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ABSTRACT
Ranked lists are an essential methodology to succinctly sum-
marize outstanding items, computed over database tables
or crowdsourced in dedicated websites. In this work, we ad-
dress the problem of reverse engineering top-k queries over
a database, that is, given a relation R and a sample top-
k result list, our approach, named PALEO1, aims at deter-
mining an SQL query that returns the provided input re-
sult when executed over R. The core problem consists of
finding predicates of the where clause that return the given
items, determining the correct ranking criteria, and to eval-
uate the most promising candidate queries first. To capture
cases where only a sample of R is available or when R is
different to the relation that indeed generated the input, we
put forward a probabilistic model that allows assessing the
chance of a query to output tuples that are resembling or
are somewhat close to the input data. We further propose
an iterative candidate query execution to further eliminate
unpromising queries before being executed. We report on
the results of a comprehensive performance evaluation using
data and queries of the TPC-H and SSB [14] benchmarks.

1. INTRODUCTION
Reverse engineering database queries describes the task

of obtaining an SQL query that is able to generate a spec-
ified input table, when executed over a given database in-
stance. This generic problem has various important applica-
tion scenarios, specifically for top-k database queries that
often yield valuable analytical insights. Consider, for in-
stance, business analysts who are interested in determin-
ing alternative queries that yield the same or similar query
result tuples, data scientists who try to find explanatory
SQL queries for crowd-sourced top-k rankings, or to find
the data-generating query of a sample input in order to re-
execute it on current or future database instances in cases

∗This work has been supported by the German Research
Foundation (DFG) under grant MI 1794/1-1.
1PALEO is approximately the reverse of the word OLAP
and also emphasizes the goal of assembling queries based
on their data footprints (results), much like paleontologists
reconstruct and study fossils.
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Name City State Plan Month Minutes SMS Data
John Smith SF CA XL June 654 87 1,230
John Smith SF CA XL July 175 22 900
· · · · · · · · · · · · · · · · · · · · · · · ·
Jane O’Neal LA CA XL April 699 15 2,300
Jane O’Neal LA CA XL June 334 10 1,900
· · · · · · · · · · · · · · · · · · · · · · · ·
Richard Fox Oakland CA XL June 596 23 1,272
· · · · · · · · · · · · · · · · · · · · · · · ·
Jack Stiles San Jose CA XL March 429 42 1,192
Jack Stiles San Jose CA XL April 586 8 1,275
· · · · · · · · · · · · · · · · · · · · · · · ·
Lara Ellis San Diego CA XL May 784 11 2,107

Table 1: Sample relation of telecommunications traffic data

where the original query has not been saved or has not
been made public, for one or another reason. The discov-
ered queries can reveal interesting properties of the input,
most importantly the constraints to tuples expressed in the
“where clause” of the query and how tuples are ranked. The
last years have brought up various research results [17, 12,
19] on reverse engineering database queries. Compared to
existing approaches that operate on input in form of full
tables, reverse engineering top-k queries adds two complex
ingredients to the re-engineering task. First, it is the rather
small input, consisting of only a few (as k is usually quite
short) ranked tuples and, second, the various ways top-k
SQL queries can be formulated, given various sorting orders
and aggregation functions.

Consider a relation Traffic, illustrated in Table 1, con-
taining cellphone-traffic data. The relation contains textual
attributes like name of the customer, the city and state the
customer lives in, and the tariff plan and the month for which
the traffic was realized. In addition, there are numerical at-
tributes that measure the customer’s traffic, like number of
minutes talked, the number of text messages (SMS) sent,
and the number of spent megabytes of data.

Lara Ellis 784
Jane O’Neal 699
John Smith 654
Richard Fox 596
Jack Stiles 586

Table 2: Example input list

Table 2 shows a top-k list with two columns and five rows.
The input list does not have attribute names (or if it does,
are not correlated to the attribute names in the database
table). The first attribute is the customer’s name, while
the second is the performance attribute according to which
the customer ranking was produced. Note that there are no
empty cells in the list, all values are specified. Considering
the Traffic relation of Table 1, we can see that the input
ranking list can perhaps be generated using the following
query:
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SELECT name, max(minutes) FROM traffic
WHERE state = ’CA’
GROUP BY name ORDER BY max(minutes) DESC
LIMIT 5

This query computes the top 5 customers of the telecom-
munications company, living in the state of California, ranked
by the number of minutes talked in a single month. In gen-
eral, there can be several different queries that produce the
same results; consider for instance augmenting the above
query Q with an additional constraint to customers with
the tariff plan “XL“, it would leave the result unchanged
(including the order among tuples).

1.1 Problem Statement
Given a database D with a single relation R with schema
R = {A1, A2, . . .} and an input relation L that represents a
ranked list of items with their values. The task we con-
sider in this paper is to efficiently and effectively
determine queries Qi that output tuples that resem-
ble L when executed over R.

We focus on top-k select-project queries over relation R of
the form shown in Figure 1(left). We specifically focus on a
single relation to emphasize on the intrinsic characteristics
of top-k queries, instead of considering the reverse engineer-
ing of joins, too, which has been addressed by Zhang et
al. [19] in their recent work on reverse engineering complex
join queries.

SELECT id, agg(value)
FROM table
WHERE P1 and P2 and . . .
GROUP BY id
ORDER BY agg(value) LIMIT k

L
L.e L.v
e 100
f 90
g 80
m 70
o 60

Figure 1: Query template (left) and example input L (right)

The problem has two properties that can be relaxed or
tightened. First, it can either demand determining only one,
multiple, or all input-generating queries. Second, the notion
of a query being valid in the sense that it resembles the input
can be relaxed to a notion of approximately resembling the
input.

The problem is challenging for the following reasons: (i)
The size of the input list is rather small, it is difficult to
derive meaningful (statistical) properties in order to iden-
tify valid predicates and ranking criteria, (ii) the relevant
subset of R that features all tuples of the entities in L can
become very large, and (iii) false positive and false nega-
tive candidate queries deteriorate system performance due
to many necessary query evaluations and limit the chance
to successfully determine a valid query that generates the
input.

The presented approach, coined PALEO, is not limited to
finding exact matches, but can almost directly be applied
to finding queries that compute a ranking L′ over R, with
L′ being similar to L. We get back to this generalization
in Section 3.3. We refer to the specific attribute in R that
contains the entities the table reports on as Ae and assume
it is known a priori.

As already indicated in the template query, we focus on
predicates P of the form P1 ∧ P2 · · · ∧ Pm, where Pi is an
atomic equality predicate of the form Ai = v (e.g., state
= ”CA”). Furthermore, we denote with size of a predicate
|P | the number of atomic predicates Pi in the conjunctive
clause.

The input top-k list L has two columns; L.e and L.v de-
note the entity column and the numeric score column, re-
spectively. Note that L does not contain the name of the

column L.v or the column name of L.v is named for human
consumption (e.g.,“Total traffic”, which can be total number
of minutes, SMS, or data), i.e., not corresponding to the ones
present in the database. Hence, referencing to the appropri-
ate attribute in R cannot be done by name. Table 3 shows a
summary of the most important notations used throughout
this paper.

1.2 Sketch of the Approach
A näıve approach would enumerate all possible queries,

say with a limited complexity of the predicate in the where
clause, evaluate the queries one-by-one against the database
and check whether the returned results resemble the input
list. This is clearly beyond hope, even for relatively small
databases and schemas.

Our approach, conceptually, loads all tuples from R that
contain any of the entities in L. This table is called R′ and is
used in two subsequent steps, first, to determine the query
predicate and, second, to find the right attribute(s) and ag-
gregation function. In case R′ is completely given, our ap-
proach is extremely effective in determining the individual
building blocks of the desired query. When working on a
subset of R′, we show how to handle large amounts of po-
tential candidate queries by introducing a suitability-driven
order among them, in order to find the desired query early.

