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ABSTRACT
In this paper, we propose a crowdsourcing-based approach to solv-
ing skyline queries with incomplete data. Our main idea is to lever-
age crowds to infer the pair-wise preferences between tuples when
the values of tuples in some attributes are unknown. Specifically,
our proposed solution considers three key factors used in existing
crowd-enabled algorithms: (1) minimizing a monetary cost in iden-
tifying a crowdsourced skyline by using a dominating set, (2) re-
ducing the number of rounds for latency by parallelizing the ques-
tions asked to crowds, and (3) improving the accuracy of a crowd-
sourced skyline by dynamically assigning the number of crowd
workers per question. We evaluate our solution over both simulated
and real crowdsourcing using the Amazon Mechanical Turk. Com-
pared to a sort-based baseline method, our solution significantly
minimizes the monetary cost, and reduces the number of rounds up
to two orders of magnitude. In addition, our dynamic majority vot-
ing method shows higher accuracy than both static majority voting
method and the existing solution using unary questions.

1. INTRODUCTION
In recent years, crowdsourcing has become a new paradigm for

implementing human computation. Many extensions to existing
DBMS techniques have been proposed to employ crowdsourcing so
that the problems difficult for machines but easier for humans can
be solved better than ever, e.g., CrowdDB [5], Qurk [13], Deco [19],
AskIt! [1], and CyLog/Crowd4U [16]. Motivated by their suc-
cess, ones attempt to leverage crowdsourcing into existing micro-
level query operations. For instance, they are selection [6, 18, 21],
join [14, 24, 25, 26], group-by [4], max [8, 22, 23], and sort [14].

In this paper, we study a crowdsourcing-based approach to solv-
ing skyline queries with incomplete data. The skyline queries have
gained considerable attention for assisting multi-criteria decision
making applications [2, 9, 17]. Given two tuples s and t, it is said
that s dominates t if the values of s are no worse than those of t
over all attributes and the values of s are better than those of t over
any attribute. Given a set R of tuples, the skyline is a set of tuples
that are not dominated by any other tuples in R. To illustrate this,
we consider the following motivating example.
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EXAMPLE 1 (SKYLINE QUERY) Suppose that Alice wants to find
the skyline movies of her preference, i.e., most popular and most
romantic movies, released in 2010-2015.

SELECT * FROM movie_db
WHERE year >= 2010 and year <= 2015
SKYLINE OF box_office MAX, romantic MAX

The popularity can be estimated by the box_office (i.e., the
number of movie audiences) attribute. However, the movie_db
table does not record how romantic a movie is. That is, in the
romantic attribute, the values of tuples are all unknown (or miss-
ing). To address this problem, we utilize crowdsourcing that can
effectively infer missing values on the subjective attribute. Specif-
ically, we ask crowds which movie is more romantic with respect
to two movies, and get a relative preference of movies by using a
pair-wise question. By repeatedly asking such pair-wise questions
and aggregating their answers, we can fill missing values of tuples,
and then find a skyline. Note that our setting above is an extreme
case (i.e., all values of tuples are missing in the romantic at-
tribute). When some values of tuples are missing, we can apply our
proposed solution to only the tuples with missing values. 2

A crowd-enabled skyline query is defined as a skyline query
with incomplete data in which crowds are used to infer the miss-
ing preferences between tuples [12]. Although existing work [12]
addresses crowd-enabled skyline queries, it assumes a fixed budget
and computes a probabilistic skyline. In contrast, our goal is min-
imize the number of pair-wise questions to crowds in identifying
a complete skyline. In addition, [12] is based on unary questions
to assess missing values of tuples. Because it is difficult to obtain
correct answers for unary questions, the skyline result in [12] can
be inaccurate. In our empirical study, it is observed that the pair-
wise questions achieve higher accuracy than the unary questions in
existing work [12].

In order to address skyline queries with crowdsourcing, we deal
with three key factors: (1) how to minimize rewards paid to crowds
(i.e., monetary cost), (2) how to reduce the delay of crowd-enabled
computation (i.e., latency), and (3) how to improve the quality of
the skyline using the answers obtained from crowds (i.e., accu-
racy). When asking questions to crowds, we have to pay certain
monetary rewards. Assuming that a fixed amount of a reward per
question is paid, the monetary cost is proportional to the number
of questions asked to crowds. In order to measure the latency, we
need to estimate the running time to obtain answers from crowds in
a round. Assuming that each round has a fixed amount of time [25],
the latency is proportional to the number of rounds needed for ask-
ing all questions.

We then propose a new solution that addresses crowd-enabled
skyline queries for each factor. First, in order to minimize the mon-
etary cost, it is essential to remove unnecessary questions while
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computing a crowdsourced skyline. Toward this goal, we make use
of two relationships between tuples, dominance and incomparabil-
ity. In particular, we adopt a dominating set to remove unnecessary
questions in identifying a skyline. That is, given a tuple t, the dom-
inating set DS(t) is a set of tuples that dominate t. Using DS(t),
we can skip the questions for tuples with the incomparability rela-
tionship, and selectively ask the questions for tuples with the domi-
nance relationships. We also prune unnecessary questions by using
the transitivity of dominance relationships in DS(t).

Second, we address how to reduce the number of rounds by ask-
ing multiple independent questions in a round. A set of questions
are said to be independent if the answers of each question do not
affect the other questions in the set. We show that independent
questions can be asked in a round, yielding the parallelization of
asking questions. Based on this observation, we develop two par-
allelization methods that significantly reduce the number of rounds
without influencing other factors.

Lastly, we explain how to improve the accuracy of a crowd-
sourced skyline. When a single crowd worker is assigned per ques-
tion, some answers can be erroneous as workers can make mistakes.
To alleviate this problem, we assign multiple workers per question
and decide the final answer by using majority voting [6, 11, 15, 18].
As the simplest method, we can equally assign the same number of
workers for each question. Because it neglects the characteristics of
skyline queries, however, we develop a dynamic assignment strat-
egy in which the number of workers can be assigned differently
depending on the importance of questions. The proposed dynamic
assignment can improve the accuracy of the crowdsourced skyline
without incurring additional monetary cost.

To summarize, our main contributions are as follows:

• We formulate the problem of crowd-enabled skyline queries
with three key factors used in crowd-enabled algorithms.

• To minimize monetary cost, we propose a crowd-enabled
skyline algorithm with three pruning methods on top of the
notion of a dominating set.

• To reduce the number of rounds, we develop two paralleliza-
tion methods based on the notion of dominating sets and sky-
line layers.

• To improve the accuracy of the crowdsourced skyline, we
design a dynamic majority voting that assigns the number of
workers depending on the importance of questions.

• We validate the effectiveness of our proposed algorithm in
both simulated and real-life crowdsourcing using the Ama-
zon Mechanical Turk. In terms of accuracy, we also compare
our proposed solution against existing work [12].

The remainder of this paper is organized as follows. In Sec-
tion 2, we explain the concept of crowd-enabled algorithms and
formulate the skyline query with crowdsourcing. In Section 3, we
first propose an algorithm to minimize monetary cost using several
pruning methods. In Section 4, we develop two algorithms to min-
imize the number of rounds by parallelizing multiple questions in
a round. In Section 5, we design a dynamic majority voting that
improves a static majority voting by considering the importance
of questions. In Section 6, we empirically compare our proposed
algorithm with the baseline and existing crowdsourced skyline al-
gorithms with unary questions. In Section 7, we review our related
work. In Section 8, we summarize and conclude our work.

2. PRELIMINARIES
In this section, we first present the concept of crowd-enabled al-

gorithms (Section 2.1), and then explain the basic notion of skyline
queries (Section 2.2). We lastly formulate the problem of skyline
queries with crowdsourcing, where questions are asked to crowds
to acquire the relative preferences between tuples with missing val-
ues (Section 2.3).

2.1 Crowd-Enabled Algorithms
The crowd-enabled algorithms first require us to design the for-

mat of micro-tasks asked to crowds. Because the micro-tasks are
typically represented as questions, we use both terms, micro-tasks
and questions, interchangeably. Let π denote a latent scoring func-
tion with which crowds assess the missing value of a tuple. The
argument of π can differ depending on formats of questions.

