
PowerQ: An Interactive Keyword Search Engine for
Aggregate Queries on Relational Databases

Zhong Zeng
National University of

Singapore
zengzh@comp.nus.edu.sg

Mong Li Lee
National University of

Singapore
leeml@comp.nus.edu.sg

Tok Wang Ling
National University of

Singapore
lingtw@comp.nus.edu.sg

ABSTRACT
Keyword search over relational databases has gained popu-
larity due to its ease of use. Current research has focused
on the efficient computation of results from multiple tuples,
and largely ignores queries to retrieve statistical informa-
tion from databases. The work in [5] developed a system
that allows aggregate functions to be expressed using sim-
ple keywords. However, this system may return incorrect
answers because it does not consider the semantics of ob-
jects and relationships in the database. In this paper, we
present an interactive keyword search engine called Pow-
erQ to answer queries involving aggregate functions and
GROUPBY. PowerQ utilizes an ORM schema graph to cap-
ture the Object-Relationship-Attribute (ORA) semantics in
the database. Given a keyword query, PowerQ identifies the
various interpretations of the query and applies aggregate
functions and GROUPBY on the appropriate attributes of
objects/relationships. Each query interpretation is denoted
as an annotated query pattern, whose meaning can be de-
scribed in natural language to facilitate user understanding.
Through user interactions, PowerQ can determine the user’s
search intention, and translate the corresponding patterns
into SQLs to compute the answers correctly. The PowerQ
prototype is available at http://powerq.comp.nus.edu.sg.

1. INTRODUCTION
As databases increase in size and complexity, the abil-

ity for users to issue SQL queries has become a challenge.
Keyword search over relational databases has gained pop-
ularity as it enables users to query the database without
knowing the database schema or writing complicated SQL
queries. Research on relational keyword search has focused
on the efficient computation of results from multiple tuples
[1, 2, 4], and largely ignores queries involving aggregates and
GROUPBY. We call the latter aggregate queries.

Aggregate queries provide a powerful mechanism to re-
trieve statistical information from the database. The work
in [5] designed a prototype system called SQAK to handle

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

aggregate queries. An aggregate query comprises of a set of
terms and one of these terms is an aggregate function such
as COUNT , SUM , etc. The terms in the query may match
the names of relations or attributes or tuple values.

Consider the sample university database in Figure 1. Sup-
pose we want to know the total credits obtained by the stu-
dent Green, we can issue the aggregate query Q1={Green
SUM Credit}. However, we observe that incorrect answers
may be returned by SQAK. For example, the term Green
in Q1 matches the names of two students s2 and s3 in Fig-
ure 1. This naturally implies that we should find the sum of
the credits for each of these students, that is, the total cred-
its for s2 is 5 while the total credits for s3 is 8. However,
SQAK does not distinguish between these two “different”
name matches, and outputs a total credits of 13 for students
called Green, which is incorrect.

Course

Code Title Credit

c1 Java 5.0

c2 Database 4.0

c3 Multimedia 3.0

Lecturer

Lid Lname Did

l1 George d1

l2 Steven d1

Enrol

Sid Code Grade

s1 c1 A

s1 c2 B

s1 c3 B

s2 c1 A

s3 c1 A

s3 c3 B

Teach

Code Lid Bid

c1 l1 b1

c1 l1 b2

c1 l2 b1

c2 l2 b2

c2 l2 b3

c3 l1 b4

Textbook

Bid Tname Price

b1 Programming Language 10

b2 Discrete Mathematics 15

b3 Database Management 12

b4 Multimedia Technologies 20

Department

Did Dname Fid

d1 CS f1

Faculty

Fid Fname

f1 Engineering

Student

Sid Sname Age

s1 George 24

s2 Green 18

s3 Green 21

Figure 1: Sample university database

Next, suppose we issue the query Q2={Java SUM Price}
to find the total price of the textbooks that are used in the
Java course. The term Java matches a course title while
the term Price matches an attribute of the Textbook rela-
tion. This relation contains 3 foreign keys that reference the
Course, Lecturer and Textbook relations respectively, and
represents that a course can be taught by more than one
lecturer using different textbooks. We see that there are 2
such textbooks, namely, b1 used by both lecturers l1 and
l2, and b2 used by lecturer l1. But SQAK does not detect
the duplicate textbook b1 by different lecturers of the Java
course (i.e., c1) in the Teach relation, and returns 35 for the
total price. This answer is incorrect as students do not need
2 copies of a textbook for the same course.

