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Foreword

The 2015 International Conference on Extending Database Technology (EDBT) took place between the 23rd
and the 27th of March in Brussels, Belgium. In its 18th edition, EDBT 2015 continued its long tradition
of offering an outstanding research venue for the database community where to present and discuss recent
contributions.

This year, there were 184 submissions to the research track, 19 to the industrial track, and 25 to the demo
track. While these numbers are somewhat lower than in recent editions, the quality of the submissions was
very high, which made the job of the Program Committee quite difficult. At the end, the program committee
selected for publication 13 demos, 9 industrial papers, and 47 research papers. Of the latter, 5 of them were
Vision Papers, shorter papers proposing radically new ideas, which were presented in their own session at
the conference.

I would like to take this opportunity to thank all those that have made the 2015 EDBT edition such a success.
First and foremost, all the authors of papers submitted to the conference, thereby providing the basis for
a strong program, as well as the program committee members for their effort and dedication to study the
submissions in detail and engaging in many interesting discussions about the papers, their contributions, their
merits, and how to create the best possible program. Special mention should be made of the small committee
in charge of deciding the Test of Time Award, in this occasion covering 4 editions of the conference (from
1988 to 1994): Martin Kersten, Christoph Koch, and Guido Moerkotte. They selected the following paper
for the award:

Geo-Relational Algebra: A Model and Query Language for Geometric Database Systems, Ralf
Hartmut Güting, University of Hagen, Germany, from EDBT 1988.

I also would like to thank Lucian Popa and Jens Teubner for the great work they have done in running the
industrial and demo tracks. Martín Ugarte has done an excellent job with the proceedings, as have Pablo
Barceló with the tutorials and Peter Fischer with the workshops. The Conference Chair—Floris Geerts—and
the local organizers have also been instrumental in coordinating all the efforts of what is a very complex and
demanding endeavor. As a joint EDBT/ICDT Conference, we have four keynote talks, two of which have been
proposed by the EDBT community. Thanks go to Christoph Koch and Wolfgang Lehner for their acceptance
of our invitation. Finally, Christine Collet and Norman Paton have been instrumental in coordinating the
overall effort with the Executive Board of EDBT.

Gustavo Alonso
EDBT 2015 Program Chair
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EDBT 2015 Test of Time Award

In 2014, EDBT began awarding the EDBT test-of-time (ToT) award, with the goal of
recognizing one paper, or a small number of papers, presented at EDBT earlier and that
have best met the “test of time”, i.e. that has had the most impact in terms of research,
methodology, conceptual contribution, or transfer to practice over the past decade(s). The
EDBT ToT award for 2015 will be presented during the EDBT/ICDT 2015 Joint Conference,
March 23-27, in Brussels (Belgium). The EDBT 2015 Test of Time Award committee was
formed by Martin Kersten (CWI, The Netherlands), Guido Moerkotte (Uni Mannheim,
Germany), Christoph Koch (EPFL, Switzerland), all members of the EDBT 2015 PC and
chaired by Gustavo Alonso, the EDBT 2015 PC chair.

The committee was charged with selecting a paper or a small number of papers from the
proceedings of the following 4 editions: EDBT’88 - Venice, EDBT’90 - Venice, EDBT’92 -
Vienna, EDBT’94 - Cambridge.

After careful consideration, the committee has decided to select the following paper, as
the EDBT ToT Award winner for 2015:

Geo-Relational Algebra: A Model and Query Language for Geometric
Database Systems

by Prof. Dr. Ralf Hartmut Güting, University of Hagen, Germany
Published in the EDBT 1988 proceedings, 506-527

The paper addresses the user’s conceptual model of a database system for geometric data.
It proposes to extend relational database management systems by integrating geometry at all
levels: At the conceptual level, relational algebra is extended to include geometric data types
and operators. At the implementation level, the wealth of algorithms and data structures for
geometric problems developed in the past decade in the field of Computational Geometry
is exploited. The paper starts from a view of relational algebra as a many-sorted algebra
which allows to easily embed geometric data types and operators. A concrete algebra for
two-dimensional applications is developed. It can be used as a highly expressive retrieval
and data manipulation language for geometric as well as standard data. Also, geo-relational
database systems and their implementation strategy are discussed.

The committee members unanimously agreed that this paper clearly stands out in terms
of relevance, impact, and influence in databases. Of all the papers considered, this is the one
that had had the most and longest lasting impact with results that are still relevant today
and whose influence can be traced to many real systems and a significant amount of follow
up work.

The paper pioneered an important application area well before it became mainstream
and did it in a systematic and clean way that has been very influential in both research and
practice. Modern commercial systems all support geographic data types that are nowadays
used in a wide range of applications and use cases (maps, locations based services, geographic
information systems, mobility, etc.).

The selection committee also appreciated very much the cleanliness, completeness, insights,
formalism, and systematic treatment of the problem as well as the approach followed by the
author in selecting and solving a research problem.
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ABSTRACT
Most of previous studies on automatic database partitioning
focus on deriving a (near-)optimal (re)partition scheme ac-
cording to a specific pair of database and query workload and
oversees the problem about how to efficiently deploy the de-
rived partition scheme into the underlying database system.
In fact, (re)partition scheme deployment is often non-trivial
and challenging, especially in a distributed OLTP system
where the repartitioning is expected to take place online
without interrupting and disrupting the processing of nor-
mal transactions. In this paper, we propose SOAP, a system
framework for scheduling online database repartitioning for
OLTP workloads. SOAP aims to minimize the time frame of
executing the repartition operations while guaranteeing the
correctness and performance of the concurrent processing of
normal transactions. SOAP packages the repartition oper-
ations into repartition transactions, and then mixes them
with the normal transactions for holistic scheduling opti-
mization. SOAP utilizes a cost-based approach to rank the
repartition transactions’ scheduling priorities, and leverages
a feedback model in control theory to determine in which
order and at which frequency the repartition transactions
should be scheduled for execution. When the system is
under heavy workload or resource shortage, SOAP takes
a further step by allowing repartition operations to piggy-
back onto the normal transactions so as to mitigate the re-
source contention. We have built a prototype on top of Post-
greSQL and conducted a comprehensive experimental study
on Amazon EC2 to validate SOAP’s significant performance
advantages.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems - Distributed
Databases and Transaction Processing

General Terms
Algorithms, Design, Performance, Experimentation

c© 2015, Copyright is with the authors. Published in Proc. 18th Inter-
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Keywords
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1. INTRODUCTION
The difficulty of scaling front-end applications is well known

for DBMSs executing highly concurrent workloads. One ap-
proach to this problem employed by many Web-based com-
panies is to partition the data and workload across a large
number of commodity, shared-nothing servers using a cost-
effective, distributed DBMS. The scalability of online trans-
action processing (OLTP) applications on these DBMSs de-
pends on the existence of an optimal database design, which
defines how an application’s data and workload is parti-
tioned across the nodes in a cluster, and how queries and
transactions are routed to the nodes. This in turn deter-
mines the number of transactions that access data stored
on each node and how skewed the load is across the cluster.
Optimizing these two factors is critical to scaling complex
systems: a growing fraction of distributed transactions and
load skew can degrade performance by a factor of over ten.
Hence, without a proper design, a DBMS will perform no
better than a single-node system due to the overhead caused
by blocking, inter-node communication, and load balancing
issues.

Automatic database partitioning has been extensively re-
searched in the past. As a consequence, nowadays, most
DBMSs offer database partitioning design advisory tools.
The idea of these tools analyze the workload at a given time
and suggest a (near-)optimal repartition scheme in a cost-
based or policy-based manner, with the expectation that
the system performance can thereby always maintain a con-
sistently high level. It is then the DBA’s responsibility to
deploy the derived repartition scheme into the underlying
database system, which however often posts great challenges
to the DBA. On the one hand, the repartition operations
should be executed fast enough so that the new partition
scheme can start to take effect as soon as possible. How-
ever, granting high execution priorities to the repartition-
ing operations will inevitably slow down or even stall the
normal transaction processing on the database system. On
the other hand, the repartitioning procedure should be as
transparent to the users as possible. In other words, the
normal user transactions’ correctness must not be violated
and the processing performance should not be significantly
influenced. Obviously, even skilled DBAs may not be able
to easily figure out the best ways of deploying repartition
schemes, especially when the workload changes over time
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and has bursts and peaks. As a result, automatic parti-
tion scheme deployment satisfying the above requirements
is highly desirable. Surprisingly, few previous studies have
been devoted to this important research problem.

In this paper, we focus on the problem about how to
optimally execute a database repartition plan consisting of
a set of repartition operations in a distributed OLTP sys-
tem, where the repartitioning is expected to take place on-
line without interrupting and disrupting the normal trans-
actions’ processing. We propose SOAP, a system frame-
work for scheduling online database repartitioning for OLTP
workloads. SOAP aims to minimize the time frame of ex-
ecuting the repartition operations while guaranteeing the
correctness and performance of the concurrent normal trans-
action processing.

SOAP models and groups the repartition operations into
repartition transactions, and then mixes them with the nor-
mal transactions for holistic scheduling optimization. There
are two basic strategies for SOAP to schedule the reparti-
tion transactions, which are similar to the techniques used
in state-of-the-art database systems’ online repartitioning
solutions. The first strategy is to maximize the speed of
applying the repartition plan and submit all the reparti-
tion transactions to the waiting queue with a priority higher
than the normal transactions. The second strategy schedules
repartition transactions only when the system is idle. Both
basic strategies lack the flexibility to find a good trade-off
between the two contradicting objectives: maximizing the
speed of executing repartition transactions and minimizing
the interferences to the processing of normal transactions.
As a result, SOAP interleaves the repartition transactions
with normal transactions, and leverages feedback models in
control theory to determine in which order and at which fre-
quency the repartition transactions should be scheduled for
execution.

In the feedback-based method the repartition transactions
have the same priority as the normal transactions, hence
they will contend with normal transactions for the locks
of database objects and significantly increase the system’s
workload, especially when the system is under heavy loads
or resource shortage. To mitigate this issue, SOAP utilizes a
piggyback-based approach, which injects repartition opera-
tions into the normal transactions. The overhead of acquir-
ing and releasing locks as well as performing the distributed
commit protocols incurred by a repartition transaction can
be saved if the normal transaction that it piggybacks on will
access the same set of database objects.

While the piggyback-based approach consumes less re-
sources, it fails to take use of the available system resources
to speed up the repartitioning process. This may leave some
resources unused when the system workload is low and there
are few transactions to piggyback on. Therefore, SOAP
adopts a hybrid approach that is composed by a piggyback
module and the feedback module. When the system work-
load does not use up all the system’s resources, we can make
use of the available resources to repartition the data be-
fore the actual arrival of transactions that will access them,
meanwhile the piggyback-based approach will attempt to let
the repartition transactions piggyback on the normal trans-
actions when they arrive.

To summarize, we make the following contributions with
this work:

• To the best of our knowledge, we are among the first

to specifically study the problem of online deploying
database partition schemes into OLTP systems.

• We propose a feedback model that realizes dynamic
scheduling of the repartition operations.

• We also propose a piggyback approach to execute se-
lected repartition operations within normal transac-
tions to further mitigate the repartitioning overhead.

• We have built a SOAP prototype on top of PostgreSQL,
and conducted a comprehensive experimental study on
Amazon EC2 that validates SOAP’s significant perfor-
mance advantages.

The rest of this paper is organized as follows. In Section 2,
we describe the generic SOAP system architecture, as well
as how SOAP realizes online repartitioning for OLTP work-
loads. In Section 3, we elaborate SOAP’s feedback-based,
piggyback-based and hybrid approaches of online schedul-
ing repartition operations. Section 4 presents the experi-
ment set-up and experimental results of a SOAP prototype
on an Amazon EC2 cluster. We discuss the related works in
Section 5 and then conclude in Section 6.

2. SOAP SYSTEM OVERVIEW
In this section, we describe the generic SOAP system ar-

chitecture, as well as how SOAP realizes online repartition-
ing for OLTP workloads.

2.1 SOAP System Architecture
Figure 1 shows a SOAP-enabled distributed database ar-

chitecture providing OLTP services. The clients submit user
transactions through a transaction manager (TM), which
can be either centralized or distributed.Each submitted trans-
action will be given a global unique ID by the TM. TM
takes care of the processing life-cycle of transactions and
guarantees their ACID properties with certain distributed
commit protocols and concurrency control protocols. The
query router maintains the mappings between data parti-
tions and their resident nodes, based on which it routes the
incoming transaction queries to the correct nodes for exe-
cution. All the submitted transactions will be associated
with a scheduling priority and then put into a processing
queue, where higher-priority transactions will be executed
first, while the FIFO policy will be applied to break the tie.
The rules of setting priorities are customizable.

The transaction manager, query router and processing
queue are common components in most OLTP systems, while
SOAP introduces a new component repartitioner to coordi-
nate its online database repartitioning for OLTP workloads.
In the following subsection, we describe how the reparti-
tioner works.

2.2 Online Database Repartitioning
In this paper, we consider the scenarios where the type of

transactions and frequency of OLTP workloads could change
over time, so that periodic database repartitioning is re-
quired in order to maintain the system performance.

The repartitioner determines when and how the OLTP
database should be repartitioned. Its optimizer component
periodically extracts the frequency of transactions and their
visiting data partitions from the workload history, and then
estimates the system throughput and latency in the near
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Figure 1: The generic SOAP system architecture

future based on the history. If the estimated system per-
formance is under a predefined threshold, the optimizer will
derive a repartition plan in a cost-based manner. The repar-
tition plan could be at the granularity of moving individual
tuple or tuples within some ranges or with some hash keys
on their attributes. We assume each tuple contains enough
information to be positioned by query router. We assume
tuple replicas are only made for the purpose of high availabil-
ity, yet make no assumptions about the replication strategy
utilized. Tuple replicas will be distributed over distinct data
partitions, and the query router will determine for a trans-
action which replica of a specific tuple should be visited.

The optimizer will generate three types of repartition op-
erations together with the normal transactions accessing the
database objects repartitioned by each of them, i.e. new
replica creation, replica deletion and objects migration.

• New Replica Creation: insert some new replicas of
database objects originally stored in a data partition
into an another one containing no other replicas of the
same objects.

• Replica Deletion: for database objects with multiple
replicas, delete the specific replica within one parti-
tion.

• Objects Migration: relocate some database objects be-
tween two partitions; the procedure is realized by first
inserting new replicas of them into the destination par-
tition and then deleting the original ones from the
source partition.

To execute the repartition operations, the scheduler pack-
ages them into repartition transactions using the informa-
tion provided by the optimizer. The repartition transac-
tion will be scheduled by the repartitioner and submitted
to the system at a chosen time. It utilizes a cost-based ap-
proach to determine the repartition transactions’ execution
orders, and leverages a feedback model in control theory to

determine at which frequency the repartition transactions
should be scheduled for execution. As such, the processing
of repartition transactions and normal transactions may be
interleaved. In other words, during the database repartition-
ing, the processing of normal transactions will keep going
on, and an online scheduling algorithm, which will be elabo-
rated in Section 3, attempts schedule repartition transaction
so that the time frame of executing the repartition opera-
tions is minimized while guaranteeing the correctness and
performance of the concurrent processing of normal trans-
actions.

The repartitioner accesses the system logs, manipulates
the processing queue and updates the mapping information
and routing rules in the query router during and after the
database repartitioning. With the piggyback-based execu-
tion method, the repartitioner may need to modify the nor-
mal transactions by inserting additional repartition opera-
tions to some of them, and the transaction manager will
coordinate the processing of the modified normal transac-
tions.

3. ONLINE REPARTITION SCHEDULING
The scheduling of repartition operations has to be done

in an online fashion. Besides the incoming workload is hard
to predict, there are many system factors that will cause
the system performance to fluctuate over time, such as vari-
ations of network speeds/bandwidth, transaction failures,
and interferences from other programs running on the same
server. Therefore, we study how to implement an online
scheduler that can continuously adapt to the system’s ac-
tual workload and capacity.

3.1 Generating and Ranking Repartition Trans-
actions

In all the subsequent scheduling algorithms, we have to
first decide the execution order of repartition transactions
and schedule the more “beneficial” ones before those less
“beneficial”. To achieve this, we need to estimate the cost
and benefit of executing such transactions. To estimate the
cost of a transaction under different partitioning plans, we
follow the approach in [4]. Suppose the cost of running
transaction Ti with a repartition plan where all the tuples
accessed by Ti are collocated in a single partition is Ci, then
the cost of Ti with a plan where Ti has to access more than
one partition is 2Ci.

To estimate the benefit of a repartition transaction, we
use the cost model of the data partitioning algorithms, such
as [4, 13, 15]. Suppose the cost of an arbitrary normal trans-
action Ti with partition plan P is Ci(P), then the benefit of
a repartition transaction Tj , denoted as Bj can be defined
as Σ∀Tifi(Ci(O)− Ci(P)), where fi is the frequency of Ti.
Finally, we can define the benefit density of Tj as Bj/Cj

and then we can schedule the repartition transactions in de-
scending order of their benefit densities.

To package the repartition operations into transactions,
there are two simple options: (1) putting all operations into
one transaction and (2) creating one transaction for each op-
eration. The first option will create a very large transaction
especially when there are a lot of data to be repartitioned.
Such a large transaction will be run for a very long time and
will significantly increase resource contention. For example,
with a 2PL policy, the repartition transaction has to hold
the locks of all the data objects involved in the repartition
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plan until it is committed. This will substantially increase
the degree of lock contention with the normal transactions.
On the other hand, the second option will not suffer from
this problem but it will create a lot of transactions each in-
curring overhead to the transaction manager. It is desirable
to find a good trade-off between this two extremes. In prin-
ciple, we would like to create small transactions and their
overhead can be paid off by the benefit that it will bring to
the system. As accurately predicting and quantifying the
overhead and the degree of lock contentions that will be in-
troduced by a repartition transaction is difficult, we adopt a
simple heuristic here. Roughly speaking, we put the repar-
tition operations that repartition all the objects accessed by
a normal transaction into a repartition transaction. In this
way, we can ensure that there is at least one normal transac-
tion that will benefit from executing the repartition transac-
tion. Provided that the achieved benefit is greater than the
overhead of introducing the repartition transaction, we can
ensure that the overhead will be paid off when the repar-
tition transaction is executed. Furthermore, even with this
heuristic, there are still many possible ways to combine the
repartition operations into transactions. We prefer generat-
ing transactions that will have higher benefit densities and,
as mentioned earlier, schedule them in descending order of
their benefit densities.

Algorithm 1 shows the whole process for the scheduler to
generate a ranked list of repartition transactions. Given a
new partition plan P generated by a cost-based repartition
optimizer, the scheduler will obtain a list of repartition op-
erations OPrep together with the list of normal transactions
that will access the data objects modified by each operation.
In line 1-8, we construct a map TOP that maps the ID of a
normal transaction ti with frequency fi to a group of repar-
tition operations that will modify objects accessed by ti. In
other words, the performance of ti will be affected by this
list of repartition operations.

We then calculate the benefit of executing each repartition
operation in lines 9-14. After that, we can calculate the total
benefits of each group of repartition operations in Top and
store them in another map Tbenefit with value descending
order. Finally, we transform each group of repartition op-
erations into a repartition transaction, and make sure each
repartition operation only belongs to one repartition trans-
action. These repartition transactions will be returned by
the algorithm as the output. Furthermore, we calculate the
benefit density of each repartition transaction and sort them
in descending order. Given a repartition transaction ri and
a normal transaction ti whose performance will be affected
by ri, TRep maps the ID of ri to the ID of ti and the benefit
density of ri. Such auxiliary information will be used in our
subsequent scheduling algorithms.

3.2 Basic Solution
In general, there is a tension between the two objectives

in our scheduling: (1) executing the repartitioning queries
as soon as possible to improve the current partitioning plan,
(2) avoiding interferences to the normal transactions and
making the repartition process transparent to the end users.
In this subsection, we propose two baseline solutions, each
favoring one of the objectives.

Apply-All. This strategy is to maximize the speed of ap-
plying the repartitioning plan and submits all the repartition
transactions to the waiting queue with a priority higher than

Algorithm 1: Generating and Ranking Repartition
Transactions
Data: a list of repartition operations OPrep generated

by optimizer, new partition plan P
Result: a list of repartition transactions LRep,a map

TRep mapping repartition transaction id to a
affected normal transaction id and the benefit
density of the repartition transaction

1 Create HashMap Top, a mapping from normal
transaction to the repartition operations that edit the
objects visited by it

2 for opk ∈ OPrep do
3 for Normal transaction ti accessing the objects

modified by opk do
4 if Ci(O)− Ci(P) > 0 then
5 Insert opk to Top.get(ti)

6 for ti ∈ Top.keylist do

7 benefit ← fi
Ci(O)−Ci(P)

Top.get(ti).size()

8 for opk ∈ Top.get(ti) do
9 opk.benefit += benefit

10 Create HashMap Tbenefit, a mapping from repartition
operation group ID to the total benefit for system if all
the operations within this group are executed

11 for (ti,Lop) ∈ Top.entrySet do
12 benefit ← 0; for opi ∈ Lop do
13 benefit += opi.benefit;
14 Insert (ti,benefit) to Tbenefit;

15 Sort Tbenefit with value descending order
16 for (ti,benefit) ∈ Tbenefit do
17 ops ← Top.get(ti);
18 for opi ∈ ops do
19 if opi /∈ OPrep then
20 Remove opi from ops; Tbenefit.get(ti) ←

Tbenefit.get(ti)− opi.benefit;
21 Remove ops from OPrep;
22 Create ri with ops;
23 ci ← Cost(ri,O);

24 cpri ←
Tbenefit.get(ti)

ci
;

25 Insert ((ri, ti),cpri) to TRep;
26 Insert ri to LRep

27 Sort TRep with value descending order;

the normal transactions. As mentioned earlier, the system
will schedule the transactions in descending order of their
priorities and hence this strategy is equivalent to pausing
the processing of normal transactions and performing the
repartitioning queries immediately. Depending on the num-
ber of repartition transactions, the normal transactions may
need to wait for a rather long time, which is usually unac-
ceptable.

After-All. To minimize the interferences to normal trans-
actions, we can use a lazy strategy where repartition trans-
actions will only be scheduled when the system is idle. We
can achieve this by giving all the repartition transactions a
priority lower than the normal ones. By doing so, the normal
transactions will almost not be affected by repartition trans-
actions and the repartitioning could be done transparently.
Due to this advantage, a state-of-the-art approach for online
repartitioning adopted this strategy [15]. However, there is
a downside of this approach: the repartitioning may be per-
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Figure 2: A sample PID controller block diagram

formed too slowly, especially when the system workload is
high and there is very little idle time. Under this situation,
the high workload could actually be alleviated by adopting
the new and better partitioning plan and this strategy fails
to take advantage of those.

3.3 Feedback-based Approach
As discussed earlier, the aforementioned basic solutions

lack the flexibility to find a good trade-off between the two
contradicting objectives. To achieve this, one can sched-
ule some additional repartition transactions on top of those
scheduled by the After-All strategy. These additional trans-
actions will be assigned with the same priority as the normal
transactions so that they have the chance to be executed
faster. We call such transactions as high-priority reparti-
tion transactions to distinguish them with those low-priority
ones scheduled by the After-All strategy. To limit the im-
pact over the normal transactions, we can limit the number
of high priority repartition transactions.

However, such a seemingly simple idea is rather challeng-
ing to realize in practice. Note that the number high-priority
repartition transactions that we can execute without signifi-
cant disturbance of the normal transactions heavily depends
on the system’s current workload and capacity. In reality,
the system’s workload may have temporal skewness and fluc-
tuations even if it appears to be uniformly distributed for
a long period [13]. Furthermore, the system’s capacity is
also subject to variations caused by external factors, such as
external workload imposed on the same server or other vir-
tual servers running on the same physical machine or cluster
rack in a cloud computing environment. A desirable solution
should be able to detect such short-term variations of system
workload and capacity and promptly adapt the scheduling
strategy accordingly. To achieve this goal, we model our
system as an automatic control system and make use of the
feedback control concept in control theory to design an adap-
tive scheduling strategy.

Control theory deals with the behaviors of complex dy-
namic systems with inputs and present output values. A
controller is engineered to generate proper corrective actions
so that system error, i.e. the differences between the desired
output value, called setpoint (SP ), and the actual measured
output value, called process variable (PV ), are minimized.

A commonly used controller is the Proportional-Integral-
Derivative controller (PID controller). Figure 2 depicts a
graphical representation of a PID controller. Let u(t) be
the output of the controller, then the PID controller can be

defined as follows:

u(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
d

dt
e(t) (1)

where Kp, Ki and Kd are the proportional, integral and
derivative gains respectively, and e(t) is the system error
at time t. The system error can be minimized by tuning
the three gains so that the controller will generate proper
outputs. Simply put, Kp, Ki and Kd determines how the

present error (e(t)), the accumulation of past errors (
∫ t

0
e(τ)dτ)

and the predicted future error ( d
dt
e(t)) would affect the con-

troller’s output.
The system for scheduling repartition transactions can be

modeled as a PID controller as follows. We can use the
ratio of the total cost of the high-priority repartition trans-
actions to that of the normal transactions as the SP for the
PID controller. By stabilizing this ratio, we can constrain
the total workload imposed by the high-priority repartition
transactions at a desirable level so that they would have
limited impact over the latency of the normal transactions
and in the mean time maximize the speed of applying the
repartitioning plan.

To capture the fluctuations of the system’s workload and
capacity, we divide the time into small intervals and measure
the aforementioned ratio for every interval. The actual ratio
that is measured would be the PV of the PID controller
and hence the error can be computed as SP − PV . The
output of the controller is the ratio to be used to calculate
the number of high-priority repartition transactions that we
should schedule in the coming interval.

To tune the parameters of the PID controller, we take an
online heuristic-based tuning method formally known as the
Ziegler—Nichols method[19].

Finally, we enforce a limit on the maximum number of
high-priority repartition transactions scheduled in each time
interval to avoid significant impacts caused by sudden changes
of system workload and capacity, which the PID controller
will take some time to stabilize its outputs. Putting such
a limit is essentially a conservative approach to avoid too
much interferences during the period that the PID controller
is stabilizing its behavior.

3.4 Piggyback-based Approach
In the feedback-based method the repartition transactions

have the same priority as the normal transactions, hence
they will contend with normal transactions for the locks
of database objects and significantly increase the system’s
workload.

In this section, we propose a piggyback-based approach,
which injects repartition operations into the normal trans-
actions that access the same object. As these transactions
would acquire the locks of these objects anyway, we can save
the overhead of acquiring and releasing locks as well as per-
forming the distributed commit protocols. Moreover, we can
reduce the degree of lock contention by reducing the number
of transactions.

The algorithm of this approach is illustrated in Algo-
rithm 2. The algorithm make use of the auxiliary informa-
tion produced in Algorithm 1. It examines the transaction
ID ti of the incoming normal transaction and check if there
exist an repartition transaction rj in TRep which ti can ben-
efit from but are not yet executed. If so, rj will piggyback
onto ti, injecting the repartition operations in rj to ti. These
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Algorithm Workload
HighLoad LowLoad

α = 100% α = 60% α = 20% α = 100% α = 60% α = 20%

Feedback
Zipf 1.05 1.05 1.1 1.05 1.03 1.015
Uniform 1.25 1.25 1.25 1.02 1.03 1.02

Hybrid
Zipf 1.05 1.05 1.05 1.05 1.03 1.05
Uniform 1.05 1.05 1.05 1.03 1.05 1.05

Table 1: SP value for Experiments

Algorithm 2: Piggyback Algorithms for incoming nor-
mal transactions Ti(k)

Data: a list of repartition transactions LRep, a map
TRep from repartition transaction id to an
affected normal transaction and the benefit
density of the repartition transaction, incoming
normal transactions Ti(k) in interval k, List of
all the repartition operations OPRep

Result: Piggybacked normal transaction executed in
interval k

1 Create a map P(k) of all the normal transactions
piggyback some repartition operations in interval k

2 for ti ∈ Ti(k) do
3 if rj , ti ∈ TRep.keylist then
4 ops ← LRep.get(rj)
5 Insert ops to ti
6 Inert (ti, (rj , ti)) to P(k)

7 Submit Ti(k)
8 Get Result(k) for any finished transaction
9 for (ti ∈ P(k)) do

10 if ti ∈ Result(k) then
11 if ti.success then
12 Remove P (k).get(ti) from TRep

13 else
14 Remove LRep.get(P (k).get(ti).getKey())

from ti
15 Resubmit ti

repartition operations will share the locks of objects with the
normal transactions. This essentially leads to a repartition-
on-demand strategy where data will be repartitioned only
when they are accessed. After the piggybacked transaction
is successfully committed, we will remove the corresponding
repartition transaction in TRep.

The piggyback method will increase the transaction fail-
ure rate as the execution times of normal transactions are in-
creased. If too many repartition operations piggyback onto a
normal transaction, then the system throughput will be de-
creased due to unnecessary aborts caused by the failure of
the piggybacked repartition operations. Therefore, we need
to limit the maximum number of repartition operations that
can piggyback onto each normal transaction. This parame-
ter should be tuned at runtime to adapt to the scenarios of
different systems.

3.5 Hybrid Approach
While the piggyback-based approach consumes less re-

sources, it fails to take use of the available system resources
to speed up the repartitioning process. This may not work
well when the system workload is low and there are few
transactions to piggyback on. A more desirable approach

is, when the system workload is low, we can take use of the
available resources to repartition the data before the actual
arrival of transactions that will access them, and when the
system is a bit congested, we can take advantage of the op-
portunities to piggyback the repartition operations on the
incoming transactions.

In this section, we present a hybrid approach that is com-
posed by a piggyback module and the feedback module. The
piggyback module will piggyback the repartition operations
on the incoming normal transactions. Then for each inter-
val, the feedback module will measure the actual PV value
by counting in both the repartition transactions and those
repartition operations piggybacked on the normal transac-
tions. In this way, the feedback module will adapt the num-
ber of repartition transactions according to the actual work-
load of the system. In other words, when there are more
incoming normal transactions that more repartition opera-
tions can piggyback on, we will reduce the number of repar-
tition transactions and vice versa.

4. EVALUATION
In this section, we will first provide some details of our

system implementation and experimental configuration in
Section 4.1. The experimental results under different work-
load conditions are presented and discussed in Section 4.3
and Section 4.2.

4.1 Experimental Configuration
System Implementation and Configuration. We

have used PostgreSQL 9.2.4 as the local DBMS system at
each data node and JavaSE-1.6 platform for developing and
testing our algorithms. We have developed a query router
using a lookup table to route each query to its target database
objects. We have also implemented a query parser that reads
a query and extracts the partition attributes of the target
objects, which will be used for query routing and applying
our online repartition strategies. For transaction manage-
ment, we take use of Bitronix[17], an implementation of Java
Transaction API 1.1 version adopting the XAResource inter-
face to interact with the DBMS resource managers running
each the individual data node and using 2-Phase Commit
protocol for distributed transaction commits.

Our evaluation platform is deployed on a Amazon EC2
cluster consisting of 5 data nodes corresponding to 5 data
partitions respectively. Each data node runs an instance of
a PostgreSQL 9.2.4 server, which is configured to use the
read committed isolation level and has a limitation of 100
simultaneous connections. Note that higher isolation level
will decrease the system concurrency and hence lower the
system’s capacity. But it will not affect the performance of
our algorithms. The node configuration consists of 1 vCPU
using Intel Xeon E5-2670 processor and 3.75 GB memory
with an on-demand SSD local storage running 64-bit Ubuntu
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Figure 3: Experiment Results for Transaction Failure Rate

13.04. The query router is run on another EC2 instance with
the same setting.

Workloads and Datasets. We create a table containing
500, 000 tuples, each tuple has a global unique key field and
an integer content field. The size of each tuple is 8 bytes.
We generate two types of workload distribution to simulate
different sceneries of transaction popularity: a uniform dis-
tribution with 30, 000 distinct transactions and a Zipf dis-
tribution with 23, 457 distinct transactions. We generate
the workload with a Zipf distribution using the parameter
s = 1.16 so that the workload follows the 80-20 rule. Each
normal transaction contains 5 queries. Each query access
one unique tuple and is either a read-only or a write query
with equal possibility.

We use a Poisson distribution to determine how many nor-
mal transactions are submitted to the system during each
interval, which is set to be 20 seconds. Each run of the
experiment will last for 45 minutes and the normal transac-
tions are submitted to the system at the beginning of each
time interval. We generate a high and a low workload as
follows. Lowload has an average system utilization as 65%
before the repartitioning, which is measured by the percent-
age of time that the system spend on processing the normal
transactions. Highload simulates a system overloaded sit-
uation, where the incoming workload is 30% higher than
the system capacity. Under this situation, it is more urgent
to adopt the repartitioning plan to reduce the effective in-
coming load. Furthermore, for each situation, we vary the
percentage of tuples α we need to repartition, which varies
from 100% to 20%. After the repartitioning, α percent of the
normal transactions would be tranformed from distributed
transactions to non-distributed transactions.

Algorithm Settings. We compare all the algorithms
we discussed in the previous sections. We use two per-
formance metrics for comparison: the system throughput,
which is counted as the maximum number of normal trans-
actions that the system can process per unit of time, and

the processing latency, which is the time between a transac-
tion is submitted and the time its processing is finished. In
order to examine the lock contentions incurred by the var-
ious scheduling algorithms, we also collect the failure rate
of transactions, which is defined as the number of aborted
transactions compared to the total number of transaction
submitted to transaction manager.

In line with the workload generation, we divide the time
into 20 seconds of intervals and run the system for 10 inter-
vals to warm it up before we start the repartitioning. Fur-
thermore, the feedback-based approach uses 20 seconds as
the monitoring interval. For the feedback model parameter
used in each of the experiment, we have the different SP
values which are listed in Table 1. All the experiments will
have the same controller parameter Kp = 1, Ki = 0 and
Kd = 0.

4.2 Performance Under High Load
Recall that under the high workload setting, we have set

the initial workload to be higher than the system’s capacity
but it should become lower than the system’s capacity af-
ter applying the repartition plan as the normal transactions
would consume less resources with the new partition plan.
Therefore, it is necessary for the system to be able to process
the repartition transactions soon.

Zipf workload. The experimental results are presented
in Figure 4. As we discussed earlier, ApplyAll would stall
all the normal transactions and execute all the repartition
transactions before we resume the normal processing. This
should result in the fastest deployment of the new partition
plan. This is verified by Figures 4a, 4b and 4c. However as
one can see from Figures 4d, 4e and 4f and Figures 4g, 4h
and 4i, using this approach will experience a period that
system has a very low throughput and very high processing
latency caused by the stalling of the normal transactions.

As shown in Figure 4i, the impact on processing latency
can actually last much longer than the time needed to per-
form the repartitioning. This is because a long waiting queue

7



0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Time Interval

R
ep

R
at

e

 

 

ApplyAll
AfterAll
Feedback
Piggyback
Hybrid

(a) α = 100%

0 20 40 60 80 100 120
0.4

0.6

0.8

1

Time Interval

R
ep

R
at

e

 

 

ApplyAll
AfterAll
Feedback
Piggyback
Hybrid

(b) α = 60%

0 20 40 60 80 100 120
0.8

0.85

0.9

0.95

1

Time Interval

R
ep

R
at

e

 

 

ApplyAll
AfterAll
Feedback
Piggyback
Hybrid

(c) α = 20%

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3x 10
4

Time Interval

T
h

ro
u

g
h

p
u

t(
tx

n
/m

in
)

(d) α = 100%

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3x 10
4

Time Interval

T
h

ro
u

g
h

p
u

t(
tx

n
/m

in
)

(e) α = 60%

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3x 10
4

Time Interval

T
h

ro
u

g
h

p
u

t(
tx

n
/m

in
)

(f) α = 20%

0 20 40 60 80 100 120

10
4

10
5

10
6

Time Interval

L
at

en
cy

(m
s)

(g) α = 100%

0 20 40 60 80 100 120

10
4

10
5

10
6

Time Interval

L
at

en
cy

(m
s)

(h) α = 60%

0 20 40 60 80 100 120
0

2

4

6

8

10x 10
5

Time Interval
L

at
en

cy
(m

s)

(i) α = 20%

Figure 4: Experiment Results for Zipf High Workload

will be built up during the repartitioning process and hence
it needs a longer time to clear the queue. (Note that we
have set the initial ratio of workload to system capacity be
roughly equal for all α values and we actually submit more
normal transactions in the case with a lower α value. Hence
the waiting queue will be longer in this case.)

On the contrary, AfterAll basically cannot execute any
repartition transactions due to the lack of system idle time,
hence it cannot take advantage of the new data partition
plan. The Feedback approach will enforce the scheduling of
some repartition transactions, hence can make some progress
in deploying the new partition plan (Figures 4a, 4b and 4c).
Accordingly the system’s throughput and processing latency
will improve gradually. (Again, we submit more normal
transactions in the case with a lower α value. So it takes a
longer time to deploy the repartition plan.)

As we analyzed in the earlier sections, the Piggyback ap-
proach can effectively reduce the cost of executing reparti-
tion operations. This is especially important when the sys-
tem is under high workload and has little extra resources for
repartitioning the data. Furthermore, the high arrival rate
of normal transactions provides abundant opportunities for
the repartition operations to piggyback. The results in Fig-
ure 4 verify our analysis. In comparing to ApplyAll, both
Piggyback and Hybrid do not incur any sudden dropping
of system performance while is able to quickly execute the
repartition plan. It even outperforms ApplyAll at almost all
time intervals in terms of both throughput and latency with

a lower α value, i.e. fewer tuples to be repartitioned.
Uniform workload. We also perform the experiments

with a workload under a uniform distribution. The results
are presented in Figure 5. The difference from the work-
load with a Zipf distribution is that we will not gain a lot
of improvement by executing a small portion of repartition
transactions.

Similar to the previous experiments, since the workload is
more than the system could handle, AfterAll could barely
execute any repartition transactions improve the system’s
performance, while ApplyAll finish the repartition process
in 20,12 and 4 intervals, which is proportional to the number
of repartition transactions that need to be executed.

For the Feedback method, we set a higher SP value un-
der uniform workload to examine its performance when more
repartition transactions are enforced to be submitted to the
system. Under α = 100%, we cannot apply enough repar-
tition transactions to stop the queue size from increasing.
So even the repartition rate increases a bit in figure 5a, the
throughput and latency does not get improved. But under
the cases with α = 60% and α = 20%, since the number of
repartition transactions we need to execute is smaller, the
system finally finish the repartition in time and make the
system able to process all the incoming normal transactions
without queuing. In comparing the results in the previous
experiments, a higher SP here is actually beneficial when
the number of repartitioning transactions is relatively small
and Feedback has the chance to finish them in a good time.
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(c) α = 20%
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Figure 5: Experiment Results for Uniform High Workload

Similar to the Zipf workload, both Piggyback and Hybrid
performed the best in all cases. They can achieve a speed
that are almost identical to the ApplyAll approach.

Transaction failure rate. To further investigate the
effect of the algorithms, we also collect the failure rates of
transactions. Here we only report the results with α = 100%
since we could experience highest lock contention in these
scenarios. The results are shown in Figure 3. We can see
from Figure 3a, AfterAll has a very high failure rate dur-
ing the whole period simply because the system’s workload
is very high and it fails to apply the repartition plan to
quickly improve the system’s performance. Furthermore,
both the piggyback and hybrid method has a very low fail-
ure rate through the whole period, which clearly show the
piggyback-based method’s advantage of lowering lock con-
tentions. On the other hand, the feedback-based method
experiences some failure caused by the extra transactions
scheduled by the feedback-based method.

Figure 3b shows the results with the uniform workload.
The general trend is similar. But it is interesting to see that
the extra failure rate caused by the piggyback strategy lasts
longer than the case with Zipf workload. This is because
there is not any very hot transaction in this scenario, so
we cannot deploy the repartition plan as quickly as in the
case with Zipf workload. The mechanism of executing more
high-priority repartition transactions with Hybrid causes a
higher initial failure rate but it drops more quickly than the
piggyback approach. This shows that Hybrid has an edge

when there are less transactions to piggyback on.

4.3 Performance Under Low Load
In the low load experiments, we expect the system has

more idle time and the repartition process could be done
more aggressively to make use of those available resources.
For the Zipf workload, since there exist some transactions
that have very high frequencies, the resource contention un-
der the same load level will be higher than the Uniform
workload. The results are shown in Figure 6 and 7.

Zipf workload. ApplyAll performs similarly as under
high load situation. But since there are fewer normal trans-
actions, there are also fewer transactions that are queued up
during the repartitioning period and we have a shorter time
for the system to achieve its maximum performance after
the repartitioning period.

As the system has enough idle time now, AfterAll could
submit quite some repartition transactions. In Figure 6a,
we can see that it takes some time for the system to have an
idle period. It happens that there are three intervals that
have a very high workload generated by our Poisson load
generator. When the tuples accessed by the high frequency
normal transactions are not repartitioned yet, their average
execution time will be much higher than normal because of
resources contention. We could see that AfterAll does not
have this problem in Figures 4b and 4c. AfterAll has the
minimum interference to the normal transactions when the
system is able to handle the normal transaction load like
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(e) α = 60%
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(f) α = 20%
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Figure 6: Experiment Results for Zipf Low Workload

the situations in Figure 6h and 6i and hence it could be the
algorithm that can achieve the lowest average latency.

The Feedback method will add more repartition transac-
tions to the system besides filling the idle period. So we
can see in Figure 6g that it partitions the tuples accessed
by some high frequency transactions and render the system
load decreasing more quickly than AfterAll. Adding the ex-
tra repartition transactions will increase processing latency
of the normal transactions. This extra latency is a trade-off
against the repartitioning speed. In Figure 5d, we can see
that Feedback has a higher throughput than AfterAll but
with a higher latency before it finishes all the repartition
transactions.

The overhead of the piggyback method is proportional to
the number of piggybacked transactions. When the work-
load is low, like the condition in Figure 6f, it may not be
able to repartition the database as fast as the other meth-
ods. But the overhead on latency is also lower when the
workload is low, which is similar to AfterAll.

Hybrid performs very well even under low workload. It
always finishes the repartitioning work with a speed that is
only slower than ApplyAll and in the meantime keeps the
latency overhead less than the Feedback method. Since the
repartitioning speed of Hybrid is faster than Feedback, the
time period that normal transactions will experienced some
extra latency are much shorter.

With regard to the failure rate, the trend shown in Fig-
ure 3c is very similar to the case with high workload, except
that AfterAll has a much lower failure rate in this case. This
is because the system’s workload is not that high and After-
All has the opportunity apply the repartition plan to further

improve the system’s performance.
Uniform workload. The results are reported in Fig-

ure 7. In this case, the degree of resource contention among
normal transactions is lower than that with the Zipf work-
load. AfterAll could finish the repartitioning more quickly
than with the Zipf load. Since the frequency of each nor-
mal transaction is low, the effect of repartition may take
some time to get into effect. An interesting phenomenon is
that Piggyback in this case works worse than the previous
cases. With the uniform and low load situation, there are
relatively few transactions to be piggybacked on and hence
it take much longer for the piggyback approach to finish the
repartitioning.

Furthermore, from Figure 3d, we can find that before the
repartitioning is finished, the piggyback approach incurs a
higher failure rate. This is because, even though Piggy-
back does not incur additional transactions, the piggybacked
transactions will run longer than normal and this may still
increase lock contentions to a certain degree. Given the
longer repartitioning period in this case, its overhead on fail-
ure rate is more prominent here. On the contrary, Hybrid is
able to make use of the available system resources to speed
up the repartition and hence do not suffer this problem.

5. RELATED WORKS
Data partitioning for distributed database system is about

designing a data placement strategy minimizing the trans-
action overheads and balancing the workloads. Besides ba-
sic algorithms using some static functions, such as range-
based or hash-based, to partition the data, researchers have
recently been focusing on workload-aware partitioning al-
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Figure 7: Experiment Results for Uniform Low Workload

gorithms that take the transaction statistics as input [4,
13]. These solutions utilize various techniques to model the
historical workload information and search for an optimal
partition scheme according to a specific objective function.
Schism [4] is an automatic partitioning tool trying to mini-
mize distributed transactions. Horticulture [13] further im-
prove this approach by considering temporary skewness of
workloads and using a local search algorithm to optimize
partition schemes. This work provides a cost model for pro-
cessing a transaction that considers both the number of par-
titions the transaction need to access and the overall skew-
ness of data access.

Alekh etc.[8] present an online partitioning method that
will partition the data in checkpoint time intervals. They
generate partition schemes based on historical query execu-
tion logs and automatically update the partition plan when
the workload changes. Besides the static partitioning meth-
ods, there are also some studies on incremental partition-
ing. For example, Sword [15] adopts a similar model as
Schism [4] and introduces an incremental repartitioning al-
gorithm that calculates the contribution of each repartition
operation and the cost of executing it. They also propose a
threshold on the number of repartition queries that will be
generated for each repartition step and a constrained num-
ber of repartition queries will be executed when the system
is at a lean period. This approach is similar to our baseline
solution AfterAll. Some commercial database systems [12,
10] support online partitioning. But all of them require the

partitioned data would not be untouched by normal trans-
actions during the partitioning period. Hence this is similar
to our ApplyAll solution. In our former short paper[1], we
briefly presented the basic ideas about the feedback and pig-
gyback algorithms. In this paper, we provide a more thor-
ough analysis of the problem, consider the drawbacks of the
piggyback solution and provide more experiment results to
illustrate the trade-offs in the piggyback solution. We also
propose the hybrid approach that combines the feedback and
piggyback algorithm to benefit from the advantages of both
algorithms while avoiding the problem of high failure rate in
the piggyback solution and the problem of high interference
with normal transactions in the feedback solution.

On the other hand, some researches on quality of service
(QoS) of OLTP systems, such as [11], have considered the
different resources’ influence on transaction performance and
have attempted to find the bottleneck resource for OLTP
transactions and shows an arresting performance improve-
ment. [6] makes use of machine learning methods to predict
multiple performance metrics of analytical queries. The so-
lution relies on SQL text extracted from the query execution
plans. In [18], the authors addressed predictions of query
execution time using the query optimizer’s cost model and
the generated query plan, which can be used to estimate
the transaction execution time in OLTP systems. For dis-
tributed systems, the extra cost of network communication
will be the new bottleneck, which limits the OLTP transac-
tions performance [3]. It is an important part of execution
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cost if we want to optimize the transaction performance in
a distributed environment.

Live migration of databases [5] focuses on migrating a
whole database from one system to another while providing
non-stop services and has not considered the scenario of mi-
grating data from multiple nodes to multiple destinations,
which however is the common case in our online data parti-
tioning problem and may encounter distributed transactions
that update the data at both the source and the destination
nodes simultaneously. The authors of [5] provide a solution
of combining on-demand pull and asynchronous push to mi-
grate a tenant with minimal service interruption. Their so-
lution is somehow similar to our piggyback approach, where
data that needs to be moved will be migrated when the in-
coming transactions visit it.

Transaction scheduling is an important topic studied in
various areas such as Web services and database systems,
and there are several works, such as [7, 2]), that tried to find
an optimal schedule by considering query execution time,
transaction deadline and system workload. Given the trans-
actions’ execution time and hard execution deadlines, most
of the scheduling problems are NP-Complete [16]. The most
common solution is cost-based algorithms [9]. The quality of
a schedule highly depends on the cost estimation and how
the execution cost each transaction is modeled. [14] is a
scheduling and admission control method using a priority
token bank in computer networks. They classify jobs into
N classes and jobs within each class are treated equally (by
using FIFO). This approach is much simpler than cost-based
scheduling (CBS).

6. CONCLUSION
In this paper, we studied the problem of online reparti-

tioning of a distributed OLTP database. We identify that
the two basic solutions are very rigid and miss the opportu-
nities to find good trade-offs between the speed of reparti-
tioning and the impact on the normal transactions. We then
propose to use control theory to design an adaptive methods
which can dynamically change the frequency that we submit
repartition transactions to the system. As putting the repar-
tition queries into extra transactions may further increase
the system’s resource contention especially when the system
has a high workload, we also proposed a piggyback-based
method to mitigate the repartitioning overhead, which how-
ever do not perform well when the system has a low workload
and there is few transactions to piggyback on. Our hybrid
approach intelligently integrates the two approaches and is
able to combine their strengths while avoiding their prob-
lems. Based on the experiments of running our prototype
on Amazon EC2, we can conclude that Hybrid is the overall
best approach and achieves a great performance improve-
ment in comparing to the two basic solutions used in most
existing systems.
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ABSTRACT
Web-based applications face unprecedented workloads demanding
the processing of a large number of events reaching to the millions
per second. That is why developers are increasingly relying on
scalable cloud platforms to implement cloud applications. Chariots
exposes a shared log to be used by cloud applications. The log is es-
sential for many tasks like bookkeeping, recovery, and debugging.
Logs offer linearizability and simple append and read operations
of immutable records to facilitate building complex systems like
stream processors and transaction managers. As a cloud platform,
Chariots offers fault-tolerance, persistence, and high-availability,
transparently.

Current shared log infrastructures suffer from the bottleneck of
serializing log records through a centralized server which limits
the throughput to that of a single machine. We propose a novel
distributed log store, called the Fractal Log Store (FLStore), that
overcomes the bottleneck of a single-point of contention. FLStore
maintains the log within the datacenter. We also propose Chariots,
which provides multi-datacenter replication for shared logs. In it,
FLStore is leveraged as the log store. Chariots maintains causal
ordering of records in the log and has a scalable design that allows
elastic expansion of resources.

1. INTRODUCTION
The explosive growth of web applications and the need to sup-

port millions of users make the process of developing web appli-
cations difficult. These applications need to support this increasing
demand and in the same time they need to satisfy many require-
ments. Fault-tolerance, availability, and a low response time are
some of these requirements. It is overwhelming for the developer
to be responsible for ensuring all these requirements while scaling
the application to millions of users. The process is error-prone and
wastes a lot of efforts by reinventing the wheel for every applica-
tion.

The cloud model of computing encourages the existence of uni-
fied platforms to provide an infrastructure that provides the guaran-
tees needed by applications. Nowadays, such an infrastructure for
compute and storage services is commonplace. For example, an

c� 2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0.
.

application can request a key-value store service in the cloud. The
store exposes an interface to the client and hides all the complexi-
ties required for its scalability and fault-tolerance. We envision that
a variety of programming platforms will coexist in the cloud for the
developer to utilize. A developer can use multiple platforms simul-
taneously according to the application’s needs. A micro-blogging
application for example might use a key-value store platform to
persist the blogs and in the same time use a distributed process-
ing platform to analyze the stream of blogs. The shared log, as we
argue next, is an essential cloud platform in the developer’s arsenal.

Manipulation of shared state by distributed applications is an
error-prone process. It has been identified that using immutable
state rather than directly modifying shared data can help allevi-
ate some of the problems of distributed programming [1–3]. The
shared log offers a way to share immutable state and accumulate
changes to data, making it a suitable framework for cloud appli-
cation development. Additionally, the shared log abstraction is fa-
miliar to developers. A simple interface of append and read op-
erations can be utilized to build complex solutions. These char-
acteristics allow the development of a wide-range of applications.
Solutions that provide transactions, analytics, and stream process-
ing can be easily built over a shared log. Implementing these tasks
on a shared log makes reasoning about their correctness and be-
havior easier and rid the developer from thinking about scalability
and fault-tolerance. Also, the log provides a trace of all applica-
tion events providing a natural framework for tasks like debugging,
auditing, checkpointing, and time travel. This inspired a lot of
work in the literature to utilize shared logs for building systems
such as transaction managers, geo-replicated key-value stores, and
others [6, 11, 13, 27, 28, 30, 33].

Although appealing as a platform for diverse programming ap-
plications, shared log systems suffer from a single-point of con-
tention problem. Assigning a log position to a record in the shared
log must satisfy the uniqueness and order of each log position and
consequent records should have no gaps in between. Many shared
log solutions tackle this problem and try to increase the append
throughput of the log by minimizing the amount of work done to
append a record. The most notable work in this area is the CORFU
protocol [7] built on flash chips that is used by Tango [8]. The
CORFU protocol is driven by the clients and uses a centralized se-
quencer that assigns offsets to clients to be filled later. This takes
the sequencer out of the data path and allows the append through-
put to be more than a single machine’s I/O bandwidth. However, it
is still limited by the bandwidth of the sequencer. This bandwidth
is suitable for small clusters but cannot be used to handle larger
demands encountered by large-scale web applications.

We propose FLStore, a distributed deterministic shared log sys-
tem that scales beyond the limitations of a single machine. FL-
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Store consists of a group of log maintainers that mutually handle
exclusive ranges of the log. Disjoint ranges of the log are han-
dled independently by different log maintainers. FLStore ensures
that all these tasks are independent by using a deterministic ap-
proach that assigns log positions to records as they are received by
log maintainers. It removes the need for a centralized sequencer
by avoiding log position pre-assignment. Rather, FLStore adopts a
post-assignment approach where records are assigned log positions
after they are received by the Log maintainers. FLStore handles
the challenges that arise from this scheme. The first challenge is
the existence of gaps in the log that occur when a log maintainer
has advanced farther compared to other log maintainers. Another
challenge is maintaining explicit order dependencies requested by
the application developer.

Cloud applications are increasingly employing geo-replication to
achieve higher availability and fault-tolerance. Records are gener-
ated at multiple datacenters and are potentially processed at mul-
tiple locations. This is true for applications that operate on shared
data and need communication to other datacenters to make deci-
sions. In addition, some applications process streams coming from
different locations. An example is Google’s Photon [4] which joins
streams of clicks from different datacenters. Performing analytics
also requires access to the data generated at multiple datacenters.
Geo-replication poses additional challenges such as maintaining
exactly-once semantics (ensure that an event is not processed more
than once), automatic datacenter-level fault-tolerance, and handling
un-ordered streams.

Chariots supports multiple datacenters by providing a global
replicated shared log that contains all the records generated by
all datacenters. The order of records in the log must be consis-
tent. The ideal case is to have an identical order at all datacen-
ters. However, it is shown by the CAP theorem [12, 16] that such
a consistency guarantee cannot be achieved if we are to preserve
availability and partition-tolerance. In this work we favor avail-
ability and partition-tolerance, as did many other works in differ-
ent contexts [14, 15, 20, 23]. Here, we relax the guarantees on
the order of records in the log. In relaxing the consistency guar-
antee, we seek the strongest guarantee that will allow us to pre-
serve availability and partition-tolerance. We find, as other systems
have [5, 10, 19, 23, 31], that causality [21] is a sufficiently strong
guarantee fitting our criterion [24].

In this paper we propose a cloud platform that exposes a shared
log to applications. This shared log is replicated to multiple dat-
acenters for availability and fault tolerance. The objective of the
platform’s design is to achieve high performance and scalability by
allowing seamless elasticity. Challenges in building such a plat-
form are tackled, including handling component and whole data-
center failures, garbage collection, and gaps in the logs. We moti-
vate the log as a framework for building cloud applications by de-
signing three applications on top of the shared log platform. These
applications are: (1) a key-value store that preserves causality across
datacenters, (2) a stream processing applications that handles streams
coming from multiple datacenters, and (3) a replicated data store
that provides strongly consistent transactions [27].

The contributions of the paper are the following:

• A design of a scalable distributed log storage, FLStore, that
overcomes the bottleneck of a single machine. This is done
by adopting a post-assignment approach to assigning log po-
sitions.

• Chariots tackles the problem of scaling causally-ordered geo-
replicated shared logs by incorporating a distributed log stor-
age solution for each replica. An elastic design is built to

Consistency Partitioned Replicated systems

Strong 3 7

CORFU/Tango [7, 8]
LogBase [33]

RAMCloud [29]
Blizzard [25]

Ivy [26]
Zebra [18]
Hyder [11]

Strong 7 3
Megastore [6]
Paxos-CP [30]

Causal 7 3

Message Futures [27]
PRACTI [10]
Bayou [32]

Lazy
Replication [19]

Replicated
Dictionary [36]

Causal 3 3 Chariots

Table 1: Comparison of different shared log services based
on consistency guarantees, support of per-replica partitioning,
and replication.

allow scaling to datacenter-scale computation. This is the
first work we are aware of that tackles the problem of scaling
geo-replicated shared logs through partitioning.

The paper proceeds as the following. We first present related
work in Section 2. The system model and log interface follows
in Section 3. We then present a set of use cases of Chariots in
Section 4. These are data management and analytics applications.
The detailed design of the log is then proposed in Sections 5 and 6.
Results of the evaluations are provided in Section 7. We conclude
in Section 8.

2. RELATED WORK
In this paper we propose a geo-replicated shared log service for

data management called Chariots. Here we briefly survey related
work. We focus on systems that manage shared logs. There exist an
enormous amount of work on general distributed (partitioned) stor-
age and geo-replication. Our focus on work tackling shared logs
stems from the unique challenges that shared logs pose compared
to general distributed storage and geo-replication. We provide a
summary of shared log services for data management application
in Table 1. In the remainder of this section we provide more details
about these systems in addition to other related work that do not
necessarily provide log interfaces. We conclude with a discussion
of the comparison provided in Table 1.

2.1 Partitioned shared logs
Several systems explored extending shared logs as a distributed

storage spanning multiple machines. Hyder [11] builds a multi-
version log-structured database on a distributed shared log storage.
A transaction executes optimistically on a snapshot of the database
and broadcasts the record of changes to all servers and appends a
record of changes to the distributed shared log. The servers then
commit the transaction by looking for conflicts in the shared log in
an intelligible manner. LogBase [33], which is similar to network
filesystems like BlueSky [34], and RAMCloud [29] are also multi-
version log-structured databases.
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Corfu [7], used by Tango [8], attempts to increase the throughput
of shared log storage by employing a sequencer. The sequencer’s
main function is to pre-assign log position ids for clients wishing
to append to the log. This increases throughput by allowing more
concurrency. However, the sequencer is still a bottleneck limiting
the scalability of the system.

Distributed and networked filesystems also employ logs to share
their state. Blizzard [25] proposes a shared log to expose a cloud
block storage. Blizzard decouples ordering and durability require-
ments, which improves its performance. Ivy [26] is a distributed
file system. A log is dedicated to each participant and is placed in a
distributed hash table. Finding data requires consulting all logs but
appending is done to the participant’s log only. The Zebra file sys-
tem [18] employs log striping across machines to increase through-
put.

2.2 Replicated shared logs
Causal replication. Causal consistency for availability is uti-

lized by various systems [10, 19, 19, 23, 31, 32]. Recently, COPS [23]
proposes causal+ consistency that adds convergence as a require-
ment in addition to causal consistency. COPS design aims to in-
crease the throughput of the system for geo-replicated environ-
ments. At each datacenter, data is partitioned among many ma-
chines to increase throughput. Chariots targets achieving high through-
put similarly by scaling out. Chariots differs in that it exposes a log
rather than a key-value store, which brings new design challenges.
Logs have been utilized by various replication systems for data stor-
age and communication. PRACTI [10] is a replication manager that
provides partial replication, arbitrary consistency, and topology in-
dependence. Logs are used to exchange updates and invalidation
information to ensure the storage maintains a causally consistent
snapshot. Bayou [32] is similar to PRACTI. In Bayou, batches of
updates are propagated between replicas. These batches have a start
and end times. When a batch is received, the state rolls back to the
start time, incorporate the batch, and then roll forward the existing
batches that follows. Replicated Dictionary [36] replicates a log
and maintains causal relations. It allows transitive log shipping and
maintains information about the knowledge of other replicas. Lazy
Replication [19] also maintains a log of updates ordered by their
causal relations. The extent of knowledge of other replicas is also
maintained.

Geo-replicated logs. Geo-replication of a shared log has been
explored by few data management solutions. Google megastore [6]
is a multi-datacenter transaction manager. Megastore commit trans-
actions by contending for log positions using Paxos [22]. Paxos-
CP [30] use the log in a similar way to megastore with some re-
finements to allow better performance. These two systems how-
ever, operate on a serial log. All clients contend to write to the
head of the log, making it a single point of contention, which limits
throughput. Message Futures [27] and Helios [28] are commit pro-
tocols for strongly consistent transactions on geo-replicated data.
They build their transaction managers on top of a causally-ordered
replicated log that is inspired from Replicated Dictionary [36].

2.3 Summary and comparison
The related works above that build shared logs for data manage-

ment applications are summarized in Table 1. We display whether
the system support partitioning and replication in addition to the
guaranteed ordering consistency. Consistency is either strong, mean-
ing that the order is either identical or serializable for replicated
logs or totally ordered for non-replicated logs. A system is par-
titioned if the shared log spans more than one machine for each
replica. Thus, if a system of five replicas consists of five machines,

<A,1>
1

<B,1>
2

<B,2>
3

<C,1>
4

<A,2>
5

<A,3>
6

<C,2>
7

LId

Datacenter

TOId

Figure 1: Records in a shared log showing their TOId inside
the records alongside the datacenters that created them and the
records LIds under the log

they are not partitioned. A system is replicated if the shared log
has more than one independent copy.

Other than Chariots, the table lists four systems that support par-
titioning. It is possible for these systems to employ replication in
the storage level. However, a blind augmentation of a replication
solution will be inefficient. This is because a general-purpose repli-
cation method will have guarantees stronger than what is needed to
replicate a log. The other solutions, that support replication, do not
support partitioning. Handling a replica with a single node limits
the achievable throughput. The processing power, I/O, and com-
munication of a single machine can not handle the requirements of
todays web applications. This is specially true for geo-replication
that handles datacenter-scale demand.

Chariots attempts to fill this void of shared logs that have both
a native support of replication and per-replica partitioning. This
need for both replication and partitioning has been explored for
different applications and guarantees, including causal consistency,
i.e., COPS [23]. However, geo-replication of a distributed shared
log and immutable updating pose unique challenges that are not
faced by geo-replication of key-value stores and block-based stor-
age. The paper studies these challenges and design Chariots as
a causally-ordered shared log that supports per-replica partitioned
log storage and geo-replication.

3. SYSTEM AND PROGRAMMING MODEL
Chariots is a shared log system for cloud applications. The inner

workings of Chariots are not exposed to the application developer.
Rather, the developer interacts with Chariots via a set of APIs. In
this section, we will show the interface used by developers to write
applications using Chariots.

System model. Chariots exposes a log of records to applica-
tions. The log is maintained by a group of machines called the
log maintainers. Collectively, these log maintainers persist a single
shared log. Each log maintainer is responsible for a disjoint range
of the shared log. The shared log is accessed by cloud applications,
called application clients, through a linked library that manages the
exchange of information between the application and the log main-
tainers. Application clients are distributed and independent from
one another. And they share a single view of the shared log. The
shared log is fully replicated to a number of datacenters. In our
model, we adopt a view of the datacenter as a computer [9], an
increasingly popular view of computing that reflects the demand of
datacenter-scale applications.

Meta information about log maintainers, other datacenters, and
the shared log are managed by meta servers. Meta servers are a
highly-available collection of stateless servers acting as an oracle
for application clients to report about the state and locations of
the Log maintainers and other datacenters. This model of scale-
out distributed computing and centralized stateless highly-available
control servers has been shown to perform the best for large-scale
systems [17].
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Data model. The state of the shared log consists of the records it
contains. These records are either local copies, meaning that they
were generated by application clients residing in the same datacen-
ter, or external copies, meaning that they were generated at other
datacenters. Each record has an identical copy at each datacen-
ter, one of which is considered a local copy and the other copies
are considered external copies. The record consists of the contents
appended by the Application client, called the record’s body, and
other meta-information that are used by Application clients to fa-
cilitate future access to it. The following are the meta-information
maintained for each record:

• Log Id (LId): This id reflects the position of the record in
the datacenter where the copy resides. A record has multiple
copies, one at each datacenter. Each copy has a different LId
that reflects its position in the datacenter’s shared log.

• Total order Id (TOId): This id reflects the total order of the
record with respect to its host datacenter, where the Applica-
tion client that created it resides. Thus, copies of the same
record have an identical TOId.

• Tags: The Application client might choose to attach tags to
the record. A tag consists of a key and a value. These tags
are accessible by Chariots, unlike the record’s body which is
opaque to the system. Records will be indexed using these
tags.

To highlight the difference between LId and TOId, observe the
sample shared log in Figure 1. It displays seven records with their
LIds in the bottom of each record at datacenter A. The TOId is
shown inside the record via the representation < X , i >, where X
is the host datacenter of the Application client that appended the
record and i is the TOId. Each record has a LId that reflects its
position in the shared log of datacenter A. Additionally, each record
has a TOId that reflects its order compared to records coming from
the same datacenter only.

Programming interface and model. Application clients can
observe and change the state of the shared log through a simple
interface of two basic operations: reading and appending records.
These operations are performed via an API provided by a linked
software library at the Application client. The library needs the
information of the meta servers only to initiate the session. Once
the session is ready, the application client may use the following
library calls:

1. Append(in: record, tags): Insert record to the shared log
with the desired tags. The assigned TOId and LId will be
sent back to the Application client. Appended records are
automatically replicated to other replicas.

2. Read(in: rules, out: records): Return the records that
matches the input rules. A rule might involve TOIds, LIds,
and tags information.

Log records are immutable, meaning that once a record is added,
it cannot be modified. If an application client desire to alter the
effect of a record it can do so by appending another record that
exemplifies the desired change. This principle of accumulation
of changes, represented by immutable data, is identified to reduce
the problems arising from distributed programming [1–3]. Taking
this principled approach and combining it with the simple interface
of appends and reads allows the construction of complex software
while reducing the risks of distributed programming. We showcase

the potential of this simple programming model by constructing
data management systems in the next section.

Causality and log order. The shared log at each datacenter con-
sists of a collection of records added by application clients at dif-
ferent datacenters. Ordering the records by causality relations al-
lows sufficient consistency while preserving availability and fault-
tolerance [12, 16]. Causality enforces two types of order rela-
tions [21] between read and append operations, where oi ! o j de-
notes that oi has a causal relation to o j. A causal relation, oi ! o j ,
exists in the following cases:

• Total order for records generated from the same datacenter.
If two appended records, oi and o j, were generated by appli-
cation clients residing in the same datacenter A, then if oi is
ordered before o j in A, then this order must be honored at all
other datacenters.

• Happened-before relations between read and append oper-
ations. A happened-before relation exists between an append
operation, oi, and a read operation, o j, if o j reads the record
appended by oi.

• Transitivity: causal relations are transitive. If a record ok
exists such that oi ! ok and ok ! o j then oi ! o j .

4. CASE STUDIES
The simple log interface was shown to enable building complex

data management systems [6, 11, 13, 27, 30, 33]. These systems,
however, operate on a serial log with pre-assigned log positions.
These two characteristics, as we argued earlier, limits the log’s
availability and scalability. In this section, we demonstrate data
management systems that are built on top of Chariots, a causally
ordered log with post-assigned log positions. The first system,
Hyksos, is a replicated key-value store that provides causal consis-
tency with a facility to perform get transactions. The second sys-
tem is a stream processor that operates on streams originating from
multiple datacenters. We also refer to our earlier work, Message
Futures [27] and Helios [28], which provide strongly consistent
transactions on top of a causally ordered replicated log. Although
they were introduced with a single machine per replica implemen-
tation, their design can be extended to be deployed on the scalable
Chariots.

4.1 Hyksos: causally consistent key-value store
Hyksos is a key-value store built using Chariots to provide causal

consistency [21]. Put and Get operations1 are provided by Hyksos
in addition to a facility to perform get transactions (GET_TXN) of
multiple keys. Get transactions return a consistent state snapshot of
the read keys.

4.1.1 Design and algorithms
Chariots manages the shared log and exposes a read and append

interface to application clients, which are the drivers of the key-
value store operations. Each datacenter runs an instance of Chari-
ots. An instance of Chariots is comprised of a number of machines.
Some of the machines are dedicated to store the shared log and
others are used to deploy Chariots.

The value of keys reside in the shared log. A record holds one,
or more put operation information. The order in the log reflects the
causal order of put operations. Thus, the current value of a key,
k, is in the record with the highest log position containing a put

operation. The get and put operations are performed as follows:
1The terms "read" and "append" are used for operations on the log
and "put" and "get" are used for operations on the key-value store.
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Algorithm 1 Performing Get_transactions in Hyksos
1: // Request the head of the log position id
2: i = get_head_of_log()
3: // Read each item in the read set
4: for each k in read-set
5: t = Read ({tag: k, LId<i}, most-recent)
6: Output.add (t)

x=10 z=40

x=10 z=40

A

B

y=20 x=30

y=20 x=30

x=10 z=40

x=10 z=40

A

B

y=20 x=30 y=50

y=20 x=30 z=60

x=10 z=40

x=10 z=40

A

B

y=20 x=30 y=50

y=20 x=30 z=60 y=50

z=60

Time = 1

Time = 2

Time = 3

Figure 2: An example of Hyksos, the key-value store built using
Chariots.

• Get(x): Perform a Read operation on the log. The read re-
turns a recent record containing a put operation to x.

• Put(x, value): Putting a value is done by performing an Ap-

pend operation with the new value of x. The record must
be tagged with the key and value information to enable an
efficient get operation.

Get transactions. Hyksos provides a facility to perform get
transactions. The get_transaction operation returns a consistent
view of the key-value store. The application client performs the
Get operations as shown in Algorithm 1. First, Chariots is polled
to get the head of the log’s position id, i, to act as the log position
when the consistent view will be taken (Line 2). There must be no
gaps at any records prior to the log id. Afterwards, the application
client begins reading each key k (Lines 4-6). A request to read the
version of k at a log position j that satisfies the following: Record
j contains the most recent write to k that is at a position less than i.

4.1.2 Example scenario
To demonstrate how Hyksos works, consider the scenario shown

in Figure 2. It displays the shared logs of two datacenters, A and B.
The shared log contains records of put operations. The put oper-
ation is in the form "x = v", where x is the key and v is the value.
Records that are created by Application clients at A are shaded.
Other records are created by application clients at B.

The scenario starts with four records, where each record has two
copies, one at each datacenter. Two of these records are put oper-
ations to key x. The other two operations are a put to y and a put

to z. The two puts to x were created at different datacenters. Note
that the order of writes to x is different at A and B. This is permis-
sible if no causal dependencies exist between them. At time 1, a
Get of x at A will return 30, while 10 will be returned if the Get is
performed at B.

At time 2, two Application clients, one at each datacenter, per-
form put operations. At A, Put(y,50) is appended to the log. At B,
Put(z,60) is appended to the log. Now consider a get transaction
that requests to get the value of x, y and z. First, a non-empty log
position is chosen. Assume that the log position 4 is chosen. If the
get transaction ran at A, it will return a snapshot of the view of the
log up to log position 4. This will yield x = 30, y = 20, and z = 40.
Note that although a more recent y value is available, it was not
returned by the get transactions because it is not part of the view
of records up to position 4. If the get transaction ran at B, it will
return x = 10, y = 20, and z = 40.

Time 3 in the figure shows the result of the propagation of records
between A and B. Put(y,50) has a copy now at B, and Put(z,60)
has a copy at A.

4.2 Event processing
Another application targeted by Chariots is multi-datacenter event

processing. Many applications generate a large footprint that they
would like to process. The users’ interactions and actions in a
web application can be analyzed to generate business knowledge.
These events range from click events to the duration spent in each
page. Additionally, social networks exhibit more complex analyt-
ics of events related to user-generated contents (e.g., micro-blogs)
and user-user relationships to these events. Frequently, such an-
alytics are carried in multiple datacenters for fault-tolerance and
locality [4, 17].

Chariots enables a simple interface for these applications to man-
age the replication and persistence of these analytics while preserv-
ing the required exactly-once semantics. Event processing applica-
tions consist of publishers and readers. Publishing an events is as
easy as performing an append to the log. Readers then read the
events from the log maintainers. An important feature of Chariots
is that readers can read from different log maintainers. This will al-
low distributing the analysis work without the need of a centralized
dispatcher that can be a single-point of contention.

4.3 Message Futures and Helios
Message Futures [27] and Helios [28] are commit protocols that

provide strongly consistent transactions on geo-replicated data stores.
They leverage a replicated log that guarantees causal order [36].
A single node at each datacenter, call it replica, is responsible for
committing transactions and replication. Transactions consist of
read and write operations and are committed optimistically. Appli-
cation clients read from the data store and buffer writes. After all
operations are ready, a commit request is sent to the closest replica.
A record is appended to the log to declare the transaction t as ready
to begin the commit protocol. Message Futures and Helios imple-
ment different conflict detection protocols to commit transactions.
Message Futures [27] waits for other datacenters to send their his-
tories up to the point of t’s position in the log. Conflicts are detected
between t and received transactions, and t commits if no conflicts
are detected. Helios [28] builds on a lower-bound proof that deter-
mines the lowest possible commit latency that a strongly consistent
transaction can achieve. Helios commits a transaction t by detect-
ing conflicts with transactions in a conflict zone in the shared log.
The conflict zone is calculated by Helios using the lower-bound
numbers. If no conflicts were detected, t commits. A full descrip-
tion of Message Futures and Helios are available in previous publi-
cations [27, 28].

Message Futures and Helios demonstrate how a causally ordered
log can be utilized to provide strongly consistent transactions on
replicated data. However, the used replicated log solution [36] is
rudimentary and is not suitable for today’s applications. It only
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Figure 3: The architecture of FLStore

utilizes a single node per datacenter. This limits the throughput that
can be achieved to that of a single node. Chariots can be leveraged
to scale Message Futures and Helios to larger throughputs. Rather
than a replica with a single node at each datacenter, Chariots would
be used to distribute storage and computation.

4.4 Conclusion
The simple interface of Chariots enabled the design of web and

analytics applications. The developer can focus on the logic of the
data manager or stream processor without having to worry about
the details of replication, fault-tolerance, and availability. In addi-
tion, the design of Chariots allows scalable designs of these solu-
tions by having multiple sinks for reading and appending.

5. FLSTORE: DISTRIBUTED SHARED LOG
In this section we describe the distributed implementation of the

shared log, called the Fractal Log Store (FLStore). FLStore is re-
sponsible of maintaining the log within the datacenter. We begin
by describing the design of the distributed log storage. Then, we
introduce the scalable indexing component used for accessing the
shared log.

5.1 Architecture
In designing FLStore, we follow the principle of distributing

computation and highly-available stateless control. This approach
has been identified as the most suitable to scale out in cloud envi-
ronments [17]. The architecture of FLStore consists of three types
of machines, shown in Figure 3. Log maintainers are responsible
for persisting the log’s records and serving read requests. Indexers
are responsible of access to log maintainers. Finally, control and
meta-data management is the responsibility of a highly-available
cluster called the Controller.

Application clients start their sessions by polling the Controller
for information about the indexers and log maintainers. This infor-
mation includes the addresses of the machines and the log ranges
falling under their responsibility in addition to approximate infor-
mation about the number of records in the shared log. Appends and
reads are served by Log maintainers. The Application client com-
municates with the Controller only at the beginning of the session
or if communication problems occur. And Application clients will
communicate with Indexers only if read operation did not specify
LIds in the rules.

5.2 Log maintainers
Scalability by post-assignment. The Log maintainers are ac-

1 1000 1001 2000 2001 3000Round 1

3001 4000 4001 5000 5001 6000Round 2

6001 7000 7001 8000 8001 9000Round 3

Maintainer
A

Maintainer
B

Maintainer
C

stripe start stripe end

Figure 4: An example of three deterministic log maintainers
with a batch size of 1000 record. Three rounds of records are
shown.

cessed via a simple interface for adding to and reading from the
shared log. They are designed to be fully distributed to overcome
the I/O bandwidth constraints that are exhibited by current shared
log protocols. A recent protocol is CORFU [7] that is limited by the
I/O bandwidth of a sequencer. The sequencer is needed for CORFU
to pre-assign log positions to application clients wishing to append
records to the log. In FLStore, we abandon this requirement of pre-
assigning log positions and settle for a post-assignment approach.
The thesis of a post-assignment approach is to let the application
client construct the record and send it to a randomly (or intelligi-
bly) selected Log maintainer. The Log maintainer will assign the
record the next available log position from log positions under its
control.

Design. The shared log is distributed among the participating
Log maintainers. This means that each machine holds a partial log
and is responsible for its persistence and for answering requests to
read its records. This distribution poses two challenges. The first is
the way to append to the log while guaranteeing uniqueness and the
non-existence of gaps in the log. This includes the access to these
records and the way to index the records. The other challenge is
maintaining explicit order guarantees requested by the application
client. We employ a deterministic approach to make each machine
responsible for specific ranges of the log. These ranges round-robin
across machines where each round consists of a number of records.
we will call this number the batch size. Figure 4 depicts an example
of three log maintainers, A, B, and C. The figure shows the partial
logs of the first three rounds if the batch size was set to a 1000
records.

If an application wants to read a record it directs the request to
the Log maintainer responsible for it. The Log maintainer can only
answer requests of records if their LIds are provided. Otherwise,
the reader must collect the LIds first from the Indexers as we show
in the next section. Appending to the log is done by simply send-
ing a record or group of records to one of the Log maintainers. The
Log maintainer appends the record to the next available log posi-
tion. It is possible that a log maintainer will receive more record
appends than others. This creates a load-balancing problem that
can be solved by giving the application feedback about the rate of
incoming requests at the maintainers. This feedback can be col-
lected by the Controller and be delivered to the application clients
as a part of the session initiation process. Nonetheless, this is an
orthogonal problem that can be solved by existing solutions in the
literature of load balancing.

5.3 Distributed indexing
Records in Log maintainers are arranged according to their LIds.

However, Application clients often desire to access records accord-
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ing to other information. When an Application client appends a
record it also tags it with access information. These tags depend
on the application. For example, a key-value store might wish to
tag a record that has Put information with the key that is written.
For this reason, we utilize distributed Indexers that provide access
to the Log maintainers by tag information. Distributed indexing for
distributed shared logs is tackled by several systems [11, 33, 35]

Tag and lookup model. The tag is a string that describes a fea-
ture of the record. It is possible that the tag also has a value. Each
record might have more than one tag. The application client can
lookup a tag by its name and specify the amount of records to be
returned. For example, the Application client might lookup records
that has a certain tag and request returning the most recent 100
record LIds to be returned with that tag. If the tag has a value at-
tached to it, then the Application client might lookup records with
that tag and rules on the value, e.g., look up records with a certain
tag with values greater than i and return the most recent x records.

5.4 Challenges
Log gaps. A Log maintainer receiving more records advances

in the log ahead of others. For example, Log maintainer A can
have 1000 records ready while Log maintainer B has 900 records.
This causes temporary gaps in the logs that can be observed by
Application clients reading the log. The requirement that needs to
be enforced is that Application clients must not be allowed to read a
record at log position i if there exist at least one gap at log position
j less than i.

To overcome the problem of these temporary gaps, minimal gos-
sip is propagated between maintainers. The goal of this gossip is
to identify the record LId that will guarantee that any record with
a smaller LId can be read from the Log maintainers. We call this
LId the Head of the Log (HL). Each Log maintainer has a vector
with a size equal to the number of maintainers. Each element in
the vector corresponds to the maximum LId at that maintainer. Ini-
tially the vector is initialized to all zeros. Each maintainer updates
its value in the local vector. Occasionally, a maintainer propagates
its maximum LId to other maintainers. When the gossip message is
received by a maintainer it updates the corresponding entry in the
vector. A maintainer can decide that the HL value is equal to the
vector entry with the smallest value. When an application wants to
read or know the HL, it asks one of the maintainers for this value.
This technique does not pose a significant bottleneck for through-
put. This is because it is a fixed-sized gossip that is not dependent
on the actual throughput of the shared log. It might, however, cause
the latency to be higher as the the throughput increases. This is
because of the time required to receive gossip messages and deter-
mine whether a LId has no prior gaps.

Explicit order requests. Appends translate to a total order at the
datacenter after they are added by the Log maintainers. Concurrent
appends therefore do not have precedence relative to each other. It
is, however, possible to enforce order for concurrent appends if they
were requested by the Application client. One way is to send the
appends to the same maintainer in the order wanted. Maintainers
ensure that a latter append will have a LId higher than ones received
earlier. Otherwise, it is possible to enforce order for concurrent
appends across maintainers. The Application client waits for the
earlier append to be assigned a LId and then attach this LId as a
minimum bound. The maintainer that receives the record with the
minimum bound ensures that the record is buffered until it can be
added to a partial log with LIds larger than the minimum bound.
This solution however must be pursued with care to avoid a large
backlog of partial logs.