Specifically, the micro-tasks are classified into quantitative and
qualitative formats [14]. First, the quantitative format asks crowds
to determine an absolute (normalized) preference. This can be ab-
stracted as a unary function π(t) for a tuple t, e.g., rating from 1 to
7 for the size of a given square. Let n denote the number of tuples
with missing values. While the unary function is effective for min-
imizing the number of questions in determining the total order of
tuples, i.e., n questions, the accuracy of answers can be low. That
is, because crowds usually have no global knowledge for missing
values of tuples, it is difficult for them to return correct answers.

Second, the qualitative format allows crowds to judge the rel-
ative preference between two (or more) tuples. As the simplest
format, it can be modeled as a binary function π(s, t) to compare
two tuples s and t, e.g., selecting one with a larger size between two
squares. (Possibly, it can be extended to an m-ary format.) Com-
pared to the quantitative format, because it only requires relative
preference between two tuples, more questions are usually asked.
In the worst case,

(
n
2

)
questions are needed for obtaining a total or-

der of n tuples. Meanwhile, because the crowd can answer binary
questions correctly without global knowledge for missing values,
the accuracy of answers in the qualitative format is higher than that
in the quantitative format.

In this paper, we adopt binary function π(s, t) for questions in
order to obtain more accurate answers. That is, we use a pair-wise
question (s, t) with ternary answers, where it is symmetric, i.e.,
(s, t) = (t, s). Given (s, t), the crowd chooses a more preferred
one (i.e., either s or t) or the third option, indicating that the two
tuples are equally preferred. For example, the following questions
are asked to crowds: “which square between the two is larger?” or
“who is a more valuable baseball player?"

We next explain three key factors used in existing crowd-enabled
algorithms, e.g., [4, 6, 18, 20, 22, 25]. Using the key factors, we for-
mulate the problem of crowd-enabled skyline queries (Section 2.3).

(1) Monetary cost: Unlike existing machine-only algorithms, crowd-
enabled algorithms compensate rewards to crowds. Assuming that
a fixed amount of a reward per question is paid, the monetary cost
is proportional to the number of questions asked to crowds. For
monetary cost, there are two optimization directions: (1) minimiz-
ing the number of questions asked for obtaining a complete query
result and (2) selecting the most important questions for a given
budget. In this paper, we focus on minimizing the total number of
questions during executing a skyline query with crowdsourcing.

(2) Latency: Since each question can take different time to finish,
it is non-trivial to design an effective model for estimating latency.
As an alternative way, we assume that a fixed amount of time is as-
signed per question. Because multiple questions can be performed
in parallel, we use the number of rounds (or iterations.) to measure
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the latency [25]. Specifically, there are two strategies in latency:
(1) one-shot strategy that generates all questions at once, and (2)
adaptive strategy that asks questions in an interactive manner. Be-
cause the one-shot strategy needs only one round, it is much faster
than the adaptive strategy. Meanwhile, the adaptive strategy can
identify unnecessary questions by using the answers of questions
asked at the previous rounds, and thus reduces the total number
of questions. In this paper, we leverage the adaptive strategy and
discuss how to minimize the latency for a given question set.

(3) Accuracy: Because crowds can make mistakes in answering
questions, the accuracy of a query result can be imperfect. There
are two models to improve the accuracy: query-independent and
query-dependent models. Existing work [6, 11, 15, 18] proposed
various query-independent methods to improve the accuracy for a
single question by considering the proficiency of workers and the
difficulty of questions. Although improving the accuracy of a query
result in a micro-level manner, they do not consider the importance
of questions depending on an inherent property of a query type in
a macro-level way, e.g., [4, 20]. In this paper, we aim to develop a
query-dependent method by distinguishing the importance of ques-
tions for a skyline query.

2.2 Skyline Queries with Missing Data
Let A denote a finite set of d attributes, A = {A1, . . . , Ad}, in

which the domainDi ofAi is a set of positive numbers and a miss-
ing value, denoted by 2, i.e., Di := R+ ∪{2}. A base datasetR is
an instance of database relations, i.e., R ⊆ D1 × . . . ×Dd. Each
tuple t ∈ R is represented by t = (t1, . . . , td) such that ti ∈ Di

for i = 1, . . . , d. In this paper, we use s, t, u, and v to point out
arbitrary tuples.

The attribute set A is divided into two attribute subsets. First,
AK is a set of attributes in which the values of tuples are known.
The preference of values overAK can be represented by a total or-
der. Second, AC is a subset of attributes in A, where the values of
tuples are missing. We callAC crowd attributes. Two attribute sets
are disjoint, i.e., AK ∩ AC = ∅, AK ∪ AC = A. We assume that
all values of tuples in AC are missing, i.e., hand-off crowdsourc-
ing [7]. That is, for any tuple t ∈ R, ∀Aj ∈ AC : tj = 2 holds.
This implies that all preferences between tuples in AC should be
assessed by crowds. After the missing preferences between tuples
in AC are judged by crowds, it can be represented by a partial or-
der of tuples. When a subset of tuples inR only has missing values
in many real applications, some known values of tuples can be rep-
resented by a pre-defined partial order. Therefore, we can extend
our proposed techniques for real-life scenarios.

We next define fundamental notions used in skyline literatures [2,
9, 17]. In this paper, we assume that smaller values over AK are
more preferred. Given s, t ∈ R, a strict preference s <i t is
defined if s is preferred over t in Ai. Let s .i t define a weak
preference if s <i t or s =i t in Ai. If no preference between s
and t is inferred in Ai ∈ AC , an indifferent preference s ⊥i t is
defined.

DEFINITION 1 (DOMINANCE) Given s, t ∈ R, s dominates t in
A, denoted by s ≺A t, if ∀Ai ∈ A : s .i t and ∃Aj ∈ A : s <j

t. If s does not dominate t in A, it is denoted as s ⊀A t.

DEFINITION 2 (INCOMPARABILITY) Given s, t ∈ R, they are in-
comparable in A, denoted by s ≺�A t, if (i) s ⊀A t and t ⊀A s

or (ii) ∃Aj ∈ AC : s ⊥i t.

DEFINITION 3 (SKYLINE) Given a set R of tuples, a skyline is a
set of tuples that are not dominated by any other tuples in A, i.e.,
SKYA(R) = {t ∈ R|∀s ∈ R : s ⊀A t}.
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Figure 1: A toy dataset for a crowdsourced skyline query with
A = {A1, A2, A3}

These notions can be applied to a subset ofA. That is,A in≺A,
⊀A, and ≺�A can be replaced with AK or AC .

2.3 Problem Formulation
The earlier work [12] maximized the accuracy of the crowd-

sourced skyline at a fixed budget. When tuples have missing values,
[12] adopts crowds to assess missing values of tuples with a unary
question. In contrast to [12], in order to achieve more reliable sky-
line results, our goal is to minimize monetary cost while computing
crowd-enabled skyline queries in which binary questions are used
for obtaining the preferences between tuples. (In Section 7, we
explain the differences between ours and [12].)

When the crowds evaluate missing values of tuples, a skyline
result can be iteratively updated. Initially, since the preferences
of tuples over AC are undefined, all tuples are incomparable to
each other, and by default in the skyline. Let Q(t) = {(s, t)|s ∈
R \ {t}} be a set of all possible pair-wise questions for t. After a
question set Q′(t) ⊆ Q(t) is answered by crowds, s can exist such
that s ≺A t. At this point, t becomes a non-skyline tuple, and is
removed from the initial skyline. If the status of t is not changed
regardless of remaining questions for t, it is called a complete tu-
ple. That is, once t is determined as a complete tuple, additional
questions for t are unnecessary.

DEFINITION 4 (COMPLETE TUPLE) After a set of questionsQ′(t)
⊆ Q(t) is answered, a tuple t is said to be complete if (i) ∃s ∈ R :
s ≺A t, (i.e., a complete non-skyline tuple) or (ii) ∀s ∈ R :
s ⊀A t holds regardless of the answers of remaining questions
Q(t)−Q′(t) for t, (i.e., a complete skyline tuple).