1.3 Contributions and Outline
With this paper we make the following contributions:

• To the best of our knowledge, this work is the first
to consider the problem of reverse engineering top-k
OLAP queries. We present an efficient and effective
solution to it, in a flexible and extensible framework.

• We show how to efficiently compute promising predi-
cates using an apriori-style algorithm over R′ and how
to augment them with ranking criteria using data sam-
ples and statistics obtained from the base relation R.

• We present a probabilistic reasoning that allows or-
dering candidate queries by the likelihood that they
compute the input ranking L. This, together with a
method to skip unpromising queries dynamically at
validation time, allows finding the desired valid queries
very efficiently.

• We report on the results of a carefully conducted ex-
perimental evaluation using data and queries from the
TPC-H [16] and SSB [14] benchmarks.

This paper is organized as follows. Section 2 discusses re-
lated work. Section 3 presents the framework and key ideas
behind our approach, followed by the specific sub-problems
of identifying query predicates in Section 4, and determin-
ing the ranking attributes and aggregation function, in Sec-
tion 5. Section 6 considers handling changed data in R, and
proposes a probabilistic model to rank queries by their ex-
pected suitability to generate the input. Section 7 introduces
an incremental strategy to eliminate unpromising candidate
queries based on observed results of already executed can-
didates. Section 8 reports on the results of the experimental
evaluation and presents lessons learned. Section 9 concludes
the paper.

2. RELATED WORK
The problem of reverse engineering queries was considered

by Tran et al. [17] in their data-driven approach called Query
by Output (QBO). Given a database D and a query output
Q(D) produced by a query Q, they try to find an instance-
equivalent query Q′. They focus on identifying the selection
predicates in select-project-join queries and formulate this
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R Base table in the database
Ai Attribute in R
Ae Entity attribute in R
L Top-k input list
L.e Entity column in L
L.v Ranking column in L
ei Entities in Ae or L.e
v Values in Ai

P Predicate (atomic or conjunctive)
Q Query
Q(R) Result set of Q when querying R

Table 3: Overview of Notations

problem as a data classification task. For generating the se-
lection conditions they use a decision tree classifier that is
constructed in a top-down manner in a greedy fashion by
determining a “good” predicate according to which the tu-
ples are split into two classes. These two classes would then
form the root nodes of two decision trees (constructed re-
cursively).

Sarma et al. [12] explore the View Definitions Problem
(VDP) which is a subproblem of QBO in that it considers
only one relation R and there are no joins and projections.
Thus, they only try to find the selection condition of the
view V and do this looking at the problem as an instance
of the set cover problem. From the families of queries that
they cover, we focus on conjunctive queries with a single
equality predicate and conjunctive queries with any number
of equality predicates. For both types they propose näıve
algorithms that utilize the size of the attribute domains in
the view. Zhang et al. [19] compute a generating join query
that produces a table Q(D) from the tables in D. The gener-
ated join query does not have selection conditions and they
focus mostly on identifying the joins using graph structures
following foreign/primary-key links.

Shen et al. [13] study the problem of discovering a min-
imal project-join query that contains given example tuples
in its output and do not consider selections. They only han-
dle text columns with keyword search allowed on them and
introduce a candidate generation-verification framework to
discover all valid queries. By using common sub-join trees of
the candidate queries as filters they manage to improve the
efficiency of their approach.

Psallidas et al. [10] propose a candidate-enumeration and
evaluation framework for discovering project-join queries.
Their system handles only text columns and establish a
query relevance score based evaluation of candidate queries.
The system returns the PJ queries with the top-k high-
est scores and it discovers not only the queries that ex-
actly match the given example tuples. Moreover, they pro-
pose a caching-evaluation scheduler, where they dynamically
cache common sub-expressions that are shared among the
PJ queries. Join queries are orthogonal to our work and none
of the above approaches handle top-k aggregation queries.

In keyword search over databases [2], the input is a single
tuple with specified keywords as fields. The works of [5, 15]
interpret the query intent behind the keywords and compute
aggregate SQL queries. Blunschi et al. [5] use patterns that
interpret and exploit different kinds of metadata, while Tata
et al. [15] discovers aggregate SQL expressions that describe
the intended semantics of the keyword.

The principle of reverse query processing is studied in [3,
4, 6, 9], however their objectives and techniques are different.
Binning et al. [3, 4] discuss the problem of generating a
test database D such that given a query Q and a desired
result R, Q(D) = R. Bruno et al. [6] and Mishra et al. [9]
study the problem of generating test queries to meet certain
cardinality constraints on their subexpressions.

Top-k list

Candidate Query
Generation

Find
Predicates

Find
Ranking
Criteria Database

Instance

Candidate 
Query
Verification

Figure 2: System task steps

A reverse top-k query [18] returns for a point q and a
positive integer k, the set of linear preference functions (in
terms of weighting vectors) for which q is contained in their
top-k result. For example, finding all customers who treat
the given query product q as one of their top-k favorite ele-
ments. In such cases, each customer is described as a vector
of weights. Although it appears related given the name, this
research area is not directly related to our work.

3. APPROACH
The task of reverse engineering top-k queries is split into

the following three steps, illustrated in Figure 2:

• Step 1: find the predicate P in the where clause of Q

• Step 2: find the ranking criteria

• Step 3: validate queries

As the basis of further computation, we first retrieve from
relation R all tuples whose entity column contains one of the
entities of the input table L; we call the resulting table R′.

3.1 Table R’
Consider a top-k list L as shown in Figure 1. Let ei ∈
{e, f, g,m, o} denote the entities in the column L.e.

By using a standard database index, such as a B+ tree,
on the entity attribute of R, we can efficiently retrieve R′

(shown in Table 4) containing all tuples from R matching
any of the entities ei ∈ L.e. Whether the index is actually
used or the query optimizer decides to perform a table scan
is not a concern here. In any case, in this example, the query
to compute R′ is

SELECT * FROM R
WHERE Ae IN [e, f, g, m, o]

For the purpose of efficient access of its data, PALEO stores
R′ in-memory in a column oriented fashion, with columns
being represented as arrays, allowing fast evaluation of ag-
gregate queries over R′. The relation R′ has k′ ≥ k number
of tuples, since it contains all tuples without (potentially)
being filtered by predicates. In fact, it is reasonable to as-
sume, without prior knowledge, that k′ � k, as each distinct
entity ei can appear many times in R. We will allow to work
on a subset (samples) of R′ in Section 6, and study the con-
sequences, but for now we assume R′ in fact covers all tuples
of any entity of the input.

3.2 The Three Steps

Candidate Predicates Identification. Using the tuples in
R′ we create a set of candidate predicates that are subse-
quently augmented with ranking criteria to make up full-
fledged candidate queries.
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definition 1. Candidate Predicate
We say a predicate P is a candidate predicate iff for each
entity that appears in L there is a tuple t in R′ that fullfils
the predicate. Formally,

∀ei ∈ L.e∃ tuple t ∈ R′ : P (t) = true ∧ t.e = ei

It is easy to see that a candidate predicate can potentially
produce the top-k input list. In other words, having a can-
didate predicate in the where clause is a necessary criterion
of a query to be a valid query, but it is not a sufficient cri-
terion. This is because a candidate predicate can still “let
through” tuples of other entities (that are not in the input
table L) that can be ranked higher than the tuples in L,
hence, the query is not a valid query as the output does not
match the input.

corollary 1. Downward-closure (anti-monotone)
property of the candidate predicate criterion. Given
a predicate P1 that is not a candidate predicate, then a pred-
icate Pi such that P1 ⊆ Pi (that is, all sub-predicates in P1

are also present in Pi) can not be a candidate predicate.

