
Context-aware Event Stream Analytics

Olga Poppe*, Chuan Lei**, Elke A. Rundensteiner* and Dan Dougherty*

*Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA

**NEC Labs America, 10080 N Wolfe Rd, Cupertino, CA 95014, USA

opoppe|rundenst|dd@cs.wpi.edu, chuan@nec-labs.com

ABSTRACT
Complex event processing is a popular technology for con-
tinuously monitoring high-volume event streams from health
care to traffic management to detect complex compositions
of events. These event compositions signify critical “appli-
cation contexts” from hygiene violations to traffic accidents.
Certain event queries are only appropriate in particular con-
texts. Yet state-of-the-art streaming engines tend to execute
all event queries continuously regardless of the current appli-
cation context. This wastes tremendous processing resources
and thus leads to delayed reactions to critical situations.
We have developed the first context-aware event process-
ing solution, called CAESAR, which features the following
key innovations. (1) The CAESAR model supports applica-
tion contexts as first class citizens and associates appropriate
event queries with them. (2) The CAESAR optimizer em-
ploys context-aware optimization strategies including con-
text window push-down strategy and query workload shar-
ing among overlapping contexts. (3) The CAESAR infras-
tructure allows for lightweight event query suspension and
activation driven by context windows. Our experimental
study utilizing both the Linear Road stream benchmark as
well as real-world data sets demonstrates that the context-
aware event stream analytics consistently outperforms the
state-of-the-art strategies by factor of 8 on average.

1. INTRODUCTION
Complex Event Processing (CEP) has emerged as a promi-

nent technology for supporting applications from financial
fraud [30] to health care [32]. Traditionally, CEP systems
consume event streams produced by smart digital devices
like sensors and mobile phones and continuously evaluate
the query workload to monitor the input event streams.

In many stream-based applications, events convey partic-
ular application contexts such that the system reaction to
an event may significantly vary depending on the current
context. Therefore, some event queries may only need to
be executed under certain circumstances while others can

©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

be safely suspended. The following examples highlight the
challenges and opportunities of context-aware event stream
processing that have been overlooked in the prior research.

Motivating Example. Traffic has both a huge economic
and environmental impact on our daily lives. Drivers trav-
eling the 10-worst U.S. traffic corridors annually spend an
average of 140 hours idling in traffic [2]. Due to pollution
and noise, congestion in the USA’s 83 largest urban areas
in 2010 led to a related public health cost of $18 billion [3].
Further, road traffic injuries caused an estimated 1.24 mil-
lion deaths worldwide in 2010 [4].

An intelligent traffic control center could reduce these
crippling impacts. The center receives vehicle position re-
ports, analyzes them, infers the current situation in the mon-
itored road segments and reacts instantaneously to ensure
safe and smooth traffic flow. Early detection and prompt re-
action to critical situations are eminently important. They
prevent time and fuel waste, reduce pollution, avoid prop-
erty damage and in some cases even save human lives.

initiate if stopped cars

initiate if many slow cars

switch if traffic
flows smoothly

switch if
stopped cars

switch if
many slow cars

congestionaccident

alarm computation
terminate if stopped cars removed

toll computation
terminate if few fast cars

clear switch if traffic
flows smoothly

Figure 1: CAESAR model of traffic management

System reaction to a position report should thus be mod-
ulated depending on the current situation on the road (here
referred to as context1). Indeed, if an accident is detected,
all vehicles downstream should be warned and possibly al-
ternative routes should be suggested (Figure 1). If a road
segment becomes congested, drivers may be charged toll to
discourage them from driving to control smooth traffic flow.
If a road segment is clear, none of the above actions should
take place. Clearly, current application contexts must be
rapidly detected and continuously maintained to determine
appropriate reactions of the system at all times.

Conditions implying an application context can be com-
plex. They are specified on both the event streams and the
current contexts. For example, if over 50 cars per minute

1Here we utilize the term application context to refer to the
state of a sub-network such as accident, congestion, etc.
We deliberately avoid using the notion state since it is a too
overloaded term in the CEP literature.

Series ISSN: 2367-2005 413 10.5441/002/edbt.2016.38

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2016.38

move with an average speed less then 40 mph and the cur-
rent context is no congestion then the context deriving query
updates the context to congestion for this road segment. To
save resources and thus to ensure prompt system responsive-
ness, such complex context detection should happen once.
Its results must be available on-time and shared among all
queries that belong to the detected context. In other words,
context processing queries are dependent on the results of
context deriving queries and a mechanism ensuring their cor-
rect execution must be employed.

The system responsiveness can be substantially improved
by exploiting the optimization opportunities enabled by the
application contests. (1) Only those event queries that are
relevant in the current contexts should be executed. All ir-
relevant computations should be suspended. (2) Workloads
of overlapping contexts should be shared. Furthermore, ap-
plication contexts break the application semantics into mod-
ules that facilitate the modular development and runtime
maintenance of an event stream processing application.

Challenges. To enable such event stream processing ap-
plications, the following challenges must be tackled:

Context-aware specification model. As motivated above,
event stream processing applications need to express rich se-
mantics. In particular, they have to specify application con-
texts as first class citizens and enable linkage of appropriate
event queries to their respective context. Furthermore, this
model must be in a convenient human-readable format to
facilitate on-the-fly reconfiguration, easy maintenance and
avoid fatal specification mistakes.

Context-exploiting optimization techniques. To meet the
demanding latency constraints of time-critical applications,
this powerful context-aware application model must be trans-
lated into an efficient physical query plan. This query plan
must be optimized by exploiting the optimization opportu-
nities enabled by context-aware event stream analytics. This
is complicated by the fact that the duration of a context is
unknown at compile time and potentially unbounded.

Context-driven execution infrastructure. An efficient run-
time execution infrastructure is required to support multiple
concurrent contexts. To ensure correct query execution, the
inter-dependencies between complex context deriving and
context processing queries must be taken into account.

State-of-the-Art. The challenges described above have
so far not been addressed in a comprehensive fashion.

Since the duration of a context varies, state-of-the-art win-
dow semantics such as fixed-length tumbling and sliding win-
dows [22, 8] are inadequate to model the proposed notion of
a context. Classical predicate windows [15] have variable du-
ration. However, conditions leading to an application con-
text can be rather complex and thus resource-consuming,
worse yet they can be dependent on the previous contexts
(Figure 1). Since predicate windows are independent from
each other, they fail to express context windows.

While some event query languages (e.g., CQL [10], SASE [5,
34]) could be used to hard-code the equivalent of a con-
text construct by queries that detect the context bounds.
However, this approach is cumbersome and error-prone –
requiring the careful specification of multiple complex inter-
dependent event queries [25]. Furthermore, no optimiza-
tion techniques have been developed to exploit the benefits
of context-awareness such as suspension of irrelevant event
queries nor the sharing workloads of overlapping contexts.

Business models [16, 28] focus on powerful modeling con-

structs to capture the semantics of processes and in that
sense express application contexts. However, these models,
targeting business process specification, were not designed
for event stream processing. Thus, they neglect its core
peculiarities such as the event-driven nature of context de-
tection achieving high performance analytics and the impor-
tance of temporal windows and their processing techniques.

The Proposed CAESAR Approach. In [25], we for-
mally defined the first context-aware event query processing
model for which we now design the Context-Aware Event
Stream Analytics in Real time system, CAESAR for short.

Our CAESAR model supports context windows as first-
class citizens and associates appropriate event queries with
each context window. Event queries that process events
within a context are called context processing queries. Event
queries that derive a context are called context deriving queries.
Both types of queries operate within context windows, a new
class of event query window we define.