In this work, we build a relational keyword search engine
called PowerQ to answer aggregate queries correctly. Pow-
erQ extends the keyword query language and utilizes the

Demonstration

 

 

Series ISSN: 2367-2005 596 10.5441/002/edbt.2016.57

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2016.57


ORM schema graph [6] to capture the Object-Relationship-
Attribute (ORA) semantics in the database. Given an ag-
gregate query, it identifies the various interpretations of the
query and applies aggregate functions and GROUPBY on
the appropriate attributes of objects/relationships. Each
query interpretation is denoted as a graph called annotated
query pattern, whose meaning is described in natural lan-
guage. The query patterns that satisfy the user’s search
intention are translated into SQL statements to compute
the answers. During the query processing, PowerQ uti-
lizes the ORA semantics to distinguish the objects with
the same attribute value and detect the duplications of ob-
jects/relationships regardless of whether the database is nor-
malized or not. Otherwise, the aggregate function(s) can-
not be computed correctly as we have shown in our example
queries Q1 and Q2.

2. PRELIMINARIES
The work in [6] extends the keyword query language to

include the keywords that match the names of relations and
attributes. These metadata keywords provide the context of
subsequent keywords and reduce the query ambiguity.

PowerQ further extends the query language to incorpo-
rate aggregates and GROUPBY. Thus, a keyword query Q
is a sequence of terms {t1 t2 · · · tn} where each term ti
either matches a relation name, an attribute name, a tu-
ple value, GROUPBY or an aggregate function COUNT ,
SUM , AV G, MIN or MAX.

2.1 ORM Schema Graph
The work in [7] classifies the relations in a database into

object relations, relationship relations, mixed relations and
component relations. An object (or relationship) relation
captures the information of objects (or relationships), i.e.,
the single-valued attributes of an object class (relationship
type). Multivalued attributes of an object class (relationship
type) are stored in object/relationship component relations.
A mixed relation contains information of both objects and
relationships, which occurs when we have a many-to-one or
one-to-one relationship. We call these semantics the Object-
Relationship-Attribute (ORA) semantics.

The Object-Relationship-Mixed (ORM) schema graph is
an undirected graph that captures the ORA semantics in
the database. Each node in the graph comprises of an
object/relationship/mixed relation and its component rela-
tions, and is associated with a type (object, relationship and
mixed). Two nodes are connected if there exists a foreign
key - key reference between the relations in these two nodes.

In Figure 1, the relations Student, Course, Faculty and
Textbook are object relations while Enrol and Teach are
relationship relations. Relations Lecturer and Department
are mixed relations because of the many-to-one relationships
between lecturers and departments, and the many-to-one re-
lationships between departments and faculties respectively.
Figure 2 shows the ORM schema graph of the database.

2.2 Query Patterns
Since keyword queries are inherently ambiguous, [6] intro-

duces the notion of query patterns to represent the various
interpretations of a query. These query patterns are gener-
ated from the ORM schema graph of the relational database.

