
Sweet KIWI: Statistics-Driven OLAP Acceleration
using Query Column Sets

Sung-Soo Kim, Taewhi Lee, Moonyoung Chung and Jongho Won
Electronics and Telecommunications Research Institute (ETRI)

218 Gajeong-ro, Yuseong-gu, Daejeon
South Korea

{sungsoo, taewhi, mchung, jhwon}@etri.re.kr

ABSTRACT
KIWI is a SQL-on-Hadoop system enabling batch and interactive
analytics for big data. In database systems, materialized views,
stored pre-computed results for queries, are one of the most com-
monly used techniques to improve the query processing speed. How-
ever, the key challenge in using materialized views is maintain-
ing their freshness as base data changes. This paper introduces a
new approach for accelerating OLAP query processing using query
workload statistics and query column sets instead of materialized
views. We present an architecture of SQL-on-Hadoop system using
query column sets of original tables in database. The experimental
results demonstrate that our system can provide improved perfor-
mance by 1.77x on average in terms of TPC-H query processing.

Keywords
Column Sets; SQL-on-Hadoop; OLAP; Big Data Analytics

1. INTRODUCTION
Data warehouse (DW) on Hadoop has rapidly gained popular-

ity and is now being used intensively by business intelligence (BI)
users in enterprises as well as scientific institutions. SQL-on-Hadoop
(SoH) is a class of "Big Data" analytics systems that combine es-
tablished SQL-style querying with Hadoop-based data warehouse
[4]. Most of the Online Analytical Processing (OLAP) query work-
loads in BI applications are long-running batch workloads that are
read-mostly and run repeatedly [1]. Materialized views are widely
used to facilitate fast queries on large datasets. However, one of the
most challenging aspects of using materialized views is maintain-
ing their freshness as base data changes.

Sampling refers to the commonly used technique of evaluating
the queries from a small random sample of the original database
[1, 3]. Typical OLAP query processing approaches exploit two
sampling methods to construct the samples, such as, horizontal
sampling (or row sampling) and vertical sampling (or column sam-
pling) [2]. Given a table T with r rows R1, ..., Rn and c columns
C1, ..., Cm, in horizontal sampling, let Sh = {Ri, Ri+1, ..., Ri+l},
where i ≤ i + l ≤ r, denote a row set that consists of l rows in
T . In vertical sampling, let Sv = {Cj , Cj+1, ..., Cj+k}, where

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

j ≤ j + k ≤ c, denote a column set that consists of k columns in
T . A query q often need to scan fully or partially all data items in
a row set or a column set Sq of T . If data items in Sq have been
materialized, for q, need to scan only materialized items instead
of full table T . In case of column sampling, because the number
of columns in Sq is often much smaller than c, scanning would be
done much faster. In our work, we select vertical sampling method
to accelerate OLAP query processing on large-scale dataset.

KIWI1 is the proposed SoH system, which runs on hundreds of
machines in existing Hadoop cluster. The ultimate goal of our work
is to provide a SoH system, which can support interactive analytics
as well as deep (batch) analytics. Sweet KIWI is a statistics-driven
query processing engine in order to support deep analytics at scale.

Main contributions: The contributions of our work can be sum-
marized as follows.

• Dual-Mode Analytics: The proposed SoH system supports
interactive analytics as well as MapReduce-based batch pro-
cessing in the unified KIWI architecture.
• Statistics-Driven OLAP Acceleration: We introduce a OLAP

query acceleration method using query column sets to sup-
port deep analytics at scale.

2. SYSTEM OVERVIEW
This section focuses on the overall architecture for query pro-

cessing engine using query column set and describes two main
components in the proposed system architecture.
Query Workload Analyzer: One common assumption about query
workloads is that future queries will be similar to historical queries
[2]. This component is responsible for analyzing a set of historical
query workloads to classify the frequently used queries in the past.
In order to construct the query column sets, we extract the meta-
data for query column sets over the entire original tables. The set
of query column sets are updated both with the arrival of new data,
and when the query workloads changes.
Query Column Sets Constructor: This block maintains the query
column sets as cache tables, and manages the mapping data be-
tween the original tables and the cache tables. Query column sets
are created, and updated based on statistics collected from the base
data and historical queries. When a query arrives at runtime, it is
re-written to run against the cache tables instead of the original ta-
bles. The KIWI workload manager evaluates the query augmented
with cache table selection operations at runtime.

Figure 1 illustrates query processing workflow in our system us-
ing the query column sets. In the first step, the query workload
1KIWI is the abbreviation for "Key Impact on data Warehouse In-
frastructure", which is our project code name.

Poster Paper

 

 

Series ISSN: 2367-2005 680 10.5441/002/edbt.2016.84

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2016.84


Query
Workload 
Analyzer

Query 
Column Sets
Constructor

Background Periodic Maintenance

Original Tables

KIWI Workload Manager

Cache Tables

Query Column Sets Maintenance

Query Query Result

Table Mapping Data

Historical Queries

Step 1. Analyze queries

Step 2. Extract metadata of columns in each query 

Step 3. Load original tables 

Step 4. Construct query column sets

Figure 1: Sweet KIWI Architecture.

analyzer performs historical query analysis. In the second step,
it extracts metadata of columns in each query. In the third step,
the query column sets (QCS) constructor loads original tables in
database to create query column sets. Finally, the QCS constructor
inserts the QCS tables and the table mapping data into the database.

