increases slightly. This is because longer query strings are
more probable to match with strings with high level of uncertainty.

8.3 Query time for different τ and fraction of
uncertainty (θ)

In Figure 7(b) and Figure 8(b), we show the average query times
for string matching and string listing for probability threshold τ =

0.04, 0.06, 0.08, 0.1, 0.12 for fixed τmin = 0.1. In terms of per-
formance, query time increases with decreasing τ . This is because
more matching is probable for smaller τ . Larger τ reduces the out-
put size, effectively reducing the query time as well.

8.4 Query time for different τmin and fraction
of uncertainty (θ)

In Figure 7(c) and Figure 8(c), we show the average query times
for string matching and string listing for probability threshold τmin =
0.04, 0.06, 0.08, 0.1, 0.12 which shows slight impact of τmin over
query time.

8.5 Query time for different substring lengths
(m) and fraction of uncertainty (θ)

In figure 7(d) and figure Figure 8(d), we show the average query
times for string matching and string listing. As it can be seen long
pattern length drastically increases the query time.

8.6 Construction time for different string
lengths and fraction of uncertainty (θ)

Figure 9(a) shows the index construction times for uncertain string
length n ranging from 2K to 300K. We can see that the construc-
tion time is proportional to the string length n. Increasing uncer-
tainty factor θ also impacts the construction time as more permu-
tation is possible with increasing uncertain positions. Figure 9(b)
shows the impact of θ on construction time.

8.7 Space usage
Theoretical bound for our index is O(n). However, this bound

can have hidden multiplicative constant. Here we elaborate more
on the actual space used for our index.

For our indexes, we construct the regular string t of length N =
O(( 1

τmin
)2n) by concatenating all the extended maximal factors

based on threshold τmin. We do not store the string t in our index.
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Figure 9: Construction time and index space for different string lengths (n) and probability threshold τmin = .1

We built RMQ structures RMQi for i = 1, . . . , logn which takes
O(N logn) bits. The practical space usage of RMQ is usually very
small with hidden multiplicative constant of 2− 3. So the average
space usage of our RMQ structure in total can be stated as 3N
words. For a query string p, we find the suffix range of p in the
concatenated extended maximum factor string t. For this purpose,
instead of using Generalized Suffix Tree(GST), we use its space
efficient version i.e., a compressed suffix array (CSA) of t. There
are many versions of CSA’s available in literature. For our purpose
we use the one in [2] that occupies N log σ+ o(N log σ) +O(N)
bits space and retrieves the suffix range of query string p in O(p)
time. In practice, this structure takes about 2.5N words space. We
also store an array D of size N storing the partial probabilities,
which takes approximately 4N bytes of space. Finally Pos array is
used for position transformation, taking N words space. Summing
up all the space usage, our index takes approximately 3N+2.5N+
4N + N = 10.5N = ( 1

τmin
)210.5n. Figure Figure 9(c) shows

the space usage for different string length(n) and θ.

9. CONCLUSIONS
In this paper we presented indexing framework for searching in

uncertain strings. We tackled the problem of searching a deter-
ministic substring in uncertain string and proposed both exact and
approximate solution. We also formulated the uncertain string list-
ing problem and proposed index for string listing from a uncertain
string collection. Our indexes can support arbitrary values of proba-
bility threshold parameter. Uncertain string searching is still largely
an unexplored area. Constructing more efficient index, variations
of the string searching problem satisfying diverse query constraints
are some interesting future work direction.
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ABSTRACT
Complex event processing is a popular technology for con-
tinuously monitoring high-volume event streams from health
care to traffic management to detect complex compositions
of events. These event compositions signify critical “appli-
cation contexts” from hygiene violations to traffic accidents.
Certain event queries are only appropriate in particular con-
texts. Yet state-of-the-art streaming engines tend to execute
all event queries continuously regardless of the current appli-
cation context. This wastes tremendous processing resources
and thus leads to delayed reactions to critical situations.
We have developed the first context-aware event process-
ing solution, called CAESAR, which features the following
key innovations. (1) The CAESAR model supports applica-
tion contexts as first class citizens and associates appropriate
event queries with them. (2) The CAESAR optimizer em-
ploys context-aware optimization strategies including con-
text window push-down strategy and query workload shar-
ing among overlapping contexts. (3) The CAESAR infras-
tructure allows for lightweight event query suspension and
activation driven by context windows. Our experimental
study utilizing both the Linear Road stream benchmark as
well as real-world data sets demonstrates that the context-
aware event stream analytics consistently outperforms the
state-of-the-art strategies by factor of 8 on average.

1. INTRODUCTION
Complex Event Processing (CEP) has emerged as a promi-

nent technology for supporting applications from financial
fraud [30] to health care [32]. Traditionally, CEP systems
consume event streams produced by smart digital devices
like sensors and mobile phones and continuously evaluate
the query workload to monitor the input event streams.

In many stream-based applications, events convey partic-
ular application contexts such that the system reaction to
an event may significantly vary depending on the current
context. Therefore, some event queries may only need to
be executed under certain circumstances while others can

©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

be safely suspended. The following examples highlight the
challenges and opportunities of context-aware event stream
processing that have been overlooked in the prior research.

Motivating Example. Traffic has both a huge economic
and environmental impact on our daily lives. Drivers trav-
eling the 10-worst U.S. traffic corridors annually spend an
average of 140 hours idling in traffic [2]. Due to pollution
and noise, congestion in the USA’s 83 largest urban areas
in 2010 led to a related public health cost of $18 billion [3].
Further, road traffic injuries caused an estimated 1.24 mil-
lion deaths worldwide in 2010 [4].

An intelligent traffic control center could reduce these
crippling impacts. The center receives vehicle position re-
ports, analyzes them, infers the current situation in the mon-
itored road segments and reacts instantaneously to ensure
safe and smooth traffic flow. Early detection and prompt re-
action to critical situations are eminently important. They
prevent time and fuel waste, reduce pollution, avoid prop-
erty damage and in some cases even save human lives.

initiate if stopped cars

initiate if many slow cars

switch if traffic
flows smoothly

switch if
stopped cars

switch if     
many slow cars

congestionaccident

alarm computation
terminate if stopped cars removed 

toll computation
terminate if few fast cars

clear switch if traffic
flows smoothly

Figure 1: CAESAR model of traffic management

System reaction to a position report should thus be mod-
ulated depending on the current situation on the road (here
referred to as context1). Indeed, if an accident is detected,
all vehicles downstream should be warned and possibly al-
ternative routes should be suggested (Figure 1). If a road
segment becomes congested, drivers may be charged toll to
discourage them from driving to control smooth traffic flow.
If a road segment is clear, none of the above actions should
take place. Clearly, current application contexts must be
rapidly detected and continuously maintained to determine
appropriate reactions of the system at all times.

Conditions implying an application context can be com-
plex. They are specified on both the event streams and the
current contexts. For example, if over 50 cars per minute

1Here we utilize the term application context to refer to the
state of a sub-network such as accident, congestion, etc.
We deliberately avoid using the notion state since it is a too
overloaded term in the CEP literature.
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move with an average speed less then 40 mph and the cur-
rent context is no congestion then the context deriving query
updates the context to congestion for this road segment. To
save resources and thus to ensure prompt system responsive-
ness, such complex context detection should happen once.
Its results must be available on-time and shared among all
queries that belong to the detected context. In other words,
context processing queries are dependent on the results of
context deriving queries and a mechanism ensuring their cor-
rect execution must be employed.

The system responsiveness can be substantially improved
by exploiting the optimization opportunities enabled by the
application contests. (1) Only those event queries that are
relevant in the current contexts should be executed. All ir-
relevant computations should be suspended. (2) Workloads
of overlapping contexts should be shared. Furthermore, ap-
plication contexts break the application semantics into mod-
ules that facilitate the modular development and runtime
maintenance of an event stream processing application.

Challenges. To enable such event stream processing ap-
plications, the following challenges must be tackled:

Context-aware specification model. As motivated above,
event stream processing applications need to express rich se-
mantics. In particular, they have to specify application con-
texts as first class citizens and enable linkage of appropriate
event queries to their respective context. Furthermore, this
model must be in a convenient human-readable format to
facilitate on-the-fly reconfiguration, easy maintenance and
avoid fatal specification mistakes.

Context-exploiting optimization techniques. To meet the
demanding latency constraints of time-critical applications,
this powerful context-aware application model must be trans-
lated into an efficient physical query plan. This query plan
must be optimized by exploiting the optimization opportu-
nities enabled by context-aware event stream analytics. This
is complicated by the fact that the duration of a context is
unknown at compile time and potentially unbounded.

Context-driven execution infrastructure. An efficient run-
time execution infrastructure is required to support multiple
concurrent contexts. To ensure correct query execution, the
inter-dependencies between complex context deriving and
context processing queries must be taken into account.

State-of-the-Art. The challenges described above have
so far not been addressed in a comprehensive fashion.

Since the duration of a context varies, state-of-the-art win-
dow semantics such as fixed-length tumbling and sliding win-
dows [22, 8] are inadequate to model the proposed notion of
a context. Classical predicate windows [15] have variable du-
ration. However, conditions leading to an application con-
text can be rather complex and thus resource-consuming,
worse yet they can be dependent on the previous contexts
(Figure 1). Since predicate windows are independent from
each other, they fail to express context windows.

While some event query languages (e.g., CQL [10], SASE [5,
34]) could be used to hard-code the equivalent of a con-
text construct by queries that detect the context bounds.
However, this approach is cumbersome and error-prone –
requiring the careful specification of multiple complex inter-
dependent event queries [25]. Furthermore, no optimiza-
tion techniques have been developed to exploit the benefits
of context-awareness such as suspension of irrelevant event
queries nor the sharing workloads of overlapping contexts.

Business models [16, 28] focus on powerful modeling con-

structs to capture the semantics of processes and in that
sense express application contexts. However, these models,
targeting business process specification, were not designed
for event stream processing. Thus, they neglect its core
peculiarities such as the event-driven nature of context de-
tection achieving high performance analytics and the impor-
tance of temporal windows and their processing techniques.

The Proposed CAESAR Approach. In [25], we for-
mally defined the first context-aware event query processing
model for which we now design the Context-Aware Event
Stream Analytics in Real time system, CAESAR for short.

Our CAESAR model supports context windows as first-
class citizens and associates appropriate event queries with
each context window. Event queries that process events
within a context are called context processing queries. Event
queries that derive a context are called context deriving queries.
Both types of queries operate within context windows, a new
class of event query window we define.

To achieve near real-time system responsiveness, the CAE-

SAR model is transformed into a stream query plan com-
posed of context-aware operators of the CAESAR algebra.
This algebra serves as foundation for the CAESAR optimizer.
The optimizer exploits the notion of context windows to
avoid unnecessary computations by suspending those oper-
ators which are irrelevant to the current context. Further-
more, the optimizer saves computations by sharing work-
loads of overlapping context windows. Finally, we built the
CAESAR runtime infrastructure for correct yet efficient ex-
ecution of inter-dependent context-aware event queries.

Contributions can be summarized as follows:
1) We introduce a new notion of windows, called con-

text windows, to enable context-aware event query process-
ing critical to modeling event-based systems. The proposed
human-readable context-aware CAESAR model significantly
simplifies the specification of rich event-driven application
semantics by explicit support of context windows2. It also
opens new multi-query optimization opportunities by asso-
ciating appropriate event queries with each context.

2) We define the CAESAR algebra for our context-aware
event query processing. The CAESAR optimizer pushes the
context windows down to suspend the execution of irrelevant
operators. Furthermore, we propose the context window
grouping algorithm that exploits the sharing opportunities
from workloads of overlapping context windows.

3) We built the CAESAR runtime execution infrastruc-
ture that guarantees correct and efficient execution of inter-
dependent context deriving and context processing queries.

4) We evaluate the performance of the CAESAR system
and its optimization strategies using the Linear Road stream
benchmark [9] as well as the real world data set [26]. Our
CAESAR system performs on average 8-fold faster than the
context-independent solution for a wide range of cases.

Outline. We start with preliminaries in Section 2 and
introduce the CAESAR model in Section 3. We present our
algebraic execution paradigm in Section 4 and its optimiza-
tion techniques in Section 5. Section 6 is devoted to the run-
time execution infrastructure. We conduct the performance
study in Section 7. Related work is discussed in Section 8,
and Section 9 concludes the article.

2Visual editor for the CAESAR model and its evaluation, out
of the scope of this article, are subjects for future research.
In [25] we compare our model to a set of CQL event queries.
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Figure 2: Key concepts of the CAESAR model

2. PRELIMINARIES
Time. Time is represented by a linearly ordered set of

time points (T,≤), where T ⊆ Q+ and Q+ denotes the set
of non-negative rational numbers. The set of time intervals
is TI = {[start, end] | start ∈ T, end ∈ T, start ≤ end}.
For a time point t ∈ T and an interval w ∈ TI we say that t
is within w, denoted t v w, if w.start ≤ t ≤ w.end.

Event. An event is a message indicating that something
of interest happens in the real world. Each event e belongs
to a particular event type E, denoted e.type = E. An event
type E is defined by a schema which specifies the set of event
attributes and the domains of their values. An event e has
an occurrence time e.time ∈ T assigned by the event source.
For example, a vehicle position report in [9] has the following
attributes: expressway, direction, segment, car identifier etc.
The values of these attributes are integers.

Event Stream. Events can be simple or complex. Sim-
ple events are sent by event producers (e.g., sensors) to
event consumers (e.g., a traffic control center) on an input
event stream I to be processed to derive higher-level complex
events. The occurrence time of a complex event comprises
the occurrence time of all events it was derived from [23].

3. CAESAR MODEL

3.1 Key Concepts of the CAESAR Model
Application contexts are real-world higher-order situ-

ations the duration of which is not known at their detection
time and potentially unbounded. This differentiates con-
texts from events. The duration of a context is called a
context window. For example, congestion is a higher-order
situation in the traffic control application (Figure 2). Its
bounds are detected based on position reports sent from cars
in the same road segment in the same time period. As long
as a road segment remains congested, the context window
congestion is said to hold. Hence, the duration of a context
window cannot be predetermined.

Context deriving queries associated with a particular
context determine when this context should be terminated
and when a particular other context is to be initiated based
on events. For example, two context transitions are possible
from the congestion context. If the number of cars reduces
and they start moving at higher speed the system transitions
into the clear context. If two cars stop in the same location
and at the same time the accident context is activated.

Context processing queries correspond to the work-
load associated with a particular context, i.e., the analytics
to be computed based on events received while the system
remains in this context. For example, cars entering a con-

gested road segment are charged toll to discourage drivers
from driving during rush hours.

3.2 Benefits of Context-Awareness Property
Event Query Relevance. At each point of time, a con-

text window re-targets all efforts of the system to the current
situation by activating only those event queries (both con-
text deriving and context processing queries) which belong
to one of the currently active application contexts. All other
event queries are suspended as they are irrelevant within
the current contexts. This saves both CPU and memory re-
sources. For example, toll is charged only during congestion
on a road. This query is neither relevant in the clear nor
in the accident contexts. Thus, it is evaluated only during
congestion and suspended in all other contexts.

Event Query Simplification. The concept of an appli-
cation context provides event queries with situational knowl-
edge that allows us to specify simpler event queries. For ex-
ample, if the event query computing toll is evaluated only
during the congestion context, the complex conditions that
determine that there is a traffic jam on the road are already
implied by the context. Thus, there is no need to repeatedly
double-check them in each of the active workload queries.

Context Derivation. The task of context derivation is
the dedicated responsibility of the context deriving queries.
For example, once too many slow cars in a road segment
are detected, the context congestion is activated. There-
after, the query detecting congestion is no longer evaluated.
Also, all event queries that are evaluated during congestion
leverage the insight detected by the context deriving query
rather than re-evaluating the congestion condition over and
over at each individual event query level.

3.3 Context Window

Definition 1. (Context type and Context window.)
A context type is defined by a name c and a workload of
context deriving queries Qcd and context processing queries
Qcp which are appropriate in this context.

Let C be the set of context types. Then, a context window
wc is defined by a type c ∈ C and a duration (ti, tt] ∈ TI
where ti is the time point when a query qi ∈ Qc

′
d matched

the event stream and thus wc got initiated and tt is the time
point when a query qt ∈ Qcd matched the event stream and
thus wc got terminated where c′ ∈ C.

Context windows of different types may overlap. Indeed,
there can be a congestion and an accident in the same road
segment at the same time such that two sets of event queries
handling both situations must be executed concurrently.

Definition 2. (Context window relationships.) Con-
text windows of type c1 and c2 are guaranteed to overlap
if based on the predicates of the respective context deriving
queries it can be determined that for each window of type
c1 there is a window of type c2 with wc1 .start v wc2 . If
in addition wc1 .end v wc2 can be determined, a window of
type c1 is contained in a window of type c2.

In general, the predicates of the context deriving queries
can be analyzed to determine if they imply such conditions.
For example, Figure 7 shows the predicates that determine
the bounds of the context windows wc1 and wc2 . It is easy
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to conclude that the windows overlap. CAESAR employs
established approaches for predicate subsumption [14].

The same event query can be appropriate in several dif-
ferent application contexts. For example, accident detection
happens in both the clear and the congestion contexts. In
contrast to that, the event query detecting accident clear-
ance is executed only in the accident context.

For simplicity, we have made two assumptions: (1) Event
queries associated with different contexts are independent,
meaning that they do not produce events that are consumed
by event queries in other contexts. (2) Only one context win-
dow of the same type can hold at a time per road segment.
If there are multiple accidents in a road segment the context
window accident holds until all of them are cleared.

3.4 Context-aware Event Queries

congestion accident
INITIATE CONTEXT accident
PATTERN Accident
[CONTEXT congestion]

1

3

2 DERIVE NewTravelingCar(p2.vid, p2.xway, p2.dir, p2.seg, 
      p2.lane, p2.pos, p2.sec)

PATTERN SEQ(NOT PositionReport p1, PositionReport p2)
WHERE p1.sec+30=p2.sec AND p1.vid=p2.vid AND p2.lane≠“exit”
[CONTEXT congestion]

DERIVE TollNotification(p.vid, p.sec, 5)
PATTERN NewTravelingCar p
[CONTEXT congestion]

Figure 3: Context-aware event queries

The two application contexts, congestion and accident, are
shown in Figure 3. Different event queries are appropriate
within them. For compactness, only three of them within the
congestion context are shown. Clauses in square brackets are
optional since they are implied by the model. The CAESAR

event query language grammar is defined in Figure 4.

Definition 3. (Context-aware event queries.)
A context-aware event query consists of several clauses.

Each clause performs one of the following tasks:
– Context initiation (INITIATE CONTEXT clause).
– Context switch (SWITCH CONTEXT clause).
– Context termination (TERMINATE CONTEXT clause).
– Complex event derivation (DERIVE clause).
– Event pattern matching (PATTERN clause).
– Event filtering (WHERE clause).
– Context window specification (CONTEXT clause).

Context deriving queries perform three actions: (1) ini-
tiate a new context window wc, (2) terminate an existing
context window wc, or (3) switch from the current context
window wc1 into a new context window wc2 .

Context initiation and termination can be used to express
overlapping context windows. For example, accident and
congestion may overlap. That is, query 3 initiates the con-
text window accident when an accident is detected (Fig-
ure 3). However, query 3 does not terminate the context
window congestion. The event queries that detect accidents
are not shown for compactness.

In contrast, context switch expresses a sequence of two
non-overlapping context windows. It corresponds to the ter-
mination of the previous context window wc1 and the initia-
tion of the new context window wc2 . For example, the clear
context overlaps neither accident nor congestion contexts.

Context processing queries analyze the stream of simple
or complex events to derive higher-level knowledge in form
of complex events. For example, query 2 detects the cars en-
tering a congested road segment. These are vehicles which
are not on an exit lane and for which there is no previous po-
sition report from the same road segment within 30 seconds.
Query 1 derives toll notifications for such vehicles.

Both context deriving and context processing queries con-
sume events that arrive during the context windows that
these queries are associated with. Hence, both types of
queries utilize event pattern matching and event filtering
clauses which are commonly used in event queries [34, 23].
Section 4.1 defines when these clauses match.

Query := 〈Window〉 | 〈Retrieval〉
Window := (INITIATE | SWITCH | TERMINATE)

CONTEXT Context
Retrieval := 〈Derive〉 〈Pattern〉 〈Where〉? 〈Context〉
Derive := DERIVE EventType ((V ar.)? Attr, ?)+
Pattern := PATTERN 〈Patt〉
Where := WHERE 〈Expr〉
Context := CONTEXT (Context , ?)+
Patt := NOT? EventType V ar? | SEQ( (〈Patt〉 , ?)+ )
Expr := Constant | Attr | 〈Expr〉 〈Op〉 〈Expr〉
Op := +| − |/| ∗ |%| = | 6= | > | ≥ | < | ≤ |AND|OR

Figure 4: CAESAR event query language grammar

Putting the application contexts, transitions between them
(Definitions 1 and 2) and context-aware event queries (Def-
inition 3) together, we now define the CAESAR model.

Definition 4. (CAESAR model.) A CAESAR model is a
tuple (I,O,C, cd) where I and O are unbounded input and
output event streams and C is a finite set of context types
with the default context type cd ∈ C.

While the goal of classical automata is to define a lan-
guage, the CAESAR model is designed for context-aware
event query execution. Thus, final contexts are omitted.
The CAESAR model has a default context that holds when
no other context does, e.g., at the system startup (the clear
context in our example). The runtime processing of the
model is defined in Section 4.1.

4. CAESAR ALGEBRA
The CAESAR model explicitly supports application con-

texts and the transition network to facilitate context-aware
event query specification (Figure 3). However, at execution
level an algebraic query plan tends to be easier to optimize
than an automaton-based model [30].3 We thus define the
CAESAR algebra and the translation rules of the CAESAR

model into an algebraic query plan.

4.1 CAESAR Operators
The CAESAR algebra consists of six operators. While

event pattern, filter and projection are quite common for
other stream algebras [30], [34], context initiation, termina-
tion and context window are unique operators of the CAE-

SAR algebra. Context initiation and termination consume a
stream I of events produced by other operators of the con-
text deriving queries and the set of current context windows

3There are approaches to optimization and distribution of
simpler automata than the CAESAR model however. We
describe them in detail in Section 8.
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W . They update the set of the current context windows and
return the updated set.

Context initiation CIc starts a new context window wc, adds
it to the set of current context windows and removes the de-
fault context window wcd from the set, if there.
CIc(I,W ) := {W ′ | If wc ∈W then W ′ = W. Otherwise W ′ =
W∪wc and if wcd ∈W then W ′ = W ′/wcd where e ∈ I and
e.time = wcd .end = wc.start}.

Context termination CTc ends the context window wc, re-
moves it from the set of current context windows, if the set
becomes empty adds the default context window wcd to it.
CTc(I,W ) := {W ′ | If |W | > 1 then W ′ = W/wc else W ′ =
{wcd} where e ∈ I and e.time = wc.end = wcd .start}.

Context window CWc consumes an event stream I and the
set of all current context windows W and returns the stream
of events that occur during the current context window wc.
CWc(I,W ) := {e | wc ∈W, e ∈ I, e.time v wc}.

Filter FIθ with a predicate θ consumes an event stream I
and returns a stream composed of all events that satisfy θ.
FIθ(I) := {e | e ∈ I, e satisfies θ}.

Projection PRA,E with a set of attributes A and an event
type E consumes an event stream I, restricts each input
event to the set of attributes A and returns the stream of
these restricted events of type E.
PRA,E(I) := {e | e.type = E, e′ ∈ I, e.a = e′.a for a ∈ A}.

Pattern P consumes an event stream I and constructs
event sequences matched by the pattern P . For each event
sequence, the operator outputs an event consisting of the at-
tribute values of all events in the sequence. Let A be the set
of all attributes of events of types E1, ..., En and 1 ≤ i ≤ n.
The pattern P is one of the following:

1) Event matching E returns input events of type E.
E(I) := {e | e ∈ I, e.type = E}.

2) Sequence without negation SEQ(E1,...En) constructs se-

quences of n events such that an ith event is of type Ei.
SEQ(E1,...En)(I) := {e | e1, ..., en ∈ I, e1.type = E1, ...,
en.type = En, e1.time < ... < en.time, e.a = ei.a for a ∈
A, e.time = [e1.time, en.time]}.

3) Sequence with negation SEQ(S1,NOT E,S2) constructs
event sequences SEQS1,S2 without negation such that there
is no event of type E between the sub-sequences constructed
by SEQS1 and SEQS2 .
SEQ(S1,NOT E,S2)(I) := {e | e1, ..., em ∈ SEQS1

, em+1, ..., en
∈ SEQS2

, 6 ∃e′ ∈ I with e′.type = E, em.time < e′.time <
em+1.time, e.a = ei.a for a ∈ A, e.time = [e1.time, en.time]}.
A negated event can start or end an event sequence. In
this case, temporal constraints must define the time interval
within which the negated event may not occur [34].

4.2 Context-preserving Plan Generation
At compile time, the CAESAR model (Figure 3) is trans-

lated into an executable query plan that is than input to
the CAESAR optimizer (Section 5). The CAESAR model
translation happens in two phases (Figure 5). They are:

Phase 1: CAESAR model to a query set. First,
the model is translated into a machine-readable query set.
During this phase, contexts that are implied by the CAESAR

model (the optional clauses in square brackets in Figure 3)
become mandatory clauses of the CAESAR event queries. As
a result, an event query that belongs to a context c has a
mandatory clause CONTEXT c. For example, all queries in
Figure 5 explicitly specify the context they belong to.

Phase 2: Query set to a combined query plan. Dur-
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Figure 5: CAESAR model translation

Event query clause Operator
INITIATE CONTEXT c CIc
SWITCH CONTEXT c CIc,CTcurr
TERMINATE CONTEXT c CTc
DERIVE E(A) PRA,E

PATTERN P P
WHERE θ FIθ
CONTEXT c CWc

Table 1: Individual query plan construction

ing this phase, the machine-readable query set is translated
into an executable query plan. This happens in two steps:
1) Individual query plan construction. Each event query is
translated into a sequence of algebra operators such that
each clause of the query corresponds to a set of operators
as defined in Table 1. curr denotes the current context the
context deriving query is associated with.
2) Combined query plan construction. Individual query plans
are composed into a combined query plan such that if one
query plan produces events which are consumed by another
query plan then the output of the first plan is the input of
the second plan. Since event queries in different contexts are
independent (Section 3.3), all event queries in a combined
query plan belong to the same context.

For example, queries 1 and 2 in Figure 3 are translated
into the combined query plan in Figure 6(a). Query 1 is
translated into the individual query plan consisting of oper-
ators 1–4. Query 2 corresponds to the individual query plan
composed of operators 5–7. Since the first query plan pro-
duces complex events consumed by the second query plan,
they are composed into a single combined query plan.

5. CAESER OPTIMIZATION

5.1 CAESAR Optimization Problem Statement

Definition 5. Given a workload of context-aware event
queries where each query is associated with an application
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context. Our CAESAR optimization problem is to find an
optimized query plan for all queries such that the CPU costs
are minimized by suspending event queries that are irrel-
evant to the current application contexts and sharing the
workload of overlapping context windows.

To avoid reinventing the wheel, we borrow the CPU cost
estimation of event pattern construction from [24], and thus
do not repeat here. Instead, we now discuss the cost of
the context-specific operators. We maintain the information
about current context windows in the context bit vector W
with one bit for each context type. Since the number of
possible context types for an application is predefined and
constant, the size of the vector is also constant. The context
initiation and termination operators update one bit and the
time stamp of the context bit vector. Context windows look
up one value in the vector to determine whether a context
window of a certain type currently holds. In other words, the
CPU cost of these operators is constant. Section 6 provides
further implementation details.

5.2 Context Window Push Down
Since some operators of the CAESAR algebra are similar

to other stream algebras, existing approaches, from operator
reordering [24] to operator merging [30, 6], can be exploited
by the CAESAR optimizer as well. For example, projections
and filters can be executed in any order assuming that a
projection that is pushed down below a filter discards no
attributes accessed by the filter. Adjacent filters can be
merged into a single filter by combining their predicates.
However, these existing techniques are oblivious to the no-
tion of contexts, and consequently do not avoid superfluous
computations in the current contexts.

To avoid unnecessary computations when event queries
are executed “out” of their respective context windows, we
introduce the context window push-down strategy. Context
window push-down can prevent the continuous execution of
operators in the query plan. In other words, no event will
be passed up by the context window operator if the current
event stream does not qualify for the context window.

For instance, the two bottom most operators in Figure 6(a)
are always executed regardless of the application contexts.
Once the context window is pushed down to the bottom in
Figure 6(b), it avoids the execution of all operators higher
in the plan when they are irrelevant to the current contexts.

All event queries in a combined query plan belong to the
same context (Section 4.2). By definition, a context window
specifies the scope of its queries. Thus, pushing a context
window down does not change the semantics of its queries.
That is, context window push down strategy is correct.

Pushing a context window down seems similar to pushing
a predicate or a traditional window down only at first sight.
Differences are twofold:
1) Context windows suspend the entire query plan “above
them” as long as the application is in different contexts. In
contrast to that, a predicate or a traditional window is a
filter on a stream that selects certain events to be passed
through. It does not control the suspension of the above
operators and keeps them in busy waiting state that wastes
valuable resources and degrades system performance.
2) Our context-driven stream router directs event stream
portions during application contexts to the appropriate event
queries (Section 6.2). In contrast to that, predicates and
traditional time constraints (e.g., event sequence within 4

(a) Initial query plan (b) Optimized query plan

Figure 6: Query plans

hours [34]) typically filter events one by one at the individual
event level. This is a resource consuming slow process.

Theorem 1 proves that pushing a context window down in
a combined query plan leads to lower execution costs than
placing it at any other position in the query plan.

Theorem 1. Given a query q, let P be the set of all pos-
sible query plans for q, p ∈ P be a query plan for q and
cost(p) be the cost of executing the plan p. With the context
window pushed down, the new plan, denoted by p’, has cost
cost(p’). Then ∀p ∈ P, p 6= p′. cost(p′) ≤ cost(p).

Proof. As described in Section 5.1, the cost of the con-
text window operator is constant. That is, it adds constant
cost to the overall execution costs of a query plan no matter
its position in the query plan. The context window operator
completely suspends the execution of all upstream operators
while the context is not active. In that case, the cost of a
query plan is reduced, i.e., cost(p) < cost(p′). In an unlikely
case when the context window happens to be always active,
the costs of the query plans p and p′ are equal.

5.3 Context Workload Sharing
Inspired by traditional multi-query optimization, group-

ing the event queries enables computation sharing among
these queries. We observe the opportunity that substantial
computational savings can be achieved by executing only
one instance of each context deriving query for each context.
Without context window grouping, each context processing
query has to run its respective context deriving queries sep-
arately so to determine its current context to ensure correct
execution. If this context analytics is performed on an in-
dividual query level, significant computational resources are
wasted and system responsiveness suffers.

Sharing query workloads of overlapping context windows
is challenging for the following reasons: (1) The duration of
context windows may vary and their bounds are unknown
at compile time. So, we have to infer whether context win-
dows overlap. (2) Different contexts may contain identical or
similar event queries in their query workloads. How to share
query workloads driven by contexts is crucial to achieve high
performance execution. We now propose an efficient solu-
tion that addresses this problem by splitting and grouping
overlapping context windows.

For overlapping context windows, a naive solution would
be to merge these context windows to form a larger encom-
passing context window. Inside this large context window,

418



we can now analyze the associated event query workloads
to optimize their executions. However, such solution could
do more harm than good in some cases. For example, if all
context windows were to be overlapping, then only one huge
all encompassing context window would be formed as a re-
sult. This would forfeit the purpose of being context-aware.
Consequently, redundant computations would be incurred.

Figure 7: Context Window Grouping

We now propose an effective strategy for splitting the
original user-defined overlapping context windows into finer
granularity context windows and grouping them into non-
overlapping context windows. For example, the context
windows wc1 and wc2 in Figure 7 overlap. The window wc1
is split into w11 and w12, while the window wc2 is split into
w21 and w22. Since the windows w12 and w21 cover the same
time interval, the event queries associated with them are
merged to form the workload of the grouped context window
w. The context deriving queries are adjusted accordingly.

1 I npu t : Set W of user-defined context windows. A window is
described by start, end and queries.

3 Output : Set G of grouped context windows
G = W.extractNonOverlappingWindows()

5 W = W.sortByStart()
W = W.mergeIdenticalWindows()

7 Q = ∅
wh i l e W.hasNextWindowBound()

9 next = W.getNextWindowBound()
S = W.getStartingWindows(next)

11 E = W.getEndingWindows(next)
i f Q.isEmpty()

13 then Q = S.queries
e l s e new window w = (previous, next,Q)

15 G = G ∪ w
Q = Q− E.queries ∪ S.queries

17 end i f
previous = next

19 end wh i l e
f o r each w ∈ G

21 w.queries = w.queries.dropDuplicates()
end f o r each

23 r e t u r n G

Listing 1: Context window grouping algorithm

Consider our context window grouping algorithm in List-
ing 1. It takes a set of user-defined context windows as
input. Context windows which do not overlap any other
window remain unchanged (line 4). The algorithm sorts the
overlapping context windows in increasing order by start
time (line 5). Even though the exact start time of context

windows is not known at compile time, the order of their
beginning can be determined for overlapping context win-
dows. For example, it is known at compile time that the
window wc2 in Figure 7 will start at the same time or later
than the window wc1 . If there are several identical con-
text windows, the algorithm only keeps one by merging the
workloads of identical windows (line 6). The core of the algo-
rithm (lines 8-19) forms a new grouped context window for
each time interval between two subsequent bounds of origi-
nal context windows and associates the query workload with
it that is appropriate during this time interval. For each
grouped context window, the algorithm deletes duplicate
event queries (lines 20-22) and returns the set of grouped
context windows (line 23). Since several subsequent grouped
context windows correspond to one original context window,
an event query within a grouped context window may need
access to its partial matches in the previous grouped context
windows to ensure completeness of its results. In Section 6,
we introduce a customized design (called context history) to
ensure correct grouped context window execution.

The time complexity of the algorithm is O(n log(n) ∗m)
where n is the number of original user-defined context types
that are sorted (line 5) and m is the number of predicates
that have to be analyzed while comparing two context types.

Based on the newly produced non-overlapping context
windows, we now further exploit traditional multi-query op-
timization (MQO) techniques [31, 27, 21] to produce an
optimized shared query execution plan for each group of
event queries. This opens opportunities to share the simi-
lar workload within a context which further saves computa-
tional costs and reduces query latency. MQO is an NP-Hard
problem due to the exponential search space. Thus, the so-
lutions [31, 27, 21] of MQO tend to be expensive.

Our context window grouping solution divides the event
query workloads into smaller groups based on their time
overlap. Hence, the search space for an optimal query plan
within each group is substantially reduced compared to the
global space. Any state-of-the-art MQO solution can lever-
age this idea to return an optimized query plan efficiently.

The search space for multi-query optimization is doubly
exponential in the size of the queries (n). The spectrum of
possible multi-query groupings ranges from a separate group
per each individual query (i.e., non-sharing) in the given
query workload to a single group for all queries. The upper-
bound for all possible multi-query groups corresponds to the
number of distinct ways of assigning n event queries to one
or more groups. The number that describes this value is the
Bell number Bn, which represents the number of different
groupings of a set of n elements. The Bell number is the
sum of Stirling numbers. A Stirling number S(n, k) is the
number of ways to partition n elements into k partitions [20]:

Bn =

n∑
k=1

S(n, k) =

n∑
k=1

(
1

k!

k∑
j=1

(−1)k−j
(
n

k

)
jn
)

By dividing our n queries first into m groups, we subse-
quently only need to optimize the small shared set one by
one and thus reduce the search space to:

B′n =

n/m∑
k′=1

S(n/m, k′) =

n/m∑
k′=1

 1

k′!

k′∑
j=1

(−1)k
′−j

(
n/m

k′

)
jn/m


As confirmed by our experimental study in Section 7.2,
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the CAESAR optimizer produces a context-aware query plan
2712 times faster than the state-of-the-art context-independent
multi-query optimization approaches.

6. CAESAR EXECUTION INFRASTRUCTURE

6.1 Overview of the CAESAR Infrastructure
Figure 8 shows the CAESAR execution infrastructure. The

boxes represent the system components.

Figure 8: CAESAR infrastructure

Specification Layer. A CAESAR model is specified by
the application designer using the visual CAESAR editor [25].
As explained in Section 4, we then translate it into an alge-
braic query plan.

Optimization Layer. As described in Section 5, the
query plan is optimized using several context-aware opti-
mization strategies to produce an execution plan.

Execution Layer. The optimized query plan is for-
warded to the transaction manager that forms transactions.
These transaction are submitted for execution by the sched-
uler that guarantees correctness. These components build
the core of the CAESAR execution infrastructure. They are
described in details in Section 6.2.

Storage Layer. The event distributor buffers the in-
coming events in the event queues. The current context
windows and the context history are compactly maintained
in-memory. The garbage collector ensures that only the val-
ues which are relevant to the current contexts are kept.

6.2 Core of the CAESAR Infrastructure
The core of the CAESAR execution infrastructure consists

of the context derivation, context processing, context-aware
stream routing and scheduling of these processes (Figure 9).

Context Derivation. For each stream partition (unidi-
rectional road segment in the traffic management use case),
we save which context windows currently hold in the context
bit vector W . This vector W has a time stamp W.time and
a one-bit entry for each context type, i.e., W.size = |C|.
The entries are sorted alphabetically by context names to
allow for constant time access. The entry 1 (0) for a context
c means that the context window wc holds (does not hold)
at the time W.time. Since context windows may overlap,
multiple entries in the vector may be set to 1.

The context window vector is updated by the context de-
riving queries. Since each event in the stream can potentially

Figure 9: Core of the CAESAR infrastructure

update a context window, the context deriving queries pro-
cesses all input events. W.time is the application time when
the vector W was last updated. Since events arrive in-order
by time stamps, only one most recent version of the context
bit vector is kept.

Context-aware Stream Routing. Based on the con-
text window vector, the system is aware of the currently
active event query workloads. For each current context win-
dow wc, it routes all its events to the query plan associated
with the context c. Query plans of all currently inactive con-
text windows do not receive any input. They are suspended
to avoid busy waiting, i.e., waste of resources.

Context-aware stream routing is a light-weight process for
the following reasons. First, the lookup of all vector entries
set to 1 takes constant time. Second, this routing happens
for stream batches (multiple subsequent events in the input
event stream) rather than for single events.

Context Processing. The CAESAR model allows the
application designer to specify the scope of event queries
in terms of their context windows. When a user-defined
context window ends, all event queries associated with it are
suspended and thus will not produce new matches until they
become activated again. Therefore, their partial matches,
called context history, can be safely discarded.

When a user-defined context window wc with its associ-
ated query workload Qc is split into smaller non-overlapping
context windows wc1 and wc2 partial matches of the queries
Qc are maintained across these newly grouped windows wc1
and wc2 to ensure correctness of these queries Qc. Therefore,
for each event query we save the grouped context windows
across which the results of the query are kept. For exam-
ple, the event query q1 in Figure 7 is executed during all 3
grouped context windows. However, when the third window
begins, the partial results within the first window expire.

Correct Context Management. Context processing
queries are dependent on the results of context deriving
queries. Due to bursty input streams, network and pro-
cessing delays context derivation might not happen on time.
To avoid race conditions, these inter-dependencies must be
taken into account to guarantee correct execution.

We define a stream transaction as a sequence of operations
that are triggered by all input events with the same time
stamp. The application time stamp of a transaction (and
all its operations) coincides with the application time stamp
of the triggering events. An algorithm for scheduling read
and write operations on the shared context data is correct if
conflicting operations4 are processed sorted by time stamps.

4Two operations on the same value such that at least one of
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While existing transaction schedulers can be deployed in
the CAESAR system, we now describe a time-driven sched-
uler. For each time stamp t, our scheduler waits till the event
distributor progress is larger than t and the context deriva-
tion for all transactions with time stamps smaller than t is
completed. Then, the scheduler extracts all events with the
time stamp t from the event queues, wraps their processing
into transactions (one transaction per road segment for the
traffic control use case) and submits them for execution.

7. PERFORMANCE EVALUATION

7.1 Experimental Setup and Methodology
Experimental Infrastructure. We have implemented

our CAESAR system in Java with JRE 1.7.0 25 running on
Linux CentOS release 6.3 with 16-core 3.4GHz QEMU Vir-
tual CPU and 48GB of RAM. We execute each experiment
three times and report their average results here.

Linear Road Benchmark. We have chosen this bench-
mark [9] to evaluate the effectiveness of the CAESAR system
for the following reasons: (1) it expresses a variety of appli-
cation contexts such that the system reactions to an event
depends on the current context, and (2) it is time critical
since it poses tight latency constraint of 5 seconds.

Event Queries. We focused on a subset of event queries
of the benchmark that based on input events derive toll
notifications and accident warnings. The queries depicted
in Figure 3 are simplified versions of the actual benchmark
queries to illustrate the key concepts of our model in the
paper only. We simulate low, average and high query work-
loads by replicating the event queries of the benchmark.

(a) Events per road segment (b) Events per minute

Figure 10: Event streams

Event Streams. Event distribution across road seg-
ments varies. Figure 10(a) shows the number of processed
and derived events per segment of a randomly chosen unidi-
rectional road7. There are more cars in some road segments
than in others. In some road segments accidents and traffic
jams happen more often than in others. Hence, more toll
notifications and accident warnings are triggered for them.

Event distribution across time also varies. Event rate
gradually increases during 3 hours of an experiment. Fig-
ure 10(b) shows the number of processed and derived events
per minute by for a randomly chosen unidirectional road
segment7 and visualizes the application contexts. Accident
warnings are derived only during accidents (minutes 30-50).
The benchmark requires zero toll derivation during accidents
and clear road conditions (minutes 0-70). During traffic
jams, real toll is computed (minutes 70-180).

Real Data Set. In addition to the benchmark, we eval-
uate our system using the physical activity monitoring real

them is a write are called conflicting operations.
7We have observed a similar event distribution for other
roads and roads segments.

data set (1.6GB) [26]. It contains physical activity reports
from 14 people during 1 hour 15 minutes.

Metrics. We measure two metrics common for stream
systems, namely maximal latency and scalability. Addition-
ally, we measure the win ratio of context-aware over context
independent event stream analytics in terms of CPU pro-
cessing time. Maximal latency is the maximal time interval
elapsed from the event arrival time (i.e., system time when
a position report is generated) till the complex event deriva-
tion time (i.e., system time when a toll notification or an
accident warning is derived based on this position report).
As mentioned above, the benchmark restricts the query la-
tency to be within 5 seconds. The system scalability is de-
termined by the L-factor, the maximal number of roads that
are processed without violating this constraint. The win ra-
tio of context-aware over context-independent event stream
analytics is computed as the maximal latency of context-
independent processing divided by the maximal latency of
context-aware processing of the same event query workload
against the same input event stream.

Methodology. To show the efficiency of our context-
aware query optimization, we compare it to the exhaustive
search approach by varying the number of operators in a
query plan. To measure the effectiveness of our optimized
context-aware query plan, we compare the performance of
our context-aware query execution plan to the state-of-the-
art solution [34, 5]. To demonstrate the effectiveness of our
context-aware workload sharing technique, we compare it to
our default non-sharing solution. We conduct these compar-
isons by varying the following parameters: number of oper-
ators in a query plan, input event stream rate, number of
event queries, data distribution in a context window, length
of a context window, number of context windows, number
of overlapping context windows, overlapping ratio of con-
text windows, and the shared workload size. Since context
windows are derived from the input events, context window
related parameters can be varied only through input data
manipulation. Thus, for the experiments on real data set
we vary the number of event queries.

7.2 Efficiency of CAESAR Optimizer

(a) CAESAR optimizer (b) L-factor

Figure 11: CAESAR Optimization Techniques

In Figure 11(a), we vary the number of operators in a
query plan and measure the CPU time required for the query
plan search (logarithmic scale on Y-axis). We compare the
context-independent (CI) exhaustive to the context-aware
(CA) greedy query plan search. As confirmed by the search
space analysis (Section 5.3), the processing time of the ex-
haustive search grows exponentially with the number of op-
erators in a query plan. In contrast, the CPU time required
for our context-aware search stays fairly constant while vary-
ing the query plan size. At size 24, CAESAR’s optimizer is
2712-fold faster than the exhaustive search. This is due to
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the fact that our context window push down and context
grouping techniques substantially reduce the search space.

7.3 Efficiency of CAESAR Runtime
Next, we conduct a comprehensive evaluation to demon-

strate the efficiency of our CAESAR solution. The baseline
approach is the context-independent processing commonly
used in most state-of-the-art solutions [34, 5, 32]. We first
demonstrate the superiority of our CAESAR’s context-aware
event processing compared to the state-of-the-art context-
independent approach by strictly following the constraints
of the benchmark. Then we evaluate the CAESAR’s context
window sharing technique.

7.3.1 Efficiency of Context-Aware Stream Analytics
L-factor. In Figure 11(b), we vary the input stream rate

by increasing the number of roads and measure the maximal
latency. We compare the latency of the optimized versus
non-optimized query plan. As the figure shows, the opti-
mized query plan processes at most 7 roads without vio-
lating the latency constraint of 5 seconds. In contrast, the
non-optimized query plan can process at most 5 roads under
this constraint. Intuitively, our context-aware optimization
approach successfully avoids the unnecessary computations
by executing different queries only at appropriate time pe-
riods (contexts). On the other hand, the state-of-the-art
solution suffers from executing all queries all the time.

Next, we compare continuous context-independent stream
processing to context-aware solution when some of the in-
volved event query workloads are appropriate only in certain
critical contexts and can be suspended in other contexts.
Unless stated otherwise, in Figures 12 and 13, we consider
3 roads (1.7GB) and assume that 2 critical non-overlapping
context windows of length 3 minutes process 10 event queries
each. These queries can be suspended in other contexts.

Evaluating diverse context window distributions.
In Figure 13, we vary the number of event queries per con-
text window and measure the maximal latency. We compare
three setups, namely, uniform context window distribution
versus their Poisson distribution with positive skew (λ is the
first second) and with negative skew (λ is the last second).
Context window bounds vary across different window distri-
butions. The rest of the stream is identical for these setups.

As expected, when the context windows are at the end
of the experiment where the stream rate is high, the maxi-
mal latency remains almost constant with the growing event
query workload. This is explained by the fact that most
queries are irrelevant for these contexts and thus are sus-
pended. In contrast, if these windows are uniformly dis-
tributed or are at the beginning of the experiment when the
stream rate is low, the maximal latency grows linearly with
the number of queries. The maximal latency of 20 event
queries with uniform context window distribution is 1.8-fold
faster than with Poisson distribution with positive skew and
11-fold slower than with Poisson distribution with negative
skew. Thus, to achieve fair results we consider uniform con-
text window distribution in all following experiments.

Scaling event query workload. In Figure 12(a), we
vary the number of event queries per context window and
measure the maximal latency of context-aware versus context-
independent event stream processing. The maximal latency
grows linearly in the number of event queries. For an average
workload of 10 event queries, we find that the context-aware

processing is 8-fold faster than the context-independent solu-
tion using the Linear Road benchmark data (LR). CAESAR

achieves the same win using the Physical Activity Monitor-
ing data set (PAM) and 20 event queries. Our system has a
clear win in this case because the context-aware event stream
analytics suspends those event queries which are irrelevant
to the current context.

Varying event stream rates. In Figure 12(b), we vary
the number of considered roads. We measure the maximal
latency of context-aware versus context-independent pro-
cessing. The maximal latency grows linearly with an in-
creasing input stream rate (number of roads). For 7 roads,
context-aware processing is 9-fold faster than the context
independent solution. The results show that the CAESAR

system is more robust to the event stream rate increase com-
pared to the context-independent solution.

Varying context window lengths. In Figure 12(c), we
vary the length of the context windows and measure the win
ratio of the context-aware over context-independent process-
ing. The numbers above the bars indicate the percentage of
the input event stream covered by the context windows that
allow suspension of complex event query workload. Given
that CAESAR only keeps one context active at a time, the
win ratio exceeds 3 if such context windows cover more than
80% of the stream. It becomes negligible (almost 1) when
they cover less than 50% of the input event stream.

Varying the number of context windows. A similar
trend can be observed while varying the number of context
windows that allow suspension of irrelevant event queries
(Figure 12(d)). Again, we measure the win ratio of the
context-aware over context-independent stream processing.
The numbers above the bars indicate the percentage of the
input event stream covered by the context windows. Simi-
larly, the win ratio exceeds 2 if the context windows cover
more than 80% of the input event stream. It becomes neg-
ligible (almost 1) when they cover less than 50%.

7.3.2 Efficiency of Context-Aware Workload Sharing
Next, we measure the effect of the shared workload pro-

cessing of overlapping context windows (Figure 14). Unless
stated otherwise, 30 windows of length 15 minutes each over-
lap by 10 minutes. Each of them processes 4 event queries.

Varying the number of overlapping context win-
dows. In Figure 14(a), we vary the maximal number of over-
lapping context windows and measure the maximal latency
of shared versus non-shared query processing. As expected,
the larger the number of overlapping context windows are
the more significant is the gain of the event query sharing. If
45 context windows overlap, the workload sharing strategy
outperforms the default non-shared solution by factor of 10.
The reason is that the CAESAR context window grouping
technique exploits the sharing opportunities within overlap-
ping context windows at a fine granularity level by splitting
the overlapping context windows into non-overlapping parts
and sharing event query processing within them.

Varying the length of context window overlap. In
Figure 14(b), we vary the minimal length of context window
overlap and measure the maximal latency of shared versus
non-shared workload execution. The gain of sharing grows
linearly with the length of overlap. If 30 context windows
overlap by 15 minutes, our workload sharing strategy per-
forms 6-fold faster than the non-shared solution. This is due
to the fact that similar workloads can be shared for a longer
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(a) Event query workload (b) Event stream rate (c) Context window length (d) Context window number

Figure 12: Context-aware event stream analytics

Figure 13: Context window
distribution

(a) Degree of overlap (b) Length of overlap (c) Shared workload size

Figure 14: Shared workload of overlapping context windows

time period, and hence more computational savings can be
harvested from the overlapping part of the context windows.

Shared workload size. In Figure 14(c), we vary the
number of event queries per context window and measure
the maximal latency of shared versus non-shared event query
processing. As expected, the more event queries can be
shared the more significant is the gain of the event query
sharing. If each context window contains 10 queries that
can be shared with other context windows, the workload
sharing strategy outperforms the default non-shared solu-
tion by factor of 9 using the Linear Road benchmark data
(LR). A similar trend can be observed with the Physical
Activity Monitoring data set (PAM).

8. RELATED WORK
Context-aware Event Stream Models [11, 33] pro-

pose a fuzzy ontology to support uncertainty in event queries.
Context-aware event queries are rewritten into context-inde-
pendent and processed in parallel on different stream parti-
tions. Isoyama et al. [18] propose to allocate event queries to
event processors so that the state of event processing (i.e., in-
termediate event query results) is efficiently managed. These
ideas are orthogonal to our optimization techniques.

Hermosillo et al. [17] and Proton software prototype [1]
feature a model similar to the CAESAR model. However,
these approaches lack a formal definition of the event lan-
guage, optimization techniques and experimental evaluation.
The recent emergence of these approaches confirms the im-
portance of the notion of context-aware event queries that
has been formally defined by us in [25]. Our current work on
CAESAR now is completed by the context-aware optimiza-
tion strategies and their experimental evaluation.

Event Stream Processing Automata [34, 5, 13] con-
tinuously evaluate the same set of single event queries us-
ing traditional windows of fixed length. These automata
capture single query processing states. Their runs corre-

spond to independent event query instances. In contrast
to that, the CAESAR model expresses the semantics of the
whole stream-based application rather than single isolated
event queries. Our model captures application contexts of
variable, statically unknown duration. Its runs correspond
to interdependent processes traveling through application
contexts, triggering appropriate context-aware event queries
and incrementally maintaining their results.

Event Query Languages, like CQL [10] and SASE [5,
34], lack explicit support of application contexts. These
contexts could possibly be hard-coded by queries deriving
events that mark context bounds. However, this approach
is cumbersome and error prone. It is neither modular nor
human-readable. It requires tedious specification of multi-
ple complex event queries – placing an unnecessary burden
on the designer [25]. Inter-dependencies between context
deriving and context processing queries would have to be
taken into account to avoid re-computations, waste of valu-
able resources, delayed responsiveness and even incorrect
results. Special optimization techniques would have to be
developed to enable the benefits of context-awareness – as
accomplished by our approach (Section 3.2). Furthermore,
workload sharing among overlapping context windows has
not been addressed in prior research.

Event Query Optimization Techniques [29] are often
based on stream algebras [30, 34, 12]. Operators of these
stream algebras work on events. In these approaches, appli-
cation contexts are not supported as first-class citizens and
thus they are not available for the operators. Hence, these
approaches miss the event query optimization opportunities
enabled by context-aware stream processing. Application
contexts are first class citizens in our CAESAR model. They
enable context-aware optimization techniques (Section 5).

Business Process Models [16, 28] explicitly support ap-
plication contexts in a readable manner and allow to specify
context-aware system reactions. However, these models tar-
get business process specification. They were not designed
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for CEP and neglect its peculiarities. In particular, the
event-driven nature of streaming applications and the im-
portance of temporal aspect are not given enough attention.
Indeed, context transitions in these models are triggered by
conditions and process flow rather than by events [19]. Tem-
poral constraints are specified on clocks rather than on event
time stamps [7]. These models do not derive higher level
knowledge in form of complex events.

9. CONCLUSIONS
The responsiveness of time-critical decision-making event

stream processing applications can be substantially speed-
up by evaluating only those event queries which are relevant
to the current situation. Inspired by this observation, we
propose the first context-aware event stream processing so-
lution, called CAESAR, which is composed of the following
key components: (1) To allow for human-readable context-
aware event query specification, we propose the CAESAR

model that visually captures the application contexts and
allows the designer to associate appropriate event queries
with each context. (2) To achieve prompt system responsive-
ness, the model is translated into a query plan composed of
the context-aware operators of the CAESAR algebra we pro-
pose. This algebra serves as a foundation for the CAESAR

optimizer that suspends those event queries which are irrele-
vant to the current application context and detects workload
sharing opportunities of overlapping contexts. (3) We built
the CAESAR runtime execution infrastructure that guaran-
tees correct and efficient execution of inter-dependent con-
text deriving and context processing queries. The context-
aware processing is shown to perform 8-fold faster on aver-
age than the context-independent solution when using the
Linear Road stream benchmark and real world data sets.
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ABSTRACT 

The preservation of privacy when publishing spatiotemporal 
traces of mobile humans is a field that is receiving growing 
attention. However, while more and more services offer 
personalized privacy options to their users, few trajectory 
anonymization algorithms are able to handle personalization 
effectively, without incurring unnecessary information distortion. 
In this paper, we study the problem of Personalized (K,∆)-

anonymity, which builds upon the model of (k,δ)-anonymity, 
while allowing users to have their own individual privacy and 
service quality requirements. First, we propose efficient 
modifications to state-of-the-art (k,δ)-anonymization algorithms 
by introducing a novel technique built upon users’ personalized 
privacy settings. This way, we avoid over-anonymization and we 
decrease information distortion. In addition, we utilize dataset-
aware trajectory segmentation in order to further reduce 
information distortion. We also study the novel problem of 
Bounded Personalized (Κ,∆)-anonymity, where the algorithm gets 
as input an upper bound the information distortion being accepted, 
and introduce a solution to this problem by editing the (k,δ) 
requirements of the highest demanding trajectories. Our extensive 
experimental study over real life trajectories shows the 
effectiveness of the proposed techniques.  

Keywords 

Moving objects databases; Trajectories; k-anonymity; 
Personalization; Uncertainty; Segmentation; Distortion. 

1. INTRODUCTION 

With the rapid development of information and communication 
technologies, the advent of mobile computing and the increasing 
popularity of location-aware services, the volume of mobility data 

gathered daily by service providers has exploded. It is safe to 
predict that this trend will continue in the near future. Publishing 
such information allows researchers to analyze humans’ 
trajectories and extract behavioral patterns from them, in order to 
support decision-making.  

However, publishing datasets consisting of humans’ trajectories 
creates threats regarding the privacy of the individuals involved. 
This occurs when the spatiotemporal traces that users leave 
behind are combined with other publicly available information, 
which can reveal their identity, as well as other sensitive 
information about them (place of residence, sexual orientation, 
religious or political beliefs, etc.). Thus, it becomes necessary to 
develop methods providing privacy-preservation in mobility data 
publishing, where a sanitized version of the original dataset is 
published while the maximum possible data utility is maintained. 
A number of anonymization methods have been proposed so far, 
with most of them adopting the concept of k-anonymity, the 
fundamental principle which states that every entry of a published 
database should be indistinguishable from at least k–1 other 
entries. For example, trajectories are grouped into clusters of at 
least k members and published as cylindrical volumes which 
‘conceal’ the individual trajectories [1][2], points of trajectories 
are suppressed so that adversaries with partial knowledge of a 
trajectory cannot identify a specific one amongst at least k–1 
others [13], and so on.  

Figure 1(a) illustrates an example dataset consisting of 5 
trajectories, where each trajectory is associated with its own k-
anonymity requirement, whereas Figure 1(b) illustrates the 
anonymization provided by W4M [2], a state-of-the-art (k,δ)-
anonymity algorithm, assuming (a universal) k = 3 requirement 
(i.e., the maximum  of the particular requirements). Clearly, the 
result fails to maintain the trend of the original data. However, if 
we could have taken into account the specific users’ privacy 
preferences (i.e., the different k’s in Figure 1(a)), two clusters 
instead of one would have been created, as illustrated in Figure 
1(c); this is the first objective of this paper. Moreover, if we could 
have performed an appropriate segmentation of trajectories in sub-
trajectories before the anonymization process, the distortion 
would be even less, as illustrated in Figure 1(d); this is the second 

objective of this paper. (In this example, the δ- parameter effect is 
not discussed but it is similar to that of k.) 
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Figure 1: (a) a set of five trajectories along with the 

anonymization result provided by (b) universal k; (c) 

personalized ki; (d) segmentation and personalized ki. 

As revealed by the previous example, an important drawback of 
most of the existing anonymization methods is that they are based 
on universal (e.g. k = 3) rather than user-defined privacy 
requirements. This lack of personalization may lead to 
unnecessary anonymization and data utility loss for users whose 
privacy requirements are overvalued and to inadequate 
anonymization and violation of privacy for users whose 
requirements are undervalued. Towards this goal, state-of-the-art 
techniques, such as [1][2] can be extended to use a user-specific 
privacy threshold k and uncertainty diameter δ. On the other hand 
[9] offers personalization by introducing trajectory-specific 
privacy requirements, however it ignores service quality, as it will 
be discussed in Section 2. In contrast, the method we propose uses 
trajectory-specific values to determine each user’s specific 
privacy level and service quality requirements, therefore reducing 
data utility loss and improving service quality.  

An additional shortcoming of the existing anonymization methods 
that are based on clustering is that they function at the trajectory 
level. As a result, when dealing with trajectories that are on the 
whole very different to each other, though they maintain some 
similar parts, these algorithms fail to recognize this situation and 
either assign such trajectories to different clusters (i.e., k-
anonymity sets) or assign them into the same cluster after 
considerable spatiotemporal translation. This failure to recognize 
and make use of similarities between parts of trajectories is 
counter-intuitive and increases the overall distortion. In our 
proposal, we deal with this problem by utilizing trajectory 
segmentation in order to discover similar sub-trajectories and use 
those as the basis of our clustering process. 

In this paper, we present the so-called Who-Cares-about-Others’-

Privacy (WCOP) suite of methods for publishing spatiotemporal 
trajectory data using personalized (K,∆)-anonymity, extending the 
concept of (k,δ)-anonymity as introduced in [1][2], where, for 

each user ui, ki dictates the required privacy level of the specific 
user and δi functions as a service quality threshold. In addition, we 
adopt a privacy-aware trajectory segmentation phase, during 
which trajectories are partitioned into sub-trajectories. This phase 
allows the clustering algorithm to discover similarities between 
the trajectories and assign the respective partitions into clusters, 
the members of which require the least necessary editing to fulfill 
(K,∆)-anonymity, thus keeping distortion as low as possible. 
Finally, we present an approach aiming at controlling the 
information loss caused by the anonymization. The most 
demanding trajectories, i.e., the ones corresponding to users who 
require to be hidden among a large number of other users (hence, 
high k) in a small region (thus, low δ), are edited in order to be 
made less demanding, thus decreasing anonymization distortion.  

Summarizing, in this paper, we make the following contributions: 

• We propose WCOP-CT, an algorithm that extends [1][2] for 
spatiotemporal trajectory data publication based on the 
assumption that users have different privacy preferences. 

• We extend WCOP-CT to WCOP-SA, by incorporating a 
trajectory segmentation phase aiming to facilitate the 
discovery of patterns shared between parts of trajectories, thus 
decreasing the distortion caused during the anonymization 
process. 

• We propose WCOP-B, an algorithm able to control the level 
of the anonymization distortion by data assessment and 
requirements relaxation. 

• Finally, we conduct a comprehensive set of experiments over 
a real trajectory dataset, in order to evaluate our approach. 

The rest of the paper is structured as follows: Section 2 presents 
related work. Section 3 formulates the two problems to be 
addressed: Personalized (K,∆)-anonymity and Bounded 

Personalized (K,∆)-anonymity, respectively. Sections 4 and 5 
provide effective solutions to the above two problems, 
respectively. Our experimental study is presented in Section 6. 
Finally, Section 7 concludes the paper.  

2. RELATED WORK 

The methods proposed so far in order to tackle the issue of 
privacy-preserving mobility data publishing mostly adopt the 
principle of k-anonymity, which was originally proposed for 
relational databases [12]. In the context of mobility data, 
trajectories of moving objects are time ordered sequences of (p, t) 
pairs, where p denotes the place a moving object was located at 
recorded time t, usually assuming linear interpolation between 
consecutively recorded locations. Such a trajectory dataset is 
considered k-anonymized if each trajectory is indistinguishable 
from at least k−1 other trajectories. Given the complicated nature 
of spatiotemporal data and the dependence of consecutive points 
in a trajectory, attributes (p, t) are considered both sensitive and 
quasi-identifiers at the same time. Under this setting, methods 
similar to those used for relational data can be employed to 
achieve anonymization. 

Hoh and Gruteser’s method [6] is an example of data perturbation 
with a goal of decreasing an adversary’s certainty of correctly 
identifying a user. To do that, the so-called Path Perturbation 
algorithm creates fake intersection points between couples of non-
intersecting trajectories if they are close enough. The crossing 
points must be generated within a specific time-window and 
within a user-specified radius, which indicates the maximum 
allowable perturbation and desired degree of privacy. Terrovitis 
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and Mamoulis [13] proposed an approach that uses suppression. 
Trajectories are modeled as sequences of locations where users 
made transactions and an adversary is assumed to have partial 
knowledge of users’ visited locations and their relative order, 
therefore an incomplete projection of the dataset. Based on this 
assumption the algorithm seeks to eliminate the minimum amount 
of locations from trajectories so that the remaining trajectories are 
k-anonymous w.r.t. an adversary’s partial knowledge. Always 
Walk with Others (AWO) [11] is a generalization-based approach, 
which transforms trajectories into series of anonymized regions, 
while assuming adversary’s partial or full knowledge of a 
trajectory. To achieve anonymity, the algorithm creates groups 
with representative trajectories and then iteratively adds to them 
their closest trajectories until they consist of k members. After 
that, k points from each anonymized region are randomly selected 
and connected to points similarly generated in adjacent regions in 
order to form k new trajectories. Monreale et al. [10] propose k-
anonymization using spatial generalization of trajectories. In 
particular, their method finds characteristic points of trajectories 
and applies spatial clustering to them. The centroids of those 
clusters are then used for Voronoi tessellation of the area covered 
in the dataset dividing it into cells with at least k trajectories. 
Trajectories are formed by segments linking those cells. 

Never Walk Alone (NWA) [1] and its extension Wait For Me 
(W4M) [2], proposed by Abul et al., follow a clustering-based 
approach which takes advantage of the inherent uncertainty of a 
moving object’s location introducing the concept of (k,δ)-
anonymity. An object’s location at a given time is not a point, but 
a disk of radius δ, and the object could be anywhere inside that, so 
a trajectory is not a polyline, but a cylinder consisting of 
consecutive such disks. To achieve k-anonymity, each trajectory is 
assigned to a group of at least k−1 other trajectories using a 
greedy clustering algorithm. Then, the trajectories of each cluster 
are spatially translated so that they will all lie entirely within the 
same cylinder (uncertainty area) of radius δ/2. W4M is a variant 
of NWA that uses the time-tolerant EDR distance function [4] 
during the clustering phase in order to overcome the limitations of 
Euclidean distance. Moreover, W4M performs spatio-temporal 
instead of spatial translation to the trajectories. All the 
aforementioned approaches offer no degree of personalization 
since they assume that all users share the same privacy level k 
which is application-determined.  

The most related to our work is the one proposed by Mahdavifar 
et al. [9]. It introduces the idea of non-uniform privacy 
requirements, where each trajectory is associated with its own 
privacy level indicating the number of trajectories it should be 
indistinguishable from. Trajectories are first divided into groups 
depending on their privacy level. Clusters are then created by 
randomly selecting a centroid and adding to the cluster the 
trajectories nearest to it if their EDR distance is lower than a 
threshold, until the maximum privacy requirement within the 
cluster is satisfied. If the requirements are not satisfied, groups 
with lower privacy levels are progressively searched for 
trajectories to be added to the cluster, until all the privacy 
requirements are met. Finally, the trajectories of each cluster are 
anonymized using a matching point algorithm that generates an 
anonymized trajectory as the cluster’s representative. While this 
approach offers a greater degree of personalization than others, it 
still leads to a compulsory trade-off between privacy and quality 
for each user. If a trajectory has a high privacy requirement k, it 
will very likely be part of a large cluster, thus suffering from 
increased information loss and low data utility, since the user 
cannot set a ‘quality’ requirement. 

3. PROBLEM FORMULATION 

In this section, we present the formal background and definition 
of the Personalized (K,∆)-anonymity problem in two variations. 
We assume that the trajectory τ of a moving object is a polyline in 
3-dimensional space represented as a sequence of time-stamped 
locations: (p1, t1), (p2, t2), …, (pn, tn), t1 < t2 < … < tn. During the 
non-recorded time periods (ti, ti+1), we assume linear interpolation, 
i.e., the object moves along a straight line from pi to pi+1 with a 
constant speed. 

Following the definition adopted by [1], an uncertain trajectory 
buffer is defined as a cylindrical volume of diameter δ centered at 
an object’s expected trajectory. Formally: 

Definition 1 (uncertain trajectory): Given a trajectory τ defined in 

[t1, tn] and an uncertainty threshold δ, τδ is the uncertain 

counterpart of trajectory τ, defined as follows: for each 3-

dimensional point (p, t) in τ, its uncertainty area is the horizontal 

disk centered at (p, t) with diameter δ. The trajectory volume of τ
δ
, 

denoted by Vol(τδ) is the union of all such disks for every t ∈ [t1, 

tn]. A possible motion curve of τ is any continuous function fPMC
τ : 

Time→R
2
 defined on the interval [t1, tn], such that for any t ∈ [t1, 

tn], the 3-dimensional point (fPMC
τ(t), t) lies inside the uncertainty 

area at time t. � 

Definition 2 (co-localized trajectories): Two trajectories τ1, τ2, 

both defined in [t1, tn], are considered co-localized w.r.t. δ, if for 

each point (p1, t) in τ1 and (p2, t) in τ2, t ∈ [t1, tn], it holds that the 

Euclidean distance d(p1, p2) ≤ δ; we write Colocδ(τ1, τ2) omitting 

the time interval [t1, tn]. � 

Definition 3 ((k,δ)-anonymous set of trajectories): Given a set of 

trajectories S, an uncertainty threshold δ, and an anonymity 

threshold k, S is (k,δ)-anonymous iff |S| ≥ k and Colocδ(τi, τj) for 

each τi, τj ∈ S. � 

A dataset D of moving object trajectories is considered (k,δ)-
anonymous if each of its members belongs to a (k,δ)-anonymity 
set. If D does not meet this requirement, then it should be 
transformed into a sanitized version, called Ds, which satisfies the 
aforementioned condition. Hence: 

Definition 4 ((k,δ)-anonymity): Given a dataset D of moving 

object trajectories, an uncertainty threshold δ, and an anonymity 

threshold k, (k,δ)-anonymity is satisfied by transforming D to Ds, 

such that for each trajectory τs ∈ Ds there exists a (k,δ)-anonymity 

set S ⊆ Ds, τs ∈ S, and the distortion between D and Ds is minimal. 
� 

One of the possible approaches to transform a dataset to its 
sanitized version is the spatiotemporal translation of the trajectory 
points. Distortion usually measures the difference between the 
original and the sanitized data. A trajectory’s distortion is defined 
as the sum of its point-wise distances to its sanitized version. In 
case the trajectory is an outlier, thus removed from the 
anonymized dataset, the distortion is proportional to the number 
of the distorted moving points of the original trajectory. The total 
distortion caused by sanitizing the entire database is defined as the 
aggregation of its individual trajectories’ distortion. 

Definition 5 (trajectory distortion due to translation): Given a 

trajectory τ ∈ D defined in [t1, tn] and its sanitized version τs ∈ Ds, 

the translation distortion (TD) over τ due to its translation into τs
 

is defined as:  

 ����, ��	 = �∑ �����, �����	�∈���,��� 																	 |��| > 0|�| ∙ �																																																|��| = 0� (1) 
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where |�|, |��| indicate the size (i.e., number of points) of the 

original and the sanitized trajectory, respectively, and Ω is a 

constant that penalizes distorted moving points. Summing for all 

trajectories, the total translation distortion over a trajectory 

dataset D due to its translation into Ds is defined as:  

 �����, ��	 = ∑ ����, ��	�∈�  (2) 

� 

Regarding Ω, in our experiments it corresponds to the maximum 
translation occurred during the anonymization process. 

The problem introduced in this paper is that of achieving 
anonymity of a trajectory dataset, where each trajectory prescribes 
its own (ki, δi) values, while keeping the total distortion as low as 
possible. The problem is formulated as follows: 

Problem 1 (Personalized (K,∆)-anonymity problem): Given a 

dataset D of moving object trajectories, D = {τ1, …, τn}, along 

with their respective anonymity preferences (ki, δi), and a trash 

size threshold trashmax, the Personalized (Κ,∆)-anonymity 

problem, where K = {k1, …, kn} and ∆ = {δ1, ..., δn}, is to find an 

anonymized version of D, Ds = {���, …, ���}, 0 ≤ n−m ≤ trashmax, 

where ���  is a (ki, δi)-anonymity version of τi and the total 

distortion, TTD(D, Ds), is minimal. � 

In the above definition, please note that m ≤ n, i.e., the cardinality 
of the output dataset Ds may be lower than that of the input dataset 
D. This is due to the fact that during the anonymization process 
some of the original trajectories may be moved to the trash bin, 
i.e., they are completely removed.  

A comment on Problem 1 is that the distortion caused in the 
original dataset due to anonymization is not controlled since it has 
to do with the nature of the trajectories, as well as the values of 
their anonymity preferences (ki, δi). Therefore, a natural variation 
of the above problem is that of anonymizing a database of 
trajectories of moving objects where each object has its own (ki, 
δi) values, while keeping a control over the overall distortion. This 
problem is formulated as follows: 

Problem 2 (Bounded Personalized (K,∆)-anonymity problem): 

Given a dataset D of moving object trajectories, D = {τ1, …, τn}, 

along with their respective anonymity preferences (ki, δi), a trash 

size threshold trashmax, and a distortion threshold distortmax, the 

Bounded Personalized (Κ,∆)-anonymity problem, where K = {k1, 

…, kn} and ∆ = {δ1, ..., δn}, is to find an anonymized version of D, 

Ds = {���, …, ���}, 0 ≤ n−m ≤ trashmax, where ���  is a (ki, δi)-

sanitized version of τi and the total distortion, Distortion(D, Ds)≤ 

distortmax. � 

The total distortion of the dataset when compared to its sanitized 
version, Distortion(D, Ds), is a formula consisting of two factors, 
i.e. the distortion from the translation during the anonymization 
step, TTD(D, Ds), which is calculated according to Eq.(2) along 
with the distortion caused from the editing phase, TE(D) (to be 
introduced in Section 5).  

A special case is when the solution Ds of Problem 1 also makes a 
solution to Problem 2, formally: Distortion(D, Ds) ≤ distortmax; in 
such case, nothing extra has to be done in order to provide a 
solution to Problem 2. In the general case, however, where 
Distortion(D, Ds) > distortmax, Problem 2 can be solved by 
relaxing the (ki, δi) constraints of those trajectories that are most 
responsible for the distortion caused; we call them, the most 
demanding ones, and a formulation of the demandingness of a 
trajectory will be defined in Section 5.  

4. PERSONALIZED (K,∆)-ANONYMITY 

In this section, we present a suite of methods for publishing 
spatiotemporal trajectory data using the personalized (K,∆)-
anonymity. In particular, Section 4.1 describes baseline solutions 
for providing personalized anonymization w.r.t. different users’ 
preferences. In section 4.2, we present an approach that provides 
personalized (K,∆)-anonymity based on trajectory segmentation. 

4.1 Baseline Solutions 

Given a trajectory dataset D along with personalized privacy 
requirements (ki, δi) for each trajectory τi, a baseline solution to 
Problem 1 consists of exploiting a state-of-the-art (k,δ)-anonymity 
algorithm, such NWA [1] or W4M [2], using a single, universal 
value for each k and δ. In order to satisfy every user’s privacy 
requirement, it is the maximum among all ki and the minimum 
among all δi that are assigned to the universal k and δ variables, 
respectively. The following algorithm, being the naïve version of 
our Who-Cares-about-Others’-Privacy (WCOP) suite of methods, 
illustrates this solution. As already discussed, Function k-δ-

anonymity( ) in Line 3 of the algorithm corresponds to a state-of-
the-art (k,δ)-anonymity algorithm, such as NWA or W4M. 

Algorithm 1. WCOP-NV 

Input: (1) a trajectory dataset, D = {(τ1, k1, δ1), …, (τn, kn, δn)}; (2) a 

trash size threshold, trashmax, (3) a maximum cluster radius threshold, 

radiusmax 
Output: A sanitized trajectory dataset, Ds = {���, …, ���} 

1. � !" ← � !#$%#& 
2. �'() ← �'(#$*#& 
3. Ds ← k-δ-anonymity(D, � !", �'(), trashmax, radiusmax) 

4. return Ds 
 

In order to improve this very crude attempt of satisfying 
personalized (K,∆) values, we propose an alternative approach 
directly using the user-specific privacy requirements and being 
based on clustering and translation, called WCOP-CT (where 
‘CT’ stands for Clustering and Translation). WCOP-CT follows 
the general structure of W4M, consisting of two phases: a greedy 

clustering phase, which has been shown in [1] to have the best 
effectiveness/efficiency ratio, followed by a spatiotemporal 

translation phase, which uses Edit Distance on Real sequence 
(EDR) distance function [4] in order to modify each cluster to 
make it an anonymity set. During the first phase, a pivot trajectory 
is randomly selected and a cluster is formed around it by its k−1 
unvisited closest neighbors. Then the unvisited trajectory that is 
farthest away from previous pivots is selected as a new pivot, and 
the process is repeated until clusters satisfying certain criteria. 
During the second phase, each cluster formed in the previous 
phase is transformed into a (k,δ)-anonymity set. 

The input of WCOP-CT algorithm is a dataset D consisting of n 

trajectories τi along with their personalized privacy requirements 
(ki, δi), a trashmax value that bounds the size of trash, which 
contains the outliers suppressed during the clustering process 
(phase 1 of the algorithm) in order to improve the quality of the 
final output and the maximum allowable cluster radius, radiusmax. 
The output of the algorithm is the personalized (K,∆)-anonymized 
dataset Ds. 
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Algorithm 2. WCOP-CT 

Input: (1) a trajectory dataset, D = {(τ1, k1, δ1), …, (τn, kn, δn)}; (2) a 

trash size threshold, trashmax, (3) a maximum cluster radius threshold, 

radiusmax 

Output: A sanitized trajectory dataset, Ds = {���, …, ���} 

1. Ds ← ∅ 

2. γ ← WCOP-Clustering(D, trashmax, radiusmax)   

/* Clustering phase*/ 

3. for each cluster C ∈ γ do 

4.  Cs ← ∅ 

5.  τc ← pivot of C; δc ← �'(#$*#& in C 

 /* Translation phase */  

6.  for each τ ∈ C do                                           

7.   τs ← WCOP-Translation(τ, τc, δc) 

8.   Cs ← Cs ∪ {τs} 

9.  end for 

10.  Ds ← Ds ∪ Cs 

11. end for 

12. return Ds 
 

In detail, WCOP-CT works as follows: the operation WCOP-

Clustering (line 2) extracts a set of clusters γ from the original 
dataset. Then, for each cluster (represented by the corresponding 
pivot trajectory), the algorithm defines its own δ value, which is 
the �'(#$*#&	among its members (lines 3-5). All trajectories 
contained on the current cluster are translated by the WCOP-

Translation operation (lines 6-7). The procedure is repeated until 
all trajectories of all clusters are anonymized.  

The main difference between the proposed WCOP-CT and, e.g. 
W4M is that, whereas in W4M a pivot is selected and then 
invariably grouped along with its k−1 closest neighbors in order to 
form a cluster, in WCOP-CT each cluster has its own, non-fixed k 
value. It can easily be seen that this approach results in clusters of 
non-fixed size ranging between 2 and maxi{ki}. In the same spirit, 
the spatiotemporal editing phase of WCOP-CT, called WCOP-
Translation in Algorithm 2, differs to that of W4M in that there is 
no universal δ applied to all clusters, but each cluster is edited 
based on its own δc value, which is the mini{δi} among its 
members. 

The core of WCOP-CT, i.e., the clustering step under the name 
WCOP-Clustering(D, trashmax, radiusmax) in Algorithm 2 above, is 
listed in Algorithm 3 below. WCOP-Clustering follows the 
general structure of the respective algorithm of W4M and Greedy 
Clustering, where W4M is based on. After forming clusters, each 
of them is separately processed and transformed into a (k,δ)-
anonymity set, with (k,δ) being values specific to the cluster. Here 
we follow the approach proposed in [2], which achieves that by 
using the cluster’s pivot as reference and editing the other 
trajectories so that they are co-located with it (see Section 3) and 
also have the same number of points as the pivot. The difference 
with our method is that each cluster uses its own δ value for co-
localization instead of a universal value. 

In detail, WCOP-Clustering iteratively selects pivot trajectories to 
function as centers of clusters, with pivots being selected at 
random from amongst the available active trajectories (Line 4). A 
pivot’s (ki, δi) values serve as the initial (k,δ) requirements of its 
candidate cluster (Line 6). The algorithm then successively adds 
to the candidate cluster the nearest unvisited neighbor of the pivot 
and updates the cluster’s k and δ, until the cluster’s size is enough 
to satisfy its k requirement, which equals to the maximum ki value 
among its members (Lines 7-11).  

Algorithm 3. WCOP-Clustering 

Input: (1) a trajectory dataset, D = {(τ1, k1, δ1), …, (τn, kn, δn)}; (2) a 

trash size threshold, trashmax, (3) a maximum cluster radius threshold, 

radiusmax 

Output: A set of clusters γ 

1.  repeat 

2.  Active ← D; Clustered ← ∅; Pivots ← ∅; Trash ← ∅ 

3.  while Active ≠ ∅ do 

4.   τ, ← random(τ) | τ ∈ Active 

5.   c./.size ← 1  

6.   c./ . k	← τ,. k; c./. δ	← τ,. δ 

7.   while (c./ . k > c./. size) do 

8.    c./← {τ,} ∪ {NN of τ, ∈ D − Clustered} 

9.    c./. size ← c./ . size + 1 

10.    c./. k ← max(c./. k,τ77. k) 

11.    c./. δ	← min(c./. δ, τ77. δ) 

12.   end while 
13.   if max.;<=/Dist(τ,, τ) ≤ radiusmax then 

14.    Active ← Active − c./ 

15.    Clustered ← Clustered ∪ c./ 

16.    Pivots ← Pivots ∪ {τ,}  

17.   else  

18.    Active ← Active − {τ,} 

19.  end while 

20.  for each τ ∈ D − Clustered do 

21.   τ, ← argminτ′∈Pivots|cτ′p.size≥τ.k−1,			cτ′p≤τ.δDist�τ′, τ	 
22.   if Dist(τ,, τ) ≤ radiusmax then 

23.    c./ ← c./ ∪ {τ} 

24.   else  

25.    Trash ← Trash ∪ {τ} 

26.  end for 

27.  increase(radiusmax) 

28. until |Trash |≤ |Trashmax| 

29. return {c./  | �M∈ Pivots } 

 

Once all possible clusters have been formed, the remaining 
unassigned trajectories are assigned to the cluster of their closest 
pivot, on condition that their ki can be satisfied by the cluster’s 
size (including themselves), their δi are not smaller than the 
cluster’s current δ, and their addition will not increase the 
cluster’s radius beyond radiusmax (Lines 20-23). If a trajectory 
cannot be added to any cluster without violating a condition, it is 
moved to the trash (Line 25). If the solution found results in trash 
with size larger than the trashmax threshold, the radiusmax 
constraint is relaxed and the process starts again from the 
beginning until a solution is achieved that satisfies the trashmax 
size requirement (Lines 27-28). As output, the algorithm returns 
only the clusters formed, excluding the suppressed trajectories 
implicitly (Line 29). 

After the clusters have been defined, Algorithm 2 proceeds to the 
necessary spatiotemporal translation. Since trajectories may not be 
of the same size, the EDR time-tolerant distance function is 
responsible to minimize the necessary number of operations so as 
to make them indistinguishable. The goal of the editing operations 
(i.e. translate points towards pivot, remove deleted points, insert 
new points) that are performed to a trajectory is to make it more 
similar to the pivot. Algorithm 4 describes the translation 
procedure that is followed by WCOP-CT. 
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Algorithm 4. WCOP-Translation 

Input: (1) a trajectory τ, (2) cluster’s pivot trajectory τc, (3) cluster’s 

uncertainty threshold δ< 

Output: Anonymized trajectory τs 

1. edit←EDR_op_sequence(τ, τc) 

2. τs ←<> 

3. i, j ←1 

4. for all op	∈	edit do 

5.  if op=remove(τ<,N) then 

6.   τs.append(<random_point_in_circle(τ<,N. x, τ<,N. y, δ</2	, τ<,N. t>) 

7.   j←j+1 

8.  else 
9.  if op=match(τR, τ<,N) then 

10.   τs.append(<transl(τR. x, τR. y, τ<,N. x, τ<,N. y, δ</2	, τ<,N. t>) 

11.   i←i+1 

12.   j←j+1 

13.  else 

14.   i←i+1 

15. end for 

16. return τs 
 

As a first step, the algorithm reconstructs the sequence of the 
required operations (Line 1). In case of a point deletion from the 
pivot trajectory τc, the algorithm instead of deleting, it creates a 

new point randomly inside the circle of radius 
)ST  around the 

corresponding point in τc (Lines 5-7). Recall that in our case each 
cluster has its own δc equal to mini{δi} among its members. 
Differently, when the deletion concerns trajectory τ, the point is 
permanently removed (Lines 13-14). If a matching between τ and 
τc occurs, then operation transl is responsible to ensure that the 

distance between them will be equal or less than 
UVT . If the two 

points match w.r.t. the temporal dimension, then trajectory’s point 
is transferred inside the circle to a point having the minimum 
distance translation from the original one. Else, the temporal 
coordinate value of the pivot’s point is used and the point is 
spatially translated again inside the circle with radius equal to or 

less than 
)ST  (Lines 9-12). 

4.2 Personalized (K,∆)-Anonymity using 

Trajectory Segmentation 

In this section, we introduce a novel approach to the problem of 
Personalized (K,∆)-anonymity, which aims to improve upon the 
baseline solutions presented in the previous section by 
implementing trajectory segmentation, in order to increase 
clustering effectiveness and decrease distortion levels. A 
shortcoming of the two baseline solutions (WCOP-NV and 
WCOP-CT), which is common in all clustering methods, is that 
they use the trajectory as the smallest working unit. As a result, 
when two trajectories have some similar parts, but are 
significantly different on the whole, the algorithm is unable to 
discover and make use of those similar elements, leading to an 
overall increased distortion during clustering. In order to deal with 
this issue, our approach includes a trajectory segmentation phase, 
where trajectories are partitioned into sub-trajectories according to 
a set of privacy-aware criteria. It is these sub-trajectories that are 
then used as input for the anonymization stage of the algorithm 
that follows. While this segmentation incurs extra computational 
cost, it offers a distinct advantage in that it facilitates the 
discovery of patterns shared between parts of trajectories, which 
otherwise are significantly different on the whole. 

The so-called WCOP-SA (where ‘SA’ stands for Segmenting and 
Anonymizing), which is presented in Algorithm 5 below, is the 
generic two-step method that we propose. Given a dataset D 
consisting of n trajectories τi along with their personalized privacy 
requirements (ki, δi), in the first step the algorithm applies a 
trajectory segmentation process to produce the respective dataset 
of partitioned sub-trajectories Dp, followed by the second step that 
anonymizes those sub-trajectories. 

Algorithm 5. WCOP-SA 

Input: (1) a trajectory dataset, D = {(τ1, k1, δ1), …, (τn, kn, δn)}; (2) a 

trash size threshold, trashmax, (3) a maximum cluster radius threshold, 

radiusmax 
Output: A sanitized trajectory dataset, Ds = {���, …, ���}. 

1. Dp ← WCOP-Segmenting(D) 

2. Ds ← WCOP-Anonymizing(Dp, trashmax, radiusmax) 

3. return Ds 
 

An example of using WCOP-SA on a dataset partitioned using 
this method can be seen in Figure 1(d), where segments that are 
similar in terms of the number of their neighboring trajectories 
have been identified and grouped into sub-trajectories, which in 
turn have been assigned to appropriate clusters causing less 
spatiotemporal translation. WCOP-SA is by purpose generic, in 
that it does not strictly specify the algorithms used for 
segmentation and anonymization. Any algorithm of this kind can 
be used. However, in our experimental study (Section 6) we 
evaluate WCOP-SA using a trajectory-aware (Traclus [8]) vs. a 
neighborhood-aware segmentation algorithm (Convoys [7]) for 
the segmentation step, and WCOP-CT vs. WCOP-B (to be 
introduced in Section 5) for the anonymization step.  

  

(a) (b) 

τ1.1

τ2.1

τ3.1

τ3.2

0 1 2 3

τ2.2

τ3.3

 
(c) 

Figure 2: (a) a set of trajectories segmented by (b) Traclus and 

(c) Convoys partitioning-and-clustering algorithms. 

Why Traclus vs. Convoys? Traclus [8] is a well-known and 
widely-used partitioning and clustering framework that performs 
density-based clustering on line segments aiming at discovering 
common sub-trajectories instead of grouping trajectories as a 
whole. During this process, trajectories are first partitioned on 
segmentation points representing significant changes of the 
trajectory’s behavior (i.e. direction) by using the minimum 
description length principle.  
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Then, the directed line segments previously discovered are 
clustered with a variant of DBSCAN density-based clustering 
algorithm. However, the aforementioned approach does not 
properly incorporate the temporal dimension of trajectories as it 
spatially segments trajectories w.r.t their direction. A well-known 
temporal-awareness approach for clustering spatiotemporal 
trajectories is the one of Convoys [7]. It is a concept that uses 
different criteria for grouping the trajectories. A convoy is defined 
as a group of objects that has at least m objects, which are density-
connected with respect to a distance threshold e, during k 
consecutive time-instants. 

The difference between the two aforementioned approaches is 
illustrated in Figure 2. Let us assume three trajectories τ1, τ2, τ3 
(Figure 2(a)); when Traclus is applied for the segmentation of 
trajectories, the derived sub-trajectories (illustrated in Figure 2(b)) 
are constructed based on geometric parameters, actually, 
significant changes on their own direction. In contrast, Convoys 
performs segmentation by discovering neighboring trajectories 
that are moving together during a time period; as illustrated in 
Figure 2(c), τ2 and τ3 are moving together between t = 0 and t = 1 
while τ1 and τ3 between t = 1 and t = 2, thus two convoys are 
discovered, which are then used for the segmentation of the 
trajectories to 6 sub-trajectories.   

5. BOUNDED PERSONALIZED (K,∆)-

ANONYMITY 

In order to deal with the problem of Bounded Personalized (K,∆)-
anonymity defined in Section 3, where the requirement is to keep 
anonymization distortion below a given threshold, we extent the 
methods presented in the previous sections by introducing dataset 
assessment and requirement relaxation. Since distortion is due to 
spatiotemporal translation, a naïve approach would be to 
anonymize a dataset once, identify the trajectories, which have 
undergone the most translation and edit them. However, a 
trajectory τ might be translated not due to its own (k, δ) values, but 
in order to be assigned to a cluster that includes very demanding 
members, i.e., τ’s neighbors. Therefore, in order to decrease the 
overall distortion of a dataset, we argue that the most demanding 
trajectories should be detected and edited. 

By intuition, high values of k and low values of δ make a 
trajectory demanding. As such, a metric for the demandingness of 
a trajectory is defined as follows:  

Definition 6 (dataset-aware trajectory demandingness): Given a 

trajectory τ ∈ D with privacy requirements (k,δ), its dataset-

aware demandingness, ddem(τ, D)→[0,1], is defined as: 

 WXY��, �	 = Z[ ∗ �.""�]^ +ZT ∗ )����.)  (3) 

where kmax>1 and δmin>0 correspond to the maximum k and 

minimum δ values of trajectories in D, respectively, and (k,δ) 

contribute to the overall value according to some weights, ∑Z# = 1 . 

� 

Eq. (3) formulates the intuition that trajectory demandingness is 
proportional to k and reversely proportional to δ. kmax and δmin are 
used for normalization purposes and the weights wi are introduced 
in order for the importance of the two components to be 
controlled, according to the application scenario. For simplicity, 
in the rest of the paper, the two components are equally weighted, 
i.e., w1 = w2 = ½.  

As an example, consider a dataset D consisting of 50 trajectories 
where kmax = 50 and δmin = 20. Table 1 below lists the top-5 
demanding trajectories of the dataset, where their demandingness 
has been calculated according to Eq. (3). Now assume that the 
overall distortion caused by the sanitization of the dataset D to Ds 
exceeds distortmax threshold. The two most demanding 
trajectories, i.e. τ21, τ5 could be edited in order to decrease the 
complexity of assigning them to a cluster. Trajectory τ21 requires 
to be hidden among other 49 neighbors within an area of diameter 
30 m. Similarly, trajectory τ5, less demanding, requires other 29 
neighbors within an area of diameter 20 m.  

Table 1: An example of editing the most demanding 

trajectories 

τi (ki, δi) ddem(τi, D) 

τ21 (50,30) 0.83 

τ5 (30,20) 0.8 

τ47 (23,100) 0.33 

τ15 (23,220) 0.27 

τ7 (20,200) 0.25 

 
How can we relax these requirements? Actually, we need a 
measure that indicates the degree of trajectory editing. For this 
purpose, we define trajectory edit cost as the ratio of the (k,δ)-

editing required for the particular trajectory over the (k,δ)-editing 
required for the most demanding one. Note that for a trajectory τ, 
its dataset-aware demandingness can be reduced by editing its k 
and/or δ values. 

Definition 7 (trajectory edit cost): Given a trajectory τ ∈ D with 

dataset-aware demandingness, ddem, defined over D, and a 
threshold trajectory τthres, the edit cost of trajectory τ, 0 ≤ costedit ≤ 

1, is defined as: 

 `ab�XW#���, �	 =	 (4) 

c WXY��, �	 − WXY���deX�, �	max�∈� WXY��, �	 − WXY���deX� , �	 , 'f	max�∈� WXY��, �	 ≠ WXY���deX�, �		
0																																														,																																								a�ℎijZ'bi

� 
where � !�∈� WXY��	 is the maximum dataset-aware 

demandingness among the trajectories in D. � 

As a threshold trajectory, τthres, we refer to the trajectory with the 
maximum acceptable demandingness in the ranking. All 
trajectories having a higher ranking (i.e. more demanding) are 
being edited. Back to Table 1, let us assume that the two most 
demanding trajectories need to be edited. Trajectory τ47 will be the 
threshold trajectory τthres. Thus, according to Eq. (4), the edit cost 
of τ21 equals to 1 while for τ5 it is equal to 0,94. 

The distortion caused by an edited trajectory can be measured as 
the number of its points multiplied by the maximum dataset 
translation, multiplied by the trajectory’s edit cost, which 
indicates the required editing degree compared to the maximally 
edited one.  

Definition 8 (trajectory distortion due to (k,δ) editing): Given an 

edited trajectory τ ∈ D, the contribution of trajectory τ to the 

overall distortion cost, distort, is defined as: 

 'b�aj���, �	 = |�| ∙ Ω ∙ `ab�XW#���, �	 (5) 

where |τ| indicates the size of the trajectory (i.e. the number of its 

points) and Ω is a constant that penalizes distortion. The overall 
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editing distortion, DE, over a trajectory dataset D due to 

trajectory editing, is defined as:  

 �l��	 = ∑ 'b�aj���,�	�∈�  (6) 

� 

Regarding Ω, as in Eq. (2), we define it to be the maximum 
translation occurred during the anonymization process. 

Definition 9 (dataset distortion): The total distortion of a dataset 

D due to its anonymization to Ds, is defined as the sum of the total 

distortion due to translation, TTD, and the total distortion due to 

editing, DE: 

 �'b�aj�'a(��, ��	 = �����, ��	 + �l��	                   (7) 

� 

WCOP-B (‘B’ stands for Bounded), which is presented in 
Algorithm 6 below, shows the generic concept we propose to 
tackle the Bounded Personalized (K,∆)-anonymity problem, as it 
was defined in Section 3. Note that, as a first step, a user is able to 
apply WCOP-CT on the original dataset. The output will be an 
anonymized dataset along with the distortion caused during the 
anonymization. The user is then capable to estimate the desired 
distortion thus determining distortmax. 

Algorithm 6. WCOP-B 

Input: (1) a trajectory dataset, D = {(τ1, k1, δ1), …, (τn, kn, δn)}; (2) a 

trash size threshold, trashmax; (3) a distortion threshold, distortmax; (3) 

an amount of editable trajectories, step. 
Output: A sanitized trajectory dataset, Ds = {���, …, ���} 

1. for each τ ∈ D do  
2.  Calculate WXY��, �	                                // according to Eq. (3) 

3. end for 

4. editsize ← step 

5. SortByDemandingness(D) 

6. repeat 

7.  ResetTrajectories(D) 

8.  Edited ← ∅; Trashed ← ∅; editcount ← 0 

9.  τ ← highest scoring trajectory 10.  τmnopq ← τrsptRmuvwxs[	
 / *Editing phase */  

11.  while editcount < editsize do                          

12.   Calculate costptRm�τ, D	                    // according to Eq. (4) 

13.   τ.k ← τmnopq. k 

14.   τ.δ ← τmnopq. δ 

15.   Edited ← Edited ∪ {τ} 

16.   editcount ← editcount + 1 

17.   τ ← next trajectory 

18.  end while 

   / * Anonymization phase */                                                                      

19.  Ds ← WCOP-CT(D, trashmax, radiusmax) 

20.  Calculate Distortion(D, Ds)                        // according to Eq. (7) 

21.  editsize ← editsize + step 

22. until (Distortion ≤ distortmax || editsize ≥ |D|) 

23. return Ds 
 

Algorithm WCOP-B-Edit-and-Anonymization works as follows: 
With the trajectory database and a distortion threshold distortmax 

given as input, the trajectories are first assessed in order for the 
algorithm to calculate the demandingness of each trajectory 
according to Eq. (3) (Lines 1-3). Then, the trajectories are sorted 
according to their demandingness, to facilitate the steps that 
follow (line 5). Based on the demandingness scores previously 
calculated, the (k,δ) values of the most demanding trajectories are 
edited, with editsize determining the amount of editable trajectories 
(Lines 11-18). In more detail, the goal of the editing process that 

follows is to edit the most expensive trajectories so that their 
editing score will become equal to the threshold trajectory’s 
editing score. Starting with the highest-scoring trajectory and 
continuing until editsize has been reached, the editing cost of each 
trajectory is calculated (lines 11-12). Trajectory’s k value is then 
decreased to the corresponding value of the threshold trajectory 
(lines 13). Next, the trajectory’s δ is increased up to threshold 
trajectory’s δ value (Line 14). The trajectory is then marked as 
‘edited’, the edit-counter is updated and the next-highest-ranking 
trajectory selected (Lines 15-17). After the editing phase is 
completed, the edited dataset D is given as input to the WCOP-CT 
algorithm, which produces an anonymized dataset Ds (Line 19). 
The total distortion of the dataset is then calculated according to 
Eq.(7) (Lines 20). If the total distortion is below the distortion 
threshold, distortmax, the algorithm ends and the anonymized 
dataset is given as output, otherwise the portion of the dataset that 
is marked for editing is increased (Line 21) and the editing - 
anonymization phase is repeated; this loop continues until either 
the distortion requirement is satisfied or the entire dataset has 
been edited (Line 22). 

It is worth to note that the method is valid for datasets consisting 
of either whole trajectories or segmented sub-trajectories. 
Therefore, it is the same algorithm that can be used in 
combination with either WCOP-CT or WCOP-SA (see line 19 in 
Algorithm 6). 

Since the distortion caused by the anonymization of a dataset is 
heavily dependent on the original data and the dataset’s privacy / 
quality requirements, it is possible that there will be combinations 
of strict distortion requirements and very demanding datasets that 
prohibit the discovery of a solution.  

6. EXPERIMENTAL STUDY 

In this section, we evaluate the effectiveness of our WCOP suite 
of methods for addressing the Personalized (K,∆)-anonymity 

problem and its Bounded variation, as defined in Section 3. 
Namely, our suite consists of four algorithms: WCOP-NV, 
WCOP-CT, and WCOP-SA that address the first problem and 
WCOP-B that addresses the second problem.  

We describe the experimental settings in Section 6.1. We make a 
base comparison between all the proposed algorithms in Section 
6.2, while in Section 6.3, we briefly discuss the effects of (k, δ) 
parameter values. In Section 6.4, we examine the results of having 
first partitioned the trajectories of the dataset into sub-trajectories 
using dataset-aware criteria. In Section 6.5, we validate the results 
of using trajectory editing to relax demanding trajectories’ 
requirements so as to decrease anonymization distortion.  

6.1 Experimental Setting 

In this experimental study we use a real dataset to evaluate the 
performance of the examined algorithms. In particular, we use a 
sample of GeoLife dataset [14] reporting the traces of a group of 
individuals monitored in Beijing, consisting of 238 trajectories.  

The dataset used in our experiments is visualized in Figure 3 
whereas in Table 2, we report the characteristics of the dataset, 
namely the number of objects – users, the number of trajectories, 
|D|, the total number of spatiotemporal points composing those 
trajectories, the derived average speed, the half-diagonal of the 
minimum bounding box of the entire space that the dataset is 
covering, radius(D), and the duration of the dataset. 
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Figure 3: the trajectory dataset used in the experimental study 

(portion of GeoLife dataset). 

 

Table 2: Statistics of GeoLife dataset 

GeoLife 

# objects (users) 72 

# trajectories, |D| 238 

# spatiotemporal points 343,129 

avg. speed (in m/s) 6.36 

half-diagonal of entire 

space, radius(D) (in m) 
51,982 

dataset duration (in days) 1,477  

 
δmax parameter is set to 3% of radius(D). trashmax, i.e., the 
maximum number of trajectories that can be suppressed, is set to 
10% of |D|. Radiusmax is set equal to radius(D). Finally, the 
tolerance thresholds of the EDR, ∆ = {dx, dy, dt}, are set as 
heuristic functions of δmax: ∆ = {10 ∗ δmax, 10 ∗ δmax, 10 ∗ δmax / 

avg_speed}, where avg_speed is the average speed of all the 
moving objects in the dataset. 

The experiments were performed on an Intel Xeon 2 GHz 
processor with 4 Gb of RAM and all the proposed algorithms 
were implemented in C. 

6.2 Base Comparison 

In this section, a base comparison between the proposed 
approaches is presented, in order to prove the validity of our 
personalized approaches. The dataset is used for this experiment 
with randomly generated (k,δ) requirements for each trajectory, k ∈	 �2,	 100�,	 δ	 ∈	 �10,	 1400�. WCOP-NV finds the max{ki}, 
min{δi} values in the dataset and uses them for all trajectories, 
ignoring their individual requirements, essentially replicating the 
way W4M works. WCOP-CT does not take universal (k,δ) values 
as input, instead it parses each trajectory’s specific (ki,δi) 
requirements from the dataset and uses them throughout the 
process. Moreover, WCOP-SA algorithms first converts the 
dataset into a set of sub-trajectories and then WCOP-CT is applied 
in order to anonymize them w.r.t. user preferences. Finally, 
WCOP-B improves the overall distortion when the dataset is 
anonymized with WCOP-CT by editing the most demanding 
trajectories. 

Table 3 displays the results from the experiment previously 
described. In particular, it lists a number of useful statistics, such 
as the number of the input (sub-)trajectories, the number of 
created clusters, the number of trajectories and the number of 
trajectory points that ended to the trash bin, the discernibility 

metric [3], which measures the data quality of the anonymized 
trajectories, the number of created and deleted points on 
trajectories, the average spatial and temporal translation per 
trajectory, the total distortion according to Eq.(2) (for WCOP-B 
Eq. (7) is used), and the runtime. 

In particular, discernibility [3] aims at measuring the quality of 
the sanitized data. Given a set of clusters z� = $z�� , … , z��&	of D 
and the trash bin, Trash, it is defined as: 

 �| = ∑ |z��|T}#~[ + |�j bℎ| ∙ |�| (6) 

Lower values of discernibility imply that more data elements are 
becoming indistinguishable. 

Table 3: Comparison of WCOP-NV, WCOP-CT, WCOP-SA 

(Traclus & Convoys), WCOP-B anonymizing the GeoLife 

dataset with the same parameters (kmax=5, δmax=250) 

Algor. 

Stat. 

WCOP-

NV 

WCOP-

CT 

WCOP-
SA 

Traclus 

WCOP-
SA 

Convoys 

WCOP-

B 

# (sub-) 

trajectories 
238 238 17,717 272 238 

# clusters 21 55 4,412 3 51 

# trajectories  

moved to trash 
17 6 83 2 4 

# points moved to 

trash  
25,103 9,189 3,634 2,731 5,706 

discernibility 

(x10
3
) 

19.7 2.5 1,546 40.4 2.1 

# created points 14,995 41,056 176,706 75,785 47,946 

# deleted points 56,086 5,118 18,704 26,321 5,509 

avg. spatial 

translation (x10
6
) 

453 4,612 48 1,638 525 

avg. temporal 

translation (x10
6
) 

31,633 31,244 103 33,752 30,333 

total distortion 

(x10
12

) 
10.5 8.6 2.5 9.9 8.2 

runtime (seconds) 30 30 120 114 414 

 
WCOP-NV causes greater values of distortion when compared to 
the other approaches. The minimum distortion and the maximum 
discernibility metric appear when the input is a set of sub-
trajectories that are segmented with the use of Traclus algorithm, 
thus trajectories are assigned to clusters more effectively. 
Moreover, 7% of the trajectories and 7% of the trajectories’ points 
are trashed when they are anonymized by using universal (k,δ) 
privacy requirements, in contrast to WCOP-SA Traclus where the 
corresponding portions reaches 0.4% and 1% respectively. 
WCOP-B is able to decrease the overall distortion of the dataset 
by more than 20% when it is anonymized with WCOP-CT via 
editing the 6 most demanding trajectories (edit step is set to 1). 
Finally, runtime comparison shows that the approaches that 
anonymize sub-trajectories are slower than those that anonymize 
trajectories since a greater number of trajectories is processed. 
WCOP-B is even slower since every time that trajectories are 
edited it repeats the anonymization process until the distortion is 
lower than the threshold. 

Based on the visualization of the aforementioned experiments as 
illustrated in Figure 4, we can conclude that the original trajectory 
dataset (see Figure 3) was better anonymized by WCOP-CT 
(Figure 4(b)) than by WCOP-NV (Figure 4(a)). 
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Clearly, WCOP-NV was not able to maintain the trend of the 
original trajectories. due to the reduced number of the created 
clusters. WCOP-CT and WCOP-SA-Convoys (Figure 4(d)) better 
preserved the pattern of the original trajectories. WCOP-SA-
Traclus (Figure 4(c)) reports dense sanitized trajectories due to the 
segmentation of the original dataset that increased its size by 99%. 
Thus, we can argue that the result is expected.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4: Anonymized trajectories by (a) WCOP-NV; (b) 

WCOP-CT; (c) WCOP-SA-Traclus; (d) WCOP-SA-Convoys. 

6.3 The Effect of (K,∆) Parameters 

In this section, we examine the effects of using varying 
combinations of (K,∆) values with respect to the total information 
distortion caused by the anonymization. Each trajectory’s (k, δ) 
requirements are randomly generated, with k ∈ [2, kmax], δ ∈ [10, 
δmax]. As mentioned above, δmax parameter has been set to 3% of 
the dataset bounding rectangle’s radius. The kmax and δmax 
variables are varying on each iteration with kmax={5, 10, 25, 50, 
100} while δmax={50, 100, 250, 500, 1000, 1400}. 

Focusing on WCOP-CT, Figures 5(a) and 5(b) provide a visual 
representation of the total distortion and the discernibility metric, 
respectively, for different combinations of (ki, δi). It is clear that 
WCOP-CT is affected from the changes both in kmax and δmax 
parameters. However, there is a point in Figure 5(a) where while 
the distortion decreases with the increase of kmax, reaching the 
minimum values when k=50, a sudden increase appears when 
k=100. This is due to the fact that the number of the trash size 
increases up to a point that exceeds trashmax. When this occurs, 
radiusmax is enlarged in order to cluster more trajectories thus the 
number of the removed trajectories is shrinked but trajectories are 
spatially translated even more. This trend is obvious at the overall 
distortion and the discernibility metric when kmax=25 (Figures 5(a) 
and 5(b)). 

 

(a) 

 
(b) 

Figure 5: WCOP-CT: (a) total distortion and (b) discernibility 

for different combinations of (kmax, δmax). 

6.4 The Effect of Trajectory Partitioning 

In this section, we validate WCOP-SA algorithm. In particular, we 
compare the effects of using WCOP-CT with two different inputs 
of the GeoLife dataset, i.e. trajectories after being segmented into 
sub-trajectories using either Traclus [7] or Convoys [6]. 
Regarding k and δ, they were again randomly generated with k ∈	�2,	kmax�	and	δ	∈	�10,	δmax�. 
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(a) 

 
(b) 

Figure 6: total distortion for different combinations of (kmax, 

δmax) using (a) WCOP-SA-Traclus; (b) WCOP-SA-Convoys. 

 

(a) 

 
(b) 

Figure 7: discernibility for different combinations of (kmax, 

δmax) using (a) WCOP-SA-Traclus; (b) WCOP-SA-Convoys. 

As we observe in the base comparison (see Table 3), partitioning 
the dataset into sub-trajectories results in very high discernibility, 
caused by the significantly higher number of clusters. Moreover, 
the segmentation of trajectories also appears to cause substantially 
decreased information distortion especially when they were 
partitioned with the Traclus algorithm. Figures 6(a) and 6(b) 
illustrate the total distortion in both approaches which rises as the 
value of kmax increases. Discernibility metrics in Figure 7(a) and 
7(b) reports that the data quality is maintained either in lower or in 
higher values of kmax. It is worth noting that WCOP-SA with 

Traclus manages to increase the average quality by 99% and 
decrease the average total distortion by 43% compared to the 
corresponding average values of WCOP-CT. Similarly, WCOP-
SA when using the Convoys algorithm increases the average data 
quality by 31% and decreases the distortion by 2%. 

6.5 The Effect of Trajectory Editing 

In the final part of our experimental study, we examine the effects 
of trajectory editing based on the algorithm outlined in Section 5. 
Two different versions of GeoLife dataset are applied in this set of 
experiments, using different ranges of randomly assigned (k,δ) 
values, i.e. [25 , 500] and [100 , 1400], in order to examine the 
effect of edit on the final result and how privacy requirements can 
influence it. Secondly, in order to examine the effects of trajectory 
editing on datasets of whole trajectories and on datasets consisting 
of segmented sub-trajectories, we apply WCOP-B in both types of 
data. 

Figure 8(a) illustrates the effects of editing various numbers of 
trajectories for a dataset that corresponds to medium demanding 
users. In contrast, Figure 8(b) depicts the respective outcome but 
for much more demanding users. It is obvious that most of the 
approaches decreased 10% of their distortion by only editing the 
top-5 demanding trajectories apart from WCOP-SA-Traclus due 
to the increased number of sub-trajectories.  

 
(a) 

 
(b) 

Figure 8: WCOP-B: distortion for varying edit size values 

where (a) kmax = 25 and dmax = 500; (b) kmax = 100 and dmax = 

1400. 

It is not only that distortion changes in a non-monotone as edit 
size increases; we also observe that it can actually increase as edit 
size increases. This is due to the fact that each edited trajectory 
incurs a distortion penalty, which grows proportionally to the edit-
size. However, the distribution of demanding trajectories across 
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the clusters and the distribution of (k,δ) values in the dataset 
significantly influence the degree to which relaxing additional 
trajectories’ requirements affect the clustering and anonymization 
phases. Therefore, higher percentage of edited trajectories does 
not guarantee decreased distortion, indicating that there exists an 
‘optimal’ edit-size value, where distortion is the minimum 
possible.  

7. CONCLUSIONS 

In this paper, we proposed a novel approach for anonymizing 
trajectories called Personalized (K,∆)-Anonymity, which uses 
user-specific privacy requirements. Based on this framework, we 
have developed WCOP-CT algorithm, which takes advantage of 
user-specific (k,δ) requirements in order to assign trajectories to 
clusters of minimal size, so as to avoid over-anonymization, 
increase data quality and decrease distortion. Expanding upon that 
framework, we made use of dataset-aware trajectory 
segmentation, in order to further improve our approach’s 
effectiveness, by partitioning trajectories to sub-trajectories that 
are more easily assignable to clusters. Additionally, we examined 
the concept of Bounded (K,∆)-Anonymity, whereby there is a 
threshold to the acceptable distortion caused by the anonymization 
process, and proposed methods for trajectory assessment and 
editing by relaxing the requirements of the most demanding 
trajectories without editing the spatiotemporal data. 

To show the effectiveness of our methods, we have performed 
experiments using the GeoLife dataset. Our personalized 
anonymity approach has been shown to significantly increase to 
the overall quality and to decrease of the total distortion of the 
anonymized datasets, while it has also been demonstrated that 
trajectory segmentation can improve data quality even further. 
Experimental results also show that our trajectory assessment and 
editing algorithms perform very well towards the goal of 
decreasing data distortion without altering the trajectories’ 
spatiotemporal information itself. 

Overall, we argue that we have provided a novel approach in 
mobility data anonymization. Using our WCOP suite of 
techniques, data analysts are able to preserve the quality of 
anonymized datasets taking advantage of user-specific privacy 
requirements combined with methods such as segmentation and 
trajectory editing. However, there is a number of points, such as 
sensitivity to (k,δ) values distribution, replacement of greedy 
clustering with a more sophisticated clustering method, sensitivity 
to segmentation method and alternative trajectory assessment and 
editing methods, which deserve further study in order to expand 
and improve upon the framework presented here. 
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ABSTRACT
The amount of crowdsourced geospatial content on the Web is con-
stantly increasing, providing a wealth of information for a variety
of location-based services and applications. This content can be an-
alyzed to discover interesting locations in large urban environments
which people choose for different purposes, such as for entertain-
ment, shopping, business or culture. In this paper, we focus on the
problem of identifying and describing Streets of Interest. Given
the road network in a specified area, and a collection of geolo-
cated Points of Interest and photos in this area, our goal is to iden-
tify the most interesting streets for a specified category or keyword
set, and to allow their visual exploration by selecting a small and
spatio-textually diverse set of relevant photos. We formally define
the problem and we present efficient algorithms, based on spatio-
textual indices and filter and refinement strategies. The proposed
methods are evaluated experimentally regarding their effectiveness
and efficiency, using three real-world datasets containing road net-
works, POIs and photos collected from several Web sources.

1. INTRODUCTION
A large amount of user-generated content is becoming avail-

able on the Web daily, with increasingly large portions of it be-
ing associated with geospatial information. Typical examples in-
clude maps of road networks and other spatial features available
on OpenStreetMap and Wikimapia, information about Points of In-
terest (POIs) from Wikipedia and Foursquare, geotagged photos
from Flickr and Panoramio. This creates a valuable resource for
discovering and exploring locations and areas of interest, with nu-
merous applications in location-based services, geomarketing, trip
planning, and other domains. In this paper, we advocate the use of
street as the elemental area of interest in modern cities, and tackle
two complementary problems, identifying and describing them.

Regarding the first task, there has been substantial work in iden-
tifying a single POI, based on spatial and textual criteria. More
precisely, spatio-textual similarity queries, aim at retrieving POIs
that are both spatially close to a given location and textually rele-
vant to a given set of keywords specifying an information need [9].
Additional metadata associated to the POIs, such as ratings, com-
ments, “likes” or check-ins, can be considered to weigh the impor-

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

tance of each POI when computing the ranking. The proximity of
a POI to other relevant POIs has also been considered as a factor
indicating importance [5]. Furthermore, in Location-Based Social
Networks, information about social connectivity is also considered
in determining the importance of POIs (and users) [4, 2].

A line of work more related to our first task deals with discov-
ering a set of nearby and topically related POIs, that designate a
Region of Interest. This is a more challenging problem, and pro-
posals mainly differ in the way regions are formed. The majority
of past research addresses the maximum range sum problem, where
the region is defined as either a rectangle of fixed length and width
[21, 24, 10], or a disk with fixed radius [10], and the objective is to
find the one that maximizes an aggregate importance score on the
topically relevant POIs it contains. Other works do not enforce a
constraint on region shape or size, and rather implement density-
based clustering of POIs [20, 19].

All aforementioned works assume that POIs are located in a Eu-
clidean space. However, particularly in urban environments, it is
often more realistic and useful to consider the underlying road net-
work. Grouping together nearby POIs makes little sense if the ac-
tual travel distance between them is large, e.g., when they are lo-
cated in opposite banks of a river. Surprisingly, little work is done
in this frontier. In [7], the authors look for a connected subgraph of
the road network that maximizes an aggregate score on the relevant
POIs that are included, subject to a constraint on its total length.

Nonetheless, such an approach also has shortcomings. First, the
fact that there is no control on the subgraph type may result in re-
turning oddly-shaped regions that are hard to inspect and not par-
ticularly meaningful in a user exploration setting. Additionally, the
approach favors POI quantity over density. More often than not,
there exists a single popular street with a high density of POIs. Us-
ing the formulation of [7], such a street would be in the result but
accompanied by several other smaller adjacent streets that happen
to have at least one relevant POI. Similarly, looking for connected
components may lead to discovering artificial links among impor-
tant streets for the sole purpose of ensuring connectivity. Another
limitation is that [7] assumes POIs are conveniently situated on the
road network as vertices. In reality, however, the situation is much
different. Figure 1(a) shows the map of a popular corner (Oxford
Str. and Regent Str.) in the center of London, and also depicts var-
ious types of POIs. It should be apparent that there is no straight-
forward mapping of POIs to the road network vertices. Instead, it
is more natural to “assign” POIs to edges (streets) but not necessar-
ily in an exclusive manner. For example a POI (e.g., the clothing
shop in Figure 1(a)) near the corner should be associated with both
intersecting streets. Moreover, a POI (e.g., the photo shop in Fig-
ure 1(a)) farther from the streets but inside a corner building should
also contribute to the importance of the main crossing streets.
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(a) Street segments and POIs (b) Top-20 Streets of Interest (c) Photo description of Oxford Street

Figure 1: Illustrative example for shopping streets in the center of London.

Motivated by these observations, we formulate the problem of
identifying Streets of Interest (SOIs). Briefly, given some textual
information (keywords, categories) the goal is to identify the streets
(more accurately the street segments) that have a large density of
relevant POIs around them. An example for the center of London
is illustrated in Figure 1(b), where the top 20-SOIs are highlighted
with red. Notice that the returned streets are not connected via
non-interesting streets. Moreover, our ranking approach naturally
allows for an exploratory search of the area. To efficiently retrieve
a ranked list of SOIs, we propose an algorithm inspired from top-k
query processing that operates on top of spatio-textual indices.

Although very helpful, identifying the main SOIs for the user’s
keywords is only the first step towards exploring a larger area. Typ-
ically, the user then needs to find more information and gain more
insights about those results that are discovered and suggested. For
this purpose, perhaps the easiest and most effective way is by pro-
viding visual information; thus, a valuable source is the numerous
relevant photos that can be found in various Web sources, such as
Flickr and Panoramio. The challenge that arises then is how to se-
lect a small set of results to present, in order to avoid overloading
the user, especially when using a mobile device with limited re-
sources in terms of bandwidth, screen size and battery, while still
providing enough information. This can be achieved by diversify-
ing the results to present, so that more and different information
can be conveyed with fewer results.

To that end, the second task we address in this paper refers to the
selection of a concise and spatio-textually diverse set of relevant
photos for describing the discovered SOIs. We follow the general
diversity principles from information retrieval [16, 8], and formu-
late a spatio-textual SOI diversification problem. In particular, we
introduce spatial and textual measures of relevance and diversity,
and seek to extract a small set of photos that act as an informative
summary of a given SOI (see the example in Figure 1(c) for a 4-
photo summary of Oxford Str). As this is a computationally hard
problem, we turn into heuristic methods supported by appropriate
spatio-textual indices.

The main contributions of our work can be summarized as fol-
lows:

• We formally define the top-k SOI query, and we present an
efficient algorithm for its evaluation.

• We present spatio-textual relevance and diversity criteria for
selecting subsets of available photos to describe SOIs, and
we propose an efficient approximation algorithm for their
computation.

• We present the results of an experimental evaluation of our
proposed methods, using real-world datasets containing road

networks, POIs and photos from several major Web sources,
covering the areas of three different European capital cities.

The rest of the paper is organized as follows. Section 2 discusses
related work. Section 3 formally introduces the problem of finding
k-SOIs, and presents an efficient algorithm for their computation.
Section 4 presents measures for spatio-textual relevance and diver-
sity, and an efficient approximation algorithm for selecting diversi-
fied subsets of relevant photos to describe SOIs. Finally, Section 5
presents the results of our experimental evaluation, while Section 6
concludes the paper.

2. RELATED WORK
This section reviews existing approaches for spatio-textual POI

retrieval and diversification.

2.1 Ranking Points and Areas of Interest
Numerous works have focused on discovering and ranking points

or areas of interest, based on various definitions and criteria. The
main differences involve the following aspects: (a) whether the fo-
cus is on single POIs or whole areas, i.e. sets of POIs; (b) whether
the problem involves nearby search around a given query location
or rather browsing and exploration within a whole area; (c) whether
the aim is to maximize the number or the total score (e.g. relevance
or importance) of the POIs enclosed in the discovered area or to
minimize some cost function (e.g. distance or travel time) on a set
of POIs that suffice for covering the query keywords.

The majority of existing works focuses on the ranking of single
POIs. Location-aware top-k text retrieval queries have been studied
in [11]. Given the user location and a set of keywords, this query
returns the top-k POIs ranked according to both their spatial prox-
imity and their textual relevance to the query. For the efficient eval-
uation of such queries, a hybrid indexing approach was proposed,
integrating the inverted file for text retrieval and the R-tree for spa-
tial proximity querying. Further variations on spatio-textual queries
and indexes have been extensively studied [9]. Top-k spatial key-
word queries have been studied also in [23], with distances being
calculated on the road network instead of the Euclidean space. A
different perspective for ranking POIs is taken in [5], where the im-
portance of a POI takes into account the presence of other relevant
nearby POIs.

Queries involving sets of spatio-textual objects have been inves-
tigated in [6, 27]. Given a set of keywords and, optionally, a user
location, the goal is to identify sets of POIs that collectively satisfy
the query keywords while minimizing the maximum distance or the
sum of distances between each other and to the query.

More recently, other works have focused on discovering regions
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of interest w.r.t. a specified category or set of keywords, where the
importance of a region is determined based on the number or the
total weight of relevant POIs it contains. In [19], density-based
clustering is applied to identify regions with high concentration of
POIs of certain categories, collected and integrated from several
Web sources. A method for extracting scenic routes from geo-
tagged photos uploaded on sites such as Flickr and Panoramio is
presented in [3]. Discovering and recommending regions of in-
terest based on user-generated data is also addressed in [20]. The
quality of a recommended area is determined based on the portion
of the contained POIs that can be visited within a given time bud-
get. Other variations of queries for discovering interesting regions
include the subject-oriented top-k hot region query [21] and the
maximizing range sum query [10]. The region is defined by a rect-
angle or circle with a maximum size constraint, and the goal is to
maximize the score of the relevant POIs contained in it.

The most closely related work to our approach is [7], which pro-
poses the length-constrained maximum-sum region query. Given a
set of POIs in an area and a set of keywords, this query computes
a region that does not exceed a given size constraint and that max-
imizes the score of the contained POIs that match the query key-
words. The query assumes an underlying road network, in which
the POIs are included as additional vertices, and the returned region
has the form of a connected subgraph of this network with arbitrary
shape. The problem is shown to be NP-hard, and approximation al-
gorithms are proposed.

This problem is similar to our setting; in both cases, the goal is to
discover interesting parts of a road network that are associated with
large number of POIs relevant to a given set of keywords. However,
in [7], the result is a single connected subgraph of the road network,
maximizing the score of contained points, while our method returns
a ranked list of streets that are not necessarily connected and are
ordered according to their density w.r.t. POIs relevant to the query.
Moreover, we additionally consider the problem of describing these
discovered streets by means of a diversified set of photos, which is
not addressed in [7] or any of the other works mentioned before.

Finally, in a different line of research, other works have applied
probabilistic topic modeling on user-generated spatio-textual data
and events to associate urban areas with topics and patterns of user
mobility and behavior [18, 15].

2.2 Search Results Diversification
Information retrieval engines often try to improve the utility of

the search results by taking into account not only their relevance to
the user’s query, but also their dissimilarity, offering thus a range of
alternatives, which comes handy in situations where the true intent
of the user is unknown or many highly similar objects exist. Stated
in an abstract manner, the content-based diversification problem is
to determine a set of objects that maximizes an objective function
with two components, the relevance and the diversity.

While there exist many different formulations (refer to [16, 13]
for classification), the most well-known is the MaxSum problem,
where the goal is to maximize the weighted sum of two compo-
nents, the total relevance of objects, and the sum of pairwise di-
versities among the objects. Similar to other diversification prob-
lems, MaxSum is NP-hard as it is related to the dispersion problem
[22]. Therefore, various greedy heuristics are proposed. Typically,
they incrementally construct the diversified result set by choosing
at each step the object that maximizes a certain scoring function.
The most well-known function is the maximal marginal relevance
(mmr) [8]. An evaluation of various object scoring functions and
different heuristics can be found in [26].

Since [8], several works addressed other diversification prob-

lems, such as taxonomy/classification-based diversification [1], [25]
or multi-criteria diversification [12]. Another related work is the
coverage problem [14], where the goal is to select a set of diverse
objects that cover the entire database.

3. IDENTIFYING STREETS OF INTEREST
We first formulate the problem of identifying interesting streets,

and then present our proposed approach.

3.1 Problem Definition
A road network is a directed graph G = (V,L), where the set of

vertices V contains street intersections or breakpoints in streets, and
the set of links L contains street segments (between intersections
or breakpoints) represented as line segments. Each vertex v ∈ V
is associated with its coordinates (xv, yv). The length len(`) of a
segment ` ∈ L is computed as the Euclidean distance between its
endpoints. We also consider the set of streets S, where each street
s ∈ S comprises a set of consecutive segments (a simple path on
G). Each segment ` ∈ L belongs to a unique street s, and we
denote this relationship by ` ∈ s. The length len(s) of street s is
the sum of the length of its segments.

Moreover, we define an additional data source P , being a set of
POIs. Each POI p ∈ P is defined by a tuple p = 〈(xp, yp),Ψp〉,
where (xp, yp) are the coordinates of the POI, and Ψp is a set
of keywords describing this POI (e.g., keywords derived from its
name, description, tags). The distance dist(p, `) of a POI p to a
line segment ` is defined as the minimum Euclidean distance be-
tween POI location (xp, yp) and any point on `. Accordingly, the
distance of POI p to a street s is the minimum distance of p to any
segment of s, i.e., dist(p, s) = min`∈s dist(p, `).

To measure the interest of a street segment w.r.t. a given set of
keywords, we use the notion of mass, which refers to the number of
relevant POIs that exist in its proximity. Then, we rank segments
according to their mass density, to account also for the different
lengths of each segment. We formally define these concepts below.

DEFINITION 1 (SEGMENT MASS). For a given set of keywords
Ψ and a distance threshold ε, the mass of segment ` is the number
of POIs within distance ε that contain at least one keyword from Ψ:

mass(` |Ψ, ε) = |{p ∈ P : dist(p, `) ≤ ε & Ψp ∩Ψ 6= ∅}|.

Note that this definition can be straightforwardly adapted in the
case that POIs have different weights.

DEFINITION 2 (SEGMENT INTEREST). The interest of segment
` is its mass density, i.e., the ratio of `’s mass over the size of the
area within distance ε around `:

int(` |Ψ, ε) =
mass(` |Ψ, ε)

2ε len(`) + πε2
.

Given this definition for the interest of a segment, there exist
several alternatives for defining the interest of an entire street. Here,
we use a simple definition, as stated below.

DEFINITION 3 (STREET INTEREST). Given Ψ and ε, the in-
terest of a street s is the maximum interest among its segments, i.e.:

int(s |Ψ, ε) = max
`∈s

int(` |Ψ, ε). (1)

Based on these definitions, a k-SOI query returns the k most
interesting streets.

Problem 1. [k-SOI] Assume a set of streets S, forming a road
networkG, and a set of POIsP . The k-Streets of Interest (k-SOI)
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query q = 〈Ψ, k, ε〉, where Ψ is a set of keywords, k a posi-
tive integer, and ε a distance threshold, returns a set of k streets
Sk such that for each s′ 6∈ Sk it holds that int(s′ |Ψ, ε) ≤
mins∈Sk int(s |Ψ, ε).

3.2 The SOI Algorithm
In what follows, we present the SOI (Streets Of Interest) algo-

rithm. We assume a given query q = 〈Ψ, k, ε〉; for brevity, Ψ and
ε are omitted when it is clear from the context.

3.2.1 Methodology and Indices
The SOI algorithm for processing k-SOI queries operates in a

manner reminiscent of top-k processing algorithms [17]. It pro-
gressively examines segments of streets and POIs until it can es-
tablish that the k-SOI can be determined solely from the informa-
tion already collected. Specifically, SOI maintains a seen lower
bound LBk on the interest of the k best streets encountered so far,
and an unseen upper bound UB on the interest of any street for
which no segment has been encountered yet. As more segments
are considered, LBk progressively increases, while UB progres-
sively decreases. When LBk becomes not smaller than UB, the
examination stops, since the k-SOIs are those streets with interest
not smaller than LBk.

Under the aforementioned strategy, there are two issues to ad-
dress: (1) how to compute the seen lower bound LBk and the un-
seen upper bound UB, and (2) how to expedite the termination
condition, LBk ≥ UB.

We address the former first, as its solution gives intuition about
the latter. Based on the definition of street interest (Equation 1),
we can compute bounds on the interest of a street s by considering
directly the segments. The following lemma suggests a method to
compute LBk and UB; their exact definition is presented later.

LEMMA 1. Consider a subset of segments Lseen ⊆ L. Then,
for a street s it holds that:

int(s) ≥ max
`∈s∩Lseen

int(`), if s ∩ Lseen 6= ∅

int(s) ≤ max
`∈L\Lseen

int(`), if s ∩ Lseen = ∅.

PROOF. For the first case observe that s ∩ Lseen ⊆ s, and thus
max`∈s∩Lseen int(`) ≤ max`∈s int(`) = int(s). For the second
case observe that L\Lseen ⊇ s, and thus max`∈L\Lseen int(`) ≥
max`∈s int(`) = int(s).

Consider a seen street s, meaning that one of its segments has
been encountered, i.e., s ∩ Lseen 6= ∅. The first case of Lemma 1
implies that a lower bound on the interest of s can be extracted from
the largest interest of its seen segments, or, more practically, from
the largest lower bound on the interest of any of its seen segments.

On the other hand, consider an unseen street s, i.e., s∩Lseen =
∅. The second case of Lemma 1 implies that an upper bound on
the interest of s can be extracted from the largest possible interest
among unseen segments, or, more practically, from an upper bound
on the largest possible interest among unseen segments.

In other words, Lemma 1 directly addresses the former issue.
However, it also suggests how to address the latter. Suppose we
have encountered a set of segments Lseen. What segments should
it contain so as to increase the chances of satisfying the termination
condition? To obtain a high seen lower bound LBk, the first case
of Lemma 1 suggests putting in Lseen segments with high interest.
Moreover, to obtain a small unseen upper bound UB, the second
case of Lemma 1 suggests leaving out from Lseen segments with

low interest. Therefore, the algorithm should try to visit segments
with large interest first.

As it is impractical to directly retrieve segments by interest (that
would require precomputation for all possible k-SOI queries, i.e.,
for arbitrary ε, Ψ), we need a way to identify promising segments
having large interest. To this end, we employ the following data
structures.

• A spatial grid index with arbitrary cell size storing all POIs.
Within each cell c, there is a local inverted index on the set
of keywords among the cell POIs. The entry for keyword ψ
is a list of POIs sorted increasingly on POI id.
• A global inverted index on the set of all keywords. The en-

try for keyword ψ is a list of 〈c, numPOIs〉 entries sorted
decreasingly on numPOIs, which is the number of POIs
within cell c that contain keyword ψ.
• A cell-to-segment map that stores for each grid cell the seg-

ments that pass through it. At query time when ε is known,
the map is augmented to contain for each cell all segments
that are within distance ε. We denote the augmented list for
cell c as Lε(c).
• A segment-to-cell map that stores for each segment the grid

cells that it intersects. At query time when ε is known, the
map is augmented to contain for each segment all cells that
are within distance ε. We denote the augmented list for seg-
ment ` as Cε(`).
• A list of segments sorted increasingly on their length.

Note that since street segments and POIs are relatively static, these
data structures can be created and maintained offline.

3.2.2 Algorithm Description
In what follows, we discuss the case of a query specifying a sin-

gle keyword, i.e., Ψ = {ψ}. Intuitively, we look for segments that
have large mass and small len. Thus, given the above data struc-
tures, we look for segments that (1) are close (within distance ε)
to cells with large number of relevant POIs (satisfying ψ), (2) are
close to many cells, and (3) have small len. The first two factors
combined contribute to the mass, while the third directly to len.
Therefore, the algorithm considers segments according to the fol-
lowing three ranked source lists constructed, in part, at query time.

SL1: Contains all cells sorted decreasingly on the number of POIs
with keyword ψ. This is essentially the list of the global
inverted index for keyword ψ.

SL2: Contains all segments sorted decreasingly on the number of
cells within distance ε to them (the cells each segment inter-
sects when enlarged by ε).

SL3: Contains all segments, sorted increasingly on their length.

The algorithm proceeds iteratively, considering in each iteration
either the next cell from SL1 or the next segment from SL2 or
SL3. Each source list can be accessed in a round robin fashion; the
correctness of our method is not affected by the access strategy. In
practice, we alternate between SL1 and SL3, trying to balance the
number of segments considered from each source; each cell access
results in the access of multiple segments, while each segment ac-
cess causes the visit of multiple cells. We only access segments via
the second source SL2 in the case that a few segments with a large
number of neighboring cells exist.

During the processing of k-SOI, a segment can be in three possi-
ble states. Initially, a segment is unseen, meaning that the algorithm
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has not considered it via any source. An efficient algorithm would
leave many segments in the unseen phase. Then, when a segment
is first retrieved, it is put into the partial state, meaning that some,
but not all, POIs near it that satisfy the query have been accounted
for. For each partial segment `, we maintain two pieces of infor-
mation: (1) the count mass−(`) of relevant POIs seen so far that
satisfy the query, and (2) a list toV isit indicating which neighbor-
ing cells (and consequently their POIs) to visit. Based on these, we
can compute a lower bound on `’s interest as:

int(`) ≥ int−(`) =
mass−(`)

2ε len(`) + πε2
.

Once all relevant POIs have been processed (equivalently, all neigh-
boring cells have been visited), the segment is in the final state,
where its exact interest is known.

Algorithm 1 presents the pseudocode for the SOI algorithm.
During initialization, SOI prepares the three source lists. Partic-
ularly, it builds SL1 by examining the global inverted index (lines
1–3); for the simple case of one keyword ψ, SL1 is essentially the
inverted list I[ψ]. Moreover, source list SL3 corresponds to the list
of segments, while SL2 is extracted from the augmented segment-
to-cell map (lines 4–7).

Then, SOI proceeds to the main filtering phase (lines 8–24),
where segments from the source lists are examined until the ter-
mination condition LBk ≥ UB holds; initially LBk and UB are
set to zero and infinity, respectively (line 9).

Assume that cell c via source list SL1 is to be accessed (lines 11–
15). For this cell we examine the segments that are within distance
ε (lines 13–14), and for each segment we determine the number
of POIs with keyword ψ that are within distance ε so as to update
their interest score given the contents of cell c. Specifically, we
employ the cell-to-segment map to determine all segments Lε(c)
that are within distance ε to cell c (line 13). For each such segment
`, we invoke the procedure UpdateInterest (line 14), whose
pseudocode is also depicted. After the procedure returns, we set
the next source list to consider according to round robin (line 15).

Procedure UpdateInterest first checks whether cell c has
been visited for ` and immediately returns if so. Otherwise, it re-
moves c from the toV isit list. Then it visits the local inverted index
of cell c and retrieves the list for keyword ψ. For each POI p in the
list, UpdateInterest checks whether it is within distance ε to
segment `, and if true increments mass−(`) by one.

Now, assume that segment ` is to be accessed (lines 16–21), ei-
ther via source list SL3 or SL2. Its exact interest will be deter-
mined, changing its state to final. Using the segment-to-cell map,
we visit sequentially all neighboring cells of `, and invoke proce-
dure UpdateInterest (lines 18–19). A cell visited during some
segment access, may be again visited due to another segment’s ac-
cess or via a direct cell access via source list SL1. The next step is
to properly set the next source list to consider (lines 20–21).

After each access, cell or segment, algorithm SOI checks whether
the termination condition applies. It first computes an upper bound
UB on the interest of any unseen segment (line 22). Let top(SL1),
top(SL2), top(SL3) denote the top items in the corresponding
sources lists that are to be accessed next. Due to the second case of
Lemma 1, it computes the unseen interest upper bound as:

UB =
top(SL1) · top(SL2)

2ε top(SL3) + πε2
.

SOI also computes a lower bound LBk on the interest of the k-
SOIs based on the first case of Lemma 1 (lines 23–24). It maintains
all seen segments in a ranked list Lseen sorted decreasingly on the
interest lower bound int−(). Let Lseen[i] denote the first i items

Algorithm 1: Algorithm SOI

Input: networkG, streets S, query q = 〈Ψ, k, ε〉
Output: k-SOIs Sk

. build source list SL1

1 foreach cell c that has an entry in I[ψ] for some ψ ∈ Ψ do
2 |PΨ(c)| ← min{|Pc|,

∑
ψ∈Ψ I[ψ][c]}

3 insert entry 〈c, |PΨ(c)|〉 in SL1

. build source lists SL3, SL2

4 foreach segment ` do
5 insert entry 〈`, len(`)〉 in SL3

6 |Cε(`)| ← |c ∈ C | dist(c, `) ≤ ε|
7 insert entry 〈`, |Cε(`)|〉 in SL2

. filtering phase
8 SL← SL1 . next source list
9 LBk ← 0; UB ←∞

10 while UB > LBk do
11 if SL = SL1 then
12 c← pop(SL) . retrieve cell
13 foreach ` ∈ Lε(c) do . ` within distance ε to c
14 UpdateInterest(`, c,Ψ)
15 SL← SL2 . set next source list
16 else
17 `← pop(SL) . retrieve segment
18 foreach c ∈ Cε(`) do . ` within distance ε to c
19 UpdateInterest(`, c,Ψ)
20 if SL = SL2 then SL← SL3 . set next source list
21 else SL← SL1

22 UB ← top(SL1)·top(SL2)

2ε top(SL3)+πε2

23 µ← mini : |{s | ∃` ∈ Lseen[i], ` ∈ s}| = k

24 LBk ← int−(`µ)

. refinement phase
25 foreach ` ∈ Lseen do
26 foreach c ∈ Cε(`) do . ` within distance ε to c
27 UpdateInterest(`, c,Ψ)

28 return Sk ← extract k-SOIs from Lseen

Procedure UpdateInterest(`, c,Ψ)
1 if c 6∈ `.toV isit then return . c is already visited for `
2 remove c from `.toV isit
. traverse lists c.I(ψ), ∀ψ ∈ Ψ synchronously

3 foreach p ∈
⋃
ψ∈Ψ c.I(ψ) do

4 mass−(`)← mass−(`) + 1

in the list. Then, LBk is set to the interest lower bound of the µ-th
ranked segment `µ provided that µ is the smallest index such that
the segments of Lseen[µ] belong to k distinct streets, i.e.,

LBk = int−(`µ), for µ = min
i

: |{s | ∃` ∈ Lseen[i], ` ∈ s}| = k.

The accesses on source lists stop as soon as UB ≤ LBk. At that
point, it is guaranteed that the result to k-SOI can be extracted from
the segments in Lseen. To identify the streets with the top-k inter-
est, a refinement phase begins (lines 25–28). The exact interest of
each segment inLseen is computed by invoking UpdateInterest
as necessary. The extraction of the streets with the highest interest,
i.e., the k-SOI, is then straightforward.

A final note concerns the case of multiple keywords Ψ in the
query. The SOI algorithm changes in only two places. The first is
when source list SL1 is built. It is necessary to account for POIs
that have any keyword among those in Ψ. SOI looks within the
global inverted index, for each entry I[ψ][c] corresponding to the
entry for cell c in the list for keyword ψ. This entry contains the
count of POIs in cell c that have keyword ψ. Adding these counts
for all keywords provides an upper bound to the number of POIs
within c that have any keyword among Ψ. The minimum of this
number and the total number |Pc| of POIs in the cell (line 2) is
then inserted into SL1. The second change is in the UpdateInterest
procedure. To compute for segment ` the exact number of POIs
within cell c that satisfy Ψ, lists c.I[ψ] for each ψ ∈ Ψ are tra-
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versed in parallel; recall that the lists are sorted by POI id. For each
encountered POI, the mass of ` is incremented.

4. DESCRIBING STREETS OF INTEREST
Having identified the k-SOIs in the road network, the next step is

to provide summarized information to describe them. Section 4.1
formalizes the problem, while Section 4.2 describes our solution.

4.1 Problem Definition
We begin by formalizing the problem, and then present details

about the measures considered.

4.1.1 Problem Statement
In the following, we assume an additional data source R, being

a set of geo-tagged photos. Each photo r ∈ R is defined by a tuple
r = 〈(xr, yr),Ψr〉, specifying its location and a set of keywords
(its tags); the distance of a photo to a segment or a street is defined
as in the case of a POI.

To describe a SOI, we exploit its related photos. For each street
s, these are the photos that are located within distance ε, i.e. Rs =
{r ∈ R : dist(r, s) ≤ ε}. However, the size of Rs can typically
be quite large. Thus, the problem is to select a relatively small sub-
set of k photos (k � |Rs|) to present as an overview for the street
s. To avoid redundancy and repetition, we formulate the problem
as a MaxSum diversification problem, where a subset of items is se-
lected from a set in such a way as to maximize both their relevance
to a given need and their pairwise dissimilarity. More formally,
the problem can be defined as a bi-criteria optimization problem,
aiming at optimizing an objective function F that comprises a rel-
evance component and a diversity component [16, 26].

LetRk be a subset ofRs of size k, and let rel(Rk) and div(Rk)
be two functions that measure, respectively, the relevance and the
diversity of the contents of Rk. Then, the problem is to select
among all possible subsets Rk the one that maximizes the function
F defined as follows:

F(Rk) = (1− λ) · rel(Rk) + λ · div(Rk) (2)

where λ ∈ [0, 1] is a parameter determining the tradeoff between
relevance (λ = 0) and diversity (λ = 1).

Problem 2. [SOI Diversification] Given a street s with an asso-
ciated set of photosRs, where each photo has a geolocation and
a set of keywords, select a subset Rk ofRs containing k photos
such that the objective function F is maximized, i.e.:

Rk = arg max
R⊆Rs,|R|=k

F(R) (3)

We proceed to define the functions rel(Rk) and div(Rk) for our
problem. Note that the value of k throughout this section refers to
the number of photos describing a street, and is thus unrelated to
the value of k in Section 3 which refers to the number of SOIs.

4.1.2 Spatio-Textual Relevance and Diversity
The function F described above provides a generic criterion for

selecting a subset of items that are both relevant and diverse w.r.t.
a given query. In our context, this needs to take into account both
the spatial and the textual description of a street. In particular, the
spatial aspect of a street s is determined by the locations of its
associated photos Rs. The textual aspect of s is captured by a
keyword frequency vector Φs, which describes the strength of each
keyword associated with s; we denote as Ψs the set of keywords
with non-zero frequency in Φs. Note that there are many ways

to derive the keyword frequency vector of a street; for example,
we can extract it directly from a textual description, or from the
keywords of its neighboring POIs and/or photos.

The relevance and diversity functions of a setRk of photos should
thus capture both aspects. Assuming a weight parameter 0 ≤ w ≤
1 between the two aspects, we define:

rel(Rk) =
w

k

∑
r∈Rk

spatial_rel(r)+
1− w
k

∑
r∈Rk

textual_rel(r)

(4)
and

div(Rk) =
2w

k(k − 1)

∑
r,r′∈Rk

spatial_div(r, r′)

+
2(1− w)

k(k − 1)

∑
r,r′∈Rk

textual_div(r, r′). (5)

Notice that the relevance of set Rk is defined as the sum of the
spatial and textual relevance of each photo r ∈ Rk, whereas the di-
versity ofRk is the sum of the pairwise spatial and textual diversity
over all photo pairs r, r′ ∈ Rk. To balance the different number
of summands in rel(Rk) and div(Rk), we normalize them using
the fractions 1

k
and 2

k(k−1)
, respectively. Next, we define the four

functions that account for spatio-textual relevance and diversity.
Spatial relevance and diversity. For a point query, the spatial
distance of an item to the query point would typically constitute
a natural way to measure relevance. However, in our case, rank-
ing the photos of a street according to their distance from it does
not generally provide an indicative criterion for judging relevance.
Thus, we select instead a different criterion, based on spatial cov-
erage. The intuition is that high density of photos in an area can
be considered as an indication of “importance”; thus, the selection
of photos should be biased towards those areas. Accordingly, we
define the spatial relevance of a photo based on the number of other
photos contained in its neighborhood. Furthermore, we divide this
number to the total number of photos associated with the street, in
order to obtain a normalized value in the range [0, 1].

DEFINITION 4 (SPATIAL RELEVANCE). Assuming a radius ρ
for the neighborhood of a photo r, we define the spatial relevance
of r w.r.t. the street s as:

spatial_rel(r) =
|{r′ ∈ Rs : dist(r, r′) ≤ ρ}|

|Rs|
. (6)

The spatial diversity of a pair of photos r, r′ can be defined
by means of their spatial distance. For normalization, we divide
the distance of the pair with maxD(s), which is the largest pos-
sible distance between any two photos associated with s. Value
maxD(s) is computed as the length of the diagonal of the min-
imum bounding rectangle, extended with a buffer of size ε, that
encloses s. Thus:

DEFINITION 5 (SPATIAL DIVERSITY). We define the spatial
diversity of two photos r, r′ associated with street s as:

spatial_div(r, r′) =
dist(r, r′)

maxD(s)
. (7)

Textual relevance and diversity. The textual relevance of a photo
r measures the similarity of its textual description Ψr to the textual
aspect of street s as captured by its keyword frequency vector Φs.
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DEFINITION 6 (TEXTUAL RELEVANCE). The textual relevance
of a photo r to street s is defined as:

textual_rel(r) =

∑
ψ∈Ψr

Φs(ψ)

‖Φs‖1
, (8)

where ‖Φs‖1 =
∑
ψ∈Ψs

Φs(ψ) is a normalization term.

Finally, we define textual diversity by means of the Jaccard dis-
tance.

DEFINITION 7 (TEXTUAL DIVERSITY). We define the textual
diversity of two photos r, r′ as the Jaccard distance of their sets of
keywords, i.e.:

textual_div(r, r′) = 1− |Ψr ∩Ψr′ |
|Ψr ∪Ψr′ |

. (9)

4.2 The ST_Rel+Div Algorithm
Next, we present the ST_Rel+Div (Spatio-Textual Relevance

and Diversity) algorithm. We first describe the methodology and
index used, and then we present how the algorithm selects the di-
versified subset of photos more efficiently.

4.2.1 Methodology and Indices
The ST_Rel+Div algorithm follows the standard greedy method-

ology for solving MaxSum diversification problems. It builds the
diversified set Rk iteratively, selecting at each step the photo that
maximizes the maximum marginal relevance function mmr (see
Section 2). Suppose that set R has been constructed, where |R| <
k. Then, the photo fromRs rR to be inserted next is the one that
maximizes the function:

mmr(r) = (1− λ) · rel(r) +
λ

k − 1
·
∑
r′∈R

div(r, r′). (10)

Functions rel(r) and div(r) are as defined in Section 4.1.2 taking
into account the spatial and textual aspects.

The main issue with applying this heuristic methodology in our
context is the computational complexity of mmr. A naïve im-
plementation would compute a large number of spatial and textual
photo-to-street relevances and photo-to-photo diversities. In partic-
ular, computingmmr at each iteration, requiresO(|Rs|) computa-
tions for its first component, and O(|R||Rs|) for the second. Even
though some of these computations need not be repeated across it-
erations, the total computational cost can be prohibitive, especially
when the setRs is large.

Consequently, the goal of ST_Rel+Div is to efficiently eval-
uate each component of the objective function mmr towards re-
trieving the best candidate at each iteration. For this purpose, we
construct an index as described in the following. We use an index
structure that combines a spatial grid with inverted indices in each
cell. Each cell ci,j in the grid has side length ρ

2
, and contains the

following information:

• a list of the photos in the cell, denoted as ci,j .R

• an inverted index ci,j .I , where the terms are the keywords
appearing in the photos in this cell, and each postings list
ci,j .I[ψ] contains those photos that have the keyword ψ (we
denote as ci,j .Ψ the set of keywords present in ci,j .I)

• the maximum (ci,j .ψmax) and minimum (ci,j .ψmin) num-
ber of keywords for the photos in this cell.

Next, we show how this index is used to derive lower and upper
bounds for each of the components of the objective function mmr.
Note that the described index, although similar to the grid index
used in Section 3.2, is distinct, indexing a different dataset, i.e. the
set of photos instead of POIs.

4.2.2 Computing Bounds
Using the index, we can derive, for any of the photos within

a cell, upper and lower bounds for each of the components of the
mmr function. The ST_Rel+Div algorithm exploits these bounds
while computing themmr function in order to iterate over the cells
instead of individual photos and to prune the search space more
quickly, identifying the next candidate that optimizes themmr cri-
terion. In particular, we need to derive lower and upper bounds
for the following: (a) spatial and textual relevance of a cell to a
street and (b) spatial and textual diversity of a cell to a photo. We
elaborate on each below.

Cell spatial relevance. Consider a cell ci,j . The spatial rele-
vance of a photo r w.r.t. street s is defined according to Equation 6.
Moreover, recall that the length of each side of a cell in the spatial
grid is ρ

2
. Hence, each photo r ∈ ci,j .R covers at least all other

photos in the same cell and at most all photos that are no more than
two cells away. Accordingly, we derive the following lower and
upper bounds for the cell-to-street spatial relevance:

spatial_rel−(ci,j) =
|ci,j .R|
|Rs|

, (11)

spatial_rel+(ci,j) =

∑
∆i,∆j∈[−2,2]

|ci+∆i,j+∆j .R|

|Rs|
. (12)

Cell textual relevance. Consider a cell c. The textual relevance
of a photo r ∈ c.R w.r.t. street s is defined according to Equa-
tion 8. We seek to construct keyword sets Ψ−(c | s),Ψ+(c | s),
which are subsets of c.Ψ, such that when they substitute set Ψr in
Equation 8, the obtained values bound the textual relevance of any
photo r ∈ c.R. In other words, we obtain the following bounds of
textual_rel(r):

textual_rel−(c) =

∑
ψ∈Ψ−(c | s)

Φs(ψ)

‖Φs‖1
, (13)

textual_rel+(c) =

∑
ψ∈Ψ+(c | s)

Φs(ψ)

‖Φs‖1
. (14)

We next describe how to build the keyword sets Ψ−(c | s), Ψ+(c | s).
Based on the information stored in the index, each photo r ∈ P (c)
may contain at least c.ψmin and at most c.ψmax keywords. Hence,
sets Ψ−(c | s),Ψ+(c | s) should obey these cardinality constraints.

For set Ψ−(c | s), we should choose the fewest possible key-
words from c.Ψ, i.e., c.ψmin, and make sure they have as low fre-
quencies in Φs as possible. Therefore, we select up to c.ψmin key-
words from c.Ψ that do not appear in Ψs, and, if necessary (so as to
satisfy the minimum cardinality constraint), we additionally select
keywords from c.Ψ with the lowest frequencies in Φs.

On the other hand, for set Ψ+(c | s), we select up to c.ψmax
keywords from c.Ψ that also appear in Ψs, and if necessary (so as to
satisfy the minimum cardinality constraint), we arbitrarily choose
additional keywords from c.Ψ.
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Cell-to-photo spatial diversity. Assume a grid cell c and a
photo r. The lower and upper bounds of the spatial diversity be-
tween r and any photo r′ ∈ c.R are determined by respective
bounds on the distance of r and cell c. Therefore, we have:

spatial_div−(c, r) =
mindist(r, c)

maxD(s)
, (15)

spatial_div+(c, r) =
maxdist(r, c)

maxD(s)
, (16)

where functions mindist(r, c) and maxdist(r, c) return the mini-
mum and maximum distance, respectively, between r and any point
within cell c.

Cell-to-photo textual diversity. Assume a grid cell c and a
photo r. We determine the lower and upper bounds of the tex-
tual diversity between r and any other photo r′ ∈ c.R. We follow
a similar rationale as for the cell textual relevance, and construct
keyword sets Ψ+(c | r), Ψ−(c | r) so that when they substitute Ψr′

in Equation 9 they provide a lower and an upper bound, respec-
tively, on the textual diversity of any photo r′ ∈ c.R.

For the lower bound for the textual diversity, we constuct set
Ψ+(c | r) maximizing the common keywords with Ψr . Specifi-
cally, we insert in Ψ+(c | r) up to c.ψmax common keywords, and
if necessary, we additionally insert keywords from c.Ψ until we ob-
tain at least c.ψmax keywords in Ψ+(c | r). Therefore, the textual
diversity of any r′ ∈ c.R is lower bounded by:

textual_div−(c, r) = 1− |Ψ
+(c | r) ∩Ψr|

|Ψ+(c | r) ∪Ψr|
=

=

{
1− |c.Ψ∩Ψr|

|Ψr|+c.ψmin−|c.Ψ∩Ψr| , if |c.Ψ ∩Ψr| < c.ψmin

1− min(|c.Ψ∩Ψr|,c.ψmax)
|Ψr| , if |c.Ψ ∩Ψr| ≥ c.ψmin

(17)

For the upper bound for the textual diversity, we constuct set
Ψ−(c | r) minimizing the common keywords with Ψr . Specifi-
cally, we insert in Ψ−(c | r) up to c.ψmin keywords from c.Ψ that
are not in Ψr , and if necessary, we insert additional keywords from
c.Ψ until we obtain at least c.ψmin keywords. Therefore, the tex-
tual diversity of any r′ ∈ c.R is upper bounded by:

textual_div+(c, r) = 1− |Ψ
−(c | r) ∩Ψr|

|Ψ−(c | r) ∪Ψr|
=

=

{
1− c.ψmin−|c.ΨrΨr|

|r.Ψ|+|c.ΨrΨr| , if |c.Ψ r Ψr| < c.ψmin

1, if |c.Ψ r Ψr| ≥ c.ψmin
(18)

4.2.3 Algorithm Description
Algorithm 2 shows the pseudocode for the ST_Rel+Div algo-

rithm, which incrementally builds the result set Rk by adding, at
each step, the next best photo, denoted as next_r, that maximizes
the objective function mmr defined in Equation 10. However, the
distinguishing factor of ST_Rel+Div, compared to a naïve algo-
rithm that directly computes the mmr function for each photo, is
that instead of evaluating individual photos, it first considers entire
grid cells. Specifically, at each step, in the filtering phase (lines
4–9), it iterates over the cells and computes for each cell the lower
and upper bound of the objective function mmr (lines 5–7), by
applying the corresponding bounds presented in 4.2.2.

Then, any cell having an upper bound that is lower than the lower
bound of another cell is discarded (line 9). The remaining cells are
organized in a priority queue ordered descending on their mmr
upper bound. Only the photos belonging to the remaining cells are

Algorithm 2: Algorithm ST_Rel+Div
Input: Set of all relevant photosR`, integer k, the ST_Rel+Div index I
Output: Diversified subsetRk

1 Rk ← ∅
2 C ← the grid cells in I
. select next candidate

3 while |Rk| < k do
. filtering phase

4 Bmin, Bmax ← ∅ . maps to store cell bounds
5 foreach cell c ∈ C do
6 Bmin(c)← mmr(c)− . using bounds in
7 Bmax(c)← mmr(c)+ . Section 4.2.2
8 mmr_min← max

c∈C
Bmin(c)

9 C ← {c : Bmax(c) ≥ mmr_min} . list of candidate cells
. refinement phase

10 while C 6= ∅ do
11 c← top(C) . visit next cell with largest Bmax(c)
12 foreach r ∈ c.R do
13 v ← mmr(r) . compute exact value
14 if v > mmr_min then
15 mmr_min← v . refine bound
16 C ← C \ {c : Bmax(c) < mmr_min}
17 next_r ← r

18 Rk ← Rk ∪ next_r . add next best photo
19 returnRk

Table 1: Datasets used in the evaluation.

Dataset Num of Min segm. Max segm. Num of
segm. length (m) length (m) POIs

London 113,885 0.93 5,834.71 2,114,264
Berlin 47,755 0.06 6,312.96 797,244
Vienna 22,211 1.35 9,913.42 408,712

processed in the refinement phase (lines 10–17). For each exam-
ined photo, its exact value for the objective function is calculated
(line 13). During this process, if the upper bound of a cell is lower
than the value computed for an examined photo, this cell is also
discarded (lines 14–17). The process continues until the priority
queue contains no cells.

5. EXPERIMENTAL EVALUATION
We have conducted an experimental evaluation using real-world

data comprising road networks, POIs and photos. The datasets
cover the areas of three European capital cities, London, Berlin and
Vienna, and were collected from various Web sources, in particular:
(a) road networks from OpenStreetMap, (b) POIs from DBpedia,
OpenStreetMap, Wikimapia and Foursquare, and (c) photos from
Flickr and Panoramio. Table 1 presents statistics about the datasets.
All algorithms were implemented in Java and experiments were run
on a machine with an Intel Core i7 2400 CPU and 8GB RAM.

The primary focus of this paper is to propose efficient algorithms
for the tasks of identifying and describing SOIs, as defined in Sec-
tions 3.1 and 4.1. A detailed performance study is presented in
Section 5.2. Nonetheless, it is also very important to gauge the ef-
fectiveness of our methods in achieving their goals. Therefore, in
Section 5.1, we present the results of an empirical study of both
tasks, identification and description.

5.1 Effectiveness Study
The goal of this section is to highlight the effectiveness of our

methods in identifying and describing streets of interest.

5.1.1 Identifying Streets of Interest
We focus on a particular SOI retrieval scenario: determine streets

in Berlin that are interesting for “shopping”. As ground truth, we
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(a) Alte/Neue Schönhauser Straße site (b) Kurfürstendamm site (c) Friedrichstraße site

Figure 2: Main shopping sites in Berlin and their most important streets.

Table 2: Comparison of identified top SOIs for “shops” in Berlin.
Top-10 SOIs Source #1 Source #2

1. Neue Schönhauser Straße Tauentzienstraße Kurfürstendamm
2. Rosenthaler Straße Fasanenstraße Tauentzienstraße
3. Mäusetunnel Friedrichstraße Potsdamer Platz
4. Münzstraße Alte/Neue Schönhauser Straße Friedrichstraße
5. Potsdamer Platz Arkaden Münzstraße Alte/Neue Schönhauser Straße
6. Friedrichstraße
7. Mulackstraße
8. Alte Schönhauser Straße
9. Weinmeisterstraße
10. Tauentzienstraße

assume two authoritative Web sources about top shopping destina-
tions in Berlin1 2. Each source provided a (non-ranked) list of 5
streets, displayed in the two last columns in Table 2.

In our SOI algorithm, we set the query parameters to Ψ={“shop”},
k = 10, ε = 0.0005◦ ≈ 55m, i.e., looking for the top 10 streets
that have a large concentration of “shop”-related POIs within 55
meters from them. The ranked list is shown in the first column of
Table 2. Streets that are common among the 10-SOIs and the two
sources are shown in bold. For both sources, we retrieve 4 out of 5
streets; therefore, our method has a recall (at rank 10) of 0.8.

A closer inspection of the results though, suggests that our method
has actually better recall (and precision). All streets included in Ta-
ble 2 belong to one of four main shopping sites in Berlin, near Al-
te/Neue Schönhauser Straße, near Kurfürstendamm, near Friedrich-
straße, and near Potsdamer Platz. Figure 2 illustrates the first three
areas on the map (the last one is a public square that has no impor-
tant adjacent shopping streets) and highlights the streets included in
Table 2. Green color indicates that the street is in the 10-SOIs and
in at least one of the source lists (true positives); orange means it is
in the 10-SOIs but not in any source (false positives); blue indicates
it is in a source but not in the 10-SOIs (false negatives).

It should be apparent that all orange streets near Alte/Neue Schön-
hauser Straße are actually valid results as they are adjacent to the
main streets in the respective area, and further have lots of little
shops in their vicinity. Similarly, the orange street near Friedrich-
straße is also valid as it is a pedestrian undergound tunnel with
shops. Regarding the blue streets in the Kurfürstendamm site (which
is analogous to Champs-Élysées in Paris), we should note that Kur-
fürstendamm appears in the 20-SOIs. The reason they are ranked
lower is that in their vicinity the density of shops is lower, as they
essentially house big luxury brands. This could be addressed by ex-
ploiting additional metadata to assign different weights to the POIs.

1http://www.tripadvisor.com/Travel-g187323-s405/
Berlin:Germany:Shopping.html
2http://www.globalblue.com/destinations/germany/
berlin/top-five-shopping-streets-in-berlin

5.1.2 Describing Streets of Interest
To study the effectiveness of our method in selecting appropri-

ate photos for describing a particular SOI, we focus on the popular
Oxford Street in London and seek for 3 photos. Since deriving the
ground truth from the collected crowd-sourced data is not possi-
ble, we choose to empirically test the result of our method against
simpler techniques that select photos based on spatial, textual in-
formation or their combination, and consider relevance, diversity,
or their combination. More precisely, we compare our method
ST_Rel+Div that combines spatio-textual relevance and diver-
sity, against 8 other techniques depicted in Table 4. Symbols S
and T denote, respectively, that spatial and textual information is
considered, while Rel and Div indicate, respectively, that relevance
and diversity are taken into account; our method considers all fac-
tors and information, hence its name ST_Rel+Div.