Figure 3 shows one of the query patterns for the key-
word query {Code George Green}. This patten depicts the

Object Node

Relationship Node

Legend:

Mixed NodeTextbook

Teach Course

Enrol Student

FacultyLecturer Department

Figure 2: ORM schema graph of Figure 1

Course
(Code)

Teach EnrolLecturer
Lname=George

Student
Sname=Green

Figure 3: Query pattern of {Code George Green}

query interpretation to find information on the course which
is taught by the lecturer George and enrolled by the stu-
dent Green. To generate this query pattern, we identify the
matches of each term in the query. The term Code matches
the name of an attribute in the Course relation, while the
terms George and Green match the values of the attribute
Lname in the Lecturer relation and the attribute Sname in
the Student relation respectively. Based on these matches,
we know that Code refers to a course object, George refers
to a lecturer object, and Green refers to a student object.
From the ORM schema graph in Figure 2, the Course, Lec-
turer and Student nodes can be connected via a Teach and
an Enrol node. Hence, we create these two nodes and obtain
the query pattern in Figure 3.

PowerQ utilizes query patterns to capture the interpre-
tations of an aggregate query. However, since an aggregate
query includes aggregate functions and GROUPBY, we need
to annotate the patterns to indicate the objects/relationships
that aggregates and GROUPBY are applicable to. We will
discuss how to achieve this in the next section.

3. SYSTEM ARCHITECTURE
PowerQ takes as input an aggregate query, and generates

a set of SQL statements for the query patterns that satisfy
the user’s search intention. Figure 4 shows the architecture
of PowerQ. The frontend of PowerQ interacts with the user
during the query processing, while the backend communi-
cates with the database and the ORM schema graph to com-
pute the query answers. The main components in PowerQ
are Query Parser/Analyzer, Query Interpreter, SQL Gener-
ator, Visualization Module and Normalization Module. The
following sections give the details of these components.

3.1 Query Parser/Analyzer
Given an aggregate query, the Query Parser/Analyzer clas-

sifies the terms in the query into basic terms and operators.
A basic term matches a relation name, or an attribute name,
or a tuple value in the database, while an operator matches
an aggregate function or GROUPBY. For the basic terms,
the Query parser/Analyzer obtains their matches and deter-
mines the objects/relationships referred to by these terms
based on the ORM schema graph of the database.

597



Query 
Parser/Analyzer

Query 
Interpreter

SQL 
Generator

Visualization
Module

Term Tags

Annotated 
Query Patterns

Database DB Index

ORM
Schema Graph

Normalization
Module DB Schema

Normalized
View

FrontendBackend

Figure 4: System Architecture

3.2 Query Interpreter
Next, the Query Interpreter generates a set of initial query

patterns based on the basic terms of the query and the ORM
schema graph of the database. Each query pattern contains
a set of nodes that represents the objects/relationships re-
ferred to by the basic terms. Then, it annotates the query
patterns with operators in the query. For each operator ti,
if its subsequent term ti+1 refers to some object or relation-
ship, then the Query Interpreter annotates the correspond-
ing node with ti(id), where id is the identifier of the ob-
ject/relationship; otherwise, if ti+1 refers to some attribute
a of an object or relationship, the Query Interpreter anno-
tates the corresponding node with ti(a).

Consider the keyword query {COUNT Code George Green}.
Figure 3 shows a query pattern obtained using the basic
terms Code, George and Green. For the operator COUNT,
since its subsequent term Code matches the name of an at-
tribute in the Course relation, we will annotate the Course
node with COUNT(Code), and obtain the annotated query
pattern P1 in Figure 5. This pattern depicts the query in-
terpretation to find the total number of courses which are
taught by lecturer George and enrolled by student Green.

In an annotated query pattern, an object/mixed node
with the condition a = t refers to an object such that its
value of attribute a matches the basic term t. However, since
this condition could be satisfied by more than one object in
the database, we have two different query interpretations:

1. apply the aggregate functions(s) for every distinct ob-
ject satisfying a = t; or

2. apply the aggregate function(s) for all the objects sat-
isfying a = t.

The Query Interpreter distinguishes these two interpre-
tations by annotating the object/mixed node in the pattern
with GROUPBY(id), where id is the identifier of the object.
By applying GROUPBY on object identifiers, we can dis-
tinguish objects with the same attribute value and compute
the aggregate functions for each of them.