To achieve near real-time system responsiveness, the CAE-

SAR model is transformed into a stream query plan com-
posed of context-aware operators of the CAESAR algebra.
This algebra serves as foundation for the CAESAR optimizer.
The optimizer exploits the notion of context windows to
avoid unnecessary computations by suspending those oper-
ators which are irrelevant to the current context. Further-
more, the optimizer saves computations by sharing work-
loads of overlapping context windows. Finally, we built the
CAESAR runtime infrastructure for correct yet efficient ex-
ecution of inter-dependent context-aware event queries.

Contributions can be summarized as follows:
1) We introduce a new notion of windows, called con-

text windows, to enable context-aware event query process-
ing critical to modeling event-based systems. The proposed
human-readable context-aware CAESAR model significantly
simplifies the specification of rich event-driven application
semantics by explicit support of context windows2. It also
opens new multi-query optimization opportunities by asso-
ciating appropriate event queries with each context.

2) We define the CAESAR algebra for our context-aware
event query processing. The CAESAR optimizer pushes the
context windows down to suspend the execution of irrelevant
operators. Furthermore, we propose the context window
grouping algorithm that exploits the sharing opportunities
from workloads of overlapping context windows.

3) We built the CAESAR runtime execution infrastruc-
ture that guarantees correct and efficient execution of inter-
dependent context deriving and context processing queries.

4) We evaluate the performance of the CAESAR system
and its optimization strategies using the Linear Road stream
benchmark [9] as well as the real world data set [26]. Our
CAESAR system performs on average 8-fold faster than the
context-independent solution for a wide range of cases.

Outline. We start with preliminaries in Section 2 and
introduce the CAESAR model in Section 3. We present our
algebraic execution paradigm in Section 4 and its optimiza-
tion techniques in Section 5. Section 6 is devoted to the run-
time execution infrastructure. We conduct the performance
study in Section 7. Related work is discussed in Section 8,
and Section 9 concludes the article.

2Visual editor for the CAESAR model and its evaluation, out
of the scope of this article, are subjects for future research.
In [25] we compare our model to a set of CQL event queries.

414

Figure 2: Key concepts of the CAESAR model

2. PRELIMINARIES
Time. Time is represented by a linearly ordered set of

time points (T,≤), where T ⊆ Q+ and Q+ denotes the set
of non-negative rational numbers. The set of time intervals
is TI = {[start, end] | start ∈ T, end ∈ T, start ≤ end}.
For a time point t ∈ T and an interval w ∈ TI we say that t
is within w, denoted t v w, if w.start ≤ t ≤ w.end.

Event. An event is a message indicating that something
of interest happens in the real world. Each event e belongs
to a particular event type E, denoted e.type = E. An event
type E is defined by a schema which specifies the set of event
attributes and the domains of their values. An event e has
an occurrence time e.time ∈ T assigned by the event source.
For example, a vehicle position report in [9] has the following
attributes: expressway, direction, segment, car identifier etc.
The values of these attributes are integers.

Event Stream. Events can be simple or complex. Sim-
ple events are sent by event producers (e.g., sensors) to
event consumers (e.g., a traffic control center) on an input
event stream I to be processed to derive higher-level complex
events. The occurrence time of a complex event comprises
the occurrence time of all events it was derived from [23].

3. CAESAR MODEL

3.1 Key Concepts of the CAESAR Model
Application contexts are real-world higher-order situ-

ations the duration of which is not known at their detection
time and potentially unbounded. This differentiates con-
texts from events. The duration of a context is called a
context window. For example, congestion is a higher-order
situation in the traffic control application (Figure 2). Its
bounds are detected based on position reports sent from cars
in the same road segment in the same time period. As long
as a road segment remains congested, the context window
congestion is said to hold. Hence, the duration of a context
window cannot be predetermined.

Context deriving queries associated with a particular
context determine when this context should be terminated
and when a particular other context is to be initiated based
on events. For example, two context transitions are possible
from the congestion context. If the number of cars reduces
and they start moving at higher speed the system transitions
into the clear context. If two cars stop in the same location
and at the same time the accident context is activated.

Context processing queries correspond to the work-
load associated with a particular context, i.e., the analytics
to be computed based on events received while the system
remains in this context. For example, cars entering a con-

gested road segment are charged toll to discourage drivers
from driving during rush hours.

3.2 Benefits of Context-Awareness Property
Event Query Relevance. At each point of time, a con-

text window re-targets all efforts of the system to the current
situation by activating only those event queries (both con-
text deriving and context processing queries) which belong
to one of the currently active application contexts. All other
event queries are suspended as they are irrelevant within
the current contexts. This saves both CPU and memory re-
sources. For example, toll is charged only during congestion
on a road. This query is neither relevant in the clear nor
in the accident contexts. Thus, it is evaluated only during
congestion and suspended in all other contexts.

Event Query Simplification. The concept of an appli-
cation context provides event queries with situational knowl-
edge that allows us to specify simpler event queries. For ex-
ample, if the event query computing toll is evaluated only
during the congestion context, the complex conditions that
determine that there is a traffic jam on the road are already
implied by the context. Thus, there is no need to repeatedly
double-check them in each of the active workload queries.

Context Derivation. The task of context derivation is
the dedicated responsibility of the context deriving queries.
For example, once too many slow cars in a road segment
are detected, the context congestion is activated. There-
after, the query detecting congestion is no longer evaluated.
Also, all event queries that are evaluated during congestion
leverage the insight detected by the context deriving query
rather than re-evaluating the congestion condition over and
over at each individual event query level.

3.3 Context Window

Definition 1. (Context type and Context window.)
A context type is defined by a name c and a workload of
context deriving queries Qcd and context processing queries
Qcp which are appropriate in this context.

Let C be the set of context types. Then, a context window
wc is defined by a type c ∈ C and a duration (ti, tt] ∈ TI
where ti is the time point when a query qi ∈ Qc

′
d matched

the event stream and thus wc got initiated and tt is the time
point when a query qt ∈ Qcd matched the event stream and
thus wc got terminated where c′ ∈ C.

Context windows of different types may overlap. Indeed,
there can be a congestion and an accident in the same road
segment at the same time such that two sets of event queries
handling both situations must be executed concurrently.

Definition 2. (Context window relationships.) Con-
text windows of type c1 and c2 are guaranteed to overlap
if based on the predicates of the respective context deriving
queries it can be determined that for each window of type
c1 there is a window of type c2 with wc1 .start v wc2 . If
in addition wc1 .end v wc2 can be determined, a window of
type c1 is contained in a window of type c2.

In general, the predicates of the context deriving queries
can be analyzed to determine if they imply such conditions.
For example, Figure 7 shows the predicates that determine
the bounds of the context windows wc1 and wc2 . It is easy

415

to conclude that the windows overlap. CAESAR employs
established approaches for predicate subsumption [14].

The same event query can be appropriate in several dif-
ferent application contexts. For example, accident detection
happens in both the clear and the congestion contexts. In
contrast to that, the event query detecting accident clear-
ance is executed only in the accident context.

For simplicity, we have made two assumptions: (1) Event
queries associated with different contexts are independent,
meaning that they do not produce events that are consumed
by event queries in other contexts. (2) Only one context win-
dow of the same type can hold at a time per road segment.
If there are multiple accidents in a road segment the context
window accident holds until all of them are cleared.