The corollary follows immediately from the defitinion of
candidate predicates: any predicate Pi with P1 ⊆ Pi for
another predicate P1 evaluates to true for a subset of tuples
for which P1 evaluates to true. This property is used to prune
the searchspace in Section 4, similar to what the apriori
algorithm [1] does for the support measure.

Ranking Criteria Identification. In the second step of our
approach, we identify the ranking criteria according to which
the entities in the top-k list are ranked. For this purpose we
need to find a suitable numeric attribute (or multiple ones)
including an aggregation function—or decide if one is used
at all.

definition 2. Candidate Ranking Criterion
We say a ranking criterion, consisting of one or multiple
numerical attributes and, if existing, an aggregation function
is a candidate iff, when executed on R′ together with a
candidate predicate, it returns a result identical to the
input list L.

This definition is very reasonable but similar to the crite-
rion to identify candidate predicates it is only a necessary
condition to a valid ranking criteria for a query when exe-
cuted over the entire relation R. It is, however, not a suf-
ficient condition, as when executed on R there can be still
other entities, not in L, that are disturbing the “correct”
order. The case of partial matches is discussed below.

Candidate Queries Identification and Evaluation. Us-
ing the candidate predicates and the valid ranking criteria
we can form candidate queries. Each candidate query is ex-
ecuted on R and the results are compared with the input
top-k list. The queries that produce instance-equivalent re-
sults with the original query are the valid queries.

3.3 Allowing Partial Matches
Like other approaches on reverse engineering queries, this

approach can be relaxed to allow finding also partially match-
ing queries. This can be useful for cases where the input L
has been obtained from an older instance of the database or
in cases where L has been generated in the extreme, through
crowdsourcing top-k rankings. Our approach can be adapted
to such partial match scenarios as follows. First, the condi-
tion to accept a query during the validation phase needs
to be switched to accepting partial match. For comparing
rankings, there exist several ways, most prominently Spear-
man’s Footrule distance and Kendall’s Tau. Fagin et al. [7]

R′

t.id E A B C · · · N1 N2 N3 · · ·
1 e a1 b9 c3 · · · 75 4 5 · · ·
2 e a1 b8 c1 · · · 100 8 7 · · ·
3 e a3 b1 c6 · · · 45 15 1 · · ·
4 f a1 b8 c1 · · · 90 16 2 · · ·
5 f a5 b4 c6 · · · 35 23 3 · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
10 g a1 b8 c3 · · · 80 42 14 · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
20 m a1 b8 c4 · · · 70 29 10 · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
30 o a1 b8 c4 · · · 60 31 7 · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

Table 4: Example of a Relation R′ for Input L in Figure 1

show how these measures can be applied to top-k lists. In
our case of ranking with two columns (entity and value) we
would compute such methods on the entity column; and can
additionally compute a distance measure like L1 or L2 on
the values if numerical or otherwise use a distance like the
set-based Jaccard distance. Second, not taking for granted
that we cannot precisely reverse engineer the input L implies
that even a fully known R′ would behave exactly like being a
sample, with the consequences described in Section 6. That
means, we can directly apply the reasoning on query suit-
ability explained there.

4. CANDIDATE PREDICATES
The task we consider in this section is to find all k-sized

candidate predicates Pi. Each predicate can be simple atomic
equality predicate like (A = a1) or conjunctions of atomic
equality predicates, e.g., (A = a1) ∧ (B = b8). Candidate
predicates are determined over the table R′, as described
above. From Definition 1 we know that in order to be a can-
didate predicate, a predicate P has to have for each entity
in the input L.e at least one tuple in R′ with P (t) = true.

This criteria is anti-monotone (aka. downward-closed), i.e.,
a predicate Pi with size k can be considered a candidate
predicate if and only if all its sub-predicates are also candi-
date predicates. This problem is similar to frequent itemset
mining for which the apriori principle and algorithm [1] is
widely known. In data mining terminology, itemsets resem-
ble the values that are used to form the candidate predicates.

The method to compute candidate predicates in PALEO
is described in Algorithm 1. In the first step, k = 1, we start
by identifying all atomic candidate predicates, i.e., the pred-
icates with size |Pi| = 1 (Lines 2–6 in Algorithm 1). For this
purpose for each column Ai we identify values v such that
the predicate Pi := (Ai = v) is a candidate predicate (Lines
3–4 in Algorithm 1). Furthermore, for each such created Pi

we keep a set IPi containing the tuple ids (aka. row ids)
that this predicate selects, i.e., IPi = {t.id|Pi(t) = true}.
In each additional step, conjunctive predicates of size k are
created, by adding atomic predicates from the set P1 to the
predicates created in the previous iteration (Lines 7–14 in
Algorithm 1). The algorithm does not create a predicate
multiple times. The conjunctive predicate Pij whose tuple
ids set IPij covers all entities in the input list is added to
the set of candidate predicates with size k (Lines 12–13) and
will be used in creating candidate predicates of size k+ 1 in
the next iteration.

Example: Considering Table 4 and the input list in Fig-
ure 1, we create atomic predicates starting with column A
as we iterate over its values ai. Note that the entities in E
are sorted. The set of atomic candidate predicates is cre-
ated, P1 = {P1 := (A = a1), P4 := (B = b8)}. These two
predicates are candidates, since the tuples that fulfill the
predicates cover all entities in the input list L. Furthermore,
the set tuple ids that the predicates select are kept, e.g.,
IP1 = {1, 2, 4, 10, 20, 30} . If added as a selection condition,
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method: findPredicates
input: top-k list L

relation R′

output: a set of candidate predicates P
1 P = ∅; k = 1; Pk = ∅
2 for each Ai in R′

3 find Pi := (Ai = v) with |Pi| = 1 s.t.
4 ∀ei ∈ L.e∃ tuple t ∈ R′ : Pi(t) = true ∧ t.e = ei
5 add Pi to Pk

6 for each Pi keep IPi = {t.id|Pi(t) = true}
7 repeat
8 k = k + 1
9 Pk = ∅
10 for each Pi ∈ P1 and Pj ∈ Pk−1 and Pi ∩ Pj = ∅
11 create IPij = IPi ∩ IPj

12 if IPij covers all ei ∈ L.e
13 add Pij := Pi ∧ Pj to Pk

14 until Pk = ∅
15 return P =

⋃
k Pk

Algorithm 1: Finding candidate predicates

these candidate atomic predicates would result in a candi-
date query.

In each next step, we try to produce conjunctive clauses of
size k from the predicates in P1 and Pk−1. Thus, for k = 2,
we test if the predicate P14 := (A = a1) ∧ (B = b8) qual-
ifies as a candidate by intersecting the corresponding sets
of tuple ids. Since the intersected tuple ids in IP1 ∩ IP4 =
{2, 4, 10, 20, 30} cover all entities in L.e, the predicate P14

is a candidate predicate. Recall that R′ is held in memory
and that we can, via tuple ids, very efficiently access the full
tuple to check whether or not it matches the predicate.

Properties of the Algorithm:

(i) The algorithm is correct with respect to R′, that is,
predicates returned by the algorithm are guaranteed to
be candidate predicates, following Definition 1. Fur-
ther, the algorithm is complete, that is, it finds all
possible candidate predicates over R′.

(ii) When predicates are applied in R instead of R′ they
can also let tuples with entities that are not in L pass,
which leads to false positive candidate queries.

The difference to the apriori algorithm that operates on
the support measure is that apriori counts the frequency of
all itemsets and then determines the ones above the specified
threshold. In our algorithm, we eliminate a predicate as soon
as we find that it does not cover a certain entity. The same
happens in each additional pass, since apriori will generate
all the pairs of frequent items and count their appearance.
Thus, all pairs that contain a false positive singleton will
also be false positives.