In Figure 5, the annotated query pattern P1 contains a
Student node that is annotated with the condition Sname =
Green. From the database in Figure 1, we know that there
are two students called Green. Hence, we have a second
query pattern P2 that is similar to P1, except that we anno-
tate the Student node in P2 with GROUPBY(Sid). Figure 5
shows these two patterns: P1 counts the number of courses
for all the students called Green, while P2 counts the number
of courses for each student called Green separately.

Note that SQAK [5] does not distinguish P1 and P2, and
thus may return incorrect answers to the query.

Figure 5: Screenshot of annotated query patterns

3.3 SQL Generator
The SQL Generator translates an annotated query pat-

tern into an SQL statement to compute the answers. The
straightforward approach is to join the relations of all the
nodes, select the tuples that satisfy the conditions imposed
by basic terms from the join result, and then apply aggre-
gate(s) and GROUPBY on the selected tuples. However,
this may generate an SQL that gives an incorrect answer.

Consider the query pattern P2 in Figure 5. If we simply
translate P2 into an SQL that joins the relations Course,
Teach, Enrol, Lecterer and Student, selects the tuples with
conditions Lname = George and Sname = Green, and then
applies the count aggregate and GROUPBY on the course
code and the student id respectively, we will obtain wrong
answers as the same course may be counted multiple times.
This is because the Teach node in P2 is in fact a ternary rela-
tionship involving course, lecturer and textbook objects (see
the ORM schema graph in Figure 2). The same course can
be taught by a lecturer using different textbooks. In other
words, the same Lid and Code are duplicated for different
Bid in the Teach relation.

To avoid this problem, PowerQ examines every relation-
ship node u in the pattern, and checks its corresponding
node v in the ORM schema graph. If the pattern only con-
tains a subset of the participating objects in relationship v,
then it projects the identifiers of these objects from v. This
eliminates duplicates and PowerQ replaces the relation of u
with the relation obtained by this projection in the SQL.

For example, since the Teach node in P2 only involves
course and lecturer objects, PowerQ generates a subquery
“SELECT DISTINCT Lid, Code FROM Teach” to project the
attributes Lid and Code in the Teach relation. This sub-
query has a “DISTINCT” keyword, thus eliminating dupli-
cates of 〈Lid,Code〉. We use this subquery result to join the
other relations in the FROM clause as follows:

SELECT S.Sid, COUNT(C.Code)

FROM Lecturer L, Course C, Enrol E, Student S

(SELECT DISTINCT Lid, Code FROM Teach) T

WHERE L.Lid=T.Lid AND C.Code=T.Code AND

S.Sid=E.Sid AND C.Code=E.Code

GROUP BY S.Sid

Note that SQAK does not detect the duplicates of courses
in Teach relationships, and thus returns incorrect answers.

598



3.4 Visualization Module
A keyword query is inherently ambiguous. However, the

user who issues the query often has some particular search
intention in mind [3]. The Visualization Module represents
the various interpretations of a keyword query, and actively
interacts with the user to obtain the interpretations that
satisfy the user’s search intention. In particular, if a term
has multiple matches in the database and refers to different
objects/relationships, the user is offered the opportunity to
choose the matches. Further, if more than one query pattern
is constructed for the query, the user is again allowed to
choose his/her intended query patterns.

One feature of PowerQ is that it represents query inter-
pretations visually and describes them in human natural
language in order to facilitate users’ understanding. For
instance, the annotated query pattern P2 in Figure 5 is rep-
resented as a graph annotated with the ORA semantics. The
nodes with operators in the graph are highlighted to indicate
the objects/relationships that aggregates are applicable to.
The description of this pattern is to “Find the count of the
courses that are taught by the lecturer with name matching
George and are enrolled by the student with name match-
ing Green group by Sid”. The user can easily identify the
intended query interpretation by the graph structure, and
verify its meaning by the description. After the user chooses
a query pattern, PowerQ computes the answers and repre-
sents them according to the corresponding search intention.
Figure 6 shows the screenshot of the interface which displays
the query answers for the query pattern P2 in Figure 5 and
the detailed information for user to verify the answers.