3.4 Context-aware Event Queries

congestion accident
INITIATE CONTEXT accident
PATTERN Accident
[CONTEXT congestion]

1

3

2 DERIVE NewTravelingCar(p2.vid, p2.xway, p2.dir, p2.seg,
 p2.lane, p2.pos, p2.sec)

PATTERN SEQ(NOT PositionReport p1, PositionReport p2)
WHERE p1.sec+30=p2.sec AND p1.vid=p2.vid AND p2.lane≠“exit”
[CONTEXT congestion]

DERIVE TollNotification(p.vid, p.sec, 5)
PATTERN NewTravelingCar p
[CONTEXT congestion]

Figure 3: Context-aware event queries

The two application contexts, congestion and accident, are
shown in Figure 3. Different event queries are appropriate
within them. For compactness, only three of them within the
congestion context are shown. Clauses in square brackets are
optional since they are implied by the model. The CAESAR

event query language grammar is defined in Figure 4.

Definition 3. (Context-aware event queries.)
A context-aware event query consists of several clauses.

Each clause performs one of the following tasks:
– Context initiation (INITIATE CONTEXT clause).
– Context switch (SWITCH CONTEXT clause).
– Context termination (TERMINATE CONTEXT clause).
– Complex event derivation (DERIVE clause).
– Event pattern matching (PATTERN clause).
– Event filtering (WHERE clause).
– Context window specification (CONTEXT clause).

Context deriving queries perform three actions: (1) ini-
tiate a new context window wc, (2) terminate an existing
context window wc, or (3) switch from the current context
window wc1 into a new context window wc2 .

Context initiation and termination can be used to express
overlapping context windows. For example, accident and
congestion may overlap. That is, query 3 initiates the con-
text window accident when an accident is detected (Fig-
ure 3). However, query 3 does not terminate the context
window congestion. The event queries that detect accidents
are not shown for compactness.

In contrast, context switch expresses a sequence of two
non-overlapping context windows. It corresponds to the ter-
mination of the previous context window wc1 and the initia-
tion of the new context window wc2 . For example, the clear
context overlaps neither accident nor congestion contexts.

Context processing queries analyze the stream of simple
or complex events to derive higher-level knowledge in form
of complex events. For example, query 2 detects the cars en-
tering a congested road segment. These are vehicles which
are not on an exit lane and for which there is no previous po-
sition report from the same road segment within 30 seconds.
Query 1 derives toll notifications for such vehicles.

Both context deriving and context processing queries con-
sume events that arrive during the context windows that
these queries are associated with. Hence, both types of
queries utilize event pattern matching and event filtering
clauses which are commonly used in event queries [34, 23].
Section 4.1 defines when these clauses match.

Query := 〈Window〉 | 〈Retrieval〉
Window := (INITIATE | SWITCH | TERMINATE)

CONTEXT Context
Retrieval := 〈Derive〉 〈Pattern〉 〈Where〉? 〈Context〉
Derive := DERIVE EventType ((V ar.)? Attr, ?)+
Pattern := PATTERN 〈Patt〉
Where := WHERE 〈Expr〉
Context := CONTEXT (Context , ?)+
Patt := NOT? EventType V ar? | SEQ((〈Patt〉 , ?)+)
Expr := Constant | Attr | 〈Expr〉 〈Op〉 〈Expr〉
Op := +| − |/| ∗ |%| = | 6= | > | ≥ | < | ≤ |AND|OR

Figure 4: CAESAR event query language grammar

Putting the application contexts, transitions between them
(Definitions 1 and 2) and context-aware event queries (Def-
inition 3) together, we now define the CAESAR model.

Definition 4. (CAESAR model.) A CAESAR model is a
tuple (I,O,C, cd) where I and O are unbounded input and
output event streams and C is a finite set of context types
with the default context type cd ∈ C.

While the goal of classical automata is to define a lan-
guage, the CAESAR model is designed for context-aware
event query execution. Thus, final contexts are omitted.
The CAESAR model has a default context that holds when
no other context does, e.g., at the system startup (the clear
context in our example). The runtime processing of the
model is defined in Section 4.1.

4. CAESAR ALGEBRA
The CAESAR model explicitly supports application con-

texts and the transition network to facilitate context-aware
event query specification (Figure 3). However, at execution
level an algebraic query plan tends to be easier to optimize
than an automaton-based model [30].3 We thus define the
CAESAR algebra and the translation rules of the CAESAR

model into an algebraic query plan.

4.1 CAESAR Operators
The CAESAR algebra consists of six operators. While

event pattern, filter and projection are quite common for
other stream algebras [30], [34], context initiation, termina-
tion and context window are unique operators of the CAE-

SAR algebra. Context initiation and termination consume a
stream I of events produced by other operators of the con-
text deriving queries and the set of current context windows

3There are approaches to optimization and distribution of
simpler automata than the CAESAR model however. We
describe them in detail in Section 8.

416

W . They update the set of the current context windows and
return the updated set.

Context initiation CIc starts a new context window wc, adds
it to the set of current context windows and removes the de-
fault context window wcd from the set, if there.
CIc(I,W) := {W ′ | If wc ∈W then W ′ = W. Otherwise W ′ =
W∪wc and if wcd ∈W then W ′ = W ′/wcd where e ∈ I and
e.time = wcd .end = wc.start}.

Context termination CTc ends the context window wc, re-
moves it from the set of current context windows, if the set
becomes empty adds the default context window wcd to it.
CTc(I,W) := {W ′ | If |W | > 1 then W ′ = W/wc else W ′ =
{wcd} where e ∈ I and e.time = wc.end = wcd .start}.

Context window CWc consumes an event stream I and the
set of all current context windows W and returns the stream
of events that occur during the current context window wc.
CWc(I,W) := {e | wc ∈W, e ∈ I, e.time v wc}.

Filter FIθ with a predicate θ consumes an event stream I
and returns a stream composed of all events that satisfy θ.
FIθ(I) := {e | e ∈ I, e satisfies θ}.

Projection PRA,E with a set of attributes A and an event
type E consumes an event stream I, restricts each input
event to the set of attributes A and returns the stream of
these restricted events of type E.
PRA,E(I) := {e | e.type = E, e′ ∈ I, e.a = e′.a for a ∈ A}.

Pattern P consumes an event stream I and constructs
event sequences matched by the pattern P . For each event
sequence, the operator outputs an event consisting of the at-
tribute values of all events in the sequence. Let A be the set
of all attributes of events of types E1, ..., En and 1 ≤ i ≤ n.
The pattern P is one of the following:

1) Event matching E returns input events of type E.
E(I) := {e | e ∈ I, e.type = E}.

2) Sequence without negation SEQ(E1,...En) constructs se-

quences of n events such that an ith event is of type Ei.
SEQ(E1,...En)(I) := {e | e1, ..., en ∈ I, e1.type = E1, ...,
en.type = En, e1.time < ... < en.time, e.a = ei.a for a ∈
A, e.time = [e1.time, en.time]}.

3) Sequence with negation SEQ(S1,NOT E,S2) constructs
event sequences SEQS1,S2 without negation such that there
is no event of type E between the sub-sequences constructed
by SEQS1 and SEQS2 .
SEQ(S1,NOT E,S2)(I) := {e | e1, ..., em ∈ SEQS1

, em+1, ..., en
∈ SEQS2

, 6 ∃e′ ∈ I with e′.type = E, em.time < e′.time <
em+1.time, e.a = ei.a for a ∈ A, e.time = [e1.time, en.time]}.
A negated event can start or end an event sequence. In
this case, temporal constraints must define the time interval
within which the negated event may not occur [34].

