
OAPT: A Tool for Ontology Analysis and Partitioning

Alsayed Algergawy1

∗
, Samira Babalou2, Friederike Klan1, Birgitta König-Ries1

1Institute of Computer Science 2 Department of Computer Engineering
Friedrich Schiller University of Jena, Germany University of Science and Culture, Iran

firstname.lastname@uni-jena.de s.Babaloo@son.ir

ABSTRACT
Ontologies are the backbone of the Semantic Web and facil-
itate sharing, integration, and discovery of data. However,
the number of existing ontologies is vastly growing, which
makes it is problematic for software developers to decide
which ontology is suitable for their application. Further-
more, often, only a small part of the ontology will be rel-
evant for a certain application. In other cases, ontologies
are so large, that they have to be split up in more man-
ageable chunks to work with them. To this end, in this
demo, we present OAPT, an ontology analysis and parti-
tioning tool. First, before a candidate input ontology is par-
titioned, OAPT analyzes it to determine, if this ontology is
worth to be considered using a predefined set of criteria that
quantify the semantic richness of the ontology. Once the on-
tology is investigated, we apply a seeding-based partitioning
algorithm to partition it into a set of modules. Through the
demonstration of OAPT we introduce the tool’s capabilities
and highlight its effectiveness and usability.

Categories and Subject Descriptors
H.4 [Information Systems]: WWW, web applications;
H.4 [Information Systems Applications]: Data mining

Keywords
Semantic Web, ontology, modularization, analysis

1. INTRODUCTION
Ontologies are the backbone of the Semantic Web. By

making information understandable for machines [7] they
enable integrating, searching, and sharing of information on
the Web. The growing value of ontologies has resulted in the
development of a large number of these. According to [3], at
least 7000 ontologies exist on the Semantic Web, providing

∗Department of Computer Engineering, Tanta University,
Egypt

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

an unprecedented set of resources for developers of semantic
applications. On the other hand, this large number of avail-
able ontologies makes it hard for software engineers to decide
which ontology(ies) is (are) suitable for their needs. Even,
if a developer settled on an ontology (or a set of ontologies),
she is most often interested in a subset of concepts of the
entire ontology, only. For example, the CHEBI ontology 1,
contains 46,477 fully annotated concepts describing chemical
entities of which not all will be relevant to a specific applica-
tion. Also, it might be necessary to split up large ontologies
like CHEBI in more manageable chunks before feeding them
to ontology matching tools or other applications.

To cope with these challenges, in this demo paper, we
present OAPT, a tool for analyzing and partitioning ontolo-
gies. The tool allows the user to interactively investigate a
candidate input ontology based on a predefined set of qual-
ity criteria. This will help to build trust for sharing and
reusing ontologies. Once an ontology has been analyzed,
the partitioning algorithm can be applied to partition the
ontology into a set of disjoint modules. Our method to ex-
amine the ontology quality is based on the consistency and
richness of the input ontology. First, a suitable reasoner is
applied to the ontology to validate its consistency. It is clear
that the way an ontology is engineered is largely based on
the domain for which it is designed and modeled. Therefore,
a measure for the semantic richness of an ontology should
consider different aspects and its potential for knowledge
representation [9]. To this end, we then consider a set of
structural, semantic, and syntactic metrics. The structural
and syntactic criteria can be used to quantify the ontology
design and its potential for knowledge representation, while
the semantic-based criterion can be used to evaluate how
instances are placed within the ontology.

To partition the analyzed ontology into a set of disjoint
modules, we introduce a seeding-based clustering approach,
called SeeCOnt. In particular, input ontologies are parsed
and represented as concept graphs. A Ranker function is
then used to rank ontology concepts exploiting the concept
graph features. The highest ranked concepts are finally se-
lected as cluster seeds (cluster heads). Each of these con-
stitutes the initial concept of a resulting module. To assign
the remaining concepts to their proper modules, we intro-
duce a membership function. This reduces the complexity
of the comparisons by comparing concepts with only seeds
instead of all other concepts. Please note that this partition-
ing method is independent of the concrete application or a
concrete subset of concepts a user is interested in. Rather, it

1https://www.ebi.ac.uk/chebi/

Demonstration

Series ISSN: 2367-2005 644 10.5441/002/edbt.2016.69

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2016.69

relies on intrinsic ontology characteristics only. This allows,
e.g., precomputation of the modules.

The rest of the paper is organized as follows. In Section
2 we present an overview of the proposed system, while in
Section 3 we describe our demonstration scenario. Due to
space restrictions, in this paper we provide only a glimpse of
the techniques employed by OAPT. However, we refer to our
full research paper [1] for algorithmic details and for more
elements of related work.