2, 4, 10, 20, 30

tuple set I

tuple ids

P : B = b
4

P : (A = a ) and (B = b )
14 1

8

8

Figure 3: Mapping from tuple set to predicates.

4.1 Tuple Sets and Predicates
Some of the created candidate predicates have identical

tuple sets IPi . These predicates select the same tuples in
R′ and share the same data characteristics regarding to R′.
Thus, candidate predicates are grouped according their tuple

1"

av
g(
A)
'

topE" his" R’" topE" his" R’" R’" R’" R’" R’"

2" 3" 4" 5" 6" 7" 8" 9" 10"

Figure 4: Order of looking for the ranking criteria

sets, i.e., if IPi = IPj , then Pi and Pj would belong to the
same group.

Figure 3 depicts a tuple set mapped to a group of can-
didate predicates created from the tuples in Table 4. The
predicates P4 and P14 cover the same tuples in Table 4.
Thus, for these predicates, it is enough to examine the data
characteristics of the tuples in the tuple set I.

5. RANKING CRITERIA
In order to find the ranking criteria according to which

the ranking in the top-k list is done, PALEO operates on
the distinct tuple sets, determined in the algorithm above.
If relation R, and hence also R′, is identical to the database
state when the input data was once generated, it is guar-
anteed that PALEO is able to determine the valid ranking
criteria.

The actual size of R′ depends naturally on the size k of
the input list L and also on the data characteristics, i.e., how
many tuples R contains for a single entity. We expect R′ to
be holding a factor of k/n less tuples than R, where n is the
number of distinct entities in R, and that this allows to load
R′ entirely in main memory. While it might be reasonably
cheap to execute a query on this R′ in memory, note that we
have to possibly do so very many times to identify suitable
ranking criteria. That is, depending on the size of R′ we can
potentially reduce the runtime of our algorithm if it can be
avoided to work on R′ directly.

The idea is to harness small data samples, histograms,
or simple descriptive statistics computed upfront from the
base relation R in order to select a subset of potentially
useful columns without touching R′. However, there might
be invalid criteria identified or potentially also no criteria
at all, given the limited coverage of data samples and the
impreciseness of histograms. Therefore, identified candidate
ranking criteria are validated on R′ and in case no heuristic
is applicable or was not successful, the whole ranking criteria
identification is executed on R′.

Depending on the aggregation function we aim at checking
for suitability, we can or cannot use some of these techniques.
For instance, comparing the entities in L with the top enti-
ties stored for each column of R can be applied to queries
with max aggregate function, but not directly to queries us-
ing sum as the aggregation function. Figure 4 summarizes
this observation. Traversing the tree pre-order depth-first is
the way PALEO looks for the ranking criteria, with the leaf
nodes showing the order in which the techniques are ap-
plied. The system tries to identify the ranking criteria with
smaller search space first. Thus, for instance, if the valid
ranking criteria is max(A) and comparing the top entities
produces valid results, only the shaded part of Figure 4 will
be processed.

5.1 Top Entities
The most apparent first attempt to identify an attribute

according to which tuples are sorted in L is to store for
each attribute in R the topmost entries, when sorted by the
specific attribute. Then, we intersect the input entity set
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method: topEntities

input: top-k list L
relation R′

output: a set of candidate numerical columns AC

1 for each Ai in R′

2 if Ai not numerical, then skip Ai

3 if max(v ∈ Ai) < max(v ∈ L.v), then skip Ai

4 if min(v ∈ Ai) > min(v ∈ L.v), then skip Ai

5 if |Ai| < |L.v|, then skip Ai

6 if TopE(Ai) ∩ L.v 6= ∅, add Ai to AC

7 return set of candidates AC

Algorithm 2: Finding candidate columns with top entities

from L with these top entries. More than just the k top
values are stored to increase the chance that these entities
do overlap with the entities in L. Clearly, it should also
not be too large such that each numeric column appears
promising. The exact way of how this idea is applied is shown
in Algorithm 2, line 6.

Before this is done, PALEO filters out attributes by apply-
ing three simple checks: it compares the max (min) values
of the input list and the column and if the column’s value
is smaller (greater) than the max value of the input list it
does not intersect the entities (Algorithm 2, line 3 and 4).
Additionally, the number of distinct values is compared: If
the column has less distinct values than the input list, we
skip this column (Algorithm 2, line 5).

The numerical columns that result in a non-empty in-
tersection are considered as candidate numerical columns.
Thus, using R′ and the tuple sets created in finding candi-
date predicates, they are checked whether they can match
the ranking in the top-k input list.

5.2 Querying Histograms
In the case no candidate numerical columns have been

identified with the above intersection of top entities, PA-
LEO employs histograms describing an attribute’s frequency
distribution in order to find candidate attributes that ap-
pear suitable for ranking. As we consider only numeric at-
tributes to be used as the bases of ranking criteria, such a
histogram describes how frequent a specific numeric value
appears in the attribute’s column in relation R. One idea
is comparing the value-frequency distributions of the his-
togram of the input list with the histograms of the numer-
ical columns in R, by using histograms distance measures
such as Earth Mover’s Distance [11]. However, a top-k list
is inherently small and does not contain enough elements to
provide a meaningful distribution. Hence, PALEO samples
each attribute’s histogram and calculate the L1 distance be-
tween its top-k values and the input values. Similar to using
top entities of each column, we draw samples following the
distribution described in the histogram. PALEO uses equi-
width histograms having 1000 cells each.

This is done for each attribute, which allows ordering all
attributes by the L1 distance of the sampled data to the
data in L. Depending on the data in the table, if there is a
column with similar values and distribution as the column
we are looking for, it is possible that the correct column does
not have lowest L1 distance. In order to account for this, we
consider the top 30% of the columns in the list as candidate
attributes.

5.3 Validation over R’
As a validation for the possible ranking criteria identified

above, we use the tuples in R′. In the case when we have
successfully identified candidate attributes with the previous
techniques, we first check if any of these candidate attributes

can produce the ranking. For this purpose, we go through
the distinct tuple sets Ii we computed in Section 4 and check
which of the candidate numerical columns, i.e., their sorted
aggregated values exactly match the input L.

Some of the supported ranking criteria cannot be identi-
fied by the above mentioned techniques, requiring more com-
plicated statistics and this is beyond the scope of this paper.
For instance, with the avg and sum aggregate functions, the
top entities for a column depend heavily on the predicate,
since the values are aggregated over multiple tuples. Simi-
larly, harnessing histograms with sum would involve convo-
lutions of the histograms of the pairs of columns.

As a fall back, if none of the candidate attributes can
produce the ranking criteria, we revert to checking the re-
maining numerical columns in R′ that were not found as
candidates. We still use only the tuples with tuple ids found
in the tuple sets Ii. For each tuple set and each numerical
attribute in R′ that passes our (three) simple checks (i.e.,
min, max comparison, and number of distinct items), we
compute whether the tuples in Ii if sorted according to the
specific attribute and aggregate function are identical to L.
After identifying the appropriate numerical attribute and
aggregate function, we can filter out some of the candidate
predicates. If a certain tuple set does not contain the input
numerical values, we remove this tuple set and all the can-
didate predicates that correspond to it from the candidate
predicates.

6. HANDLING VARIATIONS OF R
The techniques behind PALEO discussed so far are based

on the assumption that exactly the same relation R that
produced the input list L is available and that it is feasible to
operate on it directly. However, it might appear that tuples
in R have changed, for instance, because of inserts, updates,
and deletes, due to slowly changing dimensions [8] in data
warehousing scenarios, or only a subset (sample) is available.
In this section, we describe how PALEO deals with situations
when only subset of the original tuples in R is available.