4.2 Context-preserving Plan Generation
At compile time, the CAESAR model (Figure 3) is trans-

lated into an executable query plan that is than input to
the CAESAR optimizer (Section 5). The CAESAR model
translation happens in two phases (Figure 5). They are:

Phase 1: CAESAR model to a query set. First,
the model is translated into a machine-readable query set.
During this phase, contexts that are implied by the CAESAR

model (the optional clauses in square brackets in Figure 3)
become mandatory clauses of the CAESAR event queries. As
a result, an event query that belongs to a context c has a
mandatory clause CONTEXT c. For example, all queries in
Figure 5 explicitly specify the context they belong to.

Phase 2: Query set to a combined query plan. Dur-

CfC0
SWITCH CONTEXT Cf
Q2

E
xe

cu
ta

b
le

qu
er

y
pl

a
n

Phase 1

L
og

ic
al

 le
ve

l:
C

A
E

S
A

R
 m

o
de

l
P

hy
si

ca
l l

e
ve

l:
C

A
E

S
A

R
 a

lg
eb

ra

Q1
TERMINATE CONTEXT Cf

 Q3

Context deriving queries:

 INITIATE CONTEXT C0
 Q0

 SWITCH CONTEXT Cf
 Q2

CONTEXT C0

 TERMINATE CONTEXT Cf
 Q3 CONTEXT Cf

Context processing queries:

 Q1

CONTEXT C0

Phase 2

INITIATE CONTEXT C0
Q0

M
a

ch
in

e
-r

e
ad

a
bl

e
qu

er
y

se
t

H
um

a
n-

re
ad

ab
le

vi
su

a
l m

o
de

l

Figure 5: CAESAR model translation

Event query clause Operator
INITIATE CONTEXT c CIc
SWITCH CONTEXT c CIc,CTcurr
TERMINATE CONTEXT c CTc
DERIVE E(A) PRA,E

PATTERN P P
WHERE θ FIθ
CONTEXT c CWc

Table 1: Individual query plan construction

ing this phase, the machine-readable query set is translated
into an executable query plan. This happens in two steps:
1) Individual query plan construction. Each event query is
translated into a sequence of algebra operators such that
each clause of the query corresponds to a set of operators
as defined in Table 1. curr denotes the current context the
context deriving query is associated with.
2) Combined query plan construction. Individual query plans
are composed into a combined query plan such that if one
query plan produces events which are consumed by another
query plan then the output of the first plan is the input of
the second plan. Since event queries in different contexts are
independent (Section 3.3), all event queries in a combined
query plan belong to the same context.

For example, queries 1 and 2 in Figure 3 are translated
into the combined query plan in Figure 6(a). Query 1 is
translated into the individual query plan consisting of oper-
ators 1–4. Query 2 corresponds to the individual query plan
composed of operators 5–7. Since the first query plan pro-
duces complex events consumed by the second query plan,
they are composed into a single combined query plan.

5. CAESER OPTIMIZATION

5.1 CAESAR Optimization Problem Statement

Definition 5. Given a workload of context-aware event
queries where each query is associated with an application

417

context. Our CAESAR optimization problem is to find an
optimized query plan for all queries such that the CPU costs
are minimized by suspending event queries that are irrel-
evant to the current application contexts and sharing the
workload of overlapping context windows.

To avoid reinventing the wheel, we borrow the CPU cost
estimation of event pattern construction from [24], and thus
do not repeat here. Instead, we now discuss the cost of
the context-specific operators. We maintain the information
about current context windows in the context bit vector W
with one bit for each context type. Since the number of
possible context types for an application is predefined and
constant, the size of the vector is also constant. The context
initiation and termination operators update one bit and the
time stamp of the context bit vector. Context windows look
up one value in the vector to determine whether a context
window of a certain type currently holds. In other words, the
CPU cost of these operators is constant. Section 6 provides
further implementation details.

5.2 Context Window Push Down
Since some operators of the CAESAR algebra are similar

to other stream algebras, existing approaches, from operator
reordering [24] to operator merging [30, 6], can be exploited
by the CAESAR optimizer as well. For example, projections
and filters can be executed in any order assuming that a
projection that is pushed down below a filter discards no
attributes accessed by the filter. Adjacent filters can be
merged into a single filter by combining their predicates.
However, these existing techniques are oblivious to the no-
tion of contexts, and consequently do not avoid superfluous
computations in the current contexts.

To avoid unnecessary computations when event queries
are executed “out” of their respective context windows, we
introduce the context window push-down strategy. Context
window push-down can prevent the continuous execution of
operators in the query plan. In other words, no event will
be passed up by the context window operator if the current
event stream does not qualify for the context window.

For instance, the two bottom most operators in Figure 6(a)
are always executed regardless of the application contexts.
Once the context window is pushed down to the bottom in
Figure 6(b), it avoids the execution of all operators higher
in the plan when they are irrelevant to the current contexts.

All event queries in a combined query plan belong to the
same context (Section 4.2). By definition, a context window
specifies the scope of its queries. Thus, pushing a context
window down does not change the semantics of its queries.
That is, context window push down strategy is correct.

Pushing a context window down seems similar to pushing
a predicate or a traditional window down only at first sight.
Differences are twofold:
1) Context windows suspend the entire query plan “above
them” as long as the application is in different contexts. In
contrast to that, a predicate or a traditional window is a
filter on a stream that selects certain events to be passed
through. It does not control the suspension of the above
operators and keeps them in busy waiting state that wastes
valuable resources and degrades system performance.
2) Our context-driven stream router directs event stream
portions during application contexts to the appropriate event
queries (Section 6.2). In contrast to that, predicates and
traditional time constraints (e.g., event sequence within 4

(a) Initial query plan (b) Optimized query plan

Figure 6: Query plans

hours [34]) typically filter events one by one at the individual
event level. This is a resource consuming slow process.

Theorem 1 proves that pushing a context window down in
a combined query plan leads to lower execution costs than
placing it at any other position in the query plan.

Theorem 1. Given a query q, let P be the set of all pos-
sible query plans for q, p ∈ P be a query plan for q and
cost(p) be the cost of executing the plan p. With the context
window pushed down, the new plan, denoted by p’, has cost
cost(p’). Then ∀p ∈ P, p 6= p′. cost(p′) ≤ cost(p).

Proof. As described in Section 5.1, the cost of the con-
text window operator is constant. That is, it adds constant
cost to the overall execution costs of a query plan no matter
its position in the query plan. The context window operator
completely suspends the execution of all upstream operators
while the context is not active. In that case, the cost of a
query plan is reduced, i.e., cost(p) < cost(p′). In an unlikely
case when the context window happens to be always active,
the costs of the query plans p and p′ are equal.

5.3 Context Workload Sharing
Inspired by traditional multi-query optimization, group-

ing the event queries enables computation sharing among
these queries. We observe the opportunity that substantial
computational savings can be achieved by executing only
one instance of each context deriving query for each context.
Without context window grouping, each context processing
query has to run its respective context deriving queries sep-
arately so to determine its current context to ensure correct
execution. If this context analytics is performed on an in-
dividual query level, significant computational resources are
wasted and system responsiveness suffers.

Sharing query workloads of overlapping context windows
is challenging for the following reasons: (1) The duration of
context windows may vary and their bounds are unknown
at compile time. So, we have to infer whether context win-
dows overlap. (2) Different contexts may contain identical or
similar event queries in their query workloads. How to share
query workloads driven by contexts is crucial to achieve high
performance execution. We now propose an efficient solu-
tion that addresses this problem by splitting and grouping
overlapping context windows.

For overlapping context windows, a naive solution would
be to merge these context windows to form a larger encom-
passing context window. Inside this large context window,

418

we can now analyze the associated event query workloads
to optimize their executions. However, such solution could
do more harm than good in some cases. For example, if all
context windows were to be overlapping, then only one huge
all encompassing context window would be formed as a re-
sult. This would forfeit the purpose of being context-aware.
Consequently, redundant computations would be incurred.