EXAMPLE 2 (CROWD-ENABLED SKYLINE QUERY) Given a setR
of 12 tuples, Figure 1 depicts a toy dataset for a crowd-enabled sky-
line query such that AK = {A1, A2} and AC = {A3}. Note that
all values of R in A3 are missing. Since {b, e, i, l} (a dashed line
in Figure 1a) are not dominated by any other tuples in AK , they
are always in the skyline in A regardless of preferences of tuples
in AC . Therefore, they are complete skyline tuples. Because the
other tuples can be non-skyline tuples depending on the results of
questions on AC , however, they are regarded to be incomplete tu-
ples. Suppose that the preferences of tuples in AC are depicted in
Figure 1(b), where an edge s→ t indicates that s is preferred over
t in AC and transitivity between edges holds. (In Section 3.3, we
discuss how to build a preference tree inAC .) Since b ≺AK a and
b ≺AC a, a becomes a non-skyline tuple. By using the preference
relationships in Figure 1(b), all tuples become complete tuples, and
the skyline is finally identified as {b, e, i, l, k, f, h}. 2
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In this paper, we consider three key factors, i.e., monetary cost,
latency, accuracy, in computing crowd-enabled skyline queries. We
first aim to minimize the number of questions in identifying a com-
plete skyline. Then, we further optimize the other factors for a
given question set. Although this problem formulation does not
identify a solution that optimizes three factors simultaneously, it
can be a more practical setting as done in [24, 25]. Formally:

PROBLEM 1 (CROWDSOURCED SKYLINE) Let P be a set of pos-
sible execution plans for computing a complete skyline. Our prob-
lem is to identify an execution plan Popt ∈ P that minimizes mon-
etary cost C(P,R) for questions in AC .

Popt = argmin
P∈P

C(P,R)

Note that Popt can also be used for optimizing the other factors
such as latency and accuracy.

Assuming that a single question is asked at each round, execu-
tion plan P can be represented by a sequence set Q of questions,
e.g., Q = 〈(a, b), . . . , (k, l)〉. Let |Q| denote the number of ques-
tions inQ. When the monetary cost per question is equal, C(P,R)
becomes proportional to |Q|. Therefore, we minimize the number
of questions |Q| in identifying a complete skyline tuple.

In the following sections, we first assume that the answers of
crowds are always correct. Based on this assumption, we propose
a crowd-enabled skyline algorithm to minimize |Q| (Section 3).
When multiple questions are asked in parallel, we also develop how
to reduce the number of rounds for Q (Section 4). By relaxing
such an assumption, we lastly discuss how to improve the accuracy
of a complete skyline while both the number of questions and the
latency are kept (Section 5).

3. MINIMIZING MONETARY COST
As a baseline method, we may ask all possible pair-wise ques-

tions between tuples, i.e.,
(
n
2

)
to obtain the total order of tuples.

However, because it is too exhaustive, we modify existing sort-
ing algorithms such as tournament sort and bitonic sort [3] with
crowdsourcing. Specifically, the pair-wise comparisons in existing
sorting-based algorithms [3] can be replaced by binary questions,
and the total order of tuples inAC can be used to identify a crowd-
sourced skyline. While the sorting-based method is effective for
obtaining all missing preferences of tuples, it can incur unneces-
sary questions in computing the crowd-enabled skyline.

To address this problem, it is observed that the dominance and
incomparability relationships of tuples inAK can be used to reduce
unnecessary questions. Based on this observation, we adopt the
notion of a dominating set to remove unnecessary questions. In the
following sections, we also develop several pruning methods on top
of the dominance set to remove additional questions.

For a simpler presentation, whenAC has multiple attributes, i.e.,
m = |AC | > 1, we suppose that m questions for (s, t) are asked
at once, i.e., ∀Aj ∈ AC : (sj , tj). Because m questions can be
asked simultaneously, we simply use (s, t) to denote m questions
for (s, t), when context is clear.

In addition, we suppose that the values of tuples in AK are dis-
tinct, i.e., for any tuples s, t ∈ R, ∃Ai ∈ AK : si 6= ti holds. As
a degenerate case, we separately handle a tuple set with the same
values in AK . Because we cannot exploit our pruning methods for
the tuple set, it is performed as a pre-processing step. That is, given
(s, t) such that ∀Aj ∈ AK : si = ti, we remove a non-skyline tu-
ple by identifying the dominance relationship between two tuples
in AC . (This degenerate case is described in lines 1–3 in Algo-

Table 1: Dominating sets and question sets for the toy dataset
in Figure 1(a)

t DS(t)

a {b}
c {a, b, e}
d {b, e}
f {a, b, d, e}
g {e}
h {b, d, e, g, i}
j {a, b, d, e, f, g, h, i}
k {i, l}

t Q(t)

a {(a, b)}
c {(c, a), (c, b), (c, e)}
d {(d, b), (d, e)}
f {(f, a), (f, b), (f, d), (f, e)}
g {(g, e)}
h

{(h, b), (h, d), (h, e),
(h, g), (h, i)}

j
{(j, a), (j, b), (j, d), (j, e),
(j, f), (j, g), (j, h), (j, i)}

k {(k, i), (k, l)}

(a) Dominating sets (b) Question sets

rithm 1.) After performing the pre-processing, we can safely make
use of our pruning methods without loss of correctness.

3.1 Using a Dominating Set
We first exploit the incomparability relationship of tuples to by-

pass unnecessary questions. For instance, when two tuples a =
(2, 8,2) and d = (5, 7,2) in Figure 1(a) are incomparable inAK =
{A1, A2}, they also become incomparable in A regardless of the
answer of (a, d) inAC = {A3}. That is, we only need to compare
a question (s, t) inAC by asking a question (s, t) if s and t are not
incomparable in AK by using the property of sharing incompara-
bility [10].

Based on this property, we adopt a dominating set DS(t) for a
tuple t ∈ R as a set of candidates that can affect the dominance
relationship of t in A. That is, the dominance set ensures that only
the questions Q(t) = {(s, t)|s ∈ DS(t)} are enough to generate
the dominance relationship between s and t in A.

DEFINITION 5 (DOMINATING SET) A dominating set DS(t) of a
tuple t ∈ R is a set of tuples that dominate t in AK , i.e., DS(t) =
{s ∈ R|∀s ∈ R \ {t} : s ≺AK t}.

LEMMA 1 Given t ∈ R and s /∈ DS(t), (s, t) is unnecessary in
Q(t).

PROOF. We prove this by contradiction. Assume that a question
(s, t) exists that s /∈ DS(t) dominates t in A. By Definition 5,
s /∈ DS(t) does not dominate t in AK . Because AK ⊂ A, s
cannot dominate t in A regardless of asking (s, t). That is, we do
not have to ask a question (s, t) to determine whether t is complete.
This contradicts that asking question (s, t) is necessary for t to be
complete.

EXAMPLE 3 (DOMINATING SET) Continue to use the toy dataset
in Figure 1(a). Table 1(a) illustrates dominating sets for each tu-
ple. The questions generated by dominating sets are shown in Ta-
ble 1(b). As a result, the total number of questions (i.e., 26 ques-
tions) is calculated as

∑
t∈R |DS(t)|, where |DS(t)| is the num-

ber of tuples in DS(t). 2

3.2 Pruning Questions for Non-skylines in A
While sequentially generating (s, t) such that s ∈ DS(t), t can

be determined as a complete tuple (by Definition 4). For all of
the questions, if t is preferred to s, t becomes a complete skyline
tuple. On the other hand, if t is not preferred to s for any ques-
tion, t becomes a complete non-skyline tuple and remaining ques-
tions in Q(t) can be skipped. Once s ≺A t is determined, it can
also be used for removing additional unnecessary questions for any
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Table 2: Sorted dominating sets and question sets after remov-
ing a (�), g (C), and d (�C), respectively

t DS(t)

a {b}
g {e}
d {b, e}
k {i, l}
c {a, b, e}
f {a, b, d, e}
h {b, d, e, g, i}
j {a, b, d, e, f, g, h, i}

t Q(t)

a {(a, b)}
g {(g, e)}
d {(d, b), (d, e)}
k {(k, i), (k, l)}
c {���(c, a), (c, b), (c, e)}
f {��

�(f, a), (f, b),�
��HHH(f, d), (f, e)}

h
{(h, b),��

�HHH(h, d), (h, e),
HHH(h, g), (h, i)}

j
{���(j, a), (j, b),��

�H
HH(j, d), (j, e),

(j, f),HHH(j, g), (j, h), (j, i)}

(a) Sorted dominating sets (b) Question sets

other tuple. That is, once a tuple t is determined as a complete
non-skyline tuple, we can safely skip to ask all questions for t as
unnecessary ones.