6. CHARIOTS: GEO-REPLICATED LOG
In this section we show the design of Chariots that supports

multi-datacenter replication of the shared log. The design is a
multi-stage pipeline that includes FLStore as one of the stages. We
begin the discussion by outlining an abstract design of log replica-
tion. This abstract design specifies the requirements, guarantees,
and interface desired to be provided by Chariots. The abstract so-
lution will act as a guideline in building Chariots, that will be pro-
posed after the abstract design. Chariots is a distributed scale-out
platform to manage log replication with the same guarantees and
requirements of the abstract solution.

6.1 Abstract solution
Before getting to the distributed solution, it is necessary to start

with an efficient abstract solution. This abstract solution will be
provided here in the form of algorithms running on a totally or-
dered thread of control at the datacenter. This is similar to saying
that the datacenter is the machine and it is manipulating the log ac-
cording to incoming events. Using this abstract solution, we will
design the distributed implementation next (Section 6.2) that will
result in a behavior identical to the abstract solution with a higher
performance.

The data structures used are a log and a n⇥n table, where n is
the number of datacenters, called the Awareness Table (ATable) in-
spired by Replicated Dictionary [36]. The table represents the dat-
acenter’s (DC’s) extent of knowledge about other DCs. Each row
or column represents one DC. Consider DC A and its ATable TA.
The entry TA[B,C] contains a TOId, t , that represents B’s knowl-
edge about C’s records according to A. This means that A is certain
that B knows about all records generated at host DC C up to record
t . When a record is added to the log, it is tagged by the follow-
ing information: (1) TOId, (2) Host datacenter Id, and (3) causality
information.

The body of the record, which is supplied by the application is
opaque to Chariots . To do the actual replication, the local log and
ATable are continuously being propagated to other DCs. When the
log and ATable are received by another DC, the new records are
incorporated at the receiving log and the ATable is updated accord-
ingly.

The algorithms to handle operations and propagation are pre-
sented with the assumption that only one node manipulates Chariots,
containing the log of records and ATable. In Section 6.2 we will
build the distributed system that will be manipulating Chariots while
achieving the correct behavior of the abstract solution’s algorithms
presented here. The following are the events that need to be han-
dled by Chariots:

1. Initialization: The log is initialized and the ATable entries
are set to zero. Note that the first record of each node has a
TOId of 1.

2. Append: Construct the record by adding the following infor-
mation: host identifier, TOId, LId, causality, and tags. Up-
date the entry TI [I, I], where I is the host datacenter’s id, to
be equal to the record’s TOId. Finally, add the record to the
log.

3. Read: Get the record with the specified LId.

4. Propagate: A snapshot of Chariots is sent to another DC j.
The snapshot includes a subset of the records in the log that
are not already known by j. Whether a record, r, is known to
j can be verified using Ti[ j, i] and comparing it to TOId(r).
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Figure 5: The components involved in adding records in the
abstract solution.

5. Reception: When a log is received, incorporate all the records
that were not seen before to the local log if its causal depen-
dencies are satisfied. Otherwise, add the record with unsat-
isfied dependencies to a priority queue ordered according to
causal relations. This is depicted in Figure 5. The incom-
ing records are all put in a staging buffer (step 1) and are
taken and added to the log or priority queue according to
their causal dependencies (step 2). Chariots checks the pri-
ority queue frequently to transfer any records that have their
dependencies satisfied to the log (step 3). Also, the ATable is
updated to reflect the newly incorporated records.

Garbage collection. The user has the choice to either garbage
collect log records or maintain them indefinitely. Depending on
the applications, keeping the log can have great value. If the user
choses not to garbage collect the records then they may employ a
cold storage solution to archive older records. On the other hand,
the user can choose to enable garbage collection of records. It
is typical to have a temporal or spatial rule for garbage collect-
ing the log. However, in addition to any rule set by the system
designer, garbage collection is performed for records only after
they are known by all other replicas. This is equivalent to say-
ing that a record, r, can be garbage collected at i if and only if
8 j2nodes(Ti[ j,host(r)]� ts(r)), where host(r) is the host node of r.

6.2 Chariots distributed design
In the previous section we showed an efficient abstract design for

a shared log that supports multi-datacenter replication. Chariots is
a distributed system that mimics that abstract design. Each data-
center runs an instance of Chariots. The shared logs at different
datacenters are replicas. All records exist in all datacenters. The
system consists of a multi-stage pipeline. Each stage is responsible
of performing certain tasks to incoming records and pushing them
along the pipeline where they eventually persist in the shared log.
Each stage in Chariots is designed to be elastic. An important de-
sign principle is that Chariots is designed to identify bottlenecks in
the pipeline and allow overcoming them by adding more resources
to the stages that are overwhelmed. For this to be successful, elas-
ticity of each stage is key. Minimum to no dependencies exist be-

App clients

Receiver

Batcher Filter Queue      Log 
maintainer

Sender

Figure 6: The components of the multi-data center shared log.
Arrows denote communication pathways in the pipeline.

tween the machines belonging to one stage.
Pipeline design. Chariots pipeline consists of six stages de-

picted in Figure 6. The first stage contains nodes that are generating
records. These are Application clients and machines receiving the
records sent from other datacenters. These records are sent to the
next stage in the pipeline, Batchers, to batch records to be sent col-
lectively to the next stage. Filters receive the batches and ensure
the uniqueness of records. Records are then forwarded to Queues
where they are assigned LId. After assigning a LId to a record it
is forwarded to FLStore that constitutes the Log maintainers stage.
The local records in the log are read from FLStore and sent to other
datacenters via the Senders.

The arrows in Figure 6 represent the flow of records. Generally,
records are passed from one stage to the next. However, there is an
exception. Application clients can request to read records from the
Log maintainers. Chariots support elastic expansion of each stage
to accommodate increasing demand. Thus, each stage can consist
of more than one machine, e.g., five machines acting as Queues
and four acting as Batchers. The following is a description of each
stage:

Application clients. The Application client hosts the applica-
tion modules. These modules uses the interface to the log that was
presented in Section 3. Some of the commands are served by only
reading the log. These include Read and control commands. These
requests are sent directly to the Log maintainers. The Append op-
eration creates a record that encapsulates the user’s data and send it
to any Batcher machine.

Batchers. The Batchers buffer records that are received locally
or from external sources. Batchers are completely independent
from each other, meaning that no communication is needed from
one Batcher to another and that scaling to more batchers will have
no overhead. Each Batcher has a number of buffers equal to the
number of Filters. Each record is mapped to a specific Filter to
be sent to it eventually. Once a buffer size exceeds a threshold,
the records are sent to the designated Filter. The way records are
mapped to Filters is shown next.

Filters. The Filters ensures uniqueness of records. To perform
this task, each Filter becomes a champion for a subset of the records.
One natural way to do so is to make each Filter a champion for
records with the same host Id, i.e. the records that were created at
the same datacenter. If the number of Filters needed is less that the
number of datacenters, then a single Filter can be responsible for
more than one datacenter. Otherwise, if the number of needed Fil-
ters is in fact larger than the number of datacenters, then more than
one Filter need to be responsible for a single datacenter’s records.
For example, consider that two Filters, x and y, responsible for
records coming from datacenter A. Each one can be responsible
for a subset of the records coming from A. This can be achieved by
leveraging the unique, monotonically increasing, TOIds. Thus, x
can be responsible for ensuring uniqueness of A’s records with odd
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TOIds and y can ensure the uniqueness of records with even TOIds.
Of course, any suitable mapping can be used for this purpose. To
ensure uniqueness, the processing agent maintains a counter of the
next expected TOId. When the next expected record arrives it is
added to the batch to be sent to the one of the Queues. Note also
that this stage does not require any communication between filters,
thus allowing seamless scalability.

Queues. Queues are responsible for assigning LIds to the records.
This assignment must preserve the ordering guarantees of records.
To append records to the shared log they need to have all their
causal dependencies satisfied in addition to the total order of records
coming from the same datacenter. Once a group of records have
their causal dependencies satisfied, they are assigned LIds and sent
to the appropriate log maintainer for persistence. For multi-datacenter
records with causal dependencies, it is not possible to append to
the FLStore directly and make it assign LIds in the same manner
as the single-datacenter deployment shown in section 5.2. This is
because it is not guaranteed that any record can be added to the
log at any point in time, rather, its dependencies must be satisfied
first. The queues ensure that these dependencies are preserved and
assign LIds for the records before they are sent to the log maintain-
ers. The queues are aware of the deterministic assignment of LIds
in the log maintainers and forward the records to the appropriate
maintainer accordingly.

Queues ensure causality of LId assignments by the use of a to-
ken. The token consists of the current maximum TOId of each
datacenter in the local log, the LId of the most recent record, and
the deferred records with unsatisfied dependencies. The token is
initially placed at one of the Queues. The Queue holding the to-
ken append all the records that can be added to the log. The Queue
can verify whether a record can be added to the shared log by ex-
amining the maximum TOIds in the token. The records that can
be added are assigned LIds and sent to the Maintainers designated
for them. The token is updated to reflect the records appended in
the log. Then, the token is sent to the next maintainer in a round-
robin fashion. The token might include all, some, or none of the
records that were not successfully added to the log. Including more
deferred records with the token consumes more network I/O. On
the other hand, not forwarding the deferred records with the token
might increase the latency of appends. It is a design decision that
depends on the nature of Chariots deployment.

Log maintainers. These Log maintainers are identical to the
distributed shared log maintainers of FLStore presented in Sec-
tion 5.2. Maintainers ensure the persistence of records in the shared
log. The record is available to be read by senders and application
clients when they are persisted in the maintainers.

Log propagation. Senders propagate the local records of the log
to other datacenters. Each sender is limited by the I/O bandwidth of
its network interface. To enable higher throughputs, more Senders
are needed at each datacenter. Likewise, more Receivers are needed
to receive the amount of records sent. Each Sender machine is
responsible to send parts of the log from some of the maintainers
to a number of Receivers at other datacenters.

6.3 Live elasticity
The demand on web and cloud applications vary from time to

time. The ability of the infrastructure to scale to the demand seam-
lessly is a key feature for its success. Here, we show how adding
compute resources to Chariots in the fly is possible without disrup-
tions to the Application clients. The elasticity model of Chariots
is to treat each stage as an independent unit. This means that it is
possible to add resources to a single stage to increase its capacity
without affecting the operation of other stages.

Completely independent stages. Increasing the capacity of com-
pletely independent stages merely involves adding the new resources
and sending the information of the new machine to the higher layer.
The completely independent stages are the receivers, batchers, and
senders. For adding a receiver, the administrator needs to inform
senders of other datacenters so that it can be utilized. Similarly, a
new batcher need to inform local receivers of its existence. A new
sender is different in that it is the one reading from log maintain-
ers, thus, the log maintainers need not be explicitly told about the
introduction of a new sender.

Filters. In Chariots, each filter is championing a specific subset
of the log records. Increasing the number of filters results in the
need of reassigning championing roles. For example, a filter that
was originally championing records from another datacenter could
turn out to be responsible for only a subset of these records while
handing off the responsibility of the rest of them to the new filter.
This reassignment need to be orchestrated with batchers. There
need to be a way for batchers to figure out when the hand-over took
place so that they can direct their records accordingly. A future
reassignment technique will be followed for filters as well as log
maintainers as we show next. A future reassignment for filters be-
gin by marking future TOIds that are championed by the original
filter. These future TOIds mark transition of championing a subset
of the records to the new filter. Consider a filter that champions
records from datacenter A in a reassignment scenario of adding a
new filter that will champion the subset of these records with even
TOIds. Marking a future TOId, t, will result in records with even
TOIds greater than t to be championed by the new filter. This future
reassignment should allow enough time to propagate this informa-
tion to batchers.

Queues. Adding a new queue involves two tasks: making the
new queue part of the token exchange loop and propagating the
information of its addition to filters. The first task is performed
by informing one of the queues that it should forward the token
to the new queue rather than the original neighbor. The latter task
(informing filters) can be performed without coordination because
a queue can receive any record.

Log maintainers. Expanding log maintainers is similar to ex-
panding filters in that each maintainer champions a specific set of
records. In this case, each log maintainer champions a subset of
records with specific LIds. The future reassignment technique is
used in a similar way to expanding filters. In this case, not only
do the queues need to know about the reassignment, but the readers
need to know about it too. Another issue is that log maintainers per-
sist old records. Rather than migrating the old records to the new
champion, it is possible to maintain an epoch journal that denotes
the changes in log maintainer assignments. These can be used by
readers to figure out which log maintainer to ask for an old record.

7. EVALUATION
In this section we present some experiments to evaluate our im-

plementation of FLStore and Chariots. The experiments were con-
ducted on a cluster with nodes with the following specifications.
Intel Xeon E5620 CPUs that are running 64-bit CentOS Linux with
OpenJDK 1.7 were used. The nodes in a single rack are connected
by a 10GB switch with an average RTT of 0.15 ms. We also per-
form the baseline experiments on Amazon AWS. There, we used
compute optimized machines (c3.large) in the datacenter in Vir-
ginia. Each machine has 2 virtual CPUs and a 3.75 GiB memory.
We refer to the earlier setup as the private cloud and the latter setup
as the public cloud. Unless it is mentioned otherwise, the size of
each record is 512 Bytes.
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Figure 7: The throughput or one maintainer while increasing
the load in a public cloud
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Figure 8: The append throughput of the shared log in a single-
datacenter deployment while increasing the number of Log
Maintainers.

7.1 FLStore scalability
The first set of experiments that we will present is of the FL-

Store implementation which operates within the datacenter. Each
one of the experiments consists of two types of machines, namely
Log maintainers and clients. The clients generate records and send
them to the Log Maintainers to be appended. We are interested
in measuring the scaling behavior of FLStore while increasing the
number of maintainers. We begin by getting a sense of the capacity
of the machines. Figure 8 shows the throughput of one maintainer
in the public cloud while increasing the load on it. Records are
generated with a specific rate at each experiment point from other
machines. The rate is called the target throughput. Note how as the
target throughput increases, the achieved throughput increases up
to a point and then plateaus. The maximum throughput is achieved
when the target throughput is 150K and then drops to be around
120K appends per second. These numbers will help us decide what
target throughputs to choose for our next experiments.

To verify the scalability of FLStore, Figure 8 shows the cumula-
tive throughput of different scenarios each with a different number
of maintainers. For each experiment an identical number of client
machines were used to generate records to be appended. Ideally,
we would like the throughput to increase linearly with the addition
of new maintainers. Three plots are shown, two from the public
cloud and one from the private cloud. The ones from the public
cloud differ in the target throughput to each maintainer. One targets
125K appends per second for each maintainer while the other tar-
gets 250K appends per second. Note how one is below the plateau
point and one is above. The figure shows that FLStore scales with
the addition of resources. A single maintainer has a throughput
of 131K for the private cloud, 96.7K for the public cloud with a
target of 125K, and 119K for the public cloud with the target of
250K. As we are increasing the number of Log Maintainers a near-
linear scaling is observed. For ten Log Maintainers, the achieved

Machine Throughput (Kappends/s)
Client 129
Batcher 129
Filter 129
Maintainer 124
Store 132

Table 2: The throughput of machines in a basic deployment of
Chariots with one machine per stage.

Machine Throughput (Kappends/s)
Client 1 120
Client 2 122
Batcher 126
Filter 125
Maintainer 123
Store 132

Table 3: The throughput of machines in a deployment of
Chariots with two clients and one machine per stage for the
remaining stages.

append throughput was 1308034 record appends per second for the
private cloud. This append throughput is 99.3% when compared to
a perfect scaling case. The public cloud case with a target of 125K
achieves a throughput that is slightly larger than the perfect scal-
ing case. This is due to the variation in machines’ performances.
The other public cloud case achieve a scaling of 99.9%. This near-
perfect scaling of FLStore is encouraging and demonstrates the ef-
fect of removing any dependencies between maintainers.

7.2 Chariots scalability
The full deployment of Chariots that is necessary to operate in a

multi-datacenter environment consists of five stages. These stages
are described in Section 6.2. Here, we will start from a basic de-
ployment of one machine per stage in the private cloud. We ob-
serve the throughput of each stage to try to identify the bottleneck.
Afterward, we observe how this bottleneck can be overcome by
increasing resources. The simple deployment of one machine per
stage of Chariots pipeline achieves the throughputs shown in Ta-
ble 2. The table lists the throughput in Kilo records per second
for each machine in the pipeline. Note how all machines achieve a
similar throughput of records per second. It is possible for the store
to achieve a throughput higher than the client because of the effect
of buffering. Close throughput numbers for all machines indicates
that the bottleneck is possibly due to the clients. The clients might
be generating less records per second than what can be handled by
the pipeline.

To test this hypothesis we increase the number of machines gen-
erating records to two client machines. The results are shown in
Table 3. If the clients were indeed not generating enough records
to saturate the pipeline, then we should observe an increase in the
throughput of the Batcher. However, this was not the case. The in-
creased load actually resulted in a lower throughput for the batcher.
This means that the batcher is possibly the bottleneck. So, we in-
crease the number of batchers to observe the throughput of latter
stages in the pipeline. Table 4 shows the throughput of machines
with two client machines, two batchers, and a single machine for
each of the remaining stages. Both batchers achieve a throughput
that is higher than the one achieved by a single batcher in the pre-
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Machine Throughput (Kappends/s)
Client 1 126
Client 2 129
Batcher 1 149
Batcher 2 129
Filter 120
Maintainer 118
Store 121

Table 4: The throughput of machines in a deployment of
Chariots with two client machines, two Batchers, and a single
machine for the remaining stages.
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Figure 9: The throughput of machines in a deployment of
Chariots with two client machines, two Batchers, and a single
machine for the remaining stages

vious experiments. This means that the throughput of the Batcher
stage more than doubled. However, now the bottleneck is pushed to
the filter stage that is not able to handle more than 130000 records
per second. Because the throughput of latter stages is almost half
the throughput of the Batcher, they take twice the time to finish
the amount of records generated by the clients (10000000 records).
The throughput timeseries for one client, one batcher, and the queue
are shown in Figure 9. We did not show all the machines’ through-
puts to avoid cluttering the figure. The Batchers are done with
the records at time 42:30, whereas, the latter stages lasted till time
43:10. Note that by the end of the experiment, the throughput of
the queue increases abruptly. The reason for this increase is that
the although the Batchers had already processed the records they
are still transmitting them to the Filter until time 43:08, right be-
fore the abrupt increase. The network interface’s I/O of the Filter
was limiting its throughput. After it is no longer receiving from the
two Batchers it can send with a higher capacity to the latter stages,
thus causing an increase in the observed throughput. This is also the
reason of why in the beginning of the experiment, a higher through-
put is observed for some of the stages (e.g., the high throughput in
the beginning for the queue). The reason is that they still had ca-
pacity in their network’s interface I/O before it was also used to
propagate records to latter stages. Another interesting observation
is the performance variation of the batcher. This turned out to be
a characteristic of machines at a stage generating more throughput
than what can be handled by the next stage.

Increasing the number of machines further should yield a better
throughput. We experiment with the previous setting, but this time
with two machines for all stages. The throughput values records
are presented in Table 5. Note how all stages are scaling. The
throughput of each stage has doubled. Each machine achieves a
close throughput to the basic case of a pipeline with one machine
per stage.

Machine Throughput (Kappends/s)
Client 1 130
Client 2 130
Batcher 1 127
Batcher 2 127
Filter 1 127
Filter 2 126
Maintainer 1 125
Maintainer 2 126
Store 1 137
Store 2 137

Table 5: The throughput of machines in a deployment of
Chariots with two machines per stage.

Our main objective is to allow scaling of shared log systems to
support today’s applications. We showed in this evaluation how a
FLStore deployment is able to scale while increasing the number
of maintainers within the datacenter (Figure 8). Also, we evalu-
ated the full Chariots pipeline that is designed to be used for multi-
datacenter environments. The bottleneck of a basic deployment
was identified and Chariots overcome it by adding more resources
to the pipeline.

8. CONCLUSION
In this paper we presented a shared log system called Chariots.

The main contribution of Chariots is the design of a distributed
shared log system that is able to scale beyond the limit of a single
node. This is enabled by a deterministic post-assignment approach
of assigning ranges of records to Log maintainers. Chariots also
increases the level of availability and fault-tolerance by supporting
geo-replication. A novel design to support a shared log across dat-
acenters is presented. Causal order is maintained across records
from different datacenters. To allow scaling such a shared log,
a multi-stage pipeline is proposed. Each stage of the pipeline is
designed to be scalable by minimizing the dependencies between
different machines. An experimental evaluation demonstrated that
Chariots is able to scale with increasing demand by adding more
resources.
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ABSTRACT
Social networks are large graphs that require multiple graph
database servers to store and manage them. Each database
server hosts a graph partition with the objectives of bal-
ancing server loads, reducing remote traversals (edge-cuts),
and adapting the partitioning to changes in the structure
of the graph in the face of changing workloads. To achieve
these objectives, a dynamic repartitioning algorithm is re-
quired to modify an existing partitioning to maintain good
quality partitions while not imposing a significant overhead
to the system. In this paper, we introduce a lightweight
repartitioner, which dynamically modifies a partitioning us-
ing a small amount of resources. In contrast to the exist-
ing repartitioning algorithms, our lightweight repartitioner
is e�cient, making it suitable for use in a real system. We
integrated our lightweight repartitioner into Hermes, which
we designed as an extension of the open source Neo4j graph
database system, to support workloads over partitioned graph
data distributed over multiple servers. Using real-world
social network data, we show that Hermes leverages the
lightweight repartitioner to maintain high quality partitions
and provides a 2 to 3 times performance improvement over
the de-facto standard random hash-based partitioning.

1. INTRODUCTION
Large scale graphs, in particular social networks, perme-

ate our lives. The scale of these networks, often in millions
of vertices or more, means that it is often infeasible to store,
query and manage them on a single graph database server.
Thus, there is a need to partition, or shard, the graph across
multiple database servers, allowing the load and concurrent
processing to be distributed over these servers to provide
good performance and increase availability. Social networks
exhibit a high degree of correlation for accesses of certain
groups of records, for example through frictionless sharing
[15]. Also, these networks have a heavy-tailed distribution
for popularity of vertices. To achieve a good partitioning
which improves the overall performance, the following ob-

c� 2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0
.

jectives need to be met:

• The partitioning should be balanced. Each vertex of the
graph has a weight that indicates the popularity of the
vertex (e.g., in terms of the frequency of queries to that
vertex). In social networks, a small number of users (e.g.,
celebrities, politicians) are extremely popular while a large
number of users are much less popular. This discrepancy
reveals the importance of achieving a balanced partitioning
in which all partitions have almost equal aggregate weight
defined as the total weight of vertices in the partition.

• The partitioning should minimize the number of edge-cuts.
An edge-cut is defined by an edge connecting vertices in
two di↵erent partitions and involves queries that need to
transition from a partition on one server to a partition
on another server. This results in shifting local traversal
to remote traversal, thereby incurring significant network
latency. In social networks, it is critical to minimize edge-
cuts since most operations are done on the node that rep-
resents a user and its immediate neighbors. Since these 1-
hop traversal operations are so prevalent in these networks,
minimizing edge-cuts is analogous to keeping communities
intact. This leads to highly local queries similar to those
in SPAR [27] and minimizes the network load, allowing for
better scalability by reducing network IO.

• The partitioning should be incremental. Social networks
are dynamic in the sense that users and their relations
are always changing, e.g., a new user might be added, two
users might get connected, or an ordinary user might be-
come popular. Although the changes in the social graph
can be much slower when compared to the read tra�c [8],
a good partitioning solution should dynamically adapt its
partitioning to these changes. Considering the size of the
graph, it is infeasible to create a partitioning from scratch;
hence, a repartitioning solution, a repartitioner, is needed
to improve on an existing partitioning. This usually in-
volves migrating some vertices from one partition to an-
other.

• The repartitioning algorithm should perform well in terms
of time and memory requirements. To achieve this e�-
ciency, it is desirable to perform repartitioning locally by
accessing a small amount of information about the struc-
ture of the graph. From a practical point of view, this
requirement is critical and prevents us from applying ex-
isting approaches, e.g., [18, 30, 31, 6] for the repartitioning
problem.

The focus of this paper is on the design and provision of
a practical partitioned social graph data management sys-
tem that can support remote traversals while providing an
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e↵ective method to dynamically repartition the graph using
only local views. The distributed partitioning aims to co-
locate vertices of the graph on-the-fly so as to satisfy the
above requirements. The fundamental contribution of this
paper is a dynamic partitioning algorithm, referred to as
lightweight repartitioner, that can identify which parts of
graph data can benefit from co-location. The algorithm aims
to incrementally improve an existing partitioning by decreas-
ing edge-cuts while maintaining almost balanced partitions.
The main advantage of the algorithm is that it relies on only
a small amount of knowledge on the graph structure referred
to as auxiliary data. Since the auxiliary data is small and
easy to update, our repartitioning algorithm is performant
in terms of time and memory while maintaining high-quality
partitionings in terms of edge-cut and load balance.

We built Hermes as an extension of the Neo4j1 open source
graph database system by incorporating into it our algo-
rithm to provide the functionality to move data on-the-fly
to achieve data locality and reduce the cost of remote traver-
sals for graph data. Our experimental evaluation of Hermes
using real-world social network graphs shows that our tech-
niques are e↵ective in producing performance gains and work
almost as well as the popular Metis partitioning algorithms
[18, 30, 6] that performs static o✏ine partitioning by relying
on a global view of the graph.

The rest of the paper is structured as follows. Section 2
describes the problem addressed in the paper and reviews
classical approaches and their shortcomings. Section 3 in-
troduces and analyzes the lightweight repartitioner. Section
4 presents an overview of the Hermes system. Section 5
presents performance evaluation of the system. Section 6
covers related work, and Section 7 concludes the paper.

2. PROBLEM DEFINITION
In this section we formally define the partitioning problem

and review some of the related results. In what follows, the
term ‘graph’ refers to an undirected graph with weights on
vertices.

2.1 Graph Partitioning
In the classical (↵, �)-graph partitioning problem [20], the

goal is to partition a given graph into ↵ vertex-disjoint sub-
graphs. The weight of a partition is the total weight of ver-
tices in that partition. In a valid solution, the weight of each
partition is at most a factor � � 1 away from the average
weight of partitions. More precisely, for a partition P of a
graph G, we need to have !(P )  � ⇥

P
v2V (G)

!(v)/↵. Here,

!(P ) and !(v) denote the weight of a partition P and vertex
v, respectively. Parameter � is called the imbalance load fac-
tor and defines how imbalanced the partitions are allowed
to be. Practically, � is in range [1, 2]. Here, � = 1 implies
that partitions are required to be completely balanced (all
have the same aggregate weights), while � = 2 allows the
weight of one partition to be up to twice the average weight
of all partitions. The goal of the minimization problem is to
achieve a valid solution in which the number of edge-cuts is
minimized.
The partitioning problem is NP-hard [13]. Moreover, there

is no approximation algorithm with a constant approxima-

1Neo4j is being used by customers such as Adobe and HP
[3].

tion ratio unless P=NP [7]. Hence, it is not possible to intro-
duce algorithms which provide worst-case guarantees on the
quality of solutions, and it makes more sense to study the
typical behavior of algorithms. Consequently, the problem
is mostly approached through heuristics [20] [12] which are
aimed to improve the average-case performance. Regardless,
the time complexity of these heuristics ⌦(n3) which makes
them unsuitable in practice.

To improve the time complexity, a class of multi-level al-
gorithms were introduced. In each level of these algorithms,
the input graph is coarsened to a representative graph of
smaller size; when the representative graph is small enough,
a partitioning algorithm like that of Kernighan-Lin [20] is
applied to it, and the resulting partitions are mapped back
(uncoarsened) to the original graph. Many algorithms fit in
this general framework of multi-level algorithms; a widely
used example is the family of Metis algorithms [19, 30, 6].
The multi-level algorithms are global in the sense that they
need to know the whole structure of the graph in the coars-
ening phase, and the coarsened graph in each stage should
be stored for the uncoarsening stage. This problem is par-
tially solved by introducing distributed versions of these al-
gorithms in which the partitioning algorithm is performed
in parallel for each partition [4]. In these algorithms, in ad-
dition to the local information (structure of the partition),
for each vertex, the list of the adjacent vertices in other par-
titions is required in the coarsening phase. The following
theorem establishes that in the worst case, acquiring this
amount of data is close to having a global knowledge of
graph (the proof can be found in [25]).

Theorem 1. Consider the (↵, �)-graph partitioning prob-
lem where � < 2. There are instances of the problem for
which the number of edge-cuts in any valid solution is asymp-
totically equal to the number of edges in the input graph.

Hence, the average amount of data required in the coars-
ening phase of multi-level algorithms can be a constant frac-
tion of all edges. The graphs used in the proof of the above
theorem belong to the family of power-law graphs which are
often used to model social networks. Consequently, even the
distributed versions of multi-level algorithms in the worst
case require almost global information on the structure of
the graph (particularly when used for partitioning social
networks). This reveals the importance of providing practi-
cal partitioning algorithms which need only a small amount
of knowledge about the structure of the graph that can be
easily maintained in memory. The lightweight repartitioner
introduced in this paper has this property, i.e., it maintains
only a small amount of data, referred to as auxiliary data,
to perform repartitioning.

2.2 Repartitioning
A variety of partitioning methods can be used to create

an initial, static, partitioning. This should be followed by
a repartitioning strategy to maintain good partitioning that
can adapt to changes in the graph. One solution is to pe-
riodically run an algorithm on the whole graph to get new
partitions. However, running an algorithm to get new par-
titions from scratch is costly in terms of time and space.
Hence, an incremental partitioning algorithm needs to adapt
the existing partitions to changes in the graph structure.

It is desirable to have a lightweight repartitioner that
maintains only a small amount of auxiliary data to perform
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repartitioning. Since such algorithm refers only to this auxil-
iary data, which is significantly smaller than the actual data
required for storing the graph, the repartitioning algorithm
is not a system performance bottleneck. The auxiliary data
maintained at each machine (partition) consists of the list of
accumulated weight of vertices in each partition, as well as
the number of neighbors of each hosted vertex in each parti-
tion. Note that maintaining the number of neighbors is far
cheaper that maintaining the list of neighbors in other parti-
tions. In what follows, the main ideas behind our lightweight
repartitioner are introduced through an example.

Example: Consider the partitioning problem on the graph
shown in Figure 1. Assume there are ↵ = 2 partitions in the
system and the imbalance factor is � = 1.1, i.e., in a valid
solution, the aggregate weight of a partition is at most 1.1
times more than the average weight of partitions. Assume
the numbers on vertices denote their weight. During nor-
mal operation in social networks, users will request di↵erent
pieces of information. In this sense, the weight of a ver-
tex is the number of read requests to that vertex. Figure
1a shows a partitioning of the graph into two partitions,
where there is only one edge-cut and the partitions are well
balanced, i.e., the weight of both partitions is equal to the
average weight. Assuming user b is a popular weblogger who
posts a post, the request tra�c for vertex b will increase as
its neighbors poll for updates, leading to an imbalance in
load on the first partition (see Figure 1b). Here, the ratio
between aggregate weight of partition 1 (i.e., 15) and the
average weight of partitions (i.e., 13) is more than �. This
means that the response time and request rates increase by
more than the acceptable skew limit, and the repartitioning
needs to be triggered to rebalance the load across partitions
(while keeping the number of edge-cuts as small as possible).
The auxiliary data of the lightweight repartitioner avail-

able to each partition includes the weight of each of the
two partitions, as well as the number of neighbors of each
vertex v hosted in the partition. Provided with this aux-
iliary data, a partition can determine whether load imbal-
ances exist and the extent of the imbalance in the system
(to compare it with �). If there is a load imbalance, a repar-
titioner needs to indicate where to migrate data to restore
load balance. Migration is an iterative process which will
identify vertices that when moved will balance loads (aggre-
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(a) Balanced partitioned graph
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Figure 1: Graph evolution and e↵ects of repartitioning in
response to imbalances.

gate weights) while keeping the number of edge-cuts as small
as possible. For example, when the repartitioner starts from
the state in Figure 1b, on partition 1, vertices a through d
are poor candidates for migration because their neighbors
are in the same partition. Vertex e, however, has a split ac-
cess pattern between partitions 1 and 2. Since vertex e has
the fewest neighbors in partition one, it will be migrated to
partition 2. On partition 2, the same process is performed
in parallel; however, vertex f will not be migrated since par-
tition 1 has a higher aggregate weight. Once vertex e is
migrated, the load (aggregate weights) becomes balanced,
thus any remaining iterations will not result in any migra-
tions (see Figure 1c).

The above example is a simple case to illustrate how the
lightweight repartitioner works. Several issues are left out
of the example, e.g., two highly connected clusters of vertices
may repeatedly exchange their clusters to decrease edge-cut.
This results in an oscillation which is discussed in detail in
Section 3.

3. PARTITIONING ALGORITHM
Unlike Neo4j which is centralized, Hermes can apply hash-

based or Metis algorithm to partition a graph and distribute
the partitions to multiple servers. Thus, the system starts
with an initial partitioning and incrementally applies the
lightweight repartitioner to maintain partitioning with good
performance in the dynamic environment. In this section,
we introduce the lightweight repartitioner algorithm behind
Hermes. Embedding the initial partitioning algorithm and
the lightweight repartitioner into Neo4j required modifica-
tion of Neo4j components.

To increase query locality and decrease query response
times, the initial partitioning needs to be optimized in terms
of having almost balanced distributions (valid solutions) with
small number of edge-cuts. We use Metis to obtain the ini-
tial data partitioning, which is a static, o✏ine, process that
is orthogonal to the dynamic, on-the-fly, partitioning that
Hermes performs.

3.1 Lightweight Repartitioner
When new nodes join the network or the tra�c patterns

(weights) of nodes change, the lightweight repartitioner is
triggered to rebalance vertex weights while decreasing edge-
cut through an iterative process. The algorithm makes use
of aggregate vertex weight information as its auxiliary data.
Assuming there are ↵ partitions, for each vertex v, the auxil-
iary data includes ↵ integers indicating the number of neigh-
bors of v in each of the ↵ partitions. This auxiliary data is
insignificant compared to the physical data associated with
the vertex which include adjacency list and other informa-
tion referred to as properties of the vertex (e.g., pictures
posted by a user in a social network). The repartitioning
auxiliary data is collected and updated based on execution
of user requests, e.g., when a new edge is added, the aux-
iliary data of the partitioning(s) including the endpoints of
the edge get updated (two integers are incremented). Hence,
the cost involved in maintenance of auxiliary data is propor-
tional to the rate of changes in the graph. As mentioned ear-
lier, social networks change quite slowly (when compared to
the read tra�c); hence, the maintenance of auxiliary data is
not a system bottleneck. Each partition collects and stores
aggregate vertex information relevant to only the local ver-
tices. Moreover, the auxiliary data includes the total weight
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of all partitions, i.e., in doing repartitioning, each server
knows the total weight of all other partitions.

The repartitioning process has two phases. In each iter-
ation of the first phase, each server runs the repartitioner
algorithm using the auxiliary data to indicate some vertices
in its partition that should be migrated to other partitions.
Before the next iteration, these vertices are logically moved
to their target partitions. Logical movement of a vertex
means that only the auxiliary data associated with the ver-
tex is sent to the other partition. This process continues up
to a point (iteration) in which no further vertices are chosen
for migration. At this point the second phase is performed in
which the physical data is moved based on the result of first
phase. The algorithm is split into two phases because bor-
der vertices are likely to change partitions more than once
(this will be discussed later) and auxiliary data records are
lightweight compared to the physical data records, allowing
the algorithm to finish faster. In what follows, we describe
how vertices are selected for migration in an iteration of the
repartitioner.

Consider a partition P
s

(source partition) is running the
repartitioner algorithm. Let v be a vertex in partition P

s

.
The gain of moving v from P

s

to another partition P
t

(target
partition) is defined as the di↵erence between the number
of neighbors of v in P

t

and P
s

, respectively, i.e., gain(v) =
d
v

(t) � d
v

(s) (d
v

(k) denotes the number of neighbors of v
in partition k). Intuitively, the gain represents the decrease
of the number of edge-cuts when migrating v from P

s

to P
t

(assuming that no other vertex migrates). Note that the
gain can be negative, meaning that it is better, in terms of
edge-cuts, to keep v in P

s

rather than moving it to P
t

. In
each iteration and on each partition, the repartitioner selects
for migration candidate vertices that will give the maximum
gain when moved from the partition. However, to avoid os-
cillation and ensure a valid packing in term of load balance,
the algorithm enforces a set of rules in migrating vertices.
First, it defines two stages in each iteration. In the first
stage, the migration of vertices is allowed only from par-
titions with lower ID to higher ID, while the second stage
allows the migration only in the opposite direction, i.e., from
partitions with higher ID to those with lower ID. Here, par-
tition ID defines a fixed ordering of partitions (and can be
replaced by any other fixed ordering). Migrating vertices in
one-direction in two stages prevent the algorithm from oscil-
lation. Oscillation happens when there is a large number of
edges between two group of vertices hosted in two di↵erent
partitions (see Figure 2). If the algorithm allows two-way
migration of vertices, the vertices in each group migrate to
the partition of the other group, while the edge-cut does not
improve (Figure 2b). In one-way migration, however, the
vertices in one group remain in their partitions while the
other group joins them in that partition (Figure 2d).
In addition to preventing oscillation, the repartitioner al-

gorithm minimizes load imbalance as follows. A vertex v on
a partition P

s

is a candidate for migration to partition P
t

if
the following conditions hold:

• P
s

and P
t

fulfill the above one-way migration rule.
• Moving v from P

s

to P
t

does not cause P
t

to be overloaded
nor P

s

to be underloaded. Recall from Section 2.1 that
the imbalance ratio of a partition is the ratio between the
weight of the partition (the total weight of vertices it is
hosting) and the average weight of all the partitions. A
partition is overloaded if its imbalance load is more than

� and underloaded if its weight is less than 2 � � times
the average partition weight. Here, � is the maximum
allowed imbalance factor (1 < � < 2); the default value
of � in Hermes is set to be 1.1, i.e., a partition’s load is
required to be in range (0.9, 1.1) of the average partition
weight. This is so that imbalances do not get too high
before repartitioning triggers.

• Either P
s

is overloaded OR there is a positive gain in
moving v from P

s

to P
t

. When a partition is overloaded, it
is good to consider all vertices as candidates for migration
to any other partition as long as they do not cause an
overload on the target partition. When the partition is
not overloaded, it is good to move only vertices which
have positive weight so as to improve the edge-cut.

When a vertex v is a candidate for migration to more than
one partition, the partition with maximum gain is selected
as the target partition of the vertex. This is illustrated in
Algorithm 1. Note that detecting whether a vertex v is
a candidate for migration and selecting its target partition
is performed using only the auxiliary data. Precisely, for
detecting underloaded and overloaded partitions (Lines 2,
5 and 11), the algorithm uses the weight of the vertex and
the accumulated weights of all partitions; these are included
in the auxiliary data. Similarly, for calculating the gain of
moving v from partition P

s

to partition P
t

(Line 10), it uses
the number of neighbors of v in any of the partitions, which
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(d) The final graph after the
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Figure 2: An unsupervised repartitioning might result in
oscillation. Consider the partitioning depicted in (a). The
repartitioner on partition 1 detects that migrating d, e, f to
partition 2 improves edge-cut; similarly, the repartitioner on
partition 2 tends to migrate g, h, i to partition 1. When the
vertices move accordingly, as depicted in (b), the edge-cut
does not improve and the repartitioner needs to move d, e, f
and h, i again. To resolve this issue, in the first stage of
repartitioning of (a), the vertices d, e, f are migrated from
partition 1 (lower ID) to partition 2 (higher ID). After this,
as depicted in (c), the only vertex to migrate in the second
stage is vertex g which moves from partition 2 (higher ID)
to migration 1 (d).
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Algorithm 1 Choosing target partition for migration

1: procedure get target part(vertex v currently
hosted in partition P

s

, the current stage of the
iteration.)

2: if imbalance factor(P
s

� {v}) < 2� � then
3: return (null, 0)

4: target = null; maxGain = 0;
5: if imbalance factor(P

s

) > � then
6: maxGain = �1
7: for partition P

t

2 partitionSet do
8: if (stage = 1 and P

t

.ID > P
s

.ID) or
9: . (stage = 2 and P

t

.ID < P
s

.ID) then
10: gain Gain(v, P

s

, P
t

)
11: if imbalance factor(P

t

[ {v}) < � and
12: . gain > maxGain then
13: target P

t

; maxGain = gain

14: return (target,maxGain)

is also included in the auxiliary data.

Recall that the repartitioning algorithm runs on each par-
tition independently, a property that supports scalability.
For each partition P

s

, after selecting the candidate ver-
tices for migration and their target partitions, the algo-
rithm selects k candidate vertices which have the highest
gains among all vertices and proceeds by (logically) migrat-
ing these top-k vertices to their target partitions. Here, mi-
grating a vertex means sending (and updating) the auxil-
iary data associated with the vertex to its target destina-
tion and updating the auxiliary data associated with parti-
tion weights accordingly. The algorithm restricts the num-
ber of migrated vertices in each iteration (to k) to avoid
imbalanced partitionings. Note that when selecting the tar-
get partition for a migrating vertex, the algorithm does not
know the target partition of other vertices; hence, there is a
chance that a large number of vertices migrate to the same
partition to improve edge-cut. Selecting only k vertices en-
ables the algorithm to control the accumulative weight of
partitions by restricting the number of migrating vertices.
We discuss later how the value of k is selected. In general,
taking k as a small, fixed fraction of n (size of the graph)
gives satisfactory results.

Algorithm 2 shows the details of one iteration of the repar-
titioner algorithm performed on a partition P

s

. The algo-
rithm detects the candidate vertices (Lines 4-8), selects the
top-k candidates (Line 9), and moves them to their respec-
tive target partitions. Note that the migration in Line 11 is
logical. After each phase of each iteration, the auxiliary data
associated with each migrated vertex v is updated. This is
because the neighbors of v may also be migrated, which
would mean that the degree of v in each partition, i.e., aux-
iliary data associated with v, has changed. The algorithm
continues moving vertices until there is no candidate vertex
for migration, i.e., further movement of vertices does not
improve edge-cut.

Example: To demonstrate the workings of the lightweight
repartitioner, we show two iterations of the repartitioning al-
gorithm on the graph of Figure 3 in which there are ↵ = 3
partitions and the average weight of partitions is 10/3. As-
sume the value of � is 1.3̄. Hence, the aggregate weight of a
partition needs to be in range [2.2̄, 4.4̄]; otherwise the par-
titioning is overloaded or underloaded. Figure 3a shows the

Algorithm 2 Lightweight Repartitioner

1: procedure repartitioning iteration(partition P
s

)
2: for stage 2 {1, 2} do
3: candidates  {}
4: for Vertex v 2 VertexSet(P

s

) do
5: target(v)  get target part(v,stage)
6: . setting target(v) and gain(v)
7: if target(v) 6= null then
8: candidates.add (v)

9: top-k  k candidates with maximum gains
10: for Vertex v 2 top-k do
11: migrate(v, P

S

, target(v))

12: P
s

.update auxiliary data

initial state of the graph. The partitions are sub-optimal as
6 of the 11 edges shown are edge-cuts. Consider the first
stage of the first iteration of the lightweight repartitioner.
Since the first stage restricts vertex migrations from lower
ID partitions to higher ID only, vertices a and e are the
migration candidates since they are the only ones that can
improve edge-cut. Note that if the algorithm was performed
in one stage, vertices h and d would be migrated to partition
1 causing the oscillating behavior discussed previously. At
the end of the first stage of the first iteration, the state of
the graph is as presented in Figure 3b. In the second stage,
the algorithm migrates only vertex g. While vertex c could
be migrated to improve edge-cut, the migration direction
does not allow this (Figure 3c). In addition, such migration
would cause partition 1 to be underloaded (its load will be
2 which is less than 2.2̄). In the second iteration, vertex
c is migrated to partition 2. The result of the first stage
of iteration 2 is presented in Figure 3d. At this point, the
graph reaches an optimal grouping, thus the second stage
of the second iteration will not perform any migrations. In
fact further iterations would not migrate anything since the
graph has an optimal partitioning.

3.2 Physical Data Migration
Physical data migration is the final step of the reparti-

tioner. Vertices and relationships that were marked for mi-
gration by the repartitioner are moved to the target parti-
tions using a two step process: (1) Copy marked vertices
and relationships (copy step) (2) Remove marked vertices
and relationships from the host partitions (remove step).

In the first step, a list of all vertices selected for migration
to a partition are received by that partition, which will re-
quest these vertices and add them to its own local database.
At the end of the first step, all moved vertices are replicated.
Because of the insertion-only operations, the complexity of
the operations is lower as all operations can be performed
locally in each partition, meaning less network contention
and locks held for shorter periods.

Between the two steps there is a synchronization process
between all partitions to ensure that partitions have com-
pleted the copy process before removing marked vertices
from their original partitions. The synchronization itself
is not expensive as no locks or system resources are held,
though partitions may need to wait until an occasional strag-
gler finishes copying. In the remove step, all marked vertices
will enter an unavailable state in which all queries referenc-
ing the vertex will be executed as if the vertex is not part
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Figure 3: Two iterations of the lightweight repartitioner.
Two metrics are attached to every partition: ! representing
the weight of the partition and ec representing the edge-cut.

of the local vertex set. This allows performing the transac-
tional operations much faster as locks on unavailable vertices
cannot be acquired by any standard queries.

3.3 Lightweight Repartitioner Analysis

3.3.1 Memory and Time Analysis

Recall that the main advantage of the lightweight reparti-
tioner over multilevel algorithms is that it makes use of only
auxiliary data to perform repartitioning. Auxiliary data has
a small size compared to the size of the graph. This is for-
malized in the following two theorems, the proofs of which
can be found in the extended version of the paper [25].

Theorem 2. The amortized size of auxiliary data stored
on each partition to perform repartitioning is n + ⇥(↵) on
average. Here, n denotes the number of vertices in the input
graph and ↵ is the number of partitions.

When compared to the multilevel algorithms, the memory
requirement of the lightweight repartitioner is far less and
can be easily maintained without hardly any impact on
performance of the system. This is experimentally verified
in Section 5.3.

Theorem 3. Each iteration of the repartitioning algo-
rithm takes O(↵n

s

) time to complete. Here, ↵ denotes the
number of partitions and n

s

is the number of vertices in the
partition which runs the repartitioning algorithm.

The above theorem implies that each iteration of the algo-
rithm runs in linear time. Moreover, the algorithm converges
to a stable partitioning after a small number of iterations rel-
ative to the number of vertices, e.g., in our experiments, it

converges after less than 50 iterations, while there are mil-
lions of vertices in the graph data sets.

The lightweight repartitioner is designed for scalability
and with little overhead to the database engine. The sim-
plicity of the algorithm supports parallelization of operations
and maximizes scalability. In the first phase, each iteration
is performed in parallel on each server. The auxiliary data
information is fully local to each server, thus lines 4 through
9 of Algorithm 2 are executed independently on each server.
In the second phase of the repartitioning algorithm, physi-
cal data migration is performed. As mentioned in Section
2.2, this part has been decomposed into two steps for sim-
plicity and performance. Because information is only copied
in the first step (in which vertices are replicated), it allows
for maximum parallelization with little need to synchronize
between servers.

3.3.2 Algorithm Convergence

When the lightweight repartitioner triggers, the algorithm
starts by migrating vertices from overloaded partitions. Note
that no vertex is a candidate for migration to an overloaded
partition. Hence, after a bounded number of iterations, the
partitioning becomes valid in term of load balance. When
there is no overloaded partition, the algorithm moves a ver-
tex only if there is a positive gain in moving it from the
source to the target partition. This is the main idea behind
the following proof for the convergence of the algorithm.

Theorem 4. After a bounded number of iterations, the
lightweight repartitioner algorithm converges to a stable par-
titioning in which further migration of vertices (as done by
the algorithm) does not result in better partitionings.

Proof. We show that the algorithm constantly decreases
the number of edge-cuts. For each vertex v, let d

ex

(v) denote
the number of external neighbors of v, i.e., number of neigh-
bors of v in partitions other than that of v. With this defi-
nition, the number of edge-cuts in a partition is �/2 where

� =
nP

v=1
d
ex

(v). Recall that the algorithm works in stages so

that if in a stage migration of vertices is allowed from one
partition to another, in the subsequent stage the migration is
allowed in the opposite direction. We show that the value of
� decreases in every two subsequent stages; more precisely,
we show that when a vertex v migrates in a stage t, the value
of d

ex

(v) either decreases at the end of the stage t or at the
end of the subsequent stage t+1 (compared to when v does
not migrate). Let dt

k

(v) denote the number of neighbors of
vertex v in partition k before stage t. Assume that vertex
v is migrated from partition i to partition j at stage t (see
Figure 4). This implies that the number of neighbors of v in
partition j is more than partition i. Hence, when v moves
to partition j, the value of d

ex

(v) is expected to decrease.
However, in a worst-case scenario, some neighbors of v in
partition j also move to other partitions at the same stage
(Figure 4b). Let x(v) denote the number of neighbors of v
in the target partition j which migrate at stage t; hence,
at the end of the stage, the value of d

ex

(v) decreases by at
least dt

j

(v)� x(v) units. Moreover, d
ex

(v) is increased by at
most dt

i

(v); this is because the previous internal neighbors
(those which remain at partition i) will become external af-
ter the migration of v. If dt

j

(v)� x(v) > dt
i

(v), the value of
d
ex

(v) decreases at the end of the stage and we are done.
Otherwise, we say a bad migration occurred. In these cases,
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Figure 4: The number of edge-cuts might increase in the first stage (in the worst case), but it decreases after the second stage.
In this example, the number of edge-cuts is initially 18 (a); this increases to 21 after the first stage (b), and decreases to 15
at the end of the second stage (c).

assuming k is su�ciently large, in the subsequent stage t+1,
v migrates back to partition i since there is a positive gain
in such a migration (Figure 4c), and this results in a de-
crease of dt+2

i

(v) and an increase of at most dt
j

(v) � x(v)
in d

ex

(v). Consequently, the net increase in d
ex

after two
stages is (dt

i

(v)� (dt
j

(v)�x(v)))+(dt
j

(v)�x(v)�dt+2
i

(v)) =
dt
i

(v) � dt+2
i

(v). Note that if v does not move at all, d
ex

increases dt
i

(v) � dt+2
i

(v) units after two stages. Hence, in
the worst case, the net decrease in d

ex

(v) is at least 0 for all
migrated vertices (compared to when they do not move). In-
deed, we show that there are vertices for which the decrease
in d

ex

is strictly more than 0 after two consecutive stages.
Assuming there are ↵ partitions, these are the vertices which
migrate to partition ↵ [in stages where vertices move from
lower ID to higher ID partitions] or partition 1 [in stages
where vertices move from higher ID to lower ID partitions].
In these cases, no vertex can move from the target partition
to another partition; so the actual decrease in d

ex

(v) is the
same as the calculated gain when moving the vertex and
is more than 0. To summarize, for all vertices, the value
of d

ex

(v) does not increase after every two stages, and for
some vertices, it decreases. For smaller values of k, after a
bad migration, vertex v might not return from partition j to
its initial partitioning i in the subsequent stage (since there
might be more gain in moving other vertices); however, since
there is a positive gain in moving v back to partition i, in
subsequent stages, the algorithm moves v from partition j
to another partition (i or another partition which results in
more gain). The only exception is when many neighbors of
v move to partition j so that there is no positive gain in
moving v. In both cases, the value of d

ex

(v) decreases with
the same argument as above. To conclude, as the algorithm
runs, the accumulated values of d

ex

(v) (i.e., �), and conse-
quently the number of edge-cuts, constantly decrease.

The graph structure in social networks does not evolve quickly
and its evolution is towards community formation. Hence, as
our experiments confirm, after a small number of iterations,
the lightweight repartitioner converges to a stable partition-
ing. The speed of convergence depends on the value of k (the
number of migrated vertices from a partition in each itera-
tion). Larger values of k result in faster improvement on the
number of edge-cuts and subsequently achieve partitioning
with almost an optimal number of edge-cuts. However, as
mentioned earlier, large values of k can degrade the balance
factor of partitioning. Finding the right of value of k requires

considering a few parameters which include the number of
partitions, the structure of the graph (e.g., the average size
of the clusters formed by vertices), and the nature of chang-
ing workload (whether the changes are mostly on the weight
or on the degree of vertices). In practice, we observed that a
sub-optimal value of k does not degrade convergence rate by
more than a few iterations; consequently the algorithm does
not require fine tuning for finding the best value of k. In our
experiments, we set k as a small fraction of the number of
vertices.

4. HERMES SYSTEM OVERVIEW
In this section, we provide an overview of Hermes, which

we designed as an extension of Neo4j Version 1.7.3 to han-
dle distribution of graph data and dynamic repartitioning.
Neo4j is an open source centralized graph database system
which provides a disk-based, transactional persistence en-
gine (ACID compliant). The main querying interface to
Neo4j is traversal based. Traversals use the graph structure
and relationships between records to answer user queries.

To enable distribution, changes to several components of
Neo4j were required as well as addition of new functionality.
The modifications and extensions were done such that exist-
ing Neo4j features are preserved. Figure 5 shows the com-
ponents of Hermes with the components of Neo4j that were
modified to enable distribution in light blue shading while
the components in dark blue shading are newly added. De-
tailed descriptions of the remaining changes are omitted as
they pose technical challenges which were overcome using
existing techniques. For example, as the centralized loop
detection algorithm used by Neo4j for deadlock detection
does not scale well, it was replaced using a timeout-based
detection scheme as described in [10].

Internally, Neo4j stores information in three main stores:
node store, relationship store and property store. Splitting
data into three stores allows Neo4j to keep only basic infor-
mation on nodes and relationships in the first two stores.
Further, this allows Neo4j to have fixed size node and rela-
tionship records. Neo4j combines this feature with a mono-
tonically increasing ID generator such that a) record o↵sets
are computed in O(1) time using their ID and b) contiguous
ID allocation allows records to be as tightly packed as pos-
sible. The property store allows for dynamic length records.
To store the o↵sets, Neo4j uses a two layer architecture
where a fixed size record store is used to store the o↵sets and
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a dynamic size record store is used to hold the properties.
To shard data across multiple instances of Hermes, changes
were made to allow local nodes and relationships to connect
with remote ones. Hermes uses a doubly-linked list record
model when keeping track of relationships. Such a node in
the graph needs to know only the first relationship in the list
since the rest can be retrieved by following the links from
the first. Due to tight coupling between relationship records,
referencing a remote node means that each partition would
need to hold a copy of the relationship. Since replicating and
maintaining all information related to a relationship would
incur significant overhead, the relationship in one partition
has a ghost flag attached to it to connect it with its remote
counterpart. Relationships tagged by the ghost flag do not
hold any information related to the properties of the rela-
tionship but are maintained to keep the graph structure
valid. One advantage of this is the complete locality in find-
ing the adjacency list of a graph node. This is important
since traversal operations build on top of adjacency list.

The storage was also modified to use a tree-based index-
ing scheme (B+Tree) rather than an o↵set-based indexing
scheme since record IDs can no longer be allocated in small
increments. In addition, data migration would make o↵set
based indexing impossible as records would need to be both
compacted and still keep an o↵set based on their ID.

In Hermes, servers are connected in a peer-to-peer fash-
ion similar to the one presented in Figure 6. A client can
connect to any server and perform a query. Generally, user
queries are in the form of a traversal. To submit a query the
client would first lookup the vertex for the starting point of
the query, then send the traversal query to the server host-
ing the initial vertex. The query is forwarded to the server
containing the vertex such that data locality is maximized.
On the server side, the traversal query will be processed by
traversing the vertex’s relationships. If the information is
not local to the server, remote traversals are executed using
the links between servers. When the traversal completes,
the query results will be returned to the client.

5. PERFORMANCE EVALUATION
In this section, we present the evaluation of the lightweight

repartitioner implemented into Hermes.

5.1 Experimental Setup
All experiments were executed on a cluster with 16 server
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Figure 6: Overview of how Hermes servers interact with
clients and with each other.

machines. Each server has the following hardware config-
uration: 2 AMD Opteron 252 (2 cores), 8 GB RAM and
160GB SATA HDD. The servers are connected using 1Gb
ethernet. In each experiment, one Hermes instance runs on
its own server.

The experiments are focused on typical social network
tra�c patterns, which based on previous work [8, 21], are
1-hop traversals and single record queries. We also consider
2-hop queries which are used for analytical queries such as
ads and recommendations. Given the small diameters of
social graphs (Table 1), queries with more than 2-hops are
more typical of batch processing frameworks rather than so-
cial graphs where querying most or all of the graph data is
required. The submission of traversal queries was described
in Section 4.

5.2 Datasets
Three real-world datasets, namely Orkut, DBLP, and Twit-

ter, are used to evaluate the performance of the lightweight
repartitioner. We consider average path length, clustering
coe�cient, and power law coe�cient of these graphs to char-
acterize the datasets (Table 1). Average path length is the
average length of the shortest path between all pairs of ver-
tices. The clustering coe�cient (a value between 0 and 1)
measures how tightly clustered vertices are in the graph. A
high coe�cient means strong (or well connected) communi-
ties exist within the network. Finally, power law coe�cient
shows how the number of relationships increases as user pop-
ularity increases.

5.3 Experimental Results
The lightweight repartitioner is compared with two di↵er-

ent partitioning algorithms. For an upper bound, we use a
member of Metis family of repartitioners that is specifically
designed for partitioning graphs whose degree distribution
follows a power-law curve [6]. These graphs include social
networks which are the focus of this paper.

Several previous partitioning approaches (e.g.[26, 28]) are

Twitter Orkut DBLP
Number of nodes 11.3 million 3 million 317 thousand
Number of edges 85.3 million 223.5 million 1 million
Number of symmetric links 22.1% 100% 100%
Average path length 4.12 4.25 9.2
Clustering coe�cient unpublished 0.167 0.6324
Power law coe�cient 2.276 1.18 3.64

Table 1: Summary description of datasets
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compared against Metis as it is considered the “gold stan-
dard” for the quality of partitionings. It is also flexible
enough to allow custom weights to be specified and used
as a secondary goal for partitioning. We also compare the
lightweight repartitioner against random hash-based parti-
tioning, which is a de-facto standard in many data stores
due to its decentralized nature and good load balance prop-
erties. Note that Metis is an o✏ine, static partitioning al-
gorithm that requires a very large amount of memory for
execution. This means that either additional resources need
to be allocated to partition and reload the graph every time
the partitioner is executed, or the system has to be taken
o✏ine to load data on the servers. When the servers were
taken o✏ine, it took 2 hours to load each of the Orkut and
Twitter graphs separately. This long period of time is unac-
ceptable for production systems. Alternatively, if Hermes is
augmented to run Metis on graphs, the resource overhead for
running Metis would be much higher than the lightweight
repartitioner. Metis’ memory requirements scale with the
number of relationships and coarsening stages, while the
lightweight repartitioner scales with the number of vertices
and partitions. Since the number of relationships dominates
by orders of magnitude, Metis will require significantly more
resources. For example, we found that Metis requires around
23GB and 17GB of memory to partition the Orkut and Twit-
ter datasets, respectively; however, the lightweight reparti-
tioner only requires 2GB and 3GB for these datasets. While
Metis has been extended to support distributed computa-
tion (ParMetis [4]), the memory requirements for each server
would still be higher than the lightweight repartitioner.

5.3.1 Lightweight Repartitioner Performance

Our experiments are derived from real world workloads
[21, 8] and are similar to the ones in related papers [27,
24]. We first study 1-hop traversals on partitions with a
randomly selected starting vertex. At the start of the ex-
periments, the workload shifts such that the repartitioner is
triggered, showing the performance impact of the reparti-
tioner and the associated improvements. This shift in work-
load is caused by a skewed tra�c trace where the users on
one partition are randomly selected as starting points for
traversals twice as many times as before, creating multiple
hotspots on a partition. This workload skew is applied for
the full duration of the experiments that follow.

Figure 7 presents the percentage of edge-cuts among all
edges for both lightweight repartitioner and Metis on the
skewed data. As the figure shows, the di↵erence in edge-
cut is too small (1% or less) to be significant, and we ex-
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Figure 7: The number of edge-cuts in partitionings of the
lightweight repartitioner (as a component of Hermes) versus
Metis. Results are presented as a percentage of edge-cuts
among the total number of edges.
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Figure 8: The number of vertices (a) and relationships (b)
changed or migrated as a result of the lightweight reparti-
tioner (Hermes) versus running Metis.

pect that this very small di↵erence could shift in the other
direction depending on factors such as query patterns and
number of partitions. However, Figure 7 demonstrates that
the lightweight repartitioner generates partitionings that are
almost as good as those of Metis.

A repartitioner’s performance is a↵ected by the amount
of data that it needs to migrate. To quantify the impact
of migration on performance, the partitions resulting from
the lightweight repartitioner and Metis are compared with
the initial partitioning. Figure 8a shows the number of
vertices migrated due to the skew based on the two par-
titioning algorithms. The results show a much lower count
for the lightweight repartitioner. Figure 8b shows that the
lightweight repartitioner requires, on average, significantly
fewer changes to relationships compared to Metis. This dif-
ference is more extensive in the case of DBLP. The lightweight
repartitioner is able to rebalance workload by moving 2% of
the vertices and about 5% of the relationships, while Metis
migrates an order of magnitude more data.

Overall, both the numbers of vertices and relationships
migrated are important as they directly relate to the perfor-
mance of the system. We note that, however, the relation-
ship count has a higher impact on performance as this num-
ber will generally be much higher and relationship records
are larger, and thus more expensive to migrate.

Figure 9 presents the aggregate throughput performance
(i.e., the number of visited vertices) of 16 machines (par-
titions) using the three datasets. In these experiments, 32
clients concurrently submit 1-hop traversal requests using
the previously described skew. Before the experiments start,
Metis is applied to form an initial partitioning which has
a trace with no skew so as to remove partitioning bias by
starting out with a good partitioning. Once the experiment
starts, the mentioned skew is applied; this skew triggers the
repartitioning algorithm, whose performance is compared
with running Metis after the skew. For Orkut, results show
that by introducing the skew and triggering the lightweight
repartitioner, a 1.7 times improvement in performance can
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Figure 9: Aggregate throughput for the three datasets.

be obtained over random partitioning while Metis shows a
6% improvement over the lightweight repartitioner. Fig-
ure 9b shows the aggregated throughput while running the
Twitter dataset. The results show very similar performance
for the lightweight repartitioner and Metis. Finally, Fig-
ure 9c shows the results related to the DBLP experiments
that indicate there is no performance degradation due to the
lightweight repartitioner, which benefits from the relatively
small changes required by the algorithm. In fact, based on
results from Figure 9c, the performance di↵erence is not sig-
nificant. Interestingly, the DBLP dataset is the only dataset
for which the performance di↵erences are not noticeable due
to the highly clustered and well partitioned dataset. Given
an edge-cut of l5%, the high query locality means that par-
tition skews have little e↵ect on performance as they do not
shift workloads towards partition borders.

5.3.2 2-hop Performance

The previous section focused on 1-hop traversals . In this
section, we conduct 2-hop experiments since they are repre-
sentative operations used for recommendations, e.g., friend,
events or ad recommendations in social networks. Figure
9 shows the aggregated performance of the system running
with the three data-sets. The 2-hop experimental results
are similar to 1-hop except for the decrease in performance.
To analyze why this decrease occurs in the 2-hop case, we
observe that the ratio between the number of vertices in
the query response versus the number of vertices processed
is 1 for both Metis and Random partitioners in case of 1-
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Figure 10: Throughput while varying the write rate.

hop traversal queries, while these ratios degrade to 0.39 and
0.28, respectively, for 2-hop traversal queries. The reason
2-hop traversals return less vertices than what it processes
is because some vertices are visited multiple times during a
traversal while the query response contains only one copy
of the queried vertices. Since social networks exhibit high
clustering, a high fraction of processed vertices are accessed
multiple times within the same traversal.

5.3.3 Mixed Read/Write Experiments

The following experiments test how the system handles
mixed tra�c workload and evolving social network graphs.
The experiments insert data through random write traf-
fic. The lightweight repartitioner in Hermes is then run
to improve the quality of partitioning after records are in-
serted. Results of these experiments are shown in Figure 10
and indicate little performance degradation with increasing
write tra�c. A 10% write mix (with 90% reads) show a
3% decrease in performance, while 20% writes (80% reads)
and 30% writes (70% reads) show 5% and 7% decreases in
throughput (vertices per second) performance. The small
performance impact of writes is attributed to how B+Trees
store information and the monotonically increasing ID gen-
erator in Hermes. Since each new record will get the next,
highest ID, insertions in the B+Tree always happen in the
last page in a sequential manner. This translates to sequen-
tial writes to disk and the B+Tree requires caching only the
last page to perform insertions. To verify that the qual-
ity of the graph is high after the insertions finish, we ran
100% read tra�c and compared the throughput with the
results for Metis. Results showed that Hermes was able to
keep partition quality and system performance within 2% of
Metis, which demonstrates the e↵ectiveness and e�ciency of
Hermes’s lightweight repartitioner.

5.3.4 Sensitivity of Repartitioner Parameters

Recall from Section 3 that in each iteration of the algo-
rithm, the lightweight repartitioner moves at most k vertices
from each partition. Here, we examine how the value of k
a↵ects the outcome of the algorithm. We run the lightweight
repartitioner with three di↵erent values of k (500, 1000, and
2000). The first observation is that the load-balance factor
slightly degrades from 1.05 for k = 500 to 1.16 for k = 2000.
This is because, as mentioned earlier, larger values of k re-
sult in simultaneous migration of many vertices to partitions
which have recently become popular (due to hosting popu-
lar vertices). Consequently, we excluded values of k large
than 2000 from the experiment as they result in imbalance
factor more than the maximum allowed value of � = 1.1
(the default value of � in the system). Next, we verified how
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Figure 11: The number of edge-cuts for di↵erent values of
k. The numbers are scaled by 10�2 for Orkut dataset.

many iterations are required for the algorithms to converge.
Table 2 shows the number of required iterations for di↵er-
ent values of k. As expected, larger values of k result in
slightly faster convergence since they move more vertices per
iteration. Finally, we considered the quality of partitioning
when di↵erent values of k are used. As Figure 11 shows, the
number of edge-cuts in the final partitioning is almost the
same for di↵erent values of k, indicating that the quality of
partitioning does not depend on this value. To summarize,
larger values of k result in faster convergence while increas-
ing the load imbalance; at the same time, the value of k does
not have a significant e↵ect on the number of edge-cuts.

6. RELATED WORK
Previous work on graph databases focused on a central-

ized approach [17, 23, 1]. Some of these systems, e.g., Neo4j,
have a high availability mode but this provides limited scal-
ability [2]. HypergraphDB [17] provides a message passing
API between server instances, however there is no partition
management system and no support for distribution-aware
querying. In addition, the focus of each of these systems
is di↵erent. For example HyperGraphDB focuses more on
the flexibility of its storage system, allowing users to store
di↵erent types of objects. None of these graph databases
support data partitioning or distributed graph querying.

SPAR [27] and Titan [5] are middleware that run on top of
key-value stores or relational databases to provide on-the-fly
partitioning and replication of data. However, SPAR is re-
stricted to keeping only one-hop neighbours local while Her-
mes can support general remote traversals. Titan uses only
static hash-based, random partitioning scheme supported by
the underlying key-value store. This is in contrast to the
dynamic repartitioning that the lightweight repartitioner in
Hermes uses.

Unlike our system, SEDGE [36] focuses on partition repli-
cation in which a coarsening stage aggregates nodes which
are then matched with nodes in another partition. SEDGE
is not designed to handle dynamic workload changes that
Hermes is designed for. An approach that performs dy-

Twitter Orkut DBLP
k = 500 30 30 40
k = 1000 17 17 13
k = 2000 10 10 11

Table 2: The number of iterations after which the
lightweight repartitioner converges.

namic replication is described in [24] but it does not involve
a system that does on-the-fly partitioning. Horton [29] is
a query execution engine built for distributed in-memory
graphs. However it only provides a user abstraction, leaving
partitioning to existing o✏ine algorithms.

A streaming algorithm using simple heuristics has been
proposed in [32] but focuses on improving initial data place-
ment unlike the dynamic repartitioning in Hermes. In [33]
an improved heuristic for better partitioning quality is pro-
posed; however, the partition imbalance in the resulting so-
lutions can be significantly impacted. While this approach
extends the concept by saving state and allowing future data
loads to reuse state from previous runs, the algorithm needs
to parse the full dataset again, which can lead to expensive
operations and large migrations.

Several Pregel-like [22] systems, e.g., [11, 16], have been
proposed. These systems are quite di↵erent from Hermes in
that they address only in-memory batch processing of graph
analytics queries rather than the persistent management of
graph data that Hermes is designed to support. In [35],
a weighted multi-level partitioning algorithm is proposed
which is based on label propagation (community detection
technique). The edge-cut decrease in this approach can be
small while communities might be detected improperly be-
cause of the weighted approach. Their multi-level algorithm
does not guarantee communities are preserved over multi-
ple calls of the algorithm and can lead to large migrations
similar to Metis.

Some graph partitioning algorithms are experimentally
compared in [9]. Among these, DiDiC [14] is the only dis-
tributed algorithm that tends to minimize the number of
edge-cuts, but the resulting partitions of this approach may
not be well-balanced [28, 9].

Ja-Be-Ja [28] embeds a distributed algorithm for balanced
partitioning without global knowledge. In this algorithm,
the initial partition of each node is selected uniformly at
random; this ensures a balanced partitioning. In order to
decrease the number of edge-cuts, vertices are swapped be-
tween partitions. This will ensure maintaining a balanced
partitioning if vertices have fixed, uniform weights; however,
this is usually not the case for social networks.

An adaptive algorithm for repartitioning large-scale graphs
has the objective of minimizing the number of edge-cuts
with respect to certain capacities for partitions [34]. The
resulting partitionings might not be balanced if the capac-
ity constraints are maintained. Moreover, it is assumed that
vertices have fixed and uniform weights, which is usually
not the case for social networks. Additionally, their work is
targeted for graph analytics rather than the persistent man-
agement of graph data that Hermes is designed to support.

7. CONCLUSION
We presented an online, iterative, lightweight repartitioner

designed to increase query locality, thereby decreasing net-
work load and maintaining load balance across partitions.
The lightweight repartitioner e↵ectively adapts a partition-
ing to varying query workloads and the continuous evolution
of the graph structure using only a small amount of auxiliary
data. We implemented our lightweight repartitioner into
Hermes, which we built to extend the open source Neo4j
database system to support the partitioning of social net-
work data across multiple database servers. The experimen-
tal evaluation of the algorithm on real-world datasets shows
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that the repartitioner is able to handle changes in query
workloads while maintaining good performance. The over-
head of the repartitioner is minimal, producing sustained
performance comparable to that of static, o✏ine, partition-
ing using Metis. Our evaluation shows sizable performance
gains over random, hash-based partitioning, which is widely
used for database partitioning.
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ABSTRACT
Handling non-answers is desirable in information retrieval systems.
Current e-commerce websites usually try to suppress the somewhat
dreaded message that no results have been found. Possible solu-
tions include, for example, augmenting the data with synonyms
and common misspellings based on query logs. Nonetheless, this
is only achievable if we can know the cause of the non-answers.
Under the hood, most e-commerce data sits in some structured
format. Debugging non-answers in the underlying KWS-S systems
is therefore not trivial — non-answers in a KWS-S system could be
a problem of the data (e.g., absence of some keywords), the schema
(e.g., missing key-foreign-key joins), or due to empty join results
from one of possibly several joins in the generated SQL queries.
So far, we are unaware of any previous work that explores how to
enable developers to debug non-answers in a KWS-S system. In
this paper, we take a first step towards this direction by proposing
a KWS-S system that can expose non-answers to the developers.
Our system presents the developers with the maximal nonempty
sub-queries that represent the frontier cause of the non-answers.
We outline the challenges in building such a system and propose
a lattice structure for efficient exploration of the non-answer query
space. We also evaluate our proposed mechanisms over a real world
dataset to demonstrate their feasibility.

1. INTRODUCTION
Handling non-answers (i.e., queries that return no results) is

now a common practice in information retrieval systems. Current
SEO companies and e-commerce websites like Orcale Endeca [21],
HP Autonomy [9], and IBM Coremetrics [13] often try to avoid
showing the somewhat dreaded “No results found!” message when
they fail to return any results that can match user’s keyword queries.
Possible strategies include, for instance, substituting user’s original
keywords with different keywords from a controlled vocabulary
(e.g., synonyms, hyponyms, and hypernyms), or displaying a “Did
you mean?” style response with spelling corrections. Doing so
is critical to helping customers find what they are looking for and
improving user experience and ultimately retention.

Nonetheless, implementation of such seemingly simple strate-
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gies is not trivial. While users interact with a search box, under
the hood most e-commerce data sits in some structured format,
largely due to maintainablity reasons. To employ strategies such
as augmenting the data with synonyms and common misspellings
based on query logs, we first need to understand the cause of the
non-answers. For example, we need to convince ourselves that a
non-answer query is really caused by missing keywords in the data
before we decide to add the missing words into the vocabulary;
otherwise this action is not helpful. Unfortunately, debugging non-
answers in the underlying KWS-S (acronym for KeyWord Search
over Structured data) systems is challenging — non-answers in a
KWS-S system could be a problem of the data (e.g., absence of
some keywords), the schema (e.g., missing key-foreign-key joins),
or due to empty join results from one of possibly several joins in
the generated SQL queries. So far, we are unaware of any previous
work that explores how to enable developers to debug non-answers
in a KWS-S system.

In this paper, we take a first step towards systematically explor-
ing non-answers in KWS-S systems, and we focus on seeking the
maximal partial matches or sub-queries of the non-answers. Similar
ideas have been explored in the unstructured world. For example,
Figure 1 presents the screenshot from buy.com in response to the
keyword query “saffron scented candle”. Although no
saffron-scented candles are found, rather than displaying a blank
page that shows no results, other saffron-scented products and other
scented candles are presented to the user, corresponding to the three
sub-queries “saffron scented”, “saffron candle”, and
“scented candle”. We believe that this kind of information
could also be very helpful for debugging non-answers in KWS-S
systems, and our primary goal in this paper, akin to what has been
done over unstructured data, is to find results from sub-queries of
non-answers, but over structured data.

Moving from unstructured to structured data, however, is more
complicated than we might have thought. In typical KWS-S sys-
tems such as Banks [1, 14], DBXplorer [2], and DISCOVER [11],
users enter a set of keywords and the system responds with a
multitude of relationships connecting those keywords. In [2, 11,
17, 19] and many other KWS-S systems, this is done by mapping
the keyword query to several structured queries (i.e., SQL queries).
All of these structured queries are then evaluated, and the tuples
corresponding to the queries that produce answers are returned to
the user. Sub-queries of a non-answer query in a KWS-S system
thus refer to sub-queries of a structured SQL query rather than
the original keyword query. Since a KWS-S system can usually
generate many SQL queries in response to a single keyword query,
naively evaluating all possible sub-queries at runtime could be quite
expensive. To efficiently explore the space of sub-queries, our
basic idea is to exploit the common sub-queries that are shared by
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id product-type
1 oil
2 candle
3 incense

id color synonyms
1 red crimson, orange
2 yellow golden, lemon
3 pink peach, salmon
4 saffron yellow, orange

id property value
1 scent saffron
2 scent vanilla
3 pattern floral
4 pattern checkered

id name p-type color attr cost description
1 saffron scented oil 1 NA 1 4.99 3.4 oz. burns without fumes.
2 vanilla scented candle 2 2 2 5.99 burn time 50 hrs. 6.4 oz. 2pck.
3 crimson scented candle 2 1 3 3.99 hand-made. saffron scented. 2pck.
4 red checkered candle 2 1 4 3.99 rose scented. made from essential oils.

Product Type (P) Color (C) Attribute (A)

Item (I)

Figure 2: Product database containing an Items Table (I), Product Type table (P), Color table (C) and Attributes table (A).

Figure 1: Screenshot from buy.com where sub-queries and
their results are suggested to the user when “saffron scented
candles” returns zero products.

multiple structured SQL queries. To put things in context, let us
consider the following example:

EXAMPLE 1 (NON-ANSWERS IN KWS-S). Figure 2 shows
a toy database that will be used throughout this paper. It contains
an Items table I , a Product Type table P , a Colors table
C, and an Attributes table A. The arrows here present the
key-foreign-key associations between the tables.

Consider the keyword query “saffron scented candle”.
The KWS-S system maps it to two structured SQL queries (Rk here
means the keyword k is mapped to the table R):

(q1) P candle ./ Iscented ./ Csaffron, which tries to “find
scented candles whose color is saffron.”

(q2) P candle ./ Iscented ./ Asaffron, which tries to “find
scented candles whose scent is saffron.”

Both q1 and q2 return no result tuples with the given database,
namely, they are non-answers. In the case of q1, while every

keyword does occur in the database, the join of all the involved
tables produces no results. Exposing this information and q1 can
allow the developer or SEO person to add saffron as a synonym
of yellow, thus returning several relevant results to the user. In
existing KWS-S systems q1 would never be exposed.

As for q2, its sub-queries, which are P candle ./ Iscented and
Iscented ./ Asaffron, do return answers, even though q2 does
not. More specifically, while the merchant does not carry any
saffron-scented candles, it does carry scented candles and saffron-
scented products that are not candles. Knowing this information
may not help return answers to the original query, like in the q1
case. However, it could be useful for merchandizing purposes.
Additionally (like in Figure 1), the partial queries serve as a good
alternative to returning nothing.1

Inspired by Chapman and Jagadish [5], to explain causes of the
non-answers, we report their maximal sub-queries that return at
least one tuple. To illustrate, in Example 1, our system will display
P candle ./ Iscented and Csaffron for q1, and P candle ./ Iscented

and Iscented ./ Asaffron for q2. Intuitively, these sub-queries sit
on the boundary of answers/non-answers and provide the developer
with information about the frontier causes of the non-answers.
Similar notions have been proposed in previous work as solutions to
“why not” style questions. For instance, in [5] the authors proposed
using frontier picky manipulations which are the highest operators
in a query tree or the latest manipulations in a workflow that rule
out data items interested by the user from the results.

To find the maximal nonempty sub-queries for the non-answers,
a naive strategy could be to enumerate all sub-queries and evaluate
them (i.e., run the SQL query over the database) to check if they are
empty. This is clearly inefficient. Our key observation here is that
sub-queries of the non-answers overlap. For example, the q1 and q2
in Example 1 share the common join query P candle ./ Iscented.
In our experiments, we found that this overlap is significant on
real data. Motivated by this observation, we propose a lattice
structure that represents all the structured queries that a KWS-S
system explores (details in Section 2). This structure is constructed
offline and is used to capture the overlap between the sub-queries
of each query (Section 2.2). Additionally, it also lends itself to
systematic exploration of the sub-queries of non-answer queries.
Note that, once we know the status of a query (i.e., if it is empty),

1The situation here is a bit more symmetric than that described in
this example: given another instance of the tables, it might be q2
that can be fixed via a synonym, whereas q1 might be the query
where non-answers are explained via maximal sub-queries.
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this information can be utilized to determine the status of other
queries based on the hierarchical relationships between queries
presented in the lattice. For instance, in Example 1, we do not
need to run the two SQL queries corresponding to P candle and
Iscented once we know P candle ./ Iscented is nonempty —
they must both be nonempty as well. This raises the interesting
question of in which order we should visit the nodes in the
lattice with the purpose of minimizing the number of SQL queries
that need to be executed, which is the key to runtime system
performance. We studied both top-down and bottom-up strategies
to traverse the lattice structure (Section 2.5), and found that their
performance depends on the distribution of the non-answer sub-
queries within the hierarchy. Specifically, top-down/bottom-up
strategies are more efficient when the maximal nonempty sub-
queries are at higher/lower levels of the lattice. With this in mind,
we further propose a greedy algorithm based on a scoring function
that measures the potential reduction in the search space from
examining a certain sub-query (Section 2.5.3). Our experimental
results show that, while top-down and bottom-up strategies suffer
from certain distributions of the non-answers, the greedy algorithm
can perform relatively well in all the cases we tested.