For a visual inspection of the results, Figure 3 shows the 3-photo
summary of Oxford Street, according to methods S_Rel, T_Rel and
ST_Rel+Div, respectively. In the first method, all selected pho-
tos are located outside HMV, an entertainment retailing company,
and are in fact near-duplicates. The reason for this seems to be that
the particular location attracts a large number of photos, due to the
release of popular movies, music albums and other similar events,
thus creating a high density spot. For the second method, all results
are photos from a particular demonstration that took place along
Oxford Street. This bias was introduced due to the high frequency
of the corresponding tags, thus resulting in a higher rank for photos
having those tags. On the other hand, observe that in our method
(Figure 3(c)) the result comprises different kinds of photos, achiev-
ing both high relevance and diversity: one photo outside HMV,
another from the aforementioned demonstration, and a third photo
showing a view of the street undergoing construction work.

For a quantifiable measure of effectiveness, we use the objective
function of Equation 2 (λ = 0.5, w = 0.5), that provides a bal-
anced score reflecting the relevance and diversity of both spatial
and textual information included in the photo summary. For the top
SOI in the considered cities, Table 3 presents the scores achieved
by each method; the value is normalized with respect to that of the
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Table 3: Objective scores (Equation 2 after normalization).
Method London Berlin Vienna

S_Rel 0.831 0.726 0.508
S_Div 0.923 0.982 0.961
S_Rel+Div 0.982 0.953 0.911
T_Rel 0.708 0.367 0.219
T_Div 0.831 0.811 0.895
T_Rel+Div 0.949 0.848 0.919
ST_Rel 0.776 0.367 0.279
ST_Div 0.913 0.986 0.961
ST_Rel+Div 1.000 1.000 1.000

ST_Rel+Div method. In all cities, our method achieves the high-
est normalized score (shown with bold), often by a large margin (up
to 4.5x). It is worth mentioning that there is no clear runner-up, as
S_Rel+Div is second best for London, while ST_Div is for Berlin
and Vienna (second highest values shown with italics).

5.2 Performance Study
We next evaluate the efficiency of the proposed methods.

5.2.1 Identifying Streets of Interest
Methods. First, we evaluate the performance of our proposed SOI
algorithm for solving k-SOI. To the best of our knowledge, no ap-
proaches have been proposed in previous works for the specific
problem addressed (see Problem 1). Hence, we compare the perfor-
mance of SOI to a baseline implementation, denoted as BL. Specif-
ically, BL uses only the spatial grid index to efficiently compute the
interest of every segment, and then determines the k-SOIs.
Parameters. Throughout our experiments, we set the distance
threshold ε to a fixed value (ε = 0.0005◦ ≈ 55m). We study
the effect of the number k of SOIs requested, and the number |Ψ|
of keywords in the query. To construct the keyword set, we se-
lect the first |Ψ| keywords among {religion, education, food,
services}. The resulting accumulated number of relevant POIs is
shown in Table 4. In each experiment, we vary one parameter while
setting the other to its default value (k = 50, |Ψ| = 3).

Table 4: Relevant POIs according to |Ψ|.
Dataset |Ψ| = 1 |Ψ| = 2 |Ψ| = 3 |Ψ| = 4

London 10,445 32,682 113,211 202,127
Berlin 1,969 10,506 47,950 78,310
Vienna 1,678 7,660 25,695 41,484

Metrics. The objective of our evaluation is to analyze the perfor-
mance of SOI compared to BL. Therefore, we measure the total
execution time of both methods. For SOI we further break it down
into time spent during list construction, filtering, and refinement.
Results. Figure 4 presents the evaluation results on the three datasets
for all settings considered. Note that the bars for SOI are divided
into the time spent in each of the three phases discussed.

The value of k has a small effect on all algorithms. Particularly
for SOI the execution time slightly increases with k. SOI out-
performs BL by a factor around 2.1–3.2 for London, 1.6–2.1 for
Berlin, and 1.1–2.5 for Vienna. An important observation is that
our method is more efficient for larger datasets, such as London
(see Table 1).

The value of |Ψ| has no effect in BL. On the other hand, the
execution time of SOI increases with |Ψ| as more POIs become
relevant (see Table 4) and thus more cells and segments have to
be visited. For example in London, the number of cells SOI vis-
its increases from 5% to 13% of the total cells. As a result, SOI
outperforms BL by a factor that varies from 1.1 up to 18.

(a) Spatial relevance (S_Rel).

(b) Textual relevance (T_Rel).

(c) Spatio-textual relevance and diversity (ST_Rel+Div).

Figure 3: Selected photos under different criteria.

Note that the selected keywords are quite general; they only
serve for benchmark purposes in extreme settings. For example,
when |Ψ|=4, we are essentially trying to rank streets that have
churches, schools, restaurants or various services within their neigh-
borhood. As a result, around 60% of all street segments are relevant
(SOI manages to prune half of them). In practice, the user would
pose more selective keywords.

5.2.2 Describing Streets of Interest
Methods. Next, we evaluate the performance of the ST_Rel+Div
algorithm compared to a baseline method (BL) which, similarly to
ST_Rel+Div, constructs the diversified result set iteratively, but
examining all photos in each iteration instead of operating on the
grid cells and using the bounds presented in Section 4.2.
Parameters. We fix the values of the distance parameters to ε =
0.0005◦ and ρ = 0.0001◦, and we vary: (a) the number k of photos
requested (default k=20), (b) the weight λ between relevance and
diversity (default λ=0.5), and (c) the weight w between the spa-
tial and textual components (default w=0.5). For each dataset, we
randomly selected one of the returned k-SOIs in the previous ex-
periments. The number of nearby photos for the cases of London,
Berlin and Vienna was, respectively, 6572, 788, and 1584.

An interesting discussion concerns the selection of an appropri-
ate value for parameter λ.3 We can think of the relevance-diversity
trade-off as follows. In order to increase the diversity of the re-
sult set (the return), we have to sacrifice its relevance (the invest-
ment). Typically, diversity starts to increase quickly in the begin-
ning (when relevance is still high), but its rate slowly decreases,
meaning that a greater reduction in relevance is required to achieve
3The other parameter in Equation 2, w, is application dependent.
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(a) London - varying k (b) Berlin - varying k (c) Vienna - varying k

(d) London - varying |Ψ| (e) Berlin - varying |Ψ| (f) Vienna - varying |Ψ|

Figure 4: Experimental results for the SOI algorithm.

Figure 5: Trade-off between relevance and diversity (w = 0.5).

the same increase in diversity. So the goal is to figure out an ac-
ceptable investment that is “value for money”.

Figure 5 depicts the normalized relevance (Equation 4) and di-
versity (Equation 5) scores of the constructed photo summary for
the top SOI in the three cities for various values of λ; note that the
relevance axis is reversed. As we go from bottom left to top right,
the value λ increases from 0 to 1 in increments of 0.25, and thus
relevance decreases while diversity increases. The larger marker
indicates the value λ = 0.5. In all cities, λ values around 0.5
achieve the best relevance-diversity trade-off. For example, in Vi-
enna λ = 0.5 suggests that by sacrificing 0.22 units of normalized
relevance we achieve a diversity of 0.87 normalized units. These
findings justify our selection of 0.5 as the default value for λ.
Metrics. As previously, we compare the total execution time of the
ST_Rel+Div algorithm and the BL method.
Results. The results are shown in Figure 6. The pruning achieved
by ST_Rel+Div via bounds computed for the grid cells drasti-
cally reduces the execution time in all experiments. ST_Rel+Div
outperforms BL by a factor that varies from 2 up to 64.

Moreover, it is worth noticing that ST_Rel+Div has response
times of less than a second, in contrast to the BL method that typ-
ically requires several seconds to compute the results, thus being
unsuitable for online exploration. In fact, the execution time is
much higher for London, due to the fact that the selected segment
in that case has a much higher number of associated photos, while
the inverse holds for Berlin.

For both algorithms, execution time increases with k, as more it-
erations are performed; however, ST_Rel+Div shows much bet-
ter scalability due to the pruning. These differences in performance
also remain consistent when varying the parameters λ and w.

6. CONCLUSIONS
In this paper, we have addressed the problem of finding and

exploring Streets of Interest based on Points of Interest and pho-
tos characterized by geolocation and keywords. The problem ad-
dressed is twofold. Given a set of keywords, we first rank streets
according to relevant nearby POIs. To that end, we define an inter-
est score for a street, and we present an efficient algorithm that re-
turns the top-k interesting streets. Then, we select for each discov-
ered street a small, diversified set of photos. We formulate this as
a diversification problem for spatio-textual objects, and we present
an efficient algorithm that performs a greedy search using a spatio-
textual grid to speed up the selection of candidates. Our experimen-
tal results on real-world data from several Web sources show that
the proposed algorithms drastically reduce the computation time,
allowing for online discovery and exploration of interesting parts
of the road network. In the future, we plan to enhance the diversi-
fication criteria with visual features extracted from the photos, as
well as to provide route recommendations based on the discovered
streets of interest.
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ABSTRACT
Indoor tracking data is being amassed due to the deployment
of indoor positioning technologies. Analysing such data dis-
closes useful insights that are otherwise hard to obtain. For
example, by studying tracking data from an airport, we can
identify the shops and restaurants that are most popular
among passengers. In this paper, we study two query types
for finding frequently visited Points of Interest (POIs) from
symbolic indoor tracking data. The snapshot query finds
those POIs that were most frequently visited at a given
time point, whereas the interval query finds such POIs for
a given time interval. A typical example of symbolic track-
ing is RFID-based tracking, where an object with an RFID
tag is detected by an RFID reader when the object is in the
reader’s detection range. A symbolic indoor tracking system
deploys a limited number of proximity detection devices, like
RFID readers, at preselected locations, covering only part of
the host indoor space. Consequently, symbolic tracking data
is inherently uncertain and only enables the discrete cap-
ture of the trajectories of indoor moving objects in terms of
coarse regions. We provide uncertainty analyses of the data
in relation to the two kinds of queries. The outcomes of the
analyses enable us to design processing algorithms for both
query types. An experimental evaluation with both real and
synthetic data suggests that the framework and algorithms
enable efficient and scalable query processing.

1. INTRODUCTION
Indoor spaces such as shopping malls, office buildings, li-

braries, metro stations, and airports serve as the settings of
significant parts of people’s daily lives. The indoor move-
ments of people are increasingly datafied due to advances
in indoor positioning [1]. As a result, a new type of data—
indoor tracking data—is being accumulated in a variety of
formats determined by the particular indoor positioning tech-
nologies used.

As in the case for outdoor tracking data [3], analyzing
indoor tracking data can reveal how different parts of an

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

indoor space are used by its inhabitants, e.g., the number
of visits to a particular part of space over time can be de-
termined. The findings are potentially useful in practical
scenarios. For example, the lease prices of different shop
locations in a large shopping mall may be set according to
the numbers of people passing by the location. As another
example, information on the behavior of past visitors to a
museum with multiple exhibitions may be used for making
recommendations to new visitors and for planning. These
and other example scenarios may benefit from flow counting
using indoor tracking data.

Flow counting is non-trivial in indoor spaces, where new,
unique technical challenges exist that are different from those
in outdoor contexts. These in turn call for novel data man-
agement techniques.

First of all, indoor positioning systems differ fundamen-
tally from GPS that is prevalent outdoors but that generally
does not work indoors. Having to use wireless technologies
such as Wi-Fi, Bluetooth, and RFID that originally are de-
signed for data communication, indoor positioning systems
work according to different principles and offer positioning
accuracies that are below that of GPS. For example, in an
RFID based system, an object with an RFID tag is detected
by an RFID reader only when the object is in the reader’s
detection range. Due to their costs, a limited number of
readers are deployed, covering only part of the host indoor
space. Consequently, the tracking data is inherently uncer-
tain and only enables the discrete capture of the trajectories
of indoor moving objects in terms of coarse regions. Such
uncertainty renders flow counting techniques based on GPS
data unsuitable for indoor spaces.

Further, indoor spaces are characterized by entities like
doors, rooms, and hallways that enable and constrain the
movements of indoor objects. Compared to outdoor Eu-
clidean or spatial network space, indoor spaces have more
complex topologies. When counting flows in indoor spaces,
their complex topologies must be taken into account.

This paper considers flow counting based on symbolic in-
door tracking data where object locations are captured as
circular regions centered at pre-selected indoor locations.
Such circular regions correspond to the detection ranges of
proximity detection devices, e.g., RFID readers. We de-
fine appropriate ways of counting flows based on the uncer-
tain tracking data. Our definitions capture probabilistically
how frequently indoor POIs are visited by tracked visitors.
Based on the definitions of indoor flow counting, we define
two query types for finding indoor POIs that are visited fre-
quently at a given time point and during a given time range,
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respectively. We analyze carefully the data uncertainty with
respect to the query types, which enables us to design algo-
rithms for both query types. We use synthetic and real data
to evaluate the proposals experimentally. The experimental
results show that our proposals are efficient and scalable.

We make the following contributions in this paper.

• We define indoor flow counting methods on symbolic
indoor tracking data, and we formulate two types of
queries for finding frequently visited indoor POIs.

• We derive query related object uncertainty regions by
analysing the relationship between the queries and the
tracking data.

• We make use of the uncertainty analysis results to de-
sign algorithms for the two query types.

• We perform extensive experiments to evaluate the pro-
posed techniques.

The remainder of the paper is organized as follows. Sec-
tion 2 presents the format of symbolic indoor tracking data
and formulates the research problems. Section 3 derives un-
certainty regions for objects. Section 4 details the query
processing algorithms. Section 5 reports on the experimen-
tal studies. Section 6 reviews the related work, and Section 7
concludes and discusses research directions.

2. PROBLEM FORMULATION
We formulate the research problems in this section. Sec-

tion 2.1 details the symbolic indoor tracking data, and Sec-
tion 2.2 gives the problem definitions. Table 1 lists notation
used throughout the paper.

Symbol Meaning

p An indoor POI
P A set of indoor POIs
o An indoor moving object
O A set of indoor moving objects
t A time point
rd An indoor tracking record
Φt(p) The flow of p at time t
Φts,te(p) The flow of p during interval [ts, te]
Vmax The maximum speed of indoor moving objects

Table 1: Notation

2.1 Symbolic Indoor Tracking Data
In symbolic indoor object tracking, raw position readings

are reported in the format 〈objectID , deviceID , t〉. Such a 3-
tuple means that the object identified by objectID is seen by
the device deviceID at time t. As the positioning works at a
configured sampling frequency, an object is typically seen in
multiple, consecutive raw readings by the same device. Such
consecutive raw readings are merged [10] to form a tracking
record of the form 〈ID , objectID , deviceID , ts, te〉. Such a
tracking record means that the object is continuously seen
by the device from time ts to time te, i.e., ts is the start
time for the continuous detection and te is the end time. An
object tracking table (OTT) is used to store such historical
tracking records, as exemplified in Table 2, where attribute
ID is a record identifier.

ID objectID deviceID ts te
rd1 o1 dev4 t1 t2
rd2 o2 dev4 t1 t2
rd3 o1 dev2 t5 t6
rd4 o2 dev1 t7 t8
rd5 o1 dev1 t9 t10
rd6 o1 dev12 t15 t16
rd7 o2 dev13 t20 t21
rd8 o1 dev13 t21 t22
rd9 o2 dev13 t29 t30
... ... ... ... ...

Table 2: Object Tracking Table (OTT)

2.2 Problem Definitions
We assume that each indoor POI p has some fixed ex-

tent modeled by a polygon, and for simplicity, we equate a
POI p with its polygon. As an entire indoor space is typ-
ically not fully covered by proximity detection devices like
RFID readers due to economic constraints, there are con-
siderable time intervals during which an object is not seen
at all. Consequently, flow counting is not straightforward
in the setting of uncertain indoor tracking data. Since ob-
ject locations are uncertain, exact counting of objects does
not make sense. Instead, we estimate how many objects
that appeared in an indoor POI’s range at a particular past
time point or during a past time range. For that purpose,
we need to determine an indoor moving object’s uncertainty
region that tells where the object can possibly be located.
We differentiate between snapshot and interval uncertainty
regions.

Given an object o, we use UR(o, t) to denote o’s snapshot
uncertainty region at time point t. In particular, UR(o, t)
captures an indoor region in which object o can possibly
be at time t. Next, we use UR(o, [ts , te ]) to denote o’s in-
terval uncertainty region during time interval [ts, te]. Here,
UR(o, [ts , te ]) captures the indoor region in which object o
can possibly be during time interval [ts, te]. We describe
how to derive these uncertainty regions in Section 3. Based
on the uncertainty regions, we define the following concepts
for flow counting.

First, we consider an object o’s presence in the range of
an indoor POI p. The presence stipulates how we “count”
objects for a POI p.

Definition 1 (Object Presence). During a given
time interval [ts, te], an object o’s interval presence in a POI
p is

φts,te,p(o) =
area(UR(o, [ts, te]) ∩ p)

area(p)
. (1)

Similarly, φt,p(o) is defined by replacing UR(o, [ts, te]) with
UR(o, t). The idea of object presence is to capture the in-
tersection between the object’s uncertainty region and the
POI’s range. Intuitively, the larger the intersection, the
more likely it is that the object was in the POI. For an
arbitrary object o and an arbitrary POI p, it is apparent
that 0 ≤ φt,p(o) ≤ 1 and 0 ≤ φts,te,p(o) ≤ 1. Therefore, o’s
object presence can be regarded as the probability that o is
in POI p at t or during [ts, te].

Next, we define the concept of flow for indoor POIs.
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Definition 2 (Flow). Suppose O is the set of all ob-
jects in an indoor space of interest. Given an indoor POI p
and a time interval [ts, te], p’s interval flow is defined as

Φts,te(p) =
∑
o∈O

φts,te,p(o). (2)

Similarly, Φt(p) is defined by replacing φts,te,p(o) with
φt,p(o). The flow definitions perform weighted counting of
objects that stay in POI p at time t or during time interval
[ts, te], and the weight assigned to each object is its object
presence.

With the above definitions, we formulate two types of
queries that return the top-k frequently visited indoor POIs.

Problem 1 (Snapshot Top-k Indoor POIs Query).
Given a set P of indoor POIs, a time point t, and an inte-
ger k (0 < k ≤ |P |), return a k-subset PT of P such that
∀p ∈ PT (∀p′ ∈ P \ PT (Φt(p) ≥ Φt(p

′))).

Problem 2 (Interval Top-k Indoor POIs Query).
Given a set P of indoor POIs, a time interval [ts, te], and
an integer k (0 < k ≤ |P |), return a k-subset PT of P such
that ∀p ∈ PT (∀p′ ∈ P \ PT (Φts,te(p) ≥ Φts,te(p′))).

These queries return the indoor POIs that are visited by
the largest number of visitors at a time point or during a
time interval. This functionality has many applications. For
example, it can be used to identify the most popular shops in
a shopping mall. Shop rental fees can take such information
into account. As another example, it can be used to identify
possible bottlenecks that slow down movement in an airport.

3. DERIVING UNCERTAINTY REGIONS
We elaborate on how to derive uncertainty regions for

an given object and specified time parameters. Section 3.1
presents the basic terminology, including uncertainty regions
for snapshot queries. Section 3.2 focuses on uncertainty re-
gions for interval queries. Section 3.3 addresses how to fi-
nalize the uncertainty regions in a given indoor space.

3.1 Basic Terminology
We first cover basic terminology adopted from previous

work [10,17, 25] that is necessary for understanding the pa-
per’s contributions.

3.1.1 Tracking States
Given a time point t, an object o may be in either an ac-

tive state or an inactive state [25]. Specifically, if there is
a tracking record rdcov for o in OTT (see Table 2 in Sec-
tion 2.1) covering time t, we say o is in an active state at
t. We use rdpre to refer to rdcov’s predecessor record in
OTT . If no tracking record for o exists in OTT covering
time t, object o is in an inactive state at t. In this case, we
identify two relevant tracking records. Record rdpre is the
tracking record for o immediately before o becomes inactive.
Record rdsuc is the tracking record for o immediately after
o leaves the inactive state, i.e., rdsuc is the first tracking
record when o becomes active again after time t. Note that
rdpre.te < t < rdsuc.ts if object o is inactive at time t.

Object o1’s tracking records in Table 2 are plotted along
the time axis in Figure 1 (originally from [17]). It is in an
active state at time t5, and it is in an inactive state at time
t19. Relevant particular tracking records are also marked in

rd8

t1 t9 t21 timet19t5

rdcovrdpre rdpre rdsuc

t15

t=t5, Active State t=t19, Inactive State

rd5 rd6rd3rd1

Figure 1: States in Symbolic Object Tracking

the figure. For simplicity, we use devpre (devcov or devsuc)
to refer to rdpre’s (rdcov’s or rdsuc’s) device.

An object is either in an active or an inactive state at
a time point t, whereas it may change state during a time
interval [ts, te]. In Figure 1, object o1 changes state five
times during [t5, t19].

3.1.2 Snapshot Uncertainty Regions
Two cases exist for the snapshot uncertainty region of an

object o at a time point t [17]. We suppose that Vmax is
the maximum speed that object o can move at in the given
indoor space.

Case 1: Object o is in an active state at t. In this case,
UR(o, t) = Ring(devpre, Vmax·(t−rdpre.te)) 1∩devcov.Range.
I.e., o’s uncertainty region is the intersection of devcov’s de-
tection range and the ring in which o can be after leaving
devpre’s detection range. Specifically, this ring is determined
by devpre’s range and the maximum distance o can move
from rdpre.te to t. This case is illustrated in Figure 2(a).

devpre

Vmax·(t-rdpre.te) 

devcov

(a) Active State

devpre

Vmax·(t-rdpre.te) 

devp

devsuc

Vmax·(rdsuc.ts-t) 

(b) Inactive State

Figure 2: Snapshot Uncertainty Regions

Case 2: Object o is in an inactive state at t. In this case,
UR(o, t) = Ring(devpre, Vmax ·(t−rdpre.te))∩Ring(devsuc,
Vmax · (rdsuc.ts − t)). Here, UR(o, t) is the intersection of
two rings: one involves rdpre and is the same as that in
Case 1; the other involves rdsuc and the maximum distance
o can move from t to rdsuc.ts. This case is illustrated in
Figure 2(b).

3.1.3 Uncertainty Region Involving Two Consecutive
Readings

Without loss of generality, let rdi and rdj be two con-
secutive tracking records for object o. Records rdi and rdj
involve devices devi and devj , respectively. For time inter-
vals [rdi.ts, rdi.te] and [rdj .ts, rdj .te], object o is in devi’s
and devj ’s detection range, respectively. For time interval
[rdi.te, rdj .ts], object o’s location can be constrained by an

1Ring(dev, ρ) denotes the ring whose inner circle is device
dev’s detection circle and whose outer circle extends the in-
ner circle’s radius by ρ.
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extended ellipse [10] whose two foci are two points on the
boundaries of the two detection ranges (see the two circular
regions in dark in Figure 3). Furthermore, the length of the
ellipse’s major axis is 2a = Vmax · (rdj .ts − rdi.te). Such
an extended ellipse is illustrated in Figure 3. Object o’s un-
certainty region for a time interval is represented by the ex-
tended ellipse excluding the two circular regions for the two
proximity detection devices. The details of deriving such
an extended ellipse can be found in the literature [10, 19].
We use Θ(devi, devj , rdi.te, rdj .ts) to refer to the complete
region covered by the ellipse, which will be used in our sub-
sequent discussions.

devi devj

Vmax·(t-rdpre.te) Vmax·(rdsuc.ts-t) 

Figure 3: Uncertainty Region Examples

3.2 Interval Uncertainty Regions
In order to derive the uncertainty region of object o in

a given time interval [ts, te], we need to find all its relevant
tracking records in OTT . Temporally, all those records form
a chain of detections of object o. In particular, we need to
find the start record, the end record, and all the records in-
between for object o. We use rds and rde to refer to the start
(first in the chain) and end (the last) records, respectively.
Although there may be multiple in-between records, we use
rdb to refer to a concrete record between rds and rde when
it is of particular interest in our discussion. Table 3 gives
the start and end records for all cases regarding object o’s
state at ts and te.

HH
HHHts

te Active Inactive

rds rde rds rde

Active rdcov(ts) rdcov(te) rdcov(ts) rdsuc(te)
Inactive rdpre(ts) rdcov(te) rdpre(ts) rdsuc(te)

Table 3: Start and End Records for [ts, te]

Next, we derive UR(o, [ts, te]), object o’s uncertainty re-
gion during [ts, te], for the four cases given in Table 3.

Case 1: Object o is active at both ts and te, i.e., rds =
rdcov(ts) and rde = rdcov(te). Without loss of generality,
we assume that there are two records in-between. An il-
lustration is shown in Figure 4, where devs is rds.deviceID
and deve is rde.deviceID . Object o’s uncertainty region is
then the union of the ellipse regions associated with the
consecutive tracking records from rds to rde. Formally,
UR(o, [ts, te]) =

⋃
i=1..|R|−1 Θ(devi, devi+1, rdi.te, rdi+1.ts),

where rdi is a tracking record from sequence R = 〈rdcov(ts),
rdb1, . . . , rdcov(te)〉 and devi = rdi.deviceID .

devb1 devb2

devs

deve

Figure 4: Interval Uncertainty Region for Case 1

Case 2: Object o is inactive at ts but active at te, i.e.,
rds = rdpre(ts) and rde = rdcov(te). As for Case 1, an
illustration is shown in Figure 5. Here, we need to pay
particular attention to the time interval [ts, rdb1.ts] before
object o becomes detected by device devb1. For this in-
terval, due to the maximum speed constraint, the object
can only be in the intersection of the ellipse region Θs =
Θ(devs, devb1, rds.te, rdb1.ts) and the ring captured as Rings
= Ring(devb1, Vmax · (rdb1.ts − ts)).

As a result, object o’s uncertainty region for the entire
interval [ts, te] is this intersection unioned with the union of
all other ellipse regions associated with all other consecutive
tracking records from rdb1 to rde = rdcov(te). Formally,
UR(o, [ts, te]) = (Θs ∩ Rings) ∪

⋃
i=1..|R|−1 Θ(devi, devi+1,

rdi.te, rdi+1.ts), where rdi is a tracking record from sequence
R = 〈rdb1, . . . , rdcov(te)〉 and devi = rdi.deviceID .

devb1 devb2

devs

deveVmax·(rdb1.ts-ts) 

Figure 5: Interval Uncertainty Region for Case 2

Case 3: Object o is active at ts but inactive at te, i.e.,
rds = rdcov(ts) and rde = rdsuc(te). An illustration is
shown in Figure 6. In this case, we need to pay particu-
lar attention to the time interval [rdb2.te, te] after object o
is last seen by device rdb2.deviceID . For this interval, due
to the maximum speed constraint, the object can only be
in the intersection of the ellipse region Θe = Θ(devb2, deve,
rdb2.te, rde.ts) and the ring Ringe = Ring(devb2, Vmax ·(te−
rdb2.te)).

As a result, object o’s uncertainty region for the entire in-
terval [ts, te] is the above intersection unioned with the union
of all other ellipse regions associated with all other consecu-
tive tracking records from rds = rdcov(ts) to rdb2. Formally,
UR(o, [ts, te]) = (Θe ∩ Ringe) ∪

⋃
i=1..|R|−1 Θ(devi, devi+1,

rdi.te, rdi+1.ts), where rdi is a tracking record from sequence
R = 〈rdcov(ts), rdb1, . . . , rdb2〉 and devi = rdi.deviceID .
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devb1

devs

devb2

deve

Vmax·(te-rdb2.ts) 

Figure 6: Interval Uncertainty Region for Case 3

Case 4: Object o is inactive at both ts and te, i.e., rds =
rdpre(ts) and rde = rdsuc(te). An illustration is shown in
Figure 7. This case combines the handling of the begin-
ning and end from Cases 2 and 3, respectively. Therefore,
object o’s uncertainty region in [ts, te] is UR(o, [ts, te]) =
(Θs ∩ Rings) ∪ (Θe ∩ Ringe) ∪

⋃
i=1..|R|−1 Θ(devi, devi+1,

rdi.te, rdi+1.ts), where rdi is a tracking record from sequence
R = 〈rdb1, . . . , rdb2〉 and devi = rdi.deviceID .

devb1

devs

Vmax·(rdb1.ts-ts) 

devb2

deve

Vmax·(te-rdb2.ts) 

Figure 7: Interval Uncertainty Region for Case 4

3.3 Indoor Topology Check
Our coverage so far does not consider the topology of the

indoor space. Specifically, we need to check UR(o, t) against
the given indoor space and exclude all parts of the space
that are not accessible to object o at time t. Also, we need
to check UR(o, [ts, te]) against the given indoor space and
exclude all parts of the space that are not accessible to object
o from time ts and te without exiting UR(o, [ts, te]). For each
type of uncertainty region, the part that remains after the
indoor topology check is object o’s uncertainty region.

Examples are shown in Figure 8, where the shaded parts
must be excluded from the object’s uncertainty regions. In
Figure 8(a), an object o is inactive at time point t. Suppose
that it was detected by device 1 at time t1 < t and then
by device 3 after t. According to the discussion illustrated
in Figure 2(b), o’s snapshot uncertainty region UR(o, t) is
the intersection of the two large circular regions constrained
by the maximum speed Vmax. However, the shaded part
should be excluded as it is too far away for object o to be
able to reach it at time point t. After leaving device 1’s
detection range, object o must go through door 2 to enter the
shaded part, which would yield an indoor walking distance
that exceeds the maximum Euclidean distance o can move
from t1 to t, i.e., Vmax · (t− t1). Therefore, this part should
be excluded from UR(o, t). If the topology check is skipped
in this example, the object would be “counted” for room 2

whose flow in turn would be increased incorrectly. Such a
miscalculation can result in room 2 entering a top-k query
result as a false positive.

It is worth noting that if room 2 had had a door in the
region given by the intersection of the two large circular
regions (see Figure 8(a)), further checking would be needed
to exclude parts of space that are too far away for an object
in those parts to be able to move from one device to the
other via the door. Based on the maximum speed Vmax,
we can calculate the earliest time t2 (t1 < t2 < t) for an
object to reach the assumed door. Then, moving from the
door, the possible region for the object to reach before t
is constrained by the distance Vmax · (t − t2). Any part of
space beyond that distance from the assumed door should
be excluded from the object’s uncertainty region.

3
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Figure 8: Indoor Topology Check

In Figure 8(b), an object o is detected by devices 1, 4, and
then 2. Due to the maximum speed constraint, the object
cannot have entered the shaded regions (in rooms 4 and 5).
Therefore, these regions should be excluded from object o’s
interval uncertainty region UR(o, [ts, te]). Otherwise, the
flows of rooms 4 and 5 would be incorrectly increased and
they may enter the top-k result as false positives.

In our framework, we do such indoor topology checks to
capture the uncertainty regions for indoor moving objects
better. Specifically, after an uncertainty region UR is ob-
tained, we divide it into several disconnected parts accord-
ing to the indoor topology. For each such part, we check
its indoor distance from the involved devices. If the indoor
distance exceeds the corresponding maximum Euclidean dis-
tance, the part is excluded. For simplicity, we use UR(o, t)
and UR(o, [ts, te]) to refer to the object’s uncertainty region
also after the topology check in the following.
Remark For the sake of conciseness in our presentation,
we implicitly assume that the detection ranges of proxim-
ity detection devices do not overlap. Overlapping detection
ranges can be accommodated by making only slight changes
in the corresponding low-level geometric computations; no
changes are needed to the overall process of deriving the
uncertainty regions for objects. Therefore, the uncertainty
analysis presented in this section and the algorithms to be
presented in the next section are able to accommodate over-
lapping detection ranges. We omit the low-level details here
in order to keep our discussion concentrated and concise.

4. TOP-K INDOOR POI ALGORITHMS
We proceed to design query processing algorithms by mak-

ing use of the uncertainty regions derived in Section 3. Sec-
tion 4.1 presents the indexes we use for query processing.
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Sections 4.2 and 4.3 detail the algorithms for snapshot and
interval queries, respectively.

4.1 Indexes
We use two R-tree [4] based indexes for the data to facil-

itate query processing—one for the tracking data and one
for the indoor POIs.

The object tracking table (OTT ) (refer to Table 2) is in-
dexed by an augmented 1D R-tree named A1R-tree [17] on
the temporal attributes as follows. Let rdc be a tracking
record for object o in OTT . Such a record rdc is indexed
by an A1R-tree leaf entry of the form (t`, ta,Ptrp ,Ptrc).
Specifically, Ptrc is a pointer to record rdc, and Ptrp points
to record rdp that is o’s previous record in OTT , i.e., rdp
is rdc’s predecessor for the same object. In addition, we
set t` = rdp.te and ta = rdc.te. We call (t`, ta] (i.e.,
(rdp.te, rdc.te]) an augmented tracking time interval. A non-
leaf entry in an A1R-tree is of the form (t`, ta, cp), where
cp is a pointer to a child node and [t`, ta] is the minimum
bounding interval that contains all time intervals in the child
node.

With an A1R-tree, we are able to efficiently obtain all
the tracking records relevant to the uncertainty region de-
termination described in Section 2. For a snapshot uncer-
tainty region at query time t, a point query with t as the
parameter via the A1R-tree will return a leaf entry le =
(t`, ta,Ptrp ,Ptrc) where (t`, ta] covers t. If le.P trp.te <
t < le.P trc.ts, the object is inactive at time t, and le.P trp
(le.P trc) points to rdpre (rdsuc) (see Figures 1 and 2(b)).
Otherwise, the object is active at time t (le.P trc.ts ≤ t ≤
le.P trc.te), and le.P trc points to the rdcov (see Figures 1
and 2(a)).

For the uncertainty region in a query time interval [ts, te],
a range query with [ts, te] as the parameter via the A1R-
tree returns a series of leaf entries such that the first leaf
entry’s augmented tracking time interval covers ts and that
of the last leaf entry covers te. Furthermore, the first (last)
leaf entry contains the pointer to the particular first (last)
tracking record needed for the four cases presented in Sec-
tion 3.2, depending on the case encountered. All in-between
tracking records, if any, are accordingly obtained through
those in-between leaf entries.

The set of indoor POIs is indexed by another R-tree, called
RP . For simplicity, we consider one floor and therefore use
a 2D R-tree to index all indoor POIs in our implementation.
Nevertheless, our analysis of uncertainty regions as well as
the query processing techniques can be extended to multi-
floor cases.

4.2 Snapshot Query Algorithms

4.2.1 Iterative Algorithm
A straightforward approach to compute the snapshot query

(Problem 1) is to compute the snapshot flow value for each
POI p in the query and then return the k POIs with the
highest flow values. This iterative algorithm is formalized
in Algorithm 1.

The iterative algorithm uses a hash table flows to keep
flow values for all POIs (lines 1–2). Using a point query on
the A1R-tree RO on the OTT (line 3), the algorithm ob-
tains all the relevant leaf entries whose augmented tracking
time interval contains the query time t, as described in Sec-
tion 4.1. For each object o thus obtained from the OTT

(lines 4–5), the algorithm derives the uncertainty region
UR(o, t) for either an inactive state (lines 6–9) or an active
state (line 11). Then all POIs that intersect UR(o, [ts, te])
are found (line 12). For each such POI p, its flow value is in-
creased by the current object o’s presence in p (lines 13–14).
Finally, the top-k POIs are returned (line 15).

Algorithm 1 iterativeSnapshot(R-tree RP for indoor
POIs, A1R-tree RO for OTT , time point t, integer k)

1: initialize a hash table flows : {POI} → [0,+∞]
2: for each POI p do flows[p]← 0

3: LeafEntrySet les← RO.PointQuery(t)
4: for each leaf entry le ∈ les do
5: o← le.P trc.objectID
6: ring1 ← Ring(le.P trp.deviceID , Vmax · (t− le.P trp.te))
7: if le.P trp.te < t < le.P trc.ts then . The object is in an

inactive state
8: ring2 ← Ring(le.P trc.deviceID , Vmax ·(le.P trc.ts−t))
9: UR(o, t)← ring1 ∩ ring2

10: else . The object is in an active state
11: UR(o, t)← ring1 ∩ le.P trc.deviceID .Range
12: ps← RP .IntersectionQuery(UR(o, t))
13: for each POI p ∈ ps do

14: flows[p]← flows[p] +
Area(UR(o,t)∩p)

Area(p)

15: return the top-k from flows.keys with the highest values

4.2.2 Join Algorithm
The iterative algorithm suffers from two limitations. It

iterates over all objects and relevant POIs, which may be
inefficient. Also, it needs to compute a considerable number
of uncertainty regions. This may not pay off, as some POIs
may finally get very low overall flow values while having in-
curred complex uncertainty region computations. Motivated
by these observations, we design a more efficient join based
method that is formalized in Algorithm 2.

The join algorithm consists of three phases. The first
(lines 1–11) builds an in-memory aggregate R-tree RI for all
objects whose augmented tracking interval covers query time
t. These objects are again obtained by a point query on the
A1R-tree (line 2). If an object o is inactive at t (line 5), we
obtain the minimum bounding rectangles (MBRs) of the two
(pre and suc) proximity detection devices’ detection ranges,
and extend each of them by the corresponding maximum
possible distance (lines 6–7). The two extended MBRs are
then merged to form the object’s MBR (line 8). Otherwise,
the MBR of device devcov’s range is used for the active state
(lines 10). After the MBR is determined, the object o is
inserted into tree RI , where each node entry is augmented
with a field count that is the number of all objects in the
corresponding sub-tree.

The second phase (lines 12–18) is the initialization for
joining the POI R-tree RP and the aggregate object R-tree
RI . Here, the algorithm initializes a priority queue Q that
gives higher priority to RP node entries (groups of POIs)
that potentially have higher flow values. In particular, each
RP entry eP is associated with a join list of RI entries whose
MBRs overlap eP ’s MBR. Note that for any POI p in eP ’s
sub-tree, those objects that can contribute to p’s flow value
can only come from such RI entries. When the two tree
roots are joined (line 13–18) initially, the count values in
the RI entries are used to upper bound the flow values as an
object’s presence in any POI never exceeds 1 (Definition 1).

The third phase carries out the join (lines 19–48). The
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Algorithm 2 joinSnapshot(R-tree RP for indoor POIs,
A1R-tree RO for OTT , time t, integer k)

1: initialize an in-memory aggregate R-tree RI

2: LeafEntrySet les← RO.PointQuery(t)
3: for each leaf entry le ∈ les do
4: o← le.P trc.objectID
5: if le.P trp.te < t < le.P trc.ts then . Inactive state
6: mbr1 ← extend MBR(le.P trp.deviceID .Range) by

Vmax · (t− le.P trp.te)
7: mbr2 ← extend MBR(le.P trc.deviceID .Range) by

Vmax · (le.P trc.ts − t)
8: mbr ← MBR(mbr1,mbr2)
9: else

10: mbr ← MBR(le.P trc.deviceID .Range)

11: insert (o,mbr) into RI

12: initialize a priority queue Q
13: for each entry eP in RP .root do
14: ubF low ← 0; list← ∅
15: for each entry eI in RI .root do
16: if eP .mbr intersects eI .mbr then
17: ubF low ← ubF low + eI .count; list← list ∪ {eI}
18: Q.enqueue(〈eP , list, ubF low〉)
19: result← ∅; initialize a hash table HU

20: while Q is not empty do
21: 〈eP , list〉 ← Q.dequeue()
22: if eP is a leaf entry then
23: if list is null then
24: add POI eP .object to result
25: if result = k then return result
26: else
27: if list contain leaf entries then
28: flow ← 0
29: for each entry eI ∈ list do
30: if HU [eI .object] = ∅ then
31: HU [eI .object]← UR(eI .object, t)

32: flow ← flow + φt,eP .object(eI .object)

33: if flow 6= 0 then Q.enqueue(〈eP , null, flow〉)
34: else
35: expandList(eP , list)

36: else
37: if list contain leaf entries then
38: for each sub-entry e′P in eP .node do
39: ubF low ← 0; list2← ∅
40: for each entry e′I ∈ list do
41: if e′P .mbr intersects e′I .mbr then
42: ubF low ← ubF low + 1
43: list2← list2 ∪ {e′I}
44: if list2 6= ∅ then
45: Q.enqueue(〈e′P , list2, ubF low〉)
46: else
47: for each sub-entry e′P in eP .node do
48: expandList(e′P , list)

join order is controlled by priority queue Q (lines 20–21). If
the current RP entry eP is a leaf entry, it is processed as
follows. If eP ’s join list is empty, which means its concrete
flow value has been calculated and the value is higher than
those yet to be calculated, it is added to the result (line 24),
and if the result contains k POIs, the algorithm terminates
(line 25). Otherwise, the join list may contain leaf entries or
non-leaf entries from RI . In the former case (line 27), the
flow value of eP is calculated by deriving the uncertainty
region and presence for each object in the join list (lines 28–
32). If the flow value is non-zero, the POI in eP is pushed
back to Q with an empty join list (line 33). To avoid deriv-
ing uncertainty regions repeatedly for objects that appear

in multiple join lists, we use a hash table HU (lines 19 and
30–31) to store the uncertainty regions for objects. If eP ’s
join list contains non-leaf entries, procedure expandList (Al-
gorithm 3) is called to join eP with sub-entries from the join
list. The procedure ensures that eP is only associated with
those RI entries whose MBRs intersect eP ’s (line 4), and it
uses the count values in the RI entries to estimate the upper
bound of eP ’s flow value (line 5).

Algorithm 3 expandList(Entry eP in R-tree RP for in-
door POIs, List list of entries in R-tree RI)

1: ubF low ← 0; list2← ∅
2: for each entry eI ∈ list do
3: for each sub-entry e′I in eI .node do
4: if eP .mbr intersects e′I .mbr then
5: ubF low ← ubF low + e′I .count
6: list2← list2 ∪ {e′I}
7: if list2 6= ∅ then
8: Q.enqueue(〈eP , list2, ubF low〉)

If the current RP entry eP is a non-leaf entry, it is pro-
cessed as follows. If the join list contains leaf entries (line 37),
the join algorithm overestimates the flow value for each of
eP ’s sub-entries when joining them with the relevant en-
tries in the join list (lines 38–43). Only sub-entries with a
non-empty join list are pushed back into the priority queue
(lines 44–45). Otherwise, procedure expandList is called for
each of eP ’s sub-entries (lines 47–48).

4.3 Interval Query Algorithms

4.3.1 Iterative Algorithm
Algorithm 4 offers a straightforward way of computing the

interval query (Problem 2). Overall, it follows the same iter-

Algorithm 4 iterativeInterval(R-tree RP for indoor
POIs, A1R-tree RO for OTT , time interval [ts, te], integer
k)

1: initialize a hash table flows : {POI} → [0,+∞]
2: for each POI p do flows[p]← 0

3: LeafEntrySet les← RO.RangeQuery([ts, te])
4: initialize a hash table H
5: for each leaf entry le ∈ les do
6: append le.S to H[le.objectID ]

7: for each key objectID ∈ H.keys do
8: get (rds, . . . , rde) from H[objectID ]
9: calculate UR(objectID , [ts, te]) from (rds, . . . , rde)

10: ps← RP .IntersectionQuery(UR(objectID , [ts, te]))
11: for each POI p ∈ ps do

12: flows[p]← flows[p] +
Area(UR(o,[ts,te])∩p)

Area(p)

13: return the top-k from flows.keys with the highest values

ative paradigm as does Algorithm 1 for the snapshot query.
It uses a range query on the A1R-tree to obtain the rele-
vant leaf entries and objects whose augmented tracking time
interval overlap the query time interval [ts, te] (line 3), as
described in Section 4.1. An interval query may involve a
sequence of tracking records of an object, and therefore the
algorithm uses a hash table to form the sequences for all
objects obtained (lines 4–6). The uncertainty region of each
object is calculated (lines 8–9) according to the discussion
in Section 3.2.
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4.3.2 Join Based Algorithm
Basic framework. Like for snapshot query processing,

we have a join based algorithm for interval query processing.
As formalized in Algorithm 5, it also contains three phases:
aggregate object R-tree RI construction (lines 1–9), join ini-
tialization (lines 10–16), and join processing (lines 17–46).
The differences here lie mainly in the first phase and in the
details of deriving the uncertainty regions for objects in a
join list in the third phase.

Algorithm 5 joinInterval(R-tree RP for indoor POIs,
A1R-tree RO for OTT , time interval [ts, te], integer k)

1: initialize a hash table H
2: LeafEntrySet les← RO.RangeQuery([ts, te])
3: for each leaf entry le ∈ les do
4: append le.S to H[le.objectID ]

5: initialize an in-memory aggregate R-tree RI

6: for each key objectID ∈ H.keys do
7: get (rds, . . . , rde) from H[objectID ]
8: mbr ← MBR(objectID , [ts, te])
9: insert (objectID ,mbr) into RI

10: initialize a priority queue Q
11: for each entry eP in RP .root do
12: ubF low ← 0; list← ∅
13: for each entry eI in RI .root do
14: if eP .mbr intersects eI .mbr then
15: ubF low ← ubF low + eI .count; list← list ∪ {eI}
16: Q.enqueue(〈eP , list, ubF low〉)
17: result← ∅; initialize a hash table HU

18: while Q is not empty do
19: 〈eP , list〉 ← Q.dequeue()
20: if eP is a leaf entry then
21: if list is null then
22: add POI eP .object to result
23: if result = k then return result
24: else
25: if list contain leaf entries then
26: flow ← 0
27: for each entry eI ∈ list do
28: if HU [eI .object] = ∅ then
29: HU [eI .object]← UR(eI .object, [ts, te])

30: flow ← flow + φts,te,eP .object(eI .object)

31: if flow 6= 0 then Q.enqueue(〈eP , null, flow〉)
32: else
33: expandList(eP , list)

34: else
35: if list contain leaf entries then
36: for each sub-entry e′P in eP .node do
37: ubF low ← 0; list2← ∅
38: for each entry e′I ∈ list do
39: if e′P .mbr intersects e′I .mbr then
40: ubF low ← ubF low + 1
41: list2← list2 ∪ {e′I}
42: if list2 6= ∅ then
43: Q.enqueue(〈e′P , list2, ubF low〉)
44: else
45: for each sub-entry e′P in eP .node do
46: expandList(e′P , list)

Although this basic framework still works for interval query
processing, preliminary experimentation suggests that it can
be improved significantly. In the following, we identify the
performance bottleneck and present improvements to the
design of the join based algorithm.

Improvements. The uncertainty regions for an interval
query are much larger than those for a snapshot query. If
a single MBR is used for an interval uncertainty region, the

MBR can cover considerable dead space. This is the case in
Algorithm 5 that uses a coarse MBR estimation, especially
when an overall MBR is created for all tracking records of
an object during the query interval (line 8). To alleviate this
problem, we introduce several improvements.

Instead of using a single, large MBR to represent an ob-
ject’s trajectory during [ts, te], we use a series of much tighter
MBRs, each of which is created based on a pair of consec-
utive tracking records. Suppose that an object o’s relevant
tracking records during [ts, te] are 〈rd1, . . . , rdm〉. For each
pair (rdi, rdi+1), we create a small MBR mbri for the ex-
tended ellipse (Section 3.1.3) defined by the two tracking
records.

After we create all such m − 1 smaller MBR mbris, we
create the overall MBR mbr for all of them. When we in-
sert mbr into the aggregate R-tree RI , we create additional
information at the leaf node level for all such smaller mbris
for mbr. In particular, we insert a pointer from the entry
for mbr to the list of mbris, such that we can easily access
these when we visit mbr’s node.

Next, we modify the procedure that expands the join
list (Algorithm 3). Instead of simply checking whether two
MBRs intersect, we do additional checks when a leaf node
entry e′I is taken from R-tree RI (line 3 in Algorithm 3). In
particular, if e′I is a leaf node entry and its MBR intersects
eP ’s (line 4), we continue to check eP ’s MBR against the
smaller MBRs covered by e′I as described above. We include
e′I into the join list only if at least one such smaller MBR in-
tersects eP ’s MBR. These finer-grained checks are expected
to eliminate many false positives in the join list that would
otherwise result from the large, dead space-dominant MBR
of e′I . This arrangement reduces the join list size for eP and
reduces also the subsequent join cost.

In similar fashion, we apply the additional MBR intersec-
tion checks to Algorithm 5 when it process leaf entries from
RI (line 39). This is also expected to reduce the join list
and the join cost.

An example of the improvements is shown in Figure 9.
Object o’s overall MBR, whose dead space is indicated by

dev2 dev3

dev1

dev4

mbr1
mbr2

mbr3

p

Figure 9: Less Coarse MBR Checks

the shaded parts, overlaps a POI p, and therefore o is in-
cluded in p’s join list initially. Later, o’s complex uncer-
tainty region UR(o) is derived to calculate its presence in
p. It turns out that the complex calculation does not con-
tribute to the query result because UR(o) does not intersect
with p. Specifically, object o’s single, large MBR can be re-
placed by three smaller MBRs. As shown in the figure, each
of the three smaller MBRs bounds the ellipse corresponding
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to a pair of consecutive tracking records. Using the smaller
MBRs, object o will be excluded from p’s join list, and the
calculation of UR(o) will be skipped since none of the three
smaller MBRs intersects with p. We only implement the
improved framework in the experimental comparisons.

5. EXPERIMENTAL STUDIES
This section reports on the experimental studies of our re-

search. Section 5.1 presents the experimental settings. Sec-
tions 5.2 and 5.3 cover the experiments on synthetic and real
data, respectively.

5.1 Experimental Settings
All algorithms are implemented in Java and run on a com-

puter with Windows 7 Enterprise edition, an Intel Core i7-
2620M 2.70GHz CPU, and 8.0GB main memory.

Synthetic data set: We use a floor plan with about 100
rooms that are all connected by doors to a hallway. We
place a total of 143 RFID readers by doors and along the
hallways. We generate object movements using the random
waypoint model [11]. All objects move with a fixed speed of
1.1 m/s, which is also used as the maximum speed Vmax.

We vary multiple parameters when generating the data,
as shown in Table 4 where default values are in bold. We
vary |O|, i.e., the number of objects in the OTT from 10 K
to 50 K. We vary the RFID detection range, the radius of
the circular region covered by an RFID reader, from 1m to
2.5m. For the complete synthetic data set, the number of
the OTT tracking records falls in the range from 140 K to
2,000 K.

Parameters Settings

|O| 10K, 20K, ..., 50K
Detection Range (meter) 1, 1.5, 2, 2.5
|P | (% of all indoor POIs) 2%, 4%, 6%, 8%, 10%

k 1, 2, 3, 4, 5, ..., 10, ... 15
te − ts (minutes) 10, 20, 30, ..., 60

Table 4: Parameter Settings in Experiments

Real-world data set: We use a real data set collected
from Copenhagen International Airport (CPH) where pas-
sengers with Bluetooth-enabled mobile phones are tracked
by deployed Bluetooth radios. We extract the data for a pe-
riod of 7 months with the most tracking records. Our OTT
contains approximately 600K records for about 10K passen-
gers. We do not vary the detection range in the experiments
on the real data set because we have no access to change
the configurations in the real deployment. We use the same
Vmax as in the synthetic data.

Query parameters: We also vary query parameters ac-
cording to Table 4. Specifically, k (the number of top ranked
indoor POIs to be returned) is varied from 1 to 15. The
query POI set is determined as follows. For both synthetic
and real data, 375 POIs are determined in the indoor space
at distinctive locations and with different areas. Multiple
POIs may come from the same large room that is divided
into multiple uses. We control the number of query POIs
(|P |) as a percentage (2% to 10%) of the total number of
indoor POIs. Given a percent, the query POI set is deter-
mined as a random subset of the total 375 POIs. We start
from 2% to make sure there are sufficient query POIs for

returning the top-k results. On the other hand, we do not
include more than 10% of all POIs in a query because, in-
tuitively, not all indoor POIs are interesting and frequently
visited, so query issuers like building officers may query a
subset of all indoor POIs. Furthermore, te − ts is the query
time interval used in the interval top-k indoor POI query.
We vary it from 10 to 60 minutes.

5.2 Experiments on Synthetic Data

5.2.1 Results for Snapshot Queries
We first evaluate the performance of the snapshot query

by varying parameters k, |P |, and the detection range. We
do not change parameter |O| for the snapshot query because
the number of moving objects retrieved at a given time point
is fairly random, and is smaller than and independent of |O|.

The results of varying k, |P |, and the detection range are
presented in Figures 10 and 11(a). As a general observation,
the join algorithm outperforms the iterative algorithm. This
is because the former is able to prune more objects when
their uncertainty regions do not overlap with the regions of
POIs.

The effect of varying k is shown in Figure 10(a). As can
be observed, varying k has only little influence on both algo-
rithms. This indicates that both algorithms are stable with
respect to query parameter k. The relatively high cost for
both algorithms at k = 1 is due to the intensive initial com-
putation of the uncertainty regions for many objects, which,
however, does not pay off for a simple top-1 query.

The effect of varying |P | is shown in Figure 10(b). As the
number of query POIs increases, the running time increases
slightly. This is because more query POIs occupy larger
areas, and thus more moving objects are present in POIs.
Thus, more object uncertainty regions intersect POIs, which
yields longer processing times.
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Figure 10: Snapshot Query on Synthetic Data Set

Figure 11(a) presents the effect of varying the detection
range of RFID readers. When the detection range increases,
the uncertainty region increases as well. Therefore, more
computation time is needed to estimate the areas of uncer-
tainty regions. Hence, the running time is the largest when
the detection range is set to 2.5m. The slight decrease at 2
meters is attributed to the fluctuation of the OTT size.

5.2.2 Results for Interval Queries
The performance of the interval query algorithms is re-

ported in Figures 11(b) and 12. In this experiment, we vary
all five parameters listed in Table 4. Similar to the exper-
iments for snapshot queries, the join algorithm runs faster
than the iterative algorithm in almost all settings, which we
attribute to its effective pruning strategy.
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Figure 11: Effect of Detection Range

As shown in Figure 12(a), varying k does not significantly
impact the performance of the algorithms except for k = 1.
Overall, both algorithms are stable with respect to query
result size except when k = 1. The longer running time for
k = 1 occurs because the considerable computations on the
uncertainty regions do not pay off for the very small top-1
query results. The performance improves when k increases
because neither algorithm works in an incremental manner
with respect to k. The relatively high cost at k = 1 is not
observed in the counterpart experiments on the real data set
(see Figure 14(a)), which is attributed to the considerably
smaller size of the real data.

The effect of varying |P | is presented in Figure 12(b).
When increasing |P |, the running time of the iterative algo-
rithm increases, while the join algorithm stays stable. Both
algorithms have longer running times when compared to
their snapshot query counterparts. This is understandable,
as uncertainty regions in the snapshot setting are much smaller
than those in the interval setting.
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Figure 12: Interval Query on Synthetic Data Set

Figure 12(c) shows that the running time of both algo-
rithms increases as |O| increases. Nevertheless, the join al-
gorithm remains more efficient. This indicates that the join
algorithm is most scalable.

As the query time interval te − ts increases, the running
time of the two algorithms increases accordingly, as pre-
sented in Figure 12(d). Longer query intervals tend to yield
larger and more complex uncertainty regions that require
more time to process.

As presented in Figure 11(b), when the detection range
increases, the running time of both algorithms tends to de-
crease. This trend is opposite to the observation in the ex-
periment for snapshot queries where the detection range is
changed. In the interval setting, the algorithms compute on
moving objects trajectories in a given time interval and thus
involve a series of tracking records and devices. When the
detection ranges of the devices increase, an object’s uncer-
tainty regions between pairs of consecutive devices shrink.
As a result, objects’ overall uncertainty regions tend to be
smaller and thus take less time to process. At the outlier of
2 meters, the OTT is small, and the tracking data is sparse,
which offsets the benefit of a larger detection range.

5.3 Experiments on Real Data
Results for snapshot queries are reported in Figure 13.

Clearly the join algorithm outperforms the iterative algo-
rithm. Both algorithms are fairly stable with respect to
varying k, as shown in Figure 13(a). When the number
of query POIs is increased, both algorithms’ running times
increase moderately and almost linearly, as shown in Fig-
ure 13(b). These results indicate that our designs are stable
and scalable for snapshot queries in real indoor settings.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15

R
un

ni
ng

 T
im

e 
(s

)

K

Iterative
Join

(a) Effect of k

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

2 4 6 8 10

R
un

ni
ng

 T
im

e 
(s

)

Percentage of All POIs (%)

Iterative
Join

(b) Effect of |P |

Figure 13: Snapshot Query on CPH Data Set

Interval query performance results are reported in Fig-
ure 14. It is clear that the join algorithm outperforms the
iterative algorithm for all settings in these experiments.

The effect of varying k is shown in Figure 14(a). The join
algorithm is more efficient and slightly more stable when
varying k. This indicates that our strategy of finer MBRs
for interval uncertainty regions pays off.

The effect of varying the number of query POIs is shown
in Figure 14(b). The more stable performance of the join
algorithm is again attributed to the use of finer MBRs for
interval uncertainty regions. Smaller MBRs can help prune
objects (and their uncertainty regions) more effectively even
when there are more POIs and those POIs collectively oc-
cupy larger areas.

The effect of varying the query interval length is shown
in Figure 14(c). Longer intervals yield longer object tra-
jectories and larger uncertainty regions. This explains the
increase in the running times of both algorithms. Neverthe-
less, the join algorithm is still more efficient thanks to the
use of finer MBRs.

6. RELATED WORK
We briefly review related work in this section. Section 6.1

covers the research on indoor-space moving objects, and Sec-
tion 6.2 covers the density queries in outdoor spaces.

6.1 Indoor-Space Moving Objects
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Figure 14: Interval Query on CPH Data Set

Due in part to their different topology, indoor spaces are
modeled [10, 13, 16, 21, 22] differently than outdoor spaces.
Moreover, indoor moving objects are tracked by means dif-
ferent than outdoor GPS and thus generate different track-
ing data.

Assuming a generic setting of symbolic indoor tracking,
Yang et al. study continuous range monitoring queries [25]
and probabilistic k nearest neighbor queries [26] on indoor
moving objects. Uncertain query results are returned as
objects’ locations are unknown when they are outside any
detection range. Yu et al. [28] propose a particle filter based
method to infer undetected locations under RFID tracking,
which thus improves query result quality. Unlike these works
that concern the current locations of indoor moving objects,
this paper works on historical indoor tracking data.

Lu et al. [17] define spatio-temporal joins over indoor mov-
ing objects whose historical locations are captured in the
same format as the symbolic tracking data assumed in this
paper. However, while we compute flows for static indoor
POIs according to historical tracking data, Lu et al. com-
pute pairs of indoor moving objects that were in the same
location according to historical data.

Xie et al. [23,24] study indoor distance-aware spatial queries
over online indoor moving objects whose positions are re-
ported as probabilistic samples rather than using RFID de-
tection ranges. Therefore, the proposed techniques are un-
suitable for the problems we consider in this paper.

Recently, Ahmed et al. [2] define indoor density queries
based on historical RFID indoor tracking data. Their den-
sity definition differs from our definition of flow. Moreover,
we analyze the inherent uncertainties in the data and design
uncertainty-aware solutions, whereas Ahmed et al. do not
consider uncertainty.

6.2 Density Queries in Outdoor Spaces
Most existing research works on the querying of object

flow and density are for outdoor Euclidean spaces or spatial
road networks.

Tao et al. [20] use an aggregate RB-tree (aRB-tree) for
indexing spatio-temporal objects in a Euclidean space and
propose algorithms to count objects in a given spatial win-
dow during a given time interval. The proposed solution
considers no location uncertainty and the aRB-tree cannot
handle the complex indoor topology. Therefore, that solu-
tion cannot be used for the problems addressed in this paper.

Employing micro-clustering [29], Li et al. [15] propose
techniques that cluster moving objects and dynamically up-

date the clusters as the objects move linearly. The proposed
techniques do not apply in our setting, where indoor ob-
ject movements can not be captured by linear models but
are reported based on discrete detection ranges. Yiu and
Mamoulis [27] propose density based and hierarchical meth-
ods to partition and cluster static objects on a spatial net-
work. Their proposal uses network distances between static
positions and therefore does not solve our problems on in-
door moving objects.

Hadjieleftheriou et al. [5] study threshold density region
queries that find outdoor regions with more objects than
a given threshold. Their solution assumes that the objects
move according to known linear functions and are indexed
by uniform space-time grids. Jensen et al. [9] study snapshot
dense region queries in a Euclidean plane where objects move
linearly and are indexed by a Bx-tree [8]. With the same
linear motion assumption, Hao et al. [6] study continuous
density queries by using a quad-tree to index moving objects.
To improve density query results, Ni and Ravishankar [18]
redefine the density and use small square neighborhoods to
approximate arbitrary outdoor regions. These proposals [5,
6, 9, 18] are unsuitable for our problems, a key reason being
that objects in indoor spaces cannot be modeled well by
linear functions.

Huang and Lu [7] define online density region queries on
moving objects that are observed by sensors at fixed posi-
tions in a geographical area. The proposed solution assumes
that object locations are captured as certain points in a 2D
Euclidean space. This assumption renders the solution un-
suitable for our problems where indoor moving object loca-
tions are captured as uncertainty regions.

Li et al. [14] devise techniques to return traffic density-
based hot routes from historical trajectories in a road net-
work. Cai et al. [12] design a clustering based technique
for continuously monitoring dense road segments. Different
from these works, we target indoor spaces where objects’
historical movements are captured as detection ranges asso-
ciated with time intervals.

7. CONCLUSION AND FUTURE WORK
In this paper, we study how to find the top-k frequently

visited indoor Points of Interest (POIs) using symbolic in-
door tracking data that captures object movements indoors.
We define two types of queries in this regard. A snapshot
query finds those indoor POIs that were visited by the most
tracked objects (e.g., people) at a given time point, whereas
an interval query finds such POIs for a given time interval.
As symbolic indoor tracking data can only capture trajec-
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tories with a considerable degree of uncertainty, we define
appropriate ways to quantify how frequently an indoor POI
is visited by probabilistically counting objects’ presences in
the POI. Subsequently, we conduct a detailed analysis on the
uncertainty regions of objects in the settings of the two types
of queries. Based on the uncertainty analysis, we design al-
gorithms for both query types. We use both synthetic and
real data sets to evaluate the query processing algorithms,
and the performance results show that our proposed join-
based algorithms are capable of significantly outperform-
ing straightforward baselines and are much more scalable
in terms of data set size and query interval length.

Several directions exist for future research. First, it is rel-
evant to consider an object’s dwell time when calculating its
interval presence in a POI. The interval-related definitions
in the paper can be extended for that purpose. In particu-
lar, an object’s interval uncertainty region can be extended
to also reflect the temporal aspect in addition to the spatial
aspect. Second, it is of interest to extend the uncertainty
analysis to support multiple floors. The new challenge is to
track object movement between floors appropriately and to
derive the uncertainty regions accordingly. Third, it is of in-
terest to investigate how to solve the problems addressed in
the paper using other types of indoor tracking data. To this
end, it can be considered whether the proposed techniques
can be applied to, or adapted for, other data types. Fourth,
it is relevant to develop techniques for finding the currently
crowded indoor POIs by using tracking data. Fifth, it is
of interest to evaluate the query results against real indoor
POIs in order to see how effective the proposed query types
are at finding frequently visited indoor POIs. For that pur-
pose, ground truth data on popular indoor POIs is needed.
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ABSTRACT
The database research community has been building methods to
store, access, and update data for more than four decades. Through-
out the evolution of the structures and techniques used to access
data, access methods adapt to the ever changing hardware and work-
load requirements. Today, even small changes in the workload or
the hardware lead to a redesign of access methods. The need for
new designs has been increasing as data generation and workload
diversification grow exponentially, and hardware advances intro-
duce increased complexity. New workload requirements are intro-
duced by the emergence of new applications, and data is managed
by large systems composed of more and more complex and het-
erogeneous hardware. As a result, it is increasingly important to
develop application-aware and hardware-aware access methods.

The fundamental challenges that every researcher, systems ar-
chitect, or designer faces when designing a new access method are
how to minimize, i) read times (R), ii) update cost (U), and iii)
memory (or storage) overhead (M). In this paper, we conjecture
that when optimizing the read-update-memory overheads, optimiz-
ing in any two areas negatively impacts the third. We present a
simple model of the RUM overheads, and we articulate the RUM
Conjecture. We show how the RUM Conjecture manifests in state-
of-the-art access methods, and we envision a trend toward RUM-
aware access methods for future data systems.

1. INTRODUCTION
Chasing Access Paths. Picking the proper physical design (through
static autotuning [14], online tuning [13], or adaptively [31]) and
access method [27, 49] have been key research challenges of data
management systems for several decades. The way we physically
organize data on storage devices (disk, flash, memory, caches) de-
fines and restricts the possible ways that we can read and update it.
For example, when data is stored in a heap file without an index,
we have to perform costly scans to locate any data we are interested
in. Conversely, a tree index on top of the heap file, uses additional
space in order to substitute the scan with a more lightweight in-
dex probe. Over the years, we have seen a plethora of exciting
and innovative proposals for data structures and algorithms, each

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

one tailored to a set of important workload patterns, or for match-
ing critical hardware characteristics. Applications evolve rapidly
and continuously, and at the same time, the underlying hardware
is diverse and changes quickly as new technologies and architec-
tures are developed [1]. Both trends lead to new challenges when
designing data management software.
The RUM Tradeoff. A close look at existing proposals on access
methods1 reveals that each is confronted with the same fundamen-
tal challenges and design decisions again and again. In particular,
there are three quantities and design parameters that researchers
always try to minimize: (1) the read overhead (R), (2) the up-
date overhead (U), and (3) the memory (or storage) overhead (M),
henceforth called the RUM overheads. Deciding which overhead(s)
to optimize for and to what extent, remains a prominent part of the
process of designing a new access method, especially as hardware
and workloads change over time. For example, in the 1970s one
of the critical aspects of every database algorithm was to minimize
the number of random accesses on disk; fast-forward 40 years and
a similar strategy is still used, only now we minimize the number
of random accesses to main memory. Today, different hardware
runs different applications but the concepts and design choices re-
main the same. New challenges, however, arise from the exponen-
tial growth in the amount of data generated and processed, and the
wealth of emerging data-driven applications, both of which stress
existing data access methods.
The RUM Conjecture: Read, Update, Memory – Optimize Two
at the Expense of the Third. An ideal solution is an access method
that always provides the lowest read cost, the lowest update cost,
and requires no extra memory or storage space over the base data.
In practice, data structures are designed to compromise between the
three RUM overheads, while the optimal design depends on a mul-
titude of factors like hardware, workload, and user expectations.

We analyze the lower bounds for the three overheads (read - up-
date - memory) given an access method which is perfectly tailored
for minimizing each overhead and we show that such an access
method will impact the rest of the overheads negatively. We take
this observation a step further and propose the RUM Conjecture:
designing access methods that set an upper bound for two of the
RUM overheads, leads to a hard lower bound for the third over-
head which cannot be further reduced. For example, in order to
minimize the cost of updating data, one would use a design based
on differential structures, allowing many queries to consolidate up-
dates and avoid the cost of reorganizing data. Such an approach,
however, increases the space overhead and hinders read cost as now
queries need to merge any relevant pending updates during process-
ing. Another example is that the read cost can be minimized by
1Access methods: algorithms and data structures for organizing
and accessing data [27].
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storing data in multiple different physical layouts [4, 17, 46], each
layout being appropriate for minimizing the read cost for a partic-
ular workload. Update and space costs, however, increase because
now there are multiple data copies. Finally, the space cost can be
minimized by storing minimal metadata and, hence, pay the price
of increased search time when reading and updating data.

The three RUM overheads form a competing triangle. In modern
implementations of data systems, however, one can optimize up to
some point for all three. Such optimizations are possible by relying
on using inherently defined structure instead of storing detailed in-
formation. A prime example is the block-based clustered indexing,
which reduces both read and memory overhead by storing only a
few pointers to pages (only when an indexed tuple is stored to a
different page than the previous one), hence building a very short
tree. The reason why such an approach would give us good read
performance is the fact that data is clustered on the index attribute.
Even in this ideal case, however, we have to perform additional
computation in order to calculate the exact location of the tuple
we are searching for. In essence, we use computation and knowl-
edge about the data in order to reduce the RUM overheads. An-
other example, is the use of compression in bitmap indexes; we still
use additional computation (compression/decompression) in order
to succeed in reducing both read and memory overhead of the in-
dexes. While the RUM overheads can be reduced by computation
or engineering, their competing nature manifests in a number of ap-
proaches and guides our roadmap for RUM-aware access methods.
RUM-Aware Access Method Design. Accepting that a perfect ac-
cess method does not exist, does not mean the research community
should stop striving to improve; quite the opposite. The RUM Con-
jecture opens the path for exciting research challenges towards the
goal of creating RUM-aware and RUM-adaptive access methods.

Future data systems should include versatile tools to interact with
the data the way the workload, the application, and the hardware
need and not vice versa. In other words, the application, the work-
load, and the hardware should dictate how we access our data, and
not the constraints of our systems. Such versatile data systems will
allow the data scientist of the future to dynamically tune the data
access methods during normal system operation. Tuning access
methods becomes increasingly important if, on top of big data and
hardware, we consider the development of specialized systems and
tools to cater data, aiming at servicing a narrow set of applications
each. As more systems are built, the complexity of finding the right
access method increases as well.
Contributions. In this paper we present for the first time the RUM
Conjecture as a way to understand the inherent tradeoffs of every
access method. We further use the conjecture as a guideline for de-
signing access methods of future data systems. In the remainder of
this paper we charter the path toward RUM-aware access methods:

• Identify and model the RUM overheads (§2).

• Propose the RUM Conjecture (§3).

• Document the manifestation of the RUM Conjecture in state-
of-the-art access methods (§4).

• Use the RUM Conjecture to build access methods for future
data systems (§5).

Each of the above points serves as inspiration for further research
on data management. Finding a concise yet expressive way to
identify and model the fundamental overheads of access methods
requires research in data management from a theory perspective.
Similarly, proving the RUM Conjecture will expand on this line of
research. Documenting the manifestation of the RUM Conjecture
entails a new study of access methods with the RUM overheads

in mind when modeling and categorizing access methods. Finally,
the first three steps provide the necessary research infrastructure to
build powerful access methods.

While we envision that this line of research will enable building
powerful access methods, the core concept of the RUM Conjecture
is, in fact, that there is no panacea when designing systems. It is
not feasible to build the universally best access method, nor to build
the best access method for each and every use case. Instead, we en-
vision that the RUM Conjecture will create a trend toward building
access methods that can efficiently morph to support changing re-
quirements and different software and hardware environments. The
remainder of this paper elaborates one by one the four steps toward
RUM-aware access methods for future data systems.

2. THE RUM OVERHEADS
Overheads of Access Methods. When designing access methods
it is very important to understand the implications of different de-
sign choices. In order to do so, we discuss the three fundamental
overheads that each design decision can affect. Access methods en-
able us to read or update the main data stored in a data management
system (hereafter called base data), potentially using auxiliary data
such as indexes (hereafter called auxiliary data), in order to offer
performance improvements. The overheads of an access method
quantify the additional data accesses to support any operation, rel-
ative to the base data.
Read Overhead (RO). The RO of an access method is given by the
data accesses to auxiliary data when retrieving the necessary base
data. We refer to RO as the read amplification: the ratio between the
total amount of data read including auxiliary and base data, divided
by the amount of retrieved data. For example, when traversing a
B+-Tree to access a tuple, the RO is given by the ratio between the
total data accessed (including the data read to traverse the tree and
the base data) and the base data intended to be read.
Update Overhead (UO). The UO is given by the amount of up-
dates applied to the auxiliary data in addition to the updates to the
main data. We refer to UO as the write amplification: the ratio
between the size of the physical updates performed for one logical
update, divided by the size of the logical update. In the previous
example, the UO is calculated by dividing the updated data size
(both base and auxiliary data) by the size of the updated base data.
Memory Overhead (MO). The MO is the space overhead induced
by storing auxiliary data. We refer to MO as the space amplifica-
tion, defined as the ratio between the space utilized for auxiliary
and base data, divided by the space utilized for base data. Follow-
ing the preceding example, the MO is computed by dividing the
overall size of the B+-Tree by the base data size.
Minimizing RUM overheads. Ideally, when building an access
method, all three overheads should be minimal, however, depend-
ing on the application, the workload, and the available technology
they are prioritized. While access time, optimized by minimizing
read overhead, often has top priority, the workload or the under-
lying technology sometimes shift priorities. For example, storage
with limited endurance (like flash-based drives) favors minimizing
the update overhead, while the slow speed of main memory and the
scarce cache capacity justifies reducing the space overhead. The
theoretical minimum for each overhead is to have the ratio equal to
1.0, implying that the base data is always read and updated directly
and no extra bit of memory is wasted. Achieving these bounds
for all three overheads simultaneously, however, is not possible as
there is always a price to pay for every optimization.

In the following discussion we reason about the three overheads
and their lower bounds using a simple yet representative case for
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base data: an array of integers. We organize this dataset consisting
of N (N >> 1) fixed-sized elements in blocks, each one holding a
value. Every block can be identified by a monotonically increasing
ID, blkID. The workload is comprised of point queries, updates,
inserts, and deletes. We purposefully provide simple examples of
data structures in order to back the following hypothesis. The gen-
erality of these examples lies in their simplicity.

Hypothesis. An access method that is optimal with respect to one
of the read, update, and memory overheads, cannot achieve the
optimal value for both remaining overheads.

Minimizing Only RO. In order to minimize RO we organize data
in an array and we store each value in the block with blkID= value.
For example, the relation {1,17} is stored in an array with 17
blocks. The first block holds value 1, the last block holds value
17, and every block in-between holds a null value. RO is now min-
imal because we always know where to find a specific value (if it
exists), and we only read useful data. On the other hand, the ar-
ray is sparsely populated, with unbounded MO since, in the general
case, we cannot anticipate what would be the maximum value ever
inserted. When we insert or delete a value we only update the cor-
responding block. When we change a value we need to update two
blocks: empty the old block and insert the new value in its new
block, effectively, increasing the worst case UO to two physical
updates for one logical update.
Prop. 1 min(RO) = 1.0⇒UO = 2.0 and MO→ ∞

Minimizing Only UO. In order to minimize UO, we append every
update, effectively forming an ever increasing log. That way we
achieve the minimum UO, which is equal to 1.0, at the cost of con-
tinuously increasing RO and MO. Notice that any reorganization of
the data to reduce RO would result in an increase of UO. Hence,
for minimum UO, both RO and MO perpetually increase as updates
are appended.
Prop. 2 min(UO) = 1.0⇒ RO→ ∞ and MO→ ∞

Minimizing Only MO. When minimizing MO, no auxiliary data
is stored and the base data is stored as a dense array. During a se-
lection, we need to scan all data to find the values we are interested
in, while updates are performed in place. The minimum MO=1.0 is
achieved. The RO, however, is now dictated by the size of the rela-
tion since a full scan is needed in the worst case. The UO cost of
in-place updates is also optimal because only the base data intended
to be updated is ever updated.
Prop. 3 min(MO) = 1.0⇒ RO = N and UO = 1.0

3. THE RUM CONJECTURE
Achieving the optimal value for one overhead is not always as

important as finding a good balance across all RUM overheads. In
fact, in the previous section, we saw that striving for the optimal
may create impractical access method designs. The next logical
step is to provide a fixed bound only for one of the overheads, how-
ever, this raises the question of how to quantify the impact of such
an optimization goal for the remaining two overheads. Given our
analysis above, we conjecture that it is not possible to optimize
across all three dimensions at the same time.

The RUM Conjecture. An access method that can set an upper
bound for two out of the read, update, and memory overheads, also
sets a lower bound for the third overhead.

In other words, we can choose which two overheads to prioritize
and optimize for, and pay the price by having the third overhead

greater than a hard lower bound. In the following section we de-
scribe how the RUM Conjecture manifests in existing access meth-
ods by showing that current solutions are typically optimized for
one of the three overheads, while in Section 5 we discuss a roadmap
for RUM access methods.

4. RUM IN PRACTICE
The RUM Conjecture captures in a concise way the tension be-

tween different optimization goals that researchers face when build-
ing access methods. We present here the competing nature of the
RUM tradeoffs, as it manifests in state-of-the-art access methods.
Different access method designs can be visually represented based
on their RUM balance. The RUM tradeoffs can be seen as a three
dimensional design space or, if projected on a two-dimensional
plane, as the triangle shown in Figure 1. Each access method is
mapped to a point or – if it can be tuned to have varying RUM be-
havior – to an area. Table 1 shows the time and size complexity
of representative data structures, illustrating the conflicting read,
update, and memory overheads.

Adap%ve	  structures	  
Cracking 

Merging 

Approximate	  	  
indexes	  

Differen%al	  	  
structures	  

	  
	  Point	  &Tree	  	  
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Write Optimized Space Optimized 

Trie 

Bitmap 

Hash 

LSM 
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Bloom filter PBT 

PDT 

B-Tree 

Sparse Index 

Skiplist 

Figure 1: Popular data structures in the RUM space.

Read-optimized access methods (top corner in Figure 1) are opti-
mized for low read overhead. Examples include indexes with con-
stant time access such as hash-based indexes or logarithmic time
structures such as B-Trees [22], Tries [19], Prefix B-Trees [9], and
Skiplists [45]. Typically, such access methods offer fast read access
but increase space overhead and suffer with frequent updates.

Write-optimized differential structures (left corner in Figure 1)
reduce the write overhead of in-place updates by storing updates in
secondary differential data structures. The fundamental idea is to
consolidate updates and apply them in bulk to the base data. Ex-
amples include the Log-structured Merge Tree [44], the Partitioned
B-tree (PBT) [21], the Materialized Sort-Merge (MaSM) algorithm
[7, 8], the Stepped Merge algorithm [35], and the Positional Dif-
ferential Tree [28]. LA-Tree [3] and FD-Tree [38] are two prime
examples of write optimized trees aiming at exploiting flash while
respecting at the same time its limitations, e.g., the asymmetry be-
tween read and write performance [6] and the bounded number of
physical updates flash can sustain [7]. Typically, such data struc-
tures offer good performance under updates but increase read costs
and space overhead.

Space-efficient access methods (right corner in Figure 1) are de-
signed to reduce the storage overhead. Example categories include
compression techniques and lossy index structures such as Bloom
filters [12], lossy hash-based indexes like count-min sketches [16],
bitmaps with lossy encoding [51], and approximate tree indexing
[5, 40]. Sparse indexes, which are light-weight secondary indexes,
like ZoneMaps [18], Small Materialized Aggregates [42] and Col-
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Parameter N m B P T MEM
Explanation dataset size query result size block size partition size LSM levels memory

(#tuples) (#tuples) (#tuples) (#tuples) ratio (#pages)

Access Method Bulk Creation Cost Index Size Point Query Range Query (size: m) Insert/Update/Delete
B+-Tree O

(
N/B · logMEM/B(N/B)

) O (N/B) O (logB(N)) O (logB(N)+m) O (logB(N))
Perfect Hash Index O (N) O (N/B) O (1) O (N/B) O (1)
ZoneMaps O (N/B) O (N/P/B) O (N/P/B) O (N/P/B) O (N/P/B)

Levelled LSM N/A O
( N·T

T−1
)

O (logT (N/B) · logB(N)) O
(
logT (N/B) · logB(N)+ m·T

T−1

) O (T/B · logT (N/B))
Sorted column O

(
N/B · logMEM/B(N/B)

) O (1) O (log2(N)) O (log2(N)+m) O (N/B/2)
Unsorted column O (1) O (1) O (N/B/2) O (N/B) O (1)

Table 1: The base data typically exist either as a sorted column or as an unsorted column. When using an additional index we (i)
spend time building it, (ii) allocate space for it, and (iii) pay the cost to maintain it. The I/O cost [2] (time and space complexity) of
four representative access methods (B+-Trees, Hash Indexes, ZoneMaps, and levelled LSM) illustrates that there is no single winner.
ZoneMaps have the smaller size – being a sparse index, but Hash Indexes offer the fastest point queries, while B+-Trees offer the
fastest range queries. Similarly, the update cost is best for Hash Indexes, while LSM can support efficient range queries having very
low update cost as well.

umn Imprints [50] fall into the same category. Typically, such data
structures and approaches reduce the space overhead significantly
but increase the write costs (e.g., when using compression) and
sometimes increase the read costs as well (e.g., a sparse index).

Adaptive access methods (middle region in Figure 1) are com-
prised of flexible data structures designed to gradually balance the
RUM tradeoffs by using the workload access pattern as a guide.
Most existing data structures provide tunable parameters that can
be used to balance the RUM tradeoffs offline, however, adaptive
access methods balance the tradeoffs online across a larger area of
the design space. Notable proposals are Database Cracking [31,
32, 33, 48], Adaptive Merging [22, 25], and Adaptive Indexing [23,
24, 26, 34], which balance the read performance versus the over-
head of creating an index. The incoming queries dictate which part
of the index should be fully populated and tuned. The index cre-
ation overhead is amortized over a period of time, and it gradually
reduces the read overhead, while increasing the update overhead,
and slowly increasing the memory overhead. Although much more
flexible than traditional data structures, existing adaptive data struc-
tures cannot cover the whole RUM spectrum as they are designed
for a particular type of hardware and application.

The RUM tradeoffs of four representative access methods as well
as two data organizations are presented in Table 1 in order to illus-
trate the need to balance them. The memory overhead is repre-
sented in the form of space complexity (index size), and the read
and the update overheads in the form of the I/O complexity of
the operations. We differentiate between point queries and range
queries, to allow for a more detailed classification of access meth-
ods. We examine B+-Trees2, Hash Indexing, ZoneMaps3, and lev-
elled LSM [36], assuming that each LSM level is a B+-Tree with
branch factor B. Typically, sparse indexing like ZoneMaps gives
the lowest access method size, however, it delivers neither the best
point query performance, nor the best range query performance.
The lowest point query complexity is provided by Hash Indexing,
and the lowest range query complexity by B+-Trees. In addition,
even without any additional secondary index, maintaining a sorted
column allows for searching with logarithmic cost, with the down-
side of having linear update cost. Hence, even without an auxiliary
data structure, adding structure to the data affects read and write be-

2Bulk loading requires sorting. The best sorting algorithm depends
on type of storage. Here we assume external multi-way mergesort.
3We consider the best case for ZoneMaps; only a single partition
needs to be read or updated.

Leveln-1 MOn-1 

Leveln MOn 

Leveln+1 MOn+1 

ROn WOn 

ROn+1 WOn+1 

Figure 2: RUM overheads in memory hierarchies.

havior. We envision RUM access methods to take this a step further,
and morph between data structures and different data organizations
in order to build access methods that have tunable performance and
can change behavior both adaptively and on-demand.

The Memory Hierarchy. For ease of presentation, the previous
discussion assumes that all data objects are stored on the same stor-
age medium. Real systems, however, have a more complex mem-
ory/storage hierarchy making it harder to design and tune access
methods. Data is stored persistently only at the lower levels of
the hierarchy and is replicated, in various forms, across all levels
of the hierarchy; each memory level experiences different access
patterns, resulting in different read and write overheads, while the
space overhead at each level depends on how much data is cached.

Several approaches leverage knowledge about the memory hi-
erarchy to offer better read performance. Fractal Prefetching B+-
Trees [15] use different node sizes for disk-based and in-memory
processing in order to have the optimal for both cases. Cache-
sensitive B+-Trees [47] physically cluster sibling nodes together
to reduce the number of cache misses, and decrease the node size
using offsets rather than pointers. SB-Trees [43] operate in an anal-
ogous way when the index is disk-based, while BW-Tree [37] and
Masstree [41] presents a number of optimizations related to cache
memory, main memory and flash-based secondary storage. SILT
[39] combines write-optimized logging, read-optimized immutable
hashing, and, a sorted store, careful designed around the memory
hierarchy to balance the tradeoffs of its various levels.

The RUM tradeoffs, however, still hold for each level individu-
ally as shown in Figure 2. The fundamental assumption that data
has a minimum access granularity holds for all storage mediums
today, including main memory, flash storage, and disks; the only
difference is that both access time and access granularity vary. The
RUM tradeoffs can also be viewed vertically rather than horizon-
tally. For example, the ROn read and the UOn update overheads at
memory level n can be reduced by storing more data, updates, or
meta-data, at the previous level n− 1, which results, at least, in a
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higher MOn−1. Overall, we expect this interaction of hardware and
software to become increasingly more complex as hierarchies be-
come deeper and as hardware trends shift the relative performance
of one level compared to the others, resulting in the need for more
fine tuning of access methods.

Viewing the hierarchy from the bottom towards the top, we first
have cold storage which today may be shingled disks [29], or tradi-
tional rotational disks. They are followed typically by flash storage
for buffering and read performance. The next levels are main mem-
ory and the different levels of cache memory. In the future an ad-
ditional layer of non-volatile main memory will be added or it will
replace main memory altogether [30]. Different layers of this new
storage and memory hierarchy have different requirements. More
specifically, shingled disks are similar to flash devices regarding
the need to minimize update cost to respect their internal charac-
teristics. On the other hand, when designing access methods for
traditional rotational disks – sitting in-between shingled disks and
flash in the hierarchy – we need to minimize the read overhead. As
we move higher in the hierarchy, read performance and index size
is typically more important than update cost.
Cache-Oblivious Access Methods. A different way to build ac-
cess methods is to completely remove the memory hierarchy from
the design space, using cache-oblivious algorithms [20]. Cache-
oblivious access methods, however, achieve that by having a larger
constant factor in read performance [11]. In addition, cache-obli-
vious access methods have a larger memory overhead because they
require more pointers to guarantee that search performance will be
orthogonal to the memory hierarchy [10]. Finally, cache-oblivious
designs are less tunable. In order to tune a data structure and be
able to balance between read performance, update performance,
and memory consumption we need to be cache-aware [10]. As a
result, in order to build RUM-tunable access methods we have to
use a cache-aware design and take into account the exact shape of
the memory hierarchy.

5. BUILDING RUM ACCESS METHODS
For several decades, the database research community has been

redesigning access methods, trying to balance the RUM tradeoffs
with every change in hardware, workload patterns, and applica-
tions. As a result, every few years new variations of data man-
agement techniques are proposed and adaptation to new challenges
becomes increasingly harder. For example, most data management
software is still unfit to natively exploit solid-state drives, multi-
cores, and deep non-uniform memory hierarchies, even though the
concepts used to adapt past techniques and structures rely on ideas
that were proposed several decades ago (like partitioning, and avoid-
ing random access). In other words, what changes is how one tunes
the structures and techniques for the new environment.

Both hardware and applications change rapidly and continuously.
As a result, we need to frequently adjust data management software
to meet the evolving challenges. In the previous sections we laid
the groundwork for RUM access methods, by providing an intuitive
analysis of the RUM overheads and the RUM Conjecture. Moving
further, here we propose the necessary research steps to design ver-
satile access methods that have variable balance between the RUM
overheads. In Figure 3 we visualize the ideal RUM access method,
which will be able to seamlessly transition between the three ex-
tremes: read optimized, write optimized, and space optimized. In
practice, it may not be feasible to aim for building a single access
method able to cover the whole spectrum. Instead, an alternative
approach is to build multiple access methods able to navigate partly
in the RUM space, however, covering the whole space in aggregate.
Studying The RUM Tradeoffs. The first step towards building

Read Optimized 

Write Optimized Space Optimized 

Figure 3: Tunable behavior in the RUM space.

RUM access methods is to extend the discussion in Section 4. A
detailed study of the nature of RUM tradeoffs in practice, will lead
to a detailed classification of access methods based on their RUM
balance. Most existing access methods can be depicted as a static
point in the RUM space (Figure 3). The exact position of the point
may differ based on some parameters (for example, the fan-out of
B+-Trees, the number of partitions in PBT, the number of sorted
runs in MaSM). Moreover, adaptive indexing techniques like crack-
ing behave in a dynamic manner yet are not tuneable: as they touch
more data they add structure to the data and gradually reduce the
read overhead at the expense of update overhead.

A concrete outcome of this analysis is the gleaning of all the
fundamental building blocks and strategies of access methods. For
example, logarithmic access cost (trees, exponentially increasing
logs), fixed access cost (tries, hash tables), trading-off computation
for auxiliary data size (hashing for hash tables, compression for
bitmaps), and lazy updates (log-structure approaches).

Tunable RUM Balance. Using the above classification and anal-
ysis we can make educated decisions about which access method
should be used based on the application requirements and the hard-
ware characteristics, effectively creating a powerful access method
wizard. In addition to that, we investigate how to build access meth-
ods that have tunable behavior. Such access methods are not single
points in the RUM space; instead they can move within an area in
the design space.

We envision future data systems with a suite of access methods
that can easily adapt to different optimization goals. For example:

• B+-Trees that have dynamically tuned parameters, including
tree height, node size, and split condition, in order to adjust
the tree size, the read cost, and the update cost at runtime.

• Approximate (tree) indexing that supports updates with low
read performance overhead, by absorbing them in updatable
probabilistic data structures (like quotient filters).

• Morphing access methods, combining multiple shapes at once.
Adding structure to data gradually with incoming queries,
and building supporting index structures when further data
reorganization becomes infeasible.

• Update-friendly bitmap indexes, where updates are absorbed
using additional, highly compressible, bitvectors which are
gradually merged.

• Access methods with iterative logs enhanced by probabilistic
data structures that allows for more efficient reads and up-
dates by avoiding accessing unnecessary data at the expense
of additional space.

Dynamic RUM Balance. We envision access methods that can au-
tomatically and dynamically adapt to new workload requirements
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or hardware changes, like a sudden increase or decrease of avail-
ability of storage or memory. For example, in the case of access
methods based on iterative merges, by changing the number of
merge trees dynamically, the depth of the merge hierarchy and the
frequency of merging, we can build access methods that dynami-
cally adapt to workload and hardware changes.
Compression and Computation. Orthogonally to the tension be-
tween the three overheads, when accessing data today compression
is often used to reduce the amount of data to be moved. This trade-
off between computation (compressing/decompressing) and data
size does not affect the fundamental nature of the RUM Conjecture.
Compression is seldom used only for transferring data through the
memory hierarchy. Rather, modern data systems operate mostly on
compressed data and decompress as late as possible, usually when
presenting the final answer of a query to the user.

6. SUMMARY
Changes in hardware, applications and workloads have been the

main driving forces in redesigning access methods in order to get
the read-update-memory tradeoffs right. In this paper, we show
through the RUM Conjecture that creating the ultimate access method
is infeasible as certain optimization and design choices are mutu-
ally exclusive. Instead, we propose a roadmap towards data struc-
tures that can be tuned given hardware and application parameters,
leading to the new family of RUM-aware access methods.

Although building RUM access methods represents a grand new
challenge, we see it as the natural next step inspired by our collec-
tive past efforts. Past research in areas such as data structures, tun-
ing tools, adaptive processing and indexing, and hardware-conscious
database architectures is the initial pool for concepts and principles
to be generalized.
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ABSTRACT
The success of relational databases is due in part to the simplicity of
the tabular representation of data, the clear separation of the phys-
ical and logical view of data, and the simple representation of the
logical view (meta-data) as a flat schema. But we are now witness-
ing a paradigm shift owing to the explosion of data volume, variety
and veracity, and as a result, there is a real need to knit together
data that is naturally heterogeneous, but deeply interconnected. To
be useful in this world, we argue that today’s tabular data model
must evolve into a holistic data model that views meta-data as a
new semantically rich source of data and unifies data and meta-data
such that the data becomes descriptive. Furthermore, given the dy-
namicity of data, we argue that fundamental changes are needed in
how data is consolidated continuously under uncertainty to make
the data model naturally more adaptive. We further envision that
the entire query model must evolve into a context-aware model in
order to automatically discover, explore, and correlate data across
many independent sources in real-time within the context of each
query. We argue that enriching data with semantics and exploiting
the context of the query are the two key prerequisites for building
self-curating databases in order to achieve a real-time exploration
and fusion of enriched data at web scale. These needs highlight a
series of interesting challenges for database research and alter some
of the tenets of Codd’s rules for how we think about data.

1. INTRODUCTION
We believe that the relational database system will remain the de

facto standard for well-structured data. The success of relational
database theory is partly due to its simple tabular representation
over a predefined relational schema. Tabular data is manipulated
through a well-defined declarative relational algebra that is written
over the data schema (a logical view). Expressing queries over the
logical view has led to decades of query optimization in order to
transform queries written over logical views into efficient access
methods over the physical layout. As database engines advance,
the logical view remains constant, and this has been a key success
factor for relational database systems (i.e., data independence).

However, the tabular data represented by the relational schema is
limited to a flat schema for describing each table column.1 One may

1Although the database schema has remained a simple flat structure, there have been

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
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15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

argue that the relational schema, in addition to forming a logical
view for querying the data, is nothing but a simple blueprint of how
to parse the data at the physical level. This blueprint ends at the
granularity of columns, which is why often it is referred to as a
table schema because it is not at the record level. Homogeneity
at the record level is also pre-assumed in the relational theory, in
fact, the Boyce-Codd normal forms to some extent already penalize
any column heterogeneity [6]. Similarly, NoSQL databases such
as key-value stores are still fundamentally tabular, but the “value”
column is now heterogeneous with a flexible schema [4].2

Although databases were designed for a system of records in or-
der to maintain corporate transactional data, the tabular data model
in databases can represent many types of non-transactional data.
However, it has certain fundamental limitations. The chief limita-
tion is that the tabular model does not natively capture instance-
level relations, which is why a whole class of functional depen-
dency (FD) and referential integrity (RI) constraints had to be de-
veloped to express schema-level relationships (e.g., RI) and to avoid
record-level inconsistencies (e.g., FDs). In general, integrity con-
straints are used to ensure that data instances conform to a given
schema while only limited knowledge (e.g., relation transitivity)
can be expressed using constraints because the primary role of con-
straints is to restrict the data as opposed to enriching the data [12].

We observe that today’s data is no longer limited to systems of
records; we now have a variety of data coming from thousands of
sources. Data is being generated at an astonishing rate of 2.5 billion
gigabytes daily, and further, 80% of data is unstructured and comes
in the form of images, video, and audio data to social media (e.g.,
Twitter, Facebook, Blogsphere) and from embedded sensors and
distributed devices [1]. The explosion is partly due to the Internet
of Things (IoT) that increasingly connects data sources (including
objects and devices) to form a complex network, a network that is
expected to exceed one trillion nodes [1].

These emerging data sources are heterogeneous by nature and
are independently produced and maintained, yet the data are inher-
ently related. For example, sales patterns correlate with the popu-
larity of the product in social media, and the popularity of the prod-
uct itself can be measured in terms of how often images or tweets
are posted of the product. Even if one considers only the “struc-
tured” data after the extraction from the unstructured data, the task
of integrating all these disparate data sources leaves islands of data
with thousands (if not millions) of tables and schemata that are sim-
ply impossible to understand and query by any individual.

Arguably data is a new natural resource in the enterprise world
with an unprecedented degree of proliferation and heterogeneity
and countless possible ways of aggregating and consuming it to find

attempts to at least model the data conceptually as a hierarchy, e.g., the entity-relation
(ER) or object-oriented models.
2In fact, several NoSQL initiatives even motivate the need for a schema-less paradigm
[4] that is in a diametrically opposite position from our self-curating database vision.
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actionable insights [1]. However, this inherently interconnected
data is trapped in disconnected islands of information, which forces
analytics-driven decision making to be carried out in isolation and
on stale (and possibility irrelevant) data; thus, making today’s first-
ingest-then-process model insufficient and unnecessary at a time
when the cloud is disrupting the entire computing landscape.3 More
importantly, existing database technologies fail to alleviate the data
exploration challenges that continue to be a daunting process espe-
cially at a time when an army of data scientists are forced to manu-
ally and continuously refine their analyses as they sift through these
islands of disconnected data sources, a labor-intensive task occupy-
ing 50-80% of time spent [11].

We argue that today’s database systems need to be fundamen-
tally re-designed to capture data heterogeneity (within local and
external data sources) and the semantic relationship among data
instances (i.e., data interconnectedness) as first class-citizens. To
address these requirements, we propose a holistic data model to
capture all dimensions of the data, so that we can push the burden
of semantic enrichment and integration of the data in a systematic
and transparent way into the database engines. We view the data
fusion as a gradual curation process that transforms the raw data
into a new unified entity that has knowledge-like characteristics;
thereby, we envision the evolution of database systems into self-
curating databases to meet the continuous enrichment and integra-
tion challenges of the information explosion.

In moving from databases to self-curating systems, the schema is
no longer a table schema as a separate entity that is limited to nec-
essary information to only parse the data. Instead, the data schema
becomes part of the data in order to make the data self-descriptive.
Furthermore, it is expected that both the data and meta-data contin-
uously evolve either by ingesting new data sources or through the
process of context-aware query execution. By context-aware query
execution, we emphasize redefining the existing query model to en-
able the discovery of new data linkage and semantic relationships
in the specific context of a given query. Thus, while the query must
automatically be refined to enable discovery, the data will also be-
come sufficiently enriched in order to enable continuous integration
and adjustment of the interconnectedness of instances/types.

In short, our broader vision is a systematic methodology to ach-
ieve a real-time fusion and enrichment of data at web scale hosted
virtually. We argue for a unified view of semantically enriched
data by introducing a novel holistic data model (i.e., rethinking the
data model), so queries can be answered by an online consolida-
tion of the most up-to-date data from a variety of sources at query
time without the need for offline ingestion and curation. Further-
more, we envision that querying and analytics in general will be-
come explorative in nature to provide deeper and quicker insights
by proactively refining and raising new queries based on the con-
text of the query submitted by the user, making the query model
context-aware (i.e., rethinking the query model).

Thus far, we have provided the desired properties of self-curating
databases. In the subsequent sections, we elaborate on the specific
properties of self-curating databases and highlight the challenges
and short- and long-term research opportunities they bring in a sys-
tematic fashion. We further broadly classify our proposed state-
ments as either functional statements (for adding new capabilities)
or optimization statements (for improving system performance);
these open problems are summarized in Table 1.

2. RELATED WORK
Our vision is partly motivated by the recent shift towards seman-

tically enriched information retrieval. We observe a trend among

3We anticipate that in the near future all data sources and analytics computation will
be hosted virtually on the cloud [1]; thus, there is no need to first ingest data from one
computing infrastructure to another before querying the data.

Statement Description
FS.1 Continuous incremental entity resolution
FS.2 Formalism for assessing interconnectedness richness
FS.3 All-encompassing logical formalism for uncertainty
FS.4 Simplifying logical view of data
FS.5 A Unified language for relational, logical & numerical models
FS.6 Context-aware query refinement semantics
FS.7 Query refinement using query-by-example
FS.8 Incompleteness resolution through crowd
FS.9 Context-aware materialization of ranked & discovered data

FS.10 Parallel world semantics and representational model
FS.11 Concurrency controls for non-deterministic and enriched data model
OS.1 Fine-grained dynamic data clustering
OS.2 Locality-aware multi-hop traversal representation
OS.3 Semantic query optimization
OS.4 Data placement in distributed shared memory

Table 1: Open problems in self-curating databases
Web search engines such as Google and Bing in moving away from
a pure information retrieval system towards knowledge-based re-
trieval by not only retrieving a set of documents relevant to the
users’ queries, but also identifying entities and returning facts re-
garding the identified entities [13]. Another prominent initiative
is IBM Watson, which is an open-domain question answering sys-
tem for outperforming the best players in Jeopardy [7]. Such
knowledge-based retrieval has become possible through the use of
rich knowledge bases created by academic and community efforts
such as Freebase, DBpedia, and YAGO [13].

What we observe in all these emerging projects [13, 7] is that
moving forward, simple information retrieval will be insufficient,
and that information will continuously be expanded and semanti-
cally enriched as a result of the continuous integration of hetero-
geneous sources (i.e., the evolution of information to knowledge).
Consequently, we argue the need for the evolution of relational
databases to handle the challenges in this new enriched data era.
We envision that the database systems of the future will no longer
be solely responsible for the storage and retrieval of structured data,
but they will transform into self-curating databases that are capable
of real-time exploration and fusion of enriched data at web scale.

We acknowledge that we are not the first to argue for the high-
level concepts such as semantic enrichment or continuous integra-
tion; in fact, there are several existing efforts in Semantic Web tech-
nologies (e.g., [13]) and dataspaces and pay-as-you-go integration
models (e.g., [8]) that strive for similar high-level objectives. But
to achieve these objectives, we argue for a fundamental rethinking
of how we view the data and query. We envision the need for a new
holistic data model to unify the data and meta-data, and to view the
meta-data as a new semantically rich source of data. Furthermore,
we envision a simpler and more effective way to query and compute
answers by automatically refining the query and continuously dis-
covering new data sources within the context of each query, giving
rise to a novel context-aware query model. Further, what is unique
to our vision, in addition to extending past attempts in light of new
applications and possibilities (e.g., [7]), is systematically sketching
the requisite properties of a self-curating database and providing an
extensive list of the concrete research challenges and opportunities
needed to make such a vision a reality.

3. DATA MODEL: UNIFIED & ENRICHED
In our view, a self-curating database must have a hierarchy of

layers to transform raw data incrementally into a holistic data model
(depicted in Figure 1). First is the instance layer, to store the
raw data (or data instances) spanning both structured and unstruc-
tured. The second layer is the relation layer, a horizontal expan-
sion of data to formulate and capture the interconnectedness of
data instances within and across data sources (i.e., the fine-grained
instance-level linkage). In cases where the raw data layer is un-
structured, this layer may additionally capture the results of infor-
mation extraction. The third layer is the semantic layer, a vertical
expansion of data to conceptualize data instances and their rela-
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Figure 1: Holistic data model.
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Figure 2: An example of an enriched data model in the life science domain.

tions as semantic types and to formulate the interconnectedness of
archetypes and data instantiated types (e.g., ontology). The seman-
tic layer is a way of succinctly capturing conceptual relationships
among data instances. This final layer will bring an unprecedented
level of expressiveness power and discovery potentials. The last
two layers of self-curating databases can be viewed as meta-data,
but such a distinction no longer holds in a self-curating database as
meta-data is also seen as a rich source of data.

We argue that such a holistic approach is essential to efficiently
represent, enrich, manipulate, and query both data and meta-data.
Our running example of an enriched data model is extracted from
the life science domain, as illustrated in Figure 2. This example
is motivated by the overwhelming challenge to unify and enrich
data from a variety of heterogeneous sources to develop an assisted
diagnosis and personalized treatment and medicine [7].

3.1 Instance Layer: Raw Data
The first layer is what today’s relational database systems heav-

ily rely on to represent structured data. But future databases must
naively also support semi-structured data such as XML and JSON
(already supported by most commercial databases) and unstruc-
tured data such as text documents, images, audio, and video. In the
example shown in Figure 2, the data comes from different external
sources such as DrugBank that offers data about known drugs and
diseases, Comparative Toxicogenomics Database that provides in-
formation about gene interaction, and Uniprot that provides details
about the functions and structure of genes.

One may argue that the proposed instance layer shares similar
properties to those already found in the tabular representation of
the relational model. However, a deeper question here is whether a
tabular representation is an optimal choice for a holistic data model.
Analytical workloads, for instance, benefit greatly from a columnar
decomposition of tabular representation. In contrast, a self-curating
database must manage data and meta-data in a unified way, but it
is unclear what the optimal representation is for such systems. For
example, could the relational model be further decomposed in non-
linear and non-tabular form in order to cluster data based on the
instance relations and semantic relationships of higher layers?

OPTIMIZATION STATEMENT 1. Given the abundance of inst-
ance relations and semantic relationships, what are the data clus-
tering opportunities to improve retrieval, access locality, and com-
pression? Is it possible to develop dynamic instance-level, fine-
grained clustering in the presence of the enriched data model?4

4Imagine a representation that could adapt to the locality of access for a workload

3.2 Relation Layer: Horizontal Expansion
A relational model has no notion of which columns refer to real

world entities (i.e., data instances). But a holistic data model must
possess a clear notion of what the entities are, and what relations
exist for each instance in order to capture the data interconnect-
edness. These may be relations to other entities, or the relations of
the attributes of the entity to data values. As an example, a database
might have a table for Drug, and have the columns Name, Targets,
Symptomatic Treatment. A rich data model has an identifier for a
real world drug Methotrexate, and captures its attributes such as
Molecular Structure, as well as relations to other entities including
Genes that Methotrexate targets (e.g., DHFR), and subsequently,
Conditions that it treats such as Osteosarcoma (bone cancer) that
are reachable through its target genes, as shown in Figure 2.

The key characteristics of the relation layer are to capture entity
interconnectedness and to establish the identity of an entity within
and across multiple data sources – a process we term horizontal
data expansion to transform data into information. An important
challenge of the relation layer is to uniquely identify similar enti-
ties even when external sources are dynamically changing. There is
a long history of entity resolution in the database literature, but the
real challenge in this layer is that there is no ability to rely on man-
ual ETL jobs to perform offline schema alignment, and it is not wise
to assume that as each source is added to the self-curating database,
an all-to-all entity resolution is performed comprehensively across
all data sources.

FUNCTIONALITY STATEMENT 1. A self-curating database mu-
st adaptively manage instance relations in light of new information.
How does one adapt existing entity resolution techniques so they
work across different schemata without requiring prior knowledge
about external data sources to enable efficient incremental schema
evolution in local data sources?

FUNCTIONALITY STATEMENT 2. Furthermore, what is the rig-
ht formalism to express and capture the interconnectedness in or-
der to assess and measure the richness of each data source based
on the connectivity and density? For example, information content
and capacity are a common measure for assessing the richness, and
graph-theocratic approaches are well suited for studying the con-
nectivity, flow properties, partitioning, and topology, but there is a
lack of general formalism to assess the interconnectedness of data.

based on the interconnectness of data. The frequently accessed data could be packed
together to be used efficiently in the limited, but fast-access memory of modern hard-
ware including CPU cache or GPU and FPGA on-chip memory.
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Another challenge is how to efficiently manage relation inter-
connectedness. One may argue that a graph is the right abstraction
model, but it leaves open the question of how to provide fast traver-
sal abilities. Alternatively, one may argue that traditional indexes
(e.g., B-Tree) may improve lookup, but at the high-level, indexes
only provide one-hop away direct accesses, which are already cap-
tured in the explicit interconnectedness of the data. Thus, direct
access is no longer beneficial, but rather the open challenge is how
to improve the locality of multi-hop traversal.

OPTIMIZATION STATEMENT 2. Given that the instance inter-
connectedness already encompasses the benefit of one-hop away
direct access, what is an optimal representation that provides ef-
ficient locality-aware traversal that is tightly coupled with the in-
stance and semantic layers and is update-friendly?

3.3 Semantic Layer: Vertical Expansion
The instance layer together with relations between the instances,

as discussed thus far, constitute what is often conceptually referred
to as the ABox in the description logic and semantic web literature
[3]. That is, instances refer to individual entities in the real world,
relations among them are expressed in terms of semantic properties,
and each instance is a member of one or more concepts or types.
The concepts and semantic properties that are used in the ABox
constitute meta-data about the instance data. Concepts themselves
may have relationships to each other and semantic properties.

As a somewhat simple example, a Drug can be defined as a
chemical with an existential quantification over the relation has
Target. This means that if the actual instance data only stated that
Acetaminophen (Tylenol) is a Drug, a self-curating database could
infer that Acetaminophen has a target, even if the specific relation
has yet to be discovered and expressed as a relationship between
Acetaminophen and any particular gene. In fact Acetaminophen
targets PTGS2 (even though it is not shown in Figure 2).

These richer semantic reasonings are formulated and expressed
in taxonomies or web ontology language (OWL), a subset of first-
order logic (FOL). Relationships among the concepts and proper-
ties are typically referred to in the semantic web as the TBox [3].
To formalize our discussion, we focus on a widely employed OWL-
DL language, which is based on the semantics of SHIN. The SHIN
semantics is defined as I= (∆I , .I), where I refers to an interpre-
tation, ∆I is a non-empty set (the domain of the interpretation),
and .I is the interpretation function that maps every atomic con-
cept C to a set CI ⊆ ∆I (Approved Drugs is an example of the
concept), every atomic role R to a binary relation RI ⊆ ∆I ×∆I

(e.g., has Therapeutic Efficacy as a role), and every individual a to
aI ∈ ∆I .

An RBox R is a finite set of transitivity axioms and role inclu-
sion axioms of the form R v P where R and P are roles. A Tbox
T is a set of concept inclusion axioms of the form C v D, where
C and D are concept expressions (e.g., Neoplasmsv Disease). An
Abox A is a set of axioms of the form a : C (a is a member of the
concept C), R(a, b) (there is an R relationship between a and b),
e.g., has Target(Acetaminophen, PTGS2). Finally, an interpretation
I is a model of an Abox A with respect to a Tbox T and a Rbox
R iff it satisfies all the axioms in A,R, and T .

A key strength of knowledge representation (KR) formalisms
(such as OWL) derived from FOL stems from their capability to
represent complex information in a knowledge rich domain, e.g.,
the biomedical domain. Unfortunately, FOL is incapable of dealing
with inconsistency and uncertainty, which naturally arise when in-
formation from independent data sources is combined. The KR for-
malism should capture and aggregate information from both hard
and soft sources. Hard sources may have a clear mathematical
model of uncertainty, e.g., sensor data. Soft sources, on the other
hand, provide vague statements of truth (often fuzzy), such as “a

sudden stomach bleed was attributed to the recent intake of Ibupro-
fen”. In contrast, there have been only isolated efforts to extend the
KR languages to handle only a particular form of uncertainty, e.g.,
probabilistic or fuzziness [3]; thus, we raise the following question.

FUNCTIONALITY STATEMENT 3. Is it possible to define a new
unifying approach, but perhaps less expressive, to aggregate these
isolated forms of uncertainty in a single tractable formalism?

In general, we view the enrichment of data with semantics as ver-
tical data expansion because this layer allows the database to infer
new facts about the lower layers. We note that there is an increasing
need for the vertical data expansion layer to be more general than
the current notion of TBox T . Increasingly, conceptual statistical
models are being derived from the data to derive new connections
between instance data. We therefore propose that the vertical data
expansion be enriched by adding statistical models, such as those
offered by machine learning, specifically to improve the linkage
coverage and accuracy as well, considering that the purpose of this
layer is to add semantic inference and reasoning capabilities about
the instance types and the relationships among types.

FUNCTIONALITY STATEMENT 4. In the semantic web litera-
ture, the assumption is that a user can specify the ontology as a
logical view that can be applied over data with respect to a given
query. Is it reasonable to have users be aware of the meta-models
needed to understand the structure of the data, especially as one al-
lows statistical models? And how does one describe a specific sta-
tistical model that should be applied over the data declaratively?

To further benefit from the enriched data, there is a need for new
formalism to combine the expressiveness power of database query-
ing languages (e.g., SQL) with the semantic formalism of descrip-
tion logic (e.g., OWL) to capture the knowledge about the data.

FUNCTIONALITY STATEMENT 5. Is it possible to develop a new
semantically enriched query language that combines the expres-
siveness and declarativeness power of SQL (subset of FOL) and
the leading semantic formalisms such as OWL (also subset of FOL)
while retaining decades long advancement of query optimization
and scalable query execution? Furthermore, is it possible to ex-
tend this new combined language with machine learning models
that are based on non-declarative statistical, mathematical, or nu-
merical formalism rather than the logical FOL formalism?

Through semantically enriched data, there is an enormous oppor-
tunity to improve query optimization by inferring statistics given
that today’s optimizers fail completely in the absence of statistics
on the data.

OPTIMIZATION STATEMENT 3. How to extend the predomin-
ant rule- and cost-based query optimization to leverage the explicit
semantics within our data model, so the optimizers are no longer
limited to only statistics on data (e.g., selectivity estimates) to guide
the query optimization (often missing or unavailable for external
sources)? Is it possible to exploit the available semantics (e.g., ex-
ploiting class and subclass relationships) by inferring the selectiv-
ity and rewriting the query to a more efficient query (e.g., by infer-
ring that certain predicates can be collapsed together semantically
or can be dropped because they are redundant or unsatisfiable)?

4. QUERY MODEL: EMBRACE CONTEXT
There is a compelling case to make queries less complicated

through automatic exploration and refinement given the query con-
text while the results must become evidence-based and justified
(not limited to just a confidence score). Considering our pro-
posed holistic data model, there are new opportunities to formal-
ize and leverage the context of queries throughout the entire query
pipeline, giving rise to a new way of thinking about how to query is-
lands of data. We declare a pressing need to rethink the entire query
model in a self-curating database; in particular, we focus on refining
queries and computing answers through the continuous discovery
and integration of data made possible by the rich data model.
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4.1 Continuous Discovery and Refinement
In the database literature, we have the notion of adaptive query

processing for collecting more accurate statistics during query exe-
cution to proactively optimize the query plan [2]. But conceptually
our proposed context-aware query model opens up new avenues of
research, in which not only more accurate statistics are gathered,
but the query is also refined. In addition to refining the query, the
data is also being adapted. Specifically, new instance relations or
semantics relationships are discovered within the context of a given
query (and its refined queries) as part of an online incremental in-
tegration, a step towards achieving the continuous integration.

Consider the task of determining an effective dosage of a drug by
querying multiple clinical data sources. It is well-known that eth-
nicity and race have a major role in determining drug responses [9].
Now if these isolated data sources correspond to populations that
are biased to genetic, ethnicity, and environmental conditions, then
there is a tremendous value in automatically and judiciously nav-
igating through these data sources without forcing the user to be
fully aware of the semantics and interpretation of data that would
be embedded in the enriched data model.

Suppose the initial query is “What is an effective dosage of War-
farin for preventing a blood clot?” (captured in Figure 2). Now to
offer an accurate and justified answer in the presence of many dis-
connected data sources, there is a crucial need to develop an explo-
rative querying framework that exploits the context of the query. To
discover the necessary information and to fill the gap, the follow-
ing refined queries may be posed automatically: “Is Warfarin sensi-
tive to ethnic background?” (necessary to be aware of any medical
facts); “What are the disjoint classes of population with respect to
Warfarin?” (necessary for drilling down further); or “Does War-
farin have a narrow therapeutic range?” (necessary to quantify the
dosage sensitivity and its range). We argue that such exploration is
only possible by enriching data with sufficient semantics in order
to interpret the context of queries and raise additional questions.

FUNCTIONALITY STATEMENT 6. A new formalism is needed
to express and execute the context-aware query model such that the
discovery of new data connections and the refinement of query are
feasible. Is it possible to formulate the discovery and refinement
process as a random walk problem, where the initial seeds or the
probability of each step taken is driven by query predicates and/or
query partial results?

FUNCTIONALITY STATEMENT 7. Alternatively, is it possible
to extend the query-by-example formalism [14] for filling miss-
ing data to introduce an incremental process so the query answer
is partially computed, and the partial answer becomes an exam-
ple with incompleteness (missing values) for raising/refining addi-
tional queries?

To judge and choose the right formalism for context-aware query
answering, we also need to revisit the existing evaluation criteria
both in terms of completeness and feasibility.

FUNCTIONALITY STATEMENT 8. To improve the discovery, is
it possible to extend the crowdsourcing formalism to identify and
assess the necessity to fetch incomplete data given certain qualita-
tive (to improve the accuracy and coverage of answers) or quanti-
tative (to find information faster) cost functions?

4.2 Continuous Online Integration
The importance of online incremental integration for the context-

aware query model is twofold. First, in a setting consisting of
independently managed (but linked) data sources, individual data
sources may change over time and one cannot be assured that all
updates are propagated in a timely fashion. In fact, one of the main
shortcomings of today’s linked data initiative, in which large data
sources are linked statically once, is the inability to deal with stale
linked data [13]. Second, large scale one-time integration requires

a priori knowledge to perform the integration, and this is not al-
ways feasible [8]. Moreover, it discards the knowledge of the users
of the systems. Every time a user submits a query, the query may
contain knowledge about the data, e.g., how two pieces of data are
connected. One can think of a submitted query as a small scale but
more focused and accurate integration that is at the instance-level
and not necessarily at the schema-level.

FUNCTIONALITY STATEMENT 9. There is a need for a new
formalism to assess the correctness of query answering within the
context of a single query while we discover and consult overlap-
ping or even conflicting sources of information. More importu-
nately, how do we formulate the feedback mechanism to materialize
the discovered information guided by the context of query? If the
discovered information is conflicting, then how could we automati-
cally assess the richness or validity of discovered entities based on
the degree of richness of each source (e.g., information content)?

Today’s formalisms for computing query answers focus on the
inconsistencies, incompleteness, and uncertainty that arise within
each data source or a set of integrated sources (i.e., a single con-
solidated view of data). The traditional probabilistic query answer-
ing relies on possible world semantics to assess the likelihood of
answers by enumerating all possible worlds [5]. A well-known
expressive representational model is a conditional table (c-table),
in which each tuple ti is associated with a Boolean formula (the
condition ci) [10]. The existence of a tuple in a possible world is
subject to the satisfaction of its condition [10], c-tables are formally
expressed as the valuation function of conditions v(c).

Given an instance of data with uncertainty, we have a discrete
probability space of P = (W,P), where W is a set of all the
possible worlds given by W = {I1, · · · , In} and P is a probability
model that assigns probability P(Ii) to each possible world Ii such
that 0 ≤ P(I) ≤ 1 and Σn

i=1P(Ii) = 1. The probability of any
tuple t is the total probability of all worlds in which t exists and can
simply be computed by Σn

i=1,t∈IiP(Ii).
Similarly, the incompleteness semantics JK is defined for an in-

complete database D as a set of complete databases JDK that are
constructed given an interpretation of null values Inull under either
as open- or closed-world assumption, JKOWA or JKCWA, respectively
[10]. The domain of the database consists of a set of constants (de-
noted by Const) and a set of nulls (denoted by Null), where the null
represents the missing/unknown values. An example of a different
interpretation of null values Inull is Codd’s three-valued logic.

Subsequently, the problem of query answering is reformulated
as finding certain answers for the query Q. Given an interpretation
of nulls Inull: the certain answer is defined as certain(Q,D) =⋂

i{Q(Di)|Di ∈ JDK}, which amounts to finding an intersection
among a set of possible worlds. Notably, an incomplete database
can be represented by a c-table [5], an important step towards unify-
ing the representation model for both uncertainty and incomplete-
ness [5, 10]. For instance, to capture both incompleteness and un-
certainty, the c-tables semantics can be extended to included the
valuation of nulls v(ti) and the valuation of conditions v(ci) so
that a possible complete database instance I can be computed.

The existing techniques based on possible world semantics fo-
cus on deriving possible data instances from a single consolidated
representation of data with uncertainty/incompleteness. However,
there is no formalism to deal with multiple databases, where each
source is complete and certain, but when viewed together without
sufficient semantics, then uncertainty, incompleteness, and incon-
sistencies could arise. Let us revisit querying a set of independent
sources, where each source captures clinical trials carried out in a
different country and data is demographically biased; thus, naively
combining the data from these sources may result in conflicting
outcomes, even if data in each source is consistent/certain [9].

Consider a simple Boolean query “Is 5.0 mg an effective dosage
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of Warfarin for preventing blood clot?”. If the data was collected in
white-dominant population, the effective daily dosage is expected
to be around 5.1 mg, while in Asian and black population, daily
doses of 3.4 mg and 6.1 mg are recommended, respectively [9].
Now, a naive evaluation may return false as the certain answer
to our question (because not all sources report a 5.0 mg dosage
rate) while semantically enriched data can infer that these reported
dosage rates belong to three disjoint ethnic classes, and to compute
the certain answer it is sufficient to have at least one dataset with a
daily dose of “close” to 5.0 mg. Now the notion of closeness can
further be formulated based on fuzzy logic in light of the fact that
“Warfarin has a very narrow therapeutic range” [9]. Therefore, we
argue that sufficient semantics are needed to capture the knowledge
about the data premises (beyond today’s lineage and provenance in-
formation) when integrating multiple data sources, and a new query
answering formalism is needed to leverage the added knowledge.

In general, derived possible worlds are all constructed from a
single integrated and consolidated actual world with incomplete-
ness and/or uncertainty. But data at the web scale consisting of a
large set of actual worlds (independent data sources) not just postu-
lated probable worlds. These independent actual worlds, which we
refer to as “parallel worlds” to distinguish them from the existing
possible worlds semantics, may have conflicting facts, an alterna-
tive view of worlds, or relative facts that are only locally consis-
tent given the premise of the particular world (i.e., semantics of the
data). In short, information is relative with respect to the perspec-
tive of each independent source, and even in the absence of local
inconsistency or uncertainty, the data may become contradictory
when combined in the absence of sufficient semantics.

FUNCTIONALITY STATEMENT 10. Firstly, is the exiting c-table
formalism sufficiently expressive and concise to model our notion
of parallel worlds with our proposed enriched and unified data
model? For example, is the c-table representation required to be ex-
tended with relation and semantic layers (analogous to our holistic
model) to faithfully capture the answers? Now, assuming a rep-
resentational model, how do we formulate the notion of parallel
world semantics for computing justified answers that may not al-
ways be globally justified in the presence of overlapping, comple-
mentary, and/or opposite relative views of worlds, where “justify”
is taken as a fuzzy definition of “certain” to capture, possibly in a
relaxed form, correctness and consistency for query semantics?

In addition to the need for formalism and the semantics of query
answering, there are other research challenges related to the execu-
tion semantics. As we continuously seek to discover and integrate
new data sources and our holistic data model becomes more expres-
sive, a whole set of challenges arise for transaction processing. For
example, how do we ensure repeatability and guard against non-
deterministic phantoms in transaction processing?

FUNCTIONALITY STATEMENT 11. If the relation and seman-
tic layers can be changed continuously, even when the instance
layer does not change, and these layers are further enhanced with
non-deterministic predictive inference power, could the classical
isolation semantics (e.g., repeatibility or snapshot) ever be satis-
fied? In what ways must concurrency control be extended to ac-
count for the non-determinism that is not the result of explicit up-
date queries? Is it possible to introduce relaxed isolation semantics
(e.g., eventual consistencies) to account not only for a delay in re-
ceiving changes (i.e., pushed and eventually received), but also to
account for situations where changes may never be sent explicitly
and once received may be non-deterministic (i.e., pulled and even-
tually received with uncertainty)? These fundamental changes to
the concurrency model will inevitably have implication for other
components such as logging and recovery protocols.

A system-level dimension of continuous integration and avoid-
ance of today’s pre-dominant first-ingest-then-process arises when

considering the landmark shift of pushing both query execution and
hosting of data sources on the cloud [1]. This synergy will intro-
duce a whole new class of workload orchestration and optimization
to reduce the cost of online integration and query answering.

OPTIMIZATION STATEMENT 4. How can existing placement str-
ategies be adapted to transition from disk data placement to plac-
ing data in distributed main memory at cloud scale? How can the
data be judiciously placed in distributed shared memory with close
affinity when online integration of data sources is likely in order to
eliminate the storage access cost and to reduce the main memory
footprint by avoiding data cache duplication?

5. REVISITING DATABASE PRINCIPLES
In conclusion, to characterize our vision of self-curating databases,

we revisit Codd’s classical rules for relational systems and elab-
orate on how these rules must be extended to account for self-
curating databases. In the process, we develop a comprehensive
list of criteria that may serve as a test for self-curating databases.
• Deviation from the foundation rule: A self-curating database

cannot assume that all data is managed locally and all data is
in a relational model as was prescribed by Codd.
• Deviation from the information rule: Information is not limited

to only the tabular form. A richer representation is essential to
store information about the data. Meta-data and data represen-
tations must be unified and their distinction eliminated. Further-
more, every piece of information needs to be represented in the
hierarchical multi-layered data model, where each layer seman-
tically enriches the data, unlike Codd’s vision that information is
represented in only one way, namely, as a value in a table.
• Extending the systematic treatment of null values rule: The data

model must allow each data item to be noisy, fuzzy, uncertain,
or incomplete so that it can be manipulated systematically, in
addition to the need for the nulls to represent missing values as
advocated by Codd.
• Extending the comprehensive data sublanguage rule: The em-

ployed language must also support (1) data discovery and re-
finement operators and (2) multi-source transactions with lim-
ited access and concurrency enforcement on external sources, in
addition to the language requirements stated by Codd.
• Deviation from the view updating rule: External views may not

be updatable or forced to be updated incrementally and lazily,
whereas Codd assumes all views must be strictly updatable.
• Deviation from the integrity independence rule: Constraints on

data and meta-data are not limited to an independent set of rules
maintained in the catalog (as required by Codd) because con-
straints are now modeled at the relation and semantic layers and
data instances are physically linked.
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ABSTRACT
Data wrangling is the process by which the data required by an ap-
plication is identified, extracted, cleaned and integrated, to yield a
data set that is suitable for exploration and analysis. Although there
are widely used Extract, Transform and Load (ETL) techniques and
platforms, they often require manual work from technical and do-
main experts at different stages of the process. When confronted
with the 4 V’s of big data (volume, velocity, variety and veracity),
manual intervention may make ETL prohibitively expensive. This
paper argues that providing cost-effective, highly-automated ap-
proaches to data wrangling involves significant research challenges,
requiring fundamental changes to established areas such as data ex-
traction, integration and cleaning, and to the ways in which these
areas are brought together. Specifically, the paper discusses the im-
portance of comprehensive support for context awareness within
data wrangling, and the need for adaptive, pay-as-you-go solutions
that automatically tune the wrangling process to the requirements
and resources of the specific application.

1. INTRODUCTION
Data wrangling has been recognised as a recurring feature of big

data life cycles. Data wrangling has been defined as:

a process of iterative data exploration and transforma-
tion that enables analysis. ([21])

In some cases, definitions capture the assumption that there is sig-
nificant manual effort in the process:

the process of manually converting or mapping data
from one “raw” form into another format that allows
for more convenient consumption of the data with the
help of semi-automated tools. ([35])

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

The general requirement to reorganise data for analysis is noth-
ing new, with both database vendors and data integration compa-
nies providing Extract, Transform and Load (ETL) products [34].
ETL platforms typically provide components for wrapping data
sources, transforming and combing data from different sources,
and for loading the resulting data into data warehouses, along with
some means of orchestrating the components, such as a workflow
language. Such platforms are clearly useful, but in being developed
principally for enterprise settings, they tend to limit their scope to
supporting the specification of wrangling workflows by expert de-
velopers.

Does big data make a difference to what is needed for ETL? Al-
though there are many different flavors of big data applications,
the 4 V’s of big data1 refer to some recurring characteristics: Vol-
ume represents scale either in terms of the size or number of data
sources; Velocity represents either data arrival rates or the rate
at which sources or their contents may change; Variety captures
the diversity of sources of data, including sensors, databases, files
and the deep web; and Veracity represents the uncertainty that is
inevitable in such a complex environment. When all 4 V’s are
present, the use of ETL processes involving manual intervention
at some stage may lead to the sacrifice of one or more of the V’s to
comply with resource and budget constraints. Currently,

data scientists spend from 50 percent to 80 percent of
their time collecting and preparing unruly digital data.
([24])

and only a fraction of an expert’s time may be dedicated to value-
added exploration and analysis.

In addition to the technical case for research in data wrangling,
there is also a significant business case; for example, vendor rev-
enue from big data hardware, software and services was valued at
$13B in 2013, with an annual growth rate of 60%. However, just as
significant is the nature of the associated activities. The UK Gov-
ernment’s Information Economy Strategy states:

the overwhelming majority of information economy
businesses – 95% of the 120,000 enterprises in the sec-
tor – employ fewer than 10 people. ([14])

As such, many of the organisations that stand to benefit from big
data will not be able to devote substantial resources to value-added
1http://www.ibmbigdatahub.com/infographic/
four-vs-big-data.
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data analyses unless massive automation of wrangling processes is
achieved, e.g., by limiting manual intervention to high-level feed-
back and to the specification of exceptions.

Example 1 (e-Commerce Price Intelligence). When running an e-
Commerce site, it is necessary to understand pricing trends among
competitors. This may involve getting to grips with: Volume –
thousands of sites; Velocity – sites, site descriptions and contents
that are continually changing; Variety – in format, content, targeted
community, etc; and Veracity – unavailability, inconsistent descrip-
tions, unavailable offers, etc. Manual data wrangling is likely to be
expensive, partial, unreliable and poorly targeted.

As a result, there is a need for research into how to make data
wrangling more cost effective. The contribution of this vision pa-
per is to characterise research challenges emerging from data wran-
gling for the 4Vs (Section 2), to identify what existing work seems
to be relevant and where it needs to be further developed (Sec-
tion 3), and to provide a vision for a new research direction that
is a prerequisite for widespread cost-effective exploitation of big
data (Section 4).

2. DATA WRANGLING – RESEARCH
CHALLENGES

As discussed in the introduction, there is a need for cost-effective
data wrangling; the 4 V’s of big data are likely to lead to the man-
ual production of a comprehensive data wrangling process being
prohibitively expensive for many users. In practice this means that
data wrangling for big data involves: (i) making compromises –
as the perfect solution is not likely to be achievable, it is neces-
sary to understand and capture the priorities of the users and to use
these to target resources in a cost-effective manner; (ii) extending
boundaries – as relevant data may be spread across many organ-
isations and of many types; (iii) making use of all the available
information – applications differ not only in the nature of the rele-
vant data sources, but also in existing resources that could inform
the wrangling process, and full use needs to be made of existing ev-
idence; and (iv) adopting an incremental, pay-as-you-go approach
– users need to be able to contribute effort to the wrangling process
in whatever form they choose and at whatever moment they choose.

The remainder of this section expands on these features, pointing
out the challenges that they present to researchers.

2.1 Making Compromises
Faced with an application exhibiting the 4 V’s of big data, data

scientists may feel overwhelmed by the scale and difficulty of the
wrangling task. It will often be impossible to produce a compre-
hensive solution, so one challenge is to make well informed com-
promises.

The user context of an application specifies functional and non-
functional requirements of the users, and the trade-offs between
them.

Example 2 (e-Commerce User Contexts). In price intelligence,
following on from Example 1, there may be different user contexts.
For example, routine price comparison may be able to work with
a subset of high quality sources, and thus the user may prefer fea-
tures such as accuracy and timeliness to completeness. In contrast,
where sales of a popular item have been falling, the associated issue
investigation may require a more complete picture for the product
in question, at the risk of presenting the user with more incorrect or
out-of-date data.

Thus a single application may have different user contexts, and
any approach to data wrangling that hard-wires a process for se-

lecting and integrating data risks the production of data sets that
are not always fit for purpose. Making well informed compro-
mises involves: (i) capturing and making explicit the requirements
and priorities of users; and (ii) enabling these requirements to per-
meate the wrangling process. There has been significant work on
decision-support, for example in relation to multi-criteria decision
making [37], that provides both languages for capturing require-
ments and algorithms for exploring the space of possible solutions
in ways that take the requirements into account. For example, in
the widely used Analytic Hierarchy Process [31], users compare
criteria (such as timeliness or completeness) in terms of their rel-
ative importance, which can be taken into account when making
decisions (such as which mappings to use in data integration).

Although data management researchers have investigated tech-
niques that apply specific user criteria to inform decisions (e.g. for
selecting sources based on their anticipated financial value [16])
and have sometimes traded off alternative objectives (e.g. precision
and recall for mapping selection and refinement [5]), such results
have tended to address specific steps within wrangling in isolation,
often leading to bespoke solutions. Together with high automation,
adaptivity and multi-criteria optimisation are of paramount impor-
tance for cost-effective wrangling processes.

2.2 Extending the Boundaries
ETL processes traditionally operate on data lying within the

boundaries of an organisation or across a network of partners. As
soon as companies started to leverage big data and data science, it
became clear that data outside the boundaries of the organisation
represent both new business opportunities as well as a means to
optimize existing business processes.

Data wrangling solutions recently started to offer connectors to
external data sources but, for now, mostly limited to open govern-
ment data and established social networks (e.g., Twitter) via for-
malised APIs. This makes wrangling processes dependent on the
availability of APIs from third parties, thus limiting the availability
of data and the scope of the wrangling processes.

Recent advances in web data extraction [19, 30] have shown that
fully-automated, large scale collection of long-tail, business-related
data, e.g., products, jobs or locations, is possible. The challenge for
data wrangling processes is now to make proper use of this wealth
of “wild” data by coordinating extraction, integration and cleaning
processes.

Example 3 (Business Locations). Many social networks offer the
ability for users to check-in to places, e.g., restaurants, offices, cine-
mas, via their mobile apps. This gives to social networks the ability
to maintain a database of businesses, their locations, and profiles of
users interacting with them that is immensely valuable for advertis-
ing purposes. On the other hand, this way of acquiring data is prone
to data quality problems, e.g., wrong geo-locations, misspelled or
fantasy places. A popular way to address these problems is to ac-
quire a curated database of geo-located business locations. This is
usually expensive and does not always guarantee that the data is
really clean, as its quality depends on the quality of the (usually
unknown) data acquisition and curation process. Another way is
to define a wrangling process that collects this information right on
the website of the business of interest, e.g., by wrapping the tar-
get data source directly. The extraction process can in this case be
“informed” by existing integrated data, e.g., the business url and
a database of already known addresses, to identify previously un-
known locations and correct erroneous ones.

2.3 Using All the Available Information
Cost-effective data wrangling will need to make extensive use of
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automation for the different steps in the wrangling process. Auto-
mated processes must take advantage of all available information
both when generating proposals and for comparing alternative pro-
posals in the light of the user context.

The data context of an application consists of the sources that
may provide data for wrangling, and other information that may
inform the wrangling process.

Example 4 (e-Commerce Data Context). In price intelligence, fol-
lowing on from Example 1, the data context includes the catalogs
of the many online retailers that sell overlapping sets of products to
overlapping markets. However, there are additional data resources
that can inform the process. For example, the e-Commerce com-
pany has a product catalog that can be considered as master data by
the wrangling process; the company is interested in price compari-
son only for the products it sells. In addition, for this domain there
are standard formats, for example in schema.org, for describing
products and offers, and there are ontologies that describe products,
such as The Product Types Ontology2.

Thus applications have different data contexts, which include not
only the data that the application seeks to use, but also local and
third party sources that provide additional information about the
domain or the data therein. To be cost-effective, automated tech-
niques must be able to bring together all the available information.
For example, a product types ontology could be used to inform the
selection of sources based on their relevance, as an input to the
matching of sources that supplements syntactic matching, and as a
guide to the fusion of property values from records that have been
obtained from different sources. To do this, automated processes
must make well founded decisions, integrating evidence of differ-
ent types. In data management, there are results of relevance to data
wrangling that assimilate evidence to reach decisions (e.g. [36]),
but work to date tends to be focused on small numbers of types
of evidence, and individual data management tasks. Cost effective
data wrangling requires more pervasive approaches.

2.4 Adopting a Pay-as-you-go Approach
As discussed in Section 1, potential users of big data will not

always have access to substantial budgets or teams of skilled data
scientists to support manual data wrangling. As such, rather than
depending upon a continuous labor-intensive wrangling effort, to
enable resources to be deployed on data wrangling in a targeted and
flexible way, we propose an incremental, pay-as-you-go approach,
in which the “payment” can take different forms.

Providing a pay-as-you-go approach, with flexible kinds of pay-
ment, means automating all steps in the wrangling process, and al-
lowing feedback in whatever form the user chooses. This requires
a flexible architecture in which feedback is combined with other
sources of evidence (see Section 2.3) to enable the best possible de-
cisions to be made. Feedback of one type should be able to inform
many different steps in the wrangling process – for example, the
identification of several correct (or incorrect) results may inform
both source selection and mapping generation. Although there has
been significant work on incremental, pay-as-you-go approaches to
data management, building on the dataspaces vision [18], typically
this has used one or a few types of feedback to inform a single ac-
tivity. As such, there is significant work to be done to provide a
more integrated approach in which feedback can inform all steps
of the wrangling process.

Example 5 (e-Commerce Pay-as-you-go). In Example 1, auto-
mated approaches to data wrangling can be used to select sources of
2http://www.productontology.org/

product data, and to fuse the values from such sources to provide re-
ports on the pricing of different products. These reports are studied
by the data scientists of the e-Commerce company who are review-
ing the pricing of competitors, who can annotate the data values in
the report, for example, to identify which are correct or incorrect,
along with their relevance to decision-making. Such feedback can
trigger the data wrangling system to revise the way in which such
reports are produced, for example by prioritising results from dif-
ferent data sources. The provision of domain-expert feedback from
the data scientists is a form of payment, as staff effort is required to
provide it. However, it should also be possible to use crowdsourc-
ing, with direct financial payment of crowd workers, for example
to identify duplicates, and thereby to refine the automatically gen-
erated rules that determine when two records represent the same
real-world object [20]. It is of paramount importance that these
feedback-induced “reactions” do not trigger a re-processing of all
datasets involved in the computation but rather limit the processing
to the strictly necessary data.

3. DATA WRANGLING – RELATED
WORK

As discussed in Section 2, cost-effective data wrangling is ex-
pected to involve best-effort approaches, in which multiple sources
of evidence are combined by automated techniques, the results of
which can be refined following a pay-as-you-go approach. Space
precludes a comprehensive review of potentially relevant results,
so in this section we focus on three areas with overlapping require-
ments and approaches, pointing out existing results on which data
wrangling can build, but also areas in which these results need to
be extended.

3.1 Knowledge Base Construction
In knowledge base construction (KBC) the objective is to au-

tomatically create structured representations of data, typically us-
ing the web as a source of facts for inclusion in the knowledge
base. Prominent examples include YAGO [33], Elementary [28]
and Google’s Knowledge Vault [15], all of which combine candi-
date facts from web data sources to create or extend descriptions of
entities. Such proposals are relevant to data wrangling, in providing
large scale, automatically generated representations of structured
data extracted from diverse sources, taking account of the associ-
ated uncertainties.

These techniques have produced impressive results but they tend
to have a single, implicit user context, with a focus on consolidating
slowly-changing, common sense knowledge that leans heavily on
the assumption that correct facts occur frequently (instance-based
redundancy). For data wrangling, the need to support diverse user
contexts and highly transient information (e.g., pricing) means that
user requirements need to be made explicit and to inform decision-
making throughout automated processes. In addition, the focus
on fully automated KBC at web-scale, without systematic support
for incremental improvement in a pay-as-you-go manner, tends
to require expert input, for example through the writing of rules
(e.g., [28]). As such, KBC proposals share requirements with data
wrangling, but have different emphases.

3.2 Pay-as-you-go Data Management
Pay-as-you-go data management, as represented by the datas-

paces vision [18], involves the combination of an automated boot-
strapping phase, followed by incremental improvement. There have
been numerous results on different aspects of pay-as-you-go data
management, across several activities of relevance to data wran-
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gling, such as data extraction (e.g., [12]), matching [26], map-
ping [5] and entity resolution [20]. We note that in these proposals a
single type of feedback is used to support a single data management
task. The opportunities presented by crowdsourcing have provided
a recent boost to this area, in which, typically, paid micro-tasks are
submitted to public crowds as a source of feedback for pay-as-you-
go activities. This has included work that refines different steps
within an activity (e.g. both blocking and fine-grained matching
within entity resolution [20]), and the investigation of systematic
approaches for relating uncertain feedback to other sources of ev-
idence (e.g., [13]). However, the state-of-the-art is that techniques
have been developed in which individual types of feedback are used
to influence specific data management tasks, and there seems to be
significant scope for feedback to be integrated into all activities
that compose a data wrangling pipeline, with reuse of feedback to
inform multiple activities [6]. Highly automated wrangling pro-
cesses require formalised feedback (e.g., in terms of rules or facts
to be added/removed from the process) so that they can be used by
suitable reasoning processes to automatically adapt the wrangling
workflows.

Data Tamer [32] provides a substantially automated pipeline in-
volving schema integration and entity resolution, where compo-
nents obtain feedback to refine the results of automated analy-
ses. Although Data Tamer moves a significant way from classi-
cal, largely manually specified ETL techniques, user feedback is
obtained for and applied to specific steps (and not shared across
components), and there is no user context to inform where compro-
mises should be made and efforts focused.

3.3 Context Awareness
There has been significant prior work on context in comput-

ing systems [3], with a particular emphasis on mobile devices and
users, in which the objective is to provide data [9] or services [25]
that meet the evolving, situational needs of users. In information
management, the emphasis has been on identifying the portion of
the available information that is relevant in specific ambient condi-
tions [8]. For data wrangling, classical notions of context such as
location and time will sometimes be relevant, but we anticipate that
for data wrangling: (i) there may be many additional features that
characterise the user and data contexts, for individual users, groups
of users and tasks; and (ii) that the information about context will
need to inform a wide range of data management tasks in addition
to the selection of the most relevant results.

4. DATA WRANGLING – VISION
In the light of the scene-setting from the previous sections, Fig-

ure 1 outlines potential components and relationships in a data
wrangling architecture. To the left of the figure, several (poten-
tially many) Data Sources provide the data that is required for the
application. A Data Extraction component provides wrappers for
the potentially heterogeneous sources (files, databases, documents,
web pages), providing syntactically consistent representations that
can then be brought together by the Data Integration component,
to yield Wrangled Data that is then available for exploration and
analysis.

However, in our vision, these extraction and integration compo-
nents both use all the available data and adopt a pay-as-you-go
approach. In Figure 1, this is represented by a collection of Work-
ing Data, which contains not only results and metadata from the
Data Extraction and Data Integration components, but also:

1. all relevant Auxiliary Data, which would include the user
context, and whatever additional information can represent
the data context, such as reference data, master data and do-

Figure 1: Abstract Wrangling Architecture.

main ontologies;
2. the results of all Quality analyses that have been carried out,

which may apply to individual data sources, the results of
different extractions and components of relevance to integra-
tion such as matches or mappings; and

3. the feedback that has been obtained from users or crowds,
on any aspect of the wrangling process, including the ex-
tractions (e.g. users could indicate if a wrapper has extracted
what they would have expected), or the results of integrations
(e.g. crowds could identify duplicates).

To support this, data wrangling needs substantial advances in
data extraction, integration and cleaning, as well as the co-design
of the components in Figure 1 to support a much closer interaction
in a context-aware, pay-as-you-go setting.

4.1 Research Challenges for Components
This section makes the case that meeting the vision will require

changes of substance to existing data management functionalities,
such as Data Extraction and Data Integration.

To respond fully to the proposed architecture, Data Extraction
must make effective use of all the available data. Consider web
data extraction, in which wrappers are generated that enable deep
web resources to be treated as structured data sets (e.g., [12, 19]).
The lack of context and incrementality in data extraction has long
been identified as a weakness [11], and research is required to make
extraction components responsive to quality analyses, insights from
integration and user feedback. As an example, existing knowledge
bases and intermediate products of data cleaning and integration
processes can be used to improve the quality of wrapper induction
(e.g. [29]).

Along the same lines, Data Integration must make effective use
of all the available data in ways that take account of the user con-
text. As data integration acts on a variety of constructs (sources,
matches, mappings, instances), each of which may be associated
with its own uncertainties, automated functionalities such as those
for identifying matches and generating mappings need to be re-
vised to support multi-criteria decision making in the context of
uncertainty. For example, the selection of which mappings to use
must take into account information from the user context, such as
the number of results required, the budget for accessing sources,
and quality requirements. To support the complete data wrangling
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process involves generalising from a range of point solutions into
an approach in which all components can take account of a range
of different sources of evolving evidence.

4.2 Research Challenges for Architectures
This section makes the case that meeting the vision will require

changes of substance to existing data management architectures,
and in particular a paradigm-shift for ETL.

Traditional ETL operates on manually-specified data manipula-
tion workflows that extract data from structured data sources, inte-
grating, cleaning, and eventually storing them in aggregated form
into data warehouses. In Figure 1 there is no explicit control flow
specified, but we note that the requirements of automation, refined
on a pay-as-you-go basis taking into account the user context, is
at odds with a hard-wired, user-specified data manipulation work-
flow. In the abstract architecture, the pay-as-you-go approach is
achieved by storing intermediate results of the ETL process for
on-demand recombination, depending on the user context and the
potentially continually evolving data context. As such, the user
context must provide a declarative specification of the user’s re-
quirements and priorities, both functional (data) and non-functional
(such as quality and cost trade-offs), so that the components in Fig-
ure 1 can be automatically and flexibly composed. Such an ap-
proach requires an autonomic approach to data wrangling, in which
self-configuration is more central to the architecture than in self-
managing databases [10].

The resulting architecture must not only be autonomic, it must
also take account of the inherent uncertainty associated with much
of the Working Data in Figure 1. Uncertainty comes from: (i)
Data Sources in the form of unreliable and inconsistent data; (ii)
the wrangling components, for example in the form of tentative ex-
traction rules or mappings; (iii) the auxiliary data, for example in
the form of ontologies that do not quite represent the user’s con-
ceptualisation of the domain; and (iv) the feedback which may
be unreliable or out of line with the user’s requirements or pref-
erences. With this complex environment, it is important that uncer-
tainty is represented explicitly and reasoned with systematically, so
that well informed decisions can build on a sound understanding of
the available evidence.

This raises an additional research question, on how best to repre-
sent and reason in a principled and scalable way with the working
data and associated workflows; there is a need for a uniform rep-
resentation for the results of the different components in Figure 1,
which are as diverse as domain ontologies, matches, data extrac-
tion and transformation rules, schema mappings, user feedback and
provenance information, along with their associated quality anno-
tations and uncertainties.

In addition, the ways in which different types of user engage with
the wrangling process is also worthy of further research. In Wran-
gler [22], now commercialised by Trifacta, data scientists clean and
transform data sets using an interactive interface in which, among
other things, the system can suggest generic transformations from
user edits. In this approach, users provide feedback on the changes
to the selected data they would like to have made, and select from
proposed transformations. Additional research could investigate
where such interactions could be used to inform upstream aspects
of the wrangling process, such as source selection or mapping gen-
eration, and to understand how other kinds of feedback, or the re-
sults of other analyses, could inform what is offered to the user in
tools such as Wrangler.

4.3 Research Challenges in Scalability
In this paper we have proposed responding to the Volume as-

pect of big data principally in the form of the number of sources
that may be available, where we propose that automation and in-
crementality are key approaches. In this section we discuss some
additional challenges in data wrangling that result from scale.

The most direct impact of scale in big data results from the sheer
volume of data that may be present in the sources. ETL vendors
have responded to this challenge by compiling ETL workflows into
big data platforms, such as map/reduce. In the architecture of Fig-
ure 1, it will be necessary for extraction, integration and data query-
ing tasks to be able to be executed using such platforms. However,
there are also fundamental problems to be addressed. For example,
many quality analyses are intractable (e.g. [7]), and evaluating even
standard queries of the sort used in mappings may require substan-
tial changes to classical assumptions when faced with huge data
sets. Among these challenges are understanding the requirement
for query scalability [2] that can be provided in terms of access
and indexing information [17], and developing static techniques for
query approximation (i.e., without looking at the data) as was initi-
ated in [4] for conjunctive queries. For the architecture of Figure 1
there is the additional requirement to reason with uncertainty over
potentially numerous sources of evidence; this is a serious issue
since even in the classical settings data uncertainty often leads to
intractability of the most basic data processing tasks [1, 23]. We
also observe that knowledge base construction has itself given rise
to novel reasoning techniques [27], and additional research may be
required to inform decision-making for data wrangling at scale.

5. CONCLUSIONS
Data wrangling is a problem and an opportunity:
• A problem because the 4 V’s of big data may all be present

together, undermining manual approaches to ETL.
• An opportunity because if we can make data wrangling much

more cost effective, all sorts of hitherto impractical tasks
come into reach.

This vision paper aims to raise the profile of data wrangling as a
research area within the data management community, where there
is a lot of work on relevant functionalities, but where these have not
been refined or integrated as is required to support data wrangling.
The paper has identified research challenges that emerge from data
wrangling, around the need to make compromises that reflect the
user’s requirements, the ability to make use of all the available ev-
idence, and the development of pay-as-you-go techniques that en-
able diverse forms of payment at convenient times. We have also
presented an abstract architecture for data wrangling, and outlined
how that architecture departs from traditional approaches to ETL,
through increased use of automation, which flexibly accounts for
diverse user and data contexts. It has been suggested that this archi-
tecture will require changes of substance to established data man-
agement components, as well as the way in which they work to-
gether. For example, the proposed architecture will require support
for representing and reasoning with the diverse and uncertain work-
ing data that is of relevance to the data wrangling process. Thus we
encourage the data management research community to direct its
attention at novel approaches to data wrangling, as a prerequisite
for the cost-effective exploitation of big data.
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ABSTRACT
The world is fast moving towards a data-driven society where data
is the most valuable asset. Organizations need to perform very di-
verse analytic tasks using various data processing platforms. In
doing so, they face many challenges; chiefly, platform dependence,
poor interoperability, and poor performance when using multiple
platforms. We present RHEEM, our vision for big data analytics
over diverse data processing platforms. RHEEM provides a three-
layer data processing and storage abstraction to achieve both plat-
form independence and interoperability across multiple platforms.
In this paper, we discuss our vision as well as present multiple re-
search challenges that we need to address to achieve it. As a case in
point, we present a data cleaning application built using some of the
ideas of RHEEM. We show how it achieves platform independence
and the performance benefits of following such an approach.

1. WHY TIED TO ONE SINGLE SYSTEM?
Data analytic tasks may range from very simple to extremely

complex pipelines, such as data extraction, transformation, and
loading (ETL), online analytical processing (OLAP), graph pro-
cessing, and machine learning (ML). Following the dictum “one
size does not fit all” [23], academia and industry have embarked on
an endless race to develop data processing platforms for supporting
these different tasks, e.g., DBMSs and MapReduce-like systems.
Semantic completeness, high performance, and scalability are key
objectives of such platforms. While there have been major achieve-
ments in these objectives, users still face two main roadblocks.

The first roadblock is that applications are tied to a single pro-
cessing platform, making the migration of an application to new
and more efficient platforms a difficult and costly task. Further-
more, complex analytic tasks usually require the combined use of
different processing platforms. As a result, the common practice is
to develop several specialized analytic applications on top of differ-
ent platforms. This requires users to manually combine the results
to draw a conclusion. In addition, users may need to re-implement
existing applications on top of faster processing platforms when
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these become available. For example, Spark SQL [3] and MLlib [2]
are the Spark counterparts of Hive [24] and Mahout [1].

The second roadblock is that datasets are often produced by
different sources and hence they natively reside on different storage
platforms. As a result, users often perform tedious, time-intensive,
and costly data migration and integration tasks for further analysis.

Let us illustrate these roadblocks with an Oil & Gas industry ex-
ample [13]. A single oil company can produce more than 1.5TB of
diverse data per day [6]. Such data may be structured or unstruc-
tured and come from heterogeneous sources, such as sensors, GPS
devices, and other measuring instruments. For instance, during the
exploration phase, data has to be acquired, integrated, and analyzed
in order to predict if a reservoir would be profitable. Thousands of
downhole sensors in exploratory wells produce real-time seismic
data for monitoring resources and environmental conditions. Users
integrate these data with the physical properties of the rocks to vi-
sualize volume and surface renderings. From these visualizations,
geologists and geophysicists formulate hypotheses and verify them
with ML methods, such as regression and classification. Training
of the models is performed with historical drilling and production
data, but oftentimes users have to go over unstructured data, such
as notes exchanged by emails or text from drilling reports filed in
a cabinet. Thus, an application supporting such a complex ana-
lytic pipeline has to access several sources for historical data (rela-
tional, but also text and semi-structured), remove the noise from the
streaming data coming from the sensors, and run both traditional
(such as SQL) and statistical analytics (such as ML algorithms)
over different processing platforms.

Similar examples can be drawn from many other domains such
as healthcare: e.g., IBM reported that North York hospital needs
to process 50 diverse datasets, which are on a dozen different in-
ternal systems [15]. These emerging applications clearly show the
need for complex analytics coupled with a diversity of processing
platforms, which raises two major research challenges.
Data Processing Challenge. Users are faced with various choices
on where to process their data, each choice with possibly orders
of magnitude differences in terms of performance. However, users
have to be intimate with the intricacies of the processing platform to
achieve high efficiency and scalability. Moreover, once a decision
is taken, users may end up being tied up to a particular platform.
As a result, migrating the data analytics stack to a more efficient
processing platform often becomes a nightmare. Thus, there is a
need to build a system that offers data processing platform inde-
pendence. Furthermore, complex analytic applications require exe-
cuting tasks over different processing platforms to achieve high per-
formance. For example, one may aggregate large datasets with tra-
ditional queries on top of a relational database such as PostgreSQL,
but ML tasks might be much faster if executed on Spark [28]. How-
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ever, this requires a considerable amount of manual work in select-
ing the best processing platforms, optimizing tasks for the chosen
platforms, and coordinating task execution. Thus, this also calls for
multi-platform task execution.
Data Storage Challenge. Data processing platforms are typically
tightly coupled with a specific storage solution. Moving data from
a certain storage (e.g., a relational DB) to a more suitable process-
ing platform for the actual task (e.g., Spark on HDFS) requires
shuffling data between different systems. Such shuffling may end
up dominating the execution time. Moreover, different departments
in the same organization may go for different storage engines due
to legacy as well as performance reasons. Dealing with such het-
erogeneity calls for data storage independence.

To tackle these two challenges, we envision a system, called
RHEEM1, that provides both platform independence and interop-
erability (Section 2). In the following, we first discuss our vision
for the data processing abstraction (Section 3), which is fully based
on user-defined functions (UDFs) to provide adaptability as well as
extensibility. This processing abstraction allows both users to fo-
cus only on the logic of their data analytic tasks and applications to
be independent from the data processing platforms. We then dis-
cuss how to divide a complex analytic task into smaller subtasks
to exploit the availability of different processing platforms (Sec-
tion 4). As a result, RHEEM can run simultaneously a single data
analytic task over multiple processing platforms to boost perfor-
mance. Next, we present our first attempt to build an instance ap-
plication based on some of the ideas of RHEEM and the resulting
benefits (Section 5). We then show how we push down the process-
ing abstraction idea to the storage layer (Section 6). This storage
abstraction allows both users to focus on their storage needs and the
processing platforms to be independent from the storage engines.

Some initial efforts are also going into the direction of provid-
ing data processing platform independence [11,12,21] (Section 7).
However, our vision goes beyond the data processing. We not only
envision a data processing abstraction but also a data storage ab-
straction, allowing us to consider data movement costs during task
optimization. We give a research agenda highlighting the chal-
lenges that need to be tackled to build RHEEM in Section 8.

2. OUR VISION
We envision a system that frees applications and users from

being tied to a single data processing platform (platform inde-
pendence) and provides interoperability across different platforms
(multi-platform task execution). We discuss these two aspects in
the following. We discuss data storage independence in Section 6.
Processing Platform Independence. Whenever a new platform
that achieves better performance than existing ones becomes avail-
able, one is enticed to move to the new platform. However, such
move does not usually come without pain. There is a clear need for
a system that frees us from the burden and cost of re-implementing
applications from one platform to another. Mahout [1] and ML-
lib [2] clearly illustrate this need, as all ML algorithms initially
implemented in Hadoop had to be re-implemented in Spark. In
addition, there are cases where, for the same task but with a dif-
ferent input, one platform is better than another. Thus, the system
we envision should not only provide platform independence, but
also should be able to select the best available platform to execute
a given task in order to deliver better performance.
Multi-Platform Task Execution. We are witnessing the emer-
gence of complex data analytic pipelines in many different do-

1Rheem is a native gazelle species in Qatar.

Figure 1: RHEEM data processing abstraction.

mains [4, 6, 13, 15]. These pipelines require first combining mul-
tiple processing platforms to perform each task of the process and
then integrating the results. For instance, many companies are al-
ready adopting a lambda architecture, which combines both batch
and stream processing. Our vision goes beyond batch or stream
processing to any kind of data analytics paradigm. We envision a
system that eases the integration among different processing plat-
forms by automatically dividing a task into subtasks and determin-
ing the underlying platform for each subtask.
RHEEM. The foundation of our vision is a three-layer data pro-
cessing abstraction that sits between user applications and data pro-
cessing platforms (e.g., Hadoop or Spark). Figure 1 depicts these
three layers: the application layer models all application-specific
logic; the core layer provides the intermediate representation be-
tween applications and processing platforms; and the platform
layer embraces the underlying processing platforms. In contrast
to DBMSs, RHEEM decouples physical and execution levels. This
separation allows applications to express physical plans in terms of
algorithmic needs only, without being tied to a particular process-
ing platform. The communication among these levels is enabled
by operators defined as UDFs. These three layers allow RHEEM to
provide applications with platform independence. Providing plat-
form independence is the first step towards realizing multi-platform
task execution, which is crucial to achieve the best performance at
all times. For example, Figure 2 shows the benefits of running
the SVM algorithm on different datasets from LIBSVM2 with only
one hundred iterations, as a Spark job and as a plain Java program.
We observe that, for small datasets, executing SVM as a plain Java
program is up to one order of magnitude faster than executing it on
Spark. Indeed, this performance gap gets bigger with the number of
iterations. Using Spark pays off for big datasets only. Such results
show a great potential for platform independence and ultimately
multi-platform execution. RHEEM will be able to receive a com-
plex analytic task, seamlessly divide it into subtasks, schedule each
task on the best processing platform, monitor task execution, and
aggregate results for users or applications. Achieving our vision re-
quires tackling several challenges that we will discuss throughout

2
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Figure 2: SVM on Spark and Java.

the paper and then summarize in Section 8.
To show the benefits of our RHEEM vision, we have fully devel-

oped one data cleaning application based on it [19]. While this
initial instance provides only platform independence, its perfor-
mances are encouraging and already demonstrate the advantages
of our vision (see Section 5).

Similar to the data processing abstraction, we envision a three-
level data storage abstraction to uphold data processing tasks. The
data storage abstraction is also composed of an application, a core,
and an execution level. The RHEEM data storage abstraction func-
tions symmetrically as the data processing abstraction. We shall
further discuss this storage abstraction in Section 6.

3. DATA PROCESSING ABSTRACTION
In this section, we detail the abstraction layers of RHEEM and

show how users can interact with the system at each layer.

3.1 Abstraction Layers
RHEEM provides a set of operators at each layer, namely, log-

ical operators, physical operators, and execution operators. The
input of the application layer is the logical operators provided by
users (or generated by a declarative query parser) and the output is
a physical plan. The physical plan is then passed to the core layer
where multi-platform optimizations take place to produce an exe-
cution plan. In contrast to a DBMS, RHEEM decouples the physical
level from the execution one. This separation allows applications to
express a physical plan in terms of algorithmic needs only, without
being tied to a particular processing platform.
Application Layer. A logical operator is an abstract UDF that
acts as an application-specific unit of data processing. One can see
a logical operator as a template where users provide the logic of
their tasks. Such abstraction enables both ease-of-use, by hiding
implementation details from users, and high performance, by al-
lowing several optimizations, e.g., seamless distributed execution.

A logical operator works on data quanta, which are the smallest
units of data elements from the input datasets. For instance, a data
quantum represents a tuple in the input dataset or a row in a matrix.
This fine-grained data model allows RHEEM to apply operators in
a highly parallel fashion and thus achieve better performance.

Example 1: Consider a developer who wants to offer end users
logical operators to implement various ML algorithms. The devel-
oper can define three basic operators: (i) Initialize, for initializing
algorithm-specific parameters, e.g., initializing cluster centroids,
(ii) Process, for the computations required by the ML algorithm,
e.g., finding the nearest centroid of a point, (iii) Loop, for speci-
fying the stopping condition. Users implement algorithms such as
SVM, K-means, and linear/logistic regression with them. 2

The application optimizer translates logical operators into phys-
ical operators that will form the physical plan at the core layer.
Core Layer. This layer is the heart of RHEEM. It exposes a pool
of physical operators, each representing an algorithmic decision
for executing an analytic task. A physical operator is a platform-
independent implementation of a logical operator. These operators

are available to the developer to deploy a new application on top of
RHEEM. Developers can still define new operators as needed.

Example 2: In the above ML example, the application optimizer
maps Initialize to a Map physical operator and Process to a
GroupBy physical operator. RHEEM provides two different im-
plementations for GroupBy: the SortGroupBy (sort-based) and
HashGroupBy (hash-based) operators from which the optimizer of
the core level will have to choose. 2

Once an application has produced a physical plan for a given
input task, RHEEM divides this physical plan into task atoms,
i.e., sub-tasks, which are the units of execution. A task atom (a part
of the execution plan) is a sub-task to be executed on a single data
processing platform. It will then translate the task atoms into an
execution plan by optimizing each task atom according to a target
platform. Finally, it schedules each task atom to be executed on its
corresponding platform. Therefore, in contrast to DBMSs, RHEEM
produces execution plans that can run on multiple platforms.
Platform Layer. At this layer, execution operators (in an execu-
tion plan) define how a task is executed on the underlying process-
ing platform. In other words, an execution operator is the platform-
dependent implementation of a physical operator. RHEEM relies on
existing data processing platforms to actually run input tasks.