This assumption has direct consequences on PALEO’s abil-
ity to accurately identify suitable predicates and ranking cri-
teria. As we have discussed above, determining query predi-
cates with the proper table R at hand only leads to obtaining
false positives in the candidate predicates, introduced by
additional entities outside R′ that qualify for the predicate.
The changed data further introduces false negatives. That
is, the query that generated the input might not be found at
all, although such a query exists. This is caused by missing
or modified tuples in R that would be required to unveil a
predicate to be fulfilled by all of the k entities. False nega-
tives are synonym to loss in recall, i.e., the fraction of found
queries to all existent queries that generate the input.

We address this by

• Reasoning about likelihood of being a successful query.

• Smart evaluation to skip unpromising queries.

Variations in R means also variations in R′. Let us denote
the table stemming from the modified base table as R′′. It
can happen that R′′ does not contain tuples from all enti-
ties from the input list, for instance if all tuples for a certain
entity ei ∈ L.e have been deleted from R. Recall that the
method for finding predicates, described in Algorithm 1 de-
mands that a predicate must cover all entities of the input
list L.e.

Now, it is possible that the tuples containing the valid
predicate for a certain entity have changed in the columns
that comprise the predicate. Then, it is impossible to pre-
cisely validate or invalidate the predicate using the method
in Algorithm 1: Being strict, missing the tuples with the
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valid predicate for a certain entity will lead to evicting the
valid predicate even though the majority of entities in R′′

contain tuples with it, thus resulting in false negatives. To
avoid that, the condition of evicting a predicate is relaxed.
Instead of demanding that a predicate is considered as a
candidate predicate if it covers all distinct entities in R′′,
we ask for it to cover the majority of the entities, thus tak-
ing into account that some entities can have tuples with the
valid predicate missing. Another possible approach is not to
evict predicates at all, i.e., form all the predicates that we
encounter in R′′ while not demanding any entity covering.
This might, however, result in very many candidate pred-
icates with too many false positives. Executing candidate
queries for all such predicates will drastically decrease the
overall efficiency of PALEO.

We describe a probabilistic model of assessing candidate
predicates when the data in the base table has changed and
how uncertainty in finding ranking criteria can be handled.

6.1 Assessing Candidate Predicates
Changes in R introduce uncertainty in finding the valid

predicates. To account for such changes, the condition of
evicting a predicate is relaxed. As a result, our methods
identify more candidate predicates that need to be assessed
whether or not they are likely to be indeed a valid predicate.
This assessment is later used when executing queries in the
final step such that queries can be executed in increasing
order of the likelihood to be in fact a valid query.

A candidate predicate Pi identified from the table R′′ is a
false positive if: ∃ ei @ t s.t. P (t) = true. In other words, if
for a certain entity ei there is no tuple for which the pred-
icate P is valid, then this predicate is a false positive. This
means that a query with this predicate would return a top-k
list without the entity ei.

Consider a predicate P over the attributes A1, . . . Am. The
probability that a tuple exists in relation R is given by the
number of distinct entries of the columns Ai (i.e., |Ai|) as

P [tuple exists] =
∏
i

1

|Ai|

Consider an entity ej for which we did not find a tuple that
matches the predicate and let unseen(ej) be the number of
changed tuples of entity ej , then

P [won’t see for ej ] = (1− P [tuple exists])unseen(ej)

The probability that at least one entity is rendering this
predicate to be a false positive (by not providing a matching
tuple) is thus given as

P [false positive] = 1−
∏
j

(1− P [won’t see for ej ])

6.2 Approximating Ranking Criteria
Operating on R′′ also introduces uncertainty in finding

ranking criteria. Since not all tuples for each entity ei are
the same, the ranking criterion cannot exactly match the
numerical values in the input top-k list. This is why there is
a need of measuring the suitability of each candidate rank-
ing criteria to the input list. For this purpose, we compute
the distance between the input values and the candidate at-
tribute(s) values. We use the L1 distance (aka. Manhattan
distance) that is simply the sum of absolute differences in
the numeric values.

Queries without sum: The changes in the tuples for
an entity ei renders the topEntities method (Section 5.1)
not directly applicable. Without the identical tuples, it is
difficult to match the candidate numerical columns with the
input ranking values. Using the L1 distance and the column

values in R′′ (Section 5.3) provides the possibility to com-
pute the suitability of the candidate ranking columns. That
way, each candidate column has a corresponding L1 distance
that is used in ranking the candidate queries.

Queries with sum: The sum aggregate function sums
up all values for a certain entity ei. Since with changed data
some of the tuples for an entity are missing, they need to be
approximated. We do this by using the column values for the
column(s) in R′. Using this approximation, the L1 distance
to the input ranking values is calculated and then used for
ranking the suitability of the column(s).

The approximation of the sum for each entity is done using
the tuple id sets. We take a look at the more complicated
case of having a sum of two columns Ai and Aj . Thus, for
a predicate P with a corresponding tuple set IP , for each
entity ei let sumAij (IP ) denote the sum of the values, of

the columns Ai and Aj , of the tuples in R′′ with tuple ids
in IP that have an entity ei, i.e.:

sumAij (IP ) = Ai(IP ) op Aj(IP ) s.t. t.e = ei , op ∈ {+, ∗}

Additionally, let #v denote the number of tuple ids in the
tuple set IP of the entity ei, i.e., the number of tuples that
the predicate P selects with ei. We approximate the sum as:

appxSumei(IP ) =
sumAij (IP )

#v
×(#v× |ei|R′′

|ei|R′′ − unseen(ei)
)

where |ei|R′′ is the number of tuples in R′′ for the entity ei.
Thus, for each entity ei, the average summed value from the
sampled tuples is multiplied with the approximated selectiv-
ity of the predicate P . The sorted list appxSum(I) formed
from the sums for each entity appxSumei(IP ) is then used
for calculating the L1 distance d to the input list and ranking
the candidate column pairs.

6.3 Combined Model
The queries formed from the combination of candidate

predicates and ranking criteria need to be validated by ex-
ecuting them on R. The order of execution is done ordered
by a suitability value for each candidate query Qc. The suit-
ability is computed as:

s(Qc) = (1− P [false positive])× (1− d)

where P [false positive] is the probability of the predicate in
the candidate query of being a false positive and d is the
max normalized L1 distance between the ranking criteria in
Qc and the numerical values in the input list L.

6.4 Working with Samples of R’
Consider a scenario where it is impossible or unfeasible

to work on the complete relation R′ (the subset of R of all
tuples that contain any of the entities in L). This relation
R′ can be very large, potentially as big as R, if there are
many tuples for each distinct entity—a typical case in data-
warehousing applications that often aggregate large amounts
of observations of a specific entity. The probabilistic model
for assessing candidate predicates together with the approx-
imation of the ranking criteria can also be applied to such a
scenario as well.

We consider two approaches of sampling. First, we sample
by retrieving all tuples for a certain (e.g., randomly selected)
subset of the entities in L.e. In this way, we do not get
any false negatives and the candidate predicates set is a
superset of the valid predicates. This is because having all
tuples in R′′ for a certain entity is guaranteed to contain the
tuples with valid predicates. As a result, our algorithm will
create the predicate as a candidate. However, the drawback
of this approach is having too many false positives. This can
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especially happen if for a sampled entity there are too many
tuples in the base table R. This will lead to creating a large
amount of false positives which impairs efficiency.

Sampling uniformly from all entities mediates this prob-
lem, thus sampling a certain percentage of the tuples from
each entity. This way, possibility of false positives is de-
creased, at the price of an increased possibility of false neg-
atives. We encounter the same problem as if we would sam-
ple by tuple: it can happen that tuples that contain a valid
predicate are not sampled for a certain entity. Relaxing the
condition of evicting a predicate mediates this problem.

We can draw a parallel between the scenarios of having
modified data in R and sampling. The tuples that are sam-
pled in R′′ correspond to the tuples in the base table that
have the columns comprising the valid predicate unmod-
ified. Hence, the not sampled tuples are analogous to the
ones that are modified.