LEMMA 2 If s ≺A u and u ∈ DS(t) hold, then s ∈ DS(t) also
holds.

PROOF. By definition of DS(t), u ∈ DS(t)⇔ u ≺AK t, and
A is divided to two subsets AK and AC . When s ≺A u, there are
three cases:

1. (s ≺AK u) ∧ (s ≺AC u): since s ≺AK u and u ≺AK t
hold, s ≺AK t also holds by transitivity.

2. (s ≺AK u) ∧ (s =AC u): since s ≺AK u and u ≺AK t
hold, s ≺AK t also holds by transitivity.

3. (s =AK u) ∧ (s ≺AC u): since s =AK u and u ≺AK t
hold, s ≺AK t also holds.

In all cases, s ≺AK t always holds. By definition of DS(u),
s ∈ DS(t) also holds.

COROLLARY 1 For a tuple t ∈ R, if s ≺A u and u ∈ DS(t)
hold, asking (t, u) is unnecessary in Q(t).

PROOF When asking (s, t), there exist two possible cases:

1. s ≺AC t or s =AC t: By Lemma 2, s ∈ DT (t) holds.
Because s ≺AK t, s ≺A t holds. In that case, t becomes a
complete non-skyline tuples regardless of asking (t, u).

2. t ≺AC s: Because s ≺A u, u ⊀AC s holds. In that case,
because u ⊀AC t always holds.

In both cases, asking (t, u) is unnecessary by asking (s, t).

In order to remove unnecessary questions for non-skyline tuples
by Corollary 1, it is essential to identify complete non-skyline tu-
ples as many as possible. That is, it is optimal if Q(t) is generated
after all tuples in DS(t) become complete. Toward this goal, we
decide the ordering of evaluating tuples in an iterative manner. We
first identify SKYAK (R) as complete tuples. Then, for a tuple
t ∈ R, we generate Q(t) with the following steps: (1) If any tuple
in s ∈ DS(t) is a complete non-skyline tuple, s is removed from
DS(t); (2) If all tuples in DS(t) are complete, Q(t) is generated
from DS(t); (3) Q(t) is asked until t is determined as a complete
tuple; (4) The complete tuple set is updated by appending t. We
repeat this process until all tuples become complete.

f

b

a d c g

le i

h k

Figure 2: Preference tree T in A3 until evaluating h

We now propose an efficient method that performs the iterative
strategy. Given two tuples s and t, Q(s) has to precede Q(t) if s ∈
DS(t). It is found that this condition is always satisfied if tuples
are evaluated by the ascending order of the size of dominating sets.
That is, if s ∈ DS(t), then |DS(s)| < |DS(t)| holds, implying
that the size of the dominating set increases monotonically if the
dominance relationship between tuples holds. That is, given s, t ∈
R,Q(s) such that s ∈ DS(t) is first asked before generatingQ(t).
Formally:

LEMMA 3 Given s, t ∈ R, if |DS(t)| ≥ |DS(s)|, then t ⊀AK s
holds.

PROOF We prove this by contradiction. Assume that there are two
tuples s and t such that t ≺AK s and |DS(t)| ≥ |DS(s)|. Be-
cause t ≺AK s, two conditions hold: (1) t ∈ DS(s) and (2)
DS(t) ⊆ DS(s). By combining them, |DS(t)| < |DS(s)| holds,
which contradicts the fact that |DS(t)| ≥ |DS(s)|.

EXAMPLE 4 (SORTING DOMINATING SETS) We continue to use
the toy dataset used in Example 3. Table 2(a) shows the dominating
sets sorted by |DS(t)| in Table 1(a). According to the ordering of
tuples in Table 2(a), the questions are sequentially generated from a
to j. Assuming that {a, g, d} have been determined as non-skyline
tuples, Table 2(b) illustrates questions for each tuple. When (a, b)
is asked and a is identified as a non-skyline tuple (i.e., b ≺A a), a is
removed from DS(c), DS(f), and DS(j). Similarly, after (g, e)
is asked, if g is a non-skyline tuple, g is removed from DS(h) and
DS(j). As a result, it only generates 18 questions by pruning 8
questions, i.e., {(c, a) (f, a), (j, a)}, {(h, g), (j, g)}, and {(f, d),
(h, d), (j, d)} for a, g, and d, respectively. 2

3.3 Pruning Questions for Non-skylines in AC

When generatingQ(t) fromDS(t), we can further reduceDS(t)
to SKYAC (DS(t)). For instance, after asking {(f, b), (f, e)} for
f , f has been determined as a complete skyline tuple, i.e., f ≺AC

b and f ≺AC e. In that case, the dominance relationship for f
can be used for pruning questions for other tuples. For tuple j,
Q(j) = {(j, b), (j, e), (j, f), (j, h), (j, i)} for j is asked in Ta-
ble 2(b). Because f ≺AC {b, e}, it is better to ask (j, f) instead
of asking (j, b) and (j, e). If j ≺AC f is obtained, we can infer
j ≺AC b and j ≺AC e by transitivity. Based on this property, we
can skip two questions (j, b) and (j, e) for Q(j).

LEMMA 4 For each tuple s ∈ SKYAC (DS(t)), if t ≺AC s

holds, then t ≺AC u such that u ∈ (DS(t) − SKYAC (DS(t)))
holds.

PROOF. By Definition 3, there exists that s ∈ SKYAC (DS(t))

dominates u ∈ (DS(t) − SKYAC (DS(t))) in AC . As a result,
if ∀s ∈ SKYAC (DS(t)) : t ≺AC s holds, t ≺AC u holds by
transitivity.
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(a) Known values in AK = {A1, A2} (b) T in AC = {A3}

Figure 3: An anti-correlated toy dataset for the crowd-enabled
skyline query with A = {A1, A2, A3}

COROLLARY 2 Given t /∈ SKYAC (DS(u)), (t, u) is unnecessary
in Q(u).

PROOF For each s ∈ SKYAC (DS(u)), if asking (s, u), there are
two cases:

1. s ≺AC u or s =AC u : Because s ≺AK u, s ≺A u holds,
and (t, u) is not needed.

2. u ≺AC s : Because s ≺AC t, u exists that u ≺AC t by
Lemma 4.

In both cases, (t, u) is not needed by asking (s, u).

We now adopt a preference tree T that visualizes the preferences
of tuples in AC in order to compute SKYAC (DS(t)) efficiently.
Each tuple t ∈ R is represented by a node in T . If s ≺AC t holds,
an edge s → t exists. If there exists a path from s to t connected
with multiple edges, then s ≺AC t also holds by transitivity. If
s ≺�AC t, there is no edge between s and t. After asking each
question, T is iteratively updated, and is used for identifying the
dominance relationships by checking the path between tuples.

EXAMPLE 5 (USING A PREFERENCE TREE) Continuing from Ex-
ample 4, Figure 2 depicts a snapshot of T after evaluating h in A3.
After removing non-skyline tuples, DS(j) is {b, e, f, h, i}. By
checking the dominance relationships between tuples in DS(j),
f ≺AC b, f ≺AC e, and h ≺AC i can be found in T . There-
fore, SKYAC (DS(j)) is identified as {f, h}, and only Q(j) =

{(j, f), (j, h)} is asked in Table 2(b). 2

3.4 Probing Dominating Sets
In general, our pruning methods of Corollaries 1 and 2 are more

effective if: (1) many tuples are determined as complete non-skyline
tuples, and (2) many dominance relationships between tuples are
inferred in AC . However, we observe that the pruning methods
may not work well if many non-skyline tuples in AK become sky-
line tuples in A, e.g., anti-correlated distribution. Figure 3(a) il-
lustrates a dataset with 10 tuples in AK = {A1, A2}. This can
be partitioned to two subsets {b, e, i, j} and {a, c, f, d, g, h}, i.e.,
the former is skyline tuples in AK , while the latter is non-skyline
tuples in AK . When all non-skyline tuples become skyline tuples,
our pruning methods cannot contribute to reduce the dominating
sets of {a, c, f, d, g, h}. Thus, we have to ask a total of 24 (= 4×6)
questions to crowds.

t P (t) Q(t) DS(t)

a - {(a, b)} {b}
g - {(g, e)} {e}
d {(b, e)} {(d, e)} {b, e}
k {(i, l)} {(k, i)} {i, l}
c - {(c, e)} {e}
f - {(f, e)} {e}
h {(e, i)} {(h, e)} {e, i}
j {(f, h)} {(j, f)} {f, h}

h

e

b c d g

l

k

f

j

a

i

(a) Questions asked per tuple (b) T in A3

Figure 4: Overall procedure of probing dominating sets

To overcome this problem, we progressively probe DS(t) for t
to minimize SKYAC (DS(t)). Specifically, in asking questions for
{b, e, i, j}, the dominance relationship can be used for reducing the
dominance sets of {a, c, f, d, g, h}. For instance, suppose that the
dominance relationships for {b, e, i, j} in Figure 3(b) are updated
after asking {(b, e), (i, j), (e, i)}. Since e dominates {b, i, j} in
AC , each single question for each tuple in {a, c, f, d, g, h} are gen-
erated, i.e., {(e, a), (e, c), (e, f), (e, d), (e, g), (e, h)}. As a result,
our probing method for DS(t) enables us to only ask 9 (= 3 + 6)
questions.