Example 3: Again in the above ML example, the MapPartitions
and ReduceByKey execution operators for Spark are one way to
perform Initialize and Process. 2

In contrast to a logical operator, an execution operator works on
multiple data quanta rather than a single one, which enables the
processing of multiple data quanta with a single function call.
Flexible operator mappings. Defining mappings between execu-
tion and physical operators is the developers’ responsibility when-
ever a new platform is plugged to the core. Our goal is to rely on a
mapping structure to model the correspondences between operators
together with context information. Such context is needed for the
effective and efficient execution of each operator. For instance, the
Process logical operator maps to two different physical operators
(SortGroupBy and HashGroupBy). In this case, a developer could
use the context to provide hints to the optimizer for choosing the
right physical operator at run time. Developers will provide only
a declarative specification of such mappings; the system will use
them to translate physical operators to execution operators.

3.2 User Interaction
We distinguish between two types of users: end-users, who in-

teract with the applications, and developers, who interact with the
system at all the three layers. We discuss below how developers
define operators (UDFs) at every layer of the abstraction.
Application layer. At this layer, developers model a data pro-
cessing application by specifying a set of abstract logical opera-
tors. End-users implement these operators to express their analytic
tasks. RHEEM provides an abstract LogicalOperator that defines
the method applyOp. Logical operators of any application ex-
tend LogicalOperator and provide an implementation of applyOp.
RHEEM invokes this method at runtime to apply a logical opera-
tor. In addition to logical operators, an application developer could
also expose a declarative language for users to define their tasks
(e.g., queries). The application is then responsible for translating
a declarative query into a logical plan. Then, the application opti-
mizer translates the logical plan into a physical plan.
Core layer. RHEEM provides a pool of physical operators for ap-
plications to produce physical plans. To enable extensibility, the
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system also provides an abstract PhysicalOperator, with the ab-
stract method applyOp, for developers to define their own physical
operators. Developers define a new physical operator to fill two dif-
ferent needs. First, developers define a wrapper operator to execute
the logical operator together with some physical details, such as al-
gorithmic decisions and schema details. The wrapper operator fol-
lows the signature of the logical operator. Second, since the output
of a specific operator might not fit as input of a subsequent operator,
developers define enhancer operators to fill possible gaps between
wrapper operators. For example, an application for K-means clus-
tering might only expose the GetCentroid (for getting the closest
centroid of a data point) and SetCentroids (for computing the new
centroids) logical operators. GetCentroid outputs a data point and
its closest centroid, while SetCentroids requires a centroid and all
its closest data points. Here, the developer provides a GroupBy
enhancer operator between GetCentroid and SetCentroid.
Platform layer. To model a data processing platform, developers
extend the abstract ExecutionOperator and implement its applyOp
method. There are two main scenarios. If a new physical opera-
tor has been defined, e.g., because the developer is adding a new
application, then it must be supported with a corresponding ex-
ecution operator in the actual execution platform. In a different
scenario, the developer is adding a new platform to the execution
layer. In this case, every physical operator must be supported with
a corresponding execution operator in the new execution platform.
RHEEM uses these execution operators to produce an execution
plan and pushes “down” execution details to the underlying plat-
form, such as data distribution, parallel execution, and data stor-
age. At the end, the target processing platform simply performs an
execution plan in its own data and processing model.

4. MULTI-LAYER OPTIMIZATIONS
In contrast to traditional data management systems, which are

tied to a specific data processing platform, RHEEM’s goal is not
only platform independence but also multi-platform execution. To
efficiently deal with both aspects, we envision optimizations at each
layer: (i) at the application layer, we validate an input task, translate
it into a logical plan, and then produce an optimized physical plan,
(ii) at the core layer, we translate a physical plan into an execution
plan by dividing the query into task atoms, and (iii) at the platform
layer, we further refine a task atom based on the actual platform.

4.1 Application-Layer Optimizations
In our envisioned system, users will be able to express their tasks

either procedurally (via logical operators) or declaratively (using a
query language). Given an input task, the application optimizer
builds a logical plan and performs some pre-defined optimizations,
such as operator push-down. Once the logical plan is built, the ap-
plication optimizer produces an optimized physical plan by trans-
lating each logical operator into a wrapper physical operator. Recall
that a wrapper receives a logical operator as input. Additionally,
the application optimizer might use enhancer physical operators to
boost performance; for example, it may plug-in a GroupBy phys-
ical operator followed by a CrossProduct operator to perform a
cross product inside a group only. This avoids a costly cross prod-
uct over the entire input dataset. As an example of this kind of
optimization we refer to [19]. Then, the application sends the opti-
mized physical plan to the core layer.

4.2 Core-Layer Optimizations
The optimizations at the core layer are the responsibility of the

multi-platform task optimizer (see Figure 1). RHEEM receives

a physical plan from an application and passes it to the multi-
platform task optimizer to generate a plan for execution on the
underlying processing platforms. We envision the multi-platform
task optimizer to deal with five aspects. First, the optimizer should
consider operators as first-class citizens. That is, its optimization
process should be fully based on UDFs optimization techniques.
We will base our solutions on different existing optimization tech-
niques, such as Manimal [16], PACTs [25], and SOFA [22], but we
also need to devise new optimization techniques to support differ-
ent processing platforms. Second, the optimizer should consider
rules and cost models for its optimizations as plugins and not hard-
coded as in traditional database optimizers. In other words, these
two aspects should be decoupled from the optimizer in order to al-
low for extensibility when new processing platforms are added by
developers. Third, it has to consider inter-platform cost models to
effectively take into account the cost of moving data and compu-
tation across underlying processing platforms. The main difficulty
here comes from the fact that underlying frameworks are typically
highly heterogeneous in terms of both data representations and pro-
cessing paradigms. Fourth, it should divide a physical plan into
task atoms according to the supported underlying data processing
platforms. Recall that it is the underlying processing platform that
ensures the execution of task atoms. The main challenge in this
aspect is to find a way to divide a task into atoms seamlessly from
users. Last, but not least, it should also apply traditional physical
optimizations, whenever possible. Examples are shared scans and
optimized data access paths, such as index access. Achieving this
is difficult as such optimizations should be general in order to be
efficient on any processing platform.

Once an execution plan is built, the multi-platform task optimizer
passes it to the Executor (see Figure 1) for: (i) scheduling the re-
sulting execution plan on the selected data processing frameworks,
(ii) monitoring the progress of plan execution, (iii) coping with fail-
ures, and (iv) aggregating and returning results to users.

4.3 Platform-Layer optimizations
Once at a target processing platform, we envision a third op-

timization phase that uses plugged-in platform-specific optimiza-
tion tools. For instance, if the selected platform for a task atom
is Hadoop, we could further optimize an execution plan by using
Starfish [14]. Notice that the data processing platform itself can
also perform some additional optimizations, e.g., if an execution
plan is given as input to Spark in the form of a Shark query [26].

5. APPLICATIONS
Clearly, a large number of applications benefit from our vision.

As a proof of concept, we present here a data cleaning application
we developed using part of RHEEM’s vision, mainly platform in-
dependence. We are currently developing two other applications: a
machine learning application and a graph processing application.

5.1 Data Cleaning in RHEEM
Demand. Ensuring high quality data is challenging because of
the variety of data dirtiness, such as typos, duplicates, and missing
values. However, detecting errors is a combinatorial problem that
quickly becomes expensive with the size of the data, thus limiting
the applicability of cleaning systems.
Our solution. We built BIGDANSING, a Big Data Cleansing on
top of RHEEM [19]. The two distinct features of BIGDANSING are
its ease-of-use and high scalability; both natural consequences of
the RHEEM abstraction vision. BIGDANSING models data quality
rules with five operators, namely Scope, Block, Iterate, Detect,
and GenFix. These operators allow users to capture the semantics
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Figure 3: RHEEM execution times for violations detection.

of error detection and possible repairs generation at the application
layer (see [19] for details).
Ease-of-use. The developer of the application has to come up with
the physical plan of the cleaning process (preferably via an auto-
matic optimization process). The detection part of BIGDANSING
is composed of a sequence of five physical operators, which are
fed with the logics coming from the corresponding logical oper-
ators. Similarly, the logical operators require only a few lines of
code [19], allowing for ease-of-use.
High scalability. Figure 3 shows a comparison of the performance
for a single Detect UDF versus our operators for the same task.
The left-side subfigure clearly shows the benefits of the abstraction
with operators that enables finer granularity for the distributed exe-
cution. The right-side subfigure shows a comparison of BIGDANS-
ING against state-of-the-art approaches on Spark. We observe that
RHEEM enables orders of magnitude better performance than base-
lines, which we had to stop after 22 hours. Here, as an example
of extensibility, we extended the set of physical RHEEM operators
with a new join operator (called IEJoin [20]) to boost performance.

5.2 When to Use RHEEM?
It should be clear at this point how the proposed three layers

enable better performance and more freedom in developing appli-
cations with respect to existing solutions. However, there is a trade-
off. A developer who decides to use RHEEM instead of one of the
alternative systems may need to implement new operators as re-
quired by the target application. This is because our pool of default
physical operators is not as exhaustive as the operators provided by
the specific underlying platforms. For example, we had to imple-
ment the IEJoin operator in RHEEM to boost the performance of
our data cleaning application. While this may require extra effort
from a developer, we believe that this a reasonable price to pay for
platform independence when performance is crucial.

6. DATA STORAGE ABSTRACTION
So far we have focused our attention on the data processing side

of our vision. Symmetrically to the data processing, we envision a
data storage abstraction to provide interoperability among different
data storage platforms.

Figure 4 illustrates the RHEEM data storage abstraction. Each
layer of abstraction has a set of operators (i.e., UDFs): logical
operators (l-store) at the application layer, physical operators (p-
store) at the core layer, and execution operators (x-store) at the
platform layer. At the application layer different storage applica-
tions, e.g., Dropbox, or data processing platforms, e.g., Hadoop or
PostgreSQL, output a physical storage plan in a homogeneous for-
mat defined by RHEEM. Then, at the core layer, RHEEM takes the
physical storage plan as input and produces an optimized execution
storage plan. Finally, at the platform layer, a data storage platform
stores or accesses a dataset according to the execution storage plan.
Note that an execution storage plan is composed of storage atoms,
i.e., the counterpart of task atoms, which are processed by a dif-
ferent data storage platform. It is worth noting that while a data
quantum is the data unit itself (e.g., a tuple), a storage atom is the

Figure 4: RHEEM data storage abstraction.

minimum unit of data quanta transformation (e.g., projection).
The benefit of such a data storage abstraction is twofold. First, it

provides interoperability across storage platforms to simplify users
specification about how to store or transform their datasets from
one platform to another. Second, it offers opportunities to fully op-
timize a data flow in order to further improve the performance of
data processing tasks. Still, two main challenges make this problem
hard: (i) how to unify the abstraction for data storage and access
over multiple platforms, and (ii) how to seamlessly decide where
and how to store data. Our current efforts into this direction in-
clude Cartilage [18], which is a unified data storage representation.
In summary, Cartilage introduces the notion of data transformation
plans, analogous to logical query plans, that specify a sequence of
data transformations that should be applied to raw data as it is up-
loaded into a storage system. This allows for intermediate storage
optimizations based on users and applications needs. For example,
WWHow! [17] is a first effort for a unified data storage optimizer.
Embracing hot data. Accessing data through a unified data storage
might degrade the performance of processing platforms because the
data might not be in the required format. Thus, we envision pro-
cessing platforms or storage applications with specialized buffers
for embracing frequently accessed data in their native format.

7. RELATED WORK
The closest work to us is Musketeer [12], which provides an in-

termediate representation between applications and data process-
ing platforms. While Musketeer has the merit of proposing an op-
timizer for the supported applications and platforms, it considers
neither the costs of data movement across processing platforms nor
the fact that multiple platforms may be able to perform the same
job. Furthermore, it lacks the extensibility that we advocate with
our proposal. In fact, only Musketeer developers can integrate new
processing platforms or applications. This is in fact similar to in-
tegrating a new storage system on an existing processing platform,
such as Spark or Hadoop MapReduce. In contrast, in RHEEM, users
can achieve these tasks with mappings and new physical operators.

DBMS+ [21] is another work that aims at embracing several pro-
cessing and storage platforms for declarative processing. However,
DBMS+ is not adaptive and extensible as it is limited by the expres-
siveness of its declarative language. Furthermore, it is unclear how
it abstracts underlying platforms seamlessly. BigDAWG [11] has
recently been proposed as a federated system that enables users to
run their queries over multiple vertically-integrated systems such
as column stores, NewSQL engines, and array stores. As a re-
sult, users can leverage the advantages of each of them. However,
users explicitly specify the underlying platforms (called islands)
on which their queries must run on. This implies that users need to
know how to divide their queries into subqueries and which under-
lying platform is best suited for each of them.
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Other groups have been working on a general platform for big
data analytics [5, 7–9, 27, 29]. For example, AsterixDB [5] offers
an open data model, native data storage and indexing, declarative
querying over multiple datasets, and a rule-based optimizer. Sim-
SQL [10] compiles SQL queries into Java code that can run on top
of Hadoop. Moreover, users can use UDFs to materialize views
with simulated data, which enables a range of applications requir-
ing stochastic analytics. PACTs [7] extends the MapReduce pro-
gramming model with second-order functions on top of Nephele, a
processing platform that RHEEM can also use as underlying plat-
form. However, none of the above systems provides the multi-
platform data processing and storage we propose with RHEEM.

8. ROAD TO FREEDOM
“I have walked that long road to freedom. I have tried not
to falter; I have made missteps along the way. But I have
discovered the secret that after climbing a great hill, one only
finds that there are many more hills to climb... and I dare not
linger, for my long walk is not yet ended.”

– Nelson Mandela –

Oftentimes, users are confronted with the hard decision to choose
the right processing platform given the requirements of their ana-
lytic application. In addition, their data, born out of various pro-
cesses, ends up in different storage platforms. To make things
worse, the same application may have tasks requiring different plat-
forms to be performed efficiently. Thus, there is a real urgency
to free both users and data from (i) being tied to a specific plat-
form, either for processing or storage, and (ii) going through the
pain of moving from one platform to another, depending on the
requirements of their applications and the characteristics of their
data. While the road to freedom is full of challenges, RHEEM data
processing and storage abstractions hold promise to achieve this
freedom. As a case in point, a data cleaning application [19] is our
first success towards this goal. IEJoin [20] also showcases the ex-
tensibility of RHEEM. While we have laid down the basic ideas on
how to build RHEEM, many challenges remain to be addressed.
(1) Extensibility. How to adapt to extensions and improvements in
a data processing platform without requiring the developers to go
into the source code? What is the right language to provide hints
to the optimizer? We envision an optimization process based on a
flexible data model, such as RDF. Developers will specify map-
pings between operators as well as encode rule- and cost-based
models in RDF triples. The optimizer will use this RDF repre-
sentation as a first-class citizen in its optimization process.
(2) Multi-platform optimization. How to divide a task into atoms,
assign the best platform to each atom, and combine results? We
envision a solution based on data processing profiles and inter-
platform cost models. A data processing profile denotes the type
of data processing a platform can support, e.g., batch-processing
profile for Hadoop. An inter-platform cost model will capture dif-
ferent multi-platform aspects, such as the cost of transferring and
transforming data from one processing platform to another.
(3) Unified storage abstraction. How to provide a unified abstrac-
tion for data storage and access for multiple storage platforms?
How to decide where and how to store data? We envision a three-
layer abstraction as discussed in Section 6. This abstraction will
enable storage platforms with specialized data buffers to embrace
frequently accessed data in their native format.

In summary, the above challenges can be categorized into five
main research themes: (i) processing and storage abstractions,
(ii) platform-independent task specification, (iii) multi-platform
optimization, (iv) multi-platform execution, and (v) data storage
and data movement optimizations.
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ABSTRACT 

Next-generation sequencing (NGS) has dramatically reduced the 

cost and time of reading the DNA. Huge investments are targeted 

to sequencing the DNA of large populations, and repositories of 

well-curated sequence data are being collected. Answers to 

fundamental biomedical problems are hidden in these data, e.g. 

how cancer arises, how driving mutations occur, how much 

cancer is dependent on environment. So far, the bio-informatics 

research community has been mostly challenged by primary 

analysis (production of sequences in the form of short DNA 

segments, or ''reads'') and secondary analysis (alignment of reads 

to a reference genome and search for specific features on the 

reads); yet, the most important emerging problem is the so-called 

tertiary analysis, concerned with multi-sample processing of 

heterogeneous information. Tertiary analysis is responsible of 

sense making, e.g., discovering how heterogeneous regions 

interact with each other.  

This new scenario creates an opportunity for rethinking genomic 

computing through the lens of fundamental data management. We 

propose an essential data model, using few general abstractions 

that guarantee interoperability between existing data formats, and 

a new-generation query language inspired by classic relational 

algebra and extended with orthogonal, domain-specific 

abstractions for genomics. They open doors to the seamless 

integration of descriptive statistics and high-level data analysis 

(e.g., DNA region clustering and extraction of regulatory 

networks). In this vision, computational efficiency is achieved by 

using parallel computing on both clusters and public clouds; the 

technology is applicable to federated repositories, and can be 

exploited for providing integrated access to curated data, made 

available by large consortia, through user-friendly search services. 

Our most far-fetching vision is to move towards an Internet of 

Genomes exploiting data indexing and crawling.  

Categories and Subject Descriptors 

H.2.1 [Logical design]: Data models; H.2.3 [Languages]: Query 

languages; H.2.8 [Database applications]: Scientific databases. 

Keywords 
Genomic data management 

1. INTRODUCTION 
Modern genomics promises to answer fundamental questions for 

biological and clinical research, e.g., how protein-DNA 

interactions and DNA three-dimensional conformation affect gene 

activity, how cancer develops, how driving mutations occur, how 

much complex diseases such as cancer are dependent on personal 

genomic traits or environmental factors. Unprecedented efforts in 

genomics are made possible by Next Generation Sequencing 

(NGS), a family of technologies that is progressively reducing the 

cost and time of reading the DNA. Huge amounts of sequencing 

data are continuously collected by a growing number of research 

laboratories, often organized through world-wide consortia (such 

as ENCODE [1], TCGA [2], the 1000 Genomes Project [3], and 

Epigenomic Roadmap [4]); personalized medicine based on 

genomic information is becoming a reality.  

Several organizations are considering genomics at a global level. 

Global Alliance for genomics and Health1 is a large consortium of 

over 200 research institutions with the goal of supporting 

voluntary and secure sharing of genomic and clinical data; their 

work on data interoperability is producing a data conversion 

technology2 recently provided as an API to store, process, 

explore, and share DNA sequence reads, alignments, and variant 

calls, using Google's cloud infrastructure3. Parallel frameworks 

are used to support genomic computing, including Vertica4 (used 

by Broad Institute and NY Genome Center) and SciDB5 (used by 

NCBI for storing the data of the 1000 Genomes project [3]. A 

survey of current challenges in computational analysis of genomic 

big data can be found in [5]. According to many biologists, 

answers to crucial genomic questions are hidden within genomic 

data already available in these repositories, but such research 

questions go simply unanswered (or even unasked) due to the lack 

of suitable tools for genomic data management and processing.  

So far, the bio-informatics research community has been mostly 

challenged by primary analysis (production of sequences in the 

form of short DNA segments, or ''reads'') and secondary analysis 

(alignment of reads to a reference genome and search for specific 

features on the reads, such as variants/mutations and peaks of 

expression); but the most important emerging problem is the so-

called tertiary analysis, concerned with multi-sample processing, 

annotation and filtering of variants, and genome browser-driven 

exploratory analysis [6]. While secondary analysis targets raw 

data in output from NGS processors by using specialized 

methods, tertiary analysis targets processed data in output from 

secondary analysis and is responsible of sense making, e.g., 

discovering how heterogeneous regions interact with each other 

(see Figure 1). 

                                                                 

1 http://genomicsandhealth.org/ 

2 http://ga4gh.org/#/api 

3 https://cloud.google.com/genomics/ 

4 https://www.vertica.com/ 

5 http://www.paradigm4.com/ 
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Figure 1. Phases of genomic data analysis, source:  

http://blog.goldenhelix.com/grudy/a-

hitchhiker%E2%80%99s-guide-to-next-generation-

sequencing-part-2/  

Tertiary processing consists of integrating DNA features; these 

can be specific DNA variations (e.g., a variant or mutation in a 

DNA position), or signals and peaks of expression (e.g., regions 

with higher DNA read density). Processing can also give 

structural properties of the DNA, e.g., break points (where the 

DNA is damaged) or junctions (where DNA creates loops, and 

then locations which are distant on the 1D string become close in 

the 3D space).  

While gigantic investments are targeted to sequencing the DNA of 

larger and larger populations, comparably much smaller 

investments are directed towards a computational science for 

mastering tertiary analysis. Bio-informatics resources are 

dispersed in provisioning a huge number of tools for ad-hoc 

processing of genomic data, targeted to specific tasks and adapted 

to technology-driven formats, with little emphasis on powerful 

abstractions, format-independent representations, and out-of-the-

box thinking and scaling. Programming data manipulation 

operations directly in Python or R is customary.  

Another source of difficulty comes from “metadata”, which 

describe DNA region-invariant properties of the biological sample 

processed by NGS, i.e., the sample cell line, tissue, preparation 

(antibody used), experimental conditions, and in case of human 

samples the race, gender, and other phenotype-related traits. This 

information should be stored in principled data schemes of a 

“LIMS” (laboratory information management system) and be 

compliant with standards, but biologists are very liberal in 

omitting most of it, even in well-cured repositories.  

2. OUR CONTRIBUTION 
Bio-informatics suffers its interdisciplinary nature and is 

considered by biologists and clinicians as a commodity that 

should immediately respond to their pressing needs, while it stays 

too far from foundational science to attract the interest of many 

core computer scientists. We understood that it is “mission 

impossible” for basic computer science to have an impact on 

primary and secondary analysis: algorithms are biologically 

driven and very specialized and efficient. Hence, we decided not 

to interfere with current biologists’ practices, but rather to 

empower them with radically new data processing capabilities.  

We propose a paradigm shift based on introducing a very simple 

data model which mediates all existing data formats, and a high-

level, declarative query language which supports data extraction 

as well as the most standard data-driven computations required by 

tertiary data analysis. The Genomic Data Model (GDM) is based 

on just two entities: genomic region and metadata. Regions (upper 

part of Figure 2) have a normalized schema (i.e., a table of typed 

attributes) where the first five attributes are fixed and the next 

attributes are variable and reflect the “calling process” that 

produced them. The fixed attributes include the sample identifier 

and the region coordinates (the chromosome whom the region 

belongs to, its left and right ends, and the strand - i.e., the “+” or 

“–” of the two DNA strands on which the region is read, and “*” 

if the region is not stranded). The model can be adapted to the rare 

cases of regions across chromosomes. Metadata (lower part of 

Figure 2) are even simpler. They are arbitrary, semi-structured 

attribute-value pairs, extended into triples to include the sample 

identifier. We consider this model a paradigm shift, because a 

single model describes, though simple concepts, all types of 

processed data (peaks, signals, mutations, DNA sequences, loops, 

break points).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. GDM schema and instances for NGS ChIP-Seq data. 

 

The data model is completed by a constraint: data samples can be 

included into a named dataset when their genomic regions have 

the same schema. Thus, the above figure shows the PEAKS 

dataset for “ChIP-Seq” data with two samples (1 and 2) whose 

regions fall within two chromosomes (1 and 2) and whose 

variable part of the schema consists of the attribute P_VALUE 

(each peak’s statistical significance). Note that the sample ID 

provides a many-to-many connection between regions and 

metadata of the same sample; e.g., sample 1 has 5 regions and 4 

metadata attributes, sample 2 has 4 regions and 3 metadata 

attributes; regions of the first sample are stranded (positively or 

negatively oriented along the DNA), while regions of the second 

sample are not stranded. Metadata tell us that sample 1 has 

karyotype “cancer” and sample 2 was taken from a “female”. This 

example is simple, but we can associate a schema with arbitrarily 

complex processed data, where typed and named attributes serve 

the purpose of any numerical or statistical operation across 

compatible values. An important operation is the schema 

merging, which allows merging datasets with different schemas 

(the operation builds a new schema such that fixed attributes are 
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in common and variable attributes are concatenated; in this way, 

we provide interoperability across heterogeneous processed data.   

We also defined a query language, called GenoMetric Query 

Language (GMQL) - the name derives from its ability of 

computing distance-related queries along the genome, seen as a 

sequence of positions. GMQL is a closed algebra over datasets: 

results are expressed as new datasets derived from their operands. 

Thus, GMQL operations compute both regions and metadata, 

connected by IDs; they perform schema merging when needed. 

GMQL operations include classic algebraic transformations 

(SELECT, PROJECT, UNION, DIFFERENCE, JOIN, SORT, 

AGGREGATE) and domain-specific transformations (e.g., 

COVER deals with replicas of a same experiment; MAP refers 

genomic signals of experiments to user selected reference regions; 

GENOMETRIC JOIN selects region pairs based upon distance 

properties). The language brings to genomic computing the classic 

algebraic abstractions, rooted in Ted Codd’s seminal work, and 

adds suitable domain-specific abstractions. Tracing provenance 

both of initial samples and of their processing through operations 

is a unique aspect of our approach; knowing why resulting regions 

were produced is quite relevant. In [7], we show GMQL at work 

in many heterogeneous biological contexts.  

We give an intuition of GMQL through a simple example, 

consisting of three operations. We start from two datasets called 

ANNOTATIONS and ENCODE, the former includes samples 

with the reference regions from the UCSC database6, the latter 

includes thousands of samples from ENCODE (in BED format); 

both are available at our server, with both regions and metadata. 

Two selections are used to produce two intermediate datasets: 

PROMS extracts from ANNOTATIONS a single sample with all 

the promoter regions of known genes; PEAKS extracts the 

samples of type ‘ChipSeq’ from ENCODE. Then, a map operation 

applies to the intermediate datasets PROMS and PEAKS and 

produces the RESULT dataset. The MAP operation, as well as all 

GMQL operations, implicitly iterates over all the samples of its 

operand datasets; it counts, for each input peak sample, all the 

peaks of expression over each region of PROMS, representing 

gene promoters. Thus, RESULT contains one output sample for 

each PEAK input sample, each with all the regions of PROMS; 

for each of such regions, it has the counter of peaks of the sample 

which fall within such region. This simple example shows the 

power of the language: with tree algebraic operations, we select 

reference regions and experiments and then compute aggregate 

properties of each experiment over each reference region, with 

implicit iteration over all the experiment samples. 

PROMS = SELECT(annType == 'promoter') ANNOTATIONS; 
PEAKS = SELECT(dataType == 'ChipSeq') ENCODE; 
RESULT = MAP(peak_count AS COUNT) PROMS PEAKS; 

This query above was executed over 2,423 ENCODE samples 

including a total of 83,899,526 peaks, which were mapped to 

131,780 promoters, producing as result 29 GB of data.  

3. DATA-DRIVEN GENOMIC PROBLEMS 
An open problem that we are nowadays studying concerns the 

search for a correlation of cancer-inducing mutations and DNA 

string breaks with abnormal gene activity during cell replication 

                                                                 

6 http://genome.ucsc.edu/cgi-bin/ hgTables 

?hgsid=445319346_kHaTO493uLRZhjuqCvaKTaFt7HL3 

[8], as one of the possible basic mechanisms of cancer. The 

assumption under consideration is that the abnormal production of 

DNA string breaks correlates with the presence of mutations 

(simply explained: mutations occur where the genome is most 

fragile, fragility is revealed by DNA break points); this in turn 

may be caused by gene dis-regulation during the process of cell 

replication (certain genes omit to perform a regulatory function 

that should prevent mutations during replication, or should fix 

them afterwards). In this problem, we are therefore confronted 

with correlating the cell replication with gene regulations; we do 

it in experimental conditions (exposure of cells to oncogenes), and 

we study how the induction of the oncogene changes both 

replication time and expression of other genes. The study requires 

genome-wide comparison of heterogeneous datasets (breakpoints, 

mutations, gene replication times and gene expressions under 

different experimental conditions), challenging both GDM and 

GMQL, and then calling for specific data analysis; specifically, 

GMQL can extract differentially dis-regulated genes, intersect 

them with regions where string breaks occur, and then count the 

mutations in various conditions. 

Another open problem is concerned with the tri-dimensional 

layout of DNA, which is induced by the chromatin structure 

revealed by peaks of the CTCF transcription factor, and 

understanding how CTCF loops influence gene regulation [9]; 

a loop is simply a binding of the DNA, so that two DNA regions 

which are far away from a 1D perspective become very close from 

a 3D perspective. In Figure 3, within yellow (thin) rectangles we 

see three signals which identify three non-coding regions of the 

genome, called enhancers, and within a black (thick) rectangle we 

see signals which identify the promoter of the gene Fbln2. They 

are enclosed within regions which represent short CTCF loops, 

and the assumption to be tested is whether there is a direct 

relationship between active enhancers and active genes (where 

activity is revealed by experiments) when enhancers and 

promoters are enclosed within CTCF loops (as this spatial 

condition may favor the enhancer-to-gene relationship); 

determining the relationships of genes with enhancers is a 

fundamental aspect of epigenetics. Such question corresponds to 

searching a pattern within the whole genome; GMQL can be used 

to extract candidate gene-enhancer pairs by suitable intersections 

of the signals in Figure 3 - i.e., CTCF regions, the regions of the 

three methylation experiments (H3K27AC, H3K4me1, 

H3K4me3), and gene promoter regions (from RefSeq). 

Figure 3. Interaction between CTCF loops and gene regulation 

by enhancers. 
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4. VISION 
GDM and GMQL open new scenarios in approaching tertiary 

analysis of genomic data. We next discuss them. 

4.1 Data Analysis 
Data analysis methods which are most useful for genomic 

computing can be bridged to the high-level language, with a 

bottom-up, problem driven approach. In particular, query results 

can be expressed in the form of interaction networks between 

genomic regions. In biology, many genes are involved in complex 

regulatory processes; for us, genes are just DNA regions of a 

specific sample (they are “known annotations of the genome”) and 

thus we can MAP (using the domain-specific operation shown in 

the example of Section 2) arbitrary experiments to genes. MAP is 

the first transformation in Figure 4, which computes aggregates 

over those regions of regions of experiments that intersect with 

genes (represented by regions R1, R2, R3). In general, every map 

operation produces what we call a genome space, i.e., a tabular 

space of regions vs. experiments (in the middle of Figure 4), 

which is the starting point for data analysis (including advanced 

data mining and computational intelligence). Such table can be 

also interpreted as an adjacency matrix representing a network, 

where regions are nodes and arcs have a weight obtained by 

further aggregating properties across experiments; thus, the 

second transformation in Figure 4 yields to a gene network, 

producing as well the strength of gene-to-gene interactions. The 

interpretation of genome spaces in the form of networks is 

particularly important in genomics, as regulatory gene activities 

typically depend on multiple interacting genes.   

 

Figure 4. Interpretation of GMQL “map” query as a genome 

space, and further transformation of the genome space into a 

gene network. 

Several data mining and computational intelligence approaches, 

including advanced latent semantic analysis and topic modelling, 

can be applied to evaluate relationships among genomic data, and 

between them and biological or clinical features of experimental 

samples expressed in their metadata, i.e., for genotype-phenotype 

correlation analysis.    

4.2 Distributed Processing and Cloud 

Computing 
With the growth of NGS experiments (whose cost is expected to 

drop to about 100 Euro in less than a decade, 

https://www.genome.gov/sequencingcosts/), we will see a deluge 

of NGS data. Although processed data are “smaller” than raw data 

(0.3 TB per full genome sample), we are still talking of samples 

with tens of thousands or even millions of regions. Genomic 

repositories store thousands of full genome samples (i.e., 4,660 

samples in [1], 5,400 samples in [2], and 2,500 samples in [3]). 

Our simple query in Section 3 produced 83 million regions, and 

simple queries over genes may produce genome spaces of 10K 

genes and 100M relationships between them, whose analysis 

requires using large-scale network management packages. 

Moreover, NGS is increasingly used for massive testing on 

restricted, pathology-specific mutation panels, so as to accelerate 

the use for diagnostics and for clinics. We are clearly facing one 

of the most important “big data” problems for mankind.   

We are currently working towards a new GMQL release, that will 

be available in 2016, and will support two parallel 

implementations, respectively using Flink7 and Spark8, two 

emerging data frameworks. In our architecture, the two 

implementations differ only in the encoding of about twenty 

GMQL language components, while the compiler, logical 

optimizer, and APIs/UIs are independent from the adoption of 

either framework. In a recent paper [10] we present an early 

comparison of Flink and Spark at work on three genomic queries 

inspired by GMQL. Several tools were developed within the 

Hadoop framework for primary and secondary analysis, including 

BioPig [11], SeqPig [12] and SparkSeq [13]. Our preliminary 

work shows open source frameworks are effective computing 

systems also for tertiary data analysis; we foresee a growth of 

systems for genomic based upon parallel computing frameworks. 

So far, our focus on tertiary data analysis is shared just by 

Paradigm4, a startup company founded by the Turing award Mike 

Stonebraker, whose products include genomic add-ons to SciDB, 

a vector-based data management system for scientific 

applications. They provide access to data from TCGA and 1000 

Genomes Project, and they advocate the use of specialized 

databases for scientific computing rather than cloud computing – 

indeed, we find in [6] several arguments against the use of Spark. 

We expect that the alternative between open frameworks and 

specialized systems will shape the evolution of genomic data 

management in the forthcoming years. 

4.3 Integrated Access to Repositories 
Very large-scale sequencing projects are emerging; as of today, 

the most relevant ones include: 

 The Encyclopedia of DNA elements (ENCODE) [1], the 

most general and relevant world-wide repository for basic 

biology research. It provides public access to more than 4,000 

experimental datasets, including the just released data from its 

Phase 3, which comprise hundreds of epigenetic experiments 

of processed data in human and mouse; 

 The Cancer Genome Atlas (TCGA) [2], a full-scale effort to 

explore the entire spectrum of genomic changes involved in 

human cancer;  

 The 1000 Genomes Project [3], aiming at establishing an 

extensive catalogue of human genomic variations from 26 

different populations around the globe; 

 The Epigenomic Roadmap Project [4], a repository of 

“normal” (not involved in diseases) human epigenomic data 

from NGS processing of stem cells and primary ex vivo 

tissues. 

                                                                 

7 https://flink.apache.org/ 

8 https://spark.apache.org/ 
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Data collected in these projects are open and public; all the 

Consortia release both raw and processed data, but biologists in 

nearly all cases trust the processing, which is of high-quality and 

well controlled and explained. All consortia provide portals for 

data access; some systems already provide integrated access to 

some of them (e.g., [14]; see also http://www.paradigm4.com/).  

The use of a high-level model and language, such as GDM and 

GMQL, is the ideal setting for provisioning next generation 

services over data collected and integrated from these and other 

repositories, improving over the current state-of-the-art in four 

directions:  

 All the processed datasets available in the above data sources 

will be provided of compatible metadata; 

 It will be possible to choose among a set of custom queries, 

representing the typical/most needed requests; 

 It will be possible to provide user input samples to the 

services, whose privacy will be protected;  

 Deferred result retrieval will be possible, through limited 

amount of staging at the sites hosting the services. 

A simple protocol will facilitate input and output file 

transmissions and it will also be possible to visualize results on 

genome browsers or to selectively retrieve regions or metadata. 

Users will be enabled to write personalized queries, whose 

privacy will be protected. The main challenges in this vision 

include two new research objectives: the mediation of ontological 

knowledge and the statistical description of custom queries. 

 Ontological reasoning will be required in order to establish the 

appropriate conceptual relationships between the metadata 

which are present at the various sources. The best option is to 

use the global ontology provided by the Unified Medical 

Language System (UMLS) [15], which collects and integrates 

well-established biomedical ontologies. Our initial solution, 

presented in [16], consists in semantically annotating the 

metadata of each repository’s datasets by means of UMLS, 

and completing the information by performing the semantic 

closure [17] of such annotations. Then, a suitable UI would 

allow users to search for relevant experiments through 

keyword-based or free text queries.  

 Custom queries will need to be augmented with suitable 

mechanisms for reasoning about data; such services could 

imitate the Great service developed by Gill Bejerano’s group 

at Stanford [18], which includes powerful statistics to indicate 

the significance of query results.  

4.4 Federated Query Processing and 

Protocols 
The availability of a core data model as a data interoperability 

solution and of a high-level data processing language is a strong 

prerequisite for defining data exchange protocols. We expect that 

each data repository will be the owner of the data that are locally 

produced, and that nodes of cooperating organizations will be 

connected to form a federated database. In such systems, queries 

move from a requesting node to a remote node, are locally 

executed, and results are communicated back to the requesting 

node; this paradigm allows for distributing the processing to data, 

transferring only query results which are usually small in size. 

Supporting a high-level query interface to a server is already 

making one big step forward, which is similar to the gigantic step 

made by SQL in the context of client-server architectures (which 

dates a couple of decades). Indeed, once a system supports an API 

for submitting GMQL queries, these have the following 

properties: they are short texts and produce short answers. This 

comes from the nature of problems: the more they are biologically 

inspired, the more they produce results which are both short and 

ranked, and these will eventually be transmitted along any GMQL 

API; in contrast, most of today’s implementations requires first a 

full data transmission and then to evaluate server-side imperative 

programs. This scenario opens up to the design of simple 

interaction protocols, typically for:  

- Requesting information about remote datasets, facilitated by 

the availability of metadata (for locating data of interest) and of 

their region schemas (for formalizing queries). 

- Transmitting a query in high-level format and obtain data 

about its compilation, not only limited to correctness, but 

including also estimates of the data sizes of results. 

- Launching query execution and then controlling the 

transmission of results, so as to be in control of staging 

resources and of communication load. 

4.5 Search Methods and Internet of Genomes 
After having provided access to integrated sources of sequence 

data, we come to the question of how such knowledge can be 

searched. The problem can be approached progressively, starting 

first with opening search services over the integrated repositories. 

There are two intertwined problems: 

 Metadata search. Search methods should locate relevant 

samples within very large bodies, using classical measures of 

precision and recall; keyword-based search or free text 

querying should be supported. 

 Feature-based region search. Best-matching regions with 

user-specified features should be provided. For some regions 

(e.g., known genes) it is possible to define a priori the typical 

features, store them as attributes, and then use indexing; but in 

general features should be computed. We envision general 

search mechanisms where the user selects interesting regions, 

then provides information about the features of interest, then 

those features are computed, and finally regions are ordered 

based on their computed features and presented to the user. 

So, search and feature evaluation have to intertwine in a clever 

way. 

The most ambitious and challenging vision is building a search 

system upon an Internet of genomes. The prerequisite to this 

vision is of course not in today’s reach, and requires all research 

centers to agree on a deployment technology playing the role of 

HTML and HTTP for the Web. However, biologists are forced to 

publish the data which go together with their experiments: it is 

already in their practice to provide a link to a download site where 

experimental data should be available for downloading by 

reviewers. In such context, it is possible to envision the definition 

of a simple protocol for data publishing, prescribing how to 

publish a link to genomic data in their native format with suitable 

metadata; the protocol should offer the possibility of making such 

link public, i.e., visible within a host open to the visits of 

crawlers. With such infrastructure, a third party hosting a search 

service could periodically launch the crawlers, and these would 

download the metadata and links from the host; the search service 

could also download datasets from the hosts by using those links, 

with an agreed, non-intrusive protocol. The search service would 

then have all the required information for indexing all the 
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metadata and for storing some of the samples within a large 

repository, possibly pre-computing some features of their regions. 

Such search system could accept search queries and produce 

result snippets, with an indication of the presence of each dataset 

in the repository. In any case, users of the search system would be 

able to locate genomic data available at another host (a research or 

clinical center) and could download them asynchronously.  

5. CONCLUSIONS 
The progress in DNA and RNA sequencing technology has been 

so far coupled with huge computational efforts in primary and 

secondary genomic data management, consisting of producing 

“raw” data, aligning them to the reference genomes, and calling 

for specific features such as expression peaks and mutations. 

However, a new pressing need is emerging: making sense of data 

produced by these methods, in the so-called tertiary analysis. This 

need requires a substantial change of the dominating approach to 

bio-informatics. While primary and secondary analyses produce 

data formats which are typically intricate and incompatible, 

tertiary analysis must worry about their interoperability and ease 

of use. Tertiary analysis calls for raising the level of abstractions 

of models, languages and tools for genomics, going towards a 

broader vision where biologists and clinicians can observe the 

huge and complex body of genomic knowledge at a much higher 

level, using simple interfaces similar to search queries which have 

become widely available in the Internet.  

In this paper, we have shown that a change of paradigm is 

possible, by means of a new data model and query language; we 

have then shown the biological applications that have become 

feasible thanks to this approach, and examined the relevant 

advantages that this approach may bring in the contexts of data 

analysis, distributed processing, integrated repository access, 

federated data management, and search of genomic data over the 

Internet. The corresponding scenario traces a five-to-ten year 

research trajectory. 
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ABSTRACT
Industrial enterprise data present classification problems
which are different from those problems typically discussed
in the scientific community – with larger amounts of classes
and with domain-specific, often unstructured data. We ad-
dress one such problem through an analytics environment
which makes use of domain-specific knowledge. Companies
are beginning to use analytics on large amounts of text data
which they have access to, but in day-to-day business, man-
ual effort is still the dominant method for processing un-
structured data. In the face of ever larger amounts of data,
faster innovation cycles and higher product customization,
human experts need to be supported in their work through
data analytics. In cooperation with a large automotive man-
ufacturer, we have developed a use case in the area of quality
management for supporting human labor through text ana-
lytics: When processing damaged car parts for quality im-
provement and warranty handling, quality experts have to
read text reports and assign error codes to damaged parts.
We design and implement a system to recommend likely er-
ror codes based on the automatic recognition of error men-
tions in textual quality reports. In our prototypical imple-
mentation, we test several methods for filtering out accurate
recommendations for error codes and develop further direc-
tions for applying this method to a competitive business
intelligence use case.

Categories and Subject Descriptors
H.3.1 [Content Analysis and Indexing]: Linguistic Pro-
cessing; H.3.3 [Information Search and Retrieval]: In-
formation Filtering; H.4.2 [Information Systems Appli-
cations]: Types of Systems—Decision Support
; J.1 [Administrative Data Processing]: Manufacturing
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15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
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Creative Commons license CC-by-nc-nd 4.0

General Terms
Text-Based Classification, Domain-Specific Semantic Re-
sources

Keywords
recommendation system, automotive, text analytics,
domain-specific language, automatic classification

1. INTRODUCTION
Analytics and automatized processing of unstructured

data to support business processes and decisions have be-
come a topic of interest for the research community and the
enterprise world in recent years only [15]. Companies are
realizing that valuable knowledge can be gained especially
from the large amounts of unstructured text data which they
are storing internally and able to access publicly on the so-
cial web. In past decades, this knowledge was only accessible
to the human mind. The means for storing and processing
large amounts of data and scalable text analytics or cognitive
computing tools [5] are both relatively new developments.

In cooperation with a large automotive original equipment
manufacturer (OEM), we have developed an overarching use
case in the area of quality management, with a concrete
example for supporting human labor through text analyt-
ics. This use case presents a particularly challenging classi-
fication problem with several hundred possible classes and
mainly unstructured text data as input. We develop a mod-
ular environment for classifying these data with the help of
natural language processing. In this paper, our main points
are (1) a first proof of concept for a “messy” industrial data
source and (2) the investigation of the usefulness of a legacy
domain-specific resource in the context of a new analytics
task. To this end, we evaluate various adaptations of an
established classification algorithm in order to customize it
to the given situation.

1.1 Motivation
Industrial enterprises are generating and collecting large

amounts of unstructured text data. These data are often
highly domain-specific. Most current approaches to auto-
matically analyzing these unstructured data with traditional
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Figure 1: Data Analytics around the Product Life
Cycle

analytics for structured data are either very specific and
case-based or too generic [11]. What is needed is a flexi-
ble framework for analytics with re-usable and modular re-
sources and analytics toolboxes.
Enterprises are beginning to transition to more

widespread and streamlined use of text analytics. But
in day-to-day business, a lot of manual effort is still
used to process unstructured data, for example in quality
management or customer relationship management. This
effort is important because these data contain value-adding
knowledge, and human expertise cannot and should not
be fully replaced in these tasks. But in the face of ever
larger amounts of data, faster innovation cycles and higher
product customization especially in the manufacturing
industry, human experts need to be better supported
through data analytics. Beyond the support of current
manual analytics tasks, data analytics can also provide
important novel business insights (cf. Figure 1).
Domain-specific resources, for example taxonomies of

domain-specific languages, are often developed for a single
case-based analytics scenario and rarely re-used for others.
This leads to inefficiencies and loss of valuable knowledge.
Related research on this topic [11, 12] has proposed require-
ments and an architectural paradigm for flexible, re-usable
and value-adding analytics software. Within this framework
we develop a proof of concept for a toolbox using legacy
code and semantic resources, unstructured data from sev-
eral sources, and modular, tailored text analytics.

1.2 Contribution and Outline
When processing damaged car parts for quality improve-

ment and warranty handling, quality experts have to read
large numbers of text reports from various sources and as-
sign error codes to damaged parts from a large pool of op-
tions. We investigate methods to handle these unstructured
text data analytically and to support this labor through au-
tomatic recommendation of likely error codes, which is a
specialized application of automatic classification.
This use case is different from typical classification prob-

lems in several respects: The amount of potential classes is

larger (several hundred), and the data to be classified are
short text reports which we term “messy data”: Text which
consists of non-standard, domain-specific language, riddled
with spelling errors, idiosyncratic and non-idiomatic expres-
sions and OEM-internal abbreviations.

We design and implement the Quality Engineering Sup-
port Tool QUEST with an included Quality Analytics
Toolkit (QATK), a system to recommend likely error codes
based on the automatic recognition of error mentions in tex-
tual quality reports. It also includes the functionality for
comparing error distributions across different data sources,
which we have implemented for a public data source, the
database of automotive malfunctioning complaints main-
tained by the Office of Defects (ODI) of the National High-
way Traffic Safety Administration (NHTSA) [13].

We test a domain-specific and a domain-ignorant ver-
sion of a custom classification algorithm derived from k-
Nearest-Neighbors (kNN), and evaluate both against a base-
line which ignores the text content as well as with respect
to their industrial feasibility.

We also investigate in more detail the influence of the re-
port source and its place in the error classification process –
early or late and contributed by mechanics or part suppliers.

In sum, we address three different industry-focused goals:
(1) to make classification work easier for the workers who
do it by sorting error codes in a meaningful way, (2) to do
this as early as possible in the life cycle of a damaged car
part, and (3) to make data comparable to other data sources
through text analytics.

The remainder of this paper is structured as follows: In
the following chapter 2, we present the research background.
In chapter 3, we describe in detail the industrial context of
our application (3.1) and discuss the challenges presented
by the data (3.2). The methods and implementation are
explained in chapter 4. We then present and evaluate two
experiments and an extension of the original use case in
chapter 5. We look at the feasibility of text-based error
classification (5.2) and the role of the report source for clas-
sification accuracy (5.3) as well as the potential use of auto-
mated error code assignment to compare the performance of
a product with competitors (5.4). Chapter 6 concludes our
paper with a summary of the results and outlook on future
research.

2. BACKGROUND
In prior research, we have motivated the need for Prod-

uct Life Cycle Analytics integrating structured and unstruc-
tured data within a holistic framework [11]. In this chapter,
we present two background foci which are relevant for the
present research topic, namely text analytics in the automo-
tive industry (2.1) and the general field of automatic text
categorization (2.2), which deals with applying classification
algorithms to text data.

2.1 Text Analytics in the Automotive Industry
In the automotive domain, there have been a number of

efforts to use unstructured text data for business analyt-
ics. Most recently, several interconnected research projects
[3, 16, 8] have developed software for extracting information
about frequent problems from internal error reports and cus-
tomer sentiment related to problems from social media. This
research has also led to the creation of a valuable semantic
resource, a taxonomy of parts and errors [17, 18], which we
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use as a central component in our analytics framework (cf.
4.5.3) as well as in the domain-specific classification algo-
rithm.

2.2 Automatic Text Categorization
Automatic text categorization has been a widely re-

searched field since the late 1990s / early 2000s [19]. Typi-
cally, the task is to label texts as belonging to one of a small
number of classes, e.g. one of five different topics for news
texts or one of three known potential authors for literary
works. Our task differs from this in that we have a very
large number of classes.
Features for classification are usually derived by their in-

formation content across a large number of texts. Using
pre-defined features such as author, user mentions and sig-
nal words in tweets [20] has also been shown to achieve high
accuracies. We investigate the suitability of features drawn
from a domain-specific knowledge resource.
An important part of this investigation is the mapping of

words in the text to concepts from a semantic resource. We
agree with the argument of [10] that words and stems do
not represent the semantic content of a text very well. They
try to map words to concepts using WordNet [4]. This is
important for disambiguation, but also for highlighting and
exposing shared concepts as latent features across texts with
no shared word material. Because our semantic resource is
rich in synonyms, we can map text to concepts via surface
entity recognition.
[7] point out a weakness of the kNN algorithm which we

also encounter – it is instance-based and thus potentially
memory-intensive. They develop a modified kNN which cre-
ates generalized instances and representatives of instances
based on local neighborhoods. We modify kNN to use rep-
resentatives of instances based on abstractions of texts to
contained concepts in our domain-specific variant, and also
store these instances in a relational database with on-the-fly
access to further address memory concerns.

3. PROBLEM DESCRIPTION
In this chapter, we present the industrial context of our

use case (3.1) and discuss the challenges of the data we are
working with (3.2).

3.1 Industrial Context
An automotive OEM is evaluating car parts which were

removed during repairs in customer-owned vehicles for the
warranty process and in order to gain insight into quality
issues. The evaluation is a complex and multi-step process
which involves unstructured text data from many sources
and large amounts of human work:
The removed and potentially damaged car part is first

evaluated in a short textual report by the mechanic who re-
moved it. It is then shipped to the OEM, where an optional
initial report can be written. Next, the car part is sent on
to the supplier who manufactured it. The supplier evalu-
ates the part’s damage, writes a textual report and assigns
a damage responsibility code (indicating whom they hold re-
sponsible for the problem). Eventually, a quality expert at
the OEM assigns the car part a final error code and writes
a short final report. This process of data accumulation is
depicted in Fig. 2.
In order to assign the correct error code, the quality expert

needs to read all reports written about the part at hand and
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Figure 2: Process of data accumulation

then pick the error code from a list of potentially over 100
error codes available for this type of car part.

Due to the largely textual nature of the data and the
large number of potential error codes, a substantial amount
of the quality experts’ time is taken up by assigning error
codes to known errors. We want to support the quality
workers by offering them automatically derived error code
recommendations to speed up the decision process. If the
set of error codes for a given part is smaller and sorted,
the final error code assignment will take less time. The
quality experts can then spend more time investigating novel
or more complex errors, thus improving the overall quality
of the evaluation.

3.2 Challenges of the Data
We developed our prototype around a randomized and

anonymized subset of the original data input from the eval-
uation documentation tool. We extracted a fraction of the
data concerning three larger component classes which have
already been assigned error codes, such that a portion of the
data can be used for evaluation. Other component classes
are subject to future research to further validate the ap-
proach. Any information about individual persons (quality
workers assigned to tasks, supplier contacts, etc.) was re-
moved, as well as select mentions of supplier names and
the OEM name, and the fields listing vehicle identification
numbers and information about vehicle make and model.
In total, we are working with data for 7500 individual car
parts. These data, including the text reports, are stored
across several tables in a relational database.

We define all data pertaining to an individual component
as a data bundle. The data bundles for each component are
structured in the following way:

• A component is identified by a unique reference num-
ber and also assigned an article code and a part ID.
These have vastly different levels of granularity: In
our data set, there are 831 distinct article codes and
31 distinct part IDs.

• A further challenge is the extremely high number of
distinct error codes: There are 1271 distinct error
codes in our data set of 7500 data bundles. 718 of these
error codes only appear a single time, so we remove
them for our experiments since nothing can be learned
from them for the classification task at hand (for in-
formation extraction tasks we would of course consider
them). This leaves us with 553 potential classes and
6782 data bundles with an error code that appears
more than once. The largest number of distinct error
codes for one part id in our data set is 146, and 25 of
the 31 part IDs have instances of over 10 error codes.

493



���������	�
��

��

�����	�
��

�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

�����������	�
��

	����� ������������� ����������

������������
�������������
���

��������	
���	����	������������

	����� �
����������������	���������

��	������������

�����������������	����������

������������������������	���

���������������������

��������� !"��������	�����������

���������������##������

$���%�����������

Figure 3: Structure of the data bundles before fi-
nal classification, with missing structured data fields
highlighted in red

• Each component is further associated with three or
four textual reports: (1) the mechanic report, (2) the
initial OEM report (optional), (3) the supplier report
and (4) the final OEM report.

Other textual resources are the standardized descriptions
of part id and error code in German and English. Fig. 3
shows a schematic overview of one data bundle and contains
a fictional but representative text example.
These text resources can be used to derive textual indica-

tors of error codes during the training phase of classification.
In the testing phase, we use only the mechanic report, the
optional initial report, the supplier report and the part id
description. This reflects the circumstance that the final
OEM report and the error code description are unavailable
as sources for textual indicators in data which have not yet
been assigned an error code. In 5.3, we investigate the per-
formance of classification when using only the mechanic re-
port or only the supplier report as input to the classifier.
The reports in our data sample are mostly a mix of Ger-

man and English, but the entire data set contains several
other languages. Robustly recognizing meaning in multilin-
gual input is therefore a requirement for our system. In our
prototype, we achieve this by using a multilingual seman-
tic resource for the domain-specific approach and primar-
ily relying on natural language processing steps which are
language-independent. The domain-ignorant approach does
not address multilinguality. Future investigations will also
deal with how to incorporate language-specific tools.

4. METHODS AND IMPLEMENTATION
In this chapter, we present the general architecture of our

analytics toolkit (4.1), develop a basic algorithm derived
from kNN (4.2), discuss our adaptation of this algorithm in
the domain-specific and the domain-ignorant variant (4.3),
and describe the processing pipeline (4.4) as well as the pro-
totypical implementation (4.5).
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Figure 4: General architecture of the recommenda-
tion system

4.1 Architecture
The architecture of our general analytics framework com-

prises data sources and two main components (cf. Fig. 4),
the Quality Analytics Toolkit (QATK) and the Quality En-
gineering Support Tool (QUEST) web application.

The QATK provides a highly modular analytics pipeline
to process the text data, build a knowledge base representing
structure extracted from the unstructured data, and assign
scored and sorted potential error codes to new data bun-
dles using the classification approach outlined in 4.3. This
pipeline can be seen in detail in Fig. 8 and is further dis-
cussed in 4.4.

The functionality of the QATK can easily be adapted to
classify data from a different source according to the same
classification schema of part IDs and error codes as the in-
ternal source. This allows for comparisons of error distribu-
tions across different data sources. In 5.4, we show how such
comparisons can be implemented for a public data source,
the complaints database of the NHTSA ODI available via
safercar.gov [13].

4.2 Basic Classification
The reports and the error key and part ID labels contain

unstructured text descriptions of the problems encoded by
the error keys. If we can abstract from these descriptions to
structured features, we can use them as input for a classifi-
cation algorithm.

In our approach and in the prototypical implementation,
we employ a classification algorithm derived from the k-
Nearest-Neighbor algorithm. The standard kNN algorithm
(Fig. 6) determines class membership of a data point by
majority vote from the classes of the k nearest neighbors of
this data point, where nearness is equivalent to similarity
with respect to the chosen classification features. This ma-
jority vote can also be weighted by the individual nearness
of neighbors, which is determined by a similarity measure of
choice between the data points.

kNN is a
”
lazy” machine learning algorithm – it does not

build a statistical model, it just holds instances of already
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Figure 5: Selecting candidate nodes

classified data in memory (or on disk, as is the case in our
implementation) for comparison with the data instances to
be classified.
We have decided to focus on variants of kNN in our proof

of concept for several reasons: We are dealing with an ex-
treme multi-class classification problem, and in contrast to
many other algorithms, kNN handles multi-class classifica-
tion in a straightforward manner. It is also instance-based
and therefore allows for predictions about class member-
ship even with a small data set and a large number of
classes, which makes it especially suitable for our example
data. Further, since our focus is on establishing whether this
particular multi-class classification problem can be solved
semi-automatically and on investigating the role of domain-
specific vs. domain-ignorant features, we decided in favor of
an algorithm which allows for very straightforward control
over the features, is easy to implement and easy to under-
stand, and can easily be used with different similarity or
distance measures, such that we are not fixed on represent-
ing our data in one particular way. Other algorithms are to
be investigated in future research after we have established
that the challenges of the data can be met at all.
Thus, we can derive a bare-bones classification algorithm

with maximum parametrizability:
Given set of objects S with assigned classes, object o

without assigned class
for oi in S: calculate similarity(o, oi)
sort S by descending similarity
assign class to o based on sorting of S
The similarity measure, the choice of features on which to

base the similarity measure and the method for deriving the
class assignment from the similarity ranking can be adjusted
to the needs of the use case.

4.3 Adaptation and Parametrization
Starting from the basic algorithm described in 4.2, we

make the following modifications: It is unlikely that a clear
majority of the nearest neighbors of a data bundle will all
share the same error key because of the sparsity introduced
by the large number of classes and the small size of the data
set. Therefore, instead of majority vote to determine one
definitive class, we output a list of all potential error keys
ranked by the distance of the knowledge base instances to
the data bundle, then cut off the list at k for initial presenta-
tion to the expert (see the schematic depiction in Fig. 7). A
similar type of ranking categorization is already mentioned
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Figure 6: Standard unweighted instance-based kNN
classification for k = 6 and k = 15 with class assign-
ment by majority vote
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Figure 7: Adapted ranked-list kNN classification for
abstracted data bundle representations

in [19]. Thus, we also address a weakness of standard kNN
which becomes evident in Fig. 6 – the sensitivity to local
data structures. For k = 6, the class assigned by majority
vote is different from that for k = 15. Since our goal is to
support the human expert, not fully automatic classifica-
tion, we can avoid this inconsistency. Items lower on the list
can be accessed by the quality expert in the user interface
(cf. Fig. 4).

We determine the closeness of the data bundles by com-
paring them with respect to features derived from the text.
For the domain-ignorant approach, we use all words in the
text (bag-of-words), for the domain-specific approach, we
choose mentions of parts and errors as features (bag-of-
concepts). On average, a text has about 70 words, resulting
in as many bag-of-word features. With the domain-specific
approach, we detect on average 26 part/error mentions per
text. We use the concept mentions as attributes without dis-
tinguishing between types of concepts (part or error). Anno-
tating the text with the help of a domain-specific, synonym-
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rich part-and-error taxonomy from prior research with the
OEM [16] allows us to collapse mentions of the same part
in different wordings into identical features. For example,

”
mud guard”,

”
splashboard” and

”
fender” all belong to the

same concept within the taxonomy and are all represented
by the same concept ID. The taxonomy has about 1.800 /
1.900 distinct concepts in German and English, respectively.
Thus, we can represent each unique combination of part ID,
error key and concept mentions as a node in a knowledge
base, which is derived in a first training step.
This also allows us to abstract from data instances to con-

figuration instances, reducing the size of the knowledge base
and allowing for faster data comparisons when calculating
similarity measures. We thus address one of the weaknesses
of the standard kNN approach in a way which is similar
to the kNN Model algorithm in [7]. For the bag-of-words
approach we accordingly store combinations of part ID, er-
ror key and individual words (excluding punctuation) in a
knowledge base of the same structure.
We retrieve error code suggestions for data bundles from

the knowledge structure by computing the similarity of po-
tential nearest neighbors. In order to do this efficiently, we
filter the knowledge nodes to first retrieve a neighbor candi-
date set fitting to the data bundle under consideration (Fig.
5). From the entire set of knowledge nodes (1), we first se-
lect the subset of nodes with the same part ID as the data
bundle to be classified (2). From this subset, we select those
knowledge nodes which share at least one concept mention
with the data bundle under investigation (3) – or one word
for the bag-of-words approach. This selection is made via
the indexes of the knowledge structure. If the part ID is not
found in the knowledge structure, we select all nodes into
our neighbor candidate set.
Next, we compute a pairwise similarity score for each

candidate node with reference to the current data bundle.
We retrieve the error codes of the 25 best-scored candidate
nodes. For each of these error codes, we assign an error
code with associated score to the data bundle under inves-
tigation. These scored error codes are stored in a relational
database and presented to the quality worker via the web
app interface for final error code assignment.
To evaluate performance of the classification algorithm,

we have experimented with two established similarity mea-
sures – the Jaccard similarity, computed as the number
of shared attributes divided by the total number of at-
tributes, and the overlap similarity, computed as the num-
ber of shared attributes divided by the size of the smaller
attribute set.
Jaccard Similarity Coefficent: The similarity of two

items (knowledge nodes) with feature sets A and B is rep-
resented by:

|A ∩B|
|A ∪B|

Overlap Similarity Coefficent: The similarity of two
items (knowledge nodes) with feature sets A and B is rep-
resented by:

|A ∩B|
min(|A| , |B|)

4.4 Processing Pipeline
The classification step is embedded in a pipeline which in-

cludes linguistic preprocessing and the creation of a knowl-

edge base. This processing pipeline is detailed in the follow-
ing.

Figure 8 shows the entire analytics pipeline for the
domain-specific approach. It can conceptually be split in
two parts: one to extract structure from unstructured data,
which includes data preparation, linguistic preprocessing
and annotation with domain-specific knowledge, and one for
processing the extracted structured data, which includes the
building of a knowledge base and the classification step.

We assume the classical phase-oriented data mining pro-
cess which differentiates a training phase from the subse-
quent test phase and the application phase.

In the training phase, we extract domain-specific classifi-
cation features from within the unstructured data portion,
following several steps:

1. Creating Data Bundles: read data from the database
and combine related reports into one document.

2. Unstructured Data Analytics

(a) Text Preprocessing: Tokenization and Language
Recognition

(b) Concept Annotation: mark up domain-specific
concepts in the text (words describing parts and
errors)

3. Structured Data Analytics

(a) Knowledge Base Extraction: for each data bun-
dle, extract into a ”knowledge node”(cf. Fig. 9)...

• the error code

• the part number

• the occurring concepts (numeric IDs)

(b) Knowledge Base Persistence: store knowledge
nodes in a relational database

After the knowledge base has been created, we exploit this
knowledge for the classification step (cf. 4.3) in the test and
application phases. Steps 1 - 2 of the process are identical
to the training phase:

1. Creating Data Bundles: read data from the database
and combine related reports into one text document.

2. Unstructured Data Analytics

(a) Text Preprocessing: Tokenization and Language
Recognition

(b) Concept Annotation: mark up domain-specific
concepts in the text (words describing parts and
errors)

3. Structured Data Analytics

(a) Candidate Set Generation: select knowledge
nodes which share a minimum of 1 feature with
the data bundle to be classified (cf. Fig. 5)

(b) Classification of the data bundle (cf. 4.3)

(c) Result Persistence: store scored error code sug-
gestions in a relational database
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Figure 8: Detailed view of the domain-specific classification pipeline
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Figure 9: Two Knowledge Nodes with shared con-
cepts underlined

The domain-ignorant approach proceeds accordingly but
eliminates the concept annotation step and instead extracts
all words of the document as features to be stored in the
knowledge nodes.
It is obvious that this approach to a processing pipeline

reflects a high degree of flexibility and extensibility for both
preprocessing and classification steps. In our current setting
we use the kNN-derived algorithm described in 4.3 for the
classification step. This step is realized as an extension point
where different classification algorithms can be plugged in
easily.

4.5 Prototypical Implementation
In the following, we give a short overview of the technolo-

gies used in the prototypical implementation of the QATK
framework and QUEST app.

4.5.1 Data Storage
For data storage, we use relational databases. We store

raw data from the industrial source as well as from the
NHTSA ODI source and the knowledge bases and classi-

fication results.

4.5.2 Text Analytics and Classification
In our implementation of the Quality Analytics Toolkit,

we build on the Java version of the open-source Apache stan-
dard UIMA (Unstructured Information Management Archi-
tecture) [6], which enables us to easily build modular linguis-
tic processing pipelines. These pipelines are composed of
Analysis Engines containing annotators with single text an-
alytics functionalities. Annotations on the text are recorded
as typed feature structures with a start and end index rela-
tive to the document text in the Common Analysis Structure
(CAS) which is handed over from one Analysis Engine to the
next, such that annotators can build on findings from previ-
ous steps of analysis. In our case, one CAS contains one data
bundle, including all available reports and text descriptions
plus the part ID and error code.

We chose this framework for several reasons: It is open-
source, extremely modular and well supported by the re-
search community. High-quality implementations exist for a
large number of standard natural language processing com-
ponents, e.g. in the DKPro repository [21]. Functionality for
quick and flexible pipeline building and testing is provided
by the uimaFIT library [14].

The core of the QATK toolkit is a UIMA pipeline corre-
sponding to the processing steps explained in 4.4 and de-
picted in Fig. 8. It reads the report and identifier data bun-
dles from a database, segments the text into words using a
simple custom whitespace-/punctuation-tokenizer, identifies
occurrences of car part and problem synonyms in the text,
builds a knowledge base from these identified concepts and
uses the knowledge base to assign error code suggestions to
previously unseen data bundles.

4.5.3 Domain-specificity: The Automotive Part and
Error Taxonomy

A domain-specific resource used in our analytics module
is a taxonomy of car parts and error symptoms, developed
in prior research and originally used for an information ex-
traction task on social media data [18, 9] . The taxonomy is
stored in a custom XML format and has a shallow structure
which is nevertheless well suited to the differentiations we
want to make: It distinguishes components, symptoms, loca-
tion and solutions. The error codes we want to recommend
correspond to symptoms and also depend on components,
which is why we choose to annotate the texts with occur-
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Figure 10: Automotive Taxonomy (graphic adapted
from [18])

rences of components and symptoms from the taxonomy as
features for our classification task. The taxonomy is multi-
lingual – its upper category levels are language-independent
with multilingual labels, its leaf categories are language-
specific and contain synonyms of terms for the same concept
(cf. Fig. 10).
QATK builds upon some closed-source legacy libraries

for maintaining and using the taxonomy resource: An edi-
tor GUI for adding, changing and removing taxonomy con-
cepts and concept features, as well as compiled Java archives
which contain the classes needed for modifying and using the
taxonomy. Among them are UIMA components for anno-
tating occurrences of taxonomy concept words in text docu-
ments. These libraries do not entirely meet the requirements
of the present use case. Therefore, some efforts had to be
made in order to be able to use the taxonomy for text an-
notation.
We made a number of changes to the representation of

the taxonomy and to the taxonomy annotator component
which improve performance (cf. [12]): Annotation becomes
faster, less memory-intensive, achieves higher coverage and
is more accurate for multiwords. We represent the taxon-
omy as a trie data structure, a tree structure which allows
for fast search and retrieval. Like the original approach,
we expand the concepts of the taxonomy with synonyms of
concept label substrings as found in the taxonomy itself.
Our optimized implementation has a left-bounded greedy

longest-match approach for mapping text sequences to tax-
onomy concepts, eliminating concept matches which are
completely enclosed by other concept matches. By apply-
ing multilingual annotation and correctly capturing multi-
words, we achieve an overall higher recall of concepts than
the annotator from the legacy code. For instance, the orig-
inal taxonomy annotator does not recognize any taxonomy
concepts in 2530 out of the 7500 data bundles, but the new
annotator finds concepts in all of these.

4.5.4 User Interface
The QUEST web application partly reconstructs the user

interface and functionality of the original quality engineering
software which is used by the automotive OEM to record,
maintain, and classify the data. In QUEST as in the origi-
nal software, users can view the data and assign error codes.
The core difference is that in the QUEST error code assign-
ment interface, the user is first presented with a selection of
the 10 most likely error codes in descending order of likeli-
hood. If the user decides that the correct error code is not
among these 10 codes, they can access the list of all error

codes available for the part ID of the current data bundle,
as is the default in the original software.

Also, users with extended rights can define new error
codes right in the QUEST interface. Furthermore, all users
can view the comparison of error code distributions between
the OEM data set and the public US complaints database
(cf. 5.4). The QUEST web app is compatible with most
browsers and implements responsive design to be viewable
on mobile devices. It is written in Java, uses PrimeFaces
graphical components [1] and is deployed on a WSO2 web
server [2].

5. EXPERIMENTS
In this section we present and discuss the results of two

experiments into the feasibility of text-based classification
with our data set. In 5.1 we establish the conditions for
our experiments, in 5.2 we compare the performances of
the domain-specific and the domain-ignorant modified clas-
sification algorithms with respect to a baseline, and in 5.3
we test the performance of classification on different report
types (mechanic and supplier report). In 5.4, we describe
the setup of an extended use case in the web app which is
currently under development and evaluation.

5.1 Experiment Setup
We test the classification algorithm (cf. chapter 4.3) with

different similarity measures and with different data abstrac-
tion models.

As a performance measure, we report accuracy defined as
the percentage of test data which include the correct error
code in the error code list at k <= 1, 5, 10, 15, 20 and 25,
respectively.

Accuracy@k:
For Dk the set of data bundles where the correct error code
is found within the first k suggestions, corresponding to the
k nearest neighbors, and T the test set,

A@k =
|Dk|
|T |

We run all experiments with stratified 5-fold cross-
validation on the 6782 data bundles whose error code ap-
pears more than once in the data. This means that for each
error code, we use 4/5 of the data bundles with this error
code as input to the knowledge base and assign error codes
to the remaining 1/5 using the knowledge base built from
the rest of the data. We do this five times with distinct splits
of the data and average the accuracies obtained in each it-
eration. The test data sets consist of 1250 data bundles on
average.

We use two similarity measures, the Jaccard coefficent and
the overlap measure (cf. 4.3). We work on whitespace- and
punctuation-tokenized text without further preprocessing or
normalization.

We compare the results of the classification to two base-
lines obtained without or with very little consideration of
the text:

1. the code frequency baseline, where all error codes
which are available in the database for the part ID of
the data bundle under consideration are sorted by their
frequency in this database, and the first k returned

2. the unsorted candidate set baseline (cf. 4.3), contain-
ing all nodes in the knowledge base which share the
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part ID and at least one concept / word with the data
bundle under consideration

The baselines themselves merit a look at their perfor-
mance: The candidate set baseline depends on the applied
variant of the algorithm, but all candidate set baselines have
similar accuracy profiles. Accuracies are rather low through-
out, with <1% accuracy for k = 1 and approximately linear
development towards around 83 % accuracy for k = 25 (cf
Fig. 11). This baseline could obviously not be used for
automated recommendations of error codes.
The code frequency baseline performs better than the can-

didate set baseline, with an accuracy@1 of 35 %, accuracy@5
of 76 % and accuracy@10 of 88 %. At k = 25, it even has
perfect accuracy of 100 %. Since we know that there are
potentially over hundred error codes for one part ID, we as-
sume that this is an artifact of our randomly selected data
set. In any case, sorting available codes by their frequency
can be a first step towards supporting quality workers in
finding the correct error code more quickly.

5.2 Experiment 1 – Text-Based Error Code
Prediction

In this experiment we establish whether error codes can be
predicted at all on the basis of the text reports alone. We
compare two variants of the classifier, a domain-ignorant
bag-of-words model on the tokenized text, and a domain-
specific bag-of-concept model created with the help of
domain-specific text annotations from the automotive part
and error taxonomy.

5.2.1 Results
The results of experiment 1 can be seen in Figure 11. We

find that both the bag-of-words and the bag-of-concepts clas-
sifier outperform the baselines for k < 25 when using Jaccard
similarity. The four variants we tested – bag-of-words and
bag-of-concepts with each similarity measure respectively –
differ considerably in their performance.
In general, overlap similarity performs worse than Jac-

card, and the bag-of-concepts classifier does not perform sig-
nificantly better than the code frequency baseline (in fact,
slightly worse for k = 1) when combined with the overlap
measure.
Combined with the Jaccard measure, the bag-of-concepts

approach out-performs both baselines with accuracy@1 of
56 %, accuracy@5 of 85 %, and accuracy@10 of 92 %. For
k of 15, 20 and 25, all approaches as well as the baseline
deliver accuracies between 90 and 100 %.
For smaller k (1 and 5), the accuracy of the bag-of-words

classifier is markedly better than that of the bag-of-concepts
classifier regardless of similarity measure used, with accu-
racy@1 of 76 % (overlap) and 81 % (Jaccard), accuracy@5
of 93 % (overlap) and 94 % (Jaccard), respectively.

5.2.2 Discussion
Three out of the four text-based classification algorithm

variants provide accuracies which out-perform the code fre-
quency baseline, and all four could be used for recommend-
ing error codes on the basis of text reports. The bag-of-
words model is currently providing better accuracies than
the bag-of-concept model, especially for small k. This means
that its ranking of the potential error codes more closely re-
sembles the actual probabilities of error codes based on the
content of the problem reports.
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Figure 11: Results of experiment 1, with k on the
x-axis and accuracy@k on the y-axis.

This tells us that the concepts which are currently being
recognized using the automotive parts and error taxonomy
do not represent ultimately accurate features for classifica-
tion and are not the best option for recommending error
codes to the quality worker. This is not altogether surpris-
ing, since the taxonomy was originally developed for a dif-
ferent task (information extraction, cf. [17]) and has not
yet been adapted to the current data source. Adapting the
taxonomy thus suggests itself as a next step.

However, the bag-of-words variant is not a feasible indus-
trial solution because of time and memory needs due to the
larger number of features per data bundle and the larger
number of pairwise similarity computations to be made. On
our small data set which includes only 3 out of hundreds of
components, running the bag-of-words classifier takes about
11 minutes for one iteration of the five-fold cross-validation,
classifying ca. 1250 data bundles, which means computation
time per data bundle is at ca. 0.5 seconds. In contrast, run-
ning the bag-of-concepts classifier takes about three minutes
for one iteration, which means computation time per data
bundle is at ca. 0.14 seconds. When applying our processing
pipeline to the entire data set with a larger number of data
bundle to data bundle comparisons, it is important to keep
the number of pairwise feature comparisons low. Remov-
ing German and English stopwords (articles and personal
pronouns) as an additional step during the bag-of-words ap-
proach has no impact on the accuracy of classification, but
shortens the runtime to ca. 7 minutes for one iteration and
ca. 0.3 seconds per data bundle. This is still slower than
the bag-of-concepts approach.

499



����

����

����

����

����

����

����

�	� �	
 �	�� �	�
 �	�� �	�


���������	�
��������

���������������������� �������� �!����"��#����$

�������� �!����"�%����� �������� ������$&�"�%�����

�������� ������$&�"��#����$ ��������&��'�&�(����� �!���)

��������&����&�(����� ������$&�)

Figure 12: Classification results for features derived
from the mechanic reports only, with k on the x-axis
and accuracy@k on the y-axis.

In contrast to the bag-of-concepts approach, the bag-of-
words approach is also not suited for further domain-specific
analysis steps. Improving the coverage of the taxonomy used
for the bag-of-concepts approach is therefore a worthwhile
avenue to pursue. An overview of the issue of taxonomy
extension and an argument for re-using semantic resources
across tasks is given in [12]. Investigations into methods
to automate the extension of a domain-specific semantic re-
source are on-going.
There are thus two conclusions to be drawn from exper-

iment 1: (1) the text reports can indeed be used to sup-
port quality workers by automatic recommendation of error
codes, (2) to create a feasible industrial solution, an im-
proved domain-specific resource is needed.

5.3 Experiment 2 – Point of Entry for Error
Code Prediction

In the second experiment, we test how early it is possible
to make a prediction about the error code of a report bundle.
Recall that data about the nature of the problem from dif-
ferent sources – mechanic, OEM and supplier – accumulate
over time during the quality evaluation process (cf. Fig. 2).
The earliest report which reaches the OEM is the mechanic
report, whereas the supplier report is added later. It would
be beneficial if the error code could already be predicted on
the basis of the mechanic report only.
Retaining the knowledge base models learned on all re-

ports, we have therefore attempted classification with all
variants of our adapted classification algorithm on test data
bundles which included only one type of report, namely, the
mechanic report or the supplier report.
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Figure 13: Classification results for features derived
from the supplier reports only, with k on the x-axis
and accuracy@k on the y-axis.

5.3.1 Results
The results of experiment 2 can be seen in Figures 12

and 13. We find that the classifier performs very badly on
test data which only include the mechanic report (cf. Fig.
12): All four variants of the algorithm have lower accuracies
across the board than those provided by the code frequency
baseline, with accuracy@1 between 16 and 29 % vs. the base-
line’s 35 %. Still, the bag-of-word models perform slightly
better than the bag-of-concept models.

On test data which only include the supplier report, we
observe accuracies which are nearly as good as those for the
test data including mechanic report and supplier report (and
in some cases an early OEM report): 78 % accuracy@1 for
the bag-of-words model with Jaccard similarity, accuracies
of > 90 % starting at k = 5 for the bag-of-words model and
at k = 10 for the bag-of-concepts model, and a very close
resemblance of accuracies between the bag-of-concepts with
overlap similarity and the code frequency baseline (cf. Fig.
13).

5.3.2 Discussion
It is evident that the mechanic reports alone do not

contain good features for predicting error codes with the
adapted classifier, either as bag-of-words or as bag-of-
concepts representations. In contrast, the supplier reports
are a more reliable source of features. This is in accordance
with observations about the information content and the
data quality of the respective data sources: Mechanic reports
tend to be poor in detail, focused on superficial problem de-
scription and often error-riddled, such that even human ex-
perts cannot draw conclusions about the detailed nature of
the problem, whereas supplier reports tend to contain more
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Figure 14: Data Comparison Screen in the QUEST
web app, showing a side-by-side comparison of the
top 3 error codes in two different databases.

detail and include descriptions of potential causes.
While we have to conclude that (1) an earlier entry point

into automatic error code suggestion is not feasible, we also
find that (2) even a comparatively simple text-based classi-
fication approach accurately reflects the amount of informa-
tion which human experts can draw from the text sources.

5.4 Extending the Use Case – Error Distribu-
tion in Different Data Sources

As mentioned earlier, it is easy to exploit additional data
sources using the knowledge bases created with the internal
OEM error report data. This allows for an interesting ex-
tension of our use case. If we assign error codes from the
schema we use to classify our own quality data to texts from
a different data source, for instance one which covers com-
plaints from a different market and includes reports about
other manufacturers’ vehicles, we can gain insights about
where we stand in terms of product quality in contrast to the
competitors. This is crucial business intelligence for staying
competitive, e.g. by identifying brand-specific weaknesses
or issues with shared suppliers.
Obviously, there will be substantial inaccuracies in the

fully automatic classification of the public data source. In
particular, the bag-of-words approach suffers in accuracy as
soon as test and training data are different text types or in
different languages, whereas the bag-of-concepts approach is
in principle independent of the document language or other
text features. However, an approximate impression of the
distribution of similar errors can still be gained from the
data. The usability and desirability of this functionality
have been confirmed in conversation with the OEM.
In the QATK/QUEST implementation, we provide a

mockup of this use case extension: We use our knowl-
edge base to classify problem reports from the US-American
complaints database maintained by the Office of Defects
(ODI/NHTSA) [13]. In the web app, we have implemented
the function for viewing side-by-side pie charts showing the
distribution of the n most frequent error codes in both data
sources (cf. Fig 14).

6. CONCLUSIONS AND FUTURE DIREC-
TIONS

In this paper, we have presented a specific multi-class clas-
sification problem from a real-life industry context, namely,

the filtering and recommendation of error codes for bundles
of textual reports concerning damaged car parts. This prob-
lem is challenging because of the nature of the data, which
are mostly unstructured text using domain-specific vocabu-
lary, and because of the high number of classes.

We have tested alternative variants, domain-specific and
domain-ignorant, of a custom classification algorithm de-
rived from k-Nearest-Neighbors (kNN), and evaluated both
against a baseline which ignores the text content as well as
with respect to their industrial feasibility. We have shown
the QATK/QUEST toolkit as a viable approach and pre-
sented a prototypical implementation.

In order to identify domain-specific terms in the text, we
have used a legacy semantic resource originally designed
for a different task. We have tested the validity of these
domain-specific features with a custom classification algo-
rithm adapted from k-Nearest-Neighbors. We have shown
that the use of domain-specific knowledge leads to good ac-
curacies of recommended classes, with up to 92% of correct
classes recovered within the first 10 ranked recommenda-
tions. We have compared this domain-specific approach to
a domain-ignorant bag-of-words approach and found that
the domain-ignorant approach currently performs better, al-
though it is not a viable solution in the industrial context
due to performance and scalability properties.

Therefore, we plan the following extensions of our work:

• introducing more linguistic preprocessing – here we
will profit from the modularity of the UIMA frame-
work and of the QATK/QUEST toolkit

• enhancing the domain-specific taxonomy

• evaluating the extended use case and discovering more
use case extensions

• evaluating the web UI in a field study with quality
experts

Work on improving the coverage and maintainability of
the domain-specific taxonomy is already in progress.
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ABSTRACT
Most emerging applications, especially in science domains, main-
tain databases that are rich in metadata and annotation information,
e.g., auxiliary exchanged comments, related articles and images,
provenance information, corrections and versioning information,
and even scientists’ thoughts and observations. To manage these
annotated databases, numerous techniques have been proposed to
extend the DBMSs and efficiently integrate the annotations into the
data processing cycle, e.g., storage, indexing, extended query lan-
guages and semantics, and query optimization. In this paper, we
address a new facet of annotation management, which is the dis-
covery and exploitation of the hidden corrections that may exist in
annotated databases. Such correlations can be either between the
data and the annotations (data-to-annotation), or between the anno-
tations themselves (annotation-to-annotation). We make the case
that the discovery of these annotation-related correlations can be
exploited in various ways to enhance the quality of the annotated
database, e.g., discovering missing attachments, and recommend-
ing annotations to newly inserted data. We leverage the state-of-
art in association rule mining in innovative ways to discover the
annotation-related correlations. We propose several extensions to
the state-of-art in association rule mining to address new challenges
and cases specific to annotated databases, i.e., incremental addition
of annotations, and hierarchy-based annotations. The proposed al-
gorithms are evaluated using real-world applications from the bio-
logical domain, and an end-to-end system including an Excel-based
GUI is developed for seamless manipulation of the annotations and
their correlations.

1. INTRODUCTION
Most modern applications annotate and curate their data with

various types of metadata information—usually called annotations,
e.g., provenance information, versioning timestamps, execution
statistics, related comments or articles, corrections and conflict-
related information, and auxiliary exchanged knowledge from dif-
ferent users. Interestingly, the number and size of these annotations
is growing very fast, e.g., the number of annotations is around 30x,
120x, and 250x larger than the number of data records in Data-

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

Bank biological database [3], Hydrologic Earth database [4, 47],
and AKN ornithological database [5], respectively. Existing tech-
niques in annotation management, e.g., [9, 15, 17, 21, 24], have
made it feasible to systematically capture such metadata annota-
tions and efficiently integrate them into the data processing cy-
cle. This includes propagating the related annotations along with
queries’ answers [9, 15, 17, 24, 46], querying the data based on
their attached annotations [21, 24], and supporting semantic an-
notations such as provenance tracking [11, 14, 20, 43], and belief
annotations [23]. Such integration is vey beneficial to higher-level
applications as it complements the base data with the auxiliary and
semantic-rich source of annotations.

In this paper, we address a new facet of annotation management
that did not receive much attention before and has not been ad-
dressed by existing techniques. This facet concerns the discovery
and exploitation of the hidden correlations that may exist in anno-
tated databases. Given the growing scale of annotated databases—
both the base data and the annotation sets—important correlations
may exist either between the data values and the annotations, i.e.,
data-to-annotations correlations, or among the annotations them-
selves, i.e., annotations-to-annotations correlations. By systemati-
cally discovering such correlations, applications can leverage them
in various ways as motivated by the following scenarios.

Motivation Scenario 1−Discovery of Missing Attachments: As-
sume the example biological database illustrated in Figure 1. Typi-
cally, many biologists may annotate subsets of the data over time—
each scientist focuses only on few genes of interest at a time. For
example, some of the data records in Figure 1 are annotated with a
“Black Flag” annotation. This annotation may represent a scien-
tific article or a comment that is attached to these tuples. By ana-
lyzing the data, we observe that most genes having value F1 in the
Family column have an attached “Black Flag” annotation. Such
correlation suggests that gene JW0012 is probably missing this
annotation, e.g., none of the biologists was working on that gene
and thus the article did not get attached to it. However, by discov-
ering the aforementioned correlation, the system can proactively
learn and recommend this missing attachment to domain experts
for verification. Correlations may also exist among the annotations
themselves, e.g., between the “Black Flag” and the “Red Flag” an-
notations. Without discovering such correlations the database may
become “under annotated” due to these missing attachments.

Motivation Scenario 2−Annotation Maintenance under Evolv-
ing Data: Data is always evolving and new records are always
added to the database. Hence, a key question is: “For the newly
added data records, do any of the existing annotations apply to
them?”. Learning the correlations between the data and the an-
notations can certainly help in answering such question. For ex-
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GID Name Seq Family Exp-Id 

JW0013 grpC TGCT… F1 101 

JW0014 groP GGTT… F6 105 

JW0015 insL GGCT… F1 105 

… … … … … 

JW0018 nhaA CGTT… F1 101 

JW0019 yaaB TGTG… F3 101 

JW0012 Yaal TTCG… F1 103 

Sequence needs to 
be shifted by 2 
bases  

JW0027 namE GTTT... F4 101 

This value is wrong 

Incorrect value 

Does not seem correct 

Newly inserted 
record 

Figure 1: Examples of Annotation-Related Correlations.

ample, the cloud-shaped comment in Figure 1 is attached to all
data records having value 101 in the Exp-Id column. Based
on this correlation, the system can automatically predict—at inser-
tion time—that this annotation also applies to the newly inserted
JW0027 tuple. Otherwise, such attachment can be easily missed
and important information is lost. Clearly, delegating such task
to end-users without providing system-level support—which is the
state of existing annotation management engines—is not a practi-
cal assumption.

Motivation Scenario 3−Annotation-Driven Exploration: The
discovered correlations may reveal information about the under-
ling data that trigger further investigation or exploration by do-
main experts. For example, as highlighted in Figure 1, the “Red
Flag” annotation semantically means invalid or incorrect data.
Since these annotations can be added by different biologists and
at different times, none of them may observe a pattern in the data.
In contrast, by discovering (and reporting) that the “Red Flag” an-
notation has strong correlation with experiment id 105, the domain
experts may re-visit the experimental setup of this wet-lab experi-
ment and may revise and re-validate all data generated from it.

These scenarios demonstrate the potential gain from capturing
the annotation-related correlations. Unfortunately, relying on do-
main experts or DB admins to manually define or capture these
correlation patterns is evidently an infeasible approach. This is be-
cause the correlations may not be known in advance, hard to cap-
ture or express, dynamically changing over time, or even not 100%
conformed. Moreover, the manual exploration process is error-
prone, will not scale to the size of modern annotated databases, and
it is a very time- and resource-consuming process. For example, the
UniProt biological database has over 150 people working as full-
time to maintain and annotate the database [6, 12]. Certainly, such
scale of investments may not be viable to many other domains and
scientific groups, e.g., it is reported in a recent science survey [49]
that 80.3% of the participant research groups do not have sufficient
fund for proper data curation. For these reasons, we argue in this
paper that the analysis and discovery of the annotation-related as-
sociations and correlations should be an integral functionality of
the annotation management engine. As a result, the correlations
can be timely discovered and maintained up-to-date, and also sys-
tematic actions can be taken based on them as highlighted by the
motivation scenarios.

In this paper, we investigate applying the well-known techniques
of association rule mining, e.g., [8, 31, 52], to the domain of anno-
tated databases. This is a new and promising domain for association

rule mining due to the following reasons:

• Many emerging applications—especially scientific
applications—maintain and rely on large-scale annotated
databases [3, 5, 6]. It is reported in [1] that the ebird or-
nithological database receives more than 1.6 million annotations
per month from scientists and bird watchers worldwide. These
applications will benefit from the proposed techniques.

• Many annotated databases go under the very expensive and
time-consuming process of manual curation, e.g., [2, 6]. The goal
from this process is to ensure that correct annotations and curation
information are attached to the data, and to enrich the annotations
whenever possible. Nevertheless as illustrated in the motivation
scenarios, the discovery of the annotation-related correlations can
help in enhancing the quality of the annotated database in an auto-
mated way. And hence, reducing the effort needed in the manual
curation process and freeing the domain scientists for their main
task, which is scientific experimentation.

• Interestingly, annotated databases stretch the traditional tech-
niques of association rule mining, and present new challenges as
discussed in Section 3. For example, the state-of-art techniques
in association rule mining fall short in efficiently handling several
new cases specific to annotated databases, i.e., they cannot perform
incremental maintenance of the discovered rules and they have to
re-process the entire database. These cases include:

(1) Generalization of Annotations: Annotations can be free-text
comments, which may differ in their values but have the same se-
mantics. And hence, discovering the correlations based on the val-
ues of the raw annotations may miss important patterns. For ex-
ample, referring to Figure 1, the correlation pattern involving the
Black Flag annotation, i.e., “Family:F1 =⇒ Black Flag”
can be detected based on the raw annotation value. This is because
all instances of the Black Flag annotation refer to the same scien-
tific article. In contrast, for the Red Flag annotation, the actual
annotations inserted by scientists have different values, and thus
no correlation pattern can detected based on the raw values. How-
ever, by generalizing the annotations to a common concept—the
Red Flag annotation in our case—we can detect the correlation pat-
ten between them and the experiment Id 105. Therefore, building
a generalization hierarchy on top of the annotations is an important
step.

(2) Integration with the Annotation Manager: We propose to
build a coherent integration between the association rule mining
module and the Annotation Manager component in contrast to the
offline mining techniques. As a result, the Annotation Manager can
take informed actions based on the discovered rules, e.g., discover
potential missing attachments and report them for verification (Mo-
tivation Scenario I), and annotate newly inserted data tuples with
existing annotations (Motivation Scenario 2). Moreover, since the
Annotation Manager cannot guarantee with 100% confidence that
the predicted attachments are correct, we propose developing a ver-
ification module that enables domain experts to verify the predicted
attachments.

(3) Incremental Maintenance under Annotation Addition: In an-
notated databases, the discovered correlations and association rules
need to be incrementally updated under two scenarios, i.e., the ad-
dition of new data tuples, and the addition of new annotations.
The former case can be handled by existing techniques that ad-
dress the incremental update of association rules, e.g., [16]. These
techniques assume that the new delta batch changes the size of the
database, i.e., the number of data tuples increases. In contrast, in
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the latter case, the new annotation batches will not change the num-
ber of data tuples, instead they change the content of the tuples—
assuming the annotations are part of the tuples. Therefore, the ex-
isting incremental techniques need to be extended to handle the
latter case.

In this work, we develop an end-to-end solution that addresses
the above challenges in the context of a real-world application
and annotation repository, which is a data warehouse for the
Caenorhabditis elegans (C. elegans) Worm from biological sci-
ences. To facilitate scientists’ usage of the developed system, we
designed an Excel-based GUI—A tool that most scientists are fa-
miliar with—through which all of the proposed functionalities can
be performed.

The rest of the paper is organized as follows. In Section 2, we
present the needed background, preliminaries, and our case study.
In Sections 3, and 4, we present the techniques for the discovery
and maintenance of the annotation-related correlations, and their
exploitation, respectively. Section 5 overviews the related work
while Section 6 contains the experimental evaluation. Finally, the
conclusion remarks are included in Section 7.

2. PRELIMINARIES
In this section, we give a brief overview on annotation manage-

ment and association rule mining techniques, and then present our
case study.

2.1 Background
Annotation Management in Relational DBs: Annotation man-

agement techniques in relational databases enable end-users to at-
tach auxiliary information to the data stored in the relational ta-
bles [9, 15, 17, 21, 24, 46]. Annotations can be attached to individ-
ual table cells, rows, columns, or arbitrary sets and combinations
of them. Some systems provide a GUI through which the annota-
tions can be added [17, 25], while other systems extend the SQL
language with new commands and clauses to enable annotation ad-
dition [17, 21, 25]. For example, the work in [21] introduces a new
Add Annotation command to SQL as follows:

1- Selecting 2,000 real annotations at random and 
manually labeling them. Moreover, we created 
synthetic annotations for each category that 
include the common keywords in that category. 

 
2- Selecting 1% of the real annotations (around 

3,700) at random and classifying them using the 
trained classifier.  

 
3- Manually verifying the results, and re-labeling 

the wrong classification to refine the model.  
 
4- Repeating Steps 2 & 3 until achieving an 

acceptable accuracy. 
 

Case III (δ Addition): Updating Existing Association Rules 
Input: 
         - New annotations delta δ = {a1, a2, …, an} 
      - Set of existing association rules U = {u1, u2, …, um} 
         - Original DB 
 

Output: 
     - Updated set of association rules U’ 

         - New DB’ = DB +  δ 
 

Step1: Existing Data-to-Annotations rules 
    - For  (each rule ui having annotation “a” && δ in R.H.S)  Loop 

                - // Update the support and confidence of ui  
   - T ! The data tuples newly annotated with “a”  
   - Based on T update the  ui.supp & ui.conf 
   - Copy ui to U’                // ui is guaranteed to be valid 

        - End For 
 

Step2: Existing Annotation-to-Annotations rules 
        - For  (each rules ui where none of δ appears in L.H.S & 
                         “a” && δ in R.H.S)  Loop 
                - // Update the support and confidence of ui  

   - T ! The data tuples newly annotated with “a”  
   - Based on T update the  ui.supp & ui.conf 
   - Copy ui to U’                // ui is guaranteed to be valid 

        - End Loop 
 

    - δ’ ! annotations in δ that appear in L.H.S of some rules  
    - For  (each rule ui where any of δ’ appears in L.H.S)  Loop 

   - // Update the support and confidence of ui  
   - T ! The newly annotated data tuples having an annotation from δ’ 
   - Based on T update the  ui.supp & ui.conf 
   - If ( ui is still a valid rule) Then 
            - Copy ui to U’ 
   - End If  

        - End Loop 

Add Annotation  

[Value <text-value> | Link  <path-to-file>] 

On <sql-statement>;  

 
This command will first trigger the execution of the specified

<sql-statement> to identify the data tuples and the attributes to
which the annotation will be attached. The annotation can be pro-
vided as a text value (using the Value clause), or as a link to a file
(using the Link clause). In all of these systems, the organization of
annotations, i.e., storage scheme and indexing, is fully transparent
to end-users.

At query time, when a standard SQL query is submitted, the un-
derlying database engine will not only compute the data tuples in-
volved in the answerset, but will also compute the related annota-
tions that should be reported along with the answerset. This is not
straightforward since the data may go though complex transforma-
tions, e.g., projection, join, grouping and aggregations. Therefore,
the semantics of the query operators have been extended to manip-
ulate the data as well as their attached annotations in a systematic
way. For example, one possible semantic is to union the annota-
tions when performing grouping, joining, or duplicate elimination
over a group of tuples. According to this semantic, the SQL query
in Figure 2 produces the illustrated output—assuming duplicate an-
notations on the same tuple are eliminated.

Select Family, Count(*) As CNT 

From  Gene 

Group By Family;  

Family CNT 

F1 4 

F6 1 

F3 1 

F4 1 

Sequence needs to 
be shifted by 2 
bases  

This value is wrong 
Incorrect value 

Does not seem correct 

Sequence needs to 
be shifted by 2 
bases  

Figure 2: Automatic Propagation of Annotations at Query
Time.

Since in large-scale annotated databases, the number of reported
annotations on a single output tuple can be large, the work in [32,
50] proposed summarizing the annotations using data mining tech-
niques, e.g., clustering, classification, and text summarization, and
reporting the summarize instead of the raw annotations. The pro-
posed work of discovering the correlations in annotated databases
is complementary to the existing techniques and can be integrated
with any of the existing systems.

Association Rule Mining: Association rule mining is a well-
known problem in data mining that concerns the discovery of
correlation patterns within large datasets [8, 44, 45, 52]. An
association rule in the form of “X =⇒ Y, support = α,
confidence = β” means that the presence of the L.H.S itemset
X implies the presence of the R.H.S itemset Y (in the same trans-
action or tuple) with support equals to α and confidence equals
to β. Typically, X ∩ Y = φ, and the support is computed
as the fraction of transactions (or tuples) containing X ∪ Y rel-
ative to the database size, while the confidence is computed as
support(X ∪Y )/support(X). Therefore, given a minim support
min_supp and minimum confidence min_conf, the association rule
mining technique discovers all rules having support and confidence
above the specified min_supp and min_conf, respectively.

It has been observed in many real-world applications, that the
number of generated rules can be very large and many of them may
not be interesting. Therefore, additional measures have been pro-
posed in [31, 44], which include the lift and conviction measures.
The former is computed as support(X∪Y )

support(X) ∗ support(Y )
, and the latter

is computed as 1−support(Y )
1−confidence(X=⇒Y )

. The higher these measures,
the more interesting the rule. Another related extension to the stan-
dard association rule mining problem is the mining of multi-level
rules [44, 45]. In this extension, the technique is given a domain
generalization hierarchy over one or more attributes, and we need
to discover the association rules that may span different levels of
the hierarchy. For example, in market analysis, the items “pants”,
“shirts”, and “t-shirts” can be generalized to “clothes”. Because
of this generalization, some rules may hold at the higher level(s)
of the hierarchy which may not be true for the lower more-detailed
levels. Association rule mining has numerous applications in var-
ious domains including market analysis, biology, healthcare, envi-
ronmental sciences, and beyond [31]. The proposed work extends
these applications to the emerging domain of annotated databases.
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(b) Time course of intestinal distention in C. 
elegans worms exposed to S. cerevisiae. Worms 
were exposed to RFP-marked, wildtype yeast from 
hatching and photographed on day 3 (A and D), 
day 4 (B and E), and day 5 (C and F). The 
experiment was done three times, and 60 to 75 
worms were observed over a 3-day period. (A to 
C) Anterior region of the worm; (D to F) posterior 
region of the worm. Accumulation of yeast began 
in the pharynx region (compare panels A and D) 
and proceeded to the posterior. (G to I) S. 
cerevisiae also induces vulval swelling in the 
worms. Worms exposed to S. cerevisiae (H to I) 
show abnormal vulval swelling (white circles) 
compared to the control sample grown on E. coli 
(G). Bars: A to G, 50 µm; H and I, 20 µm. (a) Caenorhabditis elegans. Lives in garden soil 

and feeds on bacteria, e.g., E. coli.  

Figure 3: Case Study: Building Data-Annotation Repository for Caenorhabditis elegans (C. elegans) Worm.

2.2 Case Study: Annotated Repository for C.
elegans Worm

Although the proposed work is applicable to annotated databases
in general, we consider one case study as an example. This case
study focuses on building a database repository for the Caenorhab-
ditis elegans (C. elegans) worm, which integrates data from multi-
ple databases and labs studying the genetics and fungal pathogen-
esis of the organism (Refer to Figure 3). Some of these sources
maintain relational databases, while other use excel sheets to store
their data. Each of the sources maintains various types of cura-
tion information and annotations related to the data records, e.g.,
images, publications, observations, corrections, and experimental
setups. In these data sources the curation information is not mod-
eled as annotations. Instead, they are modeled as regular data with
relationships to the data tuples, e.g., in the relational databases, the
images and observations are stored in separate tables linked to the
primary data tables through PK-FK constraints.

The disadvantage of this modeling scheme, i.e., modeling the an-
notations as data, is that applications lose the benefits of annotation
management. That is, annotation management tasks are entirely
delegated to end-users and higher-level applications starting from
the storage and indexing of annotations and ending by explicitly en-
coding the propagation semantics within each of the users’ queries.
Both tasks have been shown to be very complex and sophisticated.
For example, the storage and indexing mechanisms need to deal
with the combinatorial relationship between annotations and data,
e.g., annotations can be attached to single table cells (attributes),
rows, columns, arbitrary sets and combinations of them, or even at-
tached to sub-attributes [21, 24]. Moreover, manually encoding the
annotations’ propagation within each query is not only error-prune,
and lacks optimizations, but also renders even simple queries very
complex [9, 13, 26, 46]. That is why annotation management en-
gines have been proposed to efficiently and transparently manage
such complexities across applications.

To address the above limitations, we opt for leveraging our previ-
ous systems and work in annotation management [21, 50] to model
the metadata information as annotations. These systems are built
on top of PostgreSQL DBMS, and thus the repository will acquire
the benefits of both a DBMS and an annotation management en-
gine. We developed an Excel-based user interface to enable seam-
less visualization of the data as well as the annotations (See Fig-
ure 4). For the purpose of this project, the annotations are cate-
gorized into three basic types, which are: (1) Regular comments
or observations, which covers any free-text values, (2) Articles and

View annotations 
on selected data 

Query-By-Example 
(QBE) section 

New Annotation 
Management tab 

Figure 4: Excel-Based GUI for Annotation Management.

documents, and (3) Images. In the Excel-based GUI, scientists can
query their data either by writing direct SQL queries, or thought
a QBE interface as illustrated in Figure 4. Then, they can select
specific rows or table cells of interest, and click the View Annota-
tion button, which reports the annotations related to the selected
datasets in a new window. This window has three sections for the
three annotation types mentioned above as shown in the figure. For
the articles and images, they are uploaded to a web-server and can
be opened by clicking the corresponding link.

3. DISCOVERY OF CORRELATIONS
Given an annotated database, the primary challenge is to dis-

cover and incrementally maintain the hidden annotation-related
correlations within the database, which is the focus of this section.
The basic unit in an annotated database is an “annotated relation”.
In the following, we formally define an annotated relation and the
target correlations.

Definition 3.1 (Annotated Relation). An annotated relation R is
defined as R = {r =< x1, x2, ..., xn,a1,a2,a3, ... >}, where
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each data tuple r ∈ R consists of n data values x1, x2, ..., xn, and
a variable number of attached annotations a1,a2, ...,ak.

Definition 3.2 (Data-to-Annotation Correlations). Given an an-
notated relation R, a minimum support α, and a minimum con-
fidence β, the data-to-annotation correlations over R is the
problem of discovering all association rules in the form of:
x1:v1, x2:v2, ..., xk:vk =⇒ a, where the L.H.S is a set of col-
umn names (xi) and corresponding data value (vi), the R.H.S is a
single annotation, the rule’s support≥ α, and the rule’s confidence
≥ β.

Definition 3.3 (Annotation-to-Annotation Correlations). Given an
annotated relation R, a minimum support α, and a minimum con-
fidence β, the annotation-to-annotation correlations over R is
the problem of discovering all association rules in the form of:
a1 a2 ... ak =⇒ a, where the L.H.S is a set of annotations, the
R.H.S is a single annotation, the rule’s support≥ α, and the rule’s
confidence ≥ β.

According to Definitions 3.2 and 3.3, the rules to be discovered
must involve an annotation in the R.H.S of the rule. In addition,
these rules focus on the raw annotations without generalization.
This is applicable especially for annotations of type image or publi-
cation, where a single image or publication can be attached to many
data tuples. Discovering these rules is straightforward using any of
the state-of-art techniques, e.g., the A-priori [8], or FP-Tree [30]
algorithms. The only modification that we introduced to these al-
gorithms is the early elimination of candidate patterns that do not
include at least one annotation value.

3.1 Incremental Maintenance of Correlations
An annotated database may evolve and change in three different

ways, which are: (1) Adding new un-annotated data tuples (refer to
it as ∆unannotated), (2) Adding new annotated data tuples (refer to
it as ∆annotated), and (3) Adding new annotations to existing data
tuples (refer to it as δ). Each of these changes may affect the dis-
covered association rules as summarized in Figure 5. The mainte-
nance of association rules under incremental data updates has been
studied in existing work [16, 41]. However, these existing tech-
niques can handle only the first two cases mentioned above, i.e.,
the ∆unannotated and ∆annotated cases, but not the third case, i.e,
the δ case. The reason is that the assumption in these techniques is
that the number of data tuples change (get increased), which is true
for the first two cases. In contrast, in the third case, the number of
the data tuples is fixed, but their content changes due to the addition
of new annotations.

Figure 5 summarizes the three cases mentioned above and their
effect on the association rules. The ∆unannotated case does not add
any new rules since no new annotations are added. For the exist-
ing rules, both the support and confidence of the data-to-annotation
rules may get decreased and need to be re-computed (Column 2
in Figure 5). Nevertheless, for the annotation-to-annotation rules,
only the support may decrease and need to be re-computed, but
the confidence remains unchanged (Column 3 in Figure 5). The
∆annotated case may introduce new association rules since the new
data tuples are annotated. Moreover, all of the existing rules may
get affected positively or negatively. For these two cases, the exist-
ing techniques in [29, 44] can be directly applied to efficiently and
incrementally update the association rules.

The third case—which is not handled by existing techniques—
concerns the addition of new annotations to existing data tuples.
For this case, all existing data-to-annotation rules are guaranteed
to remain valid because the support and confidence of these rules

 
New Rules 

Existing Rules 

x1, x2, …xk => a a1, a2, …, ak => a 

Δunannotated 
S#  & C# S# &  C = 
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δ 
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Figure 5: Effect of Evolving Data on Support (S) and Confi-
dence (C).

cannot be decreased. The same intuition applies to the annotation-
to-annotation rules if the new annotation appears in the R.H.S of the
rule, i.e., the support and confidence may only increase. However,
if the new annotation appears in the L.H.S of a rule, then the confi-
dence of this rule needs to be re-computed because it may decrease
and becomes below the min_conf threshold. Finally, this third case
may introduce new association rules that need to be discovered as
indicated in Figure 5. In the following, we present a pseudocode
on how these changes take place incrementally.

The algorithm depicted in Figure 6 presents the main steps of
updating the existing rules. In Step 1, the data-to-annotation rules
are updated. Basically, the denominator in the support and confi-
dence of these rules does not change, and thus only the numerator
values need to be re-computed. This update can be performed by
checking only the newly annotated data tuples and counting the
number of new occurrences of the rule’s pattern (L.H.S ∪ R.H.S).
This count will be added to the old numerator to compute the new
values. Since all of these rules are guaranteed to be in the output
set U ′, they are directly copied to U ′ after updating their support
and confidence values.

In Step 2, the annotation-to-annotation rules are updated. The
first For...End For loop handles the case where the new an-
notations do not appear in the L.H.S of an existing rule, but appear
on the R.H.S. This case is very similar to Step 1, where all the
rules will get their support and confidence updated (only the nu-
merator values), and then copied to the output set U ′. The second
For...End For loop handles the case where the new annota-
tions appear on the L.H.S of the rules. in this case both the nu-
merator and the denominator values of the confidence may change
and hence, it may increase of decrease. Fortunately, updating these
values can be also performed by only checking only the newly an-
notated data tuples and counting the number of new occurrences
that will be added to either of the numerator or denominator val-
ues. Depending on the new confidence, if the rule is still valid, then
it will be copied to the output set U ′. It is worth highlighting that
in updating the existing association rules (Steps 1 & 2 in Figure 6),
we only need to process the newly annotated data tuples without
touching the rest of the database.

The addition of the new annotations (the δ batch) may also create
new association rules. The algorithm depicted in Figure 7 outlines
the procedure of incrementally discovering the new rules. In Step 1,
the new data-to-annotation rules in the form of x1 x2 ... xk =⇒ a

will be discovered, where a ∈ δ. First, a must be a frequent an-
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1- Selecting 2,000 real annotations at random and 
manually labeling them. Moreover, we created 
synthetic annotations for each category that 
include the common keywords in that category. 

 
2- Selecting 1% of the real annotations (around 

3,700) at random and classifying them using the 
trained classifier.  

 
3- Manually verifying the results, and re-labeling 

the wrong classification to refine the model.  
 
4- Repeating Steps 2 & 3 until achieving an 

acceptable accuracy. 
 

Case III (δ Addition): Updating Existing Association Rules 
Input: 
         - New annotations delta δ = {a1, a2, …, an} 
      - Set of existing association rules U = {u1, u2, …, um} 
         - Original DB 
 

Output: 
     - Updated set of association rules U’ 

         - New DB’ = DB +  δ 
 

Step1: Existing Data-to-Annotations rules 
    - For  (each rule ui having annotation “a” && δ in R.H.S)  Loop 

                - // Update the support and confidence of ui  
   - T ! The data tuples newly annotated with “a”  
   - Based on T update the  ui.supp & ui.conf 
   - Copy ui to U’                // ui is guaranteed to be valid 

        - End For 
 

Step2: Existing Annotation-to-Annotations rules 
        - For  (each rules ui where none of δ appears in L.H.S & 
                         “a” && δ in R.H.S)  Loop 
                - // Update the support and confidence of ui  

   - T ! The data tuples newly annotated with “a”  
   - Based on T update the  ui.supp & ui.conf 
   - Copy ui to U’                // ui is guaranteed to be valid 

        - End Loop 
 

    - δ’ ! annotations in δ that appear in L.H.S of some rules  
    - For  (each rule ui where any of δ’ appears in L.H.S)  Loop 

   - // Update the support and confidence of ui  
   - T ! The newly annotated data tuples having an annotation from δ’ 
   - Based on T update the  ui.supp & ui.conf 
   - If ( ui is still a valid rule) Then 
            - Copy ui to U’ 
   - End If  

        - End Loop 

Figure 6: Case III (δ Addition): Updating Existing Rules.

notation by itself. To perform this check efficiently, the system
maintains a table containing the frequency of each annotation, and
it is updated whenever a new annotation is added. If a is frequent,
then from the newly annotated tuples, denoted as T , we extract
the data-value patterns that are already frequent, say x1 x2 ... xk.
Notice that since x1 x2 ... xk is already frequent, then the denom-
inator for the support and confidence of rule x1 x2 ... xk =⇒ a is
already known. What is left is to compute the frequency of pattern
x1 x2 ... xk,a, which can be performed by checking only the data
tuples in the database annotated with a. As illustrated in Figure 7, a
similar procedure will be taken in Step 2, i.e., discovering the new
annotation-to-annotation rules where the new annotations a ∈ δ
contribute only to the R.H.S of the rule.

Discovering the new annotation-to-annotation rules where the
new annotations a ∈ δ contribute to the L.H.S is slightly differ-
ent (Step 3). This is because the denominator of the new rules is no
longer known and it has to be computed. The procedure works by
considering each new annotation a ∈ δ, and verifying first that it is
frequent (if not, then the process stops). And then, for each data tu-
ple t that is receiving a as a new annotation, we extract the already-
frequent annotation patterns, say p = a

′
1,a
′
2, ...,a

′
k, i.e., p is al-

ready frequent and attached to t. By augmenting a to p, we gener-
ate several candidate new rules in the form of a′1,a, ...,a′k =⇒ a

′
i.

Notice that a can be a new annotation over tuple t, but it is an
already-existing annotation over many other tuples in the database.
Therefore, to compute the support and confidence of these rules,
we need to check all data tuples in the database having annotation
a. This is enough to compute the support and the confidence of the
rule and to verify whether or not it is a valid rule.

It is clear that the algorithm of maintaining the existing rules
(Figure 6) is less expensive than that of discovering new rules (Fig-

Case III (δ Addition): Discovering New Association Rules 
Input: 
         - New annotations delta δ = {a1, a2, …, an} 
         - Original DB 
 

Output: 
     - New set of association rules U’ 

         - New DB’ = DB +  δ 
 

Step1: New Data-to-Annotations rules   x1, x2, …, xk => ai 
  - If (ai is frequent) Then   
          - T ! the data tuples newly annotated with ai. 
          - Find patterns “x1, x2, …, xk” within T that are already frequent. 
          - Check if  x1, x2, …, xk => ai  is valid 
               - De-numerators of the support and confidence are known 

           - Compute the frequency of pattern “x1, x2, …, xk, ai”  by checking  
                          only the data tuples annotated with ai 
               - Now the support and confidence of the rule can be verified.  
               - If the rule is valid " add it to U’  
  - End If   
 
Step2: New Annotation-to-Annotations rules   a’1, a’2, …, a’k => ai     
  - If (ai is frequent) Then   
          - T ! the data tuples newly annotated with ai 
          - Find patterns “a’1, a’2, …, a’k” within T that are already frequent. 
          - Check if  a’1, a’2, …, a’k => ai  is valid 
               - De-numerators of the support and confidence are known 

           - Compute the frequency of pattern “a’1, a’2, …, a’k, ai”  by 
                          checking  only the data tuples annotated with ai 
               - Now the support and confidence of the rule can be verified. 
               - If the rule is valid " add it to U’  
  - End If   
 
Step3: New Annotation-to-Annotations rules where ai may appear in 

L.H.S of the rule 
 - For (each frequent annotation patterns “a1, a2, …” from  δ) Loop   
          - T ! the data tuples newly annotated with “a1, a2, …”  
          - Find patterns “a’1, a’2, …, a’k” within T that are already frequent. 
          - Create candidate rules where subset (or all) of “a1, a2, …”   appear  
                  in the L.H.S of the rule 
          - Compute the support and confidence by checking  only the data   
                 tuples annotated with “a1, a2, …”  
           - If the rule is valid " add it to U’  
- End Loop       

Figure 7: Case III (δ Addition): Discovering New Rules.

ure 7). This is because the former requires access to only the newly
annotated data tuples, whereas the latter requires access to all data
tuples that have annotation a ∈ δ (even if the tuples are not newly
annotated with a. To efficiently support the latter case, the system
indexes the annotations such that given a query annotation, we can
efficiently find all data tuples having this annotation. In all cases,
there is no need for full database processing or re-discovering the
rules from scratch.

3.2 Generalization-Based Correlations
Generalizing the raw annotation values to higher concepts may

lead to discovering important association rules that cannot be dis-
covered from the raw values. The Red-Flag annotation in Figure 1
is a good example of this case. The reason this case is important in
annotated databases is that the annotations can be added by many
curators, and they may not follows specific ontology. And thus,
multiple annotations may carry the same semantics but differ in
their raw values. There are extensions to association rule mining
techniques that can discover the rules under the presence of a gener-
alization hierarchy [29, 44, 45]. However, these techniques assume
that the hierarchy, and the assignments between the raw values to
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Figure 8: Example of Annotation-Generalization Hierarchy.

the hierarchy elements are given as input, which is usually not the
case in annotated databases.

In this work, we assume the more practical case where the do-
main experts know the generalization hierarchy, i.e., the generic
types of annotations of interest, but the raw annotations are not
yet labeled. An example of this hierarchy is illustrated in Fig-
ure 8, where several types can be of interest, e.g., “Invalidation”
(comments that highlight errors or invalid values), “Provenance”
(comments capturing the source of data or how it is generated),
“Question” (comments including questions), and “Missing Info”
(comments highlighting missing values or more investigation). The
hierarchy will always include a separate class, called “Others” to
which any un-generalized annotation will belong.

In general, any text classification technique can be used. As a
proof of concept, we use the technique proposed in [18]. Since we
assume no training set or classifier model is given, the model is first
created as follows:

1- Select α real annotations at random and manually 
label them to build the 1st classifier model. 

 
2- Select β% of the real annotations at random and 

classify them using the trained classifier.  
 
3- Manually verify the results, and re-label the 

wrong classification to refine the model.  
 
4- Repeat Steps 2 & 3 until achieving an acceptable 

accuracy. 
 

In Step 1, in addition to manually labeling an initial set of α
annotations, we also create synthetic annotations to each class cap-
turing the keywords in that class. For example, as highlighted in
Figure 8, keywords like “wrong”, “incorrect”, “invalid” are em-
bedded in synthetic annotations under the 1st class label, while
keywords like “source”, “generated from” are added under the 2nd

class label. The creation process iterates between labeling and ver-
ifying a small subset of annotations (β%) until the classier reaches
an acceptable accuracy (Step 4).

After building the classifier model, it is applied over all anno-
tations in the dataset, and data tuples get annotated with the class
labels corresponding to their raw annotations—Except for “Others”
label for which its annotations are not generalized. A data tuple can
have a given label at most once even if there are multiple raw an-
notations mapping to the same label. This is the same model used
in association rule mining techniques that handle a generalization
hierarchy [29, 44, 45]. For example, the top data tuple in Figure 9
has two attached annotations classified into the “Invalidation” la-
bel, i.e., the Red Flag, and thus after attaching the classification
decision, it generates the tuple at the bottom of the figure.

After building the extended annotated database, existing tech-

GID Name Seq Family Exp-Id 

JW0013 grpC TGCT… F1 101 

JW0014 groP GGTT… F6 105 

JW0015 insL GGCT… F1 105 

… … … … … 

JW0018 nhaA CGTT… F1 101 

JW0019 yaaB TGTG… F3 101 

JW0012 Yaal TTCG… F1 103 

Sequence need to 
be shifted by 2 
bases  

JW0027 namE GTTT... F4 101 

This value is wrong 

Incorrect value 

Does not seem correct 

GID Name Seq Family Exp-Id 

JW0013 grpC TGCT… F1 101 

Incorrect value Has a mistake 

GID Name Seq Family Exp-Id 

JW0013 grpC TGCT… F1 101 

Incorrect value Has a mistake 

After annotation 
generalization 

Figure 9: Applying Annotation-Generalization over Example
Tuple.

niques can mine and extract the data-to-annotation association rules
in the form of: x1 x2 ... xk =⇒ b, where b is either a raw annota-
tion or an annotation’s class label. The same applies for annotation-
to-annotation rules, which are in the form of: b1 b2 ... bk =⇒ b,
where none of the L.H.S or R.H.S values (either raw or class label
values) have an ancestor-descendant relationship in the generaliza-
tion hierarchy.

4. EXPLOITATION OF CORRELATIONS
As discussed in Section 1, one of our goals is to exploit the

discovered correlations to enhance the quality of the annotated
database. We consider two exploitation scenarios: (1) The pre-
diction of related annotations to newly inserted tuples (Motivation
Scenario 2), and (2) The discovery of missing attachments when
new association rules are found (Motivation Scenario 1).

Insertion of New Data Tuples: For this case, an automatic
database trigger (at After Insert at Row Level) is created for each
database table. The trigger forwards a newly inserted tuple t to the
Annotation Manager, which checks t against the available associa-
tion rules. If the L.H.S pattern of a rule is present in t without the
R.H.S annotation, then the system creates a recommendation that
the R.H.S annotation is potentially applicable to t. For example,
referring to the motivation example in Figure 1, the following rule
can be derived from the data:

Exp-Id:101 =⇒ “Sequence need to be shifted
by 2 bases.”

The newly added tuple JW0027 contains the L.H.S of the rule,
and hence the system predicts and creates a recommendation that
the R.H.S annotation may be related to the new tuple. The end-
user will be notified that the system has created annotation predic-
tions for the new tuple, and the prediction(s) will be stored in a
system table along with its supporting rule (the rule generated the
recommendation) for later verification and approval as explained in
sequel.

To enable efficient searching for the association rules match-
ing the newly inserted tuple, the L.H.S of the rules are in-
dexed. Since the L.H.S may contain several pairs in the form of
columnName:value, we first itemize and store the L.H.S in a
normalized form, i.e., one record for each pair, and then index them
using a B-Tree index. In this case, given a new data tuple, the After
Insert database trigger will create lookup keys from the new tuple,
i.e., each column name and its value will form one lookup key, and
then search the normalized table to find a “superset” of the candi-
date rules. The tuple will be checked against this candidate set to
find the actual matches.
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Figure 10: Exploitation of Correlations and Annotation-
Related Recommendations.

Updating the Association Rules: As presented in Section 3.1,
the annotation-related association rules may change periodically
when new batches of data or annotations are applied. The change
may take three forms: (1) Valid rules remain valid, (2) Valid rules
become invalid, and (3) New rules are discovered. In the 1st case,
nothing will change in the system. In the 2nd case, the pending
recommendations awaiting verification whose supporting rules be-
come invalid will be eliminated. This is because the system will
not recommend attachments without rules supporting available as
evidences. 1 In the 3rd case, the discovery of new rules will trigger
the system to search for data tuples matching the L.H.S of the new
association rules, but missing the R.H.S annotation in the rule. If
a matching is found, then a new pending recommendation will be
added to the system table. Given a newly discovered rule having a
L.H.S in the form of: “C1:v1, C2:v2, ..., Cm:vm”, where
Ci is a column name and vi is the column’s value, the searching
for the matching data tuples is performed as follows. A query on
the same table to which the new rule is related is formed, and it
consists of a set of conjunctive predicates in the form of Ci = vi
∀ 1 ≤ i ≤ m. The returned tuples will be then checked if they
are missing the R.H.S of the rule, i.e., the annotation value, and if
so, then a new recommendation is generated.

It is worth highlighting that the number of discovered rules by
considering solely the support and confidence thresholds is in most
cases very high [31, 44]. This will result in many uninteresting
predictions and recommendation. To overcome this problem, we
integrate additional properties such as lift and conviction measures
that measure how interesting the rule is (See Section 2). That is,

1Recommended attachments that have been approved by the end-
users will remain in the system even if their supporting rules be-
come invalid at a later point in time. This is because an approved
attachment is viewed as a correct and permanent one.

among all the rules that satisfy the support and confidence require-
ments, we use in the exploitation process only a subset of these
rules that also satisfy the lift and conviction requirements.

Manipulation Interface: To seamlessly enable the verification
process, we extend the Excel-based GUI presented in Section 2.2
such that domain experts can visualize the recommendations from
the tool and decide whether or not each prediction will be accepted
(See Figure 10). The tool enables reporting and visualizing the
pending predictions either by providing a database table name, or
by specifying a select statement to limit the scope of interest. The
reported predictions can be then sorted according to various crite-
ria, e.g., the confidence of the association rule suggested the pre-
diction. As Figure 10 illustrates, the data tuples from a given table
(or a select statement) are reported on the top-level excel sheet, and
then when a tuple is selected, its related predictions and recommen-
dations are dynamically reported on the bottom-level sheet. For
each prediction, the supporting association rule is displayed along
with its properties, e.g., the support, confidence, lift, and convic-
tion. Curators can then use the checkbox highlighted in the figure
to decide on whether or not to accept the recommendation.

5. RELATED WORK
Annotation management is widely applicable to a broad range

of applications, yet it gained a significant importance within the
context of scientific applications [27, 35, 40]. Therefore, to help
scientists in their scientific exterminations and to boost the discov-
ery process, several generic annotation management frameworks
have been proposed for annotating and curating scientific data in
relational DBMSs [9, 17, 24, 25, 26, 46]. Several of these sys-
tems, e.g., [9, 17, 24, 46], focus on extending the relational al-
gebra and query semantics for propagating the annotations along
with the queries’ answers at query time. The techniques presented
in [46] address the annotation propagation for containment queries,
while the techniques [13] address the propagation in the presence
of logical database views. They address, for example, the mini-
mum amount of data that need to annotated in the base table(s)
in order for the annotation to appear (propagate) to the logical
view. The work in [21] proposed compact storage mechanisms for
storing multi-granular annotations at the raw-, cell-, column-, and
table-levels, as well as defining behaviors for annotations under the
different database operations. Moreover, the techniques proposed
in [21, 36] enable registering annotations in the database system
and automatically applying them to newly inserted data tuples if
they satisfy pre-defined predicates.

Other systems have addressed special types of annotations,
e.g., [15, 23]. For example, the work in [15] have addressed the
ability to annotate the annotations, and hence they proposed a hier-
archal approach that treats annotations as data. On the other hand,
the BeliefDB system in [23] introduced a special type of annota-
tions, i.e., the belief annotation, that captures the different users’
beliefs either about the data or others’ beliefs. In both systems,
the query engine is extended to efficiently propagate/query these
annotations. It have been also recognized in [28, 34] that annota-
tions may have semantics and based on these semantics the prop-
agation in the query pipeline may differ, e.g., instead of getting
the union of annotations under the join operation, getting the in-
tersection makes more sense under some annotation semantics. In
our previous work [50], we addressed the challenge of managing
number of annotations that can be orders of magnitude larger than
the number of base data tuples. In this case, reporting the raw an-
notations will be overwhelming and useless. Instead, we proposed
summarizing the annotations into concise forms, and then proposed
an extended query engine to efficiently propagate these summaries.
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Figure 11: Annotation Generalization and Rule Generation.

Although the above systems provide efficient query processing
for annotations, none of them have addressed the facet of min-
ing the rich repositories of annotations to discover interesting pat-
terns, e.g., discovering the annotation-related correlations proposed
in this paper. Therefore, the proposed work is complementary to
existing systems and creates an automated mechanism for enhanc-
ing the quality of annotated databases, which is currently handled
through a manual curation process [2, 6]. In this process, domain
experts manually curate the data, ensure correct and high-quality
annotations are attached to the data, and potentially add or remove
further attachments between the annotations and the data. Cer-
tainly, this curation process is very time consuming, error-prune
and does not scale well, and more importantly consumes valuable
cycles from domain experts and scientists. With the proposed work,
a significant effort in discovering missing attachments and relation-
ships between the data and the annotations can be automated.

Annotations have been supported in contexts other than rela-
tional databases, e.g., annotating web documents [10, 33, 37, 51],
and pdf files [38, 39, 48]. These techniques focus mostly on an-
notating different pieces within a document (or across documents)
with useful information, e.g., extracting the key objects or provid-
ing links to other related objects. In the domains of e-commerce,
social networks, and entertainment systems [22, 42], the annota-
tions are usually referred to as tags. These systems deploy ad-
vanced mining and summarization techniques for extracting the
best insight possible from the annotations to enhance users’ experi-
ence. They use such extracted knowledge to take actions, e.g., pro-
viding recommendations and targeted advertisements [7, 19, 42].
However, none of these systems focus on mining and discovering
correlations within the annotation repositories.

6. EXPERIMENTS
Setup and Dataset: The experiments are performed using our

annotation management engines [21, 50], which are based on the
open-source PostgreSQL DBMS. The experiments are conducted
using an AMD Opteron Quadputer compute server with two 16-
core AMD CPUs, 128GB memory, and 2 TBs SATA hard drive.
Our objectives are: (1) To quantify the effectiveness of the annota-
tion generalization technique, (2) The performance of discovering
the annotation-based association rules over static data, and (3) The
efficiency of the proposed incremental techniques to update the
rules under new batches of annotations. The experimental dataset
represent the C. elegans repository, which we are building on site.
The repository consists of 27 database tables, where the main ta-
ble of our focus is the Gene table that contains approximately
17,500 genes integrated from multiple sources. The table has nine

columns, e.g., Gene Id, Locus, Strain, Stage, Location, and Length.
The table has a total number of 43,000 publications attached to the
genes in addition to other 8,120 free-text comments. These pub-
lications and comments represent the annotations attached to the
Gene table. In the dataset, each record has between 0 annotations
(the minimum) and 16 annotations (the maximum).

In Figure 11, we study the effect of annotation generalization on
the generation of interesting annotation-related association rules.
Figure 11(a) illustrates the accuracy of the generalization algorithm
presented in Section 3.2. The x-axis indicates the number of itera-
tions from 1 to 4, while the y-axis represents the obtained accuracy
from the manual verification step (Step 3 of the algorithm). As the
figure shows, there is a big jump in accuracy from Iteration 1 to
Iteration 2, and then as more iterations are performed the accuracy
slightly increases. This is mostly because our generalization model
is simple and consists of one level only. However, as the general-
ization model becomes more complex, we expect to more iterations
will be needed to reach the desired accuracy. In the subsequent
experiments, we will use the results obtained after performing 4
iterations.

In Figure 11(b), we present the number of interesting associa-
tion rules discovered in the entire dataset under varying confidence
and support degrees (the x-axis). Since the expected rules are not
necessarily globally frequent, we use very low support, e.g., 0.1%
to 0.4%, while setting the confidence to a very high threshold as
indicated in the figure. As expected, as the support or confidence
thresholds increase, less number of interesting rules are discovered.
The number of discovered rules is relatively manageable and not
very large because we also enforce minimum lift and conviction
thresholds to narrow down the reported rules to the strongest ones
only. Both thresholds are set to value 5. In the remaining experi-
ments, we will consider the dataset under the annotation general-
ization case, i.e., the annotations have been generalized to enable
the discovery of more rules.

In Figure 12, we study the execution time of discovering the
annotation-related rules in the entire dataset. We vary the confi-
dence and support thresholds as depicted in the figure. In this ex-
periment that dataset is static, i.e., there are no new batches of data
or annotations. As the figure illustrates the execution time ranges
from 8 secs to 22 secs depending on the used thresholds. We have
also studied the execution time of the mining algorithm without
annotation generalization and the observed differences are not sig-
nificant, e.g., the technique without generalization are faster by 1%
to 7% compared to the other case.

In Figure 13, we study the execution time under the addition of
new annotation batches. We focus on the 3rd case presented in
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Figure 14: Number of Rules Yielding Approved Recommenda-
tions.

Section 3.1 since this case is not supported by existing association
rule mining techniques. In the experiment, we set the confidence
and support thresholds to values 95%, and 0.2%, respectively. In
the x-axis of the figure, we vary the number of newly added anno-
tations (δ) between 200 and 1,600. This is performed by isolating
delta annotations (publications) from the original dataset, discov-
ering the association rules on the modified dataset, and then adding
the isolated annotations back as the new delta batch. We perform
the experiment on three different dataset sizes, i.e., small (20% of
the entire dataset), medium (40% of the entire dataset), and large
(the entire dataset). We compared between a naive non-incremental
A-priori technique [8] versus the incremental technique proposed in
Section 3.1. As the results show, the incremental algorithm outper-
forms the non-incremental one by up to two orders of magnitude
while producing the same exact results.

In Figures 14 and 15, we investigate the virtue of the exploita-
tion process within which the system proactively uses the discov-
ered association rules and provides recommendations to enrich the
annotated database. In the experiment, we set the confidence and
support thresholds to 95% and 0.2%, respectively (resulting in 64
discovered rules as illustrated in Figure 11(b)). We then, in Fig-
ures 14 and 15 select the top K strongest rules for generating rec-
ommendations. The K varies over the values between 10 to 64 as
indicated on the x-axis. Each rule, may generate many recommen-
dations, e.g., attaching a specific annotations to some data tuples,
and each recommendation is supported by some evidences (Refer
to Figure 10). The results presented in Figure 14 and 15 illustrate
for each K, the number, and percentage, respectively, of the rules
that yield to at least one recommendation being approved by the
database admin. This means that these rules were valuable as they
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Figure 15: Percentage of Rules Yielding Approved Recommen-
dations.
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Figure 16: Searching for Matching Rules under New Tuples
Insertions.

helped discovering missing attachments. The results show that a
fair number of rules have yielded to approved recommendations.
Moreover, the strongest rules, e.g., Top 10 or 20, usually yield to
more realistic recommendations compared to the weaker rules, e.g.,
Top 50, or 60. The results in Figures 14 and 15 are interesting as
they show that we may not even use all the discovered interesting
rules for recommendation purposes. We can depend on only the
top ranked ones to achieve high acceptance rate while reducing the
domain experts’ efforts in the verification process.

In Figure 16, we study the performance of searching for match-
ing association rules under the insertion of new data tuples. We
compare the two cases where the search does not use an index, i.e.,
scanning all existing rules, versus the use of index, i.e., the rules
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are normalized and indexed using the B-Tree index (Refer to Sec-
tion 4). In the experiment, we varied the number of rules from 10
to 10,000 (the x axis), and measured the search time (the y axis).
The experiment is repeated 10 times, and the average values are
presented in the figure. As expected, the “With Index” case scales
much better and remains stable as the number of association rules
gets larger. Whereas, the “Without Index” case has slightly better
performance when the number of rules is very small. This is be-
cause the key lookups over the index—which are multiple lookups
per tuple—add unnecessary overhead when the number of rules is
very small. In this case, one scan over all rules becomes faster.

7. CONCLUSION
In this paper, we investigated a new facet of annotation man-

agement, which is the discovery and exploitation of the hidden
annotation-related correlations. The addressed problem is driven
by the emerging real-world applications that create and maintain
large-scale repositories of annotated databases. The proposed work
opens a new application domain to which the well-known associa-
tion rule mining can be applied. We show cased several scenarios
specific to annotated databases that cannot be efficiently handled by
the state-of-art in association rule mining. We then proposed algo-
rithms for efficient and incremental maintenance of the discovered
association rules under these scenarios. We proposed two impor-
tant applications for leveraging the discovered annotation-related
correlations and enhancing the quality of the underlying database,
which are the discovery of missing attachments, and the recommen-
dation of applicable annotations to newly inserted data. To enable
seamless use by scientists, we integrated the proposed algorithms
within the annotation management engine and developed an end-
to-end system including an Excel-based GUI through which all of
the proposed functionalities can be performed.
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ABSTRACT   
Database query performance problem determination is often 
performed by analyzing query execution plans (QEPs) in addition 
to other performance data. As the query workloads that 
organizations run have become larger and more complex, analyzing 
QEPs manually even by experts has become a very time consuming 
and cumbersome task. Most performance diagnostic tools help with 
identifying problematic queries and most query tuning tools 
address a limited number of known problems and 
recommendations. We present the OptImatch system that offers a 
way to (a) look for varied user defined problem patterns in QEPs 
and (b) automatically get recommendations from an expert 
provided and user customizable knowledge base. Existing 
approaches do not provide the ability to perform workload analysis 
with flexible user defined patterns, as they lack the ability to impose 
a proper structure on QEPs. We introduce a novel semantic web 
system that allows a relatively naive user to search for arbitrary 
patterns and to get solution recommendations stored in a 
knowledge base. Our methodology includes transforming a QEP 
into an RDF graph and transforming a GUI based user-defined 
pattern into a SPARQL query through handlers. The SPARQL 
query is matched against the abstracted RDF graph, and any 
matched portion of the abstracted RDF graph is relayed back to the 
user. With the knowledge base, the OptImatch system 
automatically scans and matches interesting stored patterns in a 
statistical way as appropriate and returns the corresponding 
recommendations. Although the knowledge base patterns and 
solution recommendations are not in the context of the user 
supplied QEPs, the context is adapted automatically through the 
handler tagging interface. We test the performance and scalability 
of our framework to demonstrate its efficiency using a real query 
workload. We also perform a user study to quantify the benefits of 
the approach in terms of precision and time compared to manually 
searching for patterns. 

Categories and Subject Descriptors 
H.2.4 [Database Management]: Systems – Query Processing 

General Terms 
Performance, Design and Experimentation 

Keywords 
Query Performance, Problem Determination, Semantic Web, 
Knowledge Bases and Business Intelligence. 

1. INTRODUCTION 
1.1 Background and Motivation  
Much of the world’s high-valuable data remain in relational 
databases (e.g., operational databases and data warehouses [12]). 
Access to this data is gained through relational query languages 
such as Structured Query Language (SQL). Complex analytic 
queries on large data warehouse system are not only done as 
weekend or end of period canned batch reports. Ad hoc complex 
queries are increasingly run as part of business operations. As such 
it is critical to pay attention to performance of these queries. 

Database systems themselves are certainly increasingly becoming 
more sophisticated and able to automatically tune the environments 
they operate in. General query performance problem determination 
tools [4], [6], [23], [24] also offer an automated way to database 
administrators to analyze performance issues that neither requires 
mastery of an optimizer, nor deep knowledge about the query 
execution plans (QEPs). However, due to the complexity while the 
general approach has merit, there is a lack of customization and 
many refinements are needed, so that the problem determination 
and tuning process can be truly effective and consumable by the 
general end-user. Given the specific circumstances and limitations 
of existing tools, performance analysis today is often best done by 
manually analyzing optimizer QEPs that provide detail of how 
queries are executed.  Manually analyzing these QEPs can be very 
demanding and often requires deep expertise particularly with 
complex queries that are often seen in data warehouse 
environments. Very often the end users and database administrators 
resign themselves to opening problem reports to the database 
vendors so that experts who are well versed in both SQL and 
analyzing optimizer QEPs can provide recommendations. This can 
be a time consuming exercise and does not scale well.   

Existing tools such as IBM® Optim Query Tuner® and IBM Optim 
Workload Tuner® provide tuning recommendations for specific 
known problems.  While very effective, they do not, however, 
provide the ability to perform query performance problem 
determination with flexible user-defined patterns (examples listed 
below). This is mainly because these tools are agnostic to the 

 

* Damasio is a Student Fellow in IBM Centre for Advanced Studies 
(CAS) and Szlichta is a Faculty Fellow in IBM CAS in Toronto. 

 

© 2016, Copyright is with the authors. Published in Proc. 19th 
International Conference on Extending Database Technology (EDBT), 
March 15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on 
OpenProceedings.org. Distribution of this paper is permitted under the 
terms of the Creative Commons license CC-by-nc-nd 4.0  

Industrial and Applications Paper

 

 

Series ISSN: 2367-2005 515 10.5441/002/edbt.2016.49

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2016.49


complex structure of QEPs. There does not exist a general purpose 
automated system that would allow for interactive analysis and 
diagnosis of performance problems by searching for arbitrary 
patterns within a large number of QEPs. A user not so experienced 
with QEPs may want to answer simple questions. For example, 
after searching and determining the cost of a table scan on a 
particular table, the user may want to know how many queries in 
the workload do an index scan access on the table and get a sense 
of the implications of dropping the index by comparing the index 
access cost to that of the table scan. Even with more experienced 
database administrators, often there are clues from monitoring data 
that provide hints of certain characteristics of QEPs that are not 
easily found by using typical search tools like grep. For instance, 
given a large number of queries, say 1000 queries, and the 
corresponding workload QEPs: 

 Find all the queries in the workload that might have a spilling 
hash join below an aggregation and the cost is more than a 
constant N. 

 Find all the subqueries that have a cost that is more than 50% 
of the total cost of the query and provide details of the 
subquery operators (name, cost, and input operators). 

 Find all the queries that have an outer join involving the same 
table somewhere in the plan below both sides of a hash join.  

 Perform cost based clustering and correlate results of 
applying expert patterns to each cluster. 

We consider making it easier and faster to automatically answer 
questions like the above in our work. We provide a flexible system 
OptImatch that performs analysis over large and complex query 
workloads, in order to help diagnosis optimizer problems and 
retrieve solutions that were previously provided by experts. The 
optImatch system drastically lowers the skill level required for 
optimizer access plan problem determination through advanced 
automated pattern matching and retrieving of solution 
recommendations of previously discovered performance problems 
for single queries and large query workloads.  OptImatch is very 
well received and is proving to be very valuable in the IBM support 

of business clients and database optimizer development 
organization. 

At the enterprise level, major commercial state-of-the-art relational 
database systems such as IBM DB2®, Oracle®, and Microsoft® 
SQL Server® are deployed in environments where finding all 
available optimizations and performance tuning strategies becomes 
necessary to maintain the usability of the database. Traditional 
optimization methods often fail to apply when logical subtleties in 
queries and database schemas circumvent them. The examples of 
this include cases, where the recommended performance 
enhancement is to index a table in a particular way, prescribe an 
integrity constraint such as functional dependency [16] or order 
dependency [17], create a materialized view [7] or to rewrite 
manually the proposed SQL query, where orthogonal approach 
with machine optimization [5], [21], [25] failed to rewrite the query 
to get the same answer but with a better performance.   

The problem pattern comprises a list of operators having particular 
properties that are of interest to a user, as exemplified in some of 
the aforementioned problems. By incorporating our query 
performance problem determination system many optimization 
problems could be automatically identified and resolved. Figure 1 
depicts an example of a text graph version of a snippet of a QEP 
from IBM DB2. The snippet shows a nested loop join (NLJOIN) of 
the SALES_FACT table accessed using an index scan (IXSCAN) 
with other columns fetched (FETCH) from the table and then joined 
to the CUST_DIM table. The numbers immediately above the 
operator or table name show the estimated number of rows flowing 
out (cardinality). The numbers in parenthesis show the operator 
number. Operators are also referred to as Plan OPerators (pop) or 
LOw LEvel Plan OPerators (LOLEPOP) in this paper. Each 
operator has an estimated Input/Output (I/O) cost, the bottom 
number below the operator number, and a cumulative cost for itself 
and all operator below it, the number immediately below the 
operator number. In the depicted example, a user could be 
concerned with NLJOIN that has an inner stream of type table scan 
(TBSCAN). Such query is costly as the NLJOIN operator scans the 
entire inner table CUST_DIM for each of the rows from the outer 
SALES_FACT table. An example of a solution recommendation 
might be to provide a recommendation to create an index of the 
target table of the TBSCAN, in this case CUST_DIM.  

In recent years, more and more customer queries are generated 
automatically by query managers (such as IBM Cognos®) with 
business users providing only specific parameters through 
graphical interfaces [9], [10]. Specific parameters are then 
automatically translated by query managers into executable SQL 
queries. Based on analyzing IBM customer workloads there is 
essentially no limit to the length of the query generated 
automatically by query managers. It is quite usual to find queries 
with over one thousand lines of SQL code (hundreds of operators). 
Such queries are very complex and time consuming to analyze with 
nesting and stitching of several subqueries into a larger query being 
a common characteristic. Another common feature is 
repetitiveness, where similar (or even identical) expressions appear 
in several different parts  of the same query, for instance, in the 
queries referring to the same  view or nested query block  multiple 
times [15], [22]. If there is need to improve the performance of such 
complex queries, when optimizer failed, it could be time 
consuming to do this manually. It could take hours or even days to 
analyze a large query workload. Our goal is automate this process 
as much as possible, and therefore save significant amount of time 
spent by users on query performance problem determination. The 
OptImatch system makes this process easier. While optimizers are 
constantly improving, OptImatch allows experts through their 

         19860.9 
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        4909.624 
   /--------+---------\ 
   19.12          4043 
 FETCH         TBSCAN 
 (   3)   (   5) 
 26.0884         15771 
 2.624           4907 
      /---+----\           | 
   19.12      1228         812130 
   IXSCAN    SALES_FACT   CUST_DIM 
    (   4)     Q2            Q1 
   11708.7 
    5250 
     | 
9.18948e+07 
    IDX1 
     Q2 

Figure 1 Query with NLJOIN 
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experience to create the interesting problem patterns and 
recommendations to overcome issues. 

We decided to use the RDF format as it allows one to easily retrieve 
information with the SPARQL query language. SPARQL has the 
capability for querying optional and required graph patterns. 
Another powerful feature exploited in SPARQL is that of property 
paths. A property path is a possible route through a graph between 
two graph nodes. SPARQL property paths provide a succinct way 
to write parts of graph patterns and to also extend matching patterns 
to arbitrary length paths. With property paths, we can handle 
recursive queries, for instance, search for a descendant operator that 
does not necessarily have an immediate relationship (connection) 
with its parent. We can also search for patterns that appear multiple 
times in the same QEP. Last but not least, SPARQL allows graph 
traversal and pattern matching in a very efficient way [3], enabling 
analysis of a large number of complex QEPs in a short period of 
time. 

While the focus of this work is on query performance problem 
determination, our methodology can be applied to other general 
software problem determination [26], assuming that there exists 
automatically or dynamically generated diagnostic information that 
needs to be further analyzed by an expert. Broadly, the 
contemplated diagnostic data may be human-readable and intended 
for review by human users of the system to which the diagnostic 
data relates.  Examples of possible diagnostic data include log data 
relating to network usage, security, or compiling software, as well 
as software debug data or sensor data relating to some physical 
external system.  In these scenarios, the problem pattern may 
correspond to any sequence of data points or interrelationships of 
data points that are of diagnostic interest. 

1.2 Contributions 
The main contributions of this paper appear in Section 2 and 
Section 3 as follows. 

1. We developed a semantic web tool to transform a QEP into 
an abstracted artefact structure (RDF graph). We propose in 
our framework to model features of the QEP into a set of 
entities containing properties with relationships established 
between them. (Section 2.1) 

2. We provide a web-based graphical interface for the user to 
describe a problem pattern (pattern builder). The tool 
transforms this pattern into a SPARQL query through 
handlers. Handlers provide the functionality of automatically 
generating variable names used as part of the SPARQL 
query. The SPARQL query is executed against the abstracted 
RDF structure and any matched portions of RDF structure are 
relayed back to the user. We present a suite of real-world IBM 
customer problem patterns that illustrate the issues related to 
query performance, which are then used in Section 3 for 
experimental performance evaluation.  (Section 2.2).   

3. We added a knowledge base capability within the tool that 
could be populated with some expert provided patterns and 
solution recommendations as well as allow users to add their 
own patterns and recommendations. The system 
automatically matches problem patterns in knowledge base to 
the QEPs and if there are any search results ranks them using 
statistical correlation analysis. OptImatch distinguishes 
between a pattern builder and a tagging handler interface to 
achieve generality and extensibility. In a nutshell, the pattern 
builder allows the users to specify what is wrong with the 
query execution plan (static semantics), and the handler 
tagging interface defines how to report and fix it (dynamic 
semantics) through automatically adopting the context. Since 

the knowledge base patterns and solution recommendations 
are not in the context of the user supplied QEPs, we have 
defined the language that users can use to add dynamic 
context to the recommendations. (Section 2.3) 

4. An experimental evaluation showing the performance and 
effectiveness of our techniques was carried out using real 
IBM customer datasets. We experimented with different 
problem patterns, and show that our framework runs 
efficiently over large and complex query workloads. Our 
performance evaluation reveals that the time needed to 
compute a search over a specified problem pattern against a 
QEP increases linearly with the size of the workload, the 
number of operators in the QEP and the number of 
pattern/recommendations in the knowledge base. Finally, we 
show through a user study that our system is able to save a 
significant amount of time to analyze QEPs. Moreover, we 
quantify in the user study the benefits of our approach in 
terms of precision over manual pattern searching. (Section 3) 

In Section 4, we discuss related work. We conclude and consider 
future work in Section 5.  

To the best of our knowledge, we are the first to provide a system 
for query performance problem determination by applying QEP 
feature transformation through RDF and SPARQL. This work we 
feel opens exciting venues for future work to develop a powerful 
new family of problem determination techniques over existing 
optimizer performance analysis tools and other diagnostic data 
exploiting graph databases. 

2. SYSTEM  
2.1 Transforming Diagnostic Data 
Even though optimizer diagnostic data may differ in some ways 
between various database management systems, their major 
characteristics remain the same. Query performance diagnostic 
information is usually in the form of QEPs formatted in readable 
text form.  An example of the portion of the QEP generated by the 
IBM DB2 database engine is presented in Figure 1. A QEP includes 
diagnostic information about base objects (e.g., tables, views and 
indexes), operators (e.g., join, sort and group-by) as well as costs 
and characteristics associated with each operator.   

Some properties of operators are included in a QEP in the tree 
diagram as in Figure 1 (e.g., cardinality total cost, Input/Output 
cost, cumulative cost), wherein other properties appear as separate 
textual blocks identified by operator number (e.g., cumulative CPU 
cost, cumulative first row cost and estimated bufferpool buffers). 
Furthermore, some properties are common between different types 
of operators (e.g., cardinality, total cost and CPU cost), while others 
are specific to certain operators. For instance, NLJOIN has a 
property fetch max, and TBSCAN has a property max pages, but 
not vice versa. A QEP also contains some other detailed diagnostic 
data, including information about the DBMS instance and 
environment settings. All of the techniques described in this paper 
have been implemented given IBM DB2 QEPs. Hence, much of the 
discussion through the rest of the paper is framed in the terminology 
and characteristics of IBM DB2. However, the techniques that are 
described have general applicability, and can be used with any other 
DBMS product or other diagnostic data that lends itself to property 
graph representation. 

A QEP can be viewed as a directed graph that indicates the flow of 
operations processing data within the plan. QEPs resemble a tree 
structure, where each node (operator) possesses numerous 
properties and is considered as one of the inputs to a derived 
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ancestor node. LOLEPOPs in a QEP are connected to their parents 
as inputs streams. These inputs can be identified with three different 
types 1) outer input (left input of the parent operator) 2) inner input 
(right input of the parent operator) and 3) general input stream 
(generic input used for any kind of operator). 

The LOLEPOPS may be understood, at the level of abstraction of 
the DBMS user, as indivisible operations that are directly executed 
by the DBMS, with each LOLEPOP carrying a stated cost. The 
stated cost for each LOLEPOP represents an estimate of server 
resources, generated by the DBMS system based on a proposed 
SQL query by taking into account the particular properties of the 
database. The overall QEP is machine-generated by the DBMS 
Optimizer [14]. It is machine-optimized to gravitate towards the 
lowest total cost LOLEPOPs attainable by the DBMS’s optimizer. 
The plan structure is highly dynamic and can change based on 
configuration, statistics of the data associated with referenced base 
objects and other factors even if query characteristics remain 
similar.  However, plan changes are difficult to spot manually as 
they tend to spawn thousands of lines of informative details for 
more complex queries in the workload. 

RDF is a labeled directed graph built out of triples, each containing 
subject (resource), predicate (property or relationship) and object 
(resource or value).  RDF does not enforce specific schema, hence, 
two resources in addition to sharing properties and relationships, 
can also be described by their own unique predicates. This property 
of RDF is beneficial to describe and preserve various types of 
complex diagnostic information about QEPs. Even though RDF 
inherently does not possess a particular structure, such structure can 
be enforced by specifying predicates (for example, defining 
predicates, such as hasInputStreamPop or hasOutputStreamPop, 
and hasInnerInputStreamPop or hasOuterInputStreamPop and 
using them to establish relationships between resources 
(LOLEPOPs)). This allows one to recreate the tree structure and 
characteristics used in QEPs. 

Algorithm 1 TransformingQEPs 
Input: query execution plan files QEPFs[ ] 
Output: execution plans represented as RDF Graphs, RDFGs[] 
  1:  forall qepf in QEPFs[ ] 
  2:       i := 0 
  3:        rdfg := convert qepf  into RDF graph model by traversing 

through base objects, operators and relationship
(input streams) with Jena RDF API 

  4:        RDFGs[i] := rdfg 
  5:        i := i + 1 
  6:  end forall 
  7:  return RDFGs[ ] 

We propose in our framework to model features of the QEP into a 
set of entities containing properties with relationships established 
between them. In these terms, a QEP can be modelled into 
LOLEPOPs (entities), type, cardinality and costs (properties) and 
input/output streams (relationships).  This model, represented in 
our framework by means of Apache Jena RDF API, is applied to 
QEPs provided by the user and persisted in a transformation engine 
(Algorithm 1). Jena is a Java API which can be used to create and 
manipulate RDF graphs. Jena has object classes to represent 
graphs, resources, properties and literals. The result is a 
transformation of the QEP into an RDF graph, where each 
LOLEPOP represents an RDF Resource, each property and 
relationship represents an RDF Predicate and each property value 
is represented by an RDF Object. During the transformation from 
the QEP file to the RDF graph additional derived properties can be 
defined by analyzing resource properties. For instance, the 
hasTotalCostIncrease predicate allows us to calculate and store the 
total cost of the LOLEPOP by subtracting the cost of the input 
LOLEPOPs from currently LOLEPOP being analyzed. The 

<http://explainPlan/PlanPop/1> <http://explainPlan/PlanPred/hasPopType> "NLJOIN" . 
<http://explainPlan/PlanPop/1> <http://explainPlan/PlanPred/hasOuterInputStream> <http://explainPlan/PlanPop/3> . 
<http://explainPlan/PlanPop/1> <http://explainPlan/PlanPred/hasInnerInputStream> <http://explainPlan/PlanPop/5> . 
<http://explainPlan/PlanPop/3> <http://explainPlan/PlanPred/hasPopType> "FETCH" . 
<http://explainPlan/PlanPop/3> <http://explainPlan/PlanPred/hasEstimatedCardinality> "19.12" . 
<http://explainPlan/PlanPop/5> <http://explainPlan/PlanPred/hasPopType> "TBSCAN" . 
<http://explainPlan/PlanPop/5> <http://explainPlan/PlanPred/hasEstimatedCardinality> "4043.0". 
<http://explainPlan/PlanPop/5> <http://explainPlan/PlanPred/hasTotalCost> "15771.0" . 
<http://explainPlan/PlanPop/5> <http://explainPlan/PlanPred/hasIOCost> "49007.0" . 
<http://explainPlan/PlanPop/5> <http://explainPlan/PlanPred/hasJoinInputLeg> "INNER" . 
<http://explainPlan/PlanPop/5> <http://explainPlan/PlanPred/hasOutputStream> <http://explainPlan/PlanPop/1> . 
<http://explainPlan/PlanPop/5> <http://explainPlan/PlanPred/hasInputStreamPop> <http://explainPlan/PlanBaseObject/CUST_DIM> . 
<http://explainPlan/PlanBaseObject/CUST_DIM> <http://explainPlan/PlanPred/hasEstimateCardinality> "812130.0" 

Figure 2 Generated RDF in textual representation     

 

Figure 3 Web-based Graphical Interface (Pattern Builder) 

<http://explainPlan/PlanPop/2> <http://explainPlan/PlanPred/hasPopType> "NLJOIN" . 
<http://explainPlan/PlanPop/2> <http://explainPlan/PlanPred/hasOuterInputStream> <http://explainPlan/PlanPop/3> . 
<http://explainPlan/PlanPop/2> <http://explainPlan/PlanPred/hasInnerInputStream> <http://explainPlan/PlanPop/5> . 
<http://explainPlan/PlanPop/3> <http://explainPlan/PlanPred/hasPopType> "FETCH" . 
<http://explainPlan/PlanPop/3> <http://explainPlan/PlanPred/hasEstimatedCardinality> "19.12" . 
<http://explainPlan/PlanPop/5> <http://explainPlan/PlanPred/hasPopType> "TBSCAN" . 
<http://explainPlan/PlanPop/5> <http://explainPlan/PlanPred/hasEstimatedCardinality> "4043.0". 
<http://explainPlan/PlanPop/5> <http://explainPlan/PlanPred/hasTotalCost> "15771.0" . 
<http://explainPlan/PlanPop/5> <http://explainPlan/PlanPred/hasIOCost> "49007.0" . 
<http://explainPlan/PlanPop/5> <http://explainPlan/PlanPred/hasJoinInputLeg> "INNER" . 
<http://explainPlan/PlanPop/5> <http://explainPlan/PlanPred/hasOutputStream> <http://explainPlan/PlanPop/2> . 
<http://explainPlan/PlanPop/5> <http://explainPlan/PlanPred/hasInputStreamPop> <http://explainPlan/PlanBaseObject/CUST_DIM> . 
<http://explainPlan/PlanBaseObject/CUST_DIM> <http://explainPlan/PlanPred/hasEstimateCardinality> "812130.0" 

Figure 2 Generated RDF in textual representation    
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Generated RDF graph can then be preserved in memory ready for 
analysis by the transformation engine. The OptImatch System 
architecture is illustrated in Figure 4. 

An example of an auto-generated RDF graph in textual 
representation is presented in Figure 2.  Figure 2 depicts an RDF 
representation of the LOLEPOPs shown in Figure 1. Each RDF 
statement is in the form of a triplet including a resource, a predicate 
and an object.  In the code presented, statements referring to the 
resource “http://explainPlan/PlanPop/5” represents LOLEPOP #5. 
Various predicates are shown, each encoding a piece of information 
from the QEP.  For example, there are predicates that specify 
LOLEPOP #5’s total cost (15771) and estimated cardinality (4043). 
The RDF representation of all other LOLEPOPs is generated 
accordingly.  

2.2 Searching for Problem Patterns 
SPARQL is the RDF Query Language. The SPARQL standard is 
maintained by the W3C. Our system can accomplish the step of 
searching for user-defined problem patterns in QEPs by 
transforming patterns into SPARQL queries directed to the 
abstracted RDF derived from the QEPs. SPARQL performs graph 
traversal and pattern matching efficiently. This allows one to 
analyze complex patterns over large query workloads in a short 
period of time.  

We decided to use RDF and SPARQL as SPARQL contains the 
capability for querying optional and required patterns of the graph 
with arbitrary length paths, and moreover, SPARQL property paths 
provide a succinct way to match patterns in the RDF graph. This 
includes recursive queries, such as looking for descendants 
operators that do not necessarily have an immediate connection 
with their parent (see Pattern B in Section 2.3), and searching for 
patterns that appear multiple times in the same query execution 
plan. We decided to use RDF and SPARQL as SPARQL contains 
the capability for querying optional and required patterns of the 
graph with arbitrary length paths, and moreover, SPARQL property 
paths provide a succinct way to match patterns in the RDF graph. 
While one could consider using any property graph representation 
framework, RDF was used also for convenience since DB2 

supports RDF file format and SPARQL querying across all editions 
from DB2 10.1, when the RDF specific layer, DB2 RDF Store, was 
added. The DB2 RDF Store is optimized for graph pattern 
matching. 

Algorithm 2 TransformingProblemPattern 
Input: problem pattern probPat 
Output: problem pattern probPat transformed to SPARQL query 
  1:  probPatJSON[] := translate problem pattern probPat into 

JSON Object (an array) 
  2:    sparql := initialize prefixes 
  3:    forall probPat in probPatJSON[] 
  4:       sparql +:= transform an element  probPat from JSON object 

probPatJSON with  handlers into the SPARQL query 
  5:  return sparql 

Query performance problems can usually be described as problem 
patterns in the QEP. A problem pattern is a set of optimizer plan 
features and characteristics specified in a particular order and 
containing properties with predefined values. Figure 3 displays a 
web-based graphical user interface (pattern builder) used in our 
system wherein a user can express the problem pattern by selecting 
various properties of LOLEPOPs and plan properties that a user 
might be interested in within the QEP. In the depicted example of 
problem pattern (Pattern A), the user is concerned with a 
LOLEPOP that: (i) is of type NLJOIN; (ii) has an outer input stream 
of type any (ANY) with cardinality greater than one (meaning that 
the outer is likely to be more than one row and consequently the 
inner will be accessed multiple times; (iii) has an inner input stream 
of type TBSCAN; and (iv) the inner input stream has large 
cardinality (greater than 100).  The depicted graphical user 
interface generates an example structure of a LOLEPOP that 
matches the selected properties. In this case, the described 
LOLEPOP is a nested loop join operator (NLJOIN) with some 
operator (ANY) on the outer input stream and a table scan 
(TBSCAN) on the inner input stream.  Such a pattern is costly as 
deduced by satisfying the cardinality conditions. The NLJOIN 
operator scans the entire table (TBSCAN) for each of the rows from 
the outer operator ANY. It would likely be of value for a subject 

 

Figure 4 System Architecture 
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matter expert to spend time and attention to try to optimize queries 
matching this problem pattern in the QEP. (System 
recommendations are described in details in Section 2.3.) 

When specifying a problem pattern using the graphical user 
interface (GUI) for generality and flexibility sake, the user can 
choose between two types of relationships: immediate and 
descendant. Descendants are operators that are successors but not 
necessarily immediately below the current LOLEPOP. In that case, 
the path between the parent and the descendant child is the portion 
of the graph that in the general case can contain any arbitrary 
number of operators. For instance, in Figure 1, LOLEPOP #4 is an 
immediate child of LOLEPOP #3 and LOLEPOP #4 is a 
descendant child of LOLEPOP #2.  

Once the desired problem pattern is defined by the user by 
describing LOLEPOPs, their characteristics and relationships, it is 
then automatically translated (Algorithm 2) into a JavaScript 
Object Notation (JSON). This object is constructed to contain a 
transformation of the properties specified in the pattern builder to 
the RDF resources and the predicates defined in the model used in 
the QEP. In Figure 5, we present an example JSON Object that 
contains properties specified in the pattern builder (Figure 3). The 
generated JSON Object is an array of objects describing each 
resource operator and its relationships. For instance, the portion of 
JSON Object describing LOLEPOP with ID 1 has specified type 
NLJOIN, an estimated cardinality value of more than 100 and 
relationship with two immediate children operators, LOLEPOP 
with ID 2 and LOLEPOP with ID 3. 