2. THE TOOL OVERVIEW
First, input ontologies are parsed using the Apache Jena2

framework. Then, a concept graph is extracted. We define
the concept graph G = (C,R,L) as a labeled directed graph.
C = {c1, c2, ..., cn} is a finite set of nodes representing the
concepts of the ontology. R = {r1, r2, ..., rm} denotes a fi-
nite set of directed edges representing various relationships
between concepts in an ontology O, such that rk ∈ R rep-
resents a directed relation between two adjacent concepts
ci, cj ∈ C. L is a finite set of labels of graph nodes and edges
defining the properties of each entity, such as the names of
concepts. n(= |C|) and m are the number of nodes (con-
cepts) and edges (relationships) in G, respectively.

After an input ontology has been parsed and represented
as a concept graph, the OAPT tool analyzes the ontology
based on a predefined set of criteria. If the user is satisfied
with the result of the analysis, the ontology is then parti-
tioned into a set of modules, as shown in Fig. 1.

2.1 Ontology analysis
In order to build trust for an ontology as a prerequisite for

reuse and sharing, we evaluate and analyze the quality of on-
tologies. We start the analysis process by applying an OWL
reasoner to make sure that the input ontology is consistent.
As it is known that the way an ontology is engineered is
specific to the domain for which it has been designed and
modeled, the ontology design and its potential to represent
knowledge should be examined. To this end, we then use the
ontology richness as a metric for its quality. The richness
of the ontology considers different aspects of ontologies and
their potential for knowledge representation [9]. We cate-
gorize measures for the richness of an ontology into three
categories: structural, semantic, and syntactic. We exem-
plary present some implemented metrics for each type in
detail:

• Structural richness. This dimension describes the
topology of the concept hierarchy of an ontology. It in-
cludes several criteria, such as relationship, attribute,
depth, and connection richness. The Relationship

richness, RR, reflects the variability in the types of
relations and the placement of these relations within
the ontology. An ontology that contains numerous re-
lation types other than class-subclass relations is richer
than a taxonomy with just class-subclass relations.
The relation richness (RR) of an ontology O can be

defined as: RR(O) = |R\SC|
|R|

, where |R| is the num-

ber of relationships in the ontology, and |SC| is the
number of sub-class relations. The value of the re-
lation richness criterion is normalized between 0 and
1, where the value of 0 means that the ontology con-
tains only sub-class relationships. Another criterion

2https://jena.apache.org/

that can be used to evaluate the structural richness of
an ontology is the connection richness, ConnR. It
indicates the number of connected components of the
concept graph, i.e., the number of subgraphs linked
to its root element. So, for calculating ConnR we de-
termine the number of root classes, i.e., the children
of the root node. ConnR(O) = 1

No root classes
. This

metric can help to avoid ”islands” forming in a knowl-
edge base as a result of extracting data from separate
sources that do not have common knowledge.

• Semantic & Syntactic richness. These two dimen-
sions describe the semantics and the descriptive infor-
mation of the ontology. In this context, we make use
of several metrics, such as class richness and readabil-
ity [9]. The Class Richness, CR, is an instance-
based criterion used to reflect how instances in an on-
tology are distributed across classes. The class richness
(CR) criterion can be defined as follows: CR(O) =
|CI |
|C|

where |CI | is the number of classes that have in-

stances. Another criterion that is important during
the evaluation of the semantic richness of an ontology
is the descriptivity richness, DR. This measure in-
dicates availability of human-readable knowledge pro-
vided by an ontology. The descriptivity of an ontology
can be defined as the number of concepts that have

comments and/or labels: DR(O) = |C′|
|C|

where |C′| is

the number of concepts having comments and/or la-
bels.

We combine these three dimensions to compute the to-
tal richness of an ontology using a simple weighted-sum ap-
proach. Therefore, the ontology richness (OR) criterion is
defined as follows:

OR(O) = w1 ×StrR(O)+w2 ×SemR(O)+w3 ×SynR(O)
(1)

where StrR(O), SemR(O), and SynR(O) are the total struc-
tural, semantic, and syntactic richness of the ontology (O),
respectively. w1, w2, w3 are weights that reflect the impor-
tance of each of the richness metrics, such that

∑
wi = 1.

The normalized score is then listed for the user to decide
whether to partition the ontology or to look for another one.