We now discuss how to generate questions for probing DS(t).
Given DS(t), the number of possible questions is

(|DS(t)|
2

)
. Be-

cause all possible ordering in probingDS(t) is exponential and the
dominance relationships of tuples in DS(t) are unpredictable, it is
non-trivial to decide the right ordering of probing DS(t). As one
of feasible solutions, we propose a greedy method using the fre-
quency of dominating tuples. Let P (t) denote a set of all possible
questions

(|DS(t)|
2

)
for probing DS(t). For each question (u, v) in

P (t), freq(u, v) is the number of tuples that are dominated by both
u and v, i.e., freq(u, v) = |{x ∈ R|u ≺AK x∧ v ≺AK x}|. As
freq(u, v) is higher, we suppose that the pruning power of (u, v)
gets stronger. We choose the question with the highest frequency in
P (t), and remove the questions for less preferred tuples from P (t).
This process repeats until no questions exist in P (t).

EXAMPLE 6 (PROBING DOMINATING SETS) The tuples are sorted
by the size of dominating sets as shown in Table 2(a). For each tu-
ple t ∈ R, DS(t) is first pruned by using the two pruning methods
in Corollaries 1 and 2. We then probe DS(t) before generating
Q(t). Figure 4(a) shows the questions asked per tuple. Before
asking Q(d), P (d) = {(b, e)} is first probed. When e ≺AC b
has been decided, b no longer needs to be compared, and thus the
questions for b such as (c, b), (f, b), (h, b), and (j, b) can be re-
moved for c, f , h, and j, respectively. Figure 4(b) depicts a pref-
erence tree T in A3 after all tuples become complete. By probing
dominating sets, we only ask 12 questions for identifying the final
crowd-enabled skyline {b, e, i, l, k, f, h}. 2

3.5 Algorithm Description
We present the pseudocode of our proposed algorithm, named

CrowdSky (Algorithm 1). Overall, CrowdSky works as the com-
bination of machine and crowds. That is, once the machine itera-
tively updates data structures and generates new questions, crowds
return the answers. Specifically: (1) As a degenerate case, it first
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Algorithm 1: CrowdSky(R)
1 foreach (s, t) ∈ R×R do
2 if ∀Aj ∈ AK : si = ti then
3 Ask (s, t) to crowds and remove a less preferred tuple from

R

4 Initialize a preference tree T inAC

5 For each tuple t ∈ R, compute DS(t)
6 SKYA(R)← {} // Initialize a skyline in A
// P1: Early pruning for non-skylines in A

7 SortR by ascending order of |DS(t)|
8 for t ∈ R do

// P2: Pruning non-skylines in AC

9 DS(t)← SKYAC (DS(t))

// P3: Probing into DS(t)
10 P (t)← {(u, v)|u, v ∈ DS(t), u 6= v}
11 Sort P (t) by ascending order of freq(u, v)
12 for (u, v) ∈ P (t) do
13 Ask (u, v) to crowds, and update T with (u, v)
14 if u ≺AC v in T then
15 For x ∈ DS(t), remove (v, x) from P (t)
16 DS(t)← DS(t)− {v}
17 else if v ≺AC u in T then
18 For x ∈ DS(t), remove (u, x) from P (t)
19 DS(t)← DS(t)− {u}

// Generating Q(t) from DS(t)
20 Q(t)← {(s, t)|s ∈ DS(t)}
21 for (s, t) ∈ Q(t) do
22 Ask (s, t) to crowds, and update T with (s, t)
23 if s ≺AC t in T then
24 break // t is a non-skyline tuple

25 if ∀s ∈ DS(t) : s ⊀AC t then
26 SKYA(R)← SKYA(R) ∪ {t}

27 return SKYA(R)

checks tuples with the same values in AK , and prunes less pre-
ferred tuples in AC (lines 1-3). (2) It then builds dominating sets,
and sorts them by |DS(t)|, incurring O(n2) in machine part (lines
6-7). (3) For each tuple t ∈ R,DS(t) is updated by SKYAC (DS(t))
to remove non-skyline tuples (line 9). (4) It then generates all pos-
sible questions P (t) to probe DS(t) by freq(u, v) (lines 10-11).
By asking questions in P (t), T is updated. In addition DS(t) and
P (t) are updated (lines 12-19). (5) After that, Q(t) is generated
from DS(t) (lines 20-24). (6) Finally, if t is not dominated by any
other tuples in DS(t), t is appended to SKYA(R) (lines 25-26).

THEOREM 1 (COMPLETENESS OF CROWDSKY) CrowdSky guar-
antees that all tuples inR are complete.

PROOF We prove this by contradiction. Assume that t exists that
is not determined as a complete tuple. This means a question (t, u)
exists for t to be complete. Because the questions in CrowdSky
are pruned by Corollaries 1 and 2, if (t, u) is not asked, a tuple v
exists such that v ≺AC u. In that case, (t, u) is unnecessary to
check if t is complete, which is a contradiction.

As a result, if crowds always return correct answers, CrowdSky
can identity all complete skyline tuples and the result is correct.

4. REDUCING LATENCY
In this section, we discuss how to reduce the number of rounds.

Although existing work [25] addresses a parallelization method for

asking multiple questions, it is based on a different problem for en-
tity resolution, thereby being inapplicable to our problem. We de-
velop two parallelization methods that are suitable for computing a
crowdsourced skyline. Specifically, we first propose a partitioning
method using dominating sets (Section 4.1), and then improve it
using skyline layers (Section 4.2).

4.1 Parallelization with Dominating Sets
Given two questions (s, t) and (u, v), if asking (s, t) is not re-

lated to prune (u, v) and vice versa, it is said that they are indepen-
dent. Meanwhile, if (s, t) can be pruned by asking (u, v), (s, t)
is said to be dependent on (u, v). In order to remove unneces-
sary questions using our pruning methods in CrowdSky, the de-
pendency of questions can happen as follows:

1. Dominance relationship inAK (C1): Given two tuples s and
t such that s ∈ DS(t), Q(s) needs to be asked before gen-
erating Q(t) by Corollary 1 (line 7 in CrowdSky). In other
words, when s is determined as a non-skyline tuple, (s, t) is
unnecessary in Q(t).

2. Overlap between DS(s) and DS(t) (C2): We suppose that
DS(s) and DS(t) share a common tuple u. When probing
DS(s) using the third pruning methods, u can be removed
from SKYAC (DS(t)) (line 9 in CrowdSky), and (u, t) can
be unnecessary in Q(t) by Corollary 2.

3. Questions forDS(t) (C3): WhenQ(t) is sequentially gener-
ated fromDS(t), t can be a non-skyline tuple (lines 20-24 in
CrowdSky), and remaining questions in Q(t) are no longer
needed.

Based on these observations, our idea of parallelizing questions
in CrowdSky is to identify independent questions as many as pos-
sible at each round. Specifically, we first develop a partitioning
method using dominating sets. First, R is partitioned into several
subsets of tuples with the same sizes of dominating sets. Given
s, t ∈ R, if |DS(s)| = |DS(t)|, s and t cannot dominate each
other (by Lemma 3). The questions for partitioned tuple sets can
be asked together by avoiding dependent questions by (C1). We
then check if dominating sets of tuples are disjoint. In that case,
probing dominating sets can be parallelized without (C2). Lastly,
because (C3) does not make parallelized questions,Q(t) is sequen-
tially generated from DS(t).