ሼ"pops":ሾ	
ሼ"ID":1,"type":"NLJOIN","popProperties":	
							ሾ	ሼ"id":"hasOuterInputStream","value":2,"sign":"Immediate									
																						Child”ሽ,	

ሼ"id":"hasInnerInputStream","value":3,"sign":"Immediate	
																							Child"ሽሿሽ,	
ሼ"ID":2,"type":"ANY","popProperties":	

ሾሼ"id":"hasOutputStream","value":1ሽሿሽ,	
ሼ"ID":3,"type":"TBSCAN","popProperties":	

ሾሼ"id":"hasEstimateCardinality","value":"100",	
																			"sign":""ሽ,	

ሼ"id":"hasInputStream","value":4,"sign":"Immediate	
Child"ሽ,	
				ሼ"id":"hasOutputStream","value":1ሽሿሽ,	

ሼ"ID":4,"type":"BASE	
		OB","popProperties":ሾሼ"id":"hasOutputStream","value":3ሽሿሽሿሽ,	

								ሼ"planDetails":ሾሿሽ	

Figure 5 JSON Object	

The transformation engine uses JSON Objects to auto-generate an 
executable SPARQL query. An example of the autogenerated 
SPARQL query is presented in Figure 6. The URIs broadly match 
the RDF graph generated based on the QEP in Figure 1, and various 
SPARQL query operators and operands match the elements of the 
problem pattern indicated by the user. 

An autogenerated SPARQL query is composed of two main parts, 
the SELECT clause that defines variables that appear in the query 
results, and the WHERE clause that defines resource properties that 
should be matched against the specified RDF graph. The variables 
that appear in query results are specified by prefixing variable name 
with “?” symbol, i.e., “?variable_name” (and can be referenced 
multiple times in the WHERE clause). The same convention is used 
to define variables to establish relationship between resources and 
the ones used to filter retrieved resources. 

Our framework allows us to autogenerate SPARQL queries with a 
wide range of characteristics, including nesting, filtering, multiple 
resource mapping, and specifying property paths as well as blank 
nodes. Blank nodes in RDF indicate the existence of unnamed or 
previously undefined resources. We introduce the concept of 
handlers to facilitate this. Handlers provide the functionality of 
automatically generated variable names used for the retrieval of 
query results, filtering of retrieved values, and establishing 
relationships between resources and blank nodes. 

Handler generation is performed in a modular manner, by building 
the SPARQL query one layer (one operator) at the time over 
portions of JSON Object.  In order to generate the SPARQL query, 
we define four types of handler variables: result handlers, internal 
handlers, relationship handlers and blank node handlers. Result 
handlers are created based on identifiers (sequential identifiers 
assigned to each LOLEPOP as shown in the graphical user interface 
in Figure 3), i.e., ?pop1 and ?pop2 etc. For instance, in our 
SPARQL query, the result handler ?pop1 is a resource returned to 
the user,  and is also used in the WHERE clause to identify this 
resource as NLJOIN by adding the predicate hasPopType.  

PREFIX	popURI:	൏http://explainPlan/PlanPop/	

			SELECT	ሺ?pop1	AS	?TOPሻ	ሺ?pop2	AS	?ANY2ሻ		

																		ሺ?pop4	AS	?BASE4ሻ	

			WHERE	ሼ	

						?pop1	predURI:hasPopType	"NLJOIN"	.	

							?pop1	predURI:hasOuterInputStream														
?BNodeOfpop2_to_pop1	.	

							?BNodeOfpop2_to_pop1	predURI:hasOuterInputStream				
?pop2	.	

							?pop2	predURI:hasOutputStream	?BNodeOfpop2_to_pop1.	

							?BNodeOfpop2_to_pop1	predURI:hasOutputStream	?pop1	.	

							?pop1	predURI:hasInnerInputStream	

																		?BNodeOfpop3_to_pop1.	

							?BNodeOfpop3_to_pop1	predURI:hasInnerInputStream		
?pop3	.	

							?pop3	predURI:hasOutputStream	?BNodeOfpop3_to_pop1.	

							?BNodeOfpop3_to_pop1	predURI:hasOutputStream	?pop1	.	

							?pop3	predURI:hasPopType	"TBSCAN"	.	

							?pop3	predURI:hasEstimateCardinality	?internalHandler1.	

																		FILTER	ሺ	?internalHandler1		100ሻ	.	

							?pop3	predURI:hasInputStream	?BNodeOfpop4_to_pop3	.	

							?BNodeOfpop4_to_pop3	predURI:hasInputStream	?pop4	.			

							?pop4	predURI:hasOutputStream	?BNodeOfpop4_to_pop3.	

							?BNodeOfpop4_to_pop3	predURI:hasOutputStream?pop3	.	

							?pop4	predURI:isABaseObj		?internalHandler2	.	

ሽ	ORDER	BY	?pop1	

Figure 6 Autogenerated SPARQL Executable Query 

Internal handlers are used to filter results. Identifiers of internal 
handlers are not tied to a specific resource. Their identifiers are 
automatically incremented on the server. For instance, the handler 
?internalHandler1 is generated to provide the filtering of 
cardinality property by first associating it with ?pop1 (?pop1 
predURI:hasEstimatedCardinality ?internalHandler1) and then 
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utilizing it in the FILTER clause (FILTER (?internalHandler1 > 
100)). 

Relationship handlers establish connection between resources 
based on information about the hierarchy of operators retrieved 
from the JSON Object (e.g., {"id": "hasOuterInputStream","value": 
2,"sign": "Immediate Child”}). The relationship handlers are used 
in conjunction with blank node handlers to resolve ambiguity 
problems. Ambiguity problems are encountered when the same 
LOLEPOP is absorbed in the different parts of the QEP. Such a 
LOLEPOP, for example, a common sub expression with a 
temporary table (TEMP) that has multiple consumers, has the same 
cardinality in all the consumers which may produce different 
results. This might be the case, for example, when a common sub 
expression TEMP is consumed by both a NLJOIN and a HSJOIN 
in the different parts of the QEP applying different predicates. In 
such a case, the output columns of NLJOIN and HSJOIN might 
differ even though the input common sub expression TEMP into 
each of them is the same. In the above example, ?pop1 resource has 
the predicate hasOuterInputStream connecting it to ?pop2 via the 
blank node ?BnodeOfPop2_to_pop1 (?pop1 predURI: 
hasOuterInputStream   ?BNodeOfpop2_to_pop1). This design 
ensures the uniqueness of each resource instance in the received 
QEP.    

The autogenerated SPARQL query through handlers is matched 
against the abstracted RDF structure containing information about 
the QEP. It maps any matched portions of the abstracted RDF 
structure back to the corresponding diagnostic data (Algorithm 3). 
Figure 1 represents an example of the DBMS QEP that contains 
problem pattern specified in Figure 3.  

Algorithm 3 FindingMatches 
Input: problem pattern probPat, 
           query execution plan files QEPFs[ ] 
Output: matches found in query execution plans 
  1:  RDFGs[ ] := TransformingQEPs(QEPFs[ ])   
  2:   sparql := TransformingProblemPattern(probPat) 
  3:   forall rdfg in RDFGs[] 
  4:        matchProbPat[ ] := match abstracted problem pattern sparql 

against query execution plan rdfg   
  5:       if (matchProbPat != empty) 
  6:             matchProbPatDet[ ] :=  detransformation by relating

any matched portions of RDF structure
matchProbPat back to corresponding query plan 

  7:                MATCHES[ ].append(matchProbPatDet[ ]) 
  8:        endif 
  9:  end forall 
  10:  return MATCHES[ ] 

Matching problem patterns against diagnostic data allows for 
dynamic analysis of ad-hoc patterns. However, beyond single 
pattern matching, the tool usage can vary from problem 
identification and analysis to solution recommendations as 
described in the following section.   

2.3 Finding Solutions in Knowledge Base 
The OptImatch system has the ability to access the knowledge base 
to provide solutions to the known problems (Algorithm 4 and 
Algorithm 5). The knowledge base is populated with predetermined 
problem patterns and associated query plan recommendations by 
subject matter experts (e.g. IBM employees or expert database 
administrators). The OptImatch system  promotes and supports 
collaboration among developers, experts and database 
administrators to create library of patterns and recommendations.  

Once defined, the problem pattern is preserved in the knowledge 
base in two forms: an executable SPARQL query that is applied to 
the QEP provided by the user and as an RDF structure describing 
this pattern. Although the knowledge base problem patterns and 
solution recommendations are not in the context of the user 
supplied QEPs, the context for problem patterns is adapted 
automatically through the handlers tagging with the defined 
language.  

Once a problem pattern to be stored in the knowledge base is 
described by an expert, it is translated into the SPARQL query that 
includes result handlers (Section 2.2). The result handlers can have 
aliases associated with them. Looking at the example SPARQL 
snippet we can see that the result handler ?pop1 has been assigned 
an alias ?TOP and ?pop4  an alias ?BASE4. These aliases are used 
to tag the recommendation to the specified result handlers. Tagging 
allows for identifying a specific result handler or a set of result 
handlers to be returned. This allows OptImatch to list table names, 
column names and predicates etc., in the context of the QEP 
provided by the user even though these are not available when the 
recommendations were created.   

Algorithm 4 SavingRecommendationsKB 
Input: problem patter probPat 
           suggested recommendations recomms[] 
           current knowledge base KB[ ] 
Output: updated knowledge base KB[ ] 
  1:  sparql := TransformingProblemPattern(probPat) 
  2:   save abstracted problem sparql, problem pattern represented 

as RDF and corresponding recommendations recomms[] 
in knowledge base KB[ ] with handlers tagging interface

  3:  return KB[ ] 

Our language allows for surrounding static parts of 
recommendations with dynamic components generated through 
aliases by preceding each alias of the handler with an “@” sign. 
This approach is also used to limit the number of resource handlers 
returned to the user since in complex queries there can be large 
number or result handlers generated, however, only some of them 
might be significant to the recommendation.   

Algorithm 5 FindingRecommendationsKB 
Input: query execution plan files QEPFs[ ] 
           knowledge base KB[ ] 
Output: solution recommendations for queries that match  
            QEPFs[] 
  1:   forall qepf  in QEPFs[] 
  2:       queryReccomendation[ ] := match specified qepf against 

knowledge base KB[] using statistical analysis and 
provide recommendations to diagnostic data through tags 
of handlers 

  3:       if (queryReccomendation != empty) 
  4:             queryRecommendations[ ]. 

append(queryReccomendation) 
  5:       else 
  6:               queryRecommendations[ ].  
                        append(“There is currently no recommendation in   

knowledge base”) 
  7:        endif 
  8:  end forall 
  9:  return queryRecommendations[] 

A user may include multiple result handlers and apply the same 
rules to each of them by using array brackets  e.g., [@TOP, 
@ANY2].  For common patterns (appearing multiple times in the 
same QEP) a user may limit the number of occurrences of the 
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pattern that is returned in recommendation results. In the following 
example, [@TOP, @ANY2]:1, only the first occurrence  of @TOP 
and @ANY2 is returned and the specifics of the LOLEPOP types 
and names are obtained from the context of each occurrence.   

Furthermore, a user can make use of various helper functions 
constructed to allow for interactions with base tables, indexes and 
materialized query tables (MQTs). These functions provide  means 
to list column predicates and table names specific to each 
occurrence of the pattern in the context of the user provided query 
execution plan. For instance, a following expression 
@TOP.listColumns("PREDICATE") lists columns from an alias 
handler in the predicate indicated by the keyword PREDICATE.   

An expert can also use ?TOP alias tagging handler to indicate that 
when such pattern is encountered all input columns (using keyword 
INPUT) coming from ?BASE4 object into the NLJOIN should be 
listed and are valid candidates for the index creation. This can be 
accomplished by tagging recommendation with following 
expression:  

“Create index on table @BASE4 on columns    
@TOP.listColumns("INPUT”)”, 

and adding it to the knowledge base with the corresponding pattern. 

Our system can look through all the QEPs supplied and iterate 
through both the user-defined problem patterns and the library of 
expert provided patterns with corresponding recommendations. If 
there is a match between the problem pattern in the knowledge base 
and the QEP, one or more query plan recommendations are returned 
with the appropriate context.  

Our system returns ranked recommendations by using statistical 
correlation analysis. QEPs typically have operators, estimated or 
actual cost, frequency or priority metrics associated with them (as 
described in more details in Section 2.1). These characteristics are 
critical to the database system in terms of performance. Based on 
these characteristics a prioritized list of recommendations is 
provided by the system. The ranked recommendations are provided 

with a confidence score. For instance, in the example described in 
Section 2.2 with NLJOIN, the query plan problem determination 
program could output the recommendation (by automatically 
generating context)  to create an index of the CUST_DIM table that 
is the source for the TBSCAN, as this could be the recommendation 
stored in the knowledge base created by the experts. An example of 
the syntax for creating index is illustrated in the previous paragraph. 
An alternate recommendation may be to collect column group 
statistics in order to get better cardinality estimates so that the 
optimizer may choose a hash join instead of a nested loop join. 
Ranking between these two recommendations can be aided with 
statistical correlation analysis comparing the QEP context of 
cardinality and cost estimates with that in the expert provided 
patterns. 

OptImatch can provide advanced guidance with a variety of 
recommendations for example, changing database configuration, 
improving statistics quality, recommending materialized views, 
suggesting alternate query and schema design changes, and 
recommending integrity constraints that promote performance. We 
illustrate some examples of these below. 

As an example of a problem related to query rewrite, we describe 
the pattern that represents the problem of poor join order. This 
pattern (Pattern B) is given by the following properties: (i) 
LOLEPOP of type JOIN (which means any type of JOIN method, 
e.g. NLJOIN, hash join (HSJOIN) and merge scan join (MSJOIN)); 
(ii) has a descendant (i.e., not necessarily immediately below) outer 
input stream of type JOIN; (ii) has a descendant inner input stream 
of type JOIN; (iii) the descendant outer input stream join is a Left 
Outer Join; (iv) descendant inner input stream join is a Left Outer 
Join. The recommendation for this pattern is to rewrite the query 
from the following structure (T1 LOJ T2) … JOIN … (T3 LOJ T4) 
to ((T1 LOJ T2).... JOIN ....T3) LOJ T4 as the rewritten query is 
more efficient. This optimization is now automatically done in DB2 
but was found to be a limitation in early versions of DB2. This 
illustrates the usefulness of the tool in database optimizer 
development as well as supporting clients that use previous version 
of the DB2 system. We found QEPs matching this problem pattern 
in the real customer workload used in experiments, since the 
customer uses previous version of DB2. Figure 7 represents an 
example of the DBMS QEP that contains specified problem pattern. 
(Left outer join operators are prefixed in a QEP with “>” symbol, 
e.g, >HSJOIN and >NLJOIN.) This pattern is an example of the 
recursive problem pattern, since descendant outer and inner input 
stream of type LOJ do not have to be necessary immediate child of 
JOIN. (For instance, see LOLEPOP #5 and LOLEPOP #15) in 
Figure 7.   

An alternate recommendation for this pattern, in case T1 = T3, is to 
materialize the column(s) from table T4 into table T1 and change 
the order of the operators from (T1 LOJ T2)… JOIN… (T1 LOJ 

        0.157686 
         NLJOIN 
         (   5) 
         644901 
         751020 
   /--------+---------\ 
    8.78417e+06   1.79511e-08 
 >HSJOIN          TBSCAN 
 (   6)    (  13) 
 633711          2267.08 
 750436    583.334 
     /---+----\             | 
78417e+06  5.99144e+06  0.174681 
  ^HSJOIN    TBSCAN          TEMP  
   (   7)    (  12)         (  14) 
   561520    68023.4        2267.07 
   664808    85628          583.334 
     |             | 
      5.99144e+06     0.174681     
   TELEPHONE_DETAIL   >NLJOIN 
          Q1    (  15) 
      2267.07 
                             583.334 

Figure 7 Query with Left Outer Join 
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T4) to ((T1 LOJ T2).... JOIN ....T1), eventually allowing to 
eliminate T4 as well as one instance of T1, because it had a unique 
key join to itself. This optimization is not automatically done in 
current version of DB2 optimizer.  

The next pattern (Pattern C) represents the problem related to 
estimation of the execution cost by optimizer. This pattern is given 
by the following properties: (i) LOLEPOP of type index Scan 
(IXSCAN) or table scan (TBSCAN) (ii) has cardinality smaller 
than 0.001; (iii) has a generic input stream of type Base Object 
(BASE OB); (iv) the generic input stream has cardinality bigger 
than 100000. The recommendation in this case is to create column 
group statistics (CGS) on equality local predicate columns and 
CGS on equality join predicate columns of the Base Object.  Figure 
8 represents an example of the DBMS query explain plan that 
contains specified problem pattern.  With column group statistics, 
the optimizer can determine a better QEP and improve query 
performance. This is a common tuning recommendation when there 
is statistical correlation between column values associated with 
multiple equality local predicates or equality join predicates.  

A user can also encounter a problem related to SORT spilling 
(Pattern D) given by the following properties:  (i) LOLEPOP of 
type SORT; (ii) has an input stream immediately below with an I/O 
cost less than the I/O cost of the SORT. The recommendation may 
be to change the database memory configuration to increase sort 
memory if the number of QEPs containing this pattern is large 
enough to benefit the performance of many queries in the workload. 

With expert or user provided patterns and recommendations in the 
knowledge base, OptImatch can iterate over all of the 
predetermined problem patterns in the knowledge base.  
Specifically, each problem pattern may, in such cases, be 
understood as being received from the knowledge base. If matched, 
OptImatch recalls and returns the recommendations corresponding 
to the particular problem pattern. Such a technique enables query 
plan checks to be routinized – a user can, with no particular 
knowledge or training, run a general test of all predetermined 
problem patterns against a given query workload. 

3. EXPERIMENTAL STUDY 
In this section, we present an experimental evaluation of our 
techniques. Our evaluation focuses on three objectives. 

a) An evaluation of the effectiveness of our approach using real 
IBM customer query workload (1000 QEP files). (Section 3.2 
and Section 3.3) 

b) Scalability and performance over different problem 
characteristics: sizes of the query workload (Section 3.2.1), 
number of LOLEPOPs (Section 3.2.2) and number of 
recommendations in the knowledge base (Section 3.2.3).  

c) A comparative study with manual search for patterns by 
experts, quantifying the benefits of our approach in terms of 
time and precision. (Section 3.3) 

3.1 Setup  
Our experiments were run on an Intel® Core™ i5-4330M machine 
with 2.80GHz processor and 8GB of memory. For all the conducted 
experiments, we used three patterns created by IBM experts. Each 
pattern has associated recommendations for the user (stored in the 
knowledge base), providing a diagnosis of the artefact. The patterns 
used throughout the experimental study and their respective 
recommendations are as follows (detailed description of each 
pattern can be found in Section 2).  

a) Pattern #1 – Pattern A (Section 2.2) that represents a 
problem with recommendation related to indexing. 

b) Pattern #2 – Pattern B (Section 2.3) of a problem with a 
recommendation related to rewriting the query. 

c) Pattern #3 – Pattern C (Section 2.3) that represents problem 
with a recommendation related to statistics for better 
cardinality (and consequently cost) estimation. 

We measure the performance by computing system time for 
running OptImatch over the IBM customer query workload. We 
demonstrate the benefits of our framework by quantifying the 
running time against the size of the query workload (number of 
QEPs), number of LOLEPOPS (complexity of individual QEPs) 
and number of recommendations in the knowledge base.  

3.2 Performance and Scalability 
3.2.1 Size of Query Workload 
In the first experiment, we measure the performance of our tool by 
dividing the IBM customer query workload into ten buckets, each 
containing a different number of execution files. The first bucket 
contains 100 QEP files, and for each following bucket another 100 
unique QEP files is added up to 1000. In other words, the 
distribution of the QEP files over buckets is as follows: [100, 200, 
..., 1000]. 

The purpose of this experiment is to verify how efficient our tool is 
to search for portions of QEP files that match the prescribed pattern 
against different sizes of the query workload. The test was repeated 
six times (for each pattern), by dividing the QEP files into buckets 
randomly. (The average time is reported.)  

Figure 9 reveals that the time needed to compute the search 
increases linearly with the number of QEP files. The linear 
dependence allows our problem determination tool to scale well to 
large query workloads. (There is a possibility to even further reduce 
the time by optimizing the communication between the client and 
server in our system.) Furthermore, the time to perform the search 
even for a large query workload with 1000 QEPs (with hundreds of 
operators each) that involves complex SPARQL reqursion is less 
than 70 seconds. Therefore, we can conclude that our tool allows 
for efficient search for patterns over complex diagnostic data.  

Note that Pattern #2 takes more time to be searched for than the 
others (around two times more). This is because Pattern #2 is more 
complex, as it contains descendant nodes. Therefore, recursion is 
used to analyze all LOLEPOPs inside the query explain plans 
which are fairly complex involving on average 100+ operators in 
the experimental workload.  

3.2.2 Number of LOLEPOPs 
In the second experiment, we measured the performance of our 
system over QEPs with varying number of LOLEPOPs. We divided 
the IBM customer query workload into eleven buckets. The first 
bucket contains QEPs with the number of LOLEPOPs from 0 to 50, 
the second one from 50 to 100, and so on, until the last bucket that 
contains from 500 to 550 LOLEPOPs. (The maximum number of 
LOLEPOPs encountered in the workload was 550.)  However, 
buckets 7-10 with the number of LOLEPOPS from 250 to 500 
turned out to be empty, because the tested query workload contains 
only query explain plans with number of LOLEPOPS below 250 or 
above 500. Hence, as a consequence we report numbers for six 
buckets, 1-5 and 11. In other words, the distribution of the buckets 
is [0-50], [50-100], [100-150], [150-200], [200-250], and [500-
550]. The number of pops is tied to the size of the explain file, the 
larger number of pops, the larger the size of the file. 

The objective to run this experiment is to verify how efficient 
searching for patterns is as a function of number of pops. The 
experiment was repeated 6 times for each pattern, and the average 

523



time is reported. For each bucket, we report the average time in 
milliseconds, to analyze a single explain plan.  

The results of this experiment are presented in Figure 10. As 
expected, the time spent to analyze QEPs increases as the number 
of LOLEPOPs increases. However, the time spent to analyze the 
QEPs increases in a linear fashion. Therefore, our system scales 
well for complex queries with a large number of LOLEPOPs. 
Moreover, even large and complex queries (with around 500 
LOLEPOPs) can be processed efficiently by our tool (less than 400 
milliseconds). 

3.2.3 Number of Recommendations in Knowledge Base 
In the next experiment, we quantify the performance of our system 
against the number of recommendations in the knowledge base. We 
measure the running time to analyze 1000 QEP files against 1, 10, 
100 and 250 recommendations in the knowledge base, respectively.    

We perform this experiment to simulate the important use case for 
our system described in Section 2.3 to routinize query plan checks 
with expert provided predetermined problem patterns and 
corresponding recommendations against a given complex query 
workload.  Instead of taking a specific problem pattern defined by 
the user, the system iterates over all of the predetermined problem 
patterns in the query plan knowledge base and provides matching 
solutions to known problems. 

We report the results of this experiment in Figure 11. Our 
framework adapts well, with linear dependence over the number of 
recommendations in the knowledge base. The linear dependence 
allows our system to scale well to large knowledge databases. Our 
tool can process a 1000 query workload against 250 problem 
patterns and recommendations in around 70 minutes. 

3.3 Comparative User Study 
In the last experiment, we measure the time to perform pattern 
search both manually by experts and automatically with OptImatch. 
We also looked at the search quality. For each of the three patterns, 
we provide users the workload with 100 distinct QEP files. Out of 
100 QEP files, 15, 12 and 18 QEP files match the three prescribed 
patterns #1, #2, and #3, respectively. Three experts participated in 
this experiment. We report the aggregated average statistics. 

The purpose of this experiment is to quantify the benefits of our 
automatic approach against cumbersome manual search by experts 
that is prone to human error. The time comparison is shown in 
Figure 12. It can be observed that our tool drastically reduces the 
time to search for a pattern against even a sample of the query 
workload. (We perform this experiment over a sample of the query 
workload due to the limited time experts could spend to participate 
in the experiment.) Overall, our tool is around 40 times faster than 
the manual search by IBM experts. To simulate real world 
environment during the manual search for patterns experts were 

 

Figure 9 Search time versus number of QEP files 

 

           Figure 10 Search time versus number of LOLEPOPs 

 
      Figure 11  Matching recommendations in knowledge base 

 
                          Figure 12 Comparative user study 

00:00:00

00:00:17

00:00:35

00:00:52

00:01:09

00:01:26

0 200 400 600 800 1000

Ti
m
e 
[h
s:
m
in
s:
se
cs
]

Number of  QEP files

Pattern #1 Pattern #2 Pattern #3

0

100

200

300

400

500

0 1 2 3 4 5 6 7 8 9 10 11

Ti
m
e 
[m

s]

Bucket (# of LOLEPOPs)
1) [0‐50]; 2) [50‐100]; 3) [100‐150]; 

4) [150‐200]; 5) [200‐250] 11) [500‐550]

Pattern #1 Pattern #2 Pattern #3

00:00:00

00:14:24

00:28:48

00:43:12

00:57:36

01:12:00

0 50 100 150 200 250

Ti
m
e 
[h
s:
m
in
s:
se
cs
]

Number of Reccomendations

0:00:00

0:07:12

0:14:24

0:21:36

0:28:48

0:36:00

0:43:12

0:50:24

1 2 3

Ti
m
e 
[h
s:
m
in
s:
se
cs
]

Pattern #

User Optimatch

524



allowed to access the tools that they use in their daily problem 
determination tasks. An example of this includes the grep 
command-line utility for searching plain-text data sets for lines 
matching a regular expression.  

When we measure the running time for automatic search with our 
tool, we include the time both for specifying the pattern using 
graphical interface in our tool (on average around 60 seconds), as 
well as, performing the actual search by our system. Based, on this 
experiment, it can be inferred that manual search for a larger query 
workload (1000 queries) would take approximately 5 hours, 
whereas, with our tool this can be performed in around 2 minutes 
(around 150 times faster). Note that an automatically searched 
pattern has to be specified only once by the user. 

Last but not least, we report the quality of the search results in our 
comparative study. We measure the precision as the function of 
missed QEP files that contain the prescribed pattern. As predicted, 
manual search has been prone to human error.  The precision for 
manual search by experts is on average 80%. Details are provided 
in Table 1.  The common errors include misinterpreting information 
stored in the QEP file as well as formatting errors, e.g., using  grep 
on operand value 0.001 while this information is represented in the 
QEP in either the decimal form or with an exponent as 10ିଷ. 
Obviously, since our tool is fully automatic and immune to such 
differences, it provided 100% precision. Our system does not only 
perform significantly faster than a manual search but it also 
guarantees correctness. Often, high precision may be very 
important in problem determination analysis, as such, this 
experiment emphasizes another important benefit of OptImatch.  

4. RELATED WORK 
The SQL programming language is declarative in nature. 
Therefore, it is enough to specify what data we want to retrieve, 
without actually specifying how to get data. This is one of the main 
strengths of SQL, as it means that it should not make a difference 
to the query optimizer how a query is written as long as the different 
versions are semantically equivalent. However, in practice this is 
only partially true, as there is only a limited number of machine-
generated query rewrites that a database optimizer can perform [9]. 
As the complexity of SQL grows, there is an increasing need to 
have tools help with performance problem determination.  

Many different formalisms have been proposed in query 
optimization. We cite here only the most pertinent references. Join, 
sort and group by are at the heart of many database operations. The 
importance of these operators for query processing has been 
recognized very early on. Right from the beginning, the query 
optimizer of System R paid particular attention to interesting orders 
by keeping truck of indexes, ordered sets and pipelining operators 
throughout the process of query optimization, as described in 
Selinger et al. [14]. Within query plans, group-by, order-by and join 
operators can be accomplished either by a partition operation (such 
as by the use of a hash index), or by the use of an ordered tuple 
stream, as provided by a tree-index scan or by a sort operation (if 
appropriate indexes are not prescribed).  

In Guravannavar et al. [11], authors explored the use of sorted sets 
for executing nested queries. The importance of sorted sets in query 
optimization has prompted the researchers to look beyond the sets 

that have been explicitly generated. In Szlichta et al. [17], authors 
show how to use relationship between sorted attributes discovered 
by reasoning over the physical schema via integrity constraints to 
avoid potentially expensive join operator. The inference system 
presented in follow-up work provides a formal way of reasoning 
about previously unknown or hidden sorted sets [18], [19]. Based 
on that work, many other optimization techniques from relational 
query processing can also be adapted to optimize group by, order 
by and case expressions [2], [20].  

Optimization strategies described above hold the promise for good 
improvement. Their weakness, however, is that often the indexes, 
views and constraints that would be useful for optimization for a 
given database and workload is not explicitly available and there is 
only a limited number of types of query transformations that the 
optimizer can perform. Therefore, problem determination tools 
[23], [24] offer an alternative automated way to analyze QEPs and 
provide recommendations, such as re-write the query, create an 
index or materialized view or prescribe an integrity constraints. 
However, existing automatic tools for query performance problem 
determination do not provide the ability to perform workload 
analysis with flexible user defined patterns, as they lack the ability 
to impose proper structure on QEPs (as described in details in 
Section 1).  

5. CONCLUSIONS 
Query performance problem determination is a complex process. It 
is a tedious manual task that requires one to analyze a large number 
of QEPs that could span thousands of lines. It also necessitates a 
high level of skill and in-depth optimizer knowledge from users. 
Identification of even known issues is a very time and resource 
consuming and prone to human error.  

To the best of our knowledge, we are the first to provide the system 
that performs interactive analysis in a structured manner of 
potentially a large number of QEPs in order to diagnose and match 
optimizer problem patterns and retrieve corresponding 
recommendations that are provided by experts. Our semantic 
system combines and applies the benefits of RDF model and 
SPARQL query language in query performance problem 
determination and QEP analysis. OptImatch is very well received 
and is proving to be very valuable in the IBM support of clients and 
database optimizer development organization by providing quick 
work around solutions through the use of a well-defined knowledge 
base. 

Our methodology can certainly be applied to other general software 
determination problems (e.g., log data relating to network usage, 
security, or software compiling, as well as software debug data or 
sensor data relating to some physical system external to the 
system). Our framework can be applied to other general software 
problem determination, assuming that there exists automatically 
generated structured diagnostic information in the form of the 
graph that needs to be further analyzed by an expert or general user. 
This is the direction that we would like to explore in the future 
work. 
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ABSTRACT
Recent scientific literature focuses on answering Earliest Ar-
rival (EA), Latest Departure (LD) and Shortest Duration
(SD) queries in (schedule-based) public transportation net-
works. Unfortunately, most of the existing solutions ope-
rate in main memory, making the proposed methods hard
to scale for larger instances and difficult to integrate in a
multi-user environment. This work proposes PTLDB (Pub-
lic Transporation Labels on the DataBase), a novel, scalable,
pure-SQL framework for answering EA, LD and SD queries,
implemented entirely on an open-source database system.
Moreover, we formulate four new types of queries targeting
public transportation networks, namely the Earliest Arrival
and Latest Departure k-Nearest Neighbor (kNN) and One-
to-many queries and propose novel ways to efficiently answer
them within PTLDB. Our experimentation will show that
the proposed solution is fast, scalable and easy to use, mak-
ing our PTLDB framework a serious contender for use in
real-world applications.

Categories and Subject Descriptors
H.2.8 [Database Applications ]: Spatial databases and
GIS; G.2.2 [Graph Theory]: Graph algorithms

General Terms
Algorithms, Design

Keywords
Transportation networks, kNN queries, One-to-many queries

1. INTRODUCTION
Recent algorithmic advances have been very efficient in

solving vertex-to-vertex queries on graphs, for a variety of
different graph types and instances. For road networks, la-
test papers focused on supporting additional types of shortest-
path (SP) queries, including one-to-all (finding SP distances

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

from a source vertex s to all other graph vertices) [8, 15],
one-to-many (computing the SP distances between the source
vertex s and all vertices of a set of targets T ) [11, 15],
range (find all nodes reachable from s within a given times-
pan) [15], many-to-many (calculate a distance table between
two sets of vertices S and T ) [11] and k-Nearest Neighbor
(kNN) queries in [12, 17, 21]. For large-scale networks, the
works of [4, 9, 20], proposed methods for solving vertex-to-
vertex queries, whereas the works of [16] and [14] deal with
more complex queries, such as k-Nearest Neighbor, Reverse
k-Nearest Neighbor (RkNN) and one-to-many queries, either
on main memory or inside a database. Finally, for schedule-
based public transportation networks recent works, either
expand existing shortest-path techniques originally used for
road networks, or work directly on the provided timetable.
Most of the recent methods targeting public transit networks
are surveyed in the latest literature overview on transporta-
tion networks of [5].

Despite the inherent different characteristics between those
three types of graph networks (road, large-scale and public
transportation networks), the prevailing technique that ex-
cels at all of them is the 2-hop labeling or hub labeling (HL)
algorithm of [18],[6], in which we store a two-part label L(v)
for every vertex v: a forward label Lf (v) and a backward
label Lb(v). These labels are then used to very fast answer
vertex-to-vertex shortest-path queries. This technique has
been adapted successfully to (i) road networks [2, 3, 10],
(ii) undirected, unweighted graphs in [4, 9, 20] and (iii) has
also been extended to public transportation networks in [7]
and [23]. The HL method has also been applied success-
fully for one-to-many, many-to-many and kNN queries in
road networks [11, 12] and kNN and RkNN queries in the
context of large-scale networks in [16].

Although hub labeling is an extremely efficient shortest-
path technique on main memory, there are very few works
that extend those results for secondary storage. HLDB [13]
stores the precomputed labels for road networks in a com-
mercial database system and translated the hub labeling,
vertex-to-vertex distance query to plain SQL commands.
Moreover, it showed how to answer kNN queries and k-best
via points, again with simple SQL queries. The work of [20]
proposed HopDB, a C++ customized solution that utilizes
secondary storage during preprocessing for large-scale net-
works. Efentakis et al. proposed the COLD framework [14]
that stores hub-labels for large-scale networks in an open-
source database engine and answers vertex-to-vertex, one-
to-many, kNN and RkNN queries, using SQL commands.

In this work, we focus on timetable, public transporta-
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tion networks and present a novel database framework that
may service several route-planning queries on such networks.
Our pure-SQL, PTLDB (Public Transporation Labels on
the DataBase) framework, extends the hub labeling tech-
nique for public transportation networks, as presented in
Timetable Labeling (TTL) [23] and may answer multiple
variations (Earliest Arrival, Latest Departure and Shortest-
Duration) of vertex-to-vertex queries, entirely within a da-
tabase. Moreover, we formulate four new types of route-
planning queries for public transit, namely the Earliest Ar-
rival and Latest Departure k-Nearest Neighbor (kNN) queries
and their one-to-many versions, i.e., namely the Earliest
Arrival and Latest Departure one-to-many queries. These
newly defined public-transit queries may be very useful for
a variety of applications utilizing public transport, such as
mobile travel guides, transportation and urban planning or
geomarketing applications. Our experimentation will show
that the proposed PTLDB framework may answer all those
different types of queries efficiently, while its implementation
with an open-source database engine makes PTLDB very
easy to integrate into existing multi-user, real-world appli-
cations. Additionally, each type of query may be answered
with a simple SQL command, making our results easily re-
producible by anyone. Thus, the PTLDB framework is the
only database solution that focuses on public-transportation
networks, while ensuring excellent performance that is fast-
enough for real-time applications.

The outline of the remainder of this work is as follows.
Section 2 presents related work. Section 3 describes the
novel PTLDB framework and its implementation details.
Experiments establishing the benefits of PTLDB are pro-
vided in Section 4. Finally, Section 5 gives conclusions and
directions for future work.

2. BACKGROUND AND RELATED WORK
In this section we will present related work, relative to the

hub labeling method for directed weighted graphsG(V,E,w),
where V is the set of vertices, E ⊆ V xV is the set of arcs
and w is a positive weight function E → R+. We will also
discuss the latest adaptations of this specific technique for
public transportation networks.

2.1 Hub Labeling
In the 2-hop labeling or Hub Labeling (HL) algorithm

of [18, 6], preprocessing stores at every vertex v a forward
Lf (v) and a backward label Lb(v). The forward label Lf (v)
is a vector of pairs (u, dist(v, u)), with u∈V . Likewise, the
backward label Lb(v) contains pairs (w, dist(w, v)). Ver-
tices u and w are denoted as the hubs of v. The generated
labels conform to the cover property, i.e., for any s and g,
the set Lf (s) ∩ Lb(g) must contain at least one hub that is
on the shortest s − g path. To find the network distance
dist(s, g) between any two vertices s and g, a HL query
seeks the hub v ∈ Lf (s) ∩ Lb(g) that minimizes the sum
dist(s, v) + dist(v, g). By sorting the pairs in each label
by hub, this takes linear time by employing a coordinated
sweep over both labels. The HL technique has been success-
fully adapted for road networks in [2, 3, 10]. In the case
of large-scale graphs, the Pruned Landmark Labeling (PLL)
algorithm of [4] orders vertices by degree and then during
preprocessing, performs one BFS per graph vertex, starting
from the highest-order / degree vertices. At each iteration,
each individual BFS is pruned by using the hub labels cal-

culated from the previous searches. Later, Delling et al. [9]
improve the suggested vertex ordering and the storage of the
hub labels for maximum compression. The HL method has
also been extended to one-to-many, many-to-many and kNN
queries on road networks in [11] and [12] respectively. The
recent work of [16] has also proposed ReHub, a novel main-
memory algorithm that extends the Hub Labeling approach
to efficiently handle Reverse k-Nearest Neighbor (RkNN)
queries on large-scale networks.

Regarding secondary-storage solutions, Jiang et al. [20]
propose their HopDB algorithm for constructing an efficient
HL index when the given graphs and the corresponding in-
dex are too large to fit into main memory. Abraham et al. [1]
introduced the HLDB system, which answers distance and
kNN queries in road networks entirely within a database
by storing the hub labels in database tables and translating
the corresponding HL queries to SQL commands. In [14],
Efentakis et al. presented the pure-SQL COLD framework
(COmpressed Labels on the Database) for answering mul-
tiple exact distance queries (vertex-to-vertex, kNN, RkNN
and one-to-many) for large-scale networks, in a open-source
database engine. Despite the fact that each type of query
was translated to just few lines of SQL code, experiments
have showed that COLD provides excellent performance and
is thus, fast enough for real-time applications.

2.2 Public transportation networks
For methods targeting public transportation networks be-

fore 2015, one can refer to the latest related literature over-
view of [5]. In this section, we will mainly focus on the latest
research works that appeared in 2015.

Recently, the hub labeling method has also been extended
for public transportation networks, in Public Transit Label-
ing presented in [7] and Timetable Labeling (TTL) presented
in [23]. Since our work builds on Timetable Labeling (TTL),
we will follow the notation presented there. A schedule-
based, public transportation network may be modeled as a
multigraph G, where each vertex is associated with a station
or stop (i.e, “distinct locations where one may board a tran-
sit vehicle” [7]) and each arc from a vertex u to a vertex v
represents a trip b that departs from stop u at timestamp td
and arrives at v at timestamp ta. Thus, each arc e may be
represented with a tuple < u, v, td, ta, b >, where b, td, ta are
the trip, departure time and arrival time of e respectively
and ta − td is the corresponding duration of the arc. The
arc e is an outgoing arc for vertex-stop u and an incoming
arc for vertex-stop v. Thus, there are multiple arcs connect-
ing the same pair of vertices-stops that correspond to the
different trips connecting those two stops together.

Timetable labelling (TTL) is a extension of Hierarchi-
cal Hub Labeling [3] for public transportation networks.
The TTL index preprocessing, computes two sets of labels,
Lin(v) and Lout(v), for each vertex-stop v, such that each
label in Lin(v) (or Lout(v)) is a tuple describing a “fast”
path that ends at (starts from) v. TTL assumes there is
a strict vertex ordering, which, defines the relative impor-
tance of each vertex with respect to the others. Hence, the
rank r(v) of a vertex v is an integer ∈ [1, |V |]. It is as-
sumed that the vertex v ranks lower (i.e., is less important)
than u, when r(v) > r(u). When given a timetable graph G
and a node order r, the TTL index can be uniquely con-
structed. The output of TTL preprocessing is two sets of
labels, Lin(v) and Lout(v) for each vertex-stop v, whereas
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each label contains tuples < hub, td, ta, pivot, b > represent-
ing a fast transit path between stops v and hub, passing
through stop pivot, using trip b and departing at td and
arriving at ta. The pivot information is required for recon-
structing the full path, when it is comprised of multiple trips
and is set to null, when the corresponding tuple describes
a direct trip between stops v and hub (i.e., b 6=null). Note,
that the label sets Lin(v) and Lout(v) for a vertex v only
contain paths between v and vertices of higher order.

The labels calculated during the TTL preprocessing may
be used for answering the following three types of queries:

• Earliest Arrival (EA). Given two stops s and g ∈ G
and a starting timestamp t, the earliest arrival EA(s, g, t)
query seeks the path with the earliest arrival time
among those paths that (i) start from s no sooner
than t and (ii) end at g.

• Latest Departure (LD). Given two stops s and g and an
ending timestamp t′, the latest departure LD(s, g, t′)
query seeks the path with the latest departure time
among those paths that (i) start from u and (ii) end
at v no later than t′.

• Shortest Duration (SD). Given two stops s and g, a
starting t and an ending t′ timestamp, the shortest
duration SD(s, g, t, t′) query seeks the path with the
shortest duration among those that (i) start from s no
sooner than t and (ii) end at g no later than t′.

During the query phase, TTL only has to visit the labels
of stops s and g (without accessing the original graph G) and
select the best solution from three candidate cases: (i) Tu-
ples in Lout(s) where hub = g, (ii) Tuples in Lin(g) where
hub = s and (iii) Combining all tuples l1 ∈ Lout(s) and
l2 ∈ Lin(g) where l1.hub = l2.hub and l1.ta <= l2.td. The
experimentation in [23], showed that TTL may answer EA,
LD and SD queries in less than 30µs, while requiring pre-
processing time of less than 17min for all datasets.

In this work, based on the lessons learnt from the pre-
vious COLD database framework [14], that answers multi-
ple distance queries on large-scale graphs, we will: (i) show
how to efficiently store the labels created from Timetable la-
belling for public transportation networks into a database,
(ii) translate the corresponding EA, LD and SD queries
into simple SQL commands (iii) formulate four new types
of queries for public transportation networks, namely the
Earliest Arrival and Latest Departure k-Nearest Neighbor
(kNN) and the Earliest Arrival and Latest Departure one-
to-many queries and (iv) show how to efficiently answer
those additional queries, by using simple SQL commands
within the same database framework, implemented entirely
on a popular, open-source database engine. The resulting
PTLDB (Public Transporation Labels on the DataBase)
framework will be described in the following section.

3. THE PTLDB FRAMEWORK
This section presents the PTLDB (Public Transporation

Labels on the DataBase) database framework. PTLDB can
answer multiple route-planning queries (Earliest Arrival [EA],
Latest Departure [LD], Shortest Duration [SD] vertex-to-
vertex, EA, LD k-Nearest Neighbor and EA, LD one-to-
many) for public transportation networks using SQL com-
mands. Since PTLDB builds on the Timetable Labeling

Figure 1: An example timetable graph G with 7 vertices
(stops) and 4 trips (each highlighted with a different color).
Timestamps are in 100s, i.e., 360=>36,000s (10:00h). Ver-
tex 0 is the highest order vertex, followed by vertices 1,2,3,4

Table 1: The created labels for the example graph G
Lout(v) Lin(v)

v < hub, td, ta,pivot,b > < hub, td, ta,pivot,b >
0 < 0, 360, 360,−1,−1 > < 0, 360, 360,−1,−1 >
1 < 0, 324, 360, 0, 1 > < 0, 360, 396, 0, 2 >

< 1,324,324,−1,−1 > < 1, 324, 324,−1,−1 >
< 1, 396, 396,−1,−1 > < 1, 396, 396,−1,−1 >

2 < 0, 324, 360, 0, 2 > < 0, 360, 396, 0, 1 >
< 2,324,324,−1,−1 > < 2, 324, 324,−1,−1 >
< 2, 396, 396,−1,−1 > < 2, 396, 396,−1,−1 >

3 < 0, 324, 360, 0, 3 > < 0, 360, 396, 0, 4 >
< 3,396,396,−1,−1 > < 3, 396, 396,−1,−1 >

4 < 0, 324, 360, 0, 4 > < 0, 360, 396, 0, 4 >
< 4,396,396,−1,−1 > < 4, 396, 396,−1,−1 >

5 < 0, 288, 360, 1, 1 > < 0, 360, 432, 1, 2 >
< 1, 288, 324, 1, 1 > < 1, 396, 432, 1, 2 >

< 5,432,432,−1,−1 > < 5, 432, 432,−1,−1 >
6 < 0, 288, 360, 2, 2 > < 0, 360, 432, 2, 1 >

< 2, 288, 324, 2, 2 > < 2, 396, 432, 2, 1 >
< 6,432,432,−1,−1 > < 6, 432, 432,−1,−1 >

(TTL) [23], we will explain the basic concepts presented
there. We chose PostgreSQL [22] for our implementation,
given that it is a popular, open-source RDBMS. Although
we use some PostgreSQL-specific data-types (namely arrays)
and SQL extensions, we use only features included in its
standard installation, without any third-party extensions.

3.1 Vertex-to-Vertex (v2v) queries
The PTLDB framework uses the labels generated by the

Timetable Labeling (TTL) of [23] for public transportation
networks. The respective TTL implementation (and the re-
spective datasets) were made publicly available by the au-
thors at [24]. To highlight the results of this process, the la-
bels for the example timetable graphG of Figure 1 are shown
in Table 1. The labels Lout(v) and Lin(v) for each vertex /
stop v is a vector of tuples < hub, td, ta, pivot, b > sorted
by hub, td (see Section 2). To answer vertex-to-vertex (v2v)
queries between two stop s and g, TTL only has to visit the
labels Lout(s) and Lin(g) and select the best solution from
three candidate cases: (i) Tuples in Lout(s) where hub = g,
(ii) Tuples in Lin(g) where hub = s and (iii) Combining all
tuples l1 ∈ Lout(s) and l2 ∈ Lin(g) where l1.hub = l2.hub
and l1.ta <= l2.td. Although selecting between those three
cases is trivial for a main memory algorithm, it is complex
to adapt in a database context. Thus, we need to gener-
ate for every v ∈ G, some extra “dummy” tuples in both
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Lout(v) and Lin(v) with hub = v and td = ta for every DIS-
TINCT (hub, td) combination existing in Lout(u) and for
every DISTINCT (hub, ta) combination existing in Lin(u).
Those dummy tuples for our example graph are highlighted
in bold. Note that, those dummy tuples are only a small
fraction (< 10%) of the total number of tuples and hence,
they add minimal overhead to the PTLDB framework’s per-
formance. By generating those dummy tuples, we can en-
sure that each vertex-to-vertex query may be answered by
combining exactly one tuple l1 ∈ Lout(s) and one tuple
l2 ∈ Lin(g) where l1.hub = l2.hub and l1.ta <= l2.td, i.e.,
we unified the three separate cases of TTL query processing
into one. Thus, the answer to the EA(1, 1, 324) query is 324
by combining the tuples <1,324,324, . . . >, present in both
Lout(1) and Lin(1).

Code 1: Vertex-to-vertex (v2v) queries for PTLDB

1 WITH outp AS

2 (SELECT UNNEST(hubs) AS hub ,

3 UNNEST(tds) AS td,

4 UNNEST(tas) AS ta

5 FROM lout WHERE v=s),

6 inp AS

7 (SELECT UNNEST(hubs) AS hub ,

8 UNNEST(tds) AS td,

9 UNNEST(tas) AS ta

10 FROM lin WHERE v=g)

11 /* For EA queries */

12 SELECT MIN(inp.ta)

13 /* For LD queries */

14 SELECT MAX(out.td)

15 /* For SD queries */

16 SELECT MIN(inp.ta-outp.td)

17 FROM outp ,

18 inp

19 WHERE outp.hub=inp.hub AND outp.ta <=inp.td

20 /* For EA,SD queries */

21 AND outp.td >=t

22 /* For LD,SD queries */

23 AND inp.ta <=t’

After generating the additional dummy tuples for simpli-
fying the TTL vertex-to-vertex queries, we need to store the
respective Lout(v) and Lin(v) labels in the database, as two
separate DB tables denoted lout and lin, respectively. Simi-
lar to the previous work COLD [14], we take advantage of
the fact that PostgreSQL features an array data type that
allows columns of a DB table to be defined as variable-length
arrays. Hence, in PTLDB we store hubs, departure times-
tamps td and arrival timestamps ta for a vertex (all ordered
by hub, td) as arrays in three separate columns (i.e., hubs,
tds and tas) in a single row. The resulting lout and lin DB
tables are shown in Tables 2 and 3. Similar to COLD, this
approach has considerable advantages: (i) The lout and lin
DB tables have exactly |V | rows (ii) Each of those DB tables
has the column v as primary key, minimizing the size of the
respective index. (iii) For any v2v query, PTLDB needs to
access exactly two rows, regardless of the sizes of |Lout(s)|
and |Lin(g)|, thus minimizing the secondary-storage utiliza-
tion, even working inside a database. In case of timetables
changing depending on the weekday (e.g., weekdays vs week-
ends) or the time of the year (e.g., on holidays) in PTLDB
we would need to have different versions of the lout and
lin DB tables, for servicing each different period. Also note

that in PTLDB, we do not need to store the pivot or the
trip information, since if we wanted to reconstruct the full
path, it would make more sense to store on the database the
expanded path for each tuple generated by the TTL prepro-
cessing. After all, this is another advantage of databases,
also suggested by previous efforts like [1].

The resulting SQL commands for all types (Earliest Ar-
rival, Latest Departure and Shortest Duration) of vertex-to-
vertex queries for PTLDB are shown in Code 1, where the
user may choose between the lines 12, 14 and 16 and lines
21, 23 depending on the specific type of query. We use Com-
mon Table Expressions (CTEs) for greater readability and
we exploit the fact that PostgreSQL “guarantees that paral-
lel unnesting” for hubs, tds and tas for each nested query
“will be in sync”, i.e., each tuple < hub, td, ta > is expanded
correctly since for the same v the respective arrays have the
same number of elements1. It is obvious that the PTLDB
vertex-to-vertex query is very simple, since it is implemented
with just a few lines of SQL code and at the same time, it
is highly optimized since it only has to fetch only one row
from each lout and lin DB tables.

Theorem 3.1.1. The PTLDB v2v query is correct.

Proof. By adding the dummy tuples to the lout and lin
DB tables, we can guarantee that the solution to any vertex-
to-vertex query is a combination of one tuple l1 ∈ lout and
one tuple l2 ∈ lin with l1.hub = l2.hub and l1.ta <= l2.td
(Line 19). Considering the fact that PostgreSQL guarantees
correct unnesting of the hubs, tds and tas arrays (line 2-
4, 7-9) for the respective rows for u and v and the extra
conditions specific for each type of query (Lines 12,14 and
16 and lines 21, 23) then the resulting PTLDB vertex-to-
vertex query is correct.

3.2 EA and LD kNN queries
The k-Nearest Neighbour (kNN) query, either for Eu-

clidean space or for network databases, is a very well-studied
problem in database systems due to its wide range of appli-
cations. Unfortunately, it has not been extended yet, to
public transportation networks. To this propose, we for-
mulate the Earliest Arrival and Latest Departure k-Nearest
Neighbour (kNN) queries for schedule-based timetable net-
works, according to the following definitions:

• Earliest Arrival kNN query (EA-kNN). Given a stop q,
a set of target-stops T and a starting timestamp t, the
earliest arrival EA−kNN(q, T, t, k) query seeks the k-
distinct stops ∈ T with the earliest arrival time among
the paths that (i) start from q no sooner than t and
(ii) end in any stop ∈ T .

• Latest Departurel kNN query (LD-kNN). Given a stop q,
a set of target-stops T and an ending timestamp t, the
latest departure LD−kNN(q, T, t, k) query seeks the
k-distinct stops ∈ T with the latest departure time
from stop q from among the paths that (i) start from
q and (ii) end in any stop ∈ T no later than t.

Both these type of queries may be used in a wide range
of useful applications, such as an tourist deciding to visit
the nearest Point of Interest (POI) using public transport

1http://stackoverflow.com/a/23838131
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Table 2: The lout table used in PTLDB for the example
graph G

v hubs tds tas
. . . . . . . . . . . .
1 {0, 1, 1} {324, 324, 396} {360, 324, 396}
. . . . . . . . . . . .
4 {0, 4} {324, 396} {360, 396}
. . . . . . . . . . . .

Table 3: The lin table used for PTLDB for the example
graph G

v hubs tds tas
. . . . . . . . . . . .
1 {0, 1, 1} {360, 324, 396} {396, 324, 396}
. . . . . . . . . . . .
4 {0, 4} {360, 396} {396, 396}
. . . . . . . . . . . .

Table 4: The ea knn naive table for the example graph G,
T = {4, 6} and k = 1

hub td vs tds
0 360 {4,6} {396,432}
2 396 {6} {432}
4 396 {4} {396}
6 432 {6} {432}

(EA-kNN) or how a city visitor may determine his remain-
ing time for finishing his breakfast, before reaching one of
his preferred POI-destinations by 11:00 (LD-kNN). To the
best of our knowledge, this is the first time that these queries
have been formalized for public transit networks and there-
fore we are not aware of any previous approach tackling
them. Throughout this work we assume that targets are
not changing, which is a reasonable assumption for pub-
lic transportation networks, since, e.g., for location based
services we already know the stops that are located near
attractive POIs or the most visited city-landmarks. In the
following sections, we will show how to efficiently solve those
queries within PTLDB. For our example graph G (Figure 1)
and the remainder of this section, we assume that target
stops are 4 and 6, i.e., T = {4, 6}

3.2.1 Implementation
In this section, we will mainly discuss EA-kNN queries.

The solution to LD-kNN queries will be directly analogous.
Typically, to solve kNN queries with the hub labeling method,
we need to group the Lin tuples of the targets by hub [1,
16, 14] and keep the k-best entries per hub. Unfortunately,
this approach cannot be extended directly to public trans-
portation networks, due to the condition l1.ta <= l2.td
that must always hold. A naive solution to this problem,
would be to group the Lin tuples of the targets per hub
and td instead, and again keep the best distinct k-entries
per hub, td ordered by ta, with ties broken arbitrarily. The
results of this process would then be stored in the DB ta-
ble ea knn naive, with the data structure shown in Ta-
ble 4. As seen there, for k = 1, hub = 0 and td = 360
we only need to keep the best entry that corresponds to
v = 4 and td = 396. The primary key of ea knn naive table
will be the (hub, td) combination. After building this table,
the EA-kNN(q, T, t, k) query may be solved by the SQL of
Code 2, that combines the row of lout DB table that cor-
responds to vertex q, with the ea knn naive table. There-
fore the EA−kNN(0, {4, 6}, 360, 1) will have the correct an-
swer (4, 396), i.e., the NN of vertex 0 for departure time 360
or later is the vertex 4 with arrival time 396. As showcased
in [14], it makes sense to create one large ea knn naive table
for the maximum value kmax of k (e.g., for k = 16) that
may be serviced by the DB framework and that same table
will be used for all kNN queries up to k = kmax. In this
case, we only need to retrieve k-entries per (hub, td) com-
bination and thus we only expand vs[1 : k] and tas[1 : k]

(Lines 14-15) for k < kmax.

Code 2: EA-kNN naive query for PTLDB

1 WITH n1 AS

2 (SELECT v, hub , td, ta

3 FROM

4 (SELECT v AS v,

5 UNNEST(hubs) AS hub ,

6 UNNEST(tds) AS td,

7 UNNEST(tas) AS ta

8 FROM lout

9 WHERE v=q) n1a

10 WHERE td >=t)

11 SELECT v2,MIN(n2.ta)

12 FROM n1,

13 (SELECT hub , td,

14 UNNEST(vs[1:k]) AS v2,

15 UNNEST(tas[1:k]) AS ta

16 FROM ea_knn_naive) n2

17 WHERE n1.hub=n2.hub

18 AND n2.td >=n1.ta

19 GROUP BY v2

20 ORDER BY MIN(n2.ta), v2

21 LIMIT k;

Theorem 3.2.1. The naive EA-kNN query is correct.

Proof. The naive EA-kNN query joins the l1 tuples in q
row of DB table lout, with the l2 tuples of ea knn naive
DB table with l1.hub = l2.hub and l1.ta <= l2.td. Since for
each individual (hub, td) combination the ea knn naive DB
table stores the top-k (earliest arrival) entries, this ensures
that the naive EA-kNN query provides correct results.

Although the EA-kNN naive query is very simple, it can-
not scale well for large metropolitan networks. In a realistic
setting, multiple buses or trains leave the same hub every
few minutes and therefore for each hub we will have multi-
ple td entries. Thus, the size of ea knn naive DB table and
its primary key index will vastly increase (even after keeping
only the best k-entries per hub, td). The number of rows that
should be joined will also grow, making queries too slow for
real-time applications. Hence, we must further group entries
per hub and create a condensed knn ea DB table. Ideally,
each tuple contained in the q row of lout DB table should
be joined with only a single row in the knn ea table, dur-
ing a EA-kNN query. To achieve that, we can group hub
entries per hour of departure, i.e., making a separate entry
per hub and hour of departure for the available timestamp
ranges of td in lin DB table. The resulting knn ea table
will have the data structure showcased in Table 5 and the
combination of hub, dephour as a primary key. For a specific
hub and hour, e.g., hub = 0, dephour = 10, (i) the columns
tds−exp, vs−exp and tas−exp, contain ALL tuples of lin
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Table 5: The knn ea table data structure
hub dephour vs tas tds-exp vs-exp tas-exp

top-k entries (v) top-k entries (ta) all entries (td) all entries (v) all entries (ta)
0 0 hub = 0, hour ≥ 1 hub = 0, hour ≥ 1 hub = 0, 0 ≤ hour ≤ 1 hub = 0, 0 ≤ hour ≤ 1 hub = 0, 0 ≤ hour ≤ 1

top-k entries (v) top-k entries (ta) all entries (td) all entries (v) all entries (ta)
0 1 hub = 0, hour ≥ 2 hub = 0, hour ≥ 2 hub = 0, 1 ≤ hour ≤ 2 hub = 0, 1 ≤ hour ≤ 2 hub = 0, 1 ≤ hour ≤ 1
. . . . . . . . . . . . . . . . . . . . .

top-k entries (v) top-k entries (ta) all entries (td) all entries (v) all entries (ta)
1 0 hub = 1, hour ≥ 1 hub = 1, hour ≥ 1 hub = 1, 0 ≤ hour ≤ 1 hub = 1, 0 ≤ hour ≤ 1 hub = 1, 0 ≤ hour ≤ 1

top-k entries (v) top-k entries (ta) all entries (td) all entries (v) all entries (ta)
1 1 hub = 1, hour ≥ 2 hub = 1, hour ≥ 2 hub = 1, 1 ≤ hour ≤ 2 hub = 1, 1 ≤ hour ≤ 2 hub = 1, 1 ≤ hour ≤ 1

for targets T , with hub = 0 and td between 10:00 and 11:00
ordered by td, whereas (ii) the columns vs and tas contain
only the best top-k (earliest arrival) distinct entries for tar-
gets T and hub = 0, td≥11:00.

Thus, the optimized EA-kNN query must implement those
two separate cases: (i) Expanding the l2 tuples for a spe-
cific hub between e.g., 10:00 and 11:00 contained in DB
columns tds−exp, vs−exp and tas−exp (still checking that
l1.ta <= l2.td for those entries) and (ii) Expanding the l3
tuples that leave the specific hub after 11:00. As showcased
earlier, both cases are included in a single row per hub of the
knn ea DB table. The resulting query is shown in Code 3.
For combining those aforementioned cases we still have to
use the UNION operator (Line 30) and for increasing perfor-
mance, the JOIN between the lout and knn ea DB tables
happens AFTER expanding the lout tuples for q row and
BEFORE expanding the tuples in knn ea DB table (Lines 1-
18). Note, that if each row in lout DB table contains on av-
erage |Lout|/|V | tuples, then the optimized EA-kNN query
will always access at most |Lout|/|V | rows from the knn ea
DB table, thus minimizing secondary storage utilization.

Theorem 3.2.2. The construction of the knn ea DB ta-
ble and the corresponding EA-kNN query are correct.

Proof. For the EA-kNN query (q, T, t), assume there is
a tuple l1 =< h, td, ta > with td ≥ t for the query vertex q,
included in the lout DB table. The EA-kNN query will join
this tuple with exactly one row in the knn ea DB table for
which hub = h and dephour = FLOOR(ta/3600). This
specific knn ea row contains (i) all l2 tuples of targets T
for hub = h and dephour between FLOOR(ta/3600) and
FLOOR(ta/3600)+1 (we still need to check for those entries
that l1.ta <= l2.td) but (ii) only the best top-k (earliest
arrival) distinct l3 tuples for targets T that leave hub = h
after FLOOR(ta/3600) + 1. There is no need to search for
any other tuples for hub = h after FLOOR(ta/3600) + 1
because all other tuples will have worst arrival time than
the l3 tuples. Also, there is no need to look for any other
tuples for hub = h before FLOOR(ta/3600), because the
l1 trip arrives at hub h after FLOOR(ta/3600). Since the
EA-kNN query will similarly join all tuples in lout DB that
leave query vertex q after timestamp t, the resulting EA-
kNN query is correct.

Considering the choice of an hour as the tuning parameter
for grouping the knn ea DB table entries, we could have
chosen any other valid time interval to that purpose. In fact,
we have even experimented with other intervals (smaller or
larger than an hour) but (i) when smaller intervals are used,
the respective knn ea table has more rows (which makes
queries slower) and (ii) when larger intervals are used (e.g., 3
hours) the number of tuples stored in tds − exp, vs − exp

and tas − exp columns vastly increases, which counteracts
the benefit of the smaller number of total rows. Thus, a time
interval of an hour seems like the best compromise between
those two scenarios and worked well for all tested datasets.
However, it can be tuned according to the specific use-cases
and user needs for a particular public transit network.

In the case of LD-kNN queries, the corresponding knn ld
table will have a similar data structure to the knn ea ta-
ble. There are some main differences though: (i) Entries are
grouped by hub and hour of ARRIVAL, i.e., for a specific
hub and hour, e.g., hub = 0, arrhour = 10, the columns
tds−exp, vs−exp and tas−exp, contain all tuples of lin for
targets T , with hub = 0 and ta between 10:00 and 11:00
ordered by td. Likewise, the combination of hub, arrhour
will be the primary key. (ii) The columns vs and tds (and
not tas as before) contain only the best top-k (latest depar-
ture) distinct entries for targets T and hub = 0, ta≤10:00.
The corresponding LD-kNN query (see Code 4) will also be
slightly different (e.g., MIN(n3.ta), MIN(n2.ta) will be re-
placed by MAX(n1_td) or the DESC ordering) but it will still
offer the same performance benefits as before.

3.3 EA and LD One-to-many queries
Similar to kNN, we formulate the Earliest Arrival and

Latest Departure One-to-many queries for schedule-based
timetable networks, according to the following definitions:

• Earliest Arrival One-to-many query (EA-OTM). Gi-
ven a stop q, a set of target-stops T and a starting
timestamp t, the earliest arrival EA − OTM(q, T, t)
query seeks the earliest arrival time for all target-stops
for trips that start from q no sooner than t.

• Latest Departurel One-to-many query (LD-OTM). Gi-
ven a stop q, a set of target-stops T and an ending
timestamp t, the latest departure LD − OTM(q, T, t)
query seeks the latest departure times for trips starting
from q and end in any stop ∈ T no later than t.

Again the EA-OTM and LD-OTM queries have a wide
range of useful applications, such as transportation plan-
ning (e.g., find faraway stops) or geomarketing applications
(e.g., nearby what stop one must build a franchise store to
be more easily reachable by clients). To the best of our
knowledge, this is also the first time that these queries have
been formalized for public transportation. How to efficiently
solve them within PTLDB, will be shown in the following.

For answering the EA-OTM query, we need to build a
new otm ea DB table that will have the data structure
showcased in Table 6. In the otm ea table the columns
hub, dephour (= hour of departure), tds − exp, vs − exp
and tas − exp are identical to the knn ea DB table and
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Code 3: EA-kNN and EA-OTM queries for PTLDB

1 WITH n1 AS

2 (SELECT v,hub , td, ta

3 FROM

4 (SELECT v,

5 UNNEST(hubs) AS hub ,

6 UNNEST(tds) AS td,

7 UNNEST(tas) AS ta

8 FROM lout

9 WHERE v=q) n1a

10 WHERE td >=t),

11 n1b AS

12 (SELECT n1bb.*,

13 n1.ta AS n1_ta

14 n1.td AS n1_td

15 /* EA-$k$NN query */

16 FROM knn_ea n1bb ,n1

17 /* EA-OTM query */

18 FROM otm_ea n1bb ,n1

19 WHERE n1bb.hub=n1.hub

20 AND n1bb.dephour=FLOOR(n1.ta /3600))

21 SELECT v2,MIN(ta)

22 FROM (

23 (SELECT v2,MIN(n3.ta) AS ta

24 FROM

25 (SELECT

26 /* EA-$k$NN query */

27 UNNEST(tas[1:k]) AS ta,

28 UNNEST(vs[1:k]) AS v2

29 /* EA-OTM query */

30 UNNEST(tas) AS ta,

31 UNNEST(vs) AS v2

32 FROM n1b) n3

33 GROUP BY v2

34 ORDER BY MIN(n3.ta),v2

35 /* EA-$k$NN query */

36 LIMIT k

37 )

38 UNION

39 (SELECT n2.v2,MIN(n2.ta) AS ta

40 FROM

41 (SELECT n1_ta ,

42 UNNEST(tds_exp) AS td,

43 UNNEST(vs_exp) AS v2,

44 UNNEST(tas_exp) AS ta

45 FROM n1b) n2

46 /* Check for l1.ta <=l2.td */

47 WHERE n1_ta <=n2.td

48 GROUP BY n2.v2

49 ORDER BY MIN(n2.ta),v2

50 /* EA-$k$NN query */

51 LIMIT k

52 )) S53

53 GROUP BY v2

54 ORDER BY MIN(ta),v2

55 /* EA-$k$NN query */

56 LIMIT k;

Code 4: LD-kNN and LD-OTM queries for PTLDB

1 WITH n1 AS

2 (SELECT v,hub ,td,ta

3 FROM

4 (SELECT v,

5 UNNEST(hubs) AS hub ,

6 UNNEST(tds) AS td,

7 UNNEST(tas) AS ta

8 FROM lout

9 WHERE v=q) n1a),

10 n1b AS

11 (SELECT n1bb.*,

12 n1.ta AS n1_ta ,

13 n1.td AS n1_td

14 /* LD-$k$NN query */

15 FROM knn_ld n1bb ,n1

16 /* LD-OTM query */

17 FROM otm_ld n1bb ,n1

18 WHERE n1bb.hub=n1.hub

19 AND n1bb.arrhour=FLOOR(t/3600))

20 SELECT v2,MAX(td)

21 FROM (

22 (SELECT v2,MAX(n3.n1_td) AS td

23 FROM

24 (SELECT n1_td , n1_ta ,

25 /* LD-$k$NN query */

26 UNNEST(tds[1:k]) AS td,

27 UNNEST(vs[1:k]) AS v2

28 /* LD-OTM query */

29 UNNEST(tds) AS td,

30 UNNEST(vs) AS v2

31 FROM n1b) n3

32 WHERE n3.td >=n1_ta

33 GROUP BY v2

34 ORDER BY MAX(n3.n1_td) DESC , v2

35 /* LD-$k$NN query */

36 LIMIT k

37 )

38 UNION

39 (SELECT n2.v2,MAX(n2.n1_td) AS td

40 FROM

41 (SELECT n1_td ,n1_ta ,

42 UNNEST(tds_exp) AS td,

43 UNNEST(vs_exp) AS v2,

44 UNNEST(tas_exp) AS ta

45 FROM n1b) n2

46 WHERE n2.td >=n1_ta

47 AND n2.ta <=t

48 GROUP BY n2.v2

49 ORDER BY MAX(n2.n1_td) DESC , v2

50 /* LD-$k$NN query */

51 LIMIT k

52 )) S53

53 GROUP BY v2

54 ORDER BY MAX(td) DESC , v2

55 /* LD-$k$NN query */

56 LIMIT k;
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Table 6: The otm ea table data structure
hub dephour vs tas tds-exp vs-exp tas-exp

best entry per target (v) best entry per target (ta) all entries (td) all entries (v) all entries (ta)
0 0 hub = 0, hour ≥ 1 hub = 0, hour ≥ 1 hub = 0, 0 ≤ hour ≤ 1 hub = 0, 0 ≤ hour ≤ 1 hub = 0, 0 ≤ hour ≤ 1

best entry per target (v) best entry per target (ta) all entries (td) all entries (v) all entries (ta)
0 1 hub = 0, hour ≥ 2 hub = 0, hour ≥ 2 hub = 0, 1 ≤ hour ≤ 2 hub = 0, 1 ≤ hour ≤ 2 hub = 0, 1 ≤ hour ≤ 1
. . . . . . . . . . . . . . . . . . . . .

best entry per target (v) best entry per target (ta) all entries (td) all entries (v) all entries (ta)
1 0 hub = 1, hour ≥ 1 hub = 1, hour ≥ 1 hub = 1, 0 ≤ hour ≤ 1 hub = 1, 0 ≤ hour ≤ 1 hub = 1, 0 ≤ hour ≤ 1

best entry per target (v) best entry per target (ta) all entries (td) all entries (v) all entries (ta)
1 1 hub = 1, hour ≥ 2 hub = 1, hour ≥ 2 hub = 1, 1 ≤ hour ≤ 2 hub = 1, 1 ≤ hour ≤ 2 hub = 1, 1 ≤ hour ≤ 1

the combination (hub, dephour) again serves as the primary
key. The only difference is in the vs and tas columns, where
we must store the best tuple (earliest arrival) per vertex
for the following hours, instead of only the top-k entries
over all targets (as in knn ea table), i.e., the vs and tas
columns will store at-most |V | tuples per row, instead of
only k. Although this makes the resulting EA-OTM query
slower, its SQL implementation is practically identical to the
EA-kNN query (see Code 3). We only need to replace the
knn ea table with otm ea (Line 16), remove the LIMIT k

clauses (Lines 36,51,56) and use UNNEST(tas), UNNEST(vs)

(Lines 30,31) instead of the lines 27,28.
Likewise, for LD-OTM queries we need to build the cor-

responding otm ld DB table that follows the same structure
as knn ld DB table, except that in the vs and tds columns,
we must store the best tuple (latest departure) per vertex
for the PREVIOUS hours, instead of only the top-k entries
over all targets (as in knn ld table). The respective LD-
OTM query is very similar to the previous LD-kNN query,
as showcased in Code 4.

Conclusively, for any query vertex q (containing on av-
erage |Lout|/|V | tuples), then the proposed kNN and One-
to-many queries will always access at most |Lout|/|V | rows
from the respective knn or otm DB tables. Thus, it will be
hard to achieve better secondary storage utilization inside
a database. It is important to note that once we load the
TTL labels and create the lout and lin DB tables, all the
auxiliary DB tables within PTLDB (namely the knn ea,
knn ld, otm ea and otm ld) may also be created by sim-
ple SQL commands (the corresponding queries were omitted
due to space restrictions). This fact also demonstrates that
PTLDB is truly a pure-SQL framework for servicing multi-
ple route-planning queries on public transportation graphs.
In the following experimentation section, we will benchmark
PTLDB ’s performance for various real-world datasets.

4. EXPERIMENTAL EVALUATION
To assess the performance of PTLDB on various pub-

lic transportation graphs, we conducted experiments on a
workstation with a 4-core Intel i7-4771 processor clocked at
3.5GHz and 32Gb of RAM, running Ubuntu 14.04. In our
experiments, we use the same 11 public transportation net-
works from [19] , as in Timetable Labeling (TTL) [23], where
“each dataset records the timetable of the public transporta-
tion network of a major city or country on a weekday” [23].
The characteristics of these networks and the necessary TTL
preprocessing (using the vertex ordering files provided by its
authors) for creating the labels are presented in Table 7. The
graphs’ average degree is between 53 and 413 and the TTL
algorithm creates 630 − 7, 230 tuples per vertex, requiring
4.5− 353.6s for the labels’ construction.

Table 7: Public transportation graphs statistics
TTL

Avg Preproc.
Graph |V| |E| degr. |HL|/|V| Time (s)

Austin 2K 317K 119 1,600 11.3
Berlin 12K 2,081K 153 1,734 184.7
Budapest 5K 1,446K 252 2,486 54.4
Denver 10K 7,11K 75 1,190 27.3
Houston 10K 1,113K 113 2,196 72.6
Los Angeles 15K 1928K 127 2,572 194.5
Madrid 4K 1,913K 413 7,230 338.5
Roma 9K 2,281K 258 4,370 353.6
Salt Lake City 6K 330K 53 630 4.5
Sweden 51K 4,072K 76 775 179.1
Toronto 10K 3,300K 305 2,987 262.1

PTLDB was implemented in PostgeSQL 9.3.6, 64bit with
the same settings used in [14] (8192Mb shared buffers and
64Mb temp buffers). We conducted experiments belonging
to the following query types: (i) Earliest Arrival (EA), La-
test Departure (LD) and Shortest Duration (SD) vertex-to-
vertex, (ii) Earliest Arrival (EA) and Latest Departure kNN
and (iii) Earliest Arrival (EA), Latest Departure (LD) one-
to-many. For each experiment, we used 1,000 random start
vertices (and goal vertices for vertex-to-vertex queries), re-
porting the average running time. Starting timestamps for
EA and SD queries are randomly selected from the first quar-
ter of timestamp ranges, whereas ending timestamps for LD
and SD queries are randomly selected from the fourth quar-
ter of timestamp ranges, to ensure that in the majority of
the cases we actually get trip results that service a particular
type of query. Contrarily, selecting timestamps randomly
from all available ranges would significantly lower query
times, since a significant percent of those queries would pro-
vide no results (no trip would fill the suggested criteria). Be-
fore each experiment, we restart the PostgreSQL server for
clearing its internal query cache and we also clear the operat-
ing system’s cache for accurate benchmarking. All kNN and
one-to-many charts are plotted in logarithmic scale. Note
that (i) PTLDB is the only pure-SQL framework tailored for
servicing public transportation queries and (ii) to the best of
our knowledge there is no previous work or any working sys-
tem trying to tackle EA, LD kNN and one-to-many queries
for such networks. Thus, we only present our results, since
there is no previous secondary-storage work for comparison.

4.1 Performance on HDD
In our first round of experiments, we ran experiments on

an HDD, specifically a SATA3, ST3000DM001, 7200rpm
Seagate Barracuda disk with 64Mb cache.
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Figure 2: EA, LD and SD v2v queries on a HDD

4.1.1 Vertex-to-vertex queries
Figure 2 shows results for vertex-to-vertex (v2v) queries

for PTLDB. Results show that LD queries are 35% faster
than EA queries, because in the LD queries we select times-
tamps from the fourth quarter of timestamp ranges where
there are less trips than the beginning of the day (as in
EA queries). SD queries are on average 26% slower than
EA queries, due to the increased complexity of the query.
In all cases, EA and SD queries take less than 19.2ms and
LD queries take less than 7.7ms, which is an considerable
achievement, since even main memory solutions (before TTL)
would require a few ms for vertex-to-vertex queries and the
suggested datasets [23]. Moreover, we may answer such
queries with a simple SQL command inside a database, which
ensures scalability, regardless of the numbers of users or
the size of the datasets and with a performance that is fast
enough for real-time online applications.

4.1.2 kNN queries
In this section, we provide the PTLDB ’s results for EA

and LD kNN queries. Similar to previous works [14], we will
experiment with varying values of k and target density D,
i.e., the ratio |T |/|V |, where T is the set of target-stops in the
graph and |V | is the total number of vertices. As explained
in Section 3.2.1, for database frameworks it makes sense to
create large knn tables for the maximum value kmax of k
that will be serviced by the respective framework. Thus, we
have created two versions of kNN DB tables for PTLDB, one
for kmax = 4 and one for kmax = 16. Then, the kNN DB
table for kmax = 4 is used for answering kNN queries for
k = 1, k = 2 and k = 4 and the kNN table for kmax = 16
is used for answering kNN queries for k = 8 and k = 16.

In our first set of kNN experiments, we compare our op-
timized EA-kNN and LD-kNN queries (see Codes 3, 4) in
comparison to the corresponding naive kNN implementa-
tion (Code 2) for varying values of k. Results are presented
in Figure 3. Results show that the optimized versions are
11 − 53× faster than their naive counterparts. Thus, it re-
ally pays off to group tuples in the knn ea (and knn ld)
DB tables by departure (arrival) hour. For the remainder
of the paper, we will only provide results for the optimized
EA-kNN and LD-kNN queries, since those queries provide
significantly superior performance.

Figure 4 shows the absolute times of optimized EA-kNN
and LD-kNN queries for the same scenario, i.e., for D = 0.01
and varying values of k. Results show that the EA-kNN
queries require <64ms for all values of k (except the highest
ratio |HL|/|V | dataset of Madrid and k = 8, 16). LD-kNN

Figure 7: EA, LD and SD v2v queries on a SSD

queries are even faster, requiring less than 32ms on all cases.
In our third set of kNN experiments, we assess the per-

formance of PTLDB for varying values of D. For each
value for D, we have build separate versions of knn ea and
knn ld DB tables for D · |V | targets selected at random
from each dataset and kmax = 4. Figure 5 shows re-
sults for k = 4 and D = {0.001, 0.005, 0.01, 0.05, 0.1}. Re-
sults show, that although PTLDB ’s performance degrades
for larger values of D, kNN queries may still be answered
in less than 128ms (with the exception of Madrid for EA
queries and Toronto for LD queries and D = 0.1). For the
smaller datasets (Austin, Berlin, Budapest, Denver, Hous-
ton, Los Angeles, Salt Lake City, even Sweden) kNN queries
always take less than 32ms. Moreover, EA-kNN queries are
more robust to increasing values of D than LD-kNN queries
that perform significantly worse for denser targets (i.e., for
D = 0.1). Conclusively, the PTLDB framework provides
excellent kNN query performance for all values of D and k.

4.1.3 One-to-Many queries
In our third round of experiments, we assess the perfor-

mance of PTLDB for one-to-many queries. Figure 6 presents
the corresponding results for varying values of D (D =
{0.001, 0.005, 0.01, 0.05, 0.1}). PTLDB answers EA-OTM
queries in less than 512ms for all datasets and values of D
(except the Madrid and Toronto datasets that require 1084ms
and 751ms respectively for D = 0.1). For LD-OTM queries
PTLDB requires less than 256ms for all datasets and values
of D (except the Madrid, Roma and Toronto datasets that
require 303ms, 325ms and 349ms respectively for D = 0.1).
Note, that for such high values of D, the one-to-many query
almost degrades to the one-to-all query and hence, it cannot
get any faster on a secondary storage device.

4.2 Performance on SSD
Having established PTLDB ’s performance in the HDD,

we repeat most previous experiments on a SSD (a SATA3
Crucial CT512MX100SSD1 MX100 512GB 2.5”) to measure
how the secondary-storage device type impacts results.

4.2.1 Vertex-to-vertex queries
Results for all variants of vertex-to-vertex queries on the

SSD are shown in Figure 7. Results show that by using the
SSD, PTLDB is 3 - 20× faster for EA, 6 - 17× faster for LD
and 3 - 19× faster for SD vertex-to-vertex queries. Thus, EA
queries may now be answered in less than 2.5ms, SD queries
may now be answered in less than 3.2ms and LD queries may
now be answered in less than 0.6ms. Conclusively, the usage
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Figure 3: Speedup of optimized kNN queries, in comparison to the naive versions for D = 0.01 and varying values of k

(a) EA-kNN (b) LD-kNN

Figure 4: kNN queries for D = 0.01 and varying values of k

(a) EA-kNN (b) LD-kNN

Figure 5: kNN queries for k = 4 and varying values of D

of SSD benefits significantly all vertex-to-vertex variations
within PTLDB and therefore PTLDB may easily be used for
public-transit real-time applications and such queries, since
query times always require less than 3.2ms.

4.2.2 kNN and One-to-many queries
In this section, we repeated all the kNN and one-to-many

experiments performed in Sections 4.1.2 and 4.1.3 on the
SSD. Results for kNN queries, D = 0.01 and varying values

of k are presented in Figure 8. Results show that for kNN
queries, the usage of the SSD does not provide any further
benefits (in fact sometimes the SSD performs slightly worse),
meaning that in PTLDB we have effectively minimized sec-
ondary storage utilization for kNN queries and thus, adding
a faster storage medium adds no performance benefits. The
same pattern was encountered on all experiments, for differ-
ent values of D or k, including the respective one-to-many
queries and therefore the resulting figures are omitted.
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(a) EA-OTM (b) LD-OTM

Figure 6: One-to-many queries for varying values of D

(a) EA-kNN (b) LD-kNN

Figure 8: kNN queries for D = 0.01 and varying values of k on the SSD

4.3 Summary
Our experimentation has shown that our proposed PTLDB

framework provides excellent performance for all public trans-
portation planning queries. Using HDDs, PTLDB may an-
swer vertex-to-vertex queries in less than 19.2ms For SSDs,
this time drops down to 3.2ms. For the newly formulated
EA and LD kNN queries, PTLDB requires less than 64ms
and 32ms, for k = 16 and D = 0.01 for the vast majority
of the tested datasets. Even the EA and LD One-to-many
queries require less than 512ms and 256ms respectively, for
most datasets and varying values of D. Regarding memory
requirements, PTLDB is very modest, since all DB tables
and primary key indexes, including the lout, lin, knn ea,
knn ld (for all values of D and kmax = 4, 16) and the
otm ea, otm ld tables (for all available values of D) for all
tested datasets, require less than 12GB. Hence, PTLDB
may easily scale to even significantly larger datasets. Over-
all, not only PTLDB is the only pure-SQL framework tai-
lored for multiple public-transportation queries, offering ex-
cellent performance for real-time applications but the sim-
plicity of its SQL queries, makes its integration with existing
real-world applications very easy and seamless.

5. CONCLUSION
This work presented PTLDB, a novel SQL framework for

answering multiple route-planning queries for public trans-
portation graphs on a database. Our results showed that
PTLDB provides excellent query performance, minimum
secondary storage utilization and maximum scalability. More-
over, we have extended kNN and one-to-many queries for
public transportation networks and proposed how to effi-
ciently answer them within PTLDB, with a few lines of SQL
code. This establishes PTLDB as a competitive database-
driven solution for querying public transportation networks.

The paper gives the complete design and implementation
details of PTLDB using a popular, open-source database
engine, along with the exact SQL queries used in our im-
plementation. This easily allows the replication of our re-
sults and might provide the necessary foundation for other
researchers to expand the PTLDB framework towards han-
dling additional types of queries and novel use-cases. In
terms of future work, currently the PTLDB framework aims
at optimizing travel times, without taking the number of
transfers as an additional optimization criterion. Integrat-
ing this additional constraint would further improve the use-
cases and marketability of the PTLDB framework.
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ABSTRACT
The analysis of temporal behavioral patterns of home net-
work users can reveal important information to Internet Ser-
vice Providers (ISPs) and help them to optimize their net-
works and offer new services (e.g., remote software upgrades,
troubleshooting, energy savings). This study uses time series
analysis of continuous traffic data from wireless home net-
works, to extract traffic patterns recurring within, or across
homes, and assess the impact of different device types (fixed
or portable) on home traffic. Traditional techniques for time
series analysis are not suited in this respect, due to the lim-
ited stationary and evolving distribution properties of wire-
less home traffic data. We propose a novel framework that
relies on a correlation-based similarity measure of time se-
ries, as well as a notion of strong stationarity to define mo-
tifs and dominant devices. Using this framework, we analyze
the wireless traffic collected from 196 home gateways over
two months. The proposed approach goes beyond existing
application-specific analysis techniques, such as analysis of
wireless traffic, which mainly rely on data aggregated across
hundreds, or thousands of users. Our framework, enables the
extraction of recurring patterns (motifs) from traffic time se-
ries of individual homes, leading to a much more fine-grained
analysis of the behavior patterns of the users. We also deter-
mine the best time aggregation policy w.r.t. to the number
and statistical importance of the extracted motifs, as well
as the device types dominating these motifs and the over-
all gateway traffic. Our results show that ISPs can exceed
the simple observation of the aggregated gateway traffic and
better understand their networks.
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†Work done while at the Technicolor R&I Center.

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

Keywords
Wireless Traffic, Motif Extraction, Similarity Measurement

1. INTRODUCTION
The increasing diversity of home devices and network tech-

nologies have added layers of complexity to the connected
home environment. Residential gateways (RGWs), Smart
TVs, smartphones and tablets are just a few of the devices
in today’s connected home. Furthermore, several “over-the-
top” services, such as video streaming (e.g., Netflix) and
conferencing (e.g., Skype), are being delivered to a variety of
devices and users using wireless home networks. Managing
the connected home environment, and indeed optimizing the
Quality of Experience (QoE) of residential users, emerges
as a critical differentiator for Internet and Communication
Service providers (ISPs and CSPs, respectively) and heavily
relies on the analysis of home networks.

Although RGWs technology has been considerably im-
proved to deliver IP-based, whole-home services as well as
advanced WiFi capabilities as “Community WiFi” hotspots,
ISPs still have little information about what lies beyond
the subscribed RGW and how home network resources (e.g.
bandwidth) are actually consumed by the underlying device
ecosystem. For this reason, RGWs have been extended with
continuous home network measurement capabilities under
normal service operation and provide fine-grained connec-
tivity, usage and performance data of home networks and
devices1. Mining recurring patterns from these home traffic
time series can enable a data-driven paradigm in network
management [13] in order, for instance, to reduce the cost
for serving and diagnosing remotely home networks [3, 22,
11], or even to improve residential QoE via home-specific
bandwidth sharing [1] and prioritization [21] policies.

More precisely, home networks troubleshooting is almost
always reactively initiated by residential users, requires a hu-
man intervention and as a consequence is a time consuming
(e.g., 38 min. average time of a technical support call [26])
and not always feasible task (e.g., user’s problem is solved in
only 14% of technical support calls, partially solved in 24%

1Home network monitoring is of course subject of differ-
ent low restrictions in different countries, and thus we are
interested in non-intrusive passive probing techniques that
guarantee anonymity.

Industrial and Applications Paper

 

 

Series ISSN: 2367-2005 539 10.5441/002/edbt.2016.51

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2016.51


and not solved at all in 62% [26]). One of the reasons of low
efficiency of remote technical support is that technicians can-
not completely understand the problem and home network
settings, mainly due to limited and sometimes inaccurate in-
formation that residential users provide. Extracting previ-
ously unknown recurring patterns (aka motifs [19, 7]) from
residential traffic time series will bring strong evidence of
regular user activity in homes that can be contrasted to the
trouble description reported by users. In particular, traffic
patterns enriched with detailed home device information is
a valuable input for root cause diagnosis. Moreover, in their
majority, ISPs typically broadcast firmware and software up-
dates to all gateways at nights (some operators even on a
daily basis). This may cause service outages, given that
some gateways may exhibit an active network usage dur-
ing night time. A fine-grained temporal characterization of
residential bandwidth consumption will enable ISPs to dif-
ferentiate RGWs firmware update policies according to the
least cumbersome time window per home, thus, improving
the overall QoE of residential users.

In addition, home network resources (bandwidth) are shared
not only among residents using an increasing number of on-
line applications (e.g., social networking, gaming, upload-
ing/downloading, etc.) and real time services (TV on de-
mand, teleconferencing), but also with guests, neighbors, or
even the occasional passersby. Existing methods for band-
width sharing and traffic prioritization are static and coarse.
ISPs usually allocate a fixed percentage of home bandwidth
to non-residential users, while traffic prioritization in com-
modity gateways is at best based on the network port on
which traffic is sent or received. We believe that behavioral
patterns extracted by gateway traffic time series can be used
to support dynamic policies for sharing home bandwidth
that consider the online habits of residential users. For ex-
ample, in-home traffic congestion can be avoided by ordering
the traffic patterns of different devices observed especially
during afternoon and weekends. These patterns reveal the
bandwidth consumption behavior of different groups of res-
idential users (adults and children employ different devices
during the same time-slots) while the comparison of traf-
fic domination help us to distinguish between residents and
guests (pattern-specific vs global traffic dominant devices).

To the best of our knowledge, this paper presents the first
thorough analysis of traffic dynamics of heterogeneous wire-
less (WiFi) devices connected to 196 real RGWs, which are
subscribers of a major European ISP. We focus on a time-
oriented analysis of continuous traffic data to extract pre-
viously unknown patterns recurring of internet consumption
that happen within, or across homes. We also assess the
impact of different types of devices, such as laptops, desk-
tops (classified as “fixed” devices), and tablets, smartphones
(classified as “portables”), on these patterns. Unsupervised
learning techniques are used for patterns discovery as the
ground truth data regarding home activities are not avail-
able. Rather than partitioning homes or devices into distinct
behavioral clusters, we are looking to extract informative
motifs of bandwidth consumption within or across homes.
Different from a previous analysis of the same dataset [23],
which focused on coarsely aggregated gateway traffic, in this
paper we conduct various types of time series analysis, in-
cluding a per-device analysis, motif extraction, and search
of dominant devices.

In our study, we develop a framework for analyzing the

distribution properties of traffic data, the stationarity and
predictability of usage patterns within and across homes, the
similarity of device specific traffic to the overall home traffic,
and others. We demonstrate that traditional techniques of
time series analysis [20] are not suitable in our setting due to
restricted stationarity of traffic time series. This is caused
also by the fact that low-valued non-active traffic occupies
the most of the probability mass of the traffic distribution,
while the values of active traffic are detected as outliers. In
contrast to Euclidean Distance and Dynamic Time Warping
(DTW), the proposed approach better fits the requirements
of our applications: (a) it correctly identifies similar trends,
both when absolute values are important and when they are
not; (b) it restricts the matches to time-aligned sequences;
and (c) it provides a similarity measure, whose values (be-
tween −1 and 1) we know how to interpret based on the
theory of statistics.

The main contributions of this paper are:
1) We propose a novel analysis framework for wireless

home traffic data, namely: (a) a correlation-based similarity
measure, which exploits the evolution characteristics, rather
than the absolute traffic values, and is invariant to scaling;
(b) a notion of strong stationarity that in addition to the sim-
ilarity of data distributions imposes a correlation similarity
across non-overlapping time windows; and (d) a definition
of dominant devices based on the correlation similarity, that
enables an intuitive and statistically grounded interpretation
of the results.

2) We evaluate the effectiveness of the proposed frame-
work using real data of wireless traffic observations and re-
port the main findings: (a) there are many repetitive pat-
terns within and across RGWs which describe the intrin-
sic user behavior of users and valuable to ISPs; (a) as net-
working time series are not stationary certain aggregation
should be performed in order to find statistically significant
patterns. The best time windows to aggregate home traf-
fic data is found to be 8 hours for weekly patterns and 3
hours for daily patterns; (b) frequent weekly patterns cor-
respond to heavy bandwidth usage both during weekdays
and weekends, and frequent daily patterns correspond to
(mostly) evening usage, (c) weekend usage tends to rely on
portable devices, weekday usage relies more on fixed devices,
while discontinuous usage within a day (mostly active in the
evening or the morning) is still due to portable devices; and
(d) almost every RGW involves a device that dominates its
overall traffic, thus the behavior of this device should be
mainly considered by ISPs while planning the updates.

The paper is organized as follows. Sections 2 and 3 de-
scribe the related work and our dataset. Section 4 shows
the preliminary analysis of the wireless traffic. Section 5
describes the proposed methodology. Section 6 correlates
the wireless traffic with home devices. Section 7 presents in
detail the time aggregation and motifs analysis. Section 8
concludes the paper.

2. RELATED WORK
We consider several directions of related work that cover

the specifics of analysis of wireless devices in home.
Wireless traffic analysis. The analysis of wireless traf-

fic dynamics has been widely used to provide energy sav-
ings [12, 24], to build collaborative wireless networks [27],
and to accommodate traffic offloading [16]. For example, re-
cent proposals seek to power off idle Access Points (APs) [12]
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or cellular base stations [24] to save energy. SEAR [12] forms
clusters of WiFi APs and powers on/off APs of the same
cluster based on the traffic demand that the cluster needs to
serve. In a similar fashion, the system proposed in [24] pow-
ers off under-utilized cellular base stations when their traffic
load is light, and power them on when the traffic load be-
comes heavy. Collaboration among APs has been explored
in [27] to offer energy savings and load balancing in WiFi
APs. The above designs though, are based on two key as-
sumptions, which may not hold in RGWs. First, they are
based on wireless traffic stationarity to predict idle times
(e.g., the traffic volume is stable over short-term (2 hours),
which can remain stable over several consecutive days [24]).
Second, a set of devices (e.g., APs or base stations) show
very similar temporal traffic characteristics. Our analysis
shows that these assumptions do not hold in our case.

Human behavior. Multiple works demonstrate that the
behavior of humans can be described through recurrent ac-
tivity patterns. This is shown in the work [4] for social net-
work data, in the work [31] for user behavior in microblog
and in the work [10] for moving trajectories using mobile
phone data. According to the results of work [10] the pat-
terns of human mobility behavior are very regular. Home
traffic data which we focus on is also determined by human
behavior, but unlike previous studies it is not defined by a
single individual but by a group of individuals who share
one home. This leads to less repetability an large variety
of possible activity patterns, making the analysis of RGWs
more challenging.

Work [14] analyzes human correspondence behavior via
mobile phone data. As in the other human activity stud-
ies [15, 9, 5], the data show high inhomogeneous in activities,
meaning that periods of active events are much shorter than
inactivity silence. This leads to the bursty time series with
long tails in the probability density function. We observe
this property for our data as well while pattern extraction is
needed to take place on more regular data. Study [14] checks
whether the inhomogeneous of correspondence behavior is
due to daily or weekly periodical patterns or it is due to
the nature of the behavior of human task execution. Ac-
cording to the results of this study, even after de-seasoning
when daily and weekly periodical patterns are excluded, the
data remains inhomogeneous, which means that the charac-
ter of human activities is one of the main sources of bursty
time series. Unlike mobile phone data, where long silence
periods where observed in night time and during weekends,
our networking data for certain homes have peak activities
exactly in this “silence” periods. This means that in our
case de-seasoning is not applicable as there are no strong
daily and weekly silence period for all homes into consid-
eration. Thus, we safely assume that the heterogeneity of
our data is caused by human activities even to larger extend
than for phone call data. In our work we concentrate on re-
ducing inhomogeneous data characteristics by other means,
such as by excluding background traffic from consideration
and by specially devised distance measure for traffic time
series. Then, we extract recurrent activity patterns of usage
behavior using the technique of motifs.

Motifs. Mining of motifs or sequential patterns is an
important task in time series analysis [19], [7]. As far as
we know this kind of analysis has not been applied to the
internet traffic data before as most of the studies use aggre-
gated traffic values instead of time series. For this task, we

considered several state-of-the-art tools for motif discovery,
such as GrammarViz [17] and VizTree [18]. However, these
tools are not suitable for our analysis for the following rea-
sons. (a) These tools (and many other techniques available
online) use Symbolic Aggregate approXimation (SAX) to
represent time series, assuming that the distribution of time
series values is normal [19]. This is not true for our traffic
time series though, as their values follow the Zipf’s law (we
note that, contrary to the claims in [19], z-normalization
does not lead to normal distribution if the initial distribu-
tion of the time series is not normal). At the same time we
do not have ground truth data about the motifs in order to
tune the alphabet size of SAX, which assigns more symbols
near the value of zero, while in our case this region should
have been coded with only one symbol. (b) GrammarViz
seeks to discover motifs of different lengths, and exploits
grammar distance for this. On the other hand, our data has
clear time semantics, and we would like to discover motifs
for week- and day shifting (i.e., non-overlapping) windows
of fixed length, that is not enabled with GrammarViz.

3. DATASET DESCRIPTION
We analyze wireless traffic data collected from 196 resi-

dential gateways under normal service operation, involving
subscribers of a large European ISP that are distributed
over a large geographic area spanning 10 cities. The resi-
dential subscribers participate on a voluntary basis to our
large scale data collection campaign. For privacy reasons, we
do not collect data regarding running applications of home
devices, demographics and activities users are engaged in.

The gateway platforms of our deployment have the fol-
lowing specifications: (i) ADSL2+ modem or fiber WAN
access link, (ii) 4 ethernet ports, (iii) a WiFi access point
enabled by a Broadcom 802.11b/g/n 2x2 radio. The 802.11
interface operates at the 2.4GHz band and supports PHY
rates up to 300 Mbps. The most (67%) of our deploy-
ment’s gateways are fiber (92% of the fiber plans provide
100/10 Mbps downstream/upstream speed, and for the rest
it is 30/3 Mbps) and the rest are ADSL (with 24/1 Mbps
downstream/upstream speeds). Each gateway logs the traf-
fic counters at all network interfaces on the IP layer, and
reports in bytes the cumulative outgoing (transmitted) and
incoming (received) traffic of each connected device to the
gateway. The focus of this work is the WiFi traffic. The
gateway further reports the aggregated gateway traffic, which
is the sum of the corresponding outgoing and incoming traf-
fic of all its devices. These data measurements are automat-
ically reported every minute by each gateway to a central
server. Note that the wireless traffic reported by a gate-
way depends on the running applications’ data rates and is
bounded by the wireless effective throughput or the access
link throughput (for traffic exiting/entering the home). A
recent study though [23] has shown that wireless (and wired)
network throughput is rarely the bottleneck.

Our dataset includes more than 20 million measurement
reports collected over a 2-month period (starting from March
17, 2014). We were able to identify a total of 2147 distinct
wireless devices (a device is defined by its MAC address).
Using a heuristic-based algorithm [25], we were able to in-
fer the type of a wireless device. The heuristic algorithm
leverages the device MAC address (revealing manufacturer
name) and the device names typically assigned by the user,
which are reported by the gateway. For example, “Nintendo
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Co., Ltd.” is known to produce game consoles, “EPSON” –
peripheral devices, while“Katy’s-iPhone”, indicates a smart-
phone manufactured by Apple. We have validated the effec-
tiveness of the algorithm using ground truth data collected
from surveys at 49 homes of our deployment. All ‘light’ de-
vices such as smartphones, tablets and others are labeled as
“portable”, while laptops and desktops fall under the “fixed”
category. There is also a category of “network equipment”
that includes devices such as WiFi extenders, and addition-
ally there is a small amount of “game consoles”.

4. STANDARD DATA ANALYSIS
In this section, we study the main data characteristics

(distribution and stationarity) of the traffic time series ob-
served by the RGWs in our deployment, and discuss the
challenges arising in this task when using traditional ana-
lytical techniques.

4.1 Traffic Data Distribution
We first conduct a preliminary analysis using the wire-

less traffic data of the 10 most representative gateways with
the highest number of observations for a single week pe-
riod. Our analysis aims to answer the questions: (a) What
are the main properties of the distribution of traffic values?
Are probability density functions of traffic counters simi-
lar across gateways? (b) Which kind of traffic (outgoing,
incoming, or overall) provides the most meaningful descrip-
tion of a gateway? To answer these questions, we exploit
the following methods:

1) boxplots in order to visualize general probability distri-
bution and outliers of time series, and

2) estimation of probability density function (PDF) using
Kernel Density Estimators in order to assess and compare
the probability distributions of time series.

The above methods lead to the following results: (a) The
distribution of incoming and outgoing traffic of gateways
follows Zipf’s law (see Figure 1a), which means that the
concentration of low traffic values is much larger than the
amount of medium and high traffic values. The periods of
really active traffic are very small, and thus detected as out-
liers in data distribution plots and boxplots. As an example,
we show a typical time series in Figure 1b, an approxima-
tion of its PDF using Kernel Density Estimation zoomed
around 0 of the y-axis in Figure 1a, and its boxplots with
and without outliers in Figures 1c and 1d. This phenomena
is also called inhomogeneity of data and as we mentioned in
Section 2 it is typical for data describing human activities.
(b) According to our results, there is a strong correlation
between the incoming and outgoing traffic (mean = 0.92,
median = 0.95, stddev = 0.08) of the gateways in our de-
ployment. Since they are strongly correlated, we consider
that the overall traffic of a gateway reflects the active be-
havior of a user without artifacts.

Summary. Since low traffic values account for most of
the probability mass, the traffic values reported when de-
vices are actually used are essentially detected as outliers
in data distribution plots and boxplots considered by tradi-
tional time series analysis techniques. This motivates us to
characterize the background traffic (Section 6.1) and remove
it when looking for recurring patterns of active internet con-
sumption. In this context, z-normalization alone does not
help, as we want to consider also similarity of rankings of
traffic values.
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Figure 1: Statistical analysis of a typical gateway.

4.2 Traffic Correlation and Stationarity
We now turn our attention to the following questions re-

garding the characteristics of the data: (a) Is the behavior
of traffic counters similar among gateways? (b) Is there sig-
nificant autocorrelation in the traffic of a gateway, or signifi-
cant cross (lag-)correlation between gateways, or in general,
what is the predictive power of the time series under exam-
ination? (c) Is the traffic of a gateway stationary in a short
term period? (d) Is there a relationship between the number
of connected devices and the traffic values? (e) Are home
traffic time series sensitive to time aggregation? We use the
following standard analysis techniques:

1) correlation coefficients – to measure similarity of RGWs;
2) autocorrelation coefficients – to evaluate how strong

the connections between the values of a single time series
are, and what their predictive power is;

3) cross-correlation coefficients – to measure how strong
the connections between values of a pair of time series shifted
in time are, and what their predictive power is;

4) stationarity tests (KPSS unit root test, Augmented
Dickey-Fuller (ADF) test and others) – to check if time series
are wide-sense stationary.

In all our experiments, when statistical tests are exploited,
we use a significance level of α = 0.05. For correlations
tests, we use Pearson’s, Spearman’s, and Kendall’s correla-
tions, and interpret the strength of the correlation as fol-
lows: [0.0; 0.1) →No Correlation, [0.1; 0.3) →Low Correla-
tion, [0.3; 0.5)→Medium Correlation, [0.5; 1]→Strong Cor-
relation. This interpretation is widely accepted [2], [6], [29],
though the borders may slightly vary depending on the ap-
plication domain, for example, in medicine higher borders
for strong correlation are usually required [28].

The above methods revealed the following results:
(a) There are gateways, for which we can make predictions
about their future behavior due to low, but statistically sig-
nificant autocorrelations of their traffic time series. The
example with the highest autocorrelation is shown in Fig-
ure 2(left). In this figure, the y-axis defines the value of
Autocorrelation Function (ACF) that depends on the time
lag between the time series values (x-axis). We note that no
gateway exhibits a seasonal behavior. There is also some
predictive power of one gateway given another, as some
cross correlations with lags across gateways are significant.
An example of a high cross-correlations is depicted in Fig-
ure 2(right). Even-though these observations suggest some
predictive power, due to the significant amount of silence or
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Figure 2: Autocorrelation (on the left) and cross-correlation
(on the right) of gateways.

background traffic, ARIMA modeling for this time granu-
larity cannot yield useful results, as it is not able to predict
the rare bursts of the active traffic.
(b) Wireless traffic data is not stationary in the traditional
sense, as all stationarity tests were rejected. This means
that the data distribution characteristics change over time.
For example, the covariance function of the time series is
not constant in sliding window. We have also noticed that
the Zipfian distribution of time series also evolves over time,
meaning that the time series are also not stationary in the
general sense.
(c) For all the gateways we checked, the correlation be-
tween the overall traffic time series and the number of con-
nected devices time series was statistically significant, but
low (mean = 0.37, median = 0.38, stddev = 0.21). This is
an interesting result, indicating that traffic at a gateway de-
pends more on the user behavior, rather than on the number
of connected devices.
(d) For the time-aggregated time series with larger time
binning, patterns become more visible as traffic peaks be-
come more similar. At the same time, when excluding many
points of low traffic, the essential information about the high
traffic periods persists. Correlation and distribution heavily
depend on time aggregation:

— The smaller the aggregation period is, the more dif-
ferent the data distribution within the week is. Almost all
Kolmogorov-Smirnov tests were rejected for the smallest ag-
gregations. For higher aggregation periods distributions be-
come more similar.

— The smaller the aggregation period is, the lower the
correlations between time series are. At the same time, for
larger aggregation periods correlations either significantly
grow, or disappear completely.

Summary. Our preliminary analysis of gateway traffic
reveals that traffic time series are not stationary, neither in
the general, nor in the wide sense: both the probability den-
sity function and the main time series characteristics (e.g.,
mean and covariance) change over time. Consequently, time
series with current one minute binning are highly irregular,
there are no stationary gateways, and similarity between dif-
ferent gateways of our deployment is very low. Hence, ex-
tracting meaningful patterns of bandwidth usage both across
time and gateways requires to adapt new analytical method-
ology.

5. TRAFFIC ANALYSIS FRAMEWORK
We now define and describe the key concepts, on which

we base our proposed analysis framework.
Similarity. The core issue when comparing traffic time

series of residential gateways is to define a suitable similarity
measure. As discussed earlier, absolute values of traffic vol-
ume are not helpful to understand seasonal usage of home
devices within or across homes. Instead, we consider simi-
larity in terms of correlation, which takes into account the
monotonicity of traffic volume changes, rather than their ab-

0.4 

cluster 1 cluster 2 
Figure 3: Hierarchical clustering of time series based on cor-
relation similarity measure.

solute values, thus, providing invariance to scaling. We use
three popular correlation coefficients as all kinds of depen-
dencies between traffic time series described by these coef-
ficients are important. Linear dependency is provided by
Pearson’s correlation, and monotonicity and ranking-based
dependencies are provided by Spearman’s and Kendall’s co-
efficients. The correlation coefficients are not directly com-
parable but they have the same domain and semantic inter-
pretation of strength, allowing us to use the highest possible
value. More formally, the similarity measure is defined as
follows:

Definition 1. Correlation similarity measure cor(X,Y )
between two time series X = {xi}ni=1 and Y = {yi}ni=1 is a
maximum correlation coefficient among statistically signif-
icant Person’s r(X,Y ), Spearman’s ρ(X,Y ) and Kendall’s
τX, Y correlation coefficients:

cor(X,Y ) = max[rpv<α(X,Y ), ρpv<α(X,Y ), τpv<α(X,Y )].

If none of the three correlation coefficients are statistically
significant cor(X,Y ) = 0.

The significance of the corresponding correlation coeffi-
cient test is defined w.r.t. the zero-hypothesis H0 is that
there is no correlation, or the coefficient is equal to zero.
The significance level α is (as before) set to 0.05.

A correlation-based similarity measure also leads to mean-
ingful threshold values for time-series similarity. For exam-
ple, in the hierarchical clustering of traffic time series illus-
trated in Figure 3, the distance measure is set to 1−cor(·, ·).
As the correlation ≥ 0.6 is considered to be high, the cor-
responding threshold on a distance measure 0.4 is used to
detect similarity clusters.

Spearman’s and Kendall’s correlation coefficients are in-
sensitive to z-normalization of the data, while the Pearson
correlation coefficient is normalization dependent. As we
will see in Section 6.2, our correlation-based similarity mea-
sure allows to better grasp the actual device usage compared
to similarity measures based on absolute values, such as the
popular Euclidean distance. Euclidean and DTW distance
also do not meet the needs of similarity measurement in the
work [30]. This work extracts the patterns of human be-
havior but in terms of time series of item popularity over
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online media and also proposes a distance measure invari-
ant to scaling. But, unlike our case, they also consider the
patterns to be similar if the peaks of activities are shifted
in time. In case of behavioral patterns that are valuable to
ISPs it is important that the traffic is active simultaneously
or within the same aggregated time periods.

Stationarity. Since our goal is to extract time-evolving
patterns and characterize these patterns across different di-
mensions of interest, we define a new notion of stationarity
adapted to the peculiarities of our traffic time series. Our
traffic data has very strong time semantics — traffic de-
pends highly on the day of the week and on time of usage,
so we cannot expect that the data distributions during the
weekend and working days are the same. Thus, we are inter-
ested in time-framed patterns (from one day to another, or
from week to another) and consider regularity of behavior in
terms of non-overlapping time windows. In this respect, we
measure the correlation similarity of the time series with it-
self, comparing each window of the chosen period with each
other, in order to measure the entire stationarity of a pe-
riod of interest. We also check whether the traffic data dis-
tribution changes significantly from one period to another
using a non-parametric comparison test for arbitrary prob-
ability distributions (i.e. Kolmogorov-Smirnov test). More
formally:

Definition 2. A time series of a gateway is strongly
stationary for a particular window size if:
• it has a correlation similarity measure > 0.6 among all
non-overlapping windows in consideration;
• the Kolmogorov-Smirnov test (that checks if the distribu-
tions of two time series is the same) is not rejected for all
possible window pairs.

The main difference between our ’strong stationarity’ no-
tion and the classical stationarity is that instead of using
sliding windows, we use non-overlapping windows. Further-
more, apart from the similarity of the distributions, we also
check the correlation similarity between the windows, which
makes this a ’strong’ notion of stationarity. Asserting that
the time series of a gateway is strongly stationary, ensures
that the underlying bandwidth usage is regular and can be
described by a repetitive usage pattern.

Time aggregation. We use the notions of correlation
similarity measure (Definition 1) and strong stationarity (Def-
inition 2) in order to formulate optimization criteria for
choosing the best time periods for aggregating traffic val-
ues, or the best binning of time series. More formally the
problem is defined as follows:

Definition 3. Given a mapping function W of nonover-
lapping time windows of length g defined over a set of times
series U , the best aggregation granularity gbest ∈ G is
defined as

gbest = arg max
g∈G

E[cor(x(g), y(g)],

where x(g), y(g) ∈ S, a set of time series S defined from U
through W : S = W (U), x(g) and y(g) are aggregated traffic
volume values according to the time binning g.

Mean is used as an unbiased estimate of E[·].
As we will see in Section 7.2, deciding which is the best

traffic aggregation binning is crucial for extracting unknown
meaningful recurring patterns of medium-term (week) and
short-term (day) usage behaviors of a residential gateway.
These patterns are called motifs.

Dominant devices. We also need to detect dominant
devices per gateway, that is, the devices that have traffic
time series very similar to the overall traffic of a gateway.
We define a dominant device as follows.

Definition 4. Device d is φ-dominant per a gateway
if the correlation similarity between its traffic and gateway
traffic is larger than a threshold φ.

Besides determining dominant devices of the traffic reported
by the gateways of our deployment (Section 6.2), this defini-
tion will enable us to better characterize the motifs in terms
of types of devices that contribute to the traffic of the motif
the most(Section 7.2).

6. GATEWAY DEVICE ANALYSIS
In this section, we are interested in identifying the active

usage traffic generated when residents actually run online
applications, as well as in detecting the devices that con-
tribute the most to the overall traffic.

6.1 Active Device Traffic
As we have seen in Section 4.1, the majority of the traf-

fic volume values reported by the gateways are rather low.
This background traffic is essentially attributed either to the
control traffic generated by the operating systems of devices
(e.g., during sleep mode or application software updates), or
to low traffic generated by light applications running in the
background (e.g., when a mail server checks for new emails,
or when twitter updates the message list). Background traf-
fic has its own patterns and fluctuations that influence our
time-series analytics given that the majority of wireless de-
vices in our data, such as tablets and smartphones, are fre-
quently in the idle state and use their wireless radio rarely
in order to increase the battery life.

In order to extract recurring patterns from active usage
traffic generated when residents actually run online appli-
cations, we need to exclude the background traffic. Back-
ground traffic can be separated from active traffic by setting
a threshold τ on the number of bytes in traffic time series.
To obtain active traffic time series, all the values which are
lower than τ are set to zero. Deciding on an appropriate
threshold τ for background traffic is far from trivial, given
the lack of a ground truth (both on the operating systems
for particular sleep policies and the applications running on
devices). Instead, we can exploit a general statistical tech-
nique based on the probability distribution of the traffic time
series, as the boxplots described in Section 4.1. Given that
the interval in which most of data values of time series be-
long falls between the whiskers of the plot, we use the upper
whisker of a boxplot in order to define τ . This is supported
by the fact that background traffic values are the most fre-
quent in our data, while active traffic is sparse.

As this threshold is device specific, we estimate it for each
device, per outgoing and incoming traffic separately. We
study the background traffic for four weeks of data. For this
period, we observed the traffic for 934 devices connected to
user gateways. According to the histograms for outgoing and
incoming traffic (refer to Figure 4), the background thresh-
old for most of the devices is below 5000 bytes per minute
(i.e., less than 1 Kbps), while for almost all the devices τ
is lower than 40, 000 bytes for both outgoing and incoming
traffic, which corresponds to a rate of 5.3 Kbps. There are
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Figure 4: Distribution of τ of outgoing (on the left) and
incoming (on the right) traffic.
24 devices with τ > 40000 bytes for incoming traffic, and 15
devices with τ > 40000 bytes for outgoing traffic.

We checked if there is a dependency on the type of de-
vice and the distribution of traffic it produces. We grouped
the devices by τ as follows. ’Small’ group corresponds to
τ <= 5000, ’medium’ to τ ∈ (5000, 40000], and ’large’ to
τ > 40000. We use the types of devices defined in Section 3.
In the small and medium groups portable devices dominate,
while in the last group fixed devices are the most popular
as on PCs and laptops much more applications can run si-
multaneously in non-active mode. Thus, background traffic
can be a significant feature for device type classification.

In summary, to exclude background traffic from consider-
ation, we use a threshold per device of τback = min(τ, 5000).
This value is an upper border of the background traffic for
the majority of the devices, as illustrated in Figure 4. Our
threshold of 5000 bytes per minute for background traffic is
also consistent with the previous works [25], [23], which set
it to 1 kbps, thus making our threshold more tight.

As we will see in Section 7, background traffic removal
reveals more regularity in traffic time series. The ability to
automatically detect the background traffic of a device will
also help ISPs to improve the energy saving policies without
using data aggregation from multiple homes as has been
proposed in the literature [8].

6.2 Dominant Devices
A device is considered to be dominant if it characterizes

the general behavior of a gateway over time with respect
to the overall traffic. As before, we only consider wireless
traffic and wireless devices.

Definitions 1 and 4 are used in order to detect φ-dominant
devices. As we are interested in high time series similarity
we have chosen φ threshold to be 0.6, as before only statisti-
cally significant correlations were reported. We perform the
search of dominant devices for all the gateways that have at
least one observation per week for each week of considera-
tion, we have observed 153 such gateways. The data con-
tains the time series of all devices that were connected to a
gateway after March 17, 2014 together with its overall traf-
fic. If there are several dominant devices detected, we rank
them in descending order of their correlation similarity.

According to the results, 7 gateways had 3 dominant de-
vices, 43 gateways had 2 dominant devices, 99 gateways had
1 dominant device, and only 4 gateways did not have any
dominant device. In most of the cases, there is at least one
dominant device per gateway, meaning that the bandwidth
consumption of the gateway is determined by the usage of
the device. There might be several dominant devices, which
can indicate that the number of residents regularly using
network is higher than one. There are at most 3 dominant
devices per gateway, we ranked them in the descending order
of correlation similarity value, hence, first dominant devices

has traffic time series that is the most similar to the overall
traffic time series of a gateway.

We also checked what type of devices are dominant per
gateway. Overall, among dominant devices we detected 74
fixed, 67 portable, 53 unlabeled, 9 network equipment de-
vices, and 3 game consoles. The distribution of the differ-
ent device types, depending on the ranking of dominance, is
shown in Figure 5. The plot shows that there are many gate-
ways, for which the dominant devices for all the ranks are
fixed devices. This is attributed to the fact that fixed devices
produce in general more traffic and are usually connected for
longer periods to the gateway. Still among dominant devices
there is a significant number of portable devices, which are
increasingly being used nowadays.
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Figure 5: Distribution of types of dominant devices given
their ranking.

The knowledge of dominant devices over long periods (one
month in our case) is of great importance to ISPs, as it can
provide a high level profiling of gateways.

Using Other Distance Metrics. For the sake of com-
pleteness we have compared the dominant devices obtained
using our correlation-based similarity measure with those
obtained when using the Euclidean distance or simply the
absolute traffic volume used in work [23]. For the Euclidean
distance computation, we consider the time series of a gate-
way X = {xi}ni=1 and time series of a device Y = {yi}ni=1,
where n is the number of observations for four weeks of
data. The Euclidean distance is computed using the for-
mula: distEucl =

√∑n
i=1(xi − yi)2. Alternatively, the de-

vices which produce the highest volume of traffic are consid-
ered to be dominant traffic-wise.

As there are no clear thresholds for Euclidean and traffic-
based dominances, we compare the results of our correlation-
based dominant devices, where we used meaningful thresh-
old, with the devices that are ranked using the Euclidean
distance(ascending order) and the traffic volume(descending
order). Using the correlation dominance we have detected
206 dominant devices. For some gateways there can be two
or three dominant devices. For each gateway we detect its
correlation-based dominant devices and obtain a ranking of
dominant devices based on the other two measures. Then if
the devices in the ranking are the same, meaning that the
first device in one ranking is also the first in the second rank-
ing and so on, we say that the devices are detected equally
using the two measures.

Among the 206 dominant devices, 182 (88%) are ranked
the same as Euclidean-based dominant devices, and 151
(73%) are ranked the same as traffic-based dominant de-
vices. Nevertheless, there are many cases, where dominant
devices have lower overall traffic (around 15%), even though
they closely follow the traffic time series of the gateway, with
an exception of a few bursts (3 or 4). Our similarity mea-
sure is able to detect these devices, which cannot be detected
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using the Euclidean and traffic-based distances.
We have also tried more strict φ threshold for dominance,

φ = 0.8. Even with very tight constraint on dominance,
there is still large amount of gateways (67%) that have at
least one dominant device and the ratio of fixed devices
among the dominant devices is even larger.

Dominant Devices and Number of Residents. Hav-
ing the results of a recent user survey over a subset of 49
gateways in our deployment, which contained information
on the number of users per gateway, we checked if the num-
ber of dominant devices is correlated with the number of
residents. The result of this analysis showed that there is no
evidence of significant correlation. This may be due to the
fact that different users are active during different periods
of time, and in case of multiple users (and therefore multiple
devices) the number of overall dominant devices is lower.

On the other hand, in the gateways with one user, there
is always one dominant device detected. In the case of two
users (9 gateways), 2 dominant devices are detected in 5
gateways (56%) and 1 dominant device is detected in 4
gateways (44%) and there are no three dominant devices
detected. We have calculated the correlation coefficient be-
tween the number of dominant devices and the number of
users only for gateways with 1 and 2 users, and we obtained
a statistically significant correlation value = 0.53. In the
case where the number of users > 3, the effect of multi-
ple devices, discussed in the previous paragraph, is present
again, and only 1 or 2 dominant devices are detected.

Summary. The most interesting findings of our analysis
of dominant devices per home are:

1) Each gateway has at least one dominant device.
2) The majority of dominant devices are fixed devices.
3) Correlation based dominance is beneficial because it

identifies dominant devices that are missed by Euclidean, or
traffic-based distance notions.

4) The number of dominant devices provides a lower bound
for the number of residents per gateway.

7. TIME AGGREGATIONS AND MOTIFS
In this section, we are interested in investigating which

time aggregations of gateway traffic better reveal regular
user behavior in houses. For example, whether the produced
traffic is more significant in the morning rather than in the
evening, during the weekdays rather than the weekends, etc.
By checking various meaningful time aggregations ranging
from 30 minutes to 12 hours, we have experimentally verified
that the larger the aggregations are, the more correlations
are observed within or across gateways. This is due to the
fact that the periods of non-active traffic become smaller,
while traffic peaks become more similar. If at the same time
we exclude the points of background traffic, the actual usage
patterns of home gateways become more visible.

Since there is no golden standard as to which aggregation
should be used, the choice is usually application driven. In
our work we rely on the notion of strong stationarity (see
Definition 2) capturing repetitive usage patterns of gateways
to systematically determine the right aggregation level. If a
time series is strongly stationary, then the patterns found for
this time series are stable and we can generalize the results
of the analysis over this time series. This is not always
truth if standard bining such as morning, working hours,
late afternoon, evening, night is used, because usually the
borders of this binning, number of bins and their length is
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Figure 6: Aggregation curves for weekly patterns.

not experimentally verified but just arbitrary set.
We consider two kinds of windows: daily-windows start-

ing from midnight to reveal short-term patterns of usage be-
havior and weekly windows staring from Mondays to reveal
medium-term patterns. For four weeks of data and a weekly
period with 3 hours aggregation 7 % of gateways appeared as
stationary. Thus, though there are strongly stationary gate-
ways, still most of them change their behavior from week
to week. Finally after removing the background traffic (see
Section 6.1) 11% of gateways were detected as stationary.
In the next section we choose the best aggregation period
according to maximization of time series correlation.

7.1 Best Aggregation Period
In this section, we discuss how to choose the best aggrega-

tion period, according to the maximization of the time series
correlations across time. The problem is formally stated in
Definition 3. Background traffic is removed from all time
series, as described in Section 6.1.

7.1.1 Weekly Patterns
First, we consider the best aggregation for medium-term

patters of weekly behavior. As traffic depends heavily on the
time of the day from day to day we considered all time ag-
gregations starting at midnight that are factors of 24 hours,
namely 1, 2, 3, 4, 6, 8, 12, 24 hours and additionally we con-
sidered initial time series aggregation, which is 1 minute.
We also try aggregation granularities which are larger then
2 hours, starting from 2am and 3am. For the analysis, we
consider all the user gateways that have at least one traffic
observation every week during the 4 weeks of interest. The
total number of such gateways is 153.

An aggregation period is considered to be the best if it
reveals the highest correlation of traffic time series of a gate-
way values from one week to another.

In order to compare aggregations, we calculate the aver-
age correlation among all the week-week pairs separately for
each gateway, and for strongly stationary gateways (Defi-
nition 2). The plots of the average correlation values are
shown in Figure 6.

The maximum points for strongly stationary gateways are
reached at granularity periods of 6, 8 and 12 hours for ag-
gregations from midnight (Figure 6a) and 8 hours for ag-
gregations starting from 2am (Figure 6b). When consid-
ering all the gateways, large correlation points are reached
for 3, 4 and 6 hours of aggregations starting at midnight,
while 8 hour aggregations starting at 2am is still a maxi-
mum point. Since the 8 hours aggregation period starting
at 2am is an absolute winner for weekly patterns, we use this
aggregation for our further analysis. Note that this aggre-
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Figure 7: Stationary gateways per aggregation window.

gation has a meaningful semantic interpretation: each day
is divided into 3 periods, namely, ”morning“ between 2am-
10am, ”working hours“ between 10am-6pm, and ”evening“
between 6pm-2am. The traffic behavior of gateways for this
aggregation is also of interest to ISPs.

7.1.2 Daily Patterns
As the initial observations are received at a rate equal to 1

minute, and for daily patterns we need to have a reasonable
amount of points, we try the following aggregation periods:
1, 5, 10, 30, 60, 90, 120 and 180 minutes. We do not consider
aggregations larger than 180 minutes as it is not desirable
to have less than 8 data points per pattern. All the binning
values are factors of 1440 minutes, which constitute a day.

As before we define the aggregation period to be the best
if it reveals the highest correlation of traffic time series of a
gateway values for daily patterns. Unlike weekly patterns,
we do not require every day to be similar to each other, but
we expect that Mondays should be highly correlated with
Mondays, Tuesdays with Tuesdays, etc. For the analysis,
we consider all the user gateways that have at least 1 traffic
observation every day during the 4 weeks of interest. Their
number is 100.

For daily patterns we also studied strongly stationary gate-
ways, where the behavior of the same days of the week is
stationary (in the sense of Definition 2). Note that for sta-
tionarity we require not only highly correlated observations
among the corresponding days of the week (e.g., all Mondays
should be correlated with each other), but we additionally
require that the probability distributions of all instances of
that weekday should be similar. The number of stationary
gateways per aggregation granularity is shown in Figure 7.
We also decompose the total number of stationary gateways
to the number of gateways which have one stationary day of
the week, two stationary days, and so on.

Figure 7 shows that the number of stationary gateways
grows with the aggregation granularity. Additionally, more
days are stationary within the same gateways if the granu-
larity is larger.

In order to compare the aggregation granularities we cal-
culate the average correlation among all the pairs of the same
day of the week separately for all gateways and for gateways
that appeared to be strongly stationary. The plots of aver-
age correlation are shown in Figure 8.

The results show that small aggregation periods corre-
spond to low regularity in the data; moreover, there are no
gateways with at least 1 stationary day of week for aggrega-
tion granularities of 1 and 5 minutes. The correlation value
for all the gateways grows significantly up to 1 hour aggre-
gation, then it becomes stable up to the level of 180 minutes
or 3 hours. At the same time, the average correlation of the
stationary gateways keeps growing with the larger aggrega-
tion granularity, and the highest value is reached for the 3
hours aggregation granularity, which is the aggregation pe-
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Figure 8: Aggregation curves for daily patterns.

riod we use for daily patterns in the rest of this study.

7.2 Motif Discovery
As mentioned in Section 5, for motif extraction we only

consider patterns that correspond to medium-term (week)
and short-term (day) usage behaviors across time and across
gateways. Patterns within a particular gateway only or of a
longer period can also be identified following the proposed
methodology.

The following definition of a motif is used in our work:

Definition 5. Given a set of times series U , a mapping
function W of non-overlapping windows, which extracts pe-
riods of interest S from U according to a window length and
its starting point synchronizes with the corresponding times-
tamp of U (beginning of a day or a week), S = W (U), motif
is a set M ⊆ S , M = (mi)

k
i=1, where k is a support of a

motif. M has the following properties:
1. individual similarity: ∀i ∈ {1, 2, ..., k}, ∃j ∈ {1, 2..., k} :
cor(mi,mj) ≥ φ,

2. group similarity: ∀i, j ∈ {1, 2, ..., k}, i 6= j : cor(mi,mj)
≥ 3/4φ,

Thus, when a new subsequence is included in a motif it
is very similar to at least one existing subsequence in S and
it is reasonably similar to all the rest si, i = 1, ..., k. In our
case φ = 0.8.

In other words, two time series are considered to consti-
tute a motif if the correlation distance between them is very
high. The threshold we have chosen is 0.8. Several motifs
can be combined if all the time series that comprise the mo-
tifs have high correlations with each other. In this case, the
correlations should be ≥ 0.6.

Motif extraction enables us to enrich traditional analy-
sis of the aggregated traffic reported by a gateway. As a
matter of fact, we can detect detailed behaviors within the
same house that can be attributed to different residents (e.g.,
adults or children), or to different habits (i.e., daily or weekly
patterns). Identification of diverse behaviors inside a single
house goes beyond the current state of the art. Further-
more, to provide additional information about the obtained
motifs, we analyze them across the following dimensions:
1. How many dominant devices per gateway contributed to
the motif? In this case we consider dominance for the cor-
responding time period of time series that formed the motif.
2. How do the dominant devices per motif and gateway re-
late to the overall dominant devices of a gateway detected
for a period longer than 4 weeks?
3. What is the distribution of the dominant devices per mo-
tif? We consider portable, fixed devices, network equipment
and others as discussed in Section 6.1.
4. Are there daily motifs, which are more common among
weekends than working days and vice versa?
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5. What gateways contribute the most to the motifs?
For the analysis we concentrate on significant motifs with
high support values, so called motifs of interest.

7.2.1 Weekly Motifs
In order to find weekly motifs we use 8 hour aggregation

period starting at 2am, as it is the best time aggregation
according to the experimental results in Section 7.1.1. The
motif search was done on user gateways that have at least
one observation for each week, out of the six weeks starting
from March 17th. The number of such gateways is 147. 
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Figure 9: Distributions of support values for weekly (left)
and daily (right) motifs.

As a result, 101 motifs are discovered from 882 (147*6)
weeks of observations. Out of those, 14 motifs have support
≥ 10. The distribution of the support values is shown in
Figure 9. For weekly motifs, the participation of gateways
in motifs is rather low, but at least one week time series
per gateway contributed to the motif construction. The top
gateways among the gateways with the highest contribution
provided at least 6 time series for weekly motifs while on
average number of the distinct motifs per gateway is 2.76.
The distribution of the number of distinct weekly motifs per
gateway can be seen on Figure 10. 
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Figure 10: Distributions of the number of motifs, where a
gateway participated in.

Some of the motifs of interest are shown in Figure 11.
In general, all the detected weekly motifs correspond ei-

ther to the patterns of everyday evening usage, or to the
patterns where certain days are the most influential.

We further elaborate on weekly motifs of interest, as shown
in Figure 11. We label the motif in Figure 11a - motif1, Fig-
ure 11b - motif2, and Figure 11c - motif3. The distribution
of the number of dominant devices for these motifs is shown
in Figure 12a. We observe that these motifs have one or two
dominant devices, and most of them correspond to the over-
all dominant devices of a gateway according to Figure 12b.
Nevertheless, there are some devices, which are dominant
per motif time slot, but not dominant for a gateway overall.
The number of these devices is at least 2.5 times smaller
than the number of common dominant devices.

We notice that motif1 and motif3 are mainly observed
for portables (Figure 13), while motif2 is observed for fixed
devices. This can be attributed to portable devices being
used in the evenings. But, more regular users, like the ones
contributing to motif2, tend to use fixed devices.

7.2.2 Daily Motifs
We have extracted daily motifs for the aggregation period

that is considered to be the best in terms of the highest
number of correlated patterns, as discussed in Section 7.1.2.
This is the three hours aggregation which gives 8 points for
each daily time series.

The daily motifs were extracted from time series of 100
user gateways (out of 196 gateways), which have at least one
observation per day in raw time series for the observation pe-
riod of four weeks. In total 112 motifs were extracted, with
48 motifs having support larger than 10. The distribution
of the support values is shown in Figure 9. The most popu-
lar (with the highest support) daily motifs are connected to
various evening usages, while there are still motifs with daily
behaviors and mixed morning and evening behaviors. Sur-
prisingly, for daily motifs each gateway contributed with at
least 16 time series. The top gateways (among the gateways
with the highest contribution) provided at least 28 time se-
ries for daily motifs. At the same time the average number
of district motifs per gateway is 12.5.

The distribution of the number of distinct daily motifs
per gateway is shown in Figure 10. The support of the daily
motifs is more repetitive between the same homes than in
the case of the weekly motifs. This can be attributed to the
fact that more days per gateway were considered. 28 data
windows are used for daily motifs, while 6 data windows are
used for weekly motifs.

Analysis. We analyze in detail 4 representative daily
motifs shown in Figure 14. The distribution of the number
dominant devices is illustrated by Figure 15a.

We observe that motifs usually have one or two domi-
nant devices. Unlike the weekly motifs, many of them do
not correspond to the overall gateway’s dominant devices
(Figure 15b). However, the majority still coincides with the
overall dominant. This higher ratio of new dominant devices
is attributed to the small time intervals (i.e., a single day),
while overall dominance is determined for 4 weeks of data.

The distribution of dominant device types is shown in Fig-
ure 16a. Motifs A, B and C which correspond to high usage
behavior in the morning or/and in the evening are mainly
created by portable devices, while motif D, with all day ac-
tive usage(and similar daily motifs we detected), is more
generated by fixed devices. In general, daily patterns have
higher percentage of portable devices as dominant devices,
especially in the cases of not continuous usage behaviors.

Most of the motifs correspond to both working days and
weekends, but all day usage (motifD) contains more work-
ing days (Figure 16b). The relative support of working-day
motifs is larger than that of weekends, as working days are
more frequent in the training set.

Summary.
1) Portable devices are sources of short-term morning or

evening activities, while fixed devices generate day and night
long-term patterns.

2) Gateways participate in several motifs. This supports
our hypothesis that a gateway involves multiple distinct be-
havioral patterns. Our approach is able to reveal those,
thus leading to an accurate characterization of the gateways,
which in turn provides valuable insights to ISPs.

We observe that the discovered motifs reveal fine-grained
regular behaviors that can be exploited in order to bet-
ter manage residential networks. For example, our analysis
identifies groups of users, irrespective of their location and
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(a) Heavy Weekend Users: Support = 26 time
series (23 % occur during different weeks in the
same gateways).

(b) Everyday Users: Support = 13 time series
(15 % occur during different weeks in the same
gateways).

(c) Workdays Users: Support = 21 time series
(29 % occur during different weeks in the same
gateways).

Figure 11: Weekly motifs for 8 hours aggregation granularity.
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Figure 12: Dominant devices for weekly motifs.
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weekly motifs.

demographics, that share similar time periods of low activ-
ity (in different parts of the day, or night). These can be
used by ISPs and CSPs to schedule maintenance processes
in a way that minimally interferes with the user activities.

8. CONCLUSION
In this work, we analyze the wireless traffic time series

of 196 home gateways. We describe a similarity measure
suitable for capturing the characteristics of traffic evolution
within and across gateways. We propose a notion of station-
arity that, in addition to the similarity of data distributions,
also imposes a correlation similarity across non-overlapping
time windows. This work is a first step towards understand-
ing fine-grained regularities on residential traffic consump-
tion. ISPs and CSPs could leverage such analytics to enable
remote maintenance services such as: (i) troubleshooting
and firmware/software updates of RGWs, and (ii) hotspot
resource management and collaborative networks, which re-
quire fine time-scale identification of gateways’ and home
devices’ active and idle times. Existing methods rely heav-
ily on wireless traffic stationarity for such predictions, which
do not hold in home networks (cf. Section 2). Our analytics
framework uncovers the best aggregation of home traffic val-
ues, in order to identify motifs and to detect gateways with
similar/different traffic patterns. We are currently working

towards integrating our time series correlation and motif ex-
traction, in a streaming big data analytics platform, such as
Apache Storm or Amazon Kinesis.
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[15] M. Karsai, M. Kivelä, R. K. Pan, K. Kaski, J. Kertész,
A.-L. Barabási, and J. Saramäki. Small but slow
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ABSTRACT
The World Health Organization (WHO) and drug regula-
tors in many countries maintain databases for adverse drug
reaction reports. Data duplication is a significant problem
in such databases as reports often come from a variety of
sources. Most duplicate detection techniques either have
limitations on handling large amount of data or lack effec-
tive means to deal with data with imbalanced label distribu-
tion. In this paper, we propose a scalable duplicate detec-
tion method built on top of Spark to address these problems.
Our method uses the kNN (k nearest neighbors) classifier to
identify labelled report pairs that are most useful for classi-
fying new report pairs. To deal with the high computational
cost of kNN, we partition the labelled data into clusters for
parallel computing. We give a method to minimize the cross-
cluster kNN search. Our experimental results show that the
proposed method is able to produce robust duplicate detec-
tion results and scalable performance.

1. INTRODUCTION
Adverse drug reactions, or ADRs, impose significant haz-

ards to public health. They are one of the leading causes
of hospitalization, disabilities, and death around the world.
ADRs incur significant costs to health-care systems [10, 19].
Post-marketing drug safety surveillance plays an increas-
ingly important role in ADR detection in comparison with
pre-marketing drug clinical trails as clinical trials have limi-
tations on the number of patients involved and the diversity
of patient groups. Post-marketing drug safety surveillance
mainly uses Spontaneous Reporting Systems (SRS) to detect
signals of potential ADRs. These signals are then further as-
sessed by experts to establish a causal relationship between a
drug and an ADR. The World Health Organization (WHO)
and drug regulators in many countries, such as the FDA
in the US and the TGA in Australia maintain databases
for adverse drug reaction reports. ADR reports are submit-
ted from a variety of sources including general practitioners,
pharmacists, hospitals, and consumers etc. The ADR report

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

database is the major part of the reporting system. Many
drug safety assessment methods detect potential ADR sig-
nals through the comparison of the reported ADR ratio of a
specific drug and that of other drugs in the database. Dis-
proportionality often indicates a potential ADR signal [6, 7].
As these methods are sensitive to the number of ADR re-
ports, data quality in these databases is essential to the per-
formance of ADR detection. One significant problem faced
by such a database is report duplication. Duplicates often
result from two sources. First, reports from different data
sources have overlaps as the same ADR may be reported
by different organizations through different channels. Sec-
ond, the follow-up reports of the same ADR are wrongly put
as separate records in the databases. Duplicates may dis-
tort the report ratio of an ADR and affect the performance
of these methods significantly. Nkanza and Walop [17] re-
ported a 5% duplication rate in vaccine adverse event data,
providing an indication of the spread of the problem.

Duplicated reports in an ADR database are often not ex-
actly the same in each field. Table 1 shows two examples.
In the first example, report A and report B are duplicate,
but they differ in the reaction outcome description field and
report description field. In the second example, report C
and report D are duplicate, but they differ in patient age,
ADR name and report description field. The different values
in the patient age field are likely to be an error introduced
when entering a handwritten report.

A database record consists of multiple fields. Duplicate
detection techniques therefore have two levels: field match-
ing and record matching. Field matching mainly concerns
comparing numerical, categorical and string values in each
field. Record matching concerns whether two or more fea-
ture vectors formed by common fields belonging to different
records are duplicate.

There are many existing works on duplicate detection in
relational databases. Early works are referred as record
linkage with a focus on linking together two or more sep-
arately recorded pieces of information concerning an indi-
vidual case [16]. Large amount of work deals with the com-
parison of fields that can identify a particular record, such as
name, address, and age. The values of these fields are nor-
mally short strings. Many field matching techniques concern
approximate comparison of strings based on various similar-
ity metrics. Commonly used string similarity metrics include
edit distance [13], Hamming distance [8], cosine distance and
Jaccard coefficient [3] etc. Field matching alone is not able
to detect many duplicates, e.g., two string values in the sur-
name field can be totally different in the case that a woman
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(a)

Field Name Report A Report B
patient age 46 46
patient sex M M
patient state - -
onset date - -
reaction outcome description Unknown Recovered
drug name Atorvastatin Atorvastatin
ADR name Rhabdomyolysis Rhabdomyolysis
report description Reference number xxx is a literature The 46-year-old male subject started treatment

report received on 02-Oct-2013 pertaining with atorvastatin calcium 80 mg, start
to a 46 year-old male patient who date and duration of therapy unknown.
experienced rhabdomyolysis while on In 2009,the subject presented with myalgia
atorvastatin for the treatment of shoulder and hips for 2-3 weeks, minimal
unknown indication. weakness and was diagnosed with rhabdomyolysi

(b)

Field Name Report C Report D
patient age 84 34
patient sex F F
patient state Not Known Not Known
onset date 30/04/2013 00:00:00 30/04/2013 00:00:00
reaction outcome description Unknown Recovered
drug name Influenza Vaccine,Dtpa Vaccine Influenza Vaccine,Dtpa Vaccine
ADR name Vomiting,Pyrexia,Cough,Headache Cough,Headache,Choking sensation,Chills,Vomiting
report description On 30 April 2013, in the evening, within hours In the afternoon of 30-Apr-2013, the patient

of vaccination with Boostrix, the subject experienced uncontrollable cough for 2 hours,
experienced uncontrollable cough and felt then started choking and had to call an ambulance.
like she was chocking On the same She required oxygen before she felt better
night, the subject experienced headache.On and so didn’t go to hospital. She then
the 01-05-2013 at 3am, the subjet experienced. reported a headache, cold shive

Table 1: Sample duplicated reports.

changes her maiden name to her husband’s surname, but
they belong to the same record.

Record matching considers each field as an element of a
feature vector of a record. It combines the differences among
common fields of two or more records to determine whether
they are duplicate. The ways of combining field similarities
of records differentiates record matching techniques. Some
techniques calculate the probability of difference of values in
each common field, converts these probabilities to log values
and add them together [16, 11, 12]. Some techniques use su-
pervised decision tree induction and unsupervised clustering
to determine if a record is likely to match a set of other data
records [5]. Active learning is also used for record matching
to reduce the amount of training data [20].

However, the effectiveness of existing duplicate detection
techniques on ADR databases is not well investigated mainly
due to the slow progress of the industryâĂŹs adopting infor-
mation technologies. We collaborate with the Therapeutic
Goods Administration (TGA) in Australia and use the ADR
reports they collected during 6 month period to carry out
this work. In this paper, we study the duplicate detection
problem in ADR databases with a focus on detection per-
formance and system scalability that is important for fast
growing data in this area. Our contributions are as below:

1. To identify duplicates in ADR reports, pairwise dis-
tances between these reports often need to be calcu-
lated. The distribution of duplicate pairs and non-
duplicate pairs is highly imbalance. This poses a sig-
nificant challenge when selecting report pairs from a
large dataset to train a classifier for exploiting useful
information. The classification results are highly influ-
enced by the overwhelming majority of non-duplicate
report pairs. There is no generally applicable classi-
fication method to address this issue. We develop a

kNN based method to address this problem for ADR
reports. kNN is helpful for the classifier to learn from
individual reports and makes the classification results
easy to understand. It also offers flexibility through as-
signing weights to the information carried in the neigh-
bors in decision making. Our extensive experiments
show that our method produces more robust detection
results in comparison to SVM based classifiers.

2. A drug regulator database in a country with a rela-
tively small population may already contain a large
number of ADR reports that easily overwhelms the
computing capacity for effective duplicate detection.
In addition, kNN is both data- and compute-intensive
when the dataset grows large. The MapReduce model
is a convenient way to scale up the duplicate detection.
However, its Google and open source implementation
are mainly optimized for batch jobs so far [22]. Du-
plicate detection for ADR databases has a potential
use-case for interactive and fast detection of duplicates
for a specific report. Apache Spark [24] has the poten-
tial to support interactive data analytics. We imple-
ment a Spark based parallel system to support fast and
scalable kNN classification for duplicates. Taking ad-
vantage of the distributed memory management and
parallel data processing support offered by Spark, the
system is able to handle large amount of ADR reports
in a scalable manner.

The rest of this paper is organized as follows: Section 2
introduces the background technologies of our work; Sec-
tion 3 defines the problem; Section 4 describes the system
and our Fast kNN classification method; Section 5 gives the
evaluation results of the performance of the system; Sec-
tion 6 summarizes related works; and Section 7 concludes
the paper.
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2. BACKGROUND

2.1 kNN Classification
In a D-dimensional space D, s and t are two vectors rep-

resenting two data objects. We use d(s, t) to denote the
distance between s and t. Consider S and T are two sets
of such vectors, for a vector s ∈ S, we denote its k near-
est neighbors according to a given distance function in T
as knn(s, T, k). We assume that each t ∈ T is associated
with a label Lt, Lt ∈ {−1,+1}. The labels of vectors in S
are unknown. We use knn+(s, T, k) to denote the vectors
in knn(s, T, k) with label “+1” and knn−(s, T, k) to denote
vectors with label “−1”. kNN classifier assign a label to s
according to the following equation (note that the number
of vectors in knn(s, T, k) is an odd number):

Ls =

{
+1,

∑
t∈knn+(s,T,k) Lt +

∑
t∈knn−(s,T,k) Lt > 0

−1,
∑

t∈knn+(s,T,k) Lt +
∑

t∈knn−(s,T,k) Lt < 0

(1)
Assigning labels to each s ∈ S according to their nearest
neighbors requires a kNN join operation between S and T
to identify k nearest neighbors of set S in T , denoted as
S nknn T .

S nknn T = {(s, knn(s, T, k)|∀s ∈ S} (2)

2.2 Spark
Spark [24] is a cluster computing framework that sup-

ports iterative and interactive data processing. It provides
a level of data abstraction called resilient distributed datasets
(RDDs) [23] to represent a set of immutable data objects.
These data objects can be partitioned among a number of
cluster nodes. RDDs are fault-tolerant and can be recon-
structed when their hosting nodes fail.

There are two types of operations that can be applied to a
RDD in the Spark framework: transformations and actions.
A transformation contains operations that produces a new
RDD from an existing RDD while an action returns a value
after operating on a RDD. Operations are often executed in
parallel on a RDD. In addition to support map, reduce and
aggregate operations on a RDD, Spark also offers operations
such as join, union and cartesian to manipulate multiple
RDDs. Different to MapReduce, RDDs where map and re-
duce operate on can be persistent in memory in nodes of the
cluster, which greatly improves the efficiency of iterative and
interactive applications. A duplicate detection system like
the one discussed in this paper is an iterative process that
contains data processing of multiple stages and it fits the
Spark framework well.

3. THE PROBLEM
An adverse drug reaction report database A stores reports

continuously collected by a regulator. We consider that a
set of new reports, denoted by R arrive in the database
may contain duplicates among themselves as well as with
existing reports in the database. The problem is to identify
the following set of report pairs:

Dupe(R,A) = {(r, h)|sim(r, h) < ε, ∀r ∈ R, ∀h ∈ A∪R−r}
(3)

in which, sim is a scoring function that measures the similar-
ity between two reports and ε is a threshold that determines
whether two reports are duplicate.

Duplicate detection within database A can been seen as
a recursive process in which reports are sorted according
to their arrival time to the database and reports with later
arrival time are checked for duplication against those with
earlier arrival time.

Note that even though an ADR database may contain 5%
of reports that have at least one duplicate in the database,
when it comes to the number of duplicated report pairs, the
rate of duplicates is much lower. This is because the number
of report pairs grows quadratically with the number of re-
ports and non-duplicate report pairs grows much faster than
duplicate report pairs. This results in highly imbalanced dis-
tribution of duplicate and non-duplicate report pairs in the
dataset derived from A.

4. THE SYSTEM

4.1 The Workflow
The workflow for duplicate detection in ADR database is

shown in Figure 1. It contains the following major compo-
nents:

• Report database: The report database stores reports
collected by a regulator and new reports are continu-
ously added to this database.

• Text processing module: Our system contains a text
processing component to clean up text data in a re-
port using common natural language processing tech-
niques. Free text plays an increasingly important role
in ADR reports as consumers increasingly participate
in reporting drug side effects to regulators in recent
years. Free text in a report not only is helpful for un-
derstanding drug side effects, but also contains useful
information to identify duplicated reports. Compared
to string fields such as name and address in existing
duplicate detection systems, a free text field such as
“report description” is significantly longer with major-
ity of them being 250 and 300 characters long. This
requires NLP techniques to extract useful information
from the text for duplicate detection. On the other
hand, regulators also increasingly monitor various data
sources that contain large amount of text for ADR re-
lated information.

• Pairwise distance computing module: The module com-
putes the pairwise distance among a set of reports in-
cluding selected reports from the database and new
reports arriving to the system.

• Training datasets (labelled datasets): The system main-
tains two temporary databases for duplicate detection:
one contains report pairs that are known to be du-
plicate; the other contains samples of non-duplicate
report pairs. The initial duplicate/non-duplicate la-
belling is done manually by domain experts from drug
regulators, in our case, the TGA. Afterwords, the col-
lection of report pairs in the two temporary databases
are dynamically adjusted when new duplicates and
non-duplicates are identified. Note that the duplicate
report pair database stores all known duplicates while
the non-duplicate report pair database only keeps a
subset of known non-duplicates. The difference is due
to the highly imbalanced distribution of duplicate and
non-duplicate pairs.
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Figure 1: The workflow of the system – the dashed line represents that the source data becomes part of the
target data when the processing finishes.

• Classification module: The report pairs are fed into
the classification module that computes the scores for
each pair and generates a list of duplicate pairs given a
score threshold. Many classification algorithms fit into
this system framework. We use kNN classifier as the
default one for this application area. One advantage
of kNN is that the classification results are easy to ex-
plain with human intuition and the basis of decision
making can be justified clearly. This characteristics is
particularly useful when the training dataset is highly
imbalanced and global algorithms are difficult to sep-
arate them with general models.

4.2 Report Distance Calculation
A typical ADR report contains fields as shown in Table 2.

Due to different missing data rates in different fields as well
as schema inconsistency in data sources, common practices
choose a subset of fields as input for duplicate detection.
The fields used in our method are highlighted in bold fonts.
The selection of fields is based on the WHO system as de-
scribed in [18]. In the selected fields, patient age (“calculated
age”) is numerical type. Patient sex, residential state and
onset date are treated as categorical data type. ADR name
(“MedDRA PT code”) and drug name (“generic name de-
scription”) have string type. Different methods deal with
string type differently, e.g., they are treated as categorical
type in probability based methods and programming level
string type in SVM based methods. As mentioned, free text
becomes increasingly important in ADR reporting systems,
we therefore include the report description field in our du-
plicate detection system and treat it as string type.

For a numerical field, if the values of two reports in the
field is the same, the distance is 0, otherwise 1. The same
calculation applies to categorical field types. For fields of
string type, we use Jaccard similarity coefficient to measure
the distance between two values as below:

d(S1, S2) = 1− |S1 ∩ S2|
|S1 ∪ S2|

(4)

in which, |S| is the size of set S. The free text field is of
string type, but as mentioned earlier, majority of values in
the free text field are between 250 and 300 characters long.
In order to eliminate the impact of typographical errors or

different ways of constructing sentences, we apply common
techniques to tokenize the content in the report description
field, remove stop words, and then stem tokenized words to
their root forms before computing their distances.

The distances of values in these selected fields of any two
reports form a distance vector between the report pair. The
comparison between two distance vectors, i.e., measuring
how similar a report pair is in comparison to another pair
of reports, is based on the Euclidean distance between the
two distance vectors of the two pairs.

Information Fields
Case Details case number, report date

Patient Details calculated age, sex, weight code, eth-
nicity code, residential state

Reaction Infor-
mation

onset date, date of outcome, reac-
tion outcome code, reaction out-
come description, severity code, sever-
ity description, report description,
treatment text, hospitalisation code,
hospitalisation description, MedDRA
Low Level Term (LLT) code, LLT
name, MedDRA Preferred Term
(PT) code, PT name

Medicine Infor-
mation

suspect code, suspect description,
trade name code,trade name text,
trade name description, generic name
code, generic name description,
dosage amount, unit proportion code,
dosage form code, dosage form de-
scription, route of administration code,
route of administration description,
dosage start date, dosage halt date

Reporter Details reporter type, report type description

Table 2: Data fields of an ADR report in TGA data.
The bold font indicates fields used in our duplicate
detection method.
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4.3 Fast kNN Classification
With the pairwise distances calculated, a kNN join is ap-

plied to labelled report pairs, denoted by T , and report pairs
containing new reports, denoted by S. The classification of
a report pair s ∈ S is based on the score computed from its
nearest neighbors in T . Due to the imbalanced distribution
of positive and negative labels, the negative report pairs eas-
ily overwhelm the positive ones. We therefore normalize the
score using the distance between two pairs as below.

scores =
∑

t∈knn+(s,T,k)

1

sim(s, t)
−

∑
t∈knn−(s,T,k)

1

sim(s, t)

(5)
The label of s is therefore determined by the following equa-
tion, in which θ is a given threshold:

Ls =

{
+1, scores ≥ θ
−1, scores < θ

(6)

4.3.1 Parallelization Strategy
Consider the number of report pairs in T is n and the

number of report pairs in S is m, the computing complexity
of kNN classification is O(m·n) for join and O(m·k) for score
calculation. n exhibits quadratic growth with the number of
reports. The amount of data to process easily overwhelms a
single server. To make the classification scalable, we parti-
tion T and S into a set of clusters, denoted by {T1, T2, ..., Tb}
and {S1, S2, ..., Sc} respectively. The cluster size in a parti-
tion is adjusted to fit into the memory capacity of a comput-
ing node. A naive parallelization strategy is to apply kNN
join for each partition group {(Ti, Sj)|1 ≤ i ≤ b, 1 ≤ j ≤ c}
and then merge the nearest neighbors from each partition
group. This approach does not reduce the overall comput-
ing complexity and incurs high data transfer cost as each
partition in S needs to compare with all partitions in T .
The merge of intermediate nearest neighbors may poten-
tially become another bottleneck that limits the scalability.

To address this problem, we exploit the locality of report
pairs in T in partitioning. We first partition report pairs
using k −means clustering to obtain c clusters. The center
of each cluster is calculated and stored in memory. Note
that clusters produced by k − means form a Voronoi di-
agram where each report pair in a cluster is closer to the
center of the cluster it belongs to than to any other cluster
centers. We then assign each report pair s ∈ S to a cluster
whose center is the closest to s comparing to other cluster
centers. It is likely that most of the k nearest neighbors of
s are within the cluster it is assigned, i.e., most of report
pairs in knn(s, T, k) can be found in knn(s, Ti, k) where Ti

is the cluster to which s is assigned. Certainly, there are
chances that some of the k nearest neighbors of s are in
clusters sharing borders with the cluster. The two scenarios
are illustrated in Fig. 2.

Our method therefore consists of two stages to deal with
the two scenarios. In the first stage, we compute the k near-
est neighbors within a partition to which each s ∈ S is as-
signed. In the second stage, the cross-cluster comparison is
performed for those testing report pairs falling into the sec-
ond scenario in Fig. 2. The key technical challenge is how
to determine whether it is necessary to check neighbor par-
titions when identifying the k nearest neighbors of a testing
report pair.

4.3.2 Observations

(a) (b)

Figure 2: kNN under partitioned dataset: the cir-
cle represents the cluster center of a partition; the
triangle represents a testing report pair s; the dark
square represents a positive report pair in knn(s, T, k)
and the light square represents a negative report
pair in knn(s, T, k). (a) knn(s, T, k) are all in one par-
tition; (b) knn(s, T, k) are in different partitions.

To address this problem, we develop an optimization algo-
rithm that intends to prune unnecessary cross-cluster com-
parisons. The algorithm is based on the following observa-
tions:

1. The number of positively labelled report pairs is small
and it incurs low computational cost to calculate dis-
tances between these positive report pairs and report
pairs in testing dataset.

2. When the k nearest neighbors of s ∈ S are all labelled
negative, there is no ground to classify s as a duplicate
report pair.

3. When the distance between s and its nearest positive
neighbor is greater than that between s and the k-th
nearest negative neighbor in a subset of T , it is clear
that there is no positive report pair in the knn(s, T, k).

4. As mentioned above, k−means produces Voronoi par-
titions on the training report pairs, hence the hyper-
plane, denoted by h that separates two partitions is
in the middle between the two cluster centers of the
two partitions. If the distance between s ∈ S and its
k-th nearest neighbor, denoted by sk in the partition
to which it is assigned is less than its distance to the
hyperplane, the distance between s and sk, denoted by
d(s, sk) is certainly less than distances from s to any
report pairs in the other partition.

The scenario of observation 4 is shown in Fig. 3, where the
distance between s and the partition hyperplane is d(s, h),
the distance between s and the closest report pair sx in the
other partition is d(s, sx). d(s, h) can be derived according
to [9] as below:

d(s, h) =
d(s, pj)

2 − d(s, pi)
2

2 · d(pi, pj)
(7)

in which, pi and pj denote the center of partition Ti and
Tj respectively. As d(s, b) is the shortest distance between
s and the hyperplane b and connecting s and sx needs to
cross the hyperplane, we have d(s, sx) ≥ d(s, b) according to
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the triangle inequality. Therefore when d(s, sk) ≤ d(s, b), it
is not necessary to include the partition Tj with center Cj

in the searching for knn(s, T, k).
Algorithm 1 describes the steps for selecting additional

partitions to be included kNN computing for a report pair
s. Line 2 – 5 is based on observation 1 – 3 and line 6 – 12 is
based on observation 4.

d
(s

,s
k)

d(s, sx)pi pj

s

sk

sx

Partition boundary(h)

d(s, h)

Figure 3: Additional partition selection for kNN un-
der partitioned datasets: pi and pj represent two
partition centers; the triangle represents a testing
report pair s.

Algorithm 1 Additional Partition Selection

Require: s ∈ S
Require: knn(s, Ti, k)
Require: min(s, T+): the mininal distance between s and

positive report pairs in T
Require: The centers of partitions : {pj |1 ≤ j ≤ b}
1: partitions = {}
2: d(s, sk) = max(knn(s, Ti, k))
3: if d(s, sk) ≤ min(s, T+) then
4: return partitions
5: end if
6: for 1 ≤ j ≤ b, j 6= i do
7: compute d(s, hij) using Equation 7. hij denotes the

hyperplane separating Ti and Tj .
8: if d(s, sk) > d(s, hij) then
9: partitions = partitions ∪ Tj

10: end if
11: end for
12: return partitions

4.3.3 The Classification Algorithm
Algorithm 2 gives main steps of implementing the dupli-

cate detection method described above with Spark primi-
tives of transformations and actions. The stage 1 (intra-
cluster comparison stage) is performed in line 6 – 8. The
stage 2 (cross-cluster comparison stage) is performance in
line 9 – 16. Stage 2 first computes the distances of the
testing report pair to all positive training pairs. It skips

cross-cluster comparison if the top k most similar report
pairs obtained so far are all negative, indicating there will
not be any positive training report pairs closer than the k-th
nearest negative report pairs. Otherwise, cross-cluster com-
parisons are performed in line 12 – 15. The output score of
each report pair is used to assign a label to the pair accord-
ing to Equation 6.

Algorithm 2 Fast kNN Classification.

Require: A training dataset T containing report pairs la-
belled as duplicate or non-duplicate

Require: A testing dataset S containing unlabelled report
pairs

Require: b – the number of clusters for partitioning T ; c –
the number of partitions for S

1: use k − means to partition T into b clusters:
{T1, T2, ..., Tb} with cluster centers of these partitions
denoted by P = {p1, p2, ..., pb}

2: run map operation to compute distances between P and
s ∈ S

3: assign s the partition i where dist(s, pi), (1 ≤ i ≤ b) is
minimal for vectors in P .

4: randomly split S into c partitions : {S1, S2, ..., Sc}
5: for i = 1 to c do
6: run join operation on Si and T− based on cluster IDs

(T− denotes the negative report pairs in T )
7: run map operation to compute the similarity between

joined report pairs
8: run aggregate operation to obtain the top k most sim-

ilar report pairs for each s ∈ Si based on the output
of the previous step

9: run map operation to compute distances between s ∈
Si and T+ (T+ denotes the subset of positive report
pairs in T )

10: run map operation to combine the results from step 8
and step 9 to update the top k most similar reports
pairs to s

11: if the output of step 10 contains at least one positive
report pair then

12: run map operation on {(s, knn(s, T, k))} for s ∈ Si

to compute a set of additional partitions to compare
using Algorithm 1

13: run join operation on Si and additional partitions
for s ∈ Si to compare

14: run map operation to compute the similarity be-
tween joined report pairs

15: run union and reduce operation to merge top k
nearest neighbors in each partition for s ∈ Si

16: end if
17: run map to calculate the score for s ∈ Si according to

Equation 5
18: end for
19: return all s ∈ S and corresponding scores

4.3.4 Further Pruning of the Testing Dataset
To further reducing the execution time of kNN classifica-

tion, we can prune some report pairs from the testing dataset
before applying the classifier. As shown in Equation 6, a
pre-defined θ determines the label of a report pair. When
the distance between a testing report pair and its positively
labelled k-nearest neighbor is further than a threshold, the
neighbor offers little hint to the label of the testing report
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pair because of the low similarity between the two pairs.
This observation can be used to prune the testing dataset.

When the testing dataset is large and the positive training
pairs accumulate along time, it is necessary to speedup the
computation of distances between each report pair in the
testing dataset and each labelled positive report pair in the
training dataset. We cluster the report pairs labelled as
positive and use the cluster centers to determine whether a
report pair in the testing dataset should be included in the
classification. Assume the distance threshold between two
report pairs is a function of θ, denoted as f(θ), The process
is described as below:

Step 1. Cluster the positive report pairs into l clusters using
k-means. We denote the cluster centers as cpi(0 <
i < l);

Step 2. Compute the distance of the furthest report pair to
its center in each cluster. We denote these distances
as dcpi(0 < i < l);

Step 3. For each report pair t in the testing report pair set,
do the following:

(a) For each 0 < i < l, calculate dist(t, cpi);

(b) if any dist(t, cpi) ≤ dcpi + f(θ), include t into
the testing set;

Fig. 4 shows an example of the process in 2-dimensional
space. cpi and cpj are the centers of two clusters of positive
report pairs. For simplicity, we assume the positive report
pairs are partitioned into only two clusters. The inner circles
are formed using the distance between the furthest report
pair and the center in each cluster. The shortest distance
between the dashed circle and its corresponding inner circle
is f(θ). In Fig. 4, p and q are testing report pairs. p is
outside of both dashed circles and those positive report pairs
are considered not helpful to decide the label of p. p is
therefore pruned from the testing dataset. On the other
hand, q is close enough to cpi (within its dashed circle) and
the positive report pairs in the cpi cluster may carry useful
information for labelling q. q is therefore included in the
testing dataset for classification.

p

q
cpi

cpj

Figure 4: Pruning the testing dataset:“+”represents
a positive report pair and “-” represents a negative
report pair. The triangle represents a testing report
pair.