2.2 Ontology partitioning
Once the input ontology is inspected, the next step is

to partition the concepts C of the concept graph G into a
set of separate (disjoint) modules M1,M2, ...,Mk such that
the cohesion of concepts within modules is high, while the
coupling across modules is low. To this end, we develop a
seeding-based clustering algorithm. The steps of the algo-
rithms are described in the following:

2.2.1 Determining the proper number of modules
Typically, the number of modules a given ontology should

be split up in is determined by trial and error without using
objective criteria [6]. In contrast, the OAPT tool provides
two options to determine the number of modules. First,
if the user has enough experience with the ontology to be
partitioned, she can directly input the number of modules.
Otherwise, the user asks the tool to suggest an ”optimal”
number of modules.

2.2.2 Ranking the concepts

645

Figure 1: Tool overview

The seeding-based algorithm starts by selecting a set of
nodes distinguished as important nodes. These nodes are
then selected to be cluster heads, CH. To quantify the role
a node has within the concept graph, we introduce a new
function, called Ranker. This function should be as simple
as possible but effective. I.e. computing the Ranker function
should not consume much time, however, correctly rank the
concepts inside an ontology.

Ranker Function.
The importance of a node in a concept graph is deter-

mined by the properties of the node itself and its surround-
ings [5, 10]. This leads us to use graph-theoretic measures
based on graph connections in the Ranker function. In the
current software, we included two different implementations
of the Ranker function. The first is based on the centrality

measure of a concept, while the second depends on the con-
text of the concept. To consider the effect of the concept
itself through its edges, we use a set of centrality measures
[4]. During the employment of the first Ranker function,
we observed that it is an effective measure but requires a
lot of time to rank concepts. This makes it unsuitable for
partitioning large ontologies. Therefore, we propose another
ranking function, which is based on the connexion set con-
cept. The connexion set Ψ(ci, d) of a concept ci ∈ C is de-
fined as: Ψ(ci, d) = {SubClass(ci, d) ∪ SuperClass(ci, d)},
where Ψ(ci, d) is the set of all concepts within d levels that
effect on ci. SubClass(ci, d) is the set of children of ci within
d hierarchical levels, and SuperClass(ci, d) is the set of par-
ents of ci within d hierarchical levels. It is evident that the
importance of a concept increases as it has a larger number
of surrounding nodes.

2.2.3 Determining cluster heads.
Once having computed the importance of the concepts of

a concept graph, the next step is to select which concepts
represent cluster heads, CH. If simply the nodes with the
highest score are selected as the cluster heads, the distri-
bution of cluster heads across the concept graph would be
disregarded. To avoid this problem, the distance between
two cluster heads is measured, and among the highest scored
nodes, those with a minimum distance D from each other
are selected as the cluster heads.

2.2.4 Finalizing Clustering
The seeding-based algorithm creates one module per clus-

ter head. Then, it places direct children in the corresponding
cluster and finally, for the remaining nodes, a membership
function is used to determine the cluster each node shall

be assigned to. The direct placement of children reduces
the time complexity, since it reduces the number of compar-
isons by avoiding to compute the membership function for
all concepts.

Membership Function.
Once having determined the cluster heads, (CH), and hav-

ing assigned direct children to their proper heads, the next
step is to place the remaining concepts into the fitting clus-
ter. To this end, we developed a membership function, Mem-

Fun. First, each concept is associated with a flag, F , such
that if F of the concept c is false, it means c is not assigned
to any cluster yet and thus, the membership function has to
be called for the concept c. In addition, the F flag can be set
only once, i.e. each node can be placed in only one cluster
so that there is no overlap between clusters. The member-
ship function determines for each concept ci ∈ C to which
module Mi, i < K it shall be assigned. For this, the simi-
larity of ci with all CHi is calculated and then ci is placed
in a cluster with the maximum similarity value. Using the
proposed membership function, each concept is compared
with the Cluster Heads only, instead of comparing it to all
concepts as usually done (see e.g. [2, 8]). This reduces the
complexity of the algorithm.

In order to compute the membership of a concept to a
cluster head, a linear combination of structural and semantic
similarity measures is calculated as follows:

MemFun(ci, CHk) = α× SNSim(ci, CHk)

+ (1− α)× SemSim(ci, CHk) (2)

where α is a constant between 0 and 1 that reflects the im-
portance of each similarity measure, ShareNeighbors(SNSim)
and semantic similarity SemSim are two similarity mea-
sures that quantify the structural properties of the concept
ci, respectively. The SNSim measure considers the num-
ber of shared neighbors of ci and CHk. The neighbors of
a concept are the concept’s direct children, the concept’s
parents, the concept’s siblings and the concept itself. While
the SemSim measure considers the semantic connection be-
tween a concept and a cluster head, which is based on the
concept hierarchy.