Consider a predicate Pi that is a valid predicate for an
entity ei. The probability that k tuples with the valid pred-
icate are sampled in R′′ has a hypergeometric distribution,
i.e.,

P [k tuples sampled] =

(
K
k

)(
N−K
n−k

)(
N
K

)
where K is the total number of tuples with the predicate
in R′, N is the total number of tuples to sample from, i.e.,
N = |R′|, and n = |R′′| is the number of sampled tuples.

The probability of sampling at least one tuple with the
valid predicate Pi for an entity ei:

P [one tuple sampled] = 1−
(
K
0

)(
N−K
n−0

)(
N
K

)
Considering an input top-k list with m distinct entities ei
and assuming independence in the sampling from the differ-
ent entities, the probability of seeing a tuple with the valid
predicate is:

P [all ei] = P [one tuple sampled]m

Intuitively, this probability describes that increasing the sam-
pling size increases the probability of sampling a tuple with
the valid predicate for each distinct entity. Consequently,
making the condition of evicting a predicate more strict as
the sample size increases is needed, i.e., increasing the num-
ber of entities ei that are covered by a predicate so it can
qualify as a candidate predicate. This would eliminate the
creation of too many false positives with larger sample sizes.

7. SMART QUERY VALIDATION
Ordering candidate queries by their expected suitability

to answer the input L promises to find a valid query early—
ideally at the first query execution. Even if more than one
valid query is to be found, such an order is accelerating the
discovery process immensely. We will show in the experi-
mental evaluation that this is indeed the fact.

Now, instead of purely trusting the order, it would be
careless to simply execute queries sequentially in the given
order, without trying to benefit from information learned
while executing them. Consider a candidate query Qc that
is executed and yields a result Qc(R) that is very similar to
the input list L, but is still not an exact match. It would be
preferable to continue validating queries that are similar to
Qc and skip those in the ordered query candidate list C that
are not.

It is clear that the similarity (overlap) of the results of a
candidate query when executed over R and input list L can
be directly computed, using Jaccard similarity for instance.
But for the not-yet-executed queries we do not have direct
insight on their result, but we can “speculate” about it: We
model this similarity between Q1 and Q2 by two means; first,

method: resultDrivenValidation
input: ordered list of candidate queries C;

Jaccard similarity threshold τ
output: a valid query Qv

1 Qc := C.first
2 /* search for first query with results overlapping L*/
3 while J(Qc(R).e, L.e) < τ
4 Qc := C.next
5 /* keep this first match query */
6 Qfm := Qc

7 foundR := false
8 foundR := true if J(Qc.v, L.v) > τ
9 while(C.hasNext)
10 Qc = C.next
11 /* skip query Qc? */
12 if (P (Qc) ∩ P (Qfm) = ∅ or

(foundR and R(Qfm)! = R(Qc))))
13 continue
14 execute Qc

15 return if found valid
16 resultDrivenValidation(skipped Qc)

Algorithm 3: Result driven candidate query validation

by the common atomic equality predicates in the conjunctive
where clause, and second, by the use of the same (or not)
ranking criteria. For this, with R(Q) we denote the ranking
criterion of a query and with P (Q) the set of its atomic
predicates.

For each executed query we check if its output matches
the input list. In the first part of the algorithm presented
in Algorithm 3, we sequentially test the candidate queries
until we have found for which the entities in its results are
similar to the entities in L.e. This query is denoted Qfm,
for “first match query”. We also check if the numeric values
of the query result are similar to the numeric values L.v
of the input list L, again, using the Jaccard similarity. If
they are sufficiently similar, we mark the ranking criteria
of query Qfm as valid. In the second while loop (line 9–13
in Algorithm 3), we iterate over the remaining candidate
queries and skip those queries whose predicates are not at
all overlapping with the predicates in Qfm. We further skip
queries that have a different ranking criterion to the one of
Qfm (line 12 in Algorithm 3), in case this was found as valid.

If by the end of the query list C a valid query is not found,
the algorithm is called for the previously skipped queries,
until all queries are evaluated or one valid query is found.

8. EXPERIMENTAL EVALUATION
We have implemented the approach described above in

Java. Experiments are conducted on a 2× Intel Xeon 6-
core machine, 256GB RAM, running Debian as an oper-
ating system, using Oracle JVM 1.7.0 45 as the Java VM
(limited to 20GB memory). The base relation R is stored
in a PostreSQL 9.0 database, with a B+ tree index on R’s
entity column.

Datasets. We evaluate our approach of computing instance-
equivalent queries using data and queries of two benchmarks,
TPC-H [16] and the SSB [14]. For this, we created a scale
factor 1 instance of both TPC-H and SSB data and materi-
alized a single table R by joining all tables from their respec-
tive schema. The table R results in 57 and 60 columns, for
TPC-H and SSB, respectively. The column c name (from
the customer table) acts as the entity column. We obtain
tables with the characteristics described in Table 5.
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TPC-H SSB
# Tuples 5,313,609 6,001,171
# Entities 171,753 20,000
# Textual columns 27 28
# Non-key numerical columns 13 20
# Avg tuples per entity 31 300
Highest # tuples per entity 187 579

Table 5: Table R characteristics

Query sel.

T
P
C
|
H

γc name,MAX(o totalprice)

(σp type=′MEDIUM POLISHED STEEL′

∧ r name=′AMERICA′(R))
0.001

γc name,SUM(ps supplycost+ps availqty)

(σn name=′JAPAN ′

∧ p container=′JUMBO BAG′

∧ l shipmode=′TRUCK ′(R))

0.0001

S
S
B

γc name,AV G(lo revenue)

(σs nation=′UNITED STATES ′

∧ p category=′MFGR#14 ′(R))
0.002

γc name,SUM(lo extendedprice∗lo discount)

(σp brand=′MFGR#2221 ′

∧ s region=′ASIA′

∧ d year=1995(R))

0.00003

Table 6: Example queries and their selectivity

We examine the applicability of our approach with varia-
tion of data in R, by performing experiments with sampling.
As described in Section 6, operating on a sample of R has
similar characteristics as working on a table R with modified
data.

Queries. There are 13 and 22 queries available in the TPC-
H and SSB benchmark, respectively. We adjusted the origi-
nal queries by creating different query types (max(A), avg(A),
sum(A), sum(A+B), sum(A∗B), and no aggregation), sup-
ported by PALEO (cf., Figure 4). We only write the ranking
criteria when discussing the different query types. In order
to examine the effects of the predicate size and selectivity
factor, in each query, we vary the predicate size |P |, with
|P | ∈ {1, 2, 3}. Queries with larger predicates have higher
selectivity. Furthermore, all queries have the column c name
as an entity column. Example queries and their selectivity
are shown in Table 6.

We execute each query Q over the table R to produce the
top-k lists L. Using the LIMIT clause, we create top-k lists
with k∈ {5, 10, 20, 50, 100}. Then, we execute PALEO with
inputs L and the table R. For the experiments involving
sampling, we perform the experiments three times for each
input list L and report on the median performance. In order
to examine the effects of different sample sizes, we created
experiments with sample size of 5%, 10%, 20%, and 30%.
We keep the 1, 000 top entities for each numerical column.

Using the B+ tree on R, for each input list we retrieve
(a sample of) R′ and store it in memory. Thus, identifying
the candidate predicates and ranking criteria are in-memory
processes. Without using any compression techniques, the
memory consumption of R′ in our experiments was around
500MB. The query validation step is done by issuing queries
to the underlying PostgreSQL database that resides on disk.
Finally, queries show similar results depending on the num-
ber of columns in the aggregate function. Thus, for the sake
of brevity, we discuss the results of max(A) queries as rep-
resentative of single column queries and sum(A+B) for the
two column queries. Finally, although PALEO discovers all
valid queries for an input list, we focus on the efficiency of
discovering the first valid query in the presented results.
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Figure 5: Number of query executions until first valid query
with all tuples for TPC-H dataset
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Figure 6: Number of query executions until first valid query
with all tuples for SSB dataset

Valid query discovery. PALEO always discovers all valid
queries for any of the supported query types when having
available the entire table R′. The availability of all tuples
ensures that false negatives are avoided, and introduces only
(a small number of) false positives.