5. EVALUATIONS
We implement the duplicate detection system in Java with

Spark 1.2.1 API. We evaluate the performance of our sys-
tem in a cluster consisting of 14 physical nodes. Each node

has 2 x Intel Xeon E5-2660@2.20GHz CPU (8 cores) and
128GB physical RAM, in which 96GB is allocated to con-
tainers. The connection among nodes is via Infiniband net-
works. The OS in each node is Debian Wheezy. Cloudera
CDH5 (5.0.0) with Hadoop 2.3.0 is installed with Yarn mode
on. We run multiple executors on these nodes.

5.1 Datasets
We obtain ADR report data from TGA Australia. TGA

maintains a database to store ADR reports submitted by
various parties and collected by themselves. The sources
that submit reports to the database include pharmaceutical
companies, hospitals, general physicians, patients etc. TGA
provides us 10, 382 ADR reports they collected for a period
of six months from July 2013 to December 2013. These
reports consist 286 pairs of reports labelled as known dupli-
cates. These duplicates were annotated by officers of TGA.
Table 3 summarizes the dataset.

Report Period 1 Jul. 2013 - 31 Dec. 2013
Number of cases 10,382
Number of fields per report 37
Number of unique drugs 1,366
Number of unique ADRs 2,351
Known duplicate pairs 286

Table 3: Summary of TGA dataset.

The fields in each report in this dataset are listed in Ta-
ble 2.

5.2 Fast KNN Performance

5.2.1 Baseline
Many classification methods are applicable to duplicate

detection problem where distance vectors of report pairs are
classified as similar or different. Support vector machine
(SVM) is a popularly used one in duplicate detection [2, 20].
In our evaluation, we use a SVM classifier as the baseline for
comparison.

SVM based methods take distance vectors between each
pair of reports as input and map them into a high-dimensional
space. These methods then use a hyperplane to separate dis-
tance vectors that represent duplicate report pairs and those
representing non-duplicate report pairs. The hyperplane is
obtained through learning from a training dataset contain-
ing labelled duplicates and non-duplicates. The hyperplane
maximizes its margins to points belonging to the two dif-
ferent classes. With the hyperplane, new report pairs are
considered duplicates if their distance vectors fall into the
match side of the hyperplane with a large margin; otherwise,
they are considered non-duplicates.

5.2.2 Precision and Recall
We measure the classification performance using the area

under precision and recall curve (AUPR). Precision and re-
call are defined as below in our case:
precision = number of correctly identified duplicate pairs

number of total identified duplicate pairs

recall = number of correctly identified duplicate pairs
number of total true duplicate pairs
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AUPR shows how the precision values vary with different
recall values. AUPR is able to visualize the difference of
algorithms compared to other metrics and suitable for highly
imbalanced datasets [4]. The goal to improve an algorithm
with the precision-recall curve metric is to move the curve
towards the upper-right corner.

Fig. 5 compare the performance of our Fast kNN algo-
rithm and SVM. Fig. 5(a) and Fig. 5(b) show AUPR curves
under different training dataset sizes. It is clear that in both
cases, our algorithm significantly outperforms SVM based
method. The main reason is that with highly imbalanced
datasets, it is difficult to build a consistent model using SVM
while large number of negative report pairs are surrounding
few positive report pairs.

One way to improve the consistency of SVM classifier is to
sample representative report pairs into the training dataset
in hope that the model is applicable of a wide range of testing
dataset. We implement an improved SVM classifier called
SVM clustering by clustering training set and make sure
report pairs in small clusters are included in the training
dataset. Fig. 5(c) shows the actual area size varies with
training dataset sizes under the three classification meth-
ods. It is easy to see that sampling a variety of report pairs
into the training dataset does not have significant impact
to SVM performance. Our method improves the classifica-
tion performance by 19.1% in average in comparison to SVM
classifier.

5.2.3 Effect of k
We also examine the impact of k on the classification

performance and execution time. The results are shown in
Fig. 6. We vary k from 5 to 21 and the variation of AUPR
values is not significant, as shown in Fig. 6(a). This is due to
that the score calculation takes the distance of a neighbor to
the report pair being classified into account in Equation 5,
which eliminates the impact of neighbors that are far away
from the report pair to classify.

On the other hand, increasing k does increase the execu-
tion time of the Fast kNN classifier. As shown in Fig. 6(b),
the execution time grows by 31% when k is increased from
5 to 21. This is mainly due to that a larger k potentially
increases the number of partitions to compare.

5.2.4 Effect of cluster number b
The parallelism is affected by the number of clusters in

the k − means step in Algorithm 2, which determines the
number of training dataset partitions as well as the number
of partitions of joined testing and training datasets. Fig. 7
shows how the system performance is affected by the set-
ting of the cluster number. Fig. 7(a) shows that as the
number of clusters increases, the overall number of intra-
cluster comparisons decreases in general, while the number
of additional clusters to check in the next phase increases
proportionally as shown in Fig. 7(b). The increase of cluster
number results in smaller number of report reports in each
cluster, which leads to the reduction of the total number of
intra-cluster comparisons. However, the trend stops when
the cluster number increases to 70 and the total number of
intra-cluster comparisons slightly increases. This is due to
the cluster sizes are uneven and the probability that a large
portion of report pairs in the testing dataset is assigned to
a large cluster increases. Therefore the overall comparison
number increases.

Note, the total number of additional clusters to check in-
creases in the second stage does not mean the total number
of cross-cluster comparisons increases. The shrinking cluster
size also reduces the number of comparisons in each cluster
in stage 2. As shown in Fig. 7(c), the total number of cross-
cluster report pair comparisons shows a decreasing trend as
the number of cluster increases. Similar to intra-cluster com-
parison stage, the trend stops when the number of clusters
increases to 70. It is also due to the uneven distribution of
cluster sizes.

The computational complexity of the cross-cluster com-
parison stage is low compared to the intra-cluster compari-
son stage. As shown in Fig. 8(a), the total number of cross-
cluster comparisons varies from 1.4% to 1.9% of the total
number of intra-cluster comparisons. This also indicates
that further reducing the number of cross-cluster compar-
isons is not able to have big impact on overall execution
time.

The execution time change with different cluster numbers
reflects the change of overall comparison number. Fig. 8(b)
shows that the execution time has a decreasing trend when
the number of clusters increases. When the cluster number
is set to a number below 25, the memory of each executor can
not accommodate joined partitions and frequent swapping
triggers a few task failures due to timeout. The automatic
retries significantly stretches the execution time. When the
cluster number increases from 25 to 55, the execution time
is reduced by 31%. When the cluster number becomes 70,
the execution time slightly increases by 5.7% comparing to
that when the cluster number is 55.

5.2.5 Scalability
We measure the scalability of Fast kNN from two aspects:

firstly, we examine how it scales with the size of training
dataset; secondly we investigate how it scales with the num-
ber of executors. As shown in Fig. 9, with different partition
number of the testing dataset, the execution time increases
proportionally with the increase of the training dataset size.
The execution time increases 1.4 – 2.1 times when the size
of training dataset increases 5 times.

Fig. 10(a) shows the execution time change with the num-
ber of executors. For different training dataset sizes, the in-
crease of executor number leads to the decrease of execution
time. The decrease trends become flatter as the executor
number increases. This is due to that the overhead of data
shuffle gradually increases while more nodes participate the
computation. For comparison purpose, we show the pairwise
distance computing time separately in Fig. 10(b). The input
data for pairwise distance computing is relatively small and
the data distribution cost is low in this step. As a result, its
speedup is significant when the number of executors further
increases. Fig. 10(a) and Fig. 10(b) also show that the time
used in the pairwise distance computing step is only a small
portion of the overall execution time.

5.2.6 Effect of Testing Set Pruning
In the following, we measure the effectiveness of the test-

ing set pruning method. We use 204, 736 randomly selected
report pairs as testing dataset. The training data contains
1, 000, 000 report pairs, in which 266 pairs are duplicate.
Fig. 11 shows the result. When the distance threshold is
set to 0.9, nearly 100% of the testing pairs are included in
the classification phase. When the threshold is set to 0.7,
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Figure 5: Comparison of area under precision and recall curve: kNN vs. SVM. Total number of testing pairs
– 20,000. (a) Total number of training pairs – 5 millions; (b) Total number of training pairs – 1 millions; (c)
Change of area sizes under precision and recall curves: the number of clusters in SVM clustering is set to 8.
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Figure 6: Effect of k: Total number of training pairs – 3 millions; Total number of testing pairs – 10,000. (a)
Area under precision-recall curve (AUPR) comparison; (b) The execution time comparison.

about 75% of testing pairs are included in the classification
phase. Setting the threshold to 0.5 does not produce signif-
icant pruning and 73% of testing pairs are included. When
the threshold is set to 0.3, 65% of testing pairs remain. The
pruning ratio is not exactly proportional to the threshold
setting because of the non-uniform distribution of both pos-
itive training report pairs and testing report pairs. Note
that all these threshold settings enable the duplicate report
pairs in the testing dataset being included for classification.

On the execution time of classification aspect, the reduc-
tion is significant. The threshold setting of 0.3, 0.5 and 0.7
reduces the execution time to 35%, 65% and 61% of the clas-
sification time without pruning. This is mainly due to the
reduced data transfer and memory use. Even though setting
the threshold to 0.5 slightly prunes more testing pairs than
setting it to 0.7, the classification time under threshold 0.5 is
slightly longer than that under threshold 0.7. It is related to
the report pair distribution and how balance the workload

of comparing these report pairs is among Spark data nodes
that store them.

The setting of the threshold directly affects the perfor-
mance improvement of testing set pruning. Potentially, the
setting can be learned from the labelled data, which we leave
as our future work.

6. RELATED WORK
We compare our method with closely related works on

parallelizing kNN join as well as approaches for handling
datasets with imbalanced label distribution.

C. Zhang et.al [25] describes a basic Block based data
partitioning method for kNN join using Hadoop. It then
proposes to build an index using R-tree for each local block
in a dataset. The built-in kNN functionality of R-tree is able
to speedup the kNN search in the local block. The method
does not reduce the overall computing and communication
complexity.
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Figure 7: Impact of the cluster number: Total number of training pairs – 4 millions; Total number of testing
pairs – 10,000. (a) The number of intra-cluster comparisons; (b) The number of additional clusters to check
for each element in the testing set; (c) The number of cross-cluster comparisons.
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Figure 8: Impact of the cluster number of training set on cross-cluster comparison: Total number of training
pairs – 4 millions; Total number of testing pairs – 10,000. (a) Ratios of cross-cluster/intra-cluster comparison
number; (b) The execution time change with the cluster number: memory size of each executor is 32GB.

W. Lu et.al [15] gives an improved algorithm for paral-
lelizing kNN join using MapReduce and aims to reduce the
search space. It partitions datasets into a Voronoi diagram.
The differences between our approach and [15] lie in the
following aspects: firstly, our method uses k − means to
partition the training dataset while [15] uses it as an option
in data pre-processing to select pivots (partition centers).
A map operation is then applied to use the selected piv-
ots to partition datasets and collect partition statistics. As
k−means produces Voronoi sets already, it is not necessary
to run another data partitioning operation. Secondly, our
approach uses the characteristics of imbalanced datasets to
reduce the cross-cluster comparison rather than introducing
another statistics collection step to achieve this goal. Our
experimental results show that the cross-cluster comparison
cost is low. Thirdly, our approach makes use of distributed
memory management of Spark to cache data partitions in
comparison to the ad-hoc caching mechanism in [15].

In addition, there are works on set-similarity join using
MapReduce [21] and Voronoi partitioning for MapReduce [1].
These works focus on identifying the nearest neighbors. Our
work differ from them in using kNN as a means for classi-
fying highly imbalanced datasets, which gives us additional
information for reducing the search space, e.g., when the
distance between a report pair and its nearest positively la-
belled neighbor is further than a given distance threshold,
the report pair is likely to be non-duplicate and therefore
pruned from the search space.

W. Liu and S. Chawla [14] illustrates the problem of im-
balanced label distribution in classification and proposes a
weighted method for handling imbalanced data in kNN clas-
sifier. Our results show that kNN classifier is more robust
and less affected by over-represented negative data than
SVM on detecting highly imbalanced duplicate/non-duplicate
report pairs. Further improving the classification perfor-
mance of kNN require careful analysis of similarity of report
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Figure 10: Execution time change with the number of executors: testing set size – 10,000; cluster number
of the training set – 48; block number – 5; executor memory size – 32GB; executor core – 1. (a) Overall
execution time; (b) Pairwise distance computing time (total number of reports – 10,382).
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Figure 9: Scalability with the size of training
dataset: testing set size – 10,000; cluster number
of the training set – 32; total number of executors –
25 (32GB memory and 1 core).

pairs by taking additional domain knowledge into account,
which is our future work. Fortunately, the simplicity of kNN
provides flexibility to accommodate new models.

7. CONCLUSIONS
In this paper, we studied duplicate detection in adverse

drug reaction report databases. We proposed a Fast kNN
classification method to deal with highly imbalanced label
distribution in the dataset. Comparing to some datasets
used for evaluating kNN join methods, there were relatively
small number of fields chosen to calculate the pairwise dis-
tance vector between reports, however, the ADR report database
contained a long text field with non-trivial distance calcula-
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Figure 11: Effectiveness of pruning the testing
dataset:training set size – 1,000,000; cluster number
of the training set – 200; testing set size – 204,736;
cluster number of the testing set – 30; f(θ) (thresh-
old) is set to 0.3, 0.5, 0.7 and 0.9; executor number
– 20; number of cores per execution – 4.

tion complexity. We showed that our method is effective in
detecting duplicates in real ADR data and significantly out-
performs SVM based classifier. The system we implemented
using this method is capable of handling large amount of ad-
verse drug reaction report data in a scalable way. We built
the system using Spark. We effectively reduce the comput-
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ing complexity by exploiting label imbalance and Voronoi
partitioning of the training dataset. We also gave a method
to prune the testing dataset to further improve the perfor-
mance. We are not aware other parallel duplicate detection
system in practical use in this domain with rapidly growing
data and increasing importance. Our future work will focus
on load balancing among executors for better scalability.
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ABSTRACT
Microblogging platforms such as Twitter provide low cost
access to an immense reserve of authoritative professionals,
opinion leaders and hobbyists for a wide range of topics. Yet,
as microposts are short and incredibly diverse, many of these
experts are hidden. In this paper, we present e#, a system
to retrieve experts automatically for a given set of keywords.
Our design targets exhaustivity: e# can detect previously
undetectable experts. The core idea is to enhance a state-of-
the-art expert detection algorithm with a graph of expertise
domains. Our system produces this graph from hundreds
of Gigabytes of Web search query logs and behavioral data,
processed in a distributed, parallel fashion. We provide a
detailed description of our architecture, including an orig-
inal SQL-based community detection algorithm. We then
benchmark our system with 750 queries, using crowdsourc-
ing. We observe that e# finds many more experts than a
state-of-the-art baseline.

Keywords
Expert detection, query expansion, clustering

1. INTRODUCTION
Microblogging offers a mighty, low-cost means to disse-

minate and consume knowledge. Platforms such as Twitter
let political analysts comment elections, sports journalists
explain why their favorite team fell short, and technology
fans criticize the weight of a new phone. In this paper, we
investigate the problem of expertise detection: we want to
retrieve experts from microblogs, given a topic expressed as
a set of keywords. For example, suppose that we wish to
learn more about American football from Twitter. Given a
set of keywords such as 49ers or NFL as input, can we return
a list of all the authoritative Twitter accounts?

Expertise detection systems must achieve high precision

∗Martin Hentschel was affiliated with Microsoft at the time
of this work
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and high recall. Precision measures the purity of the re-
sults. It is the proportion of experts returned by the system
which are relevant to the topic. On Twitter, achieving high
precision is challenging because the data contains an extra-
vagantly large range of topics and vocabulary: it contains
spam, fake accounts, but also many ambiguities. In our ex-
ample, the simple term football designates a different sport
in Europe and America. Recall measures the exhaustivity
of the results. It is the proportion of relevant experts on
the whole microblogging platform detected by our system.
Recall is challenging because tweets are short. An expert
in 49ers is likely to be an expert in West Coast football
too, because the 49ers is a popular football team from the
US West Coast. Yet, as tweets cannot contain more than
140 characters, the chance to have both expressions in the
same post is low. Therefore, a search for 49ers may miss
the experts for West Coast football.

Expertise detection has been studied for decades, but in a
very different context: initially, it focused on finding experts
from enterprise documents, in order to smoothen collabora-
tion between employees. The corpora were small, hetero-
geneous and the queries were very specific (e.g., FORTRAN
developer). With social media, the context is different: the
topics of interest can be narrow (e.g., 49ers draft) or broad
(e.g., sports). The corpora are homogeneous (all messages
have the same format), but their scale is massive. Also,
the requirements in terms of precision and recall are differ-
ent. In enterprise settings, the aim was to initiate profes-
sional collaborations, thus false positives were very costly.
Most studies on expertise retrieval targeted precision, re-
call came as distant second [4]. In contrast, our users are
looking for information sources, not collaborators. Hence,
they value depth and variety, while false positives are rela-
tively cheap. This shifts the balance towards recall. Unfor-
tunately, achieving high recall is also much harder on social
media, because microposts have a short length and an im-
mense vocabulary.

How can we detect experts with both high recall and high
precision? We present e#, a system to detect previously
undetectable experts. Our strategy is based on query ex-
pansion, well known in the context of document search but
seldom used for expert detection. We operate in two steps,
offline and online. Offline, we build a collection of linked
topics of expertise from Web data. Online, we exploit this
collection to augment incoming queries, and feed the result
to a precision-based expert detector. We obtain a variety of
high quality experts.
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Figure 1: Overview of e# - our system augments an input query with related queries, inferred from the
search log of a commercial search engine.

Two questions remain. First, how do we collect and link
topics of expertise? We propose to exploit the search query
log of a commercial search engine. This source gives us a
massive, time-relevant collection of keywords. We infer the
semantic associations between the terms with search and
click behavior. Second, how do we exploit this collection?
Our approach is to partition the search terms into commu-
nities, that is, groups of strongly related keywords. We then
use these groups to enrich the queries. Because of the scale
of the datasets involved, the engineering effort is non trivial.
We present an original implementation of modularity maxi-
mization, a framework to detect communities in graphs. The
advantage of our approach is that it can directly be imple-
mented in (parallel) declarative languages such as Hive, Pig,
Microsoft’s SCOPE or even SQL.

To summarize, here are our contributions:

• We present our pipeline e#, which combines search
query log analysis, community detection and query ex-
pansion at scale.

• We introduce a parallel, distributed algorithm to in-
fer clusters of related keywords from large Web search
logs.

• We describe a complete experimental evaluation, with
real-life examples and a crowdsourcing study. We present
our results on 750 queries from many different topics.

The rest of this paper is organized as follows. In the fol-
lowing section, we give an overview of e#. We then present
the base expertise detection algorithm on which we built e#.
In the fourth section, we detail how e# builds collections of
related keywords to expand the queries. We expose how our
system matches queries and expertise domains in the fifth
section. We present our experiments in the sixth section.
We then describe related works and conclude.

2. OVERVIEW
The main idea behind e# is to enhance an existing expert

detection algorithm with a collection of expertise domains.
Figure 1 gives an overview of our pipeline. It depicts two
stages: an offline stage, during which we build the collection,
and an online stage, during which we exploit it.

The offline stage can itself be decomposed in two steps.
First, we process a search query log. Using search terms

and clicks, we build a weighted graph, in which each vertex
represents a keyword and each edge represents a semantic
association. Then, we detect communities in this graph,
with a custom SQL-based algorithm. Each of the communi-
ties we obtain describes a topic of expertise, exploitable for
query augmentation.

During the online stage, we run the actual query augmen-
tation: we match the query with a topic of expertise from
the database, and append the corresponding keywords. We
then run a detection algorithm presented previously in the
literature [14]. Section 3 presents the algorithm.

Thanks to the query log, our collection of domains is in-
herently current. For instance, at the time of writing, it
contained keywords related to new technological products
(smart watches or VR glasses) or upcoming media events
(e.g., Star Wars VII). This is particularly useful when deal-
ing with social media. Also, entries often come in many
variants (e.g., football, fotbal, foot, etc...). This variety
improves the robustness of our system at little CPU cost.

3. PRELIMINARIES - BASELINE
In this section, we present the algorithm on which we built

e#. Expertise detection involves two main challenges: can-
didate selection and expertise ranking. Candidate selection
is the problem of finding candidate experts for a given topic.
Expertise ranking is the problem of determining the strength
of expertise given textual evidence. To solve both problems,
we use a method proposed recently by Pal and Counts [14],
shown to be competitive for Twitter data. The framework
was simplified for production purposes, it currently runs in
a commercial environment.

We implemented candidate selection on Twitter as follows.
A candidate expert is either an author of a tweet, or a person
mentioned in a tweet. In both cases, the tweet must match
the query. By default, a tweet matches a query if it contains
all of its terms after lower-casing [4, 14].

For expertise ranking, we first compute features of textual
evidence, and then rank the candidates on these features. In
their paper, Pal and Counts evaluate a dozen features. We
kept those which they present as important: the topical sig-
nal (TS), the mention impact (MI ), and the retweet impact
(RI ). These features are defined as follows:
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TS =
#tweets by user on topic

#tweets by user

MI =
#mentions of user on topic

#mentions of user

RI =
#retweets of user ′s tweets on topic

#retweets of user ′s tweets

The first two feature, TS and MI, measure how much the
user is specialized in the topic of interest. The third feature,
RI, measures the influence of the user.

Before we perform the ranking, we normalize and aggre-
gate the features. To normalize the features, we compute
their z-score. For instance, if µTS is the average of TS and
σTS its standard deviation, we compute zTS = x−µTS

σTS
. In

practice, the features appear to be log-normally distributed.
Therefore, we take their logarithm to obtain Gaussian distri-
butions. To aggregate the scores, we used a weighted sum,
using the authors’ guidelines.

In their paper, Pal and Counts propose an optional fil-
tering step, based on cluster analysis. This step is compu-
tationally expensive, and it is contrary to our objective of
improving recall. Therefore, we discarded it in our imple-
mentation.

4. COLLECTING TOPICS OF EXPERTISE
In this section, we describe how we build our collection of

expertise domains. During the extraction phase, we derive
a graph of semantic relationships from the search query log.
During the clustering phase, we detail how to decompose
this graph into communities, using a parallel, modularity-
based approach.

4.1 Extracting Semantic Relationships
To build our collection of related topics, we exploit the

search log of a commercial search engine. We chose this
source because it is intrinsically current and exhaustive.

How can we infer semantic connections between terms
from a search log? We propose to exploit the URLs clicked
for each keyword. This approach lets us detect non-obvious
semantic associations, and it is practical to implement [1].
Consider a vector space where each dimension represents a
URL from the query log. In this space, we associate each
query to a vector. Each component of the vector represents
the number of clicks on the URL. To obtain the similarity
between two terms, we can compute the cosine distance be-
tween the two vectors which represent them. If we compute
the distance between every possible pair of terms, we obtain
a term similarity graph. In this weighted, undirected graph,
each vertex represents a query, and the edges describe their
similarity. We illustrate this operation with Figure 2. This
graph gives us the material for our next step: the community
detection.

In practice, a few adjustments are necessary. For instance,
we remove all the queries which appear less than 50 times
per month, to reduce noise and save space. Even after this
operation, the same term can appear with dozens, sometimes
hundreds of variants (e.g.., san francisco, #sanfrancisco,
sf, . . . ). We leave these queries unchanged (no stemming,
or correcting), in order to capture as many different cases as
possible.
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Figure 2: Extracting the similarity between terms
from the search log.

4.2 Detecting High-Level Domains
Once the similarity graph is built, our next step is to

create groups of related keywords. We solve this problem
with community detection. The idea is to identify groups
of queries which are densely connected to each other, but
loosely connected to the rest of the graph. We assume that
if a group of keywords obeys such a property, then we can
use it to expand queries. The network analysis literature
contains dozens of ways to formalize this notion [10]. We
base our system on modularity maximization [13], which is
simple and widely studied. We first present the original se-
quential algorithm, proposed by Newman et al., then we
introduce our parallel variant.

4.2.1 Modularity Maximization
Overview. Consider an undirected graph G = (V,E).

For the sake of presentation, we consider that this graph is
not weighted, but that more than one edge can connect two
nodes1. Consider a set of vertices C ⊂ V . The modularity
measures how densely connected C is. To compute it, we
count the number of edges within the set, and compare to
what we would expect if the edges were drawn randomly
between G’s vertices, preserving the vertex degrees. The
modularity is the difference between these two terms. Let
E describe the expected value:

Modularity = #edges− E[#edges] (1)

Partition G’s vertices into p partitions C1, . . . , Cp. If we
sum the modularities of each of these partitions, we obtain
the total modularity :

TMod({C1, . . . , Cp}) =
∑
i∈1..p

Mod(Ci) (2)

1We can convert the similarity graph described in the pre-
vious section into this representation. To do so, we rescale
and discretize the weights to obtain integers. Then, we cre-
ate one edge for each unit.

565



This is our objective function. A high value indicates that
we found many dense communities. A low value means that
either the graph does not contain any community, or that
the partitioning is sub-optimal.

Computing the Modularity. We defined the modular-
ity as the difference between the number of edges within a
set of vertices and the expected number of edge within this
set. To obtain the first quantity, we can simply count. Now,
how do we obtain the second one?

For a set of vertices C, the variable mC describes the
number of edges and E[mC ] the expected number of edges.
We have:

Mod(C) = mC − E[mC ] (3)

We want to compute E[mC ]. Draw an edge at random
between two vertices of G. Let PC describe the probability
that the edge connects two vertices of C, and let mG denote
the number of edges in the graph. We obtain:

E[mC ] = mG ∗ PC (4)

Let’s compute the probability PC . Let DG = 2 ∗ mG

represent the sum of all the degrees of all the vertices of the
graph, and let DC represent the sum of all the degrees of the
vertices in C. For a given edge, the probability that one of
the endpoints ends up in the set C is DC/DG . Therefore,
the probability of having both endpoints in the community
is:

PC = (DC/DG)2 (5)

Putting everything together, we obtain:

Mod(C) = mC −mG ∗ (DC/DG)2 (6)

Note that the modularity is often normalized: many authors
use Mod(C)/mG instead of Mod(C). As mG is a constant,
this approach is equivalent to ours.

Greedy Heuristic. Maximizing modularity is a NP-
hard problem [13]. The seminal single-machine heuristic,
presented by Newman et al., operates in a greedy, bottom-
up manner. We initialize the algorithm by assigning each
vertex to its own community. Then, at each iteration, we
find the two closest communities, and merge them. We stop
when we cannot improve the score anymore, or when we
have reached a satisfying number of communities.

The critical part of the algorithm is to define “closest”.
According to Newman, two communities are close if merg-
ing them leads to an improvement in the global modularity.
Formally, if C1 and C2 describe these communities, we have:

∆Mod = Mod(C1 ∪ C2)−Mod(C1)−Mod(C2) > 0 (7)

Instead of computing the three terms of this equation sep-
arately, we can use a computational shortcut [13]. If m1↔2

represents the number of edges between C1 and C2, we have:

∆Mod = m1↔2 − E[m1↔2] (8)

Let D1 and D2 represent the sum of degrees of C1 and C2’s
vertices. We obtain the second term as follows:

E[m1↔2] =
D1 ∗D2

2 ∗mG
(9)

4.2.2 SQL-based Modularity Maximization
To deal with the scale of commercial search engine query

logs, we developed a custom variant of Newman’s procedure.
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FootballNFL
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49ers

California SF Bridge

0. Input Graph 1. Neighborhood Creation

2. Neighborhood Separation 3. Aggregation

Figure 3: First iteration of our modularity optimiza-
tion algorithm on a fictive example. The shaded tri-
angles represent neighborhoods.

Compared to previously published frameworks such as [17],
our approach can be directly implemented in a SQL-like lan-
guage such as Hive, Microsoft’s SCOPE or Pig. Therefore,
we can parallelize it with standard map-reduce relational
operators [5].

As previously, we initialize the algorithm by assigning each
vertex to a community. Then, we repeat the following three
steps:

1. For each community, list all the neighbor communities.
Two communities are neighbors if (a) they are con-
nected and (b) if we union them, the total modularity
increases (∆Mod > 0). We obtain several neighbor-
hoods, one for each community.

2. The neighborhoods found in Step 1 are overlapping:
one community may belong to several neighborhoods.
To remediate this, take each community, list all the
neighborhoods to which it belongs and keep the closest
one (∆Mod is as large as possible).

3. For each neighborhood, aggregate all the communities
into one large, new community
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neighbors = select c1.query as query1,
c2.query as query2,
distance

from graph
inner join communities c1 on query2
inner join communities c2 on query1
where ModulGain(query1,query2) > 0;

partitions = select query2,
argmax(distance, query1)

from neighbors
group by query2;

communities = select query1 as comm_name,
query2 as query;

Figure 4: Body of the community detection algo-
rithm in pseudo-SQL. The table Graph(query1,
query2, distance) represents the graph, and
Communities(comm_name, query) represent the commu-
nities (the foreign key relationships are underlined).

We illustrate these steps in Figure 3, and present the pseudo-
code in Figure 4.

4.2.3 Parallelization and Optimization
We presented our algorithm in pseudo-SQL. This approach

is declarative: we rely on the data management system to
effectively parallelize the code. We now discuss a few query
processing methods to achieve good performance.

The most time consuming operation is the join between
the communities and the graph, necessary to list the neigh-
borhoods (the first query in Figure 4). If the nodes have
enough main memory, we can speed it up with a replicated
join: we replicate and index the communities table at each
node. Then, we split the graph table, broadcast the par-
titions, and execute the join at each node. If this is not
possible, we must chain two map-side joins. We cluster the
tables communities and graph on the join keys (first query1,
then query2), send each partition to a node, then perform
the join at each node.

The following two operations (grouping and renaming) are
much simpler, and can be executed in one map-reduce pass.
The mappers emit the tuples with the key query2, then the
reducers perform the aggregation and the renaming.

5. QUERY MATCHING
We now describe how to retrieve a community for a given

query. Our approach is based on exact match: we find the
community which contains the query terms exactly and in
order, after lower-casing. Once we identified the relevant
community, we run the expert search for all the related terms
separately. We then union the results and rank the experts.
This approach is purposely conservative, and it is straight-
forward to implement.

An advantage of production query logs is that terms often
come in hundreds of variants, with alternative spellings and
mistakes. This improves the flexibility of the matching at
little computational cost.
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Figure 5: Convergence of the community detection
algorithm.
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Figure 6: Distribution of the community sizes.

6. EXPERIMENTS AND EVALUATION
We now describe our experiments with e#. We first present

the topics we extracted from a month of search queries. We
then demonstrate e#’s effectiveness with a crowdsourcing
study.

6.1 Topics of Expertise
We described how to extract topics of expertise with com-

munity detection. In this section, we illustrate our methodo-
logy with real world data. We use a full month of web search
query logs (May 2014, US only, 998 GB). The graph we ob-
tain contains approximately 60 million edges (1.45 GB). We
describe our hardware setup in Section 6.3.

Figure 5 shows how many topics our algorithm finds af-
ter each iteration. We see that it starts with lots of tiny
communities, then the count decreases very fast. Roughly,
the procedure converges after 6 iterations. Figure 6 shows
the distribution of the topic sizes. We observe that a large
majority of communities contains between 2 and 10 queries
(around 60%). We also found around 20% of orphans. We
have very few communities with more than 50 items.

Figure 7 shows three groups of related keywords. To
obtain this figure, we plotted the community which con-
tains the term 49ers (in dark blue), along with its three
closest communities - in light blue, light green and dark
green. The 49ers community contains many non-trivial
keywords: alternative spellings (niners), related activities
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Set Name Count Examples
Sports 100 49ers, hernandez, buffalo bills, nascar, baltimore ravens
Electronics 100 bluetooth, ipad mini, garmin, xbox, vacuum cleaners
Finance 100 nasdaq, dow futures, msft, quotes, bloomberg
Health 100 scoliosis, asthma, diabetes, bmi, bulimia
Wikipedia 100 world war II, aashiqui 2, lycos, beyonce, albert einstein
Top 250 250 sarah palin, mapquest, honda, antonov225, saudi arabia

Table 1: Queries used for our crowdsourcing study.

Figure 7: Graph and communities around the term “49ers”.

(49ers draft), or players (bruce ellington, vernon davis).
We see that the query-log distance lets us detect semantic
associations - we could not have detected these relations
with a string-based distance. The three other groups con-
tain topics which are somehow related to the 49ers, but not
closely enough to be used in query expansion. The light blue
community contains topics related to San Francisco tourism.
This is not surprising, because the 49ers is the official team
of the city. The light green one mentions “SF Gate”, which
is a popular San Francisco newspaper (with a thick sports
section). The dark green set focuses on Colin Kaepernick, a
star player in the 49ers.

6.2 Impact on Expertise Retrieval
In this section, we demonstrate e#’s effectiveness on Web

data with a crowdsourcing study.

6.2.1 Experimental Setting
We compare two algorithms: Pal and Counts’ algorithm,

detailed in the second section of this paper, and e#. To
test the algorithms, we used queries which reflect popular
interest in many different domains. Our assumption is that
if a topic is popular on the Web in general, then it is likely
to be popular on social media too. We used six sets, de-
scribed in Table 1. The sets Sports, Electronics, Finance
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Algorithm Screen Name Description Verified Followers

Baseline
SF49ersAllNews All news about San Francisco 49ers False 1,821
Tim Kawakami Tim Kawakami is a Mercury News sports columnist True 45,924
Matt Barrows Matt (that’s me) covers the 49ers for The Sacramento Bee. True 36,271

e#
Tre9er 49ers/NFL/Draft Tweets. Host of NinersNation.com .. False 4,651

NinersGoldRush Your source for all breaking 49ers news ... False 4,135
Red n Gold Huge #49ers fan. LET’S GO #NINERS! False 537

Table 2: Selected experts for the query 49ers. The flag Verified comes from Twitter, it attests the authenticity
of a popular account.

Algorithm Screen Name Description Verified Followers

Baseline
Huawei Club Official Twitter handle for Huawei Club India... False 1,589

The Internet Patrol The Internet Patrol is your source for Internet news. False 179
TekspeczDotnet [...] where technology is not a passion, but an obsession. False 87

e#
LuguLake LuguLake believe tech shouldn’t drift apart people ... False 3,215

HavitAworldnet HAVIT is specialized in PC and entertainment ... False 879
Bluesound High-res Music. Wireless. Everywhere. False 1,308

Table 3: Selected experts for the query bluetooth speakers.

Algorithm Screen Name Description Verified Followers

Baseline
Arthur Hogan Chief Market Strategist -Dad-SOX Fan False 409

CNBC Newsroom ... recognized world leader in business news True 92,014
WorldEconRecon Breaking Financial News | Investment Analysis False 7,470

e#
ET Commodities Your most trusted resource for timely news... True 15,733

MarketWatch Tracking the pulse of the markets... True 1,119,485
The Exchange We promote financial literacy, through Hip Hop. False 3,830

Table 4: Selected experts for the query dow futures.

Algorithm Screen Name Description Verified Followers

Baseline
Amer. Diabetes Assn. Leading the fight to #StopDiabetes ... True 73,905

Diabetes 101 Get Educated About Type 1 Diabetes. False 3,829
DiabetesNews.com The Most Comprehensive Diabetes News ... False 47,402

e#
amidiabetic (Stuart) Stuart #T1 diabetic, trying to help others False 58,451

Eliot LeBow Psychotherapist & Certified Diabetes Educator False 1,813
Diabetesview We deliver the latest Diabetes news everyday False 6472

Table 5: Selected experts for the query diabetes.

Algorithm Screen Name Description Verified Followers

Baseline
National Interest ... premier international-affairs magazines. False 12,340

Franz-Stefan Gady Foreign Policy Analyst, Occasional Reporter ... False 1,054
EmperorTigerstar ...YouTube channel about maps and history False 116

e#
ProjectBugle The First World War Commemoration Project False 36

Wales Remembers 1914-1918 Sharing stories, history, information False 1,166
WWI in Africa What happened in Africa should not stay in Africa. False 392

Table 6: Selected experts for the query World War I.

Algorithm Screen Name Description Verified Followers

Baseline
Ron Devito Sarah Palin supporter; LAN Infrastructure PM False 171

Sarah Palin News Palin news and opinion from Palin-focused sites. False 19,897
Jer A Governor @SarahPalinUSA Conservative Supporter! False 821

e#
Sarah Palin News All news about Sarah #Palin False 1,651
TheDean’sReport .. issues of the day from an honest [...] point of view False 7,108
Truthyism News Truthyism is a news and media organization False 177

Table 7: Selected experts for the query Sarah Palin.
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Data set Baseline e# Improvement
Sports 0.87 0.96 10%
Electronics 0.89 0.98 10%
Finance 0.94 0.97 3.1%
Health 0.82 0.98 19%
Wikipedia 0.83 0.87 4.8%
Top 250 0.64 0.86 35%

Table 8: Proportion of queries for which at least one
candidate expert was found, before and after query
expansion.

and Health contain the 100 most popular search terms from
a commercial search engine, for each category. The set
Wikipedia contains the title of the top 100 Wikipedia pages
visited in 2014. It gives us an alternative view of popular
interests. To increase diversity, we added the set Top 250,
which contains the top 250 queries of a commercial search
engine for July 2014. In total, we used 750 different queries.

We provide some examples of experts for the queries 49ers,
bluetooth, dow futures, diabetes, World War I, and Sarah
Palin in Tables 2, 3, 4, 5, 6 and 7 respectively. We observe
that the experts are diverse: among others, we notice jour-
nalists (CNBC Newsroom), individuals (Arthur Hogan), sup-
port groups (Diabetes 101) and local associations (Wales
Remember).

To assess the quality of the results, we were assisted by 64
crowdworkers, provided by a commercial third party. Eva-
luating expertise is a challenge for two reasons. First, the
workers themselves must have some knowledge of the topic
to recognize other experts. Second, the task is somehow
subjective. We strived to incorporate these considerations
in our experimental design. For each query, we generated
up to 15 experts per algorithm and interleaved the results.
To avoid worker fatigue, we chunked the resulting sets into
smaller sets of at most 6 experts. We also randomized the
order to prevent the position bias. We asked the workers to
spot “non-experts”, that is, accounts from which they could
not get any objective information about the topic of inter-
est. We chose to exclude “non-experts”, rather than validate
experts, because we assumed that the former task requires
less background knowledge than the latter. We gave exam-
ples, encouraged high response times, presented links to the
Twitter pages, and gave crowdworkers the option to ignore
questions for which they were not confident. We filtered
spammers with trivial preliminary questions. We set up
the experiments such that each expert was reviewed by 3
different workers, and aggregated the results with majority
voting.

6.2.2 Impact on Recall
In Table 8, we present the impact of query expansion on

the size of the result sets. We show the number of queries
for which at least one expert was found, before and after
expansion. We note that in all six cases, we obtain a neat
improvement. We notice the smallest performance gain with
the Finance set: the baseline results are already very high,
and e# only brings a 3% improvement. We observe the
most dramatic effects with Top 250: e# answers 35% more
queries. This result is not surprising: we trained e# on the
search log from which the queries come from, therefore we
expected it to perform well.
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Figure 8: Effect of the query expansion on the num-
ber of experts per query.
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Figure 9: Impact of the z-score on the number of
experts for the set Top 250.

Figure 8 present a finer view of e#’s impact on the num-
ber of experts retrieved for each query set. It presents the
number of queries for which the algorithms return n experts
or more, with n varying between 0 and 14. For instance,
the leftmost bars show that 100% of queries have 0 hits or
more. The rightmost bars show the number of queries for
which our algorithms found 14 experts or more. In almost

570



0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

electronics
finance

health

0 5 10 15
Avg. Experts per Query

Im
pu

rit
y

Setting e# Baseline

(a) Sets electronics, finance, and health.

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

sports
top 250

w
ikipedia

0 5 10 15
Avg. Experts per Query

Im
pu

rit
y

Setting e# Baseline

(b) Sets commerce, top 250, and Wikipedia.

Figure 10: Size vs. quality trade-off. The impurity
is the proportion of results marked as non relevant
by the judges.

every cases, we observe that query expansion improves the
number of experts found (in average of about 10%, up to
30%). We conclude that our expansion strategy works: it
does improve recall.

6.2.3 Impact on Precision
The major challenge in query expansion is to enhance re-

call without hurting precision. Indeed, query expansion may
weaken the quality of the retrieved experts. This degrada-
tion has multiple sources: it comes from noise in the corpora,
noise in the clustering, or errors in the expansion (e.g., dis-
ambiguation problems). In this section, we study the extent
of this penalty.

Before we present our results, recall that our algorithm
needs to be tuned. The users must choose a minimum z-
score, under which the experts are rejected. This threshold
defines a trade-off between precision and recall: a low value
will lead to many low quality experts, a high value will lead
to a few excellent experts. We illustrate this effect for Top
250 in Figure 9.

Figure 10 compares the quality of the experts found for
different levels of recall. For a given number of experts per
query, it returns the impurity, that is, the proportion of ex-

Step VMs Runtime Read Write
Extraction 65 38 min. 998 GB 2.6 GB
Clustering 65 2 hours 2.6 GB 94 MB
Expansion 1 < 100 ms.
Detection 1 < 1 sec.

Table 9: Resource consumption for one iteration
(September 2015)

perts marked as non relevant by the crowdworkers. We ob-
serve that the difference between the algorithms is very sub-
tle. It is maximal for the first few results of the set Sports,
it is almost imperceptible for Finance and Health. In the
dataset Electronics, e# performs slightly better than its
competitor. In conclusion, the accuracy penalty incurred
by e# is minimal, if not negligible. We can improve expert
detection recall with minimal losses in precision.

6.3 Resource Consumption
We now provide hints about the resource consumption of

e#. The offline part of our system runs weekly on a pro-
duction cluster. Table 9 reports statistics for one iteration
(September 2015). It must be noted that our environment is
completely virtualized, and thus performance depends heav-
ily on availability: a relational operator can use between one
and hundreds of virtual machines, depending on its nature
and the cluster’s workload. Besides, we have no control over
the underlying hardware. The data center comprises servers
with 12 x86-64 cores, between 32 and 64 GB main memory
and SSD drives with 1 to 3 TB. But each of these servers
can handle dozens of virtual machines. The collection of
expertise topics produced by e# weighs about 100 MB. We
store and index it in SQL Server 2014, which allows us to
query it in a few milliseconds. We refer the reader to Pal and
Counts [14] for more details about the final query detection.

7. RELATED WORK
Our work bridges two fields of study: expertise retrieval

and query expansion. It is, to our knowledge, the first at-
tempt to augment expert search with an external thesaurus.

7.1 Expertise Retrieval.
Researchers have been interested in detecting experts for

several years now, in particular since the problem was in-
troduced at TREC in 2005 [2]. An extensive review was
written by Balog et al. in 2012 [4]. The two oldest ap-
proaches are the candidate model and the document model.
In the candidate model, a textual profile is created offline
for each candidate (for instance, by aggregating all the doc-
uments authored by the candidate). Then, these profiles
are ranked with traditional IR model [7]. The document
model operates the other way around. First, a set of rele-
vant documents is identified for the query. Then, the algo-
rithms find the associated people and rank them according
to the relevance of the documents and their degree of asso-
ciation [15]. More recently, authors have proposed alterna-
tive models. Discriminative models such as the Arithmetic
Mean Discriminative model are robust and they can inte-
grate heterogeneous, arbitrary features [9]. Graphs models
have also gained popularity. For instance, Serdyukov et al.
have shown the effectiveness of random walks on “expertise
graphs” [18].
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Jianshu et al. is, to our knowledge, the first team to
have published work about expert detection on Twitter [20].
Their system is based on a graph describing the topical sim-
ilarity between the users. To detect authorities, they run a
variant of PageRank on this graph for each topic. An alter-
native was proposed by Pal et al. [14]. We introduce a pro-
duction version of their framework. Recent work has studied
how to incorporate location data into expertise retrieval, fo-
cusing on “local” experts rather than “general” experts [6].

As our framework is based on query expansion, we do not
compete with any of these approaches. Our system can work
with any Expertise Retrieval system.

7.2 Query Expansion.
Authors have proposed query expansion methods for decades

in document search. Researchers were already building“classes
of similar terms”to improve search before 1960 [16]. To mea-
sure the proximity between terms, they used co-occurence in
the training documents. Qiu et al. proposed a notable im-
provement with “concept-based” query expansion [16]. The
main idea was to represent the terms by points in a vector
space, where each dimension represents a document. From
this representation, it was possible to build a so-called sim-
ilarity thesaurus. Recent publications have shown that ex-
ternal source of knowledge can also improve search, such as
WordNet [19] or ontologies [12].

Our work differs from all of the above because we use a
query log. This source of data is relevant for two reasons.
First, it is relatively easy to manipulate: we do not have
to process the whole collection of documents (in our case,
this would mean the whole Web). Second, it is constantly
renewed; thus, we believe that the microblogging vocabulary
is better captured by this source than by existing ontologies.
Other authors have used query logs for query expansion,
such as Cui et al. [8]. They observe that if a set of documents
is frequently selected for a certain keyword, then their terms
are probably strongly correlated to this keyword. However,
they still use the underlying documents.

It seems that little work was presented on query expan-
sion in the context of expertise retrieval. Macdonald et al.
have mostly focused on local query expansion, i.e., using top
ranked documents for pseudo-relevance feedback [11]. Balog
et al. have presented ways to incorporate external evidence
of expertise into language models [3]. These lines of work
are complementary to ours, but they are not overlapping.

8. CONCLUSION
We introduced an approach for expertise detection on so-

cial media that emphasizes recall. We showed that finding
related domains of interests can be expressed as a graph
community detection problem. We presented a parallelized
implementation and showed the evaluation results on a large
Twitter data set. Our findings demonstrated that e# can
increase the number of experts without losing quality. Fu-
ture work includes expanding into other social networks such
as Quora and Facebook, and exploring different community
detection paradigms.
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ABSTRACT
Internet user behavior models characterize user browsing
dynamics or the transitions among web pages. The mod-
els help Internet companies improve their services by accu-
rately targeting customers and providing them the informa-
tion they want. For instance, specific web pages can be cus-
tomized and prefetched for individuals based on sequences
of web pages they have visited. Existing user behavior mod-
els abstracted as time-homogeneous Markov models do not
provide efficient support for modeling user behavior varia-
tion through time. This paper presents DECT, a scalable
time-variant variable-order Markov model. DECT digests
terabytes of user session data and yields user behavior pat-
terns through time. We realize DECT using Apache Spark.
Our implementation is being open-sourced and we deploy
DECT on top of Yahoo! infrastructure. We demonstrate
the benefits of DECT with anomaly detection and ad click
rate prediction applications. DECT enables the detection of
higher-order path anomalies that are masked out by exist-
ing models. DECT also provides insights into ad click rates
with respect to user visiting paths.

Keywords
Markov Model; Context Tree; Distributed Computing; Time
Series; Anomaly Detection; Link Prediction

1. INTRODUCTION
Understanding Internet user behavior is a key to the op-

timization of Internet services and software. A web browser
or server can prefetch or prepare webpages for a user, if the
system knows the user will visit the page in the short fu-
ture [23]. A service provider can customize clickable ads for

∗The work was mostly done while the first author was an
intern at Yahoo! Labs.
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a user, if the provider knows which ads the user is likely to
click [17]. Service providers can also design search engines
to fit human browsing dynamics [13].

Markov model (first-order, time-homogeneous) is commonly
adopted for Internet user behavior modeling [5]. It is, how-
ever, amnesiac; the probability of the next user visit is purely
based on the current status of the user. Higher-order Markov
models cure the amnesia issue by digesting historical visiting
sites of users [15]. Variable-order Markov models improve
higher-order Markov models by pruning away unnecessarily
higher-order paths for space saving purposes [3].

While the community has developed a string of advanced
Markov models to describe Internet user behavior patterns,
one strong assumption is constantly kept in all existing mod-
els: user behavior patterns do not change over time.

The above assumption, however, does not hold in the real
world. New products are releasing; UI of existing websites
are changing; cyber attacks occur; breaking news happen.
The Internet is evolving, and the observed Internet user be-
havior patterns should reflect the changes.

This paper presents DECT (distributed evolving context
tree), a time-variant model for efficiently describing Inter-
net user behavior patterns and their changes through time.
DECT is a time-variant variable-order Markov model. It
improves the state of the art variable-order Markov models
by releasing its assumption of static time-invariant user be-
havior patterns. DECT is designed to handle large volumes
of user session data and can be efficiently constructed via
distributed computing.

Time-variant variable analysis, e.g., visit counts of ser-
vices, has been widely used in industry to detect anomalies
like attacks, failures, and bugs. However, these commonly
used variables are stateless or only first-order with respect
to Markov models.

In contrast, DECT enables higher-order time-variant vis-
iting path analysis. DECT yields both regular time series of
individual path visiting probabilities and high-dimensional
time series for a set of related paths, e.g., paths that share
the same prefix. We demonstrate in Section 4.1 that DECT
can produce deep signals for anomaly detection. It helps re-
veal stealthy attacks, e.g., application layer DDoS attack [21]
and browsing mimicry attack [22]. First-order Markov mod-
els, in contrast, could mix these signals into noises. We
demonstrate in Section 4.2 that DECT distinguishes ad click
probability variations based on historical web pages a user
visits, while existing first-order prediction is blind to differ-
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Table 1: Symbols, Terms and Definitions
Term Definition

s site the primitive unit to record user behavior
(e.g., a URL, a web service, a website)

E session a sequence of sites that a user visits
(every session has a beginning and an end)

p̄ path a substring of a session
τ target the next site a user is going to transit to
c̄ context a sequence of visited sites prior to τ

ent types of users who come from diverse paths.
The contributions of our work are summarized as follows.
• We design DECT to digest large volumes of user ses-

sion data and construct time-variant user behavior mod-
els in a distributed manner.

• We explain the benefits of a time-variant user behavior
model and showcase application examples of DECT in
anomaly detection and ad click prediction.

• We realize DECT using Apache Spark and demon-
strate its performance processing terabytes of real-world
user session datasets.

2. DECT
We discuss two major features of DECT in this section:

variable-order and time-variant. These features are realized
through a flattened context tree, which embeds time series
information in its leaf nodes.

2.1 Definitions and Overview
We study user behavior in terms of their visiting paths on

the Internet. A (desktop or mobile) user session is recorded
as a sequence of visits to a set of Internet sites – resources
that users are visiting. Sites vary from specific URLs to do-
mains1. We define related variables that are used to express
user visiting paths in Table 1.

Higher-order Markov models have been proved effective
in modeling static user behavior [5]. Given a path p̄, a
higher-order Markov model can be trained to predict the
last transition of p̄ based on previously visited sites in p̄. In
this setup, we refer to the last transition in p̄ as the target
τ , and the sites prior to τ as the context c̄.

The key question we aim to answer is how target transi-
tion probabilities change over time. When considering the
higher-order Markov model as a weighted directed graph
GM = (VM , EM ), we construct our model to keep track of:

• change of VM : new and obsoleted nodes
• change of EM : transition matrix variation

DECT enables the tracking of both changes, and it pro-
vides two features to handle large amounts of data and mit-
igate exponential space explosion caused by regular higher-
order Markov model:

i) variable-order context-target probability
ii) fine-grained parallel path computing and pruning
We realize the two features through flattened context tree

– a new parallel and concise data structure for building dis-
tributed time-variant variable-order Markov model.
1The granularity of sites is a data collection parameter.
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Figure 1: Example of regular context tree (pruned
to represent a variable-order Markov model).

2.2 A New Context Tree Structure
Context tree is a common data structure for constructing

variable-order Markov model [2,5,6]. We first give a brief de-
scription of regular context tree and its operations. Then we
present our flattened context tree structure for distributed
tree construction and fine-grained parallel pruning.

2.2.1 Regular Context Tree
A regular context tree TC is a k-ary tree where k is the

number of all possible sites. TC records static transition
probabilities of any target given a limited length context.
The limited context length is the depth of the tree.

We give an example of a regular context tree in Figure 1.
A site s ∈ {A, B, C}. Each node maps to one context
that is recorded. A node nc̄, which corresponds to context
c̄ = (s−y, . . . , s−2, s−1, s0), positions at depth y in TC . Its
parent is the node with context c̄′ = (s−(y−1), . . . , s−2, s−1,
s0) at depth y − 1. Its children are nodes with context
c̄ci = (s−(y+1)i

, . . . , s−2, s−1, s0) at depth y + 1 where 0 ≤
i ≤ ξc̄ ≤ k. ξc̄ is the total number of children of c̄.

nc̄ stores the target probability distribution with respect
to the context c̄ = (s−y, . . . , s−2, s−1, s0), i.e., P (τj |c̄) where
0 ≤ j ≤ κc̄ ≤ k. κc̄ is the total number of reachable targets
given the context c̄.

Pruning Pruning a regular context tree of a higher-order
Markov model results in a variable-order Markov model.
The standard TC pruning strategy is a bottom-up process:
pruning away nc̄ if both criteria are satisfied:

1. nc̄ is a leaf node.
2. The distance, e.g., KL divergence, between the target

probability distribution of nc̄ and that of its parent
node nc̄′ is less than a predefined threshold Tpv.

Time-variant capability Unfortunately, regular context
tree is designed to accommodate static transition probabil-
ities. The transition matrix of the corresponding Markov
model is fixed when the model is built. Updating the tree
to reflect a time-variant model is expensive. It requires to
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Ψ (A | C -> C -> B)

Ψ (B | C -> C -> B)

Figure 2: Example of flattened context tree with
change of transition probabilities in time series.

Table 2: Flattened Context Tree vs. Regular Con-
text Tree

FCT* RCT*
Node semantics (context, target) context
Tree depth 1 highest order
Probability time series embedded none

*FCT/RCT: flattened/regular context tree

recalculate node probabilities and reevaluate previous prun-
ing procedures for pruned nodes.

2.2.2 Flattened Context Tree
We present a flattened context tree. We define the pruning

strategy to facilitate distributed tree operations for our time-
variant Markov model. We prove that our parallel pruning
strategy preserves the tree structure: one branch can be
pruned only if all its children are pruned.

A flattened context tree TF only has a depth of two: depth
0: root, and depth 1: all data nodes. Each depth-1 node np̄

corresponds to a path p̄ = (c̄, t) = (s−y, . . . , s−2, s−1, s0, t)
and it records a time series of transition probability Ψ(τ |c̄) =
{Pt(τ |c̄) : t ∈ T }. In comparison, a node nc̄ in TC stores the
distribution of transition probabilities according to context
c̄. Table 2 shows the most significant differences between our
flattened context tree and regular context tree. We illustrate
the structure of flattened context tree in Figure 2.

The advantage of the flattened tree structure is that each
node can be processed independently of other nodes, which
enables fine-grained parallel probability computing and prun-
ing for each (c̄, τ) pair. Furthermore, different nodes in TF

can be processed on a different processing unit in a dis-
tributed manner to scale out the process.

Pruning The purpose of pruning is to transform a higher-
order Markov model to a variable-order one. Pruning of TF

is performed for individual nodes in parallel. A node np̄ is
pruned away if p̄ is rarely visited through a large segment of
the monitored time period. The criteria can be measured as
the total number of path visits or the total number of path
appearances during the overall monitored time period. The
latter yields True or False in each inspection window and

sums the total number of True for the overall time period.

Theorem 1. In a flattened context tree TF , a node np̄

records the target transition probability time series of path
p̄. p̄′ denotes a suffix string of p̄. np̄ in TF can be pruned if
np̄′ (node corresponding to p̄′) can be pruned.

Proof. If a path p̄ is visited, its suffix path p̄′ is visited.
And two different paths p̄1 and p̄2 can share the same suffix
path p̄′. So V (p̄′) ≥ V (p̄) where V (p̄) is the number of path
p̄ visits. Given Tpv as the pruning threshold for path visits,
V (p̄) < Tpv holds if V (p̄′) < Tpv.

If one restructures a flattened context tree TF back to
a regular context tree TC , Theorem 1 guarantees that all
children of a branch node are pruned away before the branch
node is pruned. It is consistent with the standard pruning
strategy presented in Section 2.2.1.

Time-variant capability Time series information is em-
bedded into each node np̄ in TF , so TF reflects the change
of the corresponding Markov model through time. Change
of EM (discussed in Section 2.1) is distributed across Ψ(τ |c̄)
in each node. Changes of VM (discussed in Section 2.1) are
also stored in new or obsolete nodes if not pruned.

2.3 Growing the Flattened Context Tree
A flattened context tree TF grows through time. We use

a sliding window w to aggregate sessions through time and
yield transition matrices of our time-variant Markov model
at different times. Time series yielded from nodes in the
flattened context tree are extended when new sessions are
consumed and the tree has grown.

2.3.1 Session Batch
Session batch is a set of sessions. It is the smallest sliding

unit for w. Sessions are batched according to the timestamp
of its first visited site. A session may last across several
batch time periods, but the entire session is recorded only
once in the first batch it appears2. The timestamp of the
session batch is the start of the session batch.

Session batches do not interference with each other, and
they can be preprocessed in parallel to facilitate the tree
construction. In each session batch:

i) All paths at different lengths are identified (through
n-gram with variable-n) and parsed into tuples (c̄, τ).

ii) The counts of each tuple are accumulated.
iii) A set of 4-tuples (c̄, τ, tb, η(c̄,τ)) is yielded as the session

batch digest where tb is the session batch timestamp
and η(c̄,τ) is the count of tuple (c̄, τ) in the batch.

2.3.2 Sliding Window
The sliding window w covers a fixed number of session

batches and each slide takes in a new session batch and
abandons the earliest batch in the previous w.

In each sliding position, three operations are performed:
i) 4-tuples (c̄, τ, tw, η(c̄,τ)) are accumulated from session

batch digests where tw is the timestamp of the earliest
session batch in the window.

ii) 3-tuples (c̄, tw, ηc̄) are accumulated from the 4-tuples
where ηc̄ is the count of context c̄ in the window.

2Our current design does not support streaming because it
requires the entire user session to finish before it can be
sessionized and batched.
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Table 3: Description of Spark Runtime Stages of our DECT Prototype
Functionality #(SS) Description
Input handling 1 reading user session data from HDFS
Modeling 19 n-gram generation, batching, in-window aggregation, probability calculation, pruning
Time series generation 9 assembling time series and storing them onto HDFS
Statistics generation 3 generating and yielding statistics throughout the entire processing procedure

#(SS): number of Spark runtime stages

iii) A set of 4-tuples (c̄, τ, tw, P (τ |c̄)) is yielded as the win-

dow digest where P (τ |c̄) =
η(c̄,τ)

ηc̄
.

2.3.3 Flattened Context Tree Update
Digests of w at different positions are aggregated accord-

ing to tuple (c̄, τ) in the window digest. Each tuple forms a
depth-1 node np̄ in the flattened context tree TF . The time
series at each node (Ψ(τ |c̄) at node np̄ where p̄ = (c̄, τ))
is extended when a new window position is processed. w
at different positions of a single node can be computed in
parallel if all session batches are known.

Pruning of TF can be performed at any time based on the
generated time series at nodes. As discussed in Section 2.2.2,
pruning is performed at nodes that are rarely visited. If np̄

is pruned, Ψ(τ |c̄) prior to the pruning action is lost. np̄ can
be added back to TF if it becomes popular in the future, but
without the segment of Ψ(τ |c̄) when it is pruned away.

2.3.4 Time Series Production and its Applications
TF records the user behavior pattern evolvement and it

can be consumed by a variety of time series analysis tools
(e.g., anomaly detection, path prediction).
User behavior evolvement data generation. The user
behavior evolvement data are yielded in three major forms
for post-processing and analytics:

• Ψ(τ |c̄): individual time series for each (c̄, τ) pair
• {Ψ(τi|c̄) | 0 ≤ i ≤ κc̄}: high-dimensional time series for

all targets of a context c̄ where κc̄ is the total number
of reachable targets of context c̄.

• {Ψ(τ |c̄i) | 0 ≤ i ≤ ϱτ }: a collection of time series for
a target τ where ϱτ is the total number of contexts
which can reach the target τ .

{Ψ(τi|c̄) | 0 ≤ i ≤ κc̄} forms a high-dimensional time se-
ries where each dimension is Ψ(τi|c̄). We write {Ψ(τ |c̄i) | 0 ≤
i ≤ ϱτ } as a collection because each Ψ(τ |c̄′) is not indepen-
dent of Ψ(τ |c̄) where c̄′ is a suffix of c̄, yet it is quite useful
to compare Ψ(τ |c̄) with Ψ(τ |c̄′).
User behavior evolvement data analysis. Three most
important components of an aggregated user behavior time
series are trend, seasonality, and irregular component.

Trend ΨT (τ |c̄) describes long-term movement without
calendar related and irregular effects.

Seasonality ΨS(τ |c̄) characterizes regular cyclic move-
ments influenced by seasonal factors.

Irregular component ΨI(τ |c̄) records non-systematic
and unpredictable component(s) after trend and sea-
sonal components are removed from the signal.

Many user behavior time series Ψ(τ |c̄) can be very well

decomposed into the three components as described in (1).

Ψ(τ |c̄) = ΨT (τ |c̄) + ΨS(τ |c̄) + ΨI(τ |c̄) (1)

ΨS(τ |c̄) can be further divided into daily and weekly sea-
sonal components as found in our experiments.

Two major applications of our model are described next.
Anomaly Detection aims to discover anomalous user

behavior with respect to specific visiting paths. A spike or
a ravine in a time series could indicate breaking news, flash
crowds, Denial-of-Service attacks, service failures, etc. A
plateau appearing in the trend component of a time series
may indicate a persistent attack or a test for a new feature.
User behavior evolvement data Ψ(τ |c̄) and {Ψ(τi|c̄) | 0 ≤
i ≤ κc̄} are yielded for anomaly detection.

Ad Click Prediction is an application to predict how
likely a user will click an ad on her current visiting site
given her visiting path of the current session. Different
visiting paths leading to the same site may give different
ad click rates, and the probability trends of different paths
may be different. User behavior evolvement data Ψ(τ |c̄) and
{Ψ(τ |c̄i) | 0 ≤ i ≤ ϱτ } are yielded for ad click prediction.

3. IMPLEMENTATION
We implement DECT via Apache Spark using Scala. We

deploy DECT on top of Yahoo! infrastructure to support
anomaly detection and other services on Yahoo! network.

Our DECT implementation is open-sourced on github [19].
The implementation takes advantage of scalable and robust
transformations on resilient distributed dataset (RDD) in
Spark, e.g., mapValues and join. DECT compiles to 32
Spark stages at JVM runtime (shown in Table 3).

Our implementation consumes plaintext session data stored
on HDFS where each line records a user session3. A user ses-
sion consists of a timestamp ts and a sequence of visited sites
E = {s0, s1, . . . }. DECT digests the plaintext session data
and yields two types of information: i) time series harvested
from the flattened context tree, stored on HDFS, and ii)
statistics on processed data, e.g., total number of ith-order
time series, printed to Spark log.

Our realization is optimized from the following aspects:
1. Session and path (n-gram) data are aggregated at early

stages to minimize unnecessary duplicate data process-
ing. For example, before generating and counting n-
grams in each session E, same E with the same session
batch timestamp tb are counted and deduplicated.

2. Compact data structures are used to reduce storage
and transmitting overhead, e.g., a context as a single
JVM string, instead of an array of sites (JVM strings).

3We employ a Pig script to retrieve, sessionize and store raw
user event data from HCatalog onto HDFS prior to DECT.
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Figure 3: Higher-order path time series anomaly
detection5.

3. Job parameters are broadcasted, e.g., string splitter.
4. Partitioning strategies are manually specified to reduce

data movement among worker nodes.

4. EVALUATION
We conduct experiments on two Yahoo! daily user session

datasets to answer the following key questions:
1. What do we benefit from our time-variant user behav-

ior model over existing static stochastic models?
2. Is our design scalable to handle enterprise-wide tasks

consisting of billions of sessions?
We evaluate DECT with all data collected through Yahoo!

data highway. We analyze Yahoo! user activities within the
first half of 2015. In the evaluation, we focus on user sessions
within a single product, e.g., Yahoo! mail. Visits to alien
sites during sessions are ignored4.

We process user session data of Yahoo! US websites (En-
glish version) within two products separately: Yahoo! mail
and Yahoo! finance5. Each site in a session is roughly a
view in the model-view-controller (MVC) web architecture,
and it has a unique URL.

4.1 Case Study: Anomaly Detection
Time series of site visits are commonly used as anomaly

detection signals. However, if no context information is
specified, anomaly signals of specific visiting paths are masked
out by other signals. Therefore, it causes false negatives.

We pick a typical Yahoo! mail site W (i.e., τ in Sec-
tion 2)5 and show that anomalies in higher-order path sig-
nals are significant and can be revealed by DECT. We use
DECT to compute visiting probabilities of W for all con-
texts {c̄} that exist. We then fed time series {Ψ(τi|c̄) | 0 ≤
4DECT can be deployed at the client/browser side to model
and analyze Internet-wide user behavior.
5According to Yahoo! data privacy requirements, i) detailed
data statistics are not provided; ii) probabilities in figures
are disguised while their relative positions are preserved.
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Figure 4: Ad click probabilities given different
paths. The bold dotted line denotes the overall ad
click rate of users on a site. Each thin line denotes
ad click rates of users on this site coming from one
specific visiting path5.
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i ≤ κc̄} yielded by DECT into EGADS for anomaly detec-
tion. EGADS is a generic and scalable framework for auto-
mated anomaly detection on large scale time-series data [10].
The entire anomaly detection application consists of DECT
(time-variant user behavior modeling) and EGADS (time
series anomaly detection).

Fig. 3 shows two higher-order anomalous time series iden-
tified by EGADS. The upper subfigure, a common seasonal
time series across a month, is the visiting probability of W
across all Yahoo! mail sites. One anomalous time series (site
X to W) is detected during that month (several spikes in the
middle subfigure). Another anomaly is found on the 8th day
of visiting path “Y to X to W” in the lower subfigure. Any
anomaly (spike) with respect to a higher-order path may be
hidden in the time series of its suffix path.

4.2 Case Study: Ad Click Prediction
Existing ad click prediction techniques do not take his-

torically visited paths into account. We run DECT on the
Yahoo! finance dataset to show that such information is
useful in distinguishing probabilities of ad clicks.

We draw the overall ad click rate on a Yahoo! finance site5

in Fig. 4 with the bold dotted line. We then use DECT to
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investigate three ad click rate time series, each of which has
a site previously visited (one-time context) before the target
site. Fig. 4 shows that the click rate of users coming from
one site can be 5 times higher than that of another.

Besides the finding that ad click rates are related to user
visiting paths, another interesting conclusion we reached is
that the more a user views articles on a site, the less likely
she will click an ad on that site. We illustrate the decrease
of ad click rates on a Yahoo! finance site5 in Fig. 5. We
explain the phenomenon that frequent readers tend to con-
tinuously consume target information, e.g., stock values, and
ignore ads. Ads could be less effective and more annoying
to frequent readers than normal visitors. This work is being
deployed at Yahoo! for better ad-targeting.

4.3 Performance analysis
We demonstrate the performance of our implementation

by processing a subset of Yahoo! mail data (around 0.1
billion user sessions, 10GB storage size on HDFS)5.
Scalability and Performance Pivot. Our realization of
DECT is based on the scalable Apache Spark framework. A
distributed system results in an increasing amount of com-
municating/scheduling overhead when scaling out. We are
interested in discovering performance pivots and parameter
tuning on real-world datasets.

We conduct several groups of experiments with DECT

running on different numbers of worker nodes. We measure
the degree of parallelism via the maximum number of pro-
cessing units (vCore)6 concurrently allocated at any execu-
tion stage. Fig. 6 shows that our implementation scales out
well before reaching a performance pivot. Performance piv-
ots are reached for DECT with order limit 4 at 9010 vCores
and order limit 2 at 4210 vCores. Increasing the number
of processing units after the pivots wastes more in overhead
than gaining better performance. The more complex the
computation is, e.g., higher order limit, the larger amount
of processing units are required to reach the pivot.
Magnitude of frequently visited higher-order paths.
DECT is a variable-order Markov model. It employs a prun-
ing procedure to remove time series of rarely visited higher-
order paths. We are interested in the order impact on the
overall computational complexity.

We execute DECT with various order limits. Because
the total number of possible paths is exponential in path
order, the results in Fig. 7 show that: i) the processing time
increases exponentially with the increase of the order limit,
and ii) the pruning procedure reduces the number of time
series by a constant factor on Yahoo! mail dataset.

5. RELATED WORK
Our work is motivated by time-homogeneous Markov user

behavior modeling, time series analysis, and evolutionary
network analysis.
Time-homogeneous Markov modeling. Web user be-
havior has been studied for various purposes, such as PageR-
ank [13], link prediction [17], document prefetching [23].
A variety of time-homogeneous Markov models have been
tested to describe Internet user behavior [5]. The time-
homogeneous indicates that the transition matrix of the
Markov model does not change through time. We list some
existing models classified by their Markov orders below.

• First-order Markov model: [12, 13]
• Second-order Markov model: [23]
• Higher-order Markov model: [15]
• Variable-order Markov model: [2, 5, 6]

Variable-order Markov models compute different orders
for different paths to reduce storage expenses. The idea
was proposed by Bühlmann and Wyner [3]. There exist two
generic approaches to construct variable-order models.

Pruning-based approach: starting with a complete
higher-order model and iteratively pruning low-entropy
branches to get a incomplete tree, e.g., [6].

Growing-based approach: starting with a first-order
Markov model and expanding leaves with inconsistent
distribution into branches, e.g., [2].

Our design follows the former approach for straightfor-
ward parallel design. The operations of growing higher-order
paths, i.e., slicing and clustering, are computational heavy
and the results cannot be efficiently reused over time.
Time series analysis. A time series denotes the change
of a variable over time [8]. Time series analysis has been
applied to many fields including signal forecasting [9], data
feature extraction [7] and anomaly detection [4, 10,11,20].

Time series analysis is widely used to detect anomalous
6The number of workers is linear to the number of vCores.
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user events in the industry. However, studied variables in
existing systems are mostly primitive, e.g., counts of site
visits. They only represent zeroth-order or first-order (one-
hop) paths [10]. The prediction is fast but loses rich context
information. DECT, in contrast, utilizes historical site visit-
ing information to provide more detailed signals for anomaly
detection and ad click rate prediction as shown in Section 4.
Evolutionary network analysis. Dynamic networks ap-
pear in social networks, wireless sensor networks, Internet
of Things, and the Web. The analysis of evolving networks
provides a comprehensive understanding of such networks [1]
and enables applications such as link prediction [18] and
anomaly detection [16].

Graphs are generic models for dynamic network repre-
sentation [1]. More specifically, dynamic networks usually
generate complex cyclic graphs, and evolutionary network
analysis heavily relies on unique properties of such graphs,
e.g., community discovery [14]. Compared to cyclic graphs,
variable-order Markov models are tree-equivalent structures.
In our model, we bring some concepts from evolutionary net-
work analysis, e.g., change of VM and change of EM . But,
in general, it is currently unclear how evolutionary network
analysis methods can be applied to dynamic web user be-
havior modeling.

6. CONCLUSIONS AND FUTURE WORK
This paper presents DECT, a scalable time-variant web

user behavior model. It characterizes the changing nature
of Internet user behavior with a time-variant variable-order
Markov model. DECT can be efficiently realized on scalable
distributed frameworks, e.g., Apache Spark, to process large
volumes of user behavior data. DECT enables time series
analysis on individual or related sets of long (higher-order)
user paths. We open-sourced DECT and deployed it at Ya-
hoo! to support path time series analysis such as anomaly
detection, click probability prediction and path trend dis-
covery. In the future work, we plan to work on streaming
pruning strategies to enable streaming user behavior pro-
cessing using DECT.
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ABSTRACT
The paper introduces Strudel, a development and execu-
tion framework for transactional workloads both on SQL and
NoSQL systems. Whereas a rich set of benchmarks and per-
formance analysis platforms have been developed for SQL-
based systems (RDBMSs), it is challenging for application
developers to evaluate both SQL and NoSQL systems for
their specific needs. The Strudel framework, which we have
released as open-source software, helps such developers (as
well as providers of NoSQL stores) to build, customize, and
share benchmarks that can run on various SQL/NoSQL sys-
tems. We describe Strudel’s architecture and APIs, its com-
ponents for supporting various NoSQL stores (e.g., HBase,
MongoDB), example benchmarks included in the release,
and performance experiments to demonstrate usefulness of
the framework.

1. INTRODUCTION
As a large number of web applications adopt cloud com-

puting platforms, various types of “NoSQL” systems have
emerged and been employed as scalable and elastic data
stores. They are expected to serve transactional workloads1

of an application that interacts with a large and varying
number of users on top of commodity server resources (typ-
ically in the cloud).

Now that application developers have many choices of
NoSQL systems as well as SQL systems (i.e., RDBMSs),
they face various questions (which we would call “SQL-or-
NoSQL questions”): When should we use a NoSQL store in-
stead of a traditional RDBMS? How can we choose a NoSQL
system that suits for our purpose? With a particular NoSQL
system, what kind of trade-off do we face between scalabil-
ity/elasticity gain and the cost of reduced consistency/in-
tegrity support? What about other alternatives such as

1We focus on user-facing transactional application work-
loads instead of analytic ones.

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

purchasing a parallel RDBMS product or sharding (parti-
tioning) open-source RDBMSs?

Standard benchmarks (such as TPC-C) have been very
helpful for evaluating and choosing RDBMS products. On
the other hand, the effort on benchmarking for NoSQL does
not seem catching up with the evolution of NoSQL systems.
Currently, YCSB [16, 12] is the most commonly used bench-
mark for NoSQL, but it mainly focuses on micro-benchmarking
of key-value read/write operations. As NoSQL supports
various features such as transaction and more complicated
queries, more benchmarks are needed to capture the require-
ments behind such features.

It is challenging to develop benchmarks, especially to com-
pare SQL-based systems and NoSQL systems together, given
many different query APIs. It is also challenging to cover
the wide range of the application needs. A transactional
data store is just part of a larger application system, and
its role and requirements are significantly different among
applications.

Thus, we can hardly expect that a limited number of stan-
dard benchmarks are enough for transactional workloads
over SQL/NoSQL systems. Given the variety of data stores
and the variety of application needs, we need a way to ef-
ficiently develop a large and evolving suite of benchmarks,
from micro-benchmark level to application-level, with min-
imum engineering effort in terms of (1) developing a new
benchmark on existing SQL/NoSQL systems and (2) sup-
porting a new SQL/NoSQL system for existing benchmarks.

In this paper we introduce our development and execu-
tion framework, called Strudel, for transactional benchmark
workloads with expectation to contribute to the benchmark-
ing effort in the community.

The design philosophy of the Strudel framework is to pro-
vide composability and reusability with (1) decomposing
benchmark implementations into small components with mul-
tiple abstraction layers and (2) employing a configuration
description language to combine these components into a
specific workload in a reproducible and shareable manner.
In order to bridge the gaps among various data stores, the
framework provides multiple abstraction layers: most no-
tably Entity DB API and Session Workload framework. A
configuration description language is adopted in the frame-
work to enable developers to compose a system and workload
with custom properties in XML.

We have used and kept extending the framework for years
through our research and product development of elastic re-
lational stores (SQL engines on top of KVS [25]). As it
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has matured as a generic and extensible framework, we re-
cently released it (including benchmarks and SQL/NoSQL
supports as described later) as open source software[9] for
wider development purposes.

In this paper, we describe the design and architecture of
the Strudel framework, its support on various NoSQL sys-
tems, benchmark examples we have developed, and perfor-
mance experiments to demonstrate usefulness of the frame-
work.

2. RELATED WORK
YCSB The Yahoo! Cloud Serving Benchmark (YCSB) [16,

12] is the most commonly used benchmark for NoSQL sys-
tems. However, from our objective to conduct performance
studies on transactional aspects of SQL and NoSQL sys-
tems, the original YCSB has very limited support of trans-
actional workloads. Researchers have extended YCSB to ex-
periment transactions over multiple key-value objects (e.g.,
[17]). With an appropriate framework, we should be able to
share such custom efforts to serve for more general applica-
tion performance analyses.

As NoSQL systems evolve from a simple Key-Value store,
there are increasing needs of performance studies with higher-
level (i.e., application-level) workloads, which are especially
important to compare SQL systems and NoSQL system from
the application developers’ viewpoints. YCSB++ [23] ex-
tends the original YCSB to evaluate advanced features of
NoSQL systems (HBase and Accumulo). The features that
are relevant to transactional workload evaluation include (1)
pushing filtering to the data store, (2) measurement of data
staleness due to weak consistency. One possible idea is to in-
tegrate such features with the Strudel framework to evaluate
advanced NoSQL features not only for micro-benchmarks
but also for application-level benchmarks.

OLTP-Bench OLTP-Bench [18, 6] is an extensible testbed
for benchmarking RDBMSs for (primarily) transactional work-
loads. Our framework and OTLP-Bench are not mutually
exclusive but complimentary. We focus on a special class
of OLTP problems where developers have “SQL or NoSQL”
questions. OLTP-Bench, aiming for more general OLTP use
cases, provides a lot of useful features that our framework
misses, such as sophisticated (e.g., more realistically skewed)
data and workload generation and a rich set of SQL work-
loads (including traditional ones that we do not focus on).
A skilled developer may reuse these features combined with
the Strudel framework.

Performance studies There have been various perfor-
mance studies reported on NoSQL systems, including the
the original work of YCSB [16]. For an example of per-
formance studies from the application’s viewpoint, Klein et
al.[22] report their performance evaluation of NoSQL sys-
tems for a healthcare application. Their customer (a health-
care provider) requests them to evaluate NoSQL technolo-
gies for a new electronic healthcare record system to replace
the current version that uses an RDBMS. They developed
evaluation tests by modifying the code of YCSB to fit the
application’s data model. With an appropriate development
framework provided, their development could have been eas-
ier. In addition, whereas their study excludes RDBMSs
(according to the customer requirements), it would need
more engineering effort, in general, to compare NoSQL with
RDBMSs.

Floratou et al. [20] report comparative performance stud-

ies between SQL and NoSQL systems, including comparison
between SQL Server and MongoDB for YCSB workloads.
We hope Strudel is useful to extend such studies to cover
more NoSQL systems and various benchmarks that capture
application-level requirements.

3. ARCHITECTURE
Figure 1 illustrates the layered architecture of the Strudel

framework that provides composability and reusability in
benchmark application development. The abstraction layers
are visualized as orange boxes with underscored italic words
(representing the names of APIs). Among them, Java Per-
sistence API (JPA) is a Java standard for object-relational
mapping (that converts Java object manipulation to SQL
queries). The Strudel framework provides the other APIs.

Entity DB is a simplified data access API that covers
transactional data access features that are common in var-
ious NoSQL systems as well as relational databases (Sec-
tion 4). Basic implementation of Entity DB on a NoSQL
system would not be very difficult (we also provide another
API, Transactional KVS, to make it easier). If a benchmark
is implemented on Entity DB API, it can run on various
NoSQL systems as well as RDBMSs that support the JPA
standard.

The Session Workload is a framework that helps develop-
ers to implement benchmark application on different data
access APIs (Entity DB, JPA, and native NoSQL APIs) by
reusing the code as much as possible (Section 5).

Figure 1: Layered Architecture of Strudel

In Figure 1, red boxes labeled with [A] are components
a developer needs to implement for each benchmark appli-
cation, and green boxes with [D] are implemented for each
NoSQL system. The label [A,D] indicates a component to
be implemented for each pair of a benchmark and a NoSQL
system, and our goal is to minimize such components.

A developer can conduct a specific experiment by com-
bining these components with a particular set of configu-
ration parameters. We employ a configuration description
language for such experiments to make experiments repro-
ducible and individual components reusable across different
experiments (Section 6).

Strudel also provides workload management and execu-
tion engines for experiments in a cluster environment in an
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automated manner (Section 7).

4. ENTITY DB API
Entity DB API is one of the abstraction layers that are

useful to develop workloads that can run on various data
stores. It employs a subset of JPA (Java Persistence API)
to fill the gap between SQL and NoSQL systems. JPA is a
standard Java API for Object-Relational Mapping, provid-
ing a way to map Java objects (entities) and relational tables
and a way to access data in a relational database through
such Java objects.

JPA provides a basis for us to abstract out the details
of underlying data stores so that application developers can
focus on data handling in an object-oriented manner. How-
ever, to most NoSQL systems, JPA is not applicable directly
since the concept of object-relational mapping relies on ex-
pressive power and declarativeness of SQL and the relational
model.

Thus, we have designed a simplified version of APIs that
consists of standard Java annotations (e.g., @Entity, @Id)
of JPA and extended annotations as well as simplified data
access methods. Whereas this API is not meant for appli-
cation production use (missing various features required in
production)2, it would support simplified application proto-
types to quickly compare data store alternatives before the
real application version is developed.

4.1 Entity Group Annotations
One of the key difference of NoSQL systems from the tra-

ditional RDBMS is that not all the data items are equal
in terms of transactional data access. Distributed transac-
tions are often expensive in a commodity cluster (especially
cloud) environment in order to handle a large number of con-
current read/write accesses with high availability under a
short response time requirement of interactive applications.
Thus, most NoSQL systems provide a way to compromise
transactional consistency for scalability to avoid distributed
transaction as much as possible. In a typical case, a NoSQL
system allows ACID data access only on a data set associ-
ated with a single key. HBase [2] (open source implementa-
tion of Bigtable [15]) provides an atomic check-and-update
operation on a single row of a (big)table. For transactions
over multiple rows, we need to use an external transaction
manager (e.g., Omid [19]) to implement concurrency control
and recovery.

In order to provide a common API to incorporate such
transaction support, we adopt the concept of entity groups.
Helland [21] argued that, in order for an application to be
truly scalable, it must forgo expensive distributed transac-
tions; instead, each transaction must operate on a uniquely
identifiable collection of data (i.e., entity groups) that lives
on a single machine. Google Megastore [14] supports entity
group as a way to associate multiple entities to a group key
and guarantee efficient ACID transactions within a single
group.

We introduce a set of annotations to specify entity groups
in a similar way to Megastore. In addition to standard anno-
tations (@Entity, @Id, @IdClass), we introduce the following
annotations: @Group, @GroupId, @GroupIdClass.

2For production use, there is an open source product,
for example, DataNucleus that supports common APIs
for Java data persistence on some of NoSQL systems:
http://www.datanucleus.org/

We illustrate how these annotations are used in an ex-
ample benchmark (which emulates an auction application)
in Figure 2 . The code uses the JPA standards to define
Bid Java class as an entity (@Entity) with a compound
key (sellerId, itemNo, bidNo) (as annotated with @Id),
which is packaged as one object of a class BidId (@IdClass).

@Group( parent = AuctionItem . class )
@Entity
@Indexes ({

@On( property = ”auct ionItemId ”) ,
@On( property = ”use r Id ”)

})
@GroupIdClass ( ItemId . class )
@IdClass ( BidId . class )
public class Bid {

@GroupId @Id private int s e l l e r I d ;
@GroupId @Id private int itemNo ;
@Id @GeneratedValue
private int bidNo ;
private double bidAmount ;
private long bidDate ;
private int use r Id ;

Figure 2: Example code with annotations

With extended annotations, a benchmark developer can
associate two entity classes together (as a parent-child rela-
tionship) in one group by specifying @Group annotation at
a child class to indicate its parent. In this example, Bid
is associated with AuctionItem (so that we can consistently
access all the bids on one particular auction item and update
the item when the maximum bid price changes). A group id
(@GroupId) is a member of a compound key (a group key)
that specifies a group instance. A set of group ids on an
entity class must be a subset of the set of ids (i.e., a (com-
pound) primary key) that are annotated with @Id.

4.2 Data Access Operations
CRUD Operations Entity DB API supports basic CRUD

(Create-Read-Update-Delete) operations: (1) create (2) get,
(3) update, and (4) delete operations (Figure 3). They
(roughly) correspond to persist, find, merge, and remove op-
erations of EntityManager, a data access interface of JPA3.

Secondary Key Access Unlike JPA, the current Entity
DB API does not support a SQL-like query language or au-
tomatic retrieval of related entities with a join column (i.e.,
annotations such as @OneToMany, @ManyToOne). Instead, it
provides a way to read multiple instances of the same entity
class by specifying one of the entity’s property as a secondary
key (getEntitiesByIndex in Figure 3).

Group Transactions The current version of the frame-
work only supports a transaction within an entity group (de-
signing API to indicate a “global” transaction is a plan for
a future version). A transaction starts with a given group
key and commits after multiple CRUD operations. Figure 4
shows an example of transaction execution. The applica-
tion code gives an instance of EntityTask interface to the
EntityDB API (”edb.run()”), then the underlying Entity

3A subtle difference from JPA is that there is no concept
of attachment/detachment in the current version: an ap-
plication always needs to use an update operation to apply
changes in an entity Java object to the database.
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<T> T get ( Class<T> ent i tyC la s s , Object key ) ;
void c r e a t e ( Object en t i t y ) ;
void update ( Object en t i t y ) ;
void de l e t e ( Object en t i t y ) ;
<T> List<T> getEnt i t i e sByIndex (

Class<T> ent i tyC la s s , S t r ing property ,
Object key ) ;

Figure 3: EntityDB Interface (partial)

DB implementation runs the instance of EntityTask by giv-
ing an EntityTranscation object (run(EntityTransaction
tx)). The entity task (i.e., the application code) uses this
transaction handler (tx) to issue multiple CRUD operations.

The reason behind this rather convoluted API design (in-
stead of providing usual begin/commit operations) is to ab-
stract out transaction retry handling, especially for opti-
mistic concurrency control. A transaction of applications
for NoSQL systems is often simple and lightweight. It is
easy to retry the entire transaction when a commit request
fails under optimistic concurrency control. In order to an-
alyze the impact of transaction conflict in different NoSQL
systems, we want experiment different retry policies without
changing the application code.

BidResult r = edb . run (Bid . class , itemId ,
new EntityTask<BidResult >() {

public BidResult run ( Ent i tyTransact ion tx ) {
AuctionItem item =

tx . get ( AuctionItem . class , i temId ) ;
i f ( item == null ) {

return BidResult .NONE;
}
i f ( bid . amount ( ) <= item . getMaxBid ( ) ) {

return BidResult .LOST;
}
tx . c r e a t e ( bid ) ;
item . setMaxBid ( bid . amount ( ) ) ;
tx . update ( item ) ;
return BidResult .SUCCESS;

}
} ) ;

Figure 4: Example of group transaction

4.3 Auxiliary Data Maintenance
Entity DB API supports two features that involve main-

tenance of auxiliary data in the underlying data store: (1)
values for automatic unique key generation and (2) indices.

Auto Key Generation Entity DB API lets the devel-
opers specify the standard @GeneratedValue annotation to
use a generated unique value for an id. Just as the standard
JPA, an underlying implementation can choose a way to
generate unique values based on the data store’s capability.

The major difference from the standard specification is the
uniqueness requirement: In JPA, @GeneratedValue is used
to generate a unique value within a table. In Entity DB, it
can only be locally unique: it is required that the compound
group/primary keys that include this id as a member are
unique. For example, in Figure 2, the id bidNo is automat-
ically generated when a Bid entity instance is created. In
fact, itemNo is also a generated value specified in the Aution-
Item class definition. The value of itemNo must be unique

within a particular user (identified with sellerId), and the
value of bidNo must be unique within a particular auction
item.

This local uniqueness requirement gives the underlying
data store more freedom to use a scalable and efficient way
to generate values.

Indices To use secondary-key data access, the developers
need to explicitly specify an index on a property of an en-
tity. Notice that the role of an index at logical design level
is different from the case with relational databases where
selection of an index is logically transparent from queries.
Thus, we introduce a special annotation (@Indexes) sepa-
rated from JPA’s index annotation (@Table.indexes).

One non-trivial semantics of this index-based entity access
is its consistency under a specific entity group design. In
terms of transaction isolation, an index entry can be seen
another (system-defined) entity, and question is whether it
is grouped together with the entities it refers to.

An index can be included (and is included by default)
in the group if the compound index key (i.e., a set of ids)
includes the compound group key. We call such an index
an in-group index and otherwise we call it an out-of-group
index. For example, in Figure 2, there are two indices on
AuctionItemId (which is in fact a compound key with sell-
erId and itemNo) and userId. The former index is in-group
(the index key equals to the group key) and the latter index
is out-of-group.

If the index is not included in the group, we cannot prevent
a phantom read : a transaction cannot read the all the bids
on the same item (which is done through the index) in an
isolated manner (e.g. it cannot be isolated from insertion of
a new bid).

In the current Entity DB, we only allow an index on im-
mutable columns: the value is specified only at creation of
an entity instance and does not change until the instance is
deleted.

4.4 Implementations

4.4.1 Generic Transactional KVS
Whereas Entity DB API is simplified for minimum sup-

port for entity data access, it still needs engineering efforts
to develop an implementation for a particular NoSQL sys-
tem. We provide yet another API for transactional key-
value data access so that a provider of a NoSQL system
can quickly implement this further simplified API instead of
directly implementing Entity DB.

In Transactional KVS, a data record is just a pair of byte-
array key and value, and records are grouped by a group
key (another byte array). Data access is done by a group
transaction (started with a group key) and simple put/get
operations.

The framework provides an Entity DB implementation for
Transactional KVS, which automates (1) mapping from en-
tities to byte array key-value objects, (2) index management,
and (3) auto key generation.

Index and Key generation As a baseline implemen-
tation of Entity DB API, we implemented an index and a
key-generation counter as sets of key-value objects on top
of the Transactional KVS data model. For each index key,
we create an object with the index key and a value that en-
codes the pointers to the indexed entities. A counter object
is created for each parent key (i.e., the compound primary
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key except an ID to be generated) of an entity, and its value
is a counter number.

Consider the example in Figure 2 when an application
workload creates a new instance of Bid entity. Bid has two
indices (auctionItemId and userId) and a generated key
(bidNo). There are three auxiliary key-value objects up-
dated when we create a new Bid (which is a new key-value
object by itself): (a) an index object of type auctionItemId

with key (sellerId, itemNo), (b) an index object of type
userId with key userId, and (c) a counter object of type
Bid with key (sellerId, itemNo). Among them only the
object a is included in the group with the Bid entity, and
creation of Bid involves a following sequence of three trans-
actions:

1. updates a counter object c and acquires a new value
for bidNo.

2. updates an index b to insert a key of Bid (sellerId,

itemNo, bidNo) using the result of transaction 1.

3. updates an index a and creates a new key-value object
for a Bid entity.

The order of these transactions is important to keep an in-
dex b consistent. Even if another transaction accesses the
index b between transaction 2 and 3 (or even if transaction
3 fails), it will just read a dangling pointer in the index to
a non-existent entity, which does not cause inconsistency.
On the other hand, if these transactions create a Bid entity
but fail to update the index b, it results in inconsistency
(i.e., the existing entity cannot be accessed by the index).
When the entity is deleted, the order of transactions will
become opposite. When the entity is updated, we do not
update the index (i.e., the current Entity DB assumes keys
are immutable).

Notice also that the counter object c could have been up-
dated in the transaction 3 if there were no out-of-group index
such as b (that needs a new committed value of bidNo from
c). In this case, creation of an entity is done by a single
transaction and the counter c and index a is implemented
with a single key-value object since their have the same key.

We have developed the following implementations of Trans-
actional KVS.

HBase [2] To implement transactions, we employ HBase’s
check-and-put operation, which is in general called a compare-
and-swap (CAS) operation and operates value comparison
(read) and update (write) in an atomic manner.

Since check-and-put is applicable only to a single row, all
the records (entities) that belong to the same group must
be packed into one row. To do this, we implement each key-
value record as a column name-value pair (HBase/Bigtable’s
columns are created in an ad-hoc manner).

In addition to these columns, each row has a special col-
umn that holds a transaction version. When the Entity DB
starts a transaction, it will read the current value of this
transaction version on a row that corresponds to an instance
of entity group. All the updates are buffered at the client
side during the transaction. At a commit request, the En-
tity DB issues a check-and-put operation that applies the
buffered updates to the corresponding row if the current
transaction version equals to the one at the beginning of the
transaction.

Omid [5] Omid is a transaction server on top of HBase in
order to realize ACID transactions over multiple rows [19]. It

employs optimistic multi-version concurrency control using
multi-versioning of HBase (each row can have multiple ver-
sions associated with (logical or physical) timestamps). For
each transaction, Omid server issues a new timestamp value,
with which a transaction client puts updates to HBase rows.
A commit request is sent to the Omid server and ensured
after conflict check and writing a log entry for recovery. Al-
though it is a centralized server, the required computation at
the transaction server is lightweight and it will not become
a bottleneck for scalability easily. For our Entity DB imple-
mentation, we also implemented sharded Omid servers, by
applying hash partitioning over the group key and routing a
transaction request to one of multiple Omid servers. In our
small-scale experiments up to 10 HBase region servers, how-
ever, we did not need more than one Omid server to achieve
scalability (Section 8.2).

MongoDB [3] MongoDB’s update operation is atomic for
a single document and consists of query part and update part
(i.e., a more general form of the CAS operation). Similar
to the HBase implementation, we pack entities of the same
group into one document. In the query part of the update,
we include the document id (that corresponds to a group
key) and a value of a transaction version (stored as a field
in a document).

TokuMX [10] TokuMX is an enhanced version of Mon-
goDB. One of the enhancements is to support a multi-statement
transaction over multiple documents whereas the original
MongoDB only supports a single statement transaction (i.e.,
an update operation) over a single document. A client can
begin and commit or rollback a transaction. During a trans-
action, a client can read and update multiple documents.
Isolation is achieved by locking documents (i.e., it takes pes-
simistic concurrency control).

One big limitation in the current TokuMX version is it
does not support a multi-statement transaction for sharded
document collections (i.e., partitioned data).

Our Entity DB implementation uses a cluster of inde-
pendent TokuMX servers and partition data based on the
group key. It emulates sharded MongoDB with application-
level request routing. Since a transaction for one group key
is always executable with a single server, we can employ
TokuMX’s multi-statement transaction.

This implementation has a limitation when it is used in
practice: it does not support rebalancing of partitions (or
“chunks” in MongoDB’s terminology), which is one of the
most important feature of NoSQL to provide elasticity.

4.4.2 Java Persistence API
The Strudel framework includes an implementation of En-

tity DB API using JPA so that a benchmark on Entity DB
can run on any RDBMSs as long as it supports JPA. It
is straightforward to implement Entity DB API using JPA
since most of the features of Entity DB have the direct coun-
terpart in JPA.

The implementation automatically translates a secondary
key access to a query in JP QL, JPA’s standard query lan-
guage (which is then translated to SQL of a specific RDBMS).

In order to optimize physical design of the database, the
developer can use any other JPA annotations. For exam-
ple, selection of indices is an independent decision from the
secondary key access specification (@Indexes) of Entity DB
API: the developer specifies indices using the standard JPA
(i.e., indexes attribute of @Table annotation).
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4.4.3 Native Implementations
Our framework lets the developer implement a custom

way to map entity access to a specific NoSQL system. We
expect a future version of Strudel include such custom im-
plementations for popular NoSQL systems.

For example, by mapping parent-child relationship to a
specific data model supported by a NoSQL system, we can
eliminate some of the indices specified in @Indexes as fol-
lows:

Nested data structure Various NoSQL systems, such
as HBase and MongoDB, support a nested data structure:
HBase’s column family can be used to represent a set of
child records (e.g., a set of bid records on a particular auc-
tion item). MongoDB’s data model is a document, allowing
to group entities in a flexible manner. If the secondary key
to access is the parent key (e.g., auctionItemId index in
Figure 2), we can retrieve these nested entities in one oper-
ation.

Range key access. HBase employs range partition to
distribute a table and supports a range query on the row
ID. By encoding parent-child relationship as a prefix of a
row ID, we can efficiently implement a secondary key access
(if the secondary key to use is a parent key).

5. SESSION WORKLOAD FRAMEWORK
Although Entity DB provides a common API which is rea-

sonably implementable for many NoSQL systems, it is often
too restrictive for a specific NoSQL system or an RDBMS,
which have more advanced features that can contribute to
higher application workload performance.

We provide another abstraction layer, Session Workload,
at an application level for session-oriented workloads so that
developers can create benchmarks that can run various data
access APIs besides Entity DB API.

The Session Workload framework enables developers to
build workloads that emulate interactive applications in a
similar way to TPC-W [11] (emulating e-commerce) and
RUBiS [8] (emulating auction) benchmarks.

Emulated user interaction for each user is called a session,
which consists of a sequence of actions (called interactions).
An interaction is a unit of the application’s work, which is
a predefined data accessing procedure without user inter-
vention (one interaction may execute multiple transactions
to perform a unit of work). A user issues a request for an
interaction one by one (with optional intervals called “think
time”). A user behavior is modeled as a state transition and
the next interaction request is chosen based on the prede-
fined probability and the results of the previous interactions.

The Session Workload framework makes the benchmark
code reusable and customizable through the following fea-
tures: (1) Interaction interface that separates data access
logic and other part of benchmark code, and (2) highly con-
figurable parameters including state transition definitions.

5.1 Interaction Interface
Figure 5 shows the interface for interactions. An inter-

action must implement three parts: prepare, execute, and
complete. When an execution engine runs one interaction,
it calls these three methods in this order.

The prepare operation is to generate a parameter that
indicates a specific action that the interaction will take in the
next execute operation. Typically, this operation emulates
a thinking process of a human for this interaction (i.e. not

the application side procedure). For example, an auction
benchmark emulates how a bid price is decided given the
current session state (e.g., information on the auction item
retrieved in the past interactions).

The execute operation implements the actual action that
accesses the data. Given the parameter (param) generated
by prepare and the data access API (db), the method per-
forms transactions with the data store.

The complete operation defines how the session state is
modified based on the result of execute operation. For ex-
ample, to emulate a human’s browsing activities on a web
application, the result of a browsing interaction includes a
list of retrieved items. The complete operation may choose
one of such items as “current item of interest” (i.e. part of
the state). The modified state is used in the following inter-
action, which may take an action on the chosen item (e.g.,
placing a bid).

public interface I n t e r a c t i on<T> {
void prepare ( ParamBuilder paramBuilder ) ;
Result execute (Param param , T db ,

Resu l tBu i lde r r e s ) ;
void complete ( S ta t eMod i f i e r mod i f i e r ) ;

}

Figure 5: Interface for Interaction

We designed to split these methods so that we can imple-
ment a benchmark in a reusable manner for multiple data
access APIs, as we describe in the following.

Generic Interaction Interface The Interaction inter-
face employs Java’s Generics to parameterize a data access
API and reuse the benchmark code as much as possible. In
Figure 5, the type variable T corresponds to a class of data
access API (e.g., EntityDB and JPA’s EntityManager). The
application code can be written agnostic to a specific data
access API as long as it does not need to know what T actu-
ally is. For example, the prepare method does not have to
know if an interaction is used with EntityDB or any other
API.

Abstract Interaction Classes To make a benchmark
reusable for many data access methods, a developer is en-
couraged to create an abstract interaction class for each in-
teraction in the benchmark. An abstract interaction class
implements two methods of the interface, prepare and com-

plete, and lets its sub-class implement the remaining exe-

cute method.
In the benchmarks we have developed, we implement both

EntityDB and EntityManager (JPA) versions of interactions.
These two implementations share majority of the benchmark
code (e.g., entity definitions, data generation, workload pa-
rameter generation, state transition) (see Section 8.6 for de-
tails).

5.2 Session State Transition
A benchmark workload based on the Session Workload

framework can be easily customized for a specific experi-
ment. A state transition model that emulates a user behav-
ior is given at run-time as an XML data. Figure 6 shows an
example of an XML element (session) that contains state
transitions (transitions). The session element typically
contains various other parameters that take part of the ses-
sion state in order to customize behavior of the interactions.
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<s e s s i o n>
<packageName . . . />
<Trans i t i on s>

<t r a n s i t i o n name=”START”>
<next name=”HOME”/>

</ t r a n s i t i o n>
<t r a n s i t i o n name=”HOME”>

<next name=”SELL AUCTION ITEM” prob=”0 .2 ”/>
<next name=”SELL SALE ITEM” prob=”0 .1 ”/>
<next name=”VIEW AUCTION ITEMS BY SELLER” prob=”0 .1 ”/>
<next name=”VIEW SALE ITEMS BY SELLER” prob=”0 .1 ” />
<next name=”VIEW AUCTION ITEMS BY BUYER” prob=”0 .1 ”/>
<next name=”VIEW SALE ITEMS BY BUYER” prob=”0 .1 ”/>
<next name=”VIEW BIDS BY BIDDER” prob=”0 .1 ”/>
<next name=”VIEW WINNING BIDS BY BIDDER” prob=”0 .1 ”/>
<next name=”END” prob=”0 .1 ”/>

</ t r a n s i t i o n>
<t r a n s i t i o n name=”SELL AUCTION ITEM”>

<next name=”HOME”/>
</ t r a n s i t i o n>

Figure 6: State transition in XML

5.3 Benchmarks
The current Strudel also includes example implementa-

tions of benchmarks for micro-level and application-level ex-
periments on top of the Session Workload framework.

Micro Benchmark The Micro benchmark emulates a
simplified user content management application in order to
serve as a microbenchmark. The data and workload scale
in terms of user IDs. To represent different patterns of user
data access, the user content consists of the following four
types of entities:

• personal items represent content privately owned by
individual users. Each user has a set of items as one
entity group (i.e., the number of groups scales as the
number of users). An item is only read and written by
its owner.

• shared items represent shared content written and read
by the users. Items are grouped into multiple entity
groups associated with set IDs (which give another
scaling factor besides the user IDs).

• public items represent individual users’ content that
are open to the public for reading. An item is only
written by its owner but can be read by other users.

• message items represent content exchanged from one
user to another, having a sender ID and a receiver ID.

The benchmark defines various read-write and read-only
interactions for each type of entities. A developer can com-
pose a workload by creating a state transition that includes
any subset of these interactions. By mixing interactions on
these four types of entities, a developer can emulate the need
of a specific application to some degree without coding a new
benchmark.

In Section 8, we use personal items and shared items to
demonstrate various scenarios of transaction performance
analyses.

Auction Benchmark For application-level benchmarks,
we have implemented an auction benchmark, which is sim-
ilar to AuctionMark in OLTP-Bench [6] and RUBiS bench-
mark [8] but customized to use entity groups. The Bid entity
in Figure 2 is part of this benchmark (shown after omitting
some detailed code).

6. CONFIGURATION DESCRIPTION LAN-
GUAGE

The Strudel framework provides abstraction layers to sep-
arate a benchmark application into various customizable
pieces from a data access API implementation of a spe-
cific data store to a parameter generation of a benchmark
workload. In order to combine these pieces together as one
specific benchmark experiment, we employ a configuration
description language that is similar to ones used for sys-
tem component deployment in Grid and cloud infrastruc-
tures [13, 24, 7]. We have separately released this language
as open source software called Congenio [1].

Our XML-based language supports the following features:
(1) inheritance (@extends attribute), (2) document unfold-
ing (foreach element), (3) reference resolution (@ref at-
tribute), and (4) value expression (See the web site [1] for
more details of the language).

With @extends, an experiment document can refer to ex-
isting templates (that define various components such as
benchmarks and data stores) and customize the default val-
ues of these templates. With foreach elements, an exper-
iment document can generate a set of documents, each of
which corresponds to one workload execution with a specific
set of parameters. Figure 7 illustrates such an experiment
document to run an auction benchmark on HBase with dif-
ferent number of data servers (5, 10) and different workload
scales (i.e. the number of users and worker servers).

<j obSu i t e>
<f o r each name=” s c a l e ”>

<s><w>1</w><u>10000</u></ s>
<s><w>2</w><u>20000</u></ s>
<s><w>4</w><u>40000</u></ s>

</ fo reach>
<f o r each name=”se rv e r ” sep=” ”>5 10</ fo reach>
<job extends=”auction−hbase ”>

<workerNum r e f=” s c a l e /w”/>
<serverNum r e f=” s e rv e r ”/>
<userNum r e f=” s c a l e /u”/>

</ job>
</ jobSu i t e>

Figure 7: Job definition in XML

The definition of an experiment in Figure 7 refers to a spe-
cific job template as illustrated in Figure 8. A job template
combines various components including a workload (bench-
mark), database (access to data stores), and cluster (worker
servers that run workloads).

<job>
<workerNum>1</workerNum>
<serverNum>1</serverNum>
<userNum>10000</userNum>
<threadsPerWorker>200</ threadsPerWorker>
<c l u s t e r extends=” c l u s t e r ”> . . .</ c l u s t e r>
<database extends=”tkvs−hbase ”>

<name>auct ion</name>
. . .

</database>
<workload>

<s e s s i o n extends=”se s s i on−auct ion ”>
<numOfThreads r e f=”threadsPerWorker ”/>
. . .

</ s e s s i o n>
<measure> . . .</measure>

</workload>
<r epor t> . . .</ repor t>

</ job>

Figure 8: Example of job composition

When the execution platform (Section 7) runs an exper-
iment with a given job definition, it records a document
after inheritance resolution along with other information
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(measured results, etc.). After inheritance resolution, the
document includes all the information imported from other
documents (referred to by @extends). This is very useful
to reproduce the same experiments. In our lab, we use a
version control system (git) to commit this document and
experiment results together in the same version.

7. EXECUTION PLATFORM
Strudel’s execution platform consists of the workload man-

ager and a cluster of workers.
The workload manager starts with a given job definition

XML file (in the configuration description language) and in-
teracts with worker servers as well as servers of SQL/NoSQL
systems. The workload manager has the following features:

• server configuration and start-up (invoking external
scripts for NoSQL/SQL systems).

• data generation and population

• workload control and workflow management

• performance monitoring (JMX) and aggregation of the
reports from workloads.

• performance reporting as JSON files.

The Strudel framework does not include the individual scripts
to configure and start/stop servers since it depends on the
infrastructure (e.g., whether the system is deployed on the
cloud platform, a Hadoop cluster, or a simple cluster servers
mounting a shared file system).

The actual workload is run by a cluster of worker nodes
that receive a workload definition from the workload man-
ager. A worker is a workload execution engine that is de-
ployed on a cluster of server machines. The workload man-
ager coordinates a cluster of workers to run a benchmark
workload in a scalable manner (a large number of threads)
to put enough load on a scalable data store.

The Session Workload is one type of workloads the workers
can run. It can run any custom workloads if they implement
a workload interface defined in the Strudel framework. For
example, it should be easy to develop a special workload
that runs the YCSB benchmark.

8. DEMONSTRATION
In this section, we demonstrate some use cases of Strudel

to conduct performance experiments. Notice that the objec-
tive of the following experiments is not a formal performance
study to state any conclusive claims on a particular data
store but a demonstration of the features of our framework.

8.1 System Settings
In our experiments, we use the following settings.
HBase [2] We use HBase version 1.1.1 on top of Hadoop

version 2.7.1. HBase servers consist of a single master server
(which manages the entire system and metadata) and a set
of region servers (which manages data partitions (i.e., re-
gions)). In the experiments, we mean the number of region
servers by the number of data servers. A region server is col-
located with Hadoop HDFS data node (to maximize locality
of I/O). The name node of HDFS is located separately in a
dedicated server. HBase also requires ZooKeeper processes
to achieve coordination across servers. We use 3 ZooKeeper

processes collocated with the master server and two of the
region servers.

Omid [5] We use version 0.8.0. Omid works with HBase
and we use the same setting for HBase as the HBase-only
data store. Omid supports multiple ways to persist trans-
action status for recovery. We use the default of the cur-
rent version: storing the states on HBase. We use the same
HBase cluster with the application (benchmark) workloads.
In the experiment, we use only one Omid server and the
number of data server refers to the number of region servers
as in the case of the HBase-only setting.

MongoDB [3] MongoDB’s version is 3.0.5. To employ
sharding (horizontal data partitioning), we need to deploy
3 config servers (just like ZooKeeper for HBase) and a set
of shard servers (which we refer to by “data servers” in the
experiments). We also need “mongos” servers that route ap-
plications’ requests to appropriate shard servers. We deploy
one mongos server for each worker server as it is a common
use case to collocate a mongos server with an application
server.

TokuMX [10] For TokuMX we use version 2.0.1. As men-
tioned in Section 4.4, when we use multi-statement trans-
action with TokuMX, we cannot use sharding (automated
partitioning). So we deploy a set of independent single-node
TokuMX servers (which we call “data servers”), and let our
EntityDB implementation route data access to these servers
(emulating the application-level sharding).

MySQL [4] For experimenting JPA-based implementa-
tion of benchmarks, we use MySQL (Ver 14.14 Distrib 5.1.73)
with default settings. We only use a single server MySQL
in this demo.

Server machines. We use cluster machines in our lab
with the following features: CentOS 6.6 (Linux 2.6.52), Intel
Xeon E5620 2.40 GHz 16 core CPU , 16GB 1333 MHz RAM,
Intel Pro2500 SATA SSD 240GB. Some OS parameters (e.g.,
the maximum number of open files) are set as data store
providers recommend.

8.2 Data Store Scalability
First, we demonstrate a simple workload running on var-

ious data stores and show how these stores scale with an
increasing number of data servers.

Based on the Micro benchmark, we composed a work-
load executing a single interaction that updates 4 personal
items in the same group (which is randomly chosen from 1
M groups). We configure the workload so that transactions
never conflict with each other: Each execution thread ran-
domly chooses one user ID from an individual pool that is
disjoint from the pools of other threads and uses the ID to
choose a group (that belongs to this user).

We measure the throughput of the workloads using 1600
session concurrency (16 workers each of which runs 100 threads
that keep running the update interaction without think time)
for different data stores (except Omid) with changing the
number of data servers (3, 5, 10). We made sure that the
throughput is saturated (i.e., increasing session concurrency
does not increase the throughput).

For Omid, we needed a larger number, 10800 (36 workers
and 300 threads per worker), of concurrency to saturate the
same number of data stores: Because one interaction takes
longer time, a larger concurrency is needed to generate a suf-
ficient number of read/write operations on the data stores.
Using the Omid transaction server with HBase adds some
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overhead (longer response time for each interaction and a
larger number of data servers to achieve a throughput num-
ber) but it does not limit scalability at least for 10 region
servers.

For MySQL we show the result of the JPA-based imple-
mentation (the figure has only one bar for a single server
MySQL execution). We also ran the same workload on
the Entity DB-based implementation but it did not show
any significant performance difference for this simple work-
load (hence, it is omitted). In fact, these two implementa-
tions would generate the same SQL queries. Notice that the
throughput of MySQL is good as a single data server: A 3-
node NoSQL system does not achieve the same throughput
per data server. This observation is consistent with [20],
which reports the superior efficiency of an RDBMS com-
pared to NoSQL stores. If the application workload can fit
with a single data server, an RDBMS might be the most
cost effective approach. If elasticity (dynamic re-balancing
of partitions) is not required, purchasing a parallel RDBMS
product may pay off for its efficiency.

In this demonstration, we did not cover parallel RDBMS
products but it would be easy to run the same workload as
long as the product is given with JPA support.

Figure 9: Throughput of item update interactions
(4 items per interaction, 1600 concurrent sessions)
on different number of data servers.

8.3 Transaction Concurrency
The result of the previous experiment demonstrates effi-

ciency of a lightweight implementation of entity-group trans-
action with a simple check-and-update (HBase) compared to
an approach with an additional transaction server (Omid).
One drawback of this approach is that there is no concur-
rency allowed within a group (i.e., concurrent updates on
the same group will fail). In many applications, this may
not be a problem: when a group is associated with an in-
dividual user, a single user would not issue a large number
of concurrent transactions. However it would not be always
the case (e.g., auction bidding).

The next experiment we demonstrate is to see the trade-off
between HBase (single-row transaction) and Omid (multi-
row transaction) in terms of transaction concurrency. We
use a workload that updates one shared item randomly cho-
sen from a randomly chosen group. We fix the total number
of items (80K) and change the size of group (400, 40, 4
items per group). From the viewpoint of the Omid trans-
action manager, these cases are identical (no difference be-

tween intra-group and inter-group). But for HBase, the to-
tal number of groups will decide the concurrency limit of the
workloads (if two transaction updates different items in the
same group, they will conflict with each other and only one
can be successful). The result with 3200 concurrent sessions
on 5 data servers (region servers) is shown in Figure 10. As
the number of groups becomes smaller, HBase’s throughput
degrades and becomes worse than Omid.

Figure 10: Throughput under different transac-
tion concurrency: 3200 concurrent sessions, 5 data
servers, 1 update/interaction, 80K items in G shared
groups (K items/group)

It is beneficial to use a transaction server when the con-
currency within a group needs to be high, even if it adds
significant extra overhead (additional commit processing)
compared to the main part of transaction (amount of read-
/write),

In a real application development setting, developers will
need to manage the trade-off by building workloads to em-
ulate the application’s needs and conducting similar exper-
iments.

8.4 Transaction Conflict
Recall that TokuMX is an enhanced version of MongoDB

and supports a multi-statement transaction based on locking
of documents (data items). An application developer would
wonder how and when this feature should be used. One
interesting experiments using our framework would be com-
parison between optimistic concurrency control with Mon-
goDB (single-document transactions) and pessimistic con-
currency control with TokuMX (multi-document transac-
tions).

At high-level, we know a rule of thumb, which is to take
a pessimistic approach when conflict will likely happen in
order to avoid unnecessary re-computation. But it always
depends on a specific case.

In this example, a workload consists of a single interac-
tion that updates 4 items in a randomly chosen group. The
difference from the experiments in Figure 9 is that there are
(varying degrees of) conflicts. We use 3200 concurrent ses-
sions that update items in 3200 groups under the following
three conditions: (1) 400 personal items per group: each
thread will keep updating its own group (i.e., no conflict),
(2) 400 shared items per group: each thread will randomly
choose one of 3200 groups and choose 4 from 400 items (i.e.,
mild conflict), (3) 40 shared items per group: each thread

588



will randomly choose one of 3200 groups and choose 4 from
40 items (i.e., heavy conflict). The results are shown in Fig-
ure 11.

We notice the difference besides the concurrency control
in the two versions: they are also different in allowed trans-
action concurrency (just like HBase and Omid). The Mon-
goDB version of entity group transaction cannot have con-
currency within a group. Hence, we do not see the difference
between the case 2 and 3 for MongoDB. Their throughput
values are almost equal to each other and are much lower
than the throughput in the case 1.

On the other hand, the TokuMX version employ a lock
for each item (i.e., document) and it looks very effective in
the case 2 showing only slight degradation from the case 1.

However, the behavior of the TokuMX version is quite
different in the case 3, showing a very low performance. In
fact most of the transactions fail due to either deadlock or
failure to acquire a lock, and these transaction will keep
retrying until they finish successfully.

To compare optimistic and pessimistic concurrency con-
trol under heavy conflict, there is a fundamental difference
in the cost of retrying transactions. In this particular case
of optimistic concurrency control using CAS operations, the
conflict relationship among transactions is very simple and
there will be no deadlock: i.e., at least one of the conflicting
transactions will “win.” Although retrying involves ineffi-
ciency, there is always progress in the computation. On the
other hand, the pessimistic concurrency control may suffer
from deadlock, in which case nobody wins. Thus, to ensure
progress of the computation, the execution threads need to
back off and wait longer time before retrying In fact, the
above result is after tuning the back-off policy using config-
uration options provided by the Strudel framework.

Figure 11: Throughput under different degree of
conflict: 3200 concurrent sessions, 5 data servers,
4 updates/interaction over 3200 shared/personal
groups

When it is very cheap to retry a transaction, the opti-
mistic concurrency control can be an easier approach. In a
practical setting, employing pessimistic concurrency control
might be tricky in a cluster environment (especially when
the system is built with open-source components and de-
ployed on the cloud platform). Careful performance analysis
is necessary to validate if it is really worth employing. The
best approach would depend on the requirement of a specific
application, and our tool can help the developer to explore

various options.

8.5 Application-level Performance
To demonstrate a scenario of an application-level perfor-

mance analysis, we compare HBase and MySQL using the
auction benchmark. For MySQL we use two benchmark
implementations based on Entity DB API and JPA, respec-
tively.

The JPA version of auction benchmark uses join queries
when they are applicable. For example, in an interaction
that shows the information on all the bidding by a particular
bidder, the tables of items and bids are joined together. In
the auction workload, all the interactions that use join are
read-only, and the number of tables joined is always 2.

Figure 12: Throughput of auction benchmark with
different session concurrency on different data stores

In this experiment, we increase the session concurrency
from 200 to 3200 (200 threads per worker server) without
think time on the same number of data servers (10 for HBase
and 1 for MySQL). The number of users (and the size of the
data set) is made proportional to the session concurrency
(50 users per thread). The throughput of the workload is
visualized in Figure 12.

As expected, HBase is scalable for an increasing number of
concurrent user sessions. One observation, however, is that
its throughput values are lower than the values of a single
MySQL server when the number of concurrent sessions is
small. This implies that MySQL’s execution of interactions
with SQL is more efficient than executing the same interac-
tions with put/get operations of HBase.

Another observation is that the JPA-based version per-
forms better than Entity DB-based version on MySQL when
the session concurrency is small, whereas the upper limit of
throughput does not seem much different between these two
implementations.

To see more detail of the efficiency of interaction execu-
tion, Figure 13 visualizes the average response time of in-
dividual interactions when the session concurrency is small
(200). For the purpose of presentation, we only visualize
5 interactions picked up from 15 interactions used in the
workload.

First, we observe the response time of two read-write in-
teractions: sell-auction-item and store-bid. One noticeable
point is that the store-bid interaction takes much longer
time than the sell-auction-item on HBase (whereas the sell-
auction-item performs similarly among three data stores).
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Figure 13: Response time of different interaction
types in auction benchmark on different data stores
(session concurrency = 200)

The store-bid interaction creates one Bid entity and updates
one AuctionItem entity in one transaction (i.e. updating one
row). In fact, however, creating one Bid involves two addi-
tional row updates for out-of-group auxiliary data items: a
key-generation counter and an index on the bidder id. On
the other hand, key-generation and index maintenance are
internal operations for MySQL, adding only negligible over-
head.

We see much larger difference between HBase and MySQL
for read-only interactions. We picked up three read-only
interactions to represent three types of queries: (1) view-
auction-items-by-seller gets auction items with a secondary
key (the user ID of a seller). It illustrates different use of an
index in Entity DB and JPA, (2) view-bids-by-bidder gets
bids by a particular bidder as well as the corresponding auc-
tion items. The JPA-version uses a two-table join query
with Bid and AuctionItem, (3) view-winning-bids-by-bidder
gets bids by a particular bidder that won the auction items.
The JPA-version uses a two-table join query with additional
filtering conditions.

The view-auction-items-by-seller interaction reveals the
difference in HBase and MySQL Entity DB: MySQL uses
its internal index mechanism to implement Entity DB’s sec-
ondary key access, which is more efficient than an index
object implemented on top of HBase. For this interaction,
MySQL uses the same SQL for Entity DB version and JPA
version (hence similar performance).

The view-bids-by-bidder interaction takes much longer time
in Entity DB versions (MySQL and HBase) compared to the
JPA-based implementation that uses a join query. However,
the JPA-based implementation did not gain further benefit
by adding filtering conditions for the view-winning-bids-by-
bidder.

In a real development case, we need to take response time
requirements for individual interactions to choose an imple-
mentation strategy. For example, 200 milliseconds for the
view-bids-by-bidder interaction of HBase in the figure might
not be acceptable for an interactive web application. The
current implementation of this interaction executes a nested
loop of get operations to emulate a join of Bid and Auc-
tionItem. A possible improvement is to issue get operations
asynchronously to hide latency of individual get responses.

8.6 Code Reusability

In addition to the above experiment scenarios, we also
demonstrate the reusability of the code enabled by the Strudel
framework.

Table 1 shows the size of components to implement the
Entity DB interface for each NoSQL store. Each cell con-
tains the lines of code and the number of classes (in a paren-
thesis). In the table, TKVS refers to the code of Transac-
tional KVS (Section 4.4) that is commonly used by every
implementation.

Table 1: The size of store components: lines of code
(number of classes)

TKVS HBase Omid MongoDB TokuMX
3130 (36) 796 (6) 454 (4) 680 (4) 507 (4)

Table 2 shows the size of components to implement Auc-
tion and Micro benchmarks. The labels entity, param, and
base correspond to definition of entity objects, parameters
used in session interactions, and abstract interaction classes
(Section 5), respectively. The remaining two columns, En-
tity DB and JPA, are components specific to data access
APIs. The table does not include XML files that define ses-
sion state transitions, which are part of configuration the
developer can customize for specific experiments. The ses-
sion state transition is agnostic to data access APIs.

Table 2: The size of benchmark components: lines
of code (number of classes)

entity param base Entity DB JPA
Auction 943 (9) 202 (3) 1346 (17) 1090 (18) 1043 (17)
Micro 681 (8) 212 (4) 1004 (19) 931 (19) 985 (19)

Notice that a more important point than the number of
lines is separation of concerns achieved by the framework.
For example, the benchmark components that are specific
to data access APIs only need to implement individual data
reads and writes that appear in the interactions.

8.7 Other Scenarios
Besides the scenarios the above demonstration covers, we

have also used the Strudel framework for our research and
development in a more customized manner. We developed
custom components for our proprietary systems to run var-
ious experiments, including: (1) elasticity analysis to eval-
uate dynamic server scaling out (using a custom workflow
that invokes various scripts to control data migration while a
workload is running), (2) evaluation of bulk-loading APIs of
NoSQL systems (using a custom workload that is not based
on the session workload framework).

Especially, the elasticity analysis is essential to evaluate
NoSQL systems. In a future version, we plan to include a
generalized version of our custom components in the frame-
work.

9. FUTURE WORK
We consider the following items in the future version of

Strudel:
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• Extended Entity DB API as a larger subset of JPA
to incorporate more powerful query functionality of
NoSQL (e.g. MongoDB) such as mapping parent-child
entity relationship to a nested document (which en-
ables retrieving parent and children together in one
operation).

• Supporting multi-entity-group transactions on Entity
DB API in a generic way to cover various solutions of
multi-key transactions on NoSQL systems.

• Native EntityDB support of representative NoSQL sys-
tems such as HBase and MongoDB (Section 4.4.3).

• Better support of online analyses (e.g., an additional
framework for scale-out analysis)

• Various data/workload generation (e.g. integration
with such features from YCSB, OLTP-Bench).

• Better and easier integration with underlying infras-
tructure (e.g., software containers (e.g., Docker), re-
source managers (Hadoop YARN), and cloud platforms)
as well as software configuration and deployment tools
(e.g., Puppet [7]).

In actual applications, scalable transaction support is only
part of the data management support. There are other
data management features that must be considered: (1)
entity search, (2) integration with analytic workloads. In
either case, the developer has to choose if these functional-
ity should be achieved by the same data store that serves
transactions or done by external systems (search engines or
analytic stores). Choice of SQL and NoSQL systems must
take such features into account, which are beyond the scope
of the current framework.

10. CONCLUSION
We introduce Strudel, a development and execution frame-

work for transactional workloads both on SQL and NoSQL
systems. Entity DB API provides a way to develop a bench-
mark using a common access API that is reasonably im-
plementable on various NoSQL systems as well as RDBMS
(through JPA). Session Workload framework provides an-
other abstraction layer to decouple logic on data access (with
a particular access API) from other logic in the benchmark
(such as session state transition and parameter generation).
We have implemented Entity DB API for various NoSQL
systems by introducing a lower level API for transactional
key-value access. A future version of the framework will ex-
plore custom EntityDB implementation on individual NoSQL
systems to exploit advanced features of these systems (such
as a query on a nested data structure).
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ABSTRACT
We present GROM, a tool conceived to handle high-level
schema mappings between semantic descriptions of a source
and a target database. GROM rewrites mappings between
the virtual, view-based semantic schemas, in terms of map-
pings between the two physical databases, and then executes
them. The system serves the purpose of teaching two main
lessons. First, designing mappings among higher-level de-
scriptions is often simpler than working with the original
schemas. Second, as soon as the view-definition language
becomes more expressive, to handle, for example, negation,
the mapping problem becomes extremely challenging from
the technical viewpoint, so that one needs to find a proper
trade-off between expressiveness and scalability.

1. INTRODUCTION
Many applications benefit from the availability of a se-

mantic schema over a database, i.e., a set of views over the
base tables that provide a richer description of the semantic
relationships among the underlying data and a more accu-
rate definition of the constraints. The use of such semantic
views has been thoroughly studied for the purpose of query
languages [6], data integration [1], and data access [2], but
there are little studies of how the presence of these views
impacts data exchange [4] applications.

Data exchange consists of moving data from a source data-
base to a target database. This task is usually performed
by developing schema mappings, i.e. executable transforma-
tions that specify how an instance of the source repository
can be translated into an instance of the target.

In this paper, we present GROM [9, 8], a system con-
ceived to support the management of mappings among view
schemas. GROM was designed to handle mapping scenarios
in which a semantic description is available over the target
database, and possibly over the source database. It allows
data architects to develop mappings among the two seman-
tic schemas, rather than the underlying database schemas.
Studying this variant of the problem is important for several

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
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reasons:

(i) The semantic web has increased the number of data
sources on top of which such descriptions are developed.

(ii) Views play a key role in information integration since
they are used to give clients a global conceptual view of the
underlying data, which may come from external, indepen-
dent and heterogeneous information systems [7].

(iii) Many of the base transactional repositories used in com-
plex organizations often undergo modifications during the
years, and may lose their original design. It is important
to be able to run the existing mappings against a view over
the new schema that does not change, thus keeping these
modifications of the sources transparent to the users.

More generally, semantic schemas help to improve the
overall design of the original schemas, and emphasize impor-
tant semantic relationships and constraints that would not
be apparent otherwise. Therefore, designing rich, high-level
mappings between these schemas has often significant ad-
vantages. However, semantic schemas are virtual and map-
pings between them are not directly executable.

GROM solves the important problem of making these high-
level mappings executable over the original database in-
stances. It rewrites mappings between the two virtual se-
mantic schemas under the form of standard mappings over
the underlying concrete databases, in order to execute them
and generate an instance of the target database from an in-
stance of the source database. Under appropriate hypothe-
sis, discussed in the next sections, the whole process happens
in a completely transparent way, thus greatly simplifying the
overall data-translation task.

Essential to this problem is the trade-off between expres-
siveness and complexity. In fact, the rewriting is fairly
straightforward if views are conjunctive queries – it reduces
to the standard view unfolding algorithm. However, con-
junctive queries have a limited expressive power, unable
to capture many semantic relationships between the data.
Negation, for instance, is crucial to capture disjointness con-
straints and many classification rules.

The main concern behind the design of GROM was to
provide an expressive view language that can truly benefit
data architects in defining rich semantic abstractions. To
this end, we adopt the language of non-recursive Datalog
with negation. This makes the rewriting significantly more
complex, as we discuss in Section 3.

In the following we describe how we plan to organize the
demonstration of GROM. We outline the kind of mapping
scenarios that will be considered with the help of a running
example introducing the main features of the system. Given
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the focus of this proposal, we have chosen to omit many of
the technical details that are in published papers [9]. We
concentrate on a description of the system from the user
perspective and illustrate the main technical challenges and
what an attendee may learn by playing with it.

The system is available under an open-source license at
the following URL: http://db.unibas.it/projects/grom/.

2. MAPPING REWRITING
Assume we have the two relational schemas below and we

need to translate data from the source to the target.

Source schema: S-Product(id,name, store, rating)
S-Store(name, location)

Target schema: T-Product(id,name, store)
T-Store(id,name, address, phone)
T-Rating(id, product, thumbsUp)

Both schemas refer to the same domain, which includes
data about products, stores, and ratings. Due to the differ-
ent organization of the two databases, it is not evident how
to define the source-to-target mapping. In particular, it is
difficult to relate tuples in the T-Rating target table to those
in the source. Suppose now that a richer semantic schema
has been defined over the target, as shown in Figure 1. To
simplify things, in this example we consider that only the
target database comes with an associated semantic schema;
we discuss the more general case in the next section.

Product

id:  integer
name:  string

PopularProduct UnpopularProduct

{disjoint,  complete}

Store

id:  integer
name:  string
address:  string

SoldAt* 1

AverageProduct

Figure 1: A Simple Target Semantic Schema.

The semantic schema distinguishes among popular, un-
popular, and average products. Each concept and associa-
tion is defined in terms of the database tables by means of
a set of views, as follows (we use different fonts for seman-
tic concepts and relational tables; in addition, source tables
have a S-prefix in their name, and target tables a T-prefix;
we use values 0 and 1 for the thumbsUp attribute):

v1 : Product(id, name)⇐ T-Product(id,name, store)
v2 : PopularProduct(pid, name)⇐

T-Product(pid,name, store),¬T-Rating(rid, pid, 0)
v3 : AvgProduct(pid, name)⇐

T-Product(pid,name, store),T-Rating(rid, pid, 1),
¬PopularProduct(pid, name)

v4 : UnpopularProduct(pid, name)⇐
T-Product(pid,name, store),
¬AvgProduct(pid, name),¬PopularProduct(pid, name)

v5 : SoldAt(pid, stid)⇐ T-Product(pid, pname, stid)
v6 : Store(id, name, addr)⇐ T-Store(id,name, addr, phone)

We adopt the expressive language of non-recursive Data-
log with negation. Notice how negation is crucial to capture
the semantics of this example and it may either correspond
to negated base tables (view v2, table T-Rating) or even
to negated views (v3, PopularProduct). Views can also be
defined as unions of queries (not shown in the example).

The important observation here is that in many cases
semantic concepts are closer to source data than physical
target tables, and therefore the task of defining mappings
is considerably simplified. In our example, notice how the
views hide table T-Rating . As a consequence, the classifi-
cation of a product in the target semantic schema is easily
derived from ratings in the source database as follows: prod-
ucts with ratings consistently above 4 stars (out of 5) are the
popular ones, those always graded less than 2 are considered
to be unpopular, and the rest are average.

As is common [4], we use tuple generating dependencies
(tgds) and equality-generating dependencies (egds) to ex-
press the mapping. In our case, the source-to-semantic trans-
lation can be expressed by using the following tgds with
comparison atoms:

m0 : ∀pid,name, store, rating :
S-Product(pid,name, store, rating), rating < 2

→ UnpopularProduct(pid, name)
m1 : ∀pid,name, store, rating :

S-Product(pid,name, store, rating),
rating >= 2, rating < 4→ AvgProduct(pid, name)

m2 : ∀pid,name, store, rating :
S-Product(pid,name, store, rating),
rating >= 4→ PopularProduct(pid, name)

m3 : ∀pid,name, store, rating, location :
S-Product(pid,name, store, rating),
S-Store(store, location)

→ SoldAt(pid, sid),Store(sid, store, location)

Intuitively, tgd m0 specifies that, for each tuple in S-
Product such that the value of rating is lower than 2, there
should be an UnpopularProduct in the semantic schema. Sim-
ilarly for m1 and m2. Mapping m3 relates products and
stores in the source to instances of SoldAt association in the
semantic schema.

The mapping designer can also express a number of con-
straints about the target semantic schema under the form
of egds.1 The egd below corresponds to a key constraint on
PopularProducts: it states that whenever two popular prod-
ucts have the same name, their id must also be the same:

e0 : ∀id1, id2,n : PopularProduct(id1, n),
PopularProduct(id2, n)→ id1 = id2

In addition to being more natural, designing mappings
over semantic schemas has another important benefit to the
data architect. By taking advantage of the semantics of the
views, the mapping designer does not need to care about
the physical structure of the data in the target schema. As
an example, s/he does not need to explicitly state in m0,
m1, m2 that popular, average, and unpopular products are
also products. The class-subclass relationships are encoded
within the view definitions, and we expect their semantics
to carry on into the mappings.

This, however, is true provided that we are able to trans-
late such a source-to-semantic virtual mapping into a clas-
sical, executable source-to-target mapping among the two
physical databases. This is the main task performed by
GROM, as discussed in the following section.

3. OVERVIEW OF THE SYSTEM
The main technical problem addressed by GROM, depicted

in Figure 2, can be stated as follows. Assume we are given:

1Previous papers [9] discuss how to handle foreign-key con-
straints as well.
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VT
semantic	  
schema

T
target

source-‐to-‐target	  
mapping

semantic	  
schema

VS

JT target
instance

ISsource
instance

ϒS

ΣVS,VT	  ∪ΣVT

ϒT

ΣS,T∪ΣTS
source

view	  
definitions

view	  
definitions

semantic-‐to-‐
semantic	  mapping

Rewriter

Chase	  Engine

Mapping	  Designer

Figure 2: Architecture of the System.

(i) a source relational schema, S, and a target relational
schema T;

(ii) a source semantic schema, VS , and a target semantic
schema, VT , defined by means of sets of view definitions,
ΥS and ΥT , over S, T respectively. View definitions may
involve negations over base and derived atoms, as discussed
in Section 2;

(iii) a set of target constraints, ΣVT , i.e. target egds to
encode key constraints and functional dependencies over the
semantic schema;

(iv) finally, a semantic-to-semantic mapping, ΣVS ,VT , de-
fined as a set of s-t tgds over VS and VT .

As it can be seen from Figures 2 and 3, the system is com-
posed of various modules. Users develop the semantic map-
pings using a graphical mapping-designer and view browser.
The GROM rewriter takes as input S,T,VS ,VT ,ΥS , ΥT ,
and the semantic-based mappings, ΣVS ,VT ∪ΣVT . It rewrites
these as a new set of source-to-target dependencies ΣST∪ΣT ,
from the source to the target database. These, in turn, are
fed to the chase-engine module, along with an instance IS of
the source database, to be executed and generate an instance
JT of the target. A few observations are in place.

Variants of the Problem. First, this general version of
the rewriting problem easily reduces to a simplified variant
in which only a target semantic schema is available, and no
source one, as in our running example in Section 2. In fact,
assume we know how to rewrite source-to-semantic map-
pings ΣSVT , i.e., mappings designed from the source schema
S to the target semantic schema VT . Assume now we are
given view definitions for the source schema, ΥVS , in addi-
tion to the target ones, and a mapping ΣVSVT between the
two semantic schemas. It can be seen that this case can be
reduced to the simpler case by using the composition of two
steps [9]: (i) first, we apply the source view definitions in
ΥVS to the source instance, IS , to materialize the extent of
the source views, ΥVS (IS); (b) then, we consider this ma-
terialized instance as a new source database, and solve the
source-to-semantic mapping problem.

The Mapping Language. A second, important observa-
tion is concerned with the output of the rewriting engine.
It is known [1] that the language of embedded dependencies
(tgds and egds) is closed wrt unfolding conjunctive views,
i.e. the result of unfolding a set of conjunctive view defini-

tions within a set of tgds and egds is still a set of tgds and
egds. Unfortunately, as we have shown in [9], this is not true
when views allow for negated atoms, as in our setting. This
justifies two important choices wrt the algorithm:

To start, the rewriting algorithm is sound but not com-
plete. Informally speaking, given mappings ΣSVT ∪ ΣVT ,
GROM generates a rewritten set of source-to-target map-
pings ΣST ∪ ΣT such that, whenever these admit a univer-
sal solution [4] JT over IS , then also the original source-to-
semantic mappings admit solutions on IS , and it is the case
that ΥT (JT ) is a solution for ΣSVT ∪ΣVT and IS . However,
we say nothing about the cases in which ΣST ∪ ΣT fail.

Then, as we mentioned, to better handle the effects of
negation in view definitions, we choose as a mapping-definition
language for ΣST ∪ ΣT the one of disjunctive embedded de-
pendencies (deds). Deds generalize tgds and egds since they
may have disjunctions in the conclusion. Following is a ded
generated by GROM for the running example in Section 2:

d0 : TProduct(pid1,name, store1),
TProduct(pid2,name, store2)→ (pid1 = pid2) |

TRating(rid, pid1, ‘0’) | TRating(rid, pid2, ‘0’)
Intuitively, this ded translates the key constraint for name

on concept PopularProduct in terms of the following con-
straints over the target database: for each pair of tuples in
TProduct with equal values of name, one of the following
must be true: either the two product ids are equal; or one
of the products is not a popular product.

Handling deds is considerably more challenging than or-
dinary tgds and egds. To provide an example, universal
solutions [4] are considered the standard notion of what
a “good” solution means for standard mappings composed
of tgds and egds; in addition, the chase is a well-known,
polynomial-time procedure to generate universal solutions.
On the contrary, it has been shown [3] that universal solu-
tions are no longer sufficient for ded-based scenarios, and
that the more appropriate notion of universal model set is
needed. In addition, universal model sets may have expo-
nential size wrt to the size of the source instance. In fact,
to the best of our knowledge, GROM is the first system to
tackle the problem of chasing deds.

Handling Complexity. The strategy to avoid such a com-
plexity blow-up is twofold. On the one side, sufficient condi-
tions to avoid the use of deds in the output mappings have
been identified under the form of restrictions on the use of
negations in view definitions [9]. As a consequence, the sys-
tem is able to look at the view definitions and tell whether
the rewritten mappings may contain deds or not.

On the other side, when deds are unavoidable, GROM
takes special care in order to tame the complexity of the
chase. To start, it relies on a fast and scalable chase en-
gine from the Llunatic project [5]. This guarantees good
scalability in executing mappings, even on large databases.
In addition, the chase engine has been extended in order to
properly handle deds by implementing a greedy chase strat-
egy for deds [9], based on the ideas of searching for solutions
to a set of deds by running multiple standard scenarios made
of tgds and egds derived from the given deds. Experiments
confirm the effectiveness of this approach.

4. EXPERIENCES WITH THE SYSTEM
The demonstration will illustrate what are the main chal-

lenges in handling semantic mappings and how the system
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solves them. Attendees will be able to interact directly with
the system, in such a way that the process will resemble a
hands-on tutorial. Following are the main lessons that can
be learned from these experiences.

Semantic Mappings Work! Our experiences tell us that
in many cases the availability of a view over the data may
greatly simplify the mapping process. In these cases, data
architects may greatly benefit from a tool like GROM.

One of the typical patterns is the one discussed in our run-
ning example: one of the data sources somehow rates source
objects, and the mapping application requires to classify ob-
jects in the target based on these ratings, for example for
the purpose of showing them to users under the form of web
pages. Often, target relational schemas are not designed to
properly address this kind of need. Being able to design a
view over the target database that more closely reflects such
an application requirement is a great asset in these scenarios.

Another, typical case, is the one of databases that come
with poor designs, or lack integrity constraints. It is very
difficult in these cases to design proper mappings. On the
contrary, a clean-up view over the underlying databases may
simplify things.

We intend to challenge the audience with different schemas
and mapping scenarios. We will ask attendees to design
mappings first using the original, relational schemas, and
then over properly designed views, to let them grasp the
real advantage of this approach.

Semantic Mappings are Expensive! At the same time,
it is important to let users understand the concrete trade-
off between having a flexible and expressive view-definition
language, and the cost of executing the mappings.

As we mentioned, rewriting and executing the mappings is
quite straightforward as soon as conjunctive queries are used
as a view definition language. This, however, is not sufficient
to capture the actual modeling requirements in many cases.

Negation is a powerful addition, but it comes at a cost.
The full power of negation generates output mappings that
include deds, so that chasing them is not feasible, even on
small instances. Attendees will learn what features GROM
offers to solve this problem. As a first solution, the system
will run its greedy chase algorithm to search for solutions to
the original deds. This amounts to generating several sce-
narios made of tgds and egds, that capture specific branches
in the deds. This strategy is sound, but not complete. How-

ever, it is often surprisingly quick in returning some solution.
In other cases, when the constraints are more intricate, the

greedy chase will take considerably more time, due to the
fact that many of the generated scenarios fail to generate a
solution, and new ones need to be executed. In these cases, a
possible alternative is to leverage the syntactic restrictions
over the use of negation [9] that guarantee that no deds
are generated. In essence, the user needs to inspect the
views and change them in such a way to remove perverse
negation patterns that will generate deds. GROM supports
this process by highlighting problematic views, so that the
user may consider alternative formulations.
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ABSTRACT
Keyword search over relational databases has gained popu-
larity due to its ease of use. Current research has focused
on the efficient computation of results from multiple tuples,
and largely ignores queries to retrieve statistical informa-
tion from databases. The work in [5] developed a system
that allows aggregate functions to be expressed using sim-
ple keywords. However, this system may return incorrect
answers because it does not consider the semantics of ob-
jects and relationships in the database. In this paper, we
present an interactive keyword search engine called Pow-
erQ to answer queries involving aggregate functions and
GROUPBY. PowerQ utilizes an ORM schema graph to cap-
ture the Object-Relationship-Attribute (ORA) semantics in
the database. Given a keyword query, PowerQ identifies the
various interpretations of the query and applies aggregate
functions and GROUPBY on the appropriate attributes of
objects/relationships. Each query interpretation is denoted
as an annotated query pattern, whose meaning can be de-
scribed in natural language to facilitate user understanding.
Through user interactions, PowerQ can determine the user’s
search intention, and translate the corresponding patterns
into SQLs to compute the answers correctly. The PowerQ
prototype is available at http://powerq.comp.nus.edu.sg.

1. INTRODUCTION
As databases increase in size and complexity, the abil-

ity for users to issue SQL queries has become a challenge.
Keyword search over relational databases has gained pop-
ularity as it enables users to query the database without
knowing the database schema or writing complicated SQL
queries. Research on relational keyword search has focused
on the efficient computation of results from multiple tuples
[1, 2, 4], and largely ignores queries involving aggregates and
GROUPBY. We call the latter aggregate queries.

Aggregate queries provide a powerful mechanism to re-
trieve statistical information from the database. The work
in [5] designed a prototype system called SQAK to handle

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

aggregate queries. An aggregate query comprises of a set of
terms and one of these terms is an aggregate function such
as COUNT , SUM , etc. The terms in the query may match
the names of relations or attributes or tuple values.

Consider the sample university database in Figure 1. Sup-
pose we want to know the total credits obtained by the stu-
dent Green, we can issue the aggregate query Q1={Green
SUM Credit}. However, we observe that incorrect answers
may be returned by SQAK. For example, the term Green
in Q1 matches the names of two students s2 and s3 in Fig-
ure 1. This naturally implies that we should find the sum of
the credits for each of these students, that is, the total cred-
its for s2 is 5 while the total credits for s3 is 8. However,
SQAK does not distinguish between these two “different”
name matches, and outputs a total credits of 13 for students
called Green, which is incorrect.

Course

Code Title Credit

c1 Java 5.0

c2 Database 4.0

c3 Multimedia 3.0

Lecturer

Lid Lname Did

l1 George d1

l2 Steven d1

Enrol

Sid Code Grade

s1 c1 A

s1 c2 B

s1 c3 B

s2 c1 A

s3 c1 A

s3 c3 B

Teach

Code Lid Bid

c1 l1 b1

c1 l1 b2

c1 l2 b1

c2 l2 b2

c2 l2 b3

c3 l1 b4

Textbook

Bid Tname Price

b1 Programming Language 10

b2 Discrete Mathematics 15

b3 Database Management 12

b4 Multimedia Technologies 20

Department

Did Dname Fid

d1 CS f1

Faculty

Fid Fname

f1 Engineering

Student

Sid Sname Age

s1 George 24

s2 Green 18

s3 Green 21

Figure 1: Sample university database

Next, suppose we issue the query Q2={Java SUM Price}
to find the total price of the textbooks that are used in the
Java course. The term Java matches a course title while
the term Price matches an attribute of the Textbook rela-
tion. This relation contains 3 foreign keys that reference the
Course, Lecturer and Textbook relations respectively, and
represents that a course can be taught by more than one
lecturer using different textbooks. We see that there are 2
such textbooks, namely, b1 used by both lecturers l1 and
l2, and b2 used by lecturer l1. But SQAK does not detect
the duplicate textbook b1 by different lecturers of the Java
course (i.e., c1) in the Teach relation, and returns 35 for the
total price. This answer is incorrect as students do not need
2 copies of a textbook for the same course.

In this work, we build a relational keyword search engine
called PowerQ to answer aggregate queries correctly. Pow-
erQ extends the keyword query language and utilizes the
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ORM schema graph [6] to capture the Object-Relationship-
Attribute (ORA) semantics in the database. Given an ag-
gregate query, it identifies the various interpretations of the
query and applies aggregate functions and GROUPBY on
the appropriate attributes of objects/relationships. Each
query interpretation is denoted as a graph called annotated
query pattern, whose meaning is described in natural lan-
guage. The query patterns that satisfy the user’s search
intention are translated into SQL statements to compute
the answers. During the query processing, PowerQ uti-
lizes the ORA semantics to distinguish the objects with
the same attribute value and detect the duplications of ob-
jects/relationships regardless of whether the database is nor-
malized or not. Otherwise, the aggregate function(s) can-
not be computed correctly as we have shown in our example
queries Q1 and Q2.

2. PRELIMINARIES
The work in [6] extends the keyword query language to

include the keywords that match the names of relations and
attributes. These metadata keywords provide the context of
subsequent keywords and reduce the query ambiguity.

PowerQ further extends the query language to incorpo-
rate aggregates and GROUPBY. Thus, a keyword query Q
is a sequence of terms {t1 t2 · · · tn} where each term ti
either matches a relation name, an attribute name, a tu-
ple value, GROUPBY or an aggregate function COUNT ,
SUM , AV G, MIN or MAX.

2.1 ORM Schema Graph
The work in [7] classifies the relations in a database into

object relations, relationship relations, mixed relations and
component relations. An object (or relationship) relation
captures the information of objects (or relationships), i.e.,
the single-valued attributes of an object class (relationship
type). Multivalued attributes of an object class (relationship
type) are stored in object/relationship component relations.
A mixed relation contains information of both objects and
relationships, which occurs when we have a many-to-one or
one-to-one relationship. We call these semantics the Object-
Relationship-Attribute (ORA) semantics.

The Object-Relationship-Mixed (ORM) schema graph is
an undirected graph that captures the ORA semantics in
the database. Each node in the graph comprises of an
object/relationship/mixed relation and its component rela-
tions, and is associated with a type (object, relationship and
mixed). Two nodes are connected if there exists a foreign
key - key reference between the relations in these two nodes.

In Figure 1, the relations Student, Course, Faculty and
Textbook are object relations while Enrol and Teach are
relationship relations. Relations Lecturer and Department
are mixed relations because of the many-to-one relationships
between lecturers and departments, and the many-to-one re-
lationships between departments and faculties respectively.
Figure 2 shows the ORM schema graph of the database.

2.2 Query Patterns
Since keyword queries are inherently ambiguous, [6] intro-

duces the notion of query patterns to represent the various
interpretations of a query. These query patterns are gener-
ated from the ORM schema graph of the relational database.

Figure 3 shows one of the query patterns for the key-
word query {Code George Green}. This patten depicts the

Object Node

Relationship Node

Legend:

Mixed NodeTextbook

Teach Course

Enrol Student

FacultyLecturer Department

Figure 2: ORM schema graph of Figure 1

Course
(Code)

Teach EnrolLecturer
Lname=George

Student
Sname=Green

Figure 3: Query pattern of {Code George Green}

query interpretation to find information on the course which
is taught by the lecturer George and enrolled by the stu-
dent Green. To generate this query pattern, we identify the
matches of each term in the query. The term Code matches
the name of an attribute in the Course relation, while the
terms George and Green match the values of the attribute
Lname in the Lecturer relation and the attribute Sname in
the Student relation respectively. Based on these matches,
we know that Code refers to a course object, George refers
to a lecturer object, and Green refers to a student object.
From the ORM schema graph in Figure 2, the Course, Lec-
turer and Student nodes can be connected via a Teach and
an Enrol node. Hence, we create these two nodes and obtain
the query pattern in Figure 3.

PowerQ utilizes query patterns to capture the interpre-
tations of an aggregate query. However, since an aggregate
query includes aggregate functions and GROUPBY, we need
to annotate the patterns to indicate the objects/relationships
that aggregates and GROUPBY are applicable to. We will
discuss how to achieve this in the next section.

3. SYSTEM ARCHITECTURE
PowerQ takes as input an aggregate query, and generates

a set of SQL statements for the query patterns that satisfy
the user’s search intention. Figure 4 shows the architecture
of PowerQ. The frontend of PowerQ interacts with the user
during the query processing, while the backend communi-
cates with the database and the ORM schema graph to com-
pute the query answers. The main components in PowerQ
are Query Parser/Analyzer, Query Interpreter, SQL Gener-
ator, Visualization Module and Normalization Module. The
following sections give the details of these components.

3.1 Query Parser/Analyzer
Given an aggregate query, the Query Parser/Analyzer clas-

sifies the terms in the query into basic terms and operators.
A basic term matches a relation name, or an attribute name,
or a tuple value in the database, while an operator matches
an aggregate function or GROUPBY. For the basic terms,
the Query parser/Analyzer obtains their matches and deter-
mines the objects/relationships referred to by these terms
based on the ORM schema graph of the database.
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3.2 Query Interpreter
Next, the Query Interpreter generates a set of initial query

patterns based on the basic terms of the query and the ORM
schema graph of the database. Each query pattern contains
a set of nodes that represents the objects/relationships re-
ferred to by the basic terms. Then, it annotates the query
patterns with operators in the query. For each operator ti,
if its subsequent term ti+1 refers to some object or relation-
ship, then the Query Interpreter annotates the correspond-
ing node with ti(id), where id is the identifier of the ob-
ject/relationship; otherwise, if ti+1 refers to some attribute
a of an object or relationship, the Query Interpreter anno-
tates the corresponding node with ti(a).

Consider the keyword query {COUNT Code George Green}.
Figure 3 shows a query pattern obtained using the basic
terms Code, George and Green. For the operator COUNT,
since its subsequent term Code matches the name of an at-
tribute in the Course relation, we will annotate the Course
node with COUNT(Code), and obtain the annotated query
pattern P1 in Figure 5. This pattern depicts the query in-
terpretation to find the total number of courses which are
taught by lecturer George and enrolled by student Green.

In an annotated query pattern, an object/mixed node
with the condition a = t refers to an object such that its
value of attribute a matches the basic term t. However, since
this condition could be satisfied by more than one object in
the database, we have two different query interpretations:

1. apply the aggregate functions(s) for every distinct ob-
ject satisfying a = t; or

2. apply the aggregate function(s) for all the objects sat-
isfying a = t.

The Query Interpreter distinguishes these two interpre-
tations by annotating the object/mixed node in the pattern
with GROUPBY(id), where id is the identifier of the object.
By applying GROUPBY on object identifiers, we can dis-
tinguish objects with the same attribute value and compute
the aggregate functions for each of them.

In Figure 5, the annotated query pattern P1 contains a
Student node that is annotated with the condition Sname =
Green. From the database in Figure 1, we know that there
are two students called Green. Hence, we have a second
query pattern P2 that is similar to P1, except that we anno-
tate the Student node in P2 with GROUPBY(Sid). Figure 5
shows these two patterns: P1 counts the number of courses
for all the students called Green, while P2 counts the number
of courses for each student called Green separately.

Note that SQAK [5] does not distinguish P1 and P2, and
thus may return incorrect answers to the query.

Figure 5: Screenshot of annotated query patterns

3.3 SQL Generator
The SQL Generator translates an annotated query pat-

tern into an SQL statement to compute the answers. The
straightforward approach is to join the relations of all the
nodes, select the tuples that satisfy the conditions imposed
by basic terms from the join result, and then apply aggre-
gate(s) and GROUPBY on the selected tuples. However,
this may generate an SQL that gives an incorrect answer.

Consider the query pattern P2 in Figure 5. If we simply
translate P2 into an SQL that joins the relations Course,
Teach, Enrol, Lecterer and Student, selects the tuples with
conditions Lname = George and Sname = Green, and then
applies the count aggregate and GROUPBY on the course
code and the student id respectively, we will obtain wrong
answers as the same course may be counted multiple times.
This is because the Teach node in P2 is in fact a ternary rela-
tionship involving course, lecturer and textbook objects (see
the ORM schema graph in Figure 2). The same course can
be taught by a lecturer using different textbooks. In other
words, the same Lid and Code are duplicated for different
Bid in the Teach relation.

To avoid this problem, PowerQ examines every relation-
ship node u in the pattern, and checks its corresponding
node v in the ORM schema graph. If the pattern only con-
tains a subset of the participating objects in relationship v,
then it projects the identifiers of these objects from v. This
eliminates duplicates and PowerQ replaces the relation of u
with the relation obtained by this projection in the SQL.

For example, since the Teach node in P2 only involves
course and lecturer objects, PowerQ generates a subquery
“SELECT DISTINCT Lid, Code FROM Teach” to project the
attributes Lid and Code in the Teach relation. This sub-
query has a “DISTINCT” keyword, thus eliminating dupli-
cates of 〈Lid,Code〉. We use this subquery result to join the
other relations in the FROM clause as follows:

SELECT S.Sid, COUNT(C.Code)

FROM Lecturer L, Course C, Enrol E, Student S

(SELECT DISTINCT Lid, Code FROM Teach) T

WHERE L.Lid=T.Lid AND C.Code=T.Code AND

S.Sid=E.Sid AND C.Code=E.Code

GROUP BY S.Sid

Note that SQAK does not detect the duplicates of courses
in Teach relationships, and thus returns incorrect answers.
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3.4 Visualization Module
A keyword query is inherently ambiguous. However, the

user who issues the query often has some particular search
intention in mind [3]. The Visualization Module represents
the various interpretations of a keyword query, and actively
interacts with the user to obtain the interpretations that
satisfy the user’s search intention. In particular, if a term
has multiple matches in the database and refers to different
objects/relationships, the user is offered the opportunity to
choose the matches. Further, if more than one query pattern
is constructed for the query, the user is again allowed to
choose his/her intended query patterns.

One feature of PowerQ is that it represents query inter-
pretations visually and describes them in human natural
language in order to facilitate users’ understanding. For
instance, the annotated query pattern P2 in Figure 5 is rep-
resented as a graph annotated with the ORA semantics. The
nodes with operators in the graph are highlighted to indicate
the objects/relationships that aggregates are applicable to.
The description of this pattern is to “Find the count of the
courses that are taught by the lecturer with name matching
George and are enrolled by the student with name match-
ing Green group by Sid”. The user can easily identify the
intended query interpretation by the graph structure, and
verify its meaning by the description. After the user chooses
a query pattern, PowerQ computes the answers and repre-
sents them according to the corresponding search intention.
Figure 6 shows the screenshot of the interface which displays
the query answers for the query pattern P2 in Figure 5 and
the detailed information for user to verify the answers.

3.5 Normalization Module
Relations in a relational database are often denormalized

to improve query processing performance. This denormal-
ization process will duplicate information of objects and re-
lationships in the database and SQAK may obtain incorrect
answers for an aggregate query.

PowerQ is able to detect denormalization and keep track
of the object/relationship information in the database to
answer aggregate queries correctly. This is achieved by ex-
amining the functional dependencies hold on the relations.
If the database is denormalized, then it generates a normal-
ized view of the database which comprises of a minimal set of
normalized relations, and obtains the mappings of relations
in the normalized view and the original schema. The nor-
malized view is used to construct the ORM schema graph
of the denormalized database and build query patterns of
the query, while the mappings are used to generate the SQL
statements which continue to compute the answers correctly.
Interested readers can refer to [8] for details.

4. DEMONSTRATION
In this demonstration, we will present a web-based browser

interface of PowerQ, which communicates with the Java
based server. The system is available at http://powerq.

comp.nus.edu.sg. We intend to show the use of PowerQ
against a number of real application scenarios such as the
ACM Digital Library (dl.acm.org), and the IMDB database
(www.imdb.com).

The demonstration will include three parts. First, we will
run a number of sample aggregate queries against these re-
sources. We will demonstrate how PowerQ exploits the ORA
semantics in the database, distinguishes objects with the

Figure 6: Screenshot of answers to query pattern P2

same attribute value, and detects duplications of objects in
relationships to answer aggregate queries correctly. The user
can run queries without aggregate functions or GROUPBY
to verify the answers of the aggregate queries. Next, we will
run the aggregate queries on the denormalized data. We will
demonstrate how PowerQ continues to process the aggregate
queries correctly. Finally, the user will be free to run their
own queries.

Through this demonstration, we will highlight the impor-
tance of the ORA semantics to relational keyword search.
This is reflected in three aspects. First, the interpretation
of keyword queries requires the system to be knowledge-
able about the ORA semantics. Second, in order to answer
queries involving aggregates and GROUPBY correctly, we
need to distinguish objects with the same attribute value
and detect duplications of objects in relationships based on
the ORA semantics. Third, we need to keep track of the
ORA semantics in the database, so that queries on denor-
malized databases can continue to be handled correctly.
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1. INTRODUCTION
Visualization provides a powerful means for data analysis.

To be useful, visual analytics tools must support smooth and
flexible use of visualizations at a fast rate. This becomes
increasingly onerous with the ever-increasing size of real-
world datasets. First, large databases make interaction more
difficult as a query across the entire data can be very slow.
Second, any attempt to show all data points will overload
the visualization, resulting in chaos that will only confuse
the user.

Many solutions have been proposed to solve these prob-
lems,1 but only one [1] addresses both of them simultane-
ously: hierarchical aggregation. Since it is not feasible to
show all answers to a query, a natural way to reduce the
size of the answer set is to aggregate it. We also need to
support real-time interactivity; that is, to support an effi-
cient way to move between levels of aggregation. Thus, we
need a hierarchy of aggregations.

Hierarchical aggregation is not a new idea, of course. For
data, it has been explored in OLAP, starting with the data-
cube model. For images, it is only recent that new visual
aggregation strategies have been developed for standard vi-
sualization techniques [1]. These strategies turn existing vi-
sualizations into multi-resolution versions that can be ren-
dered at any desired level of detail. The visual aggregate can
convey various information about the underlying data, such
as their average, minima and maxima, and distribution.

Thus, data visualization systems face two challenges.
First is an issue of efficiency. Most visualizations today
are produced by first retrieving data from a database, and
then using a specialized tool to render it. This decoupled
approach results in significant duplication of functionality,
while missing opportunities for cross-layer optimizations [5].
Second is an issue of expressiveness. Data visualization sys-
tems have not exploited modern graphics processing and ren-
dering, due to architectural limitations, and lack of aware-
ness. These graphics shaders meanwhile can significantly

1See [2] for an overview.

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

improve visualization.
We combine data aggregation with visual aggregation in a

tightly coupled system that provides for smooth user inter-
action. Our implementation is based on a hierarchical data
structure we call an aggregate pyramid.2 By interacting with
the pyramid in the back-end (via the database system), the
front-end visualization client can quickly filter the data to
move up and down in the aggregation hierarchy. We want
the visualization mantra, “overview first, zoom and filter,
then details on demand,” [4] to be more like skydiving than
gliding.

Skydive’s general architecture enables us to exploit mod-
ern graphics processing and rendering in new ways that
other systems have not been able to exploit. Thus, for inter-
active data visualization, Skydive is innovative in both ex-
pressiveness, by flexibly enabling new rendering techniques,
and efficiency, due to tight-coupling in its architecture.

2. EXPRESSIVENESS
In Skydive, a data visualization is defined by the user in

two parts:
1. the aggregate-pyramid query, which defines the dataset

cut from the database the user wishes to explore; and
2. the visual mapping, which maps the aggregate mea-

sures of the aggregate pyramid to visual channels in
the data texture the user will explore.

In the next section, we define the concept of the aggre-
gate pyramid in more detail, and how it is used to sup-
port efficient data visualization and exploration. For now
in overview, we consider how it supports expressive visual-
izations.

Anatomy of the aggregate pyramid. The aggregate
pyramid represents a hierarchy of aggregation levels we call
strata. (This is visualized in Fig. 1.) The base of the pyramid
represents the stratum with the highest resolution of our
data (the data aggregated the least); higher strata represent
successively lower resolutions (the data further aggregated).
As with a data cube, the columns of an aggregate pyramid
consist of dimensions and aggregates. Each tuple in the
pyramid, called a cell, represents the aggregates of the raw
data within the cell’s area. The cells of any given stratum
tile the dataset at the stratum’s resolution. We consider
here two-dimensional pyramids, with “X” and “Y” dimension
columns.3

2This concept is described in more detail in [3].
3One-dimensional pyramids are also useful for visualization,
but with specific presentation models that we do not discuss
here. Pyramids generalize to more than two dimensions,

Demonstration

 

 

Series ISSN: 2367-2005 600 10.5441/002/edbt.2016.58

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2016.58


The aggregate columns are defined over the measures of
the raw data. For the pyramid, an inductive-aggregate func-
tion is defined in two parts, a base and an inductive function.
The base function aggregates over the raw data to produce
the cells of the base stratum of the pyramid. The inductive
function then aggregates over the appropriate cells of the
stratum below the current to compute the aggregate values
for the cells of each stratum.