While our proposed framework can efficiently find all the max-
imal non-empty sub-queries for non-answers, in our experiments
we observed that the number of sub-queries is sometimes large.
This is actually an inherent problem of KWS-S systems. Existing
KWS-S systems usually use ranking functions to present users with
only the most relevant results. For instance, Hristidis et al. [10]
studied the problem of efficiently presenting the end users with a
list of top-k matches. However, such strategies cannot work for
the goal of debugging non-answers in KWS-S systems. This is
simply because of the nature of debugging, which needs to find
the cause of the non-answers no matter how trivial the cause might
be. It is akin to debugging a normal computer program, where all
possible bugs should be reported. Of course, there is a number
of possible solutions to alleviate the problem of overwhelming
number of sub-queries. For example, one option could be to allow
the developer to define various filters or a priority hierarchy on
the returned sub-queries. We do not try to explore all of these
possible postprocessing techniques in this paper, most of which
are application-specific and therefore may not have a uniformly
optimal solution. Rather, we focus on an essential foundational task
that must be solved before any higher-level postprocessing can be
performed: the task of efficiently finding non-answers in response
to a keyword query over structured data. It is our hope that our
solution for this task provides a building block that can be used in
conjunction with future research to build more customized systems.

In the rest of the paper, we start by introducing the system
architecture of the proposed system and detailing its components in
Section 2. We then evaluate our proposed approaches in Section 3.
We discuss related work in Section 4 and conclude in Section 5.

2. EXPLORING NON-ANSWERS
In this section we describe our proposed solution for efficiently

determining and explaining non-answer queries. Figure 3 presents
the proposed system in its entirety. Phase 0 is performed offline. In
this phase, based on the schema graph of the underlying database,
we generate a lattice in which each node is labeled with an
uninstantiated SQL query. This structure is designed to exploit
the overlap between the queries that are explored by our system.
Following this, in Phase 1 user’s keyword query is accepted and
used to prune the lattice generated in Phase 0. At the end of Phase
1 each node in the pruned lattice is labeled with an instantiated
SQL query with respect to the keyword query. In Phase 2 we

prune the lattice even further by retaining only those nodes that
contain answer queries or non-answer queries, with respect to the
current keyword query, and their respective descendants. Finally,
we traverse the pruned lattice to determine and explain non-answer
queries in Phase 3. Based on the information obtained, the user can
subsequently choose to modify the keyword query as needed. We
start by providing a formal problem definition describing the input
and output of the proposed system.

2.1 Problem Definition
The input to our system is the keyword query submitted by the

user. We convert the keyword query to join networks of tuple sets
and candidate networks (see DISCOVER [11] for definitions).

The output of our system contains three parts: (i) answer queries,
i.e., candidate networks that return at least one tuple; (ii) non-
answer queries, i.e., candidate networks that return no tuples; (iii)
additionally, for non-answer queries, we return the maximal sub-
networks (i.e., subgraphs) that return at least one tuple. This is
analogous to the queries in Figure 1, and is meant to provide some
insight into the reasons behind the non-answer queries.

More formally, let J be a join network of tuple sets (JNTS) of a
keyword query K. Let q(J) be the SQL query corresponding to J
and R(J) be the result set of tuples obtained by executing q(J).

Let C(K) be the set of candidate networks (CNs) generated for
K. For each C 2 C(K), we say that C is an answer query of K if
R(C) 6= ;. Otherwise C is a non-answer query. We denote A(K)
and N (K) as the sets of answer and non-answer queries of K.

For each C 2 N (K), let S(C) be the set of JNTSs that are
sub-networks of C. A J 2 S(C) is said to be maximal if: (i)
R(J) 6= ; and (ii) there is no J 0 2 S(C) s.t. J is a sub-network of
J 0 and R(J 0) 6= ;. We use M(C) to denote the maximal JNTSs
in S(C) and M(K) to denote the set of maximal JNTSs for all the
non-answer queries, i.e., M(K) =

S
C2N (K) M(C).

With the above definitions and notation, we can now formally
define the input and output of our system as follows:

• Input: An unstructured keyword query K.

• Output: O(K) = A(K)
SN (K)

SM(K).

2.2 Offline Lattice Generation (Phase 0)
Phase 0 of the system is performed offline. In this phase we

generate a lattice-structure that serves as the starting point for
every keyword query. The goal of this structure is to capture all
the queries that a KWS-S system explores (i.e., join-queries that
contain no projections). Each node in the lattice is labeled with the
SQL query corresponding to the node. The base level nodes of the
lattice contain the simplest queries — single table queries, one for
each table. The next level is generated by joining in tables to each
single-table query (avoiding cross products and using the joins that
are implicit in the schema graph), and so forth.

Our goal is to cover all queries with up to m joins. Since each
relation can appear many times in a single query, we maintain
copies R1 . . . Rm+1 of each relation R. In this way we know
we can generate all possible m-join queries (including the extreme
case where a m-join query contains m + 1 instances of the same
relation). In addition to this we also maintain a copy R0 of every
relation R in the database (explained in the next section).

EXAMPLE 2 (LATTICE). Consider a database with only two
relations R(a, b) and S(c, d). Assume that m = 1, namely, we
allow only one key-foreign-key join R.b ./ S.c. As a result, the
lattice contains two (i.e., m + 1 = 1 + 1 = 2) copies for each
relation (except for the special R0 and S0).
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Figure 3: System Architecture for the proposed system. (MTN means Minimal-Total Node: see Section 2.4.)

R1 R2 S1 S2

R1⋈S1 R2⋈S1 R1⋈S2 R2⋈S2

Figure 4: Example lattice with two relations R(a, b) and
S(c, d), and a schema graph containing only one key-foreign-
key join R.b ./ S.c.

Let “k1 k2” be the user’s keyword query. As shown in Figure 4,
the generated lattice has two levels. Additionally, each node in the
lattice is bound to a SQL query template. For instance, the node
R1 ./ S2 corresponds to the template

SELECT * FROM R1, S2 WHERE R1.b = S2.c
AND R1.a LIKE ’%k1%’ AND S2.d LIKE ’%k2%’.

Note that, the copies here are just conceptual symbols rather
than physical replicas. The purpose of introducing the copies is
to maintain a 1-1 mapping between lattice nodes and SQL query
templates, which reduces the run-time query processing overhead.
If, on the other hand, no additional copies were maintained, then
the lattice in Figure 4 can be reduced to containing only three
nodes R, S, and R ./ S. While this could reduce the storage
overhead, each node in the lattice would correspond to multiple
SQL query templates, and the parent-child relationships between
the nodes would need to be reconstructed at run-time. This would
adversely impact the time required to process keyword queries.

Furthermore, if a node N in the lattice is a descendant of a
node N 0, then the query in N is a sub-query of the query in
N 0. The lattice structure hence organizes the queries and sub-
queries that in a hierarchical fashion. As we will see, this structure
has three primary advantages — (i) it allows reuse of evaluated
queries; (ii) sometimes, it allows us to infer the outcome of a SQL
query without executing it; and (iii) its hierarchical structure allows
us to systematically explore sub-queries, which can be used to
better understand non-answer queries. Also, since this structure
is computed offline, it bypasses the costly candidate network
generation phase, which is a part of traditional KWS-S systems.

While offline processing allows us to generate all the combi-
nations of join-queries without taking a performance hit at run-
time, this process leaves us with many duplicates. The duplicates
are due to the fact that a node in the lattice can be obtained by
different extensions of its children. For example, in Figure 4,

the node R1 ./ S2 can be obtained by either extending the node
R1 (joining it with S2) or extending the node S2 (joining it with
R1). We therefore need to eliminate as many duplicates as possible
offline, to avoid expensive graph isomorphism tests at run-time.
Eliminating duplicate nodes also helps with reuse. We talk more
about reuse in Section 2.5.2.

Algorithm 1: Lattice Generation
1 Input: R = {R1, R2, ..., Rn

}, set of instance relations; SG,
schema graph; maxJoins, max number of joins

2 Output: L, lattice
3 // Generate the base level L1

4 L1  ;
5 foreach R

i

2 R do
6 for 1  j  maxJoins+ 1 do
7 L1  L1 [ {CreateSingleNodeGraph(R

i

)}
8
9 // Generate higher levels L

k

, for 2  k  maxJoins+ 1
10 foreach 2  k  maxJoins+ 1 do
11 L

k

 ;
12 foreach Graph G 2 L

k�1 do
13 foreach R 2 Nodes(G) do
14 G0  ExtendGraph(R,G, SG)
15 foreach G0 2 G0 do
16 // Offline Pruning 1: detect duplicates
17 if G0 62 L

k

then
18 L

k

 L
k

[ {G0}

19 return L

The details of the lattice generation algorithm are presented in
Algorithm 1. It works as follows. We first create maxJoins + 1
copies for each input instance relation (lines 5 to 7). These
constitute the bottom level of the lattice. We then construct the
upper levels (lines 9 to 18). When generating the graphs at the level
k (i.e., L

k

for 2  k  maxJoins + 1), we check each graph G
at the level k � 1 (i.e., L

k�1). For each relation R in G, we look
up the schema graph SG to find possible edges that are connected
with R. Whenever we find such an edge e = (R,R0), for each
copy R0

c

of R0, we create a new graph G0 by first copying G and
then inserting the edge (R,R0

c

) into G0. This is done by calling the
function ExtendGraph (line 14). For each such extension G0, we
then check whether G0 2 L

k

. If not, G0 is added into L
k

(lines
15 to 18). Note that here, to detect the duplicates, we need to test
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v3 v4

e1 e2 e3

Figure 5: Two isomorphic trees and their canonical form.

the isomorphism between graphs, which is a problem not known as
either P or NP -complete. However, since G0 is a candidate join-
query network, which by definition must be a tree [11], there are
efficient algorithms (in linear time) for this special case. We use a
variant of the algorithm in [3], by computing a canonical labeling
for each graph (tree). Two graphs (trees) are isomorphic if and only
if they have the same canonical labeling.

Specifically, given a candidate join-query network (tree) T , let
V (T ) and E(T ) be its nodes and edges. For any v 2 V (T ), the
label of v is defined as the relation name R

i

associated with v. For
any e 2 E(T ), the label of e is defined as (R

i

.a, S
j

.b), where
R

i

.a ./ S
j

.b is the join associated with e. We further map the
labels to integer ID’s. Let id(v) and id(e) be the ID’s assigned to a
node v and an edge e. We compute the canonical labeling of T as
shown in Algorithm 2. Example 3 illustrates this.

Algorithm 2: Canonical Labeling
1 Input: T , a candidate join-query network
2 Output: l

T

, canonical labeling of T
3 GetCode(u):
4 l “[id(u)”
5 if HasChildren(u) then
6 l.Append(“|”)
7 foreach v 2 Children(u) do
8 l(v) “id(e)GetCode(v)” // e = (u, v)

9 Sort v 2 Children(u) with respect to l(v)
10 foreach v 2 Children(u) do
11 l.Append(l(v))

12 l.Append(“]”)
13 return l
14
15 Main:
16 R {r|r = argmin

v

{id(v)|v 2 V (T )}}
17 LR  {l

r

|l
r

 getCode(r), r 2 R}
18 l

T

 min{l
r

|l
r

2 LR}
19 return l

T

EXAMPLE 3 (CANONICAL LABELING). Figure 5(a) and (b)
show two isomorphic trees. Their canonical form is shown in (c).
The corresponding canonical labeling computed by Algorithm 2 is:
[v1|e1[v2]e2[v3]e3[v4]].

In Algorithm 2, we first define R to be the set of nodes with the
minimum node ID (line 16), and then call GetCode to compute
the labeling l

r

for each r 2 R (line 17). The minimum l
r

in
lexicographic order is the canonical labeling for T (line 18). The
procedure GetCode (lines 3 to 13) first puts the ID of the current
node u into the labeling. If u has children, it appends a delimiter
“|”, and then recursively calls GetNode to construct the label l(v)
of each child node v (lines 7 to 8). The label of v is appended with
respect to the ordering of l(v) (lines 9 to 11).

Once the lattice is generated and duplicates are removed, each
node is labeled with a SQL query corresponding to the node.
Since Phase 0 is performed offline, the SQL query in each node
has an uninstantiated “where” clause. More specifically, the join
conditions (e.g., Item.cid = Color.id) in the “where” clause are
present, but the keywords (e.g., Color.name contains “saffron”
OR Color.synonym contains “saffron”) can be added to it only at
run-time, once user’s keyword query is available. Keyword query
is accepted in the next phase.

2.3 Keyword Based Pruning (Phase 1)
Once the user inputs the keyword query K, we map each

keyword to a relation using an inverted index over the data. A
keyword k

i

can be mapped to a relation R if k
i

occurs in some
tuple in R. Recall that we generated copies R1 . . . Rm+1 for each
relation R in the database. If k

i

maps to R, k
i

is bound to one of the
copies R

j

of relation R. Additionally, we bind the empty keyword
to the copy R0 for each relation R in the database.

We do this because relations to which no keywords are bound
can still contribute to valid relationships. For example, for the
keyword query “red candle”, suppose that “red” is bound to the
Color (C) table and “candle” is bound to the Product Type
(P ) table. While these two tables cannot be directly joined due to
the lack of a key-foreign-key association, the Items (I) table can
be used to form a path between them. The resulting join network is
then C1I0P1, which represents the query “Find all products where
product type is candle and color is red”. The I0 here is used to
indicate that no keyword is bound to the Items table. This is
analogous to a free tupleset in Discover [11].

At the base level, all the nodes that contain queries with copies
of relations to which no keyword is bound are pruned. Their
respective ancestors are also pruned. For the keyword query
“red candle”, a sample lattice with the Item (I), Color (C),
and Product Type (P ) relations from the sample database in
Figure 2 is presented in Figure 6. Upon using the inverted index
“red” is bound to C1 and “candle” to P1. C0, I0 and P0 are bound
to the empty keyword and are not pruned. Only the shaded nodes in
the lattice are retained. The remaining nodes are pruned.

In our implementation, we handle cases where keywords can
have multiple interpretations by dealing with one interpretation at a
time. Additionally, if a keyword does not occur anywhere in the
database, the system displays all such keyword(s) and does not
investigate the query any further. This is in accordance with “and”
semantics for keyword search.

At the end of Phase 0, each node is labeled with a SQL query
with an uninstantiated “where” clause. Once we bind keywords
to copies of relations, the “where” clauses of the queries in each
remaining node in the lattice can then be instantiated. We now
have an instantiated, pruned lattice for the keyword query K.

2.4 Finding Answer and Non-Answer Query
Nodes (Phase 2)

Once the lattice has been pruned based on keyword query K,
the next step is to find nodes that contain queries that correspond
to answer queries and non-answer queries. To do this, first we
introduce some terminology.

• Total/Partial Node: A node can be total or partial. A node N
is said to be total if its query contains tables corresponding
to every keyword k

i

in K. Otherwise N is said to be partial.
Since we assume “and” semantics for keyword search, only
a total node can contain an answer query. 2

2We further note that totality decreases by moving down in the
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Figure 6: Sample lattice for the query “red candle”. The un-shaded nodes are pruned.

• Alive/Dead Node: A node N is said to be alive if its query
returns at least one tuple upon execution. If the query returns
zero tuples, N is said to be dead. Typically a node can be
classified as dead or alive only after executing its underlying
structured query. As we shall see later in this section, in
many cases, using the lattice structure helps us classify a
node without actually executing its query.

• Possibly Alive Node: This node has not yet been classified as
dead or alive. In the beginning, all the nodes in the pruned
lattice are possibly alive.

• Minimal-Total Node (MTN): A node N is said to be minimal-
total, if N is total and no descendant of N is total. MTNs
correspond to candidate networks in KWS-S systems [11],
and contain answer and non-answer queries.

In Phase 2, we prune the lattice even further by only retaining
MTNs and their descendants. To continue with our example, the
node marked P1I0C1 is the only MTN in the lattice in Figure 6.
(None of the other shaded nodes are total.) We are now left with
the task of classifying MTNs as dead or alive and explaining the
reason(s) for the dead MTNs. We do this using Maximal Partial
Alive Nodes (MPANs).

• Maximal Partially Alive Node (MPAN): A node N is said
to be a MPAN of a MTN M if it is both partial and alive,
and if there exists no other node N 0 2 Desc(M) such that
N 2 Desc(N 0) and N 0 is alive.

There can be multiple reasons for a non-answer query. For
example, the SQL query q2 in Example 1 for the keyword query
“saffron scented candle”, where saffron is a scent, could be a
non-answer query due to several reasons — the store carries
products that are saffron scented but are not candles, they only carry
unscented candles, they carry scented candles but none of them are
saffron-scented or maybe they only carry products that are neither
saffron-scented nor candles. The options that an administrator
needs to explore in order to determine why q2 is a non-answer
query can get dauntingly large for manual debugging. Given that
each keyword may have multiple interpretations (e.g., saffron could
be a color or a scent), this task gets even more daunting.

We display the maximal alive query because we know that all its
descendants are alive (i.e., if “find scented candles” returns some
result tuples, then both “find scented products” and “find candles”
will also return some result tuples). In Example 1, “find scented
candles” and “find saffron scented products” are both MPANs of

lattice, because the descendant sub-queries of a query q in general
refer to fewer tables than q itself. This allows us to speak of
minimal total nodes as in the following.

q2. Collectively they convey that while the store does not carry
saffron-scented candles, it does carry scented candles and other
saffron-scented products. Notably, since all possible reasons for
a non-answer query are sub-queries of the non-answer query, they
can be systematically explored using our proposed lattice structure.

In the final phase of our system and in the rest of this section
we discuss lattice traversal strategies to efficiently determine dead
MTNs and their respective MPANs.

2.5 Lattice Traversal (Phase 3)
One approach to classifying the MTNs as dead or alive and

finding MPANs is to simply execute the SQL queries for all the
nodes in L. However, this may not be necessary. Since each MTN
is derived from its descendants, we can use the following two rules
to avoid executing many of the SQL queries in L.

Node Classification Rules:
• (R1) Node N is alive) All Desc(N) are alive.
• (R2) If any N 0 2 Desc(N) is dead) N is dead.

The descendants of a node in the lattice represent sub-queries of
the node. R1 says that if a node is alive, all its sub-queries should
also return some tuples when executed. R2 says that if a node is
dead, all the queries of which it is a sub-query will also return no
tuples. Next, utilizing the above two rules we propose traversal
strategies that classify MTNs and find MPANs in the lattice.

2.5.1 Bottom-Up/Top-Down Traversal
In the bottom-up (BU) strategy, we classify one MTN at a

time and traverse the sub-lattice consisting of the MTN and its
descendants from the single-table level up. At each level we
evaluate the SQL query corresponding to each node. If a node
N is dead (i.e., its SQL query returns no result tuples), all the
nodes in Asc(N), including the MTN, can be marked as dead (by
R2). If a node is alive, it is marked as a potential MPAN until one
of its ancestors is found to be alive. This process is repeated for
all the MTNs until they are all classified as dead or alive and the
corresponding MPANs are found.

This strategy performs well when the MTNs and MPANs corre-
sponding to dead MTNs are found at lower levels of the lattice. In
this case BU can avoid executing several expensive SQL queries at
higher levels of the lattice. For keywords where MTNs and MPANs
are found at higher levels, a better approach might be a top-down
traversal of the lattice.

Top-down (TD) traversal is similar to BU, except that we traverse
the sub-lattice for each MTN from its highest level down to the
single-table level. We evaluate the SQL query corresponding to
each node at each level. If a node N is alive, all the nodes in
Desc(N) can be marked as alive (by R1). This is done till all
the nodes in the lattice are classified and all the MPANs are found.
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Algorithm 3: Bottom-Up with Reuse Approach
1 Input: SG, schema graph; K = {k1, k2, . . . , kN}, keyword

query; L, lattice; M , set of MTNs found during Phase 2
2 Output: A, set of alive MTNs; D, set of dead MTNs; P , set

of corresponding MPANs for each dead MTN

3 GetBaseNodes(K, L):
4 baseNodes ;, nonKeywords ;
5 foreach k 2 K do
6 T  GetBaseTables(k)
7 if T == ; then
8 nonKeywords.add(k)
9 else

10 baseNodes.add(L.GetBaseNodes(T ))
11 if nonKeywords 6= ; then
12 Display nonKeywords
13 baseNodes ;
14 return baseNodes
15
16 Main:
17 M 0  M , currLevel 1
18 foreach m 2M do
19 MP[m] GetDescendants(m) // potential MPANs
20 B  GetBaseNodes(K, L), curr  B, next ;
21 if B == ; then
22 return
23 while currLevel  maxJoins+ 1 and M 0 6= ; do
24 foreach node 2 curr do
25 isAlive true
26 if node 62 B and execSQL(node).nTuples == 0 then
27 isAlive false

28 if node 2M then
29 M 0  M 0 � node

30 if isAlive == true and node 62M then
31 next next

S L.GetParentNodes(node)
32 foreach m 2M do
33 if node 2 MP[m] then
34 L.RemoveAllDesc(MP[m],node)

35 else if isAlive == false then
36 MarkAsDead(L.GetAscNodes(node))
37 if node 62M then
38 foreach m 2M do
39 if node 2 MP[m] then
40 L.RemoveAllAsc(MP[m],node)
41 L.Remove(MP[m],node)

42 else
43 P [node] MP[node] // MPANs

44 curr  next, next ;
45 currLevel currLevel + 1

2.5.2 Bottom Up and Top Down with Reuse
We found that there is usually substantial overlap between the

descendants of each MTN. Based on this observation, we modify
BU and TD to process all the MTNs and their descendants simulta-
neously. We find that we can substantially reduce the redundancy in

executing SQL queries corresponding to the common descendants
of the MTNs. The corresponding algorithms are termed bottom-up
with reuse (BUWR) and top-down with reuse (TDWR). The details
of BUWR are presented in Algorithm 3. TDWR is very similar to
BUWR so we do not elaborate on it any further.

Algorithm 3 works as follows. It first finds the descendants for
the MTNs in M , which are all the potential MPANs (lines 18 to
19). It then traverses the lattice L in a bottom-up manner. For
each keyword k, GetBaseNodes (lines 3 to 14) collects the base
nodes (i.e., tables) in the lattice containing the keyword k. If some
keyword is not contained by any base table, then this is reported to
the user (lines 11 to 13) and no further exploration is needed (lines
21 to 22). Otherwise, answers and non-answers will be reported to
the user by climbing up the lattice L (lines 23 to 45). For each node
node at the current level, the algorithm first checks its aliveness
(if not known yet) by executing the SQL query associated with it
(lines 25 to 27). If node is alive, and it is not a MTN in M , then we
can remove its descendants from candidate MPANs of each MTN
m 2M , since they must be alive and cannot be MPANs because of
the aliveness of node (lines 30 to 34). On the other hand, if node
is dead, then all of its ancestors must be dead (line 36). If node
is not a MTN, once again we can remove node and its ancestors
from candidate MPANs of each MTN m 2 M , since they cannot
be MPANs because of their deadness (lines 37 to 41). Otherwise,
node is a dead MTN, and we need to report its MPANs (lines 42
to 43). Note that the MPANs must be those candidates that are
still remaining in MP[node]. This is because, due to the nature
of bottom-up traversal, the aliveness of each member in MP[node]
must have been either explicitly (by executing the corresponding
SQL query) or implicitly (by using the two node classification rules
R1 and R2) checked and hence known before node is examined.
After checking all the nodes at the current level, the algorithm can
proceed to the next level (line 44). The next level only needs to
include the parents of the alive nodes at the current level (line 31),
since ancestors of dead nodes must also be dead and therefore can
be excluded from further examination.

While we find that these approaches perform well in general, like
any bottom-up or top-down approach, they suffer poor performance
in certain cases. For example, TD will perform poorly if many
MPANs are present at the lowest level in the lattice. On the
contrary, BU will perform poorly if many MTNs at higher levels
of the lattice are alive. In the rest of this section, we propose a
score-based greedy approach, with the goal of avoiding the worst-
case performance of both BU and TD.

2.5.3 Score Based Heuristic for Traversal
Given that the main advantage of the lattice structure is reuse

amongst MTNs, the goal of this approach is to evaluate nodes in
an opportunistic manner with the goal of minimizing the number
of evaluated SQL queries. We do this by assigning a score to each
unevaluated node in the lattice. This score indicates the amount of
reduction in the search space that would result from evaluating this
node. In other words, we evaluate the nodes that are most likely to
influence the classification of other nodes first. Table 1 summarizes
the notation used in the following discussion.

We start by investigating the effect that evaluating a node n
j

in L
has on the remaining nodes in the search space S(m

i

) of each m
i

2
M. S(m

i

) contains potential MPANs of m
i

with unknown status.
SQL queries might be required to determine aliveness of the nodes
in S(m

i

). Initially, S(m
i

) = Desc+(m
i

) = {m
i

}SDesc(m
i

).
Figure 7 demonstrates how n

j

and m
i

and their descendants could
overlap. We next consider the cases when n

j

is alive or dead.

• If the current node n
j

is alive :
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Figure 7: Ways in which a minimal complete node m, an unexplored node n, and their respective descendants may overlap.

Notation Description
N N = {n1 . . . nq

}, the set of nodes in the lattice L
M M = {m1 . . .mp

}, the set of MTNs
P(m

i

) the set of MPANs for each dead m
i

2M
S(m

i

) the search space for each m
i

2M to find P(m
i

)
Desc(n) the set of descendants of the node n in L
Asc(n) the set of ancestors of the node n in L
Desc+(n) Desc+(n) = {n} [Desc(n)
Asc+(n) Asc+(n) = {n} [Asc(n)

Table 1: Notation used in the score-based heuristic

Case 1 (n
j

2 Desc(m
i

)): If the current node n
j

is a descendant
of an MTN m

i

, then all descendants of n
j

are also
alive. Since n

j

is alive, these alive descendants cannot
be maximal (i.e., cannot be in P(m

i

)), and thus can be
removed from the search space S(m

i

) as well.

S(m
i

) = S(m
i

)�Desc+(n
j

).

Case 2 (Desc(n
j

)\Desc(m
i

) 6= ; and n
j

62 Desc(m
i

)): Let n
k

be the root node of the intersection Desc(n
j

)\Desc(m
i

).
The descendants of n

k

can also be removed from S(m
i

)
because they cannot be MPANs in P(m

i

).

S(m
i

) = S(m
i

)�Desc+(n
k

).

Case 3 (Desc(n
j

) \ Desc(m
i

) = ;): The intersection of the
descendants of n

j

and m
i

is empty. This implies that n
j

has no impact on the search space of m
i

.

Case 4 (n
j

= m
i

): Here n
j

is the MTN. S(m
i

) = ;.

Case 5 (m
i

2 Desc(n
j

)): This case cannot occur because it
implies that m

i

is not minimal and hence not an MTN.

• If the current node n
j

is dead :

Case 1 (n
j

2 Desc(m
i

)): In this case, all nodes in Asc(n
j

) are
also dead and therefore can be removed from S(m

i

).

S(m
i

) = S(m
i

)�Asc+(n
j

).

Case 2 (Desc(n
j

) \ Desc(m
i
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j
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i
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change in S(m

i

).

Case 3 (Desc(n
j
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i
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i

).

Case 4 (n
j
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i

): m
i

is the MTN.
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i
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i
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j

}.

Case 5 (m
i

2 Desc(n
j

)): This case cannot occur because it
implies that m

i

is not minimal and hence not an MTN.

We define Sa

exp

(m
i

) to be the expected search space of m
i

if n
j

is alive and Sd

exp

(m
i

) to be the expected search space of m
i

if n
j

is
dead. Now, if p

a

is the average probability that a node in the graph
is alive, we define the score for n

j

to be:

Score(n
j

) =
X

mi2M

p
a

· |Sa

exp

(m
i

)|+(1�p
a

) · |Sd

exp

(m
i

)|. (1)

Intuitively, this score measures the expected size of the search space
given the information that n

j

is alive/dead.
We give some further analysis to the score so defined. Let

Cover(n) = {n} [Desc(n) [Asc(n)

be the coverage of a node n. We can then express Sa

exp

(m
i

) and
Sd

exp

(m
i

) more explicitly:
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disjoint, we have

|Sa

exp

(m
i

)| = |Desc+(m
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j
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+ |Desc+(m
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)|,
and similarly,

|Sd
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i
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i
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j

)|
+ |Desc+(m

i

) \Desc(n
j

)|.
Therefore, according to Equation (1), we have

Score(n
j

) =
X

mi2M

|Desc+(m
i

)� Cover(n
j

)|

+ p
a

·
X

mi2M

|Desc+(m
i

) \Asc(n
j

)|

+ (1� p
a

) ·
X

mi2M

|Desc+(m
i

) \Desc(n
j

)|.

Based on the above equation, we can see that the score actually
takes three factors into consideration:

(1) the descendants of the MTNs that are not covered by n
j

(the 1st
summand): these nodes must be explored no matter whether n

j

is alive or dead;

(2) the descendants of the MTNs that are ancestors of n
j

(the 2nd
summand): these nodes are explored when n

j

is alive;
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Figure 8: Relational schema for the DBLife dataset.

(3) the descendants of the MTNs that are descendants of n
j

(the
3rd summand): these nodes are explored when n

j

is dead.

Hence, a smaller score means a smaller expected search space.
We then use a simple greedy strategy based on this score to traverse
the lattice — each time we pick the node n

j

with the minimum
score, check its aliveness, and eliminate other nodes from the lattice
according to this information as before. This algorithm terminates
when all nodes have been classified and the MPANs for all dead
MTNs have been found.

The remaining issue is how to determine the probability p
a

.
We note here that setting p

a

affects performance, not correctness.
Estimating the probability value p

a

accurately requires evaluating
all the queries and finding out what percentage of them are empty.
However, our experiments show that the simple assumption that p

a

= 0.5 works surprisingly well. Nonetheless, it is still interesting
future work to explore lightweight estimation approaches for p

a

.

3. EVALUATION
In this section we evaluate our proposed approaches. We ran

our experiments using PostgreSQL 8.3.6 on an Intel(R) Core(TM)
2 Duo 2.33 GHz system with 3GB of RAM. We implemented
all the query processing algorithms in Java, and used JDBC to
connect to the database. We further implemented the inverted
indexes over the data using Lucene [18]. We evaluated the proposed
approach over a 40MB snapshot of the DBLife [7] dataset that
has 801,189 tuples in 14 tables (Figure 8). Note that in the
DBLife schema, keywords are contained in 5 entity tables, namely,
Person, Publication, Conference, Organization, and
Topic. The 9 relationship tables connect the entity tables but do
not contain any text attributes.

3.1 Lattice Generation
In Figure 9(a), we look at the number of nodes in the lattice.

Having several copies of each table adds to the number of seed
tables and consequently to the number of nodes in the lattice. As
expected, the number of nodes grows exponentially as the level
(and number of joins) increases. It is thus important to have
efficient traversal and pruning strategies. Figure 9(a) shows the
number of nodes generated and the number of duplicate nodes in
the lattice. On average 11.7% of the generated nodes were removed
due to duplicate elimination (note that the Y-axis is in log scale).

Next, in Figure 9(b), we look at the time spent in generating the
lattice. We vary the level on the X-axis and measure the time taken
on the Y-axis. We observe that lattice generation completes in less

Figure 9: (a) The number of nodes generated in the lattice
at each level and the number of duplicates are shown.
As expected, the number of nodes in the lattice grows
exponentially. On an average 11.7% of the nodes were pruned
due to duplicate elimination. (b) The time spent in generating
the lattice is shown. We note that the lattice is generated offline.

than 100 seconds, even for a lattice with 7 levels (i.e., 6 joins). We
note that this is a one-time cost, and is done offline.

3.2 Keyword Queries
Table 2 lists the keyword queries we used in our following

experiments. DBLife has a star schema, with the Person table
at the center. As a result, queries with many person names (e.g.,
Q3) often lead to many MTNs. Q7, Q9, and Q10 do not contain
any person names and Q8 contains the term “Washington” which
occurs in the Person, Publication, and Organization
tables. Q4 and Q6 lead to empty queries at the two-table level, but
MTNs are found at higher levels as KWS-S explores relationships
with more joins.

ID Keyword Query
Q1 Widom Trio
Q2 Hristidis Keyword Search
Q3 Agrawal Chaudhuri Das
Q4 DeRose VLDB
Q5 Gray SIGMOD
Q6 DeWitt tutorial
Q7 Probabilistic Data
Q8 Probabilistic Data Washington
Q9 SIGMOD XML
Q10 Stream data histograms

Table 2: Keyword queries

3.3 Keyword Based Pruning (Phase 1) and
Finding MTNs (Phase 2)

The next step involves mapping user’s keyword query to schema
terms and is performed online. This primarily involves lookups
over the inverted indexes on the data. For the 10 testing queries,
the time to map the keywords to schema terms varied between 7
ms and 66 ms with an average time of 26 ms.

Next, we measured the number of nodes in the lattice that remain
in the lattice upon the introduction of keywords. We note that
keyword-based pruning reduced the number of relevant nodes by
98% on average. Once the keywords are mapped to schema terms,
the next step is to find the MTNs. This process took up to 23 ms
for the 10 queries, in a lattice for level = 5. The number of MTNs
ranged from 3 to 85.

Figure 10 summarizes these results. It also shows the number of
unique descendants for the MTNs. We note that Q3 and Q8 have
lower number of unique descendants, allowing higher possibility
of reuse, as we will show later. We also computed these statistics
for level = 7, and observed that the number of nodes after pruning
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varied from 277 to 18,904 with an average of 9,226 nodes, a
reduction of 94.3% from the 161,440 nodes in the original lattice.
The number of MTNs ranged from 35 to 1,418. This shows that
even though a large number of lattice nodes are generated, phases
1 and 2 can prune the lattice substantially.

3.4 Comparison of Traversal Strategies
The goal of our traversal strategies is to efficiently determine if

an MTN is alive or dead and to find the MPANs for the dead MTNs.
We compared the five strategies for lattice traversal from end-to-
end. Figure 11 shows the number of SQL queries that needed to
be executed by each traversal approach for level = 5. Figure 12
shows the times taken by each approach for the corresponding
queries. Note that both BUWR and TDWR perform better than
their respective counterparts without reuse. This is especially true
for Q3 and Q8, because for these queries, the total number of
unique descendants are much smaller than that with duplicates.
The number of SQL queries executed for Q3 is shown in Table 4.
Q2 leads to only 3 MTNs, all of which are alive (i.e., Q2 has
0 MPANs). One of these 3 MTN queries is a join between the
Person and Publication tables, with the keywords occurring
in many tuples. This query takes around 20 seconds to execute. The
proposed score-based heuristic (SBH) approach performs well in
almost all cases, owing to its opportunistic choice of nodes during
the pruning/traversal process. Further, we also note that TD and
TDWR perform better than BU and BUWR respectively. Next, we
explain the reason for the performance difference.

3.5 Impact of MTN and MPAN Distributions
For the DBLife dataset, we find that as the maximum level of

the lattice increases, BU and BUWR generally perform poorly
when compared to TD, TDWR, and SBH. This is because even
keyword queries that return no answers at lower levels might return

Figure 10: Keyword queries enable substantial pruning of the
lattice (98% on an average). The number of MTNs and their
descendants and unique descendants are presented to show the
extent of overlap between the nodes in the lattice.

Figure 11: The number of SQL queries generated by the system
for each keyword query.

Figure 12: The time taken to execute all the SQL queries for
each keyword query.

answers at higher levels. These answers correspond to relationships
with many hops. Since the number of nodes in the lattice grows
exponentially as the number of joins increases, TD and TDWR
have a better pruning effect than BU and BUWR.

In Table 3, we present the distributions of MTNs and MPANs at
levels 3, 5, and 7. Note that as most of the MTNs and MPANs are
concentrated at higher levels, TD and TDWR perform better than
BU and BUWR. We find that SBH performs well regardless of the
distribution of MTNs.

MTNs MPANs
Q L3 L5 L7 L3 L5 L7
Q1 1 6 41 0 4 34
Q2 0 3 35 0 0 0
Q3 0 85 1418 0 94 1584
Q4 4 20 144 8 28 130
Q5 4 24 164 2 10 42
Q6 1 6 41 2 4 18
Q7 2 14 92 4 12 70
Q8 0 31 451 0 87 1172
Q9 0 8 40 0 4 4
Q10 0 6 83 0 10 92

Table 3: Distributions of MTNs and MPANs at levels 3, 5,
and 7 for the 10 keyword queries (L3 is short for “Level 3”,
and so forth). Note that most of the MTNs and MPANs are
concentrated at higher levels.

3.6 Performance at Higher Levels
We now investigate how the approaches perform as we vary the

maximum level of the lattice. Table 4 shows the number of SQL
queries executed for Q3 when increasing the maximum level from 3
to 7. As before, we note that the number of SQL queries executed
increases as the maximum level is increased. We also note that
reuse-based approaches perform better by executing fewer queries
— BUWR executes 28% fewer queries than BU, while TDWR
executes 52% fewer queries than TD, at level 7. Further, TDWR
performs better than BUWR, owing to the presence of a large
number of MPANs and MTNs at higher levels of the lattice. Finally,
we note that SBH provides substantial reduction (79% reduction
compared to BU) in the number of queries executed at higher levels
of the lattice.

3.7 Performance Improvement with Reuse
We were interested in investigating the extent of the overlap

between the descendants of each MTN. Increased overlap would
allow more reuse, decrease the number of SQL queries executed
and consequently improve runtime performance. Figure 13 shows
the percentage of reuse, i.e., 100 ⇤ (1 � Nu

N

), where N
u

is the
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Level BU BUWR TD TDWR SBH
3 0 0 0 0 0
5 294 233 225 136 101
7 5036 3624 3866 1818 1026

Table 4: Number of SQL queries executed in all the traversal
techniques for Q3 with lattice level = 3, 5, 7. SBH provides
substantial reduction in the number of queries executed at
higher levels of the lattice. The approaches with reuse perform
better than their respective counterparts without reuse.

Figure 13: Percentage of reuse for the 10 keyword queries.
While reuse is keyword dependent, it increases as the number
of joins increases.

number of unique descendants of MTNs, and N is the total number
of descendants of MTNs. The percentage of reuse for levels 3, 5,
and 7 is shown. As expected, reuse increases as more joins are
allowed. At level 3, only queries Q4 and Q5 show some overlap.
However, we see substantial overlap between the descendants of
the MTNs at levels 5 and 7. Specifically, Q2 and Q10 show a steep
increase in overlap from level 5 to level 7. This increase is reflected
in the performance of the reuse-based approaches and helps explain
the performance of SBH over the other traversal approaches.

3.8 Comparison with Other Alternatives
Our proposed approach is not the unique one that can address the

non-answer exploration problem. We therefore further compared
our approach with other alternatives. Here we consider a simple
indicator that is correlated with the “work” required to diagnose a
non-answer. Our intent is to explore a simple quantitative metric
that captures the intuition for why we think our approach may be
helpful. Specifically, we compare our approach with the following
two alternatives:

• Return Nothing (RN): Return nothing to the user for non-
answers. This is the standard, existing KWS-S approach.
To address the “why not” question, a developer would likely
repeatedly submit modified queries by removing keywords
from the original query. For instance, if the original keyword
query were “k1 k2 k3”, then a user trying to understand
the reason for the non-answer might additionally submit the
queries: “k1 k2”, “k1 k3”, “k2 k3”, “k1”, “k2”, and “k3”.

• Return Everything (RE): Do not build the lattice and return
MPANs of the non-answers. Instead, explore alive descen-
dants at runtime. For each descendant, issue the associated
SQL query to determine its aliveness.

RN requires additional user effort to submit more queries. Both
RE and our proposed approach remove this burden from the user.
Meanwhile, the set of alive descendants returned by RN is both
incomplete and redundant. It is incomplete, since only minimal
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Figure 14: Response time when lattice level = 5
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Figure 15: Response time when lattice level = 7

alive descendants can be returned by existing KWS-S systems.
That is, each leaf node of a candidate network is required to be
bound by a keyword. As a result, alive descendants, including
some MPANs, that do not satisfy this requirement will not appear
in the results and hence are missing. It is also redundant, since
some of the alive descendants returned may belong to answers
(i.e., alive MTNs) but not non-answers (i.e., dead MTNs). Both
incompleteness and redundancy are unsatisfactory for the purpose
of debugging non-answers. On the other hand, RE returns the
complete set of alive descendants. However, it is still redundant,
since the aliveness of some descendants can be automatically
inferred based on the aliveness of the others. Compared with RE,
with the help of the lattice structure, our proposed approach can
rule out this redundancy without sacrificing the completeness.

We further tested the system response time when the three
approaches were adopted, in terms of the total execution time of the
SQL queries issued. Figure 14 and 15 present the results for lattice
levels 5 and 7. Our approach substantially reduces the response
time for the more complicated queries Q2, Q3, Q8, and Q10, which
contain three keywords, while the other queries only contain two.
The improvement is more dramatic when multi-way joins (i.e.,
higher lattice levels) are allowed. For example, the response times
are reduced by 84% and 99% for the two most costly queries Q2
and Q3, when the lattice level is 7 (i.e., up to 6 allowable joins).

4. RELATED WORK
Although we are not aware of any previous work that pertains

to non-answers in the KWS-S context, the related work for the
approaches and ideas presented in this paper is extensive.
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Banks [1, 14], DBXplorer [2], and DISCOVER [11] are seminal
papers in KWS-S. While Banks operates on a data graph, our paper
is geared towards approaches like DISCOVER and DBXplorer,
which use the underlying schema graph to explore relationships
between the keywords. Several other KWS-S systems have been
proposed over the years as well (see Yu et al. [25] for an extensive
survey). Notably, Markowetz et al. [19] explored efficient genera-
tion and evaluation of candidate networks and briefly mentioned
purging dead tuples in their paper about keyword search over
streaming data. The Helix system [22] proposed a rule-based
method for mapping keyword queries to structured queries. They
automatically mined and manually tuned a set of patterns from
query logs and mapped each pattern to a template query. A query
was mapped to the best template once it arrived at runtime. Our
static lattice structure is somewhat analogous to these templates.
EASE [16] extensively leveraged offline computation to speed up
runtime performance but did not consider the problem of non-
answers. KWS-S-F [6] also leveraged offline computation but
did not deal with non-answers. In addition, lattice structure has
also been used in relaxing selection and join queries in relational
databases to help users find more results [15].

We drew inspiration from Why Not [5] and Provenance of Non-
Answers [12]. This work addressed non-answers in the context of
single SQL queries and did not deal with KWS-S systems. Huang
et al. [12] and Herschel et al. [8] provided tuple insertions or
modifications that would yield the missing tuples. Chapman and
Jagadish [5] tried to find the manipulation that led to a non-answer
query. Tran and Chan [24] generated a modified query whose
results included the user-specified missing tuple(s). In contrast,
in a KWS-S system we cannot rely on user input, given that the
user is assumed to be schema agnostic and may not even be aware
that the KWS-S system is executing structured queries. Our notion
of MPANs is similar to that of a frontier picky manipulation [5]
in spirit. However, we feel that MPANs are more suited for the
keyword search context; they represent the subset of keywords
that would render a dead relationship alive. Work on lineage and
provenance including [4, 20] influenced the lattice structure and use
of MPANs to explain non-answer queries in KWS-S.

While we focused on pure relational database techniques in this
paper, there has also been work on mapping sets of structured
tuples to virtual documents and then applying information retrieval
techniques to find results that match the keywords (e.g., the EKSO
system [23]). However, this idea relies on inverted indices built
over materialized views. In typical industry systems, these indices
are updated only at some pre-determined time-intervals (mostly, on
a nightly basis). This then implies that they may suffer from severe
data staleness issues, for in the daily use of a relational database,
any changes to the underlying data can impact answers and non-
answers to keyword queries almost immediately. Moreover, it
actually cannot work for non-answers if only “and” semantics is
considered. Using “and” semantics, non-answers would never be
displayed to the user. Nonetheless, this raises a very interesting
point that there might be an alternative way to deal with the
problem: replace “and” semantics by “or” semantics, though
it seems to be equivalent to the “Returning Nothing” strategy
discussed in Section 3.8 and thus suffers from issues such as
incompleteness and redundancy. In fact, Hristidis et al. have
considered the “or” semantics in KWS-S systems [10]. However,
their focus was to efficiently present the end users with a list of
top-k matches for moderate values of k. In contrast, our goal is
to enable system developers to debug non-answers so providing
top-k matches is insufficient. Nevertheless, this merits further
exploration but it is out of the scope of this paper.

5. CONCLUSION
In this work we take a first step towards building a KWS-S

system that exposes non-answer queries to system developers for
the purpose of debugging the system. Given the exponential com-
plexity of answer generation in KWS-S, exposing and explaining
non-answer queries is a time-consuming process. We leveraged
offline computation to generate a lattice structure and exploited the
overlap between the queries to efficiently determine non-answer
queries and their closest alive sub-queries.

While we concentrated on improving the performance of discov-
ering and investigating non-answer queries in the KWS-S domain,
this work opens up a couple of interesting directions for future
work. For instance, debugging is often an interactive process and
it is worth studying how to combine the search for MPANs with
user intervention. Meanwhile, pushing user-defined constraints
into the search procedure might greatly prune the search space
and therefore significantly improve the efficiency. All of these are
interesting questions that deserve further investigation.
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ABSTRACT
Most scientific and modern applications generate—in addition to
the base data—valuable annotations and metadata information at
unprecedented scale and complexity. Such annotations warrant the
need for advanced annotation management techniques that not only
propagate the raw annotations to end-users, but also mine, summa-
rize, and extract useful knowledge from them. Towards this goal,
we proposed the InsightNotes system, the first summary-based an-
notation management engine in relational databases [22]. Insight-
Notes relies on creating concise representations of the raw anno-
tations, called annotation summaries. InsightNotes addresses sev-
eral unique challenges related to the maintenance, propagation, and
zooming of these summaries. However, a key limitation is that the
annotation summaries are treated as propagate-only (report-only)
objects that cannot be directly queried or manipulated. This limita-
tion hinders higher-level applications from applying complex pro-
cessing over both the base data and its attached annotation sum-
maries even within a single query. In this paper, we propose new
extensions to InsightNotes for treating the annotation summaries
as first-class citizens. We address the challenges of: (1) Develop-
ing new manipulation functions and query operators specific for the
annotation summaries, (2) Designing summary-based index struc-
tures and access methods for efficient retrieval and predicate eval-
uation, and (3) Extending the query optimizer to optimize queries
accessing both the data and the annotation summaries. The pro-
posed extensions not only make it feasible to natively query and
manipulate the annotation summaries, but also achieve more than
two orders of magnitude speedup in query evaluation.

1. INTRODUCTION
Metadata—usually referred to as “annotations”— is gaining

an increasing importance in most modern database applications
as a valuable source of information. Applications in many sci-
ence domains, e.g., in biology, healthcare, earth sciences, and or-
nithology, create and manage annotations and metadata informa-
tion in orders of magnitude larger than the base datasets as re-
ported in [5, 20, 22]. For example, according to the geneon-
tology.org website, several biological databases, e.g., Genobase

c© 2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

(http://ecoli.naist.jp/GB8/), EcoliHouse (http://www.porteco.org/),
and UniProt (http://www.ebi.ac.uk/uniprot), manage annota-
tions in a 10x scale compared to the number of genes
and proteins in the database. Moreover, in ornithological
databases, e.g., DBRC (http://www.dbrc.org.uk/), and AKN
(http://www.avianknowledge.net/), the number of annotations col-
lected from the bird watchers and scientists all over the world is
around 200x larger than the number of birds’ collection stored in
these repositories [1].

It is not only the scale of annotations that poses challenges, but
also the need for transparent processing and propagation of anno-
tations, and their combinatorial relationship with the data, e.g., an-
notations can be attached to single table cells (attributes), rows,
columns, arbitrary sets and combinations of them, or even attached
to sub-attributes. That is why annotation management has been
extensively studied in RDBMSs to address some of these chal-
lenges [4, 7, 11, 14, 17, 21]. However, all of the existing techniques
have the common limitation of manipulating only the raw annota-
tions, and hence reporting back to end-users 100s of annotations
attached to each output tuple. Nevertheless, any advanced process-
ing of mining, summarizing, and extracting useful knowledge from
the annotations is entirely delegated to end-users.

As a first step towards addressing the above limitations, we pro-
posed the “InsightNotes” system, a summary-based annotation
management engine in relational databases [22]. InsightNotes is
based on integrating data mining and summarization techniques
with annotation management in novel ways with the objective of
creating concise and meaningful representations of the raw anno-
tations, called “annotation summaries”. For example, the R.H.S
in Figure 1 illustrates a data tuple with 100s of attached raw anno-
tations, while the L.H.S illustrates the tuple with its attached sum-
mary objects using InsightNotes. The summary objects include, for
example, Classifier-type objects, e.g., ClassBird1 and ClassBird2,
that classify the raw annotations into user-defined classes, Snippet-
type objects, e.g., TextSummary1, that summarize the attached big
articles and report snippets on each, and Cluster-type objects, e.g.,
SimCluster, that group similar annotations into groups and reports
only a representative from each group. An overview on the system
will be presented in Section 2.

1.1 Case Study: Effectiveness and Motivation
We performed a usability case study to demonstrate the effec-

tiveness of InsightNotes and motivate the new extensions proposed
in this paper. We used a small subset of 100 data tuples from the
AKN ornithological database, each has a number of raw annota-
tions ranging between 75 to 380. The annotations describe any-
thing related to birds, e.g., color, body shape or weight, certain
behavior or sound, eating habits, geographic location, or observed
diseases. And then, we asked 20 students to query the data, and an-
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A1: Large one 
having size … 

A2: found eating 
stonewort and…  

A3: Observed in region … ClassBird1 TextSummary1 
[“Experiment E … ”,  
“Wikipedia article …“] 

A4 

A5 

Annotated tuple with 100s of attached 
raw annotations 

The same tuple annotated with  
its summary objects 

Swan Goose Anser cygnoides …

[(Behavior, 33),  
(Disease, 8),  
(Anatomy, 25), 
(Other, 16)] 

Swan Goose Anser cygnoides … A6: size seems  
wrong SimCluster 

A1# A2#

ClassBird2 
[(Provenance, 11),  
(Comment, 83),  
(Question, 7)] 

Using&&
InsightNotes&

… … … 

Figure 1: Summary-Based Annotation Management in InsightNotes.

Query Semantics # Qualifying 
data tuples 

InsightNotes 
Group 

Raw-Annotations 
Group 

Q1: Report the disease-related 
annotations attached to birds with 
name like “Swan*'’. 

5 Time: 47 sec 
Accuracy: 100% 

Time: 21 mins 
False Positives: 17% 
False Negatives: 25% 

Q2: Aggregate based on the bird’s 
family column, and report the 
number of behavior-related 
information on each group. 

3 Time: 47 sec 
Accuracy: 100% 

Time: 45 mins 
False Positives: 18% 
False Negatives: 34% 

Q3: Report the data tuples sorted 
based on the number of attached 
disease-related annotations  

100 Time: 5.2 mins 
Accuracy: 100% 

  
             ----- 
 

Figure 2: Usability Case Study using InsightNotes.

swer the three questions highlighted in Figure 2. These are simple
annotation-based analytical queries that scientists or end-users may
ask over their datasets. Half of the students use the InsightNotes en-
gine, while the other half uses an existing annotation management
engine that reports the raw annotations [11]. We then measured the
average time taken by each group (including writing the query) as
well as the results’ accuracy.

To answer Q1, the InsightNotes group needs to submit a single
SQL query to get the 5 expected data tuples (similar to the L.H.S
in Figure 1). And then, they need to issue another follow-up com-
mand, i.e., a zoom-in command, to retrieve the raw disease-related
annotations over these tuples. In contrast, the Raw-Annotations
group will get the 5 tuples along with their raw annotations (similar
to the R.H.S in Figure 1). And then, they need to manually read the
annotations and extract the desired ones. It took them, on average,
21 minutes and they reported the results with high false-positive
and false-negative ratios as indicated in the figure.

To answer Q2, the InsightNotes group needs to only retrieve the
number of the behavior-related annotations from the answer, i.e.,
ClassBird1.Behavior. It took them few seconds for writing and ex-
ecuting the query. In contract, the other group took very long time
and still produced erroneous results—Notice thatQ2 is an aggrega-
tion query, and thus each output tuple may have many annotations
collected from multiple base tuples.

The Q3 query is more challenging because InsightNotes does
not provide mechanisms for sorting the data based on their attached
summaries. Thus, the InsightNotes group needed to go over the 100
reported tuples, and manually sort them according to the Class-
Bird1.Disease field. For the other group, it was not even feasible
to analyze 100s of annotations over each of the reported tuples to
figure out the number of disease-related annotations, and then sort
based on that.

1.2 Limitations and Proposed Extensions
The results from the our study show that InsightNotes opens

a promising direction for better understanding of large-scale an-
notations and extracting useful knowledge from them. However,
the results also show that InsightNotes has the critical limitation

of treating the annotation summaries as “propagate-only objects”.
This limitation hinders the applications from mixing operations
over both the data content and annotation summaries even within
a single query (Refer to Q3 in Figure 2). In this paper, we pro-
pose extending the InsightNotes system by elevating the annotation
summaries to be first-class citizens, where end-users and applica-
tions can manipulate them in various ways, e.g., selecting, join-
ing, or ordering the data tuples based on their attached annotation
summaries. To build such full-fledged summary-based annotation
management engine, we propose the following contributions:
• Seamless Manipulation of Diverse Summary Types: In-

sightNotes supports three types of summarization techniques, i.e.,
clustering, classification, and text summarization. And hence, the
summary objects attached to the data tuples can have diverse types,
structures, and properties (Refer to Figure 1). Therefore, we pro-
pose manipulation functions at different granularities, e.g., at the
tuple-level to manipulate the entire set of attached summary ob-
jects, and at the object-level to manipulate the individual summary
objects according to their types.
• Summary-Based Query Processing: We propose building

an extended query engine, where end-users can process both the
data and their attached annotation summaries seamlessly in a single
query plan. For example,Q3 in Figure 2 involves a summary-based
ordering operation. Another query may be interested in retrieving
only the data tuples with zero provenance-related annotations, i.e.,
ClassBird2.Provenance = 0, which involves a summary-
based selection operation. Therefore, we extend the InsightNotes’s
query engine by introducing new summary-based query operators,
e.g., filter, selection, join, and sort, that operate on the summaries’
content. We define their algebraic semantics and integrate them
with the standard operators in a single query plan.
• Efficient Access Methods and Retrieval Mechanisms:

Applying predicates and operators on top of the annotation
summaries warrants the need for efficient retrieval mechanisms
and indexing techniques to achieve scalable performance. For
example, how could the system efficiently answer the two
queries mentioned above, i.e., a selection query based on
ClassBird2.Provenance = 0, and an ordering query based
on ClassBird1.Disease. We propose summary-based index-
ing techniques that achieve efficient execution for the summary-
based queries, while retaining the optimal summary-propagation
performance.
• Extended Summary-Based Query Optimizer: The integra-

tion between the summary-based and the standard SQL operators
within a single query engine opens several new opportunities for
query optimization. For example, one query may now involve joins
and selections based on both the data and the summaries, and thus
the query optimization becomes even more challenging. Therefore,
we introduce several new equivalence and transformation rules as
well as an extended cost model that guide the query optimizer in
generating efficient execution plans.
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• Realization and Evaluation: We developed the proposed ex-
tensions within the InsightNotes prototype engine [22]. The ex-
perimental analysis demonstrates the value-added functionalities of
directly manipulating and querying the annotation summaries, e.g.,
enabling a seamless expression of more complex annotation-based
analytical queries, and the significant performance gain from the
proposed optimizations.

The rest of the paper is organized as follows. In Section 2, we
overview the InsightNotes system. In Section 3, we present the new
summary-based functions and query operators. Sections 4 and 5
introduce the summary-based indexing scheme, and the extended
query optimizer, respectively. The experimental evaluation is pre-
sented in Section 6, while the related work is presented in Section 7.
Finally, the conclusion remarks are included in Section 8.

2. OVERVIEW ON InsightNotes SYSTEM
InsightNotes addresses several challenges related to managing

the annotation summaries, which include: (1) Designing an exten-
sible engine where domain experts and database admins can de-
fine how to summarize and mine their annotations, (2) Developing
efficient and incremental mechanisms for the maintenance of an-
notation summaries to scale up with large number of annotations,
(3) Extending the query engine and relational algebra to operate
on and propagate the annotation summaries along with the queries’
answers, and (4) Building zoom-in query processing mechanisms
that enable end-users to zoom-in and retrieve the raw annotations
of specific summaries of interest. In this section, we overview the
basic functionalities of InsightNotes needed for this paper.

2.1 InsightNotes’s Data Model
The system supports three widely-used families (types) of min-

ing and summarization techniques, which are: Text Summarization,
Clustering, and Classification techniques. The system is extensible
such that the database admins can customize these techniques—and
instantiate what is called Summary Instances—to fit their domains
and produce the desired summaries. Each user relation R can be
linked to as many summary instances as needed. For example,
Figure 1 illustrates Table Birds having four summary instances
linked to it (2 Classifiers, 1 Snippet, and 1 Cluster). Therefore,
the raw annotations attached to each data tuple in this table (the
R.H.S) will be summarized according to these four summary in-
stances. This will result in creating the Summary Objects, which
will be attached back to the corresponding data tuple (the L.H.S).

Assume a user’s relation R having n data attributes and k sum-
mary instances linked to it. Then, each tuple r ∈ R has the
following conceptual schema:

r =< a1, a2, ..., an, {s1, s2, ..., sk} >
where a1, a2, ..., an are the data values of r, and s1, s2, ..., sk are
the summary objects attached to r. Each summary object con-
sists of a five-ary vector {ObjID, InstanceID, TupleID, Rep[], Ele-
ments[][]} as depicted in the following figure:

!"#$%&

'()*+$%&

,*+-+./01212&

$.0/3.4+$%&

5+)12&

Type Structure of Representatives (Rep[]) 

Cluster [(Text annotation, Number groupSize)] 

Classifier [(Text classLabel, Numbr annotationCnt)] 

Snippet [(Text snippetValue)] 

!"#"$%&' ()*'!"#"$%&'

The ObjID is the objects’s unique identifier, and the Instan-
ceID and TupleID are references for the corresponding summary
instance, and the data tuple, respectively. The Rep[] array stores the
representatives produced from the summarization algorithm, while
Elements[][] is a two-dimensional array storing for each represen-

tative, the references (Ids) to its contributing raw annotations. At
query time, end-users will see only the InstanceID and Rep[] fields
of each propagated summary object as illustrated in Figure 1.

For each summary object si, the structure of its representatives
stored in Rep[] depends on si’s type as depicted in the above figure.
For example, in the case of the Cluster type, each cluster (group)
will report an annotation as its representative as well as the number
of annotations in that group. Hence, the Rep[] array consists of a
list of representatives in the form of pairs [(Text annotation, Num-
ber groupSize)]. In the case of the Classifier type, each represen-
tative will have a class label along with the number of annotations
assigned to this label. For the Snippet type, each large annotation
will have a corresponding short snippet as its representative.

2.2 Summary-Aware Query Processing and
Propagation

InsightNotes’s query engine has several extensions that enable
efficient and seamless propagation of the summary objects under
complex transformations, e.g., projection, join, grouping and ag-
gregations, and duplicate elimination. We proposed extensions to
the semantics and algebra of each query operator to manipulate the
summary objects on-the-fly without the need for accessing the raw
annotations. The following example demonstrates a Select-Project-
Join (SPJ) query involving summary propagation in InsightNotes.
The formal semantics of all query operators can be found in [22].

Example 1: Assume an SQL query "Select r.a, r.b,
s.z From R r, S s Where r.a = s.x And r.b =
2" over the two tuples r and s presented in Figure 3. Tuple r
has four summary objects attached to it, while tuple s has only
two attached summary objects. We proved in [22] in Theorems
1 and 2 that to guarantee identical summary propagation under
different—but equivalent—query plans, InsightNotes needs to
project out the un-needed annotations before any merge operation
over the summary objects. Therefore, the projection operator in
Step 1 in Figure 3 projects out attributes r.c and r.d and eliminates
the effect of their annotations from r’s summary objects. For
example, the annotationCnt field in the classifier objects is
decremented, the wikipedia article in the snippet object is deleted,
and the cluster objects are modified, e.g., some annotations are
dropped from each cluster, and hence the groupSize field is
decremented. Moreover, if a cluster’s representative is dropped,
then another representative is elected (See A5 representative
replacing the dropped A2 representative). The same operation
takes place over tuple s, where the effect of all annotations
attached to both s.x and s.y is removed from s’s summary objects.
The only difference is that s.x attribute will not be projected out
because it is needed in the subsequent join operator.

The next operator in the query plan is the selection operator over
r (Step 2). Based on the query’s predicate, r will pass the opera-
tor and all its summary objects will propagate without any change.
Then, the produced tuples will join and their summary objects will
be merged (Step 3). According to the merge procedure, r’s sum-
mary objects ClassBird1 and TextSummary1 will propagate
without any change since they do have no counterpart objects over
s. Whereas summary objects ClassBird2 and SimCluster
will be combined. This action takes into account the case where
the same annotation may be attached to both tuples r and s, and
hence the annotation’s effect on the summary objects should not be
double counted. For example, assuming that there are five common
annotations on both r and s classified as Comment, then when the
two objects are merged the sum of that classifier label will be 22
instead of 27 as illustrated in the figure. The merge of the clus-
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TextSummary1 
[“Experiment E … ”,  
“Wikipedia article …“] 

Tuple r 

ClassBird1 
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(Question, 7)] 
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�&&

Tuple s 

π&&4A&Project&out&column&s.x&
(does&not&change&summaries)&

Figure 3: Example Query in InsightNotes.

ter summary objects is slightly more complex. The main idea is
that the overlapping groups from both sides, e.g., the groups rep-
resented by A1 and B5, will be combined together, whereas the
non-overlapping groups, e.g., the groups represented by A5 and
B7, will propagate separately as illustrated in the figure. Finally
attribute s.x will be projected out before producing the output.

3. SUMMARY-BASED FUNCTIONS & OP-
ERATORS

3.1 Summary-Based Manipulation Functions
The first step in treating the annotation summaries as first-class

citizens is to design a set of interfaces and manipulation functions
on top of them. In the following, we demonstrate few of the devel-
oped functions, which we use throughout the paper. We also ex-
pect the end-users to leverage these basic functions to create more
semantic-rich summary-based UDFs.

• Summary Set Functions: We introduce a special variable “$”
for each data tuple that represents the set of summary objects at-
tached to this tuple, i.e., r.$ represents the set of summary objects
attached to r. Then, we define interface functions over the $ vari-
able, which include:
◦ Int $.getSize(): Returns the number of summary objects

within the set. For example, referring to tuple r in Table Birds in
Figure 1(c), r.$.getSize() = 4.
◦ SummaryObj $.getSummaryObject(String InstName):

The function takes a summary instance name as in-
put, and returns the summary object corresponding
to that name, otherwise it returns Null. For exam-
ple, r.$.getSummaryObject(‘ClassBird1′) and
r.$.getSummaryObject(‘TextSummary1′) return the
Classifier and Snippet summary objects attached to tuple r.
◦ SummaryObj $.getSummaryObject(Int i ): This function

takes a position within the summary set as input, and returns the
summary object at that position. Since the objects in the set do not
follow a pre-defined order, this function is more useful when used

within UDFs, e.g., to iterate over the objects within a summary set
and apply a certain functionality.

We then define a set of manipulation functions over each sum-
mary object O according to its summary type. Some functions are
common to all types. For example, O.getSummaryType() and
O.getSummaryName(), return the type of the summary object—
as either “Classifier”, “Snippet”, or “Cluster”—, and the summary
instance name, respectively. Another common function to all types
is O.getSize(), which returns the number of representatives within
object O, i.e., the size of O.Rep[]. For example, referring to Fig-
ure 1, the ClassBird1 classifier object has 4 representatives, while
SimCluster cluster object has 2 representatives. Other functions are
specific to each summary type. For example:

• Classifier Type Functions: For a summary object O of type
Classifier, the defined functions include:
◦ String O.getLabelName(Int i): Returns the class label at po-

sition i, i.e., Rep[i].classLabel. The order among the class labels is
pre-defined based on the order specified when creating the classifier
summary instance in the system.
◦ IntO.getLabelValue(Int i | String label): This function takes

either an index i or a class label label as input, and returns the
corresponding value, i.e., Rep[i].annotationCnt (for input i), or
Rep[j].annotationCnt, where Rep[j].classLabel = label (for input
label).

• Snippet Type Functions: For a summary object O of type Snip-
pet, the defined functions include:
◦ String O.getSnippet(Int i): Returns the snippet value at po-

sition i. The order among the snippets is arbitrary and does not
follow a pre-defined order.
◦ Boolean O.containsSingle(String kw1 [, String kw2, ...]):

Returns True if all of the given keywords kw1, kw2, ... are con-
tained within any one of O’s snippets or the raw annotations.
As we studied in [16], there is a tradeoff—w.r.t accuracy and
performance—between searching the snippets vs. searching the
raw annotations.
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◦ Boolean O.containsUnion(String kw1 [, String kw2, ...]):
Returns True if all of the given keywords kw1, kw2, ... are con-
tained within the union of O’s snippets or O’s raw annotations. In
this function, the keywords may span multiple annotations attached
to the same tuple.

Internally, InsightNotes—which uses PostgreSQL as its underly-
ing DBMS— implements the summary objects as composite data
types. On top of these types, the manipulation functions presented
above are defined.

3.2 Summary-Based Relational Operators
We now introduce several summary-based relational operators.

Unlike the standard SQL operators, these operators operate on the
summary objects attached to each tuple instead of its data content.
The summary-based operators can be mixed with other standard
relational operators in a single query pipeline for seamless process-
ing. The new operators include:
• Filter Operator (Fp(R)): The filter operator takes a set of
summary-based predicates p, and returns each tuple r ∈ R along
with only its summary objects satisfying p. The operator is for-
mally defined as:

Fp(r) = {r′ =< a1, a2, ..., an, {si, ...} > | p(si) = True,
where 1 ≤ i ≤ k }

For example, referring to Figure 1(c), the predicate
(getSummaryName() = ‘SimCluster’) returns r along
with only the the specified cluster summary object. In contrast,
the predicates (getSummaryType() = ‘Classifier’)
return r along with only the two classifier summary objects
ClassBird1 and ClassBird2.

• Selection Operator (Sp(R)): The summary-based selection op-
erator takes a set of summary-based predicates p, and returns the
data tuples r ∈ R having summary objects satisfying p. Other-
wise, r is dropped. For qualifying tuples, all their summary objects
will pass without change. The algebraic expression of the operator
is as follows:

Sp(R) = {r ∈ R, r =< a1, a2, ..., an, {s1, s2, ..., sk} >
| p(r.$) = True}

The summary-based predicates may range from black-box
UDFs that take r.$ as a parameter and return a Boolean value,
to explicit predicates based on the system-defined manipula-
tion functions presented in Section 3.1. In the latter case, the
system can reason about and optimize the execution of these
predicates as will be presented in Section 4. For example, the pred-
icate (r.$.getSummaryObject(‘ClassBird2’).
getLabelValue(‘Provenance’) = 0) returns
only R’s tuples having no provenance-related anno-
tations attached to them. In contrast, the predicate
(r.$.getSummaryObject(‘TextSummary1’).contains
Single(‘Wikipedia’, ‘hormone’)) returns R’s tuples
that have at least one annotation containing both keywords. Such
predicates can be efficiently evaluated using the the summary-
based indexes presented in Section 4.

• Join Operator (Jp(R,S)): The summary-based join operator
joins two input tuples r ∈ R and s ∈ S iff the summary-based
join predicates p evaluate to True over r.$ and s.$. The algebraic
expression of the operator is as follows:

Jp(R,S) = {< r, s >,where r ∈ R & s ∈ S | p(r.$, s.$) = True}

For example, referring to Table Birds in Figure 1, assume we
have two revisions of this table, V1 (after Revision 1) and V2 (af-

ter Revision 2). Then, reporting the data tuples whose number
of provenance annotations has changed between the two revisions
would involve the following expression:

Global Parameters 
     - Recency factor ! = 1.0 
     - Amplification factor " = 1.001 
 
Input  
    - Query Q with keywords w1, w2, !, wm  
 
Algorithm 
    - ! = ! x "               //Amplify the recency factor 
    - For each keyword wi in Q 
          - If wi is not in Weighted Keyword Repository 

       - Insert wi  with weight  ! 
  Else 
       - Update wi ‘s  weight by adding ! 

            End If 
      End For 

‘‘v1.ID = v2.ID   &   
v1.$.getSummaryObject(‘ClassBird1’).getLabelValue(‘Provenance’) <> 
v2.$.getSummaryObject(‘ClassBird1’).getLabelValue (‘Provenance’)’’ 

Summary-based join 

Data-based join 

The expression combines both data- and summary-based join op-
erators. As will be discussed in Section 5 and based on the available
indexes and statistics, the query optimizer may decide to join the
tuples based on the data values and then applies a summary-based
selection operator, i.e., (S(R 1 S)). Alternatively, it may join the
tuples based on the summary objects and then applies a standard
selection operator (ρ(J (R,S))).

• Sort Operator (Of [,direction](R)): The summary-based sort op-
erator orders the data tuples in R according to the summary-based
function f(r.$). Function f must return values of a data type hav-
ing a full-ordering property, e.g., number, string, and Boolean. Us-
ing the O sort operator, the Q3 query in the case study (Figure 2)
can now be fully automated and answered in few seconds.

It is worth highlighting that these summary-based operators are
new physical operators introduced to the InsightNotes engine. They
are not implemented as UDFs within PostgreSQL DBMSs for the
following fundamental reasons: (1) If the summary-based opera-
tors are implemented as UDFs, then their execution will be carried
out and encapsulated within the standard SQL operators. As a re-
sult, none of the summary-based optimizations proposed in Sec-
tion 5 would have been possible. (2) The annotation summaries
are not like any other user-defined data types created through Post-
greSQL extensibility. They are special tuple-based metadata infor-
mation that requires extending the semantics of the core query op-
erators [22]. That is why the core operators of InsightNotes in [22]
do not manipulate the summaries through UDFs, and consequently,
the newly proposed operators cannot be implemented as UDFs.
And (3) The design choice of implementing the summary-based
operators as new physical operators does not limit the extensibility
of InsightNotes because the operators are defined at the summary-
type level, i.e., Classifier, Snippet, and Cluster types. And thus,
they apply to any driven instance under those types.

4. SUMMARY-BASED INDEX SCHEME
To enable efficient execution of the summary-based relational

operators, we need to build a summary-based indexing scheme
over the summary objects. In this paper, we will focus only on the
Classifier-Type indexing scheme. The InsightNotes system will not
automatically index all summary instances defined in the database.
Instead, this process is triggered by DB admins using the following
command:
Alter Table <tableName>
[Add [Indexable] | Drop] <InstanceName>;

This extended SQL command is used in InsightNotes to link a
Summary Instance SI to a given user’s relation R (Refer to Sec-
tion 2.1). The newly added optional clause Indexable will in-
form the system to build an index on SI’s summary objects created
over R’s tuples.

Before we investigate possible indexing scheme, we briefly ex-
plain how the summary objects are currently stored in Insight-
Notes to optimize their propagation at query time. Referring to
Figure 4(a), given a user’s relation R, each tuple in R may have
one or more summary objects attached to it according to number
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of summary instances linked to R. To optimize the propagation
of the annotation summaries at query time, R’s summary objects
are stored in a de-normalized form in a corresponding catalog ta-
ble R_SummaryStorage, as illustrated in Figure 4(b). Each tuple in
R has a corresponding unique tuple in R_SummaryStorage linked
together through unique tuple identifiers (OIDs). This scheme has
two main advantages: (1) Since the summary objects are stored in
tables separate from the data tables, there is no I/O or CPU over-
heads added to users’ relations when queried in isolation, i.e., when
the data is queried without annotation propagation, and (2) Since
the summary objects are stored in a de-normalized form, there is
no additional I/O or CPU overheads at query time to re-construct
them from their primitive components. Thus, their propagations
becomes more efficient as studied in [22].

4.1 Classifier-Type Indexing Scheme
Target Query: The index will speedup summary-based selection

operators in the form of "classLabel <Op> constant",
where classLabel is a classifier label within a classifier sum-
mary object, and Op is a comparison operator including {=, >, <,
≤, ≥}. The output are the data tuples whose classifier summary
objects satisfy the given predicates. The index will also speedup
summary-based join and sorting operators involving the indexed
classifier column.

Example 2: Referring to Figure 4(a), assume we want to retrieve
the data tuples having more than 5 associated questions. The SQL
query will be:
Select * From R r

Where r.$.getSummaryObject(‘ClassBird2’).
getLabelValue(‘Question’) > 5;

Baseline Indexing Scheme: A straightforward indexing strat-
egy over the Classifier-type summary objects is to normalize their
representation by replicating their components, i.e., the class labels
and their counts, and storing them in a separate table (See Fig-
ure 4(c)). And then, we can build a standard B-Tree index on each
of the columns, i.e., the ClassLabel and Cnt columns. More-
over, since most predicates over the Classifier-type objects will ref-
erence both columns, we may create a third system-maintained (de-
rived) column that concatenates these two columns, and then index
its values using the B-Tree index as illustrated in Figure 4(c).

The advantage of this scheme is that it uses the standard indexes
without modifications. However, it has two major drawbacks. First,
the storage overhead of the summary objects is doubled; one repli-
cate is for efficient propagation, and another replica is for indexing.
And second, starting from the index to reach the actual data tuples
in relation R, we will need several join operations among multi-
ple tables, which certainly degrades the query performance. The
proposed Summary-BTree indexing scheme will overcome these
limitations.

4.1.1 Summary-BTree Index Structure
The proposed Summary-BTree index is a variant of the standard

B-Tree that can be directly built over the de-normalized represen-
tation of the Classifier-type summary objects. The structure of the
index is depicted in Figure 4(d). Assume the index is built on top
of the summary instance ClassBird1 defined on Relation R. The
creation of the index involves three steps:
◦ Itemization: The Rep[] array within the object will be item-

ized by converting the array elements (String classLabel, Inte-
ger AnnotationCnt) to a sequence of text values in the form of
"classLable:ExtendedAnnotationCnt" as illustrated in
Figure 4(c) Step 1. The ExtendedAnnotationCnt will have an ini-

tial 3-character format to preserve the order among the integer val-
ues even after converting them into strings1. In Figure 4(d) Step
1, we illustrate the itemization of the ClassBird1 summary object
attached to tuple r1.
◦ Indexing: The text values generated from the Itemization step

will be inserted into the Summary-BTree index. The index fol-
lows the same structure and operations of the standard B-Tree.
And hence, the B-Tree’s maintenance algorithms, i.e., insertion and
deletion, are all leveraged in the Summary-BTree index. The in-
dexed values will appear in the leaf nodes of the index sorted alpha-
betically as depicted in the figure. The only exception compared to
the standard B-Tree will be in the heap pointers stored in the leaf
nodes, which are called backward pointers and described next.
◦ Backward Referencing: We make use of the fact that the

storage of the annotation summaries is entirely transparent from
(and not directly query-able by) the end-users. Hence, we have
the opportunity to optimize the internal structure of the proposed
tables and indexes for efficient performance. A key trick in the
Summary-BTree index is that the leaf nodes will point back to
their annotated data tuples in Relation R instead of pointing back
to the R_SummaryStorage table. For example, the index entries
"Disease:002" and "Disease:008" will point back to tu-
ple R.r2 and R.r1, respectively. These backward pointers will be
created and maintained under the different operations as described
in sequel 2.

The advantages of the Summary-BTree index are two fold: (1) It
builds on the existing storage scheme of InsightNotes without the
need to replicate or normalize the summary objects, and hence the
optimized propagation performance is not affected. And (2) As the
experimental evaluation will confirm (Section 6), the backward-
referencing mechanism achieves up to 11x speedup in query per-
formance compared to the baseline indexing scheme.

4.1.2 Summary-BTree Index Operations
To enable the backward-referencing mechanism, we developed

an internal function, called diskTupleLoc(), within the database en-
gine, which takes a tuple’s identifier (OID) and returns its heap
location. This function will be used inside the index’s maintenance
algorithms to create the correct backward pointers. Notice that this
mechanism does not break the transparency concept in database
systems since it is entirely encapsulated within the index struc-
ture and not exposed to the outside world (neither end-users nor
database developers). The index is maintained under the following
operations:
◦ Adding Annotation−Insertion: Adding a new annotation

on an un-annotated tuple in R results in inserting a new tuple in
R_SummaryStorage. The system will then retrieve the heap loca-
tion of the data tuple, itemize the indexed classifier summary ob-
ject, and insert them into the Summary-BTree index as illustrated
in Figure 4(d).
◦Adding Annotation−Update: Adding a new annotation on an

already-annotated tuple inR will result in updating the correspond-
ing summary objects in R_SummaryStorage. For example, if a new
annotation highlighting a disease is added to R.r1, then the Class-
Bird1’s summary object will be updated by incrementing the count
1If the number of annotations assigned to a single classifier’s label
exceeds 999, then InsightNotes automatically increments the num-
ber of allocated characters and re-builds the index. However, it is a
very rare operation.
2The SummaryStorage tables are still directly accessible using
SQL queries, but for administrative tasks only. Such administra-
tive queries use table-scan plans instead of index-scan plans.
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OID C1 Cn 

r1 Swan 
Goose 

… … 

… … 

… 

r2 phoA … … 

TextSummary1 
[“Experiment E … ”,  
“Wikipedia article …“] 

[(Provenance, 8),  
(Question, 15),  
(Other, 42)] 

ClassBird2 Snippet Summary 
Classifier Summary 

Classifier Summary 
[(Provenance, 10),  
(Question, 8),  
(Other, 5)] 

ClassBird2 

Classifier Summary 

OID ClassBird1 ClassBird2 TextSummary1  

r1 !
!
!

…! …! …! …!
r2! …! …! …!

Behavior:033 
Disease:008 
Anatomy:025 
Other:016 

Anatomy:025 Anatomy:010 Disease:008 Disease:002 

Root 

InsightNotes 
Storage 

2 
Indexing 

(a) User’s Relation R 

3 

Pointer to  
R.r1 

Pointer to  
R.r2 

Pointer to  
R.r1 

Pointer to  
R.r2 

(d) Summary-BTree index 
(on ClassBird1 column) 

(b) R_SummaryStorage (optimized for summary propagation) 

Backward Referencing  

Heap backward  pointers to 
relation R  instead of 
R_SummaryStorage 

System’s 
column 

ClassBird1 
[(Behavior, 33),  
(Disease, 8),  
(Anatomy, 25), 
(Other, 16)] 

ClassBird1 
[(Behavior, 6),  
(Disease, 2),  
(Anatomy, 10), 
(Other, 5)] 

ClassBird1 
[(Behavior, 33),  
(Disease, 8),  
(Anatomy, 25), 
(Other, 16)] 

[(Provenance, 10),  
(Question, 8),  
(Other, 5)] 

ClassBird2 TextSummary1 
[“Experiment E … ”,  
“Wikipedia article …“] 

OID Label Count Derived Col 

r1 Behavior 33 Behavior-033 

r1 Disease 8 Disease-008 

… … … … 

(c) Baseline indexing scheme 
(on ClassBird1 column) 

1- Create a normalized table for the classifier’s primitives 

2- Build a standard B-Tree 
index on the derived column  

Figure 4: Summary-Btree Index For Indexing The Classifier Type Summary Objects.

of the Disease class label to be 9. To update the index, the system
will trigger a deletion and then re-insertion only for the modified
class label—The other class labels within the object will remain
untouched. For example, a deletion of key "Disease:008" and
insertion of key "Disease:009" will take place.
◦ Deleting Annotation or Tuple: The deletion of an an-

notation will result in updating the corresponding summary ob-
jects in R_SummaryStorage. Therefore, the same procedure de-
scribed above will be applied. Similarly, the deletion of a data
tuple from R will result in deleting the corresponding tuple in
R_SummaryStorage, and all its index entries will be deleted.
◦ Summary-BTree Querying: To answer an equality

query over the index, e.g., "classLabel = constant"
, a probing key will be formed by concatenating the two
operands, i.e., "classLabel:Extended_constant",
where Extended_constant is the 3-character for-
mat of the constant value. In the case of a range query,
e.g., "constant1 > classLabel > constant2",
two probing keys will be formed; a starting key as
"classLabel:Extended_constant1", and a stop-
ping key as "classLabel:Extended_constant2". All the
keys in between will lead to the qualifying data tuples. If either of
the starting or stopping keys is missing, then it will be replaced by
"classLabel:000", or "classLabel:999", respectively.