Figure 7: Context Window Grouping

We now propose an effective strategy for splitting the
original user-defined overlapping context windows into finer
granularity context windows and grouping them into non-
overlapping context windows. For example, the context
windows wc1 and wc2 in Figure 7 overlap. The window wc1
is split into w11 and w12, while the window wc2 is split into
w21 and w22. Since the windows w12 and w21 cover the same
time interval, the event queries associated with them are
merged to form the workload of the grouped context window
w. The context deriving queries are adjusted accordingly.

1 I npu t : Set W of user-defined context windows. A window is
described by start, end and queries.

3 Output : Set G of grouped context windows
G = W.extractNonOverlappingWindows()

5 W = W.sortByStart()
W = W.mergeIdenticalWindows()

7 Q = ∅
wh i l e W.hasNextWindowBound()

9 next = W.getNextWindowBound()
S = W.getStartingWindows(next)

11 E = W.getEndingWindows(next)
i f Q.isEmpty()

13 then Q = S.queries
e l s e new window w = (previous, next,Q)

15 G = G ∪ w
Q = Q− E.queries ∪ S.queries

17 end i f
previous = next

19 end wh i l e
f o r each w ∈ G

21 w.queries = w.queries.dropDuplicates()
end f o r each

23 r e t u r n G

Listing 1: Context window grouping algorithm

Consider our context window grouping algorithm in List-
ing 1. It takes a set of user-defined context windows as
input. Context windows which do not overlap any other
window remain unchanged (line 4). The algorithm sorts the
overlapping context windows in increasing order by start
time (line 5). Even though the exact start time of context

windows is not known at compile time, the order of their
beginning can be determined for overlapping context win-
dows. For example, it is known at compile time that the
window wc2 in Figure 7 will start at the same time or later
than the window wc1 . If there are several identical con-
text windows, the algorithm only keeps one by merging the
workloads of identical windows (line 6). The core of the algo-
rithm (lines 8-19) forms a new grouped context window for
each time interval between two subsequent bounds of origi-
nal context windows and associates the query workload with
it that is appropriate during this time interval. For each
grouped context window, the algorithm deletes duplicate
event queries (lines 20-22) and returns the set of grouped
context windows (line 23). Since several subsequent grouped
context windows correspond to one original context window,
an event query within a grouped context window may need
access to its partial matches in the previous grouped context
windows to ensure completeness of its results. In Section 6,
we introduce a customized design (called context history) to
ensure correct grouped context window execution.

The time complexity of the algorithm is O(n log(n) ∗m)
where n is the number of original user-defined context types
that are sorted (line 5) and m is the number of predicates
that have to be analyzed while comparing two context types.

Based on the newly produced non-overlapping context
windows, we now further exploit traditional multi-query op-
timization (MQO) techniques [31, 27, 21] to produce an
optimized shared query execution plan for each group of
event queries. This opens opportunities to share the simi-
lar workload within a context which further saves computa-
tional costs and reduces query latency. MQO is an NP-Hard
problem due to the exponential search space. Thus, the so-
lutions [31, 27, 21] of MQO tend to be expensive.

Our context window grouping solution divides the event
query workloads into smaller groups based on their time
overlap. Hence, the search space for an optimal query plan
within each group is substantially reduced compared to the
global space. Any state-of-the-art MQO solution can lever-
age this idea to return an optimized query plan efficiently.

The search space for multi-query optimization is doubly
exponential in the size of the queries (n). The spectrum of
possible multi-query groupings ranges from a separate group
per each individual query (i.e., non-sharing) in the given
query workload to a single group for all queries. The upper-
bound for all possible multi-query groups corresponds to the
number of distinct ways of assigning n event queries to one
or more groups. The number that describes this value is the
Bell number Bn, which represents the number of different
groupings of a set of n elements. The Bell number is the
sum of Stirling numbers. A Stirling number S(n, k) is the
number of ways to partition n elements into k partitions [20]:

Bn =

n∑
k=1

S(n, k) =

n∑
k=1

(
1

k!

k∑
j=1

(−1)k−j
(
n

k

)
jn
)

By dividing our n queries first into m groups, we subse-
quently only need to optimize the small shared set one by
one and thus reduce the search space to:

B′n =

n/m∑
k′=1

S(n/m, k′) =

n/m∑
k′=1

 1

k′!

k′∑
j=1

(−1)k
′−j

(
n/m

k′

)
jn/m

As confirmed by our experimental study in Section 7.2,

419

the CAESAR optimizer produces a context-aware query plan
2712 times faster than the state-of-the-art context-independent
multi-query optimization approaches.

6. CAESAR EXECUTION INFRASTRUCTURE

6.1 Overview of the CAESAR Infrastructure
Figure 8 shows the CAESAR execution infrastructure. The

boxes represent the system components.

Figure 8: CAESAR infrastructure

Specification Layer. A CAESAR model is specified by
the application designer using the visual CAESAR editor [25].
As explained in Section 4, we then translate it into an alge-
braic query plan.

Optimization Layer. As described in Section 5, the
query plan is optimized using several context-aware opti-
mization strategies to produce an execution plan.

Execution Layer. The optimized query plan is for-
warded to the transaction manager that forms transactions.
These transaction are submitted for execution by the sched-
uler that guarantees correctness. These components build
the core of the CAESAR execution infrastructure. They are
described in details in Section 6.2.

Storage Layer. The event distributor buffers the in-
coming events in the event queues. The current context
windows and the context history are compactly maintained
in-memory. The garbage collector ensures that only the val-
ues which are relevant to the current contexts are kept.

6.2 Core of the CAESAR Infrastructure
The core of the CAESAR execution infrastructure consists

of the context derivation, context processing, context-aware
stream routing and scheduling of these processes (Figure 9).

Context Derivation. For each stream partition (unidi-
rectional road segment in the traffic management use case),
we save which context windows currently hold in the context
bit vector W . This vector W has a time stamp W.time and
a one-bit entry for each context type, i.e., W.size = |C|.
The entries are sorted alphabetically by context names to
allow for constant time access. The entry 1 (0) for a context
c means that the context window wc holds (does not hold)
at the time W.time. Since context windows may overlap,
multiple entries in the vector may be set to 1.

The context window vector is updated by the context de-
riving queries. Since each event in the stream can potentially

Figure 9: Core of the CAESAR infrastructure

update a context window, the context deriving queries pro-
cesses all input events. W.time is the application time when
the vector W was last updated. Since events arrive in-order
by time stamps, only one most recent version of the context
bit vector is kept.

Context-aware Stream Routing. Based on the con-
text window vector, the system is aware of the currently
active event query workloads. For each current context win-
dow wc, it routes all its events to the query plan associated
with the context c. Query plans of all currently inactive con-
text windows do not receive any input. They are suspended
to avoid busy waiting, i.e., waste of resources.

Context-aware stream routing is a light-weight process for
the following reasons. First, the lookup of all vector entries
set to 1 takes constant time. Second, this routing happens
for stream batches (multiple subsequent events in the input
event stream) rather than for single events.

Context Processing. The CAESAR model allows the
application designer to specify the scope of event queries
in terms of their context windows. When a user-defined
context window ends, all event queries associated with it are
suspended and thus will not produce new matches until they
become activated again. Therefore, their partial matches,
called context history, can be safely discarded.