EXAMPLE 7 (PARTITIONING METHOD) After the dominating sets
are first computed,R is partitioned into {{a, g}, {d, k}, {c}, {f},
{h}, {j}} with the same sizes of dominating sets. For each par-
titioned set, it then checks if dominating sets are disjoint. Given
{a, g} and {d, k}, because DS(a)∩DS(g) and DS(d)∩DS(k)
are disjoint as illustrated in Figure 4(a), the questions for {a, g}
and {d, k} can be asked together. For {a, g}, {(a, b), (g, e)} is
asked in a round. For {d, k}, {(b, e), (i, l)} (in P (d) and P (k))
and {(d, e), (k, i)} (in Q(d) and Q(k)) are asked in 2 rounds. Be-
cause {c, f, h, j} is partitioned separatively, 6 questions are asked
in 6 rounds. As a result, our partitioning method generates 12 ques-
tions during 9 rounds by saving 3 rounds. 2

4.2 Parallelization with Skyline Layers
Although our partitioning method reduces the number of rounds,

the degree of parallelization is rather limited by keeping all de-
pendencies of questions. To alleviate this problem, we adopt sky-
line layers that effectively visualize the dominance relationships
between tuples in AK . Figure 5 depicts skyline layers for the
toy dataset in Figure 1(a). To build skyline layers, skylines are
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Figure 5: Skyline layers for the toy dataset in Figure 1(a)

computed in an iterative manner. Initially, SL1 is computed by
SKYAK (R). Then, the i-th layer is computed by SKYAK (R −⋃i−1

j=1 SLj) in an iterative manner.

DEFINITION 6 (SKYLINE LAYER) The i-th skyline layer SLi is a
set of skyline tuples in R −

⋃i−1
j=1 SLj , i.e., SLi = {t ∈ R −⋃i−1

j=1 SLj |∀s ∈ R−
⋃i−1

j=1 SLj : s ⊀AK t}.

After building all layers, the dominance relationship of tuples in
AK is constructed. Similar to a dominating graph [27], the dom-
inance relationship can be represented by a directed edge between
two tuples across different layers. In particular, our skyline layers
permit the dominance relationship between tuples in any two lay-
ers, e.g., e → c and i → h in Figure 5. Note that the dominance
relationship via transitivity can be inferred from multiple edges.

We now explain how to make use of skyline layers to reduce
the number of rounds. Let c(t) denote a set of tuples that directly
point to t, i.e., c(t) = {s ∈ R|s → t}. For each tuple t ∈ R, we
check if all tuples in c(t) are complete. If so, the questions for t
are asked independently of those of other tuples. When all tuples
in c(t) are determined as complete tuples, it implies that all tuples
in DS(t) are also complete. Because this method can effectively
check the dominance relationships of tuples in (C1), we can signif-
icantly improve the magnitude of parallelization. Meanwhile, it is
observed that (C2) is a main bottleneck for parallelizing questions.
We thus violate the dependency of questions in (C2), by generating
additional questions for (C2). (Our empirical study shows that the
number of additional questions is negligible.)

Algorithm 2 describes the procedure of parallelizing questions
using skyline layers. Let C be a set of complete tuples in R. (1) C
is initialized as SL1 (line 4). (2) For each tuple t ∈ R, if all tuples
in c(t) are complete, the questions for t are asked in parallel. (lines
5-7). (3) After asking questions for t, SKYA(R) and C are updated
(lines 8-10). This process continues until every tuple inR has been
determined as a complete tuple. Because this method is based on
the same pruning methods used in CrowdSky, our proposed par-
allelization methods can assure the correctness of crowd-enabled
skyline computation.

EXAMPLE 8 (PARALLELIZATION WITH SKYLINE LAYERS) Given
the skyline layers in Figure 5, Table 3 depicts the procedure of
parallelization using skyline layers. First, C is initialized as SL1,
i.e., C = {b, e, i, l}. Because c(a) = {b}, c(g) = {e}, c(d) =
{b, e} and c(k) = {i, l} are all complete tuples, {(a, b), (g, e),
(b, e), (i, l)} is asked in parallel (round 1), and C = {b, e, i, l, a, g}
is updated (underlines in Table 3). After that, because c(c) =
{a, e} is complete, {(d, e), (k, i)} is asked with {(c, e)}, and C =
{b, e, i, l, a, g, d, k, c} is updated (round 2). Because c(f) = {a, d}
and c(h) = {d, g, i} are complete, the questions for f and h are
asked (rounds 3-4), and C = {b, e, i, l, a, g, d, k, c, f, h} is up-
dated. Lastly, when c(j) = {f, h} is complete, the questions for

Algorithm 2: ParallelSL(R)
1 Execute lines 1-5 in Algorithm 1
2 SKYA(R)← {} // Initialize a skyline in A
3 Compute SL1, . . . , SLk forR
4 C ← SL1 // Initialize a complete tuple set
5 for t ∈ R do in parallel
6 if c(t) ⊆ C then
7 For t, execute lines 9-24 in Algorithm 1
8 if ∀s ∈ DS(t) : s ⊀A t then
9 SKYA(R)← SKYA(R) ∪ {t}

10 C ← C ∪ {t} // Update C

11 return SKYA(R)

Table 3: Procedure of asking questions using skyline layers in
Figure 4(a)

t c(t) 1 2 3 4 5 6
a {b} (a, b)

g {e} (g, e)

d {b, e} (b, e) (d, e)

k {i, l} (i, l) (k, i)

c {a, e} (c, e)

f {a, d} (f, e)

h {d, g, i} (e, i) (h, e)

j {f, h} (f, h) (j, f)

j are asked (rounds 5-6). As a result, our parallelization method
generates 12 questions during 6 rounds. 2

5. IMPROVING ACCURACY OF ANSWERS
Because the answers of crowds are often erroneous, how to im-

prove the accuracy is a central issue in crowdsourcing. As dis-
cussed in [24, 25], it was treated as a research problem orthogonal
to the problem of minimizing the number of questions. Existing
work [6, 11, 18] developed how to improve the accuracy for each
question using query-independent methods.

As the simplest method, majority voting is used by assigning
multiple workers per question. Let ω denote the number of work-
ers per question, and p denote the probability that each worker’s
answer is correct. The probability that question (u, v) is correct
can be modeled as the binomial distribution.

P (u, v) =

ω∑
i=dω

2
e

(
ω

i

)
pi(1− p)ω−i,

where ω is an odd integer. This method can improve the accuracy
per question, but does not consider the importance of questions in
computing a skyline. This method is called static voting. (In our
experiments, ω = 5 by default.)

As the query-dependent method, we develop a heuristic method
to reflect the importance of questions. When computing the sky-
line, it is observed that the questions with many dominance rela-
tionships in AK are more influential in identifying a more accu-
rate preference tree T in AC . Based on this observation, we pro-
pose to use the frequency of questions freq(u, v) for quantifying
the importance of (u, v), i.e., freq(u, v) = |{x ∈ R|u ≺AK

x∧v ≺AK x}|. That is, as freq(u, v) gets larger, (u, v) becomes
more important. Given question (u, v), the different numbers of
workers can be assigned, depending on freq(u, v). We refer to
this method as dynamic voting. Note that the dynamic voting can
help prevent the propagation of false dominance relationships.
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Table 4: Parameter settings over synthetic datasets

parameters value default

cardinality n 2K, 4K, 6K, 8K, 10K 4K
# of known attributes |AK | 2, 3, 4, 5 4
# of crowd attributes |AC | 1, 2, 3 1

data distribution IND, ANT

For instance, based on the idea of the dynamic voting, one may
dynamically assign the number of workers using two parameters α
and β (α < β and α, β ≥ 0) as follows. Given freq(u, v), we
choose the number of workers ω′ with the following inequalities.

ω′ =

 ω − 2, if freq(u, v) < α
ω, if α ≤ freq(u, v) < β

ω + 2, if freq(u, v) ≥ β

By considering the importance of questions, our dynamic voting
can improve the accuracy of the skyline result compared to the
static voting. Note that it can be easily extended for multiple cate-
gories with three or more cases.