4.1.3 Summary-BTree Theoretical Bounds
The Summary-BTree inherits the efficient logarithmic perfor-

mance from the B-Tree index since they have similar structure. The
following Theorem states the theoretical bounds of the index.

Theorem: Assuming that the number of data tuples in the user’s
relation R is M , the number of Classifier-type summary objects
is N , the number of class labels per summary object is k, and the
disk page size in records isB, then the following theoretical bounds
hold for a Summary-BTree index:
◦ Adding Annotation−Insertion is O(kLogBkN + LogBM )

◦ Adding Annotation−Update is O(2LogBkN + LogBM )
◦ Deleting data tuple is O(kLogBkN + LogBM )
◦ Equality search is O(LogBkN ) 2

Proof: Assuming N summary objects and each object has k
class labels, then the number of indexed keys is O(kN ). There-
fore, any single search, insertion or deletion will be bounded by
O(LogBkN ). When adding a new annotation that triggers a new
insertion in the SummaryStorage table, the k class labels will be
inserted into the index which will cost O(kLogBkN ). In contrast,
if the added annotation will trigger an update of an existing class
label, then only that label is deleted and then re-inserted, which will
cost O(2LogBkN ). Finally, when inserting into or deleting from
the index tree, the system needs to retrieve the heap location of the
data tuple. This operation uses a B-Tree index on the OID column
in R with the cost of O(LogBM ).

5. SUMMARY-BASED QUERY OPTI-
MIZATION

When a query involves both the summary-based and the standard
SQL operators, then the traditional transformation and equivalence
rules alone will be of a very limited use. This is because the seman-
tics of the new operators are unknown to current optimizers. For
example, the current optimizer may not be able to use the standard
selection-pushdown rule to push a selection operator below a join
operator because there is a summary-based operator in-between.
Another example is illustrated in Figure 5(a), where the query plan
involves a summary-based sort O and selection S operators on top
of a traditional join operator ./. In this case the current optimizers
cannot apply any of the known transformation rules to create equiv-
alent query plans. In this section, we introduce several important
equivalence rules involving the summary-based operators, and ex-
tend the query optimizer to leverage them and create a larger pool
of possible query plans.

5.1 Extended Equivalence Rules
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• Rules for Summary-Based Selection (Sp(R)): Few important
rules involving the S operator include:

Sp(σc(R)) = σc(Sp(R)) (1)

Sp(R ./c S) = Sp(R) ./c S, iff p is on instances in R not in S. (2)

Proof: Rule 1 is correct since neither the σ operator changes
the summaries’ content nor the S operator changes the data’s con-
tent. And thus, the commutativity property between the two op-
erators apply. This rule enables the system to switch the order
of predicates and use the available indexes—either on the data or
the summaries—as needed. Rule 2 enables pushing the summary-
based selection operator before the join operator. Rule 2 is correct
since predicates p are on instances linked only to one of the two
relations, say R. Therefore, when the ./ operator merges the sum-
mary objects attached to the joined tuples, the summary objects
related to p are guaranteed not to change since they have no coun-
terparts on S. And hence, the rule applies.
• Rules for Summary-Based Sort (Of [,direction](R)): We focus
on an important case where an existing Summary-BTree index can
provide R’s tuples in an interesting order to the query, and hence
the sort operator can be eliminated. The following rules state that
the order of R’s tuples is preserved under certain transformations.
We use notationR

L
to indicate thatR has an interesting order w.r.t

a classifier instance L.

σc(R
L
) = σc(R)

L
(3)

Sp(R
L
) = Sp(R)

L
(4)

R
L
./ S = R ./ S

L
, iff ./ preserves R’s order, and L is not on S. (5)

J (RL
, S) = J (R,S)

L
, iff J preserves R’s order, and L is not

defined on S. (6)

Proof: Rules 3 and 4 indicate that the selection operators (σ and
S) do not change the interesting order of R and preserve it in the
output. This is guaranteed since these operators do not change the
content of their summaries. For the join operators (Rules 5 and 6),
the order w.r.t L is preserved only if two conditions are met: (1) The
join algorithm preserves R’s order, e.g., R is the outer relation of
the join, and (2) Relation S does not have the summary instance L
defined on it. If the 2nd condition is not met, then the join operators
(./ orJ ) would merge the summary objects of L, and thus the order
may not be preserved. Otherwise, Rules 5 and 6 also applies.

Example 4: Assume a query Q that joins Relation R depicted
in Figure 4 with another relation S(c1, c2) based on data at-
tributes R.c1 = S.c1. Then, Q selects only the tuples with more
than five disease annotations, i.e., ClassBird1.disease >
5, and produces the output sorted by the count of these disease
annotations. An initial query plan based on the sequence presented
above is illustrated in the following figure (Figure 5(a)). Then, con-
sider the following two cases:
Case I: Relation S has the ClassBird1 summary instance defined
on it. In this case, the summary-based selection operator cannot be
pushed below the join operator, and the system will use the initial
plan in Figure 5(a).
Case II: Relation S does not have the ClassBird1 summary in-
stance defined on it. In this case, the system will use Rule 2 to push
the summary-based selection operator before the join. And assum-
ing that ClassBird1 summary instance on R is indexed, then the
index can be used to retrieve the tuples with more than five disease
annotations (in a sorted order). Then, based on Rule 5, the join
operator preserves the order of the tuples, and hence the summary-

R 

(disease >5) 

R.c1 = S.c1 

S 

…disease 

DataAbased&
join&

SummaryAbased&
selec,on&

SummaryAbased&
sor,ng&

Output"

R 

(disease >5) 

R.c1 = S.c1 

S 

DataAbased&
join&

SummaryABTree&
Index&lookup&

Output"

(a)&Ini,al&plan&

(b)&Op,mized&plan&(if&S&does&
not&have&ClassBird1&
summary&instance)&

Rules"2"&"5"

Figure 5: Rule-Based Equivalent Plans in InsightNotes.

based sort operator can be removed as illustrated in Figure 5(b).
•Rules for Summary-Based Filter (Fp(R)): Few important rules
involving the F operator include:

Fp(R ./c S) = Fp(R) ./c S, iff p is on instances in R not in S. (7)

Fp(R ./c S) = Fp(R) ./c Fp(S), iff p is structural predicate. (8)

Proof: Rules 7 and 8 address pushing the filter operator be-
fore the join. Both rules aim for eliminating unnecessary summary
objects—and hence their processing cost in the query pipeline—
as early as possible. Rule 7 can be proved in similar way to Rule
2, i.e., the ./ operator is guaranteed not to alter the summary ob-
jects related to predicate p since they are attached to only relation
R. Similarly, the F operator does not change the data’s content,
and hence the join predicates c are not affected. Therefore Rule 7
applies.

Rule 8 indicates that if the predicate is structural—A structural
predicate is defined as a predicate on the InstanceID or the Sum-
maryType of the summary object—then p can be pushed to both
sides before the join operation. For example, referring to Figure 4,
if a query is interested only in the summary objects of instance
ClassBird1, then all other summaries of instances ClassBird2 and
TextSummary1 can be dropped as early as possible. Rule 8 can be
proved in the same way as Rule 7.
• Rules for Summary-Based Join (Jp(R,S)): Few important
rules involving the J operator include:

σc(Jp(R,S)) = Jp(σc(R), S), iff c is on R’s attributes. (9)

Sp1(Jp2(R,S)) = Jp2(Sp1(R), S), iff p1 is on instances in
R not in S. (10)

T ./c Jp(R,S) = Jp((T ./c R), S), iff p is on instances not in T

and c does not involve S’s attributes. (11)

Proof: Rules 9 and 10 address pushing the selection operators (σ
or S) before the summary-based join operator whenever possible. It
is always a valid transformation in the case of the σ operator as long
as the predicates c are on one of the two relations (Rule 9). This
is because the σ and the J operate on disjoint pieces of the tuple,
i.e., the data values, and the summaries, respectively. Rule 10 is
correct since the summary objects related to p1 are only attached to
relation R. And thus, the J is guaranteed not to alter these objects
after the join. Rule 11 states the conditions for switching the order
between summary- and data-based join operators. The order can be
switched iff the summary-based join predicates p involve instances
not defined on T . And thus, joining early with T (T ./c R) is
guaranteed not to affect the evaluation of p.
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OID ClassBird1 ClassBird2 TextSummary1  

r1 &
&
&

…& …& …& …&

ClassBird1 
[(Behavior, 33),  
(Disease, 8),  
(Anatomy, 25), 
(Other, 16)] 

[(Provenance, 10),  
(Question, 8),  
(Other, 5)] 

ClassBird2 
TextSummary1 

[“Experiment E … ”,  
“Wikipedia article …“] 

AvgObjectSize = 50 
Behavior Label:  
     {Min = 3, Max = 43,  NumDistinct = 27,                  } .&.&.&.&.&.&

Figure 6: Example of Classifier-Type Maintained Statistics.

5.2 Cost Model and Cardinality Estimation
Statistics Collection: The equivalence rules presented in Sec-

tion 5.1 enable the query optimizer to generate a larger pool of
equivalent query plans. The next step is to estimate the cost of the
new summary-based operators in order to select the cheapest plan.
Towards this goal, InsightNotes maintains several statistics over the
summary objects attached to a given relationR. These statistics are
similar to those maintained by traditional DBMSs except that they
capture the internal semantics of the summary objects.

Demonstrating over an example, assume relation R has three
summary instances linked to it as illustrated in Figure 6. Then,
for each summary instance (one column in Figure 6), InsightNotes
maintains the average object size (AvgObjectSize). In the case
of Classifier-type objects, e.g., ClassBird1 and ClassBird2, the size
is fixed for all objects within one instance. In contrast, for the
Snippet-type and Cluster-type objects, the size may differ from one
object to another. Moreover, the system maintains several statis-
tics for each classifier label within the Classifier-type objects. For
example, for ClassBird1, four data structures are maintained−one
for each class label. Each data structure holds some statistics on
the count field associated with that label, which include {Min,
Max, NumDistinct, Equi-Width Histogram} as de-
picted in Figure 6. These statistics are maintained whenever a sum-
mary object is updated.

Cardinality and Cost Estimation: To avoid re-inventing
the wheel, the new summary-based operators leverage the same
heuristics that the standard SQL operators use to estimate their
cardinalities and costs. For example, the filter operator F
uses the same heuristics as the standard projection operator π,
e.g., based on the AvgObjectSize statistics, the F operator es-
timates the size of the new tuples and the number of needed
disk blocks. Similarly, the summary-based selection operator
S uses the same heuristics as the standard selection operator
σ, e.g., referring to the S operator in Example 4, the system
uses the maintained statistics ({Min, Max, NumDistinct,
Equi-Width Histogram}) over the ClassBird1.Disease label
to estimate the number of output tuples having more than 5 disease-
related annotations. Moreover, if a Summary-BTree index is used
to answer this predicate, then the number of performed I/Os can be
estimated based on the index’s theoretical bounds.

The summary-based join operator J also follows the same
heuristics as the standard join operator ./, e.g., the size of
joining two relations R and S based on an equality join
on ClassBird2.Provenance can be estimated by mul-
tiplying the size of both relations, and then dividing by
the largest value between the NumDistinct statistics on
ClassBird2.Provenance from both sides. Currently, In-
sightNotes supports only two implementation choices for the J
operator, which are either a block nested-loop join, or an index-
based join.

6. EXPERIMENTS
The proposed extensions are implemented within the Insight-

Notes prototype engine [22], which is based on the open-source
PostgreSQL DBMS. The experiments are conducted using an
AMD Opteron Quadputer compute server with two 16-core AMD
CPUs, 128GB memory, and 2 TBs SATA hard drive.

Application Datasets: We use annotated database that stores
information related to 10s of thousands of birds worldwide. The
largest annotated table in the database is the Birds table that stores
the birds’ basic information. The table consists of 45,000 tuples,
each consisting of 12 attributes, e.g., scientific name, Ids across dif-
ferent systems, description, genus, family, and habit. The table size
in the database is approximately 450MBs. The collected number of
annotations is approximately 9x106 annotations describing a wide
range of bird related information, e.g., color, body shape or weight,
certain behavior or sound, eating habits, geographic location, or
observed diseases. The size of each annotation varies between 150
and 8,000 characters. The total size of the raw annotations table
(the 9x106 annotations) is around 5GBs.

Summarization Techniques: InsightNotes has several inte-
grated data mining techniques for annotation summarization, e.g.,
the Naive Bayes [10] technique for annotation classification, the
CluStream technique [2] for incremental clustering of annotations,
and the LSA (Latent Semantic Analysis) technique [18] for text
summarization and snippet creation. For the purpose of our ex-
periments, we link the Birds table with two summary instances:
(1) A Classifier summary instance ClassBird1 that classifies each
annotation to one of the labels: {‘Disease’, ‘Anatomy’, ‘Behav-
ior’, ‘Other’}, and (2) A Snippet summary instance TextSummary1
that summarizes each annotation larger than 1,000 characters and
creates a snippet that has a maximum of 400 characters. We then
create a Summary-BTree index over ClassBird1.

Index Creation Overhead: The first set of experiments study
the overheads associated with the creation of the summary-based
index (Figures 7, 8, and 9). In the experiments, we vary the number
of annotations (over the x-axis) between 450x103 (corresponding
to 10 annotations per tuple on average), to 9x106 (corresponding to
200 annotations per tuple on average). Figure 7 illustrates the stor-
age overhead of both the Baseline and Summary-BTree schemes
discussed in Section 4.1. In the former scheme, the summary ob-
jects are replicated and stored in a normalized form, and then a
standard B-Tree index is created over them. In contrast, in the latter
scheme, a Summary-BTree index is created over the de-normalized
representation of the summary objects. As the results show, the in-
dex size in both cases is almost the same. However, the proposed
Summary-BTree scheme saves up to 65% of the storage overhead
as it requires no replication of the data. The results also show that
the storage overhead is almost fixed under the different sizes of
the raw annotations. The reason is that once each data tuple has
an attached classifier summary object, then the number and size of
the summary objects becomes fixed and will not change. The in-
crease in the number of annotations only changes the integer value
assigned to the class labels, which does not affect the size.

In Figures 8 and 9, we measure the time overhead of creating
the indexes in bulk and incremental modes, respectively. In the
bulk mode (Figure 8), the raw annotations and the summary ob-
jects will be first created, and then the indexes will be built. This
is the recommended mode for initial uploading of large datasets
into the database. We measured, over the y-axis, the relative time
of creating the index to the time of uploading the raw annotations
and creating the summary objects. The indexing time under the
Summary-BTree scheme involves the time for itemization, insertion
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Figure 9: Incremental Indexing.

of indexed keys, and computing the backward references. For the
Baseline scheme, the indexing time includes the de-normalization
and storage in other tables, and the insertion of the indexed keys.
The figure illustrates that the creation of the Summary-BTree index
is more efficient than the baseline index by up to 35%.

The performance of the incremental indexing is studied in Fig-
ure 9. We considered the cases of inserting annotations with:
(1) No indexes, (2) A Summary-BTree index, and (3) A Baseline
B-Tree index. For each data point in the figure, we insert 100 an-
notations, measure the insertion time of each annotation under the
three cases, and then report the average over the 100 insertions. As
the figure shows, the indexing overhead using the Summary-BTree
index is approximately 10% to 15% of the insertion time, while the
baseline indexing scheme has around 20% to 37% overhead due to
the de-normalization step.

Query Performance: The next set of experiments study
the effect of utilizing the Summary-BTree index to speedup
queries involving summary-based predicates (Figures 10, 11, 12,
and 13). The results in Figure 10 illustrate the performance
gain from the Summary-BTree index using a Select-Project
(SP) query, where the selection predicate is in the form
of: "r.$.getSummaryObject(‘ClassBird1’).
getLabelValue(‘Disease’) = constant". The
query’s response time is presented in the y-axis (in Log scale)
under three cases: (1) using no indexes, (2) using the Baseline
standard B-Tree index, and (3) using the Summary-BTree index.
We experimented with different query selectivities, i.e., 0.1%, 1%,
and 5%, and the differences were minor in each case. Therefore, in
Figure 10 we report the results of only the 1% selectivity (around
450 data tuples). The figure illustrates that the Summary-BTree
index has approximately 3x speedup over the baseline index. This
is because the latter index involves more levels of indirection,
and hence requires more join operations to reach the desired data
tuples. As expected both indexes achieve around two orders of
magnitude speedup compared to the NoIndex case.

The experiment in Figure 11 studies the performance of
a Select-Project (SP) query involving two conjunctive pred-
icates: (1) A range predicate selecting the tuples having a
number of anatomy-related annotations within a given range,
i.e., "r.$.getSummaryObject(‘ClassBird1’).
getLabelValue(‘Anatomy’) in [x,y]", and (2) A
keyword search predicate over the text summarization instance,
i.e., "r.$.getSummaryObject(‘TextSummary1’).
containsUnion(kw1, ...)". When the index scan over
ClassBird1 is disabled (the NoIndex case), InsightNotes uses a
table scan followed by a summary-based selection operator S to
apply both predicates. In contrast, when the index scan is enabled,
InsightNotes uses the index to evaluate the range predicate and on
top of that a S operator to apply the keyword search predicate. The

results illustrate that the Summary-BTree index is around 2x faster
than the baseline index.

It is worth noting that in the previous experiments, the Base-
line indexing scheme is used only to evaluate the selection predi-
cates involved in the query. Yet, the for the summary propagation
purpose to end-users, InsightNotes still reads the summary objects
from its de-normalized storage, i.e., R_SummaryStorage (Refer to
Figure 4). And hence, both indexes do not pay the cost of building
the summary objects from their primitive components. To confirm
that depending only on the Baseline scheme (the normalized stor-
age of summary objects) can significantly slowdown the summary
propagation, we performed the experiment in Figure 12. In the ex-
periment, we used the same query as in Figure 11 and compared
between the two indexing schemes. The only difference is that the
Baseline scheme in this experiment will not only evaluate the pred-
icates, but also form the summary objects for propagation. In this
case, the Baseline scheme showed around 7x slower performance
compared to the Summary-BTree indexing scheme.

In Figure 13, we study the effectiveness of augmenting the
Summary-BTree index with backward pointers that point directly
to the annotated data tuples instead of the conventional pointers
that point to the indexed objects. We use the same SP query used
in Figures 10. In the experiments, we consider four cases. The
first case is that the index uses the backward pointers, and the
annotation summaries are propagated along with the query’s re-
sult (labeled Backward-Propagation). The second case is
that the index uses the backward pointers, and the annotation sum-
maries are not propagated along with the query’s result (labeled
Backward-NoPropagation). The other two cases are the
same of the above except that the index uses the conventional point-
ers instead of the backward pointers, i.e., the Summary-BTree in-
dex pointers will point to the ClassBird1 summary objects. The re-
sults in Figure 13 show that propagating the annotation summaries
has almost the same cost under both the backward and conventional
pointers. The reason is that the join operation between the data ta-
ble and its SummaryStorage table has a 1-1 cardinality, and hence
the performance is very similar regardless of which table is used as
the outer table in the join. In contrast, if the summary propagation is
not required, then the backward pointers will save unnecessary join
with the SummaryStorage table, which achieves up to 4x speedup
in query execution.

Effectiveness of Query Optimization and Transformation
Rules: In Figures 14 and 15, we study the effect of some of the
new transformation rules and query optimizations proposed in Sec-
tion 5. The first experiment (Figure 14) measures the performance
of the query demonstrated in Example 4 in Section 5. Relations R
and S in the rules correspond to the Birds and Synonyms tables, re-
spectively. The Synonyms table consists of approximately 225,000
tuples and linked to the Birds table in a many-to-one relationship.
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Figure 11: Two-Predicates SP Query
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Figure 12: De-Normalized Propagation.
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Figure 14: Optimization Rules {2, 5}.
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Figure 15: Optimization Rule {11}.

Only the TextSummary1 instance is linked to the Synonyms table,
and hence Optimization Rules 2 and 5 can be applied. The exper-
iment compares the response time of the default query plan (Fig-
ure 5(a)) against that of the optimized query plan (Figure 5(b)). We
set the dataset size to 9x106 annotations, and we consider two cases
for each of the join and sort operators as illustrated in the x-axis.
The join operator either uses an index-based algorithm with an in-
dex on the join column in S (labeled Index), or a block nested-
loop join algorithm (labeled NLoop), and the sort operator either
uses a memory-based (labeled Mem) or disk-based (labeled Disk)
sort algorithms. The figure illustrates the effectiveness of the trans-
formation and optimization rules in all of the four cases to speedup
the query’s response time by a factor of 15x.

In Figure 15, we study the effectiveness of Optimization Rule
11, where the order between data- and summary-based join oper-
ators can be switched. Relations R and S correspond to the same
tables as in the previous experiment, and the summary-based join
between them involves a summary-based keyword search on their
combined TextSummary1 summary objects—No summary-based
index can be used in this case. Relation T is a replica to rela-
tion R, and hence they have a 1-1 relationship through an indexed
column for the birds’ unique identifiers. With no optimizations,
the default plan performs the J (R,S) operation first using a block
nested-loop join, and then performs the data-based join (./) with
T . In contrast, the optimized plan switches the join order to make
use of the available index on the birds’ identifiers in T . Thus, the
join operation R ./ T is performed first using an index-based
join, and then the results is summary-based joined (J ) with S. The
performance results in Figure 15 indicate that the optimized plan
achieves around 3.5x speedup compared to the default plan.

Usability Case Study: Similar to the motivating example pre-
sented in Section 1.1, we performed a usability case study to show
direct impact of the newly added features on users’ experience. We
formed a team of 20 students divided into two groups, where one
group uses the basic InsightNotes engine while the other group uses
the extended system (called InsightNotes+). Each student will an-

Query Semantics # Qualifying 
data tuples 

InsightNotes 
Group 

InsightNotes+ 
Group 

Q1: Report the data tuples sorted based on 
the number of attached disease-related 
annotations  

100 Time: 5.2 min 
Accuracy: 100% 

Time: 40 sec 
Accuracy: 100% 
 

Q2: Join version 1 of the data (V1) with 
version (V2) and report the same objects, 
i.e., V1.ID = V2.ID, having different number 
of provenance-related annotations 

5 Time: 8.1 min 
Accuracy: 100% 
(Reports 450 
Tuples) 

Time: 54 sec 
Accuracy: 100% 

Q3: Select the birds’ records having more 
than 3 question-related annotations  

10  ---  
(Reports 45K 
Tuples) 

Time: 52 sec 
Accuracy: 100% 

Figure 16: Usability Case Study.

swer each of the three queries highlighted in Figure 16. In the
figure, we report the average time taken by each group (including
the time of writing the query), and the results’ accuracy.

As the results show, both groups are able to answer Q1 and Q2
queries with 100% accuracy. However, the InsightNotes group
took significantly longer time to produce the results—which may
not be acceptable in many applications. The reason is that Insight-
Notes cannot fully answer any of these queries, and thus a manual
effort is needed to post-process the answer produced from Insight-
Notes. For example, in Q1 the students need to manually sort the
100 data tuples based on the number of their disease-related annota-
tions (summary-based sorting), while inQ2, they needed to go over
the joined tuples (based on the ID data columns)—which are 450
tuples—and manually check the second join predicate (based on the
number of provenance-related annotations) and report the 5 quali-
fying tuples. For Q3, since InsightNotes cannot apply a summary-
based selection operation, all the data tuples (45,000) will be re-
ported, and it is impractical to manually select the desired tuples
from them. On the other hand, the InsightNotes+ group is able to
answer the three queries in few seconds.

7. RELATED WORK
Annotation management has been extensively studied in the con-

text of relational DBMSs [4, 9, 14, 15, 21]. Several of these sys-

59



tems focus on extending the relational algebra and query semantics
for propagating the annotations along with the queries’ answers [4,
9, 14, 21]. The Mondrian system [14] has proposed extensions to
treat the annotations as first-class citizens, where users can query
and manipulate the annotations through newly defined operators.
Other systems address the annotation propagation in the context of
containment queries [21], logical views [7], or automated copying
to newly inserted data [11, 17]. The systems proposed in [8, 13]
support special types of annotations, e.g., treating annotations as
data and annotating them [8], and capturing users’ beliefs as an-
notations [13]. All of these systems share a common limitation,
which is that they all manipulate the raw annotations. Therefore,
they do not provide any support for summarizing, extracting use-
ful knowledge, or applying analytics over the raw annotations. The
InsightNotes system and its extensions proposed in this paper ad-
dress such limitations, and enable end-users to query the annotation
summaries in novel ways, which otherwise were not possible.

In the domains of e-commerce, social networks, and entertain-
ment systems, e.g., [12, 19], the annotations are usually referred
to as tags. These systems deploy advanced mining and summa-
rization techniques for extracting the best insight possible from the
annotations to enhance users’ experience. They use such extracted
knowledge to take actions, e.g., providing recommendations and
targeted advertisements. However, unlike relational DBs, the re-
trieval mechanisms in these systems are typically straightforward
and do not involve complex processing or transformations, i.e., no
advanced query processing is required over the annotations sum-
maries once created. Therefore, these techniques do not address
the complex query processing and optimization challenges preva-
lent to scientific relational DBs that are addressed in this paper.

Scientific systems and workflows have also leveraged the con-
cept of semantic and ontology-based annotations, e.g., [3, 6]. These
systems use semantic annotations to either summarize complex
workflows [3], or help in building and verifying workflows [6].
These systems are based on process-centric annotations, e.g., an-
notations capturing the semantics of each function in a workflow,
the structure of their input and output arguments, etc. In contrast,
InsightNotes manages data-centric annotations that are indepen-
dent from how the data is processed. Nevertheless, the proposed
summary-based query operators, access methods, and optimiza-
tions are all new and have not beed addressed in current systems.

8. CONCLUSION
The large volume, increasing complexity, and hidden seman-

tics of the emerging annotation repositories in modern applica-
tions create unprecedented challenges to annotation management
techniques. In this paper, we proposed extensions to the Insight-
Notes system for elevating the annotation summaries from being
“propagate-only” objects to be “first-class” citizens. Hence, it be-
comes feasible for applications to express complex queries over
both the data and their attached annotation summaries, which oth-
erwise is not possible. The key contributions include: (1) Propos-
ing manipulation functions and query operators to seamlessly op-
erate on the summary objects at query time, (2) Developing spe-
cialized summary-based indexing scheme and access methods for
efficient predicate evaluation and retrieval of the summary ob-
jects, and (3) Introducing an extended query optimizer that enables
advanced optimizations for queries involving both the summary-
based and the standard query operators. The extensions are imple-
mented within the InsightNotes prototype engine, and the results
have demonstrated the practicality and efficiency of the proposed
extensions and techniques w.r.t both the system’s performance, and
users’ experience.

As part of future work, we plan to enrich the system with more
implementation choices for the summary-based operators, enable
multi-level (hierarchical) summarization, and extend the querying
mechanisms over the multi-level model.
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ABSTRACT
Data cleaning and data integration have been the topic of intensive
research for at least the past thirty years, resulting in a multitude of
specialized methods and integrated tool suites. All of them require
at least some and in most cases significant human input in their
configuration, during processing, and for evaluation. For managers
(and for developers and scientists) it would be therefore of great
value to be able to estimate the effort of cleaning and integrating
some given data sets and to know the pitfalls of such an integration
project in advance. This helps deciding about an integration project
using cost/benefit analysis, budgeting a team with funds and man-
power, and monitoring its progress. Further, knowledge of how
well a data source fits into a given data ecosystem improves source
selection.

We present an extensible framework for the automatic effort es-
timation for mapping and cleaning activities in data integration
projects with multiple sources. It comprises a set of measures and
methods for estimating integration complexity and ultimately ef-
fort, taking into account heterogeneities of both schemas and in-
stances and regarding both integration and cleaning operations. Ex-
periments on two real-world scenarios show that our proposal is
two to four times more accurate than a current approach in esti-
mating the time duration of an integration process, and provides a
meaningful breakdown of the integration problems as well as the
required integration activities.

1. COMPLEXITY OF INTEGRATION AND
CLEANING

Data integration and data cleaning remain among the most
human-work-intensive tasks in data management. Both require a
clear understanding of the semantics of schema and data – a no-
toriously difficult task for machines. Despite much research and
development of supporting tools and algorithms, state-of-the-art in-
tegration projects involve significant human resource cost. In fact,
Gartner reports that 10% of all IT cost goes into enterprise software

c�2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0.

for data integration and data quality1,2, and it is well recognized that
most of those expenses are for human labor. Thus, when embarking
on a data integration and cleaning project, it is useful and impor-
tant to estimate in advance the effort and cost of the project and to
find out which particular difficulties cause these. Such estimations
help deciding whether to pursue the project in the first place, plan-
ning and scheduling the project using estimates about the duration
of integration steps, budgeting in terms of cost or manpower, and
finally monitoring the progress of the project. Cost estimates can
also help integration service providers, IT consultants, and IT tool
vendors to generate better price quotes for integration customers.
Further, automatically generated knowledge of how well and how
easy a data source fits into a given data ecosystem improves source
selection.

However, “project estimation for [. . . ] data integration projects
is especially difficult, given the number of stakeholders involved
across the organization as well as the unknowns of data complexity
and quality.” [14]. Any integration project has several steps and
tasks, including requirements analysis, selection of data sources,
determining the appropriate target database, data transformation
specifications, testing, deployment, and maintenance. In this pa-
per, we focus on exploring the database-related steps of integration
and cleaning and automatically estimate their effort.

1.1 Challenges
There are simple approaches to estimate in isolation the com-

plexity of individual mapping and cleaning tasks. For the mapping,
evaluating its complexity can be done by counting the matchings,
i.e., correspondences, among elements. For the cleaning problem, a
natural solution is to measure its complexity by counting the num-
ber of constraints on the target schema. However, as several inte-
gration approaches have shown, the interactive nature of these two
problems is particularly complex [5, 11, 13]. For example, a data
exchange problem takes as input two relational schemas, a trans-
formation between them (a mapping), a set of target constraints,
and answers two questions: whether it is possible to compute a
valid solution for a given setting and how. Interestingly, to have a
solution, certain conditions must hold on the target constraints, and
extending the setting to more complex languages or data models
bring tighter restrictions on the class of tractable cases [6, 12].

In our work, the main challenge is to estimate complexity and
effort in a setting that goes beyond these ad-hoc studies while sat-
isfying four main requirements:

Generality: We require independence from the language used to
express the data transformation. Furthermore, real cases often fail
the existence of solution tests considered in formal frameworks,

1http://www.gartner.com/ technology/research/ it-spending-forecast/
2http://www.gartner.com/newsroom/ id/2292815
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e.g., weak acyclicity condition [11], but an automatic estimation is
still desirable for them in practice.

Completeness: Only a subset of the constraints that hold on the
data are specified over the schema. In fact, business rules are com-
monly enforced at the application level and are not reflected in the
metadata of the schemas, but should nevertheless be considered.

Granularity: Details about the integration issues are crucial for
consumption of the estimation. For a real understanding and proper
planning, it is important to know which source and/or target at-
tributes are cause of problems and how, e.g., phone attributes in
source and target schema have different formats. Existing estima-
tors do not reason over actual data structures and thus make no
statements about the causes of integration effort.

Configurability and extensibility: The actual effort depends on
subjective factors, such as the capabilities of available tools and
the desired quality of the output. Therefore, intuitive, yet rich con-
figuration settings for the estimation process are crucial for its ap-
plicability. Moreover, users must be able to extend the range of
problems covered by the framework.

These challenges cannot be tackled with existing syntactical
methods to test the existence of solutions, as they work only in
specific settings (Generality), are restricted to declarative specifica-
tions over the schemas (Completeness), and do not provide details
about the actual problems (Granularity). On the other hand, as sys-
tems that compute solutions require human interaction to finalize
the process [8, 13], they cannot be used for estimation purpose and
their availability is orthogonal to our problem (Configurability).

1.2 Approaching Effort Estimation
Figure 1 presents our view on the problem of estimating the ef-

fort of data integration. The starting point is an integration sce-
nario with a target database and one or more source databases. The
right-hand side of the figure shows the actual integration process
performed by an integration specialist, where the goal is to move
all instances of the source databases into the target database. Typ-
ically, a set of integration tools are used by the specialist. These
tools have access to the source and target and support her in the
tasks. The process takes a certain effort, which can be measured,
for instance as amount of work in hours or days or in a monetary
unit.

Our goal is to find that effort without actually performing the in-
tegration. Moreover, we want to find and present the problems that
cause this effort. To this end, we developed a two-phase process as
shown on the left-hand side of Figure 1.

The first phase, the complexity assessment, reveals concrete
integration challenges for the scenario. To address generality,
these problems are exclusively determined by the source and tar-
get schemas and instances; if and how an integration practitioner
deals with them is not addressed at this point. Thus, this first phase
is independent of external parameters, such as the level of expertise
of the specialist or the available integration tools. However, it is
aided by the results of schema matching and data profiling tools,
which analyze the participating databases and produce metadata
about them (to achieve completeness). The output of the complex-
ity assessment is a set of clearly defined problems, such as number
of violations for a constraint or number of different value represen-
tations. This detailed breakdown of the problems achieves granu-
larity and is useful for several tasks, even if not interpreted as an
input to calculate actual effort. Examples of application are source
selection [9], i.e., given a set of integration candidates, find the
source with the best ‘fit’; and support for data visualization [7],
i.e., highlight parts of the schemas that are hard to integrate.
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Figure 1: Overview of effort estimation and execution of data inte-
gration scenarios.

The second phase, effort estimation, builds upon the complexity
assessment to estimate the actual effort for overcoming the previ-
ously revealed integration challenges in some useful unit, such as
workdays or monetary cost. Thereby, this phase addresses config-
urability by taking external parameters into account, such as the
experience of the integration practitioner and the features of the
integration tools to be used.

1.3 Contributions and structure
Section 2 presents related work and shows that we are the first to

systematically address a dimension of data integration and cleaning
that has been passed over by the database community but is relevant
to practitioners. In particular, we make the following contributions:

• Section 3 introduces the extensible Effort Estimation frame-
work (EFES), which defines a two-dimensional modulariza-
tion of the estimation problem.

• Section 4 describes an estimation module for structural con-
flicts between source and target data. This module incorpo-
rates a new formalism to compare schemas in terms of map-
pings and constraints.

• Section 5 reports an estimation module for value hetero-
geneities that captures formatting problems and anomalies
in data that may be missed by structural conflicts.

These building blocks have been evaluated together in an exper-
imental study on two real-world datasets and Section 6 reports on
the results. Finally, we conclude our insights in Section 7.

2. RELATED WORK
When surveying computer science literature, a pattern becomes

apparent: much technology claims (and experimentally shows) to
reduce human effort. The veracity of this claim is evident – af-
ter all, any kind of automation of tedious tasks is usually helpful.
While for scientific papers this reduction is enough of a claim, the
absolute measures of effort and its reduction are rarely explained
and measured.

General effort estimation. There are several approaches for ef-
fort estimation in different fields, however, none of them considers
information coming from the datasets.
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In the software domain, an established model to estimate the cost
of developing applications is COCOMO [3, 4], which is based on
parameters provided by the users such as the number of lines of
existing code. Another approach decomposes an overall work task
into a smaller set of tasks in a “work breakdown structure” [16].
The authors manually label business requirements with an effort
class of simple, medium, or complex, and multiply each of them
by the number of times the task must be executed.

In the ETL context, Harden [14] breaks down a project into var-
ious subtasks, including requirements, design, testing, data stew-
ardship, production deployment, but also the actual development
of the data transformations. For the latter he uses the number of
source attributes and assigns for each attribute a weighted set of
tasks (Table 1). In sum, he calculates slightly more than 8 hours of
work for each source attribute.

Task Hours per attribute
Requirements and Mapping 2.0
High Level Design 0.1
Technical Design 0.5
Data Modeling 1.0
Development and Unit Testing 1.0
System Test 0.5
User Acceptance Testing 0.25
Production Support 0.2
Tech Lead Support 0.5
Project Management Support 0.5
Product Owner Support 0.5
Subject Matter Expert 0.5
Data Steward Support 0.5

Table 1: Tasks and effort per attribute from [14].

One can find other lists of criteria to be taken into account when
estimating the effort of an integration project3. These include fac-
tors we include in our complexity model, such as number of dif-
ferent sources and types, duplicates, schema constraints, and oth-
ers we exclude for sake of space from our discussion, such as
project management, deployment needs, and auditing. There are
also mentions of factors that influence our effort model, such as
familiarity with the source database, skill levels, and tool avail-
ability. However, merely providing a list of factors is only a first
step, whereas we provide novel measures for the database-specific
causes for complexity and effort. In fact, existing methods: (i) lack
a direct numerical analysis of the schemas and datasets involved in
the transformation and cleaning; (ii) do not regard the properties of
the datasets at a fine grain and cannot capture the nature of the pos-
sible problems in the scenario, (iii) do not consider the interaction
of the mapping and the cleaning problems.

Schema-matching for effort estimation. In our work, we ex-
ploit schema matching to bootstrap the process. This is along
the lines of what authors of matchers suggested. For example,
in [24] the authors have pointed out the multiple usages of schema
matching tools beyond the concrete generation of correspondences
for schema mappings. In particular, they mention “project plan-
ning” and “determining the level of effort (and corresponding cost)
needed for an integration project”. In a similar fashion, in the eval-
uation of the similarity flooding algorithm, Melnik et al. propose
a novel measure “to estimate how much effort it costs the user to

3Such as http://www.datamigrationpro.com/data-migration-articles/
2012/2/9/data-migration-effort-estimation-practical-techniques-from-r.
html and http://www.information-management.com/news/1093630-1.html

modify the proposed match result into the intended result” in terms
of additions and deletions of matching attribute pairs [19].

Data-oriented effort estimation. In [25], the authors offer a
“back of the envelope” calculation on the number of comparisons
needed to be performed by human workers to detect duplicates in
a dataset. According to them, the estimate depends on the way the
potential duplicates are presented, in particular their order and their
grouping. Their ideas fit well into our effort model and show that
specific tooling indeed changes the needed effort, independently
of the complexity of the problem itself. Complementary work on
source selection has focused on the benefit of integrating a new
source based on its marginal gain [9, 23].

Data-cleaning and data-transformation. Many systems
(e.g., [8, 13]) address the problem of detecting violations over the
data given a set of constraints, as we also do in one of our mod-
ules for complexity estimation. The challenge for these systems
is mostly the automatic repair step, i.e., how to update the data to
make it consistent wrt. the given constraints with a minimal num-
ber of changes. None of these systems provide tools to estimate the
complexity of the repair nor the user effort before actually execut-
ing the methods to solve the integration problem. In fact, the chal-
lenge is that solving the problem involves the users, and estimating
this effort (even in presence of these tools) is our main goal. Similar
problems apply to data exchange and data transformation [1, 15].

In the field of model management, the use of metamodels has
been investigated to represent in a more general language several
alternative data models [2,21]. Our cardinality-constrained schema
graphs (Section 4) can be seen as a proposal for a metamodel with
a novel static analysis of cardinalities to identify problems in the
underlying schemas and the mapping between them.

3. THE EFFORT ESTIMATION FRAME-
WORK

Real-world data integration scenarios host a large number of dif-
ferent challenges that must be overcome. Problems arise in com-
mon activities, such as the definition of a mapping between differ-
ent schemas, the restructuring of the data, and the reconciliation
of their value format. We first describe these problems and then
introduce our solution.

3.1 Data Integration Scenario
A data integration scenario comprises: (i) a set of source

databases; (ii) a target database, into which the source databases
shall be integrated; and (iii) correspondences to describe how these
sources relate to the target. Each source database consists of a rela-
tional schema, an instance of this schema, and a set of constraints,
which must be satisfied by that instance. Likewise, the target data-
base can carry constraints and possibly already contains data as
well that satisfies these constraints. Furthermore, each correspon-
dence connects a source schema element with the target schema
element, into which its contents should be integrated.

Oftentimes constraints are not enforced at the schema level but
rather at the application level or simply in the mind of the inte-
gration expert. Even worse, for some sources (e.g., data dumps),
a schema definition may be completely missing. To achieve com-
pleteness, techniques for schema reverse engineering and data pro-
filing [20] can reconstruct missing schema descriptions and con-
straints from the data.

Example 3.1. Figure 2 shows an integration scenario with mu-
sic records data. Both source and target relational schemas (Fig-
ure 2a) define a set of constraints, such as primary keys (e.g., id in
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(a) Schemas, constraints, and correspondences.

record title duration
1 “Sweet Home Alabama" “4:43"
1 “I Need You" “6:55"
1 “Don’t Ask Me No Questions" “3:26"

...

(b) Example instances from the target table tracks.

album name artist_list length
s3 “Hands Up" a1 215900
s3 “Labor Day" a1 238100
s3 “Anxiety" a2 218200

...

(c) Example instances from the source table songs.

Figure 2: An example data integration scenario.

records), foreign keys (record in tracks, represented with dashed
arrows), and not nullable values (title in tracks).

Solid arrows between attributes and relations represent corre-
spondences, i.e., two attributes that store the same atomic infor-
mation or two relations that store the same kind of instances. The
source relation albums corresponds to the target relation records

and its source attribute name corresponds to the title attribute in
the target. That means, that the albums from the source shall be
integrated as records into the target, while the source album names
serve as titles for the integrated records. ⇧

We assume correspondences between the source and target
schemas to be given, as they can be automatically discovered with
schema matching tools [10]. Notice that correspondences are not
an executable representation of a transformation, thus they do not
induce a precise mapping between sources and the target. However,
they contain enough information to reason over the complexity of
data integration scenarios and detect their integration challenges, as
in the following example.

Example 3.2. The target schema requires exactly one artist
value per record, whereas the source schema can associate an arbi-
trary number of artist credits to each album. This situation implies
that integrating any source album with zero artist credits violates
the not-null constraint on the target attribute records.artist. More-
over, two or more artist credits for a single source album cannot
be naturally stored by the single target attribute. Integration prac-
titioners have to solve these conflicts. Hence, this schema hetero-
geneity increases the necessary effort to achieve the integration. ⇧

Not all kinds of integration issues can be detected by analyzing
the schemas, though. The data itself is equally important. While
we assume that every instance is valid wrt. its schema, when data is
integrated new problems can arise. For example, all sources might
be free of duplicates, but there still might be target duplicates when
they are combined [22]. These conflicts can also arise between
source data and pre-existing target data.

Example 3.3. Tables 2b and 2c report sample instances of the
tracks table and the songs table, respectively. The duration of
tracks in the target database is encoded as a string with the for-
mat m:ss, while the length of songs is measured in milliseconds in
the source. The two formats are locally consistent, but the source
values need a proper transformation when integrated into the target
column, thereby demanding a certain amount of effort. ⇧

3.2 A General Framework
Facing different kinds of data integration and cleaning actions,

there is the need of different specialized models to decode their
complexity and estimate their effort properly. We tackle this prob-
lem with our general effort estimation framework EFES. It handles
different kinds of integration challenges by accepting a dedicated
estimation module to cope with each of them independently. Such
modularity makes it easier to revise and refine individual modules
and establishes the desired extensibility by plugging new ones. In
this work, we present modules for the three general and, in our ex-
perience, most common classes of integration activities: writing an
executable mapping, resolving structural conflicts, and eliminating
value heterogeneities. While the latter two are explained in subse-
quent sections, we present the mapping module in this section to
explain our framework design. For generality, the modules do not
depend on a fixed language to express the transformations.

Figure 3 depicts the general architecture of EFES. The architec-
ture implements our goal of delivering a set of integration problems
and an effort estimate by explicitly dividing the estimation process
into an objective complexity assessment, which is based on proper-
ties of schemas and data, followed by the context-dependent effort
estimation. We now describe these two phases in more detail.
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Figure 3: Architecture of EFES.

3.3 Complexity assessment
The goal of this first phase is to compute data complexity reports

for the integration scenario. These reports serve as the basis for the
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subsequent effort estimation but also are used to inform the user
about integration problems within the scenario. This is particularly
useful for source selection [9] and data visualization [7].

Each estimation module provides a data complexity detector that
extracts complexity indicators from the given scenario and writes
them into its report. There is no formal definition for such a report;
rather, it can be tailored to the specific, needed complexity indi-
cators. For example, the mapping module builds on the following
idea: For each table in the target schema and each source database
that provides data for that table, some connection has to be estab-
lished to fetch the source data and write it into the target table. The
overall complexity of the mapping creation is composed of the in-
dividual complexities for establishing each of these connections.
Furthermore, every connection can be described in terms of cer-
tain metrics, such as the number of source tables to be queried, the
number of attributes that must be copied, and whether new IDs for
a primary key need to be generated.

Example 3.4. The data complexity report for the scenario in
Figure 2 can be found in Table 2. To fetch the data for the
records table, the three source tables albums, artist_lists, and
artist_credits have to be combined, two attributes must be copied,
and unique id values for the integrated tuples must be generated. ⇧

Target table Source tables Attributes Primary key
records 3 2 yes
tracks 3 2 no

Table 2: Mapping complexity report of the scenario in Figure 2.

3.4 Effort estimation
Based on the data complexity, the effort estimation shall produce

a single estimate of the human work to address the different com-
plexities. However, going from an objective complexity measure to
a subjective estimate of human work requires external information
about the context. We distinguish one aspect that is specific to the
data integration problem, (i) the expected quality of the integration
result, and, as a more common aspect, (ii) the execution settings for
the scenario.

(i) Expected quality: Data cleaning is the operation of updat-
ing an instance such that it becomes consistent wrt. any constraint
defined on its schema [8, 13]. However, such results can be ob-
tained by automatically removing problematic tuples, or by man-
ually solving inconsistencies involving a domain expert. Each
choice implies different effort.

Example 3.5. Consider again Example 3.3 with the duration
format mismatch. As duration is nullable, one simple way to solve
the problem is to drop the values coming from the new source. A
better, higher quality solution is to transform the values to a com-
mon format, but this operation requires a script and a validation by
the user, i.e., more effort [15]. ⇧

(ii) Execution settings: The execution settings represent the cir-
cumstances under which the data integration shall be conducted.
Examples of common context information are the expertise of the
integration practitioners and their familarity with the data [4]. In
our setting, we also model the level of automation of the available
integration tools, and how critical the errors are, e.g., integrating
medical prescriptions requires more attention (and therefore effort)
than integrating music tracks.

Example 3.6. Consider again the problem with the cardinality
of record artists. There are schema mappings tools [18] that are
able to automatically create a synthetic value in the target, if a
source album has zero artist credits, and to automatically create
multiple occurrences of the same album with different artists, if
multiple artists are credited for a single source album. Such tools
would reduce the mapping effort. ⇧

For the effort estimation, each estimation module has to provide
a task planner that consumes its data complexity report and outputs
tasks to overcome the reported issues. Each of these tasks is of a
certain type, is expected to deliver a certain result quality, and com-
prises an arbitrary set of parameters, such as on how many tuples it
has to be executed. We defined two instances of expected quality,
namely low effort (removal of tuples) and high quality (updates).
This criterion is extensible to other repair actions, but it already
allows to choose between alternative cleaning tasks as shown in
Example 3.5.

Example 3.7. A complexity report for the scenario from Fig-
ure 2 states that there are albums without any artist in the source
data that lead to a violation of a not-null constraint in the target.
The corresponding task model proposes the alternative actions Re-
ject violating tuple (low effort) or Add missing value (high quality)
to solve the problem. ⇧

Once the list of tasks has been determined, the effort for their
execution is computed. For this purpose, the user specifies in ad-
vance for each task type an effort-calculation function that can in-
corporate task parameters. As an example, we report the effort-
calculation functions for the execution settings of our experiments
in Table 9. The framework uses these functions to estimate the ef-
fort for each of the tasks. Finally, the total of all these task estimates
forms the overall effort estimate.

Example 3.8. We exemplify the effort-calculation functions for
the tasks derived from the report in Table 2. The Create mapping
task might be done manually with SQL queries. Then an adequate
function would be

effort = 3mins · tables + 1min · attributes + 3mins · PKs

leading to an overall effort of 25 (18 + 4 + 3) minutes. How-
ever, if a tool can generate this mapping automatically based on
the correspondences (e.g., [18]), then a constant value, such as
effort = 2mins , can reflect this circumstance, leading to an over-
all effort of four minutes. ⇧

The above described task-based approach offers several advan-
tages over an immediate complexity-effort mapping [14], where a
formula directly converts statistics over the schemas into an effort
estimation value. Our model enables configurability, as it treats ex-
ecution settings as a first-class component in the effort-calculation
functions and these can be arbitrarily complex as needed. Further-
more, instead of just delivering a final effort value, our effort esti-
mate is broken down according to its underlying tasks. This gran-
ularity helps users understand the required work and explains how
the estimate has been created, thus giving the users the opportunity
to properly plan the integration process.

4. STRUCTURAL CONFLICTS
Structural heterogeneities between source and target data struc-

tures are a common problem in integration scenarios. This section
describes a module to detect these problems and estimate the effort
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arising out of them. It can be plugged into the framework archi-
tecture in Figure 3 with the following workflow: Its data complex-
ity detector (structure conflict detector) analyzes how source and
target data relate to each other, and counts the number of emerg-
ing structural conflicts. Based on those conflicts, the task planner
(structure repair planner) then (i) derives a set of cleaning tasks
to make the conflicting source data fit into the target schema, and
(ii) estimates how often each such task has to be performed. These
tasks can finally be fed into the effort calculation functions.

4.1 Structure Conflict Detector
In the first step of structural conflict handling, all source and

target schemas of the given scenario are converted into cardinality-
constrained schema graphs (short CSG), a novel modeling formal-
ism that we specifically devised for our task. It offers a single,
yet expressive constraint formalism with a set of inference oper-
ators that allow elegant comparisons of schemas. Additionally, it
is more general than the relational model and can describe (in-
tegrated) database instances that do not conform to the relational
model. For instance, an integrated tuple might provide multiple
values for a single attribute, like in Example 3.2. The higher ex-
pressiveness of CSGs allows to reason about necessary cleaning
tasks to make the integrated databases conform to the relational
model. In the following, we formally define CSGs and explain how
to convert relational databases into CSGs.

DEFINITION 1. A CSG is a tuple � = (N,P,), where N is a
set of nodes and P ⇢ N2 is a set of relationships. Furthermore,
 : P ! 2

N expresses schema constraints by prescribing cardinal-
ities for relationships.

DEFINITION 2. A CSG instance is a tuple I(�) = (IN , IP ),
where IN assigns a set of elements to each node in N and IP

assigns to each relationship links between those elements.

To convert a relational schema, for each of its relations, a cor-
responding table node (rectangle) is created to represent the exis-
tence of tuples in that relation. Furthermore, for each attribute, an
attribute node (round shape) is created and connected to its respec-
tive table node via a relationship. While these attribute nodes hold
the set of distinct values of the original relational attribute, the re-
lationships link tuples and their respective attribute values. With
this proceeding, any relational database can be turned into a CSG
without loss of information.

Example 4.1. Figure 4 depicts two CSGs for the example sce-
nario schemas in Figure 2a, one for the source and one for the
target schema4. For instance, the example tracks tuple t = (1,
“Sweet Home Alabama”, “4:43”) from Figure 2b is represented in
the CSG instance as follows: The table node tracks 2 N holds an
abstract element idt, i.e., idt 2 IN (tracks), representing the tu-
ple’s identity. Likewise, record 2 N holds exactly once the value 1,
i.e., 1 2 IN (record), and the relationship ⇢

tracks!record

contains
a link for these elements, i.e., (idt, 1) 2 IP (⇢tracks!record

), thus
stating that t[record] = 1. The other values for the title and
duration attributes are represented accordingly. Furthermore, for-
eign key relationships are represented by special equality relation-
ships (dashed line) that link all equal elements of two nodes, e.g.,
all common values of the id and record nodes in the target CSG of
Figure 4. ⇧

4Some correspondences between the schemas are omitted for
clarity, but are not generally discarded.
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Figure 4: The integration scenario translated into cardinality-
constrained schema graphs.

To express schema constraints in CSGs, all relationships are an-
notated with prescribed cardinalities, that restrict the number of
elements and/or values of connected nodes that must relate to each
other via the annotated relationship. For example, tracks.record
is not nullable, which means, that each tracks tuple must provide
exactly one record value. Translated to CSGs, this means that for
each tuple ti, the relationship ⇢

tracks!record

must contain exactly
one link:

8ti : |{v 2 IN (record) | (idti , v) 2 IP (⇢tracks!record

)}| = 1 .

Formally, this is expressed by (⇢
tracks!record

) = {1}, which is
also graphically annotated in Figure 4. However, tracks.record
is not subject to a unique-constraint. In consequence, every
record value can be found in one or more tuples. Therefore,
(⇢

record!tracks

) = 1..⇤ = {1, 2, 3, . . .}. By means of prescribed
cardinalities, unique, not-null, and foreign key constraints can be
expressed, as well as two conformity rules for relational schemas:
each tuple can have at most one value per attribute, and each at-
tribute value must be contained in a tuple.

As stated above, another important feature of CSGs is the ability
to combine relationships into complex relationships and to analyze
their properties. As one effect, prescribing cardinalities not only to
atomic but also to complex relationships further allows to express
n-ary versions of the above constraints and functional dependen-
cies. We devised the following relationship construction operators:

‘�’: The composition concatenates two adjacent relationships.
Formally, IP (⇢1 � ⇢2)

def
= IP (⇢1) � IP (⇢2).

‘[’: The union of two relationships ⇢1[⇢2 contains all links of the
two relationships, i.e., IP (⇢1 [ ⇢2)

def
= IP (⇢1) [ IP (⇢2).

This is particularly useful, when multiple source relation-
ships need to be combined.

‘1’: The join operator connects links from relation-
ships ⇢A!C , ⇢B!C with equal codomain values,
thereby inducing a relationship between A ⇥ B

and C. Formally, IP (⇢A!C 1 ⇢B!C)
def
=

{((a, b), c) : (a, c) 2 IP (⇢A!C) ^ (b, c) 2 IP (⇢A!B)}.
The join can be combined with other operators to express
n-ary uniqueness constraints.
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‘k’: The collateral of two relationships ⇢A!Bk⇢C!D

induces a relationship between A ⇥ C and
B ⇥ D: IP (⇢A!Bk⇢C!D)

def
= {((a, c), (b, d)) :

(a, b) 2 IP (⇢A!B) ^ (c, d) 2 IP (⇢C!D)}. The collateral
can be applied to express n-ary foreign keys.

Based on these definitions, efficient algorithms can be devised to
infer the constraints of complex relationships.

LEMMA 1. Let ⇢1, ⇢2 2 P be two relationships in a graph �

and ⇢1’s end node is ⇢2’s start node. Then the cardinality  of
⇢1 � ⇢2 can be inferred as

(⇢1 � ⇢2)
def
= (⇢1) � (⇢2)

= a1..b1 � a2..b2
def
= (sgn a1 · a2)..(b1 · b2)

where sgn(0) = 0 and sgn(n) = 1 for n > 0.

LEMMA 2. Let ⇢1, ⇢2 2 P be two relationships in a graph �.
Then the cardinality of ⇢1 [ ⇢2 can be inferred as

(⇢1[⇢2)
def
=

8
>>>>>>><

>>>>>>>:

(⇢1) [ (⇢2) if IP (⇢1) and IP (⇢2) have
disjoint domains

(⇢1) + (⇢2) if IP (⇢1) and IP (⇢2) have equal
domains but disjoint codomains

(⇢1) ˆ+(⇢2) if IP (⇢1) and IP (⇢2) have equal
domains and overlapping
codomains

where 1 +2
def
= {a+ b : a 2 1 ^ b 2 2} and 1 ˆ+2

def
= {c :

a 2 1 ^ b 2 2 ^max{a, b}  c  (a+ b)}.

Note, that Lemma 2 can also be applied to relationships with par-
tially overlapping domains by splitting those into the overlapping
and the disjoint parts.

LEMMA 3. Let ⇢1, ⇢2 2 P be two relationships in
a graph � with a common end node and let m =

min{max(⇢1),max(⇢2)}. Then the cardinality of ⇢1 1 ⇢2
can be inferred as

(⇢1 1 ⇢2)
def
=

⇢
; if m = 0 _m = ?
1..m otherwise

and its inverse cardinality as

((⇢1 1 ⇢2)
�1

)

def
= (min(⇢1) ·min(⇢2))..(max(⇢1) ·max(⇢2))

LEMMA 4. Let ⇢1, ⇢2 2 P be two relationships in a graph �.
Then the cardinality of ⇢1k⇢2 can be inferred as

(⇢1k⇢2)
def
= 0..(max(⇢1) ·max(⇢2))

Given the means to combine relationships and infer their cardi-
nality, it is now possible to compare the structure of source and
target schemas. As data integration seeks to populate the target
relationships with data from the sources, the structure conflict de-
tector must determine how the atomic target relationships are rep-
resented in the source schemas. In general, target relationships can
correspond to arbitrarily complex source relationships, in particu-
lar to compositions. The composition operator particularly allows
to treat the matching of target relationships to source relationships
as a graph search problem, as is exemplified with the atomic target
relationship records ! artist from Figure 4.

First, the relationship’s start and end node are matched to nodes
in the source schema via the correspondences, in this case to
albums and artist. Then, a path is sought between those nodes.
In the example, there are two possible paths, namely albums !
artist_list ! id

0 ! artist_list00 ! artist_credits ! artist, and
albums ! id ! album ! songs ! artist_list0 ! id

0 !
artist_list00 ! artist_credits ! artist. To resolve this ambigu-
ity, it is assumed that the most concise detected source relationship
is the best match for the atomic target relationship. A relationship
is more concise than another relationship, if its (inferred) cardinal-
ity 1 is more specific than the other relationship’s cardinality 2,
i.e., 1 ⇢ 2. In the case of equal cardinalities, the shorter rela-
tionship is preferred, according to Occam’s razor principle5. Here,
both detected relationships have the same inferred cardinality 0..⇤
according to Lemma 1, but the former is shorter and therefore se-
lected as match.

Having matched a target relationship to a source relationship,
comparing these two can finally reveal structural conflicts. The
example target relationship records ! artist has the annotated
cardinality 1, but its corresponding source relationship is less con-
cise, having an inferred cardinality of 0..⇤. This lower conciseness
causes a structural conflict: The target schema accepts only one
artist value per record, while the source potentially offers an arbi-
trary amount of artists per album. To refine the statement about this
violation, we can count the number of albums in the source data,
that are associated to no or more than one artist, hence, determin-
ing the number of actually conflicting data elements. This violation
count is applicable to any database constraint that can be expressed
in CSG as listed above. Supporting more advanced constraints in
CSGs, such as conditional functional dependencies [8], is left for
future work.

The above described matching and checking process is per-
formed for each target relationship. In the example scenario, there
is only one more structural violation: artist ! records has 0..⇤
as inferred cardinality, so there may be artists with no albums. Af-
terwards, all collected structure violations, depicted in Table 3, are
forwarded to the structure repair planner.

Constraint in target schema Violation count in source data
(⇢

records!artist

) = 1 503
(⇢

artist!records

) = 1..⇤ 102

Table 3: Complexity report of the structure conflict detector.

4.2 Structure Repair Planner
The structure repair planner proposes necessary cleaning tasks to

cope with the structural violations in an integration scenario, that
form the base for the following effort calculation. It ships with
ten such cleaning tasks listed in Table 4; one per type of violation,
e.g., of a not-null constraint, and expected result quality (low or
high). The structure conflict detector can automatically select ex-
actly those tasks that the integration practitioner has to perform in
the data integration scenario to fix structural violations.

However, simply designating a task for each given violation is
not sufficient, as data cleaning operations usually have side effects
that can cause new violations. For instance, the structure conflict
detector reveals that there are 102 artists in the source data that have
no albums and can thus not be represented in the target schema.

5Among competing hypotheses, the one with the fewest as-
sumptions should be selected.
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Result quality
Constraint Low effort High quality

Not null violated Reject tuple Add missing value
Unique violated Set values to null Aggregate tuples
Multiple attribute Keep any value Merge values

values
Value w/o Drop value Create enclosing

enclosing tuple tuple
FK violated Delete dangling Add referenced value

value

Table 4: Structural conflicts and their corresponding cleaning tasks.

The high-quality solution is to apply the task Create tuples for de-
tached values, that creates record tuples to store these artists, so
that they do not have to be discarded. These new tuples would
violate the not-null constraint on the title attribute, though, so sub-
sequent cleaning tasks are necessary. To account for such impacts,
we simulate applied cleaning tasks on virtual CSG instances as ex-
emplified in Figure 5. In addition to the prescribed cardinalities, the
target CSG is annotated with actual cardinalities. In contrast to the
prescribed cardinalities, those do not prescribe schema constraints
but describe the state of the (conceptually) integrated source data –
in terms of its relationships’ cardinalities. Hence, the actual cardi-
nalities are initialized with the inferred cardinalities from the source
database. Figure 5a depicts this initial state. As long as there are
actual cardinalities (on the left-hand side) that are not subsets of
the prescribed ones, the CSG instance is invalid wrt. its constraints.
Now, if the structure repair planner has chosen a cleaning task, e.g.,
adding new records tuples for artists without albums, its (side) ef-
fects are simulated by modifying the actual cardinalities, as shown
in Figure 5b with bold print. So, amongst others the actual cardi-
nality of artist ! records is changed from 0..⇤ to 1..⇤, reflecting
that all artists appear in a record after the task, and the cardinality of
records ! title is altered from 1 to 0..1, stating that some records
would then have no title. The latter forms a new constraint viola-
tion. Now, a successive repair task can be applied on this altered
CSG instance, e.g., the task Add missing values, which leads to the
state of Figure 5c.

records

artist title gen
1..*⊈1 1⊆1

0..*⊈1..* 1..*⊆1..*

(a) Initial state.

!

records

artist title gen
1..*⊈1 0..1⊈1

1..*⊆1..* 1..*⊆1..*

(b) State after Add new
tuples for records.

!

records

artist title gen
1..*⊈1 1⊆1

1..*⊆1..* 1..*⊆1..*

(c) State after Add miss-
ing values for title.

Figure 5: Extract of a virtual CSG instance as cleaning tasks are
performed on it.

This procedure of picking a task and simulating its effects is re-
peated until the virtual CSG instance contains no more violations.
Furthermore, the structure repair planner orders the repair tasks, so
that tasks that cause new structural violations (or might break an al-
ready fixed violation) precede the task that fixes this violation. This
is not computationally expensive, because we need to order only
tasks that affect a common relationship, but doing so allows for the
detection of “infinite cleaning loops”, where the execution order
of cleaning tasks forms a cycle. In most cases, these cycles are
a consequence of contradicting repair tasks. EFES proposes only

consistent repair strategies. Additionally, the knowledge of the nec-
essary cleaning tasks in a data integration scenario, including their
order, are a valuable aid that can positively impact the integration
effort spent on coping with structural conflicts. Therefore, the or-
dered task list is provided to the user. Finally, the determined clean-
ing tasks are fed into the user-defined effort calculation functions,
which automatically determine the effort for dealing with structural
violations in the given scenario. Table 5 presents this effort for the
example scenario.

Task Repetitions Effort
Add tuples (records) 102 5 mins
Add missing values (title) 102 204 mins
Merge values (title) 503 15 mins

Total 224 mins

Table 5: High-quality structure repair tasks and their estimated ef-
fort using the effort calculation functions from Table 9.

5. VALUE HETEROGENEITIES
Value heterogeneities are a frequent class of data integration

problems with a common factor: corresponding attributes in the
source and target schema use different representations for their val-
ues. For instance, in Example 3.3 the target table tracks stores song
durations as strings, whereas the source table songs stores these
durations in milliseconds as integers. An integration practitioner
might therefore want to convert or discard the source values to
avoid having different value representations in the tracks.duration
attribute. Thus, value heterogeneities can increase the integration
effort.

This section presents a module in EFES to estimate the effort
caused by value heterogeneities. The data complexity is computed
by the value fit detector, which analyzes the source and target data
to detect different types of value heterogeneities between them.
These heterogeneities are then reported to the value transforma-
tion planner, the task model that proposes data cleaning tasks in
response to the heterogeneity issues. Finally, the effort for the pro-
posed tasks can be calculated.

5.1 Value Fit Detector
The basic approach of the value fit detector is to aggregate source

and target data into statistics and compare these statistics to detect
heterogeneities. Statistics are eligible for this evaluation, because
they allow efficient comparison for large amounts of data, while
enabling extensibility (as new functions can be added) and com-
pleteness (as issues that are not captured by available metadata can
be discovered). Furthermore, statistics help to detect the especially
meaningful, general data properties that characterize the data as a
whole. In particular, if the source data does not match the observed
or specified characteristics of the target dataset, plainly integrating
this source data would impair the overall quality of the integration
result: integration practitioners might want to spend effort to make
source data consistent with the target data characteristics.

The value fit detector implements this idea as follows: Given
an integration scenario, it processes all pairs of source and target
attributes that are connected by a correspondence. For each such
pair, statistic values of both attributes are calculated, with the target
attribute’s datatype designating which exact statistic types to use.
In particular, we consider the following statistics:

• The fill status counts the null values in an attribute and the
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values that cannot be cast to the target attribute’s datatype.

• The constancy is the inverse of Shannon’s information en-
tropy and is useful to classify whether the values of an at-
tribute come from a discrete domain [17].

• The text pattern statistic collects frequent patterns in a string
attribute.

• Character histogram captures the relative occurrences of
characters in a string attribute.

• The string length statistic determines the average string
length and its standard deviation for a string attribute.

• Similarly, the mean statistic collects the mean value and stan-
dard deviation of a numeric attribute.

• The histogram statistic describes numeric attributes as his-
tograms.

• Value ranges are used to determine the minimum and maxi-
mum value of a numeric attribute.

• For attributes with values from a discrete domain, the top-k
values statistic identifies the most frequent values.

For Example 3.3, the string-typed duration target attribute des-
ignates the fill status, the text pattern statistic, the character his-
togram, the string length statistic, and the top-k values as interest-
ing statistics to be collected.

In the next step, a decision model identifies, based on the gath-
ered statistics values, the different types of value heterogeneities
within the inspected attribute pair. Algorithm 1 outlines this de-
cision model, which consists of a sequence of rules. The evalua-
tion of each rule has its own, mostly simple, logic. The first rule
(substantiallyFewerSourceValues), for instance, is evaluated by
comparing the fill status statistics of the source and target attribute.

Algorithm 1: Detect value heterogeneities.
Data: source attribute statistics Ss, target attribute statistics St

Result: value heterogeneities V
1 if substantiallyFewerSourceValues(Ss,St) then
2 add Too few source elements to V ;

3 if hasIncompatibleValues(Ss) then
4 add Different value representations (critical) to V ;

5 if domainRestricted(Ss) ^ ¬domainRestricted(St) then
6 add Too coarse-grained source values to V ;
7 else if ¬domainRestricted(Ss) ^ domainRestricted(St) then
8 add Too fine-grained source values to V ;
9 else if domainSpecificDifferences(Ss,St) then

10 add Different value representations to V ;

For the above example attribute pair, the fill-statuses are for both
attributes near 100 %, there are no incompatible source values (in-
tegers can always be cast to strings), and neither of the attributes
is domain-restricted. Still, possible domain-specific differences be-
tween them might be present. The evaluation of this last rule is
more complex. For this purpose, a set of statistics, that are spe-
cific to the target attribute’s datatype, are computed, e.g., the string
format and string length statistic for the string-typed, not domain-
restricted duration attribute. To compare these statistics among at-
tributes, for each of them of type ⌧ , an importance score i

�
St(⌧)

�

and a fit value f
�
Ss(⌧),St(⌧)

�
are calculated. These calculations

are specific to the actual statistics. Intentionally, the importance
score describes how important the statistic type at hand is for the
target attribute. For example, in the duration attribute, all values
have the same text pattern [number ":" number], so the string for-
mat statistic is presumably an important characteristic and should
therefore have a high importance score. If it had many different text
patterns in contrast, its importance would be close to 0. In addition,
the fit value measures to what extent the source attribute statistics fit
into the target attribute statistics. For instance, the length attribute
provides only values with the differing pattern [number] leading to
a low fit value. Eventually, the fit values for all applied statistic
types are averaged using the importance scores as weights:

f
def
=

X

⌧

⇣
i
�
St(⌧)

�
· f

�
Ss(⌧),St(⌧)

�⌘

This overall fit value tells to what extent the source attribute fulfills
the most important characteristics of the target attribute. If it falls
below a certain threshold, we assume domain-specific differences
in between the compared attributes and Algorithm 1 issues an ac-
cording value heterogeneity, e.g., Different value representations
between the attributes length and duration. In experiments with
importance scores and fit values between 0 and 1, we found 0.9
to be a good threshold to separate seamlessly integrating attribute
pairs from those that had notably different characteristics.

The set of all value heterogeneities for all attribute pairs forms
the complexity report of the value fit detector that can in the fol-
lowing be processed by the value transformation planner. Table 6
shows the complexity report for the example scenario. Note that
the value heterogeneities can carry additional information that are
derived from the attribute statistics as well and that can be useful
to produce accurate estimates. These parameters are not further
described in this paper.

Value heterogeneity Additional parameters
Different value representation 274.523 source values,

(length ! duration) 260.923 distinct source values

Table 6: Complexity report of the value fit detector.

5.2 Value Transformation Planner
The value transformation planner proposes tasks to solve value

heterogeneities as specified in Table 7. In contrast to the struc-
ture repair tasks from Section 4.2, those tasks do not have interde-
pendencies. Therefore, the value transformation planner can sim-
ply propose an appropriate task for each given value heterogeneity
based on the expected result quality of the data integration. For the
four different types of value heterogeneities, there are only five dif-
ferent tasks, because for a low-effort integration result, value het-
erogeneities can in most cases be simply ignored. So, the Different
value representations between the duration and length attributes
might either be neglected (leading to no additional effort) or, for a
high-quality integration result, the value fit detector issues the task
Convert values. This task is then again fed into the effort calcula-
tion functions that compute the effort that is necessary for the task
completion. Table 8 illustrates the resulting effort estimate.

6. EXPERIMENTS
To show the viability of the general effort estimation architec-

ture and its different models, we conducted experiments with real-
world data from two different domains. In the following, we first
introduce the system and its configuration. We then describe the
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Result quality
Value heterogeneity low effort high quality

Too few elements - Add values
Different representations

critical Drop values Convert values
uncritical - Convert values

Too specific - Generalize values
Too general - Refine values

Table 7: Value heterogeneities and corresponding cleaning tasks.

Task Parameters Effort
Convert values 274.523 values, 15 mins

(length ! duration) 260.923 distinct values

Total 15 mins

Table 8: Value transformation tasks and their estimated effort.

integration scenarios and how we created the ground truth effort by
manually integrating them. Finally, we compare our system to a
baseline approach from the literature and to the measured effort in
creating the ground truth.

6.1 Setup
The EFES prototype is a Java-based implementation of the effort

estimation architecture presented in the paper, along with the three
modules discussed. It offers multiple configuration options via an
XML file and a command-line interface. As input, the prototype
takes correspondences between a source and a target dataset, all
stored in PostgreSQL databases. The prototype and the datasets
are available for download.6

Configuration and External Factors. In our experiments, the
only available software for conducting the integration are (i) manu-
ally written SQL queries, and (ii) a basic admin tool like pgAdmin.
We also assume the user has not seen the datasets before and that
she is familiar with SQL. Based on these external factors, corre-
sponding effort conversion functions are reported in Table 9. For
example, the intuition behind the formula for adding values is that
it takes a practitioner two minutes to investigate and provide a sin-
gle missing value. In contrast, deleting tuples with missing values
requires five minutes, because independently from the number of
violating tuples, one can write an appropriate SQL query to per-
form this task. Furthermore, we fine-tuned these settings for our
experiments as we explain in Section 6.2.

Integration Scenarios. We considered two real-world case stud-
ies. The first is the well-known Amalgam dataset from the biblio-
graphic domain, which comprises four schemas with between 5 and
27 relations, each with 3 to 16 attributes. The second is a new case
study we created with a set of three datasets with discographic data.
In those datasets, there are three schemas with between 2 and 56 re-
lations and between 2 and 19 attributes each. Links to the original
datasets can be found on the web page mentioned above.

For each case study, we created four integration scenarios, each
consisting of a source and target database and manually created
correspondences, because we do not want the evaluation results to
depend on the quality of a schema matcher at this point. Within
each domain, we included a data integration scenario with iden-
tical source and target schema and three other, randomly selected

6http://hpi.de/naumann/projects/ repeatability/

Task Effort function (mins)
Aggregate values 3 · #repetitions
Convert values (if #dist-vals < 120) 30,

(else) 0.25 · #dist-vals
Generalize values 0.5 · #dist-vals
Refine values 0.5 · #values
Drop values 10

Add values 2 · #values
Create enclosing tuples 10

Delete detached values 0

Reject tuples 5

Keep any value 5

Add tuples 5

Aggregate tuples 5

Delete dangling values 5
Add referenced values 5
Delete dangling tuples 5
Unlink all but one tuple 5
Write mapping 3 · #FKs + 3 · #PKs + #atts +

3 · #tables

Table 9: Effort calculation functions used for the experiments.

scenarios with different schemas.
Effort Estimates. In order to obtain effort estimations, we ap-

plied the following procedure to each data scenario twice, once
striving for a low-effort integration result, once for a high-quality
result. At first, we executed EFES on the scenario to obtain the
data complexity reports and a set of initially proposed mapping
and cleaning tasks. If a data complexity aspect was properly recog-
nized but we preferred a different integration task, we have adapted
the proposed tasks. For instance, in one scenario, our prototype
proposed to provide missing FreeDB IDs for music CDs to obtain
a high-quality result; this ID is calculated from the CD structure
with a special algorithm. Since there was no way for us to obtain
this value, we exchanged this proposal with Reject tuples to delete
source CDs without such a disc ID instead.

Ground Truth Effort. Finally, we gathered the ground truth
of necessary integration tasks manually and conducted them with
SQL scripts and pgAdmin, thereby measuring the execution time of
each task. We believe these two manually integrated scenarios with
time annotations are a contribution per se, as they can be used also
for benchmarking of mapping and cleaning systems for other data
integration projects.

6.2 Experimental Results
The correspondences that were created for the case study

datasets have been fed into EFES to compare its effort estimates
to the actual effort. As a baseline, we used the standard approach
based on attribute counting [14], as discussed in Section 2. To ob-
tain fair calibrations of EFES and this baseline model, we employed
cross validation: We used the effort measurements from the bibli-
ographic domain to calibrate the parameters of EFES and the at-
tribute counting approach for the estimation of the music domain
scenarios, and vice versa. Thus, we have for both scenarios dif-
ferent training and test data and both models can be regarded as
equally well-trained. To compare the two models against the mea-
sured effort, we applied the root-mean-square error (rmse):

rmse =

vuut
P

s2S

⇣
measured(s)�estimated(s)

measured(s)

⌘2

#scenarios
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Figure 6: Effort estimates (EFES), actual effort (Measured), and baseline estimates (Counting) of the Bibliographic scenario.

where S is a set of integration scenarios.
We start our analysis with the Amalgam dataset with the results

reported in Figure 6. EFES consistently outperforms the counting
approach in all scenarios. This is explained by the fact that the base-
line has no concept of heterogeneity between values in the datasets,
but it is one of the main complexity drivers in these integration sce-
narios. In terms of the root-mean-square error, EFES achieves 0.47,
while the baseline obtains 1.90 (lower values indicates better esti-
mations), thus there is an improvement in the effort estimation by a
factor of four. Moreover, EFES not only provides the total number
of minutes, but also a detailed break down of where the effort is to
be expected. This turned out to be particular useful to revise the
effort estimate as described above, thus enriching the estimation
process with further input. In fact, it makes a significant difference
if an integration practitioner has to add hundreds of missing values
or if tuples with missing values are dropped. The baseline approach
also distinguishes between mapping and cleaning efforts, but it re-
lates them neither to integration problems nor actual tasks. The
s4-s4 scenario demonstrates this: source and target database have
the same schema and similar data, so there are no heterogeneities
to deal with. While we can detect this, the counting approach esti-
mates considerable cleaning effort.

When we move to the music datasets, the results in Figure 7
show a smaller difference between the two estimation approaches.
In fact, EFES outperforms the baseline four times, in three cases
baseline does a better job, and in one case the estimate is basically
the same. The explanation is that in this domain, there are fewer
problems at the data level and the effort is dominated by the map-
ping, which strongly depends on the schema. However, when we
look at the root-mean-square error, EFES achieves 1.05, while the
baseline obtains 1.64. Therefore, even in cases where EFES cannot
exploit all of its modules, and when counting should perform at its
best, our systematic estimation is better.

It is important to consider the generality of the presented com-
parison. The two case studies are based on real-world data sets with
different complexity and quality. When putting the results over the
eight scenarios together, EFES achieves a root-mean-square error of
0.84, while the baseline obtains 1.70. In terms of execution time,
EFES relies on simple SQL queries only for the analysis of the data
and completes within seconds for databases with thousands of tu-
ples. This overhead can be neglected in the context of the dominat-

ing integration cost.

7. CONCLUSIONS
We have tackled the problem of estimating the complexity and

the effort for data integration scenarios. As data integration is
composed of many different activities, we proposed a novel sys-
tem, EFES, that integrates different ad-hoc estimation modules in
a unified fashion. We have introduced three modules that take
care of estimating the complexity and effort of (i) mapping activi-
ties, (ii) cleaning of structural conflicts arising because of different
structures and integrity constraints, and (iii) resolving heterogene-
ity in integrated data, such as different formats. Experimental re-
sults show that our system outperforms the standard baseline up to
a factor of four in terms of precision of the estimated effort time in
minutes. When compared to the effective time required by a human
to achieve integration, EFES provides a close estimate for most of
the cases.

We believe that our work is only a first step in this challenging
problem. One possible general direction is to integrate EFES with
approaches that measure the benefit of the integration, such as the
marginal gain [9]. This integration would allow to plot cost-benefit
graphs for the integration: the more effort, the better the quality of
the result.

A rather technical challenge in our system is to drop the as-
sumption that correspondences among schemas are given. In prac-
tice, the effort for creating quality correspondences cannot be com-
pletely neglected – although, in our experience it takes considerably
less time than other integration activities – and automatically gener-
ated correspondences introduce uncertainty wrt. the produced esti-
mates. The accuracy measure as proposed Melnik et al. [19] seems
to be a good starting point to tackle this issue.
Acknowledgments. We would like to thank ElKindi Rezig for
valuable discussions in the initial phase of this project.
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ABSTRACT
This paper studies the problem of mining frequent co-occurrence
patterns across multiple data streams, which has not been addressed
by existing works. Co-occurrence pattern in this context refers to
the case that the same group of objects appear consecutively in mul-
tiple streams over a short time span, signaling tight correlations be-
tween these objects. The need for mining such patterns in real-time
arises in a variety of applications ranging from crime prevention to
location-based services to event discovery in social media.