When a user-defined context window wc with its associ-
ated query workload Qc is split into smaller non-overlapping
context windows wc1 and wc2 partial matches of the queries
Qc are maintained across these newly grouped windows wc1
and wc2 to ensure correctness of these queries Qc. Therefore,
for each event query we save the grouped context windows
across which the results of the query are kept. For exam-
ple, the event query q1 in Figure 7 is executed during all 3
grouped context windows. However, when the third window
begins, the partial results within the first window expire.

Correct Context Management. Context processing
queries are dependent on the results of context deriving
queries. Due to bursty input streams, network and pro-
cessing delays context derivation might not happen on time.
To avoid race conditions, these inter-dependencies must be
taken into account to guarantee correct execution.

We define a stream transaction as a sequence of operations
that are triggered by all input events with the same time
stamp. The application time stamp of a transaction (and
all its operations) coincides with the application time stamp
of the triggering events. An algorithm for scheduling read
and write operations on the shared context data is correct if
conflicting operations4 are processed sorted by time stamps.

4Two operations on the same value such that at least one of

420

While existing transaction schedulers can be deployed in
the CAESAR system, we now describe a time-driven sched-
uler. For each time stamp t, our scheduler waits till the event
distributor progress is larger than t and the context deriva-
tion for all transactions with time stamps smaller than t is
completed. Then, the scheduler extracts all events with the
time stamp t from the event queues, wraps their processing
into transactions (one transaction per road segment for the
traffic control use case) and submits them for execution.

7. PERFORMANCE EVALUATION

7.1 Experimental Setup and Methodology
Experimental Infrastructure. We have implemented

our CAESAR system in Java with JRE 1.7.0 25 running on
Linux CentOS release 6.3 with 16-core 3.4GHz QEMU Vir-
tual CPU and 48GB of RAM. We execute each experiment
three times and report their average results here.

Linear Road Benchmark. We have chosen this bench-
mark [9] to evaluate the effectiveness of the CAESAR system
for the following reasons: (1) it expresses a variety of appli-
cation contexts such that the system reactions to an event
depends on the current context, and (2) it is time critical
since it poses tight latency constraint of 5 seconds.

Event Queries. We focused on a subset of event queries
of the benchmark that based on input events derive toll
notifications and accident warnings. The queries depicted
in Figure 3 are simplified versions of the actual benchmark
queries to illustrate the key concepts of our model in the
paper only. We simulate low, average and high query work-
loads by replicating the event queries of the benchmark.

(a) Events per road segment (b) Events per minute

Figure 10: Event streams

Event Streams. Event distribution across road seg-
ments varies. Figure 10(a) shows the number of processed
and derived events per segment of a randomly chosen unidi-
rectional road7. There are more cars in some road segments
than in others. In some road segments accidents and traffic
jams happen more often than in others. Hence, more toll
notifications and accident warnings are triggered for them.

Event distribution across time also varies. Event rate
gradually increases during 3 hours of an experiment. Fig-
ure 10(b) shows the number of processed and derived events
per minute by for a randomly chosen unidirectional road
segment7 and visualizes the application contexts. Accident
warnings are derived only during accidents (minutes 30-50).
The benchmark requires zero toll derivation during accidents
and clear road conditions (minutes 0-70). During traffic
jams, real toll is computed (minutes 70-180).

Real Data Set. In addition to the benchmark, we eval-
uate our system using the physical activity monitoring real

them is a write are called conflicting operations.
7We have observed a similar event distribution for other
roads and roads segments.

data set (1.6GB) [26]. It contains physical activity reports
from 14 people during 1 hour 15 minutes.

Metrics. We measure two metrics common for stream
systems, namely maximal latency and scalability. Addition-
ally, we measure the win ratio of context-aware over context
independent event stream analytics in terms of CPU pro-
cessing time. Maximal latency is the maximal time interval
elapsed from the event arrival time (i.e., system time when
a position report is generated) till the complex event deriva-
tion time (i.e., system time when a toll notification or an
accident warning is derived based on this position report).
As mentioned above, the benchmark restricts the query la-
tency to be within 5 seconds. The system scalability is de-
termined by the L-factor, the maximal number of roads that
are processed without violating this constraint. The win ra-
tio of context-aware over context-independent event stream
analytics is computed as the maximal latency of context-
independent processing divided by the maximal latency of
context-aware processing of the same event query workload
against the same input event stream.

Methodology. To show the efficiency of our context-
aware query optimization, we compare it to the exhaustive
search approach by varying the number of operators in a
query plan. To measure the effectiveness of our optimized
context-aware query plan, we compare the performance of
our context-aware query execution plan to the state-of-the-
art solution [34, 5]. To demonstrate the effectiveness of our
context-aware workload sharing technique, we compare it to
our default non-sharing solution. We conduct these compar-
isons by varying the following parameters: number of oper-
ators in a query plan, input event stream rate, number of
event queries, data distribution in a context window, length
of a context window, number of context windows, number
of overlapping context windows, overlapping ratio of con-
text windows, and the shared workload size. Since context
windows are derived from the input events, context window
related parameters can be varied only through input data
manipulation. Thus, for the experiments on real data set
we vary the number of event queries.

7.2 Efficiency of CAESAR Optimizer

(a) CAESAR optimizer (b) L-factor

Figure 11: CAESAR Optimization Techniques

In Figure 11(a), we vary the number of operators in a
query plan and measure the CPU time required for the query
plan search (logarithmic scale on Y-axis). We compare the
context-independent (CI) exhaustive to the context-aware
(CA) greedy query plan search. As confirmed by the search
space analysis (Section 5.3), the processing time of the ex-
haustive search grows exponentially with the number of op-
erators in a query plan. In contrast, the CPU time required
for our context-aware search stays fairly constant while vary-
ing the query plan size. At size 24, CAESAR’s optimizer is
2712-fold faster than the exhaustive search. This is due to

421

the fact that our context window push down and context
grouping techniques substantially reduce the search space.

7.3 Efficiency of CAESAR Runtime
Next, we conduct a comprehensive evaluation to demon-

strate the efficiency of our CAESAR solution. The baseline
approach is the context-independent processing commonly
used in most state-of-the-art solutions [34, 5, 32]. We first
demonstrate the superiority of our CAESAR’s context-aware
event processing compared to the state-of-the-art context-
independent approach by strictly following the constraints
of the benchmark. Then we evaluate the CAESAR’s context
window sharing technique.

7.3.1 Efficiency of Context-Aware Stream Analytics
L-factor. In Figure 11(b), we vary the input stream rate

by increasing the number of roads and measure the maximal
latency. We compare the latency of the optimized versus
non-optimized query plan. As the figure shows, the opti-
mized query plan processes at most 7 roads without vio-
lating the latency constraint of 5 seconds. In contrast, the
non-optimized query plan can process at most 5 roads under
this constraint. Intuitively, our context-aware optimization
approach successfully avoids the unnecessary computations
by executing different queries only at appropriate time pe-
riods (contexts). On the other hand, the state-of-the-art
solution suffers from executing all queries all the time.

Next, we compare continuous context-independent stream
processing to context-aware solution when some of the in-
volved event query workloads are appropriate only in certain
critical contexts and can be suspended in other contexts.
Unless stated otherwise, in Figures 12 and 13, we consider
3 roads (1.7GB) and assume that 2 critical non-overlapping
context windows of length 3 minutes process 10 event queries
each. These queries can be suspended in other contexts.

Evaluating diverse context window distributions.
In Figure 13, we vary the number of event queries per con-
text window and measure the maximal latency. We compare
three setups, namely, uniform context window distribution
versus their Poisson distribution with positive skew (λ is the
first second) and with negative skew (λ is the last second).
Context window bounds vary across different window distri-
butions. The rest of the stream is identical for these setups.