For example, consider scatter-plot data of event points—
say fires that have occurred in the Seattle area—that we
want to visualize. One aggregate we likely will want is to
count events within each cell’s area. The base function can
simply be the aggregate count over the group-by into cells
for the pyramid’s base stratum. The inductive function is
then sum, to sum up the counts of the sub-cells to compute
the count for the cell.

It is important that the inductive functions are only al-
lowed to look one stratum below, for efficiency of computa-
tion. This also means a good deal of care and thought must
go into defining appropriate, meaningful inductive-aggregate
functions that are effective for visualization.

Even with the simple example of scatter-plot data of
events that have no specific qualities—an event simply oc-
curred at a location—there are still a number of aggregates
of this information in which one might be interested. Count-
per-area is an obvious one, as discussed above. Additionally,
there are statistical aggregates that can tell us something
about how the events are distributed in the area represented
by the cell. Are they uniformly distributed across the area,
or are they highly clustered in given spots? An entropy func-
tion can be devised that offers a measure of such dispersion
across the area.

If the scatter-plot data is richer, then there are many more
aggregates we might wish to convey. Fire events might addi-
tionally carry a measure of intensity. We then may wish to
convey information about the intensity of events in addition
to the count of events. Maximum may be a reasonable aggre-
gate over intensity, to convey the highest intensity of event
to have occurred in an area (the cell). Another aggregate
could carry the standard deviation over intensity of events
within the cell. Fire events will also have time associated
with them, and so forth.

The visualization mapping. The second thing that must
be specified for a visualization is a mapping of the aggre-
gates of the pyramid into visual channels. If the presentation
model is a 2D image, these channels are the usual suspects
from image processing: e.g., red, green, and blue (RGB) or
hue, saturation, and lightness (HSL), depending on how one
wants to consider the color space.

The mapping consists of functions that map (and normal-
ize) the aggregates of the pyramid to available channels in
the presentation model. The mapping should be done with
care to be “orthogonal”, so that each aggregate as mapped
can be clearly distinguished. We envision developing a li-
brary of standard mappings to be available. Skydive’s ar-
chitecture, however, is a general platform that allows for
devising new, novel mappings.

The problem of channel paucity. A critical problem is
the absolute paucity of channels for visual conveyance. If
we are mapping to an image, we effectively have but three
channels we can use in the mapping (e.g., HSL).

albeit presentation models for these are limited.

Figure 1: The Aggregate Pyramid Model.

While much work in data visualization has strived to
address the problem of channel paucity—for instance, by
graphical symbols, layout, and such to add effectively “chan-
nels” for conveyance—these do not work for interactive visu-
alization in an inductive way, where one can zoom to change
dynamically the degree of aggregation. Meanwhile, no work
yet has taken advantage of the additional channels that the
modern graphics environment afford us. Skydive is de-
signed to exploit just that, to great advantage.

Presentation models. The presentation model defines the
“structure” that will be visualized. The model provides a set
of channels that can be used by the mapping.

The 2D model. One model is that of a 2D image. The viewer
manages the visualization as an image—which we call a data
texture—within a canvas, allowing the user to zoom and pan
around it. This view is, in essence, a heat-map. Skydive’s
benefit is that the data texture makes it possible to explore
dynamically this heat-map view progressively in realtime.
This model suffers still from channel paucity, however; it
is effective only if one can live within such a constrained
channel space.

The 21/2D model. A second model we call 21/2D. For this,
the model is rendered in 3D. The visualization now consists
of two parts: the data texture, as before; and a terrain—a
manifold4 rendered as a mesh—onto which the texture is
overlaid (UV-mapped).5 This exploits modern 3D graphics
rendering, which supports meshes and UV-mapping. This
offers Skydive additional channels of conveyance over points
in the terrain: elevation (Z); specular ; and normal. A specu-
lar map determines how“reflective”a point is on the surface.
As scenes in 3D have external lighting, this is quite notice-
able. A normal map dictates deviations of the normals, the
“perpendicular” of a point with respect to the surface. By
perturbing the normals of a neighborhood, that part of the
surface can be made to look rough; leaving them as dic-
tated by the mesh, the surface looks smooth. These are
standard in graphics processing and used in game produc-
tion for making scenes look more realistic. That is, these
channels visually stand out.

We can use the alpha channel additionally, as the terrain
can be floated over a flat reference plane; the bleed-through
of the reference through translucency of the terrain is readily

4A manifold is function that maps 2D coordinates to values.
This can be rendered in 3D using elevation, “Z”, over the 2D
plane to indicate the 2D points’ values.
52D images are called textures in this context, and the map-
ping of textures onto the mesh surfaces is called the UV-
mapping.
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Figure 2: The Skydive System.

obvious. This means we have effectively seven channels of
conveyance in the 21/2D model, versus just the three in the
2D model.

Mixed models. Skydive can mix presentation models for
the same pyramid to provide simultaneous, synchronized al-
ternative viewports into the same data. We also intend to
support “cross-product” pyramids that could, for example,
let one zoom and pan on XY and on T (time) independently.

3. EFFICIENCY
Structure of the aggregate pyramid. The idea be-
hind this mirrors approaches taken by progressive image for-
mats such as JPEG-2000. The image “pyramid” is multi-
resolution data structure that represents a 2d × 2d image
as a sequence of copies (2D arrays) of the original image,
each “half” the resolution—half on the rows and half on the
columns—of the next. Thus the base stratum of the pyra-
mid is the full resolution version of the image, while the top
stratum is a single pixel approximation of it.

Similarly, the aggregate pyramid represents 2d × 2d data
cells at its base, with each subsequent stratum halving the
“resolution” (doubling the aggregation). Construction of a
aggregate pyramid can be accomplished efficiently by the
database engine by building it from the base upwards. First,
the base stratum is created by aggregating the raw data into
the base cells. Then subsequent strata can be produced re-
cursively by aggregating spatially the constituent quadrant
cells of the stratum below. The cells can be indexed by stra-
tum, and by Hilbert order that linearizes their order, which
then can be indexed via a B+-tree. As such ordering pre-
serves locality of sub-cells that are needed to merge for the
next higher stratum, a stratum can be produced in proper
order by a single scan of the cells of the stratum below it.

Skydive employs the aggregate pyramid to preprocess
data so the visualization process can be handled efficiently.
Given a query defining the dataset to explore, the data-
base system materializes the aggregate-pyramid version of
the dataset query, and indexes the pyramid by stratum and
Hilbert order, as discussed above.

The materialized pyramid is managed by the database en-
gine during the visual exploration of that dataset. Interac-
tive operations at the visualization client are then supported
by querying into the aggregate pyramid at the appropri-
ate stratum and range (bounding box), which can be han-
dled efficiently and at real-time, interactive speeds. Thus,
Skydive tightly couples database support for processing the

data with the interactive visualization.

Operations. Skydive is designed to support the following
visual operations over the dataset for visualizing. Each, in
turn, can be supported efficiently by the database system
over the materialized aggregate pyramid.

Resizing. The user can change the current viewport by
changing the size of the visualized data (up or down). In
sizing, the visualizer may need to present a different level
of resolution. For instance, in a size-up operation, the user
requests a higher resolution image. As a result, the system
needs to retrieve the aggregated data from a higher resolu-
tion stratum in the pyramid.

Zooming. The user can request to view more detail of a part
of the image by specifying a window of interest, selecting a
portion of the image by zooming in. The system maps the
requested window to the stratum with high enough resolu-
tion to fit the canvas, and selects the appropriate range.

Panning. In panning, the user changes the viewport in the
image, but within the same level of resolution. If the user
pans, the system will check the availability of the visual data
in the current stratum, and request the additional range
from the pyramid in that stratum.

4. ARCHITECTURE
Skydive’s components. Skydive is composed of three
main components, as shown in Figure 2:
• the Database Module (DB);
• Data-to-Image module (D2I); and
• the Visualization Client (VC).

Each is designed to use a different type of computer mem-
ory. The DB module uses disk to store and manage the raw
data, and materialized aggregate pyramids. The D2I mod-
ule works with a small subset of the aggregated dataset,
and stores data in main memory (RAM). The VC mod-
ule uses the graphic card’s capabilities to perform more ad-
vanced operations—such as zooming, scaling, panning, and
rotation—over the graphical representation of the data.

This separation of concerns provides useful flexibility.
Each component can be implemented as a separate service,
deployed on a different machine. This leverages the idea of
compression of data conveyed between the modules, letting
us implement a tightly coupled visualization system. The
Skydive prototype is implemented as a desktop application
with the three modules as described above and shown in
Fig. 2a. The main window of Skydive, shown in Fig. 2b, is
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(a) Overview image. (b) Zoomed in, terrain view.

Figure 3: Visualizations of the Seattle 911 Dataset.

composed of a few simple elements: an upper menu for per-
forming basic file operation; a left panel for tuning a loaded
and currently displayed visualization; and a visualization
view for rotating, panning and zooming.

Graphical variables. The user also defines the presen-
tation model to be used and the visualization mapping (of
aggregates to channels) to be employed, as discussed in §2.
The system prototype supports three presentation models:
• a 2D heat-map;
• a 21/2D heat-map by 3D barchart; and
• a 21/2D terrain (by mesh and UV-mapping).

Generating meshes and textures. The data texture is
generated by the D2I module by selecting the appropriate
window out of the aggregate pyramid, and applying the vi-
sualization mapping. For the 21/2D terrain model, a mesh
is additionally computed by the D2I. The mesh is created
based on a stratum of lower resolution, for better visual ap-
peal, and for efficiency in the VC.

User interface. The user interface, as shown in Fig. 2b,
allows the interactive visualization operations, as discussed
above. The user can scale, translate, and rotate the cur-
rently displayed visualization in the Visualization Client
(VC). The VC is implemented using JavaFX, which natively
supports these functions. Scaling, translation, and rotation
do not require to query the aggregate pyramid, hence are
performed entirely within the VC, supported by the GPU.

Other interactive functions do require queries to be issued
from VC to the DB module. For instance, if the user wants
to focus more on a certain area of a visualization, then the
system must request the data from the appropriate stratum;
of higher resolution for zooming in, and lower for zooming
out. Issuing such a request results in the loading and gen-
erating of the mesh and texture by the D2I. The VC then
displays this using the GPU’s graphics pipeline.

5. DEMONSTRATION SCENARIO
Datasets. We test Skydive using several datasets, two of
which are described below.

9-1-1 calls. The Seattle Police Department 911 Incident
Response dataset 6 contains over one million records. Each
represents the police response to a 911 call within the city.
Fig. 3a shows a density map of the calls. Color denotes
the number of calls made within the area represented by a
pixel. Based on the plotted heat-map, a user is not able to
conclude anything more than that there are some areas of
slightly higher density than their neighbors.

6https://data.seattle.gov/

(a) Data texture of check-ins.

M T W R F S U

(b) Zoomed in, terrain view.

Figure 4: Visualizations of the Brightkite dataset.

In Fig. 3b, we have switched to the terrain view, where
elevation indicates the density, and color refers to a most
frequent type of a call within the cell. In this view, we see
more detail. For example, the red pixel indicated by the
arrow represents unusual activity within the magnified area.

Brightkite check-ins. The Brightkite Check-ins Dataset7

consists of over four millions records of geographical posi-
tions reported by users of a geo-location social service. In
Fig. 4a, the heat-map represents the dataset over one mea-
sure: color represents days of week for which user activity
was highest within the areas represented by the pixels. In
Fig. 4b, a terrain map is shown of a zoomed in portion with
more in the mapping. The texture color again denotes day
of week with highest activity. Elevation denotes number of
check-ins. We can deduce that weekends were most active
days for Brightkite users in the USA. We can additionally
see the areas in which the most users were active.

Richer mappings. We will demonstrate the richer map-
pings offered by the 21/2D model with normal, specular, and
alpha channels. These are not easy to show in static pic-
tures, but stand out in display in the demo. With these,
additional aggregates can be conveyed to a viewer simulta-
neously. Roughness of the surface (a normal map) can be
used to represent variance of a measure within cells. Shini-
ness (a specular map) can be used to show spatial dispersion
within the area represented by a point on the terrain.
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ABSTRACT 
Microblogging streams contain information pertaining to emerging 
real world events. Due to the rapid pace at which these data streams 
are generated, it is often difficult for users to discover the most 
relevant messages in the context of their keyword queries. Search 
over such data streams returns the most recent messages only; most 
recent messages may not be the most relevant messages. Hence 
users have to resort to the cumbersome task of sifting through a 
large amount of information to obtain the context of a live event. 

We present a novel real time search system – Contextual Event 
Search – on dynamic message streams, to extract meaningful 
summaries for live events in real time. Our technique is 
unsupervised and automatically identifies different facets of the 
live events in a scalable and effective manner.  

We demonstrate that for a given keyword search, users are 
presented with meaningful, compact and complete contextual event 
summaries for the most relevant events in a given time window, 
thus exposing the full context behind the messages. 

Categories and Subject Descriptors 
H.3.3 [Information Search and Retrieval]: Information filtering, 
Relevance feedback, Search Process.  

General Terms 
Algorithms, Experimentation. 

Keywords 
Dynamic Graph, Indexing, Search, Summarization.  

1. INTRODUCTION 
Highly dynamic unstructured data streams – sequences of 
chronologically ordered messages posted by multiple users at a fast 
pace – occur in various social media and enterprise domains. In 
microblog streams (e.g., Twitter), messages are posted at a high rate 
due to their large user base. Twitter is often the first medium to 
report emerging events [1][2], ranging from globally important 
events to the events relevant only for a small community.  

____________________________________________________ 

1 The author list is in alphabetical order. 

An event is a real world or an abstract activity, relevant for a group 
of people or a community. An event in a data stream is defined by 
“messages, posted by multiple users, in the same context, within a 
bounded time window”, for example, messages posted by the fans 
during the course of a football match. It is only natural that in a fast 
moving world, a large number of events occur concurrently.  

Existing unsupervised approaches identify emerging events as 
clusters of keyword over dynamic message streams [1][2][3]. Each 
keyword cluster forms an ‘event-topic’. The technique described in 
[1], when used to discover events from the tweets posted during the 
Nairobi terrorist attack [7], discovered many event-topics including 
one containing the keywords: 

- A: UK, #kenya, #westgate, #nairobi” 

Clearly, the context behind the keyword cluster is not available to 
the users – the keywords are insufficient to describe the underlying 
event. The same is true of another event-topic: 

        -     B: was,  69,  kofi,  among,  #ghana, attacks,  
ghanaian,  awoonor,   killed,  poet,  prof., #kenya 

To better understand the event-topic, i.e., what the event is about, 
users are needed to search for the most relevant messages in the 
data stream by themselves. Besides burdening the users with the 
task of understanding the emerging events manually, for example, 
to determine if there is connection between A and B, this approach 
suffers from many shortcomings:  

(1) Message search is primitive, e.g., Twitter just returns the most 
recent tweets for a given search query [5]. It is not necessary that 
the recent tweets alone are the most relevant tweets for the event.  

(2) Simple keyword search results can produce an information 
overload for a fast moving data stream. Often a large number of 
tweets are returned by Twitter in response to a search query [6].   

(3) In such fast moving data streams, typically the rate at which 
messages are generated is high but messages are short. Therefore, 
it is often difficult for the users to understand the context of a 
standalone message even if the message is informative. 

(4) Events evolving in real time comprise different facets. Search 
results are continuously updated with recent messages and it 
becomes difficult for the user to keep pace with evolving events. 

1.1 Contextual Search on Live Data Streams 
We demonstrate our system for Contextual Event Search, to extract 
the complete contextual summaries for the events unraveling in a 
live message stream in real-time. The summaries are stored in an 
event thread as shown in Figure 1. Live real-world events are not 
just point events – they evolve continuously. The event summary 
must be updated every time there are significant changes in the 
event. When these changes are arranged temporally, an event thread 
results. The event thread captures the passage of time naturally. 
Challenges involved in discovering such event threads are many:  
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 The first challenge is to identify and associate the relevant 
messages to the corresponding ‘event topic’. 

 Secondly, most real world events do not evolve linearly and 
comprise several facets. Therefore, the summary for an event 
is represented as a Directed Acyclic Graph (DAG). It is non-
trivial to discover such ‘contextual event threads’. Each 
unique path in the event thread is a different facet of the event.  

The contextual event summary displayed in Figure 1 was 
constructed by our approach automatically for the event ‘Nairobi 
terrorist attack’. The event summary starts with a message that a 
mall has been attacked, followed by how the action against 
attackers was progressing, rumors, claims and counter claims by 
authorities and citizens, etc. were also discovered in real time. The 
important sub-events were discovered from approximately 164K 
tweets and arranged in a chronological sequence. For each of the 
sub-events in the event thread, our technique identified an 
appropriate summary as shown in Figure 1. Sub-event 9 
corresponds to A and sub-event 5 corresponds to B. 

We demonstrate our system that automatically constructs such 
summaries as shown in Figure 1, for a live data stream. Our system 
summarizes the event in a fast moving data stream in real time in 
an unsupervised manner. The event thread represent a compact, 
complete and meaningful event summary. A minimal set of related 
messages are identified that represent the complete event summary. 
The event summary discovered by our system is stable, i.e., it is 
updated only with additional information, which is appended to the 
summary discovered thus far. Our system also exposes the different 
facets of live events which are presented as a contextual event 
summary thread. The details of discovering the event threads are 
beyond the scope of this paper.  

To the best of our knowledge, ours is the first system that discovers 
contextual event threads automatically for a fast moving data 
unfiltered data stream in real time in an unsupervised manner. Lin 
et al., explore the problem of generating storylines from microblog 
data [4]. Their system is only applicable to retrospective data 
analysis where on relevant tweets a storyline is generated via graph 
optimization. In [6], Shou et al. present a technique to summarize a 
twitter data stream, filtered in the context of a given user query. In 
[9], authors present a method to summarize a pre-specified event 
topic. Their methodology is applicable for structured and recurring 
events such as sports events and need the prior knowledge of 
similar events. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1.2 System Components 
With the aid the event summaries, we enable the contextual search 
over data streams. Following are the components of our system: 

Discovery: The event threads are discovered in a live data stream. 
They contain the most relevant messages in a chronologically 
ordered event threads representing its story line. Event thread is 
associated with a rank based on event popularity and its dynamicity. 
If an event is highly dynamic with fast updates, its rank increases. 

Indexing: An index is maintained over the events threads. Since 
the index is updated in real time, we adopt a lazy-update strategy, 
i.e., index is updated only for the most popular events. For events, 
which are less popular, only a subset of these events are updated in 
the index, unless the underlying changes in the event result in 
significant increase in event rank.  

Search: For a keyword query, a ranked list of most relevant event 
threads is returned. Hence, even the messages which may not 
contain the query keywords but are part of the event threads are 
returned. Thus, our system is able to find the most relevant 
contextual messages for a given keyword query.  

The architecture of our system is shown in Figure 2. It contains 
three components; Event Discovery and Summarization Engine to 
discover event thread over a live data stream. The discovered events 
are pushed to the Indexing Engine, which maintains an index over 
them as well as keeps the index updated for live events. Finally, the 
Search Engine finds and returns the most relevant topK events, 
upon receiving a keyword query. topK is a tunable parameter. Event 
Discovery and Summarization Engine is based on the model in [1] 
but its details are beyond the scope of this paper. In next section, 
we present the details of other two components.  

 

Figure 2: The system Architecture 

6. Spread to all Kenyans - the westgate situation may be trying to distract 
Nairobi, a bigger attack may happen, STAY INDOORS- RT n SHARE 

2. Day 2: Al-Shabaab Jihadists Holding Innocent 
Civilians at Westgate in Nairobi, Death Toll at 59. 

4. KENYA UPDATE: Death toll in #Westgate siege rises to 
68 as 9 more bodies recovered during  rescue operation 5. Ghanaian poet & author- Prof. Kofi #Awoonor was among the 69 killed in 

the attack on #Nairobi's #Westgate mall. #Ghana #Kenya 
7. Israeli forces enter Nairobi mall: security source 
http://t.co/E0NoM7lxPA \u2026 #westgate 

8. Two helicopters landed on the roof of #westgate mall 
where #nairobi hostage crisis continues. 

10. Kenyan forces kill two terrorists, claim control of Westgate mall: 
Kenyan forces assaulted terrorists in Nairo... http://t.co/zoJaHgAuun 

9. Speculation that convertite 'white widow' Samantha Lewthwaite from UK 
is the mastermind of the attack on #Westgate Mall in #Nairobi, #Kenya 

14. Day 3: Kenyan Government Takes Westgate Mall From al-
Shabaab Jihadists p://t.co/E66dDy5l6y #BigTweet 

11. Something I never saw in 30 yrs as journalist: civilians bringing food, 
coffee to journalists covering #Nairobi's #Westgate siege. Amazing! 

12. Militants at the Westgate mall in Nairobi, Kenya, are still 
holding their ground, Somalia's Al-Shabab group claims 

1. #AlShabaab says it attacked #Westgate mall in 
#Nairobi to retaliate for Kenya's role in #Somalia.  

3. MAJOR assault by security forces ongoing to end two-day siege at 
Westgate mall. Fears abound death toll could be higher when dust settles. 

13. Gosh RT @Lady_Elsie: Haiya! \"@sirfender: Huh? RT @jstraziuso: More 
gunfire, one explosion at #westgate mall. Obviously not over. 
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Figure 1. Contextual Event Summary Thread Discovered by our system for Nairobi Attack 
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2. REAL TIME CONTEXTUAL SEARCH 
Each event is identified by a unique event ID e. As an event 
evolves, its summary is appended with the most recent updates. 
Each node in the event tree represents an ‘event topic’ and has a set 
of relevant tweets associated with it [1]. The algorithm to find 
meaningful summary of an ‘event topic’ and discovery of different 
event facets is beyond the scope of this paper. Each event topic, i.e., 
keyword cluster cei has a summary sei and a ranking score rei. For 

an event e, there is a list of clusters n
ieic 1|   n≥1 associated with it. 

Ranking score re for an event e is computed as re= 
n
i eic1 . Event 

summary se is defined by arranging the cluster summaries (se1, 

se2,..,sen) in a (multi-faceted) event thread.  

2.1 Indexing Engine 
The search engine maintains an inverted index. The inverted index 
consists of words mapped to a posting list of event IDs. For each 
word w, its posting list Lw contains event IDs which have w in its 
summary. In the posting lists, events are sorted in the decreasing 
order of their ranking scores. One of the challenges is to maintain 
the posting lists sorted, since inserting an event in Lw would take O 
(|Lw|) time; |Lw| is the number of events in Lw. To reduce the cost of 
insert operation, we adopt the following approach: List Lw is 
organized as a list Lw' containing sequence of buckets B1, B2,… , Bm 
where m=| Lw'|. Each bucket contains a max-heap and a min-heap. 
Both heaps contain same event IDs. We define the size of the 
bucket as the size of its max-heap. Each bucket Bi has an event with 
maximum score si

max
 and an event with minimum score si

min. The 
sequence of buckets is such that the following property is satisfied: 

                                         iss ii   |max
1

min                                    □ 

The size of buckets Bis increases by a factor of 2 (|Bi+1|/|Bi|=2

mii  ; ). Therefore, m=| Lw'|= O (log(|Lw|). The time complexity 

of the insert operation is equal to the time complexity of a) 
searching the bucket B in which the event should be inserted 
(O(m)); b) inserting the event in B (O(m)), since the size of each 
bucket is O(|Lw|) and the bucket is maintained as a heap; c) 
adjusting the size of B (its size increases by 1 on inserting an event). 
Step (c) takes O(m2) time since the event with minimum ranking 
score is removed from B and inserted in next bucket and this 
procedure may continue till the first bucket in the sequence. If the 
size of the last bucket is larger than the maximum allowed, then the 
event with minimum ranking score is removed and is inserted in a 
new bucket appended at the end (number of buckets in list Lw 
increases by 1).  

- The insert operation in each bucket is performed by inserting 
the event in max-heap and min-heap (O(m) time complexity). 

- The remove operation in a bucket is performed by removing 
the minimum element in its heaps. This is O(1) for min-heap 
but for max-heap it takes O(|Lw|) if done naively. We store 
the pointer to the location of the minimum ranking score 
event in max--heap hence removal takes O(m) time. 

Since there are m buckets and insertion and removal in each bucket 
takes O(m) time, step (c) takes O(m2) time. Therefore, the overall 
insert operation takes O (m2) time. 

For each list, we maintain a mapping of event ID to the bucket 
which contains it. This is useful when an event has to be removed 
from a posting list or its ranking score has to be updated. With this 
map searching an event in a list takes O(1) time. Buckets are 
implemented as locator heap in which a map is maintained which 
contains the location of event IDs inside the bucket (i.e., heap) thus 
making the deletion of an event from the bucket O(m). 

Lazy Update: With more tweets flowing-in, events are updated 
which results in the update of its ranking score. We need to reflect 
these changes in the index. However, updating the index is costly 
as the event clusters get updated at a fast pace. Thus, we trade-off 
the minor drop in output accuracy for greater efficiency of the 
search engine. Whenever the score of an event changes, we check 
if the new score is greater than the score of the event at the 2
topKth position in the relevant posting list. If not, we assume that 
the event will not affect the final output for any query and hence 
the change is ignored. Otherwise, we update its score. 

2.2 Search Engine 
In this section, we describe our query processing system or search 
engine. The search engine takes a keyword query and returns topK 
most relevant event summaries. Suppose a user enters a query Q of 
length l : q1, q2... ql, where qi|1≤i≤l is a query word. To define topK 
relevant events, we compute maxScore (Q, e) [8] of an event e for 
a query Q. We define a function p (w, e) for a word w and an event 
e. p(w, e)=1, if e is present in the posting list of word w, otherwise 
p (w, e)=0.  

maxScore 


l

i
ie eqpr

1
),(  

where re is the event rank. topK events with highest maxScore form 
the output. We next define some important terms and data 
structures before describing the algorithm to find topK events: 

partial_maxScore: Initial partial_maxScore of all events is set to 
0. Maximum partial_maxScore of an event e is the product of re 
and the words in the query for which e is present in their respective 
posting list. 

topEvents: We maintain a min-priority queue of topEvents which 
stores candidate events and is initially empty. An event e1 is 
considered “less than” event e2 if partial_maxScore of e1 is less 
than that of e2. 

min_topEvents: It is the event with minimum partial_maxScore 
among all the events in topEvents. 

fcEvents: It stores final candidate events. Any event evicted from 
topEvents is stored in fcEvents.  

getMax (B) returns the event with maximum ranking score in the 
bucket B. 

We search for the posting list for each word in the query. Words for 
which no posting list is found are discarded. For all the posting lists 
in consideration, an iterator is set to the first bucket. The highest 
ranked event from each bucket is inserted in topEvents. We take the 
event min_topEvents and compare it to the event next to it, 
called en, from the posting list it belongs to. We check if en is a 
candidate event. en is a candidate event if either the number of 

events in topEvents and fcEvents is less than topK or  lren  

min_topEvents.partial_maxScore; lren   is maxScore (Q, en) 

which is the maximum possible value of partial_maxScore for 
event en. Hence, if this value is less than 
min_topEvents.partial_maxScore and at least topK events are 
already present in topEvents and fcEvents, then en cannot occur in 
the final output. If it is a candidate event, it is inserted in 
the topEvents; otherwise the min_topEvents may occur in the final 
output and hence moved from topEvents to fcEvents. If the event en 
is already present in topEvents or fcEvents, then we just update 
its partial_maxScore. Once no more events can be inserted in 
topEvents, we move the remaining events from topEvents to 
fcEvents. topK events with highest partial_maxScore in fcEvents 
form the Output. For faster retrieval, no posting list is traversed 
beyond 2  topKth event (which lies in log(2 topK)th bucket.  
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Our experiments have shown that typically in a posting list, initial 
top ranking events are followed by a long tail of low ranking events. 
Hence, it is unlikely that if any event beyond 2 topKth position in 
the any of the posting list under consideration, are in final topK list. 
This the reason behind this heuristic. 

Correctness of the algorithm: The algorithm traverses all the 
posting lists of the query words present in the index. However, 
instead of traversing them completely, whenever an event e does 
not qualify to be a candidate event, min_topEvents is removed from 
topEvents. This ensures that the corresponding posting list is not 
considered again as all the following events have lower ranking 
score. Hence, they can never become candidate events.   

Time Complexity: In the worst case, each event can be a candidate 
event. So all the top 2 topK events in the posting lists of query 
words are inserted in topEvents. The time complexity for all the 
insertions in topEvents for a query Q of length l is O(log(l topK)) 
as l  2  topK is the maximum number of events in topEvents. The 
time complexity of traversing the posting lists is O(l topK
log(topK)) since each event is removed from a bucket on traversal. 
Hence, the time complexity of the algorithm is O(l  topK+ l topK
 log(topK)) = O(l topK log(topK)).  

3. DEMONSTRATION 
We demonstrate the ability of our system to find the most relevant 
messages in the context of a user keyword query. Specifically, for 
a given keyword query, we demonstrate; 

 The ability of our system to find the most relevant messages in 
real time over live data streams. 

 The discovery of contextual tweets in a live data stream, for a 
given user query, i.e., those tweets that do not even have the query 
keywords but are relevant.  

 The ability of our system to create a story line for events 
unraveling in a live data stream in an unsupervised manner.  

Our system returns a ranked list of the most relevant events for the 
user query. We will demonstrate the statistical summary of the live 
event including the number of tweets posted for that event and its 
ranking score. We will also demonstrate that the event summary 
discovered by our system is complete. At the demo, a user can see 
a fraction of randomly selected tweets from a live data stream and 
be able to compare our summary with the raw data. We will 
demonstrate our system on recorded as well as live Twitter stream.  

The screenshot in Figure 3 shows the output of our search system 
for a given user query. For each event present in the result set, for 
the given keyword query, users can see a chronologically ordered 
DAG of most relevant tweets, representing contextual event 
threads, by clicking on the link. 

 

Figure 3: Real Time Search Engine over Live Data Streams 
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ABSTRACT
The fast growth in number, size and availability of rdf
knowledge bases (kb) is creating a pressing need for research
advances that will let people consult them without having to
learn structured query languages, such as sparql, and the
internal organization of the kbs. In this demo, we present
our Question Answering (QA) system that accepts questions
posed in a Controlled Natural Language. The questions en-
tered by the users are annotated on the fly, and an ontology
driven autocompletion system displays suggested patterns
computed in real time from the partially completed sentence
the person is typing. By following these patterns, users can
enter only semantically correct questions which are unam-
biguously interpreted by the system. This approach assures
high levels of usability and generality, which will be demon-
strated by (i) the superior performance of our system on
well-known QA benchmarks, (ii) letting attendees suggest
their own test questions, and (iii) accessing an assortment
of rdf kbs that, besides the encyclopedic DBpedia from
Wikipedia, will include others on specialized domains, such
as music and biology.

1. INTRODUCTION
The last few years have seen major efforts toward or-

ganizing as rdf knowledge bases (kbs) both general and
specialized knowledge. In the first group, we find DBpe-
dia [1] that encodes the encyclopedic knowledge extracted
from Wikipedia, and in the second group we have the thou-
sands of projects that cover more specialized domains [2].
While these kbs can be effectively queried through their
sparql [3] endpoints, the great majority of web users are
neither familiar with sparql nor with the internals of the
kbs. Thus, the design of user-friendly interfaces that will
grant access to the riches of rdfkbs to a broad spectrum of
web users has emerged as a challenging research objective of
great social interest

The importance of this topic has inspired a significant
body of previous work, which includes the approaches de-

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

scribed in [6, 9, 10] and several others that rely on user-
friendly graphical interfaces.

While some of these approaches [6] allow users to enter
complex queries through a web browser, Natural Language
(NL) interfaces remain the solution of choice when the used
devices do not support well a full browser, or when voice
recognition is used instead of typing. Translating NL ques-
tions into formal language queries represents an old, chal-
lenging, and widely studied problem [7, 8, 11], for which a
general solution has not been found yet. This is, in fact,
a very complex problem, combining several non-trivial sub-
problems, such as parsing the syntactic structure of the ques-
tion, mapping the phrases of the question to resources of the
kb, and resolving ambiguities. The last problem is quite se-
rious, because syntax often leaves much room for ambiguity,
which cannot be resolved without much knowledge about
the underlying application domain and understanding the
context in which the question is asked.

In order to reduce the complexity of the problem, tech-
niques replacing the ‘full’ natural language with a controlled
natural language (CNL) have been proposed. A CNL sys-
tem restricts the grammar that can be used to input ques-
tions, with the objective of making the language (i) ‘formal’
enough to be accurately interpreted by machines, but still
(ii) ‘natural’ enough to be readily acquired by people as an
idiomatic version of their NL. These systems are based on
the idea that it is worth giving up the great flexibility and
eloquence of the natural language in order to make the ques-
tions unambiguous to the machine that can thus produce
answers of better accuracy and completeness.

In this demonstration session we will present our system
for querying rdf data, called CANaLI (acronym for Context-
Aware controlled Natural Language Interface). CANaLI has
been applied to various QA testbeds [4], producing results
of superior precision and recall. We will let CANaLI answer
these testbed questions along with new questions suggested
by the conference attendees, as needed to prove the usabil-
ity and generality of the system. The attendees will thus
be able to observe how CANaLI guides the users in typing
questions, by allowing users to type only questions that are
semantically correct w.r.t. the underlying kb, and syntacti-
cally correct w.r.t. the grammar of its CNL. Moreover, as
soon as the user hesitates with typing, the system suggests
correct completions she can select from. This allows people
to self-learn CANaLI easily and quickly.

This short paper is organized as follows. Section 2 pro-
vides an overview of CANaLI, describing its basic operation,
by means of some examples (Sec. 2.1 and 2.2), the index
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Figure 1: The main states and transitions of the
automaton used by CANaLI

used to suggest valid tokens (Sec. 2.3), and the system ar-
chitecture (Sec. 2.4). Experimental results are presented in
Section 3. Finally, we describe the demonstration scenario
in Section 4.

2. OVERVIEW OF CANALI
CANaLI is a system that enables users to enter questions

in a controlled and guided way, as a sequence of tokens, that
define:

• kb resources: entities, properties, and classes,

• operators (e.g., equal to, greater than, etc.),

• literals: numbers, strings, and dates,

• NL phrases, such as “having”, that play a syntactic
sugaring role.

Each token is represented by an NL phrase, consisting of one
or more words from the application domain, since operators,
variables or URLs used in sparql are not allowed. CANaLI

operates on tokens in the style of finite state machines, with
(currently) 12 states, including the initial and final state.
Despite its simplicity, CANaLI is very general, since it can
be used with arbitrary rdf kbs, and supports most of the
common questions asked by users, including those contained
in previous papers and various testbeds (see Section 3).

2.1 Answering Simple Questions
The operation of CANaLI can be explained with the help of

the transition diagram in Figure 1, and a simple example1.
For examples, say that the user wants to enter the question:
“What is the capital of United States?”. When the user
starts typing a new question, CANaLI’s automaton is in the
initial state (S0), ready to accept tokens representing the
question start. In this case, CANaLI sees “What is the” and it
moves to the state S1. At S1, the system can accept a token
representing an entity, a property, or a class. In our example,
the user enters “capital”, that is a property recognized by
CANaLI. Thus, the system loops back to S1, ready to accept
as next input token another property, entity, or class. In our
simple example the user enters “United States”, that is an
entity, and the system moves to S2, after recognizing“United
States” as an entity with “capital” as valid property. Thus,
in order to be consistent with the semantics of the kb, our
user must enter entities that have the property“capital”, and
the system will stop her from progressing any further if that
is not the case. Of course, to reach this ‘no progress’ point

1Here, the system response is based on the context provided
by the question typed so far and the underlying kb, rather
than just the current state and last token as a finite state
automaton would.

the user must have ignored the suggestions that the system
had previously generated as valid completions of the typed
input. CANaLI shows completions under the input area: if
the user selects any such completion its text is added to the
input area. In S2 the question mark can be accepted, which
marks the end of the question, whereby CANaLI moves to
the final state SF and launches the actual query execution.
Alternatively, the user can enter conditions, using tokens
such as “having”, which will be discussed later.

Let us now consider an example involving a chain of prop-
erties: “What is the population of the capital of United
States?”. In this case, at S1, user inputs the property “pop-
ulation”, whereby the system loops back to S1. CANaLI now
accepts “of capital” because the capitals have a population,
and loops back to S1, where “of United States” takes us to
state S2 where the question mark completes the processing
of the input and launches the query.

Thus, the four basic states S0, S1, S2, and SF , support a
large set of very simple questions asked by everyday users2.
More complicated but nevertheless common questions are
those adding constraints, i.e., query conditions. For in-
stance, assume that the user wants to ask3: “What is the
capital of countries having population greater than 100 mil-
lions?” After the input “What is the capital”, has moved us
to S1, CANaLI accepts “countries”, as a class that has “cap-
ital” as a valid property, and moves to S2. In S2, CANaLI

accepts “having”, and other uninterpreted connectives used
as syntactic sugar, to move to S3, where it will accept only
a valid property. In this case, “population” can be accepted
since countries have this property. However, this example il-
lustrates the ambiguity that beset all NL interfaces, no mat-
ter how sophisticated their parser is. Indeed, this constraint
is also applicable to “capital”, since capitals have popula-
tion too. Clearly every NL system would suffer from the
same problem, and only a person who knows that currently
no city has more than 100 millions people, might be able
to suggest that the question is probably about countries
rather than capitals. However, CANaLI finesses this inher-
ently ambiguous situation by displaying all alternative in-
terpretations whereby the user has to make a choice. Once
the property “population” is accepted, and its context clari-
fied, the automaton moves to the state S4, that accepts an
operator. Thus, the user can input “greater than”. The au-
tomaton thus moves to state S5, that accepts the right-hand
side of the constraint. In general, the right hand side of a
constraint can be an element of the kb or a literal. In our
example, only a number can be accepted, since the right-
hand side must be of the same type as the left-hand side,
“population,” which is numerical. Thus, the user enters 100
millions and the automaton moves back to S2. From this
state, the user can specify more constraints, or input the
question mark, ending the question.

Examples of constraints using resources of the kb as right-
hand side are the following: “Give me the country having
capital equal to Washington.”4, “Give me the movies having

2Indeed, the most frequent web questions are definition
questions (e.g., What is Ebola?), that are even simpler.
3This provides a good example of the broken but effective
English now supported by CANaLI.
4Indeed, the complete automaton of CANaLI has also a tran-
sition from S4 to S2 that allows to implicitly assume the
equality operator. This allows to accept questions such as
“Give me the country having capital Washington.”

609



director equal to a politician.”, “Give me the cities having
population greater than the population of Los Angeles.”. In
all the cases, the token accepted in S5 is a token whose type
is semantically coherent with the property previously ac-
cepted in S3. However, while accepting an entity or a class
moves the automaton to S2, accepting a property (e.g., pop-
ulation) moves the automaton to S1, where the element pos-
sessing the property must be specified (e.g., Los Angeles).

2.2 More Complex Questions
For the sake of presentation we have shown in Fig. 1 only

the states that are most commonly used in queries. In reality
CANaLI has five more states which support the additional
patterns which are discussed next via illustrative examples:

• “Give me the cities having population greater than that
of Los Angeles.” The use of the pronoun that in place
of the already used attribute population, makes the
question more natural than the question where “pop-
ulation” is repeated. However, a special state for han-
dling pronouns had to be added to CANaLI.

• “Give me the actors having birth place equal to their
death place.” The use of the possessive determiner
implies that the properties birth place and death place
are related to the same variable. A new state is needed
here too, since there is no simple way to the rephrase
the question using the grammar accepted by the basic
automaton in Fig. 1.

• “Give me the actors having birth date greater than
that of their spouse.” This question combines the two
situations described above.

• “Give me the country having the 2nd largest popula-
tion”. Questions like this require to sort the results by
the value of the attribute accepted in a specific state
and to set the offset and number of returned results
according to the token accepted in another state, i.e.,
a token such as the nth greatest or one of the nth great-
est.

• “Give me the drugs without specified side effects”. This
question requires negation. We remark that a token
such as without specified can not be handled as the
tokens like having, which defines a comparison between
two operands.

2.3 How CANaLI suggests valid tokens
To achieve real-time response, CANaLI uses an index sup-

ported by Apache Lucene, which handles our tokens as if
they were Lucene documents. Every acceptable token is as-
sociated with one or more phrases of the natural language.
When the user types a string S, a query is performed on the
Lucene index, to ensure that the returned tokens (i) have a
phrase that matches S, (ii) have a type that is among the
acceptable ones, according to the current automaton state
and the previous token, and (iii) are semantically correct,
according to the kb, as explained below.

To achieve (iii) above, besides indexing the elements of the
kb by their label and type (i.e., entity, property, or class),
we use two additional fields: domain of, and range of. The
first is needed in cases such as “What is the population of”:
a token can follow if it is domain of “population” (e.g., “cap-
ital”, “countries”, “United States”, etc.). The second is used
in cases such as “...having capital equal to”: a token can
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Figure 2: CANaLI’s architecture & work-flow guiding
users in (a) typing questions, (b) retrieving answers.

follow if it is range of “capital” (e.g., “birth place”, “city”,
“Washington”, etc.). In the case of properties, we also rely
on the field domain, as needed for cases such as “What is
the capital of countries having”, that can be followed by a
property having as domain the property “capital”5 or the
class “country” (e.g., “population”, “language”, etc.).

We created the Lucene index using the elements of the
2014 DBpedia release, using all the entities, and all the
properties and classes of the DBpedia kb (those in name
space http://dbpedia.org/ontology/). Also some classes
of the Yago kb and the 20k most frequent raw properties
(those in name space http://dbpedia.org/property/) were
indexed. Furthermore, for all the indexed properties having
non-literal range, we created an inverted property, and in-
dexed it. The time needed to create such index, by process-
ing the ∼100 millions triples of the English DBpedia, is ∼25
minutes using a single machine with 32GB of RAM, start-
ing from the raw files downloaded from the DBpedia website.
The obtained Lucene index is ∼1.1 GB large and can be eas-
ily stored in the main memory of a server, thus assuring a
nearly instantaneous response to our search queries.

2.4 The Architecture of CANaLI
Figure 2 shows the architecture of CANaLI and its work-

flow in suggesting and accepting tokens (a), and computing
the answers to the submitted question (b). CANaLI provides
a web client, that uses an autocompleter implemented in
JavaScript, using jQuery libraries. The client keeps track
of the input tokens and the current state of the automaton,
and when the user types a string S in the auto-completer, an
Ajax request is sent to a web server, implemented in Java.
The server uses the string S and the status of the automaton
to query a Lucene index, that enables to quickly extract the
results matching the string S and coherent with the current
status of the automaton. Specifically, the suggested tokens
must be syntactically coherent, according to the grammar of
the language, and semantically consistent, according to the
semantics defined by the kb. Completions are returned to
the user, and refined as she types more input. Alternatively
the user can select one of the suggested completions, and
this selection is used to update the question text entered so
far and to select the next state of the automaton. When
the final state is reached, a request is submitted from the
client to server, that uses the sequence of accepted tokens to
create a sparql query, that is submitted to DBpedia, or the
corresponding endpoints for the other kbs, and the results
are shown to the user in a user-friendly sniplet format.

5Specifically, the range of the property “capital” must be
domain for the property “population”
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Proc. Right Part. F proc. F glob.
CANaLI 46 44 1 0.98 0.92
Xser 42 26 7 0.73 0.63
QAnswer 37 9 4 0.40 0.30
APEQ 26 8 5 0.44 0.23
SemGraphQA 31 7 3 0.31 0.20
YodaQA 33 8 2 0.26 0.18

Figure 3: Results on QALD-5 benchmark - Total
number of questions: 49.

3. EXPERIMENTAL EVALUATION
A popular set of benchmarks was used to measure the

performance of QA systems, i.e., the QALD (Question An-
swering over Linked Data) benchmarks [4]. The benchmarks
consist of sets of NL questions, each associated with a gold
standard query in sparql, representing the translation of
the question. The accuracy of the systems is measured by
comparing their results with those obtained by the gold stan-
dard queries. We assessed the performances of CANaLI on
these benchmarks and the result obtained on each query are
presented in [5].

Figure 3 summarizes the results obtained on QALD-5,
that consists of 49 questions (the results obtained on the
previous benchmarks are equivalent), reporting the results
obtained by CANaLI, together with the official results of the
participating systems. The columns in the table represent
the number of processed questions (“Proc.”), the number
of questions answered with F-measure equal to 1 (“Right“),
the number of questions answered with F-measure strictly
between 0 and 1 (“Part.”), the average F-measure achieved
over the processed questions (“F proc.”), and the F-measure
over the whole set of questions (“F glob.”), assuming 0 as F
measure for the non-processed questions.
CANaLI allows to process 46 questions. The 3 questions

that could not be processed require two currently unsup-
ported features: (i) sorting by an aggregate function (e.g.,
“Which musician wrote the most books?”), and (ii) using
arithmetic (“What is the height difference between Mount
Everest and K2?”). CANaLI provided a completely wrong
answer to one question, namely, “Who is the heaviest player
of the Chicago Bulls?”. The question was input in CANaLI

by using the property team, while the gold standard query
used the UNION of both team and draftTeam, and the cor-
rect result was a player associated to Chicago Bulls through
the latter property. Therefore, CANaLI missed the correct an-
swer. CANaLI provided a partially wrong answer to another
question, “Which programming languages were influenced
by Perl?”, whose gold standard query used the union of two
properties in its constraints ( influence and influenced by).
Since CANaLI does not support the UNION operator, only
one property was used (influenced by), thus missing some
of the correct results. Finally, with 44 right answers and a
higher F-measure on both the processed and the whole ques-
tions, CANaLI proved to be superior to the other systems.
Clearly, restrictions imposed by a CNL make an interface
like CANaLI a bit less user friendly than full NL interfaces.
However, considering that, besides Xser [12], the accuracy
of the other full NL systems is far from being acceptable, we
believe that an accurate answer is worth a bit extra effort
spent in rephrasing the question.

4. DEMONSTRATING CANALI
In this demonstration session, we will exhibit the power,

usability and flexibility of CANaLI, by starting from simple
questions and moving to more complex ones. The attendees
will see how CANaLI guides users in typing questions by al-
lowing to type questions that are only semantically correct
w.r.t. the underlying kb: as soon as the typist hesitates or
halts even momentarily, the system comes to the rescue by
suggesting a list of correct completions the user can select
from. This enables people to self-learn CANaLI easily and
quickly. In fact, in our demo, after asking the attendee for
new questions, we will invite them to enter their questions
directly into CANaLI. We will then demonstrate the QA effec-
tiveness of the system by testing its superior precision and
recall on complex questions taken from published testbeds
that have thwarted the efforts of other QA systems. Finally,
we will explain briefly the working of the system, and how
the sparql queries are generated. This will also allow us
to clarify the reasons for the flexibility and generality of the
approach, whereby we will show CANaLI in action on several
kb, including MusicBrainz and biomedical kbs, and discuss
our current work-in-progress to extend it to support tempo-
ral questions on the archived history of Wikipedia/DBpedia.
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ABSTRACT
Too much stress is easy to do harm to the physical and
psychological health of teenagers, because most teenagers
neither have the ability to cope with the stress by them-
selves nor like seeking adults’ help initiatively. Social media
has demonstrated its feasibility in detecting teenagers’ stress
with the micro-blog having become a popular channel for
teenagers’ self-expression. In this demonstration, we present
a system called tPredictor, which can predict teenagers’ fu-
ture stress based on the social media micro-blog. Two ques-
tions are to be resolved: (1) what will the stress level of
the teenager(s) be in the next time unit? (2) how will the
stress level of the teenager(s) change (increase, decrease, re-
main unchanged) in the next time unit? tPredictor tack-
les the above prediction questions, taking into account the
influence of future stressful events on teenagers’ emotion.
Considering the similarity of stock price movement and the
stress level change, we define the stress candlestick charts
and the stress reversal signals for stress change trend pre-
diction. tPredictor can predict the stress of both individ-
uals and a group of teenagers, which provides a platform
for teenagers themselves, their parents or some institutions
such as schools to know teenagers’ future stress for taking
measures timely to prevent the serious consequences.

Keywords
Micro-blog, teenager, psychological pressure, prediction

1. INTRODUCTION
Nowadays, teenagers are inevitably suffering much stress

from various aspects. A survey, conducted by the Ameri-
can Psychological Association in August 2013, showed that
the teenagers were the most stressed-out age group in the
U.S [1]. Due to the unsoundness of teenagers’ psycholog-
ical regulation mechanism, too much stress contributes to
teenagers’ bad consequences more easily such as sleepless-

c⃝2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

ness, depression and even suicide. However, for most teenager-
s, they lack experience and can’t realize the seriousness of
their stress so that they seldom actively seek for adults’ help.
And for guardians, parents can’t be around and focus on
teenagers every minute and even abundant teachers are not
sufficient to attend to each student. Therefore, it is very use-
ful to find methods for teenagers to understand their own
stress, for parents to timely know teenagers’ stress situa-
tion when teenagers don’t initiatively reveal their stress to
them and for teachers to be able to get hold of all the s-
tudents’ stress status. Nowadays, micro-blog has become a
major channel for teenagers’ self-expression. Teenagers post
so many tweets expressing their personal emotions everyday,
which provides abundant available data to detect teenagers’
stress and further predict their stress change. In the lit-
erature, many researchers have studied using micro-blog to
analyze people’s mental health. [8] found the difference
between depressed and non-depressed people through ana-
lyzing their tweeting contents and behaviors . [9] proposed
a depression detection model based on the sentiment anal-
ysis of the micro-blog. [10, 5] provided a machine learn-
ing method to detect teenagers’ stress of study, affection,
inter-personal and self-cognition. However, all the studies
aimed to detect the existing psychological problems where
the harm has done in fact. To prevent bad consequences,
[3] investigated people’s social media behaviors and built a
statistical classifier to predict the depression. Our previous
work focused on the teenagers group and predicted their
future stress using a stress level time series detected from
micro-blog. It integrated the stressful event to predict fu-
ture stress level and defined the stress candlestick chart to
predict future stress general change trend [7, 6].

In this demonstration, we present a system called tPredictor
to predict teenagers’ future stress value and change trend.
It is a system implementation of our previous work [7, 6]
which can visualize the prediction results and enable users
to easily understand the stress prediction results. For the
functionalities, we further extend the system to the group
stress prediction. It aggregates all the prediction results of
teenagers and presents some statistical results of the group
stress prediction. It also picks up the teenagers needing help
based on out predicted future stress status from a group of
teenagers. tPredictor provides a straightforward way for
users to obtain the most important information, as well as
get hold of the overall stress situation and meanwhile know
well each teenager’s stress status. Therefore, our system can
be applied to both institutional users, such as schools and
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individual users such as teenagers themselves and parents.

2. SYSTEM ACHITECTURE
Fig.1 shows the system framework including the User In-

teraction, the Data preparation and the Stress Prediction.

2.1 User Interaction
User Requests receives users’ requests including adding

new teenagers to their concerning list, choosing teenagers
to be predicted, and setting prediction parameters like the
time granularity and the event information.
Result Presentation aims to visualize the prediction

results for users’ easy understanding. It analyzes the group
prediction results and picks up the most important informa-
tion to users. In details, it aggregates teenagers by different
predicted stress values and change trends, and presents their
distributions through lucid charts, which helps users get hold
of the overall stress situation. Besides, it demonstrates each
teenager’s predicted stress together, which enables users to
do the comparative analysis and quickly find the teenagers
whose future stress will be severe.

2.2 Data Preparation
The Data preparation preprocesses the original stress se-

quences which detected from teenagers’ micro-blog [10].
Stress Sequence Aggregation aggregates the tweets’

stress sequence with different time granularity (day, month,
etc.) to obtain six stress-related indexes. The stress se-
quence is the Stress(T ): (t1, l1), (t2, l2)...(tn, ln), where ti
represents the time of ith tweet, and the li represents the
stress level of the ith tweet. The six stress-related indexes
include the max stress level Lmax, the min stress level Lmin,
the average stress level Lavg, the sum stress level Lsum, the
number of stress tweets Lscount, the total number of tweets
Lcount, and the proportion of stress tweets Lproportion in the
aggregated time interval.
Missing Data Imputation aims to solve the missing

data problem which is because of the casualness of users’
tweeting time and frequency. We apply the Gaussian Pro-
cess Regression to do the data imputation. The adjacent
data, including the stress value before and after the miss-
ing data, will be used to inference the missing value. The
(∆t, L) , where ∆t and L denote the time distance and the
stress level of the adjacent time unit, is used as the input
feature vector form. We use non-missing data as the train-
ing data and then get the estimated value of the missing
data through the trained model. Our experiments showed
that the Gaussian Process Regression performed better than
other imputation methods including the nearest mean ap-
proach, the linear interpolation and exponential smoothing.
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Stress Candlestick Chart Generation generates the
stress candlestick chart SC and its corresponding feature
vector SCF . The stress candlestick derives from the can-
dlestick chart of stock price due to some similarities be-
tween stock price movement and stress level change. For
instance, the stock price is influenced by the game between
sellers and buyers and the related events of companies while
the stress level is influenced by the personal self-regulation
mechanism and the stressful events. The stress candlestick
chart SC is defined as (Lfirst, Llast, Lhigh, Llow), namely the
first, last, highest and lowest stress level in the time unit re-
spectively. The stress candlestick chart feature vector SCF
is defined as a five tuples (shape, bodylen, upperlen, low−
erlen, changeslope) which represents the shape, body length,
uppershadow length, lowershadow length of the SC as Fig. 2
(a) shows and the stress change rate between two SCs.

2.3 Stress Prediction

2.3.1 Stress Value Prediction
Stress Value Prediction aims to predict the max, min and

average stress level of the next time unit. The three stress
values can comprehensively represent the teenagers’ stress
status and are also the major concerns to their followers.

Feature-Aware Time Series Prediction. According
to Granger Causality analysis, the Lmax, Lmin and Lavg

are related to not only their past values but also the oth-
er stress-related indexes such as the Lsum, Lscount, Lcount

and Lproportion. Based on the confidence of 95%, we find
that the Lmax is correlated to Lsum, Lmin is correlated
to (Lproportion, Lcount), and Lavg is correlated to (Lsum,
Lproportion). We apply the seasonal Autoregressive Integrat-
ed Moving Average (SVARIMA)[2] approach to our prob-
lem. The key function of the stress value prediction is:

Ln+1 = C +

k−1∑
i=0

AiLn−i +

k−1∑
i=0

BiXn−i +

r−1∑
i=0

θiεn−i + εn+1

Ln+1 is the stress value we want to predict, where L is
the past values of the corresponding predicted stress in-
dexes (max, min and average). The X represents differ-
ent features of the other correlated stress value sequences
such as the (Lsum, Lproportion) to Lavg. The order k and r
is determined by the Akaike’s Information Criterion (AIC)
and other parameters are estimated through damped least
squares method. εi is the white noise error terms satisfying
E(εi) = 0, and C is a constant.

Stressful Event Influence. The SVARIMA model pre-
dicts stress values based on the historical stress change pat-
tern. However, some happened or forthcoming stressful events
may add extra influence which can’t be neglected. Hence, we
use the Moving Average Convergence/Divergence(MACD)
to depict the extra stressful event influence. We first find
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the stressful events and divide them into study and emotion
event sets according to the users’ tweets. Then we determine
the start and end of the event influence cycle along with the
stress value: 0. In the event influence cycle, we compute
the MACD of the stress values, which can get a sequence
representing the extra event influence. For the two event
influence sequence sets, we use the Generalized Sequential
Pattern(GSP) mining algorithm to mine the frequent se-
quence with 50% confidence to represent the extra influence
of the two kinds of events. Finally, we divide equally the
mined sequence into early, middle and later stage, and use
the average MACD value of each stage as the adjustment
value, which will be added to the original value predicted
by SVARIMA model, if the predicted time is in the corre-
sponding stage of different kinds of stressful events.

2.3.2 Stress Trend Prediction
Stress Trend Prediction aims to predict the future stress

change trend including increase, decrease and remaining un-
changed. We explore the candlestick chart to predict the
stress trend. It outperforms the trend prediction method
using the predicted stress values to subtract the last one,
which might be a small fluctuation within the future trend.
Stress Reversal Signals. Fig. 2 (b) shows the decreas-

ing reversal signals in a increasing process and Fig. 2 (c)
shows the increasing reversal signals in a decreasing process.
We take the decreasing reversal signals as examples for in-
terpretation. For the 1-4 decreasing reversal signals, their

last stress level is lower than the first stress level, which rep-
resents a decrease in the time unit of the stress candle stick
and indicates a continual decrease trend in the future. For
the 5-6 decreasing reversal signals, their max stress level is
much higher than the last stress level. It indicates the heavy
stress is gradually released through teenagers’ stress regula-
tion mechanism in the time unit of the stress candle stick,
where the release mechanism is likely to remain effective in
the future. For the 8-9 decreasing reversal signals, their first
stress level is the same as the last stress level which means
the power of stress release balances the stress accumulation.
In the past increasing process, the power of stress accumu-
lation is stronger than the stress release and now they are
balanced. Therefore, the power of releasing stress may be-
come stronger than accumulating stress next, which signifies
the stress will decrease in the future.

Trend Decision Making. Let n be the current time, we
trace back to the nearest local highest or lowest stress level
and form a stress pattern Pcurrent: (SCFn−k+1, ..., SCFn)
sequence, where k is the length of Pcurrent.
[Case 1 ] If SCFn is not the reversal signal, the stress change
trend will continue.
[Case 2 ] If SCFn is the reversal signal, we decide whether
the stress change trend will reverse according to the past

experience. Firstly, we define the distance D(SCFi, SCF
′
i )

between two SCF s to find similar past stress pattern Ppast

to the current stress pattern Pcurrent.

D(SCFi, SCFj) =
5∑

k=1

wkD(fik, fjk),
5∑

k=1

wk = 1.

Here, fik and fjk denote feature values of SCFi and SCFj ,
and wk is the parameter determined by the analytic hierar-
chy process (AHP). For the nominal feature Shape of SCF ,

D(fi1, fj1) =

{
1, if fi1 ̸= fj1
0, if fi1 = fj1.

.

For other four numeric features, D(fik, fjk) = |f
′
ik − f

′
jk|,

j = 2, · · · , 5, where f
′
ik and f

′
jk are the normalized fik and

fjk between 0 and 1. We set a distance threshold to judge
wether two SCF s match successfully. After matching the
last SCFn−k+1, we get a past pattern Ppast with length of
t. If the matchrate = k/t is higher than a threshold, we
consider the two patterns match successfully. Finally, we
obtain a set of matched patterns Pmatched and observe the
future trend after the reversal signals in Pmatched, where the
stress level time series have been segmented [4] to eliminate
the influence of fluctuation to get the general change trend.
We choose the majority change trends of Pmatched as the
predicted result. If there is no matched sequence, the stress
change trend will be predicted to reverse.

3. EVALUATION
We collect stress sequences of 91 teenagers obtained by

the stress detection method whose precision is proved to be
82.6% [10], for the prediction results evaluation. For the
stress value prediction, integrating stressful events and S-
VARIMA model reduces the MAPE (Mean Absolute Per-
centage Error) of the predicted max, min and average stress
level by 18%, 43%, and 3% separately, compared to the s-
ingle SVARIMA model. For the stress trend prediction, the
precision of our method achieves 83.79% which outperform-
s the time series (74.82%), MACD (63.59%) and KDJ (S-
tochastic Oscillator) (66.73%) based prediction approaches.
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Figure 5: Prediction Results

4. SYSTEM DEMONSTRATION
During the demonstration, attendees can access tPredictor

through the browser and experience our friendly interaction.
First, the user enters the home page of tPredictor and

logins with his/her account as Fig. 3 shows.
After logining, the user enters the second page as Fig. 4

shows. In this page, the user can view the profile of the
teenagers listed based on the user’s search. The user can
click teenagers in the list to see more detailed information
such as the photo and self-introduction. Besides, a new
teenager can be added to his/her teenagers list. For the pre-
diction, the user chooses one or a group of teenagers to be
predicted and sets the parameters including the time granu-
larity and the stressful event information. Here the user set
the time granularity to be day, event type to be study and
the event stage to be early about the upcoming exam.
When the user chooses one teenager to be predicted, the

prediction results are presented through two charts as Fig. 5
(a) shows. The stress curve exhibits the past and predict-
ed stress values of the teenager, where the original tweets
content and event information can also be presented in this
chart when the user clicks the corresponding point. The
stress candlestick chart is to demonstrate the future stress
change trend of the teenager and the detailed stress-related
indexes are also shown in this chart.
When the user chooses a group of teenagers to be pre-

dicted, he/she can see both individual prediction results of
two charts in Fig. 5 (a) and the statistical group prediction
results as Fig. 5 (b) shows. The two doughnut charts tell
the user about the teenagers proportion of different future
stress change trends and the corresponding teenagers will be
listed directly when the user clicks one part of the dough-
nut chart. It helps the user easily know whose stress will
increase. The histogram shows the corresponding number
of teenagers whose future stress values are in different stress
level range. Through the histogram, the user can understand
the overall stress situation of the group in the future. For ex-
ample, the stress situation of the group is severe when most
teenagers’ future stress values are between 2-5. The line

chart shows the predicted stress value of each teenager of
the group, through which the user can easily find teenagers
who have much higher stress level

Acknowledgement
The work is supported by National Natural Science Foun-
dation of China (61373022, 61532015, 71473146) and Chi-
nese Major State Basic Research Development 973 Program
(2015CB352301).

5. REFERENCES
[1] APA’s 2013 Stress In America survey.

http://www.apa.org/news/press/releases/stress/2013, 2013.
[2] G. Box and G. Jenkins. Time series analysis:Forecasting

and Control. Holden-Day, San Francisco, 1970.
[3] M. De Choudhury, M. Gamon, S. Counts, and E. Horvitz.

Predicting depression via social media. In ICWSM, 2013.
[4] J. Jiang, Z. Zhang, and H. Wang. A new segmentation

algorithm to stock time series based on pip approach. In
Wireless Communications, Networking and Mobile
Computing, 2007. WiCom 2007. International Conference
on, pages 5609–5612. IEEE, 2007.

[5] Q. Li, Y. Xue, J. Jia, and L. Feng. Helping teenagers
relieve psychological pressures: A micro-blog based system.
In EDBT, pages 660–663, 2014.

[6] Y. Li, Z. Feng, and L. Feng. Using candlestick charts to
predict adolescent stress trend on micro-blog. Procedia
Computer Science, 63:221–228, 2015.

[7] Y. Li, J. Huang, H. Wang, and L. Feng. Predicting
teenager’s future stress level from micro-blog. In Proc. of
CBMS, 2015.

[8] M. Park, D. W. McDonald, and M. Cha. Perception
differences between the depressed and non-depressed users
in twitter. In Proc. of ICWSM, 2013.

[9] X. Wang, C. Zhang, Y. Ji, L. Sun, L. Wu, and Z. Bao. A
depression detection model based on sentiment analysis in
micro-blog social network. In Trends and Applications in
Knowledge Discovery and Data Mining, pages 201–213.
Springer, 2013.

[10] Y. Xue, Q. Li, L. Jin, L. Feng, D. A. Clifton, and G. D.
Clifford. Detecting adolescent psychological pressures from
micro-blog. In Health Information Science, pages 83–94.
Springer, 2014.

615



OSNI: Searching for Needles in a Haystack of Social
Network Data

Shiwen Cheng, James Fang, Vagelis Hristidis, Harsha V. Madhyastha†,
Niluthpol Chowdhury Mithun, Dorian Perkins, Amit K. Roy-Chowdhury,

Moloud Shahbazi, and Vassilis J. Tsotras
University of California, Riverside, Riverside, CA, USA

†University of Michigan, Ann Arbor, MI, USA
schen064@cs.ucr.edu, amitrc@ece.ucr.edu, jfang003@cs.ucr.edu, vagelis@cs.ucr.edu, harshavm@umich.edu,

nmithun@ece.ucr.edu, dperkins@cs.ucr.edu, mshah008@cs.ucr.edu, tsotras@cs.ucr.edu

ABSTRACT
This paper presents the Online Social Network Investigator
(OSNI), a scalable distributed system to search social net-
work data, based on a spatiotemporal window and a list of
keywords. Given that only 2% of tweets are geolocated, we
have implemented and compared various state-of-art loca-
tion estimation techniques. Further, to enrich the context of
posts, associations of images to terms are estimated through
various classification techniques. The accuracies of these es-
timations are evaluated on large real datasets. OSNI’s query
interface is available on the Web.

1. INTRODUCTION
The amount of user generated data increases every year,

as more social interaction tools like Twitter, Instagram and
Facebook are being created and more users use them to share
their everyday experiences. Most research on analyzing so-
cial data has focused on detecting trends and patterns such
as bursty topics [11] and popular spatiotemporal paths [10],
event extraction [7], studying how information is spread [12],
or analyzing properties of the social graph.

In contrast, in this paper, we study how to search so-
cial network data items, posts and images, based on spa-
tiotemporal keyword queries. That is, we created methods
to find the right needles (social data items) in the haystack
(social networks), which we refer to as investigative search,
to contrast it to the trending queries studied by previous
work. Investigative search can also be viewed as exploring
the currently untapped long tail of the distribution of top-
ics in social networks. We use law enforcement as our focus
application. The system capabilities and user interface were
created in consultation with the University of California Po-
lice Department.

Figure 1 shows the user interface of the developed OSNI,
available at http://dblab-rack30.cs.ucr.edu/IARPA/, where
a user may select a spatial area on the map, a time range,
and specify keywords. OSNI returns a list of posts (tweets)

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

ranked by their relevance to the query. The relevance is
computed using a combination of the relevance of the text
(based on an Information Retrieval function) and of the im-
age (based on the confidence of the relevance of the query
to an image) to the query. Only posts that belong to the
specified spatiotemporal window are returned.

A key challenge is that only about 2% of the tweets are
geolocated (have GPS location). Another challenge is how
to associate images with terms. For example, if a tweet’s
image shows a “bike” we would like to return this tweet for
the query “bike” even if it does not contain this word in its
text. And a third key challenge is how to scale OSNI to a
throughput of millions of posts per day, and how to faciliate
interactive query response times.

This demo paper has the following contributions:

• We have adapted and implemented several social posts
location estimation methods, and we have evaluated
them on a dataset of millions of posts.

• We implemented a method to classify images based
on the terms they are relevant to. We evaluated this
classifier for various datasets.

• We built a scalable overall architecture, by combining
several leading big data technologies. We experimen-
tally evaluate the throughput and distributed perfor-
mance of the system. We make the system publicly
available on the Web.

2. ARCHITECTURE
The architecture of OSNI is shown in Figure 2. OSNI was

written in approximately 8K lines of Java code. The whole
OSNI, including all modules in the figure, in deployed on
a cluster of two machines, which host instances of several
systems (Cassandra, ElasticSearch, Spark). The Web server
runs on one of the two servers.

The OSNI uses the Twitter Steaming API to collect tweets
from Twitter. We specify a keyword-based filter on the
Streaming API to only retrieve tweets that contain at least
one of a collection of 64 keywords (provided by the law en-
forcement agency). This makes our data more focused to
our domain, given that a single machine can only receive
up to about 1% of Twitter’s traffic. Matching records are
stored in a Cassandra [5] database cluster of two nodes with
replication factor 2 (each tweet is copied in both machines).

The preprocessing module continuously queries Cassan-
dra for unprocessed records and runs a distributed job on a

Demonstration

 

 

Series ISSN: 2367-2005 616 10.5441/002/edbt.2016.62

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2016.62


Figure 1: User Interface

Figure 2: Architecture

Spark [1] cluster to process these records. For each record,
we perform location estimation to determine the approxi-
mate location of the user at the time the tweet was posted
(Location Estimation module in Figure 2, details in Sec-
tion 3). Further, if the tweet contains an image, we also ap-
ply an image classifier, which downloads the image(s) from
the Internet (only a URL is stored in the tweet record),
and then runs the classification algorithm (Image Classifiers
module in Figure 2, details in Section 4). If desired, images
can be stored locally in SeaweedFS [4], a distributed storage
system tuned towards storing images.

The enriched posts (enriched by location and image terms)
are inserted into Elasticsearch [3], a distributed document
search system. The Web-based query user interface, shown
in Figure 1, is built using Google’s Web Toolkit (GWT),
which is a Java-based Web toolkit. It is hosted on Apache
Tomcat.

3. LOCATION ESTIMATION
We found that only about 2% of tweets are geolocated

(e.g., using the GPS of a mobile phone). Hence, we need
effective ways to estimate the location of the majority of
tweets. We consider several methods to assign location:

User Location String. Here we use the user’s location as

an estimate of the tweet’s location. Twitter allows users to
enter a location on a text field. Many users specify their
city, e.g., “Riverside, CA”, but others specify imaginary ad-
dresses, e.g., “On the moon.” We use Google’s Map API to
map a location string to latitude and longitude.

Places. Users may check-in or otherwise specify a place
in the tweets (there is a place field in the JSON of a tweet),
which can be something like “UCR Campus, Riverside, CA.”
Again we use Google’s Map API to get coordinates.

User GPS. As in User Location String, we use the user’s
location as an estimate of the tweet’s location, but here we
compute the user’s location as the median of that user’s
GPS locations in the last 30 days. Only users with at least 3
geotagged tweets are assigned a location using this method.

Social Network Approach. This approach is based on Comp-
ton et al. [9], where the assumption is that users are often
located close to their friends. Users A and B are consid-
ered “friends” if User A has tweeted at least 3 times to User
B and User B has tweeted at least 3 times to User A. We
first calculate GPS medians for the users that have at least
three geotagged tweets in the past and store the information
in the user table. Afterwards, we build a social graph and
estimate the locations that are still unknown using an er-
ror minimization technique. Our approach differs from the
original approach [9] in a few ways. First, the number of
tweets needed to be a “friend’ is decreased from 3 to 2 to
increase the size of the graph because our graph was too
sparse. The graph size increased by 21% and the accuracy
went down only by 2%. Second, we are making use of the
places field used in the user’s tweets to assign more locations
in the graph.

Content-based. This method looks for “local” words –
e.g., “howdy” in Texas or “White House” around the White
House in Washington, DC – in the body of the tweets to as-
sign location to them. We build upon the method proposed
in Cheng et al. [8], where instead of using cities, we use
zipcodes (over 31,000 zipcodes in the US), that is, we assign
terms to zipcodes. Further, we use a much larger number
of tweets to increase the accuracy. Specifically, we use over
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100 million geotagged tweets to calculate the focus and dis-
persion for each word to decide if it is a local word. Then,
we build an index that maps terms to zipcodes with a prob-
ability, and assign to a tweet the zipcode with the highest
probability among its words.

Implementation considerations. The social network
approach has two parts. The preprocessing and the graph
processing. The first step of the preprocessing is to cre-
ate a unidirectional graph based on who tweets to whom so
we can later build the friendship graph. The second is to
collect tweets that have GPS locations and places location.
In the graph processing, we first calculate the GPS medi-
ans for users with more than 3 geotagged tweets. Next, we
build the graph and estimate the locations of their friends.
The graph processing takes more than one day to run on a
single machine, and hence we execute it once a week. The
preprocessing is performed once per day. Similarly, for the
content-based approach the local words are calculated once
per day using gathered data from the last week.

Dataset and Evaluation. To measure the accuracy of
our approaches, we used as ground truth 100 million geo-
tagged tweets and compared the estimations of the vari-
ous methods to these GPS locations. The coverage is the
percentage of tweets that are assigned a location using a
method; note that a tweet may be assigned a location based
on multiple methods.

Type 10 miles 30 mile 50miles coverage
Tweet GPS 100% 100% 100% 1.97%
User String 71% 73% 74% 27.6%

Places 81% 82% 83% 2.3%
User GPS 92% 95% 96% 1%

Social 82% 83% 85% 3.31%*
Content-based 24.7% 25.9% 27.3% 76%

Table 1: Tweet Location Estimation Accuracy and Coverage
Evaluation. In Social Network approach, we only consider
posts that have not already been assigned a location through
Tweet GPS, User String, Places or User GPS.

4. IMAGE ANNOTATION
In this section we study how to extract keywords from the

images of tweets to enhance the accuracy and effectiveness
of our query interface. That is, a tweet that shows a picture
of a bike, should be returned for query ‘bike’ even if it does
not contain the word ‘bike’ in its body. We found that about
25% of Tweets have images.

Specifically, the image annotation module inputs an image
and outputs a set of (term, confidence) pairs, e.g., (bike,
0.72), where the confidence denotes how probable it is that
the image is related to the term. We use a vocabulary of
terms that we want to detect in images and for each term
we build a classifier.

After experimenting with various classifiers and image fea-
ture extraction methods, we chose Support Vector Machine
(SVM) as classifier and SURF Detector [6] based Bag-of
Words Model [13]. We found that single-class classifiers are
more accurate than multi-class ones.

The method for training the classifier works in two major
steps. At the first step, SURF features are extracted from
the training set (described below) that contains all images of
all classes. A visual vocabulary of features (Bag of Words)

is created by reducing the number of features through quan-
tization of feature space using K-means clustering. The re-
sulting space has 5000 features. Then, in second step, occur-
rences of all visual features in the vocabulary are calculated
from each of the images. A histogram of features is created
per image, which is a 5000-entries long feature vector, which
is a reduced representation of the image. Using these fea-
ture vectors and corresponding known labels for images in
the training set, the SVM classifier is trained (offline, once
per week). In the online system, when a new image comes,
SURF features for the image are calculated and the image is
represented as a feature vector. The label of the image and
the confidences are estimated by feeding the feature vector
into the SVM models created during the training phase.

Search
Engine

Sample Images for query ’bike’

Google

Twitter

Table 2: Examples of a few top ranked and relevant images
collected from Google and Twitter based on textual query
‘bike’.

Data Collection and Evaluation. We consider 12
terms, and we build a training set as follows. We query
Google Images and Twitter Images interfaces for each of the
terms. Then, the retrieved images are checked manually to
remove false matches. In total, we keep 200 images from
Google and 200 from Twitter per term, that is, we have
a total of 4800 images. The query words are: bike, gun,
robbery, crowd, car, concert, murder, drunk, fire, helmet,
family and friends. These words were chosen based on the
law enforcement focus of the project.

The reason behind collecting training images from Google
and Twitter is twofold. First, there is no existing image
dataset, that contains images corresponding to all possible
query words. Second, carefully chosen images from web
search and social media search will make the training set
both diverse and relevant. Table 2 shows examples of di-
verse images collected from Google and Twitter for ‘bike.’
We see that the Google images are generally more “clean”,
whereas the Twitter images offer more diversity. As we will
see later the combination of the two leads to better accuracy.

K-fold (k = 10) cross-validation is used to test the clas-
sification performance. Table 3 shows the performance of
the image classifier significantly varies, when trained with
different training sets. The results demonstrate that incor-
porating images from both Google and Twitter for training
improves classifier accuracy, as more diverse and informative
set of images are included.

Our classifier has high accuracy (more than 80%) on cate-
gories like bike, gun, crowd etc. On the other hand, the accu-
racy on complex categories like drunk and murder was lower
(around 50%). Some interesting examples of correctly iden-
tified and incorrectly identified images for category ‘bike’,
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‘friends’ and ‘gun’ are shown in Table 4.

Training

Testing

Google Twitter Google &
Twitter

Google 63% 36% 49.5%
Twitter 43% 31% 37%

Google & Twitter 79% 55% 67%

Table 3: Accuracy of Image Classifier with different sets of
training and test images

JavaCV (Java interface to open computer vision library)
is used to extract the image features. When running as a
stand-alone application, the image classifier takes 5.98 mil-
lisecond on average to classify an image for a term on a
system of quad-core Intel Core i5-4200M 2.50GHz CPU, 8
GB DRAM, 500 GB 7.2K RPM HDD.

True
Positive Bike( 0.652) Bike(  0.879) Friends( 0.437) Friends( 0.673) Gun( 0.828) Gun( 0.99)

False
Positive

Bike (0.722) Bike (0.247)Friends (0.332)Friends (0.374)Gun(0.805) Gun (0.89)

Table 4: A few True-Positive and False-Positive examples
from Image Classifier. The detected class is given below the
images; confidence is in parenthesis.

5. SCALABILITY
Our OSNI is currently deployed on a cluster with two

servers, each with two 6-core Intel Xeon E5-2630 2.30GHz
CPUs, 96 GB DRAM, 4x 4 TB 7.2K RPM SATA HDDs,
and connected via gigabit Ethernet.

Total records 3.46M 100%
Records w/ image URL 863.62K 24.96%

Records w/ non-image URL 1.32M 38.15%
Records w/ no URL 1.59M 45.95%

Table 5: Tweet record statistics for July 2015.

Latency. Based on our current set of 65 keywords used
by the Twitter Streaming API to scrape Twitter’s data, we
store approximately 3.5 million tweet records per day. On
average, it takes 18 hours to process 1-day worth of tweet
records, or 18.5 ms per record. Table 5 shows the average
daily composition of these records over a one-month period
(July 1, 2015 to July 31, 2015). We see that about half of
the posts have no URL, which support our intuition that
there are many non-news related posts, which can be uses
for investigative exploration (viewing a user as a witness).

P Location Image Index Total

1 17.42 10.32 534.45 6.68
8 168.0 67.79 1622.67 38.44

Table 6: Throughput, in records per second, of the OSNI
indexer for different levels of parallelism (P).

Throughput. We evaluate the throughput of our OSNI
indexer on a sample set of 50K records to understand the

performance of the location and image classifiers, and insert-
ing into the Elastic Search index. We compare performance
using parallelism level 1 and 8. In Spark, parallelism de-
termines the number of shards the data is split into before
being distributed for processing. We show the throughput
of each component and the full indexer in Table 6. We show
clear speedup improvement when increasing the parallelism,
and expect further improvements on a larger-scale cluster.

6. CONCLUSIONS AND FUTURE WORK
We presented OSNI, an interdisciplinary system to facili-

tate searching in social networks. The key contributions are
the location estimation, the terms extraction from images,
and the scalable architecture. To scale to more terms in the
image annotation phase, we will study how multi-class clas-
sifiers can be effectively applied – single-class classifiers per-
formed better in our experiments. Further, we are working
on building a system that can collect informative training
example images without human effort in filtering out irrel-
evant images. Finally, instead of utilizing different modules
(eg. Cassandra, Spark), we are examining how to implement
OSNI over a unified framework like AsterixDB[2].
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ABSTRACT
Many modern applications involve collecting large amounts
of data from multiple sources, and then aggregating and ma-
nipulating it in intricate ways. The complexity of such appli-
cations, combined with the size of the collected data, makes
it difficult to understand the application logic and how infor-
mation was derived. Data provenance has been proven help-
ful in this respect in different contexts; however, maintaining
and presenting the full and exact provenance may be infea-
sible, due to its size and complex structure. For that rea-
son, we introduce the notion of approximated summarized
provenance, where we seek a compact representation of the
provenance at the possible cost of information loss. Based
on this notion, we have developed PROX, a system for the
management, presentation and use of data provenance for
complex applications. We propose to demonstrate PROX in
the context of a movies rating crowd-sourcing system, let-
ting participants view provenance summarization and use it
to gain insights on the application and its underlying data.

1. INTRODUCTION
Complex applications that collect, store and aggregate

large-scale data, and interact with a large number of users,
are commonly found in a wide range of domains. Notable
examples are crowd-sourcing applications such as Wikipedia,
social tagging systems for images, traffic information aggre-
gators such as Waze, or recommendation sites such as Tri-
pAdvisor and IMDb. In the context of such applications,
several questions arise relating to how data was derived. As
a user, what is the basis for trusting the presented informa-
tion? How do crowd contributions vary among the crowd
members, based on their characteristics? If some contribu-
tion seems wrong, how does the information change if we
discard it? These questions are of fundamental importance
for better understanding the application and its results.

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

At its core, the answer to these questions is based on the
provenance of the collected data and resulting information,
that is, who provided the information, in what context and
how the information was manipulated. As shown in e.g. [10,
4], provenance is much more powerful than simply a log of
the application execution. In particular, the algebraic model
of provenance (based on semirings) has been shown to allow
to correlate input data with output data; to track important
details of the computational process that took place; and to
further ([8]) provision the computation result with respect
to hypothetical scenarios, namely to observe changes to the
result based on changes to the input (without actually re-
running the process). Detailed tracking of provenance was
thus proved to be a suitable (and necessary) vehicle for the
applications that we have mentioned above.
Consider a crowd-sourcing application for movie reviews.

The number of movies may be quite large and so is the
number of reviewers for every movie; the aggregated score
for the movie is computed by combining the scores of multi-
ple users, possibly accounting for their previous reviews and
for their preferences. These features and the way in which
they are used in the computation should all be reflected in
the provenance. In turn, provenance may be presented to
explain results (computed ranking of movies), or to provision
them (e.g. “how would the average movie rating change if
we ignore ratings by some (group of) users?”).
However, the complexity of processing and the large scale

of data also mean that detailed semiring provenance infor-
mation is extremely intricate; and so presenting it in full, as
an explanation to the computation, would be extremely diffi-
cult to understand. To this end, we present PROX, a system
that provides approximated summarization of provenance
information for complex applications. The summarization is
based in part on the semantics of the underlying data (such
as gender, age or occupation of users), where annotations
of “similar” data items are intuitively more amenable to be
grouped together. But importantly, it is also geared towards
the intended use of provenance (namely explanation and/or
provisioning): we define a distance function between prove-
nance expressions that is based on the intended use, and
optimizing this distance (while obtaining small expressions)
is an important consideration guiding the summarization.
Demonstration. We will demonstrate the system in the

context of a movies recommendation website called Movie-
Lens [1]. We will show that while full provenance is too large
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to present, PROX allows for a summarized representation of
the provenance that provides a concise explanation of the re-
views, and further allows for approximate provisioning.

We next provide details on the technical background un-
derlying PROX (Sec. 2), on the system implementation
(Sec. 3), and on the demonstration scenario (Sec. 4).

2. TECHNICAL BACKGROUND
We (informally) introduce the main technical notions in-

volved in the development of PROX, through examples. The
full details can be found in [3].

Semiring provenance model. We first explain in general
the provenance model described in [10, 5, 4]. We start by
fixing a finite set X of provenance annotations, correspond-
ing to the basic units of data manipulated by the application,
and which can be thought of as abstract variables identifying
the data. Depending on the application, these annotations
may correspond to different tuples in a database, to differ-
ent users, to different questions, etc. Given our set X of
basic provenance annotations, the provenance semiring is
the semiring of polynomials with natural coefficients, with
indeterminates from the set X. It was shown in [10] to cap-
ture provenance for positive relational queries. Intuitively,
the + operation corresponds to the alternative use of data
(as in union and projection) and · to the joint use of data (as
in join); 1 annotates data that is present, and 0 annotates
data that is absent. To capture aggregate queries, in [5],
relations were further generalized by extending their data
domain with aggregated values. In this extended framework,
relations have provenance also as part of their values, rather
than just in the tuple annotations. Such a value is a formal
sum

∑
i ti ⊗ vi, where vi is the value of the aggregated at-

tribute in the ith tuple, while ti is the provenance of that
tuple. We can think of ⊗ as an operation that pairs val-
ues (from a monoid M) with provenance annotations. Each
such pair is called a tensor. The formal sum, presented by
the ⊕ operation is used to capture the aggregation function.

Example 2.1. Consider a crowdsourcing application, sim-
ilar to IMDb, that allows users to rate different movies and
aggregates their ratings. A possible provenance expression
for the movie “Pretty Woman”, may e.g. be P1 = UID1 ⊗
(5, 1) where UID1 is a user id, and as aggregation we use
a monoid of pairs to capture the aggregated rating (MAX
rating with value 5 here) and how many users contributed
to this aggregated value (1 here). Multiple reviews (say, for
“Free Willy”) can be combined using the formal sum opera-
tion, e.g. P2 = UID2⊗(1, 1)⊕UID3⊗(3, 1)⊕UID4⊗(5, 1)
The ⊕ operation is given a “concrete semantics” depend-
ing on the aggregation function used to aggregate the ratings
(e.g. SUM, MAX or AVG 1).

Valuations and provisioning. An important use of semir-
ing provenance is for provisioning, i.e. examining changes to
the application’s execution that are the result of some hypo-
thetical modifications to the data. Examples include “how
would the movie ratings change if we ignore some reviews
(suspected as spam)?” Provenance expressions enable this
using truth valuations applied to annotations. Intuitively,

1These correspond formally to a choice of operation for the
aggregation monoid

specifying that UID1 is a spammer corresponds to mapping
it to false (and that UID1 is reliable to mapping it to true),
and recomputing the derived value w.r.t this valuation. Such
valuation can again be extended in the standard way to a
valuation V : N[X] �→ {true, false}.

Summarization through mappings. Full description of the
provenance may be extremely long and convoluted, and so
instead we would like to summarize the provenance expres-
sion. We formalize such summarization through the notion
of mappings. Let X be a domain of annotations (for the
N[X] semiring) and X ′ be a domain of annotation “sum-
maries”. Typically, we expect that | X ′ |<<| X |. We then
define a mapping h : X �→ X ′ which maps each annotation
to a corresponding “summary”. Abusing notation, this ex-
tends naturally to a homomorphism h : N[X] �→ N[X]′ (i.e.
define h(x + y) = h(x) + h(y), h(x · y) = h(x) · h(y)) and
further extends to N[X]′ ⊗M by the standard construction
h(k⊗m) = h(k)⊗m. Essentially, to apply h to a provenance
expression p (we denote the result by h(p)), each occurrence
of x ∈ X in p is replaced by h(x). The mapped expression
is a “summary” of the real provenance, in the sense that
we lose track of some exact annotations and summarize the
provenance using the “abstract” annotations in X ′.

Example 2.2. We may map user annotations to annota-
tion summaries that intuitively reflect values of attributes of
the corresponding users. Then if we map UID3 and UID4

to an “annotation summary” called “Female” 2, we obtain
(by applying congruences in the tensor structure and the use
of max as aggregate function), an expression describing a
maximum female score of 5 collected from two users):
P ′

2 = UID2 ⊗ (1, 1)⊕ Female⊗ (5, 2)
Another possible summary may e.g. be the result of mapping
annotations UID2 and UID3 to the annotation “Student”:
P ′′

2 = Student⊗ (3, 2)⊕ UID4 ⊗ (5, 1)
Both of these mappings do not concern the provenance ex-
pression P1 which stays intact.

In the example, we used two possible mappings h that
combine reviews based on gender or occupation. In general
there may be many possible mappings and the challenge is,
given a provenance expression p, to (a) define what a good
mapping h is (correspondingly, what is a good summary
h(p)), and (b) find such good h.

Quantifying Summary Quality. Several, possibly compet-
ing, considerations need to be combined.
Provenance size. Since the goal of summarization is to

reduce the provenance size, it is natural to use the size of
the summary, the number of annotations it consists of after
simplifications, as a measure of its quality.
Semantic Constraints. The obtained summary may be

of little use if it is constructed by identifying multiple un-
related annotations; it is thus natural to impose constraints
on which annotations may be grouped together. One sim-
ple example of such a constraint is to allow two annotations
x, x′ ∈ X to be mapped to the same annotation in X ′ (or to
0 or 1) only if they annotate tuples in the same input table,
meaning that they belong to the same domain. We further
allow user-defined constraints based on equality of values of

2We later describe which mappings are possible and which
are preferable to ours.
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these annotated tuples in user-selected attributes, such as
occupation or gender in the above examples.

Distance. Depending on the intended use of the prove-
nance expression, we may quantify the distance between the
original and summarized expression. As an example, con-
sider a distance function designed to use provenance for pro-
visioning in presence of spammers. For that we use again the
notion of valuations, and consider as input to the problem a
subset VX of all possible valuations w.r.t. the original prove-
nance. Intuitively VX reflects possible scenarios that are of
interest to the user. A central issue is how we transform a
valuation in VX , on the original annotations to one in VX′ ,
on the annotation summaries. We propose that this will be
given by a combiner function φ, that sets a boolean value to
x′ ∈ X ′ based on the truth values assigned to x annotations
that were mapped to it. E.g. φ may be a disjunction of these
values, then intuitively an annotation summary is cancelled
only if all of the annotations it summarizes are cancelled.

We next define the distance between a provenance expres-
sion p and its summary h(p) as an average over all truth
valuations, of some property of p, h(p), and the valuation.
This property is based on yet another function we call VAL-
FUNC, whose choice depends on the intended provenance
use. For provisioning, we may e.g. use the absolute differ-
ence between the two expressions values under the valuation
or, alternatively, a function whose value is 0 if the two ex-
pressions agree under the valuation, and 1 otherwise (so the
overall distance is the fraction of disagreeing valuations).
Similarly, when dealing with multiple expressions (such as
one for each movie) we need a function to combine the VAL-
FUNC values; here a natural choice is Euclidean distance.

Example 2.3. To simplify the example we assume that
the scenarios include at most a single spammer. So the class
of valuations consists of those assigning 0 to some single
user annotation, and 1 to all others. Observe that P ′′

2 is at
distance 0 from P2 with respect to this class of valuations:
all these valuations yield the same value with respect to the
two provenance expressions (if UID4 is mapped to true then
the aggregated MAX value is 5 regardless of other truth val-
ues, and otherwise both UID2 and UID3 are mapped to true
and so is Student). In contrast, P ′

2 differs from P2 for the
valuation that maps UID4 to false and the rest to true.

Computing Summarizations. We can show that comput-
ing an optimal summarization is �P -hard, since even com-
puting the distance (even under highly limiting restrictions)
is already �P -hard. On the other hand, we have imple-
mented an absolute approximation algorithm for comput-
ing the distance between two such provenance expressions,
based on sampling the possible valuations. This leads to a
simple greedy algorithm. The details of the algorithm are
omitted for lack of space and can be found in [3].

Related Work. Provenance models have been extensively
studied in multiple lines of research such as provenance for
database transformations (see [6]), for workflows (see [7]),
for the web [2], for data mining applications [9], and many
others, but typically full and exact provenance is presented.
Provenance views have been proposed in context of work-
flows (see e.g. [7]), but the summarization obtained through
these views is based on a notion of granularity levels, and is
lossless rather than approximate. A notion of approximate
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provenance was proposed in [11], and somewhat resembles
ours, but is limited to UCQs (and in particular allows no
aggregates), geared towards probabilistic computation, and
does not account for semantic constraints. Our notion of
mapping to summarized annotations is also reminiscent of
clustering, however the function that we optimize is one that
depends on the provenance expression itself and its intended
uses, which leads to different design choices and results.

3. SYSTEM IMPLEMENTATION

PROX Architecture. PROX server-side is implemented in
Java and its client-side is implemented in Angular JS. This
web application is deployed to Apache Tomcat server on a
Windows 7 machine. The system architecture is depicted in
Figure 1. The server is comprised of three major services: a
selection service that allows simple restriction of the prove-
nance according to user-defined selection criteria, the sum-
marization service that summarizes the selected provenance;
and a provisioning service that allows to use the summarized
provenance for exploration of hypothetical scenarios.

PROX Web UI. We developed a web UI which contains
three views. The selection view allows the user to choose
movies, whose provenance she would like to observe, accord-
ing to title or genre and year (as shown in Figures 2a and
2b respectively). The summarization view presented in Fig-
ure 2c shows the selected provenance and allows the user to
configure parameters for the summarization algorithm. The
third view presents the summary in two views shown in Fig-
ures 2d and 2e: the expression view that shows the summary
in its polynomial form, as exemplified throughout this pa-
per and the groups view that shows the groups of users that
the algorithm chose to map together. For instance, for the
Female group in the figure, we can see the group size (9),
its aggregated (MAX) rating (AGG:4), its users, the movies
they rated and their aggregated ratings. Also, on hover on
group user or movie their meta data is displayed. Using this
last view, the user can choose a valuation to evaluate on the
current provenance by selecting annotations or attributes to
cancel (assign to false), as shown in Figure 2f. Using the
left and right arrows, the user can also view and provision
the algorithm’s intermediate results.

4. DEMONSTRATION SCENARIO
We will demonstrate the usefulness of PROX in the con-

text of a movies review system. We will use a real-life movies
data set taken from [1]. The first example will demonstrate
how PROX can be used for provisioning. We will first se-
lect provenance by title, e.g. the movie “Free Willy”. Before
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Figure 2: PROX Web UI

we compute the summary, we will show the different pa-
rameters for the summarization algorithm. We will use the
default values e.g. MAX for aggregation and will limit the
number of steps to 1 for this example. Using the groups
view, we will show the user the two annotations that the
algorithm chose to map to an annotation summary. For the
same reasons discussed in Example 2.3, we expect that the
algorithm would prefer to first map the annotations of users
that did not give the movie the MAX rating and we will
show that this is indeed the case. To end this example, we
will provision the result, by choosing a valuation that can-
cels the two annotations. We expect that the result would
be the same as if we applied the valuation on the original
expression. To prove this, using the left arrow for navigating
back, we will evaluate the valuation on the original expres-
sion as well. By summarizing the original provenance, we
are able to provision the result by evaluating valuations on
the summary, which is more efficient.

The second example will demonstrate another important
provenance use which is presentation. For this example, we
will choose a large provenance expression, e.g. provenance
of “Comedy”movies released in the year 2000. We will sum-
marize it using Average aggregation and a large number of
steps. We will next show the groups of annotations along
with their meta data and then switch to the expression view
and compare its size to the original expression size which is
much greater. Finally, we will let a volunteer user select her
own provenance, summarize and provision the result.
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ABSTRACT
Big Data analytics in science and industry are performed
on a range of heterogeneous data stores, both traditional
and modern, and on a diversity of query engines. Workflows
are difficult to design and implement since they span a vari-
ety of systems. To reduce development time and processing
costs, automation is needed. We present PAW, a platform
to manage analytics workflows. PAW enables workflow de-
sign, execution, analysis and optimization with respect to
time efficiency, over multiple execution engines, namely a
DBMS, a MapReduce engine, and an orchestration engine.
This configuration is emerging as a common paradigm used
to combine analysis of unstructured data with analysis of
structured data (e.g., NoSQL plus SQL). The demonstra-
tion of PAW focuses on the usability of the platform by users
with various expertise, the automation of the analysis and
optimization of execution, as well as the effect of optimiza-
tion on workflow execution. The demonstration scenarios
are based on synthetic and real workflows on real data.

1. INTRODUCTION
Enterprises today employ a variety of data repositories

and processing engines to meet their needs for analytics.
Analytics workflows are becoming longer and more com-
plex. Currently, analytics workflows are designed and im-
plemented manually. This is time-consuming and labor-
intensive. To address this, we demonstrate a platform to
automate part of this process.

Workflow management is not a new topic [17]. However
workflow optimisation is a relatively new field of research,
but there are already some promising results.

Commercial Extract-Transform-Load (ETL) tools (e.g. [5],
[10]) provide little support for automatic optimization. They
provide hooks for the ETL designer to specify for example
which flows may run in parallel or where to partition flows
for pipeline parallelism. Some ETL engines such as Pow-
erCenter [5] support PushDown optimization, which pushes
operators that can be expressed in SQL from the ETL flow

©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
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Creative Commons license CC-by-nc-nd 4.0
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Figure 1: Workflow for a product marketing campaign

down to the source or target database engine. The rest of the
transformations are executed in the data integration server.
The challenge of optimizing the entire workflow remains.

Towards this direction, HFMS [13] performs optimiza-
tion and execution across multiple engines. Work related to
HFMS [14] focuses on optimizing flows for several objectives:
performance, fault-tolerance and freshness over multiple ex-
ecution engines. HFMS uses many optimization strategies,
such as parallelization, recovery points, function shipping,
data shipping, decomposition, etc. Complementary to the
above, our work focuses on the automation of the total pro-
cess of workflow manipulation, from the creation till the ex-
ecution of a workflow. Furthermore, our work focuses on
the challenge of enabling users with various levels of data
management expertise to create a workflow for the same ap-
plication logic.

In this paper, we demonstrate our work through PAW,
a platform for the design, analysis and execution of ana-
lytics workflows. PAW implements a novel workflow lan-
guage [7, 8] that allows the design of a workflow that spans
multiple engines and data stores by either giving specific de-
tails on execution semantics of tasks and data stores or leav-
ing the platform to determine the execution semantics and
data stores, through an automated workflow analysis phase.
Then, the workflow goes through an automated optimiza-
tion phase, before being sent for execution. PAW is part of
the ASAP project [1], which develops scalable solutions for
complex analytical tasks over multi-engine environments.

In the following, Sections 2 and 3 give an overview of the
workflow model and the platform architecture, respectively.
Section 4 summarizes the functionalities of the platform and
Section 5 describes the proposed demonstration.

2. WORKFLOW MODEL
PAW implements a novel workflow model [7, 8]. The

workflows are directed, acyclic graphs (DAGs). The ver-
tices represent data processing and the edges represent the
flow of data. Data processing is computation or modification

Demonstration
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of data. Each vertex in a workflow represents one or more
tasks of data processing. Each task is a set of inputs, outputs
and an operator. Tasks may share or not inputs, but they
do not share operators and outputs. The inputs and out-
puts of the tasks of a vertex can be related to incoming and
outgoing edges of this vertex, but they do not identify with
edges: inputs and outputs represent consumption and pro-
duction of data, respectively, and edges represent the flow of
data. Figure 1 displays a workflow about a product market-
ing campaign. It combines sales data with sentiments about
the product, gleaned from tweets crawled from the Web.

Data and operators can be either abstract or materialized.
Abstract are the operators and datasets that are described
partially or at a high level by the user, when composing the
workflow, whereas materialized are the actual operator im-
plementations and existing datasets, either provided by the
user or residing in a repository. Both data and operators
need to be accompanied by a set of metadata, i.e., proper-
ties that describe them. Such properties include input data
types and parameters of operators, location of data objects
or operator invocation scripts, data schemas, implementa-
tion details, engines etc. These metadata are used to:

• Match abstract operators to materialized ones.
• Check the usage of a dataset as input for an operator.

If the dataset does not match the operator’s input, its
metadata can be also used to check for appropriate trans-
form/move operators that can be applied.

• Provide optimization parameters, e.g. profiling of in-
put/output.

• Provide execution parameters like a file path or arguments
for the execution of the operator script.

The internal representation of a workflow is in the Tree-

metadata language, which captures structural information,
operator properties (e.g., type, data schemas, statistics, en-
gine and implementation details, physical characteristics like
memory budget), and so on. The metadata tree is user ex-
tensible. Figure 2 shows the generic metadata tree for an
operator. To allow for extensibility, the first levels of the
metadata tree are predefined. Users can add their ad-hoc
subtrees to define their custom data or operators. More-
over, some fields (like the ones related operators and data)
are compulsory, while the rest are optional and user-defined.
Materialized data and operators need to have all their com-
pulsory fields filled in with information. Abstract data and
operators do not adhere to this rule.

3. ARCHITECTURE & IMPLEMENTATION
PAW is part of a larger system, called Adaptable Scalable

Analytics Platform (ASAP) [1], but it can also stand as an
independent tool for workflow management and optimiza-
tion. Other ASAP components include execution, monitor-
ing, visualization of results, online adaptation, etc. PAW
presents a unified interface for users to create, modify, ana-
lyze, optimize and execute analytics workflows over a diverse
collection of data stores and processing engines. Figure 3 de-
picts the architecture of PAW, as well as its interaction with
the rest of ASAP. The components of PAW communicate
using the internal workflow representation and are:

• Operator library. This library shows operator imple-
mentations imported from the ASAP library. The oper-
ators are classified as, either analytics operators, which
perform the core analytics jobs over the data, or the asso-
ciative operators, which serve as ‘glue’ between different
engines and perform move and transformation operations.

• Interface. The interface enables users to interactively
create and/or modify a workflow.

• Analyzer. The analyzer parses the workflow, identifies
operators and data stores and maps them to the library of
operators, generates metadata of edges, finds edges where
the data conversion should be applied and adds the ap-
propriate conversions.

• Optimizer. The optimizer generates a functionally equiv-
alent workflow, optimized for performance objective.

• Executor. The executor receives workflows from the op-
timizer and schedules them for execution. When a work-
flow is ready for execution, it dispatches the workflow to
the engines and monitors its execution.

Code generation and the executor is implemented in Java.
The interface is a web application in Jade [6] and Coffee-
Script [2], and Grunt [3] compiles it in HTML and JavaScript,
respectively. The interface communicates with other mod-
ules using Nginx web server [9] and PHP-FPM [11]. The
analysis and optimisation modules are implemented in Python.

4. FUNCTIONALITY OF PAW
This section describes the PAW functionalities and dis-

cusses relevant aspects of the components.

4.1 Management of operators
Each operator can have an abstract definition and several

implementations, i.e. one or more implementations per en-
gine. For example, a ‘join’ of two inputs, has an abstract
definition, and can be implemented for a relational DBMS
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Operator Blocking Non-blocking Restrictive
Filter x x
Calc x

Filter Join x
groupBy Sort x
PeakDetection x

Tf-idf x
k-Means x

Table 1: Categorization of operators

Figure 4: Interface of PAW

and a NoSQL database. An operator that performs a sim-
ple operation or a complex algorithm computation needs to
have a tailored implementation for every engine on which
it is going to be executed. An operator definition includes
restrictions on the type and number of inputs and specifies
the number and type of outputs.

Operators are categorized as:

• Blocking operators require knowledge of the whole data,
e.g., a grouping operator or an operator join or sort.

• Non-blocking operators process each tuple separately,
e.g., operators filter or calc1.

• Restrictive operators output a smaller data volume
than the incoming data volume, e.g. filter.

Defined and implemented operators form a library from
which a user can select operators to describe tasks. Table 1
shows operators from the library and their categorization.

Users can register their own operators, provide respective
implementations and define optional attributes of a new op-
erator. These attributes include functions to compute car-
dinality and processing cost, and characteristics of the op-
erator. In most cases, the operator developer or provider
does not disclose a cost formula for the operator. Then,
PAW can use the ASAP profiling process for operators us-
ing micro-benchmarks. As an optional step, PAW allows
users to run their workflows with a data sample and uses
the obtained statistics to fine-tune our cost models before
workflow optimization.

4.2 Design of a workflow
A workflow is created in the PAW interface, which consists

of several areas (Figure 4) that perform the following:

• Display the workflow (Area 1).
• Design a new workflow adding vertices and edges, save

and load it (Area 2).
• Perform workflow analysis or optimization (Area 2).
• Add tasks from a library or create new ones (Area 3). A

task from the library is accompanied by a set of metadata.

1calc is a generic operator that can be customized for a
specific numeric calculation
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Figure 5: Analysed workflows for a multi-task vertex

A task created from scratch has a metadata tree with
predefined first levels; users can add their ad-hoc subtrees
to define their custom data or operators.

• Display metadata of the selected task (Area 4).

4.3 Analysis of a workflow
The workflow model alleviates from the user the burden

of determining any or some execution semantics of the ap-
plication logic. The execution semantics of the workflow
includes the execution of tasks in vertices and the execution
of input-output dependencies of edges. The determination
of the execution semantics of vertices and edges leads to an
execution plan of the workflow. We refer to this plan as the
analysed workflow. The latter is actually an enhancement
of the initial workflow with more vertices and substitution
of vertices and/or edges in the initial workflow with others.

PAW analyses a workflow in several steps:

1. Parses the workflow.
2. Categorizes operators (see Section 4.1).
3. Validates consistency. A workflow is checked for cycles

and correspondence of metadata of adjacent vertices. Cy-
cles cannot be resolved, the analysis stops and returns a
list of errors. If possible, metadata mismatches are solved
by adding associative tasks in Step 6.

4. Generates metadata of edges, as a join of input and output
metadata of source and target vertices, respectively.

5. Splits multi-task vertices to several single-task vertices: A
vertex that corresponds to multiple tasks is replaced with
an associative subgraph that contains a set of new vertices
that correspond to these tasks. New vertices may corre-
spond 1-1 to tasks, but it can be the case that two or more
vertices correspond to the same task (task replication).

6. Augments the workflow with associative tasks that are
converting data flow: buffers and format conversions.

Users may describe the same application logic by creating
workflows with different levels of detail concerning the exe-
cution planning of this logic.The analysis phase determines
missing execution semantics. Figure 5 shows an example: A
user defines a vertex with two tasks, algorithmic processing
on some data, and a join of these with some other data. The
user is not interested or does not know the execution details
of this complex task. This representation depicts that the
two tasks should be executed together, after the tasks of the
vertices on which this vertex depends, and before the tasks
of vertices that depend on this vertex. Another user, repre-
sents the same tasks with two connected vertices, dictating
that the join should be executed on the data processed first
by the algorithm. A third user dictates even more detail in
the execution plan, by adding one more vertex that includes
a task that moves the data, e.g. from one disk to another.
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4.4 Optimization of a workflow
After the analysis phase, a workflow is optimized for per-

formance. The optimization uses the following operations:

• Swap. The swap operation applies to a pair of vertices,
v1 and v2, which occur in adjacent positions in an work-
flow graph G, and produces a new graph G′ in which the
positions of v1 and v2 have been interchanged. The goal
of swap is to change the execution order of tasks.

• Merge. The merge operation takes as input two vertices
and produces one new vertex that includes the tasks of
both initial vertices. The latter may either be connected
with an edge, i.e. there is some task dependency(ies), or
not. The goal of merge is to allow for a united optimisa-
tion of the tasks included in the two vertices, e.g. joint
micro-optimization on an execution engine.

• Split. The split operation takes as input one vertex and
produces two new vertices that, together, include all the
tasks included in the initial vertex. The new vertices may
or may not be connected. The goal of split is to lead to
separate optimisation of subgroups of the tasks.

The Optimizer applies to the analysed workflow a series of
the above operations, each producing a functionally equiva-
lent workflow with possibly different cost. The goal is to find
an optimal workflow in the state space of equivalent work-
flows (for the optimization algorithm see [16]). To improve
search, the space is pruned employing heuristics:

• H1: Move restrictive operators to the root of the work-
flow to reduce the data volume, e.g., rather than extract
→function →filter do extract →filter →function.

• H2: Place non-blocking operators together and separately
from blocking operators, require knowledge of the whole
dataset, e.g., rather than filter →sort →function →group
do filter →function →sort →group.

• H3: Parallelize adjacent non-blocking operators so that
they can be executed concurrently on separate processors,
e.g., split filter1 →filter2 to two new parallel paths. Par-
allelized workflow parts should be chosen such that their
latency is approximately equal.

5. DEMONSTRATION
In the following, we describe the demonstration of PAW.
System setup. PAW is demonstrated on a cluster,

with the following configuration: The cluster consists of 4
server-grade physical nodes. Each one of those is equipped
with a 3rd generation i5 CPU (@ 2.90 GHz) and 16GB of
physical memory and an array of two HDDs on RAID-0.
The operating system is Debian 6 (squeeze) Linux. For the
time being, three software platforms are running: Hadoop
[4], Spark [15] and Weka [18]. The distribution of Hadoop
is CDH 4.6.0 and the version of Spark is 1.4.1.

Workloads. The demonstration uses synthetic and real
workflows on real data. The synthetic workflows are con-
structed based on ETL benchmarking [12]. Real workflows
and data come from the two use cases of ASAP [1] and
belong to the domains of telecommunications and web ana-
lytics. The telecommunication use case involves processing
anonymised Call Detail Records (CDR) data for Rome, from
01/06/2015 until 30/06/2015 and stored in CSV format. For
the computation on graph-structured data workflows are im-
plemented in Apache Spark.

The web analytics use case involves anonymization of web

content (WARC files) stored in ElasticSearch. The work-
flows are implemented in Spark and run over varying data set
sizes ranging from 1 million to 1 billion rows. There are two
types of workflows: one models entity recognition/disambiguation
and k-means, and another models continuous processing of
incoming data, e.g., subscription/notification at scale.

Demonstration scenarios. The demonstration aims
to exhibit the functionalities of PAW, focusing on the follow-
ing aspects: (a) the usability of the platform for workflow
creation by users that have different expertise, (b) the effec-
tiveness of the automated analysis of the execution of the
workflow, and (c) the effectiveness of the automated opti-
mization in workflow execution. The demonstration includes
interesting scenarios for all (a,b,c) to be shown to the au-
dience, but also interactive scenarios, especially for (a) and
(b), which allow the audience to experience the functionali-
ties of PAW. The interactive scenarios enable the participant
to create workflows from scratch or change existing ones,
watch the automated management of the workflow as well
as review the internals of the platform, e.g. internal work-
flow representation. Concerning (a) and (b), the scenarios
exhibit how the same application logic can be expressed via
workflow versions that have different level of detail of exe-
cution semantics, and how the analysis phase specifies miss-
ing execution semantics through already executed workflows
and/or by giving alternative choices to the user. Concern-
ing (c), the scenarios show how new operators are added,
including cost functions, and how the latter may be tuned
by running a workflow with sampling for statistics collection;
finally, the scenarios show actual workflow execution and the
optimization benefit and tradeoffs on different engines.
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ABSTRACT
ETL (Extraction-Transform-Load) tools, traditionally de-
veloped to operate offline on historical data for feeding Data-
warehouses, need to be enhanced to deal with big and fresh
data and be executed at network level during data streams
acquisition. In this paper, we present StreamLoader, a Web
application for the specification of conceptual ETL dataflows
on heterogeneous sensor data that leverages the peculiari-
ties of network configuration, data stream management, and
specification and deployment of ETL operations in a pro-
grammable network. It can be used for feeding traditional/
real-time data-warehouses or visual analytic tools.

1. MOTIVATION
Nowadays we are witnesses of the proliferations of differ-

ent sensor devises able to produce heterogeneous types of
data that can be profitable used for detecting, handling and
advising people of the verification of events such as natu-
ral disasters (like flooding, storming, extreme temperatures
etc.), traffic congestions (due to accidents, strikes, football
matches), and social web interactions. Beside the physi-
cal sensors, able to detect data about physical phenomena
(like, temperature, humidity, wind, rain, pressure, level of
see water), there is a proliferation of social sensors able to
collect data from people (like, twitter data, traffic informa-
tion, train or flight schedule). These data are characterized
both from the temporal, spatial and thematic dimensions
that can be exploited from for the identification of meaning-
ful events in a given context.

Several challenges should be faced for handling sensors
and their data especially in emergency situations. First,
sensors (both physical and social) are located in different
networks and made available by different institutes, agen-
cies and NPOs. In this context, network configuration, sen-
sor detection and discovery are difficult issues to be solved.
Moreover, data produced by sensors are heterogeneous in
structures (different types), in spatial and/or temporal gran-
ularities (e.g. temperature in a room versus temperatures in

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

a geographical area), in thematics (data about traffic jams
vs data about pollutions). Therefore, there is the need of
ETL (Extract-Transform-Load) operations that can be ap-
plied on data streams for their reconciliation. These opera-
tions should be applied during data acquisition and bound
with reactive capabilities in order to properly identify the
relevant streams when abnormal events occur and under-
take the proper actions. Finally, the specification and actu-
ation of the ETL operations should be efficiently performed
on-line and on fresh and timely data in order to properly
handling big real-time data streams. All these technical re-
quirements should be addressed in graphical, user-friendly
environments supporting the user in the design and execu-
tion of the operations.

Many systems have been proposed for configuring pro-
grammable networks ([4, 2, 9]), for data stream management
(e.g. Niagara [14], TelegraphCQ [5], Borealis [1]), for the
specification and actuation of ETL operations (e.g. [16, 10,
13]) and dataflow (e.g. Talend www.talend.com, Pentaho-
kettle www.pentaho.com, CoverETL www.cloveretl.com),
and for complex event processing (e.g. Apache S4 [15],
Storm [12], StreamBase www.tibco.com). However, all of
them are quite complex to use, seldom provide web GUIs for
designing and monitoring dataflows and are not integrated
in a single tool. This limits their use in the management of
emergency situations.

In this paper we propose StreamLoader, a Web applica-
tion for the specification of conceptual ETL dataflows on
heterogeneous sensors to be applied during data stream ac-
quisition on a programmable network. It exploits different
technologies (AngularJS, Cytoscape, SparkJava) for prov-
ing the graphical environment. StreamLoader is equipped
with an interactive environment that supports the user in
charge of handling events to discover the sensors useful in
a given situation, specify the adequate dataflow for extract-
ing, filtering, integrating, (eventually) storing, and analyze
the data coming from the identified sensors, optimize the
schedule for the execution of the dataflow and visualize the
results. By exploiting samples produced by the involved
sensors, the user can easily debug the developed dataflow.
Once the dataflow is consistent (i.e. it can be soundly ac-
tivated at network level), the translation is automatically
invoked. Then, the underlying network is configured and
the processes associated with the ETL operators executed.
At this point, logs of the execution of the dataflow compo-
nents are directly shown in the interactive environment to
provide statistics on the dataflow execution.

In the remainder, Section 2 presents the requirements we
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started from. The main characteristics of the system and
of the interactive environment are discussed in Section 3.
Section 4 presents the features of the system we wish to
demonstrate and discusses the system significance.

2. StreamLoader REQUIREMENTS
Starting from the idea to develop a tool that is easy to

use for people without a computer science background, the
following requirements have been posed at the basis of the
development of our tool.

Dynamic (and automatic) configuration of ETL dataflow
on events. Starting from several data streams, the user in-
terface should offer the possibility to identify relevant sources
of information depending on the verification of events. For
example, suppose we have several sensors for detecting the
humidity and temperature of a given area; apparent tem-
perature represents the temperature that is perceived by
humans and depends on both temperature and humidity.
The computation and acquisition of the apparent tempera-
ture in a given area can be triggered when the temperature
is greater than 24◦ C. Events can be used both for trigger-
ing or stopping the acquisition and elaboration of streams.
Moreover, ETL dataflows should be generated on the fly
depending on the needs, immediately actuated and its ex-
ecution monitored in the same tool. The dataflow should
become “live” and give execution feedbacks to the user.

ETL operations for integrating heterogeneous streams.
The heterogeneity of the data flows requires the application
of common operations developed in the context of data inte-
gration and data fusion in order to identify different repre-
sentations of the same real world entities. For this purpose,
the system should be equipped with transformation opera-
tions: (1) for changing the unit of measure (e.g. from yards
to meters) or geographical coordinates (from one standard to
another one); (2) for introducing virtual properties relying
on the values assumed by other attributes (e.g. the appar-
ent temperature discussed above); (3) for checking that data
conform to given validation rules (e.g. dates conforming to
given patterns). Moreover, operation for filtering data rely-
ing on different conditions should be included and for culling
data belonging to a temporal interval or a geographical area
according to a reducing factor. Finally, operations for aggre-
gating and joining streams should be included for combining
information coming from different streams.

Discovery of sensor data sources. The large amount of
sensors with different levels of availability that can be mon-
itored by the developed system imposes the adoption of dif-
ferent solutions for their discovery and management. First,
sensors should be handled by means of a publish-subscribe
system in order to handle the dynamicity with which they
can join and leave the network. Then, sources of dataflows
should be specified by means of the sensor and location char-
acteristics. Finally, sensors can be organized according to
different criteria (temporal/spatial, type/location) in order
to facilitate the specification of dataflows.

Isolation of data traffic based on the ETL dataflow.
Hard-coded configurations of network architectures and paths
where data traffics are routed are not an easy task and pre-
vent the possibility to adapt to new user requirements. Ap-
proaches based on declarative networking [4, 2, 9] have been
recently proposed for the application of database query-

Figure 1: StreamLoader Architecture

language and processing techniques to the domain of net-
working. In [8] an extension of the declarative network-
ing [4] approach has been proposed that consists of two
components: declarative service networking (DSN) and net-
work control protocol stacks (SCN). DSN provides a method
to model and describe a high-level network of information
services for an application, which includes service discov-
ery, service monitoring, execution control, and service mes-
sage exchanges. SCN aims at capturing application require-
ments and requesting appropriate configuration to the net-
work platform more directly and effectively. The network
control protocol stack interprets the DSN description and
dynamically coordinates the network configurations, such
as data flows, segmentations, and QoS parameters. The
dataflow graphically described by the user should be then
translated in DSN/SCN language to be actuated in the net-
work and monitored.

3. StreamLoader OVERVIEW
Architecture. Figure 1 reports the architecture of the Stream-
Loader system. At the bottom there is a network. Each
node of the network is in charge of managing a bunch of
sensors and can execute the proposed ETL stream process-
ing operations. Sensors are handled through a distributed
publish-subscribe system [3]. Each time a sensor is pub-
lished, its type, schema, and frequency of data generation
are made available to subscribers.

Our Web environment is made available for the design and
monitoring of dataflows. When a conceptual dataflow is re-
alized, the translator module is in charge to translate it
in DSN/SCN and execute it at network level. Processes are
generated for each operation of the dataflow and executed
on a network. The executor module coordinates their exe-
cution. For the execution, the sources are bound to specific
sensors handled by the network nodes, and operations lo-
cated on the machines that, depending on workload, apply
the logic specified in the conceptual dataflow.

Logs of the activities are then collected by the monitor

module and made available to the Web Interface to show
statistics on the dataflow execution. Specifically, we are
able to report on the Web Interface the number of tuples
that each operation handle per second, the node that suf-
fers because of high workload, which node is in charge of
executing an operation and when the assignment changes.
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Operation Symbol Meaning

Aggregation @t,{a1,...,an}
op (s) Every t time intervals, aggregate s on the attributes {a1, . . . , an} and apply the aggregation

function op ∈ {COUNT, AVG, SUM, MIN, MAX}
Cull Time γr(s, 〈t1, t2〉)) Culling the tuples in the temporal interval [t1, t2] by a reducing rate r

Cull Space γr(s, 〈coord1, coord2〉)) Culling the tuples that fall in the area delimited by coord1, coord2 by a reducing rate r

Filter σ(s, cond) Filter out tuples in s that do not adhere to the condition cond

Join s1 ./
t
pred s2 Every t time intervals, s1 and s2 are joined according to the join predicate cond

Transform 3transs The transformation function trans is applied on the tuples in s

Trigger On ⊕ON,t(s, {s1, . . . sn}, cond) Every t time intervals the condition cond is checked on the tuples collected from s. If the
condition is verified, the streams of the sensors {s1, . . . sn} are activated

Trigger Off ⊕OFF,t(s, {s1, . . . sn}, cond) Every t time intervals the condition cond is checked on the tuples collected from s. If the
condition is verified, the streams of the sensors {s1, . . . sn} are de-activated

Virtual property ]s〈p, spec〉 A new attribute p is added to the schema of s according to the specification spec

Table 1: Stream Processing Operations

Stream Processing Operations. Sensors produce streams
of tuples according to the multigranular space, time and
thematic (STT) data model [7]. Relying on the concepts of
temporal and spatial granularities, we exploit the concept of
event, that is a value associated with a spatial object at a
given time according to given thematics. Therefore, an event
is a value represented at a given spatio-temporal granularity
for which thematic information is added. Granularities are
used for identifying correlations among data produced by
different sensors and for imposing consistency constraints in
the composition of sensor data produced by heterogeneous
devices. We remark that whenever a sensor is not able to
produce the spatio-temporal information of the produced
data, this information is added by the Publish-Subscribe
system that we adopt in our architecture.

Several operations have been developed for processing and
combining the streams produced by the sensors in accor-
dance with the requirements previously discussed at net-
work level. Table 1 reports the principal operations concern-
ing the application of filters, transformation, aggregation
and composition, and event detection. Among the opera-
tions we point out those that are non-blocking (filter, cull-
time/space, transform, virtual property) from those that are
blocking (aggregation, trigger, join). The former are directly
applied on each tuple when they are processed, whereas the
others require the maintenance of a cache of tuples that are
processed every t time intervals (e.g. 1 second, 2 minutes).

Visual Interactive Environment. By using a visual inter-
face in Figure 2, users can drag-and-drop data-sources and
apply the proposed operations on streams. In a window
placed at the bottom of the canvas used for designing the
data-flow, the user can see the schema of data that are
processed by the operation, specify the conditions of each
operation and visualize a data sample coming from each
source. The user interface provides different checks in or-
der to draw only dataflows that can be soundly translated
in the DSN/SCN specification. We remark that data schema
are not fixed but depend on the sensors. Finally, at the use
phase, the dataflow developed at design time will be an-
notated with information coming from the SCN about the
execution of the dataflow. In this way, the dataflow becomes
“live” and the domain expert can monitor its execution.

Scenario. There are different sensors in the area of Os-
aka that produce data about the temperatures and levels of
rains monitored in the current year. Moreover, tweets and
traffic information from the same area in the current year

Figure 3: Monitoring the execution of the dataflow

can be acquired. Suppose, that there is interest in acquir-
ing the data about torrential rain, tweets and traffic only
when the temperature identified in the last hour is above
25◦ C. The dataflow reported in the canvas of Figure 2 real-
izes the proposed behavior. The acquired data can be stored
in a data-warehouse or sent to a visualization tool in order
to perform further analysis. Moreover, Figure 3 shows the
flows of data that are monitored for this and other dataflows
that are under control.

4. DEMO WALKTROUGH
In the demonstration of StreamLoader we will considering

a network (established at NICT in Japan) in which different
physical and social sensors related to the described scenario
are connected and produce continuous data streams to be
processed. By using this setup, we will show the capabilities
of our tool in an interactive demo for the automatic configu-
ration (and re-configuration) of a programmable network by
means of our visual tool for more efficient and interactive
analysis when transmitting data from sensors (sources) to
the Event Data Warehouse (destination) [6]. The demo will
consist of the following parts:

P1 By exploiting the Web interface of our tool, users can
create their own dataflows. Specifically, they will be
able to identify the different sensors that are currently
available in the network and select those on which they
wish to specify ETL operations. Moreover, they will be
able to apply different processing operations on such
sources and check, step-by-step, their results on sam-
ples made available from the source.
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Figure 2: Main screen of the Web Application

P2 Once the dataflow is consistent, we will show its trans-
lation in the DSN/SCN language and deployment at
network level. Then, we will monitor its execution by
means of the tools presented in this paper. Finally,
we will show how the data processed by means of the
dataflow can be stored in the Event Data Warehouse
[6] or visualized in the Sticker visualization tool [11].
Both tools have been developed by NICT.

P3 In the last part of the demo, we will show how it is easy
to plug-and-play new sensors to the network and make
them directly available to StreamLoader. We will also
show how the system react when sensors or operators
in the dataflow are modified on the fly. Finally, we will
show statistics on the execution of the dataflow and on
the performances of the network.

The demonstration will thus prove the flexibility of the
developed system in the specification of dataflows to be exe-
cuted at network level and actuated on the fly. All the ETL
operations that have been considered can be applied on-line
on fresh data arriving from sensors of different types. Differ-
ent controls have been included in the dataflow specification
in order to guarantee the sound translation and execution
of the corresponding DSN/SCN specification.

The code of SCN and ETL dataflow editors are open
source and can be freely downloaded from GitHub
(https://github.com/nict-isp).

5. REFERENCES
[1] D. J. Abadi, et al. The design of the Borealis Stream

Processing Engine. In CIDR, 277–289, 2005.

[2] P. Alvaro et al. BloomUnit: Declarative Testing for
Distributed Programs. In DBTest, 2012.

[3] R. Baldoni, et al. Distributed Event Routing in
Publish/Subscribe Communication Systems: a Survey.
Middleware for Network Eccentric and Mobile
Applications, 219-244. Springer, 2009

[4] B. T. Loo, W. Zhou. Declarative Networking.
Synthesis Lectures on Data Management, Morgan &
Claypool, 2012

[5] S. Chandrasekaran, et al. TelegraphCQ: Continuous
Dataflow Processing. In SIGMOD, page 668, 2003.

[6] M.S. Dao, et al. A Real-Time Complex Event
Discovery Platform for Cyber-Physical-Social Systems.
In Multimedia Retrieval Conf., 201-208, 2014.

[7] M.S. Dao, et al. EventShop. From Heterogeneous Web
Streams to Personalized Situation Detection and
Control. In ACM Web Science Conf., 105-108, 2012.

[8] M. Dong, T. Kimata, and K. Zettsu.
Service-Controlled Networking: Dynamic in-Network
Data Fusion for Heterogeneous Sensor Networks. In
Reliable Distributed Systems Workshops, 94–99, 2014.

[9] D. Gay et al. The nesC language: A Holistic Approach
to Networked Embedded Systems In SIGPLAN, 2003.

[10] M. Gorawski and A. Gorawska. Research on the
stream ETL process. In BDAS, 61–71, 2014.

[11] K.S Kim, R. Lee and K. Zettsu. mTrend: Discovery of
Topic Movements on Geo-Microblogging Messages. In
ACM SIGSPATIAL, 529–532, 2011.

[12] N. Marz. Storm: Distributed and Fault-Tolerant
Realtime Computation, 2012.

[13] M. Mesiti and S. Valtolina. Towards a User-Friendly
Loading System for the Analysis of Big Data in the
Internet of Things. In COMPSACW, 312–317, 2014.

[14] J. F. Naughton, et al. The NIAGARA Internet Query
System. IEEE Data Eng. Bull., 24(2):27–33, 2001.

[15] L. Neumeyer, et al. S4: Distributed Stream
Computing Platform. In ICDMW , 170–177, 2010.

[16] P. Vassiliadis, A. Simitsis, and S. Skiadopoulos.
Conceptual Modeling for ETL Processes. In DOLAP,
14–21, 2002.

631



TINTIN: a Tool for INcremental INTegrity checking of
Assertions in SQL Server

Xavier Oriol
Universitat Politècnica de

Catalunya
xoriol@essi.upc.edu

Ernest Teniente
Universitat Politècnica de

Catalunya
teniente@essi.upc.edu

Guillem Rull
Universitat de Barcelona

Barcelona, Spain
grull@ceipac.ub.edu

ABSTRACT
We present TINTIN, a tool to perform efficient integrity
checking of SQL assertions in SQL Server. TINTIN rewrites
each assertion into a set of standard SQL queries that, given
a set of insertions and deletions of tuples, allow to incremen-
tally compute whether this update violates the assertion or
not. If one of such queries returns a non empty answer,
then the assertion is violated. Efficiency is achieved by eval-
uating only those data and those assertions that can actu-
ally be violated according to the update. TINTIN is aimed
at two different purposes. First, to show the feasibility of
our approach by implementing it on a commercial relational
DBMS. Second, to illustrate that the efficiency we achieve
is good enough for making assertions to be used in practice.

Keywords
Integrity checking, SQL, Assertions

1. INTRODUCTION
In standard SQL, users can specify general constraints us-

ing the CREATE ASSERTION statement. The basic technique
for writing assertions is to specify a query that selects those
tuples that violate the desired condition. By including this
query inside a NOT EXISTS clause, the assertion will specify
that the query result must be empty. Thus, the assertion is
violated if and only if the query result is not empty [2].

Assertions were initially defined in SQL-92 [1] and they
serve as a means for expressing global integrity constraints
not tied to a particular table, but ranging over several ones.
They are sufficient for expressing most constraints since al-
most the full expressiveness of SQL can be used to define the
query inside the NOT EXISTS clause. It is also well known
that many integrity constraints can only be expressed via
assertions since the other constructs provided by SQL are
not powerful enough. Thus, assertions provide an elegant
way to define general constraints in SQL.

However, assertions are still not supported by any of the
most well-used commercial RDBMS (Oracle, MySQL, SQL

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

Server, PostgreSQL, DB2). It might be argued that asser-
tions can be emulated via manually writing a set of triggers,
which is a widely supported feature of RDBMS. However,
its manual definition is error prone and the whole set of nec-
essary triggers to write might not be evident when given a
complex constraint, thus, compromising the integrity of the
data if just one trigger is missing or ill-defined. Hence, it
is better to delegate this complex checking code to RDBMS
capabilities [8], as we do in TINTIN1.

TINTIN is a tool that provides incremental integrity check-
ing of assertions in SQL Server. Given an SQL Server DB,
and a set of SQL assertions written on its schema, TINTIN
automatically builds all the necessary procedures/queries to
efficiently check whether any update satisfies the assertions.

As an example, consider the schema of the well-known
TPC-H benchmark [7] shown in Figure 1, a benchmark for
illustrating decision support systems that examine large vol-
umes of data, execute complex queries, and give answers to
critical business questions.

Part

partKey : Integer
name : String

Supplier

suppKey : Integer
name : String Customer

custKey : Integer
name : String

Nation

nationKey : Integer
name : String

Region

regionKey : Integer
name : String

Order

orderKey : Integer

LineItem

lineNumber : Integer
quantity : Integer

0..*

0..*

PartSupp

availQty : Integer
supplyCost : Real

0..*1

0..* 1

0..*

1

0..*

1

1 0..*

1

0..*

totalPrice: Real

Figure 1: The TPC-H Schema.

Now, assume that we want to define a general constraint
over the previous schema stating that all orders have at least
one line item. This constraint could be specified by means
of the SQL assertion shown below:

CREATE ASSERTION atLeastOneLineItem CHECK(

NOT EXISTS(

SELECT * FROM ORDERS AS o

WHERE NOT EXISTS (

SELECT * FROM LINEITEM AS l

WHERE l.L_ORDERKEY = o.O_ORDERKEY)));

1http://www.essi.upc.edu/~xoriol/tintin/
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TINTIN allows checking the assertion atLeastOneLine-
Item efficiently in data sets consisting of 1GB to 5GB of
data and with 1MB to 5MB of tuple insertions/deletions,
with times ranging from 0.01 to 0.04 seconds depending on
the scenario. These results are much better than the time re-
quired for directly executing the query inside the assertions
on the database, ranging from x89 to x2662 times faster.

The approach we follow in TINTIN is to automatically
generate, for each assertion, several standard SQL queries
which incrementally determine whether the update violates
the original assertion or not. If the queries return a non-
empty answer, then, the assertion is violated, otherwise, it
is satisfied. The queries are incremental in the sense that
they are stated in terms of the current database tables and
also some automatically generated auxiliary tables contain-
ing the insertions/deletions of tuples requested by the user.

This is the crucial point for achieving efficiency of in-
tegrity checking. When a user requests an update, the tu-
ples s/he wants to insert/delete are put in some auxiliary
tables. Then, the generated queries join these tuples be-
ing inserted/deleted with the current data, and return those
that violate the assertions. For each assertion, the gener-
ated queries only join those insertions/deletions of tuples
that might cause its violation. Therefore, an update not in-
cluding any of those insertions/deletions trivially makes the
query result to be empty. For this reason, no current data
of the database is accessed unless some update may cause
the violation of an assertion.

The join between the current data and the tuples being
inserted/deleted ensures also that only the tuples affected
by the update are checked. Thus, the rest of the data, po-
tentially the major part of the database, is skipped.

These incremental SQL queries are generated outside the
database and then stored in it as views. Since we use stan-
dard SQL to define them, they could be used for checking
assertions on any relational DBMS. However, and for the
purpose of checking the feasibility and the efficiency of our
approach, we have chosen SQL Server to implement TINTIN
because of our previous expertise on this system.

Once the incremental SQL queries are defined, TINTIN
builds a stored procedure called safeCommit to allow SQL
Server to check the assertions. This procedure must be in-
voked at the end of each transaction, so that the procedure
can check whether it violates any of the assertions. More
specifically, the procedure checks whether the incremental
SQL queries are empty or not. If they are, the update does
not violate any assertion, so, the procedure commits the
update stored in the auxiliary tables. Otherwise, the proce-
dure shows the tuples answering the queries, i.e., the tuples
violating the assertions.

2. PROBLEM AND SOLUTION
Integrity checking is the problem of efficiently determining

whether a given update satisfies a set of integrity constraints,
SQL assertions in our case. This is an important problem
in data management since any violation of an integrity con-
straint would indicate an invalid state of the database. One
possible way to achieve efficiency relies on, first, just check-
ing the assertions which may actually be violated by the
update and, second, considering only the relevant updated
data for computing whether the assertions are violated.

We assume in this work that the update consists of a (pos-
sibly large) set of insertions and/or deletions of database

tuples and that the queries defining the assertions are spec-
ified by means of the fragment of SQL that is equivalent to
relational algebra. In particular, TINTIN accepts assertions
to be defined through selection, projection, join, subselect
(exists, in), negation (not exists, not in) and union but
it does not allow functions (e.g. aggregates, arithmetic func-
tions) for the moment.

TINTIN is aimed at providing to an SQL Server database
with the capability of performing integrity checking of SQL
assertions efficiently. For this purpose, TINTIN allows a user
to specify assertions according to the fragment of SQL stated
above, and the tool automatically builds a stored procedure
in the database, called safeCommit, that the user will have
to call at the end of each transaction. Whenever called,
safeCommit checks whether the updates in the transaction
violate any of the assertions. If no violation is found, the
update is committed to the database. Otherwise, it provides
the answers to the queries that detected the violation of the
assertions.

The safeCommit procedure works by executing several
SQL queries, stored as views in the database, for each one
of the assertions that need to be checked. Each query cap-
tures a different situation in which some updates may lead
to the violation of the assertion. These updates are explic-
itly stated in the query definition itself and provide the key
for efficiency of integrity checking.

In the rest of this section we explain the approach we
follow to obtain the SQL queries that allow checking incre-
mentally an assertion; which is based on our previous work
for handling integrity checking of OCL constraints in con-
ceptual models [4, 5]. We only require the users to define
their desired assertions. From there, all the following steps
are automatically performed.

The first step consists in rewriting each SQL assertion
into a logic denial in the same way as we did in [6]. A denial
is a formula stating a condition that must not be true in
any state of the database. These denials are the basis for
obtaining the incremental SQL queries.

For instance, the assertion atLeastOneLineItem of our
running example would be rewritten as:

order(o) ∧ ¬lineIt(l, o)→ ⊥ (1)

Clearly, the previous denial states that if there is an or-
der o without any line item l, an inconsistent state will be
reached, which is exactly the condition to be avoided by
atLeastOneLineItem.

Then, for each denial, TINTIN obtains its correspond-
ing Event Dependency Constraints (EDCs, for short). Each
EDC is a logic rule identifying a particular situation where
some update applied to a certain state of the database D
causes the violation of the denial, i.e., of the corresponding
assertion. The main idea for obtaining EDCs is to replace
each literal in the logic rule obtained from the assertion by
the expression that evaluates this literal in the new state of
the database Dn, i.e., the state obtained after applying the
update. Positive and negative literals in the denial are han-
dled in a different way according to the following formulas:

∀x. pn(x)↔ (ιp(x)) ∨ (¬δp(x) ∧ p(x)) (2)

∀x. ¬pn(x)↔ (δp(x)) ∨ (¬ιp(x) ∧ ¬p(x)) (3)

Rule 2 states that a literal p(x) will be true in the new
state of the database Dn if it has been inserted or if it was
already true in the initial stateD and it has not been deleted.
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In an analogous way, rule 3 states that p(x) will not hold in
Dn if it has been deleted or if it was already false and it has
not been inserted.

By applying the substitutions above to all logic denials, we
get a set of EDCs which states all possible ways to violate the
assertions by means of insertions and/or deletions of tuples.

In particular, we get the following EDCs for the denial 1
of our running example:

ιorder(o) ∧ ¬lineIt(l, o) ∧ ¬ιlineIt(l, o)→ ⊥ (4)

ιorder(o) ∧ δlineIt(l, o) ∧ ¬aux (o)→ ⊥ (5)

order(o) ∧ ¬δorder(o) ∧ δlineIt(l, o) ∧ ¬aux (o)→ ⊥ (6)

aux (o)← ιlineIt(l, o)

aux (o)← lineIt(l, o) ∧ ¬δlineIt(l, o)

Intuitively, EDC 4 states that atLeastOneLineItem will be
violated if a new order o is inserted and there was no line
item for o in the initial state of the database and no line item
for o has been inserted by the transaction. EDC 5 behaves
in a similar way, while EDC 6 determines that the assertion
will be violated if a line item for an existing order o has been
deleted and neither a new line item has been inserted for o
nor the database contains any other line item for o (given
by the rules defining aux(o)).

Note that, in this example, EDC 5 can be safely discarded
assuming that the foreign key constraint from lineitem to
order is satisfied in the current state of the data. TINTIN
incorporates some semantic optimizations like this one that
allow obtaining a reduced and simplified number of EDCs
which allow performing integrity checking more efficiently.

The idea of obtaining EDCs to identify the different sit-
uations that may lead to the violation of a constraint is
grounded on the concept of event rules [3], which were aimed
at performing integrity checking in deductive databases.

Finally, each EDC is translated into an SQL query as
proposed in [4]. Roughly, each positive literal in the EDC is
translated into a table reference placed in the FROM clause of
the query, possibly with a JOIN condition with some previ-
ously translated literal that shares a common variable with
it. Built-in literals and constant bindings are directly trans-
lated to the WHERE clause, and negated base and derived
literals are translated as correlated subqueries.

In our running example, we would translate EDC 4 as:

CREATE VIEW atLeastOneLineItem1 AS

SELECT *

FROM ins_orders AS T0

WHERE NOT EXISTS(SELECT *

FROM lineitem AS T1

WHERE T1.l_orderkey = T0.o_orderkey)

AND NOT EXISTS(SELECT *

FROM ins_lineitem AS T1

WHERE T1.l_orderkey = T0.o_orderkey)

We have defined the query as a view to store it into the
database. It is worth noting the usage of the auxiliary ta-
bles storing the insertions and the deletions of tuples for
each table of the database, as it happens with ins orders
and ins lineItem in the previous view. TINTIN automati-
cally builds them, together the necessary triggers to capture
the insertions/deletions of tuples to place them into such
auxiliary tables. Thus, the existence and maintenance of
these auxiliary tables is fully transparent to the database
users.

Note also that the key for incrementality is not based on
batching updates for delaying the assertions checking, but
on the join in the SQL queries between the update and the
current data. First of all, any SQL query joining an inser-
tion/deletion which is not being applied (i.e., whose corre-
sponding SQL table is empty) is immediately discarded since
it trivially returns the empty set. Therefore, we only check
those constraints that can be violated according to the on-
going update. Second, the data considered by an SQL query
during its execution is necessarily the data joining the up-
date applied, thus, avoiding to look through all the database.

3. DEMO DESCRIPTION
The demo that we will present is intended to show the

usage and efficiency of our prototype tool TINTIN by means
of applying it to the checking of some assertions in the TPC-
H benchmark SQL schema.

We will first request TINTIN to build the necessary aux-
iliary tables and triggers to capture any insertion and dele-
tion applied to the TPC database. As a result, we will see a
newly generated database event TPC with an ins/del table
for each TPC SQL table. At this point, whenever we ap-
ply an insertion/deletion of any tuple in TPC, the tuple will
be captured and inserted in the corresponding ins/del ta-
ble of event TPC. In this way, the contents of TPC remains
unchanged, and event TPC contains the requested update.

Next, we will introduce in TINTIN some SQL assertions
of different complexity. Consequently, TINTIN will create a
procedure called safeCommit in TPC. This procedure, when
called, will check whether applying the updates contained
in event TPC raises the violation of any assertion. If no
violation is found, the procedure will commit the events into
TPC; otherwise, it will report the violations. Lastly, the
procedure will truncate all the events stored in event TPC,
so that a new set of events can be proposed.

At this stage, TINTIN will have created all the neces-
sary elements to automatically check the satisfaction of the
assertions when updating TPC, and will have persistently
stored them in the database. Thus, TINTIN can be discon-
nected from SQL Server, and users might operate with the
database normally with the unique consideration of invoking
safeCommit at the end of each transaction.

To make the demonstration, we will apply some updates
mixing both: updates that violate some assertion and up-
dates that do not violate any of them. After each update, we
will call the safeCommit procedure to see its effects, that is,
we will see that it rejects the update if some violation occurs,
or that it commits them if they satisfy the assertions.

With this demonstration, we will show that TINTIN en-
joys the following features: 1. Portability : it can be easily
installed in any SQL Server database —no need for spe-
cial plugins nor additional technologies—. 2. Clean instal-
lation: all the necessary logics of the method is installed
in another database—without modifying the original one—,
except the safeCommit procedure and the triggers to cap-
ture the events, which are necessarily placed in the target
database. 3. Easy of use: users can update the database
without modifying their SQL statements/procedures. The
unique mandatory requirement is to call the automatically
generated safeCommit procedure at the end of each trans-
action. 4. Efficiency : the incremental nature of our method
provides better execution times than executing non-incre-
mental queries to perform the integrity checks.
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Figure 2: Tintin architecture

4. PROTOTYPE
The architecture of TINTIN is shown in Figure 2, while

its GUI is depicted in Figure 3. Basically, the GUI asks the
user for a database (DB) connection, and the assertions that
s/he wants to check in that database.

When the user introduces the DB connection, the SQL
Server Controller creates a new auxiliary database event DB
to store the different events applied to it; that is, for each
table T in DB, the SQL Server Controller builds two new
tables (ins T and del T ) to store the different tuples being
inserted and deleted in T . In order to capture these tuples,
the SQL Server Controller creates two different INSTEAD OF

triggers, which capture the tuple insertions/deletions and
place them in the corresponding ins T or del T table.

Afterwards, when the user introduces the SQL assertions,
they are firstly mapped into logic denials. Then, these de-
nials are translated into EDCs and, finally, EDCs are rewrit-
ten as SQL queries. Each of these steps is implemented in a
different module following the previously presented method.

The resulting SQL queries are stored as views in event DB.
Then, the SQL Server Controller builds the safeCommit pro-
cedure. This procedure, when called, performs the following:
1. queries the previous views. 2. if all queries are empty, it
disables the triggers, applies the update (insert in the DB
the tuples contained in the ins tables, and remove from the
DB the tuples contained in the del tables), and enables again
the triggers. 3. truncates the ins/del tables.

The prototype has been developed in Java, with the ex-
ception of the Assertions to denials translator component,
for which we have reused a previously existing C# software.

We made some experiments to evaluate the efficiency of
our tool. We have checked some assertions of different com-
plexity with TINTIN (like the one of our running example),
in data sets consisting of 1GB to 5GB of data and with 1MB
to 5MB of updates, and compared its efficiency with that of
a non incremental method consisting of directly querying
the assertions to the database. The time TINTIN required
for checking the assertions ranges from 0.01 to 1.29 seconds
and it is always better than in the non incremental approach,
with a benefit of orders of magnitude when considering 5MB
of updates (up to x2662 times faster).

5. CONCLUSIONS
TINTIN is a tool for checking assertions in SQL Server

databases. The tool takes as input a set of assertions and it
automatically builds a procedure called safeCommit which
efficiently checks whether an update violates any of the as-
sertions and, afterwards, commits the update if no violation
is found or shows the tuples causing the violation otherwise.

Figure 3: Graphical User Interface Design

TINTIN works almost transparently for the database users
since it only requires the users to invoke safeCommit at the
end of each transaction. Internally, the tool builds several
triggers to capture the update requested by the user and to
place it in some SQL auxiliary tables. These auxiliary ta-
bles are queried with the current database tables to check
whether applying the update in the current data may cause
any assertion violation. This join between the update and
current data is the key for efficiency.

The fundamentals of TINTIN are the Event Dependency
Constraints (EDCs), which we previously used to handle
integrity checking of OCL constraints in conceptual models.
More details about these rules, and also on their translation
to SQL queries, can be found in [4, 5].

As further work, we plan to extend TINTIN to handle
aggregate functions in assertions. We also expect to make
it available for other DBMSs apart from SQL Server and to
exploit other DBMS capabilities such as temporary tables.
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ABSTRACT
We demonstrate the use of localized path indexes in gener-
ating efficient execution plans for regular path queries. This
study is motivated by both the practicality of this class of
queries and by the current dearth of scalable solutions for
their evaluation. Our proposed solution leverages widely
available relational database technology and is often orders
of magnitude faster than currently known approaches. We
aim in this hands-on demonstration to both highlight the
promise of our approach and to stimulate further discus-
sion and study of engineering solutions for this practical yet
challenging class of graph queries.

1. INTRODUCTION
Massive graph-structured data collections are ubiquitous

in contemporary data management scenarios such as so-
cial networks, linked open data, and chemical compound
databases. A fundamental paradigm in graph query lan-
guages are the so-called regular path queries (RPQs) [16].
RPQs specify a regular expression over the edge labels in a
graph, and the query answer consists of every path in the
graph such that the sequence of edge labels along the path
forms a word in the language recognized by the regular ex-
pression. Variations and extensions of RPQs are supported
in recent query languages such as SPARQL 1.1 [8] and the
Cypher language of the Neo4j graph database.1

State of the art. Indexing of paths occurring in data has
been shown to be effective for query processing in the context
of object-oriented and semistructured databases [1, 15]. To
our knowledge, however, there has been no investigation of
using path indexing for the evaluation of RPQs over graph
databases. In particular, three general approaches to RPQ
evaluation have been proposed in the literature:

1. Automata- and search-based processing (e.g., [5, 10,
13]), where queries are evaluated by strategies such

1http://neo4j.com
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as breadth-first-search pattern matching of the query
graph on the data graph;

2. Datalog-based processing (e.g., [3, 17]), where the Kleene
star operator is translated into recursive Datalog pro-
grams or recursive SQL views;

3. Reachability-index-based processing (e.g., [6]), where
restricted uses of Kleene star are translated into reach-
ability queries, which are then evaluated using off-the-
shelf reachability indexes.

Contributions. We present an overview of our ongoing study
of the use of path indexes for generating efficient execution
plans for RPQs. Our approach supports the evaluation of
arbitrary RPQs (unlike approach (3) above), and exhibits
significant improvement (often by several orders of magni-
tude) in query processing times over approaches (1) and (2).

In the next section we briefly define the problem. In Sec-
tion 3 we introduce the main data structures used in our
solution. We then discuss query plan generation and execu-
tion in Section 4. We conclude in Section 6 with an overview
of our system demonstration.

2. PRELIMINARIES

2.1 Data Model
We consider finite, directed, edge-labeled graphs. A graph

vocabulary is a finite non-empty set L of edge labels drawn
from some universe of labels. Let N be an infinite universe
of atomic data objects. An edge relation is a finite subset of
N×N . A graph over vocabulary L is an assignment G of an
edge relation `G to each ` ∈ L, i.e., there is an edge labeled
` from m to n if (m,n) ∈ `G. In the sequel, we will some-

times denote this by `(m,n) or m
`−→ n. As an example, a

graph Gex over the vocabulary {supervisor, knows,worksFor}
is shown in Figure 1.

The node set of G is the collection nodes(G) = {n | ∃m ∈
N, ` ∈ L : (n,m) ∈ `G or (m,n) ∈ `G}. For example,
the node set of the example graph contains nine elements:
nodes(Gex) = {ada, jan, . . . , zoe}.

Let k be a natural number. If k = 0, we say there is a
k-path from s to s, for every s ∈ nodes(G). If k > 0, for
s, t ∈ nodes(G), we say there is a k-path from s to t if there
exist n0, . . . , nk ∈ nodes(G) and edge labels `1, . . . , `k ∈ L
such that n0 = s, nk = t, and, for 0 < i ≤ k, (ni−1, ni) ∈ `Gi
or (ni, ni−1) ∈ `Gi .

Demonstration
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Figure 1: A graph Gex over vocabulary L = {supervisor, knows,worksFor}.

We denote by pathsk(G) the set of all pairs of nodes
(s, t) ∈ nodes(G) × nodes(G) such that there is an i-path
from s to t, for some i ≤ k.

As an example, in the graphGex we have that (sam, ada) ∈
paths2(Gex) via the paths sam

knows←−−− zoe
worksFor−−−−→ ada and

sam
knows←−−− zoe

knows←−−− ada, but (sam, ada) 6∈ paths1(Gex).

2.2 Regular Path Queries
Fix a vocabulary L. A regular path query (RPQ) is a

regular expression R over the alphabet {`, `− | ` ∈ L}, i.e.,
R is generated by the grammar

R ::= ε | ` | `− | R ◦R | R ∪R | Ri,j

for ` ∈ L and natural numbers i and j where i ≤ j. Intu-
itively, “ε” is the identity transition, “`” is forward navigation
along an edge with that label, “`−” is backwards navigation,
“◦” is path composition, “∪” is path disjunction (i.e., union
of paths), and “Ri,j” is bounded path recursion.

Given graph G over L, the semantics of evaluating an
RPQ R on G is a set R(G) consisting of all pairs (a, b) in
paths(G) such that there exists a path from node a to node
b in G whose label sequence `1 · · · `n defines a word in the
regular language specified by R.

As examples, we have in the graph Gex of Figure 1 that:

supervisor ◦ worksFor−(Gex) = {(kim, sue)}

and

(supervisor ∪ worksFor ∪ worksFor−)4,5(Gex) =

{(kim, kim), (kim, sue), (sue, kim), (sue, sue),

(ada, zoe), (ada, ada), (zoe, ada)}.

Note that we deviate from the traditional syntax of regular
expressions by replacing Kleene star“∗”with bounded recur-
sion. This is motivated by the following two observations.
First, bounded recursion is supported (and encouraged) in
practical graph query languages such as Neo4j’s Cypher.2

Second, since we focus in this work on index construction
and use, we are interested in query evaluation on a given
graph. It is easy to establish that for any graph G there
exists a natural number n(G) such that for every RPQ R it

is the case that R∗(G) = R0,n(G)(G).

2http://neo4j.com/docs/stable/, Section 8.8

3. INDEXES AND HISTOGRAMS
Given a graph G and a fixed k > 0, we now present our

indexing and selectivity estimation approaches for paths in
G localized to neighborhoods of size k.

3.1 k-path indexing
A label path is a sequence p = `1 · · · `n, where n > 0 is the

length of p, and `i ∈ {`, `− | ` ∈ L} for each 1 ≤ i ≤ n.
Our index on G is based on an ordered dictionary (which

can be implemented, for example, as a B+tree). In particu-
lar, we index pathsk(G) using an ordered k-path index IG,k

having search key 〈label path, sourceID, targetID〉. Specif-
ically, for each label path p of length at most k, and for
each pair of nodes (a, b) ∈ p(G), we insert (p, a, b) into IG,k.
Given a non-empty prefix p of a search key, IG,k returns an
ordered list IG,k(p) of all matching entries.

Example 3.1. In the graph of Figure 1, we have

IG,k(〈knows · knows · worksFor〉) =

〈(ada, tim), (jan, ada), (jan, jan), (jan, kim),

(joe, ada), (joe, jan), (joe, joe), (kim, joe),

(tim, jan), (tim, kim), (tim, tim)〉,

IG,k(〈knows · knows · worksFor, jan〉) =

〈(ada), (jan), (kim)〉,

IG,k(〈knows · knows · worksFor, jan, ada〉) = 〈()〉,

IG,k(〈knows · knows · worksFor, jan, joe〉) = 〈〉.

We have developed a prototype k-path index implemen-
tation that leverages the B+ tree index support of Post-
greSQL3. We translate RPQs into equivalent SQL state-
ments over IG,k implemented as a relational table and backed
by a B+tree (see [12] for full implementation details). In
building on mature relational technologies, we are following
an emerging trend in this direction [4, 7, 9] with practi-
cal benefits such as simplicity, ease of integration with and
deployment within existing IT ecosystems, and leveraging
field-proven technologies.

Notwithstanding the fact that we have described here an
implementation of our proposed k-path indexing technique

3http://www.postgresql.org
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using existing RDBMS technologies, other recent work [14]
describes an implementation of a B+tree-based k-path index
“from scratch”, focusing on issues such as index size, com-
pression and performance, and undertaking a comparative
performance study with the Neo4j graph DBMS over several
real and synthetic datasets and query workloads. That eval-
uation too demonstrates the potential of our k-path index-
ing approach (showing speed-ups in query evaluation times
ranging from 2 times to 8,000 times faster compared with
Neo4j). Detailed performance comparison between these ap-
proaches to path indexing is an area of future work.

3.2 k-path histogram
For query plan generation over IG,k, it is useful to have a

data structure selG,k which, given a label path p of length
at most k, returns an estimate of the selectivity of p in G,
i.e., the fraction of paths in pathsk(G) which satisfy p. As
an example, we have in the graph Gex of Figure 1 that
selGex,2(supervisor ◦ knows) ≈ 0.02, since only one of the
53 paths in paths2(Gex) is in supervisor ◦ knows(Gex).

There is a rich literature on statistics for query optimiza-
tion [2]. Here, we adopt the well-established histogram data
structure, since it is easy to deploy and extremely successful
in practice. In particular, we implement selG,k as an equi-
depth histogram. The basic idea here is, given space to store
cardinality information about B label path ranges, we keep
track of the cardinality of label paths in the graph falling
into B contiguous ranges, as induced by their lexicographic
order (i.e., in the order maintained in IG,k); the ranges are
selected such that they each have roughly the same cardinal-
ity. We then estimate the cardinality of any given label path
by dividing the cardinality of the range in which it occurs
by the number of label paths in that range. As a simple
example, suppose k = 1, B = 2, and we have edge labels
a, b, and c, with cardinalities 2, 4, and 6, resp. Then the
first range covers a and b and the second range covers c,
with cardinalities 6 and 6, resp. Using this histogram, the
estimated cardinality of a is 6

2
= 3.

As with the path indexes, in our prototype implementa-
tion we store and access our histogram as a PostgreSQL
table; see [12] for full implementation details.

4. QUERY EVALUATION WITH
PATH INDEXES

The processing of a RPQ R proceeds in three steps: The
first step is to replace each occurrence of bounded recursion
in R as a union over its expansion. The result is a semanti-
cally equivalent query R′ involving only edge labels or their
inverses, compositions, and unions. In the second step, all
unions in R′ are “pulled up” to the top level of the query,
resulting in a semantically equivalent query R′′ consisting
of a union of expressions each free of unions and bounded
recursion, i.e., R′′ = R1 ∪ · · · ∪ Rn where each Ri is a label
path. In the third step, each disjunct Ri is processed in
turn, with the aim of generating a physical execution plan
for each Ri in which a merge-join is used whenever possible
(to make the best use of the physical sort order of the index)
and a hash-join is used otherwise.

As an illustrative example, consider the query R = k ◦
(k ◦ w)2,4 ◦w, where k and w abbreviate knows and worksFor,
resp. Query plan generation proceeds as follows, where for
clarity of presentation we drop explicit use of the concate-

nation operation ◦:

1. (kw)2,4 is expanded, giving

R′ = k(kwkw ∪ kwkwkw ∪ kwkwkwkw)w.

2. Nested unions are pulled up to the top level, giving

R′′ = kkwkww ∪ kkwkwkww ∪ kkwkwkwkww.

3. Finally, physical execution plans are generated for each
of the disjuncts of R′′. In particular, suppose that
k = 3; then processing each of the disjuncts proceeds
as follows:

• kkwkww is processed, from left to right, generat-
ing the physical plan

IG,k(w−k−k−) 1 IG,k(kww)

in which 1 is implemented as a merge join. Note
the subexpression kkw has been inverted to obtain
the correct sort order to perform a merge join.

• kkwkwkww is processed from left to right, gener-
ating the physical plan

[IG,k(w−k−k−) 11 IG,k(kwk)] 12 IG,k(ww)

in which 11 is implemented as a merge join and
12 as a hash join.

• kkwkwkwkww is processed from left to right, gen-
erating the physical plan

[(IG,k(w−k−k−) 11 IG,k(kwk))

12 IG,k(wkw)] 13 IG,k(w)

in which 11 is implemented as a merge join and
12 and 13 as hash joins.

We term this evaluation strategy semi-naive. The com-
plete physical plan is formed as a union of these three
sub-plans.

The third step can be optimized by using the histogram
selG,k, as follows. For each disjunct D of R′′

1. if |D| ≤ k, return IG,k(D).

2. Find the most selective k-path subquery D′ of D (i.e.,
the k-path with smallest selG,k value). There are |D|−
(k − 1) such subqueries to consider.

3. Let D = Dleft ◦ D′ ◦ Dright, and recur on Dleft and
Dright, to generate query plans for respective output
streams LEFT and RIGHT .

4. Determine the cost of each of the following alternative
query plans, and return the cheapest plan:

• [LEFT 1 IG,k(D′)] 1 RIGHT ,

• LEFT 1 [IG,k(D′) 1 RIGHT ],

• [LEFT 1 IG,k(D′−)] 1 RIGHT , or

• LEFT 1 [IG,k(D′−) 1 RIGHT ].

We term this evaluation strategy minSupport.
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Figure 2: Advogato query execution times (ms)

5. EMPIRICAL EVALUATION
We refer the reader to [12] for full details of an empirical

evaluation of our system with respect to a broad spectrum of
RPQs over four different real and synthetic datasets. In ad-
dition to the semi-naive and minSupport evaluation methods
described above, two other methods are investigated: naive,
in which k is fixed at 1 (so indexing is on edge labels, not
path labels), which corresponds to automaton-based evalu-
ation (approach 1, discussed in the Introduction); and min-
Join, which is similar to minSupport but also aims to mini-
mize the number of joins.

As an indicative subset of the empirical results obtained,
the three graphs in Figure 2 show the run-times of 8 queries
over the Advogato data set, for each of the four evaluation
methods, with values of k ranging from 1 to 3. Advogato is
a real-world social network having 6,541 nodes and 51,127
edges with |L| = 3, where edges indicate varying degrees of
trust between users in the network [11].4

We observe that the naive method always performs worst,
that the semi-naive method is generally outperformed by
minSupport and minJoin, and that the latter two perform
similarly. This demonstrates the value of the lightweight
histogram data structure for selectivity estimation. We also
see that increasing the value of k generally improves the run-
times for all methods (apart from naive, where k is fixed at
1 throughout).

6. DEMONSTRATION OVERVIEW
We give participants a hands-on overview of the life of

a regular path query, from its submission to our system,
through parsing and optimization, to execution. We fur-
ther demonstrate the speed-ups achieved by our approach
compared with Datalog-based evaluation (approach (2), dis-
cussed in the Introduction), where our solution is on average
1200x faster on the Advogato queries [12].

Through these interactive activities, we hope to both demon-
strate the promise of our approach to RPQ evaluation and
to stimulate further broader discussion and study in the re-
search community of engineering strategies for this challeng-
ing practical class of graph queries. A system demonstration
is an excellent setting in which to accomplish these goals.
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ABSTRACT
A large volume of Open Data is being generated on a contin-
uous basis. Examples of this are the case of social, natural,
and information systems such as World Wide Web and so-
cial networks. Most entities and objects in the Open Data
are interconnected, forming a complex, semi-structured, and
information-rich networks. In this sense, Linked Open Data
has the potential to be similar to a federated database. Since
Linked Open Data is based on W3C standards, it is possi-
ble to implement a federation infrastructure, however, the
current SPARQL standard makes it challenging to analyze
the Open Data in an explorative manner. Consequently,
it will be hard to discover the hidden knowledge in the re-
lationships among entities in Open Data sources. In this
paper, we present Galaxy, a platform for explorative anal-
ysis of Open Data Sources. Galaxy facilitates the analy-
sis of Open Data graphs based on simple abstractions, i.e.
folders and paths, which enable an analyst to group related
entities in the graph or find paths among entities. Galaxy
uses Hadoop data processing platforms to store and retrieve
large numbers of RDF triples and to support cost-effective
and Web-scale processing of Semantic Web data through a
Folder-Path enabled extension of SPARQL.

Keywords
Linked Data, Open Data Analytics, Querying Graphs

1. INTRODUCTION
Open Data sources may include any information that can

be obtained without a privileged position. Examples include
electronic and print media (e.g. RSS feeds from newspa-
pers), social media (Twitter, Facebook, Instagram, YouTube),
and blog sites (e.g. Tumblr, Wordpress). The production of
knowledge from Open Data is seen by many organizations
as an increasingly important capability that can complement

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

the traditional intelligence sources. In particular, most enti-
ties and objects in the Open Data are interconnected, form-
ing a complex, semi-structured, and information-rich net-
works which can be modeled using graphs. In this sense,
Linked Open Data has the potential to be similar to a fed-
erated database: combining these data sources offer a rich
information resource for enterprise analysis.