Since the data streams are usually fast, continuous, and unbounded,
existing methods on mining frequent patterns requiring more than
one pass over the data cannot be directly applied. Therefore, we
propose DIMine and CooMine, two algorithms to discover fre-
quent co-occurrence patterns across multiple data streams. DIMine
is an Apriori-style algorithm based on an inverted index, while
CooMine uses an in-memory data structure called the Seg-tree to
compactly index the data that are already seen but have not expired
yet. CooMine employs a one-pass algorithm that uses the filter-
and-refine strategy to obtain the co-occurrence patterns from the
Seg-tree as updates to the streams arrive. Extensive experiments
on two real datasets demonstrate the superiority of the proposed
approaches over a baseline method, and show their respective ap-
plicability in different senarios.

1. INTRODUCTION
We study the problem of mining frequency co-occurrence pat-

terns across multiple data streams. Given a set of unbounded streams
of objects si (i = 1, 2, . . . , n), we call a set of objects O =

∗Corresponding author.

c© 2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0
.

(o1, o2, . . . , ok) a frequent co-occurrence pattern (FCP) if (1) they
appear in at least θ streams within a period of time no longer than
τ , and (2) their appearance within each of those streams happens
within a time window of size no greater than ξ, where θ, τ , and ξ
are user-specified thresholds.

1.1 Motivation
FCPs usually indicate strong correlations between these objects,

and their timely discovery has applications in a wide spectrum of
contexts. The following are some typical examples.

• Crime prevention. An increasing number of cities are now
having traffic surveillance cameras installed on major roads
and intersections for traffic management and public safety.
A picture is taken when a vehicle passes by, and a structured
vehicle passing record (VPRs) is sent to the data center for
processing. Thus, each camera effectively produces a contin-
uous stream of VPRs. Finding FCPs across these streams can
help uncover groups of vehicles that travel together within a
short time span, which is often a good indicator for potential
gang crimes.

• Discovering emerging topics. Each user of a microblogging
platform (e.g., Twitter) can be considered to produce a stream
of words by posting microblogs. The intensive co-occurrence
of a set of keywords in many streams (microblogs) over a
short period of time can often imply the emergence of a new
topic.

• Location-based services. Check-in apps (e.g., Foursquare)
allow mobile users to check-in to the places they are located.
Finding FCPs across the streams in real-time, where each
stream consists of the checkin locations of a user, would help
discover groups of people that are currently hanging out to-
gether, so that location-based advertising can be better tar-
geted (e.g., offering group buying deals).

• E-Commerce. The browsing trace of a particular user on a
e-commerce website contains a stream of items she has vis-
ited. When a set of items appear in the traces of a lot of users
over a short period, it could be a sign of strong correlation
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between those items, and sales strategies can be adjusted ac-
cordingly in real-time (e.g., offering combo deals for those
products).

In all of the examples above, a common theme is the need to dis-
cover the frequent co-occurrence of a set of items (vehicles, people,
keywords, etc.) over a short time span in multiple streams.

1.2 Challenges
Mining FCPs in realtime present some unique challenges. First,

the streams are unbounded and often contain a vast volume of data
with high arrival rates, allowing only one pass over the data. For
example, the peak of 143,199 tweets per second were recorded
by Twitter on August 3, 2013, and on average, 58 million tweets
are produced per day. As another example, in the City of Jinan, a
provincial capital in eastern China with a population of 6 million,
the traffic surveillance cameras (each generating a stream) produce
20 million VPRs per day on average. Second, mining FCPs is
a cross-stream operation, making it highly complex when many
streams are involved. For instance, there are around 3,000 traffic
surveillance cameras installed in Jinan; not to mention the more
than 600 million active registered users of Twitter.

Existing methods for mining frequent patterns cannot be directly
applied to solve the FCP mining problem. Most of the algorithms
for mining frequent patterns from databases require multiple passes
over the data, rendering them inapplicable in the streaming data
context. Methods proposed for data streams [4, 10, 18, 15], on the
other hand, focus on mining patterns from a single stream where the
frequent patterns are defined as those that occur more often than
a given threshold in that stream. Contrastingly, the problem we
tackle is concerned with the occurrences of patterns within multiple
streams, where the number of streams in which a pattern appears is
an important parameter.

Probably the most related work to ours is that by Guo et al. [8]
which considers frequent patterns in multiple data streams. But
according to the their definition, whether a pattern is considered
frequent totally depends on the number of its occurrences within
a single stream. The frequent patterns are discovered separately
from each stream, and then analysis of those patterns is performed
to find the interesting ones based on their presence across multiple
streams. In contrast, in order for a pattern to be considered frequent
in our problem, it has to appear in at least θ streams within a short
period of time. It is not the number of times a patten appearing
in any single stream that matters; it is the number of streams the
pattern appears in. Moreover, the algorithms proposed by Guo et al.
are approximate, whereas we focus on computing exact solutions.

One seemingly promising strategy to simplify this problem is to
first combine all streams into one, and then mine the FCPs on the
combined data stream with some time window constraints. How-
ever, the complexity of the problem remains the same as discover-
ing FCPs from the combined data stream still requires the differ-
entiation between the component streams (e.g., we count a pattern
twice if it appears in two different component streams, but only
once if it appears twice in the same component stream), as well as
restriction on the time interval of the pattern occurring in these data
streams.

1.3 Our proposal
To address the above challenges, we propose two algorithms for

discovering FCPs across multiple streams. They both adopt a filter-
and-refine strategy with two stages. The first stage produces a set of
candidate co-occurrence patterns (CPs) from the data streams, and
the second stage generates the FCPs from those candidate CPs. To

limit the scope of search, we divide each data stream into overlap-
ping segments, guaranteeing that any FCP can only appear in those
segments. This allows us to solve the problem of finding FCPs by
focusing only on the recent segments in each stream.

As we are dealing with unbounded streams, the search for new
candidate CPs is an ongoing process. The key is to efficiently
search for new candidate CPs when there are newly arrived ob-
jects in any of the streams. In the DIMine approach, we introduce
an inverted index called DI-Index to index the existing segments,
and it computes FCPs based on the DI-Index with an Apriori-style
heuristic. Although straightforward to implement, it needs to be
improved in terms of memory consumption and maintenance cost.

In the CooMine approach, we propose a compact in-memory
data structure called Seg-Tree to maintain the existing segments,
which are dynamically updated as streams proceed, including the
deletion of segments when they are guaranteed not to contain any
FCPs. When a new segment is generated resulting from newly ar-
rived objects, we search the existing segments using the Seg-Tree
to find the common CPs they all contain, which form the set of
candidate CPs that must be examined further. With all candidate
CPs obtained, an Apriori-style algorithm is then used to compute
the FCPs.

1.4 Contributions and outline
The contributions of this paper can be summarized as follows.

• For the first time, we tackle the problem of mining frequent
co-occurrence patterns across data streams, an operation that
has extensive applications in a variety of contexts but can-
not be readily solved using existing frequent pattern mining
techniques.

• We propose the DIMine and CooMine approaches with sev-
eral facilities specifically designed for discovering FCPs across
unbounded streams. The CooMine method includes the seg-
mentation of data streams to limit the scope of processing,
the Seg-Tree structure that compactly indexes and stores the
segments for further processing, the SLCP algorithm that
searches the candidate CPs for each new incoming segment,
and an Apriori-style algorithm for generating FCPs from can-
didate CPs.

• Extensive experiments are conducted on two real data sets
(a traffic surveillance data set and a Twitter data set), which
demonstrate the superiority of two proposed approaches over
the baseline method. Indeed, the CooMine method has been
deployed in the City of Jinan’s Traffic Surveillance and Pub-
lic Safety Control System, and it has helped the early detec-
tion of dozens of criminal activities including vehicle thefts
and burglaries over a period of six months.

The remainder of the paper is organized as follows. Section 2 re-
views the related work and discusses the distinctions between our
proposal and existing methods. Section 3 introduces the preliminar-
ies, and presents the DIMine method as a first attempt to solve the
FCP mining problem. Section 4 presents the Seg-tree, which is a
novel index structure to maintain the valid segments. The CooMine
algorithm based on Seg-tree is described in detail in Section 5. Sec-
tion 6 presents the experimental results, and Section 7 concludes
this paper.

2. RELATED WORK
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2.1 Mining frequent patterns from databases
Mining frequent patterns (FPs) from databases is one the clas-

sic topic in data mining and has been well studied [2]. Agrawal
et al. [3] present the Apriori algorithm to discover the association
rules in databases, followed by a great volume of studies (e.g., [19,
18]) that also adopt Apriori-like approaches. All of them require
repeatedly scanning the databases to generate candidate frequent
patterns. Han et al [9] propose the FP-Tree that can discover fre-
quent patterns without candidate generation, but the method still
requires two database scans. Since the data streams are unbounded,
in general only one-pass over the data is allowed, rendering those
methods inapplicable.

The methods proposed by Tanbeer et al. [20] are claimed to
require only a single pass over the database. However, the premise
is that all relevant information is captured and stored during this
pass over the database, which is then processed in later stages. This
is clearly infeasible for unbounded streams.

2.2 Mining frequent patterns from data streams
Mining frequent patterns in data streams has also received con-

siderable attention. The works based on the landmark model (e.g.,
[15, 21]) aim at mining frequent patterns from the start of the stream
to the current moment. Other studies [4, 13, 12, 17] utilize the slid-
ing window technique to discover the recent frequent patterns from
data streams. All of these approaches obtain only approximate re-
sults with an error bound.

Some methods are proposed to obtain the exact set of recent fre-
quent patterns from data streams [4, 12]. Chang et al [4] propose a
data mining method for finding recent frequent itemsets adaptively
over an online data stream with diminishing effect for old trans-
actions. Leung and Khan propose a novel tree structure (DSTree)
to capture important data from the streams to mine exact frequent
patterns [12].

Although these approaches can mine frequent patterns in data
streams, they cannot be directly employed to solve the FCP mining
problem. Most of them focus on mining frequent patterns in a sin-
gle data stream, while our task is finding FCPs across multiple data
streams.

The only exception to our knowledge is the H-Stream algorithm
to discover frequent patterns from multiple data streams [8]. At a
first glance, that problem is very similar to ours, but indeed they
are quite different. As discussed in Section 1, that work aims to
search the frequent patterns that take place in multiple data streams,
but does not care about the time interval of the frequent patterns
occurring in these data streams. In our problem, the time interval
of any FCP across multiple data streams cannot be greater than the
specified threshold. Second, this work provides an approximate
method but our approach can obtain the exact results. Therefore,
the H-Stream algorithm cannot be applied to solve our problem.

The aforementioned existing works about mining frequent pat-
terns from data streams always assume the streams are composed of
transactions, and they can directly discover frequent patterns within
transactions. But in our problem, the streams just consist of con-
tinuous unbounded objects and we have to first determine which
objects in one data stream probably can construct a FCP, making
the problem more complex.

2.3 Mining spatio-temporal patterns
An extensive body of literature exists on mining interesting pat-

terns from spatio-temporal data [7, 11, 14, 5]. Some [11, 5] study
the discovery of valuable trajectories of moving objects, while Li et
al. [14] focus on mining spatial association rules. Moreover, there
also exist works [7, 16] that study the problem of mining tempo-

rally annotated sequences. However, none of them addresses the
same problem as mining FCPs, and methods proposed therein can-
not be directly applied to our problem.

3. PRELIMINARIES AND A FIRST ATTEMPT
In this section, we first introduce the terminology used in the

following discussion and formally define the problem, and then
present a first attempt to the FCP mining problem.

3.1 Preliminaries and problem definition

DEFINITION 1. (Data stream) A data stream is a continuous
ordered (by timestamps) sequence of objects.

Data streams are unbounded, and thus it is infeasible to store
the data stream locally in its entirety. For an object oi in the data
stream, its ID and timestamp are idi and ti respectively.

DEFINITION 2. (Co-occurrence pattern, or CP) For a set of
objects O={o1, o2, · · · , ok} that appear in a data stream si, we
say that O is a co-occurrence pattern CPk (where k is the number
of objects) if tO

si

max − tO
si

min ≤ ξ, where tO
si

max = max{t1, · · · , tk},
tO

si

min = min{t1, · · · , tk}, and ξ is a user-specified threshold.

DEFINITION 3. (Frequent co-occurrence pattern, or FCP)
A co-occurrence pattern CPk that appears in a set of l streams
{s1, s2, . . . , sl} is deemed a frequent co-occurrence pattern, FCPk,
if it satisfies the following conditions: (1) l ≥ θ, where θ is a user
specified threshold; and (2) Tmax

O − Tmin
O ≤ τ , where Tmax

O =
max{tO

s1

max, · · · , tO
sl

max}, Tmin
O = min{tO

s1

min, · · · , tO
sl

min}, and τ is
a user-specified threshold and τ � ξ.

To understand the differences between our problem and the fre-
quent pattern mining problem defined in earlier literature, we also
present below the definition of frequent pattern in data streams
given in [6].

DEFINITION 4. (Frequent patterns, or GHP-FP [6]) Let the
frequency of an itemset I over a time period (τ ) in the data stream
si be the number of transactions (where transactions correspond to
non-overlapping time windows) in which I occurs. The support of
I is the frequency divided by the total number of transactions ob-
served within the time interval tw of si. The itemset I is deemed a
frequent pattern if its support is no less than a user-specified thresh-
old, δ.

We use some examples to illustrate the differences between the
above definitions. In Section 1, we have discussed the scenario of
each surveillance camera producing a continuous stream of VPRs,
and the stream can be divided into time windows, where each win-
dow can considered as corresponding to a transaction defined in
Definition 4. Consider the following cases.

Case 1: A group of cars are captured by one camera within time
span ξ. This group forms a CP even if it is not captured by any
other cameras.

Case 2: Within the time interval τ , a group of cars are captured
by the same camera together in k non-overlapping time windows
and the total number of such windows within τ is f . If k/f ≥ δ,
this group constitutes a GHP-FP. It is not necessarily a CP unless
this group of cars appear within time span ξ (ξ � τ ) at least once.

Case 3: Within the time interval τ , a group of cars are captured
by m different cameras and they pass each camera within the time
span ξ. If m ≥ θ (where θ is a threshold that corresponds to the
support δ in Definition 4), then this groups is deemed a FCP. By
definition, it is also a CP.
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Problem Statement. Given a set of data streams of objects and
the values of parameters θ, ξ and τ , the problem of mining frequent
co-occurrence patterns is to identify, on the fly, the FCPs within the
streams as streams evolve over time.

To facilitate the search for FCPs, we divide each stream into
overlapping segments. Each segment is a sequence of objects or-
dered by their timestamps, and the time span of a segment is the
time interval between its first and last objects.

DEFINITION 5. (Segment) For a given data stream s, a seg-
ment G(o1o2 · · · om) is a subsequence of s that satisfies both of
the following conditions:

(1) |ti − tj | ≤ ξ, ∀ oi, oj in G; and
(2) The time span of G must be maximal with respect to ξ. That

is, that does not exist a subsequence of s, G′, such that G′ is a
segment and G is a strict subsequence of G′.

d

G0 G1

t
a c g e b

Figure 1: A segment. The temporal relationship between the
objects is as follows: td − ta < ξ, tg − ta > ξ, tg − td < ξ,
tg − tc > ξ, te − td < ξ, tb − td > ξ.

Example 1. Figure 1 shows a stream of objects, where a is the
first object of the segmentG0. Because td−ta < ξ and tg−ta > ξ,
d is the last object of G0. Note that the objects c, d, and g do not
constitute a segment because tg − tc > ξ.

DEFINITION 6. (Prefix of the segment) For a given segment
Gi (o1o2 · · · om), its prefix is a subsequence of G, o1o2 · · · oj ,
where 1 ≤ j ≤ m.

The definition of segment dictates that any data stream can be
uniquely partitioned. In addition, any CP must be covered by some
segment(s). Therefore, the problem of mining FCPs accross multi-
ple streams can be converted to finding the FCPs contained in the
segments of the data streams.

3.2 A first attempt: the DIMine approach
Our first attemp to solve the problem of mining FCP is a simple

method called DIMine. Following the discussion in Section 3.1,
the basic approach is to divide the data streams into segments as
the streams evolve, and then discover FCPs from those segments.
To this end, we use an inverted index called DI-index to index all
existing segments, and also maintain a list storing the information
related to each segment including its starting and ending times as
well as the ID of the data stream it belongs to. The DI-index can
be implemented as a hash map, with each entry taking the form of
(oi,Gi), where oi is an object and Gi stores the set of IDs of the
segments containing oi.

For an incoming segment G, DIMine finds the newly formed
FCPs caused by G in the following steps using the anti-monotone
Apriori heuristic based on the DI-Index.

(1) For each object oi in G, it finds the entry (oi,Gi) from the
DI-Index and then sets Gi = Gi ∪ G, It then verifies whether oi is
a FCP1 (a FCP with only one object) by straightforward counting
based on Gi.

(2) It next iteratively generates the set of candidate FCPs with
(k+1) objects from FCPk (k ≥ 1) caused by G, and picks those
that conform to the FCP definition. Assuming that Pk+1 is a can-
didate FCP with the set of objects {o1, · · · , ok+1} and G = G1 ∩

· · · ∩ Gk+1, if the segments in the set G involve no less than θ data
streams within the time interval τ , then Pk+1 is a FCP.

As the DI-Index is a hash map, the DIMine approach can find the
segments containing a given object o with constant time. Also, the
use of the Apriori heuristic helps prune the search space, making
the algorithm more efficient.

In addition to finding the FCPs, we also need to worry about the
maitenance of the DI-Index, as streams constantly evolve over time,
and some objects may become obsolete. The DIMine approach
needs to scan all entries of the DI-index frequently to remove the
identifiers of the obsolete segments because the expired data will
not only cause false positive results but also increase the memory
consumption. This task incurs non-trivial cost. Assuming that in
a stable state, the number of segments being indexed is n and the
average number of objects in a segment is p, then it takes O(n · p)
time to detect all expired segments. As will be shown in the exper-
imental results in Section 6, this is actually much more expensive
than finding the FCPs.

4. THE SEG-TREE
Addressing the problems with DI-Mine, we present the CooMine

approach that has better maintenance efficiency with an index that
is more compact when significant overlapping exists between adje-
cent segments. We call this index the Seg-Tree.

4.1 Motivation
There are two critical issues to be addressed in mining FCPs

across multiple data streams. First, as a large volume of segments
may be generated at a varying rate, it is important to effectively
index them with in a space-efficient manner for further processing.
Second, for a new incoming segment, not every existing segment
can form FCPs with it; thus it is necessary to quickly narrow down
the search space. As such, we need an effective index structure
that meets the following requirements: (1) good support for mining
FCPs; (2) efficient handling of the insertion of new segments and
deletion of obsolete segments; and (3) being frugal with its memory
usage.

4.2 Overview of the Seg-tree structure
To satisfy the above requirements, we propose the Seg-Tree, a

main-memory-based structure, to manage the valid segments. A
segment G is valid, if and only if tnow − tfG ≤ ξ, where tnow is
the current time and tfG is the timestamp of the first object of G.

The Seg-tree index structure has three components: the Seg-tree
itself and two auxiliary structures,Hlist and Tlist. Figure 2 shows a
Seg-tree that indexes the segments in Figure 3.

The Seg-tree is a trie-like structure (but with notable differences)
with its nodes corresponding to the objects. (We hereinafter use
nodes and objects interchangeably when there is no ambiguity.)
Edges exist between objects that appear adjacent to each other in
some segment. Segments can be continuously inserted based on
their prefixes, and obsolete segments can be removed as time pro-
gresses. The nodes are doubly-linked between child and parent.
The details of insertion and deletion will be discussed later in Sec-
tions 4.4 and 4.5.

The two auxiliary structures are used to quickly locate specific
nodes in the Seg-tree. We maintain a separate linked list of refer-
ences to the nodes corresponding to the same object, and the head
of each list is stored in Hlist. In Figure 2, we show the Hlist con-
taining the heads for some of the lists.

Tlist, on the other hand, stores references to all the tail nodes of
the Seg-tree, where a tail node refers to the last object of a segment.
Each node in the Tlist is a reference to a tail node in the Seg-tree.
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Once a tail node expires, we can use Tlist to quickly locate the cor-
responding segment in the Seg-tree and remove it. Figure 2 shows
the links of tail nodes k and o.

4.3 Node structure
For a segmentGj , its last object is represented in the Seg-tree by

a tail node tnj and other objects by ordinary nodes. An ordinary
node has four attributes 〈Id, object, distance, count, reference〉),
where Id is the identifier of the node, object is the reference to the
object represented by this node, distance represents the distance
(number of edges) from this node to tnj , count records the number
of segments containing this node, and reference points to the next
node corresponding to the same object in the Seg-tree. For the
new segmentGj , for each node, distance can be easily calculated,
object is known, count is set to 1, and reference is initialized to
null.

The tail node tnj has five attributes 〈Id, object, distance, count,
reference, L〉. Here, Id, distance, count, and reference have the
same meaning as that for ordinary nodes. L is a set of tuples
{Gj , lj}, whereGj is the segment with tnj being the tail node and
lj is the length of segment Gj . Because tnj may be the tail nodes
of multiple segments, for each segment Gj , we have to record its
length lj .

With the help of Tlist, the Seg-tree structure has the following
property. For the segment Gi, since tni records the length (li) of
Gi, backtracking li-1 steps from tni to the root of the Seg-tree can
uniquely determine the segment Gi, which is linear with respect to
the length of the segment.

4.4 Constructing the Seg-tree
The Seg-tree is initialized as a root node (null). A new segment

Gj can be inserted into the Seg-Tree using the following steps.

• We search for the longest matching prefix (prej) ofGj in the
Seg-tree, the details of which will be discussed later.

• If prej exists, the remaining objects in Gj are appended to
prej . For a segment, its longest matching prefix probably
exists in different branches of the Seg-tree. In case this hap-
pens, the first being found will be picked. Otherwise,Gj will
be directly added to the root.

• If prej exists, we need to update attribute values of the nodes
in prej afterGj being inserted into the Seg-tree; the attribute
values of other nodes remain unchanged.

• We insert the tail node tnj into Tlist, and append each node
of Gj to the respective linked list for the corresponding ob-
ject.

Example 2. In Figure 2, the Seg-tree manages the segments in
data streams s1 and s2 (as shown in Figure 3). Now we describe
the process of inserting the segments from s1. At the beginning,
the Seg-Tree contains the root only. When the segment G0 (b, c,
d) appears, it is added to the root. As to the segment G1 (c, d, f,
k), since its prefix (c, d) exists in the tree, the objects f, k can be
appended to the existing prefix. The segment G2 (h, m, n) has no
matching prefix, so it is inserted at the root. The segments G3 (n,
c, p, o) andG4 (h, b, k, r, s, t) also have existing matching prefixes
n and h separately in the Seg-tree, so they can be appended to their
existing prefixes.

The Seg-tree is similar to trie [1], but they have significant dif-
ferences. In a trie, the children of any node must have the common
prefix. But in the Seg-tree, if a segment has a matching prefix in any
branch of the Seg-tree (not necessarily starting from the root), then

Algorithm 1 Searching prefix Algorithm
Require:

The new segment Gj , the Seg-Tree;
Ensure: :

The Seg-Tree after Gj being inserted;
1: H=Hlist(o1); //H is the set of nodes that have the same identi-

fier with the first node o1 of Gj

2: prej=∅;
3: for ni:H do
4: prei=prei+ni; count=1; nj=ni;
5: while count < Gj .length do
6: flag=false; count++;
7: Nc= child nodes of nj ;
8: for nc:Nc do
9: if nc==Gj .next() then

10: prei=prei+nc; nj=nc; flag=true;
11: break;
12: end if
13: end for
14: if flag==false then
15: break;
16: end if
17: end while
18: if prej .size < prei.size then
19: prej =prei;
20: end if
21: end for

this segment can be appended to the existing prefix that are shared
by multiple segments. Because there may be extensive overlap-
ping between adjacent segments, this sharing can be quite effective
in saving memory. For the trie, on the other hand, most of the
overlapping segments cannot be compacted because they start with
different objects.

In the aforementioned procedure of building the Seg-tree, two
issues need to be discussed further.

(1) Searching matching prefixes. Searching the matching pre-
fixes in the Seg-tree for an incoming segment is critical for its
insertion. We can utilize the Hlist to accelerate this process. To
search the matching prefix (prej) of a segment Gj (o1o2 · · · olj ),
we first determine the set (H) of nodes matching o1 based on the
Hlist. Next, for each node nr (nr ∈ H), we shall traverse its chil-
dren to find the node matching o2. If the child nc matches o2, then
{nr, nc} is the current matching prefix of Gj , and we only need
to scan the children of nc to expand prej , while other children of
nr can be safely discarded because it is impossible for nr to have
two children that correspond to the same object. In this iterative
fashion, prej can be determined. The details of searching prefixes
are shown in Algorithm 1.

THEOREM 1. For a given segment Gj with length lj , the time
complexity of searching for the longest matching prefix of Gj from
the Seg-tree is O(lj).

PROOF. Suppose that there are f nodes corresponding to the
object o1 (the first object of Gj). For any node nr matching o1,
we at most traverse lk levels of the subtree rooted at nr . Hence,
the dominating time cost of searching the longest existing prefix of
Gj is f · lk · tp, where tp is the unit time of traversing one level of
the subtree. Since the parameters f and tp are constants, the time
complexity of searching the prefix of Gj is O(lj).

(2) Updating the attribute values of the nodes being inserted.
When Gj is inserted into the Seg-tree, for any node ni ∈ prej ,
its attribute values have to be updated. Assuming that (distancei,
counti and referencei) and (distance′i, count

′
i and reference′i)
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Figure 2: A sample Seg-tree. In this tree, the node in bold boxes
are tail nodes and others are ordinary. The node annotation
h(5,2) indicates that the distance between h and the farthest tail
node t of G4 is 5, and it appears in two segments. For the tail
node t(0,1,((G4,s1),6)), the tuple ((G4, s1),6)) represents that t is
the tail node of the segment G4 in s1, and the length of G4 is 6.
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Figure 3: The segments managed by the Seg-tree shown in Fig-
ure 2

are the original and updated attribute values of ni, the attribute val-
ues can be updated as follows.

• distance′i=max{distancei, distance′i}. If ni belongs to
multiple segments, distance′i records the distance between
ni and the farthest tail node of the segments containing ni.

• count′i=count′i + 1, which means that the number of seg-
ments that ni appears in increases by one.

• reference′i is still null. If a node n′
i corresponding to the

same object as ni is inserted later, then reference′i will
point to n′

i.

• If the tail node tnj also belongs to prej , then aside from do-
ing the above updates, we also need to add the tuple {Gj , lj}
into L′

j , that is, L′
j = L′

j ∪ {Gj , lj}.

Example 3 In Figure 2, before inserting the segment G1 from
stream s1, the distance and count values of c and d in the Seg-
tree are (1, 1) and (0, 1) separately. When G1 is inserted, since
c and d belong to the matching prefix of G1, the values will be
updated to (3,2) and (2,2) respectively.

4.5 Removing obsolete segments from the Seg-
tree

As streams proceed, some segments in the Seg-tree will become
obsolete. These obsolete segments will waste memory and have
negative influence on mining FCPs, and they thus should be re-
moved from the Seg-Tree in time, taking into the cost of removal.

On one hand, the existing segments become obsolete frequently,
so it is unwise to continuously monitor all segments and delete a
segment as soon as it becomes obsolete. On the other hand, if the
expired segments are retained in memory for too long, its impact on
the memory consumption as well the search efficiency will become
an issue.

As a good trade-off between effects of obsolete segments and
the deletion cost, a Lazy Deletion (LD) strategy is introduced. In
this strategy, we do not delete all expired segments at once, but
only remove those that are relevant to the new incoming segment
that needs to be processed. The deletion can also be triggered by
the used memory exceeding the specified threshold, at which time
we will scan the Tlist to find and remove all obsolete segments.
Here, the relevant obsolete segments for a new segment can be de-
termined by Algorithm 3 to be presented in Section 5.

Deleting an obsolete segmentGe involves two specific tasks: (1)
decreasing the attribute value count of nodes in Ge and removing
the nodes with count being zero from the Seg-tree; and (2) insert-
ing the disconnected subtrees into the Seg-tree. Deleting Ge can
possibly cause one or more subtrees being disconnected from the
Seg-Tree, and these subtrees need to be added back into the Seg-
Tree. For a disconnected subtree, we define its single prefix as the
path from the root to the first node with more than one child. We
treat the single prefix as a segment and insert it into the Seg-tree
using the insertion method. The other objects of the disconnected
subtree are appended to the prefix. In this way, any disconnected
subtree can be inserted back into the Seg-tree.

The deletion cost can be reduced with the help of the Tlist. In
the Tlist, we order the tail nodes by their arrival time, and thus we
only need to determine the latest obsolete tail node, and then we
can infer that all the tail nodes preceding this node are all obsolete.
Hence, the obsolete segments can be quickly determined.

4.6 Comparison of Seg-tree and FP-tree
We are inspired by the FP-tree [9] in designing the Seg-tree to

support the mining of FCPs. Compared with FP-tree, the Seg-Tree
has the following advantages for the problem addressed in this pa-
per.

(1) To construct the FP-tree, the objects in the transactions need
to be sorted according to their counts. But in the Seg-tree, the ob-
jects in the segments do not need to be sorted, saving on the sorting
cost. To be more specific, the count of each object changes fre-
quently as data streams evolve, and therefore the order of objects
in existing transactions needs to be adjusted constantly as required
by the FP-tree. The FP-tree thus has to be updated or rebuilt fre-
quently, causing inhibitive maintenance cost. As such, the FP-tree
is not suitable for mining FCPs across data streams in real-time.

(2) In our problem, there may exist extensive overlapping be-
tween nearby segments. If we employ the FP-tree to index them
without sorting, no compaction can be achieved according to the
insertion rules defined in [9]. When the Seg-tree is used, however,
many overlapping segments can be compacted tightly because they
have common matching prefixes in the Seg-tree.

(3) The FP-tree deals with static datasets and does not specif-
ically consider the effect of frequent updates, while in our case,
the Seg-Tree has to be constantly updated and thus efficient main-
tenance cost is vital. By adopting the LD strategy to delete the
obsolete data at different time granularities, we strive to achieve a
balance between memory consumption and deletion cost.

5. THE COOMINE APPROACH
We propose the CooMine approach that can utilize the Seg-tree

for mining FCPs. We first give an overview of this approach, and
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then describe each component in more detail.

5.1 Overview of the CooMine approach
As discussed in Section 3, any FCP is covered by at least θ seg-

ments. We thus propose the CooMine approach to mine FCPs from
the segments in each data stream. Since the streams are constantly
changing with newly arrived objects, the task of mining FCPs is a
continuous process, with actions triggered by the creation of each
new segment as new objects arrive. For the new segment Gj , the
CooMine approach consists of two components.

(1) Searching for the largest common CPs: If the new segment
Gj can form new FCPs with existing segments, the FCPs must be
covered by their common CPs. The largest common CP between
any two segments refers to the largest set of common objects be-
tween them, so any common CP of two segments must be covered
by their largest common CP. Therefore, we design an algorithm
to find the largest common CPs between Gj and the existing seg-
ments to narrow down the search scope. Hereinafter, we use LCP
to represent the longest common CP.

(2) Mining FCPs from the LCPs: Since the set of LCPs is finite
and its size is usually small, mining FCPs boils down to the prob-
lem of finding the CPs that appear in at least θ data streams within
time interval τ . This problem can be solved with an Apriori-style
algorithm.

5.2 The SLCP algorithm for searching LCPs
A naive method to find the LCP is to compare the new segment

with every existing segment. However, since only a few existing
segments have common CPs with the new segment, comparisons
with many segments are wasteful. Also, the cost will be huge when
the Seg-tree is large.

To cut down the search cost, we design the SLCP algorithm to
find the LCPs between the new segment Gj and existing segments.
This algorithm first searches the relevant segments for each node
of Gj , where the relevant segments are defined below in Definition
7. Next, it can deduce which common nodes with Gj each rele-
vant segment has. The set of common nodes between each relevant
segment and Gj is a LCP.

DEFINITION 7. (Relevant segment): For any node ni (except
the root) in the Seg-tree, if the segment Gi contains ni, then Gi is
a relevant segment of ni, and tni is a relevant tail node of ni.

Algorithm 2 describes the SLCP algorithm. First, for each node
ni of Gj , we find all nodes that have the same identifier with ni

based on Hlist (Line 4). Second, for any node nj that corresponds
to the same object as ni, we determine its valid relevant segments
(Line 5). Third, once the relevant segments of each node are deter-
mined, the LCPs are computed (Line 6-8).

In the SLCP algorithm, discovering the LCPs is a non-trivial
problem. In the procedure of building the Seg-tree, any segment
itself will be discarded after being inserted into the Seg-tree. Mean-
while, the ordinary nodes of the Seg-tree no longer record the in-
formation of their relevant segments for memory saving. In this
case, for any ordinary node, we cannot directly determine the seg-
ments containing it. Therefore, we need to find an efficient way to
determine the relevant segments for the specified nodes.

5.2.1 Searching relevant segments
We propose the DistanceBound method that can efficiently find

relevant segments for the specified nodes. The DistanceBound method
can prune the search scope by utilizing the distance between each
node and its furthest relevant tail node as bound to accelerate search-
ing relevant segments for the specified node. For the specified node
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Figure 4: Two subtrees of the Seg-tree

nj , this method visits nj and guarantees that by visiting Disj lev-
els of the tree rooted at nj , it can find all relevant tail nodes for
nj according to Theorem 2. When this method visits any child nc

of nj , only min{Disc, Disj − 1} levels of the tree rooted at nc

need to be traversed. In this way, the search algorithm can quickly
converge and the search space can be reduced.

Algorithm 3 describes the process of searching relevant segments
for nj , which consists of four steps:

Step 1: Build a queue Q and enqueue the pair 〈nj , stepcount〉
into Q, where stepcount=Disj . (Lines 1-4)

Step 2: Get the first pair 〈nx, stepcount〉 from Q. (Line 6)
Step 3: If nx is a relevant tail node of nj , insert nx into the set
R. Otherwise, for each child nc of nx, set stepcount asmin{Disc,
stepcount-1} and enqueue 〈nc, stepcount〉 into Q if stepcount 6=
0. (Lines 7-15)

Step 4: If Q is not empty, go to step (2); otherwise, return the set
R and the search ends. (Line 5)

In Step 3 , for the tail node nx, if we assume that its correspond-
ing segment is Gx with length lx and the distance from nj to nx is
Djx, then Gx is a relevant segment of nj if lx is no less than Djx

and Gx is valid.

THEOREM 2. For any node nj in the Seg-tree, all relevant tail
nodes of nj can be found by visiting at most Disj levels of the tree
rooted at nj .

PROOF. Suppose that there is a tail node tnj that cannot be dis-
covered even if after taking (Disj-1) steps in each branch of nj .
Since nj and tnj belong to the same segment, tnj and nj must be
in the same branch. Because tnj cannot be found by taking Disj
steps from nj in this branch, the distance from nj to tni must be
greater than Disj . However, Disj is the distance between ni and
the farthest relevant tail node. Contradiction.

The DistanceBound algorithm can effectively prune the search
space based on the attribute distance of nodes. Figure 4 shows two
subtrees of the Seg-tree in Figure 2. In Figure 4(a), the node h has
attribute Dish as 5; the DistanceBound algorithm thus probably
needs to take 5 steps in its each branch to find the relevant tail nodes
for h. However, when it visits the node m and finds that Dism is
equal to 1, it then only needs to take one step in the branch of m to
search the relevant tail node n. The nodes after n do not need to be
scanned. As to the node c in Figure 4(b), since Disc is 3, we only
need to traverse its left branch by 3 steps to search for the relevant
tail node j, and nodes after j can be ignored.

5.2.2 Obtaining the LCPs
For each node ni in Gi, all relevant segments of ni can be deter-

mined by the DistanceBound algorithm. If we employ a hash table
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Algorithm 2 Searching for LCPs (SLCP)
Require:

The new segment Gj , the Seg-Tree;
Ensure: :

The LCPs between Gj and existing segments;
1: Hi=null; // a set of nodes have the same identifier with ni

2: The Map< Gi, Pi > map=null; // Pi is the LCP between Gj

and Gi

3: for ni:Gj do
4: Hi=Hlist(ni);
5: Ri=DistanceBound (Hi); //Ri includes segments covering

ni

6: for Gi:Ri do
7: map.add(< Gi, ni >);
8: end for
9: end for

10: Output map;

Algorithm 3 DistanceBound Algorithm
Require:

Hi;
Ensure: :

The relevant segments of ni;
1: stepcount=0,R=null, Queue=null;
2: for nk:Hi do
3: stepcount=Disk and generate the pair 〈nk, stepcount〉;
4: Queue.put(〈nk, stepcount〉);
5: while Queue6= empty do
6: nf=Queue.getfirst();
7: if nf is a tail node andGf covers nk andGf is valid then
8: Rk.add(Gf )
9: end if

10: for nc:children of nf do
11: stepcount=min{Disf , (stepcount− 1)};
12: if stepcount 6= 0 then
13: Queue.put(〈nc, stepcount〉);
14: end if
15: end for
16: end while
17: R=R∪Rk;
18: end for
19: returnR;

to store the relevant segments with the key being the ID of each rel-
evant segment and the value being a list of nodes common to this
segment and Gi, then the largest set of common nodes between
each relevant segment and Gi can be immediately determined, and
the largest set of common nodes is a LCP between Gi and the cor-
responding relevant segment.

5.3 Mining FCPs from the LCPs

5.3.1 Mining FCPs with the Apriori heuristic
For the new incoming segmentGj , if it can form new FCPs with

existing segments, then these FCPs must be covered by their LCPs.
Therefore, we can mine the FCPs from the these LCPs with the
anti-monotone Apriori heuristic. The basic idea is to iteratively
generate the set of FCPs with (l + 1) objects based on the set of
FCPs with l (l ≥ 1) objects. Theorem 3 guarantees the correctness
of the CooMine algorithm.

Table 1: Summary of common CPs
LCPs segments
{m,n, } {G2, s1}
{n, p, o} {G3, s1}
{p, o} {G2, s2}
{m,n} {G3, s2}
{n} {G4, s2}

Algorithm 4 CooMine Algorithm
Require:

The new segment Gi, The Seg-Tree;
Ensure: :

The FCPs of length k formed by Gi;
1: LCPtable = SLCP(Gi, Seg-tree);
2: l=1;
3: while l < k do
4: if l = 1 then
5: Obtaining FCPs of length l based on the LCPtable;
6: else
7: Generating candidate FCPs with length l based on the

FCPs of length l − 1;
8: Detecting each candidate FCP based on the LCPtable and

discover the FCPs of length l;
9: end if

10: end while
11: Output the FCPs of length k.

THEOREM 3. If a set of objects On is a FCP, then any of its
subset O

′
n must also be a FCP.

Since LCPs are found from valid segments, the time span of all
obtained LCPs must be no greater than the threshold τ . Accord-
ing to the Definitions 2 and 3, if a CP occurs in more than θ data
streams within the time interval τ , then this CP must be a FCP.
Hence, the CooMine algorithm only needs to consider the number
of data streams that the LCPs appear in. Because all LCPs between
Tk and existing segments have been found by the SLCP algorithm,
the CooMine algorithm (Algorithm 4) only needs to mine all FCPs
from the LCPs.

Example 4. Assuming that G0 (mnpo) is a new segment in data
stream s3 and the parameters k and θ (cf. Definition 3) are 2 and
3 separately. Table 1 shows the LCPs between G0 and existing
segments in Figure 2. Based on Table 1, CooMine can find the
FCPs of size 1 ({m}, {n}, {o}, {p}), and then deduce the FCPs of
size 2 ({m,n}, {p, o}). Since only one LCP has three objects, we
assert that there does not exist a FCP of size 3.

5.4 Advantages of our approach
CooMine has the following advantages.
(1) The use of the Seg-tree to index the valid segments can help

save on memory consumption. The segments are inserted into the
Seg-tree based on the prefix rule, and many common objects in
multiple segments can be compacted to save memory. In addition,
the ordinary nodes in the Seg-tree do not record the segments that
they belong to and only the tail nodes maintain this information.
Since ordinary nodes make up the largest part of the Seg-tree and
each ordinary node always takes place in multiple segments, omit-
ting the segments information from ordinary nodes can save much
on memory consumption.

(2) The maintenance cost of the Seg-tree is low. A new seg-
ment can be inserted into the Seg-tree with a small cost because its
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Table 2: The parameters used in the experiments
parameters meaning
ξ the time interval in Definition 2
k the number of objects in one FCP
τ the time interval in Definition 3
θ the number of streams in Definition 3
Ds the scale of data

matching prefix can be quickly determined; the obsolete segments
can be immediately determined with the help of the Tlist, and the
LD strategy can remove the obsolete data at different granularities
to reduce the deletion cost.

(3) CooMine first searches the LCPs covering all FCPs between
each new segment and existing ones; this step can effectively nar-
row down the search scope for mining FCPs.

6. EXPERIMENTS
We conduct experiments to evaluate the performance of DIMine

and CooMine methods, and compare them with the MatrixMine
algorithm that is introduced as a baseline method. The parameters
involved in experiments are illustrated in Table 2.

Specifically, we first evaluate the index structures employed in
three methods with respect to memory consumption and mainte-
nance cost, and then compare the performance of the three meth-
ods for computing FCPs. Finally, we test the influence of varying
parameters on the CooMine algorithm in the following aspects: the
time of discovering FCPs, the sustainable workload, and the num-
ber of FCPs.

In our experiments, we implement three methods (CooMine, DI-
Mine, and MatrixMine) using Java and the indexes of three meth-
ods all employ the standard Java Collection classes as the storage
structure to record the segments information. To make the results
more accurate, every evaluation is repeated ten times and the aver-
age values are recorded as the final results.

6.1 Experimental setup
The experiments are conducted on a Dell OPTIPLEX 990, a

PC with a 3.1GHz Intel i5-2400 processor and 8GB RAM. Two
real datasets are used. One dataset is a traffic records dataset (TR
dataset) of Jinan city in China. The TR dataset contains all VPRs
(vehicle passing records) of each monitoring camera in Jinan on
May 1, 2013. For each monitoring camera, we simulate its passing
records as a data stream, then the TR dataset can be viewed as mul-
tiple data streams. For the TR dataset, Ds represents the number of
VPRs, and each vehicle (identified by its license plate) is an object.

The other dataset (the Twitter dataset) is provided by Twitter for
academic research purposes1. In Twitter dataset, each word is con-
sidered an object and a tweet corresponds to a segment. In this
case, all of the objects in a segment appear at once, as a tweet as a
collection of words is posted as a whole. The tweets by the same
user constitute one data stream. Ds represents the number of all
segments (tweets).

6.2 The baseline method
Since none of the existing methods is applicable to the problem

of finding FCPs in real-time either because they address a differ-
ent problem or because their cost is apparently too expensive when
applied to this problem, we introduce the MatrixMine algorithm as
the baseline method, and compare it with our proposed methods
w.r.t. memory consumption, maintenance cost, mining time, and

1Tweets2011. http://trec.nist.gov/data/tweets/

total cost.
MatrixMine also divides the data stream into segments and then

mines FCPs from the segments. The information of all segments
are maintained in an independent list and we can obtain the infor-
mation of each segment based on its identifier from this list. Ma-
trixMine maintains a matrix M that keeps track of each pair of co-
occurring objects. If we assuming that there are n distinct objects
({o1, · · · , on}) in a particular application, then M is a n × n ma-
trix, where each element ci,j of M corresponds to the pair pi,j that
consists of objects oi and oj (1≤ i, j ≤ n). Because the pair pi,j
probably occurs in different segments, the corresponding element
ci,j has to maintain a set Ii,j that contains multiple tuples and each
tuple is represented as 〈Gj , sh〉, where Gj is the identifier of the
segment that pi,j belongs to, and sh is the data stream containing
Gj .

For any pair pi,j of the new segment Gj , MatrixMine can de-
termine whether pi,j is a FCP based on Ii,j because it records the
identifiers of all segments covering the pair pi,j . Once the FCPs
with two objects are obtained, MatrixMine can iteratively generate
the FCPs with more objects employing the Apriori heuristic.

The maintenance of the matrixM includes the insertion of newly
generated pairs and the deletion of obsolete pairs. When a new pair
pi,j appears, it must be inserted into M right away. To reduce
the deletion cost of the Matrix structure, we also adopt the Lazy
Deletion strategy to remove the obsolete data from the matrix.

6.3 The performance of index structures
We compare the Seg-tree, the DI-Index, and the Matrix with re-

spect to memory consumption and the maintenance cost, and the
results are shown in Figure 5.

Memory consumption. Figure 5(a) shows the memory con-
sumption of index structures on the TR dataset. Here, we test the
memory consumption for processing the incoming data within one
second with varying arrival rates whenDs is fixed, whereDs repre-
sents the volume of data that has been processed. The experimental
results demonstrate that the memory consumed by Seg-tree is about
80% of that consumed by DI-Index and only 25% of that by Ma-
trix because of the overlap between segments makes it possible to
compact them tightly in the Seg-tree. Matrix consumes much more
memory than Seg-tree and DI-Index, and the reason is the Matrix
has to maintain a large volume of elements.

Figure 5(b) shows the result on the Twitter dataset, where the
Seg-tree consumes slightly more memory than DI-Index. The rea-
son is that most adjacent segments (tweets) do not overlap, and the
Seg-tree cannot compact them as well as for TR. However, the Seg-
tree still consumes much less memory than the Matrix.

Maintenance cost. Figure 5(c), 5(d) and 5(e) show the mainte-
nance time of processing the data within one second with different
arrival rates for the two datasets. In Figure 5(c), we evaluate the
maintenance cost of the Seg-tree, DI-Index, and Matrix with the
fixed values of the parameters ξ, τ , and Ds . The results demon-
strate that the maintenance cost of the Seg-tree is much smaller than
that of DI-Index and Matrix, while the Matrix has the largest main-
tenance cost. Specifically, the maintenance cost of the Seg-tree is
approximately 50% of that consumed by DI-Index, while the main-
tenance cost of Matrix is almost 20 times as big as that of Seg-tree.
In the Seg-tree, we can immediately determine the expired seg-
ments based on the Tlist and remove them, which can save much
maintenance time. But in DI-Index and Matrix, we have to detect
each element to remove the obsolete data, increasing the mainte-
nance cost. Since the number of elements in Matrix is greater than
that of elements in DI-Index, maintaining Matrix is more expensive
than maintaining the DI-Index.
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(c) Maintenance cost w.r.t Ds (TR)
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Figure 5: Evaluation of index structures
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Figure 6: Performance of mining algorithms

Figure 5(d) shows that the parameter ξ has little influence on the
maintenance time of the Seg-tree, but it affects the maintenance
cost of DI-Index and Matrix more significantly. The reason is that
the sizes of segments will become larger when ξ takes greater val-
ues, and the larger segments have very slight influence on the main-
tenance time of the Seg-tree because each segment can be inserted
and removed in its entirety regardless of its length. However, the
larger segments contain more objects, which can produce more el-
ements for DI-Index and Matrix, and they thus need much more
time to maintain the larger segments.

Fig. 5(e) shows the maintenance cost of the three index struc-
tures for the Twitter dataset. Similar to the case of the TR dataset,
the Seg-tree has the less maintenance cost than DI-Index and Ma-
trix.

According to the aforementioned experimental results, we con-
clude that the Seg-tree and the DI-Index outperform the Matrix

w.r.t. memory consumption and maintenance cost. In most cases,
the performance of Seg-tree is better than that of the DI-Index struc-
ture except the memory consumption for processing the Twitter
dataset.

Compression ratio. To help us better understand the memory
consumption, assuming that the original data to be indexed is d1
and the real data stored in the Seg-tree is d2, the compression ratio
of the Seg-Tree is defined as (d1-d2)/d1. In Fig. 5(f), the com-
pression ratio based on TR dataset is very high, which means the
Seg-tree can compact the overlapping segments very well. As to
the Twitter dataset, the compression ratio becomes very low as
there are less overlapping between segments. Therefore, it would
be helpful to look at the degree of overlapping between segments
before deciding on the index structure for mining FCP.
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6.4 Performance comparison of the mining al-
gorithms

Comparison of mining cost. First, we compare the mining per-
formance of CooMine, DIMine, and MatrixMine algorithms on the
two datasets in Fig. 6(a) and 6(b). For the TR dataset, the mining
time of the three algorithms is almost identical. However, the min-
ing cost of the CooMine algorithm is larger than that of the DIMine
and MatrixMine methods on the Twitter dataset. This is again due
to the lower degree of overlapping between segments, which ren-
ders some optimizations of the CooMine algorithm not applicable
in reduing the mining cost.

Comparison of total cost. In this group of experiments, we
evaluate the total cost of the three algorithms for processing the data
within one second with varying arrival rates based on two datasets,
and the results are shown in Fig. 6(c) and 6(d). For the set of data
being processed, the total cost includes the time of inserting this set
of data into the index structure and removing the relevant obsolete
data from the index structure, as well as the time of mining FCPs
from this set of data. The results show that CooMine performs
best, and both CooMine and DIMine outperform the MatrixMine
approach dramatically regardless of the dataset.
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Figure 7: FCPs w.r.t Ds

6.5 Evaluation of the CooMine algorithm
Since the CooMine algorithm is better than the other two meth-

ods with respect to the total cost, we only evaluate the influence of
varying parameters on its performance.

Mining cost w.r.t. Ds. We test the influence ofDs on the perfor-
mance of CooMine for mining FCPs on two datasets in Fig. 6(e)
and 6(f). The results show that Ds has no evident effect on the
mining cost because the CooMine algorithm only needs to search a
small portion of the data to find FCPs.

Mining cost w.r.t. ξ and τ . Fig. 7(a) shows that the mining time
is also affected by the parameter ξ. The larger value of ξ will give
rise to longer segments, and the segments with larger sizes will
cause more LCPs between each new segment and existing ones,
which can increase the mining time. Fig. 7(b) demonstrates that
the parameter τ has little impact on the mining cost. This is be-
cause although the larger value of τ can cause more valid segments,
the CooMine algorithm can still efficiently narrow down the search
scope.

Maximum sustainable workload. To evaluate the maximum
sustainable workload of the CooMine algorithm, we introduce a
buffer queue with 5000 storage units to cache the incoming data,
and the CooMine algorithm will fetch the data from this queue. In
this case, the usage rate of the buffer queue reflects the processing
capacity of the CooMine algorithm.

In Fig. 8(a), we evaluate the buffer queue usage at different time
points based on the TR dataset. When the arrival rate reaches 8000
VPRs per second, the maximum usage of the buffer queue is 5000.
Therefore, the maximum sustainable workload of the CooMine al-
gorithm based on the TR dataset is 8000 VPRs per second. Fig.
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8(b) shows that the maximum sustainable workload based on the
Twitter dataset is about 4000 tweets per second.

6.6 Effect of parameters on the number of FCPs
We now evaluate the influence of the parametersDs and θ on the

number of FCPs generated for the two datasets.
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Figure 9: The number of FCPs discovered w.r.t Ds

Fig. 9(a) and 9(b) show that the number of FCPs increases with
more data being mined for the TR and Twitter datasets respectively.
For a fixed volume of data, there exist more FCPs with smaller sizes
(k).
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Figure 10: The number of FCPs discovered w.r.t θ
We also test the effect of the parameter θ on the number of FCPs

in Figure 10(a) and 10(b). When the value of θ becomes larger, the
number of FCPs drops sharply, which coincides with our intuition
that the higher the threshold, the less FCPs will appear.

Finally, we analyze the FCPs from the Twitter dataset with θ
equal to 60 and illustrate some typical hot events that the FCPs
imply in Table 3 and Table 4, demonstrating that mining FCP is
indeed useful in such applications.

6.7 Discussion
We have compared the CooMine, DIMine, and MatrixMine ap-

proaches with respect to the memory consumption, the mainte-
nance cost, the mining cost, and the total cost on two datasets.
The results demonstrate that CooMine and DI-Mine approaches
outperform the MatrixMine method significantly for mining FCPs.
Between the CooMine and DI-Mine approaches, we find that the
CooMine approach based on the Seg-tree is better suited to process

83



Table 3: Typical FCPs from the Twitter dataset
FCPs The number of streams Hot event
super bowl 1378

event1green bay packers 213
win steelers 226
jack lalanne dies 139 event2
airport killed 111 event3airport domodedovo 101
union state address 409

event4obama sotu 456
science fair 63
health care 261

Table 4: Hot events
Event Meaning
event1 Green Bay Packers and Pittsburgh Steelers

played the Super Bowl on February 6, 2011.
event2 Jack lalanne, the American exerciser, and

nutritional expert, died on January 23, 2011.
event3 The Domodedovo International Airport

bombing on January 24, 2011.
event4 Barack Obama presented the 2011 State of the

Union Address on January 25, 2011.

data streams that have much overlap between segments, while the
DIMine approach is more suitable for handling data streams with-
out overlapping segments.

7. CONCLUSION
Mining frequent co-occurrence patterns (FCPs) across multiple

data streams is essential to many real-world applications, but this
problem has not been addressed by exiting works. In this paper,
we design the DIMine and CooMine approaches to mine FCPs us-
ing only one pass over the data streams. In both approaches, we
first divide each data stream into overlapping segments, and then
mine the FCPs within those segments. The DIMine approach uses
an inverted index (DI-Index) to maintain the valid segments in main
memory and adopts an Apriori-style heuristic to iteratively discover
FCPs based on this index. In the CooMine approach, we construct
the Seg-tree, a memory-based index structure, to compactly index
all valid segments. Based on the Seg-tree, the CooMine approach
first finds the largest common CPs between each new segment and
the existing ones to narrow down the search scope, and then dis-
cover the FCPs from the obtained common CPs. Finally, we in-
troduce a baseline method and conduct extensive experiments to
compare our proposed approaches with this baseline method. The
experimental results demonstrate that our proposed approaches out-
perform the baseline method by a significant margin.

For future work, we would like to study how to extend the pro-
posed approaches to a distributed environment to handle greater
scales of data streams, when a single machine is no longer capable
of managing the large volumes of data and computation.
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ABSTRACT
Aggregate queries in integration contexts often do not have
one “true” answer; there can be multiple correct answers for
the same aggregate query. This is due to the existence of
duplicate or overlapping data points, possibly with di↵erent
values, across the data sources. Depending on the choice of
data source combinations that are used to answer the query,
di↵erent answers can be generated. Thus, representing the
answer to the aggregate query as an answer distribution in-
stead of a single scalar value, will allow the users to better
understand the range of possible answers.

This work provides a suite of methods for extracting statis-
tics that convey meaningful information about aggregate
query answers in heterogeneous integration settings. We
focus on the following challenges: 1. determining which statis-
tics best represent an answer’s distribution; and 2. e�ciently
computing the desired statistics.

Our solution includes the following answer statistics 1. a
set of point estimates with confidence intervals; 2. a high
coverage interval that unveils “hot areas” in a distribution;
and 3. a stability score that measures the impact of source
dynamics. We optimize the extraction of the above statisti-
cal information by minimizing the sampling load and apply-
ing fast approximate algorithms. We verify the e↵ectiveness
and e�ciency of our methods with empirical studies using
real-life and synthetic, scaled data sets.

1. INTRODUCTION
Aggregate queries are fundamental to relational databases.

They group sets of data values and calculate informative
statistics such as average, median, and sum. They are also
important in heterogeneous integration systems [1, 2, 9]
where the focus shifts from querying a single database to
querying multiple, independently managed, domain hetero-
geneous databases. The characteristics of heterogeneous in-
formation systems make the generation of meaningful ag-
gregate values for heterogeneous information systems sig-
nificantly more challenging than aggregations in a typical

c� 2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

Location Avg Temp Date 
Burnaby 21 10-June-06 

Vancouver 19 11-June-06 
... ... ... 

D 1 

D 2 

D 3 

D 4 

City Temp Date ... Total Rain 
Burnaby 19 10-June-06 ... 0.2 

Vancouver 17 11-June-06 ... 0.0 
Surrey 15 11-June-06 ... 0.0 

Vancouver 20 12-June-06 ... 1.4 
... ... ... ... ... City Temp Date 

Burnaby 21 06/10/06 
Vancouver 22 06/11/06 
Richmond 18 06/12/06 
Richmond 18 06/13/06 

... ... ... 

Location Temp Date Total Snow Total Rain 
Surrey 15 06/11/06 0.0 0.0 
Surrey 19 06/12/06 0.0 1.2 

... ... ... ... ... 

Figure 1: Climate data from BC weather stations.

relational database.
Answering aggregate queries in a heterogeneous informa-

tion system often requires combining sets of data that are
segmented across multiple sources. These sources may vary
substantially with regard to their schemas and the instances
they hold, i.e., semantically related content may be stored
in di↵erent structures, at di↵erent levels of granularity, in
di↵erent representations, and multiple formats.

There are three levels of heterogeneity in heterogeneous
information systems [19]. The first is schema-level. This oc-
curs when there are di↵erent schema elements representing
the same concept, e.g., one schema may contain a “temp”
attribute, while another contains a “temperature” attribute.
The second is instance-level heterogeneity. This level re-
quires performing entity resolution to tell if two objects
are the same, e.g., that the data for “Vancouver Weather
2006/06/11” in one data source is the same as “Vancouver
Weather 06/11/2006” in another. The third is value-level
heterogeneity. Heterogeneity at this level deals with the
fact that because the sources are independently created and
maintained, a given data point can have multiple, inconsis-
tent values across the sources. For example, one source may
have the high temperature for Vancouver on 06/11/2006 as
17C, while another may list it as 19C. It is this value-level
heterogeneity with which we are concerned throughout this
paper. Particularly, we look at the problem of how to handle
value-level heterogeneity in aggregations.

To illustrate the problem, consider JIIRP [17], a real-
world disaster management project. In JIIRP, data from
various sources are combined to simulate the impact of nat-
ural disasters. For example, JIIRP assesses weather phe-
nomena and climate data to help plan emergency responses.
Figure 1 shows local data sources containing climate data for
cities located in British Columbia (BC, Canada). As shown
in the figure, the sources di↵er in terms of their coverage of
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the data instances and attributes. Additionally, data sources
D1, D2, and D3 hold di↵erent values for the same data point
Vancouver on 06/11/2006.

Next, consider the following query, in which the data
sources are queried to find the average temperature for months
with an average temperature above 20 degrees Celsius:

Select Average(Temp), Month(Date), Province(Location)
From SemIS
GROUP BY Province(Location), Month(Date)
HAVING Average(Temp) > 20

Applying standard aggregation, however, is incorrect. In
particular, standard aggregation would simply return the av-
erage of all the points. This is problematic for two reasons:
(1) There are some values which are present in more than
one source (e.g., Vancouver’s temperature on 06/11/2006 is
represented in all of sources D1, D2, and D3; taking the
simple average will cause Vancouver to be over-represented
in the average.) (2) The di↵erent sources may have di↵er-
ent values for the same conceptual answer (e.g., depending
on which source is used, the temperature for Vancouver on
06/11/2006 is either 17, 19, or 22).

The correct aggregation requires using only one value per
data point:

Average(t) =

|C
BC

|X

c=1

|D
m

|X

d=1

t

c,d

|C
BC

| ⇤ |D
m

|
(1.1)

where t is temperature, c represents city, |C
BC

| is the num-
ber of cities in BC, d represents day, |D

m

| is the number
of days in month m. The above aggregation requires 1470
data points (49 cities in BC * 30 days), each of which could
have several duplicates across the sources. Depending on
the choice of source and value combinations, there can be a
whole range of viable answers.

For such queries, enumerating all the possible value com-
binations, and generating the entire set of viable answers as
the answer to the aggregate, not only does not scale well
(due to combinatorial explosion with regard to the number
of data points and possible duplicates), but would still re-
quire the users to analyze the results and determine suitable
answers.

This problem is not unique to weather data or the JIIRP
scenario, for example, [19] examined inconsistency and re-
dundancy at the value-level, in the stock and flight domains
on the Deep Web. However, in [19] the authors assumed
that there was a single “true” answer, which we do not.

In this paper, we assume meta-information that describes
the mappings and bindings between data sources is avail-
able [25]. Similar to [19], we focus on value-level hetero-
geneity. Specifically, we propose a suite of methods for sum-
marizing aggregate query answers in integration settings.

Our previous work [25] created a system where one could
ask such aggregate queries. It defined what the possible
viable answers were, but then it randomly chose a viable
answer. This is inappropriate both since it does not explain
the choice, and the aggregate answer would fluctuate upon
reprocessing the query. Selecting a best guess answer or a
top-K answer set is also inadequate; there is often no global
mediator available to choose the value and source combina-
tion for the aggregation.

Our solution consists of first estimating the distribution
of the viable answers. However, instead of enumerating all

the viable answers and computing the full, accurate distri-
bution, we combine a variety of statistical estimations into
what we term the viable answer distribution. We then ef-
ficiently extract statistical summaries of the viable answer
distribution to allow the user to better interpret and under-
stand the viable answers. Thus, we contribute the following:

• We define aggregate answers in heterogeneous informa-
tion systems as a distribution of viable answers com-
puted from di↵erent data source and value combina-
tions.

• We provide three summary statistics for the viable an-
swer distribution, consisting of: 1. key point statistics
with user defined confidence intervals; 2. high coverage
intervals to convey distribution shape information and
3. a stability measure for the aggregation.

• We provide algorithms to e�ciently extract the above
statistics, including 1. estimating point statistics using
sampling and ways to reduce sampling overhead while
keeping the confident intervals tight; 2. a fast, greedy
algorithm to extract hot areas; and 3. using a proba-
bilistic model to calculate stability scores without sim-
ulating source removal. Overall, we can support online
extraction of aggregation statistics.

• We describe our empirical study using real-life and syn-
thetic data sets, further verifying our theoretical and
algorithmic claims on e↵ectiveness and e�ciency.

The paper is organized as follows. We describe prelimi-
nary statistical methods applied in our solution in Section 2
and formalize the problem in Section 3. We present the tech-
nical details of the distribution estimate process and opti-
mizations in Section 4, the empirical study in Section 5, and
review related work in Section 6. We conclude in Section 7.

2. PRELIMINARIES
In this work we use lower case letters for scalars (e.g., a)

and typeset the sets (e.g., A); all other variables, including
random variables, are denoted by capital letters (e.g., A).

2.1 Bootstrap sampling and bagging
Bootstrap sampling, or bootstrapping, is a resampling

technique which combined with Bootstrap aggregating (bag-
ging) [7], can be used to improve the quality of an esti-
mate. The bootstrapping starts with an initial (small) sam-
ple set S

alg

sampled according to some sampling algorithm
alg. This set is then resampled according to alg to obtain
a set of bootstrapped sample sets S

boot

= {Bi

boot

} where
i = 1, 2, . . . , |S

boot

|. Next, an estimator is applied to each
set to obtain an ensemble of bootstrapped estimates E

boot

=
{Ei

boot

}. Bagging then approximates a more accurate esti-
mate with tighter confidence intervals by combining (e.g.,
averaging) this ensemble of estimates. For example, the me-
dian value of E

boot

can be used as the estimate of the mean
of the distribution. We use the above methods to estimate
the density of the viable answer distribution.

2.2 Kernel density estimation
Kernel density estimation (KDE) estimates the probabil-

ity density function (pdf) of a distribution using a sam-
ple set drawn from the distribution. We use kernel rather
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than histogram density estimation due to properties such as
smoothness, independence of parameters like bin size, and
because KDE often converges to the true density faster. It
works as follows: Let the sample set be S

alg

= {x
i

}, where
i = 1, 2, . . . , |S

alg

|. A sample point x
i

’s contribution to the
pdf is measured using a kernel function K(x�x

i

h

), where h
is the bandwidth. After kernels are applied to all x

i

’s, the

pdf is estimated by f(x) = 1
|S

alg

|h
P|S

alg

|
1 K(x�x

i

h

).

Among the various possible kernel functions, typically Gaus-

sian kernels K(x) = 1p
2⇡

e�
x

2

2 , are used for convenience
of theoretical analysis. Note that using a Gaussian kernel
makes no assumption that the data adheres to a Gaussian
distribution. The bandwidth parameter h controls the lo-
calness of a point’s impact on the distribution. A large h
results in a smooth density function, but is likely to under-
fit, whereas a small h fits better on the sample points but
is likely to over-fit. Selecting an appropriate h value is chal-
lenging but there are automatic methods for choosing the
value of h [6]. We use KDE to estimate the viable answer
density distribution.

2.3 Distance measures for distributions
Several distance measures exist for comparing and quan-

tifying the di↵erence between two distributions p and q. For

example, d
L2(p, q) =

qR
[p(x)� q(x)]2 dx is the L2 norm.

Also, d
Bh

(p, q) =
R p

p(x) q(x) dx is the Bhattacharyya dis-
tance measure [4] that uses the integral of point-wise prod-
uct of the two distributions.

In Section 4.4, we quantify the changes of the viable an-
swer distribution under di↵erent data source settings. As
we will see, the complexity of computing a distance measure
largely depends on the mathematical properties of the mea-
sure. Our analysis shows that stability scores measured by
d
L2 and d

Bh

, as defined above, can be computed e�ciently.

3. PROBLEM FORMALIZATION
Data sources in a heterogeneous information system may

vary significantly in terms of coverage, quality, and accuracy.
Regarding coverage, often a single data source provides in-
formation about a subset of the instances and a subset of the
object attributes. Therefore, data values relevant to an ag-
gregate query can be segmented across multiple sources in a
heterogeneous information system. Furthermore, as in [19],
the data sources can contain heterogeneity at three levels:
schema-level, instance-level, and value-level. Heterogeneity
at the schema-level and instance-levels means semantically
related content can be stored using di↵erent schema ele-
ments and structures, and represented by di↵erent instances.
At the value-level, depending on the source quality and ac-
curacy, the sources can have inconsistent, or even conflicting
data values for the same data points. In this work, similar
to [19], we focus on value-level heterogeneity. We assume
meta-information that describes the mappings and bindings
between data sources is available [25].

Figure 1 demonstrated an example scenario with four data
sources D1, . . . , D4, and their corresponding data instances.
As shown in the figure, the sources held di↵erent values for
the same data point, e.g., Vancouver on 06/11/2006. As
a consequence of the data value overlaps and inconsisten-
cies, the answer to aggregate queries, such as “Sum(Temp)”
for specific date ranges and locations, depends on the com-

−5 0 5 10 15 200

0.05

0.1

D
en
si
ty

v
−5 0 5 10 15 200

0.1

0.2

D
en
si
ty

Figure 2: Two distributions with the same mean
(5.0) and variance (5.0), but di↵erent shapes.

bination of data sources and instances that are selected.
Therefore, the answer to the aggregation is a distribution
of values, rather than a single scalar value. In order to show
which values are under consideration as answers, we use the
term “viable answer”. While the work in this paper does
not depend on the definition, for concreteness, we adopt the
definition from [25]:

Definition 1. [Viable answer]
Let D denote a set of data sources answering an aggre-

gation, and let v = agg(Z) be the aggregated value com-
puted from some Z ✓ D. Let V = {v

i

} be the set of aggre-
gated values from all possible source combinations. A viable
answer to an aggregation is a value in the interval W =
[inf(V), sup(V)] that adheres to type restrictions (e.g., inte-
ger) where inf and sup are infimum (greatest lower bound)
and supremum (smallest upper bound), respectively. 2

Note that this definition allows any value in the defined in-
terval, even if it does not correspond to the value produced
by any source combination [25]. Furthermore, we assume
prior knowledge regarding the coverage, quality and accu-
racy of the data sources is not available. Therefore, the
data sources selected for inclusion have equal importance,
but their contribution to the aggregate answer may not be
of equal amount. As a reminder, in [25] we randomly chose a
viable answer, which is inappropriate, both because it does
not explain the choice and the aggregate answer would fluc-
tuate upon reprocessing the query.

Definition 2. [Viable answer distribution] Let the ran-
dom variable X be the answer to an aggregate query whose
pdf is fD

X

(x) : W ! R. In this notation, the superscript D
denotes the source set used to compute the viable answer set.
We refer to fD

X

as the viable answer distribution.
2

Our objective, in this work, is to e�ciently sample the set
of viable answers, estimate a viable answer distribution, and
report informative statistical summaries that allow the user
to better understand the range of viable answers. Typi-
cally, the range of possible query answers are conveyed using
point estimates such as mean and variance. However, such
statistics are not informative when the shape of the density
function is unknown; distributions with di↵erent shapes can
have the same mean and variance but deliver very di↵erent
information (depicted in Figure 2).

We propose to use the following three statistics as sum-
maries of the viable answer distribution, and the answer
to aggregate queries in heterogeneous information systems:

1. Key point statistics: Include mean, variance, and skew-
ness of the viable answer distribution. These help users to
identify appropriate scalar values for aggregate answers.

2. High coverage intervals: Tell where the majority of
viable answers can be found. This is particularly useful
when the distribution is multi-modal (i.e., the distribu-
tion has a pdf with two or more significant peaks.)
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3. A stability measure: Tells how much the viable answer
distribution would change when updates happen or some
data sources become unavailable. It helps the heteroge-
neous information system to decide if a re-processing of
an aggregate query is necessary.

The above three statistics communicate semantic informa-
tion that enable the user to easily interpret and understand
the distribution. Specifically, the mean, variance and skew-
ness are standard measures most often desired in describing
a distribution. High coverage intervals fill the gap that the
point statistics are incapable of providing: “shape” informa-
tion about a distribution, which is especially useful when the
distribution is multi-modal. While the static behavior of the
answer distribution is described by the first two statistics,
the stability measure captures the update behavior of the
distribution.

Furthermore, to focus our work, we assume that the queries
that are being asked are aggregate queries. Specifically, we
consider sum, average, median, variance, and standard de-
viation. While our methods may work on other aggregate
functions, they were not our focus. We leave removing this
restriction as future work.

Algorithm 1: Overall algorithm for extracting statistics

input : (User specified) Query Q, Data sources D,
Confidence level 1� ↵, Desired coverage ✓.

input : (System parameters) Query processor QP ,
Initial sample size |S

uniS

| (400), #bootstrap
sample sets |S

boot

| (50), Bootstrap sample size
|Bi

boot

|(400), Distance measure d (d
L2).

output: Mean, variance, skewness point estimates
(µ,�2, �1), confidence intervals
(CI

µ

, CI
�

2 , CI
�1);

output: High coverage intervals (I, L, C);
output: Stability score for D Stab

d

.
begin1

// Unbiased sampling on viable answers.
S
uniS

= UniS(QP (Q),D, |S
uniS

|);2

// Bootstrap Sampling.

S
boot

= BootstrapSampling(S
uniS

, |S
boot

|, |Bi

boot

|);3

// Estimate point statistics.

(µ,�2, �1) = EstPointStatistics(S
boot

);4

// Estimate confidence intervals.

(CI
µ

, CI
�

2 , CI
�1) = EstCI(S

boot

, (µ,�2, �1),↵);5

// Estimate density function using KDE.

fD
X

= EstDensityFunction(S
boot

);6

// Obtain high coverage intervals.

(I, L, C)= GreedyAlgorithmCIO(fD
X

, ✓);7

// Obtain stability score.

Stab
d

= Stab(fD
X

, d);8

return Obtained viable answer statistics.9

end10

4. EXTRACTING ANSWER STATISTICS

4.1 Overview
Algorithm 1 describes the overall procedure for extracting

statistical summaries of the viable answer distribution. The
extraction of all three statistics share the uniS sampling and

bootstrap sampling steps. In the uniS sampling step (line 2)
a set of viable answers are sampled by processing the aggre-
gate query using values from di↵erent data sources. This is
the most expensive step. The answer set is then bootstrap
resampled (line 3). This enables the computation of point
statistics such as mean, variance and skewness (line 4) with
confidence intervals (line 5). The density estimation process
(line 6) is used for finding high coverage intervals (line 7)
and for stability analysis (line 8). We perform density es-
timation on sample sets rather than the entire data set to
ensure that the statistics extraction scales well.

Figure 3 shows the application of Algorithm 1 to obtain
answer statistics for the aggregation “Sum(Temp)” over the
data sources in Figure 1. Ideally we would prefer to have the
exact target viable answer distribution (shown in the top left
corner of the figure), however it does not scale well to get
this exact distribution. Instead we approximate using the
inputs, consisting of the query, data sources, and the map-
pings between the sources. The algorithm works as follows:
UniS sampling samples the data sources to obtain S

uniS

,
a set of viable answer samples, where |S

uniS

| = 400. Next,
this set is resampled to obtain a set of bootstrap sample sets
S
boot

= {Bi

boot

}, where |S
boot

| = 50 and |Bi

boot

| = 400, which
are then used to help obtain the 90% and 85% confidence in-
tervals for mean and standard deviation (stddev). After the
density function is estimated, Greedy algorithm CIO (Algo-
rithm 2) is used to obtain 3 intervals covering 34% of the
range of values, and approximately 90% of the estimated
probability distribution. Finally, a stability score of 6.6442
is computed for the query. The outputs of the algorithm are
shaded in grey.

In summary, the proposed methods e�ciently provide the
user with answer statistics that simplify the interpretation of
the range of viable answers. This is in contrast to ine�cient
methods that not only do not scale well, but also require the
user to examine and interpret the answers. Sections 4.2 –
4.4 , describe how the three statistics are extracted in detail.

4.2 Sampling and point statistics
We use the term component to indicate a data point that

an aggregate requires, e.g., in the climate data example in
the introduction, a component would be the temperature for
Vancouver on 06/11/2006. The process of sampling a viable
answer is: (1) find an assignment that determines the use of
values from data sources and (2) compute the answer using
the chosen assignments. We do not assume prior knowledge
regarding the quality, reliability, accuracy, and coverage of
the sources. In this context, to ensure correctness, the sam-
pling procedure must select the data sources uniformly and
independently to contribute to the aggregate.

We designed a sampling scheme called uniS that satis-
fies the above requirements. Let D = {D

i

} where i =
1, 2, . . . , |D| denote the data sources, C

i

be the set of com-
ponents on D

i

, and C be the set of all components needed
by the aggregate. UniS starts with an empty component
set T0 and an initial partial aggregate p0. Step i of uniS
uniformly selects one data source D

k

, and attempts to add
as many components in C

k

to the aggregate, i.e., it updates
T
i

= T
i�1 [ Ck

and p
i

with partial aggregate computed over
component set A

i

= {c | c 2 C
k

, c /2 T
i�1}. This process is

repeated until T = C or all n data sources have been vis-
ited. It then computes a final aggregate from the partial
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Statistics Value 

mean 8617.02 

stddev 1.84*10 
3 

skewness 2.02 

Confidence Interval 

0.9 mean: [8513, 8712] 

0.85 mean:[8521, 8710] 

0.9 stddev:[1.7, 1.97]*10 
3 

0.85 stddev:[1.77, 1.95]*10 
3 

(I = {intervals}, 
 L = 33.65%, 
C = 90.11%) 

Start 

UniS Sampling 

Bootstrap 
Sampling 

Estimate 
Density 

Function 
Stability 
Analysis 

Greedy 
Algorithm 

CIO 

Approximate by: 
Query, 

Data Sources, 
Source Mappings 

Stability Measure 
= 6.6442 

Ideal: viable answer distribution, 
prohibitively expensive to obtain 

Figure 3: Application of Algorithm 1 to extract statistics for “Sum(Temp)” over data sources in Figure 1.

aggregate and uses it as a viable answer sample. 1

Figure 4 shows an example scenario where uniS sampling
is applied to the sources in Figure 1 for an avg() aggregate
over C = {c1, . . . , c5}. It shows two di↵erent selection paths,
path(D1, D2, D4) and path(D2, D1, D4). Ti

is the set of cov-
ered components, p

i

is the incrementally maintained partial
aggregate. The arrows show the di↵erent selection paths for
T
i

and p
i

. For path(D1, D2, D4), the algorithm begins at
node D1 and uses all the components in D1. The remain-
ing two components c4 and c5 are sampled from sources D2

and D4, respectively. Note that same component, e.g, c1,
can have di↵erent values on di↵erent data sources. Hence,
using an alternative path, path(D2, D1, D4), yields a di↵er-
ent viable answer; since D2 is visited first, uniS takes both
components, c1 and c4, from D2.

D1 D2

D4D3

Node   Components
D1        {c1, c2, c3}
D2             {c1, c4}
D4                   {c1, c5}

Node  path(D1, D2, D4)
D1       T1={c1, c2, c3} p1=g(T1)
D2       T2=T1�{c1, c4} p2=g(p1, {c4})
D4           T3=T2�{c1, c5} p3=g(p2,{c5})
Node  path(D2, D1, D4)
D1       T1={c1, c4} p1=g(T1)
D2       T2=T1�{c1,c2,c3} p2=g(p1, {c2,c3})
D4           T3=T2�{c1, c5} p3=g(p2,{c5})

Figure 4: UniS sampling for selection paths of
{D1,D2,D4} and {D2,D1,D4}, where g = sum(), and
pi is the incrementally maintained partial aggregate.

Drawing a sample from possibly distributed data sources
involves processing an aggregate query with a randomly se-
lected value assignment. Although partial-final aggregates
helps to distribute the computational load of each aggrega-
tion, applying uniS to draw samples is still a costly oper-
ation. Thus, it is desirable to minimize |S

uniS

|. To this
end, we apply bootstrap resampling on the sampled viable

1As an example for partial-final aggregate, for final aggre-
gate avg(), the partial aggregate is sum().

answers to improve the confidence for point statistics such
as mean and variance. The three parameters: confidence
level 1 � ↵, confidence interval length denoted by len(CI),
and the sampling size |S

uniS

| are correlated to a↵ect the
computation of confidence intervals. Basically, the larger
the samples in the initial set, the higher the accuracy of
the point estimates and the confidence intervals. However,
to reduce computational costs, we start with a fixed initial
sample set and incrementally increase the size of this set
(i.e., perform uniS sampling). With each increment, we per-
form bootstrap resampling and assess the value of len(CI)
with the specified ↵. The procedure ends when the values
are satisfactory. Our implementation of bootstrapping uses
the standard BC

a

[13] method to obtain good quality con-
fidence intervals using small amount of initial samples.

4.3 High coverage intervals and optimization
To better understand how viable answers are distributed,

we estimate the viable answer distribution (Definition 2)
using KDE (Section 2.2). Specifically, we perform density
estimation for each bootstrap sample set and use the nor-
malized point-wise mean of all the estimates as the viable
answer distribution. Furthermore, we use two methods in
addition to standard KDE. The adaptive method described
in [6] automatically chooses the value of the bandwidth h de-
pending on the sample set. Bagging (Section 2.1) makes use
of the resampled set from bootstrapping. These methods
help obtain a density estimation that is both smooth and
stable, which is required to extract high coverage intervals
and compute stability scores.

We now describe an algorithm for extracting statistics
that convey shape information for fD

X

, the pdf estimated
by KDE.

Definition 3. [High coverage interval]
Given an estimated viable answer distribution fD

X

, and the
viable answer range W , a high coverage interval is a triple
(I, L, C), where I = {(I

i

, C
i

) : C
i

=
R
I

i

fD
X

(x)dx and

I
i

✓W}; C
i

is the coverage of I
i

. L =
P

i

|I
i

|
|W | is the fraction
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of the intervals’ total length to the viable answer range, and
C =

P
i

C
i

is the total coverage. 2

Definition 4. [Coverage interval optimization (CIO)]
Given a density function fD

X

for a distribution defined on a
finite range, a coverage threshold 0  ✓  1, and a constant
t representing the number of modes, the CIO problem finds
k intervals I1, I2, . . . , Ik where k  t, to minimize

P
k

i=1 |Ii|
subject to

P
k

i=1

R
I

i

fD
X

(x)dx � ✓. 2

We further note the following: First, the criterion of min-
imizing the total interval makes intuitive sense, e.g., the re-
ported high coverage intervals, whether in the weather, the
flight, or the stock exchange domain, should be as small as
possible. For example, in the flight domain, it is preferable
to have shorter rather than larger intervals for the departure
time of a certain flight. Second, the coverage threshold ✓,
conveys the percentage of information covered by the data
sources. The desired level can be defined by the user. Third,
for single mode distributions (e.g., a Gaussian), the optimal
solution is the classical 100% ⇤ ✓ confidence interval around
the mode. The coverage intervals are more useful and deliver
important information for multi-modal distributions.