As expected, when the context windows are at the end
of the experiment where the stream rate is high, the maxi-
mal latency remains almost constant with the growing event
query workload. This is explained by the fact that most
queries are irrelevant for these contexts and thus are sus-
pended. In contrast, if these windows are uniformly dis-
tributed or are at the beginning of the experiment when the
stream rate is low, the maximal latency grows linearly with
the number of queries. The maximal latency of 20 event
queries with uniform context window distribution is 1.8-fold
faster than with Poisson distribution with positive skew and
11-fold slower than with Poisson distribution with negative
skew. Thus, to achieve fair results we consider uniform con-
text window distribution in all following experiments.

Scaling event query workload. In Figure 12(a), we
vary the number of event queries per context window and
measure the maximal latency of context-aware versus context-
independent event stream processing. The maximal latency
grows linearly in the number of event queries. For an average
workload of 10 event queries, we find that the context-aware

processing is 8-fold faster than the context-independent solu-
tion using the Linear Road benchmark data (LR). CAESAR

achieves the same win using the Physical Activity Monitor-
ing data set (PAM) and 20 event queries. Our system has a
clear win in this case because the context-aware event stream
analytics suspends those event queries which are irrelevant
to the current context.

Varying event stream rates. In Figure 12(b), we vary
the number of considered roads. We measure the maximal
latency of context-aware versus context-independent pro-
cessing. The maximal latency grows linearly with an in-
creasing input stream rate (number of roads). For 7 roads,
context-aware processing is 9-fold faster than the context
independent solution. The results show that the CAESAR

system is more robust to the event stream rate increase com-
pared to the context-independent solution.

Varying context window lengths. In Figure 12(c), we
vary the length of the context windows and measure the win
ratio of the context-aware over context-independent process-
ing. The numbers above the bars indicate the percentage of
the input event stream covered by the context windows that
allow suspension of complex event query workload. Given
that CAESAR only keeps one context active at a time, the
win ratio exceeds 3 if such context windows cover more than
80% of the stream. It becomes negligible (almost 1) when
they cover less than 50% of the input event stream.

Varying the number of context windows. A similar
trend can be observed while varying the number of context
windows that allow suspension of irrelevant event queries
(Figure 12(d)). Again, we measure the win ratio of the
context-aware over context-independent stream processing.
The numbers above the bars indicate the percentage of the
input event stream covered by the context windows. Simi-
larly, the win ratio exceeds 2 if the context windows cover
more than 80% of the input event stream. It becomes neg-
ligible (almost 1) when they cover less than 50%.

7.3.2 Efficiency of Context-Aware Workload Sharing
Next, we measure the effect of the shared workload pro-

cessing of overlapping context windows (Figure 14). Unless
stated otherwise, 30 windows of length 15 minutes each over-
lap by 10 minutes. Each of them processes 4 event queries.

Varying the number of overlapping context win-
dows. In Figure 14(a), we vary the maximal number of over-
lapping context windows and measure the maximal latency
of shared versus non-shared query processing. As expected,
the larger the number of overlapping context windows are
the more significant is the gain of the event query sharing. If
45 context windows overlap, the workload sharing strategy
outperforms the default non-shared solution by factor of 10.
The reason is that the CAESAR context window grouping
technique exploits the sharing opportunities within overlap-
ping context windows at a fine granularity level by splitting
the overlapping context windows into non-overlapping parts
and sharing event query processing within them.

Varying the length of context window overlap. In
Figure 14(b), we vary the minimal length of context window
overlap and measure the maximal latency of shared versus
non-shared workload execution. The gain of sharing grows
linearly with the length of overlap. If 30 context windows
overlap by 15 minutes, our workload sharing strategy per-
forms 6-fold faster than the non-shared solution. This is due
to the fact that similar workloads can be shared for a longer

422

(a) Event query workload (b) Event stream rate (c) Context window length (d) Context window number

Figure 12: Context-aware event stream analytics

Figure 13: Context window
distribution

(a) Degree of overlap (b) Length of overlap (c) Shared workload size

Figure 14: Shared workload of overlapping context windows

time period, and hence more computational savings can be
harvested from the overlapping part of the context windows.

Shared workload size. In Figure 14(c), we vary the
number of event queries per context window and measure
the maximal latency of shared versus non-shared event query
processing. As expected, the more event queries can be
shared the more significant is the gain of the event query
sharing. If each context window contains 10 queries that
can be shared with other context windows, the workload
sharing strategy outperforms the default non-shared solu-
tion by factor of 9 using the Linear Road benchmark data
(LR). A similar trend can be observed with the Physical
Activity Monitoring data set (PAM).

8. RELATED WORK
Context-aware Event Stream Models [11, 33] pro-

pose a fuzzy ontology to support uncertainty in event queries.
Context-aware event queries are rewritten into context-inde-
pendent and processed in parallel on different stream parti-
tions. Isoyama et al. [18] propose to allocate event queries to
event processors so that the state of event processing (i.e., in-
termediate event query results) is efficiently managed. These
ideas are orthogonal to our optimization techniques.

Hermosillo et al. [17] and Proton software prototype [1]
feature a model similar to the CAESAR model. However,
these approaches lack a formal definition of the event lan-
guage, optimization techniques and experimental evaluation.
The recent emergence of these approaches confirms the im-
portance of the notion of context-aware event queries that
has been formally defined by us in [25]. Our current work on
CAESAR now is completed by the context-aware optimiza-
tion strategies and their experimental evaluation.

Event Stream Processing Automata [34, 5, 13] con-
tinuously evaluate the same set of single event queries us-
ing traditional windows of fixed length. These automata
capture single query processing states. Their runs corre-

spond to independent event query instances. In contrast
to that, the CAESAR model expresses the semantics of the
whole stream-based application rather than single isolated
event queries. Our model captures application contexts of
variable, statically unknown duration. Its runs correspond
to interdependent processes traveling through application
contexts, triggering appropriate context-aware event queries
and incrementally maintaining their results.

Event Query Languages, like CQL [10] and SASE [5,
34], lack explicit support of application contexts. These
contexts could possibly be hard-coded by queries deriving
events that mark context bounds. However, this approach
is cumbersome and error prone. It is neither modular nor
human-readable. It requires tedious specification of multi-
ple complex event queries – placing an unnecessary burden
on the designer [25]. Inter-dependencies between context
deriving and context processing queries would have to be
taken into account to avoid re-computations, waste of valu-
able resources, delayed responsiveness and even incorrect
results. Special optimization techniques would have to be
developed to enable the benefits of context-awareness – as
accomplished by our approach (Section 3.2). Furthermore,
workload sharing among overlapping context windows has
not been addressed in prior research.

Event Query Optimization Techniques [29] are often
based on stream algebras [30, 34, 12]. Operators of these
stream algebras work on events. In these approaches, appli-
cation contexts are not supported as first-class citizens and
thus they are not available for the operators. Hence, these
approaches miss the event query optimization opportunities
enabled by context-aware stream processing. Application
contexts are first class citizens in our CAESAR model. They
enable context-aware optimization techniques (Section 5).

Business Process Models [16, 28] explicitly support ap-
plication contexts in a readable manner and allow to specify
context-aware system reactions. However, these models tar-
get business process specification. They were not designed

423

for CEP and neglect its peculiarities. In particular, the
event-driven nature of streaming applications and the im-
portance of temporal aspect are not given enough attention.
Indeed, context transitions in these models are triggered by
conditions and process flow rather than by events [19]. Tem-
poral constraints are specified on clocks rather than on event
time stamps [7]. These models do not derive higher level
knowledge in form of complex events.