2.1 Query Column Sets
Let ξ(T, S) be the memory space needed to store all data items

in a column set S of a table T . Let ϕ be the storage system’s
space limit for materialized column sets. Let ω be possible column
sets of table T . The sum of the memory space of possible column
sets,

∑
∀Si∈ω ξ(T, S) is exponentially large. Let Qp is the set of

queries issued in the past. Let V(T, Si) be the value obtained for
future queries if Si is materialized.

Problem Definition: Given a table T and a query Q, find a col-
lection of optimal column sets, Sopt = {S1, ..., Sk} consisting
of k column sets, such that

∑
∀Si∈ω ξ(T, Si) ≤ ω and Vopt =∑

∀Si∈ω V(T, Si) is maximized.

Algorithm 1 Find optimal column sets (Sopt).
1: procedure FINDOPTIMALCOLUMNSETS(Sa, Q)
2: List<S> Ls = constructColumnSets(Sa, Q);
3: Ls.sortByAppreanceFrequency(DESCENDING);
4: for each node Sj ∈ Ls do
5: if

∑
∀Si∈Sopt

ξ(T, Si) + ξ(T, Sj) > ω then return
6: else
7: Sopt.add(Sj);
8: Sa.remove(Sj);
9: end if

10: end for
11: end procedure

Our Approach: From the set of historical queries Qh extracts a
set of distinct column sets Sa that appear in Qh. ∀Si ∈ Sa, com-
pute the memory space ξ(T, Si), remove from the column set Sa

if ξ(T, Si) > ω. ∀Si ∈ Sa, compute the appearance frequencies
f(Si), remove from the column set Sa if ξ(T, Si) > ω. Let n be
the number of column sets in Sa. For an arbitrary column set S,

ξ(T, S) can be approximated as:

ξ(T, S) = r ×
|S|∑
i=1

I(Ci) (1)

where r denotes the number of rows in T , |S| denotes the number
of columns in S and I(Ci) denotes the average size of a data item
in Ci (e.g., if data type of Ci is double, then I(Ci) is 8 bytes).
Algorithm 1 shows how optimal column sets, Sopt, can be eval-
uated progressively for a given query Q. The time complexity of
this algorithm is O(n logn), where n is the size of the database.

3. EXPERIMENTAL RESULTS
To evaluate the performance of the KIWI for analytic workloads,

we loaded the industry-standard TPC-H data set at scale factor 10
on a node. The server has dual 2.66GHz Intel Xeon CPUs with
128GB RAM, and runs Mac OS X. We compared the wall time of
each TPC-H query between original DB and QCS DB.

Table 1: Runtime for TPC-H queries (unit: seconds)
Query Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Original DB 137 18.6 130 181 28 174 91 176
QCS DB 68.8 11.6 67.9 123 17 84.4 62 87.9

The experimental results demonstrate that our system can pro-
vide improved performance in terms of query processing speed on
TPC-H 10GB dataset. There were performance improvements of
1.77x on average compared to the original DB as shown in Table 1.

4. CONCLUSION
We present a statistics-driven OLAP acceleration in SQL-on-

Hadoop system architecture for data-intensive applications. Our
main contribution in this work has been to propose a new unified
approach for supporting dual-mode (interactive and deep) analytics
at scale. Our work concludes with the following take-away mes-
sages: (1) It is beneficial to have an unified query processing engine
in the KIWI SQL-on-Hadoop system, (2) Sweet KIWI is a general
purpose system that constructs the query column sets of historical
queries for deep analytics, and (3) the vertical sampling method us-
ing query column sets is intuitive to use.

Acknowledgments. This work was supported by ETRI R&D pro-
gram ("Development of Big Data Platform for Dual Mode Batch ·
Query Analytics, 16ZS1400") funded by the government of South
Korea.

5. REFERENCES
[1] S. Agarwal, H. Milner, A. Kleiner, A. Talwalkar, M. Jordan,

S. Madden, B. Mozafari, and I. Stoica. Knowing when You’re
Wrong: Building Fast and Reliable Approximate Query
Processing Systems. In Proceedings of the 2014 ACM
SIGMOD International Conference on Management of Data,
SIGMOD ’14, pages 481–492. ACM, 2014.

[2] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden,
and I. Stoica. BlinkDB: Queries with Bounded Errors and
Bounded Response Times on Very Large Data. In Proceedings
of the 8th ACM European Conference on Computer Systems,
EuroSys ’13, pages 29–42. ACM, 2013.

[3] S. Chaudhuri, G. Das, and V. Narasayya. Optimized Stratified
Sampling for Approximate Query Processing. ACM Trans.
Database Syst., 32(2), June 2007.

[4] A. Floratou, U. F. Minhas, and F. Özcan. SQL-on-Hadoop:
Full Circle Back to Shared-nothing Database Architectures.
Proc. VLDB Endow., 7(12):1295–1306, Aug. 2014.

681


	Sweet KIWI: Statistics-Driven OLAP Acceleration using Query Column SetsSung-Soo Kim, Taewhi Lee, Moonyoung Chung, Jongho Won