Furthermore, note that k is not a given variable; the CIO
problem finds k intervals to minimize the total length of
the intervals returned, such that their coverage is above a
threshold. Larger coverage is obtained by selecting higher
modes. Motivated by this, we propose Algorithm 2 for the
extraction of high coverage intervals. The inputs to the al-
gorithm are the pdf fD

X

, the desired coverage ✓, and t modes
of fD

X

. 2 The algorithm works by greedily picking up new
intervals around the modes (lines 5–7) or extending previ-
ously picked intervals (lines 9–11) for the highest t�1 modes.
For the last mode, the interval is set to cover the average
amount of the additional coverage needed (lines 17,18). The
algorithm returns the obtained high coverage intervals if the
desired coverage is met or it has finished searching all the t
modes. Our formal analysis of the greedy algorithm relies
on the following theorem.

Theorem 4.1 (CIO mode containment property).
If the probability density function fD

X

of a distribution (1)
has t modes and (2) is second-order di↵erentiable every-
where on its range, and the optimal solution for CIO has
k  t intervals, then the largest k modes are contained by
the k intervals in the optimal solution.

Proof If an optimal solution for CIO has k intervals, but
the i-th largest mode (x

i

, fD
X

(x
i

)), i  k is not in the optimal
solution, then there must exist an interval I

j

for which any
point x 2 I

j

satisfies fD
X

(x) < fD
X

(x
i

); therefore we can
construct a new interval around x

i

and improve the previous
result. 2

If the conditions in Theorem 4.1 are satisfied, then the
algorithm returns an optimal CIO solution. Otherwise, the
greedy algorithm returns an approximation. There are two
scenarios for an approximation: (1) the returned intervals
may not reach the desired coverage, and (2) optimally choos-
ing the next interval to extend coverage requires picking the
I
j

that has the minimal |fD
X

0
(x+/�

t

)| (i.e., the largest incre-
mental on coverage).
2Because fD

X

is one-dimensional, the modes are easily com-
puted numerically. We omit details on mode seeking.

Algorithm 2: Greedy algorithm CIO

input : Estimated density function fD
X

over range W
input : Desired coverage ✓
input : A set M = {(x

i

,m
i

)} containing t modes of
fD
X

output: High coverage intervals (I, L, C)
begin1

C  0.0; i 1; array s; ⌦ ;;2

Sort M by m
i

in descending order;3

while C < ✓, i  (t� 1) do4

x�
i

 largest x s.t. x < x
i

, fD
X

(x) = m
i+1;5

x+
i

 smallest x s.t. x > x
i

, fD
X

(x) = m
i+1;6

s[i] (x�
i

, x+
i

); ⌦ ⌦ [ s[i]; C  
R
⌦
fD
X

(x)dx;7

j  1;
while C  ✓ do8

x�
j

 largest x s.t. x < x
j

, fD
X

(x) = m
i+1;9

x+
j

 smallest x s.t. x > x
j

, fD
X

(x) = m
i+1;10

s[j] (x�
j

, x+
j

); ⌦ ⌦ [ s[j];11

C  
R
⌦
fD
X

(x)dx;
j  j + 1;12

end13

i i+ 1;14

end15

if C  ✓ then16

Find (x�
t

, x+
t

) s.t. x�
t

< x
t

< x+
t

,17
R

x

+
t

x

�
t

fD
X

(x)dx = 1
t

(✓ � C);

s[t] (x�
t

, x+
t

); ⌦ ⌦ [ s[t]; C  
R
⌦
fD
X

(x)dx;18

end19

Let !1..!k

be disjoint intervals s.t.
S

k

1 !i

= ⌦;20

foreach !
i

do21

C
i

=
R
!

i

fD
X

(x)dx;22

end23

I  {(!
i

, C
i

)}; L 
P

k

1 |!i

|/|W |;24

return (I, L, C);25

end26

Obtaining an optimal solution in the above cases requires
knowing the first derivative of the density function every-
where, which will bring a substantial cost to the computa-
tional overhead. Therefore, we decided to use an approxi-
mate answer. Another reason for not pursuing the full op-
timal solution is that the density function itself is an esti-
mation, and thus has a built-in error. Our empirical study
suggests that the greedy algorithm gives a good approxima-
tion, and more importantly for query processing, it is fast
and scalable.

While the above CIO setting is useful in many situations,
the dual of CIO is desired when we are constrained to a
pre-determined interval length and asked to return the best
possible coverage.

Definition 5. [Dual of CIO]
The dual problem of CIO optimizes the selection of inter-

vals to maximize the coverage. The optimization maximizesP
k

i=1

R
I

i

fD
X

(x)dx subject to
P

k

i=1 |Ii| = �, where � is a
user-specified parameter. 2

The greedy algorithm can be easily modified for the dual
of CIO by modifying the termination criteria to check if the
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(a) (b) (c)

Figure 5: Finding high coverage intervals (Algo-
rithm 2).

total length of the current set of intervals exceeds length �
and return the size of the covered region.

Figure 5 shows how the high coverage intervals are found
for a pdf with 3 modes: the greedy algorithm starts from the
highest mode and extends the coverage to lower modes until
the coverage of the currently discovered intervals meets the
coverage requirement. Eventually 3 intervals are reported.

The returned intervals deliver important information about
the aggregation answers. For a fixed coverage ✓ (e.g., 0.9)
and a single mode distribution, if the returned interval length
is small, it means that di↵erent combinations of sources re-
sult in similar aggregation answers. It often indicates that
the user can be quite confident of the returned answer. How-
ever, we still need to be careful to correctly interpret the
result. A small interval length does not necessarily mean
that all sources are holding the same value for the same
component. It can be the case that the values of some com-
ponents dominate others. For example, some components
are significantly larger than others in a sum aggregation.

Additionally, high coverage intervals can be applied in un-
certain and probabilistic databases [22]. Such databases rep-
resent an attribute as a set of value and probability pairs,
att = {(A,Pr(A))}, where A represents the range of possi-
ble values and Pr(A) the probability. High coverage inter-
vals can be used to produce normalized probability measures
att = (I

i

, C

i

C

), or simply att = (I
i

, C
i

), for these databases.

4.4 The stability score for query answers
The point statistics and high coverage intervals provide

static information on how viable answers are distributed.
However, most heterogeneous information systems, such as
PDMSs, are dynamic and data sources may freely leave. One
natural question is how to keep aggregate answer statistics
up-to-date given that the departure of data sources will af-
fect the aggregate answer distribution. To answer this ques-
tion, we define the stability of the aggregate query.

Stability measures the amount of change caused in the
viable answer distribution when some of the sources are re-
moved. It can be quantified as the distance measure be-
tween the viable answer distribution without and with some
sources removed. Given a number of data sources to be
removed r, we randomly remove a set Q of size r from D
and denote the resulting viable answer distribution by f

D\Q
X

.
We use the distance measures introduced in Section 2.3 to
quantify the di↵erence between the two distributions. Let
S
uniS

= {x
i

}, be the sampled viable set, with regard to all
the sources D, and uniS sampling.

Definition 6. [Stability score of an aggregation] Let G
be the set of all possible choices for removing r sources from
D, and Pr(Q) be the probability of choosing (a particular) Q
with size r. Given S

uniS

, we define the stability score of the

aggregation as

Stab

d

(S
uniS

)
.

= � log
⇣
E[d(fD

X

, f

D\Q
X

)]
⌘

= � log

0

@
X

Q2G
Pr(Q)d(fD

X

, f

D\Q
X

)

1

A
(4.1)

where E denotes expectation and d is a distance measure. 2

Note that fD
X

is a constant distribution; however, random
removal of r sources results in random distributions f

D\Q
X

,

and subsequently random values for d(fD
X

, f
D\Q
X

). We use
the expectation of the di↵erence between the two distribu-
tions, E[d(fD

X

, f
D\Q
X

)], as the stability measure for the an-
swer distribution. We use the negative logarithmic over the
expected distribution di↵erence as the stability score so that
a higher value indicates a higher stability score, i.e., that the
viable answer distribution is expected to change less against
data source changes.

Furthermore, note that we do not need to enumerate or
choose Q, and explicitly compute fD\Q

X

; this is just for anal-
ysis. The computation of the L2

2 stability score does not rely
on it (Section 2.3).

When additional knowledge regarding the likelihood of
the departure of sources is not available, we apply an equal
chance assumption on data source removals, where Pr(Q) =

1/(|D|
r

) is constant given r. Another assumption needed for
stability analysis is that the number of data sources to be
removed is small i.e., r ⌧ |D|. This assumption is viable, be-
cause when the number is large, the system will re-evaluate
all the queries regardless of the stability scores. A key ben-
efit to the stability analysis is that it helps prioritize which
queries need updating when sources are updated with new
values.

Now we describe how to compute the stability score. Given
S
uniS

= {x
i

}, the sampled viable set, the answer distri-

bution is estimated by fD
X

(x) = 1
|S

uniS

|h
P|S

uniS

|
i=1 K(x�x

i

h

)

(Section 4.2). LetRQ be the set of sample points that belong
to the removed sources Q. To estimate the new distribution,
we need to exclude the points in RQ

f

D\Q
X

(x) =
1

(n� |RQ|)h
X

x

i

/2RQ

K(
x� x

i

h

)

=
n

n� |RQ|
f

D
X

(x)�
1

(n� |RQ|)h
X

x

i

2RQ

K(
x� x

i

h

)

(4.2)

where n = |S
uniS

|. The first term with fD
X

(x) is constant
given a query, but the second term changes with di↵erent
choices of RQ.

We show in Theorem 4.2 that under the equal chance as-
sumption for source removals, stability score can be obtained
analytically for the L2 distance measure.

Theorem 4.2 (L2 stability score). Given S
uniS

, its
L2

2 stability score

Stab

L2 (SuniS

) = �
1

2
log

✓
1

2nh
p
⇡

⇤
c

r

1� c

r

(1�
2

n(n� 1)
 )

◆

(4.3)
where n = |S

uniS

|, h is the bandwidth parameter of the
Gaussian kernel, the change ratio is estimated by c

r

= 1 �
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(1 � y

|D| )
r, with y defined as the average number of sources

needed for an answer, and the mutual impact factor is  =P
i,j

e�(x
i

�x

j

)2/4h2
.

The proof to Theorem 4.2 is in Appendix A. This greatly
reduces the computational overhead for the stability score.
It eliminates the need of simulating source removal in order
to compute a stability score.

We treat the change of viable answers due to data source
removals as a random variable. The L2 stability score is an
estimator of the expectation of this random variable. We
can also assess its 2nd moment, which gives the variance.
To do this, we use the Bhattacharyya distance d

Bh

, as the
distribution di↵erence measure and compute the stability

score for the square of the viable answer distribution
�
fD
X

�2
.

Corollary 4.1 shows that this score can also be computed
without source removal simulation.

Corollary 4.1. Given S
uniS

, with n, h, and  as de-
fined in Theorem 4.2, the Bh (Bhattacharyya distance) sta-
bility score over the square of the viable answer distribution,
is

Stab

Bh

(S
uniS

) = � log(
1

2nh
p
⇡

+
1

n

2
h

p
⇡

 ) (4.4)

Proving the corollary requires the same technique for The-
orem 4.2 (in Appendix A). Since the expectation of the

density f
D\Q
X

is just fD
X

, simple calculation by changing the
order of expectation and summation, the result follows.

The stability score measures the likelihood of changes to
query answers along with data source availability and up-
dates. It can be used to prioritize the re-evaluation and
update of queries, especially in a scenario where multiple
continuous queries are managed. Note that the system needs
to maintain neither the sampled viable answers nor the den-
sity estimation. A priority queue of the stability scores for
the continuous queries is su�cient for maintenance.

5. EMPIRICAL STUDY
Dataset: We empirically tested the extraction of aggre-

gate statistics using synthetic and real-life datasets. The
synthetic tests allowed us to scale various parameters to
verify the observations and predictions made in the anal-
ysis. For the real-life data, we experimented with Canadian
climate data [8]. This archive contains o�cial weather obser-
vations from stations located across Canada. The stations
report hourly, daily, and monthly data measurements for
attributes including, but not limited to: mean temperature,
maximum temperature, total rainfall, total snow, direction
of maximum gust, and total precipitation. Not all of the
data is quality controlled. Furthermore, the sources may
have missing values for some attributes, which typically im-
plies the data had not been observed. In addition to the web
interface, the data can be downloaded in XML or CSV for-
mat. We used the monthly climate data for the year 2006,
from 1672 stations measuring climate data for 104 districts.
Tables 1 and 2 summarize our data sets.

Aggregate Query: The query we use in all experiments
sums temperature climate data over 500 components from
the di↵erent data sets in Table 1 (|C| = 500).

Settings: The algorithms were implemented in Matlab
version 7.6.0 and the experiments were run on a PC with
2.5GHz Intel Core 2 duo CPU.

Data Notes Parameters
D2 A mixture of four Gaus-

sians
µ 2 [10, 20], [25, 35],
[40, 50], [55, 65], � = 0.5,
weight = 12 : 5 : 2 : 1

D3 A mixture of Gaussians,
Cauchy and Gamma

µ 2 [10, 20],
� = 1,1, 1

C (Real-life) Monthly cli-
mate data 2006

1672 stations, 104 mea-
suring districts

Table 1: Data set details

Parameter Symbol Default
#Data sources |D| 100
Aggregation size |C| 500
uniS sample size |S

uniS

| 400
#Bootstrap sample sets |S

boot

| 50
Bootstrap sample size |Bi

boot

| |S
uniS

|
Confidence level 1� ↵ 90%

Table 2: Parameters in empirical study

5.1 Sampling and bootstrap improvements
Table 3 shows the improvements that are obtained by us-

ing the bootstrap method compared to direct inference. In
particular, we report improvements in deriving tight con-
fidence intervals for point statistics, and on savings of the
required sample size. These experiments were conducted on
dataset D2.

In Table 3, the confidence interval length from direct in-
ference denoted by len(CI

di

), is used as the baseline for
each individual sampling. We report the maximal and av-
erage improvements using an improvement ratio defined as
i
r

= len(CI

di

)
len(CI

boot

) , where len(CI
boot

) is the confidence inter-
val length from bootstrapping. Smaller confidence intervals
represent more reliable estimates; thus, greater values of i

r

show bootstrapping achieves better performance. We can
see that by using bootstrap sampling (with BC

a

) with sam-
ple sizes of 200 and 400, the average improvement ratio is
approximately 2, which shows confidence intervals returned
by bootstrapping are half of that guaranteed by direct infer-
ence method. They are 3 to 4 times tighter when the sample
size is small (200).

Table 3 also shows the savings on the required sample size
in order to reach the confidence interval achieved by using
the bootstrap method. Similar to the improvement ratio
for Table 3, the tighter confidence intervals are translated
to the savings on the required size of samples if the same
confidence interval length that bootstrapping reports needs
to be achieved with direct inference. Hence the saving ra-
tio is defined as s

r

= |S
di

|
|S

uniS

| where |S
di

| is the sample size

that direct inference needs, and |S
uniS

| is the initial sam-
ple size that bootstrapping uses. We can see from Table 3
that the average savings on the sample size is about a factor
of 4. The results indicate that the confidence interval re-
ported with bootstrap sampling is much tighter than using
direct inference especially when the theoretical upper-bound
of variance is large.

5.2 High coverage intervals
We present the results of high coverage intervals detected

for 4 sum aggregations S1 to S4 where S1, and S2 sum cli-
mate data in C and S3 and S4 sum values generated in
D3. Figure 7 shows that the viable answer distributions for
the 4 aggregates are multi-modal, and when components in
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|SuniS| 1�↵ max ir avg ir max sr avg sr
200 0.8 4.248 2.556 18.1 7.36
200 0.9 3.309 2.119 10.96 4.84
400 0.8 2.896 2.001 8.39 4.28
400 0.9 2.293 1.655 5.26 2.82

Table 3: Bootstrapping improves confidence inter-
vals and the savings on required sample size.

Fig Greedy Optimal Cover Greedy/Optimal
a 0.2272 0.2272 85.72% 1.0
b 0.2475 0.2475 85.44% 1.0
c 0.3764 0.2724 73.82% 1.38
d 0.5552 0.5150 92.12% 1.08

Table 4: Approximation ratio of the CIO algorithm

the aggregation are di↵erently distributed, the viable an-
swer distribution has di↵erent modes (7 modes in Figure 7.c
compared to 8 in Figure 7.d).

By returning intervals in “dense” areas, the intervals cover
a small percentage of the range of data (under 25% for S1, S2

with 2 modes, 37% for S3 with 7 modes) to cover the major-
ity of the distribution. The mean of all 4 is in the central flat
area; expanding confidence intervals centering at the distri-
bution’s mean will result in very large confidence intervals.

Table 4 compares the performance of the greedy algorithm
with an optimal method that slices the range of the density
function uniformly into 4096 pieces and sums the top t slices
that cover the desired probability measure. The greedy ap-
proximation is better if the“Greedy/Optimal”value is closer
to 1.0 (it is always � 1.0). Note that although the optimal
method is more likely to return “tighter’ intervals , it does
not guarantee the continuity of the returned intervals; thus
we used the greedy method in our solution.

5.3 Stability
We designed a simulation process to test the e↵ectiveness

and sensitivity of the L2 stability score. We used the same
aggregations as Section 5.2. The simulation worked as fol-
lows: we deleted one data source from the 100 sources and
drew samples from viable answers that are computable from
the remaining 99 sources (e.g., for climate data set, it is 1
out of 104 reporting districts). We recorded the means of the
viable answers computed from 99 data sources (103 sources
for climate data set). The deviation maps in Figure 8 corre-
spond to the four distributions in Figure 7. They show the
changes on the sample means when di↵erent data sources are
disabled. For each circular graph, the center is the mean µD

of the viable distribution when no data source is removed;
the points represent the means µD\Q of the viable answer
distribution when di↵erent data sources are removed. The
distance between the data points and the center is defined

as d = |µD\Q�µ

D|
µ

D .
Comparing the four deviation maps in Figure 8, we can see

that answer distributions that have a higher stability score
are more “stable”, as demonstrated by the fact that the vi-
able distribution means are more densely populated around
the center. Note that the L2 stability does not directly as-
sess the change of distribution means. For example, Fig-
ure 2 suggests that two distributions with large di↵erences
may have the same mean. We observed this as a consis-
tent trend in our empirical study. While we can confirm

that queries with higher L2 stability scores are more sta-
ble, we are not yet able to answer questions like “Will the
mean of viable answers shift for more than 10% for a query
with score 6.3?” Our suggested use of the stability score is
for prioritizing updating of queries by re-evaluating queries
with lower stability scores. We plan to focus our future work
on deeper evaluation of similarity scores and stability scores
when more than one source is removed.

5.4 Processing overhead of operations
Figure 6 reports the execution times of three of the main

operations consisting of bootstrap re-sampling, KDE, and
greedy CIO algorithm. The time for computing stability
scores is negligible and has been discarded (200 iterations re-
quired less than a millisecond). Networking overhead times
have also been ignored.

As indicated by Figure 6, KDE dominates the processing
overhead of the operations. In the experiments, we use 50
bootstrap sample sets with di↵erent sizes. The bootstrap-
ping time increases with the sample size but takes less than
3/50 = 60ms per run. KDE takes about 5 seconds on 50
sample sets of size 800. The greedy CIO algorithm running
time is constant as the sample size increases, since a density
function with constant number of 4096 points, is used. We
estimate the time needed for computing one viable answer
to be 200ms, which is optimistic since sampling over a dis-
tributed hierarchy usually takes up to several seconds when
the networking overhead is considered. Therefore, sampling
the viable answers dominates the overall time needed for
sampling and extracting statistics (e.g., 80 seconds in sam-
pling and 5 seconds to extract statistics). This suggests that
our technique is fast and further optimizations should focus
on more e�cient aggregate computation.

Figure 6: Time breakdown of operations.

6. RELATED WORK
Data integration is concerned with increasing the coverage

of data, and with representing it concisely and accurately [5,
11]. The first objective is typically realized by adding more
sources. However, it is argued in [12] that“the more the bet-
ter” is not always true for integration; obtaining, cleaning,
and integrating data can be costly. Furthermore, adding
low-quality sources can deteriorate integration quality. In-
stead, [12] proposes to balance integration cost and gain by
selecting a subset of the sources wisely. Our sampling algo-
rithm can be extended with similar ideas.

To realize the second objective, concise and accurate data
representation, heterogeneity across data sources must be
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Figure 7: Multi-modal distributions and high coverage intervals
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Figure 8: Deviations of empirical means when a single data source is disabled. Numbers indicate the rel-
ative distance (0.02 = 2%) from the center. Higher stability scores correspond to figures that have denser
distributions around the center.

resolved. As previously mentioned, [19] divides heterogene-
ity in heterogeneous information systems in three levels:
schema (determining which schema elements correspond to
each other), instance (determining which data instances cor-
respond to each other), and value (given conflicting values
for corresponding instances, choose which one to use). Our
work focuses on the third objective. Data fusion [5, 11],
also works on the third objective. It assumes a single true
value for each component in a data set, and attempts to re-
solve value conflicts among the sources. In [18] information
conflicts are resolved by estimating the reliability of sources
and truth values in a joint inference on data with heteroge-
neous types. In our work, however, do not assume a single
true value for components; instead we report a range of pos-
sible answers and aim to increase the users understanding
and confidence in the reported results. In [19] the truthful-
ness of data on the Deep web, in particular, the flight and
stock domain, is studied. In both domains, large amounts
of redundancy and inconsistency at the data value level are
observed. Furthermore, state of the art data fusion meth-
ods are also compared to resolve conflicts and estimate true
values. Semantic ambiguity, out-of-date data, and pure er-
rors are identified as reasons for inconsistent values across
the sources. Semantic ambiguity, one the major reasons for
value inconsistency, results from di↵erent semantics applied
by the sources for the attributes they store. For example,
one source may compute a statistic of the data over a year-
long period, another may compute the same statistic over
a half-year period. Both computations are correct with re-
gard to the semantics applied; hence multiple true values
are possible [19].

Substantial previous work on combining conflicting data
values from multiple sources comes from wireless sensor net-
work research [10, 15, 20, 21]. In a sensor network, sensor
motes form an ad-hoc network and collaborate to transmit

their sensor probe readings to a centralized repository that
is usually beyond the range of a single mote. This is per-
formed by transmitting data in a hierarchical aggregate net-
work rooted at the central repository. Although the hier-
archical aggregate network in our case has a lot in common
with sensor networks, the operations are essentially di↵erent.
The aggregate queries we process usually request a (small)
part of data maintained in the distributed data sources; in
the sensor network case, sensor motes have to upload all
their data to the central repository. This results in di↵erent
optimizations. We face the source combinatorial explosion
and use sampling to make estimations, while a sensor net-
work optimizes routing, transmission cost and seeks load
balancing among battery powered sensor motes. In [23], the
authors described a protocol to adaptively request data from
remote sensors over time so as to control the error of approx-
imate answers, while our work focuses on the snapshots of
answer distributions when an aggregation is processed. The
stability score helps maintain continuous queries but is not
a direct approximation measure for a query.

In [14] a method to e�ciently compute probability dis-
tribution functions in probabilistic databases, is proposed.
While using such techniques could eliminate the need for
sampling in many cases, in our scenario one of the goals is
to reduce the need for data to be gathered from the dis-
tributed sources. Since we do not assume that we control
the individual sources, we cannot ensure that they have the
capabilities proposed in [14].

Research in databases with uncertainty, like our work,
covers contexts that do not have one true answer. Vari-
ous models exist, including uncertain databases [22], pos-
sibilistic [24] and probabilistic [16] databases, inconsistent
databases [3]. Similarly, in data exchange, aggregate seman-
tics with possible worlds [2] is discussed — there are many
possible values that must be considered to find“the answer”.
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Among the various models, the uncertain database [22] is
closest to our setting: it also uses the relational model and
the value of an attribute is a discrete distribution with pos-
itive probability on a finite set of values. This is similar
to our setting, where the values from di↵erent data sources
are transformed into values in a distribution. In [22] the
authors discussed processing aggregate queries on uncertain
databases where aggregates uses expectations of values in
computation. Their work avoids the combinatorial explo-
sion simply by disallowing exhaustive aggregates and does
not give information about the viable answer distribution.
In our semantic integration setting, computing the expec-
tation of all component values is impractical as it requires
collecting all single values from all data sources. Also, in
our stability model, removal of one source will result in in-
validating all components’ values on that source. Therefore,
these techniques cannot be applied to processing aggregates
and providing distribution information.

7. CONCLUSION AND FUTURE WORK
This paper proposed our solution for estimating the distri-

bution statistics for viable answers to aggregate queries in
integration settings. Our technique extracts essential dis-
tribution statistics, returns intervals where aggregate an-
swers have a high chance to be covered, and provides nu-
merical stability scores for aggregate queries. We optimized
the computation of the desired statistics using sampling and
bootstrapping to minimize the sampling overhead and im-
proved the confidence interval for point estimates of mean
and variance. The greedy algorithm computes high coverage
intervals quickly and provides good approximations. Our
analysis enables the computation of stability scores without
simulating source removal. All the optimizations allow the
answer distribution estimation techniques described in this
paper to be used with a query processing engine.

The stability analysis is the beginning of our investigation
on monitoring query answers against changes in the data
sources. We will try to establish links between the actual
changes on aggregate answers and the stability score values
as future work. In addition, the current uniS sampling algo-
rithm assumes equal importance for the sources and samples
them uniformly and independently. However, the sources
may have di↵erent levels of quality and coverage. Future
work should consider some notion of provenance. Further-
more, uniS is greedy. While this means that the sampling
is not uniform on all viable answers, its speed may be an
advantage. In addition, uniS can be fully parallelized as
samples are obtained independently. Future work should
examine how the algorithm scales when parallelized.

Another future direction, is to make inferences regard-
ing the data and the sources based on the non-normality
of the estimated viable answer distribution. In particular,
the viable answer distribution can be used to diagnose pos-
sible errors in the data. Multi-modal distributions can in-
dicate possible mapping problems in data integration. For
example, the second high coverage interval in Figure 7 (a)
is caused by combining supposedly cleaned data sets that
incorrectly had values in both Fahrenheit and Celsius. Our
work can be extended to help automatically detect such er-
rors. Furthermore, using data stratification we can identify
homogeneous data sources that apply similar semantics in
their computations.
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APPENDIX
A. PROOF OF THEOREM 4.2

Proving Theorem 4.2 requires first some background discussion
on the product of two Gaussians (Section A.1) and then comput-
ing the integral of the square of the density estimation function
(Section A.2)

A.1 The product of two Gaussians
Let f1(x) ⇠ N (µ1,�

2) and f2(x) ⇠ N (µ2,�
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A.2 The integral of the square of the density
function:

With the preparation in Appendix A.1, we can compute the
summation of the square of the density estimation function. Re-
call in KDE using Gaussian kernel, the density function is es-
timated as f(x) = 1
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), where n is the size of the
sample set. We now expand the integral on the square of the
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Switching the integral and summation in Equation (A.4), it is

is simplified to
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We can see that the integral (↵) is a function over all the data
points.

Now recall the stability analysis using the square d
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and thus the stability score formula in Theorem 4.2 follows.
We can see that the distance is related to the viable answer

distribution, f

D
X

, and the average fraction of a↵ected answers
when some sources are removed. Also it is easy to verify that
when all the data points coincide, the distance is 0, i.e., most
stable (the corresponding stability score is 1).

Now we assess how many answers are likely to be a↵ected when
r sources are removed from a total of |D| data sources. This
number relates to the number of data sources required for an
answer. Suppose on average we need y (also called the weight) out
of |D| data sources for a viable answer; then an estimate for the

fraction that got a↵ected is c

r

=
(
|D|
y

)�(
|D|�r

y

)

(
|D|
y

)
. We acknowledge

that not all y combinations are answers to the query but this is
still a good estimate when information regarding the coverage of
the sources is not available. Moreover, the weight itself includes
some of this information. The larger the average source coverage
for components, the smaller the value of y.

Another way is to estimate the expected number of samples
that become invalid when r sources are randomly removed This
can be done by simulation with the sample set or using c

r

= 1�
(1� y

|D| )
r which assumes that data sources uniformly contribute

to aggregate answers. This completes the proof of Theorem 4.2.
In the proof we use the property of Gaussian distributions

which limits the choice of kernel in KDE to Gaussian kernels.
We note here that from the perspective of convergence, when the
sample sizes increases, using any kernel will converge to the true
distribution; thus the expectation of the changes computed here
should also converge. Therefore if using any other kernels would
make any di↵erence, the divergence is from KDE, but it does not
impact the stability analysis.
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ABSTRACT
Partial periodic patterns are an important class of regular-
ities that exist in a time series. A key property of these
patterns is that they can start, stop, and restart anywhere
within a series. We classify partial periodic patterns into
two types: (i) regular patterns − patterns exhibiting pe-
riodic behavior throughout a series with some exceptions
and (ii) recurring patterns − patterns exhibiting periodic
behavior only for particular time intervals within a series.
Past studies on partial periodic search have been primar-
ily focused on finding regular patterns. One cannot ignore
the knowledge pertaining to recurring patterns. This is be-
cause they provide useful information pertaining to seasonal
or temporal associations between events. Finding recurring
patterns is a non-trivial task because of two main reasons.
(i) Each recurring pattern is associated with temporal infor-
mation pertaining to its durations of periodic appearances
in a series. Obtaining this information is challenging be-
cause the information can vary within and across patterns.
(ii) Finding all recurring patterns is a computationally ex-
pensive process since they do not satisfy the anti-monotonic
property. In this paper, we propose recurring pattern model
by addressing the above issues. We also propose Recurring
Pattern growth algorithm along with an efficient pruning
technique to discover these patterns. Experimental results
show that recurring patterns can be useful and that our al-
gorithm is efficient.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications -
Data Mining.

General Terms
Algorithms

Keywords
Data mining, periodic pattern mining, time series
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1. INTRODUCTION
A time series is a collection of events obtained from se-

quential measurements over time. Periodic pattern mining
involves finding all patterns that exhibit either complete or
partial cyclic repetitions in a time series. Past studies on
partial periodic search have been focused on finding reg-
ular patterns, i.e., patterns exhibiting either complete or
partial cyclic repetitions throughout a series [1, 2, 3, 4,
5, 6, 7, 8, 9]. An example regular pattern of {Bat,Ball}
states that customers have been purchasing items ‘Bat’ and
‘Ball’ almost every day throughout the year. A useful re-
lated type of partial periodic pattern is recurring patterns,
i.e., patterns exhibiting cyclic repetitions only for particular
time intervals within a series. An example recurring pat-
tern of {Jackets,Gloves} states that customers have often
purchased ‘Jackets’ and ‘Gloves’ from 10-October-2012 to
26-February-2013 and from 2-November-2013 to 2-March-
2014. The purpose of this paper is to discover recurring
patterns by addressing mining challenges.

Recurring patterns are ubiquitous in very large datasets.
In many real-world applications, they can provide useful in-
formation pertaining to seasonal or temporal associations
between items. In retail, a user may be interested in deter-
mining seasonal purchases for efficient inventory manage-
ment. Similarly, a social network data analyst may be inter-
ested in obtaining temporal information pertaining to bursts
of hashtags, such as #earthquakes, #radiation and #floods.
Also, an expert in the health-care sector may be interested
in finding seasonal diseases in a geographical location. To
improve web site design and administration, an adminis-
trator may be interested in obtaining temporal information
of heavily visited web pages. In the stock market, the set
of high stocks indices that rise periodically for a particular
time interval may be of special interest to companies and
individuals. In a computer network, an administrator may
be interested in finding high severity events (e.g. cascading
failure) against regular routine events (e.g. data backup).

Unfortunately, finding recurring patterns is a non-trivial
task because of the following reasons.

1. Each recurring pattern is associated with temporal in-
formation pertaining to its durations of periodic ap-
pearances within the data. Obtaining this information
is challenging because the information can vary within
and across patterns.

2. Most current periodic pattern mining approaches take
into account a time series as a symbolic sequence; there-
fore, they do not take into account the actual temporal
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information of events.

3. Recurring patterns do not satisfy the anti-monotonic
property. That is, all non-empty subsets of a recurring
pattern may not be recurring patterns. This increases
the search space, which in turn increases the computa-
tional cost of finding these patterns. Therefore, devel-
oping efficient pruning techniques to reduce the search
space is challenging.

4. Since regular patterns exhibit periodic behavior through-
out a series with some exceptions, regular pattern min-
ing algorithms do not obtain temporal information per-
taining to the durations of periodic appearances of a
pattern within the series. As a result, these algorithms
cannot be extended for finding recurring patterns.

5. In real-life, recurring patterns involving rare items can
be interesting to users. For example, the knowledge
pertaining to rare events, such as cascading failures,
are more important than regular events for a network
administrator. However, finding such patterns is diffi-
cult since rare items appear infrequently in the data.
Classifying items into frequent or rare is subjective and
depends on the user and/or application requirements.

In this paper, we propose a model that addresses all the
above-mentioned issues while finding recurring patterns. In
particular, our model takes into account time series as a
time-based sequence and models it as a transactional database
with transactions ordered in respect to a particular times-
tamp (without loss of generality). Our model consists of
three novel measures, periodic-support, periodic-interval and
recurrence, to determine the dynamic periodic behavior of
recurring patterns. Periodic-support determines the num-
ber of consecutive cyclic repetitions of a pattern in a subset
of data. Periodic-interval determines the time interval (or
window) pertaining to the periodic appearances of a pattern
within a series. Recurrence determines the number of in-
teresting periodic intervals of a pattern. Finally, we propose
a pattern-growth algorithm along with an efficient prun-
ing technique to discover recurring patterns effectively. We
call our algorithm recurring pattern-growth (RP-growth).
Experimental results show that RP-growth is efficient and
recurring patterns can provide useful information in many
real-life applications.
The rest of the paper is organized as follows. Section 2

describes related work on mining periodic patterns. Sec-
tion 3 introduces our model of recurring patterns. Section 4
presents RP-growth. Sections 5 reports on the experimental
results. Finally, Section 6 concludes the paper with future
research directions.

2. RELATED WORK
Since the introduction of partial periodic patterns [5], the

problem of finding these patterns has received a great deal
of attention [6, 8, 10, 11, 12]. The model used in all these
studies, however, remains the same. That is, it takes into
account a time series as a symbolic sequence and finds all
patterns using the following two steps:

1. Partition the symbolic sequence into distinct subsets
(or period-segments) of a fixed length (or period).

2. Discover all partial periodic patterns that satisfy the
user-defined minimum support (minSup), which con-
trols the minimum number of period-segments that a
pattern must cover though the sequence.

A major limitation of the above studies is that they do
not take into account the actual temporal information of
the events within a sequence. To address this issue, Ma
and Hellerstein [7] modeled a time series as a time-based
sequence and proposed a model to discover a class of partial
periodic patterns known as p-patterns. In this model, a
pattern is considered partial periodic if its number of peri-
odic appearances throughout the sequence satisfies the user-
defined minSup. It should be noted that the concept of
minSup is not the same in both frequent pattern mining and
partial periodic pattern mining. In frequent pattern min-
ing, minSup controls the minimum number of appearances
of a pattern throughout the data. However, in partial peri-
odic pattern mining, minSup controls the minimum number
of periodic appearances (or cyclic repetitions) of a pattern
throughout the data. Thus, the partial periodic patterns
discovered in all the above studies [6, 8, 10, 11, 12, 7] rep-
resent regular patterns. Our study, on the other hand, was
focused on discovering recurring patterns in a time-based
sequence. Moreover, Ma and Hellerstein’s model cannot be
extended for finding recurring patterns. The reasons are as
follows:

1. Their model fails to obtain the temporal information
pertaining to the durations of periodic appearances of
a pattern within the data.

2. Finding p-patterns with a single minSup leads to the
dilemma known as the “rare item problem” [13]. If
minSup is set too high, those patterns that involve
rare items will not be found. To find patterns involv-
ing both frequent and rare items, minSup has to be
set very low. However, this can lead to combinatorial
explosion producing too many patterns. In particular,
many uninteresting aperiodic patterns can be discov-
ered as partial periodic patterns. For example, if we
set a low minSup, say minSup = 5%, then we will
be discovering an uninteresting aperiodic pattern that
has only 5% of its periodically appearances throughout
the data as a partial periodic pattern.

Recently, researchers have been investigating the com-
plete cyclic behavior of the frequent patterns in a trans-
actional database to discover a class of user-interest-based
patterns known as periodic-frequent patterns [9, 14, 15, 16].
Informally, a frequent pattern satisfying minSup is said to
be periodic-frequent if and only if all its inter-arrival times
throughout the database satisfy the user-defined period thresh-
old value. Thus, these studies were focused on finding reg-
ular patterns in a transactional database. For our study,
we investigated the partial cyclic behavior of the patterns
to discover recurring patterns; thus, generalizing the cur-
rent model of periodic-frequent patterns. More importantly,
none of the approaches presented in [9, 14, 15, 16] model
time series data as a transactional database. Instead, they
are based on the implicit assumption that there are transac-
tional databases with a sequentially ordered set of transac-
tions. This paper fills the gap by describing the procedure to
model time series data as a transactional database without
loss of generality.
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Yang et al. [17] investigated the change in periodic be-
havior of patterns due to the intervention of random noise
and introduced a class of user-interest-based patterns known
as asynchronous periodic patterns. Although asynchronous-
periodic pattern mining is closely related to our work, it
cannot be extended for finding recurring patterns. The rea-
son is asynchronous periodic pattern mining models a time
series as a symbolic sequence; therefore, it does not take in
account the actual temporal information of the events within
a sequence.
The problem of finding sequential patterns [18] and fre-

quent episodes [19, 20] has received a great deal of attention.
However, it should be noted that periodicity is not consid-
ered in these studies. Ozden et al. [2] investigated the prob-
lem of finding cyclic association rules. However, that study
is quite restrictive in finding the patterns that are present
at every cycle.
Finding partial periodic patterns [4], motifs [21], and re-

curring patterns [22] has also been studied in time series;
however, the focus was on finding numerical curve patterns
rather than symbolic patterns.
Overall, the proposed model of finding recurring patterns

is novel and is distinct from current models. In the next
section, we introduce our model of recurring patterns.

3. PROPOSED MODEL
In this section, we first describe time series as defined

in [7]. Next, we represent these series as a transactional
database and introduce measures to find recurring patterns.

Definition 1. Let I be a set of items (or event types).
An event is a pair (i, ts), where i ∈ I is an item and ts ∈ R
is the timestamp of the event. Let X ⊆ I be a pattern. An
event sequence S is an ordered collection of events, i.e.,
{(i1, ts1), (i2, ts2), · · · , (iN , tsN )}, where ij ∈ I is an item
at the j-th event. The term tsj represents the occurrence
timestamp of the event, and tsh ≤ tsj for 1 ≤ h ≤ j ≤ N
[7].

Definition 2. A point sequence is an ordered collec-
tion of occurrence times. Given an event sequence S =
{(i1, ts1), (i2, ts2), · · · , (iN , tsN )}, there is an implied point

sequence, Ŝ = {ts1, ts2, · · · , tsN}. An event sequence can be
viewed as a mixture of multiple point sequences of each item.
Let TSD denote the time series data (or a set of events) be-
ing mined.

Example 1. Figure 1 shows a TSD with a set of items
I = {a, b, c, d, e, f, g}. In this figure, an item of each event
is labeled above its occurrence timestamp. It should be noted
that no item appears at the timestamps of 8 and 13. The
item ‘a’ appears at the timestamps of 1, 2, 3, 4, 7, 11, 12
and 14. Therefore, the event sequence of ‘a’ is represented as
Sa = {(a, 1), (a, 2), (a, 3), (a, 4), (a, 7), (a, 11), (a, 12), (a, 14)}.
The point sequence of ‘a’ is represented as Ŝa = {1, 2, 3, 4, 7-
, 11, 12, 14}. Similarly, the point sequences of ‘b’ and ‘ab’ are

represented as Ŝb = Ŝab = {1, 3, 4, 7, 11, 12, 14}.

The point sequence plays an important role in assessing
the periodic behavior of the patterns in a time series. We
now describe the temporally ordered transactional database
which preserves the point sequence of items in the TSD.
A transaction, tr = (ts, Y ), is a tuple, where ts repre-

sents the timestamp and Y is a pattern. A transactional
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Figure 1: Running example: time-based sequence
consisting of items from ‘a’ to ‘g’

database TDB over I is a set of transactions, TDB =
{tr1, · · · , trm}, m = |TDB|, where |TDB| is the size of
the TDB in total number of transactions. For a transac-
tion tr = (ts, Y ), such that X ⊆ Y , it is said that X oc-
curs in tr and such a timestamp is denoted as tsX . Let
TSX = {tsXk , · · · , tsXl }, where 1 ≤ k ≤ l ≤ m, denote
an ordered set of timestamps at which X has occurred
in the TDB. The TSX in the TDB is the same as the
point sequence of X in the TSD. Therefore, we do not miss
any information pertaining to the temporal appearances of
a pattern in the data.

Example 2. Table 1 shows the transactional database con-
structed by grouping the items appearing together at a par-
ticular timestamp in Figure 1. Each transaction in this
database is uniquely identifiable with a timestamp. All trans-
actions have been ordered with respect to their timestamps.
It can be observed that the constructed database does not
contain the transactions with timestamps 8 and 13. The
reason is that no item appears at these timestamps in Fig-
ure 1. In this database, the pattern ‘ab’ appears at the
timestamps of 1, 3, 4, 7, 11, 12, and 14. Therefore, TSab =
{1, 3, 4, 7, 11, 12, 14}.

Table 1: Transactional database constructed from
time-based sequence shown in Figure 1. The term
‘ts’ is an acronym for timestamp

ts Items ts Items
1 a, b, g 7 a, b, c, g
2 a, c, d 9 c, d
3 a, b, e, f 10 c, d, e ,f
4 a, b, c, d 11 a, b, e, f
5 c, d, e, f,g 12 a, b, c, d, e, f, g
6 e, f, g 14 a, b, g

Definition 3. (Support of pattern X) The number of
transactions containing X in the TDB is defined as the sup-
port of X and denoted as Sup(X). That is, Sup(X) =
|TSX |.

Example 3. The support of ‘ab’ in Table 1 is the size of
TSab. Therefore, Sup(ab) = |{1, 3, 4, 7, 11, 12, 14}| = 7.

Definition 4. (Periodic appearance of pattern X)
Let tsXj , tsXk ∈ TSX , 1 ≤ j < k ≤ m, denote any two con-
secutive timestamps in TSX . The time difference between
tsXk and tsXj is referred to as an inter-arrival time of
X, and denoted as iatX . That is, iatX = tsXk − tsXj . Let
IATX = {iatX1 , iatX2 , · · · , iatXk }, k = Sup(X) − 1, be the
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set of all inter-arrival times of X in TDB. An inter-arrival
time of pattern X is said to be periodic (or interesting) if
it is no more than the user-defined period threshold value.
That is, a iatXi ∈ IATX is said to be periodic if iatXi ≤ per,
where ‘per’ represents the period.

a

b

a

b

a

b

a

b

a

b

a

b

a

b

1 2 3 4 5 6 7 8 9 10 11 12

2 1 3 4 1 2

timestamp (ts)
13 14

Figure 2: Inter-arrival times of ‘ab’, IAT ab

Example 4. The pattern ‘ab’ has initially appeared at
the timestamps of 1 and 3. The difference between these
two timestamps gives an inter-arrival time of ‘ab.’ That is,
iatab1 = 2 (= 3 − 1). Similarly, other inter-arrival times
of ‘ab’ are iatab2 = 1, iatab3 = 3, iatab4 = 4, iatab5 = 1 and
iatab6 = 2. Therefore, the resultant IAT ab = {2, 1, 3, 4, 1, 2}.
If the user-defined per = 2, then iatab1 , iatab2 , iatab5 and iatab6
are considered the periodic occurrences of ‘ab’ in the data.
On the other hand, iatab3 and iatab4 are considered the ape-
riodic occurrences of ‘ab’ as iatab3 ̸≤ per and iatab4 ̸≤ per.
Figure 2 shows the set of all inter-arrival times for pattern
‘ab’, i.e., IAT ab. The thick lines represent the inter-arrival
times that satisfy the period, while the dotted lines represent
the inter-arrival times that fail to satisfy the period.

Most current partial periodic pattern mining approaches
use minSup to assess the periodic interestingness of a pat-
tern [5]. This measure cannot be used for finding recurring
patterns because it controls the minimum number of cyclic
repetitions a pattern must have in all the data. Therefore,
we introduce the following measures to determine the partial
periodic behavior of recurring patterns.

Definition 5. (Periodic-interval of pattern X) Let
TSX

j = {tsXp , · · · , tsXq } ⊆ TSX , p ≤ q, be a set of times-
tamps such that ∀tsXk ∈ TSX

j , p ≤ k < q, tsXk+1 − tsXk ≤
per. The TSX

j is a maximal set if there exists no superset
in which an inter-arrival time between the two consecutive
timestamps is no more than the period. The range of times-
tamps in TSX

j represents a periodic-interval of X and is
denoted as piXj . That is, piXj = [tsXp , tsXq ].

Example 5. The maximal sets of timestamps in which
‘ab’ has appeared within the user-defined per = 2 are: TSab

1 =
{1, 3, 4}, TSab

2 = {7}, and TSab
3 = {11, 12, 14}. Therefore,

the corresponding periodic-intervals for ‘ab’ are piab1 = [1, 4],
piab2 = [7, 7], and piab3 = [11, 14].

The periodic-interval, as defined above, obtains informa-
tion pertaining to the duration (or window) of periodic ap-
pearances of a pattern in a database. Most importantly,
it can effectively determine the periodic durations that can
vary within and across patterns. In very large databases,
a pattern may have too many periodic-intervals. An ef-
ficient technique to reduce this number is to select only
those periodic-intervals in which the number of cyclic repeti-
tions of the corresponding pattern satisfies the user-defined

threshold value. Thus, we introduce the following two defi-
nitions.

Definition 6. (Periodic-support of pattern X) The
size of TSX

j is defined as the periodic-support of X, and
denoted as psXj . That is, psXj = |TSX

j |.

Example 6. The periodic-support of ‘ab’ in piab1 is the
size of |TSab

1 |. Therefore, psab1 = |TSab
1 | = 3. Similarly,

the periodic-supports of ‘ab’ in piab2 and piab3 are 1 and 3,
respectively.

In the real-world applications, some items appear very
frequently in the data, while others rarely appear. We have
observed that some rare items also exhibit periodic behav-
ior in a portion of the data. The periodic-support, as de-
fined above, facilitates the user to discover the knowledge
pertaining to those frequent and rare items that have exhib-
ited sufficient number of cyclic repetitions in a portion of
database. Each periodic-interval of a pattern will have only
one periodic-support and vice-versa. In other words, there
is one-to-one relationship between the periodic-intervals and
periodic-supports of a pattern.

Definition 7. (Interesting periodic-interval of pat-
tern X) Let PIX = {piX1 , · · · , piXk } and PSX = {psX1 ,-
· · · , psXk }, 1 ≤ k, be the complete set of periodic-intervals
and periodic-supports of pattern X in the TDB, respectively.
A piXk ∈ PIX is said to be an interesting periodic-interval
if its corresponding psXk ∈ PSX has psXk ≥ minPS. The
minPS represents the user-defined minimum periodic-support.

Example 7. If the user-defined minPS = 3, then piab1
and piab3 are considered the interesting periodic-intervals of
‘ab’. This is because psab1 ≥ minPS and psab3 ≥ minPS.
The piab2 is considered an uninteresting periodic-interval of
‘ab’ as psab2 ̸≥ minPS.

Since very large databases are generally composed over a
very long time frame, it has been observed that some users
may specify a constraint on the minimum number of inter-
esting periodic-intervals. Thus, we introduce the following
definitions.

Definition 8. (Recurrence of pattern X) The recur-
rence count of a pattern represents its number of interesting
periodic-intervals in a database. Let IPIX ⊆ PIX be the set
of periodic-intervals of X such that for every piXk ∈ IPIX ,
its corresponding psXk ≥ minPS. The recurrence of pattern
X is denoted as Rec(X) = |IPIX |.

Example 8. Continuing with the previous example,
IPIab = {[1, 4], [11, 14]}. The recurrence of ‘ab’ is the size
of IPIab. That is, Rec(ab) = |IPIab| = 2.

Definition 9. (Recurring pattern X) Pattern X is
a recurring pattern if Rec(X) ≥ minRec, where minRec
is the user-specified minimum recurrence count. Recurring
pattern X is expressed as follows:

X [Sup(X), Rec(X), {{piXk : psXk }|∀piXk ∈ IPIX}]. (1)

Example 9. If the user-defined minRec = 2, then ‘ab’ is
a recurring pattern and is expressed as follows:

ab [support = 7, recurrence = 2, {{[1, 4] : 3}, {[11, 14] : 3}}].
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The above pattern informs that ‘ab’ has occurred in 7 trans-
actions and its periodic occurrence behavior of once in every
two transactions consecutively for at least three times has
been observed at two distinct subsets of a database whose
timestamps are in the range [1, 4] and [11, 14]. Table 2
shows the complete set of recurring patterns discovered from
Table 1.

Table 2: Recurring patterns in Table 1. Terms
‘Sup,’ ‘Rec’ and ‘IPI’ respectively denote support,
recurrence, and interesting periodic-intervals along
with their periodic-supports

Pattern Sup Rec IPI
a 8 2 {{[1,4]:4}, {[11,14]:3}}
b 7 2 {{[1,4]:3}, {[11,14]:3}}
d 6 2 {{[2,5]:3}, {[9,12]:3}}
e 6 2 {{[3,6]:3}, {[10,12]:3}}
f 6 2 {{[3,6]:3}, {[10,12]:3}}
ab 7 2 {{[1,4]:3}, {[11,14]:3}}
cd 6 2 {{[2,5]:3}, {[9,12]:3}}
ef 6 2 {{[3,6]:3}, {[10,12]:3}}

Definition 10. (Problem Definition:) Given a time-
based sequence (i.e., a TSD), the problem of finding recur-
ring patterns involve discovering all those patterns that sat-
isfy the user-defined per, minPS and minRec constraints.

The measures, support, period and periodic-support, can
also be expressed in percentage of |TDB|. However, we use
the former definitions for ease of explanation. Table 3 lists
the nomenclature of different terms used in our model.

Table 3: Nomenclature of various terms used in our
model
Terminology Notation
The timestamp of a transaction containing X tsXi
The set of all timestamps containing X TSX

The support of X Sup(X)
An inter-arrival time of X iatXi
The set of all inter-arrival times of X IATX

The user-defined period per
A periodic-support of X psXi
The set of all periodic-supports of X PSX

A periodic-interval of X piXi
The set of all periodic-intervals of X PIX

The set of interesting periodic-intervals of X IPIX

The recurrence of X Rec(X)

The construction of a transactional database from a time
series involves grouping the items appearing together at a
particular timestamp and storing them in a linked hash ta-
ble. As this process is simple and straight forward, we do
not discuss it in this paper. Instead, we focus on finding the
recurring patterns from the constructed database.

4. PROPOSED ALGORITHM
In this section, we first introduce our pruning technique to

reduce the computational cost of finding recurring patterns.
Next, we present our algorithm to mine the complete set of
recurring patterns from the constructed database.

4.1 Basic Idea: Candidate patterns
The space of items in a database gives rise to a subset

lattice. An itemset lattice is a conceptualization of search
space while finding user-interest-based patterns. The anti-
monotonic property has been widely used to reduce the
search space [23]. Unfortunately, recurring patterns do not
satisfy this property. This increases the search space, which
in turn increases the computational cost of mining recurring
patterns.

Example 10. Consider the patterns ‘c’ and ‘cd’ in Ta-
ble 1. Given the user-defined per = 2, minPS = 3 and
minRec = 2, the interesting periodic-intervals of ‘c’ and ‘cd’
are {[2, 12]} and {[2, 5], [9, 12]}, respectively. Therefore, the
Rec(c) = |{[2, 12]}| = 1 and Rec(cd) = |{[2, 5], [9, 12]}| =
2. As the Rec(c) ! minRec, ‘c’ is not a recurring pat-
tern. However, its superset ‘cd’ is a recurring pattern be-
cause Rec(cd) ≥ minRec.Thus, the recurring patterns do
not satisfy the anti-monotonic property. The same can be
observed in Table 2.

We introduce the following pruning technique to reduce
the computational cost of finding recurring patterns.

“Let Erec(X) =

|PSX |∑

i=1

⌊
psXi

minPS

⌋
. If Erec(X) <

minRec, then neither X nor its supersets will
be recurring patterns”

The Erec(X) denotes the upper bound of recurrence that
a superset of X can have in the database. Thus, we call
Erec(X) the estimated maximum recurrence of a su-
perset of X. The correctness of our pruning technique
is straight forward to prove from Properties 1 and 2, and
illustrated in Example 11.

Property 1. For the pattern X, Erec(X) ≥ Rec(X).

Property 2. If X ⊂ Y , then TSX ⊇ TSY and Erec(X) ≥
Erec(Y ).

Example 11. In Table 1, the item ‘g’ occurs in times-
tamps of 1, 5, 6, 7, 12 and 14. Therefore, TSg = {1, 5, 6, 7,-
12, 14} and S(g) = 6. If per = 2, minPS = 3 and minRec =
2, then TSg

1 = {1}, TSg
2 = {5, 6, 7}, TSg

3 = {12, 14}, psg1 =
|TSg

1 | = 1, psg2 = |TSg
2 | = 3 and psg3 = |TSg

3 | = 2. For this

item, Erec(g) = 1

(
=

3∑

i=1

⌊
psgi
3

⌋
=

⌊
1
3

⌋
+

⌊
3
3

⌋
+

⌊
2
3

⌋)
.

That is, any superset of ‘g’ can at most have recurrence
value equal to 1, which is less than the user-defined minRec.
Henceforth, pruning ‘g’ will not result in missing of any re-
curring pattern.

Based on our proposed pruning technique, we introduce
the following definition.

Definition 11. (Candidate pattern X.) Pattern X is
a candidate pattern if Erec(X) ≥ minRec.

A candidate pattern containing only one item is called a
candidate item. The candidate patterns satisfy the anti-
monotonic property (Property 2). Therefore, we use candi-
date k-patterns to discover recurring (k + 1)-patterns.
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4.2 RP-growth: Structure, Construction and
Mining

Traditional Frequent Pattern-growth algorithm [24] can-
not be used for finding recurring patterns. This is because
the structure of FP-tree captures only the frequency and dis-
regards the periodic behavior of the patterns in a database.
To address this issue, RP-growth introduces an alternative
tree structure known as an Recurring Pattern-tree (RP-tree).
Our RP-growth algorithm involves the following two steps:

(i) construction of an RP-tree and (ii) recursive mining of
the RP-tree to discover the complete set of recurring pat-
terns. Before we describe the above two steps, we introduce
the structure of an RP-tree.

4.2.1 Structure of RP-tree
The structure of an RP-tree includes a prefix-tree and a

candidate item list, called the RP-list. The RP-list consists
of each distinct item (i) with support (s), estimated maxi-
mum recurrence (Erec), and a pointer pointing to the first
node in the prefix-tree carrying the item.
The prefix-tree in an RP-tree resembles the prefix-tree in

FP-tree. However, to obtain both frequency and periodic
behavior of the patterns, the nodes in an RP-tree explicitly
maintain the occurrence information for each transaction by
keeping an occurrence timestamp list, called a ts-list. To
achieve memory efficiency, only the last node of every trans-
action maintains the ts-list. Hence, two types of nodes are
maintained in a RP-tree: ordinary node and tail-node.
The former is a type of node similar to that used in an
FP-tree, whereas the latter represents the last item of any
sorted transaction. Therefore, the structure of a tail-node
is i[tsp, tsq, ..., tsr], 1 ≤ p ≤ q ≤ r ≤ m, where i is the
node’s item name and tsi, i ∈ [1,m], is the timestamp of a
transaction containing the items from root up to the node i.
The conceptual structure of an RP-tree is shown in Figure
3. Like an FP-tree, each node in an RP-tree maintains par-
ent, children, and node traversal pointers. Please note that
no node in an RP-tree maintains the support count as in an
FP-tree. To facilitate a high degree of compactness, items
in the prefix-tree are arranged in support-descending order.

{}

tsi, tsj, ...

Figure 3: Conceptual structure of prefix-tree in RP-
tree. Dotted ellipse represents ordinary node, while
other ellipse represents tail-node of sorted transac-
tions with timestamps tsi, tsj ∈ R

One can assume that the structure of the prefix-tree in
an RP-tree may not be memory efficient since it explic-
itly maintains timestamps of each transaction. However,
it has been argued that such a tree can achieve memory ef-
ficiency by keeping transaction information only at the tail-
nodes and avoiding the support count field at each node
[9]. Furthermore, an RP-tree avoids the complicated com-
binatorial explosion problem of candidate generation as in
Apriori-like algorithms [23]. Keeping the information per-
taining to transactional-identifiers in a tree can also be found
in efficient frequent pattern mining [25].

Algorithm 1 RP-List(TDB: Transactional database, I:
Set of items, per: period, minPS: minimum periodic-
support, minRec: minimum recurrence)

1: Let idl be a temporary array that records the timestamp
of the last appearance of each item in the TDB. Let ps
be another temporary array that records the periodic-
support of an item in a subset of a database. Let t =
{tscur, X} denote the current transaction with tscur and
X representing the timestamp of the current transaction
and pattern, respectively.

2: for each transaction t ∈ TDB do
3: if an item i occurs for the first time then
4: Add i to the RP-list.
5: Set si = 1, eirec = 0, idil = tscur and psi = 1.
6: else
7: if (tscur − idil) ≤ per then
8: Set si ++, psi ++ and idil = tscur.
9: else

10: eirec+ =

⌊
psi

minPS

⌋
.

11: Set si + +, psi = 1 and idil = tscur. {Beginning
of a new subset of a database.}

12: end if
13: end if
14: end for
15: To reflect the correct estimated recurrence value for each

item in the RP-list, perform eirec+ =

⌊
psi

minPS

⌋
.

Algorithm 2 RP-Tree(TDB, RF-list)

1: Create the root of an RP-tree, T , and label it “null”.
2: for each transaction t ∈ TDB do
3: Set the timestamp of the corresponding transaction as

tcur.
4: Select and sort the candidate items in t according to

the order of CI. Let the sorted candidate item list
in t be [p|P ], where p is the first item and P is the
remaining list.

5: Call insert tree([p|P ], tcur, T ).
6: end for
7: call RP-growth (Tree, null);

4.2.2 Construction of RP-tree
Since recurring patterns do not satisfy the anti-monotonic

property, candidate 1-patterns (or items) will play an im-
portant role in effective mining of these patterns. The set of
candidate items CI in a database for the user-defined per,
minPS, and minRec can be discovered by populating the
RP-list with a scan on the database. Figure 4 shows the
construction of an RP-list using Algorithm 1. Due to page
limitation, we only present the key steps in the construc-
tion of the RP-list. Please note that the per, minPS, and
minRec values have been set to 2, 3 and 2, respectively.

The scan on the first transaction, “1 : a, b, g”, with tscur =
1 initializes items ‘a’, ‘b’, and ‘g’ in the RP-list and sets their
s, erec, idl, and ps values to 1, 0, 1, and 1, respectively (lines
1 to 5 in Algorithm 1). Figure 4(a) shows the RP-list gen-
erated after scanning the first transaction. The scan on the
second transaction “2 : a, c, d” with tscur = 2 initializes the
items ‘c’ and ‘d’ in the RP-list by setting their s, erec, idl,
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Algorithm 3 insert tree([p|P ], tcur, T )

1: while P is non-empty do
2: if T has a child N such that p.itemName ̸=

N.itemName then
3: Create a new node N . Let its parent link be linked

to T . Let its node-link be linked to nodes with the
same itemName via the node-link structure. Re-
move p from P .

4: end if
5: end while
6: Add tcur to the leaf node.

Algorithm 4 RP-growth(Tree, α)

1: for each ai in the header of Tree do
2: Generate pattern β = ai ∪α. Collect all of the a′

is ts-
lists into a temporary array, TSβ , and calculate Eβ

rec.
3: if Eβ

rec ≥ minRec then
4: Construct β’s conditional pattern base then β’s

conditional RP-tree Treeβ . Call getRecurrence(β,
TSβ).

5: if Treeβ ̸= ∅ then
6: call RP-growth(Treeβ , β);
7: end if
8: end if
9: Remove ai from the Tree and push the ai’s ts-list to

its parent nodes.
10: end for

and ps values to 1, 0, 2, and 1, respectively. In addition,
the s, erec, idl, and ps values of an already existing item ‘a’
are updated to 2, 0, 2, and 2, respectively (lines 7 to 9 in
Algorithm 1). Figure 4(b) shows the RP-list generated af-
ter scanning the second transaction. Figure 4(c) shows the
RP-list constructed after scanning the seventh transaction.
It can be observed that the ‘erec’ of ‘a’ and ‘b’ have been

updated from 0 to 1. This is because their

⌊
ps

minPS

⌋
= 1

(line 10 in Algorithm 1). The ps value of ‘a’ and ‘b’ is set
to 1 because they appeared periodically once again in the
database (line 11 in Algorithm 1). Figure 4(d) shows the
RP-list constructed after scanning every transaction in the
database. The estimated recurrence (erec) value for all the
items in the RP-list is once again computed to reflect the
correctness (line 15 in Algorithm 1). Figure 4(e) shows the
updated erec value for all items in the RP-list. Using our
pruning technique, ‘g’ is removed from the RP-list as its
ecur < minRec. The remaining items are sorted in descend-
ing order of their support values (line 16 in Algorithm 1).
Figure 4(f) shows the sorted list of candidate items in the
RP-list.
After finding candidate items, we conduct another scan

on the database and construct the prefix-tree of the RP-
tree, as in Algorithms 2 and 3. These procedures are the
same as those for constructing an FP-tree [24]. However,
the major difference is that no node in an RF-tree maintains
the support count, as in an FP-tree. The first transaction
{1 : a, b, g} is scanned and a branch is constructed in the RP-
tree with only the candidate items ‘b’ and ‘a.’ The tail node
‘b : 1’ carries the timestamp of the transaction. The RP-tree
generated after scanning the first transaction is shown in
Figure 5(a). A similar process is repeated for the remaining
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Figure 4: Construction of RP-list: (a) after scanning
first transaction, (b) after scanning second transac-
tion, (c) after scanning seventh transaction, (d) af-
ter scanning every transaction, (e) after calculating
actual ‘erec’ values, and (f) sorted list of candidate
items

transactions and the tree is updated accordingly. Figure
5(b) shows the RP-tree constructed after scanning the entire
database. For simplicity, we do not show the node traversal
pointers in trees; however, they are maintained like an FP-
tree does.
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e
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Figure 5: Construction of RP-tree: (a) after scan-
ning first transaction and (b) after scanning entire
transactional database

The RP-tree maintains the complete information of all
recurring patterns in a database. The correctness is based
on Property 3 and shown in Lemmas 1 and 2. For each
transaction t ∈ theTDB, CI(t) is the set of all candidate
items in t, i.e., CI(t) = item(t) ∩ CI, and is called the
candidate item projection of t.

Property 3. An RP-tree maintains a complete set of
candidate item projections for each transaction in a database
only once.

Lemma 1. Given a TDB and user-defined per, (minPS),
and minRec values, the complete set of all recurring item
projections of all transactions in the TDB can be derived
from the RP-tree.

Proof. Based on Property 3, each transaction t ∈ TDB
is mapped to only one path in the tree, and any path from
the root up to a tail node maintains the complete projection
for exactly n transactions (where n is the total number of
entries in the ts-list of the tail node).
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Lemma 2. The size of the RP-tree (without the root node)
on a TDB for user-defined per, minPS, and minRec is

bounded by
∑

t∈TDB

|CI(t)|.

Proof. According to the RP-tree construction process
and Lemma 1, each transaction t contributes at most one
path of size |CI(t)| to an RP-tree. Therefore, the total size

contribution of all transactions can be
∑

t∈TDB

|CI(t)| at best.

However, since there are usually many common prefix pat-
terns among the transactions, the size of an RP-tree is nor-

mally much smaller than
∑

t∈TDB

|CI(t)|.

Algorithm 5 getRecurrence(X: pattern, TSX :ts-list of
pattern X)

1: Let idl be a variable that records the timestamp of the
last transaction containing X. Let subDB be a list of
pairs of the form (startTS, endTS), where startTS and
endTS respectively represent the starting and ending
timestamps of periodic appearances of a pattern in a
subset of data. It is used to record the periodic-intervals
of a pattern. Let currentPS be a variable to measure
the periodic-support of X in a periodic-interval.

2: for each timestamp tscur ∈ TSX do
3: if (tscur is X’s first occurrence) then
4: currentPS = 1, startTS = tscur;
5: else
6: if (tscur − idl ≤ per) then
7: currentPS ++;
8: else
9: if (currentPS ≥ minPS) then
10: subDB.insert(startTS, idl);
11: end if
12: currentPS = 1, startTS = tscur;
13: end if
14: end if
15: idl = tscur;
16: end for
17: // To reflect correct recurrence of X.
18: if (currentPS ≥ minPS) then
19: subDB.insert(startTS, idl);
20: end if
21: return ((subDB.size() ≥ minRec)?true:false);

4.2.3 Mining Recurring Patterns
Although an RP-tree and FP-tree arrange items in support-

descending order, we cannot directly apply FP-growth min-
ing on an RP-tree. The reasons are as follows: (i) an RP-
tree does not maintain the support count at each node, and
it handles the ts-lists at the tail nodes and (ii) recurring
patterns do not satisfy the anti-monotonic property. We de-
vised another pattern growth-based bottom-up mining tech-
nique to mine the patterns. The basic operations in mining
an RP-tree includes: (i) counting length-1 candidate items,
(ii) constructing the prefix tree from each candidate pattern,
and (iii) constructing the conditional tree from each prefix-
tree. The RP-list provides the length-1 candidate items.
Before we discuss the prefix-tree construction process, we
explore the following important property and lemma of an
RP-tree.

Property 4. A tail node in an RP-tree maintains the
occurrence information for all the nodes in the path (from
the tail node to the root) at least in the transactions in its
ts-list.

Lemma 3. Let Z = {a1, a2, · · · , an} be a path in an RP-
tree where node an is the tail node carrying the ts-list of
the path. If the ts-list is pushed-up to node an−1, then
an−1 maintains the occurrence information of the path Z′ =
{a1, a2, · · · , an−1} for the same set of transactions in the
ts-list without any loss.

Proof. Based on Property 4, an maintains the occur-
rence information of path Z′ at least in the transactions in
its ts-list. Therefore, the same ts-list at node an−1 main-
tains the same transaction information for Z′ without any
loss.

The procedure to discover recurring patterns from RP-tree
is shown in Algorithm 4. The working of this algorithm is
as follows. We proceed to construct the prefix tree for each
candidate item in the RP-list, starting from the bottom-
most item, say i. To construct the prefix-tree for i, the prefix
sub-paths of nodes i are accumulated in a tree-structure,
PTi. Since i is the bottom-most item in the RP-list, each
node labeled i in the RP-tree must be a tail node. While
constructing PTi, based on Property 4, we map the ts-list of
every node of i to all items in the respective path explicitly
in the temporary array (one for each item). This temporary
array facilitates the calculation of support and erec of each
item in PTi (line 2 in Algorithm 4). If an item j in PTi has
support ≥ minSup and erec ≥ minRec, then we construct
its conditional tree and mine it recursively to discover the
recurring patterns (lines 3 to 8 in Algorithm 4). Moreover,
to enable the construction of the prefix-tree for the next item
in the RP-list, based on Lemma 3, the ts-lists are pushed-
up to the respective parent nodes in the original RP-tree
and in PTi as well. All nodes of i in the original RP-tree
and i’s entry in the RP-list are deleted thereafter (line 9 in
Algorithm 4).

Using Properties 1 and 2, the conditional tree CTi for PTi

is constructed by removing all those items from PTi that
have erec < minRec. If the deleted node is a tail node, its
ts-list is pushed-up to its parent node. The contents of the
temporary array for the bottom item j in the RP-list of CTi

represent TSij (i.e., the set of all timestamps where items i
and j have appeared together in the database). Therefore,
using Algorithm 5, the recurrence of “ij” is computed and
it is determined whether “ij” is a recurring pattern. The
same process of creating a prefix-tree and its corresponding
conditional tree is repeated for further extensions of “ij”.
The whole process of mining for each item is repeated until
RP -list ̸= ∅.

Consider item ‘f ’, which is the last item in the RP-list
in Figure 4(e). The prefix-tree for ‘f ’, PTf , is constructed
from the RP-tree, as shown in Figure 6(a). There are five
items, ‘a, b, c, d’, and ‘e’ in PTf . Only item ‘e’ satisfies the
condition Erec(e) ≥ minRec. Therefore, the conditional
tree CTf from PTf is constructed with only one item ‘e’, as
shown in 6(b). The ts-list of ‘e’ in CTf ’ generates TS

ef . The
“recurrence” of ‘ef ’ is measured using Algorithm 5. Since
Rec(ef) ≥ minRec, ‘ef ’ will be generated as a recurring
pattern. A similar process is repeated for the other items in
the RP-list. Next, ‘f ’ is pruned from the original RP-tree
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Table 4: User-defined per, minPS and minRec values in different databases
per minPS minRec

1 2 3 1 2 3 1 2 3
T10I4D100k 360 720 1440 0.1% 0.2% 0.3% 1 2 3
Shop-14 360 (=6 hr.) 720 (=12 hrs.) 1440 (=24 hrs.) 0.1% 0.2% 0.3% 1 2 3
Twitter 360 (=6 hr.) 720 (=12 hrs.) 1440 (=24 hrs.) 2% 5% 10% 1 2 3
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Figure 6: Finding RP-patterns for suffix item ‘f ’
in RP-tree: (a) prefix-tree for item ‘f ’ (i.e., PTf),
(b) conditional tree for item ‘f ’ (i.e., CTf), and (c)
RP-tree after pruning item ‘f ’

and its ts-lists are pushed to its parent nodes, as shown in
6(c). All the above processes are once again repeated until
the RP-list ̸= ∅.
The above bottom-up mining technique on a support de-

scending RP-tree is efficient, because it shrinks the search
space dramatically as the mining process progresses.

5. EXPERIMENTAL RESULTS
In this section, we first evaluate the performance of RP-

growth. Next, we discuss the usefulness of recurring pat-
terns by comparing them against p-patterns and periodic-
frequent patterns. It should be noted that our recurring
patterns are the generalization of periodic-frequent patterns,
as the latter patterns exhibit complete (rather than partial)
cyclic repetitions in the entire database. There are only
two Apriori-like algorithms, periodic-first and association-
first, to discover p-patterns. We use the periodic-first al-
gorithm to discover p-patterns since it is relatively faster
than the association-first algorithm. We use the Periodic-
Frequent pattern-growth++ algorithm (PF-growth++) [15]
to discover periodic-frequent patterns. We do not compare
the performance of RP-growth against the periodic-first and
PF-growth++ algorithms. The reason is that the other al-
gorithms discover regular patterns; therefore, they use dif-
ferent measures to assess the periodic interestingness of a
pattern.

5.1 Experimental setup
The algorithms, RP-growth, periodic-first and PF-gro-

wth++, were written in GNU C++ and run with Ubuntu
14.4 on a 2.66 GHz machine with 8 GB of memory. To
the best of our knowledge, there are no publicly available
time-based sequences. Therefore, we conducted experiments
using the following databases.

• T10I4D100K database. This database is a syn-
thetic transactional database generated using the pro-
cedure given by [23]. This database contains 100,000
transactions and 941 distinct items.

• Shop-14 database. A Czech company provided click-

stream data of seven online stores in the ECML/PKDD
2005 Discovery challenge. We considered the click
stream data of product categories visited by the users
in “Shop 14” (www.shop4.cz), and created a transac-
tional database with each transaction representing the
set of web pages visited by the people at a particular
minute interval. The transactional database contains
59,240 transactions (i.e., 41 days of page visits) and
138 distinct items (or product categories).

• Twitter database. We created this database by con-
sidering the top 1000 English hashtags appearing in 44
million tweets/retweets from 1-May-2013 to 31-August-
2013 (i.e., 123 days). The measure, term frequency-
inverse document frequency, is used to rank the hash-
tags. The timestamp of each transaction represents
a minute starting from 00:00 hours of 1-May-2013 to
24:00 hours of 31-August-2013. The resultant trans-
actional database has 177,120 transactions with 1000
distinct items (or hashtags). More details on the data
collection process and the usefulness of this data in
finding interesting events has been presented in [26].

To mine p-patterns and recurring patterns, we transformed
all the above databases into time-based sequences using the
timestamps of each transaction. As this transformation pro-
cess is a rather simple and straight-forward approach, we do
not discuss it for brevity.

Table 4 lists the different per, minPS and minRec val-
ues used in above the databases. The periodic interval (i.e.,
per value) in both Shop-14 and Twitter databases varied
from six hours to one day. Similarly, the minRec in these
databases varied from 1 to 3. In this paper, we do not
present the results for minRec values greater than 3 be-
cause very few recurring patterns were getting generated
at minRec > 3. The minPS values in T10I4D100K and
Shop-14 databases varied from 0.1% to 0.3%. The reason
for choosing low minPS values is to discover the patterns
involving both frequent and rare items. In the Twitter
database, we set minPS at 2%, 5% and 10%. The reason for
choosing a relatively high minPS values as compared with
the other two databases is that very low minPS values are
resulting in a combinatorial explosion producing too many
patterns.

5.2 Generation of recurring patterns
Table 5 lists the numbers of recurring patterns discovered

in T10I4D100K, Shop-14 and Twitter databases at different
per, minPS andminRec values. The partial results of Table
5 are shown in Figure 7. The following observations can
drawn from this figure:

• At a fixed per and minRec, the increase in minPS can
decrease the number of recurring patterns. The reason
is that many patterns failed to appear periodically for
longer time periods.
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Table 5: Number of recurring patterns generated at different per, minPS and minRec threshold values
Dataset minPS Number of recurring patterns

minRec = 1 minRec = 2 minRec = 3
per=360 per=720 per=1440 per=360 per=720 per=1440 per=360 per=720 per=1440

T10I4- 0.1% 428 1254 7193 255 436 1036 194 160 27
D100k 0.2% 339 757 3205 168 103 39 72 0 0

0.3% 296 622 2148 109 32 2 21 0 0
Shop-14 0.1% 593 1885 4977 447 1339 3198 338 266 9

0.2% 342 1077 1906 257 750 1470 118 14 0
0.3% 251 744 933 195 534 760 48 3 0

Twitter 2% 14736 36354 42319 8718 17982 19746 4551 7749 8103
5% 1655 11268 26341 595 6847 7010 337 3713 5123
10% 511 714 1190 11 34 912 6 17 98
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Figure 7: Recurring patterns discovered in Twitter data

• At a fixed minPS and per, the increase in minRec
can decrease the number of recurring patterns. This is
because many patterns failed to satisfy the increased
minRec values.

• At a fixed minPS, the increase in per can have dif-
ferent impact on the generation of recurring patterns
for the values minRec = 1 and minRec > 1. At
minRec = 1, increase in per can increase the number
of recurring patterns. The reason is that the inter-
arrival times of the patterns that were considered as
aperiodic at low per values were considered as periodic
with the increase in the per value. For minRec > 1,
increase in per can either increase or decrease the num-
ber of recurring patterns. The reason for decrease is
due to the merging of interesting periodic-intervals dis-
covered at low per values.

Table 6 lists some of the recurring patterns discovered
from the Twitter database at per = 360, minPS = 2% and
minRec = 1. Figures 8 (a) and (b) show the frequencies of
the terms present in patterns {yyc, uttarakhand} and {nu-
clear, hibaku} on a daily basis. It can be observed that
“uttarakhand” is a relatively rare term as compared with
other terms, and our model has effectively discovered the
knowledge pertaining to this term. Another interesting ob-
servation from Table 5 is that even at lowminPS values, our
model has generated only a limited number of recurring pat-
terns in each database. This clearly shows that our model
can discover the knowledge pertaining to rare terms without
producing too many uninteresting patterns. In other words,
our model is tolerant of the “rare item problem”.

5.3 Performance of RP-growth
Table 7 lists the runtime required using RP-growth to

discover recurring patterns in T10I4D100K, Shop-14, and
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Figure 8: Frequency of hashtags at different days
in database. Date is of form ‘dd-mm’. Year of this
date is 2013

Twitter databases. The runtime involves the time taken
to transform the time-based sequence into a transactional
database and mining of recurring patterns. Figure 9 shows
the runtime required by RP-growth while mining the recur-
ring patterns in Twitter database. The changes in the per,
minPS and minRec threshold values shows a similar effect
on runtime consumption as in the generation of recurring
patterns. The proposed algorithm discovered the complete
set of recurring patterns at a reasonable runtime even at low
minPS thresholds.

5.4 Comparison of p-patterns, recurring pat-
terns and periodic-frequent patterns

We compared p-patterns, recurring patterns and periodic-
frequent patterns at different per and minPS values. For
brevity, we present the results discovered when period is
set to 1 day, i.e., per = 1440. The minSup and minPS
values are set to 0.1% and 2% respectively for Shop-14 and
Twitter databases. The p-pattern mining requires another
parameter known as window length (w). We set w = 1 for
our experiment.
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Table 6: Some of the interesting recurring patterns discovered in Twitter database
S.No Pattern Periodic duration Cause for the events
1 {yyc, uttarakhand} [2013-06-21 01:08, On June 20, Uttarakhand, a state in India and Alberta,

2013-07-01 04:27] a province in Canada have witnessed heavy floods.
2 {nuclear, hibaku} [2013-05-06 22:33, (i) A Japanese minister has visited Chernobyl, Ukraine to

2013-05-24 22:13], learn from the recovery from the severe nuclear accident.
(In Japanese, hibaku [2013-07-01 06:17, (ii) People were tweeting about detection of Plutonium
means radiation.) 2013-07-14 06:21] at a point 12 KM from Fukoshima nuclear reactor.

3 {pakvotes, nayapakistan} [2013-05-09 16:15, The general elections were held in Pakisthan.
2013-05-15 14:11] on May 11, 2013.

4 {oklahoma, tornado, [2013-05-21 11:52, Oklahoma was struck with a tornado on May 20, 2013.
prayforoklahoma} 2013-05-24 21:38]

Table 7: Runtime of RP-growth at different per, minPS and minRec threshold values
Dataset minPS Runtime of RP-growth

minRec = 1 minRec = 2 minRec = 3
per=360 per=720 per=1440 per=360 per=720 per=1440 per=360 per=720 per=1440

T10I4- 0.1% 14.8 150.9 366.5 3.8 10.7 40.1 3.5 3.9 6.3
D100k 0.2% 7.7 45.9 99.6 3.6 5.4 9.6 2.7 3.1 3.1

0.3% 3.7 11.6 21.3 3.2 3.4 4.2 2.5 2.4 2.6
Shop-14 0.1% 47.7 55.6 67.3 43.5 47.7 52.3 42.4 45.1 48.2

0.2% 42.9 46.1 51.3 41.7 43.4 45.0 41.4 42.1 43.8
0.3% 42.4 44.0 47.3 41.6 42.1 43.6 41.1 41.5 41.7

Twitter 2% 55.1 190.0 290.5 42.9 154.9 248.4 41.3 139.2 226.1
5% 37.9 134.3 225.6 33.0 105.3 181.9 31.5 96.1 159.7
10% 32.3 108.3 190.9 30.4 89.2 151.3 29.9 66.9 124.1

Table 8 lists the numbers of periodic-frequent patterns,
recurring patterns and p-patterns discovered in the Shop-
14 and Twitter databases. The column labeled ‘II’ in this
table refers to the length of the longest pattern discovered
in each of these databases. The following observations can
be drawn from this table.
First, the total numbers of periodic-frequent patterns dis-

covered in both databases were relatively less than the num-
ber of recurring patterns and p-patterns. The reason is that
the strict constraint that a frequent pattern has to exhibit
complete cyclic repetitions throughout the data has failed to
identify many interesting partial periodically appearing pat-
terns. Moreover, this strict constraint also resulted in find-
ing the very short periodic-frequent patterns (see columns
labeled ‘II’ in Table 8). This is because longer patterns gen-
erally fail to exhibit complete cyclic repetitions throughout
the data. Setting a high period threshold value can enable
a user to discover long periodic-frequent patterns. However,
this high period can result in discovering sporadically ap-
pearing patterns as periodic-frequent patterns. Thus, it is
necessary to relax this strict constraint without changing
the period threshold value. As our model enables a user
to relax this strict constraint, recurring patterns have been
found more interesting than the periodic-frequent patterns
for a given per threshold.
Second, the total number of p-patterns discovered in both

databases were much higher than the recurring patterns and
periodic-frequent patterns. The reason is that the usage of
a low minSup has facilitated Ma and Hellerstein’s model [7]
to discover not only all our recurring patterns as p-patterns,
but also resulted in a combinatorial explosion of frequently
appearing items producing too many p-patterns. Most im-
portantly, many of the p-patterns discovered at low minSup
were uninteresting to the users. The reason is that frequent

Table 8: Number of patterns discovered in Shop-14
and Twitter databases. Terms ‘I’ and ‘II’ represent
total number of patterns and maximum length of pat-
tern found in each database, respectively.