6. EXPERIMENTS
In this section, we first evaluate our proposed algorithm over syn-

thetic datasets with extensive parameter settings (Section 6.1). We
show the performance of our proposed algorithm in terms of three
key factors. We then evaluate our algorithm using the Amazon Me-
chanical Turk over real-life datasets (Section 6.2).

6.1 Evaluation in Synthetic Datasets
We first evaluate our proposed algorithm over synthetic datasets.

Because real-life datasets are limited for evaluating extensive set-
tings, we adopted benchmark datasets [2] that are widely used in
skyline evaluation. In particular, we used two data distributions,
independent (IND) and anti-correlated (ANT) in [2]. All attribute
values were randomly generated from real values in [0, 1]. The val-
ues on crowd attributes were only used for obtaining the answers
of crowds for simulated questions. Table 4 summarizes parameter
settings over synthetic datasets.

We validate our proposed algorithm for three key factors: mon-
etary cost, latency, and accuracy (as discussed in Section 2.1). Be-
cause the running time in crowdsourcing part is much slower than
generating questions in machine part, we focus on evaluating the
number of rounds for latency. All experiments were conducted in
Windows 7 running on Intel Core i7 950 3.07 GHz CPU with 16GB
RAM. All the algorithms were implemented in C++. The average
values of 10 runs are reported for all experiments.

Monetary cost. When the fixed amount of a reward per question is
paid, the monetary cost is proportional to the number of questions
asked to crowds. We thus use the number of questions to measure
the monetary cost. As one of the sorting algorithms, tournament
sort is used as a baseline, denoted by Baseline. When the num-
ber of rounds is not limited, tournament sort can produce the total
order of tuples with the minimum number of questions. An exist-
ing work [12] studied crowd-enabled skyline queries, but focused
on selecting the most influential unary questions for a restricted
budget. Because the optimization methods in [12] are not effective
for reducing questions in our problem setting, the direct compari-
son between CrowdSky and [12] is not fair to [12]. As such, we
simulate the unary questions in [12] for comparing the accuracy,
and mainly focus on scrutinizing CrowdSky to quantify the advan-
tage of optimization methods. Specifically, it is divided into four

phases: DSet (Section 3.1), P1 (Section 3.2), P2 (Section 3.3),
and P3 (Section 3.4).

Figures 6(a) and 7(a) depict the number of questions over vary-
ing cardinality. Note that DSet is basically used for all pruning
methods. It is clear that P1+P2+P3 minimizes the number of
questions over all parameter settings, e.g., reducing the number
of questions 10 times more than that of Baseline over indepen-
dent distribution. In particular, several interesting observations are
found in Figures 6(a) and 7(a): (1) While DSet produces fewer
questions than Baseline in independent distribution, it is reversed
in anti-correlated distribution. This is because the number of sky-
line tuples increases exponentially with the cardinality over anti-
correlated distribution. (2) Both P1 and P2 can contribute to re-
ducing unnecessary questions. Notably, P2 (using the transitiv-
ity of tuples in AC ) is fairly effective over anti-correlated distribu-
tion. (3) As expected, P3 (probing dominating sets) reduces a more
number of unnecessary questions over anti-correlated distribution.

Figures 6(b) and 7(b) report the number of questions over vary-
ing |AK |. While Baseline shows a constant performance regard-
less of |AK |, our pruning methods reduce the number of questions
as |AK | increases. This is because the size of dominating sets tends
to decrease with |AK |. We also found two key observations: (1)
P1+P2+P3 minimizes the number of questions over all parameter
settings. (2) When |AK | is low, our pruning methods significantly
reduce unnecessary questions, and are much more effective over
anti-correlated distribution than independent distribution. When
|AK | = 2, P1+P2+P3 reduces the number of questions in DSet
by two orders of magnitude.

Figures 6(c) and 7(c) report the number of questions over varying
|AC |. When |AC | > 1, suppose that all methods simply generate
|AC | questions in AC . (It is possible to use a round-robin strategy
for multiple crowd attributes to reduce unnecessary questions as
they become incomparable in AC , but it is not applied to our eval-
uation.) (1) As |AC | increases, the number of questions increases
for all methods. (2) Interestingly, when |AC | = 2, P3 becomes
marginal. As AC increases, P3 becomes less effective for gener-
ating dominance relationships in AC . This implies that probing
dominating sets mainly incurs the questions for tuples with incom-
parable relationships. In high dimensionality in AC , we have to
consider to use P3 in CrowdSky.

Latency. In order to measure latency, we used the number of
rounds in performing an algorithm. We compared the following
four algorithms: (1) Baseline is tournament sort; (2) Serial asks
a single question in a round; (3) ParallelDSet is our paralleliza-
tion algorithm using dominating sets (Section 4.1); (4) ParallelSL
is our parallelization algorithm using skyline layers (Section 4.2).

Figure 8 reports the number of rounds over varying cardinal-
ity. Note that the y-axis is log-scaled. The gap between Serial
and ParallelDSet widens by one order of magnitude as cardinality
increases. In addition, ParallelSL outperforms ParallelDSet by
two orders of magnitude, e.g., ParallelSL only needs about 20-30
rounds in both distributions. Although we did not report the num-
ber of questions for parallelization, it is found that ParallelDSet
generates the same number of questions for Serial, and ParallelSL
generates approximately 10% more questions than ParallelDSet,
by violating the dependency of questions in (C2).

Figure 9 reports the number of rounds over varying dimension-
ality |AK |. Interestingly, while Serial incurs more rounds with
higher |AK |, ParallelDSet and ParallelSL decrease the number
of rounds with |AK |. This implies that the degree of paralleliza-
tion becomes higher as |AK | increases. As consistently observed
in Figure 8, ParallelSL significantly outperforms ParallelDSet by
two orders of magnitude in both distributions.
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Figure 6: Comparisons on the number of questions over independent distribution

2K 4K 6K 8K 10K
0

0.5

1

1.5

2

2.5
x 10

5

Cardinality

Q
ue

st
io

ns

 

 

Baseline
DSet
P1
P1 + P2
P1 + P2 + P3

2 3 4 5
0

0.5

1

1.5

2
x 10

5

Dimensionality |AK|

Q
ue

st
io

ns

 

 

Baseline
DSet
P1
P1 + P2
P1 + P2 + P3

1 2 3
0

0.5

1

1.5

2
x 10

5

Dimensionlaity |AC|

Q
ue

st
io

ns

 

 

Baseline
DSet
P1
P1 + P2
P1 + P2 + P3

(a) varying cardinality (b) varying |AK | (c) varying |AC |

Figure 7: Comparisons on the number of questions over anti-correlated distribution
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Figure 8: Comparisons on the number of rounds over varying
cardinality

Accuracy. The crowdsourced skyline is defined as SKYA(R).
To measure the accuracy of skyline results, we only use a set of
newly retrieved skyline tuples by crowdsourcing, i.e., SKYA(R)−
SKYAK (R), with two metrics, precision and recall, which are
widely used in Information Retrieval.

We first compared two assignment methods, StaticVoting and
DynamicVoting in CrowdSky (as in Section 5). By default, we
set ω = 5 and p = 0.8. While StaticVoting equally assigns ω per
question, DynamicVoting assigns ω + 2, ω, ω − 2 depending on
the frequency of questions. For fair comparisons, we assigned the
same total number of workers in both methods. The assignment of
the number of workers in DynamicVoting is tuned as: the initial
30% questions are assigned to ω + 2, and the last 30% questions
are assigned to ω − 2. This implies that the initial questions in
DynamicVoting are more important than other questions.

Figure 10 reports the accuracy of two voting methods over vary-
ing cardinality. It is clear that DynamicVoting shows higher accu-
racy than StaticVoting for both metrics. Note that DynamicVoting
improves the overall accuracy by assigning more workers to more
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Figure 9: Comparisons on the number of rounds over varying
dimensionality of known attributes

important questions and by reducing the propagation for false pos-
tives/negatives. In addition, the precision is higher than the recall
in all parameter settings. While most of the skyline tuples are de-
cided correctly, some correct skyline tuples are determined as non-
skyline tuples. This is because our methods focus on asking ques-
tions for skyline candidates and do not perform an additional vali-
dation for non-skyline tuples.