We observe that with all tuples from R′ available, our sys-
tem requires very few query executions in order to identify
a valid query. Thus, for sum(A+B) queries and the TCP-H
dataset, the average number of query validations amounts
to only 1.1 for |P | = 1, 1.3 for |P | = 2, and 2.1 for |P | = 3.
In fact, for both TPC-H and SSB, only a single query
validation is required for 76% of the top-k lists that stem
from sum(A + B) queries, while only two query executions
are required for 14% of the top-k lists. Similarly, 65% and
70% of the top-k lists from max(A) queries are found after a
single candidate query is executed, while 26.6% and 16% af-
ter two query executions, for TPC-H and SSB respectively.
Moreover, as shown in Figures 5 and 6, ranked validation
outperforms the expected unordered validation and the ben-
efit increases with predicate size. The expected number of
query validations reflects the case of executing candidate
queries in random order. Assuming a uniform probability of
the location of the valid queries in the candidate list, we
compute the number of expected validations with dividing
the number of candidate queries with the number of valid
queries.

Query discovery efficiency. We study the efficiency of the
different steps from our system. Figure 7 shows the runtime
of each step of our approach. As expected, the total run-
time is dominated by the database-related operation, i.e.,
the candidate query validation (Step 3). Note that Figure 7
shows the runtime of finding the first valid query. We observe
that for the TPC-H dataset the runtime of Step 3 is orders
of magnitude higher than that of Step 1 and 2. Thus, for
max queries the average runtime of candidate query valida-
tion is 3.6 seconds, while the average runtime of identifying
candidate predicates and ranking criteria is 12.4 and 3.9 mil-
liseconds, respectively. With the SSB dataset and the same
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Figure 8: Number of candidate predicates
for max(A) queries

type of queries, Step 3 needs 7.5 seconds, while the runtime
of Step 1 and 2 amounts to 3.3 and 0.3 seconds respectively.
The table R from the SSB dataset has more tuples per en-
tity, which leads to having a larger R′ and more data to
process with our algorithms.

Identifying candidate predicates. We study the effect of
predicate size and the length of the input top-k lists on creat-
ing candidate predicates. Figure 8 shows the number of cre-
ated candidate predicates with different predicate and input
list size. We observe that for the TPC-H data, the average
number of created candidate predicates increases from 13.8
with |P | = 1, to 69 with |P | = 2, and to 95 with |P | = 3. We
observe the same trend with the SSB dataset. Larger predi-
cate size leads to generating more candidate predicates. The
reason for this is that for a valid predicate with size |P | we
create as candidate predicates all sub-predicates with size
smaller than |P | as well. The number of shared tuple sets is
smaller than the one of created predicates.

Figure 8(b) shows the average number of created predi-
cates with different length of the top-k input lists . We ob-
serve that the number of candidate predicates decreases with
larger k. For TPC-H, the number of created predicates de-
creases from 41.3 for k = 5 to 14.3 for k = 100. With SSB,
the average number of candidate predicates decreases from
1142.9 for k = 5 to 279.7 for k = 100. Larger k reduces
the number of false positives in the candidate predicates.
A predicate needs to select tuples with the distinct entities
from the input list in order to qualify as a candidate predi-
cate. With larger lists the number of entities increases, thus
making it more difficult for a predicate to qualify as a can-
didate. Furthermore, we observe that a significantly larger
number of predicates is created with the SSB data. This is
due to the characteristics of the dataset, with SSB having
more tuples per entity and more variety in data.

8.1 Evaluation with Sampling
The TPC-H generator creates uniform column distribu-

tions, thus the generated instance does not contain enough
tuples per entity, with 14 tuples for an entity, at most. The
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Figure 9: Valid query discovery
with sum(A+B) queries

SSB data has many tuples per entity, however these are ex-
tremely diverse in terms of predicates, i.e., the predicates
found in the SSB queries often cover only a single tuple
per entity. We thus focus on TPC-H data when employing
sampling. There, for each tuple t in R we add n additional
tuples, where n is a random number following the Gaussian
distribution N (200, 50). These n tuples have the same val-
ues in the textual columns as t, but with non-key numerical
values: v = v + v × abs(m), where m ∈ [0, 1] is a random
number following N (0.5, 0.5).

We study the effect of the sample size on the successful
discovery of valid queries. We observe that a valid query
is successfully discovered for all top-k lists that stem from
single column queries, regardless of sample and predicate
size. Figure 9 shows results for the discovery of sum(A +
B) queries. The discovery of valid queries depends on both
the sample and predicate size. Having larger sample size
enables better query discovery. For |P | = 2 and a sample
size of 5% our system successfully manages to discover a
valid query for 70% of the top-k lists. With a sample size of
10% the percentage of discovered queries increases to 85%,
while with a sample size of 20% and larger, we manage to
discover 100% of the queries with |P | = 2. Furthermore, we
observe that discovering queries with larger predicate size
is more difficult. With a sample size of 10% we successfully
discover a valid query for 90% of the top-k lists with |P | = 1,
85% with |P | = 2, and 60% with |P | = 3. Queries with
larger predicates are very selective, hence the probability of
sampling tuples with a valid predicate is lower, which leads
to false negatives. Sampling more tuples for these queries
mediates this problem.

Smart Query Validation. Validating the created candidate
queries is the bottleneck of our approach; executing (aggre-
gated) queries on the database is expensive. We study the
effects of our candidate query validation in terms of the com-
puted query suitability and our result driven optimization.
In addition, we investigate the effects of the predicate and
sample size. Table 7 shows the average number of query exe-
cutions needed using the two approaches for candidate query
validation: smart result driven validation and ranked valida-
tion by query suitability. Furthermore, it shows the average
number of created candidate queries Qc for each query type
and the average number of valid queries identified when hav-
ing all tuples from R′ available.

Figure 10 compares average number of executed queries
with our two approaches to validation with the expected
number of query validations if the candidate queries are not
ordered. For max(A) queries, we observe that smart vali-
dation outperforms unordered validation by a factor of 7.3
with |P | = 1, 4.2 with |P | = 2, and 3.3 with |P | = 3. Fur-
thermore, smart validation performs 26% query executions
less than ranked validation with |P | = 2 and 33% less execu-
tions for |P | = 2. The benefits with discovering sum(A+B)
queries are even greater. Thus, smart validation in average
reduces the number of expected query executions by a fac-
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select Ae, max(A) select Ae, sum(A+B)
|P| Sample % Smart Ranked # candidates #valid Q Smart Ranked # candidates # valid Q
1 5 20.6 24.6 163.7 16.6 32.1 11621.9
1 10 13.7 12.4 185.1 24.9 28.2 10919.9
1 20 5.1 3.4 144.7 9.8 16.2 10330.7
1 30 3.6 2.0 105.1 4.3 6.6 7287.4
1 100 1.0 1.0 4.8 4.0 1.1 1.1 4.8 4.0
2 5 33.1 69.8 161.3 100.9 1379.0 6540.4
2 10 23.4 40.4 219.3 47.4 958.4 6991.2
2 20 9.3 12.8 155.5 20.4 362.8 6605.4
2 30 6.4 8.7 130.1 10.5 49.4 4820.4
2 100 1.3 1.3 12.9 4.8 1.2 1.2 5.8 3.7
3 5 59.4 121.0 219.4 199.0 2510.6 3802.5
3 10 49.5 129.4 282.0 133.8 982.4 4524.0
3 20 24.8 56.4 224.0 22.7 61.4 3263.0
3 30 20.3 31.8 203.5 15.4 38.5 4457.1
3 100 2.8 2.8 25.7 3.0 2.1 2.1 4.4 1.5

Table 7: Number of candidate query validations with the different approaches by sample and predicate size
for max(A) and sum(A+B) queries
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Figure 10: Number of query executions until first valid
query with 30% sample for TPC-H data

tor of 424.7 with |P | = 1, 124.7 with |P | = 2, and 192.6
with |P | = 3. The greater benefit with this type of queries
stems from the fact that identifying the ranking criteria in-
volves different combinations of columns, which significantly
increases the number of candidate queries.