Since Linked Open Data is based on W3C standards (e.g.
RDF format and the SPARQL query language), it is possi-
ble to implement a federation infrastructure, however, the
current SPARQL standard makes it challenging to analyze
the Open Data in an explorative manner. Consequently, it
will be hard to discover the hidden knowledge in the rela-
tionships among entities in Open Data sources. For example
it is important to quickly form an intelligence picture from
the Open Data sources around a topic of interest (such as
country, person, organization or event), group related enti-
ties around that topic, find paths among entities, and use all
these information for the follow-on analysis. There is a need
for graph representation models and efficient approaches for
expressing and executing these types of queries. In partic-
ular, manipulating, querying, and analyzing Linked Open
Data graphs to discover new knowledge is of high interest.

In this paper, we present Galaxy, a platform for explo-
rative analysis of Open Data Sources. Galaxy helps in fa-
cilitating the analysis of Open Data graphs based on simple
abstractions, i.e. folders and paths (introduced in our earlier
work [4]), which enables an analyst to group related entities
in the graph or find paths among entities. A folder node
contains a set of entities that are related to each other, i.e.,
the set of entities in a folder node is the result of a given
query that requires grouping graph entities in a certain way.
We define a path node for each query that results in a set of
paths (i.e. transitive relationship between two entities which
can be codified using regular expressions). Folder and Path
nodes, can represent a network snapshot, i.e. a subgraph,
from multiple perspectives and granularities. Folder and
Path nodes can be timed [3]: Timed folder/path nodes can
show their evolution for the time period that they represent.
Galaxy uses Hadoop data processing platforms to store and
retrieve large numbers of RDF triples and to support cost-
effective and Web-scale processing of Semantic Web data
through a Folder-Path enabled extension of SPARQL.

The rest of the paper is organized as follows. In Section 2,
we present some key components of our system, while in
Section 3 we describe our demonstration scenario.

Demonstration
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2. SYSTEM OVERVIEW
Figure 1 represents the architecture of the Galaxy. The

main components of the system include the Extracted Data
Folder and the Graph Query Engine.

Extracted Data Folders. Open data are complex, un-
structured and generated at a high rate, resulting in many
challenges to ingest, store, index, and analyze such data
efficiently. The notion of extracted data folders serves to
enable the ingestion of data (from open data sources), and
the persistence of this data in accordance with a particular
defined schema. Machine learning techniques can be used
to construct the schema for an open data source [5]. We as-
sume that the expert analysts will construct the schema for
each folder. Figure 4 illustrates the Twitter schema where
the main entities include users, tweets, links, domains, and
hashTags. Folders provide a federated data access infras-
tructure upon which the federated analysis will operate. We
also envisage folders to support multiple layers of granular-
ity (e.g., split or merge existing folders). Folders can also be
combined to create higher-level virtual folders, called feder-
ated folders, using filter, project and join operators.

Graph Query Engine (SPARQL extension). Due to
space restrictions, in this paper we highlight the main com-
ponent of the query engine. However, we refer to our pa-
per [2] for algorithmic and other details. Figure 2 presents
the graph processing architecture which consists of the fol-
lowing components: graph loader, data mapping layer, query
mapping layer, regular expression processor, time-aware con-
troller, and OLAP (on-line analytical processing) controller.

Graph Loader. Input graph (e.g. Twitter extracted
folder) can be in the form of RDF, N3, or XML. We de-
veloped a workload physical design by developing a loader
algorithm. This algorithm is responsible for: (i) validating
the input graph; and (ii) generating the triples, where two
types of triples are recognized: attribute-edges (e.g., “Bob
@age 35”) and relationship-edges (e.g., “Bob knows Fred”).
We use the ‘@’ symbol for representing attribute edges and
distinguishing them from the relationship edges.

Data Mapping Layer. This layer is responsible for cre-
ating: (i) object-store, which contains all objects in the in-
put graph uniquely identified by an identifier. Each ob-
ject contains an arbitrary list of attribute-edges describing
its features; (ii) link-store, which contains all directed links
between pairs of objects represented as relationship-edges;
and (iii) data element mappings between semantic web tech-
nology (i.e. Resource Description Framework) and Hadoop
file system. As a result, objects-store and link-store will be
stored in Hadoop cluster.

Query Mapping Layer. This layer is consist of a parser
for parsing SPARQL like queries (based upon the syntax of
Folder-Path extension [2, 3, 4] of SPARQL) and a SPARQL-
to-PigLatin translation algorithm. In order to translate the
SPARQL queries into Pig-Latin we follow a specific format
in which data is read from the HDFS, a number of Pig-Latin
operations (e.g., LOAD, SPLIT, JOIN, FILTER, GROUP,
and STORE) are performed on the data, and then the re-
sulting relation is written back to the file system. In par-
ticular, SPARQL graph pattern matching is dominated by
join operations, and is unlikely to be efficiently processed.
We use existing query optimization techniques [7, 8, 9] to
generate the optimal query plan by reinterpreting certain
join tree structures as grouping operations, i.e., to enable
a greater degree of parallelism in join processing. In the
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following, we illustrate an example for a sample mapping
between SPARQL and Pig-Latin.

Example 1. DBLP1 is an open source data for computer
science bibliographical network. Adam, an OLAP analyst,
is interested in partitioning the DBLP graph into a set of
authors having same interests. Then he plans to apply a set
of OLAP style operations (e.g., calculating authors ranking
and contribution degree) on constructed partitions. Details
about this example, including the SPARQL query can be
found in [2]. Processing this query using Pig Latin’s query
algebra, results in the query plan shown in Figure 3. The
logical plan can be described as follows: (1) load the in-
put dataset using the LOAD operator in Pig-Latin; (2) split
the dataset, based on the partitioning condition, and create
triple tables for related predicates. Next step is to filter the
dataset into related authors, where the ‘interest’ triplestore
will be needed for the partitioning phase and ‘publications’
and ‘citations’ triplestores will be needed to apply OLAP
style operations on partitions; (3) filter the graph using the
result of previous step, i.e., to support the triple syntax and
weave the predicated to related partitions. Notice that, in
the case of using JOIN operator in this step, the triple syn-
tax will be no longer available; (4) group by the interest ta-
ble on the object column to remove redundant values, e.g.,
cases where two or more authors, different subjects, hav-
ing same interests; (5) evaluation of OLAP operations on
graphs independently for each partition, providing a natu-

1http://dblp.uni-trier.de/db/
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Load

Split

S P O
S1 @citations 15
S2 @citations 12
… … …

S P O
S1 @class entitynode
S2 @class entitynode
… … …

S P O
S1 @interest DataBase
S2 @interest AI
… … …

S P O
S1 @publications 10
S2 @publications 8
… … …

Filter

S P O
S1 @class entitynode
S1 @type author
S1 @publications 8
S1 @citations 15
S1 @name Adam
… … …

Graph

S P O
S1 @type author
S2 @type author
… … …

Type_author

citations

class

publications

interest
FOREACH

(Apply operations on partitions)
(Group by)

STORE

Figure 3: Query plan for the Example 1.

ral parallelization of execution; and (6) store the final result
on Hadoop cluster using the STORE operator in Pig-Latin.

Regular Expression Processor. This component is
responsible for parsing graph patterns. In particular, graph
analysts can codify their knowledge into regular expressions
that describe paths through the nodes and edges in the
graph. The regular expression processor supports optional
elements (?), loops (+,*), alternation (|), and grouping ((...)).

Time-aware Controller. RDF databases are not static
and changes may apply to graph entities (i.e. nodes, edges,
and folder/path nodes) over time. Time-aware controller is
responsible for data changes and incremental graph loading.
Moreover, it creates a monitoring code snippet and allocate
it to a folder/path node in order to monitor its evolution
and update its content over time.

GOLAP controller. This component is responsible for
supporting on-line analytical processing on graphs, through
partitioning graphs (using folder and path nodes) and allows
evaluation of OLAP operations on graphs independently for
each partition, providing a natural parallelization of execu-
tion, details can be found in [2].

External Algorithms Controller. This component is
responsible to support applying existing graph mining algo-
rithms (e.g. graph reachability and shortest path) to the
open data graph, and store the result in a folder/path node
for the follow on analysis. For example we developed inter-
faces to support various graph mining algorithms [1] such as
Transitive Closure, GRIPP, Tree Cover, Chain Cover, Path-
Tree Cover, and Shortest-Paths.

3. DEMONSTRATION SCENARIO
The demonstration scenario consists of three parts. First,

we would like that the attendee appreciates the difficulties
that one can encounter when dealing with open data sources.

GeoLocation

geoID 

continent VARCHAR(100)

country_code VARCHAR(10)

country VARCHAR(30)

state VARCHAR(30)

city VARCHAR(30)

postal_code VARCHAR(20)

street_address VARCHAR(256)

Indexes

User

userID VARCHAR(100)

description VARCHAR(256)

geo_enabled 

language VARCHAR(100)

name VARCHAR(256)

time_zone VARCHAR(100)

url VARCHAR(256)

verified 

geoID BIGINT

Indexes

Tweet

tweetID VARCHAR(30)

content VARCHAR(256)

language VARCHAR(100)

source VARCHAR(100)

geoID BIGINT

userID VARCHAR(10)

time TIMESTAMP

topicID INT

Indexes

TweetReply

tweetID VARCHAR(30)

reply_UserID VARCHAR(100)

reply_tweetID VARCHAR(30)

Indexes

TweetAnalytics

tweetID VARCHAR(30)

favourited_count BIGINT

retweet_count BIGINT

time TIMESTAMP

Indexes

UserAnalytics

userID VARCHAR(100)

favourites_count BIGINT

followers_count BIGINT

friends_count BIGINT

listed_count BIGINT

statuses_count BIGINT

follower_ratio DOUBLE

time TIMESTAMP

Indexes

Topic

topicID 

topicName VARCHAR(256)

Indexes
HashTag

hashTagID 

tweetID VARCHAR(30)

hashTag VARCHAR(256)

topicID BIGINT

similar_hashtags VARCHAR(1000)

Indexes

HashTagSimilarity

hashTagID1 BIGINT

hashTagID2 BIGINT

similarity INT

Indexes

Media

mediaID VARCHAR(255)

tweetID VARCHAR(30)

mediaType VARCHAR(20)

url VARCHAR(256)

Indexes

Domain

domainID 

tweetID VARCHAR(30)

url VARCHAR(256)

topicID BIGINT

Indexes

Link

linkID 

tweetID VARCHAR(30)

url VARCHAR(256)

page_title VARCHAR(256)

metaTags TEXT

page_links TEXT

first_paragraph TEXT

page_text TEXT

Indexes

NamedEntity

name_entityID 

tweetID VARCHAR(30)

type VARCHAR(256)

named_entity VARCHAR(256)

entity_mentions TEXT

Indexes

Figure 4: Twitter Extraction Folder Schema.

We start with a Twitter dump2 and illustrate how we gen-
erate the Twitter extraction folder according to the gener-
ated Twitter schema (Figure 4). Next, we illustrate how
we use the query language to construct content-based rela-
tionships among related entities. When talking about con-
tent we mainly deal with entity attributes, where we con-
sider content-based relationships as correlation condition-
based relationships. For example, a correlation condition in
Twitter may enable grouping entities in different ways, e.g.
Tweets coming from the same location or users from the
same timezone, and store them in folder nodes. Figure 5
presents the set of related tweets whose location country is
the same as Australia.

Next, we present to the attendee an interactive scenario
where she would be able to generate the ‘influence graph’
among users in the Twitter open data through the follow-
ing steps: (i) Using Folder Nodes, to form an intelligence
picture from the Twitter data around a topic of interest
(i.e. Twitter User) by grouping related entities around that
topic and store them in folder nodes. Examples are, folders
for users who: (a) belong to the same location, (b) tweet the
same topics (we assume that we have a topic discovery algo-
rithm), (c) use similar hashTags/links in their tweets; and
(d) retweet similar tweets; (ii) Using Path Nodes to con-
struct relationships among twitter constructed folders. For
example a reachability algorithm will be used (in path node
queries) to see if two different twitter users are reachable
through a shard friend or a retweet path. As the result set of
related patterns can be stored in path nodes for further anal-
ysis; (iii) Constructing relationships among open/federated
data sources. We will provide the attendee with a set of fold-
ers constructed from other open data sources such as Wiki-
data and DBPedia. The attendee will use query templates

2https://archive.org/details/archiveteam-twitter-stream-
2012-02
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Figure 5: An example of partitioning the graph for
the follow on analysis.

Figure 6: Screenshots of the front-end tool: assisting
user to generate regular expressions.

Figure 7: Screenshots of the front-end tool: assisting
user to generate correlation conditions.

to discover similarity among different folders, e.g. a tweet in
Twitter folder can be related to a topic in Wikidata folder;
and (iv) Generating the ‘influence graph’ among users in
Twitter. The attendee will use SPARQL like queries to fur-
ther analyze the folder and path nodes and use the front-end
tool to visualize the influence graph. In order to facilitate
creating SPARQL queries, we provide a front-end tool for
assisting users to create SPARQL queries in an easy way.
Figures 6 and 7 illustrates screenshots of the front-end tool,

4. CONCLUSION AND FUTURE WORK
In this paper, we presented Galaxy, a platform for explo-

rative analysis of Open Data Sources. Galaxy assists the an-
alysts to quickly form an intelligence picture from the Open
Data sources around a topic of interest, group related enti-
ties around that topic (folder nodes), find paths among enti-
ties (path nodes), and use all these information for the follow
on analysis. Galaxy uses Hadoop data processing platforms
to store and retrieve large numbers of RDF triples in Hadoop
file system. As future work, we plan to make use of inter-
active graph exploration and visualization techniques which
can help users to quickly identify the interesting parts of a
graph.
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ABSTRACT
Ontologies are the backbone of the Semantic Web and facil-
itate sharing, integration, and discovery of data. However,
the number of existing ontologies is vastly growing, which
makes it is problematic for software developers to decide
which ontology is suitable for their application. Further-
more, often, only a small part of the ontology will be rel-
evant for a certain application. In other cases, ontologies
are so large, that they have to be split up in more man-
ageable chunks to work with them. To this end, in this
demo, we present OAPT, an ontology analysis and parti-
tioning tool. First, before a candidate input ontology is par-
titioned, OAPT analyzes it to determine, if this ontology is
worth to be considered using a predefined set of criteria that
quantify the semantic richness of the ontology. Once the on-
tology is investigated, we apply a seeding-based partitioning
algorithm to partition it into a set of modules. Through the
demonstration of OAPT we introduce the tool’s capabilities
and highlight its effectiveness and usability.

Categories and Subject Descriptors
H.4 [Information Systems]: WWW, web applications;
H.4 [Information Systems Applications]: Data mining

Keywords
Semantic Web, ontology, modularization, analysis

1. INTRODUCTION
Ontologies are the backbone of the Semantic Web. By

making information understandable for machines [7] they
enable integrating, searching, and sharing of information on
the Web. The growing value of ontologies has resulted in the
development of a large number of these. According to [3], at
least 7000 ontologies exist on the Semantic Web, providing

∗Department of Computer Engineering, Tanta University,
Egypt
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an unprecedented set of resources for developers of semantic
applications. On the other hand, this large number of avail-
able ontologies makes it hard for software engineers to decide
which ontology(ies) is (are) suitable for their needs. Even,
if a developer settled on an ontology (or a set of ontologies),
she is most often interested in a subset of concepts of the
entire ontology, only. For example, the CHEBI ontology 1,
contains 46,477 fully annotated concepts describing chemical
entities of which not all will be relevant to a specific applica-
tion. Also, it might be necessary to split up large ontologies
like CHEBI in more manageable chunks before feeding them
to ontology matching tools or other applications.

To cope with these challenges, in this demo paper, we
present OAPT, a tool for analyzing and partitioning ontolo-
gies. The tool allows the user to interactively investigate a
candidate input ontology based on a predefined set of qual-
ity criteria. This will help to build trust for sharing and
reusing ontologies. Once an ontology has been analyzed,
the partitioning algorithm can be applied to partition the
ontology into a set of disjoint modules. Our method to ex-
amine the ontology quality is based on the consistency and
richness of the input ontology. First, a suitable reasoner is
applied to the ontology to validate its consistency. It is clear
that the way an ontology is engineered is largely based on
the domain for which it is designed and modeled. Therefore,
a measure for the semantic richness of an ontology should
consider different aspects and its potential for knowledge
representation [9]. To this end, we then consider a set of
structural, semantic, and syntactic metrics. The structural
and syntactic criteria can be used to quantify the ontology
design and its potential for knowledge representation, while
the semantic-based criterion can be used to evaluate how
instances are placed within the ontology.

To partition the analyzed ontology into a set of disjoint
modules, we introduce a seeding-based clustering approach,
called SeeCOnt. In particular, input ontologies are parsed
and represented as concept graphs. A Ranker function is
then used to rank ontology concepts exploiting the concept
graph features. The highest ranked concepts are finally se-
lected as cluster seeds (cluster heads). Each of these con-
stitutes the initial concept of a resulting module. To assign
the remaining concepts to their proper modules, we intro-
duce a membership function. This reduces the complexity
of the comparisons by comparing concepts with only seeds
instead of all other concepts. Please note that this partition-
ing method is independent of the concrete application or a
concrete subset of concepts a user is interested in. Rather, it

1https://www.ebi.ac.uk/chebi/
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relies on intrinsic ontology characteristics only. This allows,
e.g., precomputation of the modules.

The rest of the paper is organized as follows. In Section
2 we present an overview of the proposed system, while in
Section 3 we describe our demonstration scenario. Due to
space restrictions, in this paper we provide only a glimpse of
the techniques employed by OAPT. However, we refer to our
full research paper [1] for algorithmic details and for more
elements of related work.

2. THE TOOL OVERVIEW
First, input ontologies are parsed using the Apache Jena2

framework. Then, a concept graph is extracted. We define
the concept graph G = (C,R,L) as a labeled directed graph.
C = {c1, c2, ..., cn} is a finite set of nodes representing the
concepts of the ontology. R = {r1, r2, ..., rm} denotes a fi-
nite set of directed edges representing various relationships
between concepts in an ontology O, such that rk ∈ R rep-
resents a directed relation between two adjacent concepts
ci, cj ∈ C. L is a finite set of labels of graph nodes and edges
defining the properties of each entity, such as the names of
concepts. n(= |C|) and m are the number of nodes (con-
cepts) and edges (relationships) in G, respectively.

After an input ontology has been parsed and represented
as a concept graph, the OAPT tool analyzes the ontology
based on a predefined set of criteria. If the user is satisfied
with the result of the analysis, the ontology is then parti-
tioned into a set of modules, as shown in Fig. 1.

2.1 Ontology analysis
In order to build trust for an ontology as a prerequisite for

reuse and sharing, we evaluate and analyze the quality of on-
tologies. We start the analysis process by applying an OWL
reasoner to make sure that the input ontology is consistent.
As it is known that the way an ontology is engineered is
specific to the domain for which it has been designed and
modeled, the ontology design and its potential to represent
knowledge should be examined. To this end, we then use the
ontology richness as a metric for its quality. The richness
of the ontology considers different aspects of ontologies and
their potential for knowledge representation [9]. We cate-
gorize measures for the richness of an ontology into three
categories: structural, semantic, and syntactic. We exem-
plary present some implemented metrics for each type in
detail:

• Structural richness. This dimension describes the
topology of the concept hierarchy of an ontology. It in-
cludes several criteria, such as relationship, attribute,
depth, and connection richness. The Relationship

richness, RR, reflects the variability in the types of
relations and the placement of these relations within
the ontology. An ontology that contains numerous re-
lation types other than class-subclass relations is richer
than a taxonomy with just class-subclass relations.
The relation richness (RR) of an ontology O can be

defined as: RR(O) = |R\SC|
|R|

, where |R| is the num-

ber of relationships in the ontology, and |SC| is the
number of sub-class relations. The value of the re-
lation richness criterion is normalized between 0 and
1, where the value of 0 means that the ontology con-
tains only sub-class relationships. Another criterion

2https://jena.apache.org/

that can be used to evaluate the structural richness of
an ontology is the connection richness, ConnR. It
indicates the number of connected components of the
concept graph, i.e., the number of subgraphs linked
to its root element. So, for calculating ConnR we de-
termine the number of root classes, i.e., the children
of the root node. ConnR(O) = 1

No root classes
. This

metric can help to avoid ”islands” forming in a knowl-
edge base as a result of extracting data from separate
sources that do not have common knowledge.

• Semantic & Syntactic richness. These two dimen-
sions describe the semantics and the descriptive infor-
mation of the ontology. In this context, we make use
of several metrics, such as class richness and readabil-
ity [9]. The Class Richness, CR, is an instance-
based criterion used to reflect how instances in an on-
tology are distributed across classes. The class richness
(CR) criterion can be defined as follows: CR(O) =
|CI |
|C|

where |CI | is the number of classes that have in-

stances. Another criterion that is important during
the evaluation of the semantic richness of an ontology
is the descriptivity richness, DR. This measure in-
dicates availability of human-readable knowledge pro-
vided by an ontology. The descriptivity of an ontology
can be defined as the number of concepts that have

comments and/or labels: DR(O) = |C′|
|C|

where |C′| is

the number of concepts having comments and/or la-
bels.

We combine these three dimensions to compute the to-
tal richness of an ontology using a simple weighted-sum ap-
proach. Therefore, the ontology richness (OR) criterion is
defined as follows:

OR(O) = w1 ×StrR(O)+w2 ×SemR(O)+w3 ×SynR(O)
(1)

where StrR(O), SemR(O), and SynR(O) are the total struc-
tural, semantic, and syntactic richness of the ontology (O),
respectively. w1, w2, w3 are weights that reflect the impor-
tance of each of the richness metrics, such that

∑
wi = 1.

The normalized score is then listed for the user to decide
whether to partition the ontology or to look for another one.

2.2 Ontology partitioning
Once the input ontology is inspected, the next step is

to partition the concepts C of the concept graph G into a
set of separate (disjoint) modules M1,M2, ...,Mk such that
the cohesion of concepts within modules is high, while the
coupling across modules is low. To this end, we develop a
seeding-based clustering algorithm. The steps of the algo-
rithms are described in the following:

2.2.1 Determining the proper number of modules
Typically, the number of modules a given ontology should

be split up in is determined by trial and error without using
objective criteria [6]. In contrast, the OAPT tool provides
two options to determine the number of modules. First,
if the user has enough experience with the ontology to be
partitioned, she can directly input the number of modules.
Otherwise, the user asks the tool to suggest an ”optimal”
number of modules.

2.2.2 Ranking the concepts
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Figure 1: Tool overview

The seeding-based algorithm starts by selecting a set of
nodes distinguished as important nodes. These nodes are
then selected to be cluster heads, CH. To quantify the role
a node has within the concept graph, we introduce a new
function, called Ranker. This function should be as simple
as possible but effective. I.e. computing the Ranker function
should not consume much time, however, correctly rank the
concepts inside an ontology.

Ranker Function.
The importance of a node in a concept graph is deter-

mined by the properties of the node itself and its surround-
ings [5, 10]. This leads us to use graph-theoretic measures
based on graph connections in the Ranker function. In the
current software, we included two different implementations
of the Ranker function. The first is based on the centrality

measure of a concept, while the second depends on the con-
text of the concept. To consider the effect of the concept
itself through its edges, we use a set of centrality measures
[4]. During the employment of the first Ranker function,
we observed that it is an effective measure but requires a
lot of time to rank concepts. This makes it unsuitable for
partitioning large ontologies. Therefore, we propose another
ranking function, which is based on the connexion set con-
cept. The connexion set Ψ(ci, d) of a concept ci ∈ C is de-
fined as: Ψ(ci, d) = {SubClass(ci, d) ∪ SuperClass(ci, d)},
where Ψ(ci, d) is the set of all concepts within d levels that
effect on ci. SubClass(ci, d) is the set of children of ci within
d hierarchical levels, and SuperClass(ci, d) is the set of par-
ents of ci within d hierarchical levels. It is evident that the
importance of a concept increases as it has a larger number
of surrounding nodes.

2.2.3 Determining cluster heads.
Once having computed the importance of the concepts of

a concept graph, the next step is to select which concepts
represent cluster heads, CH. If simply the nodes with the
highest score are selected as the cluster heads, the distri-
bution of cluster heads across the concept graph would be
disregarded. To avoid this problem, the distance between
two cluster heads is measured, and among the highest scored
nodes, those with a minimum distance D from each other
are selected as the cluster heads.

2.2.4 Finalizing Clustering
The seeding-based algorithm creates one module per clus-

ter head. Then, it places direct children in the corresponding
cluster and finally, for the remaining nodes, a membership
function is used to determine the cluster each node shall

be assigned to. The direct placement of children reduces
the time complexity, since it reduces the number of compar-
isons by avoiding to compute the membership function for
all concepts.

Membership Function.
Once having determined the cluster heads, (CH), and hav-

ing assigned direct children to their proper heads, the next
step is to place the remaining concepts into the fitting clus-
ter. To this end, we developed a membership function, Mem-

Fun. First, each concept is associated with a flag, F , such
that if F of the concept c is false, it means c is not assigned
to any cluster yet and thus, the membership function has to
be called for the concept c. In addition, the F flag can be set
only once, i.e. each node can be placed in only one cluster
so that there is no overlap between clusters. The member-
ship function determines for each concept ci ∈ C to which
module Mi, i < K it shall be assigned. For this, the simi-
larity of ci with all CHi is calculated and then ci is placed
in a cluster with the maximum similarity value. Using the
proposed membership function, each concept is compared
with the Cluster Heads only, instead of comparing it to all
concepts as usually done (see e.g. [2, 8]). This reduces the
complexity of the algorithm.

In order to compute the membership of a concept to a
cluster head, a linear combination of structural and semantic
similarity measures is calculated as follows:

MemFun(ci, CHk) = α× SNSim(ci, CHk)

+ (1− α)× SemSim(ci, CHk) (2)

where α is a constant between 0 and 1 that reflects the im-
portance of each similarity measure, ShareNeighbors(SNSim)
and semantic similarity SemSim are two similarity mea-
sures that quantify the structural properties of the concept
ci, respectively. The SNSim measure considers the num-
ber of shared neighbors of ci and CHk. The neighbors of
a concept are the concept’s direct children, the concept’s
parents, the concept’s siblings and the concept itself. While
the SemSim measure considers the semantic connection be-
tween a concept and a cluster head, which is based on the
concept hierarchy.

2.2.5 Partitioning analysis
After having partitioned an ontology into a set of mod-

ules, the OAPT tool analyzes the quality of the partitioning
output. This step aims at monitoring the quality of the par-
titioning process. We implemented a set of quality metrics
such as size, cohesion, coupling, and connectivity. The mod-
ule size is used to check the number of classes and number
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(a) Ontology analysis (b) Ontology partitioning

Figure 2: OAPT Screenshots

of relations within the module to validate if it is adequate.

3. DEMONSTRATION SCENARIO
In this demonstration, we will start by presenting the dif-

ferent features of the OAPT tool3 such as the process of an-
alyzing an ontology (Figure 2a), partitioning the ontology,
or sharing the partitioning quality (Figure 2b). The demon-
stration will consist of two main parts. First, we would like
the user to appreciate the importance of the analysis phase.
Second, we present the core of the OAPT tool.

Ontology analysis.
In this part, we aim at demonstrating the importance of

the ontology analysis phase and how it largely affects the
following steps. The user can select an ontology from the
given repository and then start to study the effect of different
evaluation criteria. The user starts with applying a single
evaluation criterion and studies its effect on the semantic
richness of an ontology. Then, the user attempts to combine
different sets of the evaluation criteria to see why this set of
metrics is needed.

Ontology partitioning.
In this part, we demonstrate the various steps of the on-

tology partitioning component. First, we allow the user to
validate the importance of determining an optimal value for
the number of modules. She starts with guessing a value for
the number of modules an ontology should be partitioned
into, and then she asks the tool to suggest such a number.
Once the number of modules that an ontology should be
partitioned into has been determined, the user can apply
the SeeCOnt algorithm to get these modules. The set of the
output modules as well as a set of evaluation metrics will be
shown to the user to validate the quality of the partitioning
algorithm.

4. CONCLUSIONS
In this demo, we show how OAPT can be used to inves-

tigate ontologies in a way that enables knowledge engineers
to determine the quality of an ontology. Once an ontology
is investigated, the tool can partition it into a set of disjoint
modules. We developed and implemented a new seeding-
based clustering approach. The tool has been evaluated
and validated with ontologies from different domains which
demonstrates the effectiveness and the usability of OAPT.

3http://fusion.cs.uni-jena.de/fusion/activity/oapt/

This will be demonstrated in the sample workload that we
prepare for the demo. In our future work, we willo complete
the tool in order to support the developers in selecting which
module(s) fulfill(s) his requirements. Furthermore, we plan
to improve the ontology analysis phase by considering more
measures and criteria and to improve also the partitioning
phase by taking into account other partitioning techniques.
Furthermore, we plan to visualize all these processes and
steps to be more user-interactive.
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ABSTRACT
With unprecedented amounts of multimodal data on the
Internet, there is an increasing demand for systems with a
more fine-grained understanding of visual data. ShapeEx-
plorer is an interactive software tool based on a detailed
analysis of images in terms of object shapes and parts. For
instance, given an image of a donkey, the system may rely
on previously acquired knowledge about zebras and dogs
to automatically locate and label the head, legs, tail, and
so on. Based on such semantic models, ShapeExplorer can
then generate morphing animations, synthesize new shape
contours, and support object part-based queries as well as
clipart-based image retrieval.

Keywords
Shape Knowledge Harvesting, Shape Matching, Shape Seg-
mentation, Shape Synthesis

1. INTRODUCTION
In recent years, we have seen an explosion in the availability

of multimodal data on the Internet, driven mostly by the
ubiquity of mobile devices and online sharing platforms.
Despite great advances in tasks such as object detection and
tracking and multimedia retrieval, we still lack systems that
provide more fine-grained semantic analyses of visual data.

In their widely noted work, Deng et al. [4] introduced
ImageNet, a hierarchical organization of visual knowledge in
raw images, according to semantic categories and relations.
We take a further step in this direction and utilize the se-
mantics of individual parts, subparts, and their shapes to
facilitate their interpretation and manipulation. We present
ShapeExplorer, an interactive software tool that analyzes
images of objects and locates and labels specific object parts.
For instance, given an image of a donkey, it can draw on
previously analyzed images of related objects, e.g. of zebras
or even just of dogs, to infer the location and labels of likely
parts such as the head, legs, tail, and so on. An analysis in
terms of parts is motivated by extant evidence from cognitive
research on human vision showing that shape parts play an

∗Corresponding author: yafang.wang@sdu.edu.cn
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important role in the lower stages of object recognition [9].
Seeing a small part of an object often suffices for a human
to be able to recognize the object, provided that the part
is sufficiently unique [3, 2]. Still, fine-grained shape under-
standing remains a challenging problem in computer vision.
It appears that richer data is necessary so that systems can
be equipped with the required background knowledge.

Independently from the developments in computer vision,
there has been considerable progress on automatically con-
structing knowledge bases (KB), utilizing textual information
to extract relational facts and attributes. Examples include
YAGO [10, 12], DBpedia [1], Freebase (www.freebase.com),
ConceptNet [7], and WebChild [11]. Often, the backbone
of such KBs is a taxonomy of entity types or of part-whole
relationships (e.g., Head isPartOf Horse).

In our work, we have constructed a visual knowledge base
called PartNet, for object parts and their shapes. Part-
Net semantically describes objects in terms of their classes,
parts, and visual appearance. Unlike regular KBs, it gathers
examples of the shape contours of objects and object parts.

Based on this, ShapeExplorer provides several higher-level
operations, including (partial) shape querying, semantic mor-
phing, shape synthesis, and part-based image retrieval using
cliparts.

2. FRAMEWORK

Figure 1: Flow diagram

Hierarchical Part Exploration. Figure 1 provides an
overview of ShapeExplorer’s operational flow. The system is
based on the PartNet knowledge repository, which users can
explore hierarchically. This knowledge is also used in several
applications such as morphing and querying.

PartNet is organized according to taxonomic categories
(animals, dinosaurs, home appliances, etc.), sub-categories
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(mammals, brontosauruses, chairs, etc.), and their part de-
compositions. At each level, the system presents correspond-
ing shapes that the user may select and analyze. Internally,
these are stored as subject-predicate-object triples, similar
to regular knowledge bases, but including multimodal items.

There are two main user interfaces. Figure 3 presents a
screenshot of the primary control center for part knowledge
exploration. On the left side, the user can explore the knowl-
edge in a convenient hierarchical tree based on categories
(animals, home appliances, etc.), sub-categories (mammals,
chairs, etc.), and their part decompositions. The right side of
the screen serves as a working area. The users drags shapes
into the bottom part of that area and can then select from
several operations. These include an image analysis to infer
the segmentation and labeling, which we describe below, as
well as higher-level applications such as querying, morph-
ing, and automated synthesis and completion (described in
Section 3). Another user interface, shown in Figure 4, is
used for part-based image retrieval. Users may compose a
clipart-style query based on object parts and the system
retrieves matching images from the database (see Section 3).

Image Analysis. ShapeExplorer’s image analysis is based
on a joint inference procedure for joint classification, seg-
mentation, and labeling, leveraging visual knowledge from
previously analyzed images. In order to bootstrap this pro-
cess in a particular domain, a small number of manually
annotated seed images need to have been fed to the system
initially. For those initial seeds, the user manually provides
an image label, a segmentation, and part labels for the seg-
ments. The labels are chosen from the WordNet taxonomy
[5]. For instance, the user could mark the image as portray-
ing an elephant, and then the individual segments can be
annotated with part labels such as head, tail, etc.

Figure 2: ShapeExplorer’s hierarchical organization

After that, one can progressively augment ShapeExplorer’s
collected knowledge by adding new images, which the system
analyzes using a transfer learning strategy. The system first
generates a raw set of segmentation candidates, considering
merely the image geometry using the short cut strategy
[8]. It then matches the image with similar, previously
seen ones using the inner-distance method [6], described in
more detail later on in Section 3. From the top-3 matching
images, we transfer additional candidate segmentations based
on the contour alignments. The resulting set of candidate
segmentations is pruned using semantic constraints.

Next, we determine label hypotheses for the image and
for the parts based on the top-5 matching images in terms
of the inner-distance method. For each cut/label candidate,
we compute a confidence score based on the probability of
the label within the top-5 matches and based on the cost

of the contour point alignment. Finally, we perform a joint
optimization step, relying on an Integer Linear Program to
maximize the sum of confidence scores for the chosen candi-
dates subject to compatibility and cardinality constraints.

In Figure 2, we illustrate the kind of knowledge that Shape-
Explorer collects. The general taxonomy comes from Word-
Net, while image representations are derived from the seeds
and the subsequent joint inference procedure for new images.

Implementation Details. ShapeExplorer is implemented
as a web application with a JavaScript-driven browser in-
terface that users can access via their web browsers. The
back-end is implemented in Java and includes the powerful
PartNet shape part knowledge base as well as images indexed
using Lire1.

3. APPLICATIONS
Based on the core framework, ShapeExplorer implements

algorithms for several higher-level applications.

3.1 (Partial) Shape Queries
Users may provide an input image with an unknown shape

and then ShapeExplorer attempts to match it against known
shapes, retrieving top-k matches from the repository. The
input image may be partial (i.e., with occlusions or miss-
ing parts). Thus, Alg. 1 considers subsets of the parts
of every shape class as possible candidates. This is re-
stricted to parts that are adjacent and sufficiently large,
in order to avoid a combinatorial explosion. We use the
inner-distance method [6] for similarity computation, which
we found to be efficient, rotation-invariant, and robust. Given
two shapes A and B, described by their contour point se-
quences p1, p2, . . . , pn and q1, q2, . . . , qm, respectively, we use
χ2 statistics to compare point histograms, resulting in a
cost value c(pi, qj). Then we solve for the optimal matching
between A and B, denoted as π : (pi, qπ(i)) using dynamic
programming. We compute the minimum cost value as
C(π) =

∑n
i=1 c(i, π(i)) and the number of matching points

as M(π) =
∑n
i=1 δ(i), where δ(i) = 1 if π(i) 6= ∅, and 0

otherwise. Finally, given a best matching shape, we define a
segment cut, denoted as cutA(pi, pj), as the 2D line connect-
ing contour points pi,pj in A. We use the computed shape
matching π to map cutA(pi, pj) onto the input shape B as
cutB(qπ(i), qπ(j)). Thus knowledge from existing images is
transferred onto new ones to classify them and annotate their
parts.

Algorithm 1 (Partial) Shape Querying

Input: connected input part and shape database, candidate object
classes C = {c0, c1, . . . , cnC},number of results k
Output: top-k matching shapes

1: for each class ci ∈ C do
2: for each part pj of ci do
3: partialShape[]← set of relevant combinations of parts of pj
4: for each part psz ∈ partialShape[] do
5: cost[psz ]← matching cost C(π(part, psz))
6: shape[]← ranking of shapes in cost[] according to cost values
7: return top-k entries in shape[]

In Figure 3, the user selects an elephant head (blue) and
a horse body (green) and synthesizes them together in the
bottom right input region. This new shape is converted
into a simple contour and given as input to ShapeExplorer.

1http://www.lire-project.net/
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Figure 3: Screenshot for part knowledge exploration

Figure 4: Screenshot for part-based clipart image retrieval

In partial query mode, the top-5 most similar results with
respect to their partial similarity are shown in the top row on
the right. These can be used to retrieve images with objects
showing similar shapes.

3.2 Semantic Morphing
Given two images, ShapeExplorer can automatically per-

form a semantic form of morphing by classifying and per-
forming a conformal joint segmentation of the two images.
Alg. 2 first produces a segmentation of the two images into
the same meaningful parts. This task is accomplished by
searching for the lowest common cuts in the part hierarchies
(e.g., a joint segmentation of a horse and elephant will return
heads without the unique trunk of the elephant).

Algorithm 2 Part Based Morphing

Input: shape1 and shape2, part labels L = {l0, l1, ..., ln}
Output: morphing animation sequence

1: part1[]← shapeSegmentation(shape1)
2: part2[]← shapeSegmentation(shape2)
3: align part2[] to part1[] using common parts
4: for each label li ∈ L do
5: point1[li][]← samplePoints(part1[li])
6: point2[li][]← samplePoints(part2[li])
7: return morphing(shape1, shape2, point1[][], point2[][])

Having a full part correspondence between the two shapes,
our system generates a morphing sequence which gradually
interpolates from one to the other. See the morphing se-
quence in Figure 1 for an example of morphing from elephant
to horse. This is accomplished by performing a per-part
morphing while maintaining connectivity between adjacent
parts during the deformation.

The morphing algorithm generates animations by smoothly
interpolating transitions between corresponding parts in each
shape (see morphing sequence in Figure 1). During the ani-
mation, users may pause and resume it to review intermediate
frames, which can also serve as new inputs for querying and
synthesis operations. Additionally, the user may select the
intermediate frames as new inputs, which may further be
queried, synthesized, and used to retrieve images.

3.3 Shape Synthesis and Completion
In shape synthesis mode, ShapeExplorer starts with a new

user-provided partial shape and then uses best matching
shapes from the repository to synthesize the missing parts
so as to obtain a complete image.

Given an unknown shape, Alg. 3 first finds the top-1 best
matching shape in the repository using the (Partial) Shape
Query method. The segmentation and labels of the matching
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shape are transferred to the input image. Then, missing
parts in the input shape with respect to the matched shape
are detected. We synthesize the missing parts by transfer-
ring them from the matched shape onto the input image.
Specifically, we subtract from the retrieved shape the parts
in common with the input one and gracefully translate, scale,
and rotate the shape and its parts so that they fit to their
adjacent ones in the unknown one. Please note that body
might have many part-cut labels, such as head, leg and tail.
Therefore, line 6 means whether pi and pj have matching
part-cut labels. For example, head can match body.

Algorithm 3 Shape Synthesis
Input: query shape, shape database
Output: new shape

1: rParts[]← parts of top-1 partial query result for shape (Alg. 1)
2: parts[]← labeled segmentation of shape via Alg. 1
3: mParts[]← rParts[]− parts[]
4: for each part pi ∈ mParts[] do
5: for each part pj ∈ parts[] do
6: if label(pi) matches label(pj) then
7: transfer from pi to pj in shape
8: return shape

In Figure 3, the user selects an elephant head (blue) and
a horse body (green) and synthesizes them together in the
bottom right input region. Synthesis results are displayed in
the second row of the results region in the work area. These
results can be used for retrieving similar images.

3.4 Clipart-based Image Retrieval
Another option is to perform image retrieval from a large

image repository by composing a clipart-like query using
parts or sketches. Our multimodal retrieval interface is com-
posed of four components (see Figure 4): a control panel on
the left, a text query field on the top, the working canvas in
the middle, and the retrieval results on the right. Figure 5
illustrates the workflow of the part-based clipart image re-
trieval system. Users can issue textual queries to retrieve
parts of interest from the PartNet knowledge repository.
They can explore the results and drag parts of interest into
the working area so as to craft a query image. This query
image may be composed of parts stemming from different
objects in the repository. Users also are able to modify the
composition by drawing sketches using a pencil tool in con-
junction with a color selection interface. This can be used to
add additional items to the image, or to modify the original
colors and textures of the parts coming from PartNet. An
eraser tool is also provided for cleaning.

Figure 5: Part-based clipart image retrieval

Finally, the query image is used to retrieve similar images
from the database. In the example in Figure 4, the user
seeks to find images of cups with cat tails as handles. With
standard image retrieval tools, it is hard to find such images
unless they have sufficient textual metadata. With Shape-
Explorer, the user can first issue a query for the word “cup”
to find the cup body in the PartNet repository. This is then

dragged from the results area onto the canvas. Similarly, the
user finds the body and legs of a cat in PartNet and incor-
porates them into the query canvas. In order to ensure that
the handle looks like a cat tail, the user can pick the color
brown via the color selection interface and use the pencil tool
to sketch a brown handle. This results in a sort of clipart
image that can be used to retrieve matching real images from
the database. For image matching, ShapeExplorer relies on
a set of image features, combining JCD (Joint Composite
Descriptor) and edge histograms. Thus, we can find cups
with cat-like handles. Figure 4 shows the top-3 results, and
the user may scroll to obtain further images.

4. CONCLUSION
In this paper, we have presented ShapeExplorer, a system

aimed at fine-grained analyses of images in terms of object
parts that captures multimodal knowledge in more detail than
previous work. We see that explicit semantic representations
of the parts enable several novel applications, including novel
forms of querying, semantics-driven morphing, and synthesis.
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1. INTRODUCTION 
The Personal Cloud paradigm emerges as a decentralized and 
privacy preserving solution to manage personal documents under 
users’ control. It can be seen as an alternative to the current Web 
model, which centralizes the complete digital life of millions of 
individuals in data silos, and increases frustration generated by the 
weak control of the individuals on the way their personal data are 
shared, used and disseminated. The home cloud is the most 
emblematic form of Personal Cloud. It can be thought of as a 
dedicated box connected to the user's internet gateway, equipped 
with storage, computing and communication facilities [11], 
running a personal server and acquiring data from multiple 
sources [3]. This personal server is in charge of organizing the 
personal dataspace in a document database style to ease its 
management and to protect it against loss, theft and abusive use. 
Many startups (e.g., OwnCloud, CozyCloud, etc.) and research 
projects (e.g., PlugDB at Inria or OpenPDS at MIT) investigate 
this direction.  

To make the vision of the Personal Cloud reality, two important 
challenges related to data management have to be considered. 
First, leaving the data management control into the user's hands 
pushes the security issues to the user's computing platform as 
well. Hence, besides the management of collections of personal 
documents of any type, the personal cloud takes the security and 
privacy in charge. This requires protecting personal documents 
and their metadata by means of encryption and evaluation of 
access control rules. This challenge is paramount considering that 
the Personal Cloud paradigm puts a significant part of the digital 
life of the individual in the user's hands.  

The second challenge is rooted in the high level of 
decentralization of the Personal Cloud, i.e., each user owns her 
personal cloud (see Figure 1). Indeed, this user-centric 
architecture must not hinder the development of global data 
services of great interest for the individuals, the companies and 
the community, which is also required to meet a viable business 
model. Hence, as in a centralized setting, certain applications 
require crossing data from multiple individual Personal Clouds. 
This is the case of any application developed for communities of 
users sharing a similar interest. For example, within a community 
of patients suffering from the same pathologies, each participating 
user may provide her own set of information such that distributed 
searches may help to identify within the community the most 
relevant documents related to current treatments or symptoms, or 
more generally, help users to share and benefit from each other 
experiences. Clearly, this must be performed without exposing the 
privacy of the participating users. 

This demonstration tackles precisely these two challenges. Our 
approach relies on a secure hardware based co-server, called 
secure token hereafter, which provides a search engine interface to 
users and applications to manage the documents with high 
security and privacy guarantees. This search engine, described in 

detail in [5], manages the encryption/decryption of documents, 
answers local searches and enforces access control rules on the fly 
with good performance. In this demonstration, we extend this 
previous work to provide a secure distributed search engine, such 
that applications can query the documents stored in a large 
number of Personal Clouds. Any global search has to be 
accomplished while preserving the participants' privacy, i.e., no 
further information beside the computation result can be learned 
by any participant or a third party. This property is key to 
encourage users to participate in global computations. 

The implementation of a secure distributed search engine is 
however challenging. Considering a top-k search where the score 
of each document is evaluated by a tf-idf metric and answering 
global searches over a (large) community of users require (1) to 
compute some global values (i.e., the total number of shared 
documents and the inverse frequency of the query terms in all 
these documents), (2) to evaluate the score of each document 
accessible for the query according to these global values, and then 
(3) to identify the k documents with the highest scores among the 
set of participants. 

Although users may accept to contribute to a given community of 
interest by granting a right to search over a subset of their own 
personal documents, the risk that any compromised participant 
gains access to the complete collection of documents must be 
avoided. This can be achieved by minimizing the amount of 
information exposed during query evaluation. While the final 
result of each query (i.e., the k most relevant documents) can be 
published to the community, neither the intermediate 
computations nor the complete set of local documents eligible for 
a given query should be revealed.  

Computing a result without revealing input data can be done (1) 
by outsourcing the data on a trusted party, but we consider this 
option as not satisfactory in personal cloud context where no 
trusted entity clearly appears in the scenario, (2) by using Secure-
Multi-Party (SMC) cryptographic techniques, but these techniques 
cannot currently meet both query generality and scalability 
objectives [10] or (3) by relying on privacy preserving distributed 
query computation techniques (see Section 3).  

Our approach capitalizes on the tamper resistant hardware 
available on each personal cloud to form a global secure 
decentralized data platform. No plaintext data will be exposed 
outside of the secure elements except the final result to be 
published. The risk of data disclosure thus only depends on the 
possibility of the secure elements of certain participants to be 
compromised, i.e., the secure token has been tampered with and 
the decryption keys it contains may become accessible to 
malicious participants.  Although these attacks are highly difficult 
and costly to conduct, they cannot be totally ignored. It is 
therefore mandatory to quantify the impact of such an attack and 
to propose computation strategies minimizing it. We then 
introduce privacy metrics linked to the amount of intermediate 
personal data made accessible to the secure infrastructure during 
the computation and show how it can be minimized.  

The aim of this demonstration is to show that practical and 
efficient solutions can be devised to evaluate distributed searches 
within large communities of Personal Cloud users with a very 
limited privacy risk for the participants. More precisely, we 
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demonstrate that “gossip” based computations [8] (1) can provide 
accurate search results with good performance and scalability (i.e., 
large communities of users, with thousands to millions of personal 
clouds) and (2) can drastically minimize the risk of privacy 
violation even if compromised participants are involved in the 
computation.  

2. ARCHITECTURE AND SCENARIOS 
Let us consider the Secure Personal Cloud Platform of Alice as 
pictured in Figure 1. The main component is a home cloud data 
system gathering personal data from multiple sources (employer, 
banks, hospitals, commercial web sites, etc.) and devices (smart 
meters, quantified-self devices, smartphones, cameras, etc.). The 
Personal Cloud can be implemented by any type of computing 
platform with storage facilities such as a set-top box or a plug 
computer. This data system is complemented by a secure co-
server which can be hosted by any type of tamper-resistant 
devices flourishing today, e.g., Mobile Security Card (produced 
by Giesecke & Devrient), Personal Portable Security Device 
(produced by Gemalto and Lexar), Multimedia SIM card [4] or 
Secure Portable Token [5]. Whatever its commercial name and 
form factor, a tamper-resistant device embeds a secure 
microcontroller (e.g., a smart card chip) connected to a large 
NAND Flash memory (e.g., an SD card) and can communicate 
with a host through a USB, Bluetooth or Ethernet port. Open 
hardware secure tokens are also provided (e.g., by the Versailles 
Science Lab, http://tinyurl.com/UVSQ-Lab), and can be built by 
any electronic manufacturer. 

 
Figure 1: Secure Personal Cloud architecture 

Alice participates here to a community of patients. Each secure 
token acts as a participant in a secure distributed search allowing 
users and applications to express full-text search queries over 
document collections stored within the community. The token 
being the root of security, it is in charge of data access control, 
encryption/decryption and metadata maintenance, that is the 
insertion, update and deletion of documents in the full-text search 
index. Each secure token locally stores an index of the user’s 
documents build on the documents content and including a set of 
access control terms associated with these documents. It also 
stores cryptographic keys used to protect the documents, stored 
encrypted locally or remotely on external cloud storage. Each user 
grants access to the documents by specifying access control rules 
(conjunction and disjunction of access control terms). The secure 
tokens collaboratively compute the result of top-k information 
retrieval queries issued by users or applications by only 
considering the documents matching the access control rules on 
each personal cloud.  

The documents can be any form of files (pictures, text files, pdf 
files, mails, data streams produced by sensors, etc.) associated to a 
set of terms. The terms are extracted from the file content and 

from metadata describing it (e.g., name, type, date, creator, words, 
visterms, tags set by the user herself). A query issued by a user or 
an application can be any form of term search expression, with a 
ranking function (e.g., tf-idf [15]) identifying the top-k most 
relevant documents (see Section 3). Only the documents granted 
to the user/application must appear in the query result. Hence, 
such a search engine can be used locally to query any documents 
entering a user dataspace, in the same spirit as a Google desktop 
or Spotlight augmented with access control capabilities. 

A distributed search can be initiated by any member of the 
community to retrieve the most relevant documents for the query 
within the community. Each member within the community can 
contribute to the query by granting access to her own documents.  

The question is how to pool these dataspaces without the 
assistance of a central server. The objective indeed is to avoid 
centralizing sensitive information that may be at risk in case the 
server is compromised. We consider the existence of a network 
infrastructure enabling direct information exchange between any 
pair of personal clouds taking part in a distributed search query. 
We also assume that each participant owns a public/private key 
pair. Within a community, all participants exchange their public 
key at the time of registration. This could be achieved using 
traditional PKI or GPG techniques.  

3. TECHNICAL CHALLENGES 
Search engine requirements. To identify the top-k most relevant 
documents in a given collection for a certain query, a ranking 
function is used to score each document. For this demonstration, 
we use the classical tf-idf function: 

                     
 

  
 

   

 

where fd,t is the occurrence number of term t in the document d, N 
is the total number of indexed documents and Ft is the number of 
documents that contain t. For a local query (which searches into 
single personal cloud) N and Ft are local values (i.e. the local 
number of indexed documents and the local number of documents 
that contain the term t). To evaluate a global search, the scores 
computed in the different personal clouds must be comparable. 
This requires computing beforehand the global values of N and Ft 
to be used in the previous formula. Then, the local top-k scores 
have to be exchanged and compared to find the global result. To 
this end each participant has to transmit their data to others. 

Security constraints. The secure tokens are the unique source of 
trust in the architecture. They are endowed with a tamper resistant 
element (secure microcontroller) which prevents physical attacks 
and also its owner from having access to the secret data it contains 
and manipulates. Hence, even the holder of the secure token 
cannot spy intermediate data manipulated by his token during a 
computation (similar with a banking card holder that has no 
access to the cryptographic secret stored in his card and cannot 
spy its data processing). However, despite its high level of 
security, we cannot exclude the possibility of having a small 
percentage of hacked tokens (e.g., as a result of a sophisticated 
attack from the token owner). Such an attack would lead the 
personal cloud owner to have access to the cryptographic material 
stored inside her secure token. From this, she can potentially 
decrypt any encrypted information sent during the computation to 
her personal cloud. One objective of this demonstration is to 
evaluate the risk taken by the participants of a community to have 
their personal data unexpectedly exposed in this case. This risk 
analysis is essential since the hardware is left into users hands. 
Breaking a set of secure tokens should not put the personal 
documents of the whole community at risk. To evaluate that risk, 
we measure (1) for a given set of (potentially compromised) 
secure tokens, the amount of intermediate results and documents 
exposed during the evaluation of a distributed search query, and 
(2) for a given set of (not compromised) participants, the amount 
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of her own information transmitted to remote secure tokens and 
the number of secure tokens to which this information is 
disseminated. The first metric gives an estimate of the benefit of 
an attack for the attackers. The security being evaluated as a ratio 
between the cost of the attack and its benefit, the lower the value 
is, the better the security is. The second metric estimates the 
impact of the information leak for an honest participant. Our 
objective is to keep both metrics as low as possible, and never 
favor a solution which puts the complete dataset at risk in case of 
successful attacks. 

State of the art solutions. Distributed query processing and the 
top-k queries are well investigated topics. Although, to our 
knowledge, decentralized secure computation of top-k queries on 
a population of secure elements has not been investigated yet, 
several previous proposals are related to our work. A first 
approach to solve the problem is to rely on a super peer (i.e., a 
central manager or a designated peer used as a coordinator) as 
proposed in [6, 12, 13, 14]. However, these solutions do not 
comply with our security requirement since the complete dataset 
becomes at risk if the super peer is compromised. Other existing 
approaches [1, 7] propose to organize the peers as a tree to process 
the queries. However, tree architectures are very sensitive to peers 
failures. In addition, the peers participating in the tree potentially 
gather a lot of branches and can thus be the transit point of a large 
amount of data, leading to large privacy breaches if compromised. 
Other solutions found in the literature use gossip protocols, which 
are highly suitable for fully decentralized architectures. In [6], a 
gossip protocol is used to broadcast top-k queries only to the peers 
who have similar interests as the querier, which is very interesting 
in our context if transposed to "trusted peers" and is part of our 
future works. However, the solution proposed in [6] assumes that 
the querier can see all the intermediate results coming from the 
participants, which would not be acceptable in our context. In 
Chiaroscuro [2], participating devices collaborate using gossip 
style computations to achieve privacy thanks to encryption and 
differential privacy. But this solution is dedicated to perform 
clustering operations on time series. A recent proposal [13] 
addresses the problem of computing SQL aggregate queries over 
an asymmetric architecture composed of potentially large 
populations of secure tokens and a central server. However, the 
focus is to prevent data inferences while delegating operations to 
the central server. Also, the secure tokens share the same secret 
key, which incurs the risk of exposing the complete dataset if one 
secure token is hacked.  

4. DESIGN OF THE SOLUTION 
Our solution to perform the distributed search relies on three main 
phases described as follows. In Phases 1 and 3, gossip 
computations algorithms [8] are used to respectively compute a 
sum and a top-k using of gossip computation algorithms. 

Phase 1: computation of global N and Ft. The query is 
broadcasted to the participants. The secure token of each 
participant computes locally its own contribution to the global N 
and Ft, considering only the documents compliant with its active 
access control rules. The local contributions are then aggregated 
in order to compute the global values for N and Ft according to the 
push-sum algorithm proposed in [8]. The precision on the 
approximate values obtained on each participant for N and Ft can 
be controlled by the number of gossip exchange rounds which 
remains reasonable even for a large number of participants: 

                                  
where nb_round is the number of rounds necessary in a network 
of n participants to obtained with a probability at least 1-   a result 
with an error under    At the end of this step, each participant has 
an approximate value of the global N and Ft values. 

Phase 2: local computations of the top-k. Based on these global 
values, each secure token computes locally the global scores for 

the documents compliant with its active access control rules and 
produces a local top-k. 

Phase 3: computation of the global top-k. A new phase of 
gossip communication starts during which secure tokens exchange 
their top-k. At each round, each secure token receives k tuples 
(cloud_id, doc_id, score) from another peer and selects the k 
highest scores within the union of the received tuples and the local 
tuples. Then, it chooses randomly the next peer to which it sends 
its current local result. In this way, the tokens refine their local 
results at each round of the protocol. After a given number of 
rounds [8], all the tokens share a set of local results that are close 
to the exact global result. Due to the random characteristic of 
gossip protocols, the final result is only an approximation of the 
exact result (i.e., the one which would have been obtained on a 
centralized union of all the authorized documents in all 
participating personal clouds). The present demonstration will 
show that the results are good and that the improvement of the 
result accuracy is fast in number of rounds. 

To enforce the security of the protocol and meet the privacy 
requirement, an asymmetric encryption/decryption system is used. 
Each token owns a private/public key pair. We assume in the 
demonstration that every participant has at disposal the complete 
list of public keys of all the participants. During the gossip 
communication phases tokens randomly choose a public key in 
the list, encrypt their message to transmit it to the corresponding 
secure token which decrypts the message with its private key. A 
token can thus be sure that its message can only be read by the 
chosen recipient, which limits the data exposure risk. 

5. DEMONSTRATION 
In this section, we present our prototype platform and describe the 
demonstration scenario covering the security and the performance 
of the proposed solution for distributed search in the secure 
Personal Cloud architecture. 

5.1. Platform 
Hardware Platform. The demonstration platform is an instance 
of the architecture depicted in Figure 1. A laptop is used as the 
communication infrastructure, and 20 secure tokens (see Figure 2) 
are used as participants. Each token is running the distributed 
search algorithm based on gossip computations as presented in the 
previous section, and evaluates the local access control rules. The 
local searches are performed using a previous prototype [11]. The 
secure tokens are equipped with a 32 bit RISC MCU clocked at 
120 MHz with 128 KB of static RAM and 1MB of NOR Flash (to 
store the code of the distributed search engine). The MCU is 
connected to a smartcard chip hosting the cryptographic material 
and to a μSD card which stores the inverted index use by the 
embedded search engine. The PC which connects to all tokens via 
a USB port plays the role of the network infrastructure, controls 
the communications between tokens, and shows exchanged data 
and results it receives from tokens.  

 

Figure 2: Secure Tokens used in the demonstration.  

Graphical User Interface.. The GUI is used to control the system 
and evaluate our privacy metrics. Any participant can issue a 
global search query and retrieve the relevant files. The 
demonstration interface compares the efficiency, performance and 
privacy offered by our distributed search algorithm with a secure 
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solution where all the secure tokens would share the same 
encryption key (in the spirit of [13]) and with tree based 
approaches inspired by [1]. The accuracy of the search is 
compared with a central search computed over the union of the 
document databases stored in the participating personal clouds 
(using traditional precision and recall metrics). To evaluate the 
privacy level of our computation technique, the GUI also shows 
the probability of data disclosure to the attackers and the number 
of external documents that an attacker could read. To this end, the 
interface enables choosing certain participants to be considered as 
being corrupted.  

Dataset. We use the Pseudo-desktop collection [9] as the baseline 
dataset of the demonstration. It includes more than 27000 
documents (representing emails, photos, pdf, docs, and ppts). We 
randomly spread the documents among the tokens. We also use a 
synthetic dataset to show the scalability of the approach with more 
documents in each personal cloud. 

5.2. Scenario 
The first goal of this demonstration is to present the performance 
of the distributed search. Each participant has set her own access 
control rules. One of them issues a query (set of terms) and 
chooses the expected error rate. The number of iterations in the 
gossip phases is then fixed according to this error rate. The result 
(an approximate top-k obtained by each participant) is compared 
to the exact one, which is computed by the PC on the union of the 
authorized documents. Query times, average score error, precision 
and recall are presented and compared. The demonstration shows 
that good performance can be achieved even for low error rates. 
The average score error is given by the difference between the 
scores obtained in the approximate results for each token and the 
exact score obtained with a centralized search. The recall 
(respectively, precision) is given by the ratio between the number 
of documents present in both the approximate result and the exact 
result, and the number of results (respectively, the number of 
documents in the exact result with a score greater than the 
minimum in the approximate result). 

The second goal of this demonstration is to focus on the privacy 
properties of gossip computations. The attendees choose some 
personal clouds as being corrupted before running the query. First, 
the interface will show the ratio between the number of distinct 
couples (cloud_id, doc_id, score) computed by each token which 
are exposed to the attackers, and the total number of couples 
(cloud_id, doc_id, score) in the local top-k computed during the 
query. Second, for each participant considered as honest, the 
interface plots the ratio between the number of couples which do 
not appear in the result and have been transmitted (directly or 
transitively) to one of the attackers during the execution, and the 
number couples which have been computed locally (typically k). 

These two metrics obtained with our search algorithm will be 
compared to those obtained using alternatives representative of 
state of the art solutions: (1) a tree based evaluation, where the 
data flow between the participants is modeled as a tree structure 
(inspired by [1]) and (2) a secure query execution where all secure 
tokens would share a same secret key to evaluate the query 
(inspired by [13]). 

5.3. Demonstration results 
In terms of performance, the execution query time with our 
proposal is larger compared to a centralized database. This is 
obvious since our system requires a number of gossip iterations. 
However, the execution time is reasonable even on large 
databases and with large numbers of participants (obtained by 
simulation in the demonstration). In terms of precision, the 
average score error is less than 10% and the precision lies between 
0.6 and 0.9 with a relatively low number of iterations. These 
values show that our proposal can be used in practice. In terms of 
privacy and security, our proposal shows much better results than 
existing approaches. Typically, honest users involved in the 

computation disclose few couples (cloud_id, doc_id, score) to the 
attackers. Considering 10% of attackers, the probability to expose 
a couple to an attacker is around 20% in our experiments. Our 
technique could be improved by choosing in the first gossip steps 
only users considered as trusted by the participant. This would 
decrease this number drastically (this is part of our future works). 
And for an attacker, the benefit of an attack is very small since 
only a very tiny proportion of the intermediate results can be 
obtained. 

6. CONCLUSION 
The emerging Personal Could paradigm holds the promise of a 
Privacy-by-Design storage and computing platform where personal 
data remains under the individual's control while being shared by 
valuable applications. In this demonstration, we present a 
distributed secure search engine with the objective to provide a high 
level of security founded on the introduction of low cost secure 
tokens in the architecture. This architecture minimizes the loss of 
privacy risks even if some participants are compromised, i.e., could 
bypass the tamper resistance of the token. While many personal 
cloud platforms are flourishing, riding the wave of repeated 
scandals blemishing the typical centralized management of personal 
data, none of them provides such a tangible source of trust to the 
individuals. We hope that the platform demonstrated here, which 
enable both local application and distributed ones, emphasizes the 
interest of studying new database techniques based on secure 
hardware for the database community. . 
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ABSTRACT
Keyword-search engines (e.g. Web-search) usually can be
outperformed by a specialized system optimized for a spe-
cific domain, type of data, or queries [8, 2, 12, 5, 11, 9]. For
example, Halevy et. al. in [13] demonstrate how a special-
ized Google Fusion Tables spatial search can outperform the
general-purpose Google Web-search on bike trails search in
San Francisco Bay Area. At the same time, Web content
providers usually exhibit a specific focus for their postings.
For example, information at http://www.csail.mit.edu is
devoted to Computer Science research and education, Han-
nah Montana is mostly tweeting about music, and the same
is true for most sources.
This paper describes the work in progress on a new Type-

aware Web-search system that uses topical focus of informa-
tion sources to process a large class of queries better than
a regular Web search-engine. It leverages semantic profiles
similar to [10, 6, 7] and a new Type-aware Locality-Sensitive
Hashing (TLSH) scheme to accomplish it.

1. INTRODUCTION
Figure 1 illustrates search-results from one of the Web

search engines for query Frozen in Phoenix where a user is
trying to find a theater to watch a movie. You can see the
search-results are not the best (about ice cream and frozen
yogurt). It happened, because the generic Web-search en-
gine employs simple term matching of the query with the
Web pages, and did not take into account type information,
which can be done to get more relevant results. Table 1 illus-
trates the Web-search results of a type-aware search-engine
described here for queries Careers of People with Ph.D. You
can see, it returns precisely what the user has been asking for
in these queries. A regular Web-search engine would return
career-pages of companies and recruiting agencies, resulting
from term matching to careers.

Categories and Subject Descriptors
H.2 [Database Management]: Heterogeneous Databases

©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

Figure 1: Search-results for Frozen in Phoenix

Query: Careers of People with Ph.D.

Results: - Romania News Watch:

...Ponta obtained his PhD from the University of

Bucharest while acting as Secretary of State

in the government of an earlier prime minister..

Table 1: Type-aware Search Results

2. ARCHITECTURE
The crawled Web pages are processed by a Natural Lan-

guage Processing domain-dependent parser, which emits the
entity data along with the text fragments they came from
and saves the result into a large-scale storage (see Figure 2
for a schematic). Both a large-scale semi-structured sharded
storage engine as well as a parallel relational engine are used.

The earlier work in [10] introduces semantic profiles in-
tended to capture the semantics of an information source
and store it in a compact and reusable manner. It summa-
rizes and accumulates all types of entities from the source.
For example, the newspaper New York Times often pub-
lishes about companies, products, and organizations; The
Finance usually tweets about dividends and products; The
Oregonian publishes about sports, holidays, music, and
hence their profiles are comprised of these types. These pro-
files are calculated and saved for each source. Due to space
limitations, interested readers are referred to [10] for more
details on profile construction.

Next, the hashing routines treat each profile as a vector
and assign it to one of the hash tables. Similarly, the in-
coming query is represented a vector, the query processing
module computes the set of relevant hash tables for a query,
the relevance score of the documents from these hash tables
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Figure 2: Architecture

and the query is computed, and finally the documents are
ranked by this relevance score and output to the user.

3. TYPE-AWARE WEB-SEARCH
Type-aware Locality Sensitive Hashing: Locality-

Sensitive Hashing (LSH) [14] is an algorithm that enables
searching for near neighbors in a high-dimensional vector
space Sn with dimensionality n. Formally, given a query
q ∈ Sn, return the nearest neighbors of q within certain
radius R. LSH performance crucially depends on a family
of hash functions F that it uses to map the input vectors
to its internal data structures. In order for the algorithm to
perform well, F usually has to reduce the dimensionality of
the original vector space still satisfying the locality-sensitive
requirements on the reduced vector space. F is considered
to be locality-sensitive if collision of two vectors v1 and v2
under a random choice of a hash function from F depends
only on the distance between v1 and v2. Refer to [3] for an
overview of locality-sensitive hash-function families.
Here, a new two-tier family of hash functions Ψ is de-

scribed and used. First, it maps the original vector space
V of terms into a vector space of types - T , hence reduces
dimensionality (there are much less types than terms). Sec-
ond, k random unit vectors u ∈ T are generated, which
defines a family of hash-functions h ∈ Ψ as follows h(v) =
sign(u · v/∥v∥) : u, v ∈ T . Refer to [4] for a proof of its
locality-sensitivity. Angular distance measure is used here
for this vector space.
Query Processing: The queries and Web documents are

represented as vectors in a high-dimensional vector space Sn

with dimensionality n (number of types). To return vectors
(Web documents) within raduis R of the query q the algo-
rithm concatenates k hash functions hi ∈ Ψ described above
into a composite hash function hc(v) = h1(v), .., hk(v), hence
creating a family of hash functions hc ∈ Φ.
Next, for query q it computes all functions from hc and

considers the documents only from the corresponding hash
tables. It returns all vectors v from those hash tables that
are within angular distance R from q. The evaluation be-
low justifies that using this semantic hashing/retrieval algo-
rithm outperforms a generic Web-search engine by relevance
of search-results.
Relevance Evaluation: Here, relevance gain of TLSH

hashing/retrieval scheme compared to a general purposeWeb-
search engine for “type-containing“ queries (i.e. containing
a Named-entity) is quantitatively evaluated. An experiment

was conducted to calculate NDCG (Normalized Discounted
Cumulitive Gain) [1] on a static set of queries with respect to
a general purpose Web-search engine, which provides quan-
titative insight into their performance difference. NDCG is
one of the standard widely used search relevance measures,
which is employed by major search engines and, similarly to
F-measure, measures both precision and recall of retrieval.
NDCG is well suited for search evaluation, because it re-
wards relevant results in the top positions more than those
ranked lower. Due to space limitations, interested readers
are referred to [1] for details about NDCG computation. To-
tal NDCG gain over all queries turned out to be very large
> 6%. Usually for two industrial Web-search engines NDCG
difference more than 4% is considered to be significant.
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ABSTRACT
Assume that a database stores a set of intervals associated
with types and weights. Typed intervals enrich the data
representation and support applications involving different
kinds of intervals. Given a query time and type, the system
reports k intervals that intersect the time, contain the type
and have the largest weight. We develop a new structure to
manage typed intervals based on the standard interval tree
and propose efficient query algorithms. Experiments with
synthetic datasets are conducted to verify the performance
advantage of our solution over alternative methods.

1. INTRODUCTION
In this paper, we study top-k queries on typed intervals. As-
sume that a database stores a set of tuples, each of which de-
fines three attributes: an interval with start and end points,
a type and a weight. Given a query time and type, the sys-
tem reports k tuples fulfilling the conditions: (i) intersect the
query time; (ii) contain the type; and (iii) have the maxi-
mum weight, i.e., return k intervals with maximum weights
among all fulfilling conditions (i) and (ii).

To help understand the problem, Figure 1 shows a running
example. In traffic monitoring systems, the database stores
the number of vehicles appearing in a district over time.
There are different kinds of vehicles: {Taxi, Bus, Truck,
Private Car}. Each tuple records a time interval, the vehicle
type and the count. A top-k query is“return the district with

the largest number of buses at the time 8.5”, and the system
returns o3. The following objects {o3, o5, o8, o10} intersect
the query time, but only o3 and o5 fulfill the type condition.

In the literature, queries on interval data have been studied
with operators such as intersecting [3], stabbing [1] and top-
k on keyword intervals [5]. However, they do not consider
intervals associated with types and therefore do not sup-
port applications involving different types of intervals, e.g.,
various genome intervals in genomic datasets and different
versions of data items.

©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.

Id Time Type Count

o1 Taxi[0, 2] 40

o2 Car[2, 5] 15

o3 Bus[6, 12] 60

o4 Car[0, 4] 45

o5 Bus[4, 11] 20

o6 Truck[11, 12] 45

o7 Bus[0, 6] 30

o8 Taxi[6, 12] 23

o9 Truck[0, 9] 23

o10 Car[9, 12] 83

(a)

0 1 2 3 4 5 6 7 8 9 10 11 12

Q(8.5, Bus, 1)

o1

o2

o3

o4

o5

o6o7

o8

o9

o10

(b)

Figure 1: Typed Intervals

Edelsbrunner’s interval tree [2] is a popular structure for re-
porting intervals intersecting a given query. In principle, an
interval tree is a binary tree that serves as the primary struc-
ture. Each node in the tree maintains two lists (secondary
structure) of sorted intervals. One can directly employ the
two-list structure to manage typed intervals, but the method
is not optimal. Since the standard interval tree does not sup-
port intervals with types, a linear scanning is performed in
each accessed node to find intervals that intersect the time
and contain the type, even some of them are not equal to
the query type. Another problem is, too many intervals are
visited. In fact, the query only needs k intervals.

We propose a new structure to replace the sorted lists in
each node to maintain typed intervals. Given a node stor-
ing a set of intervals, the new method is able to determine
part (even all) of the intervals intersecting the query time
without accessing the data. An index is built on managing
types, leading to quickly finding intervals with a particular
type. Employing the new structure, much less intervals are
accessed to report k results. We carry out the experimental
evaluation to demonstrate the performance of our method
by using synthetic datasets.

2. THE SOLUTION
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In each node, we replace two lists by a new structure for
interval management. The idea is, we partition the interval
space into a set of equal-length slots, each of which has a
unique id and defines a subspace. We use two tables in which
one maintains intervals containing the relevant slots and the
other maintains intervals intersecting the slots, named as
full and partial tables, respectively. Each row in the tables
corresponds to a slot and stores a list of interval ids.

o3, o5, o8, o9

p = 6

lp, rp

min=0, max=12, g=4

full 1 o9

2 o9

3 o8, (o3, o5)

4 o3, o8

partial 2 o8, (o3, o5)

3 o9
4 o5, o6

o2, o4, o7 o10

o1 o6

Figure 2: Slot representation based on interval tree

Figure 2 depicts the binary tree built on intervals and the
slot representation for the root node. The new secondary
structure includes the center point p and two child pointers
lp, rp. These items are the same as the traditional structure
[2]. Next, min and max are lower and upper endpoints of all
intervals at this node. To perform the partition, the number
of slots is defined, denoted by g. In the example, four slots
are created for the root node. Intervals located in each slot
are first sorted on type and then on weight. The type index
is a list of items and each item records the type and the start
position of intervals with that type. For example, the index
for the third slot in the full table will be {(Taxi, 0), (Bus,
1)} because o8 is the first interval in the slot and o3 is the
second interval.

To answer the query, we perform a binary search on the
tree. Given a node, we first determine the corresponding
slot and then access the full and/or partial tables. Intervals
in the full table do not have to be tested on the intersection
condition. We use the type index to find intervals having the
query type and return the first k intervals. For intervals in
the partial table, we find those fulfilling the type condition
and then iteratively test each on the intersection condition.
Intervals from the two tables are inserted into a min-heap
with the size k. We keep updating the min-heap until the
searching procedure is terminated. Apparently, the better
the performance is, the more intervals are in the full table.
This depends on the slot number defined to partition the
space.

3. EXPERIMENTAL EVALUATION
We use synthetic datasets in the preliminary evaluation:
{S1 (1M), S2 (5M), S3 (10M), S4 (20M), S5 (50M)}. The start
point of an interval is randomly chosen within the domain
[1, 100000], and the length is a random value between 1 and
1000. Let T be the number of types and we set T = 100
in the experiment. The weight is randomly selected as an
integer from [1, 500].

Three competitive algorithms are developed in the evalua-
tion. One extends the standard interval tree by integrating
a boolean bit string representing whether there are intervals

with certain types in the node. The secondary structure in
each node is defined to be 2·T ′ (T ′ ≤ T ) lists. Each list
stores intervals with the same type. The second algorithm
uses a relational interval tree [4] in which the bit string is
also integrated. The last method employs a 2D R-tree. The
three algorithms are named by Ext-I-tree, RI-tree, and R-

tree, respectively, and our method is named Slot.

 1

 10

 100

 1000

S1 S2 S3 S4 S5

C
P

U
 ti

m
e(

m
s)

R-tree
RI-tree

Slot
Ext-I-tree

(a) CPU time

 10

 100

 1000

 5000

S1 S2 S3 S4 S5

I/
O

 A
cc

es
se

s

R-tree
RI-tree

Slot
Ext-I-tree

(b) I/O accesses

Figure 3: scaling the data size
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Figure 4: synthetic dataset, S5

We perform the evaluation by scaling the number of data
intervals and the number of returned intervals k. The CPU
time and I/O accesses are reported in Figure 3 and Figure
4. The results demonstrate that our method significantly
outperforms other methods, e.g., 3-6 times faster than R-

tree, 2-10 times faster than Ext-I-tree. Since the CPU time
is only several milliseconds, a small deviation may lead to
a sharp slope of the curve, e.g., in Figure 3(a). The I/O
variation in Figure 4(b) is attributed to the randomness of
the generated queries.
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ABSTRACT
Rankings are a widely used techniques to condense a po-
tentially large amount of information into a concise form.
However, rankings are dynamic and undergo changes, thus
need to be maintained, which can be a tedious and expen-
sive task. Given a ranking τ that got updated to τ ′, we aim
at identifying those rankings σ that are very likely to have
changed as well, as they are close in distance to the original
ranking τ . We do so by modeling the expected change in
form of a hypothetical ranking σ′ and mark σ to require a
refresh if the expected change is above a threshold. We do
this for the Footrule distance and demonstrate through a
preliminary evaluation the potential of our approach.

1. INTRODUCTION
We focus on the task of maintaining a set of crowdsourced

entity rankings. One important characteristic of crowdsourced
rankings is that although they share the same entities, they
conform to different constraints, thus, a change in one rank-
ing does not imply the same change in another ranking. We
propose a framework that uses the similarity between the
rankings, to reason about the degree of change in a set of
rankings due to an update in one ranking. Since the dis-
tance between two rankings resembles not only structural
but semantic similarity as well, it is reasonable to assume
that once a ranking changes, it is more likely that similar
rankings change, rather than dissimilar ones. Specifically for
top-k rankings that only report on a (usually short) sub-
set of items, if two rankings are similar, they need to share
also a fraction of items. If ranking τ changes, this means
that items that are present in τ changed, respectively their
features. Such changes might or might not propagate to a
ranking σ that is in distance λ to τ—the likelihood of such
a propagation is what we aim at quantifying in this work.

When considering rankings created over some objective
(measurable) scoring function, like wealth in USD, the up-
date of the rankings can be done by maintaining one global
ranking, and directly updating all rankings affected by an
update. However, keeping a global ranking in the case of

∗This work has been supported by the German Research
Foundation (DFG) under grant MI 1794/1-1.
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crowdsourced rankings, where there is no measurable scor-
ing function, but instead entities are ranked by some user
perceived quality, like popularity, is not only expensive, but
also unintuitive, as there is no ground truth.

1.1 Problem Statement
As input we are given a set T of top-k rankings τ . Each

ranking τ has a domain Dτ—the items it ranks. We further
know the Footrule distance between each pair of rankings
in T . We define an update uτ (i, j) to a ranking τ as a
swap of two items i, j ∈ Dτ . A size of an update uτ (i, j),
for brevity denoted simply as |uτ |, is the difference between
the positions of the swapped items, |τ(i)− τ(j)|. We denote
with τ ′ the ranking τ after applying an update uτ (i, j).

For a given update u over a ranking τ , the task is to
compute the likelihood that u affects other rankings σ ∈
T , σ 6= τ such that F (σ, σ′) is larger than some user defined
threshold θ. In that case, σ is marked to be refreshed (e.g.,
crowdsourced) to bring it up to date. If we believe a ranking
is not affected by a change but in fact it is, we suffer loss in
recall, the ranking is not refreshed and our database T is
getting stale. If we, however, believe it is affected and it is
not, we suffer loss in precision, which leads to wasting cost
to refresh a ranking when it is not required to do so. For an
overview to methods for comparing top-k rankings, see [1].

2. APPROACH
Algorithm 1 shows the procedure for determining (allegedly)

affected rankings. As input the algorithm takes a specific up-
date, a set of rankings, where the Footrule distance between
all pairs is known, and a threshold θ. First, we compute the
maximum distance, dmax that would likely result in the up-
dated items i, j being present in both rankings τ and σ, i.e.,
i, j ∈ Dτ ∩ Dσ ⇒ F (τ, σ) ≤ dmax with some probability
p. We explain how this bound can be computed below. The
next step is computing the expected change according to the
distance. For this purpose, in a pre-processing step for each
possible distance, for a given k, we compute an average dif-
ference between the positions of the items in two rankings
τ and σ, such that F (τ, σ) = λ. We call this average dis-
placement (see Section 2.1) and it does not depend on the
actual rankings in T . Using the average displacements, we
compute the expected change, according to the actual up-
date. If the change is larger than a user specified threshold
θ, we retrieve all distances and output all rankings within
the retrieved distance to the changed ranking.

When we have a sequence of updates, we can simply accu-
mulate the change. Note that an update over several items
can also be considered as a sequence of updates of two items.

2.1 Computing the Expected Change
Since we do not know the positions, if any, of the affected

items in the rankings, the first step toward quantifying the
expected change in a ranking is reasoning about the most
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input: uτ , T , θ
1 dmax = get distance limit()
2 for each E[µ] in get expectations(k) do
3 echange= get expected change(uτ , τ, E[µ])
4 if echange ≥ θ then
5 for each d ≤ dmax in get distances(echange) do
7 R← get all rankings(d)
8 return R

Algorithm 1: Algorithm for determining all the rankings
in T affected by a change uτ according to their distance.

likely position of the affected items, when the distance λ
between the rankings is known. To do this we first define a
displacement of an item i in two rankings τ and σ:

definition 1. Displacement of an item: For two rank-
ings τ and σ, τ 6= σ, we define a displacement of an item i,
denoted with µi, i ∈ Dτ ∩Dσ, as the difference of the posi-
tion of the item in the two rankings, i.e., µi = |σ(i)− τ(i)|.
In the case when i ∈ Dτ \Dσ, µi = k+1−τ(i) or vice versa.

The Footrule distance between two rankings τ and σ is
in fact the sum over the displacements of the items in Dτ ∪
Dσ. We can compute the most likely position of the affected
items, i, j in σ as E[σ(i)] = τ(i)+E[µ] and E[σ(j)] = τ(j)+
E[µ], where E[µ] is the average displacement between the
items in two rankings within distance λ of each other.

To compute the average displacement E[µ] for a given
Footrule distance λ we need to compute all the displace-
ments that contribute to that distance. The naive way to
do this is to generate all top-k rankings for a given k, com-
pute the distances between all combinations of rankings, and
compute the average item displacements for every distance.
However, this is computationally very expensive, as gener-
ating all the rankings of size k has a complexity in O(k!).

One key observation that allows us to more efficiently com-
pute the sample space is the fact that the Footrule distance
is a sum over non-negative integers, where each integer is
a displacement of an item. In number theory and combina-
torics, an unordered collection of positive integers whose sum
is n is called a partition of n. Several efficient algorithms for
generating all the partitions for a number, working in con-
stant amortized time, have been proposed. Thus, we could
use one of those algorithms to generate all the partitions for
the distance λ. The resulting set of partitions could be used
to compute the average displacement E[µ]. Note that not all
partitions of λ should be used in computing E[µ]. The details
of how exactly E[µ] can be computed we leave out of this
paper due to lack of space. Considering an update uτ (i, j)
of τ , one can compute the expected change E[F (σ, σ′)] as:

E[F (σ, σ′)] = (1− λ)× (2× |E[σ(i)]− E[σ(j)]|)
where λ is the distance between τ and σ. The reasoning
is that since these are the only two items that changed in
σ′ with respect to σ, the change can be computed as (2 ×
|E[σ(i)]−E[σ(j)]|). However, since σ is only similar to τ , we
do not want to fully propagate the change. Thus, we multiply
the change by 1− λ (we normalize λ, thus 0 ≤ λ ≤ 1).

The above formula only covers the case when we assume
that the affected items belong to the domains of both rank-
ings. However, since we are working with top-k rankings it
can happen that the updated items in τ cannot be found
in σ at all. To eliminate the rankings that are so dissim-
ilar to the updated ranking, and thus it is very unlikely
that they changed, we define a maximum distance bound
dmax. This bound is computed using the probability of not
finding both updated items i and j in σ, P (i, j /∈ Dτ ∩

Dσ) =
(2∗(k−w)

2 )
(2∗k−w

2 )
, where w is the overlap between the rank-

θ = 0.1 θ = 0.15
Precision Recall Precision Recall

Our approach 0.58 0.6 0.59 0.41
Baseline 0.12 1 0.08 1

Table 1: Experimental results: Precision and Recall

ings. Since we only know the distance between the rank-
ings, we can compute the maximum overlap that two rank-
ings can have within a distance λ as wmax = d 1

2
× (−1 +√

1− 4× λ+ 4× k + 4× k2)e + 1 and then plug this value
into the above probability estimation formula.

3. EXPERIMENTS
We have implemented the described algorithm in Java 8.

We created one synthetic dataset by first creating a small
set of base rankings, by randomly choosing at least ρ from k
items, where k is the size of the rankings, and then randomly
choosing the remaining k − ρ items. All the other rankings
are created by swapping a random number of items from
the base rankings. The dataset contains 500 rankings with
size k = 10. We compared our approach with the baseline
approach—retrieving all rankings that have at least one item
in common with the affected ranking. For the experiments,
we randomly selected one ranking from the dataset, ran-
domly selected a pair of items from this ranking, and then
swapped their places. We then used our method and the
baseline to find the affected rankings in the dataset.

Table 1 reports the average precision and recall for the
two approaches over 100 trials. We report on results for two
values of the threshold θ, 0.1 and 0.15. To compute dmax,
we set P (i, j /∈ Dτ ∩Dσ) to 0.9. Note that the recall of the
baseline is always 1 since the relevant rankings must have
at least one item in common with the changed ranking. We
can see that with our approach we can achieve high preci-
sions (much higher than the baseline) while still maintaining
relatively high recall.

4. RELATED WORK
Research around crowdsourcing information usually ad-

dresses the problem of reducing the cost, while still retain-
ing high quality results. Guo et al. [3] address the problem
of finding the highest ranked object using the least num-
ber of questions, from a set of objects, in a crowdsourcing
database system. Wang et al. [5] use transitive relations to
reduce the number of questions asked to the crowd for the
case of crowdsourced joins. Gruenheid and Kossmann [2]
investigate the cost and quality trade-offs of different algo-
rithms in a crowdsourcing environments. Polychronopoulos
et al. [4] propose an algorithm for creating top-k lists using
the crowd, The idea behind the algorithm is to create a high
agreement top-k list for a low latency and monetary cost, by
adaptively choosing the number of tasks posed to the crowd.
To the best of our knowledge, there has not been any work
that focuses on maintaining a set of crowdsourced rankings.
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ABSTRACT 

Phase change memory (PCM) as a newly developed storage 

medium has many attractive properties such as non-volatility, 

byte addressability, high density and low energy consumption. 

Thus, PCM can be used to build non-volatile main memory 

databases. However, PCM’s long write latency and high write 

energy bring challenges to PCM-based memory systems. In this 

paper, we propose an improvement over the B+-tree for PCM. 

Particularly, we consider the read/write tendency of leaf nodes. 

For write-intensive leaf nodes, we use an overflow-node 

technique to reduce PCM writes, while for read-intensive ones, 

we adjust the tree structure to remove overflow nodes to 

improve read performance. Our experimental results suggest that 

our proposal outperforms the traditional B+-tree and the 

overflow B+-tree. 

CCS Concepts 

• Information systems ➝ Information storage systems   

• Information storage technologies ➝ Storage class memory. 

Keywords 

B+-tree; Index; PCM 

1. INTRODUCTION 
The increasing needs for large energy-efficient main memory 

call for new types of memories, such as phase change memory 

(PCM). PCM is byte-addressable and supports random access. 

Compared with DRAM, PCM is non-volatile and is expected to 

have higher storage density in the future [1, 2]. However, two 

problems make it difficult to replace DRAM in current computer 

systems. First, the write latency of PCM is about 6 to 10 times 

slower than that of DRAM. Second, PCM cells have limited 

write endurance [3]. 

Therefore, a more practical way to utilize PCM in memory 

architecture is to use both PCM and DRAM to construct hybrid 

memory architecture [2]. In such hybrid memory architecture, 

the high density and non-volatility of PCM makes it possible to 

build non-volatile main-memory databases. However, due to the 

special properties of PCM, many existing database algorithms 

such as indexing have to be revised to take advantage of PCM.  

In this paper, we focus on the indexing issue in 

PCM/DRAM-based hybrid memory systems. We aim to 

improve the traditional B+-tree to make use of PCM and DRAM 

efficiently. Specifically, we improve the traditional B+-tree in 

two aspects. First, we use an overflowing mechanism [4, 5] to 

reduce write operations to PCM, where each leaf node in the 

B+-tree is allowed to have several overflow nodes to keep newly 

inserted records when the leaf node is full. Thus, we can reduce 

the split operations on the index and consequently reduce writes 

and lengthen the lifetime of PCM. Second, we propose to predict 

the read/write tendency of index requests, based on which we 

use different ways to process index requests. Particularly, we 

use the overflowing scheme for write-intensive requests, but 

adopt a tree-adjusting operation to remove overflow nodes so as 

to improve read performance. We conduct experiments to 

evaluate our proposal and make comparison with the traditional 

B+-tree and the overflow B+-tree. The results suggest the 

efficiency of our proposal. 

2. CB+-TREE 
The structure of the CB+-tree is similar with the B+-tree, except 

that each leaf node can have a few overflow nodes. A leaf node 

without overflow nodes is called a tra, while a leaf node 

containing overflow nodes is called an ovf. 

All the data stored in leaf nodes of CB+-tree is the same as 

that in the B+-tree. Nodes of the CB+-tree are ordered, thus 

binary search is allowed. Every node of the CB+-tree consists of 

a set of <key, value> pairs and some auxiliary information. The 

auxiliary information includes num_keys, is_leaf, parent, and 

brother. Here, num_keys denotes the number of <key, value> 

pairs, is_leaf indicates whether the node is a leaf node, and 

parent and brother denote the parent and the brother of the node, 

respectively.  

In the CB+-tree, when an ovf leaf node has a read tendency, 

we remove it from the overflow chain and make it be a new tra. 

With this mechanism, we can reduce the number of overflow 

nodes and therefore improve read performance. As shown in Fig. 

1, the leaf nodes LN1, LN2 are tra and LN3 is an ovf. If LN3 is 

required to be changed into a tra, we remove LN3 from its 

overflow chain and change it into a tra. Other ovf in the original 

overflow chain remain unchanged. Consequently, the overflow 

chain is changed into two segments, as shown in the right part of 

Fig. 1. 

 
Figure 1. Structure adjustment of the CB+-tree. 

The key issue in the CB+-tree is how to predict the 

read/write tendency (𝒯) of a leaf node. Formally, 𝒯 is calculated 

by (1). Here, 𝑟𝑎𝑡𝑖𝑜𝑡 and 𝑟𝑎𝑡𝑖𝑜𝑐  are total and recent proportion 

of writes to all accesses on a leaf node, respectively.  

𝒯 = 𝑟𝑎𝑡𝑖𝑜𝑡 ∗ 𝜕 + 𝑟𝑎𝑡𝑖𝑜𝑐 ∗ (1 − 𝜕), 𝑠. 𝑡. 𝜕 ∈ [0, 1].     (1) 

We make use of a sliding window to record k latest 

read/write requests for a leaf node, and further get the value of 

𝑟𝑎𝑡𝑖𝑜𝑐 . Generally, a node is considered to be write-intensive 

when 𝒯  is higher than 0.7, and be read-intensive when 𝒯  is 

lower than 0.3. The read/write tendency prediction scheme 

works when 𝒯 is in 0.3-0.5 for an ovf and in 0.5-0.7 for a tra. 
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We perform the prediction by using the polynomial fit technique 

according to the recent access information in the sliding window. 

In addition, we do not trigger the prediction when the 𝒯 of an 

ovf drops a little below 0.7 immediately, but wait for some time 

to collect more information about the access pattern. This 

strategy is also applied to the change of the parameter tra.  

3. EVALUATION 
To observe the performance benefits of the proposed CB+-tree, 

we implemented three algorithms: the traditional B+-tree, the 

OB+-tree[4] and the CB+-tree, and we run them on a computer 

with Ubuntu 14.04, a CPU of AMD Athlon II X2, 4GB RAM, 

and 1 TB Seagate hard disk. In addition, we used DRAM to 

simulate PCM by artificially increasing write latency.  

We used the TPC-C1 workload to generate the traces in the 

experiments. When running the TPC-C workload, 10 

warehouses and 100 clients are configured. The TPC-C 

workload contains eight index files built on eight tables, and the 

size of the tables is approximately 1 GB. We used 

BenchmarkSQL2  to generate the TPC-C workload running on 

the open-source PostgreSQL, and collect page requests on the 

eight tables at the same time. We first performed insertions on 

the tables to get index insertions. Consequently, we performed 

5.4 million insertions requests and the original B+-tree index file 

is about 135 MB. Then, we prepared a trace containing about 3.8 

million index requests including 74.2 % searches, 23.8 % 

insertions, and 1% deletions. 

 
Figure 2. PCM read counts with different buffer sizes. 

 
Figure 3. PCM write counts with different buffer sizes. 

We first measure the read and write count of cache lines. 

Figures 2 and 3 show the read and write counts when varying 

the buffer size of each index. As shown in Fig. 2, the B+-tree 

has the least read count under all settings, because it does not 

involve any overflow nodes. However, as shown in Fig. 3, the 

B+-tree introduces more PCM write operations, which will 

shorten the lifetime of PCM and worsen the overall time 

performance. The OB+-tree has the highest read count because 

each leaf node in the OB+-tree is likely to contain a long chain 

of overflow nodes, which introduces more read operations. On 

the other side, the proposed CB+-tree has much less read 

operations compared with the OB+-tree, because it uses 

read/write tendency to dynamically remove overflow nodes. 

                                                                 

1 http://www.tpc.org/tpcc/ 
2 http://sourceforge.net/projects/benchmarksql/ 

Note that our index has a little more PCM writes than the OB+-

tree. This is due to the read/write-tendency-based adjustment of 

the index structure. Figure 4 shows the run time of each index, 

which is normalized according to the run time of the B+-tree, i.e., 

the run time of the B+-tree is always set to 1. It indicates that the 

CB+-tree outperforms the B+-tree and the OB+-tree in terms of 

overall run time. As a result, the CB+-tree is able to balance the 

read and write costs, yielding a better indexing mechanism for 

PCM-based memory systems. 
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Figure 4. Run Time (normalized w.r.t. B+-tree). 

4. CONCLUSIONS 
PCM has been regarded as a new kind of future memories. In 

this paper, we proposed an efficient tree indexing approach 

called CB+-tree that is an improved version of the traditional 

B+-tree. We used the overflow-node design to reduce writes to 

PCM, and thus the endurance of PCM can be improved. We also 

proposed to predict the read/write tendency of index requests, 

based on which we performed necessary adjustment on the tree 

index to reduce additional read operations caused by overflow 

nodes. The comparative experimental results including 

read/write count and run time, show the efficiency and 

superiority of our proposal. 
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ABSTRACT
This work proposes and evaluates a novel approach to deter-
mine interesting category for ranked lists using ν-SVM. We
identify three characteristics (features), entropy, unlikability,
and peculiarity and show how to train a classifier on these
features using a set of Wikipedia tables. The learned model
is evaluated by relevance assessments obtained through a
user study, reflecting the correctness of our approach.

1. INTRODUCTION
Understanding and exploring information is becoming more

and more complex due to the dramatic growth of data. Scale,
dynamics, and (schema) heterogeneity advocate for solely
automated means, by which users can sit back and explore
data already put in meaningful and interesting categories.
In this work, we specifically look at ranked lists, a concise
form of data summarization, that can be found in nearly
all domains as virtually everything can be ranked, if not by
measurable means then by crowdsourcing rankings. Given
a ranked list, for instance, the list of tallest building in the
world, we consider the task to decide which dimension is
worth being used as a constraint to specialize the query.
In database terminology, we are interested in determining
OLAP-cube dimensions for the drill-down operation, but
consider the case of data beyond a well understood database
schema. Specifically, our approach is using statistical mea-
sures that can be computed from any table, no knowledge
about the semantics of the schema or human input is re-
quired. Getting back to the above example, a list of tallest
buildings by continent or country appears interesting, while
a list of the tallest buildings that are 31 stories tall might
be less important to be investigated, if at all. The key idea
behind this work is to assume that it is feasible to train a
classifier based on training data obtained from Web tables,
such as tables in Wikipedia, assuming that the presence or
absence of a table can act as in indicator of general interest
or disinterest of humans in such a table.

1.1 Problem Statement, Setup, and Key Idea
Consider a set of rankings-style tables R, where r ∈ R is

a ranking table with its attributes A. A subset of A is of

∗This work has been supported by the German Research
Foundation (DFG) under grant MI 1794/1-1.

c©2016, Copyright is with the authors. Published in Proc. 19th Interna-
tional Conference on Extending Database Technology (EDBT), March 15-
18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

numeric type, denoted as N . We divide A in three kinds of
attributes: (i) the subject of ranking denoted as as which
represents the set of entities, (ii) the criterion of the rank-
ing, denoted as acr, based on which the ranking order of
subject entities are made and (iii) the remaining attribute
considered as categorical attribute denoted as ac. Hence, the
ranking table r is written as r = (as, acr, ac1, ac2...).

Each attribute a ∈ A is associated with a set Va of possi-
ble values. Following the previous example, assigning a con-
straint on an attribute, for instance, ac1= ‘Canada’ where
‘Canada’ ∈ Vac1

and c1 denotes the country a building is
placed in, specifies the ranking of the tallest buildings in
Canada. That is, (ac1 , ‘Canada’) becomes the category for
rnew.

Let I be the complete set of interesting categorical at-
tribute. Our objective is to create a classifier C that can tell
whether using a non-numeric categorical attribute as a con-
straint to a table would lead to an interesting “new” table
or not, i.e.,

C(ac) =

{
interesting, if ac ∈ I and ac /∈ N
not interesting, otherwise

(1)

In this work, we opt for a classification-based approach
using ν-SVM as our classifier. Hence, we first need to deter-
mine training data T of interesting categorical attributes,
and we do so by harnessing a set of Wikipedia tables R.
Based on our assumption, categorical attributes for
a specific subject are considered interesting iff we
find at least one ranking in Wikipedia that is cre-
ated by imposing a constraints over that categorical
attributes. Formally, (as, ac) ∈ T iff ∃r, rnew ∈ R. Note
that the interestingness of a category is bound to the entity
type (i.e., class of the subjects), which satisfied by the con-
dition: r.as = rnew.as. Then, we learn the model using SVM
on the training data and verify how accurate we can predict
interesting category for ranking by evaluating it on held-out
test data and by relevance assessments obtained from a user
study.

2. WORKING MODEL
Creation of Training Data: Algorithm 1 retrieves in-

teresting and non-interesting categorical attributes for a spe-
cific ranking subject (i.e., (as, ac)). The constraints of a
ranking table is parsed from the title/caption of the table or
the title of the Wikipedia page by using propositions from
the English dictionary, presented by the function in line 6 in
Algorithm 1.

Learning Interesting Categories: In this work, we use
the soft-margin classifier ν-SVM [4] to learn the interest-
ing characteristics of categorical attributes. ν−SVM suits
best for our purpose as it can detect outliers while learning.
According to our intuition, conciseness and diversity of a
categorical value of ranking entity is important to capture
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Algorithm 1 Generating Training Samples

1: procedure generateSamples(wikitables)
2: contraintsmap ← empty map(constraints, subjectList)
3: interesting ← empty list(subject, attribute)
4: nonInteresting ← empty list(subject, attribute)
5: for T ∈ wikitables do
6: T .as, T .cons← parse cons(T .title)
7: contraintsmap[(T ).cons]← (T .cons, T .as)
8: for T ∈ wikitables do
9: [T .ac,VAc ]← parse(T .table)

10: for ac ∈ T .Ac \ N do
11: for x ∈ V.ac do
12: subjectList← contraintsmap.contains[x]
13: if T .as ∈ subjectList then
14: interesting ← (T .as, ac)
15: break;
16: else
17: noninteresting ← (T .as, ac)
18: return interesting,noninteresting

human interests. Hence, we use the following three measures
as features to feed our learning model.

Shannon Entropy reflects the uncertainty of informa-
tion content of a discrete random variable. Here, we treat a
categorical attribute ac ∈ A\N as a random variable, where
Vac is the set of possible values that ac can hold. Shannon
entropy is calculated by H(ac) = −

∑
x∈Vac

P (x) log2 P (x),

where P (x) = count(x)/|T |, |T | is the size of the rank-

ing table. The normalized entropy is calculated as Ĥ(ac) =
−

∑
x P (x) log2 P (x)

log2 |T |
, x ∈ Vac .

Unlikeability is a diversity measures for categorical at-
tribute that measures how often the observation of ran-
dom variables differs from one another [2], calculated as
U(X) = 1−

∑
x∈Vac

P (x)2.

Peculiarity is another diversity measure for categorical
value used here to measure the peculiarity which is defined
by the probability that a randomly chosen categorical value
has not been seen previously [2]. It is defined by D(X) =

1−
∑

x∈Vac

count(x)(count(x)−1)
|T |(|T |−1)

All three measures are normalized to [0, 1], the values to-
wards 1 indicate few or only one distinct categorical value of
the ranking entity and a value towards 0 represents a large
(maximum) diversity.

Thus, it is clear that a categorical attribute of an inter-
esting ranking should have more tendency toward having a
feature-value near the mid-range of [0, 1], i.e., around 0.5.
In contrast, uninteresting ranking would have a tendency
toward having a feature value closer to 0 or close to 1.

Clearly, the range of values is responsible for the classifi-
cation of interestingness measures. Hence, we use the Radial
Basis Function (RBF) kernel to map our data space to the
dot product space needed for SVM .

3. EXPERIMENTS
Setup: We use the LIBSVM [1] tool to learn the mod-

els. 2, 744 non-interesting and 158 interesting samples are
extracted using Algorithm 1 from 2,045 ranking tables out
of Wikipedia. 25% of samples are chosen randomly from
each class, and also merged for testing purpose denotes as
TestPos and TestNeg, and Total. The remaining non-
interesting samples are divided into 10 smaller chunks and
merged with the remaining interesting samples to create 10
training files, each containing 323 samples. We learn the re-
spective model for all these files and chose the best perform-
ing one, denoted as M with accuracy of 80.11% for Total.
According to our testing samples, the accuracy is a fraction
of the correctly classified samples. For our training data, a
feasible solution for SVM is found where 0 ≤ ν ≤ 0.73 and
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Figure 2: User study

the optimal ν = 0.51. Here, we also present the evaluation
of a user study on test set of 130 randomly selected samples
of (as, ac), i.e., classification tasks. We gathered five user
relevance assessments per classification task. The accuracy
of model M is evaluated by using ground truth that is built
for different agreement levels of users.

Validation of Models on Test Data: In Figure 1(a), we
can see that the accuracy increases at least 5% for all testing
files except TestPos (2.5%) while using all three features
together in learning. As our training data is unbalanced, a
common option is to use the simpler one-class SVM model.
However, Figure 1(b) shows that the model M is a better
classifier than the model possible to create from an one-class
SVM. M is also more robust as it classifies samples from each
class better than the other two models.

Results Based on User Study: Figure 2 is showing
precision and recall achieved by M with varying agreement
level of user. We see that for a user agreement of 5/5 the
highest accuracy is reached. That is, considering the tasks
with 5/5 user agreement as ground truth of the test data,
our model correctly identify more than 80% of the test cases
(Figure 2). We use Fleiss Kappa to determine the reliabil-
ity of user agreements. The 5/5 user agreement has a Kappa
score 0.28, which denotes fair agreement according to a com-
monly cited interpretation of Kappa values [3]. Also, the 95%
confidence interval for Kappa has range between 0.24–0.32
for the collected user data. These values significantly differ
from 0 and, thus, prove the statistical significance of 5/5
agreement level for our user-study.

4. CONCLUSION
From the experimental evaluation, we can conclude that

our model of classifying category to capture the interesting
ranking performs very well. We also saw that all three fea-
tures together create a better classification model than the
commonly used entropy measure.
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ABSTRACT 

NoSQL databases provide new opportunities by enabling elastic 

scaling, fault tolerance, high availability and schema flexibility. 

Despite these benefits, their limitations in the flexibility of query 

mechanisms impose a real barrier for any application that has not 

predetermined access use-cases. One of the main reasons for this 

bottleneck is that NoSQL databases do not support joins. In this 

poster we present a solution that efficiently supports joins over such 

databases. More specifically, we present a query optimization and 

execution module placed on top of Cassandra clusters that is able 

to efficiently combine information stored in different column-

families. Our preliminary evaluation demonstrates the feasibility of 

our solution and the advantages gained when compared to a recent 

commercial solution by DataStax. To the best of our knowledge our 

approach is the first and the only available open source solution 

allowing joins over NoSQL Cassandra databases. 

1. INTRODUCTION 
During the latest years, the explosive growth of data and the 

emerging requirements for big data management solutions led to 

the development of NoSQL databases. Among the reasons for the 

rapid adoption of NoSQL databases is that they scale across a large 

number of servers by horizontal partitioning of data items, they are 

fault tolerant and achieve high write throughput, low read latencies 

and schema flexibility. To achieve all these benefits, the main idea 

is that you have to denormalize your data model and avoid costly 

operations in order to speed up the database engine. As such, the 

NoSQL databases were initially designed to support only single-

table queries and explicitly excluded the support for join operations 

allowing applications to implement such tasks. However, modern 

applications increasingly require the efficient combination of 

information from multiple tables and column-families.  

To this direction the first approaches are starting to emerge for 

operators similar to join, based on Map-Reduce such as rank-join 

queries [1] and set-similarity joins [2]. Rank-join queries try to find 

the most relevant documents for two or more keywords whereas 

set-similarity joins are those that try to find similar pairs of records 

instead of exact ones. However, both these approaches execute 

joins at the application level using Map-Reduce implementations 

and the joins implemented do not focus on an exact matching of the 

joined tuples. This emerging need has also been recently 

recognized by DataStax, the biggest vendor of Cassandra NoSQL 

commercial products which recently introduced a commercial join-

capable ODBC driver. The company claims that Cassandra can 

now perform joins just as well as relational database management 

systems. However, no results were presented nor the specific join 

implementation algorithms and optimization techniques.. 

To fill these gaps, in this poster we present a naïve, yet efficient 

query optimization and execution module enabling joins over 

Cassandra NoSQL databases surpassing DataStax’s commercial 

solution and highlighting the differences between NoSQL and 

relational solutions. 

2. PRELIMINARIES 
Cassandra is a NoSQL database developed by the Apache Software 

Foundation. It uses a hybrid model between key-value and column-

oriented database. The structure of the database is defined by super-

columns and column-families. In this paper the term column-family 

and table will be used interchangeably although they are not exactly 

the same.  

All stored data can be easily manipulated using the Cassandra 

Query Language (CQL) which is based on the widely used SQL. 

CQL can be thought of as an SQL fragment with the following 

restrictions over the classical SQL: 

 R1. Joins are now allowed. 

 R2. You cannot project the value of a column without selecting 

first the key of the column. Every select query requires that 

you restrict all partition keys. Select queries restricting a 

clustering key have to restrict all the previous clustering keys 

in order. Queries that don’t restrict all partition keys and any 

possibly required clustering keys, can run only if they can 

query secondary indices. To be allowed to run a query 

including more than two secondary indices, Cassandra 

requires that “allow filtering” is used in the query to show that 

you really want to do it. All Cassandra queries that require this 

run extremely slow and Cassandra’s recommendation is to 

avoid running them. Tables can be stored sorted by clustering 

keys. This is the only case in which you are allowed to run 

range queries and order by clauses. 

 R3. Unlike the projection in a CQL SELECT, there is no 

guarantee that the results will contain all of the columns 

specified because Cassandra is schema-optional. An error 

does not occur if you request non-existent columns. 

 R4. Nested queries are not allowed, there is no “OR” operator 

and queries that select all rows of a table are extremely slow. 

CQL statements change data, look up data, store data or change the 

way data is stored. A select CQL expression selects one or more 

records from Cassandra column family and returns a result-set of 

rows. Similarly to SQL each row consists of a row key and a 

collection of columns corresponding to the query. 

3. QUERY OPTIMIZER & EXECUTION 
Our query optimization and execution module can be placed on top 

of any Cassandra cluster and is composed of the following 

components, shown in Fig. 1: 

This work was partially support by the iManageCancer (H2020-643529) 
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a) Rewriter: The rewriter accepts the CQL query containing joins 

and creates the queries for accessing each individual column-

family/tables. For example assuming that Q0 is issued by the user, 

this module produces as output Q1 and Q2 as shown in Fig. 1. 

b) Planner: This component plans the execution of the individual 

queries as constructed by the rewriter. First it identifies the 

available indices on the queried column-families and tries to 

comply with R2. For example, if the queries don’t restrict all 

partition keys they can only run if there are available secondary 

indices on these keys. To satisfy this restriction the planner 

automatically generates secondary indices on the required fields. In 

our running example, a secondary index will be automatically 

generated to the producedBy.movieID column. 

 

Figure 1. Components of the optimization & execution module 

Besides trying to comply with all Cassandra restrictions the planner 

identifies which join algorithms should be used for executing the 

various joins by comparing the cost of left-deep trees. Currently 

two join algorithms have been implemented: a) a variation of 

Index-Nested Loops taking advantage of the existing indexes and 

additionally allowing joins over collection sets – indexed 

collections of elements (maps, sets and lists) supported after the 

Cassandra version 2.1; b) the sort-merge join allowing the join to 

be implemented in one pass over the data when the joined relations 

are indexed. When joining two column-families, if only one of 

them has an index on the joined field, the optimizer reads all rows 

from the non-indexed one and then uses the index for searching the 

indexed column-family. On the other hand when both column-

families are sorted on the join column, the Sort-Merge join 

algorithm would be faster and is preferred by the optimizer. 

c) Combiner: This component executes the queries, calculates the 

join using the selected algorithm and returns the results to the users.  

4. EVALUATION & CONCLUSION 
All algorithms reported in this paper were implemented as a Java 

API named CassandraJoins. The API is going to be released soon 

under an open-source license. To perform a preliminary evaluation 

of our implementation we used a single Cassandra DataStax 

Community Server 2.1.5 x64 node running on a system with an I5 

Intel Processor, 8GB of RAM on a Samsung SSD 850 EVO. We 

compared our approach with the Simba-DataStax ODBC 0.7 driver 

and with a MySQL Server CE 5.6.24. The execution time reported 

in each case is the average of 50 runs of each query execution. 

The first series of experiments we performed tries to join two tables 

with a join on the indexed field. When we have indices on the 

joined field the CassandraJoins optimizer is using the Index-Nested 

Loops join algorithm whereas, when the input relations are sorted, 

the optimizer uses sort-merge join. We cannot identify the specific 

algorithm used by Simba-DataStax - the source code is not publicly 

available. The results are shown in Fig. 2 for different input and 

output sizes. We can observe that CassandraJoins is by far more 

efficient than the Simba-DataStax implementation in all cases. For 

example, when joining column-families with 2*105 rows each and 

the result is of the same size our approach needs 166 secs whereas 

Simba-DataStax ODBC driver needs 1087 secs. Obviously, when 

the selectivity of the query is increased the execution time is 

decreased. This is reasonable since Cassandra is known to be 

extremely slow when a query needs to retrieve all rows of a table, 

whereas it is extremely fast when only a small subset of the rows is 

selected. In addition, in all cases the implementation of Index-

Nested Loops in a relational database (MySQL) is more efficient as 

shown in the third column of the graphs, whereas when the 

selectivity of the queries is high, our results are similar. However, 

we have to note that Cassandra scales linearly in a multi-node 

environment and we expect that our implementation will have even 

better results than MySQL when more nodes are used. Finally, to 

demonstrate the advantages of our implementation compared to a 

MySQL Database, we performed another experiment trying to join 

two column-families using collection indices. Since MySQL does 

not support collection indices the dataset has to be modelled using 

an additional indexed table. On the other hand Simba-DataStax 

does not support joins on collections. The results depicted in the 

last graph show that using CassandraJoins we need 0,01 sec 

whereas using MySQL we need 0,64 sec.  

  

  

Figure 2. Results of preliminary evaluation on a single node 

To the best of our knowledge our implementation is the only 

available non-commercial solution implementing joins over 

Cassandra databases. Our experiments demonstrate the advantages 

of our solution and confirm that our algorithms run efficiently and 

effectively. In all cases, we achieved better execution times than 

the commercial Simba-DataStax Driver currently available and our 

results are comparable to the execution times achieved in the 

relational database world. We have to note that our experiments 

were performed in an environment that favors relational databases 

(single node cluster). Surprisingly, our implementation is more 

efficient than relational databases when collection indices are used. 

The next step is to evaluate our implementation in a multi-node 

cluster with more data, to integrate our algorithms directly in the 

CQL language and to implement additional join methods.  
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ABSTRACT
State of the art RDF stores often rely on exhaustive in-
dexing and sequential (self-)joins for SPARQL query pro-
cessing. However, query execution is dependent on, and of-
ten limited by the underlying storage and indexing schemes.
Even though RDF can give birth to datasets with loosely
defined schemas, it is common for an emerging structure to
be present in the data. In this paper we introduce a novel in-
dexing scheme, called Double Chain Star (DCS), that takes
advantage of the inherent structure that is often found in
RDF datasets by extending the notion of Characteristic Sets
to cater for chain-star joins. DCS essentially reduces pairs of
chain-star patterns that typically involve multiple self-joins,
to mere index scans. We perform preliminary experiments
and show promising results in comparison with Jena TDB
and RDF-3X.

Categories and Subject Descriptors
H.2.8 [Information Systems Applications]: Database
Management—Database Applications

Keywords
RDF, SPARQL, Query Processing, Query Optimization, Per-
formance

1. INTRODUCTION
RDF and SPARQL are W3C recommendations for repre-

senting and querying graph data in the Data Web. There
exists a rich body of literature for storing and querying RDF,
however, many of these do not take advantage of the data’s
inherent structure in order to accelerate query processing.
SPARQL optimizers depend on traditional methods for pro-
viding good query plans, including the use of data statistics
and cardinality estimation for ordering triple patterns. The
assumption of data independence imposes a risk of propa-
gating errors in the planning process, especially in joins that
reside deeper in the query plan. This can result in the cre-
ation of plans with large intermediate results between joins.

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0
.

In this paper, we discuss a novel indexing scheme that
aims to decrease the effects of bad estimates by quickly fil-
tering triples that collectively participate in multiple joins,
in one single scan. We extend the notion of Characteris-
tic Sets, that typically represents the inherent structure of
nodes in an RDF dataset, in order to characterize subject-
object joins instead of single subject nodes. We call this Ex-
tended Characteristic Sets (ECS), and we discuss how ECS
can be used for the construction of an inverted index, named
Double Chain-star, that maps ECS’s to collections of triples.

2. RELATED WORK
RDF stores often rely on the mapping of triples to rela-

tional settings, such as a single table with three columns
representing subjects, predicates and objects (SPO) [2], or
sets of property tables that are used for grouping instances
of the same classes [7]. Other approaches include indexing
of various SPO permutations. For example, RDF-3X [5] and
Hexastore [6] make use of exhaustive indexing which includes
all six permutations of subject-predicate-object, while exclu-
sively relying on the indexes for the actual storage. Virtuoso
[3] uses a large table for triples (quads), and a combination
of full and partial indexes.

Characteristic Sets have been introduced as a way to pro-
vide better estimations for join cardinalities [4], and imple-
mented in the RDF-3X high performance triple store. Brodt
et al [1] discuss how an SPO index can be used to identify
Characteristic Sets (CS) and use them for fast retrieval of
star-shaped queries. We propose an extension of CS as a
means to store and index triples, and enable scan-based an-
swering of chain-star queries.

3. EXTENDED CHARACTERISTIC SETS
By definition, a Characteristic Set of a subject node s

contains all properties pi that appear in triples with s as
subject. More formally, given a collection of triples D, and
a node s, the Characteristic Set Sc(s) of s, as given by [4],
is:

Sc(s) = {p | ∃o : (s, p, o) ∈ D}

and the set of all Sc for a dataset D is:

Sc(D) = {Sc(s) | ∃p, o : (s, p, o) ∈ D}

The upper bound for |Sc(D)| is |D|, but the existence of
an inherent structure in RDF data makes the distinct set of
Characteristic Sets that appear in real-world data small [4].
We introduce the Extended Characteristic Set ECS, as the
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Figure 1: Double chain-star graph consisting of a star-
shaped graph around n1 and a star-shaped graph around
n2 .

union of the properties that appear in the subject ts and the
object to of a triple t, i.e. the union of the Characteristic
Sets of ts and to:

Ec(t) = {p1 ∪ p2 | ∃o1 : (ts, p1, o1) ∈ D

and ∃o2 : (to, p2, o2) ∈ D}

or simply:

Ec(t) = {Sc(ts) ∪ Sc(to)}

The set of all ECS in D is given by:

Ec(D) = {Ec(t) | ∃p : (ts, p, to) ∈ D}

Essentially, Ec(t) helps to quickly identify the largest super-
set of graph patterns that contain double chain-stars con-
sisting of a star pattern around ts, a star pattern around to,
and a subject-object join between ts and to, with ts being
the subject and to the object in a common triple. An ex-
ample double chain-star graph pattern is shown in Figure 1,
where nodes n1 and n2 are present in the same triple tn1,n2

as subject and object respectively, and descriptive star pat-
terns are present for each of the two nodes. A Characteristic
Set Sc(s) is also an ECS, meaning that leaf star patterns
are also parts of the ECS space. Preliminary experiments
have shown |Ec(D)| to be low, specifically for LUBM100
with ∼15m triples, this number is 109, for 27 distinct CSs.

4. THE DOUBLE CHAIN-STAR INDEX
The Extended Characteristic Sets of a given dataset can

act as filters for collections of triples that fulfil a certain
query pattern, reducing costly subject-object joins to mere
index scans. For this to be feasible, we propose the Double
Chain-Star (DCS) index, which is essentially an inverted in-
dex that maps collections of triples to ECSs. A triple t is
mapped to an ECS if the ECS contains properties that ap-
pear in triples of either the subject, or the object of t, and t
cannot belong to more than one ECS. Because ECS(t) con-
tains all properties (outgoing edges) from nodes ts and to,
it also contains all subsets of properties for these two nodes.
Therefore, we can check if an incoming query pattern q is
a subset of ECS(t), in which case the nodes of ECS(t) are
potential candidates for evaluating q. Physically, each ECS
can be represented as a bit vector, where each bit represents
a property in an (ordered) set of properties P appearing in
D. Assuming a dictionary of properties and their position
in P , an incoming query q can be split to a set of chain-star
sub-queries q1, q2, . . . qn, and each qi in q will be represented
as a bit vector that instantiates the bits corresponding to
the properties in qi. Therefore, if qi ⊆ ECS(t), the triples

Table 1: Query execution runtime in seconds.

Jena RDF-3X DCS

LUBM10 248.66 8.24 0.56

LUBM100 timeout timeout 29.58

mapped to ECS(t) effectively contribute to the evaluation
of qi. An example can be seen in Figure 1. The properties
need to maintain their interesting order throughout sequen-
tial updates, which is left as future work. Patterns where a
subject is joined with more than one objects with their own
star-shaped graphs, are subject to cost estimation, in order
to determine the order in which the DCS index should be
accessed.

We implemented a naive version on top of Jena TDB, with
the DCS index kept in-memory, and compared with Jena
TDB (default stats-based optimizer) and RDF-3X, measur-
ing wall-clock time (time out after 6 hours), for LUBM10
and LUBM100. For a DISTINCT * query with three double
chain-star patterns, DCS outperforms the rest by orders of
magnitude. For LUBM100 the other two approaches failed
to answer completely, while ours needed a few seconds. The
results can be seen in Table 1.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we introduce the notion of Extended Char-

acteristic Sets and propose the DCS indexing scheme, an
inverted index for fast retrieval of double chain-star patterns
that are present in many types of queries. Through these
structures, we intend to reduce the time spent in sequen-
tial (self-)joins of stars forming around subject-object joins
into mere index scans, and provide an implementation for
storing and querying RDF data that provides faster query
answering even for complex types of queries.
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ABSTRACT
Entity resolution aims to identify descriptions of the same
entity within or across knowledge bases. In this work, we
present the Minoan ER platform for resolving entities de-
scribed by linked data in the Web (e.g., in RDF). To re-
duce the required number of comparisons, Minoan ER per-
forms blocking to place similar descriptions into blocks and
executes comparisons to identify matches only between de-
scriptions within the same block. Moreover, it explores in a
pay-as-you-go fashion any intermediate results of matching
to obtain similarity evidence of entity neighbors and discover
new candidate description pairs for resolution.

1. DESCRIPTION
Over the past decade, numerous knowledge bases (KBs)

have been built to power large-scale knowledge sharing, but
also an entity-centric Web search, mixing both structured
data and text querying. These KBs offer comprehensive,
machine-readable descriptions of a large variety of real-world
entities (e.g., persons, places, products, events) published on
the Web as Linked Data (LD). Although KBs (e.g., DBpe-
dia, Freebase) may be derived from the same data source
(e.g., a Wikipedia entry), they may provide multiple, non-
identical descriptions of the same real-world entities. This is
mainly due to the different information extraction tools and
curation policies employed by KBs, resulting to complemen-
tary and sometimes conflicting entity descriptions. Entity
resolution (ER) aims to identify descriptions that refer to
the same real-world entity appearing either within or across
KBs [2, 3]. Compared to data warehouses, the new ER
challenges stem from the openness of the Web of data in
describing entities by an unbounded number of KBs, the se-
mantic and structural diversity of the descriptions provided
across domains even for the same real-world entities, as well
as the autonomy of KBs in terms of adopted processes for
creating and curating entity descriptions. In particular:

• The number of KBs (aka RDF datasets) in the Linking
Open Data (LOD) cloud has roughly tripled between

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

2011 and 2014 (from 295 to 1014), while KBs inter-
linking dropped by 30%. The main reason is that with
more KBs available, it becomes more difficult for data
publishers to identify relations between the data they
publish and the data already published. Thus, the ma-
jority of KBs are sparsely linked, while their popular-
ity in links is heavily skewed. Sparsely interlinked KBs
appear in the periphery of the LOD cloud (e.g., Open
Food Facts, Bio2RDF), while heavily interlinked ones
lie at the center (e.g., DBpedia, GeoNames). Ency-
clopaedic KBs, such as DBpedia, or widely used geo-
referencing KBs, such as GeoNames, are interlinked
with the largest number of KBs [6].

• The descriptions contained in these KBs present a high
degree of semantic and structural diversity, even for
the same entity types. Despite the Linked Data prin-
ciples, multiple names (e.g., URIs) can be used to refer
to the same real-world entity. The majority (58.24%)
of the 649 vocabularies currently used by KBs are pro-
prietary, i.e., they are used by only one KB, while di-
verse sets of properties are commonly used to describe
the entities both in terms of types and number of oc-
currences even in the same KB. Only YAGO contains
350K different types of entities, while Google’s Knowl-
edge Graph contains 35K properties, used to describe
600M entities.

The two core ER problems, namely how can we (a) effec-
tively compute similarity of entity descriptions and (b) effi-
ciently resolve sets of entities within or across sources, are
challenged by the large scale (both in terms of the number
of sources and entity descriptions), the high diversity (both
in terms of number of entity types and properties) and the
importance of relationships among entity descriptions (not
committing to a particular schema defined in advance). In
particular, in addition to highly similar descriptions that fea-
ture many common tokens in values of semantically related
attributes, typically met in the center of the LOD cloud and
heavily interlinked mostly using owl:sameAs predicates, we
are encountering somehow similar descriptions with signifi-
cantly fewer common tokens in attributes not always seman-
tically related, that appear usually in the periphery of the
LOD cloud and are sparsely interlinked with various kinds
of predicates. Plainly, the coming up of highly and somehow
similar semi-structured entity descriptions requires solutions
that go beyond those applicable to duplicate detection. A
promising area of research in this respect is cross-domain
similarity search and mining [8, 7], aiming to exploit simi-
larity of objects described by different modalities (i.e., text,
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Figure 1: The Minoan ER Framework.

image) and contexts (i.e., facets) and support research by
analogy. Such techniques could be also beneficial for match-
ing highly heterogeneous entity descriptions and thus sup-
port ER at the Web scale.

We present in this poster the Minoan ER platform for
resolving entities described by linked data in the Web (e.g.,
in RDF). Figure 1 illustrates the general steps involved in
our process.
Blocking and Meta-blocking in Minoan ER: We use
blocking as a pre-processing step for ER to reduce the num-
ber of required comparisons. Specifically, blocking places
similar entity descriptions into blocks, leaving to the entity
matching algorithm the comparisons only between descrip-
tions within the same block.

Typically, token-based blocking algorithms place highly
similar descriptions (having many common tokens) in many
common blocks; intuitively, the more common blocks two de-
scriptions share, the more likely it is that they match. This
leads to many repeated comparisons between the same pairs
of descriptions. To overcome this problem, we accompany
blocking with meta-blocking, which prunes such repeated
comparisons. Moreover, meta-blocking aims at discarding
comparisons between descriptions that share few common
blocks and are thus less likely to match. In Minoan ER, to
support a Web-scale resolution of heterogeneous and loosely
structured entities across domains, we use algorithms for
blocking and meta-blocking that disregard strong assump-
tions about knowledge of the data schema and rely on a
minimal number of assumptions about how entities match
(e.g., when they feature a common token in their descrip-
tions or URIs) within or across sources. For doing so, we
exploit the parallel processing power of a computer cluster
via Hadoop MapReduce, as presented in [5, 4].
Progressive Entity Matching in Minoan ER: Block-
ing approaches in the Web of data, especially when handling
somehow similar descriptions appearing in the periphery of
the LOD cloud, may miss highly heterogeneous matching
descriptions featuring few common tokens [5]. To overcome
that, we focus on exploiting the partial matching results as
a similarity evidence for their neighbor (i.e., linked) descrip-
tions. Since this inherently iterative process entails an addi-
tional overhead, we are interested in maximizing its benefit,
given a computational cost budget. So, we need to estimate
which part of the graph is the most promising to explore in
the next iteration, in a progressive way.

In this respect, Minoan ER focuses on extending the typ-
ical ER workflow with a scheduling phase, which is respon-
sible for selecting which pairs of descriptions, that have re-

sulted from blocking, will be compared in the entity match-
ing phase and in what order. The goal of this new phase is to
favor more promising comparisons, i.e., those that are more
likely to increase the targeted benefit. This way, those com-
parisons are executed before less promising ones and thus,
higher benefit is provided early on in the process. The up-
date phase propagates the results of matching, such that a
new scheduling phase will promote the comparison of pairs
that were influenced by the previous matches. This iterative
process continues until the cost budget is consumed.

In contrast to existing works in progressive relational ER
(e.g., [1]), which consider the quantity of entity pairs re-
solved, as the benefit of ER, we explore different aspects of
data quality, improved through ER. In particular, we are
interested in characterizing the quality of the resolved pairs,
with respect to the number of descriptions resolved, corre-
sponding to the same real-world entity (targeting attribute
completeness), the number of real-world entities resolved
(targeting entity coverage), and the number of real-world
entity graphs resolved (targeting relationship completeness).

Acknowledgements: This work was partially supported
by the EU H2020 PARTHENOS (#654119), FP7 DIACHRON
(#601043) and FP7 SemData (#612551) projects.
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ABSTRACT 

Next generation sequencing (NGS) and the recent development of 

efficient algorithms for genomic analysis are contributing to the 

understanding of human genetic variation and thus to personalized 

medicine. Among those genomic analysis, disease-causal gene 

analysis that finds genes relevant to specific diseases has received 

much attention.  In this paper, we present our work on extending 

the PostgreSQL open source relational database management 

system (RDBMS) to efficiently handle genomic analysis. We 

introduced a new genome data type and a genome type aggregation 

function that drastically improved the performance of a typical 

query for disease-causal gene analysis by a factor of 50 to 360.  

1. INTRODUCTION 
Human beings have a sequence of three billions deoxyribonucleic 

acid (DNA) molecules which contains some millions of variants 

called “gene variants” that cause individual variations. Each 

individual has personal types of gene variants called “genotypes” 

which are combinations of nucleotide derived from chromosome 

dipoles. Figure 1 illustrates  an example of genotypes. Individual 0 

has genotype ‘C/C’ at gene variant 0, and genotype ‘T/C’ at gene 

variant 1. On the other hand, individual 1 has genotype ‘A/C’ at 

gene variant 0, and ‘T/T’ at gene variant 1.  

The improvement of processing performance and the reduction 

of running cost of NGS, and the recent development of efficient 

algorithms for genomic analysis have resulted in an enormous 

increase in the amount of data of gene variants like SNP (single 

nucleotide polymorphism) and INDEL (insertion-deletion 

polymorphism). These gene variants are leveraged in a variety of 

studies such as cohort study, inheritance history study and disease-

causal gene study. Disease-causal gene study aims to find the genes 

relevant to specific diseases and clarify the reasons of these 

diseases. The typical processing in such a study is to first filter the 

individuals by some patient clinical condition (e.g. case-control), 

and then, find the genes whose frequency of its genotype is 

different between the filtered group and the rest. Normally the 

genetic data is delivered in flat-files (VCF [4]), and the patient 

information data, for instance, demographic information as 

gender/race/age, clinical information, and lifestyle information, are 

usually stored/managed in RDBMS. Recently, some studies 

integrate the genetic data and the patient data to be managed in 

RDBMS [1] [2]. Although the RDBMS approach improves the data 

manageability and usability, the improvement of the procedure and 

performance of the analysis processing in finding out the genes of 

interest remains a big challenge because of the very huge amount 

of gene variants.  

In this paper, we present our work on extending the PostgreSQL 

[3] open RDBMS with a new data type and a new aggregation 

function called “genome type” and “genome type aggregation 

function”, respectively. Some preliminary examination shows that 

our approach is promising and can improve the execution time of 

disease causal gene analysis processing by a factor of 50 to 360.  

2. Conventional Methods 

2.1 Database Schema 

 

Figure 2 shows the database schema composed of tables that 

contain the N gene variants (GV0...N-1) with the associated genotype 

for each individual. Note that since there is a limit on the number 

of columns a table can contain, in this case M, there are N/M tables 

(T0…N/M-1) to store all the M gene variants of the individuals. Figure 

1 shows also a clinical table (Tc) with information related to n 

diseases (D0…n-1) for each individual. Other tables containing 

information about the patients (lifestyle, demographics, etc.) can 

also be necessary to properly describe the individuals. 

2.2 Naïve Method 
A naïve method counts the number of occurrence of each 

genotype for all the gene variants of patients with a specified 

disease. SQL 1 shows the SQL statement that calculates the 

distribution of genotype of a gene variant (GV0) for patients who 

have a specified disease (D0). This query is executed N times (i.e. 

for each GV0..N-1). It takes 1,530ms on PostgreSQL to execute the 

above query on 150,000 individuals for each gene variant GVi. For 
© 2016, Copyright is with the authors. Published in Proc. 19th International 

Conference on Extending Database Technology (EDBT), March 15-18, 2016 
- Bordeaux, France: ISBN 978-3-89318-070-7, on OpenProceedings.org. 
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Figure 1: Chromosome dipoles of two individuals Figure 2: Conventional database schema 
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the usual case of 3,000,000 gene variants, it would take more than 

50 days. There are two major reasons for such a long execution time. 

One is the huge number of gene variants N and thus, the huge 

number of corresponding SQL queries that have to be processed. 

The other is the long processing time of the query for the join 

between Ti and Tc. Note that in real cases the query could contain 

more joins to include lifestyle and demographics that are usually 

stored in other tables. 

2.3 External Count Method 
In order to decrease the number of queries and join operations, a 

method composed of an SQL that first retrieves all the genotypes 

of the gene variants for the individuals with a specified disease, and 

then an external application that counts the number of each 

genotype using the result of the query, is analyzed.  

SQL 2 shows the SQL statement that retrieves the genotypes of 

gene variants (GV0..GVM-1) on Table T0 for the patients with 

disease D0. Note that a similar query is executed N/M times, i.e., 

for all gene variants tables T0..TN/M-1. The result of the SQL queries 

is input into an external program that counts the distribution of each 

genotype for all gene variants. It still takes about 5,500s, including 

both the PostgreSQL processing and the external processing, for 

the case of 1,000 individuals and 3,000,000 variants. This method 

still has two problems. First, since there is a limit on the number of 

columns a table can contain, many tables are necessary to store 

millions of variants and thus, the costly join processing of those 

tables with clinical and other tables cannot be avoided. Second, 

external processing causes a huge amount of data flow from the 

RDBMS to external application and thus, a high cost transfer time 

is necessary.  

3. Proposed Method 
In order to solve these problems, we proposed a method that 

integrates all the genotypes of the gene variations in a single table, 

making possible an efficient counting of the genotypes. We created 

a special database type and a special aggregation function called 

“genome type” and “genome aggregation function”, respectively.  

Figure 3 illustrates the gene variants table (TGV) with the genome 

type (GT) column that packs all genotypes of all gene variants for 

each individual, enabling an efficient storing and scanning of the 

genotype data for its aggregation. SQL 3 shows the SQL statement 

with the proposed genome type aggregation function 

fjgeno_count(). Since all the genotypes of the gene variations are 

contained in GT, the genome aggregation function can efficiently 

count up through all genotypes of each individual at once. And only 

a single execution of the join processing with other tables as the 

clinical table Tc is necessary. 

4. Evaluation 
We implemented our proposed method on PostgreSQL, and 

compared its performance with the conventional methods presented 

in Section 3. We used the machine whose CPU is Xeon CPU E5-

2680 0 @2.70GHz x2 and memory is DDR3 128GB.   

 Figure 4 shows the execution time per gene variant for the case 

of 1,000 individuals for the naïve, the external count, and our 

proposed method, when varying the number of gene variants 

packed in GT.  For the naïve method, the execution time per variant 

is 13ms, and for the external method is 1.86ms. On the other hand, 

the execution time for our method improves when increasing the 

number of packed variants, and it is reduced to 0.035ms which 

represents an improvement factor of about 50 to 360 over the 

conventional methods. 

5. Conclusion 
We proposed a new database type and new aggregation function 

as extensions to PostgreSQL for genomic analysis. Our preliminary 

evaluation showed that it can greatly improve the processing time 

of a typical query in medical genomics study. We are now working 

on further performance improvements for the genome aggregation 

function using dictionary and vectorization techniques, which we 

plan to report in detail in a future paper.   
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SELECT count(T0.GV0) FROM T0, Tc 

GROUP BY T0.GV0 

WHERE T0.ID = Tc.ID and Tc.D0 = ‘Yes’ 

SQL 1: SQL for naïve method 

SELECT fjgeno_count(TGV.GT) FROM T0 

WHERE TGV.ID = Tc.ID and Tc.D0 = ‘Yes’; 

SQL 3: SQL for proposed method 

SELECT T0.GV0, T0.GV1, …T0.GVM-1 FROM T0, Tc  

WHERE T0.ID = Tc.ID and Tc.D0 = ‘Yes’; 

SQL 2: Pseudo SQL for external count method 

Figure 3: Proposed database schema 

Figure 4: Execution time for the three methods 
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ABSTRACT
We report on our ongoing effort to develop observational
debuggers for SQL. This debugging paradigm—in which the
evaluation of selected subexpressions may be “spied on”—
fits the nature of query languages, but may lead to observa-
tions whose size can overwhelm users. Here, we tackle this
challenge with the help of data provenance analysis. The
analysis identifies exactly those input rows that are material
in producing suspect query outputs. Running the debugger
on such a minimized input will exclusively yield observations
that are indeed relevant in understanding the bug.

1. SPYING ON SQL EVALUATION
SQL queries are prone to bugs much like code written in

conventional programming languages. The present work in-
vestigates debugging paradigms that fit the declarative na-
ture of SQL and, in particular, shield users from low-level
internals (like execution plans, for example). We argue that
observational debugging [5], an idea rooted in the logic and
functional programming communities, is one such paradigm:
users mark the “suspect” subexpressions—ranging from sim-
ple arithmetics to entire subquery blocks—of a buggy SQL
query to observe their value at runtime. Seeing the difference
between the expected and observed evaluation of a subex-
pression has turned out to be an effective tool in uncovering
subtle SQL bugs [3].

A sample debugging scenario is depicted in Figure 1. Ta-
bles cities and roads jointly model a road network in which
only selected cities host fueling stations (label in Fig-
ure 1(a), 0/1 in column fuel of table cities). Which cities
can we reach from Alton if our car has a maximum range
of 100 km before it needs to be refueled? An attempt to
answer this question is the recursive SQL query of Figure 3.
The query emits table hops(city, range) in which a row 〈c, r〉
indicates that we can reach city c with a residual range of r
(see Figure 2). The result looks suspicious, though: we are

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

Alton

Brigg

road
network

Lewes

Neath

Magor

Olney

40 80

80

70

110

(a) Simple road network with travel distances and fueling
stations ( ). Which cities can we reach from Alton?

cities
city fuel

AltonAlton 11
BriggBrigg 00
CorbyCorby 00

HedonHedon 00
LewesLewes 11
Magor 00
NeathNeath 00
Olney 0

(b) Table cities.

roads
here dist there

AltonAlton 4040 BriggBrigg
BriggBrigg 3030 CorbyCorby

HedonHedon 4040 LewesLewes
LewesLewes 8080 NeathNeath
Lewes 7070 Magor
Magor 110110 Olney
NeathNeath 8080 OlneyOlney

(c) Table roads.

Figure 1: A debugging scenario: a relational model of cities
and their connecting roads, parts of the instance hidden be-
hind . (Disregard the provenance labels and
until you reach Section 2.)

able to reach Olney although the city is farther from the
last fueling station (in Lewes) than our maximum reach.

city range
Alton 0
Brigg 60

· · · · · ·
Magor 90
Neath 80
Magor 50
OlneyOlney 0  
Neath 40

Figure 2: Final (but incorrect)
hops table. The  identifies
one questionable output: we
did not expect to reach Olney.

Pursuing the observational
debugging paradigm, users mark
parts of the buggy query (
in Figure 3) to learn about the
evaluation of selected subex-
pressions. Markings typically
start out large and then grad-
ually zoom in on query details
until the source of the bug can
be observed directly. In keeping
with the relational data model,
the debugger presents obser-
vations in tabular form (Fig-
ure 4). Given the particular markings 1 to 4 of Figure 3,
one row in the observation table shows our current location
(column 2 ) and the range available (possibly after refueling,
column 4 ) before we travel r.dist kilometers (column 3 )
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1

2

34

1 WITH RECURSIVE hops(city, range) AS (
2 VALUES (’Alton’, 0)
3 UNION ALL
4 SELECT r.there AS city,
5 h.range + c.fuel * 100 - r.dist AS range
6 FROM cities AS c, roads AS r, hops AS h
7 WHERE h.city = c.city
8 AND h.city = r.here
9 AND h.range + c.fuel * 100 >= r.dist

10 )
11 SELECT *
12 FROM hops;

Figure 3: Users place markings ( ) to observe the evalu-
ation of suspect SQL subexpressions.

to reach the next city (column 1 ). At recursion depths 9
and 10 we observe suspicious ranges which exceed the max-
imum of 100 (see the 160 km range marked by  , for exam-
ple). This suggests that the query’s range computation is
to blame (see [2] for the complete story behind the hunt for
the bug of Figure 3).

2. MAKE EVERY OBSERVATION COUNT
Observations may be sizeable, however, and it can be a

true challenge to spot enlightening details like  in Figure 4.
The sheer size of the input tables as well as the marking of
subexpressions that are evaluated before aggregates or filters
reduce data volume may lead to huge observations that do
not reveal much. Indeed, in Figure 4 the lion’s share of our
observations hides behind the ellipses ( ... ), the majority of
which contribute nothing to the understanding of the bug.
It is here where we propose to join two strands of work

that have evolved independently until now. We build on a
variant of data provenance analysis [1, 4] as follows:
(1) In the query output, users identify one or more suspect

cells or rows (see Figure 2 where we use the mouse to
identify the questionable city Olney).

(2) Provenance analysis infers those input table cells that
are material in computing the value Olney (where prove-
nance, cells labeled in Figure 1(a)) as well as all
rows that were inspected to decide that Olney is part of
the query’s result (why provenance, label ).

2 1 3 4
recursion hops AS h SELECT · · · r.dist h.range · · ·

depth city range city range
0 Alton 0

9

Iford 30
Lewes 60
Lewes 60
Magor 40
Magor 50
Neath 30
Neath 40

Lewes 20
Magor 90
Neath 80

110
70
80

130
160

 160

10

Lewes 20
Lewes 20
Magor 90
Neath 80

Magor 50
Neath 40

Olney 0

70
80

80

120
120

80

11
Magor 50
Olney 0
Neath 40

...
... ...

...

Figure 4: Excerpt of observations made by markings 1 to 4 .

(3) Remove unlabeled input rows and run the observational
debugger on the minimized database instance.

This input minimization will, in general, lead to significantly
smaller observations: in the road network scenario, any city
or road that does not lie on the path from Alton to Olney
will be removed (see Figure 5 which features a mere 12 rows
and hides nothing). Most importantly, the reduced input
will still trigger the bug and any observation made will be
relevant in identifying the bug’s cause—in a sense, after min-
imization the query will focus on producing the buggy out-
put. We claim that this focus is just what is needed to
effectively debug data-intensive computations.

Hand in Hand: Debugging and Provenance Analysis. The
practical relevance of this research hinges on the ability to
embrace expressive SQL dialects—featuring language con-
structs like correlation, grouping, window functions, recur-
sion, as well as built-in and user-defined SQL functions. It is
these rich queries that are potential sources of obscure bugs.
Our recent work on the efficient value-less interpretation

of programs [4] provides a means to derive where- and why-
provenance for such real-world SQL dialects. We are under-
way to connect this analysis with the Habitat observational
debugger for SQL [2] and are positive to be able to make a
significant step towards truly declarative and scalable query
debugging.
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2 1 3 4
recursion hops AS h SELECT · · · r.dist h.range · · ·

depth city range city range
0 Alton 0

1 Alton 0 Brigg 60 40 100

2 Brigg 60 Corby 30 30 60

3 Corby 30 Derby 10 20 30

4 Derby 10 Egton 80 30  110

5 Egton 80 Filey 10 70 80

6 Filey 10 Goole 50 60  110

7 Goole 50 Hedon 100 50  150

8 Hedon 100 Lewes 60 40 100

9 Lewes 60 Neath 80 80  160

10 Neath 80 Olney 0 80 80

11 Olney 0

Figure 5: After input minimization: a full observation display
reveals the buggy refueling logic of the query in Figure 3.
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ABSTRACT
Biomedical ontologies play an important role for information ex-
traction in the biomedical domain. We present a workflow for
updating automatically biomedical ontologies, composed of four
steps. We detail two contributions concerning the concept extrac-
tion and semantic linkage of extracted terminology.

1. INTRODUCTION
Biomedical big data raises a major issue: the analysis of large

volumes of heterogeneous data. Ontologies, i.e. conceptual mod-
els of the reality, can play a crucial role in biomedical fields for
automating data processing, querying, and integration of heteroge-
neous data. Few semi-automatic methodologies to build ontolo-
gies have been proposed in recent years. Semi-automatic construc-
tion/enrichment of ontologies are mostly achieved using natural
language processing (NLP) [1] techniques to assess text corpus.
However, besides the existence of various English tools, there are
considerably fewer ontologies and tools available in French and
Spanish. This shortcoming is out of line with the huge amount of
biomedical data produced for several languages, especially in the
clinical world. This paper proposes a workflow to enrich biomed-
ical ontologies or terminologies from texts, addressing the lexi-
cal/syntactic and semantic complexity of this process. The lexi-
cal/syntactic complexity involves the extraction of biomedical com-
plex terms from a specialized text corpus. The semantic complexity
is related to concept induction and semantic linkage of new terms.
Our methodology has been applied for English, French, and Span-
ish.

2. PROPOSED APPROACH
Our approach consists of four steps: (I) Term Extraction, (II)

Polysemy Detection, (III) Sense Induction, and (IV) Semantic Link-
age. The lexical/complexity complexity is tackled by (I), and the
semantic complexity is addressed by (II), (III), and (IV).

(I) Term Extraction: We use BIOTEX1, our application to ex-
tract biomedical terms from documents from text databases (e.g.

1
http://tubo.lirmm.fr/biotex/

©2016, Copyright is with the authors. Published in Proc. 19th Interna-
tional Conference on Extending Database Technology (EDBT), March 15-
18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

PubMed). This application implements some measures presented
in [4] allowing to extract terms that might be added to a biomedical
ontology, we called them “candidate terms”.

(II) Polysemy Detection: This step seeks to predict if candidate
terms are polysemic. We proposed new features based on statis-
tical measures to characterize our text corpus. They are extracted
directly from texts and from a graph itself induced from the text
corpus. We used several machine learning algorithms to determine
if a term is polysemic or not. Totally, 23 features were proposed, 11
direct and 12 from the induced graph. Their effectiveness showed
an F-measure of 98%.

(III) Term Sense Induction: The objective of this step, is to in-
duce the multiple or unique sense(s) (concept) of polysemic and
not polysemic candidate terms. The senses are extracted according
to the context of terms. For this, we execute two tasks. First, (a)
Number of senses prediction: This task is performed only for the
candidate terms predicted as polysemic in the previous step. Then,
(b) Clustering for concept induction: This task executes a cluster-
ing algorithm taking as input the predicted k, then for each cluster
it selects the most important features, which represent the induced
concept. Note that k = 1 when the candidate term is not polysemic.

The prediction of the sense number of a term falls directly in
clustering-based issues. In clustering tasks, one of the most difficult
problems is to determine the number of clusters k, which is a basic
input parameter for most clustering algorithms. In the biomedical
domain, according to the statistics on UMLS (see Table 1), poly-
semic terms trend to be linked to only to 2 and 5 senses (i.e. 2
and 5 clusters). Therefore, as we aim at identifying the possible
senses for a new biomedical candidate term, we will limit the num-
ber of senses between 2 and 5. Table 1 shows the details of poly-
semic terms statistics in UMLS and MeSH for English, French, and
Spanish. The English version of UMLS contains about 9 919 000
distinct terms of which about 54 257 are polysemic. It means that
approximately for 200 biomedical terms there exists just 1 poly-
semic term.

# of Senses UMLS MeSH
k EN FR ES EN FR ES
2 54 257 1 292 10 906 178 11 0
3 7 770 36 414 1 0 0
4 1 842 1 56 0 0 0

5+ 1 677 1 18 0 0 0

Table 1: Details of Polysemic Terms in UMLS and MeSH.

To evaluate the clustering solutions, there exist two kinds of
quality indexes [2]: external and internal. External indexes use
pre-labelled data sets with “known” cluster configurations. Internal
indexes are used to evaluate the“goodness” of a cluster configura-
tion without any priory knowledge of the clusters, in our case, we
propose to focus on internal indexes. We use the following mea-
sures: (i) the intra-cluser similarity (ISIM), and (ii) the inter-cluster
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similarity (ESIM), in order to create new indexes. They focus on
choosing the minimum or maximum value. That allows to have an
idea if the reached clusters are homogeneous. New internal indexes
are described in Table 2. Notation: | Si | is the number of objects
assigned to the ith cluster.

1) Average of ISIM: represented as ak, is the average of the ISIM value of each cluster
of a solution clustering with number of clusters = k.

max(ak) = max
(∑k

i=1 ISIMi

k

)
2) Average of ESIM: represented as bk, is the average of the ESIM value of each cluster
of a solution clustering with number of clusters = k.

min(bk) = min
(∑k

i=1 ESIMi

k

)
3) Average of the difference between ISIM and ESIM: represented as ck, is the av-
erage of the difference between ISIM and ESIM multiplied by the number of objects in
such cluster | Si |.

max(ck) = max
(

1
k

∑k
i=1 | Si | ×(ISIMi − ESIMk)

)
4) Division between the ISIM sum and ESIM sum: represented as ek, is the division
between the sum of ISIM multiplied by the number of objects in such cluster | Si |, and
the sum of ESIM multiplied by the number of objects in such cluster.

max(ek) = max
(∑k

i=1|Si|×ISIMk∑k
i=1|Si|×ESIMi

)
5) Global objective function divided by the logarithm: represented as fk, is the
division between the value of the average of ISIM and the logarithm of k to base 10.

max(fk) = max

( ∑k
i=1 ISIMi

k
log10(k)

)
Table 2: New Internal Indexes.

For this purpose, we represented our text corpus of two differ-
ent manners: (i) bag-of-words representation, and (ii) graph rep-
resentation. We used clustering algorithms and computed the new
internal indexes.

(IV) Semantic Linkage: This step aims to add a candidate term
in an existing biomedical ontology, i.e., how to find the correct po-
sition in the ontology. (1) Creation of term co-occurrence graph
with terms extracted in (I), selecting only the MeSH neighborhood
of a candidate term, then (2) we evaluate the semantic similarity
of the candidate term with: (i) its MeSH neighbors, and, (ii) the
fathers/sons of those neighbors in MeSH ontology. The semantic
linkage is based essentially on a context similarity using the cosine
measure between the new biomedical candidate term and those ap-
pearing in an ontology. At the end, a list of terms is proposed where
the new biomedical candidate term could be positioned.

3. DATA AND RESULTS
In this section, we report experiments done to evaluate the per-

formance of our proposal for (ii) prediction of sense number, and
(ii) semantic linkage.

(i) Prediction of Sense Number: We will describe the text database
used and the experiments in the following paragraphs.

Text corpus: MSH WSD2 [3], which is composed of 203 poly-
semic entities in English, linked to a number of concepts (2,3,4,5).
This data set is well-known in Word Sense Disambiguation litera-
ture applied to the biomedical domain.

Results: We use five well-known clustering algorithms imple-
mented in the CLUTO3 software, such as: rb, rbr, direct, agglo,
graph. In general, bag-of-words and graph representations obtain
similar accuracy values. For these two cases, the maximum value
is 93.1% obtained by max(fk) index (See Table 2). Which means
that for 100 terms, our approach can determine correctly the num-
ber of concepts of 93 terms.

(ii) Semantic Linkage: Text corpus: We collect 60 MeSH terms
that have been added between 2009 and 2015, for instance the term
“corneal injuries”. Each MeSH term will represent a “biomedical
candidate term”. Then, we retrieve the context of these terms using
PubMed, this context is composed of 333 073 311 tokens. Then, we
create a co-occurrence graph per term from the retrieved context.
2
http://wsd.nlm.nih.gov/

3
http://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview

Results: We use cosine similarity between contexts and we pro-
pose 10 positions to add candidate terms in the MeSH ontology.
For instance, we take the term “corneal injuries” added in MeSH
between 2009 and 2015. Its synonyms in MeSH are corneal injury,
corneal damage, and corneal trauma. Its fathers are corneal dis-
eases and eye injuries. Then, we apply our methodology to locate
“corneal injuries” in MeSH. Table 3 shows the first 10 best propo-
sitions done by our methodology. From our 10 propositions, 5 are
correct, i.e. we found the correct synonyms and fathers of “corneal
injuries” in MeSH version 2015 (yellow rows).

№ Where Cosine № Where Cosine
1 corneal injury 0.4251 6 eye injuries 0.3681
2 corneal damage 0.4181 7 amniotic membrane 0.3639
3 chemical burns 0.4081 8 re-epithelialization 0.3588
4 corneal diseases 0.3696 9 corneal trauma 0.3582
5 corneal ulcer 0.3689 10 wound 0.3472

Table 3: Propositions about where to add the term corneal injuries.

Table 4 shows the precision of the number of terms which have
at least 1 correct proposition with our methodology for the Top
1, Top 2, Top 5 and Top 10 propositions; taking into account the
paradigmatic relations, i.e. synonyms, hyperonyms (fathers), and
hyponyms (sons). For instance, the yellow cell shows that there
exist at least 1 correct proposition (i.e. existent in MeSH ontology)
for the 36 of the 60 terms (i.e. 40%).

Top 1 Top 2 Top 5 Top 10
0.333 0.400 0.500 0.583

Table 4: Precision of the number of terms which have at least 1 correct
proposition with our methodology.

4. CONCLUSIONS AND FUTURE WORK
In this paper, we present an entire workflow to enrich biomedical

ontologies. We focus on the last two steps of the global process. We
presented new internal indexes to predict the number of clusters
(number of senses) for a new biomedical candidate term. They
are based on the clustering task by using bag-of-words and graph
approaches. Another contribution is to find the right position in an
already established ontology for new biomedical terms associated
with their senses. We extracted the possible relations for a term.
Those were based only on the similarity context, using the cosine
measure between contexts.

A perspective of this work is to extract the type of relations. This
could be performed with the linguistic patterns (e.g. the verbs used
between two terms) and the associated contexts.
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ABSTRACT
Mining dynamic influence in evolving entities, which provides in-
sights into the interaction and causal relations among entities, is an
important and fundamental data mining task. Meanwhile, nowa-
days pervasive sensors in a variety of contexts give rise to the de-
velopment of many distributed real-time computation systems in-
tended for massive time series streams. In this paper, we focus
on mining dynamic influence from time series data generated by
entities via such a distribute real-time computation system. The
proposed D2InfMiner framework encompasses a statistical lead-
lag correlation based influence detection module and an on-line
model for dynamic influence inference. We implement D2InfMiner
framework based on Apache Storm.

Categories and Subject Descriptors
H.3 [Information Systems]: Information storage and retrieval

Keywords
Time series, Influence mining, Distribued data procesing

1. INTRODUCTION
For our contemporary interconnected and dynamic changing world,

dynamic influence in evolving entities described by time series is
fundamental knowledge that helps people understand the behaviours
of involved entities. For instance, as massive powerful and var-
ious sensors are becoming prevalent in our daily life (e.g., mo-
bile phones, sensor networks, smart meters and etc.), influence
among the time series generated by these sensors reflects the real-
time status of the carriers and their interactions. Moreover, such
quickly and continuously increasing amount of real-time data leads
to the development of many distributed real-time computation sys-
tems [1], analogous to MapReduce ecosystem designed for large-
scale static data.

This paper aims at addressing the problem of mining evolving
entity influence based on such a new emerging distributed real-
time computation paradigm (DisMineInflu problem). DisMineInflu
problem is of great value to various applications such as event/anomaly

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

detection, trend prediction, casualty analysis and so on. For in-
stance, for data-driven event detection in performance monitoring
of data centres, when an event is detected from the performance
time series (e.g., network I/O) w.r.t. a certain server, using our pro-
posed dynamic influence mining framework, operators can quickly
identify from large-scale of servers which one(s) are highly proba-
ble to be affected by this event in a certain time and then respond
in advance. It is also especially applicable in the financial markets
and social data analysis [5–7].

Specifically, our proposed distributed data mining framework
should be able to tackle the following challenges. Contrary to static
influence mining, since new arriving observations of time series
from evolving entities are continuously distributed into different
computing nodes of a cluster, mining dynamic influence via the
distributed real-time computation system requires a computation
and communication efficient solution. Otherwise the system would
encounter bottlenecks, which lead the influence detection to lag fur-
ther and further over time and report stale results [1]. Another chal-
lenge lies in modeling the dynamic influence through time series.
Since the evolving data could be quite volatile during some periods
or events [8], the proposed framework should entail a statistical
model responsible for providing stable influence inference. How
to efficiently on-line maintain this model to capture the dynamic
nature of influence is also non-trivial.

Contributions: This paper is the first work that proposes a truly
distributed and real-time solution for DisMineInflu problem. The
approach in [6] assumes that the underlying influence relationships
are static. [5, 7, 8] focus on mining influence in a centralized way
and do not the consider the data communication overhead in the
distributed environment as well as correlations among time series
of entities. Overall, this paper makes the following concrete con-
tributions: we formally define the problem of continuously mine
dynamic influence from time series yielded by evolving entities
based on a distributed real-time computation system (DisMineIn-
flu problem). The D2InfMiner framework is proposed to optimize
both communication and computation cost as well as providing sta-
tistical inference of influence for DisMineInflu problem. We imple-
ment D2InfMiner framework based on Apache Storm.

2. PROBLEM DEFINITIONS
In this section, we formulate the DisMineInflu problem.

2.1 Distributed Real-time Computation Engine
In a typical cluster of a distributed real-time computation en-

gine [1], Topology is a job submitted to the cluster, which is a
program-described directed acyclic graph (DAG). The vertexes are
user-defined processing elements denoted by boxes and the com-
munication between boxes is dictated by the edges in the topology.
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A topology is executed to continuously process tuples. Each box
has a user specified number of tasks denoted by parallelism of the
box and such tasks are executed in parallel to process the tuples
sent to this box. Shuffling function is a function between two boxes,
which determines to which task of the connected box a tuple from
the preceding box should be sent.

Figure 1: The topology of dynamic influence mining in a dis-
tributed real-time computation system

We use n to denote the total number of entities continuously
feeding time series streams to the cluster. For an entity i (1 ≤
i ≤ n), let si denote the sequence of discrete real-valued observa-
tions si,t (t represents a time instant) of this entity’s attribute. The
sliding window of length h ending at time instant t of entity i is
denoted by sti = (si,t−h+1, · · · , si,t) and sti ∈ Rh.

2.2 Problem Statement
In this paper, we utilize statistical lead-lag correlations, namely

Pearson correlation and Spearman correlation to measure the influ-
ence between time series of entities [4, 8].

DEFINITION 2.1 (LEAD-LAG CORRELATIONS). Define a generic
correlation function for sliding windows st1i and st2j of time series

of two entities i and j as corre(st1i , s
t2
j ) =

(s
t1
i −µ(st1i )1)·(st2j −µ(st2j )1)

(h−1)σ(s
t1
i )σ(s

t2
j )

where 1 is all one vector (1 ∈ Rh), σ(st1i ) and µ(st1i ) are the
sample standard deviation and mean of the elements in st1i , re-
spectively [4]. Assume t1 < t2 and corre(st1i , s

t2
j ) measures the

correlation between time series i and j with lag τ = t2 − t1.
Pearson correlation coefficient ρt1,τi,j , which evaluates the lagged

linear relationship, is defined as follows [4]: ρt1,τi,j = corre(st1i , s
t2
j )

Spearman correlation ξt1,τi,j , which measures the strength of lagged
monotonic relationship is defined as: ξt1,τi,j = corre(rt1i , r

t2
j ),

where the entries of rt1i are the ranks of the corresponding entries
in original st1i [4].

For a certain application, users can choose either Pearson or Spear-
man correlation to measure the influence in evolving entities as de-
fined below:

DEFINITION 2.2 (CORRELATION BASED INFLUENCE). Given
an application-specific correlation threshold ε, for the time series
of entities i and j (1 ≤ i, j ≤ n), entity i has influence on entity j
at time t1 with lag τ if ρt1,τi,j (or ξt1,τi,j ) is significantly above ε.

Intuitively, correlation based influence evaluates to what extent en-
tity j will have a correlated trend with i in time ` [3, 8]. For sim-
plicity, we call it influence in the rest of paper.

Now the DisMineInflu problem is formulated as:
DEFINITION 2.3 (DISMINEINFLU PROBLEM). Assume n time-

series streams collected from corresponding n entities are contin-
uously arriving and distributed to different nodes of a distributed
real-time computation system. DisMineInflu problem requires to
mine the following information for each entity:

(1) continuously report the entities on which it has influence
within a maximum lag `;

(2) on-line maintain a statistical model over the detected dy-
namic influence such that the probability that certain entities will
be impacted within maximum lag ` can be inferred.

The maximum lag ` represents the temporal range of users’ inter-
est to model the dynamic influence and also indicates how far in
advance users want to predict the future based on detected influ-
ence. In real applications, due to the dynamic nature of evolving
entities and observational errors, the yielded time series often em-
braces volatile or sudden changed influence [7, 8]. The statistical
model built on the real-time detected influence from sub-problem
(1) enables to discover significant and stable influence in entities.
It can also serve for event and anomaly detection [2], influence pre-
diction and so on [5, 7, 8].

3. DISTRIBUTED DYNAMIC INFLUENCE
MINER

Figure 2: Illustration of key components in the topology

In this section, we briefly describe the proposed D2InfMiner
framework whose topology is shown in Figure 1. Box_pre is in
charge of maintaining sliding windows and preparing the tuples for
PAS-shuffling. Box_influ collects the data sent by PAS-shuffling
and calculates the qualified lead-lag correlations based on hyper-
cube computation pruning. Refer [3] for details of Box_pre, Box_influ
and PAS-shuffling. Then Box_model builds a beta-distribution based
Bayesian approach to estimate the probability of entity i’s influence
on entity j at certain time instances. Figure 2 depicts some details
of D2InfMiner framework.
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ABSTRACT
KIWI is a SQL-on-Hadoop system enabling batch and interactive
analytics for big data. In database systems, materialized views,
stored pre-computed results for queries, are one of the most com-
monly used techniques to improve the query processing speed. How-
ever, the key challenge in using materialized views is maintain-
ing their freshness as base data changes. This paper introduces a
new approach for accelerating OLAP query processing using query
workload statistics and query column sets instead of materialized
views. We present an architecture of SQL-on-Hadoop system using
query column sets of original tables in database. The experimental
results demonstrate that our system can provide improved perfor-
mance by 1.77x on average in terms of TPC-H query processing.

Keywords
Column Sets; SQL-on-Hadoop; OLAP; Big Data Analytics

1. INTRODUCTION
Data warehouse (DW) on Hadoop has rapidly gained popular-

ity and is now being used intensively by business intelligence (BI)
users in enterprises as well as scientific institutions. SQL-on-Hadoop
(SoH) is a class of "Big Data" analytics systems that combine es-
tablished SQL-style querying with Hadoop-based data warehouse
[4]. Most of the Online Analytical Processing (OLAP) query work-
loads in BI applications are long-running batch workloads that are
read-mostly and run repeatedly [1]. Materialized views are widely
used to facilitate fast queries on large datasets. However, one of the
most challenging aspects of using materialized views is maintain-
ing their freshness as base data changes.