9. CONCLUSIONS
The responsiveness of time-critical decision-making event

stream processing applications can be substantially speed-
up by evaluating only those event queries which are relevant
to the current situation. Inspired by this observation, we
propose the first context-aware event stream processing so-
lution, called CAESAR, which is composed of the following
key components: (1) To allow for human-readable context-
aware event query specification, we propose the CAESAR

model that visually captures the application contexts and
allows the designer to associate appropriate event queries
with each context. (2) To achieve prompt system responsive-
ness, the model is translated into a query plan composed of
the context-aware operators of the CAESAR algebra we pro-
pose. This algebra serves as a foundation for the CAESAR

optimizer that suspends those event queries which are irrele-
vant to the current application context and detects workload
sharing opportunities of overlapping contexts. (3) We built
the CAESAR runtime execution infrastructure that guaran-
tees correct and efficient execution of inter-dependent con-
text deriving and context processing queries. The context-
aware processing is shown to perform 8-fold faster on aver-
age than the context-independent solution when using the
Linear Road stream benchmark and real world data sets.

ACKNOWLEDGEMENTS
This work was supported by NSF grants IIS 1018443 and
IIS 1343620.

10. REFERENCES
[1] Proton. https://github.com/ishkin/Proton, 2015. [Online;

accessed 10-December-2015].

[2] The Wall Street Journal. http://www.wsj.com/articles/
SB10001424052970203733504577024000381790904, 2015. [Online;
accessed 24-July-2015].

[3] USA Today. http://usatoday30.usatoday.com/news/nation/
2011-05-25-traffic-pollution-premature-deaths-emissions_n.
htm, 2015. [Online; accessed 24-July-2015].

[4] Wikipedia. https://en.wikipedia.org/wiki/List_of_countries_
by_traffic-related_death_rate, 2015. [Online; accessed
24-July-2015].

[5] J. Agrawal et al. Efficient pattern matching over event streams.
In Proc. of Int. Conf. on Management of data, SIGMOD ’08,
pages 147–160. ACM, 2008.

[6] M. Akdere et al. Plan-based complex event detection across
distributed sources. Proc. VLDB Endow., 1(1):66–77, Aug.
2008.

[7] R. Alur et al. Automata for modeling real-time systems. In
Proc. of Int. Colloquium on Automata, Languages and
Programming, ICALP’90, pages 322–335. Springer, 1990.

[8] A. Arasu and J. Widom. Resource sharing in continuous
sliding-window aggregates. In Proc. of Int. Conf. on Very
Large Data Bases - Volume 30, VLDB ’04, pages 336–347.
VLDB Endowment, 2004.

[9] A. Arasu et al. Linear road: A stream data management
benchmark. In Proc. of Int. Conf. on Very Large Data Bases,
volume 30 of VLDB’04, pages 480–491. VLDB Endowment,
2004.

[10] A. Arasu et al. The CQL continuous query language: semantic
foundations and query execution. The VLDB Journal,
15(2):121–142, 2006.

[11] K. Cao et al. Context-aware distributed complex event
processing method for event cloud in internet of things.
Journal of Advances in Information Science and Service
Sciences, 5(8):1212–1222, April 2013.

[12] S. Chakravarthy et al. Integrating stream and complex event
processing. In Stream Data Processing: A Quality of Service
Perspective, volume 36 of Advances in Database Systems,
pages 187–214. Springer US, 2009.

[13] A. Demers et al. Cayuga: A general purpose event monitoring
system. In Proc. of Int. Conf. on Innovative Data Systems
Research, pages 411–422, 2007.

[14] K. P. Eswaran et al. The notions of consistency and predicate
locks in a database system. Commun. ACM, 19(11):624–633,
1976.

[15] T. M. Ghanem et al. Exploiting predicate-window semantics
over data streams. SIGMOD Rec., 35(1):3–8, Mar. 2006.

[16] A. Grosskopf et al. The Process: Business Process Modeling
using BPMN. Meghan Kiffer Press, 2009.

[17] G. Hermosillo et al. Complex Event Processing for
Context-Adaptive Business Processes. In Belgium-Netherlands
Software Evolution Seminar, pages 19–24, Dec. 2009.

[18] K. Isoyama et al. A scalable complex event processing system
and evaluations of its performance. In Proc. of Int. Conf. on
Distributed Event-Based Systems, pages 123–126, New York,
NY, USA, 2012. ACM.

[19] F. Joyce. Programming Logic and Design, Comprehensive.
Thomson, 2008.

[20] M. Klazar. Bell numbers, their relatives, and algebraic
differential equations. J. Comb. Theory, Ser. A, 102(1):63–87,
2003.

[21] W. Le et al. Scalable multi-query optimization for sparql. In
ICDE, pages 666–677, 2012.

[22] J. Li et al. No pane, no gain: Efficient evaluation of
sliding-window aggregates over data streams. SIGMOD Rec.,
34(1):39–44, Mar. 2005.

[23] M. Liu et al. E-Cube: Multi-dimensional event sequence
analysis using hierarchical pattern query sharing. In Proc. of
Int. Conf. on Management of data, SIGMOD’11, pages
889–900. ACM, 2011.

[24] Y. Mei and S. Madden. ZStream: A Cost-based Query
Processor for Adaptively Detecting Composite Events. In Proc.
of the SIGMOD Int. Conf. on Management of Data,
SIGMOD’09, pages 193–206. ACM, 2009.

[25] O. Poppe et al. The HIT model: Workflow-aware event stream
monitoring. In A. Hameurlain et al., editor, Advanced data
stream management and continuous query processing,
volume 8 of Transactions on large-scale data and
knowledge-centered systems, pages 26–50. Springer, 2013.

[26] A. Reiss et al. Creating and benchmarking a new dataset for
physical activity monitoring. In Proc. of Int. Conf. on
PErvasive Technologies Related to Assistive Environments,
PETRA’12, pages 40:1–40:8. ACM, 2012.

[27] P. Roy et al. Efficient and extensible algorithms for multi query
optimization. In ACM SIGMOD, pages 249–260, 2000.

[28] N. Russell et al. On the suitability of UML 2.0 activity
diagrams for business process modelling. In Proc. Asia-Pacific
Conf. on Conceptual Modelling, volume 53 of APCCM, pages
95–104. Australian Computer Society, Inc., 2006.

[29] S. Schneider et al. Tutorial: Stream Processing Optimizations.
In Proc. of Int. Conf. on Distributed Event-Based Systems,
DEBS’13, pages 249–258. ACM, 2013.

[30] N. P. Schultz-Møller et at. Distributed Complex Event
Processing with query rewriting. In Proc. of Int. Conf. on
Distributed Event-Based Systems, DEBS ’09, pages 1–12.
ACM, 2009.

[31] T. K. Sellis. Multiple-query optimization. ACM Trans.
Database Syst., 13(1):23–52, Mar. 1988.

[32] D. Wang, E. A. Rundensteiner, and R. T. Ellison, III. Active
complex event processing over event streams. Proc. VLDB
Endow., 4(10):634–645, July 2011.

[33] Y. Wang et al. Context-aware complex event processing for
event cloud in internet of things. In Proc. of Int. Conf. on
Wireless Communications and Signal Processing, pages 1–6.
IEEE, 2012.

[34] E. Wu et al. High-performance Complex Event Processing over
streams. In Proc. of Int. Conf. on Management of data,
SIGMOD ’06, pages 407–418. ACM, 2006.

424

	Context-Aware Event Stream AnalyticsOlga Poppe, Chuan Lei, Elke Rundensteiner, Dan Dougherty