3.5 Normalization Module
Relations in a relational database are often denormalized

to improve query processing performance. This denormal-
ization process will duplicate information of objects and re-
lationships in the database and SQAK may obtain incorrect
answers for an aggregate query.

PowerQ is able to detect denormalization and keep track
of the object/relationship information in the database to
answer aggregate queries correctly. This is achieved by ex-
amining the functional dependencies hold on the relations.
If the database is denormalized, then it generates a normal-
ized view of the database which comprises of a minimal set of
normalized relations, and obtains the mappings of relations
in the normalized view and the original schema. The nor-
malized view is used to construct the ORM schema graph
of the denormalized database and build query patterns of
the query, while the mappings are used to generate the SQL
statements which continue to compute the answers correctly.
Interested readers can refer to [8] for details.

4. DEMONSTRATION
In this demonstration, we will present a web-based browser

interface of PowerQ, which communicates with the Java
based server. The system is available at http://powerq.

comp.nus.edu.sg. We intend to show the use of PowerQ
against a number of real application scenarios such as the
ACM Digital Library (dl.acm.org), and the IMDB database
(www.imdb.com).

The demonstration will include three parts. First, we will
run a number of sample aggregate queries against these re-
sources. We will demonstrate how PowerQ exploits the ORA
semantics in the database, distinguishes objects with the

Figure 6: Screenshot of answers to query pattern P2

same attribute value, and detects duplications of objects in
relationships to answer aggregate queries correctly. The user
can run queries without aggregate functions or GROUPBY
to verify the answers of the aggregate queries. Next, we will
run the aggregate queries on the denormalized data. We will
demonstrate how PowerQ continues to process the aggregate
queries correctly. Finally, the user will be free to run their
own queries.

Through this demonstration, we will highlight the impor-
tance of the ORA semantics to relational keyword search.
This is reflected in three aspects. First, the interpretation
of keyword queries requires the system to be knowledge-
able about the ORA semantics. Second, in order to answer
queries involving aggregates and GROUPBY correctly, we
need to distinguish objects with the same attribute value
and detect duplications of objects in relationships based on
the ORA semantics. Third, we need to keep track of the
ORA semantics in the database, so that queries on denor-
malized databases can continue to be handled correctly.

5. REFERENCES
[1] B. Aditya, G. Bhalotia, S. Chakrabarti, A. Hulgeri,

C. Nakhe, P. Parag, and S. Sudarshan. BANKS:
Browsing and keyword searching in relational
databases. In VLDB, 2002.

[2] M. Kargar, A. An, N. Cercone, P. Godfrey, J. Szlichta,
and X. Yu. MeanKS: Meaningful keyword search in
relational databases with complex schema. In
SIGMOD, 2014.

[3] F. Li and H. V. Jagadish. Usability, databases, and
HCI. IEEE Data Eng. Bull., 35(3):37–45, 2012.

[4] Y. Luo, W. Wang, and X. Lin. SPARK: A keyword
search engine on relational databases. In ICDE, 2008.

[5] S. Tata and G. M. Lohman. SQAK: Doing more with
keywords. In SIGMOD, 2008.

[6] Z. Zeng, Z. Bao, T. N. Le, M. L. Lee, and T. W. Ling.
ExpressQ: Identifying keyword context and search
target in relational keyword queries. In CIKM, 2014.

[7] Z. Zeng, Z. Bao, M. L. Lee, and T. W. Ling. A
semantic approach to keyword search over relational
databases. In ER, 2013.

[8] Z. Zeng, M. L. Lee, and T. W. Ling. Answering
keyword queries involving aggregates and groupby on
relational databases. In EDBT, 2016.

599


	PowerQ: An Interactive Keyword Search Engine for Aggregate Queries on Relational DatabasesZhong Zeng, Mong Li Lee, Tok Wang Ling