2.2.5 Partitioning analysis
After having partitioned an ontology into a set of mod-

ules, the OAPT tool analyzes the quality of the partitioning
output. This step aims at monitoring the quality of the par-
titioning process. We implemented a set of quality metrics
such as size, cohesion, coupling, and connectivity. The mod-
ule size is used to check the number of classes and number

646

(a) Ontology analysis (b) Ontology partitioning

Figure 2: OAPT Screenshots

of relations within the module to validate if it is adequate.

3. DEMONSTRATION SCENARIO
In this demonstration, we will start by presenting the dif-

ferent features of the OAPT tool3 such as the process of an-
alyzing an ontology (Figure 2a), partitioning the ontology,
or sharing the partitioning quality (Figure 2b). The demon-
stration will consist of two main parts. First, we would like
the user to appreciate the importance of the analysis phase.
Second, we present the core of the OAPT tool.

Ontology analysis.
In this part, we aim at demonstrating the importance of

the ontology analysis phase and how it largely affects the
following steps. The user can select an ontology from the
given repository and then start to study the effect of different
evaluation criteria. The user starts with applying a single
evaluation criterion and studies its effect on the semantic
richness of an ontology. Then, the user attempts to combine
different sets of the evaluation criteria to see why this set of
metrics is needed.

Ontology partitioning.
In this part, we demonstrate the various steps of the on-

tology partitioning component. First, we allow the user to
validate the importance of determining an optimal value for
the number of modules. She starts with guessing a value for
the number of modules an ontology should be partitioned
into, and then she asks the tool to suggest such a number.
Once the number of modules that an ontology should be
partitioned into has been determined, the user can apply
the SeeCOnt algorithm to get these modules. The set of the
output modules as well as a set of evaluation metrics will be
shown to the user to validate the quality of the partitioning
algorithm.

4. CONCLUSIONS
In this demo, we show how OAPT can be used to inves-

tigate ontologies in a way that enables knowledge engineers
to determine the quality of an ontology. Once an ontology
is investigated, the tool can partition it into a set of disjoint
modules. We developed and implemented a new seeding-
based clustering approach. The tool has been evaluated
and validated with ontologies from different domains which
demonstrates the effectiveness and the usability of OAPT.

3http://fusion.cs.uni-jena.de/fusion/activity/oapt/

This will be demonstrated in the sample workload that we
prepare for the demo. In our future work, we willo complete
the tool in order to support the developers in selecting which
module(s) fulfill(s) his requirements. Furthermore, we plan
to improve the ontology analysis phase by considering more
measures and criteria and to improve also the partitioning
phase by taking into account other partitioning techniques.
Furthermore, we plan to visualize all these processes and
steps to be more user-interactive.

5. ACKNOWLEDGMENTS
This work is partly funded by DFG in the INFRA1 project

of CRC 1067 AquaDiva.

6. REFERENCES
[1] A. Algergawy, S. Babalou, M. J. Kargar, and S. H.

Davarpanah. SeeCOnt: A new seeding-based
clustering approach for ontology matching. In ADBIS,
pages 245–258, 2015.

[2] A. Algergawy, S. Massmann, and E. Rahm. A
clustering-based approach for large-scale ontology
matching. In ADBIS, pages 415–428. 2011.

[3] M. d’Aquin, C. Baldassarre, L. Gridinoc,
S. Angeletou, M. Sabou, and E. Motta. Characterizing
knowledge on the semantic web with watson. In 5th

International Workshop on Evaluation of Ontologies

and Ontology-based Tools, pages 1–10, 2007.

[4] L. C. Freeman. A set of measures of centrality based
on betweenness. Sociometry, 1997.

[5] A. Graves, S. Adali, and J. Hendler. A method to rank
nodes in an rdf graph. In ISWC, 2008.

[6] G. Hamerly and C. Elkan. Learning the k in k-means.
In Advances in Neural Information Processing

Systems, pages 281–288, 2003.

[7] J. Hendler. Agents and the semantic web. IEEE
Intelligent Systems Journal, 16:30–37, 2001.

[8] W. Hu, Y. Qu, and G. Cheng. Matching large
ontologies: A divide-and-conquer approach. Data

Knowl. Eng., 67:140–160, 2008.

[9] S. Tartir and I. B. Arpinar. Ontology evaluation and
ranking using OntoQA. In ICSC, pages 185–192, 2007.

[10] G. Troullinou, H. Kondylakis, E. Daskalaki, and
D. Plexousakis. RDF digest: Efficient summarization
of RDF/S kbs. In ESWC, pages 119–134, 2015.

647

	OAPT: A Tool for Ontology Analysis and PartitioningAlsayed Algergawy, Samira Babalou, Friederike Klan, Birgitta König-Ries