Shop-14 Twitter
I II I II

PF patterns 22 3 466 2
Recurring patterns 4,977 9 42,319 7
p-patterns 156,7001 12 442,076 16

items were combining with one another in all possible ways
and generating p-patterns by satisfying a low minSup value.
On the contrary, our model has reduced the combinatorial
explosion of frequent items by assessing their interestingness
with respect to their number of consecutive periodic appear-
ances in a portion of data.

6. CONCLUSIONS AND FUTURE WORK
We introduced a new class of partial periodic patterns

known as recurring patterns and discussed the usefulness of
these patterns in various real-world applications. We also
proposed a model for discovering such patterns. The pat-
terns discovered with the proposed model do not satisfy the
anti-monotonic property. Therefore, we proposed a novel
pruning technique to reduce the computational cost of find-
ing these patterns. We also proposed a pattern-growth algo-
rithm to discover the recurring patterns effectively. Experi-
mental results suggest that the model is tolerant to the“rare
item problem” and that the algorithm is efficient. The use-
fulness of the recurring patterns was discussed by comparing
them against the periodic-frequent and p-patterns.

In our current study, we did not considered noisy data
and the phase-shifts of the items within the data. For fu-
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Figure 9: Runtime of RP-growth

ture work, we will develop methods for handling these two
scenarios. Another interesting future work will be extend-
ing our model to improve the performance of an association
rule-based recommender system.

7. ACKNOWLEDGMENTS
This work was supported by the Research and Develop-

ment on Real World Big Data Integration and Analysis pro-
gram of the Ministry of Education, Culture, Sports, Science,
and Technology, JAPAN.

8. REFERENCES
[1] C. M. Antunes and A. L. Oliveira, “Temporal data

mining: An overview,” in Workshop on Temporal Data
Mining, KDD, 2001.
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ABSTRACT
We investigate the problem of learning graph queries by
exploiting user examples. The input consists of a graph
database in which the user has labeled a few nodes as posi-
tive or negative examples, depending on whether or not she
would like the nodes as part of the query result. Our goal
is to handle such examples to find a query whose output is
what the user expects. This kind of scenario is pivotal in
several application settings where unfamiliar users need to
be assisted to specify their queries. In this paper, we focus
on path queries defined by regular expressions, we identify
fundamental difficulties of our problem setting, we formal-
ize what it means to be learnable, and we prove that the
class of queries under study enjoys this property. We ad-
ditionally investigate an interactive scenario where we start
with an empty set of examples and we identify the informa-
tive nodes i.e., those that contribute to the learning process.
Then, we ask the user to label these nodes and iterate the
learning process until she is satisfied with the learned query.
Finally, we present an experimental study on both real and
synthetic datasets devoted to gauging the effectiveness of our
learning algorithm and the improvement of the interactive
approach.

1. INTRODUCTION
Graph databases [41] are becoming pervasive in several

application scenarios such as the Semantic Web [5], social [37]
and biological [36] networks, and geographical databases [2],
to name a few. A graph database is essentially a directed,
edge-labeled graph. As an example, consider in Figure 1 a
graph representing a geographical database having as nodes
the neighborhoods of a city area (N1 to N6), along with
cinemas (C1 and C2), and restaurants (R1 and R2) in such
neighborhoods. The edges represent public transportation
facilities from a neighborhood to another (using labels tram
and bus), along with other kind of facilities (using labels
cinema and restaurant). For instance, the graph indicates
that one can travel by bus between the neighborhoods N2

c© 2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

N1 N2 N3

N4 N5 N6

C1 R1 R2 C2

bustram

bus bus

cinema

tram

restaurant

bus tram

restaurant

tram

bus

cinema

Figure 1: A geographical graph database.

and N3, that in the neighborhood N4 exists a cinema C1,
and so on.

Many mechanisms have been proposed to query a graph
database, the majority of them being based on regular ex-
pressions [7, 41]. By continuing on our running example,
imagine that a user wants to know from which neighbor-
hoods in the city represented in Figure 1 she can reach cine-
mas via public transportation. These neighborhoods can be
retrieved using a path query defined by the following regular
expression:

q “ ptram` busq˚ ¨ cinema

The query q selects the nodes N1, N2, N4, and N6 as they
are entailed by the following paths in the graph:

N1 tram
ÝÝÑ

N4 cinema
ÝÝÝÝÑ

C1,

N2 bus
ÝÑ

N1 tram
ÝÝÑ

N4 cinema
ÝÝÝÝÑ

C1,

N4 cinema
ÝÝÝÝÑ

C1,

N6 cinema
ÝÝÝÝÑ

C2.

Although very expressive, graph query languages are diffi-
cult to understand by non-expert users who are unable to
specify their queries with a formal syntax. The problem of
assisting non-expert users to specify their queries has been
recently raised by Jagadish et al. [24, 34]. More concretely,
they have observed that “constructing a database query is
often challenging for the user, commonly takes longer than
the execution of the query itself, and does not use any in-
sights from the database”. While they have mentioned these
problems in the context of relational databases, we argue
that they become even more difficult to tackle for graph
databases. Indeed, graph databases usually do not carry
proper metadata as they lack schemas and/or do not ex-
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hibit a clear distinction between instances and schemas. The
absence of metadata along with the difficulty of visualizing
possibly large graphs make unfeasible traditional query spec-
ification paradigms for non-expert users, such as query by
example [43]. Our work follows the recent trend of specify-
ing graph queries by example [33, 25]. Precisely, we focus
on graph queries using regular expressions, which are fun-
damental building blocks of graph query languages [7, 41],
while both [33, 25] consider simple graph patterns.

While the problem of executing path queries defined by
regular expressions on graphs has been extensively studied
recently [6, 32, 27], no research has been done on how to ac-
tually specify such queries. Our work focuses on the problem
of assisting non-expert users to specify such path queries, by
exploiting elementary user input.

By continuing on our running example, we assume that
the user is not familiar with any formal syntax of query
languages, while she still wants to specify the above query
q on the graph database in Figure 1 by providing examples
of the query result. In particular, she would positively or
negatively label some graph nodes according to whether or
not they would be selected by the targeted query. Thus,
let us imagine that the user labels the nodes N2 and N6 as
positive examples because she wants these nodes as part of
the result. Indeed, one can reach cinemas from N2 and N6,
respectively, through the following paths:

N2 bus
ÝÑ

N1 tram
ÝÝÑ

N4 cinema
ÝÝÝÝÑ

C1,

N6 cinema
ÝÝÝÝÑ

C2.

Similarly, the user labels the node N5 as a negative exam-
ple since she would not like it as part of the query result.
Indeed, there is no path starting in N5 through which the
user can reach a cinema. We also observe that the query q
above is consistent with the user’s examples because q se-
lects all positive examples and none of the negative ones.
Unfortunately, there may exist an infinite number of queries
consistent with the given examples. Therefore, we are in-
terested to find either the “exact” query that the user has
in mind or, alternatively, an equivalent query, which is close
enough to the user’s expectations.

Apart from assisting unfamiliar users to specify queries,
our research has other crucial applications, such as min-
ing scientific workflows. Regular expressions have already
been used in the literature as a well-suited mechanism for
inter-workflow coordination [21]. The path queries on graph
databases that we study in this paper can be applied to as-
sist scientists in identifying interrelated workflows that are
of interest for them. For instance, assume that a biologist
is interested in retrieving all interrelated workflows having a
pattern that starts with protein purification, continues with
an arbitrary number of protein separation steps, and ends
with mass spectrometry. This corresponds to the following
regular expression:

ProteinPurification ¨ProteinSeparation˚¨MassSpectrometry.

Instead of specifying such a pattern in a formal language, the
biologist may be willing to label some sequences of modules
from a set of available workflows as positive or negative ex-
amples, as illustrated in Figure 2. Our algorithms can be
thus applied to infer the workflow pattern that the biolo-
gist has in mind. Typically in graphs representing work-
flows the labels are attached to the nodes (e.g., as in Fig-
ure 2) instead of the edges. In this paper, we have opted for

Figure 2: A set of scientific workflows examples.

edge-labeled graphs rather than node-labeled graphs, but
our algorithms and learning techniques for the considered
class of queries are applicable to the latter class of graphs in
a seamless fashion. The problem of mining scientific work-
flows has been considered in recent work [8], which leverages
data instances as representatives of the input and output of
a workflow module. In our approach, we rely on simpler user
feedback, namely Boolean labeling of sequences of modules
across interrelated workflows.

Since our goal is to infer the user queries while mini-
mizing the amount of user feedback, our research is also
applicable to crowdsourcing scenarios [19], in which such
minimization typically entails lower financial costs. Indeed,
we can imagine that crowdworkers provide the set of posi-
tive and negative examples mentioned above for path query
learning. Moreover, our work can be used in assisting non-
expert users in other fairly complex tasks, such as speci-
fying schema mappings [42] i.e., logical assertions between
two path queries, one on a source schema and another on a
target schema.

To the best of our knowledge, our work is the first to study
the problem of learning path queries defined by regular ex-
pressions on graphs via user examples. More precisely, we
make the following main contributions:

‚ We investigate a learning framework inspired by com-
putational learning theory [26], in particular by gram-
matical inference [18] and we identify fundamental dif-
ficulties of such a framework. We consequently propose
a definition of learnability adapted to our setting.

‚ We propose a learning algorithm and we precisely char-
acterize the conditions that a graph must satisfy to
guarantee that every user’s goal query can be learned.
Essentially, the main theoretical result of the paper
states that for every query q there exists a polynomial
set of examples that given as input to our learning al-
gorithm guarantees the learnability of q. Additionally,
our learning algorithm is guaranteed to run in poly-
nomial time, whether or not the aforementioned set of
examples is given as input.

‚ We investigate an interactive scenario, which boot-
straps with an empty set of examples and builds it
along the way. Indeed, the learning algorithm finely
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interacts with the user by proposing nodes that can
be labeled and repeats the interactions until the goal
query is learned. More precisely, we analyze what it
means for a node to be informative for the learning
process, we show the intractability of deciding whether
a node is informative or not, and we propose efficient
strategies to present examples to the user.

‚ To evaluate our approach, we have run experiments
on both real-world and synthetic datasets. Our study
shows the effectiveness of the learning algorithm and
the advantage of using an interactive strategy, which
significantly reduces the number of examples needed
to learn the goal query.

Finally, we would like to spend a few words on the class of
queries that we investigate in this paper. As already men-
tioned, we focus on regular expressions, which are funda-
mental for graph query languages [7, 41] and lately used in
the definition of SPARQL property paths1. Graph queries
defined by regular expressions have been known as regular
path queries. Intuitively, such queries retrieve pairs of nodes
in the graph s.t. one can navigate between them with a path
in the language of a given regular expression [7, 41]. Al-
though the usual semantics of regular path queries is binary
(i.e., selects pairs of nodes), in this paper we consider a gen-
eralization of this semantics that we call monadic, as it out-
puts only the originated nodes of the paths. The motivation
behind using a monadic semantics is essentially threefold.
First, it entails a larger space of potential solutions than a
binary semantics. Indeed, with the latter semantics the end
node of a path is fixed, which basically corresponds to have
a smaller number of candidate paths that start at the orig-
inated node and that can be possibly labeled by the user.
Second, in our learning framework, the amount of user effort
should be kept as minimal as possible (which led to design
an interactive scenario) and thus we let the user focus solely
on the originated nodes of the paths rather than on pairs
of nodes. Third, the development of the learning algorithm
for monadic queries is extensible to binary queries and n-ary
queries in a straightforward fashion, as shown in the paper.

Organization. In Section 2, we introduce some basic no-
tions. In Section 3, we define our framework for learning
from a set of examples, we present our learning algorithm,
and we prove our learnability results. In Section 4, we pro-
pose an interactive algorithm and characterize the quantity
of information of a node. In Section 5, we experimentally
evaluate the performance of our algorithms. Finally, we con-
clude our paper and outline future directions in Section 6.
Due to space restrictions, in this paper we omit the proofs of
several results and we refer to the appendix of our technical
report [11] for detailed proofs.

Related work
Learning queries from examples is a popular and interesting
topic in databases. Very recently, algorithms for learning re-
lational queries (e.g., quantifiers [1], joins [14, 15]) or XML
queries (e.g., tree patterns [38]) have been proposed. Besides
learning queries, researchers have investigated the learnabil-
ity of relational schema mappings [40], as well as schemas [9]
and transformations [30] for XML. A fairly close problem to

1http://www.w3.org/TR/sparql11-query/

learning is definability [4]. In this paragraph, we discuss the
positioning of our own work w.r.t. these and other papers.

A wealth of research on using computational learning the-
ory [26] has been recently conducted in databases [1, 9, 14,
30, 38, 40]. In this paper, we use grammatical inference [18]
i.e., the branch of machine learning that aims at constructing
a formal grammar by generalizing a set of examples. In par-
ticular, all the above papers on learning tree patterns [38],
schemas [9, 16], and transformations [30] are based on it.

Our definition of learnability is inspired by the well-known
framework of language identification in the limit [20], which
requires a learning algorithm to be polynomial in the size
of the input, sound (i.e., always return a concept consistent
with the examples given by the user or a special null value
if such concept does not exist) and complete (i.e., able to
produce every concept with a sufficiently rich set of exam-
ples). In our case, we show that checking the consistency of a
given set of examples is intractable, which implies that there
is no algorithm able to answer null in polynomial time when
the sample is inconsistent. This leads us to the conclusion
that path queries are not learnable in the classical frame-
work. Consequently, we slightly modify the framework and
require the algorithm to learn the goal query in polynomial
time if a polynomially-sized characteristic set of examples
is provided. This learning framework has been recently em-
ployed for learning XML transformations [30] and is referred
to as learning with abstain since the algorithm can abstain
from answering when the characteristic set of examples is
not provided.

The classical algorithm for learning a regular language
from positive and negative word examples is RPNI [35],
which basically works as follows: (i) construct a DFA (usu-
ally called prefix tree acceptor or PTA [18]) that selects all
positive examples; (ii) generalize it by state merges while no
negative example is covered. Unfortunately, RPNI cannot
be directly adapted to our setting since the input positive
and negative examples are not words in our case. Instead,
we have a set of graph nodes starting from which we have to
select (from a potentially infinite set) the paths that led the
user to label them as examples. After selecting such paths,
we generalize by state merges, similarly to RPNI.

A problem closely related to learning is definability, re-
cently studied for graph databases [4]. Learning and defin-
ability have in common the fact that they look for a query
consistent with a set of examples. The difference is that
learning allows the query to select or not the nodes that are
not explicitly labeled as positive examples while definability
requires the query to select nothing else than the set of pos-
itive examples (i.e., all other nodes are implicitly negative).
Nonetheless, some of the intractability proofs for definability
can be adapted to our learning framework to show the in-
tractability of consistency checking (cf. Section 3). To date,
no polynomial algorithms have been yet proposed to con-
struct path queries from a consistent set of examples.

2. GRAPH DATABASES AND QUERIES
In this section we define the concepts that we manipulate

throughout the paper.

Alphabet and words. An alphabet Σ is a finite, ordered
set of symbols. A word over Σ is a sequence a1 . . . an of
symbols from Σ. By |w| we denote the length of a word
w. The concatenation of two words w1 “ a1 . . . an and w2 “
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b1 . . . bm, denoted w1 ¨w2, is the word a1 . . . anb1 . . . bm. By ε
we denote the empty word. A language is a set of words. By
Σ˚ we denote the language of all words over Σ. We extend
the order on Σ to the standard lexicographical order ďlex on
words over Σ and define a well-founded canonical order ď
on words: w ď u iff |w| ă |u| or |w| “ |u| and w ďlex u.

Graph databases. A graph database is a finite, directed,
edge-labeled graph [7, 41]. Formally, a graph (database) G
over an alphabet Σ is a pair pV ,Eq, where V is a set of
nodes and E Ď V ˆ Σ ˆ V is a set of edges. Each edge
in G is a triple pνo, a, νeq P V ˆ Σ ˆ V , where νo is the
origin of the edge, νe is the end of the edge, and a is the
label of the edge. We often abuse notation and write ν P G
and pνo, a, νeq P G instead of ν P V and pνo, a, νeq P E,
respectively. For example, take in Figure 3 the graph G0

containing 7 nodes and 15 edges over the alphabet ta, b, cu.

ν1 ν2 ν3 ν4

ν5ν6ν7

a

b

a

b

a

a
b
c

a b cc

aa

b

Figure 3: A graph database G0.

Paths. A word w “ a1 . . . an matches a sequence of nodes
ν0ν1 . . . νn if, for each 1 ď i ď n, the triple pνi´1, ai, νiq
is an edge in G. For example, for the graph G0 in Fig-
ure 3, the word aba matches the sequences of nodes ν1ν2ν3ν4
and ν3ν2ν3ν4, respectively, but does not match the sequence
ν1ν2ν7ν2. Note that the empty word ε matches the sequence
νν for every ν P G. Given a node ν P G, by pathsGpνq we
denote the language of all words that match a sequence of
nodes from G that starts by ν. In the sequel, we refer to
such words as paths, and moreover, we say that a path w
is covered by a node ν if w P pathsGpνq. Paths are ordered
using the canonical order ď. For example, for the graph
G0 in Figure 3 we have pathsG0

pν5q “ tε, a, b, cu. Note
that ε P pathsGpνq for every ν P G. Moreover, note that
pathsGpνq is finite iff there is no cycle reachable from ν in
G. For example, for the graph G0 in Figure 3, pathsG0

pν1q
is infinite. We naturally extend the notion of paths to a set
of nodes i.e., given a set of nodes X from a graph G, by
pathsGpXq “

Ť

νPX pathsGpνq.

Regular expressions and automata. A regular language
is a language defined by a regular expression i.e., an expres-
sion of the following grammar:

q :“ ε | a pa P Σq | q1 ` q2 | q1 ¨ q2 | q
˚,

where by “¨” we denote the concatenation, by “`” we de-
note the disjunction, and by “˚” we denote the Kleene star.
By Lpqq we denote the language of q, defined in the natu-
ral way [22]. For instance, the language of pa ¨ bq˚ ¨ c con-
tains words like c, abc, ababc, etc. Regular languages can
alternatively be represented by automata and we also re-
fer to [22] for standard definitions of nondeterministic finite

word automaton (NFA) and deterministic finite word au-
tomaton (DFA). In particular, we represent every regular
language by its canonical DFA that is the unique smallest
DFA that describe the language. For example, we present
in Figure 4 the canonical DFA for pa ¨ bq˚c.

start

a

b

c

Figure 4: Canonical DFA for pa ¨ bq˚c.

Path queries. We focus on the class of path queries defined
by regular expressions i.e., that select nodes having at least
one path in the language of a given regular expression. For-
mally, given a graph G and a query q, we define the set of
nodes selected by q on G:

qpGq “ tν P G | Lpqq X pathsGpνq ‰ Hu.

For example, given the graph G0 in Figure 3, the query a
selects all nodes except ν4, the query pa ¨ bq˚ ¨ c selects the
nodes ν1 and ν3, and the query b ¨ b ¨ c ¨ c selects no node. In
the rest of the paper, we denote the set of all path queries by
pq and we refer to them simply as queries. We represent a
query by its canonical DFA, hence the size of a query is the
number of states in the canonical DFA of the corresponding
regular language. For example, the size of the query pa¨bq˚ ¨c
is 3 (cf. Figure 4).

Equivalent queries. Two queries q and q1 are equivalent if
for every graph G they select exactly the same set of nodes
i.e., qpGq “ q1pGq. For example, the queries a and a ¨ b˚

are equivalent since each node having a path ab . . . b has
also a path a. This example can be easily generalized and
yields to defining the class of prefix-free queries. Formally,
we say that a query q is prefix-free if for every word from
Lpqq, none of its prefixes belongs to Lpqq. Given a query
q, there exists a unique prefix-free query equivalent to q,
which, moreover, can be constructed by simply removing
all outgoing transitions of every final state in the canonical
DFA of q. Our interest in prefix-free queries is that they can
be seen as minimal representatives of equivalence classes of
queries and as such they are desirable queries for learning.
Indeed, every prefix-free query q is in fact equivalent to an
infinite number of queries q ¨ pq1 ` εq, where q1 can be every
pq. In the remainder, we assume w.l.o.g. that all queries
that we manipulate are prefix-free.

3. LEARNING FROM EXAMPLES
The input of a learning algorithm consists of a graph on

which the user has annotated a few nodes as positive or
negative examples, depending on whether or not she would
like the nodes as part of the query result. Our goal is to
exploit such examples to find a query that satisfies the user.
In this paper, we explore two learning protocols: (i) the user
provides a sample (i.e., a set of examples) that remains fixed
during the learning process, and (ii) the learning algorithm
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interactively asks the user to label more examples until the
learned query behaves exactly as the user wants.

First, we concentrate on the case of a fixed set of examples.
We identify the challenges of such an approach, we show the
unfeasability of the standard framework of language identi-
fication in the limit [20] and slightly modify it to propose
a learning framework with abstain (Section 3.1). Next, we
present a learning algorithm for the class of pq (Section 3.2)
and we identify the conditions that a graph and a sample
must satisfy to allow polynomial learning of the user’s goal
query (Section 3.3). We study the case of query learning
from user interactions in Section 4.

3.1 Learning framework
Given a graph G “ pV ,Eq, an example is a pair pν,αq,

where ν P V and α P t`,´u. We say that an example of
the form pν,`q is a positive example while an example of
the form pν,´q is a negative example. A sample S is a set
of examples i.e., a subset of V ˆ t`,´u. Given a sample S,
we denote the set of positive examples tν P V | pν,`q P Su
by S` and the set of negative examples tν P V | pν,´q P Su
by S´. A sample is consistent (with the class of pq) if there
exists a (pq) query that selects all positive examples and
none of the negative ones. Formally, given a graph G and a
sample S, we say that S is consistent if there exists a query
q s.t. S` Ď qpGq and S´ X qpGq “ H. In this case we say
that q is consistent with S. For instance, take the graph
G0 in Figure 3 and the sample S s.t. S` “ tν1, ν3u and
S´ “ tν2, ν7u; S is consistent because there exist queries
like pa ¨ bq˚ ¨ c or c` pa ¨ b ¨ cq that are consistent with S.

Next, we want to formalize what means for a class of
queries to be learnable, as it is usually done in the context
of grammatical inference [18]. The standard learning frame-
work is language identification the limit (in polynomial time
and data) [20], which requires a learning algorithm to oper-
ate in time polynomial in the size of its input, to be sound
(i.e., always return a query consistent with the examples
given by the user or a special null value if no such query
exists), and complete (i.e., able to produce every query with
a sufficiently rich set of examples).

Since we aim at a polynomial time algorithm that returns
a query consistent with a sample, we must first investigate
the consistency checking problem i.e., deciding whether such
a query exists. To this purpose, we first identify a necessary
and sufficient condition for a sample to be consistent.

Lemma 3.1 Given a graph G and a sample S, S is consis-
tent iff for every ν P S` it holds that pathsGpνq Ď pathsGpS´q.

From this characterization we can derive that the fundamen-
tal problem of consistency checking is PSPACE-complete.

Lemma 3.2 Given a graph G and a sample S, deciding
whether S is consistent is PSPACE-complete.

Proof sketch. The membership to PSPACE follows from
Lemma 3.1 and the known result that deciding the inclusion
of NFAs is PSPACE-complete [39]. The PSPACE-hardness
follows by reduction from the universality of the union prob-
lem for DFAs, known as being PSPACE-complete [28]. ˝

This implies that an algorithm able to always answer null
in polynomial time when the sample is inconsistent does not

exist, hence our class of queries is not learnable in the clas-
sical framework. One solution could be to study less expres-
sive classes of queries. However, as shown by the following
Lemma, consistency checking remains intractable even for a
very restricted class of queries, referred as “SORE(¨)” in [4].

Lemma 3.3 Given a graph G and a sample S, deciding
whether there exists a query of the form a1 ¨ . . . ¨an (pairwise
distinct symbols) consistent with S is NP-complete.

Proof sketch. For the membership of the problem to
NP, we point out that a non-deterministic Turing machine
guesses a query q that is a concatenation of pairwise distinct
symbols (hence of length bounded by |Σ|) and then checks
whether q is consistent with S. The NP-hardness follows by
reduction from 3SAT, well-known as being NP-complete. ˝

The proofs of Lemma 3.2 and 3.3 rely on techniques inspired
by the definability problem for graph query languages [4].
We also point out that the same intractability results for
consistency checking hold for binary semantics.

Another way to overcome the intractability of our class
of queries is to relax the soundness condition and adopt
a learning framework with abstain, similarly to what has
been recently done for learning XML transformations [30].
More precisely, we allow the learning algorithm to answer a
special value null whenever it cannot efficiently construct a
consistent query. In practice, the null value is interpreted
as “not enough examples have been provided”. However, the
learning algorithm should always return in polynomial time
either a consistent query or null. As an additional clause,
we require a learning algorithm to be complete i.e., when
the input sample contains a polynomially-sized characteris-
tic sample [18, 20], the algorithm must return the goal query.
More formally, we have the following.

Definition 3.4 A class of queries Q is learnable with ab-
stain in polynomial time and data if there exists a polynomial
learning algorithm learner that is:

1. Sound with abstain. For every graph G and sample
S over G, the algorithm learnerpG,Sq returns either a
query in Q that is consistent with S, or null if no such
query exists or it cannot be constructed efficiently.

2. Complete. For every query q P Q, there exists a
graph G and a polynomially-sized characteristic sam-
ple CS on G s.t. for every sample S extending CS
consistently with q (i.e., CS Ď S and q is consistent
with S), the algorithm learnerpG,Sq returns q.

Note that the polynomiality depends on the choice of a rep-
resentation for queries and recall that we represent each pq
with its canonical DFA. Next, we present a polynomial learn-
ing algorithm fulfilling the two aforementioned conditions
and we point out the construction of a polynomial charac-
teristic sample to show the learnability of pq.

3.2 Learning algorithm
In a nutshell, the idea behind our learning algorithm is

the following: for each positive node, we seek the path that
the user followed to label such a node, then we construct
the disjunction of the paths obtained in the previous step,
and we end by generalizing this disjunction while remaining
consistent with both positive and negative examples.
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More formally, the algorithm consists of two complemen-
tary steps that we describe next: selecting the smallest con-
sistent paths and generalizing them.

Selecting the smallest consistent paths (SCPs). Since
the labeled nodes in a graph may be the origin of multiple
paths, classical algorithms for learning regular expressions
from words, such as RPNI [35], are not directly applicable
to our setting. Indeed, we have a set of nodes in the graph
from which we have to first select (from a potentially infinite
set) the paths responsible for their selection. Therefore, the
first challenge of our algorithm is to select for each positive
node a path that is not covered by any negative. We call such
a path a consistent path. One can select consistent paths by
simply enumerating (according to the canonical order ď) the
paths of each node labeled as positive and stopping when a
consistent path for each node is found. We refer to the ob-
tained set of paths as the set of smallest consistent paths
(SCPs) because they are the smallest (w.r.t. ď) consistent
paths for each node. As an example, for the graph G0 in
Figure 3 and a sample s.t. S` “ tν1, ν3u and S´ “ tν2, ν7u,
we obtain the SCPs abc and c for ν1 and ν3, respectively.
Notice that in this case the disjunction of the SCPs (i.e., the
query c` pa ¨ b ¨ cq) is consistent with the input sample and
one may think that a learning algorithm should return such
a query. The shortcoming of such an approach is that the
learned query would be always very simple in the sense that
it uses only concatenation and disjunction. Since we want
a learning algorithm that covers all the expressibility of pq
(in particular including the Kleene star), we need to extend
the algorithm with a further step, namely the generalization.
We detail such a step at the end of this section.

Another problem is that the user may provide an inconsis-
tent sample, by labeling a positive node having no consistent
path (cf. Lemma 3.1). To clarify when such a situation oc-
curs, consider a simple graph such as the one in Figure 5
having one positive node (labeled with `) and two nega-
tive ones (labeled with ´). We observe that the positive

+– –
a b

a b

Figure 5: A graph with an inconsistent sample.

node has an infinite number of paths. However, all of them
are covered by the two negative nodes, thus yielding an in-
consistent sample. This example also shows that the sim-
ple procedure described above (i.e., enumerate the paths of
the positive nodes and stop when finding consistent ones)
fails because it leads to enumerating an infinite number on
paths and never halting. On the other hand, we cannot per-
form consistency checking before selecting the SCPs since
this fundamental problem is intractable (cf. Lemma 3.2 and
3.3). As a result, to avoid this possibly infinite enumeration,
we choose to fix the maximal length of a SCP to a bound
k. This bound engenders a new issue: for a fixed k it may
not be possible to detect SCPs for all positive nodes. For in-
stance, assume a graph that the user labels consistently with
the query pa ¨ bq˚ ¨ c, in particular she labels three positive
nodes for which the SCPs are c, abc, and ababc. For a fixed

k “ 3, the SCP ababc is not detected and the disjunction of
the first two SCPs (i.e., c`pa ¨b ¨cq) is not a query consistent
with the sample.

For all these reasons, we introduce a generalization phase
in the algorithm, which permits to solve the two mentioned
shortcomings i.e., (i) to learn a query that covers all the
expressibility of pq, and (ii) to select all positive examples
even though not all of them have SCPs shorter than k.

Generalizing SCPs. We have seen how to select, whenever
possible, a SCP of length bounded by k for each positive
example. Next, we show how we can employ these SCPs
to construct a more general query. The learning algorithm
(Algorithm 1) takes as input a graph G and a sample S, and
outputs a query q consistent with S whenever such query
exists and can be built using SCPs of length bounded by k;
otherwise, the algorithm outputs a special value null.

Algorithm 1 Learning algorithm – learnerpG,Sq.

Input: graph G, sample S
Output: query q consistent with S or null
Parameter: fixed k P N {{maximal length of a SCP
1: for ν P S`. Dp P Σďk. p P pathsGpνqzpathsGpS´q do
2: P :“ P Y tminďppathsGpνqzpathsGpS´qqu
3: let A be the prefix tree acceptor for P
4: while Ds, s1 P A. LpAs1Ñsq X pathsGpS´q “ H do
5: A :“ As1Ñs

6: if @ν P S`. LpAq X pathsGpνq ‰ H then
7: return query q represented by the DFA A
8: return null

We illustrate the algorithm on the graph G0 in Figure 3
with a sample S s.t. S` “ tν1, ν3u and S´ “ tν2, ν7u. For
ease of exposition, we assume a fixed k “ 3 (we explain
how to obtain the value of k theoretically in Section 3.3 and
empirically in Section 5). At first (lines 1-2), the algorithm
constructs the set P of SCPs bounded by k for the positive
nodes from which these paths in P can be constructed. Note
that by Σďk we denote the set of all paths of length at most
k. For instance, on our example in Figure 3, we obtain
P “ tabc, cu. Then (line 3), we construct the PTA (prefix
tree acceptor) [18] of P , which is basically a tree-like DFA
accepting only the paths in P and having as states all their
prefixes. Figure 6(a) illustrates the obtained PTA A for our
example. Then (lines 4-5), we generalize A by merging two
of its states if the obtained DFA selects no negative node.
Note that by As1Ñs we denote the DFA obtained from A
by modifying each occurrence of the state s1 in s. Recall
that on our example we have P “ tabc, cu and the PTA
A in Figure 6(a). Next, we try to merge states of A: the
states ε and a cannot be merged (because the obtained DFA
would select the path bc that is covered by the negative ν2),
the states ε and c cannot be merged (because the path ε is
covered by both negatives), while the states ε and ab can
be merged without covering any negative example. On our
example, we obtain the DFA in Figure 6(b), where no further
states can be merged. Finally, the algorithm checks whether
the query represented by A selects all the positive examples
(not only those from whose SCPs we have constructed A),
and if this is the case, it outputs the query (lines 6-7). In
our case, the obtained pa ¨ bq˚ ¨ c selects all positive nodes
hence is returned.
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(a) Prefix tree acceptor.
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(b) Result of generalization.

Figure 6: DFAs considered by learner for Figure 3.

3.3 Learnability results
Recall that in Section 3.1 we have formally defined what

means for a class of queries to be learnable while in Sec-
tion 3.2 we have proposed a learning algorithm for pq. In
this section, we prove that the proposed algorithm satisfies
the conditions of Definition 3.4, thus showing the main the-
oretical result of the paper. We conclude the section with
practical observations related to our learnability result.

By pqďn we denote the pq of size at most n.

Theorem 3.5 The query class pqďn is learnable with ab-
stain in polynomial time and data, using the algorithm learner
with the parameter k set to 2ˆ n` 1.

Proof. First, we point out that learner works in polyno-
mial time in the size of the input. Indeed, the number of
paths to explore for each positive node (lines 1-2) is polyno-
mial since the length of paths is bounded by a fixed k. Then,
both testing the consistency of queries considered during the
generalization (lines 3-5) and testing whether the computed
query selects all positive nodes (lines 6-7) reduce to decid-
ing the emptiness of the intersection of two NFAs, known
as being in PTIME [29]. Moreover, learner is sound with
abstain since it returns either a query consistent with the
input sample if it is possible to construct it using SCPs of
length bounded by k, or null otherwise.

As for the completeness of learner , we show, for every
q P pq, the construction of a graph G and of a characteris-
tic sample CS on G with the properties from Definition 3.4
i.e., for every sample S that extends CS consistently with
q (i.e., CS Ď S and q is consistent with S), the algorithm
learnerpG,Sq returns q. The idea behind the construction
is the following: we know that RPNI [35] is an algorithm
that takes as input positive and negative word examples and
outputs a DFA describing a consistent regular language, and
moreover, the core of RPNI is based on DFA generalization
via state merges similarly to learner ; hence, for a query q,
we want a graph and a sample on it s.t. when learner se-
lects the SCPs, it should get exactly the words that RPNI
needs for learning q if we see it as a regular language. Then,
since RPNI is guaranteed to learn the goal regular language
from these words, we infer that if learner selects and gener-
alizes the SCPs corresponding to them, then learner is also
guaranteed to learn the goal pq.

We exemplify the construction on the query q “ pa ¨bq˚ ¨c.
First, given q, we construct two sets of words P` and P´

that correspond to a characteristic sample used by RPNI to
infer the regular language of q. In our case, we obtain P` “
tc, abcu and P´ “ tε, a, ab, ac, bcu. Then, the characteristic
graph for learning the graph query q needs (i) for each p P
P`, a node ν P CS` s.t. p “ minďpLpqq X pathsGpνqq, (ii)
for each p P P´, a node ν P CS´ s.t. p P pathsGpνq, and
(iii) for each p1 that is smaller (w.r.t. the canonical order
ď) than a word p P P` and is not prefixed by any word in
Lpqq, a node ν P CS´ s.t. p1 P pathsGpνq. For our query
pa ¨ bq˚c, (i) implies two positive nodes: a node ν s.t. c P
pathsGpνq and another node ν1 s.t. abc P pathsGpν

1
q and c R

pathsGpν
1
q, while (ii) and (iii) imply a node ν2 s.t. ν2 R qpGq

and tε, a, ab, ac, bcu Ď pathsGpν
2
q (cf. ii) and tε, a, b, aa, ab,

ac, ba, bb, bc, aaa, aab, aac, aba, abbu Ď pathsGpν
2
q (cf. iii).

In Figure 7 we illustrate such a graph and we highlight the
two positive and one negative node examples.

ν1

ν2 ν

b

a

b

c

a a
a

b

a
b

a
b
c

Figure 7: Graph from the proof of Theorem 3.5.

Recall that the size of a query is the number of states of
its canonical DFA. According to the above construction, we
need |CS`| “ |P`| and |CS´| “ 1. Since |P`| is polyno-
mial in the size of the query [35], we infer that |CS | is also
polynomial in the size of the query. Moreover, to learn the
regular language of a query of size n, the longest path in
P` is of size 2ˆ n` 1 [35]. Hence, to be able to select this
path with learner (assuming the presence of a characteristic
sample), we need the parameter k of learner to be at least
2 ˆ n ` 1. Thus, for each possible size n of the goal query
there exists a polynomial learning algorithm satisfying the
conditions of Definition 3.4, which concludes the proof. ˝

We end this section with some practical observations related
to our learnability result.

First, we point out that although Theorem 3.5 requires
a certain theoretical value for k to guarantee learnability
of queries of a certain size, our experiments indicate that
small values of k (between 2 and 4) are enough to cover
most practical cases. Then, even though the definition of
learnability requires that one characteristic sample exists,
in practice there may be many of such samples and there
exists an infinite number of graphs on which we can build
them. In fact, a graph that contains a subgraph with a
characteristic sample is also characteristic.

Second, we also point out that a practical sample may
be characteristic without having all negative paths on the
same node as required by the aforementioned construction.
For instance, the sample that we have used to illustrate the
learning algorithm (i.e., the sample s.t. S` “ tν1, ν3u and
S´ “ tν2, ν7u on the graph in Figure 3) is characteristic
for pa ¨ bq˚ ¨ c and all above mentioned negatives paths are
covered by two negative nodes.
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Figure 8: A graph and a sample for pa ¨ bq˚ ¨ c.

Third, if a graph does not own a characteristic sample,
the user’s goal query on that graph cannot be exactly iden-
tified. In such a case, the learning algorithm returns a query
equivalent to the goal query on the graph and hence indistin-
guishable by the user (i.e., they select exactly the same set
of nodes). For instance, take the graph in Figure 8 and as-
sume a user labeling the nodes w.r.t. the goal pa ¨bq˚ ¨c. The
learning algorithm returns the query a that selects exactly
the same set of nodes on this graph.

Fourth, the presented learning techniques are directly ap-
plicable to different query semantics such as binary and n-
ary queries. We give here only the intuition behind these
applications and we point out that more details about the
corresponding algorithms can be found in the appendix of
our technical report [11]. To learn a binary query, the only
change to Algorithm 1 is that each positive example implies
a smaller number of candidate paths from which we have to
choose a consistent one (since the destination node is also
known). Then, for the n-ary case (i.e., when an example
is a tuple of nodes labeled with ` or ´), we have simply
to apply the previous algorithm to learn a query for each
position in the tuple and then to combine those.

4. LEARNING FROM INTERACTIONS
In this section, we investigate the problem of query learn-

ing from a different perspective. In Section 3 we have studied
the setting of a fixed set of examples provided by the user
and no interaction with her during the learning process. In
this section, we consider an interactive scenario where the
learning algorithm starts with an empty sample and continu-
ously interacts with the user and asks her to label additional
nodes until she is satisfied with the output of the learned
query. To this purpose, we first propose the interactive sce-
nario (Section 4.1). Then, we discuss different parameters
for it, in particular what means for a node to be informative
and what is a practical strategy of proposing nodes to the
user (Section 4.2). We also point out that we have employed
the aforementioned interactive scenario as the core of a sys-
tem for interactive path query specification on graphs [12].

4.1 Interactive scenario
We consider the following interactive scenario. The user

is presented with a node of the graph and indicates whether
the node is selected or not by the query that she has in
mind. We repeat this process until a sufficient knowledge
of the goal query has been accumulated (i.e., there exists
at most one query consistent with the user’s labels). This
scenario is inspired by the well-known framework of learning
with membership queries [3] and we have recently formalized
it as a general paradigm for learning queries on big data [13].
In Figure 9, we describe the current instantiation for path
queries on graphs and we detail next its different steps.

1 2 We consider as input a graph database G. Ini-
tially, we assume an empty sample that we enrich via simple
interactions with the user. The interactions continue until
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Figure 9: Interactive scenario.

a halt condition is satisfied. A natural halt condition is to
stop the interactions when there is exactly one consistent
query with the current sample. In practice, we can imagine
weaker conditions e.g., the user may stop the process earlier
if she is satisfied by some candidate query proposed at some
intermediary stage during the interactions.

3 We propose nodes of the graph to the user according
to a strategy Υ i.e., a function that takes as input a graph G
and a sample S, and returns a node from G. Since our goal
is to minimize the amount of effort needed to learn the user’s
goal query, a smart strategy should avoid proposing to the
user nodes that do not bring any information to the learning
process. The study of such strategies yields to defining the
notion of informative nodes that we formalize in the next
section.

4 A node by itself does not carry enough information to
allow the user to understand whether it is part of the query
result or not. Therefore, we have to enhance the informa-
tion of a node by zooming out on its neighborhood before
actually showing it to the user. This step has the goal of
producing a small, easy to visualize fragment of the initial
graph, which permits the user to label the proposed node
as a positive or a negative example. More concretely, in a
practical scenario, all nodes situated at a distance k (as the
parameter of Algorithm 1 explained in Section 3.2) should
be sufficient for the user to decide whether she wants or not
the proposed node. In any case, the user has neither to vi-
sualize all the graph that can be potentially large, nor to
look by herself for interesting nodes because our interactive
scenario proposes such nodes to the user.

5 6 The user visualizes the neighborhood of a given
node ν and labels ν w.r.t. the goal query that she has in
mind. Then, we propagate the given label in the rest of
the graph and prune the nodes that become uninformative.
Moreover, we run the learning algorithm learner (i.e., Al-
gorithm 1 from Section 3.2), which outputs in polynomial
time either a query consistent with all labels provided by
the user, or null if such a query does not exist or cannot
be constructed efficiently. When the halt condition is satis-
fied, we return the latest output of learner to the user. In
particular, the halt condition may take into account such an
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intermediary learned query q e.g., when the user is satisfied
by the output of q on the instance and wants to stop the
interactions.

In the next section, we precisely describe what means for
a node to be informative for the learning process and what
is a practical strategy of proposing nodes to the user.

4.2 Informative nodes and practical strategies
Before explaining the informative nodes, we first define the

set of all queries consistent with a sample S over a graph G:

CpG,Sq “ tq P pq | S` Ď qpGq ^ S´ X qpGq “ Hu.

Assuming that the user labels the nodes consistently with
some goal query q, the set CpG,Sq always contains q. Ini-
tially, S “ H and CpG,Sq “ pq. Therefore, an ideal strat-
egy of presenting nodes to the user is able to get us quickly
from S “ H to a sample S s.t. CpG,Sq “ tqu. In particular,
a good strategy should not propose to the user the certain
nodes i.e., nodes not yielding new information when labeled
by the user. Formally, given a graph G, a sample S, and an
unlabeled node ν P G, we say that ν is certain (w.r.t. S) if
it belongs to one of the following sets:

Cert`pG,Sq “ tν P G | @q P CpG,Sq. ν P qpGqu,

Cert´pG,Sq “ tν P G | @q P CpG,Sq. ν R qpGqu.

In other words, a node is certain with a label α if labeling it
explicitly with α does not eliminate any query from CpG,Sq.
For instance, take the graph in Figure 10 with a positive, a
negative, and an unlabeled node, which belongs to Cert`
because it is selected by the unique (prefix-free) query in
CpG,Sq (i.e., b). Additionally, we observe that labeling it
otherwise (i.e., with a –) leads to an inconsistent sample.
The notion of certain nodes is inspired by possible world
semantics and certain answers [23], and already employed for
XML querying for non-expert users [17] and for the inference
of relational joins [14].

+–
a b

a b

Figure 10: Two labeled nodes and a certain node.

Next, we give necessary and sufficient conditions for a
node to be certain, for both positive and negative labels:

Lemma 4.1 Given a sample S and a node ν from G:

1. ν P Cert`pG,Sq iff there exists ν1 P S` s.t.
pathsGpν

1
q Ď pathsGpS´q Y pathsGpνq,

2. ν P Cert´pG,Sq iff pathsGpνq Ď pathsGpS´q.

Additionally, given a graph G, a sample S, and a node ν, we
say that ν is informative (w.r.t. S) if ν has not been labeled
by the user nor it is certain. Unfortunately, by using the
characterization from Lemma 4.1, we derive the following.

Lemma 4.2 Given a graph G and a sample S, deciding
whether a node ν is informative is PSPACE-complete.

An intelligent strategy should propose to the user only infor-
mative nodes. Since deciding the informativeness of a node
is intractable (cf. Lemma 4.2), we need to explore practical

strategies that efficiently compute the next node to label.
Consequently, we propose two simple but effective strategies
that we detail next and that we have evaluated experimen-
tally. The basic idea behind them is to avoid the intractabil-
ity of deciding informativeness of a node by looking only at
a small number of paths of that node. More precisely, we
say that a node is k-informative if it has at least one path
of length at most k that is not covered by a negative exam-
ple. If a node is k-informative, then it is also informative,
otherwise we are not able to establish its informativeness
w.r.t. the current k. Then, strategy kR consists of taking
randomly a k-informative node while strategy kS consists of
taking the k-informative node having the smallest number
of non-covered k-paths, thus favoring the nodes for which
computing the SCPs is easier. In the next section, we dis-
cuss the performance of these strategies as well as how we
set the k in practice.

5. EXPERIMENTS
In this section, we present an experimental study devoted

to gauge the performance of our learning algorithms. In
Section 5.1, we introduce the used datasets: the AliBaba
biological graph and randomly generated synthetic graphs.
In Section 5.2 and Section 5.3, we present the results for
the two settings under study: static and interactive, respec-
tively. Our algorithms have been implemented in C and our
experiments have been run on an Intel Core i7 with 4ˆ 2.9
GHz CPU and 8 GB RAM.

5.1 Datasets
Despite the increasing popularity of graph databases, bench-

marks allowing to assess the performance of emerging graph
database applications are still lacking or under construc-
tion [10]. In particular, there is no established benchmark
devoted to graph queries defined by regular expressions. Due
to this lack, we have adopted a real dataset recently used
by [27] to evaluate the performance of optimization algo-
rithms for regular path queries. This dataset, called Al-
iBaba [36], represents a real graph from research on biology,
extracted by text mining on PubMed. The dataset has a
semantic part consisting of a network of protein-protein in-
teractions and a textual part, reporting text co-occurrence
for words. The first part was more appropriate to apply our
learning algorithms than the second. Therefore, we have
extracted the semantic part from the original graph, thus
obtaining a subgraph of about 3k nodes and 8k edges. Simi-
larly, from the set of real-life queries reported in [27], we have
retained those that select at least one node on the graph to
obtain at least one positive example for learning. Thus, we
have used 6 biological queries (denoted by bio1, . . . , bio6),
which are structurally complex and have selectivities vary-
ing from 1 to a total of 711 nodes i.e., from 0.03% to 22%
of the nodes of the graph. We summarize these queries in
Table 1. By small letters a, b we denote symbols from the
alphabet while by capital letters A,C,E, I we denote dis-
junctions of symbols from the alphabet i.e., expression of
the form a1 ` . . .` an. These disjunctions contain up to 10
symbols, with possibly overlapping ones among them.

Additionally, we have implemented a synthetic data gen-
erator, which yields graphs of varying size and similar to
real-world graphs. The latest feature let us generate scale-
free graphs with a Zipfian edge label distribution [27]. We
report here the results for generated graphs of size 10k, 20k,

117



Query Selectivity
bio1 b ¨A ¨A˚ 0.03%
bio2 C ¨ C˚ ¨ a ¨A ¨A˚ 0.2%
bio3 C ¨ E 3%
bio4 I ¨ I ¨ I˚ 11%
bio5 A ¨A ¨A˚ ¨ I ¨ I ¨ I˚ 12%
bio6 A ¨A ¨A˚ 22%

Table 1: Biological queries.

and 30k nodes, and with a number of edges three times
larger. Moreover, we focus on synthetic queries that are
similar in structure to the aforementioned real-life biologi-
cal queries. In particular, the three queries that we report
here (denoted by syn1, syn2, and syn3) have the structure
A ¨ B˚ ¨ C, where A, B, and C are disjunctions of up to
10 symbols, with overlapping ones among them. The differ-
ence between these three queries is w.r.t. their selectivity:
regardless the actual size of the graph, syn1, syn2, and syn3

select 1%, 15%, and 40% of the graph nodes, respectively.
Before presenting the experimental results, we say a few

words about how we set empirically the parameter k from
learner . Since in our experiments we assume that the user
labels the nodes of the graph consistently with some goal
query, the input sample is always consistent. Hence, there
exists a consistent path for each positive node and we dy-
namically discover the length of the SCPs. In particular,
we start with k “ 2; if for a given k, the query learned us-
ing SCPs shorter that k does not select all positive nodes,
we increment k and iterate. For the interactive case, the
aforementioned procedure becomes: start with k “ 2; seek
k-informative nodes (cf. Section 4.2) and increase k when
the current k does not yield any k-informative node. In
practice, in the majority of cases k “ 2 is sufficient and it
may reach values up to 4 in some isolated cases.

5.2 Static experiments
The setup of static experiments is as follows. Given a

graph and a goal query, we take as positive examples some
random nodes of the graph that are selected by the query
and as negative examples some random nodes that are not
selected by it. All these examples are given as input to
learner , which returns a consistent query. We consider the
learned query as a binary classifier and we measure the F1
score w.r.t. the goal query. Thus, for different percentages
of labeled nodes in the graph, we measure the F1 score of
the learned query along with the learning time. We present
the summary of results in Figure 11 and 12, which show the
F1 score and the learning time for the biological (a) and
synthetic queries (b, c, d), respectively. Since the positive
effect of the generalization in addition to the selection of
SCPs is generally of 1% in F1 score, we do not highlight the
two steps of the algorithm for the sake of figure readability.

We can observe that, not surprisingly, by increasing the
percentage of labeled nodes of the graph, the F1 score also
increases (Figure 11). Overall, the F1 score is 1 or suffi-
ciently close to 1 for all queries, except a few cases that
we discuss below. The worst behavior is clearly exhibited
by query bio5, when we can observe that the F1 score con-
verges to 1 less faster than the others. For this query, we can
also observe that the learning time is higher (Figure 12(a)).
This is due to the fact that the graph is not characteristic
for it (cf. Section 3.3), hence the selection of SCPs yields
paths that are not relevant for the target query.

For what concerns the learning time, this remains rea-
sonable (of the order of seconds) for all the queries and for
both datasets. The most selective queries (bio4, bio5, bio6)
are more problematic since they entail a larger number of
positive nodes in the step of selection of the SCPs. As a
conclusion, notice that even when the F1 score is very high,
these results on the static scenario are not fully beneficial
since we need to label at least 7% of the graph nodes to have
an F1 score equal to 1. As we later show with the interac-
tive experiments, we can significantly reduce the number of
labels needed to reach an F1 score equal to 1.

Finally, the synthetic experiments on various graph sizes
and query selectivities confirm the aforementioned observa-
tions. In particular, when the queries are more selective (as
syn2 and syn3), increasing the number of examples implies
more visible changes in the learning time (cf. Figure 12).
Additionally, we observe the goal queries with higher selec-
tivity converge faster to a F1 score equal to 1 (cf. Figure 11).
Intuitively, this is due to the fact that such cases imply a
bigger number of positive examples from which the learning
algorithm can benefit to generalize faster the goal query.

5.3 Interactive experiments
The setup of interactive experiments is as follows. Given a

graph and a goal query, we start with an empty sample and
we continuously select a node that we ask the user to label,
until the learned query selects exactly the same set of nodes
as the goal query or, in other words, until the goal query
and the learned query are indistinguishable by the user (cf.
Section 3.3). This corresponds to obtaining an F1 score of
1. In this setting, we measure the percentage of the labeled
nodes of the graph and the learning time i.e., the time needed
to compute the next node to label. In particular, the number
of interactions corresponds to the total number of examples,
the latter being the sum of the number of positive examples
and the number of negative examples. The summary of
interactive experiments is presented in Table 2.

We can observe that, differently from the static scenario,
labeling around 1% of the nodes of the graph suffices to learn
a query with F1 score equal to 1. Even for the most difficult
one (bio5), we get a rather significant improvement, as the
percentage of interactions is drastically reduced to 7.7% of
the nodes in the graph (while in the static case it was 87% of
the nodes in the graph). Overall, these numbers prove that
the interactive scenario considerably reduces the number of
examples needed to infer a query of F1 score equal to 1.
The synthetic experiments confirm this behavior for various
graph sizes and query selectivities. While learning a query
with F1 score equal to 1 corresponds to the strongest halt
condition of our interactive scenario (cf. Figure 9), we believe
that in practice the user may choose to stop the interactions
earlier (and hence label less nodes) if she is satisfied by an
intermediate query proposed by the learning algorithm. We
consider such halt conditions in our system demo [12].

Moreover, these experiments also show that the two strate-
gies (kS and kR, cf. Section 4.2) have a similar behavior,
even though kS is slightly better (w.r.t. minimizing the num-
ber of interactions) for the most selective queries. Intu-
itively, this happens because such a strategy favors the nodes
for which computing the SCPs has a smaller space of solu-
tions (cf. Section 4.2). Finally, we can observe that the two
strategies are also efficient, as they lead to a learning time
of the order of seconds in all cases.
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(a) Biological queries. (b) Synthetic query syn1. (c) Synthetic query syn2. (d) Synthetic query syn3.

Figure 11: Summary of static experiments – F1 score.

(a) Biological queries. (b) Synthetic query syn1. (c) Synthetic query syn2. (d) Synthetic query syn3.

Figure 12: Summary of static experiments – Learning time (seconds).

Bio query
/

Graph size

Labels needed for
F1 score = 1

without interactions

Interactive
strategy

Labels needed for
F1 score = 1

with interactions

Time between
interactions

(seconds)
Dataset

Biological
queries

bio1 7%
kR 0.06% 0.19
kS 0.06% 0.33

bio2 7%
kR 1.78% 0.26
kS 3.13% 0.48

bio3 66%
kR 1.24% 0.34
kS 1.49% 0.45

bio4 12%
kR 1.32% 0.23
kS 0.22% 0.53

bio5 87%
kR 7.7% 3.45
kS 7.39% 3.79

bio6 12%
kR 1.18% 0.24
kS 0.35% 0.3

Synthetic query
syn1

10000 51%
kR 0.15% 1.33
kS 0.17% 1.35

20000 26%
kR 0.07% 5.83
kS 0.06% 5.92

30000 22%
kR 0.04% 13.5
kS 0.04% 13.95

Synthetic query
syn2

10000 20%
kR 0.38% 1.57
kS 0.36% 1.58

20000 11%
kR 0.23% 6.63
kS 0.22% 6.78

30000 8%
kR 0.17% 15.24
kS 0.16% 15.38

Synthetic query
syn3

10000 5%
kR 0.1% 1.32
kS 0.1% 1.32

20000 3%
kR 0.05% 5.66
kS 0.05% 5.68

30000 2%
kR 0.04% 13.15
kS 0.04% 13.41

Table 2: Summary of interactive experiments.
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6. CONCLUSIONS AND FUTURE WORK
We have studied the problem of learning path queries de-

fined by regular expressions from user examples. We have
identified fundamental difficulties of the problem setting,
formalized what means for a class of queries to be learnable,
and shown that the above class enjoys learnability. Addi-
tionally, we have investigated an interactive scenario, ana-
lyzed what means for a node to be informative, and proposed
practical strategies of presenting examples to the user. Fi-
nally, we have shown the effectiveness of the algorithms and
the improvements of using an interactive approach through
an experimental study on both real and synthetic datasets.

We envision several directions of our work, one of which
being to sample a graph and finding informative nodes on
representative samples, in the spirit of [31]. Moreover, mo-
tivated by the absence of benchmarks devoted to queries
defined by regular expressions, we want to develop such a
benchmark. This would permit to better analyze the perfor-
mance of algorithms involving regular expressions on graphs,
including the learning algorithms proposed in this paper.
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[7] P. Barceló. Querying graph databases. In PODS, pages
175–188, 2013.

[8] K. Belhajjame. Annotating the behavior of scientific
modules using data examples: A practical approach. In
EDBT, pages 726–737, 2014.

[9] G. J. Bex, W. Gelade, F. Neven, and S. Vansummeren.
Learning deterministic regular expressions for the
inference of schemas from XML data. TWEB, 4(4), 2010.

[10] P. A. Boncz, I. Fundulaki, A. Gubichev, J.-L. Larriba-Pey,
and T. Neumann. The linked data benchmark council
project. Datenbank-Spektrum, 13(2):121–129, 2013.

[11] A. Bonifati, R. Ciucanu, and A. Lemay. Learning path
queries on graph databases, 2014. TR at
http://hal.inria.fr/hal-01068055.

[12] A. Bonifati, R. Ciucanu, and A. Lemay. Interactive path
query specification on graph databases. In EDBT, 2015.

[13] A. Bonifati, R. Ciucanu, A. Lemay, and S. Staworko. A
paradigm for learning queries on big data. In Data4U,
pages 7–12, 2014.

[14] A. Bonifati, R. Ciucanu, and S. Staworko. Interactive
inference of join queries. In EDBT, pages 451–462, 2014.

[15] A. Bonifati, R. Ciucanu, and S. Staworko. Interactive join
query inference with JIM. PVLDB, 7(13):1541–1544,
2014.

[16] R. Ciucanu and S. Staworko. Learning schemas for
unordered XML. In DBPL, pages 31–40, 2013.

[17] S. Cohen and Y. Weiss. Certain and possible XPath
answers. In ICDT, pages 237–248, 2013.

[18] C. de la Higuera. Grammatical Inference: Learning
Automata and Grammars. Cambridge University Press,
2010.

[19] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and
R. Xin. CrowdDB: answering queries with crowdsourcing.
In SIGMOD Conference, pages 61–72, 2011.

[20] E. M. Gold. Complexity of automaton identification from
given data. Information and Control, 37(3):302–320, 1978.

[21] C. Heinlein. Workflow and process synchronization with
interaction expressions and graphs. In ICDE, pages
243–252, 2001.

[22] J. E. Hopcroft and J. D. Ullman. Introduction to
Automata Theory, Languages and Computation.
Addison-Wesley, 1979.

[23] T. Imielinski and W. Lipski Jr. Incomplete information in
relational databases. J. ACM, 31(4):761–791, 1984.

[24] H. V. Jagadish, A. Chapman, A. Elkiss, M. Jayapandian,
Y. Li, A. Nandi, and C. Yu. Making database systems
usable. In SIGMOD Conference, pages 13–24, 2007.

[25] N. Jayaram, A. Khan, C. Li, X. Yan, and R. Elmasri.
Towards a query-by-example system for knowledge
graphs. In GRADES, 2014.

[26] M. J. Kearns and U. V. Vazirani. An introduction to
computational learning theory. MIT Press, 1994.

[27] A. Koschmieder and U. Leser. Regular path queries on
large graphs. In SSDBM, pages 177–194, 2012.

[28] D. Kozen. Lower bounds for natural proof systems. In
FOCS, pages 254–266, 1977.

[29] K.-J. Lange and P. Rossmanith. The emptiness problem
for intersections of regular languages. In MFCS, pages
346–354, 1992.

[30] G. Laurence, A. Lemay, J. Niehren, S. Staworko, and
M. Tommasi. Learning sequential tree-to-word
transducers. In LATA, pages 490–502, 2014.

[31] J. Leskovec and C. Faloutsos. Sampling from large graphs.
In KDD, pages 631–636, 2006.

[32] K. Losemann and W. Martens. The complexity of regular
expressions and property paths in SPARQL. ACM Trans.
Database Syst., 38(4):24, 2013.

[33] D. Mottin, M. Lissandrini, Y. Velegrakis, and
T. Palpanas. Exemplar queries: Give me an example of
what you need. PVLDB, 7(5):365–376, 2014.

[34] A. Nandi and H. V. Jagadish. Guided interaction:
Rethinking the query-result paradigm. PVLDB,
4(12):1466–1469, 2011.
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ABSTRACT
Since most graphs evolve over time, it is useful to be able
to query their history. We consider historical reachability
queries that ask for the existence of a path in some time in-
terval in the past, either in the whole duration of the interval
(conjunctive queries), or in at least one time instant in the
interval (disjunctive queries). We study both alternatives of
storing the full transitive closure of the evolving graph and
of performing an online traversal. Then, we propose an ap-
propriate reachability index, termed TimeReach index, that
exploits the fact that most real-world graphs contain large
strongly connected components. Finally, we present an ex-
perimental evaluation of all approaches, for different graph
sizes, historical query types and time granularities.

Categories and Subject Descriptors
H.2 [Database Management]: Systems query processing

General Terms
Algorithms, Measurement, Performance

Keywords
Evolving Graphs, Historical Queries, Reachability

1. INTRODUCTION
In recent years, increasing amounts of graph structured

data are being made available from a variety of sources, such
as social, citation, computer and hyperlink networks. Al-
most all such real-world networks evolve over time, as nodes
and edges are added or deleted. Analysis of their evolution
finds a large spectrum of applications, ranging from social
network marketing, to virus propagation and digital foren-
sics.

In this paper, we assume that we are given an evolving set
of graph snapshots corresponding to the state of the graph at
different time instants. We address the problem of efficiently

c© 2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

answering queries that involve such snapshots. In particular,
we focus on a basic query type, namely reachability queries,
that ask whether a node u was reachable from another node
v during specific time intervals in the past. We call such
queries historical reachability queries.

Although, there has been considerable interest in process-
ing graph data, through a variety of graph queries including
reachability, distance and pattern-based ones, querying the
graph history is much less studied. The only other two ap-
proaches to building indexes for processing historical graph
queries that we are aware of consider historical shortest-
path queries [9, 2]. Specifically, the authors of [9] propose a
method based on ordering nodes or edges pertinent to short-
est path computation, while the dynamic index construction
proposed in [2] does not support node or edge deletions.

All other work on historical queries focuses mainly on ef-
ficiently storing and retrieving the graph snapshots required
for processing each query [14, 13, 21, 17]. In particular, in
[14], a combination of graph deltas and selected material-
ized snapshots are explored, while in [13], the focus is on
storing, sharing and processing deltas. In [21], temporally
close snapshots are clustered, one representative per cluster
is selected and used for an initial evaluation of the query.
Finally, in [17], the placement and replication of snapshots
in a distributed setting is studied. Instead, in this paper,
we address the problem of building indexes for answering
historical reachability queries.

Reachability queries on static graphs have been exten-
sively studied. Research in this area follows two general di-
rections through efficiently storing the transitive closure and
speeding-up online traversal. With regards to transitive clo-
sure, various approaches have been proposed including the
chain method [10, 5], methods exploring spanning trees, bit-
vector compression [26] and interval [1, 28, 12], and hop [7,
22, 6] labeling. In the case of online traversal, often interval
labeling [4, 25, 30] is used to prune the search space. There
has also been some work on incrementally maintaining the
reachability indexes in case of evolving graphs [1, 3, 23, 31],
however, reachability still considers a single snapshot, i.e.,
the current version of the graph.

In this paper, we explore a compact representation of
graph snapshots, called version graph, where each node and
edge is annotated with the set of time intervals during which
the corresponding node and edge existed in the evolving
graph. We call such sets lifespans and seek for their mini-
mum representation through using non-overlapping and non-
continuous intervals. We also introduce a set of basic oper-
ations for efficiently manipulating lifespans of paths.
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For processing historical reachability queries, we start by
revisiting the basic transitive closure and online traversal ap-
proaches. For the transitive closure, we compute a minimum
representation of reachability information for each pair of
nodes. For the online traversal, we propose a novel interval-
based traversal of the version graph along with a number
of pruning steps. Furthermore, to avoid the cost and space
overheads associated with precomputing the transitive clo-
sure and improving the processing cost of the online traver-
sal, we propose a new approach, termed TimeReach.

TimeReach exploits the fact that most graphs consist of
strongly connected components (SCCs) [20, 15]. Thus, in-
stead of maintaining reachability information for pairs of
nodes, we maintain posting lists with information about node
membership in SCCs. We minimize the size of posting lists
through an appropriate assignment of identifiers to SCCs.
We show that the problem of the optimal assignment of
identifiers to SCCs is equivalent to the maximum bipartite
matching problem among SCCs in consequent graph snap-
shots. Along with postings, we maintain a condensed version
graph which corresponds to the version graph of the SCCs
evolution. To improve the performance of answering his-
torical queries, we also introduce an interval-2hop approach
based on pruned landmark labeling [2, 29] on the condensed
version graph.

We have extensively evaluated our approach with three
real social network datasets. Our experimental results show
that TimeReach is space efficient, in particular for graphs
consisting of large SCCs as is the case of social networks.
Its incremental construction is fast; indexing a new snapshot
graph takes just a few seconds. Finally, processing historical
queries using TimeReach is orders of magnitude faster than
the online traversal of the version graph.

The rest of this paper is structured as follows. In Section
2, we present related work, while in Section 3, we formally
define historical reachability queries. In Section 4, we in-
troduce the version graph and operations on lifespans and
present the two baseline approaches, namely, the transitive
closure and online traversal. In Section 5, we introduce the
TimeReach Index approach, while in Section 6, we present
experimental results. Section 7 concludes the paper.

2. RELATED WORK
Although, graph data management has been the focus of

much current research, work in processing historical queries
is rather limited. The main focus of research on evolving
graphs has been on efficiently storing and retrieving graph
snapshots. In this paper, our focus in on indexing for pro-
cessing queries. To this end, we assume a compact repre-
sentation of the sequence of graph snapshots in the form
of a version graph. Alternatively, one can store just some
subset of the graph snapshots in the sequence along with
appropriate deltas, such that, any other snapshot can be
reconstructed by applying the deltas on the selected snap-
shots [14, 13]. Various optimizations for reducing the storage
and snapshot re-construction overheads have been proposed,
such as a hierarchical index of deltas and a memory pool for
the overlapping storage of snapshots [13]. Clustering tem-
porally close snapshots and computing a representative for
each cluster was also proposed [21], Deltas from representa-
tives are stored for each cluster to achieve high compression.
In the G* graph database, snapshots are efficiently stored by
taking advantage of commonalities among them [16]. Dif-

ferent versions of each node are stored only once regardless
of the number of snapshots it belongs to, and indexed by a
compact in-memory index. For load balance and availability
snapshot data are replicated among a number of workers.

Historical query processing in these approaches requires as
a first and costly step reconstructing the relevant snapshots.
Then, queries are processed through an online traversal on
each of them. Query performance is addressed by trying to
minimize the number of snapshots that need to be recon-
structed by minimizing the number of deltas applied [14,
13], avoiding the reconstruction of all snapshots [21], or by
parallel query execution and proper snapshot placement and
distribution [17]. In this work, we address a different prob-
lem, that of indexing for historical reachability queries.

Historical shortest path distance queries were addressed
in [9]. The authors propose a method based on ordering
nodes or edges pertinent to shortest path computation. Fi-
nally, the recent work of [2] also proposes a dynamic in-
dexing scheme for historical distance queries. However, the
authors consider only insertions. This assumption simpli-
fies the problem, since two nodes that are reachable remain
reachable. The authors propose a dynamic 2hop index con-
struction that is not applicable in the case of node or edge
deletions.

Reachability queries on static graphs have been thoroughly
investigated along two general directions: transitive closure
compression and improving online search.

Transitive Closure Compression. Related research aims at
compressing the transitive closure by storing for each node
only a subset of the nodes it can reach. The first idea is to
decompose the graph in k node-disjoint chains and for each
node store only the first node it can reach in each chain [10,
5]. Another line of research extracts a spanning tree of the
graph, and uses it to compress the transitive closure. Each
node of the tree is labeled with an interval of integers such
that if node u is an ancestor of v, the interval of u contains
that of v. Reachability through tree edges can be easily
determined by a label containment check. To incorporate
reachability through non-tree edges each node inherits the
intervals of its successors in the graph [1], or a partial tran-
sitive closure of non-tree edges is constructed [28]. Building
upon the idea of interval labeling, a tree whose vertices are
pair-wise disjoint paths extracted from the original graph is
used in [12]. Another approach in compressing the transitive
closure is 2-hop labeling [7, 22, 6]. Each node stores two sets
of intermediate nodes: a set Lout of nodes it can reach and
a set Lin of nodes that can reach it. Node u can reach node
v only if Lout(u) ∩ Lin(v) 6= ∅.
Speeding-up Online Traversal. These methods use interval
labeling to aid online traversal by pruning the search space.
In [4] and [25], a tree cover of the graph is constructed and
then, for the queries that can not be answered by the tree
labeling, an online search on the non-tree edges is performed
using the labeling to guide the search. In [30], multiple inter-
vals are used for the labeling. If the label containment check
does not produce a negative answer, the graph is traversed
online using the intervals for pruning the search.

Some of the works discuss the incremental maintenance
of the index in the case of evolving graphs [1, 3, 23, 31].
However, the updated index contains reachability informa-
tion only about the current version of the graph and cannot
be used for answering historical queries.
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The presented approaches are orthogonal to our approach
in that they can be adapted so that they can be used to
speed-up or avoid the online traversal of the condensed graph.
We have demonstrated this by adapting, one of them, namely
2hop labeling.

3. PROBLEM DEFINITION
Most real world graphs evolve over time as new nodes or

edges are added, or existing nodes or edges are deleted. We
assume that time is discrete and use successive integers to
denote successive time instants. There are two intuitive in-
terpretations of time instants. One interpretation is that of
actual time, for example time instant t may correspond to
say October 20, 2014, 5:00am PDT. Another view is oper-
ational. In this case, time is advanced each time a graph
operation, update or delete, occurs. Both interpretations of
time instants are consistent with our representation.

Let G = (V,E) be a directed graph where V is the set
of nodes and E the set of edges. We use Gt = (Vt, Et) to
denote the graph snapshot at time instant t, that is, the set
of nodes and edges that exist at time instant t.

Definition 1 (evolving graph). An evolving graph
G[ti,tj ] in time interval [ti, tj ] is a sequence {Gti , Gti+1, . . . ,
Gtj} of graph snapshots.

An example is shown in Figure 1(a) which depicts an evo-
lving graph G[t0,t3] consisting of four graph snapshots {Gt0 ,
Gt1 , Gt2 , Gt3}. For brevity, we denote time instant ti + 1
as ti+1 and use ti and i interchangeably, when the meaning
is clear from context.

We use the term time granularity to refer to how often a
new time instant and the corresponding graph snapshot are
created. In the case of actual time, granularity may range
for example from milliseconds to years, whereas, in the case
of operational time, granularity may be at the level of one
or more operations. A fine-grained time granularity necessi-
tates maintaining a large amount of historical information,
but supports precise historical queries.

Given a static directed graph G = (V,E) and two nodes
u, v ∈ V , a reachability query asks whether there exists a
path from u to v in G. For evolving graphs, we introduce
the following two types of historical reachability queries.

Definition 2 (historical reachability query). Let
G[ti,tj ] = {Gti , Gti+1, . . . Gtj}, be an evolving graph, IQ =
[tk, tl] ⊆ [ti, tj ] a time interval and v, u a pair of nodes:

(i) a conjunctive historical reachability query u
IQ∧
; v re-

turns true, if there exists a path from u to v in all graph
snapshots Gtm , tk ≤ tm ≤ tl of G[ti,tj ].

(ii) a disjunctive historical reachability query u
IQ∨
; v re-

turns true, if there exists a path from u to v in at least
one graph snapshot Gtm , tk ≤ tm ≤ tl, of G[ti,tj ].

Our goal is to derive methods for answering reachability
queries efficiently. A straightforward solution would be to
build a different index for each of the graph snapshots and
then pose a reachability query at each one of them. However,
this solution imposes large space overheads. In addition, it
requires extra processing for combining the results of each
query. Instead, we propose building indexes for intervals.

4. VERSION GRAPH
In this section, we present the version graph, a natural

concrete representation of an evolving graph. First, let us
define the notion of lifespan. For a node u (or, edge e),
its lifespan denotes the set of time intervals during which u
(resp. e) existed in an evolving graph. More formally, given
an evolving graph GI = {Gti , Gti+1, . . . , Gtj}, the lifespan,
L(u), (resp. L(e)) of a node u (resp. edge e) is a set of
intervals such that an interval [ti, tj ] ⊆ I belongs to L(u),
(resp. L(e)), if and only if, for all ti ≤ tm ≤ tj , u ∈ Vtm

(resp. e ∈ Etm).
We model lifespans as sets of time intervals to capture the

general case of graph evolution, where nodes and edges may
be deleted and then re-inserted at subsequent snapshots. Set
of time intervals are also known as temporal elements [11].
If we do not allow deleted nodes or edges to be re-inserted,
then lifespans are just intervals. Furthermore, if there are
no deletions, all lifespans are intervals of the form [ti, tcurr],
where ti is the time instant the node or edge first appeared
and tcurr is the time instant of the current snapshot. There-
fore, in this case, lifespans can be represented simply by the
time instant ti. In the following, we use I to denote time
intervals and I to denote sets of time intervals. To repre-
sent an evolving graph GI , we use a version graph V GI . A
version graph is a labeled directed graph that captures the
evolution of the graph in a concise manner.

Definition 3 (version graph). Given an evolving graph
GI = {Gti , Gti+1, . . . , Gtj}, its version graph is an edge and
node labeled, directed graph V GI = (VI , EI , Lu, Le) where:
VI =

⋃
tm ∈ I Vtm , EI =

⋃
tm ∈ I Etm , Lu : VI → I assigns

to each node u in VI its lifespan Lu(u) and Le : EI → I
assigns to each edge e in EI its lifespan Le(e).

An example is shown in Figure 1(b) which depicts the
version graph for the evolving graph in Figure 1(a).

4.1 Lifespan Operations
Let us define a number of operations on lifespans, i.e., set

of intervals. For two sets I and I′ of time intervals, we say
that I covers I′, denoted I w I′, if for each time instant t
in an interval I ′ of I′, there is an interval I in I such that t
belongs to I. We also use I w I for an interval I and I w t
for a time instant t. We say that two sets I and I′ of time
intervals are equivalent, I ≈ I′, if I w I′ and I′ w I.

We would like to maintain the smallest among equivalent
sets of intervals. We call such sets minimum sets. Let us
first define some simple properties for time intervals. Two
time intervals I = [ti, tj ] and I ′ = [t′i, t

′
j ] are called disjoint,

when I ∩ I ′ = ∅ and overlapping otherwise. They are called
continuous when t′i = tj + 1 and non-continuous otherwise.
It is easy to see that the following proposition holds.

Proposition 1.

(i) A set of intervals is minimum, if and only if, it consists
of disjoint and non-continuous intervals.

(ii) For each set of time intervals, there is a unique equiv-
alent minimum interval set.

We next define two useful operations on interval sets,
namely, join and merge. Given two sets of intervals, join
returns the time instants common to both, while merge re-
turns the time instants present in at least one of them.
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                                                       (a)                                                                                         (b)                                                                                      (c) 

Figure 1: Example of (a) an evolving graph, (b) the corresponding version graph, (c) SCC evolution

Definition 4 (Join and Merge of Interval Sets).
Let I = {I1, . . . Ik} and I′ = {I ′1, . . . I ′l} be two sets of
time intervals.

(i) Join I ⊗ I′ of I and I′ is the minimum set equivalent
to {I1 ∩ I ′1, . . . I1 ∩ I ′l , . . . , Ik ∩ I ′1, . . . Ik ∩ I ′l}.

(ii) Merge I ⊕ I′ of I and I′ is the minimum set equiva-
lent to I ∪ I′.

Note that if I and I′ are minimum, then the set {I1 ∩ I ′1,
. . . I1 ∩ I ′l . . . , Ik ∩ I ′1 } is a minimum set, whereas the set
{I1 ∪ I ′1, . . . I1 ∪ I ′l , . . . , Ik ∪ I ′1 . . . Ik ∪ I ′l} may not be
minimum.

The lifespan L(p) of a path p includes the time intervals
during which all its edges coexist. Clearly, for a path p = e1
. . . em, it holds that L(p) = Le(e1) ⊗ . . . ⊗ Le(em), where
Le(ei), 1 ≤ i ≤ m, is the lifespan of ei. For example, for
path p = ((u4, u3), (u3, u7), (u7, u6)) in Figure 1(b), L(p)
= {[2,3]} ⊗ {[1,3]} ⊗ {[0,1], [3, 3]} = {[3,3]}, while for path
p′= ((u1, u3), (u3,u7), (u7,u4)), L(p′) = {[0,1]} ⊗ {[1,3]} ⊗
{[0,0], [2,3]} = ∅.

We can now define the lifespan, L(u, v), of the reachabil-
ity between two nodes u and v. Let P (u, v) = {p1, . . . pl}
be the set of all paths from u to v. L(u, v) depends on the
lifespans of all possible paths in V GI from u to v, in partic-
ular, L(u, v) = L(p1) ⊕ . . . ⊕ L(pl). For example, for nodes
u4 and u6 in Figure 1(b), P (u4, u6) = {p1, p2, p3, p4, p5, p6}
where p1 = u4u3u6, p2 = u4u3u7u6, p3 = u4u1u3u6, p4 =
u4u1u3u7u6, p5 = u4u1u2u3u6, p6 = u4u1u2u3u7u6 (note,
that for notational brevity, paths were denoted by the par-
ticipating nodes instead of edges). Then, L(u4, u6) = {[2, 3]}
⊕ {[3, 3]} ⊕ {[0, 1]} ⊕ {[1, 1]} ⊕ {[1, 1]} ⊕ {[1, 1]} = {[0, 3]}.

Clearly, historical reachability queries can be represented
in terms of lifespans. Specifically, given a version graph
V GI , a time interval IQ = [tk, tl] ⊆ [ti, tj ] and two nodes v,
u,

(i) a conjunctive historical reachability query u
IQ∧
; v re-

turns true, if and only if, {IQ} ⊗ L(u, v) w IQ.

(ii) a disjunctive historical reachability query u
IQ∨
; v re-

turns true, if and only if, {IQ} ⊗ L(u, v) 6= ∅.

To represent lifespans, we use bit arrays. Assume without
loss of generality, that the maximum time instant, that is,

the number of graph snapshots, is T . Then, a lifespan, i.e.,
set of intervals, I is represented by a bit array B of size T ,
such that B[i] = 1 if I w i, and 0, otherwise. For exam-
ple, take I = {[2, 4], [9, 10], [13, curr]} and T = 16. The bit
array representation of I is 00111000011001111. This leads
to an efficient implementation of both join ⊗ and merge
⊕. In particular, let I and I′ be two set of intervals and
B and B′ be their bit arrays. Then, I ⊗ I′ is computed
as B logical-AND B′ and I ⊕ I′ as B logical-OR B′. An
alternative representation would be to use ordered lists of
intervals. Lifespan operations would then be performed us-
ing variations of merge sort resulting in O(T ) complexity.
Lists impose in general large computational overheads in
computing reachability.

4.2 Baseline Approaches
There are two baseline approaches to answering reachabil-

ity queries on static graphs, namely pre-computation of the
graph transitive closure and online traversal of the graph.
In this section, we revisit these baseline approaches for his-
torical reachability queries on a version graph.

4.2.1 Historical Transitive Closure
Instead of maintaining a different transitive closure for

each graph snapshot of the evolving graph GI , we maintain
a single transitive closure, CLI for the version graph V GI .
The transitive closure includes for each pair of nodes u, v,
their reachability lifespan, L(u, v). To construct the transi-
tive closure, we use a variation of the Floyd-Warshall algo-
rithm that takes into account lifespans, shown in Algorithm
1. If there is a path pu,w from node u to node w and a path
pw,v from node w to node v then there exists a path pu,v =
(pu,w, pw,v) from u to v with L(pu,v) = L(pu,w) ⊗ L(pw,v)
and L(pu,v) is merged with the L(u, v) computed so far.