We also compared the following three algorithms: (1) Baseline
generates the total order of tuples in AK by performing the tour-
nament sort, (2) Unary generates the total order of tuples by ask-
ing unary questions (as done in [12]), and (3) CrowdSky adopts
DynamicVoting. To simulate the unary questions in [12], we ran-
domly select a value from the normal distribution of actual value
in AC . In this setting, it is found that Unary is more accurate for
obtaining the total order of tuples than Baseline, i.e., it is more
favorable for Unary.

Figure 11 reports the accuracy of comparing CrowdSky and the
two existing methods. Interestingly, even though Baseline gen-
erates more numbers of questions than CrowdSky, Baseline is
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Figure 10: Accuracy comparisons of two voting methods in
CrowdSky over independent distribution

200 400 600 800 1000
0.2

0.4

0.6

0.8

1

Cardinality

P
re

ci
si

on

 

 

Baseline
Unary
CrowdSky

200 400 600 800 1000
0.5

0.6

0.7

0.8

0.9

1

Cardinality

R
ec

al
l

 

 

Baseline
Unary
CrowdSky

(a) Precision (b) Recall

Figure 11: Accuracy comparisons of CrowdSky with existing
methods (i.e., Unary as in [12]) over independent distribution

worse than CrowdSky. Because more questions in Baseline in-
cur wrong answers, the total order of tuples in Baseline is less
effective for identifying a correct skyline. In contrast, CrowdSky
generates questions more selectively for skyline candidates. While
Unary is better than Baseline, it is worse than CrowdSky. Be-
cause the pruning methods in [12] do not work well in our problem
setting, Unary is less effective for identifying correct skyline tu-
ples.

6.2 Evaluation in Real-life Datasets
We used three real-life datasets to validate our proposed algo-

rithms: (1) Rectangles, adopted from [14], contains 50 images
whose sizes are {(30 + 3i) × (40 + 5i)|i ∈ [0, 50)} and are
randomly rotated. (2) IMDb Movies includes 50 popular movies
released in 2000-2012 (http://www.imdb.com/). (3) MLB
players includes 40 baseball pitchers played in 2013 (http://
espn.go.com/mlb/stats/). For these datasets, we used small-
scale datasets in order to manage the monetary cost in real-life ex-
periments, and executed the following crowd-enabled skyline queries:

Q1: Find the skyline using rectangle data with AK = {width,
height} and AC = {area}. The larger values in AK and AC

are more preferred. As the ground truth for crowd attribute area
can be obtained using width and height, the accuracy of the
crowdsourced skyline can be measured.

Q2: Find the skyline using movie data withAK = {box_office,
release_year} and AC = {rating}. The larger values in
AK and AC are more preferred. Since IMDb shows aggregated
rating scores of movies, we compare the crowdsourced skyline (us-
ing preferences culled from crowds) against the IMDb rating-based
skyline.

Q3: Find the skyline using MLB player data with AK = {wins,
strikes_outs, ERA} and AC = {valuable}. The larger
values are more preferred, except for ERA. The crowd attribute
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Figure 12: Comparisons of three queries over real-life datasets

valuable is the preference of crowds on how valuable each pitcher
is. For this query, we indirectly compare the crowdsourced skyline
against the candidates of the “Cy Young" award, given to the best
pitchers annually.

The Amazon Mechanical Turk (AMT), a well-known crowd-
sourcing platform, was used for asking questions to crowds in real-
life datasets. The budget per question was set to $0.02, and 5 work-
ers were assigned for each question, i.e., ω = 5. Let r denote
the total number of rounds, and |Qi| denote the number of ques-
tions at the i-th round. The total monetary cost is thus calculated
as: 0.02× 5×

∑r
i=1 d

|Qi|
5
e, where 5 questions are issued at each

task. To filter out spam workers, we only permitted Masters work-
ers who are qualified as the most reliable workers in AMT.

Monetary cost. Figure 12(a) compares the monetary cost between
Baseline and CrowdSky. Note that CrowdSky saves the cost
of Baseline by 3-4 times. (Because the cardinality of real-life
datasets is smaller than that of synthetic datasets, the performance
gap between Baseline and CrowdSky is reduced.) For Q1 and
Q2, while Baseline needs more than 200 questions, CrowdSky
generates about 50 questions, where most questions are used for
validating non-skyline tuples.

Latency. Figure 12(b) compares the latency of three algorithms:
Baseline, ParallelDSet, and ParallelSL. For Q1, Q2, and Q3,
the average working time per HIT was 22 secs, 49 secs, and 1
min 33 secs, respectively, implying that Q3 is the most difficult
task. While Baseline incurs more than 140 rounds over all queries,
ParallelDSet and ParallelSL only generate less than 30 rounds. In
addition, ParallelSL generates 50% less rounds than ParallelDSet,
without increasing the cost for all queries. For Q3, while Baseline
and ParallelDSet need 140 and 19 rounds, ParallelSL computes
the skyline with only 6 rounds.

Accuracy. For Q1, CrowdSky identifies the same skyline as the
ground truth, yielding Precision = 1.0 and Recall = 1.0. For Q2,
the crowdsourced skyline includes 5 movies such as {Avatar, The
Avengers, Inception, The Lord of Rings: The Fellowship of the
Ring, The Dark Knight Rises}. Except for the existing skyline
{Avatar, The Avengers} in AK , we found that the average rating
of three skyline movies is very high (i.e., 8.7 out of 10.0) in IMDb,
indicating that crowds were able to find decent skyline movies. For
Q3, the skyline includes four players such as {Clayton Kershaw,
Bartolo Colon, Yu Darvish, Max Scherzer} who were Cy Young
award candidates, representing the best pitchers, in 2013. In par-
ticular, “Clayton Kershaw” and “Max Scherzer” were the winners
of the Cy Young award in 2013. As such, we claim that the crowd-
sourced skyline be reasonably accurate. Based on the results, we
argue that CrowdSky yields high accuracy while keeping the mon-
etary cost and the latency low.
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7. RELATED WORK
Skyline queries have been actively studied for assisting multi-

criteria decision making applications. Pioneered by [2], skyline
queries are used for various data settings such as distributed and
stream environments. Tuples are represented by incomplete and
probabilistic values, and data types vary from partially-ordered and
categorical attributes. Existing work focused on developing effi-
cient skyline computation with pre-defined preferences. In con-
trast, we aimed to collect missing preferences from crowds.

In recent years, in data management community, there have been
active investigations toward crowd-enabled algorithms. Some of
recent highlights include the following data operations with crowd-
sourcing embedded: selection [6, 18, 21], max [8, 22, 23], sort-
ing [14], top-k [4], top-k set [20], join [14, 24, 25, 26], and group
by [4]. Based on these advancements, our work combines the sky-
line queries with crowdsourcing.

In particular, our crowd-enabled skyline query is related to [12],
which is the first work to address the problem of skyline queries
with a crowdsourcing idea. However, our work has clear differ-
ences from [12] as follows:

• Problem formulation: While [12] used crowds to improve the
accuracy of incomplete skyline queries, our work addressed
a complete skyline by collecting all missing preferences in
crowd attributes.

• Optimization direction: While [12] mainly aimed at maxi-
mizing the accuracy of skyline results, we considered three
factors (monetary cost, latency, and accuracy) together.

• Formats of questions: Since [12] used the quantitative ques-
tions, it is inapplicable for crowd attributes with a large range.
On the contrary, since our work is based on the qualitative
questions, it is easier for crowds to evaluate tuples in crowd
attributes without any constraints.

Because the optimization methods in [12] are not effective for
reducing questions in our problem setting, the direct comparison
between CrowdSky and [12] would have been unfair to [12]. As
such, in Section 6, we have simulated the unary questions in [12]
for comparing the accuracy in our setting, and indirectly demon-
strated the superiority of CrowdSky with a strong evidence (i.e.,
Figure 11).

8. CONCLUSIONS
In this paper, we have studied the problem of computing sky-

line queries with crowdsourcing. Specifically, we dealt with three
key factors such as monetary cost, latency, and accuracy. Our pro-
posed algorithm first aimed to minimize the number of questions
with several pruning methods on top of the notion of a dominating
set. We then developed an algorithm to minimize the number of
rounds using skyline layers. We lastly improved the accuracy of a
crowdsourced skyline using dynamic majority voting. Our exper-
imental results showed that our proposed algorithm optimizes the
three key factors effectively over synthetic and real-life datasets.
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