Sampling refers to the commonly used technique of evaluating
the queries from a small random sample of the original database
[1, 3]. Typical OLAP query processing approaches exploit two
sampling methods to construct the samples, such as, horizontal
sampling (or row sampling) and vertical sampling (or column sam-
pling) [2]. Given a table T with r rows R1, ..., Rn and c columns
C1, ..., Cm, in horizontal sampling, let Sh = {Ri, Ri+1, ..., Ri+l},
where i ≤ i + l ≤ r, denote a row set that consists of l rows in
T . In vertical sampling, let Sv = {Cj , Cj+1, ..., Cj+k}, where

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

j ≤ j + k ≤ c, denote a column set that consists of k columns in
T . A query q often need to scan fully or partially all data items in
a row set or a column set Sq of T . If data items in Sq have been
materialized, for q, need to scan only materialized items instead
of full table T . In case of column sampling, because the number
of columns in Sq is often much smaller than c, scanning would be
done much faster. In our work, we select vertical sampling method
to accelerate OLAP query processing on large-scale dataset.

KIWI1 is the proposed SoH system, which runs on hundreds of
machines in existing Hadoop cluster. The ultimate goal of our work
is to provide a SoH system, which can support interactive analytics
as well as deep (batch) analytics. Sweet KIWI is a statistics-driven
query processing engine in order to support deep analytics at scale.

Main contributions: The contributions of our work can be sum-
marized as follows.

• Dual-Mode Analytics: The proposed SoH system supports
interactive analytics as well as MapReduce-based batch pro-
cessing in the unified KIWI architecture.
• Statistics-Driven OLAP Acceleration: We introduce a OLAP

query acceleration method using query column sets to sup-
port deep analytics at scale.

2. SYSTEM OVERVIEW
This section focuses on the overall architecture for query pro-

cessing engine using query column set and describes two main
components in the proposed system architecture.
Query Workload Analyzer: One common assumption about query
workloads is that future queries will be similar to historical queries
[2]. This component is responsible for analyzing a set of historical
query workloads to classify the frequently used queries in the past.
In order to construct the query column sets, we extract the meta-
data for query column sets over the entire original tables. The set
of query column sets are updated both with the arrival of new data,
and when the query workloads changes.
Query Column Sets Constructor: This block maintains the query
column sets as cache tables, and manages the mapping data be-
tween the original tables and the cache tables. Query column sets
are created, and updated based on statistics collected from the base
data and historical queries. When a query arrives at runtime, it is
re-written to run against the cache tables instead of the original ta-
bles. The KIWI workload manager evaluates the query augmented
with cache table selection operations at runtime.

Figure 1 illustrates query processing workflow in our system us-
ing the query column sets. In the first step, the query workload
1KIWI is the abbreviation for "Key Impact on data Warehouse In-
frastructure", which is our project code name.
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Figure 1: Sweet KIWI Architecture.

analyzer performs historical query analysis. In the second step,
it extracts metadata of columns in each query. In the third step,
the query column sets (QCS) constructor loads original tables in
database to create query column sets. Finally, the QCS constructor
inserts the QCS tables and the table mapping data into the database.

2.1 Query Column Sets
Let ξ(T, S) be the memory space needed to store all data items

in a column set S of a table T . Let ϕ be the storage system’s
space limit for materialized column sets. Let ω be possible column
sets of table T . The sum of the memory space of possible column
sets,

∑
∀Si∈ω ξ(T, S) is exponentially large. Let Qp is the set of

queries issued in the past. Let V(T, Si) be the value obtained for
future queries if Si is materialized.

Problem Definition: Given a table T and a query Q, find a col-
lection of optimal column sets, Sopt = {S1, ..., Sk} consisting
of k column sets, such that

∑
∀Si∈ω ξ(T, Si) ≤ ω and Vopt =∑

∀Si∈ω V(T, Si) is maximized.

Algorithm 1 Find optimal column sets (Sopt).
1: procedure FINDOPTIMALCOLUMNSETS(Sa, Q)
2: List<S> Ls = constructColumnSets(Sa, Q);
3: Ls.sortByAppreanceFrequency(DESCENDING);
4: for each node Sj ∈ Ls do
5: if

∑
∀Si∈Sopt

ξ(T, Si) + ξ(T, Sj) > ω then return
6: else
7: Sopt.add(Sj);
8: Sa.remove(Sj);
9: end if

10: end for
11: end procedure

Our Approach: From the set of historical queries Qh extracts a
set of distinct column sets Sa that appear in Qh. ∀Si ∈ Sa, com-
pute the memory space ξ(T, Si), remove from the column set Sa

if ξ(T, Si) > ω. ∀Si ∈ Sa, compute the appearance frequencies
f(Si), remove from the column set Sa if ξ(T, Si) > ω. Let n be
the number of column sets in Sa. For an arbitrary column set S,

ξ(T, S) can be approximated as:

ξ(T, S) = r ×
|S|∑
i=1

I(Ci) (1)

where r denotes the number of rows in T , |S| denotes the number
of columns in S and I(Ci) denotes the average size of a data item
in Ci (e.g., if data type of Ci is double, then I(Ci) is 8 bytes).
Algorithm 1 shows how optimal column sets, Sopt, can be eval-
uated progressively for a given query Q. The time complexity of
this algorithm is O(n logn), where n is the size of the database.

3. EXPERIMENTAL RESULTS
To evaluate the performance of the KIWI for analytic workloads,

we loaded the industry-standard TPC-H data set at scale factor 10
on a node. The server has dual 2.66GHz Intel Xeon CPUs with
128GB RAM, and runs Mac OS X. We compared the wall time of
each TPC-H query between original DB and QCS DB.

Table 1: Runtime for TPC-H queries (unit: seconds)
Query Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Original DB 137 18.6 130 181 28 174 91 176
QCS DB 68.8 11.6 67.9 123 17 84.4 62 87.9

The experimental results demonstrate that our system can pro-
vide improved performance in terms of query processing speed on
TPC-H 10GB dataset. There were performance improvements of
1.77x on average compared to the original DB as shown in Table 1.

4. CONCLUSION
We present a statistics-driven OLAP acceleration in SQL-on-

Hadoop system architecture for data-intensive applications. Our
main contribution in this work has been to propose a new unified
approach for supporting dual-mode (interactive and deep) analytics
at scale. Our work concludes with the following take-away mes-
sages: (1) It is beneficial to have an unified query processing engine
in the KIWI SQL-on-Hadoop system, (2) Sweet KIWI is a general
purpose system that constructs the query column sets of historical
queries for deep analytics, and (3) the vertical sampling method us-
ing query column sets is intuitive to use.
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ABSTRACT
Mobile location tracking becomes ubiquitous in many appli-
cations, which raises great interests in trajectory data anal-
ysis and mining. Most existing work tackled the problem
of offline trajectory pattern mining. Dynamic discovery and
updates of patterns in trajectory data streams in (quasi) real
time is a more complex task. In this paper, we propose an
incremental algorithm to solve this problem, while maintain-
ing the evolution of the patterns as well as the membership
of the moving objects to their patterns.

1. INTRODUCTION
The huge volume of collected trajectories opens new op-

portunities for discovering the hidden patterns about mo-
bility behaviors. These patterns may apply to characterize
individual mobility as well as groups sharing similar trajec-
tories for a certain time period. Usually, this analysis is done
off-line, i.e., by applying data analysis and mining techniques
on the previously collected data [1]. This allows character-
izing the past movements of the objects but not the cur-
rent mobility patterns. Nowadays, many services exist that
involve moving objects (e.g., persons, vehicles, animals) to
report their trajectory continuously (e.g., every second or ev-
ery minute). Analyzing these data in real time may bring a
real added-value in the comprehension of the city dynamics,
and the detection of regularities as well as anomaly, which
is essential for decision making. Among these patterns, we
consider in this paper the trajectory group constitution and
evolution, based on sub-trajectory cluster analysis. Such
discovery may help the search for effective re-engineering of
traffic, or dynamically detecting events or incidents, e.g., at
a city level.

One important property of tracking application is the in-
cremental nature of the data. The data will grow to reach
a huge size as time goes. Finding patterns in these data in
(quasi) real time is challenging. Since all the tracked moving

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
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Figure 1: Steps of our proposed framework

objects change their positions over time, movement patterns
also evolve in time. Furthermore, new moving objects may
start sending their positions while others may stop. There
exist approaches for online clustering of moving objects po-
sition, but they are restricted to instantaneous positions.
Subsequently, they fail to capture the displacement behavior
along time. By continuously tracking moving objects sub-
trajectories at each time window, rather than just the last
position, it becomes possible to gain insight on the current
behavior, and potentially detect suspicious behaviors in real
time. Although analyzing historical (sub)trajectory data is
the majority of mobility patterns approaches today (includ-
ing trajectory clustering, flocks, convoys, swarms, gathering
[1]), no solution exist for clustering and maintaining clusters
of sub-trajectories in real time. That is why we believe that
our study is relevant.

In this paper, we address the problem of online discovery
of mobility patterns and their evolution by tracking the sub-
trajectories of moving objects at each time window. To solve
this problem, we propose a framework discussed on the next
section. Since all the objects change their sub-trajectories
data from time to time, new moving objects appear as well as
others disappear from the system during a time window. We
define a new structure, called micro-group, to incrementally
maintain the relationship among moving objects.

2. FRAMEWORK
Our framework (see Figure 1) follows these main steps: (i)

collect trajectory data stream at each time window, (ii) ap-
ply the similarity measure, (iii) maintain the micro-group(s),
and (iv) discover the mobility patterns.

A trajectory is a sequence of the locations of a mov-
ing object at each time-stamp and is denoted by TRj =
p1p2...pr...plenj . Here, pk (1 ≤ k ≤ lenj) is a point (xk, yk, tk)
in a three dimensional space, where (xk, yk) indicates the
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location of the object at time tk. The length lenj of a tra-
jectory can be different from those of other trajectories.

First step. Consider i = [t, t + δt] be the time window
observed for the set of moving objects sub-trajectory Ii. Let
Ii = {(o1, ST1,i), (o2, ST2,i),...,(on, STn,i)}, where STj,i is
the sub-trajectory of the moving object oj on Ii. Therefore,
Ii is the stream at the time window i.

Second step. To measure the similarity between two
moving objects sub-trajectories STk,i, STj,i at the time win-
dow i, we implement the synchronous Euclidean distance,
which accounts for time, space, and direction. However, our
framework is suitable to any distance function for trajecto-
ries. Through this paper, distance(STk,i, STj,i) denotes the
distance function between sub-trajectories.

From a group of moving object sub-trajectories Si = {(o1,
ST1,i), (o2, ST2,i), ..., (om, STm,i)} at the time window i, we
define the representative trajectory as a pair composed by
one moving object and its sub-trajectory which is similar
to the major behavior of Si. To choose (oj , STj,i) as the
representative, our approach checks the number of moving
objects that have their sub-trajectory similar to STj,i and
also uses a Gaussian kernel function (our voting function) to
estimate the representativeness of STj,i. This voting func-
tion is also used on [2], and it has been widely used in a
variety of applications of pattern recognition.

Definition 2.1. For a set of moving object sub-trajectory
Si = {(o1, ST1,i), (o2, ST2,i), ..., (om, STm,i)} at the time win-
dow i, ρ be a representativeness threshold, ε be a given dis-
tance threshold and τ be a size/density minimum threshold,
(oj , STj,i) is a representative trajectory of Si if and only
if:

1. ∀(ok, STk,i) ∈ Si,

voting(STj,i, STk,i) = e
−
distance2(STj,i,STk,i)

2σ2 > ρ

2. Nε(oj) = {(ok, STk,i) ∈ Si|distance(STj,i, STk,i) ≤
ε}, then |Nε(oj)| ≥ τ

The parameter σ shows how fast the function ”voting”
decreases with the distance. The intuition behind the rela-
tionship of ”distance” and ”voting” function is: If ”distance”
is close to zero, the ”voting” is close to its maximum value.
This means that if STj,i is very close (in time, space and
direction, for example) to STk,i, then (oj , STj,i) is a can-
didate to be the representative. Otherwise, if the distance
is high, the ”voting” function is close to its minimum value,
meaning that STj,i is very far away from STk,i, so STk,i is
ill-represented by STj,i.

We define a new structure called micro-group, based on
the concept of representative trajectory.

Definition 2.2. For a set of moving object sub-trajectory
Si = {(o1, ST1,i), (o2, ST2,i), ..., (om, STm,i)} at the time win-
dow i, let Oi be the set of moving objects in Si, ε be a
distance threshold, τ be a size/density minimum threshold,
ρ be a representativeness threshold. A micro-group g is
defined as a set of objects satisfying:

1. g ⊆ Oi

2. ∃oj ∈ g, such that Rtrajg = (oj , STj,i) is a representa-
tive trajectory of g w.r.t. ε, τ and ρ.

The ρ value can be chosen according to the maximum
allowed distance between the representative sub-trajectory

and the farthest member of a micro-group. The ε and τ
thresholds captures the density around the representative
trajectory, similarly to DBSCAN.

Third step. We propose an algorithm to incrementally
maintain each micro-group (since all the moving objects up-
date their sub-trajectories, some moving object may leave or
join a micro-group) and to capture its evolution patterns. At
the initialization phase (i.e., a cold-start of the clustering)
the representative trajectories are randomly chosen among
the core objects (as defined in DBSCAN). Micro-groups are
first derived as the objects that vote for these representa-
tives. The most important contribution is the maintenance
phase. The intuition behind is: (i) to check for each micro-
group whether the representative is still valid in the next
time window (it survives), otherwise, the micro-group disap-
pears or splits, (ii) to track moving object sub-trajectories
that are likely to join the micro-group (e.g., outliers, new
objects, and other objects migrating from another micro-
group), (iii) for the remaining objects, a similar process to
the initialization allows creating new micro-groups.

When a micro-group gi survives, the algorithm checks for
each moving object ok ∈ gi if it is still well represented by
(oj , STj,i). If it is not, ok is deleted from gi and either it mi-
grates to another micro-group, or it becomes an outlier, or it
forms a new micro-group with other outliers. A micro-group
gi splits or disappears when it changes its representative tra-
jectory. If gi splits, new micro-groups have to be computed
using the gi data. However, if gi is not dense enough to
generate micro-group(s), its moving objects become outliers
and gi disappears.

Fourth step. We use the maintained micro-groups to dis-
cover mobility patterns, by capturing the evolution of micro-
groups over time. Since each micro-group is density based,
it is suitable to find sub-trajectory density based cluster-
ing (for example, merging micro-groups results in density
based sub-trajectory clusters). Furthermore, this paves the
way for online discovery of more complex patterns, such as
flocks, convoys, leadership. Indeed, flocks could be derived
from micro-groups by a light post-processing since it is a sub-
set of the later. The convoys are also similar to the density
based clusters generated by our algorithm. The representa-
tive is a close notion to leadership. Hence, this information
could enrich a Moving Object Database, allowing new query
and visualization types.

3. CONCLUSION
In this paper, we have present a framework to track and

discovery mobility patterns in moving objects trajectory data
streams. We also proposed an incremental algorithm to
maintain the patterns evolution from time to time. It is
noteworthy that we evaluated our approach on real data
sets, which shows its effectiveness and its efficiency.
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ABSTRACT
The Linked Open Data (LOD) cloud brings together infor-
mation described in RDF and stored on the web in (possi-
bly distributed) RDF Knowledge Bases (KBs). The data in
these KBs are not necessarily described by a known schema
and many times it is extremely time consuming to query
all the interlinked KBs in order to acquire the necessary in-
formation. To tackle this problem, we propose a method of
summarizing large RDF KBs using approximate RDF graph
patterns and calculating the number of instances covered by
each pattern. Then we transform the patterns to an RDF
schema that describes the contents of the KB. Thus we can
then query the RDF graph summary to identify whether
the necessary information is present and if so its size, before
deciding to include it in a federated query result.

Keywords
Linked Open Data; RDF Summarization; Query Processing

1. INTRODUCTION
The amount of RDF (Resource Description Framework,

www.w3.org/RDF/) data available on the semantic web is
increasing fast both in size and complexity, e.g. more than
1000 datasets are now published as part of the Linked Open
Data (LOD) cloud, which contains more than 62 billion RDF
triples, forming big and complex RDF data graphs. It is also
well established that the size and the complexity of the RDF
data graph have a direct impact on the evaluation of the
RDF queries we express against these data graphs. Espe-
cially on the LOD cloud, we observe that a query against a
big and complex RDF Knowledge Base (KB) might retrieve
no results at the end because either (a) the association be-
tween the different RDF KBs is weak (is based only on a
few associative links) or (b) there is an association at the
schema level that has never been instantiated at the actual
data level. Thus we can conclude that having information
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on the content of a KB and statistical information on the
number of instances described under various concepts will
allow us to decide on whether or not to post a query based
on the availability of the necessary information.

By creating summaries of the RDF KBs, we allow the
user or the system to decide whether or not to post a query,
since (s)he knows whether information is present or not.
This would provide significant cost savings in processing
time since we will substitute queries on complex RDF KBs
with queries first on the summaries (on much simpler struc-
tures with no instances) and then with queries only towards
the KBs that we know will produce significant results. We
need to compute the summaries only once and update them
only after significant changes to the KB. Given the (linked)
nature of LOD this will speed up the processing of queries
in both centralized and distributed settings.

Moreover, many RDF KBs are suffering from a total or
partial absence of schema information. By applying RDF
summarization techniques, we can extract, at least, a sub-
set of the schema information and thus facilitate the query
building for the end users with the additional benefit of cat-
egorizing the contents of the KB based on the summary. We
can envision similar benefits when KBs are using mixed vo-
cabularies to describe their content. In all these cases we
can use the RDF summary to concisely describe the data
in the RDF KB. Thus in this work we study the problem
of LOD/RDF graph summarization that is: given an input
RDF graph, find the summary graph which reduces its size,
while preserving the original inherent structure and correctly
categorizing the instances included in the KB.

Two main categories of graph summarization have been
proposed to date: (1) aggregation and grouping approaches
[3, 5], which are based on grouping the nodes of input RDF
graph G into clusters/groups based on the similarity of at-
tributes’ values and neighborhood relationships associated
with nodes of G and (2) structural extraction approaches
[1, 2] which are based on extracting some kind of schema
where the summary graph is obtained based on an equiva-
lence relation on the RDF data graph G, where a node rep-
resents an equivalence class on nodes of G. To the best to
our knowledge, few of these approaches are concentrating on
RDF KBs and only one of them [1] is capable of producing
a RDF schema as result, which would allow the use of RDF
tools (e.g. SPARQL) to query the summary. Our approach
provides comparable or better results in most cases.

In summary, our solution is responding to all the require-

Poster Paper

 

 

Series ISSN: 2367-2005 684 10.5441/002/edbt.2016.86

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2016.86


ments by extracting the best approximate RDF graph pat-
terns, construct a summary RDF schema out of them and
thus concisely describe the RDF input data. We offer the
following features: (1) The summary is a RDF graph it-
self, which allows us to post simplified queries towards the
summarizations using the same techniques (e.g. SPARQL),
(2) statistical information (number of class and property
instances per pattern) is included in our summary graph,
which allows us to estimate a query’s expected results’ size,
(3) the summary is much smaller than the original RDF
graph, contains all the important concepts and their rela-
tionships based on the number of instances, (4) schema in-
dependence: it summarizes an RDF graph regardless of hav-
ing or not schema and RDFS triples and (5) heterogeneity
independence: it summarizes an RDF graph regardless if it
is hetero- or homo-geneous.

2. RDF-GRAPH PATTERNS COMPUTATION
We present in this section our approach of RDF graph

summarization, based on mining a set of approximate graph
patterns (an error-tolerant pattern mining technique). It
aims at discovering the smallest set of k patterns that best
describe the input dataset, where the quality of the descrip-
tion is measured by an information theoretic cost function.
We use a modified version of the PaNDa+ algorithm [4],
which uses a greedy strategy to identify the k patterns that
best optimize the given cost function. Even if we do not fix
the input parameter k, PaNDa+ can stop producing further
patterns when the cost of a new pattern is more than the
corresponding noise reduction. Our approach works in three
independent steps that are described below and in Figure 1.

Binary Matrix Mapper: We transform the RDF
graph into a binary matrix D, where the rows represent the
subjects and the columns represent the predicates. We pre-
serve the semantics of the information by capturing distinct
types (if present), all attributes and properties and also re-
verse properties (so as to capture both subject and object
of a property). We extend the RDF URI information by
adding labels that represent the different predicates carrying
this information into the patterns. No schema information
is required for the algorithm to work adequately well.

D[i; j] =


1, the i-th URI has j-typeof or is j-property’s

domain/range or is j-attribute’s domain

0, otherwise

Graph Pattern Identification: The binary matrix
created in step 1 is used in a calibrated version of the PaNDa+
[4] algorithm, which allows us to experiment with different
cost functions while retrieving the best approximate RDF
graph patterns. Each extracted pattern identifies a set of
subjects (rows) all having approximately the same proper-
ties (cols). The patterns are extracted so as to minimize
errors and to maximize the coverage (i.e. provide a richer
description) of the input data. A pattern thus encompasses
a set of concepts (type, property, attribute) of the RDF
dataset, holding at the same time information about the
number of instances that support this set of concepts.

Constructing the RDF summary graph: We have
implemented a process, which reconstructs the summary as a
valid RDF graph using the extracted patterns. For each pat-
tern in step 2 we generate a node labeled by a URI (minted
from a hash function) and we add an attribute with the

Figure 1: Our RDF Summarization Approach.

bc:extent label representing the number of instances for this
pattern. Then we use the labels generated at step 1 to un-
derstand the type of predicate involved and to generate the
proper links. The process exploits information already em-
bedded in the binary matrix and tries to construct a valid
RDF schema to represent the KB.

3. PRELIMINARY RESULTS
We evaluated so far our approach on variations (e.g. with

or without any schema information) over two datasets. An
artificial one, which consists of 2000 triples, classified under
8 classes and 9 properties. And a real one, called Jamendo,
which consists of 11 classes and 25 properties and 1.05 M
triples. In both cases 89% of the classes and properties is
correctly identified(are the same with the original schema of
the dataset even if the schema is not used as a part of the
calculation) and the corresponding instances are correctly
classified. We produce a summary which is still valid RDF/S
and thus can be queried by the same tools.

4. CONCLUSIONS AND FUTURE WORK
In this work we apply an approximate graph pattern min-

ing algorithm in order to extract a summary of an RDF KB.
The summary is not necessarily the complete schema of the
KB but it always remains a valid RDF/S graph. We plan
to test our approach on more complex and bigger datasets
(billion of triples); the results so far are promising. We plan
to integrate additional RDF knowledge into the algorithm
and allow for personalized summaries of RDF KBs.
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ABSTRACT
This paper presents a new model to detect and explain cus-
tomer defection in a grocery retail context. This new model
analyzes the evolution of each customer basket content. It
therefore provides actionable knowledge for the retailer at an
individual scale. In addition, this model is able to identify
customers that are likely to defect in the future months.

CCS Concepts
•Information systems → Data mining;

Keywords
Data mining; Attrition modeling; Grocery retail

1. INTRODUCTION
In grocery retail context, customer defection is partial [1],

in the sense that a customer will usually lower his purchases,
instead of totally leaving the store. Moreover, no contract
binds the customer to the retailer, so customer defection is
not clearly signaled through contract ending, like it is in
other businesses such as banks or phone operators. Cus-
tomer defection (also called attrition) is therefore difficult
to detect because there is no clear definition of when a cus-
tomer is defecting.

Attrition in grocery retail environments has mainly been
studied through the RFM model [3], based on behavioral
variables (recency, frequency and monetary value). RFM
demonstrated good performances in partial attrition detec-
tion [1] but is limited to building groups of customers which
provide few explanations of attrition causes.

Building comprehensive attrition models is of interest be-
cause retailers want to lower their retention marketing ex-
penses, by deploying accurate targeted marketing. Models
using first and last sequences of purchased products have
been proposed [2] and improved attrition detection, while

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0
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providing more information about attrition causes. Never-
theless, these models do not explain attrition at an individ-
ual level.

Understanding attrition at the customer level is necessary
to do efficient targeted marketing. This work presents a
model of customer stability that allows for analyzing the
evolution of individual customer’s purchases to understand
attrition causes, at an individual level.

2. ATTRITION MODEL
We want to characterize important items, that are bought

by a given customer during successive periods. Moreover, we
want to detect an evolution in this item set to model and
understand customer stability.

Let I = {i1...in} be the set of all items. The purchases
of customer i can be represented by a chronologically or-
dered list Di = 〈(b1, t1), . . . , (bN , tN )〉, with bj ⊂ I being
the content of basket j and tj its timestamp.

Let w be a window. We divide Di in consecutive non
overlapping windows of time span w to define the windowed
database of customer i, denoted Dw

i , as an ordered list of tu-
ples (tBk , t

E
k , uk). k is the window number and Dw

i is ordered
in chronological order on tBk . uk is the set of all products
bought during window k, delimited by tBk and tEk .

Let p ∈ I be an item, c(k) be the number of windows prior
to window k that contain p, c(k) = |{uv|v < k, p ∈ uv}| and
l(k) be the number of windows prior to window k that do
not contain p, l(k) = |{uv|v < k, p 6∈ uv}|.

We define the significance of p in window k as S(p, k) =

αc(k)−l(k) if c(k) > 0 and S(p, k) = 0 otherwise. α is a
parameter of the method. The usual expected behavior is
to increase the item significance when incrementing c(k).
Therefore, we generally fix α > 1.

We define the stability of customer i in window k as
Stabilityki =

∑
p∈uk

S(p, k)/
∑
p∈I

S(p, k).

If all products are contained in window k, the stability of
the customer is equal to 1. This stability decreases when
products are not contained in window k. This decrease is
proportional to the significance of missing products. The
more significant a product is, the more the stability will
decrease if this product is not present in window k.

When the stability of some customer decreases, we can
identify which product mainly caused this decrease. This
product is defined as arg maxp 6∈uk

S(p, k), which is the most
significant product that was not bought in window k. This
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Figure 1: Performance of the attrition detection.

attrition explanation can be easily extended to a set of prod-
ucts.

3. EXPERIMENTS
The dataset provided by a major French retailer contains

anonymized receipts of 6 millions customers, from May 2012
to August 2014. Each timestamped customer receipt de-
scribes a related basket content. A taxonomy is also pro-
vided that enables abstracting products in segments. The
dataset contains 4 millions products, that are grouped into
3 388 segments.

Customer selection: Our main goal is to explain attri-
tion. It is especially important for defecting loyal customers.
The retailer provided us with the IDs of loyal customers, and
of loyal customers that defected in the last 6 months. The
beginning of the defection, given by the retailer, is indicated
in Figure 1 by the vertical line at month 18.

3.1 Attrition prediction
The first experiment attempts to validate our model for

separating loyal customers from the ones that defected dur-
ing the last 6 months. To assess the relevance of our model,
we use the area under the ROC curve for different window
indices. We chose the AUROC because it evaluates the dis-
crimination ability of our model. The points on these curves
are obtained using different thresholds β for the customer
stability. If Stabilityki > β the customer is considered loyal.
Otherwise, the customer is considered as defecting on win-
dow k. The window length for this experiment is set to two
months and the α parameter is set to 2. These values were
chosen after performing a 5-fold cross-validation search. We
compare our model to the standard RFM model, that uses
recency, frequency and monetary variables to identify de-
fecting customers. This RFM model is built using a logistic
regression on these three types of variables. The methodol-
ogy we used to compute the RFM model is similar to the
one presented in [1], but we only used predictors associated
to the recency, frequency and monetary variables. For each
window, we compute the AUROC of our model and of the
RFM model. Their evolution is plotted in Figure 1.

Figure 1 shows that our model accurately identifies cus-
tomers that are in attrition in the last 6 months. This iden-
tification takes place in the first months of the customer de-
fection. Two months after the start of attrition, our model
scores an AUROC of 0.79, indicating a rather accurate detec-
tion of defecting customers. Our model and the RFM model
have similar performances. This shows that our model is not
only able to provide information about attrition, but is also
able to detect customer attrition, with performances similar

12 14 16 18 20 22 24

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Milk, sponge and cheese loss

Coffee loss

Number of months

S
ta

b
il
it

y
va

lu
e

Stability value

Figure 2: Defecting customer stability value exam-
ple.

to standard attrition models such as RFM.

3.2 Attrition explanation
The second experiment aims to show the value of our

model to explain attrition at an individual level, by illustrat-
ing that it provides actionable knowledge about the products
responsible for individual customer attrition. We illustrate
this on a use-case study of a defecting customer.

In Figure 2 the stability value indicates that the cus-
tomer is loyal in the first months, and defecting starting
from month 20. The upside of the stability value is that it
can link each decrease to a loss of significant products.

For example, we can link the decrease in month 20 to
the fact that the customer stopped buying coffee during this
window. In month 22, the decrease is sharper because the
customer lost several significant products: milk, sponge and
cheese. We can perform this precise analysis for each win-
dow where our model suggests that the customer is not as
loyal as he was before. This information is of interest for the
retailer because he can then target his marketing on signifi-
cant products that this customer is not buying anymore.

4. CONCLUSION
In this paper, we presented a new model to analyze cus-

tomer attrition in a grocery retail context. This model is
based on the customer basket content evolution and provides
precise information about individual defecting customer. It
can also reliably detect customer defection.

In the future, we plan to deepen the study of the charac-
terization of significant products that can explain customer
defection.
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ABSTRACT
Almost all activities observed in nowadays applications are
correlated with a timing sequence. Users are mainly looking
for interesting sequences out of such data. Sequential pat-
tern mining algorithms aim at finding frequent sequences.
Usually, the mined activities have timing durations that
represent time intervals between their starting and ending
points. Most sequential pattern mining approaches dealt
with such activities as a single point event and thus lost
many valuable information in the collected patterns. We
present the PIVOTMiner, an efficient interval-based sequen-
tial pattern mining algorithm using a geometric representa-
tion of intervals. The interestingness level is not necessarily
positively correlated with the frequency of the patterns. In
many applications, users are seeking for rare patterns that
considerably deviate from the majority. Simply delivering
the bottom-k patterns does not guarantee their high out-
lierness (or deviation) from the frequent ones. We propose
additionally the PIVOTRanker, the first scalable algorithm
for ranking rare interval-based sequential patterns based on
their outlierness. Our experimental results on both synthetic
and real-world datasets show that PIVOTMiner spends con-
siderably less time than two state-of-the-art competitors,
and that PIVOTRanker delivers a meaningful and useful
ranking of rare patterns.

1. INTRODUCTION AND PIVOTMINER
Available interval-based approaches (e.g. [2]) employ the

Allen’s relationship [1] to model the event patterns. They
lose the quantitative information and thus the outlierness
ranking can not be applied. [6] represents interval events as
parallel aligned sequences. [4] introduces end point sequence
with additional quantitative information. However, these
algorithms did not focus on outlier ranking.

We present our PIVOTMiner: Paradigm of Intervals as
Vectors and Origin Transformation. It is an interval-based
frequent pattern mining approach. This approach is intro-
duced here to model the interval-based event pattern for

c© 2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
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Creative Commons license CC-by-nc-nd 4.0
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Figure 1: Workflow of PIVOTMiner

outlier ranking. The work flow of the PIVOTMiner is illus-
trated in Figure 1. Event intervals are modeled as points on
2D plane where the start times and the end times are de-
picted on the horizontal and vertical axes, respectively. The
relationships between events can be considered as vectors.
We select one event type as the source type and other event
types as the target type. Vectors are constructed within
each sequence from point with source type to point with
target type. By projecting each source point to the origin,
semi-supervised clustering can be applied to group similar
patterns that consist of the current source type and each
target event type. We repeat the step described above for
each event type to generate all binary patterns.

With the idea of PIVOTMiner, we convert the relation-
ship between interval events into vectors. Different distance
measure could be employed and normal outlierness ranking
algorithms can be applied as we show in Section 2. Section
3 presents our first results on running time evaluation of
PIVOTMiner and on ranking rare patterns using the PIV-
OTRanker. Section 4 concludes the paper with an outlook.

2. PIVOTRANKER: RANKING PATTERNS
Let the prototype pattern in Figure 2 represent the overlap-
ping of symptoms that leads, in theory, to a certain disease.
Specialists would be interested in having an overview of pos-
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Figure 2: PIVOTRanker output of rare patterns
(bottom) ranked according to their outlierness score
deviating from the ground truth prototype (top).

itive objects with a deviating pattern, in practice, from the
assumed one. The relationship between two interval events
is modeled as vectors and a interval-based pattern can be
seen as a combination of vectors. In the new representation,
and after performing the clustering, some sparse intervals
(and thus patterns) deviate from all available clusters and
are not dense enough to form a new cluster. These objects
are called outliers and they usually do not belong to any
of available clusters. The outlierness level of those patterns
varies according to their densities and to their degree of de-
viation from available dense clusters, as proposed by [3]. Its
value is computed based on the set of vectors with the same
source and target event type. We use this outlierness value
in our PIVOTRanker to rank rare interval-based patterns.

Since a vector can only describe binary patterns, an over-
all ranking score needs to be computed for interval-based
patterns with more than two events. One method is to use
the average value of all vectors belonging to the same se-
quence. Another method is to select the minimum set of
binary vectors that can cover the whole pattern and take
the average value as the score for pattern. Since one pattern
can be covered by different combinations of binary vectors,
we need to find out the set which gives the highest value.

3. EXPERIMENTAL EVALUATION
We tested the PIVOTMiner for efficiency and the PIVO-

TRanker for effectiveness using synthetic and real data sets.
To check the capability of the PIVOTRanker realistically,
we modeled a data prototype with multiple interval-based
noise effects. The real data set is introduced by [5]. Fig-
ure 2 illustrates a set of sequences with the corresponding
outlier ranking score as an example. The score is computed
based on the minimum set of vectors with the highest aver-
age score. As shown in the figure, sequences with a higher
outlier ranking score deviate much more than lower ones
from the original prototype.

We evaluated the efficiency of the PIVOTMiner against
the TPrefixSpan [7] algorithm and the QTIPrefixSpan [4]
using the real dataset in Figure 3 and a synthetic one in
Figure 4. As it is clearly depicted in the two figures, PIV-
OTMiner scales well with the size of the dataset and is not
sensitive to the selection of the minimum support.
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Figure 3: Runtime evaluation w.r.t. minsup using
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Figure 4: Scalability test using a synthetic dataset.

4. CONCLUSION AND OUTLOOK
In this paper we presented our novel efficient algorithm

PIVOTMiner for interval-based sequential pattern mining
using a geometric representation of intervals. Additionally,
we have presented the PIVOTRanker that ranks rare pat-
terns found using the first algorithm using their outlierness
score. The source codes and the datasets are available un-
der: http: // dme. rwth-aachen. de/ en/ PIVOT . In the fu-
ture, we will advance the geometrical representation of the
PIVOTMiner to include additional information for finding
multiple-event patterns. We will also advance the outlier-
ness ranking method to that case.
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ABSTRACT
Recent years have seen the rise of Web data, in particular Linked
Data, with, up to now, more than 1000 datasets in the Linked Open
Data Cloud (LOD). These datasets are mostly of entity-centric na-
ture and are highly heterogeneous in terms of domains, language,
schema, etc. Hence, the vision of uniformly querying such re-
sources in the LOD has a long way to go. While equivalent entity
instances across datasets are often linked by sameAs links, rela-
tions from different datasets and schemas are usually not aligned.

In this paper, we propose an on-line instance-based relation
alignment approach. The alignment may be performed during
query execution and requires partial information from the datasets.
We align relations to a target dataset using association rule mining
approaches. We sample for equivalent entity instances with two
main sampling strategies. Preliminary experiments, show that we
are able to align relations with high accuracy, even if accessing the
entire datasets is impossible or impractical.

1. INTRODUCTION
As of April 2015, the publicly accessible part of the LOD project

counts more than 1000 datasets, which together store more than
30 billion facts. The datasets span across different domains, such
as social Web, government data, geographic data, or the life sci-
ences. Moreover, the datasets are highly heterogeneous in terms of
schemas, of quality of the data, and only 2% of the schemas are
aligned across different datasets [6]. Many of these datasets are ac-
cessible through SPARQL endpoints, yet uniformly querying them
remains a long way to go.

Motivation. Successful examples include well known knowl-
edge bases (KB) like DBpedia, YAGO, and Freebase, which
comprise factual statements about real world entities. These
facts are typically stored as triples 〈subject, relation, object〉
(e.g 〈Frank_Sinatra, wasBornIn, USA〉). Yet, even for
such KBs, the same entity can have different identifiers (e.g.
Frank_Sinatra_(Singer) or Sinatra). Similarly, equivalent
relations across KBs use different names (e.g., wasBornIn and
bornInCountry), hence makes them non-interoperable, such that
queries cannot join information across KBs.

Challenges. Several approaches have been proposed to align re-
lations across datasets [9, 7, 3], but in all these cases alignment is

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
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performed on the entire KB snapshot. In the real world, however,
one may not always have access to the entire dataset. First, KBs are
typically quite large (e.g. YAGO, requires 100GB of space on disk),
and it is rather impractical to download several entire KBs just to
answer a single query. Second, performing relation alignment on
KB snapshots, may miss out KB updates. For time-sensitive data,
it is better to query the data dynamically. Finally, not all KBs can
be freely downloaded. Some providers allow users to issue a lim-
ited number of queries to KB via a SPARQL endpoint, but do not
allow them to download the entire dataset. In this line, [5] focus on
discovering schema alignment on data streams, however, this does
not represent any guarantee that one can align any relation given
the stream of data.

Contributions. In this paper, we propose an instance-based
on-the-fly approach for relation alignment between two KBs. Our
method requires only a SPARQL endpoint for each dataset. Given
a relation name in a source KB, e.g. coming from a query on that
KB, our method automatically finds corresponding relations in the
target dataset, without any need to download the data. Since our
method works with few queries, it could be used at query time.

The main idea behind our approach is to use samples of data
from both KBs in order to identify candidate relations, then rely
on inductive logic programming (ILP) to validate them. Existing
works [1, 8], use ILP to mine rules in order to align hierarchies of
entities. We go beyond this goal, and want to express more complex
mappings, by mining logical rules such as kb1:wasBornIn(x, y)
⇒ kb2:bornInCountry(x, y).

In particular, we perform two types of alignments, subsumption
and equivalence, which can be expressed as logical rules. However,
as we will show below, such rules cannot be solely mined with
standard ILP approaches from small samples of instances. Hence,
we develop smart sampling methodologies that are geared to this
type of problems. Experiments with real-world datasets show that
we can align relations with more than 90% precision, based on only
very small samples.

2. APPROACH
2.1 Rule Mining

Given two KBs K and K′, a relation r in K and the set E of
sameAs entity equivalences, we want to find rules r′ in K′ sub-
sumed by r, i.e. r′ ⇒ r. Candidate relations r′ may be found by
sampling r(x,y), then considering all r′ such that r′(x,y) for some
sample. Equivalence of relations is expressed as a double subsump-
tion: r′⇔ r, iff r′⇒ r and r⇒ r′.

In this work we use two ILP techniques to validate subsumption
between relations. A vanilla association rule mining approach [2]
could simply regard all absent data as counter-examples (closed
world assumption), which yields the following confidence measure:

cwacon f (r′⇒ r) :=
#(x,y) : r′(x,y)∧ r(x,y)

#(x,y) : r′(x,y)
(1)
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where #(x,y) : A is the number of pairs (x,y) that fulfill A.
The second technique [4], works under a open world assumption

and considers that a KB knows either all or none of the r-attributes
of some x. In this case, we count as counter-examples for a rule
r′(x,y)⇒ r(x,y) only instances (x,y) such that x has r relations,
but not r(x,y). The confidence measure is:

pcacon f (r′⇒ r) :=
#(x,y) : r′(x,y)∧ r(x,y)

#(x,y) : ∃y′ : r′(x,y)∧ r(x,y′)
(2)

2.2 Instance Sampling
Simple Sample Extraction. We propose a baseline solution that

computes a (pseudo-) random set of samples to check if a candidate
relation rsub from K′ satisfies rsub⇒ r. First, we extract from K′ a
set of samples entities that are subjects in rsub facts:

Srsub = {x1 | rsub(x1,y1) ∈ K′,∃x2,y2 ∈ K : x1 ≡ x2∧ y1 ≡ y2}

The same query extracts the actual rsub facts where the sample en-
tities occur. More precisely, it extracts the set:

K′rsub
S = {rsub(x1,y1) |x1 ∈ Srsub ∧ rsub(x1,y1) ∈ K′}

The actual SPARQL queries that are used to extract the two sets
depend on the nature of the relation rsub. For entity-entity rela-
tions, we select for a subject x1 all the facts rsub for which there
are sameAs links to entities in K for both the subject and the ob-
ject. Since we do not want to punish the score of the alignment
because of incomplete information, we ignore the rsub facts where
the sameAs links to entities in K are missing.

In the next step the subject and the object of a rsub are translated
to the equivalent entities in K and create the set:

Prsub
S = {(x2,y2) | ∃x1,y1 : x2 ≡ x1,y2 ≡ y1,rsub(x1,y1) ∈ K′rsub

S }

then corresponding r instances are extracted:

Krsub
S = {r(x2,y2) | r(x2,y2) ∈ K,∃y′2 : (x2,y′2) ∈ Prsub

S ∧ r(x2,y′2)}

Note that if for some pair (x2,y′2) from Prsub
S a fact r(x2,y′2) is dis-

covered in K, then we need to select all the other facts r(x2,y2) of
x2. This is required by the pcaconf measure. For simplicity, in this
presentation we assumed that the inverse relations have been added
to the two KBs. This is why we only consider direct relations.

If rsub is an entity-literal relation, we retrieve from K facts of
the samples Srsub and apply string similarity functions to align the
literals. Once the sets K′rsub

S and Krsub
S are retrieved, we can run the

pcaconf and the cwaconf scores on the coalesce of the two sets.
Unbiased Sample Extraction (UBS). The random selection of

the samples is a fair objective approach, but several cases require a
more careful selection of unbiased samples when using pcaconf.

Mining subsumptions that are not equivalences. Consider the ex-
ample of a mined subsumption K′ : composerO f ⇒K : creatorO f .
When checking the reverse implication to test equivalence, if the
sample includes composers that only created musical compositions,
we will find that the two relations are equivalent under pcaconf,
while if a composer is also a writer the reverse implication is false.
A way to avoid such missing samples is to discover in K′ a rela-
tion subsumed by K : creatorO f whose domain overlaps with the
domain of K′ : composerO f . For instance, we can take the rela-
tion K′ : writerO f and consider for sampling the composers that
are also writers.

Mining overlappings that are not subsumptions. Consider in
K′ the relations hasDirector for movies and their directors and
hasProducer for movies and their producers, then in K the re-
lation directedBy for movies and their directors. Since it often
happens that the same person directs and produces the same movie,
we might wrongly infer that K′ : hasProducer⇒ K : directedBy.
To filter out such cases even under pcaconf, we may include in the
sample movies whose producer and director are different.

To deal with both unbiased samples cases above, our method
lays on candidate relations K′ : r′ and K′ : r′′, subsumed by K : r for
simple samples. Unbiased samples will include facts for K′ : r′ and
K′ : r′′ that share the same subjects but have different objects.

More precisely, unbiased samples would contain x such as
r′(x,y1),r′′(x,y2),¬r′(x,y2). In the first case, the existence of
r(x,y1) and r(x,y2) filters out the wrong equivalence. In the sec-
ond one, the condition to filter out the wrong subsumption is to
have r(x,y1) but not r(x,y2). We used here the same identifiers for
equivalent entities in K and K′.

3. EXPERIMENTAL EVALUATION
Datasets. We conduct our experiments on two KBs, with 92

relations from YAGO2 and 1313 relations from DBpedia.
Baselines. As baseline solution we consider the (pseudo) ran-

dom selection of Simple Sample Extraction described in Section 2.
On the coalesce of the sets of samples retrieved from the two KBs,
we have run the two ILP techniques cwaconf and pcaconf.

We evaluate the algorithms for a sample size of 10 samples (sub-
ject entities). Table 1 reports our preliminary results. For the two
measures cwaconf and pcaconf, we have selected the thresholds τ

that led to the highest average F1 score for both ways implications,
yago ⊂ dbpd and dbpd ⊂ yago.

Unbiased Sample Extraction. The method that we propose ex-
tends the baseline solution of pcaconf by implementing the two
strategies for filtering wrong candidates. To eliminate a “wrong"
relation we need only one case which shows that there is a contra-
diction. The results of this method are indicated by the label UBS
in Table 1. The results suggest that our method consistently prunes
wrong candidates.

Table 1: Alignment subsumptions – YAGO and DBpedia relations

ILP yago ⊂ dbpd dbpd ⊂ yago

τ > 0.3 pcaconf P 0.55 0.51
F1 0.58 0.48

τ > 0.1 cwaconf P 0.56 0.55
F1 0.59 0.53

UBS pcaconf P 0.95 0.91
F1 0.97 0.82
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ABSTRACT
Modern database systems are very often in the position to
store and efficiently process their entire data in main mem-
ory. Aside from increased main memory capacities, a further
driver for in-memory database systems has been the shift
to a column-oriented storage format in combination with
lightweight data compression techniques. In recent years, a
lot of lightweight data compression algorithms have been de-
veloped to efficiently support different data characteristics.
Therefore, database systems should include a large number
of these algorithms. To enable this, we introduce our novel
modularization concept including our model kit implemen-
tation for lightweight data compression algorithms.

1. MOTIVATION
With an ever increasing amount of data in almost all ap-

plication domains, the storage requirements for database
systems grow quickly. In the same way, the pressure to
achieve the required processing performance increases, too.
To tackle both aspects in a uniform way, data compression
plays an important role. On the one hand, data compres-
sion drastically reduces storage requirements. On the other
hand, data compression also is the cornerstone of an efficient
processing capability by enabling ”in-memory” technologies.
As shown in different papers, the performance gain of in-
memory data processing is massive because the operations
benefit from its higher bandwidth and lower latency [1].

Especially for the use in in-memory database systems, a
variety of lightweight compression algorithms have been de-
veloped. These algorithms achieve good compression rates
with little computational effort for compression as well as de-
compression. The main classes of lightweight data compres-
sion techniques are dictionary compression (DICT), delta
coding (DELTA), frame-of-reference (FOR), null suppres-
sion (NS), and run-length encoding (RLE) [2, 3]. The al-
gorithms in each class evolve further and the development
activities increase over the years, whereas the concept of the
classes are interweaved in new algorithms.

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
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Generally, this multitude of algorithms exists because it
is impossible to design an algorithm that automatically pro-
duces optimal results for any data. In order to support and
to implement a wide range of these algorithms in a database
system, a unified approach for the specification or engineer-
ing is desirable. In our current research, we have focused
on that aspect by developing a novel compression scheme
consisting of a few number of modules. Our poster pre-
sentation at EDBT comprises an in-depth explanation of
this compression scheme. As we are going to show, our
compression scheme is quite suitable to modularize a va-
riety of lightweight data compression algorithms in a sys-
tematic manner. That means, our approach offers an effi-
cient and an easy-to-use way to describe, to compare, and
to adapt lightweight data compression techniques. Further-
more, we want to introduce our model kit implementation
that is founded on that compression scheme.

2. MODULARIZATION CONCEPT
Our novel compression scheme consists of four main mod-

ules as shown in Figure 1; the arrows indicate the data flows.
The input is a sequence of uncompressed values, the output
is a sequence of compressed values. Our whole scheme is
a Recursion module. The first module in each Recursion
is a Tokenizer splitting the input sequence in finite sub-
sequences or single values. For that, a Tokenizer can be
parametrized with a calculation rule. Its output is a token,
a finite sequence of values that serves as input for our second
module, the Parameter Calculator. Parameters are often
required for the encoding and decoding. This module fol-
lows special rules (parameter definitions) for the calculation
of several parameters. We summarize different data struc-
tures like single values calculated from sequences, dictionar-
ies or vectors as parameters belonging to a token. Our third
module is the Encoder, which can be parametrized with a

Tokenzier
Parameter
Calculator

Encoder
/

Recursion

Combiner

Recursion

Figure 1: Modularized compression scheme
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Figure 2: Modularized scheme for the frame-of-reference technique with binary packing

calculation rule for the processing of an atomic input value,
whereas the output of the Parameter Calculator is an ad-
ditional set of parameters needed for the calculation inside
the Encoder. The fourth module is the Combiner. It de-
termines how to arrange the output of the Encoder. For
a more sophisticated hierarchical data partitioning and pa-
rameter calculation, we are able to replace the Encoder with
a Recursion module.

3. POSTER PRESENTATION DETAILS
Our EDBT poster presentation comprises an in-depth ex-

planation of the compression scheme. In particular, we want
to show the applicability by the transcription of a variety
of lightweight data compression algorithms. Due to space
constraints, we only present one example transcription in
this paper: semi-adaptive frame-of-reference algorithm with
binary packing for the compression of positive integer val-
ues. For each set of 128 values, the algorithm calculates the
minimum value as reference value. Then, each single inte-
ger value is mapped to the offset to the reference value at
the logical level. This technique leads to smaller numbers.
Then, all 12 offset values are encoded with the same bit
width on the physical level. That means, the algorithm has
to calculate it. For each compressed sequence of 128 values,
we have to store the reference value and the bit width as
meta data. Otherwise we are not able to decode the values.

Figure 2 shows the algorithm in our novel compression
scheme, which can be directly mapped to our model kit im-
plementation. The first Tokenizer is parametrized with a
calculation rule that determines that the Tokenizer has to
output the first 128 32-bit integer values of the input se-
quence. The tail of the sequence serves as further input for
the Tokenizer and is processed in the same way in a next
step. The Parameter Calculator determines the minimum
of the 128 values as reference value mref and the needed
bit width bw to encode all 128 offset values. Instead of an
Encoder we use a Recursion module. Inside that recur-
sion, we have a Tokenizer outputting single integer values.
Logically, we have a Parameter Calculator. But at that
level, we do not need to calculate any parameter here. The
Encoder manages the logical level of encoding as well as the

bit level. It uses the reference value mref and the calcu-
lated bit width bw as parameters. At the logical level it
calculates with the function for the offset to the common
reference value for each of the 128 values. At the bit level, it
determines the binary representation of the offset with the
help of the bit width. The inner Combiner concatenates all
physical representations of the 128 offset values to a com-
pressed sequence. Out of the inner Recursion the outer
Combiner concatenates the compressed sequence with the
physical representation of mref and bw as long as all input
has been processed.

4. MODEL KIT AND CONCLUSION
Based on our novel modularized scheme, we also devel-

oped an appropriate model kit on the implementation level
using C++. Our defined modules are available as building
blocks, which can be parameterized with certain calculation
rules. The building blocks can be orchestrated to data flows,
so that complete lightweight data compression algorithms
can be realized. Next, we want to optimize the building
blocks, so that the algorithms can be efficiently executed.
Furthermore, we want to use the model kit to integrate a
large number of algorithms in a database system.

To summarize, in our EDBT poster presentation, we intro-
duce our novel developed compression scheme for lightweight
data compression algorithms. In particular, we want to
show that our approach offers an efficient and an easy-to-
use way to describe, to compare, to adapt, and to implement
lightweight data compression techniques.
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ABSTRACT
In this paper we present our work in progress on revisiting tradi-
tional DBMS mechanisms to manage space on native Flash and
how it is administered by the DBA. Our observations and initial
results show that: the standard logical database structures can be
used for physical organization of data on native Flash; at the same
time higher DBMS performance is achieved without incurring ex-
tra DBA overhead. Initial experimental evaluation indicates a 20%
increase in transactional throughput under TPC-C, by performing
intelligent data placement on Flash, less erase operations and thus
better Flash longevity.

1. INTRODUCTION
We argue that the design of the storage architecture is not well

suited for new kinds of memory in terms of both software and hard-
ware. Flash memory has significant performance potential, which
is underutilized due to the present architecture of Flash SSDs and
the way they are used by the DBMS. To provide backwards compat-
ibility with magnetic drives, modern Flash SSDs implement legacy
block-device interfaces, supporting reading and writing at Flash
page granularity from immutable device addresses. As a result a
black-box abstraction over the Flash memory is created inside the
device by the so called Flash Translation Layer (FTL). Although,
this has facilitated the widespread use of SSDs, it results in: (i)
significant overhead primarily due to limited on-device resources
available to the FTL; (ii) unpredictable performance caused by the
background FTL processes (wear-levelling (WL) and garbage col-
lection (GC)) [1]; (iii) inability to optimize the DBMS I/O behavior
for new kinds of storage due to an additional level of indirection.

To overcome these disadvantages we recently proposed the NoFTL
approach [2], which assumes native Flash as secondary DBMS
storage. NoFTL removes all intermediate abstraction layers along

©2016, Copyright is with the authors. Published in Proc. 19th Interna-
tional Conference on Extending Database Technology (EDBT), March 15-
18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

the critical I/O path (block device interface, file system and FTL),
and enables the DBMS to control the physical address space of
Flash storage directly (see Figure 1). Under NoFTL the DBMS
is not confronted with the intricate low-level NAND control. The
Flash device is still assumed to have a thin hardware management
layer (a low-level controller).
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Figure 1: General NoFTL Architecture including Regions.

The major advantages of NoFTL over the traditional FTL-based
Flash SSD are the following: (i) usage of the more powerful com-
putational and memory resources of the host system for complex
Flash maintenance tasks; (ii) utilization of the DBMS run-time in-
formation and knowledge about the stored data and I/O for opti-
mization of GC, WL and the address mapping scheme; (iii) better
utilization of available Flash parallelism through intelligent data
placement; (iv) direct control over the out-of-place updates, which
allows implementing short atomic writes without additional over-
head; (v) elimination of redundant functionality along the I/O path.

In the present paper we revisit traditional methods for physical
space management on Flash under NoFTL. The central questions
are: how can native Flash comprising a loose set of Flash chips
be organized and utilized by the DBMS; do we need new logical
storage structures; will they overcomplicate the job of the DBA?

2. LOGICAL STORAGE STRUCTURES AND
DATA PLACEMENT ON FLASH

We introduce the concept of NoFTL regions as a new physi-
cal storage structure, to simplify the organization and management
of native Flash storage. A region comprises multiple Flash chips
or dies, over which the data is evenly distributed. The number of
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dies in each region, as well as the structure of their set is dynamic
and can change over time depending on different factors: size of
objects, required level of I/O parallelism and global wear-levelling.

CREATE REGION rgHotTbl (
MAX_CHIPS=8, MAX_CHANNELS=4, MAX_SIZE=1280M);

CREATE TABLESPACE tsHotTbl (
REGION=rgHotTbl, EXTENT SIZE 128K );

CREATE TABLE T(t_id NUMBER(3))TABLESPACE tsHotTbl;

One or more database objects with similar access properties can
be physically placed in a region; this holds for complete objects
or partitions of them. Objects with different properties are placed
in different physically separate regions to account and optimize for
the specific access characteristics. This gives us two distinct advan-
tages discussed in detail below: (a) coupling of regions and existing
logical structures to simplify database administration, and (b) abil-
ity to perform intelligent data placement to increase performance
and improve Flash longevity.

Logical Storage Structures and NoFTL Regions.
Existing logical DBMS storage structures can be defined on top

of NoFTL regions. Consider the above example: a region of a cer-
tain size rgHotTbl is defined over 8 chips. A tablespace tsHotTbl is
defined on top of rgHotTbl, where a newly created table T is placed.
The DBA can continue using established logical storage structures
such as tablespaces or extents, which can be effectively coupled to
regions. Hence, no new logical structures are needed to manage,
organize native Flash storage. The administration of native Flash
does not confront the DBA with additional complexity.

Data Placement and NoFTL Regions.
It is well known that Flash memory can perform random access

almost as fast as sequential (which is not always true for SSDs).
Thus, keeping logically adjacent blocks, physically distributed has
negligible performance implications. Furthermore, the distribution
over available Flash data channels, dies or planes allows for better
I/O parallelism than storing those blocks in sequential order phys-
ically on Flash. On the other hand, the database knowledge about
the data, about its properties and access patterns can be used to per-
form smarter data placement and optimize important Flash mainte-
nance algorithms, such as WL, GC and address mapping scheme.

For instance, it is proven that the overhead of garbage collec-
tion, which is the major factor for unpredictable performance on
SSDs, is highly dependent on the ability to separate between hot
and cold data [4, 3]. The limited on-device SSD resources rarely al-
low for maintaining comprehensive statistics about access patterns
and access frequencies over the whole logical address space. At the
same time, the DBMS maintains such and other statistics and meta-
data for each particular database object. Since under NoFTL the
DBMS has full control over the physical Flash address space and
can perform direct data placement, it becomes easy to utilize the
DBMS knowledge. Regions, therefore, allow the DBA and DBMS
to control physical data placement on the device in order to opti-
mize Flash management. Intelligent data placement using regions
is in the general case an optimal trade off between the provided
I/O-parallelism and the overhead of GC.

3. PRELIMINARY EVALUATION
We implemented and integrated regions in the NoFTL architec-

ture [2] under Shore-MT. Our initial results indicate that the con-
cept of intelligent data placement on Flash has big potential. For in-
stance, under TPC-C we could achieve about 20% increase in trans-
actional throughput (Figure 3) by applying multi-region data place-

ment configuration (Figure 2). In this configuration we have di-
vided database objects of TPC-C based on their I/O properties into
6 regions. Further we have distributed 64 dies of Flash SSD over
those regions based on sizes of objects and their I/O rate (required
level of I/O parallelism). In addition to performing 20% more trans-
actions than traditional data placement and 20% more READ and
WRITE I/Os, the GC performs almost 20% less COPYBACKs and
4.3% less ERASEs. This reduction in write-amplification of multi-
region configurations leads to lower I/O latencies and consequently
to lower transaction response times. The second effect of decreased
write-amplification of multi-region data placement configurations
is the better longevity of the Flash devices. Sheet1
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Figure 2: Multi-region data placement configuration for TPC-CSheet1

Page 1

TPS 595.42 720.43
531.00 318.63
904.00 564.83

61.43 58.45
Payment TRX (ms) 8.88 6.99

437.30 293.97
Transactions 359,725 433,192
Host READ I/Os (4KB) 19,017,255 23,329,310
Host WRITE I/Os (4KB) 2,740,236 3,259,162

4,326,612 3,496,984
110,410 105,564

Traditional 
data placement

Data placement 
using Regions
R

es
po

ns
e

T
im

e
READ 4KB (µs)
WRITE 4KB (µs)
NewOrder TRX (ms)

StockLevel TRX (ms)

N
um

be
r 

of
 …

 

GC COPYBACKs
GC ERASEs

Figure 3: Performance comparison of traditional and multi-
region data placement configuration.

4. CONCLUSIONS
The black box architecture of modern Flash SSDs does not al-

low to utilize the rich DBMS knowledge about stored data and I/O
for optimization of complex Flash maintenance functionality such
as garbage collection, wear-levelling and address mapping scheme.
In pursuit of a solution, we extend our NoFTL approach with the
notion of regions for allowing the DBMS to control the physical
placement based on the properties of database objects. NoFTL Re-
gions can be easily mapped to existing DBMS structures such as
tablespaces. Our initial results indicate that intelligent data place-
ment can significantly improve the performance of the DBMS as
well as the longevity of Flash devices.
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ABSTRACT
Discrimination discovery is the data mining problem of un-
veiling discriminatory practices by analyzing a dataset of
historical decision records. In this paper, we focus on discov-
ering discrimination from tweets using deep learning mod-
els. One challenge here is that it is difficult to obtain a large
well-labeled dataset required by the training of deep learning
models for the purpose of discrimination analysis. We de-
velop a two-phase deep learning model to address this chal-
lenge. Our model first learns text representations based on
weakly-labeled tweets (containing some specific hashtags),
then trains the classifier on a small set of well-labeled train-
ing data. Experimental results show that: (1) the proposed
method can be successfully used for discrimination identifi-
cation; (2) pre-training text representations, which utilizes
weakly-labeled tweets, can significantly improve the accu-
racy of discrimination detection.

Keywords
deep learning; discrimination analysis; two phase learning

1. INTRODUCTION
Discrimination generally refers to an unjustified distinc-

tion of individuals based on gender, race, or religion, and
often occurs when the group (e.g., female) is treated less fa-
vorably than others. Discrimination discovery and preven-
tion from historical databases has been an active research
area recently. In this paper, we are focused on a related but
different problem, i.e., how to identify discriminatory tweets.
For example, if an individual publishes a tweet saying“Want
to learn photography or how to use photo shop? It’s men’s
lifestyle interest. Not for girls!”, obviously this tweet con-
tains discrimination against female. Identifying discrimina-
tion from text is an important task in user-generated content
(UGC) mining as discrimination has increasingly become a
hotspot of social attention nowadays.

Recent work in natural language processing has shown
that deep learning models could learn meaningful represen-

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
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tations (or features) of text and train to classify text on top
of text representations with high accuracy in applications
like text classification and sentiment analysis. In this paper,
we examine the use of deep learning models for discrimi-
nation analysis of tweets. However, existing deep learning
models require large amounts of training data and it is dif-
ficult to obtain such a large well-labeled training dataset
(each tweet is clearly marked with discrimination or non-
discrimination by domain users) because labeling manually
a large number of tweets is time-consuming.

We develop a two-phase deep learning model to detect
discrimination from tweets. In the first phase, the model
focuses on learning semantic representations of tweets us-
ing the large amount of weakly-labeled tweets. In Twit-
ter, users often add hashtags, which mark keywords or top-
ics, in their tweets. We consider tweets containing hash-
tags like “#sexism”, “#racism” are weakly-labeled discrimi-
nation tweets and those tweets likely contain discrimination
information. One example is “Why are female cabinet mem-
bers suspect but male ones are not? #bias #sexism”. How-
ever, not all tweets containing such hashtags can be con-
sidered as discrimination. For example, the tweet “#sexism
is an important research in behavior research” is not dis-
criminatory. In general, the tweets that are weakly-labeled
by discrimination-related hashtags are likely to be discrimi-
natory than those without discrimination-related hashtags.
Hence we train our model to learn the good text represen-
tations based on the similarity between the weakly-labeled
tweets and well-labeled tweets. In the second phase, we use
the representations of tweets trained from the first phase as
inputs to train the logistic regression classifier and fine-tune
the whole model using the small set of well-labeled tweets.

2. THE MODEL
In this section, we describe the two-phase deep learning

model to identify discrimination tweets.

2.1 Phase One
In the first phase, we first model tweets representations

based on semantic composition ideas [4]. Semantic composi-
tion aims to understand the text by composing the meaning
of each word through a composition function. In our work,
we use the Long Shot-Term Memory (LSTM) [3] recurrent
neural network as the composition function to model the fea-
tures of tweets. LSTM is able to model a tweet by sequen-
tially processing each word and mapping a tweet to a low
dimensional representation vector. LSTM has various vari-
ations. In our work, we adopt a widely used LSTM model
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[2] but without peephole connections. In order to learn a
tweet representation, the model first maps each word wi in
a tweet into a d-dimensional real vector xw ∈ Rd , also called
word embeddings [1]. For a tweet with n words, a sequence
of word embeddings x = (x1, x2, ..., xn ) are passed into the
LSTM one by one to compute the sequential hidden feature
vectors h = (h1, h2, ..., hn ). Then, the model combines the
hidden vectors by mean operation r = mean(h1, h2, ..., hn ) to
get one vector r as representation of the tweet.

We further need to model the feature of discrimination
and non-discrimination category. In order to build the dis-
crimination features, we consider all the discrimination tweets
as a document and use the features of each tweet as input to
compose the discrimination features of each category. Given
a set of discrimination tweets T+ = {t+1, t

+
2, ..., t

+
m }, after com-

puting the representations of tweets R+ = {r+1 , r
+
2 , ..., r

+
m }, we

composite the representations of discrimination by Equation
1.

Q+ =
1

m

∑
i∈[1,m]

r+i . (1)

To build the representations of non-discrimination Q− ∈ Rd ,
the framework follows the same procedure.

The objective of our model is to let the representations
of weakly-labeled tweets close to the representations of sim-
ilar category and far away to the representations of their
opposite category. For example, if a tweet contains hash-
tag “#sexism”, we want the representation of this tweet
close to the representation of discrimination and far from
the representation of non-discrimination. Our model uses
cosine function sim(r,Q+) (sim(r,Q−) ) to measure the sim-
ilarity between a weakly-labeled tweet representation r and
representation of discrimination (non-discrimination) cate-
gory. If r is a weakly-labeled discrimination tweet, we set
δ = sim(r,Q+) − sim(r,Q−). If r is weakly-labeled as non-
discrimination tweet, we set δ = sim(r,Q−)− sim(r,Q+). The
loss function is L(δ) = log(1 + exp(−γδ)), where γ is a scal-
ing factor. To train the model, we use the back-propagation
algorithm by Adadelta [5] to update the parameters of the
LSTM model.

2.2 Phase Two
In the second phase, we aim to learn the logistic regression

classifier to identify discrimination. After the pre-training,
the LSTM model which contains word embeddings to the
semantic representations of tweets is already well-trained.
We stack the logistic regression layer on the LSTM layer
and feed the tweets representations as inputs to logistic re-
gression classifier. We use the well-labeled small dataset
as training dataset in this phase. The model is to predict
whether a tweet contains discrimination ŷ. The logistic re-
gression function is:

P( ŷ |r,Ul, bl ) =
1

1 + e−(Ul ·r+bl )
, (2)

where r is the representation of a tweet, and Ul, bl are the
parameters of logistic regression. We use negative log likeli-
hood as the loss function to train the classifier and fine-tune
the whole architecture.

3. EXPERIMENTS
We crawled tweets online and labeled 300 discrimination

tweets and 300 non-discrimination tweets as the well-labeled

Table 1: Comparisons of accuracy of our two-phase
training deep learning model against other methods

Methods
Number of training data

240 360 480
Our model 0.887 0.901 0.910

Without pre-training 0.870 0.872 0.900
SVM (1-gram) 0.521 0.725 0.713
SVM (2-gram) 0.736 0.756 0.765

Naive Bayes (1-gram) 0.827 0.839 0.860
Naive Bayes (2-gram) 0.852 0.875 0.870

dataset. Meanwhile, we treated 2000 tweets with “#sexism”
or“#racism”as weakly-labeled discrimination data and 2000
tweets with “#news” as weakly-labeled non-discrimination
data. To evaluate the performance, we split the well-labeled
dataset into training data and test data with different sizes
and use 5-fold cross validation to evaluate the classification
performance. We compare our model with several baselines,
which include the deep learning without pre-training the
tweets representations, SVM, and Naive Bayes classifiers.
We use 1-gram and 2-gram as features of SVM and Naive
Bayes classifiers. The prediction results are shown in Table
1. We observe our deep learning model significantly outper-
forms SVM and Naive Bayes classifiers and the pre-training
further improves the accuracy.

4. CONCLUSIONS AND FUTURE WORK
We presented a two-phase deep learning model for discrim-

ination analysis of tweets. Our model first learns text repre-
sentations based on weakly-labeled tweets (containing some
specific hashtags), then trains the classifier on a small set
of well-labeled training data. The preliminary experiments
showed that pre-training text representations by weakly-
labeled tweets could improve the accuracy of discrimination
detection. Meanwhile, our model can be easily extended
to other applications that are restricted by lack of a large
amount of training data. In the future, we plan to extend our
method to identify more fine-grained discrimination text.
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ABSTRACT
Top-k dominating queries return the k points that are better than
the largest number of other points. Current methods for answering
them focus on indexed data and sequential algorithms. To exploit
modern-day parallelism and obtain order-of-magnitude improve-
ments in execution time, we introduce three algorithms, the respec-
tive strengths and potential of which are revealed experimentally.

1. INTRODUCTION
Top-k dominating queries [6] elegantly fuse top-k queries [4]

with skyline queries [2] to produce ranked data without user inter-
vention. Intuitively, a point is ranked highly if it is unequivocally
better than many other points. Unsurprisingly, however, it is expen-
sive to evaluate which k points are better than the most others.

Given the recent emergence of manycore architectures, terabyte-
sized RAM, and low-latency, non-volatile memory, it is natural to
ask whether top-k dominating queries can be answered more ef-
ficiently in a shared, main-memory parallel context. Until now,
research has focused on sequential computation in high-latency,
disk-based settings [5, 8] and on parallel computation in large, dis-
tributed systems [1], or on applications such as web-service rank-
ing [7] and network analysis [5]. This paper investigates how sig-
nificant efficiency improves can be had on just a single machine.

More formally, a data point dominates another, distinct data point
if it has equal or better values on every attribute. The dominance
score of a point p is simply the number of other points that it dom-
inates. The responses to a top-k dominating query are the k points
with the highest dominance scores. Given an unindexed, memory-
resident dataset, we wish to find those k points as fast as possible.

This paper presents preliminary work towards that goal. In the
absence of previous ones, we define three quite distinct algorithms
for answering top-k dominating queries on multicore architectures
and explore their relative strengths experimentally. We find that
each shows promise for maturation, while already executing quickly.

2. THREE PROPOSED ALGORITHMS
For multicore top-k dominating queries, we introduce an adap-

tation of the sequential state-of-the-art and two novel algorithms.

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
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FILTER As a baseline, we adapt the sequential, filter-and-refine
algorithm for non-indexed data [8]. The algorithm consists of three
passes: 1) build a static grid over the data and calculate score
bounds for every grid cell; 2) for every cell that cannot be imme-
diately pruned, iterate the points in the cell and filter out those that
clearly cannot be in the solution; and 3) refine the solution by com-
puting the exact score for the remaining candidates. The counting
and refining steps parallelise readily, since processing is local to
each point, but the filtering step would incur a lot of write con-
tention between threads: processing for each point p will update
scores for other points in addition to p. Therefore, we select the
faster but ≈ 2× less effective filter option (Algorithm 5) of [8]
to adapt: within reason, it is better to process excess points in the
high-throughput refinement phase than filter them sequentially.

SORTED Our next algorithm maximises throughput, but with
heuristics to improve efficiency. We first sort the data by Manhat-
tan Norm. Then, for each point in parallel, we iterate the sorted list.
For a point p at index i, we conduct one-sided dominance tests with
points at index < i to count how often p is dominated. Clearly, if
p is dominated by at least k other points, it cannot be a top-k solu-
tion; so, we break if the count reaches k. Points that reach their own
index are candidates for the solution. Over the remaining indexes
> i, we flip the dominance test and instead count how many points
are dominated by p as a score. Finally, we re-sort the data based on
the scores; the solution consists of the first k sorted points.

PIVOTED Multicore skyline algorithms benefit from pivot-based
partitioning to identify incomparability in addition to dominance [3];
this algorithm attempts it for top-k dominating queries. We will se-
lect a series of pivot points (those with the largest dominance area)
one-by-one, and use them to globally, dynamically split the data
space into a non-uniform grid. We maintain the set of points inde-
pendently of the grid. Each pivot point newly partitions the entire
set of points and the number that end up in the resultant north-east
quadrant is exactly the dominance score of that pivot.1 Meanwhile,
the grid is further sub-divided and upper bounds of scores for points
in each sub-partition can be updated. Once no cell has an upper
bound score better than that of the k’th best pivot that we have
seen, we terminate. The intuition of the algorithm is that partition-
ing is easy to parallelise and that the continual fracturing of the data
space quickly introduces more knowledge of incomparability and
thus very quickly drives down all the upper bound estimates.

3. EXPERIMENTS
This section empirically compares our three parallel proposals.

Setup We implement the three algorithms in C++ using OpenMP
1We describe this in two dimensions for simplicity.
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CORRELATED INDEPENDENT ANTICORRELATED
1 14 28 56 1 14 28 56 1 14 28 56

FILTER 1929 669 535 568 13412 2672 1935 1861 86369 21056 17762 16745
SORTED 376 313 323 326 5225 624 617 667 54603 4836 2535 1780

PIVOTED 812 715 732 789 964 810 842 833 48008 4870 3115 2579

Table 1: Execution time of each algorithm when run on a single core (t = 1), single socket (t = 14), all physical cores (t = 28), and all
virtual cores (t = 56). Data distribution varies, but n = 106, d = 3, and k = 16 are fixed to match [8]. Times are reported in milliseconds.
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Figure 1: The number of candidates generated by each algorithm
as a function of the input data and result size. Independent data.

by extending the openly available SkyBench suite [3] and com-
pile with GNU gcc-4.9.3. We run experiments on a dual socket,
28-core Intel Xeon E5-2683 v3 at 2 GHz that is running Ubuntu
14.04 and has hyperthreading enabled. Time is measured for each
algorithm after loading the input from files into a flat array. Ties in
dominance score are broken by the order in which candidate points
are processed so as not to bias the preferred order of any algorithm.

For comparability with Section 8.3 of [8], we use standard syn-
thetic datasets with defaults of k = 16, n = 106, and d = 3.

Performance of algorithms Table 1 shows the execution time
of the three algorithms relative to the data distribution and number
of threads. In general, we observe the typical pattern that all algo-
rithms perform best on correlated data and worst on anticorrelated
data. This is unsurprising because: a) the dominance scores for
the top-k points is higher on correlated data, increasing the bounds
used for pruning; and b) more points are dominated by at least k
other points and so can be discarded from processing earlier. With
additional computational work on anticorrelated data more paral-
lelism can be exposed, thereby achieving more parallel scalability.

The PIVOTED algorithm typically performs best at low thread
counts, whereas the SORTED algorithm exhibits very good paral-
lel scalability, even across NUMA nodes, and is consistently the
fastest when using all threads. The FILTER method is limited by
Amdahl’s Law because of the sequential second phase, so experi-
ences diminishing returns with increasing thread counts. The PIV-
OTED method struggles to utilise all threads on such low-dimensional
correlated and independent data, because there are not enough par-
titions to iterate and the partitions are quite imbalanced.

The performance of PIVOTED on anticorrelated data is disap-
pointing, given the success that other pivot-based methods (e.g., [3])
have had for standard skyline queries. We will in the future inves-
tigate whether better choices of pivot points and the discarding of

some unpromising partitions can improve performance here. Sim-
ilarly, somehow parallelising the second phase of FILTER could
yield sizeable improvements for that algorithm.

On filters and pivots Figure 1 internally inspects the perfor-
mance of the algorithms by counting "important" points. For PIV-
OTED, these are the pivots. For the other methods, these are the
candidate points that cannot be pruned. The pivots and candidates
are exactly those points for which the dominance score is expen-
sively, explicitly computed. We study how variations in k, n (mea-
sured in millions), and d (all on independent data) affect this value.

While it is clear from Figure 1 that PIVOTED computes by far
the fewest exact scores, each pivot additionally further partitions
the grid, creating much more overhead than evaluating candidates
in the other algorithms; so, it is dangerous to compare these values
directly across algorithms. Nonetheless, the low number of explicit
counts required does suggest that PIVOTED could emerge as the
clear best algorithm if the partitioning overhead can be reduced.

The filtering of the other methods is very sensitive to d, filtering
less than 65% of the input at d = 10, but for d ≤ 5, both prune
≥ 99%. This indicates a reasonable trade-off for FILTER, because
sophisticated pruning replaces parallel work with sequential work.

Summary and future work SORTED outperforms the other meth-
ods on account of good throughput, but we plan to further develop
FILTER (perhaps by trading off more filtering granularity for par-
allelism) and PIVOTED (trying to bridle the exponential growth of
explicitly managed partitions) to see if this result can be overturned.
The strong single-threaded performance of PIVOTED in particular,
especially on less extreme workloads, suggests that improving its
parallel scalability could lead to an extremely fast algorithm.
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ABSTRACT 
 
NoSQL data stores are becoming more and more popular. Graph 
databases are one of this kind of data stores. Neo4j is a very 
popular graph database.  In Neo4j all operations that access a 
graph must be performed in a transaction. Transactions in Neo4j 
use read-committed isolation level. Higher isolation levels are not 
available. In this paper we present an overview of the 
implementation of snapshot isolation (SI) for Neo4j.  SI provides 
stronger guarantees that read-committed and provides more 
concurrency than serializability. 

Keywords 
NoSQL, transaction processing, graph databases. 

1. INTRODUCTION 
Graph databases such as Neo4j [1], Titan [2] and Sparksee [3] are 
being adopted to represent data that is more naturally captured as 
a graph than with structured or semi-structured data models such 
as the relational model or key-value models. Graph databases also 
provide either query languages or APIs that enable for traversing 
graphs, running the whole query on the data store, therefore, 
resulting in an efficient traversal of the graph. The use of other 
data management technology for representing and traversing 
graphs them becomes very inefficient because it implies executing 
many iterative queries to extract the adjacent nodes to a given one, 
what results in a huge overhead.  

Some of these graph databases provide transactions, like Neo4j. 
Neo4j implements a basic isolation level: read-committed. 
Unfortunately, read committed suffers from many anomalies 
including unrepeatable reads and phantom reads. Unrepeatable 
reads allows that a transaction observes different values for a 
given data item in the same transaction. In the case of graphs, it 
means that a path that has been traversed might not exist when 
trying to go through it later in the same transaction. Phantom 
reads affect to the selection of items with a predicate. This affects 
a transaction that performs a predicate selection multiple times, 
since it might observe a different result set each time, resulting in 
inconsistent behavior. A higher isolation level avoiding these two 
anomalies is highly recommended.  

Snapshot isolation (SI) [4] is an isolation level that has become 

very popular since it provides an isolation very close to the one 
provided by serializability while avoiding read-write conflicts. 
Snapshot isolation provides a snapshot of the committed state to 
transactions. SI splits the atomicity of a transaction in two points. 
The start of the transaction, where logically all reads happen, and 
the commit of the transaction, where logically all writes happen. 
SI only can suffer from an anomaly avoided by serializability 
known as write skew. The anomaly is not exhibited by all 
applications, for instance, the TPC-C benchmark never observes 
an anomaly when running on an SI database. 

This paper presents how we have designed and implemented a 
multi-version concurrency control for Neo4j that provides 
snapshot isolation, avoiding the unrepeatable and phantom reads 
phenomena that currently affect Neo4j. This work has been 
performed in the context of the European project CoherentPaaS 
[5] that provides transactional behavior to NoSQL data stores and 
global transactions and queries across NoSQL and SQL data 
stores. 

2. Neo4j ARCHITECTURE1

 
Figure 1: Neo4j Architecture 
Neo4j is a graph database, as such, the entities it handles are 
nodes and relationships (edges in graph jargon) among them. It 
also allows defining properties and labels. Labels are used to 
associate a “role” to a node. Properties can be associated to both 
nodes and relationships.  

                                                                 
1 This research has been partially funded by the European Commission 
under projects CoherentPaaS and LeanBigData (grants FP7-611068, FP7- 
619606), the Madrid Regional Council, FSE and FEDER, project 
Cloud4BigData (grant S2013TIC-2894), and the Spanish Research 
Agency MICIN project BigDataPaaS (grant TIN2013-46883). 
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license CC-by-nc-nd 4.0 
EDBT’16,March 15–18, 2010, Bordeaux, France. 
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Neo4j architecture is similar to the one of a traditional database, 
although it differs quite a bit in the details (Figure 1). Overall, the 
architecture has an object cache and a persistent store as a 
traditional database. However, the internal representation is 
optimized for graphs. 

Nodes are kept in a file whose position is determined by the node 
identifier. That position in the file contains the ID of the first 
relationship of the node and the ID of its first property. 
Relationships are stored in a different file. The source node of the 
relationship and the destination node are stored. Properties of 
nodes and relationships are stored in a different file. 

Neo4j also uses indexes to optimize some of the accesses. It has 
two indexes for nodes, one for labels and another one for 
properties that map them to the set of nodes associated to them. It 
also maintains one index for relationships, mapping properties to 
nodes holding those properties.  

3. SNAPSHOT ISOLATION 
Snapshot isolation is typically implemented as a multi-version 
concurrency control (MVCC). It requires keeping track of 
multiple versions per entity. This means that updating in place is 
not especially convenient and a mechanism is needed to maintain 
multiple versions of each data item, either physically or logically.  

SI can be implemented by enforcing two rules. The read rule 
states that a transaction should observe the most recent committed 
version of each data item at the time the transaction start. The 
write rule states that no two concurrent transactions can update the 
same data item. 

SI requires a way to remove obsolete versions of the data items 
that will never be read by active transactions. Another important 
issue to take into account is that versions of uncommitted data 
items should be kept private, but they should read by the 
transaction that wrote them to guarantee that a transaction reads 
its own writes. 

4. SNAPSHOT ISOLATION FOR Neo4j 
Transactions are assigned a start timestamp that corresponds to 
the most recent committed state. The commit timestamp is given 
to a transaction when it commits. This commit timestamp is used 
to tag each item (version) the transaction has updated. We have 
versioned both nodes and relationships. Versions are implemented 
as an additional property for both of them. This property stores the 
commit timestamp. Another property has been added to indicate if 
a data item has been deleted. A deleted data item has to be kept 
till no previous version can be read by an active transaction. This 
mechanism is also called tombstone versions. Versions are kept in 
the Object Cache of Neo4j. In particular, each object representing 
a node or relationship stores a list of versions. In that way, when a 
transaction reads a node, the right version for the reading 
transaction can be obtained by traversing the list of versions. 

Neo4j uses an iterator to traverse the persistent state when needed 
to answer queries. We have enriched this iterator to take into 
account the versions kept in the cache in order to guarantee read-
your-own writes behavior.  

Neo4j implements read-committed isolation with a traditional 
locking mechanism with short read locks and long write locks. 
We have removed the short read locks since they are not needed 
for snapshot isolation. The implementation of long write locks has 
been modified to perform write-write conflicts implementing a 
first-updater wins strategy. 

Multi-versioning has also been applied to indexes. Properties and 
labels are never deleted in Neo4j even if no node/relationship is 
using them. We version them to know whether they should be 
visible or not for a particular transaction. When a property or label 
has been created by a transaction with a higher timestamp than the 
start timestamp of the reader transaction, it can simply discard 
them. If the timestamp is equal or lower than the start timestamp 
of the reading transaction then the list of associated 
nodes/relationships is traversed. The nodes/relationships are 
tagged with the commit timestamp of the transaction that 
associated the label/property to the node/relationship. In this way, 
it is possible to discard those nodes/relationships that do not 
correspond to the snapshot to be observed by the transaction 
(those with a higher commit timestamp than the start timestamp of 
the reading transaction). 

The most difficult question to provide snapshot isolation in Neo4j 
is how to implement multi-versioning in an efficient way. One of 
the most common inefficiencies introduced by multi-versioning is 
the version garbage collection process. The approach we have 
adopted avoids this issue by only writing to the persistent data 
store the most recent committed version of each data item. The 
other versions are kept in memory. In order to make the version 
garbage collection efficient, they are threaded with a double 
linked list sorted by timestamp to enable to perform the garbage 
collection just traversing those versions that must be garbage 
collected. In this way, the cost of garbage collection is reduced to 
the minimum. 

 
Figure 2: Performance Results 
We have performed a preliminary performance evaluation 
comparing the original implementation of transactions in Neo4j 
with our SI implementation. The database has 12.3MB and stores 
movies (from http://neo4j.com/ developer/example-data/). The 
workload executes 50% updates and 50% reads. Read transactions 
read a random node. Update transactions read a random node and 
modify a random property of the node. In Fig. 2 the results of the 
micro-benchmark are shown. The response time is similar for both 
implementations, updates last 100-200 ms and reads below 50 ms. 
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ABSTRACT
Skyline queries represent a dataset by the points on its
pareto frontier, but can become very large. To alleviate
this problem, representative skylines select exactly k sky-
line points. However, existing approaches are not scale-
invariant, not stable, or must materialise the entire skyline.

We introduce the maximum coverage representative sky-
line, which returns the k points collectively dominating the
largest area of the data space. It satisfies the above proper-
ties and reflects a critical property of the skyline itself.

1. INTRODUCTION
Grasping large datasets can be overwhelming. The sky-

line query [2] helps by summarizing a dataset with only those
points that represent the pareto frontier of the data. A point
p is on the pareto-frontier (and thus in the skyline) if it is
not dominated by some other point q, i.e., p is better than
all non-equal points in at least one attribute. However, even
this is often not enough. The skyline may grow quite large:
e.g., on high dimensional data, points have more opportuni-
ties (dimensions) on which to be better than other points.

In order to solve this, several approaches have been pro-
posed. Given an integer k, a ranking skyline [3, 9, 10] returns
the k points with the highest score according to a skyline-
based utility function. However, the full skyline must be
retrieved, which, even using highly parallel computation on
a GPU, can still take several seconds [1].

Regret minimising sets [4, 7] return the k points for which
a worst-case linear utility function evaluates to a score on
the subset as closely as possible to the one on the skyline.
Computing such a set also requires knowing the skyline.

Existing approaches for representative skylines [5, 6, 8]
return the k skyline points best representing the full sky-
line, but require knowing the skyline to be calculated: the
number of skyline points between all pairs of representa-
tive skyline points [6]; the maximum distance from any non-
representative skyline point to its nearest representative [8];
or the k skyline points maximising the number of non-skyline

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0
EDBT ’16 Bordeaux, France

points dominated [5]. Also, [8] is not scale-invariant, e.g.,
scaling miles to kilometres distorts the result, and [5] is not
stable, i.e., “junk”non-skyline points can be added to manip-
ulate the representative skyline. In this paper, we introduce
the first representative skyline to avoid all of these pitfalls.

2. MAXIMIZING COVERAGE
The skyline is defined as the subset of non-dominated

points [2]. The skyline also has various interesting prop-
erties, e.g. that it dominates the rest of the dataset. In [5],
this property is emphasized and a representative skyline is
developed, but it is not stable as mentioned above.

Another property is that no other subset of points dom-
inates a larger area of the data space. I.e, the skyline cap-
tures the contour of the data space occupied by the data.
This property is agnostic to non-skyline points, suggesting
inherent stability. Thus we introduce the maximum coverage
representative skyline (MCRS): the size-k set that dominates
the largest area of the data space. It is the set of k points
that best achieves this critical property of the skyline.

Note that the MCRS is necessarily a subset of the skyline
(at least if k is smaller than the size of the skyline), since
every non-skyline point dominates less area than the skyline
points that dominate it. The MCRS is also both stable and
scale-invariant, since neither adding/removing non-skyline
points nor scaling the dataset in any dimension affects the
relative size of the dominance area. Perhaps most appeal-
ingly, the MCRS is skyline-agnostic: there is no inherent
dependence on knowing the skyline to compute the optimal
MCRS: the size of the area collectively dominated by any
given set of points is unrelated to knowing the full skyline.

Formally, if dom-area(p) denotes the area occupied by the
(infinitely many) points q ∈ Rd dominated by p, then the
MCRS of size k on dataset D is1:

MCRS(D, k) = argmax
S⊆D,|S|=k

∣∣∣∣∣⋃
p∈S

dom-area(p)

∣∣∣∣∣ (1)

Figure 1 gives an example: the MCRS of size 2 is {p1, p3},
since p1 and p3 cover an area of 42, whereas p1 and p2 only
cover 40 and p2 and p3 only cover 34.

An algorithm for 2d In the following, we show that
in two dimensions, the MCRS can be computed in time
O(m3k + nlogn) and space O(mk + n), where n = |D| and

1Note, importantly, that this set formulation avoids multiply
counting area dominated by more than one point in a set S.
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Figure 1: Three skyline points p1, p2, and p3 and
their corresponding dominance areas. The optimal size-2
MCRS is indicated by the striped area.
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Figure 2: Evaluation of the MCRS

m = |skyline(D)|. This is a nice asymptotic result given that
the naive search space is O(nk). The algorithm proceeds in
three steps: First, sort D

⋃
{〈1, 0〉} so that p0 ≤, ...,≤ pn;

then, discard points dominated by their predecessors and
relabel points p0, . . . , pm; the MCRS will now be the value
of MCRS(m,m, k + 1) \ {pm} in the following recursion:

MCRS(x, y, 0) = {py}
MCRS(x, y, κ), y ≥ κ,= {p0, . . . , pκ−1}
MCRS(x, y, κ) = argmax

s∈{MCRS(x,ŷ,κ)
⋃
{py},MCRS(x−1,y,κ)}

|dom-area(s)|,

where:

ŷ = argmax
0≤y′<y

area (〈px.x, py′ .y〉 , 〈1, py.y〉)
+
∣∣dom-area

(
MCRS(x, y′, κ− 1)

)∣∣ .
The intuition behind the recursion is to sweep through all

pairs of skyline points, calculating for each pair the best solu-
tion that dominates all the space that it dominates. Because
dominance is transitive, the result for each pair of points is
very similar to those for nearby pairs of points. One can see
this as traversing column-by-column the intersection points
of the grid-partitioning induced by the skyline. (In Figure 1
the sequence [(9, 0), (9, 3), (7, 0), (7, 3), (7, 4), (3, 0), (3, 3),
(3, 4), (3, 8), (0, 0), (0, 3), (0, 4), (0, 8)].)

By adding the sentinel pm = 〈1, 0〉 with |dom-area(pm)| =
0 to the end of the list, the last column aggregates the best
solution from the entire grid. Using dynamic programming
to solve the recursion leads to the asymptotic results.

This non-indexing algorithm first computes the skyline to
improve efficiency. However, that does not imply computing
the skyline first is always more efficient; an index may per-
mit prioritising promising regions of the data space. Also,
this algorithm computes the optimal solution, not a greedy
approximation, thereby allowing us to study the proposed
model itself (rather than just the algorithm’s efficiency).

3. REPRESENTATIVENESS OF AN MCRS
In this section, we evaluate the MCRS concept and algo-

rithm. We generate independent (I) and anti-correlated (A)
datasets of 1 million 2-dimensional points as per [2], which
have 17 and 64 skyline points each.2 We implement the al-
gorithm in C++ and execute it on a machine with an Intel
Core i7-4770K 3.50GHz CPU and 16GB of memory.

Figure 2a shows the dominance area of the MCRS relative
to the skyline and Figure 2b shows execution time, both as
2Correlated 2d skylines are already sufficiently small.

a function of k. (I): The MCRS almost exactly represents
the skyline, even at k = 1, with stable execution time. (A):
It quickly approaches the skyline, dominating > 90 % with
fewer than 10 % of the points. Computing representations
with ≤ 60 % of the skyline takes less than a half-second.

4. CONCLUSION AND FUTURE WORK
We introduced the maximum coverage representative sky-

line (MCRS), a scale-invariant, stable, skyline-agnostic rep-
resentative skyline, achieving what the skyline achieves. We
gave an efficient algorithm to compute an optimal 2d MCRS
with which we illustrated that the MCRS covers much of the
data space as the full skyline, even for small k.

We will extend this work with algorithms for > 2d and
multi-dimensional indexes, e.g. R-tree extensions, that can
exploit the independence of the MCRS from the skyline.
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ABSTRACT
We propose a new on-line ϵ-approximation algorithm for
mining closed itemsets from a transactional data stream,
which is also based on the incremental/cumulative intersec-
tion principle. The proposed algorithm, called LC-CloStream,
is constructed by integrating CloStream algorithm and Lossy
Counting algorithm. We investigate some behaviors of the
LC-CloStream algorithm. Firstly we show the incomplete-
ness and the semi-completeness for mining all frequent closed
itemsets in a stream. Next, we give the completeness of ϵ-
approximation for extracting frequent itemsets.

Keywords
On-line algorithm, approximation, closed itemset, intersec-
tion, completeness

1. INTRODUCTION
Intersecting transactions in a data set is an alternative

characterization of closed itemsets [1, 3, 4], which naturally
leads to an incremental/cumulative computation of closed
itemsets in a transaction data stream. CloStream [6] is an
exact-computing on-line mining algorithm, which is a direct
implementation of the incremental intersecting approach.
Such an incremental intersection approach, however, has
great difficulties, in practice, for quitting or breaking inter-
sections in early stages, because it is difficult to predict in
advance that current intersection operations never produce
any frequent closed itemsets[1].
In this paper, we propose a new on-line ϵ-approximation

algorithm for mining closed itemsets from a stream, which is
also based on the incremental/cumulative intersection prin-
ciple. The proposed algorithm, called LC-CloStream, is con-
structed by integrating CloStream [6] algorithm and Lossy
Counting algorithm [2]. LC-CloStream succeeded in over-
coming the above difficulties using ϵ-approximation [2, 5].
We study fundamental properties of LC-CloStream algo-

rithm. Firstly we show the incompleteness and the semi-
completeness for mining all frequent closed itemsets in a
stream. Next, we give the completeness of ϵ-approximation

c⃝2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

for extracting frequent itemsets from a transaction streams.

2. PRELIMINARIES
Let I = {e1, e2, . . . , er} be a set of items. A non-empty

subset A of I is called an itemset (or transaction). A trans-
action stream of length N is a sequence of N transactions
⟨A1, A2, . . . AN ⟩. In this paper, we denote items as a, b, c,
. . . , and itemsets as A, B, C, . . . . We also abbreviate an
itemset {e1, e2, . . . , em} as e1e2 · · · em, for simplicity.

Let S be a stream ⟨A1, . . . , AN ⟩ and B be an itemset.
We define a multiset K(B, t) at time t (1 ≤ t ≤ N) as
K(B, t) = {Aj ∈ S | B ⊂ Aj , 1 ≤ j ≤ t}. The frequency
of B at time t, denoted as sup(B, t), is |K(B, t)|. Given a
minimal frequency threshold σ (0 < σ < 1), B is frequent
at time t in S if sup(B, t) ≥ σ · t. An itemset B is closed at
time t in S if there is no itemset C such that B ̸= C and
B ⊂ C and sup(B, t) = sup(C, t).

The following recursive relation makes it possible to incre-
mentally compute closed itemsets in a stream S. Let CIS(S)
be a set of all closed itemsets in S and ◦ be a well-known
concatenation operator of two sequences.

Proposition 1 ([1, 3]). Let S be a stream ⟨A1, . . . AN ⟩.
We have:

CIS(⟨A1⟩) = {A1}
CIS(Sk) ◦ ⟨Ak+1⟩) = CIS(Sk) ∪ {Ak+1} ∪

{B | ∃C ∈ CIS(Sk) : B = C ∩Ak+1},

where Sk is the k element prefix of S, i.e., ⟨A1, . . . Ak⟩.

CloStream [6] is an on-line exact counting algorithm for
mining closed itemsets in a stream, which uses the above
recursive relation in a straightforward way, and thus cannot
avoid a combinatorial explosion problem caused by CIS(S).

3. LC-CLOSTREAM
The LC-CloStream algorithm maintains an internal fre-

quency table TS. Formally, TS is a set of tuples ⟨B, f(B), δ(B)⟩,
where B is an itemset, f(B) is the number of occurrences
of B after the time tB when B was lastly stored in TS, and
δ(B) is the maximal error count at time tB . We write the
frequency table TS at time t as TS(t), and similarly for
f(B, t) and δ(B, t). Let SP(B, t) denote the set of super-
sets of B belonging to the frequency table TS(t), that is,
SP(B, t) = {C ∈ TS(t) | B ⊂ C}. We define maxSP(B, t)
as follows:

maxSP(B, t) = argmax
C∈SP(B,t)

(f(C, t) + δ(C, t))

The former part of LC-CloStream algorithm, i.e., in lines
5 to 18, performs the incremental intersection and the latter
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Algorithm 1 LC-CloStream algorithm

Input: a stream S = ⟨A1, A2, . . . , AN ⟩,
a relative minimal frequency threshold σ (0 < σ < 1),
a maximal permissible error ratio ϵ (0 < ϵ < σ).

Output: a family FCS of frequent closed item sets in S
1: t← 1 ▷ t is a current time
2: Initialize the frequency table TS.
3: while t ≤ N do
4: Read At.
5: for each B ∈ TS do
6: C ← B ∩At

7: if C ̸= ∅ then ▷ i.e. the case of SP(C, t) ̸= ∅
8: D ← maxSP(C)
9: if C ̸∈ TS then ▷ register C as a new entry
10: TS ← TS ∪ { ⟨C, f(D) + 1, δ(D)⟩}
11: else ▷ increase the frequency vale of C
12: TS ← (TS − { ⟨C, f(C), δ(C)⟩})

∪{ ⟨C, f(D) + 1, δ(D)⟩}
13: end if
14: end if
15: end for
16: if At ̸∈ TS then ▷ register At as a new entry
17: TS ← TS ∪ { ⟨At, 1, ϵ · (t− 1)⟩ }
18: end if
19: for each B ∈ TS do ▷ ϵ-elimination
20: if f(B) + δ(B) ≤ ϵ · t then
21: TS ← TS − { ⟨B, f(B), δ(B)⟩}
22: end if
23: end for
24: end while
25: return FCS(N) = { B ∈ TS | f(B) + δ(B) ≥ σ ·N}

part in lines 19 to 23 executes the ϵ-elimination operation,
which involves an ϵ-approximation computation.
Notice that Algorithm 1 is described declaratively for sim-

plicity, thus has the time complexity O(k2) where k is the
total number of entries in TS, while [6] gave an optimized
procedural form of the complexity O(k).
Unfortunately, LC-CloStream algorithm has a counterex-

ample for the completeness, as shown in Example 1. We
can, however, give the semi-completeness for LC-CloStream.

Example 1. Let S1 be a stream ⟨a, b, b, b, b, b, ac, ac, ac⟩ of
length 9. We suppose σ = 0.3 and ϵ = 0.2. Then, the fre-
quent closed itemsets in S1 are three itemsets a, b, ac. At
time t = 1, LC-CloStream algorithm processes the first trans-
action a and store the set a, as a new closed itemset, into the
frequency table TS. At time t = 2, LC-CloStream adds the
set b into TS, and so on. At time t = 6, LC-CloStream firstly
increase the frequency counter f(B) in TS, then the ta-
ble TS becomes to {⟨a, 1, 0⟩, ⟨b, 5, 1⟩} at this point. Next
LC-CloStream performs the ϵ-elimination rule to TS, and
delete the tuple of the closed set a since f(a, 6) + δ(a, 6) =
1 < 1.2 = ϵ · 6 holds. At time t = 7, LC-CloStream registers
the set ac to TS as a new closed set, but cannot increase the
frequency counter of the set a, because TS has the tuple of
a no longer. Thus, LC-CloStream eventually returns the set
FCS(9) = {b, ac} and fails to produce the frequent closed
itemset a.

Next, we show a semi-completeness theorem which par-
tially overcomes the deficit shown above in LC-CloStream.
Furthermore, we give completeness theorem of LC-CloStream
for frequent itemsets mining based on ϵ-approximation.

Definition 1. Let S be a stream of lengthN , B be a closed
itemset and ϵ be a maximal error ratio. We say, B is ϵ-
extendable on S if there is a closed itemset C such that
B ⊂ C, B ̸= C and sup(B)− sup(C) ≤ ϵN

Theorem 1 (Semi-completness for closed itemsets).
Let S be a stream of length N and B be a frequent closed
itemset in S. If B is NOT ϵ-extendable, then B ∈ FCS(N).

Definition 2. Let S be a stream of length N , σ be a mini-
mal frequency threshold and FCS(N) be a output produced
from S by LC-CloStream algorithm. Then we define RS(N)
as follows:

RS(N) = FCS(N) ∪ {C | ∃B ∈ FCS(N) : C ⊂ B,C ̸= ∅}

Theorem 2 (Completeness for itemsets). Let S be
a stream of length N and B be a frequent itemset in S. Then
B ∈ RS(N).

Definition 3. Let S be a stream of length N and ϵ be a
maximal error ratio. For any itemset B at time t (1 ≤ t ≤
N), we define F (B, t) and ∆(B, t) as follows:

1. if SP(B, t) = ∅, then F (B, t) = 0, ∆(B, t) = ϵ · t

2. if SP(B, t) ̸= ∅, then
F (B, t) = f(maxSP(B, t), t), ∆(B, t) = δ(maxSP(B, t), t).

We call F (B, t) + ∆(B, t) the estimated frequency of B at
time t.

Notice the estimated frequency F (B, t) + ∆(B, t) is de-
fined based on TS(t) of time t, while the counting frequency
f(B, t) + δ(B, t) depends just on TS(t − 1) of the previous
time t− 1.

Theorem 3 (ϵ-approximaton of frequency). Let S
be a stream of length N and ϵ be a maximal error ratio. For
any itemset B, we have

F (B,N) ≤ sup(B,N) ≤ F (B,N) + ϵ ·N

4. CONCLUSIONS
LC-CloStream can avoid a part of combinational explo-

sion problems in a bursty transactional data stream [5]. In
the future, we will study an efficient implementation using
a sophisticated data structure, and also have a plan to in-
vestigate a more advanced framework where the frequency
table has a fixed constant size [5].
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ABSTRACT
The IBM DB2 Analytics Accelerator (IDAA) integrates the
strong OLTP capabilities of DB2 for z/OS with very fast
processing of OLAP workloads using Netezza technology.
The accelerator is attached to DB2 as analytical process-
ing resource – completely transparent for user applications.
But all data modifications must be carried out by DB2 and
are replicated to the accelerator internally. However, this
behavior is not optimized for ELT processing and predic-
tive analytics or data mining workloads where multi-staged
data transformations are involved. We present our work for
extending IDAA with accelerator-only tables, which enable
direct data transformations without any necessary interven-
tions by DB2. Further, we present a framework for executing
arbitrary in-database analytics operations on the accelerator
while ensuring data governance aspects like privilege man-
agement on DB2 and allowing to ingest data from any other
source directly to the accelerator to enrich analytics e. g.,
with social media data. The evolutionary framework design
maintains compatibility with existing infrastructure and ap-
plications, a must-have for the majority of customers, while
allowing complex analytics beyond read-only reporting.

Keywords
analytics, data mining, db2, mainframe, idaa

1. INTRODUCTION
The IBM DB2 Analytics Accelerator (IDAA) [1] is an ex-

tension for IBM’sR© DB2R© for z/OSR© database system. It’s
primary objective is the extremely fast execution of com-
plex, analytical queries on a snapshot of the data copied
from DB2. However, when it comes to more complex, multi-
staged data analysis tasks like data mining, the accelerator
can often provide limited improvements only. Predictive an-
alytics tools like SPSS [4] resort to multiple SQL statements,
each implementing a step or stage in a chain of data prepara-
tion, transformation, and evaluation tasks. For each stage,

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

base data needs to be transferred to IDAA before mining
algorithms can be run and result data has to be materi-
alized within DB2 before it can be used as input for the
next stage or iteration. A key requirement for enhancing
these workloads is to minimize data movement while still
exploiting the accelerator for this task. We solve this issue
with accelerator-only tables (AOTs) which are discussed in
Sec. 2. The second use case is the application of the an-
alytic algorithms in the pipeline. A generic framework is
required which allows to pass code for arbitrary algorithms
to IDAA while still implementing data governance aspects
correctly. A seamless approach, completely transparent to
user applications is discussed in Sec. 3.

2. ACCELERATOR-ONLY TABLES AND
DATA INGESTION

Maintaining a copy of the DB2 data in the accelerator for
query processing is the main use case of IDAA. However,
this design involves a lot of data movements in case of multi-
staged algorithms that require result materialization inside
DB2 before the next step can be executed. The first build-
ing block in our current efforts are accelerator-only tables
(AOTs), i. e., tables whose data solely resides inside IDAA
(cf. Fig. 1), and DB2 only keeps a proxy or table reference
which is usually named nickname in federation contexts [5].
This proxy is used for storing meta data in the DB2 catalog
and acts as indicator for delegating any query on the cor-
responding AOT to IDAA. For creating AOTs the CREATE

TABLE statement was extended by an additional IN ACCEL-

ERATOR clause. AOTs are populated with INSERT statements
comprising a list of values or a sub-select which might in-
voke arbitrary transformation procedures (cf. Sec. 3), re-
trieving the data from other regular accelerated tables or
AOTs. Likewise, UPDATEs and DELETEs are handled. The
second way for populating AOTs is the new IDAA Loader
[2] (cf. Fig. 1). The data to be loaded can originate from
a variety of sources, even from applications not running on
System z which opens up a wide range of new use cases.
Data can be ingested in both, regular DB2 tables and AOTs.
In the past, IDAA was not concerned about transactions be-
cause only the cursor stability isolation level was supported.
Queries were executed under snapshot isolation in Netezza.
With AOTs, IDAA has to be aware of the DB2 transaction
context so that correct results are guaranteed, i. e., uncom-
mitted data modifications of the own transaction are han-
dled. At the same time, concurrent execution of multiple
queries in a single transaction are also supported.
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DB2 z/OS IDAA

Figure 6: SPSS Modeler using Accelerator-Only Tables

wrapper stored procedure in DB2, which (when called) connects to IDAA, which in turn
calls the Netezza stored procedure.

In our prototype, we have implemented 5 such stored procedures. The Netezza Analytics
package has many more, and most of them will finally be made available once this feature
becomes part of a future version of the IBM DB2 Analytics Accelerator.

4.1 Evaluation

In order to test the validity of the integration of analytics functionality into IDAA, we
conducted some basic performance tests. In one scenario (A), SPSS was installed on on
a zLinux partition on System z and connected to DB2 for z/OS through hyperlink sock-
ets. This approach is already very much optimized and minimizes any possible network
latency between SPSS and DB2. We have to point out that in such a (today very typical)
setup, SPSS tries to push down as many predicates and joins to the data source (DB2) as
possible, but it will compensate joins, filtering, etc. if necessary (e. g. when merging data
from different data sources). If such a compensation happens, SPSS transfers all relevant
data from the data source to its own memory and computes the result locally. The ana-
lytics algorithm (k-means in our example) runs in SPSS – not in DB2 or in DB2 stored
procedures.

The second setup (B) is the important scenario for our in-accelerator analytics processing.
All steps, including the execution of the k-means clustering, are executed in the accelerator.

SPSS Modeler
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Figure 1: Overview IDAA with Accelerator-Only Tables

3. IN-ACCELERATOR ANALYTICS
IDAA has now a framework for invoking generic, customer-

specific stored procedures (SPs). A SP can be called in
DB2z, and IDAA forwards the procedure execution to the
Netezza backend (cf. Fig. 2 and Fig. 3). We integrated the
Netezza analytics package [3] which is used by SPSS [4].
The SPSS modeler provides means to define nodes, to cre-
ate and populate AOTs, e. g., by joining accelerated tables,
and then to invoke an analytics SP running in IDAA. Such
a scenario is illustrated in Fig. 1 where the k-means clus-
tering algorithm is applied on some filtered, enriched, and
sampled input data. Intermediate results are materialized
into AOTs and finally fed to the k-means SP. However, two
challenges occur here. First, user privileges need to be veri-
fied for all data sources referenced by such a black box SP.
Therefore, IDAA resolves all dependencies without execut-
ing the SP code. These table references are passed to DB2
which in turn validates necessary user privileges before the
actual operation is carried out. The second issue arises from
views existing on the DB2 side, which are not present on the
accelerator. The framework exploits DB2’s query accelera-
tion capabilities to extract the view definition and implicitly
translate it to the Netezza SQL dialect. A temporary view
is created in the Netezza backend using that definition.

4. RELATED WORK
Using accelerator-only tables is similar to the concept of

pass-through functionality in federated systems based on
SQL/MED [5]. However, the overall use case for AOTs is
quite different. AOTs are conceptually DB2 tables and can
be manipulated using DB2’s SQL dialect. It is just that
AOTs store all their data in the analytics-optimized query
engine and not in the transactional storage engine of DB2
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execute
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procedure

Procedure 
Module

access tables
(SELECT,
CREATE,
INSERT,
UPDATE,
DELETE)

Query 
Engine IDAA

Netezza

possibly
offload queryClient 

Application

Figure 2: Stored Procedure Execution in DB2

for z/OS itself. Contrary to that, federated systems pro-
vide a means to access tables and data residing in another,
stand-alone database system. The integration of the differ-
ent query engines is on a much deeper level in IDAA.

MySQL provides an internal interface to plugin different
storage engines with different characteristics [6]. IDAA in
DB2 for z/OS implements a similar architecture by combin-
ing DB2’s and Netezza’s characteristics and the respective
underlying storage mechanisms. However, the integration of
both happens on the SQL dialect and SQL optimizer layer
and not on the buffer pool and storage layers.
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ABSTRACT
By the events in the past years, the integration of data pro-
tection mechanisms into information systems becomes a cen-
tral research problem again. In this poster, we show how
query rewriting can be used to maintain privacy of users in
smart (or assistive) environments. We developed a privacy
respecting query processing and a vertical fragmentation of
queries, processing maximal parts of the query as close to
the sources of the data (e.g. sensors) as possible.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query Pro-
cessing ; K.4.1 [Computer and Society]: Public Policy
Issues—Privacy

General Terms
Privacy Enhancing Technologies, Database Systems

1. PRIVACY
Smart Metering, Internet surveillance, motion profiles, bio-

metric databases, data retention: In the digital world steadily
more and more information about ourselves and our envi-
ronment is collected. Besides “classical” personal informa-
tion, such as the name, age or gender, a plurality of sensors
records our activities and inclinations. Active and passive
RFID tags, cameras, microphones, but also sensors on light
switches and power sockets capture the current situation in
the ubiquitous environments, up to 100 times per second.

Especially smart environments such as assistive systems
using activity and intention recognition [4] are a possible
cause of privacy violations, especially if the query realizing
the recognition analysis is performed on a cloud server.

To reduce privacy violations, it is necessary

∗A full version of this paper is available as a Technical Re-
port at www.ls-dbis.de/digbib/dbis-tr-cs-01-16.pdf
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Figure 1: The concept of the privacy-aware query-
processor.

• to decrease collected personal information, i.e. to ap-
ply the principle of data avoidance (except where data
are required),

• to process data with personal references as less as pos-
sible or — at least — as close to the local data sources
(sensors) as possible and

• to anonymize, pseudonymize and delete personal data,
unless it is used for further processing and necessary
to realize the aim of the assistive environment.

Data minimization and data avoidance are therefore pre-
scribed, indispensable requirements for the design of smart
systems. This requirement can be achieved in databases by
transforming both queries and query results, as well as using
views [3].

2. PRIVACY-AWARE QUERY PROCESSING
The PArADISE1-approach aims to withdraw the burden

of respecting privacy constraints from the assistive systems
by adding privacy protection mechanisms to those systems
storing and analyzing the data: database systems on differ-
ent levels. PArADISE combines performance aspects of big
data analytics (by using massively parallel database technol-
ogy [5]) and privacy protection. Our privacy-aware query-
processor (see Figure 1) generates anonymized result sets.
These data maintain a high degree of value for the initial
query generated by the assistive system. On the opposite,
additional knowledge can hardly be derived.

1Privacy Aware Assistive Distributed Information System
Environment
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The preprocessor allows the analysis and the rewriting of
database queries regarding user-defined privacy policies [2].
During the execution of the request, it is decided whether
the request will be answered and anonymized directly on
the current network peer, or is sent to lower nodes (vertical
fragmentation, see below). The postprocessor executes the
anonymization of the query results, taking into account var-
ious criteria of quality and privacy. For this, several data
protection metrics and algorithms are provided. The mod-
ule for the automatic generation of privacy settings produces
and adapts existing user-defined privacy policies to new de-
vices and changing requirements and queries.

3. QUERY REWRITING BY VERTICAL
FRAGMENTATION

The smart environment or assistive system sends a query
request Q to the database d integrating the entire sensor
data recorded in our environment. The result of Q is needed
to perform the activity and intention recognition. The data
sources are sensors being located in appliances in apartments
and buildings. Instead of shipping d to the cloud server
sending the request, maximal parts of Q will be evaluated
as close to the sensor as possible. As can be seen in Fig-
ure 2, instead of performing Q(d) in the cloud, the maximal
subquery Qj will be shipped to the next lower node of the
processing chain, in the case of the example a PC located
in our apartment. While Q performs an iterative machine
learning algorithm implemented in R and SQL, and Qj be-
ing a complex SQL query with recursion, the lowest node in
the processing chain (the sensors) can only compute some
filter mechanisms (simple selections) and some simple ag-
gregations over the last values generated (window function:
average of last minute). Each of the nodes will ship the
query result dj to the node sending the request. After a fi-
nal anonymization step A, the data “leaving our apartment”
d′ will only be a small subset of the original data d.

We assume that the lower nodes will each have less query
computing power than the higher nodes: while sensors are
only performing simple filters / selections and aggregations,
an appliance like a TV or a smart network music player will
be able to perform simple (SQLsuperlight) database queries,
an Android-based home media server even more complex
SQL queries.

The whole query processing procedure

Q(d) := dj = Qj(. . . d
′
i = A(di = Qi(. . . (d1 = Q1(d)) . . . )

is transformed in a way, that the cloud server will perform
a remainder query Qδ on d′ instead of performing Q on
d, hence resulting in the privacy protecting query rewriting
Q(d) −→ Qδ(d

′). In other words, the query Q is fragmented
in queries Qj (that can be performed at a lower node) and
a remainder query Qδ that can only performed at the more
powerful node of our vertical fragmentation of query proces-
sors.

Since recognizing the maximal SQL queries in an R ma-
chine learning algorithm is undecidable in general, we try to
detect some larger “SQLable” patterns in the activity and
intention recognition procedures described in [4]. Other as-
pects of our privacy-aware query-processor are described in,
e.g. [1].

By rewriting the query Q into Qj and Qδ and only per-
forming Qδ outside our “privacy protected” appliance en-

Figure 2: Vertical Query Fragmentation: Query and
query result transformation on different peers.

semble in our apartment, we hope to automatically prevent
the service provider of our assistive system to use our per-
sonal data in a way we did not consider to be possible when
starting to use his smart service. A remaining open prob-
lem is to decide whether a privacy-violating query Q↓ can be
performed even on d′ instead of d. In this case, we have to
extend the anonymization step A already performed. This
open problem results in a query containment problem of
Q,Q↓ and Qj that will be part of our further research.
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1. INTRODUCTION  
Online social networks (OSN) are one of the most successful 

applications that have been created this last decade. Central to 

these applications is the problem of sharing data, such as texts, 

photos, geolocation, etc. In most cases, this data is private, and 

thus is only shared with “friends”, a loose concept. Some OSN, 

such as Google+ let you define circles in order to categorize your 

friends: friends, close friends, acquaintances, etc. Data can then be 

shared on finer grain using these circles. However, there is no 

automatic way to control the simultaneous sharing of data to 

several circles, with different data precision granularities, such as 

in the following scenario: Alice wants to share a set of photos with 

her family, photos with no metadata with her close friends, photos 

without faces (and without metadata) in a reduced definition with 

her acquaintances, and does not want to share anything with 

anyone else.  

In this article, we will show how the use of a data sharing algebra 

to write a variety of access control plans (ACP) can overcome 

these current limitations of OSN access control. Moreover, by 

using an algebra, it becomes simple to modify, compose, and 

share these ACPs. Thus less advanced users can easily reuse 

ACPs shared on a marketplace by more experienced users. A 

prototype of the DatShA system has been implemented using 

XQuery 3.0 and is briefly described. 

2. OVERVIEW OF DatShA 
In current OSNs, users have on one side vast quantities of 

personal data, and on the other side numerous “friends” with 

whom they wish to share (or sometimes hide) this data. In the 

current systems, it is not simple to share a specific piece of data 

while modifying it (e.g. changing its precision or removing some 

information) depending on the target with whom it is to be shared.  

Consider the examples mentioned in the introduction. The ACP 

related to Alice’s close friends should transform a set of photos to 

another set where metadata is removed. This could be done by 

simply specifying a regular expression to identify images files to 

be shared (FileSearch operator  – see Figure 1.e), “type” this file 

to images (PathToImage operator – see Figure 1.e), then remove 

metadata (RemoveMeta operator). For Alice’s acquaintances, 

other operators could be invoked: ExtractFaces, ExtractMeta, 

Select and ReduceDefinition operators (not detailed here). 

Thus the objective of DatShA is to provide the infrastructure and 

an extensible set of generic operators to describe how users want 

to process their data before sharing it. The operators must be able 

to be combined on any sort of (semi-structured) data to form an 

algebra. Finally, ACP may include user-dependent data (e.g., 

contact files) such that it can also compute the set of users with 

whom the data is shared, thus linking a plan with its grantee. 

3. BACKGROUND AND RELATED 

WORKS  
Access Control. Many different access control models exist, such 

as DAC, MAC, or RBAC. Many works exist on enforcing such 

models in OSN [1]. We adopt a complementary approach: the 

goal of DatShA can be seen as helping the user to write complex 

views of her data, on which she can then apply any existing AC 

model (most often, DAC or RBAC). 

Data Sharing on OSN. Current works on secure data sharing in 

OSNs consider various problems such as securing com-

munications, i.e. how to securely share data, once access control 

has been checked [2], or how to write access control policies over 

data concerning several users [3]. 

XQuery 3.0. XQuery 3.0. is not only a declarative query 

language, it is also Turing complete. Rather than using a 

traditional language such as Java or C, we have chosen to use 

XQuery and XQuery Update Facility 3.0. Indeed, evaluating an 

ACP is done through modifications to a structured document (that 

we chose to code in XML). Generic operators can be completed 

by snippets of XPath or XQuery code referring to this data 

structure, which are directly evaluated by the DatShA system. 

4. THE DATA SHARING ALGEBRA 

4.1 General principle 
An ACP is seen as a set of sequences of (polymorphic) operators, 

serialized as an XML file (see Figure 1.a). It takes as input an 

XML file containing or referencing private sensitive data and 

produces an XML file containing or referencing data that can be 

shared or published (See Figure 1.c). Users or sets of users (such 

as G+ circles) can be given access rights both on atomic data, and 

on ACPs. As with traditional access control through views, when 

access rights are given on an ACP, the data accessed during the 

process is done with the rights of the grantor. For example, if 

Alice grants Bob the right to view the country she is in, which is 

computed using her precise GPS coordinates, the execution of the 

ACP will use Alice’s rights, but only return to Bob the final result. 

4.2 Sharing ACPs through a marketplace 
Operators and ACPs can be published on a “marketplace”, and 

described by a short text explaining their goal. They can be 

downloaded by users in order to fine tune their data sharing 

policies. Thus, it is possible, even for non-expert users to apply 

complex access control policies, by combining existing operators 

or using existing policies. Search, recommendation, or ranking of 

ACP or operators based on their level of intrusiveness or their 

usability is possible within the marketplace. The only complexity 

is to link groups of users to their ACPs, but as the data shared is 

defined intentionally rather than extensionally, we believe this is 

much easier to do than with current privacy settings in OSN. 

4.3 ACP Example 
We propose the following example which illustrates well DatShA 

potential : Alice wants to participate in a survey to determine the 
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most photographed place on Earth, which can be done by 

computing a “fuzzy” location of all her photos, where the “fuzzy” 

location is defined by GPS coordinate and an error bar e.g. 

X=45.23+/-0.01 Y=27.67+/-0.01. Note that this error bar could 

also be function of the density of photos in a given area.  

We present, in Figure 1, the corresponding ACP. 

This ACP can be written as a sequence of operators (Due to space 

limitations, the actual XML ACP file is available online at: 

http://www.benjamin-nguyen.fr/data/ACP.xml). Each operator 

takes as input an XML file, and produces as output an XML file. 

It is possible to type-check the ACP at compile time, given that 

the operators are typed, but this discussion is beyond our scope 

here. The sequence is the following: for every image in the file path 

given in the input file, meta-data of the image is extracted, and an 

operator to reduce the precision of the GPS coordinates is executed. 

All meta-data apart from the blurred GPS coordinates is removed, 

pictures are grouped together by fuzzy GPS location, then counted. 

Operators can in most cases be implemented in XQuery 3.0 but 

they can also be ad-hoc operators. Note that DatShA also defines 

many other operators, including binary (or even n-ary) operators 

such as the join operator which can be used to join two different 

sequences, thus needing two input files, and producing a single 

output file. All these operators have been implemented using 

XQuery. The framework executing a DatShA ACP has been 

written in Java, using eXistDB to execute the XQuery fragments. 

We believe that the use of operators to build ACPs drastically 

simplifies the creation, reuse, combination and correctness 

checking of ACPs. 

5. CONCLUSION AND FUTURE WORK 
DatShA can be used to create ACPs to manage access control to 

one’s data. We believe that the full power of DatShA appears 

when users start sharing ACPs between each other, either by 

simply reusing an ACP written by another user, or by integrating 

such an ACP into a more complex one. Indeed, any ACP can be 

encapsulated as a DatShA operator. Creating an online market-

place, and testing its usability and adoptability by real users is the 

next step of our work. 
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Spec>*.jpg</file Spec>	

FileSearch 

PathToImage	

ExtractMeta	

Fuzzy	

Project	

Group	

Aggregate	

<set>		
	<path>img1.jpg</path>		
	<path>img2.jpg</path>	

</set>	

<set>	
		<image>	
	 	<imgPath>img1.jpg</path>	
	</image>	

<set>	<image>	
	 	<imgPath>img1.jpg</path>	
	 	<date>01/02/15</date>	
	 	<gps>	
	 	 	<x>43.2356</x>	

<set>	<image>	
	 	<imgPath>img1.jpg</path>	
	 	<date>01/02/15</date>	
	 	<gps>	
	 	 	<x>43.24</x>	

<set>	<image>	
	 	<imgPath>img1.jpg</path>	
	 	<gps>	
	 	 	<x>43.24</x>	

<set>	<tuple>	<gps>	
	 	 	<x>43.24</x>	<y>23.68</y>	
	 				</gps>	
	 				<set>	<image>	
	 	 	 	<imgPath>	....	

<set>	<tuple>	<gps>	
	 	 	<x>43.24</x>	<y>23.68</y>	
	 				</gps>	
	 				<nbImage>	2	</nbImage>	

FileSearch: replaces a <fileSpec/> with jokers in a set of file paths looking 
recursively or not (input "mode") in the directory indicated by input "target" 
every <fileSpec/> should be replaced by a set of path. 

PathToImage: is an operator that replaces every occurrence of a path by 
an image (an xsd type). An image is at least a <imgPath/> to an "image" 
file, i.e., a jpg, png, gif, etc.... Initially the image type only includes the 
<imgPath/> but metadata can be added using the ExtractMeta operator. 

ExtractMeta: replaces every occurrence of an image by the same image 
(every field is copied), and adds metadata that can be extracted from the 
actual file (e.g. location information embedded in the image). 

Fuzzy: is an operator that can be applied to many types. The global 
behavior is to replace any occurrence of the target by fuzzy values, the 
precision being informed by the “precision” input, which can be an XPath. 

 

Project: this operator is used like the relational algebra P operator. It 
replaces the target subtree by the same subtree in which it keeps only the 
elements (or subtrees) that are mentioned in the "keep" parameters. 

Group: replaces the "target" subtree by a restructured one which must be 
a set. It constructs a <set> of <tuple>s, each containing n+1 elements 
(where n is the number of "groupBy" elements in the operator specification,  
in this example, n = 1). The last element of the tuple is a set of elements 
that share the same value of groupBy (here a set of image having the 
same GPS value). This operator is implemented by XQuery 3.0. Group By. 

Aggregate : The aggregate operator replaces a set of elements ("target" 
input) by an aggregate value having the “AggName” name and applying 
the “AggOperation”, which in this case is the XQuery function fn:count(). 

XQuery	

XQuery	

XQuery	

XQuery	

XQuery	

ad-hoc	

ad-hoc	

(c) XML input, temporary and result files	 (d) ACP tree	 (e) Operators details	

<operator OperatorType="project"> 
       <paramset> 

              <params> 

           <input name ="target">/set/image</input> 

           <input name ="keep">imgPath</input> 

           <input name ="keep">gps</input> 

Allows specifying several sets of parameters (n-ary operators) 

Specific parameters (depends on the operator) 

Specifies the part of the XML input impacted  by this operator (target) 

Operator’s implementations depends on the targeted object (polymorphism) 

(b) Generated Xquery for (a):        for $r in doc(”tmp4.xml")/set/image return update replace $r with <image> {$r/imgPath} {$r/gps} </image> 

(a) Definition of the project operator in the XML ACP	
… 

Figure	1:	A	detailed	example	of	an	ACP	delivering	sta s cs		(number	of	photos	by	fuzzy	loca on)		
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tmp5	
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ABSTRACT
In this work, we address the problem of contextual recom-
mendations by exploiting the concept of subspace clustering.
Specifically, we pre-partition users that have rated subsets of
data items similarly into clusters and we associate a context
situation with each cluster. The cluster context is defined as
any internally stored information that can be used to char-
acterize the cluster members per se. Then, given a query
context, we identify the clusters with the most similar con-
text, and we use their members for making suggestions in a
collaborative filtering manner.

1. DESCRIPTION
Recommender systems have become indispensable for sev-

eral Web sites, such as Amazon, Netflix and Google News,
helping users to navigate through the infinite number of
available choices. Motivated by the fact that often users
have different preferences under different context situations,
several approaches, e.g., [1], extend recommender systems
beyond the two dimensions of users and items to include
further contextual information. Context can be defined as
any external to the database information that can be used
to characterize the situation of a user, such as the loca-
tion, time or companion of the user, or any internally stored
information that can be used to characterize the data per
se [6]. In our work, we follow an internal contextualization
approach, and infer context from the data itself. A simple
way to express an internal context is by specifying condi-
tions for the presence of particular attribute values in the
data. For example, for a movies recommender, an internal
context can be: genre=comedy & production-year=2015. It
is clear that such a context characterization cannot be done
upon the whole database, as the data display a lot of vari-
ability. Rather, we should look for contextual information
in smaller, homogeneous subgroups of the data.

∗Work done while with the Ludwig-Maximilians University,
Munich.

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
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To extract contextual information, we rely on similarities
on the user ratings. Intuitively, users close together in their
ratings, share the same context, let it be the preference for
similar movie genres, or preferences towards specific direc-
tors or actors. Typically the user similarity is evaluated
w.r.t. the full dimensional feature space, i.e., all available
items. Finding similar users for all different items though is
hard, while it is more reasonable to find users similar w.r.t.
a subset of the items. A straightforward approach to derive
such subsets is to categorize the items based on some domain
knowledge. In case of movies, for example, the movie genre
can be used and items that belong to the same genre can
form a subset. A problem with this approach is that such
categories are quite vaguely defined, diverse and also over-
lapping. For instance, the movies Ted and My big fat Greek
wedding are both classified under comedy, the later however
can be also found under romance. For a user interested in
comedies it is not clear whether she would equally appreci-
ate a suggestion on Ted and My big fat Greek wedding. Such
a general item categorization, does not reveal much about
the aspects that bring users together. Moreover, such as-
pects might be beyond some given categorization, like the
movie genre and also, they might involve more than one di-
mension, e.g., movie genre and director. Ideally, we want
to find subsets of items which are rated similarly by some
users; such a subset implies that these items have something
in common which brings these users together. This does not
need to be that generic as the genre, but it might be some
other common property of the items, like the director, the
story, or even a mixture of them.

In [4], we locate such user-item groups by exploiting (fault-
tolerant) subspace clustering. Subspace clustering is a pop-
ular approach for clustering high dimensional data which
discovers, except for the cluster members, the dimensions
upon which these members form a cluster. Different sub-
space clusters might be defined upon different subspaces and
member and subspace overlap among the different clusters
is allowed. In our case, subspace clustering identifies groups
of users with similar behavior w.r.t. a set of items. We em-
ploy the items of a subspace cluster to build its context and
use it to locate, at query time, clusters with context similar
to the query context. In contrast to our prior work [4] that
considers all user-related clusters for recommendations, here
we define the notion of cluster context and we consider only
context-related clusters for the specific user.

Recommendations Basics: Assume a recommender sys-
tem, where I is the set of items and U is the set of users.
Each item i ∈ I is described as a set of (attribute, value)

Poster Paper

 

 

Series ISSN: 2367-2005 712 10.5441/002/edbt.2016.100

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2016.100


pairs; let D be the set of all distinct (attribute, value) pairs
appearing in all data items. For instance, for a movies ap-
plication, an attribute can be the director or the production
year of a movie. A user u might rate an item i with a
score rating(u, i) in [0.0, 1.0]; let R be the set of all ratings
recorded in the system. Typically, the cardinality of I is
high and users rate only a few items. For an i, unrated by
u, with Nu representing u’s most similar users (neighbors),
its relevance score is computed as:

relevance(u, i) =

∑
u′∈Nu

simU(u, u′)rating(u′, i)∑
u′∈Nu

simU(u, u′)
(1)

where the similarity function simU(u, u′) evaluates the prox-
imity between u and u′. The most prominent items, i.e.,
those with the higher relevance, are suggested to the user.

Fault-tolerant Subspace Clustering: Subspace cluster-
ing aims at detecting clusters embedded in subspaces of a
high dimensional dataset. Clusters may consist of different
combinations of dimensions, while the number of relevant
dimensions per cluster may vary strongly. A subspace S de-
scribes a subset of items, S ⊆ I. A subspace cluster C is
then described in terms of both its members U ⊆ U and
the subspace of dimensions S ⊆ I upon which it is defined
as C = (U, S). Typically, subspace clustering does not deal
with missing values, which is a key problem for recommen-
dations. Fault tolerant subspace clustering [3] deals with
this issue by allowing a certain amount of missing values
per items, users and ratings in a subspace cluster.

In [4], we use fault tolerant subspace clustering to locate
users with similar preferences to a query user, for comput-
ing her recommendations. In particular, for a query user u
we locate its similar users via the subspace clusters where
the user belongs to. These are locally similar users, the term
“locally” meaning that they are similar w.r.t. a set of dimen-
sions (those in their corresponding subcluster). We refine
this set of users based on their common ratings to u; this is
a “global” evaluation aiming to check their overall proxim-
ity, i.e., over all items. This local-global refinement results
in a more qualitative set of friends Nu for recommendations.
The new set Nu is plugged in Formula 1 for issuing recom-
mendations. Our results show that this careful selection of
friends, is reflected in more qualitative recommendations.

Inferring the Cluster Context: We consider that the
context of a subspace cluster C = (U, S) expresses the most
significant parts of the items S within the cluster; these are
captured through the attribute values of the items of S, upon
which C is defined and are therefore sets of (attribute, value)
pairs. Similar to [5], we ground the significance of each
(attribute, value) pair on its frequency in the data appearing
in the cluster. By post-processing the (attribute,value) pairs
in S, we rank these pairs based on their frequency in C; the
significance of a pair is normalized taking into account its
frequency in the whole database, so as to downgrade global
popular pairs corresponding to common trends and focus on
cluster-specific context. This way, we define the context of
a cluster as an expression containing one or more significant
(attribute,value) pairs. For instance, the context of a movie
cluster could be: genre=comedy & actor=Meryl Streep.

Luckily, our subspace clustering is offline and therefore
there is no need to compute at query time the context of
the produced clusters. This fact allows us to resorting to
non-approximate solutions for context identification.

Contextual Recommendations: Given a user u along
with a query with context p, expressed as a set of (attribute,
value) pairs with attributes in D, for computing contextual
recommendations for u, we first locate the users that exhibit
the most similar behavior to u under p. These are the mem-
bers of the clusters for which u is also a member; we denote
them by Cu. Due to the context-constraints though, not
all clusters are relevant as some of them describe a different
context than p. Therefore, we need a way to evaluate the
relevance of a cluster context to p. We distinguish between:
•Exact context match: If there are clusters in Cu that

match exactly the query context p of u, i.e., Cp
u, then the

members of these clusters comprise the set of friends Nu

upon which the recommendations for u will be computed.
•Partial context match: If there is no cluster with context

equal to p, we relax our context relevance evaluation by look-
ing for context-similar clusters, instead of context-identical
clusters. To determine how close a context query p and a
cluster context c are, we rely on a vector-based approach.
Let D be the set of all N distinct (attribute, value) pairs ap-
pearing in all data items. A vector representation of p is a
binary vector Vp of size N , whose j-th element corresponds
to D[j]. If D[j] appears in p, then Vp[j] = 1; otherwise it is
0. Analogously, the vector representation of a cluster con-
text w is a binary vector Vw of size N , where Vw[j] = 1, if
D[j] appears in w; otherwise it is 0. The similarity between
p and w is then defined using their vector representations
Vp and Vw as:

sim(p, w) = cos(Vp, Vw) =
Vp · Vw

|Vp||Vw|
(2)

Having located the clusters Cp
u with the most similar con-

texts to p, we employ their members as the set of the most
similar users to u and compute recommendations based on
them. Actually, we apply a weighted ranking approach to
refine the set of like-mined users according to the similarity
of the context of the cluster they belong to, to p.

Next Steps: We are working on improving our cluster con-
text description, by a better aggregation of the attribute val-
ues within the cluster and by using item hierarchies, and on
more sophisticated methods for context matching and user
aggregation. Also, we are working on the scalability aspect
to parallelize the subspace cluster and context extraction
parts. Preliminary results with MapReduce appear in [2].
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ABSTRACT
Traditional indices in relational databases are designed for
queries that are selective by value. However, queries can
also retrieve records on their relational structure. In our
research, we found that traditional indices are ineffective for
structurally selective queries. To accelerate such queries, so-
called ‘structural indices’ have been applied in graph databa-
ses. These indices group together structurally similar nodes
to obtain a compact representation of the graph structure.

We studied how structural indices can be applied in rela-
tional databases and evaluated their performance. Guarded
bisimulation groups together relational tuples with similar
structure, which we use to obtain a guarded structural in-
dex. Our solution requires significantly less space than tra-
ditional indices. At the same time, it can offer several orders
of magnitude faster query evaluation performance.

1. PROBLEM DEFINITION
Queries that are selective by value can be accelerated by

using B-trees or Hash indices on attributes in the selection
condition. The problem is that such indices cannot effi-
ciently answer structurally selective queries. Consider a re-
lation customer(id, name, address, phone) and a relation
order(id, status, total price, customer id), where id denotes
the primary key (PK) in both relations. Further, we have a
foreign key (FK) from order(customer id) to customer(id).

For example, we might want to retrieve all names of cus-
tomers that do or do not have an order. To answer these
queries, a semijoin or antijoin has to be processed. Semi-
joins and antijoins require table scans, index scans or index
only scans on both relations. These operations are relatively
expensive. Moreover, these are tuple selecting queries. The
result is a subset of a single relation: the customer relation.
No information from the order relation occurs in the output.
However, the order relation or its index must be scanned to
determine which tuples must be returned, which impacts the
performance when the order relation is much larger than the
the customer relation.

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
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Value-based indices are not directly useful in accelerating
structurally-sensitive selections such as these.

2. BACKGROUND
The main concept of structural indices is to build a sum-

mary that is smaller than the original database, while pre-
serving relevant structural properties. Bisimilarity and simi-
larity are two formal notions of structural similarity in graphs
which have been used for summarizing semi-structured and
graph databases for structural indexing [3, 7]. Andréka et
al. [2] and Otto [5] introduced guarded bisimulation and
guarded simulation which extends these notions to relational
databases. Picalausa et al. characterized query invariance
under guarded (bi)simulation (i.e., for which query languages
guarded (bi)simulation is the correct structural notion for
indexing w.r.t. queries in the language), providing a formal
basis for the engineering of guarded structural indices [6].
This abstract summarizes the main results of our empirical
study of the practical feasibility of this novel approach to
indexing; details can be found in [1].

3. APPROACH
Our approach to build a structural index can be summa-

rized as follows: first we represent the relational database
instance as a graph. Second, we apply an external memory
bisimulation partitioning algorithm to group similar nodes.
Third, we map the partitioning of the original tuples. We
summarize each step in the following paragraphs.

Relational databases allow joins on any set of attribute
pairs with equal types. Because FK constraints are popu-
lar candidates for join conditions, we only consider PK-FK
joins. The graph is constructed as follows: we create a node
for each PK value in the database. Then we create forward
edges from PK to FK values and backward edges from FK
to PK values. We use relation names as node labels and FK
constraint names for edge labels.

We apply a localized version of bisimulation equivalence
on the graph, namely, k-bisimulation. This equivalence rela-
tion induces a partitioning of nodes with respect to topolog-
ical features of their k-neighborhoods. The k-neighborhood
of a node n is the subgraph consisting of all nodes at most
k edges away from n. The partitioning result consists of
a mapping from nodes (tuples) to partition blocks, which
represent k-bisimulation equivalence classes, and a reduced
graph that summarizes the original structure. The map-
ping is stored by tagging each tuple in each relation (in
an additional attribute) with the distinct identifier of the
partition block to which the tuple belongs. The reduced
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Table 1: Queries for TPC-H dataset
Query description
FACQ 1 Select partsupp supplycosts having lineitem
FACQ 2 Select part names having a lineitem
FACQ 4 Select region having nation, customer, orders

and lineitem
GF 1A Select partsupp comment without lineitem
GF 1B Select customers not having an order
GF 4 Select all suppliers that sell parts that are

offered but not sold by other suppliers

graph is stored in an additional relation edge label(from id ,
to id). After construction of edge label, the PK-FK graph is
no longer needed and is discarded.

k-bisimulation structural indices allow the acceleration of
semijoins and antijoins with join trees of height h ≤ k. The
reduced graph is used to determine which equivalence classes
are selected. Then, the projected relation is scanned and
tuples that are tagged with those equivalence classes are
returned. Queries with join trees of height h > k can be
partially accelerated via query decomposition.

4. EXPERIMENTAL STUDY

Set up. We used the DBLP1 data set and the TPC-H2 data
set with scale factor 1 to evaluate guarded structural index-
ing. PostgreSQL 9.3 and the external memory bisimulation
partitioning solution of Luo et al. [4] were used. Table 1 lists
the queries used in our evaluation.

Results. Figure 1 shows the number of partition blocks that
are generated under k-bisimulation. A higher value of k
leads to more equivalence classes, uses more disk space, and
can accelerate higher join (sub)trees. Figure 2 shows the
reduced graph under 2-bisimulation. We observe significant
compression while preserving non-trivial structure.
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Figure 1: Partition size under k-bisimulation

Figure 3 shows the speed-up of structural indexing over
value-based B-trees on foreign keys. For 4 ≤ k ≤ 7, this
is between 4 and 190 times faster. We also observed that
our index uses only 1 megabyte of disk space for these k

1http://dblp.uni-trier.de/xml/
2http://www.tpc.org/tpch/
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Figure 2: TPC-H partitioning under 2-bisimulation

values compared to the more than 450 megabytes required
for value-based indexes.
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Figure 3: Query running time speedup factor

Conclusions. Our results show that guarded structural in-
dices can be orders of magnitude smaller and faster than
traditional indexes. This indicates the significant promise
of further study of this new approach to indexing.
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ABSTRACT
Source selection deserves attention for live query processing
over distributed, poorly controlled data sources since it is
the key to produce the best available information, in terms
of relevance, trustness, and freshness, as query result. In this
paper, we present an approach taking into account context-
dependent data quality, according to different dimensions,
during source selection, with the aim of selecting not only
the most relevant but also the highest quality sources.

1. INTRODUCTION & BACKGROUND
In the last decade significant amount of Linked Data has

been published to construct a global data space. However, it
is still difficult to benefit from published data in an effective
way because identifying the sources containing the most
valuable results for a query is a non-trivial task. We propose
an approach to select sources taking into account not only
relevance but also quality in a context-dependent way.

Our approach fits in the general vision of Rekatsinas et
al. [2] for a data source management system that enables
users to discover the most valuable data sources for their ap-
plications. To characterize data source value, different quality
indicators [1] can be used to assess the different quality di-
mensions (accuracy, freshness, completeness, etc), relying on
data content, metadata (such as update times) and explicit
user feedbacks. Data quality, however, may be different if
assessed with reference to a geographical area, historical pe-
riod, or type of content. As a result, it is not only impossible
to assess quality in an absolute way, but it is difficult as well
to assess a single quality dimension independently from the
context. Quality indicators would then be associated with
data according to the different contexts.

We adopt the notion of context proposed in [2] in terms of
context clusters. A context cluster describes the data domain
corresponding to a data collection and it is specified as a
conjunction of a set of concept classes and a set of instances.
In our approach, context clusters can specify information
about what (the type of the described information), where
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(spatial location), when (temporal location), and why (data
motivations).

Each data item (i.e., each RDF triple) is associated with
(one or more) context clusters. A source can include data
items from different contexts. A (data source, context) pair
intensionally characterize a data collection, consisting of
the set of triples in the source associated with the context.
Quality indicators are associated, for the relevant quality
dimension, with such data collections. A data source can
thus exhibit different quality degrees, resulting in different
indicator values, according to the different contexts.

Given a user query, the approach consists of four tasks: (i)
context-dependent quality aware source selection to devise
the most relevant and highest quality sources according to
the query and its context; (ii) feedback from the user on
the results obtained by the query evaluation; (iii) refinemen-
t/update of the data quality indicators according to such
feedback; (iv) update of the auxiliary structures employed
for source selection according to the refinement in (iii).

The proposed approach relies on two main notions, that
are combined in an original way:

1. Named Graphs. Named Graphs [1] are useful structures
for hierarchically composing subgraphs and building nested
graphs. They allow to represent and exchange metadata.

2. Data Summaries. Data summaries [3] have been pro-
posed to efficiently determine which sources may contribute
answers to a query in live distributed query systems. They
approximately describe the data provided by a source in
an aggregated form, in much more detail than schema-level
indexes. The QTree, specifically, is a data summary over
Linked Data sources, seeing the data items (RDF triples) in
the sources as points of a three dimensional numerical space,
by applying hash functions to the triple components. Like
the R-tree, a QTree is a tree structure consisting of nodes
defined by minimal bounding boxes (MBBs). An MBB de-
scribes the multidimensional region in the data space that
is represented by the node the subtree underneath. Leaf
nodes in a QTree, however, rather than containing the data
items that are contained in their MBBs as in R-trees, are
buckets containing statistical information (e.g., count) that
approximate the data items contained in their MBBs.

2. SOURCE SELECTION EXPLOITING
CONTEXT-DEPENDENT QUALITY

Figure 1 provides a graphical overview of the approach.
We first briefly describe the steps in the source selection
process and then discuss its main components. First, the
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Figure 1: Overview of the Approach

user query is submitted to the system (Edge 1) and a look-
up is performed on an extended QTree, returning to the
user a ranked list of high quality relevant sources (Edge
2). The extended QTree allows the retrieval of potentially
relevant sources with quality indicators, for given quality
dimensions in a given context, above a given threshold. Once
query results are returned to the user, her feedback (if any,
Edge 3) on the obtained results is considered, resulting in an
update and refinement of the quality metadata associated
with the sources according to the context (Edge 4). Such
context-dependent metadata are maintained making use of
Named Graphs. Named Graphs mantain detailed quality
indicators and metadata, so that this knowledge is shared
and easily accessible. Such detail quality information is the
basis on which the numeric indicators in the extended QTree
are computed. Finally, context-dependent numerical quality
indicators are incrementally updated in the extended QTree
according to the new metadata (Edge 5).

Query. The query is a conjunctive SPARQL query associ-
ated with context information and quality thresholds. Con-
junctive SPARQL queries consist of so-called basic graph
patterns (BGPs), i.e., sets of triple patterns in the (subject,
predicate, object) form possibly containing variables. We
assume that the BGPs come with context information in
the form of context clusters. Moreover, thresholds can be
specified with respect to one or several among the supported
quality dimensions. Only sources associated with indicators
with values above the thresholds for the specified dimen-
sions will be considered as result, while the other ones are
discarded.

Named Graph. We exploit Named Graphs to associate qual-
ity related metadata and indicators with data sources, in
a context-dependent way, in order to make this knowledge
shared and easily accessible. Context clusters are organized
in a hierarchical structure enabling the support of different
detail levels. For instance, referring to spatial location con-
text clusters, the {Rome} cluster is more specific than the
{Central Italy} cluster. A data source may contain data
items from various contexts. For instance, a data source
containing information about touristic attractions in central
Italy may contain data items associated with the {Museum}
(what) cluster as well as items associated with the {Rome}
(where) cluster as well as items associated with the {Flo-
rence} (where) cluster.

A data source can be associated in the Named Graphs
with different quality profiles corresponding to the differ-
ent contexts of its triples. Inside Named Graphs, indeed,
quality-related metadata w.r.t. different quality dimensions

are attached to each data collections characterized by data
source and context. This allows a context-dependent quality
assessment. Referring to the above mentioned data source,
its freshness may be different according to the {Rome} or to
the {Florence} context, and, similarly its trustness may be
different according to the {Museum} or {Rome} context. We
rely on metadata standard vocabularies to describe quality-
related metadata [1]. For instance, freshness can be described
by using access (dc:date) and creation dates (dc:created),
while trustness can be related to the creator of the source
(dc:publisher).

Extended QTree. The QTree index is extended to consider
context as a fourth component associated with triples and
to associate context-dependent numerical quality indicators
with data collections. Contextualized data items are now
seen as point of a four dimensional numerical space, since
context clusters are hashed to a numerical value as the other
triple components. Each four dimensional MBB, moreover,
is now associated with a quality range for each of the quality
dimension. Indicators are separately computed for each
quality dimension from the quality information (metadata
and indicators) in the Named Graphs. The approach is
flexible, in that the employed indicators may be different
from source to source.

Indicator ranges are used during source selection to prune
the data sources with quality below the requested thresh-
olds. Specifically, given a four dimensional region and the
thresholds for quality dimensions resulting from a query, the
extended QTree is employed by descending in a child node if
the region is contained in the MBB and the quality ranges
intersect the corresponding thresholds. Indicators are finally
also employed to rank the retrieved data sources according
to their quality w.r.t. the query context.

3. CONCLUSION
In this paper we propose an approach to select relevant

sources from an arbitrary, unrestricted set of distributed,
poorly controlled Linked Data sources, so that queries can
be processed on these sources taking into account not only
their relevance to the query but also their quality, in terms of
a number of dimensions, with respect to the query context.

Technically, the proposed approach relies on the use of
nested Named Graphs to associate quality metadata with
data source according to different contexts and at different
granularity levels, and on extended QTree enabling efficient
source selection, not only relying on relevance, but also on
context-based quality indicators.
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ABSTRACT
Big data technology holds incredible promise of improving
people’s lives, accelerating scientific discovery and innova-
tion, and bringing about positive societal change. Yet, if not
used responsibly, this technology can propel economic in-
equality, destabilize global markets and affirm systemic bias.
While the potential benefits of big data are well-accepted,
the importance of using these techniques in a fair and trans-
parent manner is rarely considered.
The primary goal of this tutorial is to draw the atten-

tion of the data management community to the important
emerging subject of responsible data management and anal-
ysis. We will offer our perspective on the issue, will give
an overview of existing technical work, primarily from the
data mining and algorithms communities, and will motivate
future research directions.

1. RESPONSIBLE DATA ANALYSIS
Big data technology holds incredible promise of improving

people’s lives, accelerating scientific discovery and innova-
tion, and bringing about positive societal change. Yet, if not
used responsibly, this technology can propel economic in-
equality, destabilize global markets and affirm systemic bias.
While the potential benefits of big data are well-accepted,
the importance of using these techniques in a fair and trans-
parent manner is rarely considered.
We will start this tutorial with a brief introduction to

foundational concepts of bias, positive and negative discrim-
ination, redlining, and disparate impact. These legal and
ethical issues have been attracting attention in the context
of big data, and have been receiving coverage in the popular
press. We will then identify key properties of responsible
data analysis [2], outlined next.
The first property of responsible data analysis if fairness,

by which we mean lack of bias. It is incorrect to assume that
insights gained from computation on data are unbiased sim-
ply because data was gathered automatically or processing
was performed algorithmically. Bias may come from the

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

data, e.g., if a questionnaire contains biased questions, or
from the algorithm, reflecting political, commercial, sexual,
religious, or other kinds of preferences of its designers.
The second property is non-discrimination. When tack-

ling a technically challenging problem such as relevance rank-
ing of Web search results, or news article recommendation,
it is rational to first focus on meeting common needs well.
However to afford equal advantage to a wide variety of users,
it is important to support uncommon information and data
analysis needs. Such tasks are said to be “in the tail” —
they may not be common individually, yet together consti-
tute the overwhelming majority. For instance, Lerman [22]
argues that the use of big data can lead to data exclusion
and therefore poses risks to those it overlooks.
The third property of responsible data analysis is trans-

parency. Users want to know and control both what is
being recorded about them, and how the recorded infor-
mation is being used, e.g., to recommend content or target
advertisement to them. However, while privacy is certainly
an important part of the picture, there is far more to trans-
parency than privacy. Transparent data analysis frameworks
will require verification and auditing of datasets and algo-
rithms for fairness, robustness, diversity, non-discrimination
and privacy. An important ingredient in transparency is
availability of provenance meta-data, which describes who
created a dataset and how.

2. OVERVIEW OF TECHNICAL WORK
In a paper that pre-dates big data, Friedman and Nis-

senbaum [15] give a systematic account of bias in computer
systems. The authors identify several representative exam-
ples of bias, and develop a taxonomy, classifying bias as pre-
existing (societal), technical and emergent (based on use).
More recently, two kinds of technical approaches have

been developed. The first are empirical studies that serve to
underscore the lack of fairness and transparency in current
data analysis practices. In the second category are propos-
als from the data mining and machine learning communities
that aim to make some common task unbiased.
The empirical study of current data-intensive applications

aims to identify fairness violations in data analysis practices.
This work is critical for understanding the current practice
and for motivating research into responsible data use. We
will give an overview of existing studies, including the XRay
project [21] and the study by Datta et al. [7]. Both studies
point to the lack of transparency in the way personal data is
used for online ad targeting. We will also present a study by
Sweeney [25], which identifies cases of racial discrimination
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in online advertising.
Recently, work is beginning to emerge in the machine

learning and data mining communities that concerns detect-
ing and avoiding discrimination in classification. Fairness in
classification is understood in terms of two goals, namely,
individual fairness and group fairness. Individual fairness
states that two individuals who are similar w.r.t. a partic-
ular classification task should be classified similarly, while
group fairness states that the proportion of members of a
protected group who are classified positively should be sta-
tistically indistinguishable from the proportion of members
of the overall population.
Dwork et al. [11] propose a framework for fair classifi-

cation, based on identifying a probabilistic mapping from
individuals to an intermediate representation that achieves
both individual and group fairness. This framework assumes
that a distance function in the space of the classification
task is given. In a follow-up work, Zemel et al. [26] pro-
pose a method for learning a class of distance functions and
formulate fairness as an optimization problem that both en-
codes the data, preserving necessary attributes, and obfus-
cates membership in a protected group.
Feldman et al. [14] propose a formalization of the legal

doctrine of disparate impact in the context of classification,
and study the problems of disparate impact certification and
removal, linking disparate impact to a particular loss func-
tion, namely, to the balanced error rate.
Beyond classification, Pedreschi et al. [23] and Kamiran

et al. [20] propose formalizations of discrimination in asso-
ciation rule mining and decision tree learning, respectively.
The authors then develop ways to mediate the effects of dis-
crimination in these settings.

3. RESEARCH DIRECTIONS
We will conclude the tutorial by surveying works that,

while not specifically motivated by responsible data analysis,
can be brought to bear on the problem.
We will mention works seeking to provide accurate data

mining results about a population while protecting sensitive
information about individuals, e.g., [9, 12]. We will also
consider some extensive work on provenance [3, 17], espe-
cially in the context of data-intensive workflows [5, 8] and
in distributed scenarios [18].
In general, the field of program verification is central to

the issue of verifying properties such as fairness or non-
discrimination. A broad survey of this field is beyond the
scope of the tutorial. We will mention zero-knowledge proofs
[6, 16], cryptographic techniques by which one party (the
prover) can prove to another party (the verifier) that a given
statement is true, without conveying any information apart
from the fact that the statement is indeed true.
We will briefly discuss several topics related to support-

ing diverse preferences and information needs of users. This
includes works on search result diversification [4] and rank-
aware clustering [24]. We will consider another relevant line
of work that concerns modeling, interpreting and aggregat-
ing user preferences, e.g., [10, 13, 19]. Finally, we will discuss
recent work on personal information management [1], where
the goal is to empower users to take control of their own
data, so as to manage and disseminate it effectively.
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ABSTRACT
Graph mining is an important research area with a plethora of prac-
tical applications. Core decomposition in networks, is a fundamen-
tal operation strongly related to more complex mining tasks such as
community detection, dense subgraph discovery, identification of
influential nodes, network visualization, text mining, just to name a
few. In this tutorial, we present in detail the concept and properties
of core decomposition in graphs, the associated algorithms for its
efficient computation and some of its most important applications.

1. INTRODUCTION
Core decomposition is a well-studied topic in graph mining. In-

formally, the k-core decomposition is a threshold-based hierarchi-
cal decomposition of a graph into nested subgraphs. The basic idea
is that a threshold k is set on the degree of each node; nodes that
do not satisfy the threshold, are excluded from the process. There
exists a rich literature studying algorithmic aspects of core decom-
position by taking different viewpoints, such as distributed, stream-
ing, disk-resident data, to name a few. In addition, core decompo-
sition has been used successfully in many diverse application do-
mains, including social networks analysis and text analytics tasks.

Next, we formally define the concept of k-core decomposition
in graphs. Let G = (V,E) be an undirected graph. Let H be a
subgraph of G, i.e., H ⊆ G. Subgraph H is defined to be a k-core
of G, denoted by Gk, if it is a maximal connected subgraph of G in
which all nodes have degree at least k. The degeneracy δ∗(G) of a
graph G is defined as the maximum k for which graph G contains
a non-empty k-core subgraph. A node i has core number ci = k,
if it belongs to a k-core but not to any (k+1)-core. The k-shell is
the subgraph defined by the nodes that belong to the k-core but not
to the (k + 1)-core.

Based on the above definitions, it is evident that if all the nodes
of the graph have degree at least one, i.e., dv ≥ 1,∀v ∈ V , then
the 1-core subgraph corresponds to the whole graph, i.e., G1 ≡ G.
Furthermore, assuming that Gi, i = 0, 1, 2, . . . , δ∗(G) is the i-
core of G, then the k-core subgraphs are nested, i.e., G0 ⊇ G1 ⊇
G2 ⊇ . . . ⊇ Gδ∗(G). Typically, subgraph Gδ∗(G) is called maxi-
mal k-core subgraph of G.
Figure 1 depicts an example of a graph and the corresponding k-
core decomposition. As we observe, the degeneracy of this graph
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Figure 1: Example of the k-core decomposition.

is δ∗(G) = 3; thus, the decomposition creates three nested k-core
subgraphs, with the 3-core being the maximal one. The nested
structure of the k-core subgraphs is indicated by the dashed lines.
Furthermore, the color on the nodes indicates the core number c of
each node. Lastly, we should note here that the k-core subgraphs
are not necessarily connected.

2. GOALS AND OUTLINE
The goal of this tutorial is to present in detail the algorithmic

paradigm of core decomposition in graphs. In particular, we will
focus on the following points:

(i) Fundamental concepts of core decomposition. We present
the notion of k-core decomposition for unweighted and undi-
rected graphs and then extensions for weighted, directed, pro-
babilistic and signed ones. We also present generalizations of
the decomposition to node properties beyond the degree.

(ii) Algorithms for core decomposition. Computing the k-core
decomposition of a graph can be done through a simple pro-
cess that is based on the following property: to extract the
k-core subgraph, all nodes with degree less than k and their
adjacent edges should be recursively deleted. In the tutorial,
we present efficient algorithms for the k-core decomposition.
We also examine several extensions that have been proposed
by the databases community for large scale k-core decom-
position under various computation frameworks, including
streaming, distributed and disk-based algorithms. We also
examine how to estimate the k-core number of each node
using only local information.

(iii) Applications. We demonstrate applications of the k-core de-
composition in various domains, including dense subgraph
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detection, graph clustering, modeling of network dynamics
and network visualization.

The outline of the tutorial has as follows:

1. Introduction
– Social network analysis
– Highlights of core decomposition

2. Fundamental Concepts of Core Decomposition
– k-core subgraph, k-shell subgraph, k-core number, degeneracy
– Weighted networks, directed networks, signed networks, proba-
bilistic networks
– Generalized cores
– Truss decomposition
– Extensions of the core decomposition

3. Algorithms
– Baseline algorithm
– An O(|E|) algorithm for k-core decomposition
– Streaming k-core decomposition
– Distributed k-core decomposition
– Disk-based k-core decomposition
– Local estimation of k-core numbers

4. Applications in Complex Networks
– Dense subgraph discovery
– Community detection and evaluation
– Identification of influential nodes
– Dynamics of networks
– Modeling the Internet topology
– Network visualization
– Text mining

5. Open Problems and Future Research
– Algorithms and applications
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ABSTRACT
This tutorial aims at providing an overview of the state-of-
the-art approaches to distance-based multimedia indexing.
This tutorial presents the fundamentals of (i) object rep-
resentation, (ii) distance-based similarity models, (iii) effi-
cient query processing, and (iv) indexing. It is intended for
a broad target audience starting from beginners to experts
in the domain of distance-based similarity search in multi-
media databases and adjacent research fields which utilize
distance-based approaches.

1. INTRODUCTION
Concomitant with the explosive growth of the digital uni-

verse [11], an immensely increasing amount of multimedia
data is generated, processed, and finally stored in very large
multimedia databases. The rapid expansion of the internet
and the extensive spread of mobile devices allow users to
generate and share multimedia data everywhere and at any
time. As a result, multimedia databases tend to grow contin-
uously without any restriction and are thus no longer man-
ually manageable by humans. Automatic approaches that
allow for effective and efficient information access to massive
multimedia databases become immensely important.

Multimedia retrieval approaches are one class of informa-
tion access approaches that allow to manage and access
multimedia databases with respect to the users’ informa-
tion needs. These approaches deal with the representation,
storage, organization of, and access to information items [2].
In fact, they can be thought of approaches allowing users to
search, browse, explore, and analyze multimedia databases
by means of similarity relations among multimedia objects.

One promising and widespread approach to define simi-
larity between multimedia objects consists in automatically
extracting inherent properties of multimedia objects and
comparing them with each other. For this purpose, the
content-based properties of multimedia objects are modeled
by feature representations which are comparable by means of
distance-based similarity measures. This class of similarity

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
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measures follows a rigorous mathematical interpretation [19]
and allows domain experts and database experts to address
the issues of effectiveness and efficiency simultaneously and
independently. In fact, it has become mandatory for current
distance-based similarity measures to be indexable in order
to facilitate large-scale applicability.

2. TUTORIAL OUTLINE
In this tutorial, we aim at providing an overview of the

state-of-the-art approaches to distance-based multimedia in-
dexing. We intend to cover a broad target audience starting
from beginners to experts in the domain of distance-based
similarity search in multimedia databases and adjacent re-
search fields which utilize distance-based approaches. No
prerequisite knowledge is needed.

2.1 Object Representation
In the first part of this tutorial, we will outline differ-

ent approaches to object representations in order to answer
the question of how to model multimedia data objects in a
generic way. We will focus on a unified object representa-
tion model including fixed-binning feature histograms and
adaptive-binning feature signatures [3]. In addition to these
object representations, we will present the idea of proba-
bilistic feature signatures [4, 5] and show how to approxi-
mate object representations by means of gradient-based sig-
natures [7].

2.2 Distance-based Similarity Models
In the second part of this tutorial, we will provide an

overview of state-of-the-art distance-based similarity mea-
sures for feature histograms and feature signatures in order
to complete our understanding of a similarity model. Among
the multitude of distance-based similarity measures applica-
ble to feature signatures, we will present and discuss the
Earth Mover’s Distance [15], the Signature Quadratic Form
Distance [8], and the Signature Matching Distance [6].

2.3 Efficient Query Processing
The third part of this tutorial is devoted to techniques and

algorithms for efficient query processing. After introducing
distance-based similarity queries, we show how to process
such queries efficiently by means of multi-step filter-and-
refinement algorithms including multi-step range query al-
gorithms [10] and optimal multi-step k-NN query algorithms
[18]. To this end, we elucidate the idea of lower bound ap-
proximations and present state-of-the-art lower bound ap-
proximations [1, 20, 21] for the Earth Mover’s Distance.
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2.4 Indexing
The last part of this tutorial finally covers indexing ap-

proaches for distance-based similarity models where we will
give an insight into the fundamentals of spatial access meth-
ods [16, 22], metric access methods [9, 14, 17, 23], and ptole-
maic access methods [12, 13].

3. FURTHER INFORMATION
Further information regarding this tutorial can be found

at http://dme.rwth-aachen.de/en/DBMI.
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