Furthermore, smart validation significantly outperforms
ranked validation with smaller sample size. Thus, with sam-
ple size of 5% smart validation reduces the number of query
executions for discovering sum(A+B) queries over the rank-
based validation by a factor of 13.7 and 12.6, with |P | = 2
and |P | = 3 respectively. Similarly, with a sample size of
10% smart validation reduces the average number of execu-
tions by a factor of 20.2 with |P | = 2 and 7.3 with |P | = 3.
We observe that smart candidate query validation improves
over rank-based validation for max(A) queries as well, albeit
with smaller but still significant effect. The greater benefit
with sum(A + B) queries stems from the fact that identi-
fying the ranking criteria is more complex with this type of
queries, thus making the query suitability less precise.

Larger sample size improves the candidate query suitabil-
ity and reduces the number of candidate queries, thus re-
sulting in less query validations. Smart validation reduces
the number of validations for discovering max(A) queries
with a sample size of 30% by an average factor of 4.6 over
a sample of 5%. Less candidate queries are created with
larger sample size, since the availability of more tuples leads
to better generation of candidate predicates and we discuss
this later using Figure 11. Larger sample size significantly
improves the approximation in finding the ranking criteria
with sum(A + B) queries and the factor of improvement
amounts to 8.8 for the same sample sizes.

Larger predicate size increases the number of needed query
validations. We observe that with a sample size of 30% dis-
covering max(A) queries requires 3.6 candidate query val-

idations with |P | = 1, 6.4 with |P | = 2, and 20.3 with
|P | = 3. With the same sample size, discovering sum(A+B)
queries needs 4.3, 10.5, and 15.4 query executions, with
|P | = 1, |P | = 2, and |P | = 3 respectively. Queries with
larger predicates are more selective, thus it is less probable
that tuples selected by the valid predicate will be sampled.
Additionally, subpredicates of a larger valid predicate can
select the same tuples as the larger predicate, but in turn
the smaller predicates are less selective which reduces their
probability of being a false positive. Hence, candidate queries
with smaller predicates can have higher query suitability.

Note that with sampling, the number of candidate queries
formax(A) queries is significantly lower than that of sum(A+
B) queries, as shown in Table 7. With single column queries
identifying the ranking criteria is an easier task and we can
limit the number of columns to consider as candidates. With
sum(A+B) queries on the other hand, the task of finding the
ranking criteria involves combinations of two columns, thus
making it more complicated. Furthermore, it is difficult to
limit the number of column combinations to consider since
a certain column with very large numbers (e.g., total price
in TPC-H) can dominate the sum. Hence, we consider all
possible column combinations as candidate ranking criteria
and rank them according to their approximated L1 distance.

Identifying Candidate Predicates. We study the effect of
sample size on the number of created candidate predicates.
We observe that the number of candidate predicates de-
creases with larger sample size. Larger sample size increases
the probability of sampling larger number of tuples with a
valid predicate, which in turn allows for stricter criteria in
qualifying a predicate as candidate. Following the sampling
probability in Section 6, with larger sample size we increased
the ratio of covered entities in order to denote a predicate as
a candidate. Thus, for sample size of 5%, the ratio of covered
entities was set to 0.5, for 10% to 0.6, for 20% to 0.7, and to
0.8 for a sample size of 30%. Lower ratio avoids false nega-
tives, but comes at the cost of increasing the number of false
positives, since more predicates will qualify as candidates.

It is important to note that the experiments with sam-
pling introduced expected variability. Depending on which
tuples are sampled, the probability of the candidate pred-
icates varies. Furthermore identifying the ranking criteria
with sum(A + B) queries is influenced by the sampled tu-
ples. Example: We ran five executions of the input list from
the second query in Table 6 with k = 10 and sample of 5%.
As a best case a valid query is found after only 2 query ex-
ecution, while 125 executed candidate queries were needed
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Figure 11: Number of candidate predicates
for max(A) queries

in the worst case. In the first case, the sampled rows con-
tain the correct predicate for each distinct entity, i.e., the
predicate probability is 1.0. Additionally, the correct rank-
ing criteria (column combination) has the second lowest L1
distance on the valid predicate. It seems that the sampled
rows were good for approximating the ranking values for the
correct columns. In the other case, the predicate probabil-
ity is 0.84 (14th in the ranking), while the correct column
combination has a very large L1 distance, since the sam-
pled tuples were not a good approximation of the ranking
values. The remaining executions resulted in 27, 16, and 39
query validations. With smaller sample it is more difficult
to find the ranking criteria for sum(A+B) queries. This is
a consequence of the non-uniform distribution of the values
in A and B. Thus, the approximation depends on which tu-
ples are sampled. Larger sample size mediates this problem.
Having more tuples avoids the dependence on which tuples
are sampled and leads to a more precise approximation.

8.2 Lessons Learned
With all tuples from R′ available our system always dis-

covers a valid query. Furthermore, for both datasets this is
done efficiently and requires just a few query executions with
only a single query validation for 76% and 68% of the top-k
lists that stem from sum(A + B) and max(A) queries, re-
spectively. On the other hand, sampling introduces the pos-
sibility of false negatives. However, we manage to discover a
valid query for all top-k lists that result from a single column
query. Finding valid sum(A+B) queries is more difficult and
we manage to identify a valid query for 96.7% of the top-k
lists with a sample size of 30%. Identifying the candidate
predicates and ranking criteria is done in-memory and are
very efficient. The smart result driven candidate query vali-
dation significantly reduces the number of query executions
needed in finding a valid query. In addition, larger predicate
size leads to more query validations. Larger sample size re-
duces both the number of false positives and false negatives
in the candidate predicates. Furthermore, having more data
improves the ranking of the candidate ranking criteria, since
we have better approximation of the L1 distance.

9. CONCLUSION AND OUTLOOK
We proposed a framework to reverse engineer top-k OLAP

queries. This has turned out a complex problem given the
various dimensions of the search space, the potentially very
large base relation, and the small input snippet in form of a
top-k list. Our approach mainly operates on a subset of the
base relation, held in memory, and further uses data sam-
ples, histograms, and simple descriptive statistics to identify
potentially valid queries (that generate the input list). We
proposed a probabilistic model that evaluates the suitability
of a query discovered over a subset of R′, methodology that
is directly applicable to the case of handling variations of R
and considering partial match queries, i.e., queries that only

approximately match the input list. In any case, when trying
to identify promising queries, the main difficulty is to limit
the number of false positives—that cause unnecessary query
validations—as well as to limit false negatives—that cause
loss in recall. The ordering of potentially valid queries ac-
cording to the probabilistic model in addition to an iterative
refinement of the validation of candidate queries was proven
to drastically decrease the amount of time to validate (or
invalidate) queries in the final stage of the approach. This
is specifically true for cases of low sampling rates—and ex-
pectedly likewise for partial-match scenarios.

As ongoing work, we investigate whether existing work
on reverse engineering join queries is compatible with our
approach and evaluate PALEO in partial-match scenarios.
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