The time complexity for Algorithm 1 is O(|VI |3T ) in the
worst case and requires storage in the order of |VI |2. For

answering a reachability query u
IQ∨
; v or u

IQ∧
; v, initially

the entry L(u, v) in CLI is located and then joined with the
query interval IQ, thus requiring constant time complexity.

4.2.2 Online Traversal of the Version Graph
A straightforward approach to process a reachability query

for an interval IQ would be to perform an online traver-
sal on all graph snapshots Gt, t ∈ IQ. When using the
version graph representation, this corresponds to traversing
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Algorithm 1 TransitiveClosure(V GI)

Input: Version graph V GI

Output: The transitive closure CLI

1: for all u, v ∈ VI × VI do
2: if (u, v) ∈ EI then
3: CLI(u, v) = Le((u, v))
4: else
5: CLI(u, v) = ∅
6: end if
7: end for
8: for w = 1 to |VI | do
9: for all u, v ∈ VI × VI do

10: CLI(u, v) = CLI(u, v) ⊕ (CLI(u,w) ⊗ CLI(w, v))
11: end for
12: end for

only edges e such that Le(e) w t, once for each t ∈ IQ. We
call this approach, instant based traversal.

To avoid multiple traversals, i.e., one for each snapshot
in IQ, we consider an interval based traversal of the version
graph. The BFS-based interval traversal for disjunctive his-
torical queries is shown in Algorithm 2 and for conjunctive
historical queries in Algorithm 3.

In particular, for conjunctive queries, since a node v may
be reachable from u through different paths at different
graph snapshots, we maintain an interval set R with the
part of L(u, v) ⊗ IQ covered so far (line 9, Algorithm 3).
The traversal ends when R covers the whole query time in-
terval IQ (line 10, Algorithm 3).

To speed-up traversal, we perform a number of pruning
tests. The traversal stops when we reach a node whose lifes-
pan is outside the query interval. In addition, the traversal
stops at a neighbor w of a node n when {IQ} ⊗ Le(n,w) 6=
∅ since a node v cannot be reachable through an edge which
is not alive in at least one t inside the query interval (line 6,
Algorithms 2 and 3).

Still an edge may be traversed multiple times, if it partici-
pates in multiple paths from source to target. To reduce the
number of such traversals, we provide additional pruning by
recording for each node w, an interval set IN (w) with the
parts of the query interval for which it has already been tra-
versed. If the query reaches w again looking for interval I ′

⊆ IQ and IN (w) w I ′, the traversal is pruned (line 11 of
Algorithm 2, line 15 of Algorithm 3).

For example, consider the version graph in Figure 1(b) and

query u1
[0,3]∧
; u5. Paths p1 = u1u3u6u5, p2 = u1u3u7u6u5,

p3 = u1u2u3u6u5, p4 = u1u2u3u7u6u5, p5 = u1u4u3u6u5 and
p6 = u1u4u3u7u6u5 with L(p1) = {[0, 1]}, L(p2) = {[1, 1]},
L(p3) = {[1, 1]}, L(p4) = {[1, 1]}, L(p5) = {[2, 3]} and L(p6)
= {[3, 3]} need to be traversed to conclude correctly that the
result of the query is true. Hence, some edges, e.g., (u3, u6),
(u6, u5) need to be traversed multiple times for different
time intervals I ′i ⊆ IQ. However, when the query reaches u3

again through path p3, it is pruned and it does not traverse
the edge (u3, u6) since IN (u3) is equal to {[0,1]} which
covers the current query interval I ′ = {[1,1]}.

Since in the worst case for both instant and interval based
traversal each edge may be traversed |IQ| times, the com-
plexity for both traversals is O((|VI | + |EI |)|IQ|). However,
in practice interval based traversal outperforms the instant
based one since each edge traversal covers large parts of the

Algorithm 2 Disjunctive-BFS(V GI , u, v, {IQ})
Input: Version graph V GI , nodes u, v, interval IQ ⊆ I
Output: True if v is reachable from u in any time instant

in IQ and false otherwise

1: create a queue N , create a queue INT
2: enqueue u onto N , enqueue IQ onto INT
3: while N 6= ∅ do
4: n← N.dequeue()
5: i← INT.dequeue()
6: for all w s.t. (n, w) in V GI and {IQ} ⊗ Le((n,w))

6= ∅ do
7: if w == v then
8: Return(true)
9: end if

10: I′ = {IQ} ⊗ Le(u,w)
11: if IN (w) 6w I′ then
12: IN (w) = IN (w) ⊕ I′
13: enqueue w onto N
14: enqueue I′ onto INT
15: end if
16: end for
17: end while
18: Return(false)

query interval instead of a single time instant. Furthermore,
pruning guarantees that an edge will not be traversed twice
for the same interval.

5. THE TIMEREACH INDEX
Our approach exploits the fact that many real-world so-

cial graphs are characterized by large strongly connected
components (SCC) [20, 15]. Thus, instead of maintaining
reachability information for pairs of nodes, we maintain in-
formation about the SCCs that each node belongs to. If two
nodes belong to the same component, then they are reach-
able. However, as the graph evolves over time, its strongly
connected components change as well. An example is shown
in Figure 1(c) that depicts the SCCs of the graph in Figure
1(b) as they evolve over time.

Given an evolving graph GI = {Gti , Gti+1, . . . , Gtj}, we
invoke at each graph snapshot Gtk ∈ GI an algorithm, e.g.,
Tarjan’s algorithm [24], to identify the corresponding set of
SCCs. A unique id is assigned to each SCC at each snapshot.

For each node u, we maintain a list P (u) that contains
(C, t) pairs specifying the strongly connected component C
to which node u belongs at time instant t. P (u) is called
posting list and each pair in the list a posting. The storage
complexity is Ω(|VI ||I|), since each node participates in at
most one SCC at each time instant. If we use Tarjan’s algo-
rithm [24], the time complexity for constructing the lists is
O((|VI |+ |EI |)|I|), since each run of the Tarjan’s algorithm
has an O(|VI |+ |EI |) complexity.

For presentation clarity, we assume that single nodes form
singleton SCCs whose ids are the ids of the corresponding
nodes. However, for space efficiency, we do not maintain
postings in this case.

We perform an additional optimization. Many nodes have
strong connections, i.e. they remain in the same components
even in the face of component splits and joins. We exploit
this fact to reduce the storage space required for the postings
by observing that the posting lists of these nodes consist of
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Algorithm 3 Conjunctive-BFS(V GI , u, v, {IQ})
Input: Version graph V GI , nodes u, v, interval IQ ⊆ I
Output: True if v is reachable from u in all time instants

in IQ and false otherwise

1: create a queue N , create a queue INT
2: enqueue u onto N , enqueue IQ onto INT
3: while N 6= ∅ do
4: n← N.dequeue()
5: i← INT.dequeue()
6: for all w s.t. (n, w) in V GI and {IQ} ⊗ Le((n,w))

6= ∅ do
7: I′ = {IQ} ⊗ Le(n,w)
8: if w == v then
9: R = R ⊕ I′

10: if R w IQ then
11: Return(true)
12: end if
13: continue
14: end if
15: if IN (w) 6w I′ then
16: IN (w) = IN (w) ⊕ I′
17: enqueue w onto N
18: enqueue I′ onto INT
19: end if
20: end for
21: end while
22: Return(false)

the same elements. We avoid redundancy by storing such
lists only once and replacing the posting lists of the rele-
vant nodes with pointers to the common list. We call this
approach posting sharing.

An example is shown in Figure 2(a), where, for instance,
the first posting list indicates that nodes with ids 1 up to 50
belong to the strongly connected component with id C1 at
time t0, C6 at t1 and C9 at t2.

In addition, for each graph snapshot Gtk , we construct a
SCC graph snapshot GStk

= (VStk
, EStk

) such that there is
a node U in VStk

for each SCC in Gtk , and there is an edge

(U , V ) in EStk
, if and only if, there is an edge (u, v) in Gtk

from a node u that belongs to the SCC that corresponds to
U to a node v that belongs to the SCC that corresponds to
V . For a time interval I = [ti, tj ], this results in an evolving
SCC graph GSI = {GSti

, GSti+1 , . . . , GStj
}. We construct

the SCC graphs incrementally, as the SCCs are created. The
size of each SCC graph depends on the size of the original
snapshot graph and in the worst case is equal to it.

We call this approach simple TimeReach (TR). To answer

a reachability query u
IQ∧
; v, (or, u

IQ∨
; v), we check for each

t ∈ IQ whether u and v belong to the same component. If
this is not the case, we traverse the corresponding GSt .

Next, we present a more space efficient method of exploit-
ing strongly connected components for historical queries.

5.1 Condensed TimeReach
While in the TR approach, we maintain information per

time instant, we would like to aggregate such information
to express SCC participations during time intervals. In this
case, a posting (C, I ′), I ′ ⊆ I, belongs to P (u), if u partic-
ipates in the SCC with id C at all time instants in I ′. Our

goal is to minimize the total number of such postings.

Problem 1 (Optimal SCC-id assignment). Given a
time interval I and a set of SCCs for each t ∈ I, find an as-
signment of ids to SCCs that results in the minimum number
of postings.

A new posting is created, each time a node participates
in a different SCC. Thus, SCC ids should be re-assigned so
that the number of such new postings is minimized. We use
a weighted graph to formalize the optimal assignment of ids
to SCCs.

In particular, we model SCC evolution over a time interval
I using a weighted graph GC(VC , EC , W) where each node
U ∈ VC corresponds to a SCC that existed at some time
instant t ∈ I, and an edge e = (U, V ) ∈ EC , if and only
if, SCC U existed at time tk, SCC V existed at time tk + 1
and there is at least one node that belongs to both U and
V . W assigns to each edge e = (U, V ) a weight W(e) that
corresponds to the number of nodes that belong to both U
and V .

An example of a weighted graph is shown in Figure 2(b)
that depicts the evolution of the graph whose posting lists
are shown in Figure 2(a). For instance, component C7 cre-
ated at time instant t1 consists of 100 nodes from component
C4 and 150 nodes from C5.

Let GC[tk,tk+1]
(VC[tk,tk+1]

, EC[tk,tk+1]
,W) be the subgraph

of GC( VC , EC , w), that consists of the nodes U ∈ VC[tk,tk+1]

that correspond to the SCCs that exist at time interval
[tk, tk + 1]. GC[tk,tk+1]

represents one step in the SCC evo-

lution. Note that, from the definition of GC , GC[tk,tk+1]
is

a bipartite graph.
We make the following observation. At time instant tk +

1, a new posting is created exactly for those nodes that
participated in a different SCC at tk + 1 than at tk. The
number of these new postings is equal to the sum of weights
from node U to V in GC[tk,tk+1]

where U has a different id

than V . Thus, to minimize the number of new postings, we
have to maximize the weight of the edges between pairs of
nodes that have the same id. This corresponds to finding a
maximum bipartite matching of GC[tk,tk+1]

.

Theorem 1. The optimal SCC-id assignment problem can
be reduced to the problem of finding the maximum weight bi-
partite matching (MWM) Mk of each GC[tk,tk+1]

.

Proof. As shown above, solving the MWM for each bi-
partite graph GC[tk,tk+1]

minimizes the number of new post-

ings created at tk + 1. We shall show that this step-wise
assignment is optimal overall in GC . For the purposes of
contradiction, assume that the optimal assignment is a set
N of edges, N ⊂ EC and that N is different from the set
of edges attained through the maximum bipartite match-
ings, that is,

∑
e∈N

w(e) >
∑
k

∑
e∈Mk

w(e). Hence, for some

m, for Nm = N ∩ EC[tm,tm+1]
it holds that

∑
e∈Nm

w(e) >∑
e∈Mm

w(e), which means that Mm is not a MWM, which is

a contradiction.

Figure 2(c) shows the weighted graph after the assignment
of new ids through bipartite matching, while Figure 2(d)
shows the new posting lists.
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Nodes Posting List

1-50 (C1,t0),(C6,t1),(C9,t2)

51-80 (C2,t0),(C6,t1),(C9,t2)

81-100 (C3,t0),(C6,t1),(C9,t2)

101-200 (C4,t0),(C7,t1),(C9,t2)

201-230 (C5,t0),(C7,t1),(C9,t2)

231-350 (C5,t0),(C7,t1),(C10,t2)

351-450 (C5,t0),(C8,t1),(C10,t2)

(a)                                                                                        (b)
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Nodes Posting List

1-50 (C1,[t0,t1]),(C4,[t2,t2])

51-80 (C2,[t0,t0]),(C1,[t1,t1]),(C4,[t2,t2])

81-100 (C3,[t0,t0]),(C1,[t1,t1]),(C4,[t2,t2])

101-200 (C4,[t0,t2])

201-300 (C5,[t0,t0]),(C4,[t1,t2])

231-350 (C5,[t0,t0]),(C4,[t1,t1]),(C5,[t2,t2])

351-450 (C5,[t0,t2])

(c)                                                      (d)
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Figure 2: (a) Shared posting lists, (b) weighted graph modeling the evolution of SCCs, (c) weighted graph after the bipartite
matching, and (d) the compressed shared posting lists

The maximum weight bipartite matching problem is well-
studied (e.g., see [8] for a survey). The most widely used
algorithm for solving this problem on a graph G(V,E) is
the Hungarian algorithm whose running time ranges from
O(|V |3) to O(|E||V |+ |V |2loglog|V |) depending on the im-
plementation. Another category of algorithms depends on
the edge weights and the fastest one runs in O(|E|

√
|V |logW )

time, where W is the maximum edge weight. In addition,
a number of fast approximation algorithms have been pro-
posed. The simplest such algorithm is the greedy algorithm
that sorts the edges by weight and repeatedly picks the edge
with the largest weight. This algorithm can be implemented
with O(|E|) time complexity and produces a 1/2 worst case
approximation.

The incremental algorithm for constructing the SCC post-
ings is presented in Algorithm 4. It takes as input the cur-
rent snapshot and the postings computed up to the previous
snapshot, and constructs the current postings. It starts by
computing the SCCs using Tarjan’s algorithm with com-
plexity O(|Vt|+ |Et|) (line 2). Then, it constructs the graph
GC[t,t+1]

with complexity O(|EC[t−1,t]
|) (line 5). Next, the

MWM is computed and new ids are assigned to the new
SCCs (lines 6 - 9). The complexity of this step depends
on which algorithm is used for computing the MWM. We
use the greedy algorithm with complexity O(|ES[t−1,t]

|). Fi-

nally, the SCC postings are created/updated for each node
of the current snapshot, creating a new entry only for nodes
that participate in a different SCC (with a different id) than
the one in time instant t− 1 (lines 11 - 22). The complexity
of these steps is O(|Vt|) since each operation in the loop has
constant time complexity. Thus, in total the running time
of the algorithm is O(|Vt|+ |Et|).

As in the simple TR approach, we also construct the evo-
lving SCC graph, which in this case has a much smaller num-
ber of nodes due to the reduction of the number of strongly
connected components achieved by the bipartite matching.

Finally, we construct the version graph V GSI = (VSI ,
ESI , Lu, Le) of the evolving SCC graph that we call con-
densed version graph. We construct the condensed version
graph incrementally as follows. For each snapshot Gti ∈ GI ,
for each edge (u, v) ∈ Eti we look up the postings P (u),
P (v) for entries (U, I ′), (V, I ′′) s.t. ti ∈ I ′ and ti ∈ I ′′. If U
6= V and edge (U, V ) 6∈ ESI , the edge is added with lifespan
{[ti, ti]}, otherwise the lifespan of the edge is extended to in-
clude ti. We call the above approach condensed TimeReach
(TRC).

5.2 Query Processing
Query processing of a (disjunctive or conjunctive) reach-

ability query u
IQ
; v is performed in two steps. In the

first step, the appropriate postings of nodes u and v are

1           2          3          4           5          6           7          8          9          10        11         12 13        14        15

C6

C6

C5

C4

C4
P(u)

P(υ)

ΙQ1 ΙQ2 ΙQ3

Figure 3: Example of splitting query u
[1,15]∧
; v

retrieved. If the two nodes belong to the same strongly con-
nected component during the whole query interval for con-
junctive queries or once for disjunctive queries, the answer is
true. Otherwise, let I′Q be the set of intervals during which
nodes u and v belong to different components. The query
is re-written as a set of reachability sub-queries of the form

Uk

IQi
; Vm, where u belongs to SCC Uk and v belongs to

SCC Vm for some common time interval IQi , I′Q w IQi , the
set IQ =

⋃
i

IQi consists of disjoint intervals, and IQ ≈ I′Q.

The results of the sub-queries are combined to produce the
answer for the query through an AND (OR) for conjunctive
(disjunctive) queries.

For example, consider the query u
[1,15]∧
; v in Figure 3,

where the posting lists for u and v are respectively, P (u) =
(C6 [4, 7], C5 [8, 11], C4 [11, curr] and P (v) = (C6 [1, 8], C4

[11, 15]). The query is split in three sub-queries: u
IQ1∧
; C6,

u
IQ2∧
; C6, v

IQ3∧
; C5.

In the worst case, the two nodes belong to a different SCCs
at each time instant in IQ, thus we need to traverse the con-
densed version graph for each t with a cost of O(|IQ|(|VSI |+
|ESI |)) Two factors that influence performance are the num-
ber of postings for each node and the size of the condensed
version graph. The smaller the number of postings, the fewer
sub-queries are required in the second step. The smaller the
condensed version graph, the faster the traversals. Hence,
the optimal assignment of SCC ids is crucial to query pro-
cessing performance, since it keeps the posting lists short
and the size of the condensed version graph small.

5.3 Interval 2Hop
Reachability on version graphs can be made more efficient

by maintaining additional information. In this paper, we
use an approach based on pruned landmark 2hop labeling
[2, 29]. The idea is that for each node u of a given graph, we
maintain two labels Lin(u) and Lout(u) which include nodes
that can reach u and can be reached by u respectively. The
labels are computed such that a node u reaches v, if an only
if, Lin(v) ∩ Lout(u) 6= ∅. Instead of traversing the graph, a
reachability query can now be answered by using the labels.

For historical reachability queries, we also keep along with
each node w in Lin(v) the reachability lifespan L(w, v) and
along with each node w in Lout(u) the reachability lifespan
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Algorithm 4 ConstructSccPostings(Gt, Pt−1, GS[t−2,t−1]
)

Input: Snapshot Gt, SCC postings Pt−1

Output: SCC postings Pt

1: SSCCt = ∅, M = ∅
2: Run Tarjan’s algorithm on Gt

3: SSCCt is the set of the detected SCCs where each
SCCi ∈ SSCCt is assigned a unique id Ci

4: if t > 0 then
5: Construct GS[t−1,t]

from SSCCt and GS[t−2,t−1]

6: Compute maximum weight matching M
7: for all edges e = (U, V ) ∈M do
8: Cv = Cu

9: end for
10: end if
11: for all nodes u ∈ Vt do
12: find SCCi ∈ SSCCt s.t. u ∈ SCCi

13: if Pt−1(u) 6= ∅ then
14: if Pt−1(u)[end].C 6= Ci then
15: Pt−1(u)[end].I = [ts, t− 1]
16: Pt−1(u).add(Ci, [t, curr])
17: end if
18: else
19: Pt−1(u).add(Ci, [t, curr])
20: end if
21: end for
22: Pt = Pt−1

L(u,w). In the presence of 2hop labels, to answer a query

u
IQ∧
; v (u

IQ∨
; v), we compute the set Lin(v)∩Lout(u) and

then for each w in Lin(v) ∩ Lout, we join the lifespan of w
in Lin(v) with the lifespan of w in Lout(u). To answer the
query the joined lifespans L (w) of nodes w in Lin(v)∩Lout

are joined with the query interval L to see whether they
cover IQ (or, have at least a time instant in common).

We compute the labels for the nodes of the condensed
version graph, incrementally. For an interval I = [ti, tj ],
we compute the labels for the SCC graph snapshots at each
time t in I, starting from ti. For each time tk, tk > ti, we
merge the labels computed for a node C at time tk, with the
labels computed for C at the previous time tk − 1. For the
construction of Lin and Lout for each SCC graph snapshot at
time instant tk, we process the nodes of the graph by using
the INOUT strategy that starts a BFS traversal from the
nodes with the largest (indegree(u)+1)× (outdegree(u)+1)
[29]. An example of the final 2hop labels of each SCC node
in a version graph is given in Figure 4.

6. EXPERIMENTAL EVALUATION
To evaluate our approach, we used three real datasets:

Facebook (FB) [27], Flickr (FL) [19] and YouTube (YT) [18].
The characteristics of each dataset are shown in Table 3.
For example, FB consists of 871 daily snapshots of the New
Orleans Facebook friendship graph, which correspond to 125
weekly or 29 monthly snapshots. We report the number of
nodes, edges, and SCCs (singleton SCCs are not included)
and the size of the largest SCC at the first and last snapshot.

All three datasets are treated as directed. Also, all datasets
are insert-only, i.e. they do not contain information about
node/edge deletions. Therefore, we synthetically generate
random edge deletes. The input parameters and their de-

C3

C1

C5

C2 C4

Lout: {C2,[0,3]}, {C3,[0,1]}, {C4,[0,3]}

Lin:{}

Lin: {C1,[0,3], C3,[0,1]} Lin: {C1,[0,3], C5,[0,3]}

Lout: {C2,[0,1]}

Lin: {C1,[1,2], C2,[1,2]}

[0,3][1,3]

[0,1]

Lout: {C3,[2,3]}

[1,2]

Lout:{C5,[1,2]}

Lout:{C4,[0,3]}

[0,1]

Lin: {C1,[0,3], C4,[2,3]}

[2,3]

[0,3]

Figure 4: An example of interval 2hop labels

fault values are shown in Table 1.
We evaluate the size and the construction time of the

Version Graph (VG), the Transitive Closure (TC), the sim-
ple TimeReach (TR), the condensed TimeReach (TRC) and
the condensed TimeReach with 2hop labels (TRCH). We
also evaluate the online processing of historical reachabil-
ity queries using an instant-based (INS) or interval-based
(INT) traversal of the version graph and using the various
TimeReach indexes. Table 2 summarizes the various ap-
proaches.

We ran our experiments on a system with a quad-core
Intel Core i7-3820 3.6 Ghz processor and 64 GB memory.
We only used one core for all experiments.

Table 1: Input parameters

Query

# of Snapshot interval % of

nodes granularity (in days) deletes

FB
Default 61,096 day 7 10

Range 117 - 61,096 day, week, month 7 - 35 0 - 30

YT
Default 1,138,499 day 7 10

Range 1,004,777 - 1,138,499 day, week, month 7 - 35 0 - 30

FL
Default 2,302,925 day 7 10

Range 1,487,058 - 2,302,925 day, week, month 7 - 35 0 - 30

6.1 Index Size
In the first set of experiments, we evaluate the various ap-

proaches in terms of their storage requirements. The size of
the TR and TRC include the storage required for maintain-
ing the posting lists and the SCC graphs, while the size of
the TRCH includes in addition the storage required for the
2hop labels.

Table 2: Overview of difference approaches

VG Version Graph

TC Transitive Closure

TR (Simple) TimeReach

TRC Condensed TimeReach

TRCH Condensed TimeReach with 2hop labels

INS Instant-based traversal of the version graph

INT Interval-based traversal of the version graph
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Table 3: Dataset properties

Snapshot Granularity # nodes # edges # SCC Max SCC (# nodes)

first last first last first last first last

FB

(daily) 871 117 61,096 128 1,139,081 10 374 3 51,286

(weekly) 125 1,429 61,096 2,365 1,139,081 138 374 18 51,286

(monthly) 29 4,239 61,096 12,224 1,139,081 279 374 96 51,286

YT

(daily) 37 1,004,777 1,138,499 4,379,283 4,452,646 9,807 11,360 457,932 509,332

(weekly) 6 1,025,536 1,138,499 4,379,283 4,452,646 9,807 11,360 465,668 509,332

(monthly) 2 1,116,602 1,138,499 4,446,042 4,452,646 10,664 11,360 485,273 509,332

FL

(daily) 134 1,487,058 2,302,925 17,022,083 33,140,018 42,163 58,636 1,004,426 1,605,184

(weekly) 20 1,507,700 2,302,925 17,393,321 33,140,018 42,163 58,636 1,010,498 1,605,184

(monthly) 5 1,585,173 2,302,925 18,987,847 33,140,018 42,459 58,636 1,081,499 1,605,184

Graph Size (scalability). Figure 6 reports the size for
varying number of nodes. As shown, TRC is much smaller
than TR in all cases. For FB and FL, the largest SCC
covers 83% and 70% of the graph respectively, while for YT,
it covers just 45% (see Table 3). Thus, the TRC size for the
FB dataset is 89% smaller, while for the YT and FL datasets,
we achieve 40% and 57% of compression respectively. The
larger the SCCs, the higher the compression achieved.

Since the size of the transitive closure (TC) grows rapidly,
we compute TC for a smaller subset of the FB dataset vary-
ing the number of nodes from 1,000 to 6,000. As shown in
Table 4, even for this small graph, the size of TC reaches
106 MB.
Percentage of Deletes. For each dataset, we vary the per-
centage of edge deletes from 0% to 30% of edge insertions.
Table 5 presents the results for the FB dataset. We observe
that the size of TR and TRC decreases; this can be explained
by the fact that deletions affect the isolated nodes that be-
come disconnected from the components and thus there are
less edges between components and isolated nodes. The size
of VG remains constant, since the size of the lifespan labels
remains the same. Finally, the size of TRCH increases, be-
cause in case of deletes, additional nodes need to be included
in the 2hop labels for ensuring the reachability test.

Table 4: Comparison with transitive closure

# nodes Size (MB) Constr. Time (sec)

TR TRC TC TR TRC TC

1,000 0.013 0.012 2.91 0.01 4.76 167.49

2,000 0.026 0.009 11.56 0.23 5.02 1,457

3,000 0.039 0.012 26.27 0.35 5.89 5,788

4,000 0.052 0.018 47.12 0.41 6.33 16,580

5,000 0.063 0.026 73.97 0.59 6.79 39,112

6,000 0.074 0.032 106.82 0.72 7.13 81,123

Snapshot Granularity. Table 6 reports the storage re-
quired for maintaining daily, weekly and monthly snapshots
of the three datasets. All sizes increase with the number of
snapshots. For example, for FL, the increase of the num-
ber of snapshots by a factor of 30 (from 5 monthly to 134
daily) causes an increase of the size of TR by a factor of
3.44. The size of TR and TRC decreases with the snap-
shot granularity (number of snapshots) since less snapshots
mean less postings and smaller SCC graphs. The size of VG

Table 5: Size per % of deletes (Facebook)

% of deletes Size (MB)

VG TR TRC TRCH

0 11 0.5 0.21 1,493

10 11 0.58 0.22 1,528

20 11 0.45 0.19 1,612

30 11 0.47 0.18 1,664
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Figure 5: Compression ratio achieved by posting sharing

does not decrease significantly, because it requires memory
to keep lifespan labels for all nodes and edges of the graph.
Posting Sharing. Finally, let us take a closer look at the
posting sharing optimization by evaluating the reduction in
the size of postings for various granularities as depicted in
Figure 5. In general, we achieve compression ratios for the
posting around 70% for FB, around 90% for FL and over
95% for YT. The compression ratio decreases with snapshot
granularity due to the increase of the posting combinations.
This is more evident for the FB dataset where the number
of snapshots is higher.

6.2 Construction Time
In this set of experiments, we evaluate the time to con-

struct the various indexes.
As seen in Figure 7, TRC is slower than TR, because

of the additional time required for performing the bipartite
matching. TRCH is even slower, since it also needs to con-
struct the 2hop labels. We use the greedy algorithm for the
bipartite matching and the INOUT strategy for computing
the interval-2hop labels.

Constructing the TC for the whole graphs is prohibitive,
since even for only 6, 000 nodes, it takes over 22 hours, while
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Table 6: Size (MB) per snapshot granularity

Facebook YouTube Flickr

Days Weeks Months Days Weeks Months Days Weeks Months

VG 11 6 5 7.87 7.34 6.94 45.52 39.85 38.15

TR 0.58 0.47 0.42 44.28 21.28 14.98 141 73 41

TRC 0.22 0.08 0.07 3.21 1.92 1.46 2.89 2.27 1.88

TRCH 1,528 1,041 845 5,865 4,936 4,062 7,951 6,684 5,719

the TR construction takes just 0.72 seconds (Table 4).
Comparison of Different Bipartite Matching Algo-
rithms. We also constructed the TRC using the Hungarian
algorithm. For all datasets, the size of the resulting TRC is
almost equal to the size of the TRC resulting from using the
greedy algorithm (the difference is in the order of KB), thus
confirming our expectation that greedy achieves a very close
approximation of the optimal solution for social graphs. The
Hungarian algorithm is much slower than greedy requiring
an additional 1.5 hour for large datasets such as FL.
Comparison with 2hop for insert only. We adopted
the pruned labeling algorithm proposed in [2] for distance
queries to create an indexing scheme for historical reacha-
bility queries. Pruned labeling incrementally updates the
index for each newly inserted edge, whereas in our approach
we compute 2hop labels per snapshot. The pruned labeling
algorithm does not support deletions, thus, we compare the
two algorithms on the Facebook dataset without deletions.
The pruned algorithm was found to be 5.4 times faster but
it produced labels that were 12 times larger that the ones
computed with our approach.

6.3 Query Processing
Let us now focus on query processing. In each experiment,

we ran 500 historical reachability queries where the source
and target nodes are chosen uniformly at random with the
restriction that both nodes are present in the graph at the
beginning and the end of the query interval. Queries involv-
ing nodes not present either at the beginning or the end of
the query interval can be pruned fast by checking the lifes-
pans of the nodes.
Online Traversal of the Version Graph. Let us first
compare between an instant-based (INS) and an interval-
based (INT) online traversal of the version graph for dif-
ferent time intervals (Figures 8 and 9). A general remark
that holds independently of the method used to evaluate
queries is that false conjunctive queries are faster than true
conjunctive queries, since processing stops as soon as a time
instant is found at which the two nodes are not reachable.
Analogously, true disjunctive queries are faster than false
disjunctive queries, since processing stops as soon as a time
instant is found at which the two nodes are reachable.

Interval-based traversal is faster that instant-based traver-
sal for almost all datasets and query types, since it can find
the answer faster by searching for longer intervals. The only
exception is FB and false conjunctive queries, where INS is
slightly better. This happens because with INS, the search
stops as soon as the first false answer is produced in any
traversal. Hence, if this answer is found in the first few
time instants of the query interval negative answers can be
produced quickly for the smaller graph (i.e, the FB graph).
Online Traversal versus TimeReach. Let us now com-

pare interval-based online traversal with query processing
using the TR, TRC and TRCH approaches. The results for
conjunctive queries are shown in Figure 10 and for disjunc-
tive queries in Figure 11.

We see that all approaches are not significantly affected by
the increase of the query interval due to fast posting lookups
and short distances in the SCC graph for the TR and TRC,
and the efficient implementation of edge lifespans for the
version graph. We see that the TRC approach does not
only produce a smaller structure than TR but it also attains
faster query response for almost all datasets. TR is slower
because for answering a query it needs to traverse the SCC
graph per time instant when the query nodes do not belong
to the same component. TRCH attains the fastest time
when compared with all other approaches. The performance
of TRCH is expected, since only two simple steps are needed:
first to obtain the intersection Lin(v) ∩ Lout(u), and after
that to check the lifespans L of the nodes in the intersection.

7. CONCLUSIONS
Most real-life graphs evolve over time. In this paper, we

address the problem of efficiently answering historical reach-
ability queries over such graphs. Such queries ask whether
a node u was reachable from another node v during a time
interval in the past. We have proposed an approach termed
TimeReach that exploits the fact that most graphs consist of
strongly connected components (SCCs). TimeReach main-
tains information about SCC membership for each node,
and a graph which represents the links between the strongly
connected components. We also maintain a condensed ver-
sion graph which corresponds to the version graph of the
SCCs evolution. Our extensive experiments with three real
social network datasets show that TimeReach is storage-
efficient and can be constructed incrementally with a small
overhead. Historical queries are processed efficiently even
when involving large time intervals.

There are many possible directions for future work. One
such direction is exploiting TimeReach towards answering
other types of historical queries, such as shortest path ones.
Another direction concerns the distribution of TimeReach.
Distribution may either be based on time or exploit the SCC
evolution by placing together nodes that belong to the same
SCCs.
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Figure 6: Size (log scale) for varying number of nodes in FB (left), YT (middle) and FL (right)
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Figure 7: Construction time (log scale) for varying number of nodes in FB (left), YT (middle) and FL (right)
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Figure 8: Query time (log scale) INS and INT for conjunctive queries in FB (left), YT (middle) and FL (right)
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Figure 10: Query time (log scale) for conjunctive queries in FB (left), YT (middle) and FL (right)
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ABSTRACT
Driven by many applications, in this paper we study the problem
of computing the top-k shortest paths from one set of target nodes
to another set of target nodes in a graph, namely the top-k shortest
path join (KPJ) between two sets of target nodes. While KPJ is
an extension of the problem of computing the top-k shortest paths
(KSP) between two target nodes, the existing technique by convert-
ing KPJ to KSP has several deficiencies in conducting the compu-
tation. To resolve these, we propose to use the best-first paradigm
to recursively divide search subspaces into smaller subspaces, and
to compute the shortest path in each of the subspaces in a prioritized
order based on their lower bounds. Consequently, we only compute
shortest paths in subspaces whose lower bounds are larger than the
length of the current k-th shortest path. To improve the efficiency,
we further propose an iteratively bounding approach to tightening
lower bounds of subspaces. Moreover, we propose two index struc-
tures which can be used to reduce the exploration area of a graph
dramatically; these greatly speed up the computation. Extensive
performance studies based on real road networks demonstrate the
scalability of our approaches and that our approaches outperform
the existing approach by several orders of magnitude. Further-
more, our approaches can be immediately used to compute KSP.
Our experiment also demonstrates that our techniques outperform
the state-of-the-art algorithm for KSP by several orders of magni-
tude.

1. INTRODUCTION
Data are often modeled as graphs in many real applications such

as social networks, information networks, gene networks, protein-
protein interaction networks, and road networks. With the prolif-
eration of graph data, significant research efforts have been made
towards analyzing large graph data. These include the problem of
computing the top-k shortest paths between two target nodes in a
graph, namely the k shortest path (KSP) query.
KSP is a fundamental graph problem with many applications. In

general, KSP is used in the applications that besides lengths, other
constraints against the paths could not be precisely defined [12,

c� 2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

25]. For example, computing KSP between two sensitive accounts
in a large social network enables end-users to identify all accounts
involved in the top-k shortest paths [14]. In gene networks, the
lengths of top-k shortest paths may be used to define the impor-
tance of a target gene to a source gene [26]. Other applications of
KSP include multiple object tracking in pattern recognition [3], hy-
pothesis generation in computational linguistics, and trip planning
against road networks. Thus, KSP has been extensively studied [8,
9, 14, 15, 18, 24, 28].

The problem of computing the top-k shortest paths between two
“conceptual” target nodes (instead of between two physical nodes)
in a graph, called the top-k shortest path join (KPJ), is recently
investigated in [15]. A conceptual node is a set of physical nodes
in the graph, which can be identified by categories, concepts, and
keywords in the above applications. While a KSP query is a special
case of a KPJ query where each of the two conceptual target nodes
only contains one physical node, KPJ can support more general
application scenarios than KSP since a target node is allowed to
be a set of physical nodes. For example, in a social network, the
KPJ query can be used to detect user accounts involved in the top-k
shortest paths between two criminal gangs to identify other “most
suspicious” user accounts; the KPJ query can also be used in route
planning where the destination is any one from a group of nodes
(e.g., “IKEA”). In this paper, we study KPJ.

Motivations and Challenges. KPJ query shares similarity with
but is different from the well-studied KSP query. To process a
KPJ query, [15] reduces it to a KSP query by introducing a virtual
target node for each conceptual target node and connecting every
physical node in the conceptual node to it. Then, [15] proposes to
use the state-of-the-art algorithm for KSP developed in [15]. Since
the technique for solving KSP in [15] is based on the deviation
paradigm [9, 28], applying KSP to solve KPJ, as proposed in
[15], has the following two deficiencies. 1) Firstly, the deviation
based techniques for KSP need to compute O(k · n) “candidate
paths”. The candidate paths are computed by iteratively extend-
ing all “prefixes" of the obtained l-th (l < k) shortest path, where
n is the number of nodes in a graph, and each candidate path is
computed by running an expensive shortest path algorithm; this is
time-consuming. 2) Secondly, edges that are added to connect to
a virtual target node for processing KPJ by using the KSP tech-
niques depend on queries. This makes the existing index structures
[7, 10] for computing shortest paths inapplicable. Thus, the candi-
date paths are computed by traversing the graph exhaustively; this
is very costly.

Our Approaches. For presentation simplicity, in this paper we
present our techniques against the simplified case, where one con-
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ceptual target node consists of one physical node only - called
source node s, and the other conceptual target node may consist of
multiple physical nodes - called destination nodes; then we extend
our techniques to the general case where source nodes may also
be multiple. Let P denote the set of all simple paths (i.e., paths
without loops) from s to any of the destination nodes as the entire
search space. Clearly, the result of KPJ is the set of k paths in P
with the shortest lengths.

We adopt the best-first paradigm to recursively divide P into
smaller subspaces, and then compute shortest paths for the gen-
erated subspaces in a prioritized order based on their lower bounds,
where lower bound of a subspace is the lower bound of the length
of all paths in the subspace. The top-k shortest paths may be itera-
tively obtained over the subspaces whose lower bounds are smaller
than the length of the current k-th shortest path, while other sub-
spaces can be safely pruned without the time-consuming shortest
path computation.

We further propose to iteratively “guess" and tighten the lower
bound ⌧ of a subspace. Initially, we assign the value of ⌧ as the
length of the (1st) shortest path. Then, we always choose the sub-
space with the smallest ⌧ to test whether the shortest path in it has
length larger than ↵ · ⌧ (for an ↵ > 1). If the shortest path in the
subspace can be determined larger than ↵·⌧ , then we enlarge ⌧ into
↵ · ⌧ for the subspace; otherwise the shortest path in the subspace
is computed. Moreover, we propose two online-built index struc-
tures, SPT

P

and SPT
I

, to significantly reduce the exploration area
of a graph in the lower bound testing as briefly described above.

Contributions. Our primary contributions are summarized as fol-
lows.

• We propose a framework based on the best-first paradigm
for processing KPJ queries which significantly reduces the
number of shortest path computations.

• We propose an iteratively bounding approach to guessing and
tightening the lower bounds, as well as two online-built index
structures to speed-up the lower bound testing.

• We conduct extensive performance studies and demonstrate
the scalability of our approaches which outperform the base-
line approach [15] by several orders of magnitude.

• Moreover, our approaches can be immediately used to pro-
cess KSP queries, and our experiments also demonstrate that
our techniques outperform the state-of-the-art algorithm for
KSP query by several orders of magnitude.

Organization. The rest of this paper is organized as follows. A
brief overview of related work is given below. We give the prelimi-
naries and problem statement in Section 2. The existing KSP-based
approach is given in Section 3, in which we also discuss its defi-
ciencies. We present the best-first paradigm in Section 4, in which
we also implement a best-first approach. Under this paradigm, in
Section 5 we propose an iteratively bounding approach and two
online-built indexes for efficiently processing KPJ queries. In Sec-
tion 6, we extend our techniques to cover other applications includ-
ing the case that the source node has multiple physical nodes. We
conducted extensive experimental studies and report our findings in
Section 7, and we conclude this paper in Section 8.

Related Work. Given two nodes s and t in a graph G, the problem
of computing the top-k shortest paths from s to t is a long-studied
problem, which can be classified into two categories, 1) top-k sim-
ple shortest paths, and 2) top-k general shortest paths.

1) Top-k Simple Shortest Path. The existing algorithms for comput-
ing top-k simple shortest paths are based on the deviation paradigm
proposed by Yen [9, 28], which has a time complexity of O(k ·
n · (m + n log n)), where m is the number of edges in G and
O(m+n log n) is the time complexity of computing single source
shortest paths. Techniques to improve its efficiency in practice have
been studied in [8, 14, 15, 18, 24], which shall be discussed in Sec-
tion 3. We discuss using these techniques to process KPJ queries
in Section 3.
2) Top-k General Shortest Path. Finding top-k general shortest paths
is studied in [2, 12, 19], where cycles in paths are allowed. Since
not enforcing paths to be simple, the top-k general shortest path
problem is generally easier than its counterpart. Eppstein’s algo-
rithm [12] has the best time complexity, O(m+n log n+k), which
is achieved by precomputing a shortest path tree rooted at the des-
tination node and building a sophisticated data structure. Recently,
the authors in [1] propose a heuristic search algorithm that has the
same time complexity as [12]. However, due to different problem
natures, these techniques are inapplicable to finding top-k simple
shortest paths.
Finding Top-k Objects by Keywords. Finding k objects closest to a
query location and containing user-given keywords has been stud-
ied in [13, 20, 22, 23, 29]. Ranking spatial objects by the com-
bination of distance and relevance score is also studied in [4, 5,
27]. Distance oracles for node-label queries in a labeled graph are
studied in [6, 17]; that is, given a query which contains a node
and a label, it returns approximately the closest node to the query
node that contains the query label. Nevertheless, the above queries
are inherently different from KPJ, and their techniques cannot be
applied to process KPJ queries.

2. PRELIMINARY
In this paper, we focus on a weighted and directed graph G =

(V,E,!), where V and E represent the set of nodes and the set of
edges of G, respectively, and ! is a function assigning a weight to
each edge in E. In G, nodes belong to categories, and each cate-
gory represents a conceptual node consisting of all nodes belonging
to that category. The number of nodes and the number of edges of
G are denoted by n = |V | and m = |E|, respectively.

A path P in G is a sequence of nodes (v1, . . . , vl) such that
(vi, vi+1) 2 E, 81  i < l, and we say that P consists of edges
(vi, vi+1), 81  i < l. Here, v1 and vl are called the source node
and destination node of P , respectively. P is a simple path if and
only if all nodes in P are distinct (i.e., vi 6= vj , 8i 6= j). A prefix of
P is a subpath of P starting from the source node of P . The length
of a path is defined as the total weight of its constituent edges;
that is !(P ) =

P
(vi,vi+1)2P !(vi, vi+1). The shortest distance

from v1 to v2 is the shortest length among all paths from v1 to v2,
denoted �(v1, v2).

Definition 2.1: Given a category T , a path P is said to be a path to

category T if its destination node is in VT , where VT is the set of
nodes belonging to category T . 2

Problem Statement: Given a graph G, we study the top-k shortest
path join (KPJ) query, which aims at finding the top-k shortest
simple paths P1, . . . , Pk from a source node s to a category T (i.e.,
to any node in VT ).

Formally, a KPJ query is given as Q = {s, T, k}, where s is
a source node in G, T represents a destination category, and k
specifies the number of paths to find. It is to find k simple paths
P1, . . . , Pk such that: 1) each Pi is a path from s to category T ;
2) !(Pi)  !(Pi+1), 81  i < k; 3) !(Pk)  !(P ) for any
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other path P from s to category T .
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Figure 1: An example graph

Example 2.1: Fig. 1 illustrates a graph G, where V = {v1, . . . , v15}
and nodes v4, v6, v7 belong to category“H” (i.e., hotel). Here,
edges are bidirectional, and weights are shown besides them with a
default value 1. Consider a KPJ query Q = {v1, “H”, 1}, which
is to find the top-1 shortest path from v1 to category “H”. The top-1
path is P1 = (v1, v8, v7) with !(P1) = 2 + 3 = 5. 2

For a KPJ query, VT is the set of destination nodes. In the fol-
lowing, we assume that an inverted index [21] is offline built on the
categories of nodes such that VT can be efficiently retrieved online,
and assume that a path is a simple path.

3. THE EXISTING KSP-BASED APPROACH
Reducing KPJ Query to KSP Query. The most related problem
to KPJ is k shortest path (KSP) query defined below.

Definition 3.1:[28] Given a graph G, a KSP query Q0

= {s, t, k}
is to find k simple paths P1, . . . , Pk from s to t such that, 1) !(Pi) 
!(Pi+1), 81  i < k, and 2) !(Pk)  !(P ) for any other path P
from s to t. 2

KSP query is a special case of KPJ query where VT contains
only one node. In other words, KSP query considers a single desti-
nation node while KPJ query considers multiple destination nodes.
To process a KPJ query Q = {s, T, k}, [15] reduces it to a KSP
query by adding a virtual destination node t to G and adding a
directed edge from each node in VT to t with a weight 0. Then,
the result of Q on G is the same as the result of the KSP query
Q0

= {s, t, k} on GQ. Reconsider the KPJ query in Example 2.1,
the modified graph GQ is also shown in Fig. 1 with the virtual node
t and the additional edges (dashed lines).

Deviation Algorithm (DA) for KSP Queries. The existing algo-
rithms for KSP queries are based on the deviation paradigm [9, 28],
denoted DA. It maintains a set C of candidate paths which include
the next shortest path from s to t, and chooses k shortest paths from
C one by one in a non-decreasing length order by incrementally
updating C.
Pseudo-tree. The set of already chosen paths are encoded using a
compact trie-like structure [21], called pseudo-tree. It is named
because the same node may appear at several places in the tree;
thus, we refer to nodes in a pseudo-tree as vertices to distinguish
them from nodes in a graph. Let PTi denote the pseudo-tree con-
structed for paths P1, . . . , Pi, and PT0 consists of a single vertex
s. PTi+1 is constructed by inserting Pi+1 into PTi by sharing
the longest prefix; let d be the last vertex of the shared prefix, it is
called the deviation vertex of Pi+1 from PTi. For example, Fig. 2
shows PT1, PT2, and PT3, where PT3 is constructed by inserting
path (v1, v3, v7, t) into PT2, and v3 is the deviation vertex.
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Figure 2: pseudo-trees

Candidate Path. Given a pseudo-treePTi, the DA algorithm main-
tains a set Ci of candidate paths, one corresponding to each ver-
tex u in PTi, denoted c(u), which is the shortest one among all
paths from s to t that takes the path from s to u in PTi as pre-
fix and contains none of the outgoing edges of u in PTi. For
example, in Fig. 2(c), c(v3) is the shortest one among all paths
from s to t that take edge (v1, v3) as prefix and contain neither
(v3, v6) nor (v3, v7); thus c(v3) = (v1, v3, v5, v6, t), and C3 =

{c(v1), c(v8), c(v7), c(v3), c(v6), c(v07)}.

Lemma 3.1: [28]. Given a pseudo-tree PTi and the correspond-
ing Ci of candidate paths, the (i + 1)-th shortest path from s to t
is the path in Ci with shortest length. 2

Following from Lemma 3.1, the pseudocode of processing a KPJ
query using DA is shown in Alg. 1, which is self-explanatory. The
ingredient of Alg. 1 is to incrementally maintain PTi and Ci after
choosing each of the top-k paths.

Algorithm 1: DA(GQ, Q
0

= {s, t, k})
1 Initialize PT0 to contain a single vertex s;
2 Compute the shortest path c(s) from s to t, and C0 = {c(s)};
3 for each i 1 to k do
4 Pi  the path in Ci�1 with the shortest length;
5 Construct PTi by inserting Pi into PTi�1, and let d be the

deviation vertex;
6 Construct Ci by removing Pi from Ci�1, computing the

candidate paths corresponding to vertices in Pi from d to t, and
inserting them into Ci�1;

7 return the k paths P1, . . . , Pk;

Example 3.1: Fig. 2 demonstrates a running example for a KPJ
query Q = {v1, “H", 3} on the graph in Fig. 1. We first trans-
form the graph G into GQ, and reduce Q to a KSP query Q0

=

{v1, t, 3}. The shortest path is P1 = (v1, v8, v7, t) with length
5. After inserting P1 into PT0, the resulting PT1 is shown in
Fig. 2(a), where C1 = {c(v1), c(v8), c(v7)}. The 2nd shortest
path is computed as P2 = c(v1) = (v1, v3, v6, t) which has the
shortest length in C1, and PT2 is shown in Fig. 2(b). Then, can-
didate paths for v1, v3, v6 are updated or computed, and C2 =

{c(v8), c(v7), c(v1), c(v3), c(v6)}. The 3rd shortest path is P3 =

c(v3) = (v1, v3, v7, t) with length 7. 2

DA-SPT: Optimizations. The most time-consuming part of DA
(Alg. 1) is Line 6, which needs to compute O(k ·n) candidate paths
in total. To efficiently compute a candidate path, several optimiza-
tion techniques have been recently proposed [14, 24]. Pascoal [24]
observes that, when computing c(u) for u in a pseudo-tree PT , if
the path formed by concatenating, 1) the path from s to u in PT , 2)
an edge (u, v) in GQ, and 3) the shortest path from v to t in GQ, is
simple, then it is c(u). By preprocessing GQ to generate a shortest
path tree (SPT) storing shortest paths from all nodes to t, the path
described above, if exists, can be found in constant time; otherwise,
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a shortest path algorithm is run to compute c(u). Gao et al. [14, 15]
improve Pascoal’s approach by iteratively testing the above prop-
erty during running Dijkstra’s algorithm [11], and obtaining c(u)
once a simple path is found; this is known as the state-of-the-art
approach, denoted DA-SPT, since a full SPT is built online.

Deficiencies of DA and DA-SPT. Both DA and DA-SPT are in-
efficient for processing KPJ queries due to the following three rea-
sons. 1) Firstly, both need to compute O(k · n) candidate paths
which are computed by iteratively extending all prefixes of the ob-
tained l-th (l < k) shortest path; this is time-consuming. 2) Sec-
ondly, for processing a KPJ query using KSP techniques, the edges
added to connect nodes in VT to the virtual destination node depend
on queries; this makes the existing index structures [7, 10] for effi-
ciently computing shortest paths inapplicable. Thus, the candidate
paths are computed by traversing the graph exhaustively, which is
very costly. 3) Thirdly, although DA-SPT, compared to DA, can
compute candidate paths more efficiently, it is time-consuming to
construct the full SPT, which may be the dominating cost espe-
cially when the k shortest paths are short.

4. A BEST-FIRST APPROACH
In this section, to remedy the deficiencies of using the exist-

ing KSP techniques to process KPJ queries, we adopt a best-first
paradigm which significantly reduces the number of shortest path
computations thus enables fast query processing. In the following,
we first discuss the paradigm, and then give an implementation of
a best-first approach.

4.1 Best-First Paradigm
Given a KPJ query Q = {s, T, k}, let Ps,T (G) denote the set

of all paths in G from s to category T (i.e., to any node in VT ).
When the context is clear, Ps,T (G) is abbreviated to P . Then, the
query Q is to find the k paths in P with shortest lengths. Note that
the size of P can be exponential to n.

Search Space and Subspace. The general idea is that we regard P
as the entire search space S0. Then, the k paths in P with shortest
lengths can be found by recursively dividing a subspace (initially
S0) into smaller subspaces and computing the shortest path in each
newly obtained subspace.

...

...

S2,r+1

S1

S3

S2,2

S4S2,1S2,r

Sl+1

p2

p3

p1

Figure 3: Overview of search space division

Before diving into the details, we first explain the main idea
which is illustrated in Fig. 3. We conceptualize each path in P
as a point, whose distance to the center (i.e., the origin) indicates
the length of the path. Thus, the k paths with shortest lengths cor-
respond to the k points closest to the center which can be computed
as follows. First, we compute the closest point P1 = (v1, . . . , vl)
in the entire search space S0 = P . Second, we divide S0 into l+1

subspaces, S1,S2, . . . ,Sl,Sl+1. Here, S1 consists of only P1 and
is excluded from further considerations. Each of the remaining sub-
spaces, S2, . . . ,Sl+1, represents the set of paths of P that share ex-

actly the prefix of P1 from v1 to vi�1; consequently, Si 6= Sj , 8i 6=
j, and

Sl+1
i=1 Si = S0. Third, we compute the closest point in each

of the l subspace, S2, . . . ,Sl+1, and the one that is closest to the
center among the l closest points represents the 2nd shortest path.
Let it be P2 = (v01, . . . , v

0

r), and assume it is in S2. Fourth, we fur-
ther divide S2 into r + 1 subspaces, S2,1,S2,2, . . . ,S2,r,S2,r+1,
and compute the closest point in each of them, where S2,1 consists
of only P2 and is excluded from further considerations. Thus, the
point that is closest to the center among closest points in all sub-
spaces S3, · · · ,Sl+1,S2,2, . . . ,S2,r+1 represents the 3rd shortest
path. We can repeat this process until k shortest paths are com-
puted.
Subspace Division. We formally define a subspace below.

Definition 4.1: A subspace S is represented by a tuple hPs,u, Xui,
where Ps,u is a path from s to u and Xu is a subset of the outgoing
edges of u. It consists of all paths in P that take Ps,u as prefix and
exclude all edges of Xu. 2

The entire search space S0(= P) is represented by hPs,s =

(s), Xs = ;i. Assume the shortest path in subspace hPs,u, Xui
is P , then after choosing P as one of the k shortest paths, the
subspace is divided into l + 1 subspaces, where l is the number
of nodes in the subpath of P from u to the destination node. The
l+1 subspaces consist of a subspace containing only P , a subspace
corresponding to node u (i.e., subspace hPs,u, Xu [ {(u,w)}i),
and one subspace corresponding to each node v in the subpath
of P from u (exclusive) to the destination node (i.e., subspace
hPs,v, {(v, w0

)}i), where Ps,v is the prefix of P to v, and (u,w)

and (v, w0

) are edges in P . It is important to note that the l +
1 subspaces are disjoint, and their union is the original subspace
hPs,u, Xui from which they are divided.

Example 4.1: Consider a KPJ query Q = {v1, “H”, 2} on the
graph in Fig. 1. Initially, S0 = h(v1), ;i in which the shortest
path is P1 = (v1, v8, v7). Then, S0 is divided into four subspaces,
S1 = {P}, S2 = h(v1), {(v1, v8)}i, S3 = h(v1, v8), {(v8, v7)}i,
and S4 = h(v1, v8, v7), ;i, where S1 is the subspace containing
only P1. The 2nd shortest path is the one with shortest lengths
among shortest paths in S2,S3, S4. 2
Paradigm. It is easy to verify that there is a one-to-one correspon-
dence between candidate paths defined in Section 3 and subspaces
defined above. In the deviation paradigm, subspaces are implicitly
maintained by storing candidate paths based on the fact that each
candidate path is the shortest path in a subspace. Considering that
shortest paths are expensive to compute, we remedy the deficiency
of deviation paradigm by computing lower bounds of subspaces
and pruning subspaces based on their lower bounds.

Definition 4.2: For a subspace S = hPs,u, Xui, we define the
lower bound of a subspace, denoted lb(S) (or lb(Ps,u, Xu)), as
the lower bound of lengths of all paths in S, and denote the shortest

path in a subspace by sp(S) (or sp(Ps,u, Xu)). 2
Based on lower bounds of subspaces, the best-first paradigm is

shown in Alg. 2. Instead of directly computing the shortest path
for each newly obtained subspace, we compute its lower bound
first. All obtained subspaces and their lower bounds are main-
tained in a minimum priority queue Q. Each entry of Q is a triple
hS, lb(S), P i, where S and lb(S) are a subspace and its lower
bound, respectively, and P is either ; or the shortest path in S.
Subspaces in Q are ranked by their lower bounds. Initially, Q con-
tains a single entry representing the entire search space S0 (Line 1).
Then, we iteratively remove the subspace with smallest lower bound
from Q, denoted hS, lb(S), P i (Line 4): if P 6= ;, then P is the
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Algorithm 2: BestFirst(G,Q = {s, T, k})
1 Initialize a minimum priority queue Q to contain a single entry
hS0 = h(s), ;i, lb(S0), ;i;

2 i 1;
3 while i  k do
4 hS = hPs,u, Xui, lb(S), P i  remove the top entry from Q;
5 if P 6= ; then
6 Pi  P ; i i+ 1;
7 for each node v in the subpath of P from u to the

destination node do
8 Create a subspace S0

= hPs,v , Xvi;
9 lb(S0

) max{CompLB(Ps,v , Xv),!(P )};
10 Put hS0

, lb(S0

), ;i into Q;

11 else
12 sp(S) CompSP(Ps,u, Xu);
13 if sp(S) 6= ; then Put hS,!(sp(S)), sp(S)i into Q;

14 return the k paths P1, . . . , Pk;

next shortest path to be output (Line 6), and we divide S by P and
put those newly obtained subspaces into Q (Lines 7-10); otherwise,
we compute the shortest path in S and put S into Q again with the
computed shortest path (Lines 12-13). We will present an imple-
mentation of computing lower bound of a subspace and shortest
path in a subspace in the next subsection.

Lemma 4.1: The set of shortest paths computed in Alg. 2 is a sub-
set of that computed in Alg. 1; thus, the number of shortest path
computations in Alg. 2 is not larger than that in Alg. 1. Assume
that computing lower bound takes less time than computing short-
est path for a subspace, then the time complexity of Alg. 2 is not
larger than that of Alg. 1. 2
Proof Sketch: We prove the first part of Lemma 4.1 by proving
that there is a one-to-one correspondence between subspaces in-
serted into Q in Alg. 2 and candidate paths computed in Alg. 1.
This can be proved by induction. For k = 1, this is true, since there
is only one subspace and one candidate path in Alg. 2 and Alg. 2,
respectively. Now, we assume that this holds for general k � 1,
then we prove that it also holds for (k+ 1). Since the k-th shortest
path Pk corresponds to subspace S in Alg. 2, to obtain the (k+1)-
th shortest path, we generate O(n) new candidate paths from Pk

in Alg. 1 and O(n) new subspaces from S in Alg. 2; moreover,
there is a one-to-one correspondence between these newly gener-
ated subspaces and newly generated candidate paths. Thus, there
is a one-to-one correspondence between subspaces inserted into Q
in Alg. 2 and candidate paths computed in Alg. 1. Considering
that we compute shortest paths only for a subset of the subspaces
inserted into Q, the first part of the lemma holds.

Moreover, if we set all lower bounds computed at Line 9 of
Alg. 2 to be 0, then the number of shortest path computations in
Alg. 2 is the same as that in Alg. 1.

Second, in Alg. 2, any subspace is inserted into Q at most twice:
once with computed lower bound (i.e., P = ;), and once with
computed shortest path. Thus, given that computing lower bound
takes less time than computing shortest path for a subspace, the
time complexity of Alg. 2 is not larger than that of Alg. 1. 2

Following the proof of Lemma 4.1, we can also see that the max-
imum size of Q in Alg. 2 is O(k·n); moreover, given any algorithm
computing a lower bound of a subspace, Alg. 2 correctly processes
a KPJ query. Let Pk be the k-th shortest path for a KPJ query. Ob-
viously, Alg. 2 does not compute shortest paths in subspaces whose
lower bounds are larger than !(Pk). Note that, in contrast, Alg. 1
needs to compute shortest paths in all subspaces in Q. Conceptu-
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Figure 4: Instances of shortest path computations

ally, Fig. 4(a) shows by shadow the subspaces in which the shortest
paths are computed: Alg. 2 computes only 5 shortest paths instead
of l + r + 2 which is done by Alg. 1.

4.2 An Implementation of BestFirst

In the following, we present efficient techniques for computing
a lower bound of a subspace (CompLB at Line 9 of Alg. 2) and for
computing the shortest path in a subspace (CompSP at Line 12 of
Alg. 2), denote the approach as BestFirst.

Algorithm 3: CompLB(Ps,u, Xu)

1 lb +1;
2 for each outgoing edge (u, v) of u do
3 if v /2 Ps,u and (u, v) /2 Xu then
4 Compute lb(v, VT );
5 lb min{lb,!(Ps,u) + !(u, v) + lb(v, VT )};

6 return lb;

Computing Lower Bound of a Subspace. Given a subspace S =

hPs,u, Xui, the set of paths in it corresponds to the set of paths
from s to any node in VT in a subgraph G0 of G obtained as fol-
lows. We first remove all edges of Xu from G, and then for each
node v( 6= u) in Ps,u, we remove from G all outgoing edges of v
except the one that is in Ps,u. Thus, for any two nodes u and v, the
shortest distance from u to v in G0 is lower bounded by that in G.
Consequently, a naive lower bound of S is !(Ps,u) + lb(u, VT ),
where lb(u, VT ) is the lower bound of shortest distance from u
to any node in VT , whose computation shall be discussed shortly.
However, this is loose considering that many outgoing edges of u
(i.e., Xu) are removed from G. Therefore, to estimate the lower
bound of S (i.e., the shortest distance from s to any node in VT in
G0) more accurately, we consider all valid outgoing edges (u, v)
of u (i.e., v /2 Ps,u and (u, v) /2 Xu), and choose the min-
imum estimation. The pseudocode is shown in Alg. 3 which is
self-explanatory, and its correctness immediately follows from the
above discussions.

Example 4.2: Continuing Example 4.1. After dividing S0 into
S1, · · · ,S4, lower bounds of S2,S3,S4 are computed. Here, we
illustrate how to compute lb(S2) = lb((v1), {(v1, v8)}). v1 has
three valid outgoing edges, (v1, v2), (v1, v3), and (v1, v11), that
can be considered for lower bound estimation. Thus, lb(S2) is
computed as min{!(v1, v2)+ lb(v2, VT ),!(v1, v3)+ lb(v3, VT ),
!(v1, v11) + lb(v11, VT )}. 2
Computing lb(u, VT ). We propose a landmark-based approach [16]
to estimating lb(u, VT ) in the following. Note that, the computa-
tion of lb(u, VT ) has not been studied in the literature.

A landmark is a subset of nodes, L ✓ V . With L, the lower
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bound lb(u, v) of shortest distance from u to v is estimated as,
lb(u, v)

.
= maxw2L{�(w, v) � �(w, u)}, 1 where �(w, v) and

�(w, u) are the shortest distance from w to v and to u, respec-
tively, and are precomputed. This estimation is based on the fact
that �(w, u) + �(u, v) � �(w, v). Then, lb(u, VT ) can be esti-
mated as,

lb(u, VT )
.
= minv2VT {lb(u, v)}
= minv2VT maxw2L{�(w, v)� �(w, u)} (1)

However, the computation time is O(|L| · |VT |) which is too costly
especially when VT is large. Therefore, motivated by the trans-
formed graph GQ in Section 3, we propose a new lower bound as
follows,

lb(u, VT )
.
= maxw2L minv2VT {�(w, v)� �(w, u)}
= maxw2L{min{�(w, v) | v 2 VT }� �(w, u)}

(2)
The intuition is that, min{�(w, v) | v 2 VT } is the shortest dis-
tance from w to t in GQ (i.e., �(w, t)); thus, Eq. (2) estimates
lb(u, t). Consequently, lb(u, VT ) can be computed in O(|L|) time
by precomputing �(w, t) for all w 2 L prior to any lower bound
estimations. In what follows, we use Eq. (2) to compute lb(u, VT ).
Remarks & Time Complexity. Note that, the landmark index L is
constructed offline in O(|L|(m + n log n)) time where O(m +

n log n) is the time complexity of a shortest path algorithm, while
its space complexity is O(|L| · n). At the initialization phase of
query processing, we compute �(w, t) which is query dependent.
The time complexity for computing �(w, t) for all w 2 L is O(|L|·
|VT |); note that this is only computed once for each query.

Therefore, the time complexity of lower bound computation (i.e.,
Alg. 3) is O(d(u)|L|) where d(u) is the degree of u in G, since
we traverse at most d(u) edges at Line 2 while computing each
lb(v, VT ) takes O(|L|) time.

Computing Shortest Path in a Subspace. We use A* search [16]
to compute sp(Ps,u, Xu), denoted CompSP. In A* search, we
consider only the valid edges (same as Line 3 of Alg. 3), and use
Eq. (2) to estimate the shortest distance to destination. We omit the
pseudocode.

Example 4.3: Continuing Example 4.2, after dividing S0, Q con-
tains three subspaces, S2, S3, S4, together with their lower bounds.
Assume the lower bounds are lb(S2) = 6, lb(S3) = 11, and
lb(S4) = 12. S2 has the smallest lower bound, and is removed
from Q. Then, sp(S2) is computed, which is the 2nd shortest path
P2, since its length is smaller than lower bounds of subspaces in Q.
Here, we compute the 2nd shortest path without computing shortest
paths in subspaces S3 and S4. 2

5. AN ITERATIVELY BOUNDING APPROACH
In this section, following the best-first paradigm in Section 4, we

propose a new iteratively bounding approach to iteratively “guess-
ing” and tightening lower bounds for subspaces in Section 5.1.
Moreover, we propose two online-built indexes, in Section 5.2 and
Section 5.3, respectively, based on which we can reduce the explo-
ration area of a graph dramatically in tightening lower bounds.

5.1 Iteratively Bounding
In BestFirst, we prune subspaces whose lower bounds are larger

than !(Pk), where Pk is the k-th shortest path for a KPJ query.
1Note that this triangle inequality holds for the shortest distances
based on any distance metrics not only Euclidean distance. Thus,
our techniques work for general graphs.

Therefore, BestFirst will run fast if we can prune more subspaces
based on their lower bounds (i.e., by computing tighter/larger lower
bounds for subspaces), considering that computing shortest path is
time-consuming. However, in general, computing a tighter lower
bound takes longer time, and in the extreme case computing the
shortest path in a subspace provides the tightest lower bound. In
Alg. 3, we present a light-weight lower bound estimation by con-
sidering only the immediate neighbors of u. Intuitively, we can
compute a tighter lower bound by exploring multi-hop neighbors
of u (e.g., neighbors of neighbors).

We propose to guess and tighten lower bounds of subspaces in a
controlled manner by a threshold ⌧ , which is achieved by a proce-
dure TestLB. In a nutshell, given a subspace S and a threshold ⌧ ,
TestLB tests whether the shortest path in S has a length larger than
⌧ : if it is, then the lower bound is set as ⌧ ; otherwise, the short-
est path sp(S) is obtained and returned. Details of TestLB will
be discussed shortly. Ideally, we can set ⌧ as !(Pk), then all sub-
spaces whose lower bounds are larger than !(Pk) are pruned with
the least amount of effort; however, Pk is unknown. Considering
that TestLB takes longer time for a larger ⌧ , we iteratively enlarge
⌧ , and the k shortest paths of a KPJ query will be found once ⌧
becomes no smaller than !(Pk).

Algorithm 4: IterBound(G,Q = {s, T, k})
1 Compute the shortest path P

0 from s to any node in VT in G;
2 Initialize a minimum priority queue Q to contain a single entry
hS0 = h(s), ;i,!(P 0

), P

0i;
3 i 1; ⌧  !(P

0

);
4 while i  k do
5 hS = hPs,u, Xui, lb(S), P i  remove the top entry from Q;
6 if P 6= ; then
7 Same as Lines 6-10 of Alg. 3; /

*

Pi  P, i i+ 1,

and divide S into subspaces

*

/;
8 else
9 ⌧  ↵ ·max{lb(S),Q.top().key}; /

*

Enlarge ⌧

*

/;
10 P  TestLB(Ps,u, Xu, ⌧);
11 if P 6= ; then Put hS,!(P ), P i into Q;
12 else Put hS, ⌧, ;i into Q;

13 return the k paths P1, . . . , Pk;

The algorithm IterBound is given in Alg. 4, which is similar
to Alg. 2. We first compute the shortest path P 0 in G (Line 1),
put subspace S0 = h(s), ;i with path P 0 into Q (Line 2), and
initialize ⌧ as !(P 0

) (Line 3). Then, we iteratively remove the
subspace S with smallest lower bound, together with path P , from
Q (Line 5). If P is not empty, then it is the next shortest path Pi,
and we perform the same subspace division as Lines 6-10 of Alg. 2.
Otherwise, we enlarge ⌧ (Line 9), test whether the shortest path of
S has a distance larger than ⌧ (Line 10), and put S back into Q
together with either the computed shortest path P or a larger lower
bound ⌧ depending on what TestLB returns (Lines 11-12).

Note that ⌧ controls the computation of a tighter lower bound
which we want to make larger but a larger ⌧ will make TestLB
slow. In our approach, we use a parameter ↵ to control the speed
of increasing ⌧ iteratively. Here, ↵ can be any real number larger
than 1, and we use ↵ = 1.1 as default. At Line 9, we enlarge ⌧ as
↵ ·max{lb(S),Q.top().key}, where Q.top().key is the key value
(i.e., lower bound) in the top entry of Q and is defined to be +1 if
Q = ;. The intuition is that, !(Pk) should be not much larger than
!(P1), the initial ⌧ (Line 3). Note that lb(S) is the previous ⌧ we
have tested for S; thus, the lower bound ⌧ we tested for a subspace
increases by a factor of at least ↵. Therefore, we iteratively enlarge
⌧ from !(P1) to approach !(Pk), and obtain the k shortest paths
for a KPJ query once ⌧ becomes no smaller than !(Pk).
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Theorem 5.1: Given TestLB, IterBound correctly computes k
shortest paths for a KPJ query. 2
Proof Sketch: IterBound follows the best-first paradigm of Alg. 2,
except that we iteratively compute lower bounds of subspaces. More-
over, it is easy to prove that the lower bound ⌧ computed for the
same subspace S at Line 9 is strictly increasing (assuming that
↵ > 1). Therefore, let Pi be the correct i-th shortest path, we
can prove that ⌧ will be no less than !(Pi) when the algorithm ter-
minates, and once ⌧ becomes no less than !(Pi), the path Pi will
be computed and inserted into Q, thus will be output. 2

IterBound acts the same as BestFirst if we set ⌧ as +1. Nev-
ertheless, by iteratively enlarging ⌧ with an initial value !(P1),
IterBound runs much faster than BestFirst by pruning more sub-
spaces. Conceptually, Fig. 4(b) shows the subspaces in which the
shortest paths are computed by IterBound. Compared to Fig. 4(a),
S4 and S2,r+1 are pruned based on their tighter lower bounds that
are computed by TestLB. The shadow areas of S4 and S2,r+1 in
Fig. 4(b) indicate the exploration areas of TestLB in testing lower
bounds.

Testing Lower Bound. TestLB tests whether the shortest path
in a subspace has length larger than a given threshold ⌧ . This
is achieved by considering multi-hop neighbors of u, denoted V0.
Given ⌧ , V0 are those nodes v with �

S

(s, v)+lb(v, VT )  ⌧ , where
�
S

(s, v) is the shortest distance from s to v constrained in S (i.e.,
G0 defined in Section 4.2). After obtaining V0, if V0 \VT = ; then
!(sp(S)) > ⌧ , otherwise, sp(S) is obtained by backtracking from
V0 \ VT .

Algorithm 5: TestLB(Ps,u, Xu, ⌧)

1 Initialize a minimum-priority queue QV to contain hu, 0i;
2 ds(u) !(Ps,u), and ds(v) +1 for all other nodes;
3 while QV 6= ; do
4 v  remove the top node from QV ;
5 if v 2 VT then return the path formed by concatenating Ps,u

with the computed shortest path from u to v;
6 else for each outgoing edge (v, w) of v do
7 if w /2 Ps,u, (v, w) /2 Xu and ds(v) + !(v, w) < ds(w)

then
8 ds(w) ds(v) + !(v, w);
9 Compute lb(w, VT );

10 if ds(w) + lb(w, VT )  ⌧ then
11 Put hw, ds(w) + lb(w, VT )i into QV ;

12 return ;;

The pseudocode of TestLB is shown in Alg. 5, which is similar
to A* search [16], where ds(v) stores the length of a path from s to
v constrained in S. We maintain the explored nodes together with
their estimated distances (i.e., node v with ds(v) + lb(v, VT )) in
a minimum-priority queue QV , which is initialized to contain u;
nodes in QV are ranked by their estimated distances. Then, nodes
are iteratively removed from QV (Line 4), and their neighbors are
inserted into QV (Lines 6-11), until QV = ; or we get a node from
VT ; the latter case implies that sp(S) has been computed (Line 5).
Here, V0 is the set of nodes removed from QV . Note that, following
from [16], when a node v is removed from QV , ds(v) stores the
shortest distance from s to v constrained in S (i.e., �

S

(s, v)), and
each node is removed from QV at most once.

The efficiency of TestLB is due to that, we only put into QV

those nodes whose estimated distance are not larger than ⌧ , as en-
sured by Line 10, which prunes a lot of nodes especially for a small
⌧ .

Lemma 5.1: Given a subspace S and ⌧ , TestLB returns sp(S) if

!(sp(S))  ⌧ , and returns ; otherwise. 2
Proof Sketch: First of all, we remark that if we remove Lines 9-10
from Alg. 5, then it is the same as the A* search algorithm [16]
that computes the shortest path in S. Thus, if !(sp(S))  ⌧ , then
TestLB returns sp(S), since every node that is pruned at Line 10
will not be in sp(S) due to the nature of lower bound.

Secondly, we prove that if !(sp(S)) > ⌧ , then TestLB returns
;. The reason is that, for every node v obtained at Line 4 of Alg. 5,
we have ds(v)  ⌧ due to the pruning at Line 10. Thus, Alg. 5
cannot find the path sp(S), and returns ;. 2
Time Complexity. The time complexity of Alg. 5 is O(m0

+n0

log n0

),
where n0 and m0 are the number of visited nodes and edges in
Alg. 5 (specifically, at Line 6), respectively. In the worst case,
n0

= n and m0

= m; thus the time complexity is O(m+n log n).
However, in practice, n0 and m0 are usually small and much smaller
than n and m, respectively.

Example 5.1: First, let’s consider TestLB((v1, v3), {(v3, v6)}, 6).
v3 has three valid out-neighbors, v4, v5, v7. v4 and v7 are pruned
because dv1(v3) + !(v3, v4) > 6 and dv1(v3) + !(v3, v7) > 6.
Assume lb(v5, VT ) = 2, then v5 is also pruned since dv1(v3) +
!(v3, v5)+ lb(v5, VT ) = 7. Thus, TestLB((v1, v3), {(v3, v6)}, 6)
returns ;. Now, let’s consider ⌧ = 7. Among the three valid out-
neighbors, v4 is pruned because dv1(v3) + !(v3, v4) = 8; v5 and
v7 are put into QV with lower bounds 7. Then, v5 is removed from
QV , and its out-neighbor, v6, is put into QV with lower bound 7.
After that, either v6 or v7 is removed from QV , and the shortest
path in h(v1, v3), {(v3, v6)}i is obtained. 2

5.2 Partial Shortest Path Tree
Motivated by DA-SPT, in this subsection we propose to com-

pute and store a partial SPT, denoted SPT
P

, which provides a
more accurate estimation of lb(v, VT ). Recall that lb(v, VT ) is
used in TestLB to prune nodes, thus a more accurate estimation
of TestLB will result in faster computation time. In contrast to
DA-SPT which online constructs a full SPT by incurring high
overheads, we obtain SPT

P

as a by-product of computing the short-
est path in G (i.e., Line 1 of Alg. 4) without any extra cost.

Algorithm 6: PartialSPT(G, s, T )

1 Initialize an empty minimum-priority queue QT ;
2 SPT

P

 a virtual root node t; /

*

Build SPT

P *

/;
3 for each w 2 VT do
4 Put hw, lb(s, w)i into QT , dt(w) 0, p(w) t;
5 while QT 6= ; do
6 v  remove the top node from QT ;
7 Add v as a child of p(v) to SPT

P

; /

*

Build SPT

P *

/;
8 if v = s then return the path from s to t;
9 for each incoming edge (w, v) of v do

10 if dt(v) + !(w, v) < dt(w) then
11 dt(w) dt(v) + !(w, v), p(w) v;
12 Put hw, dt(w) + lb(s, w)i into QT ;

The algorithm to construct SPT
P

is given in Alg. 6, denoted
PartialSPT, which is the A* search algorithm for computing the
shortest path from s to any node in VT in G by adding Lines 2,7.
The algorithm runs in the reverse graph of G, since we want to
compute shortest paths from different nodes to any node in VT .
QT is similar to QV in Alg. 5 and initially contains all nodes of VT

(Lines 3-4). Then, nodes are iteratively removed from QT (Line 6)
and their incoming edges are explored (Lines 9-12). The shortest
path from s to any node in VT is obtained when s is removed from
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QT (Line 8). For all nodes v removed from QT , we add v as a
child of p(v) to SPT

P

. Intuitively, SPT
P

contains all nodes re-
moved from QT prior to s when computing the shortest path from
s to any node in VT .

Proposition 5.1: For nodes v 2 SPT
P

, the path from v to t in
SPT

P

is the shortest path from v to any node in VT in G. 2
Computing lb(v, VT ) using SPT

P

. Both CompLB and TestLB,
which are invoked by IterBound, require computing lb(v, VT ) for
any v 2 V . Eq. (2) computes lb(v, VT ) using a landmark-based
approach. By utilizing SPT

P

, we can compute a more accurate
lb(v, VT ) as follows. If v is in SPT

P

, then lb(v, VT ) is computed as
the length of the path from v to t in SPT

P

, the correctness of which
directly follows from Proposition 5.1; otherwise, it is computed by
Eq. (2). Here, we give SPT

P

a higher priority, because if v 2SPT
P

, then the lower bound computed using SPT
P

is guaranteed to be
not smaller than that by Eq. (2); for lower bound, the larger the
better.

t

v
8

v
7 v

6

v
3

v
5

v
4

v
1

0 00

3 23

2

(a) SPT
P

2

3 2

3

v
6

v
5

v
7

v
1

v
8

v
3

3

(b) SPT
I

Figure 5: Partial and incremental SPT

Example 5.2: Fig. 5(a) shows the SPT
P

constructed for Q =

{v1,“H”, 3}. For each node v in SPT
P

, its distance to t in SPT
P

is the shortest distance from v to any node in VT and can be used
as an estimation of lb(v, VT ). For example, lb(v3, VT ) is estimated
as 3. 2
IterBound-SPT

P

Approach. We denote the approach that uses
SPT

P

to estimate lb(v, VT ) in Alg. 4 as IterBound-SPT
P

. The cor-
rectness of IterBound-SPT

P

directly follows from that of IterBound
and the above discussions.

5.3 Incremental Shortest Path Tree
SPT

P

includes all nodes of VT which can be large for a KPJ
query, thus may take long time to construct. In this subsection, we
propose an incremental SPT, denoted SPT

I

, by pruning nodes in
VT that are far-away from the source node s. Moreover, we incre-
mentally enlarge SPT

I

, based on which we identify a new property
for reducing the exploration area of a graph by TestLB.

Constructing SPT
I

. To prune from SPT
I

those nodes in VT that
are far-away from s, in SPT

I

we compute and store shortest paths
from s to each node of a subset of V . Recall that, in SPT

P

, we store
shortest paths from each node of a subset of V to VT . Thus, the
construction of SPT

I

is run on G by starting from s, and consists of
two phases. In the first phase, we construct an initial SPT

I

, which
is a by-product of computing the shortest path from s to any node
in VT in a similar fashion to PartialSPT (i.e., Alg. 6) while running
on G and starting from s; this is invoked at Line 1 of Alg. 4. In the
second phase, we incrementally enlarge SPT

I

by IncrementalSPT,
which is invoked after Line 9 and before Line 10 of Alg. 4.

The pseudocode of IncrementalSPT is shown in Alg. 7, which is
self-explanatory. The general idea is to include into SPT

I

all nodes
of V that are on paths from s to any node in VT whose lengths are
not larger than ⌧ . Therefore, IncrementalSPT iteratively removes

Algorithm 7: IncrementalSPT(G, T, ⌧)

1 while QT .top().key  ⌧ do
2 v  remove the top node from QT ;
3 Add v as a child of p(v) to SPT

I

;
4 if v 2 VT then Add v to D;
5 for each outgoing edge (v, w) of v do
6 if ds(v) + !(v, w) < ds(w) then
7 ds(w) ds(v) + !(v, w), p(w) v;
8 Put hw, ds(w) + lb(w, VT )i into QT ;

the top node v from QT (Line 2), and adds v into SPT
I

(Line 3).
Meanwhile, the subset of VT that are in SPT

I

is maintained into a
set D (Line 4), which will be used later to improve the performance
of testing lower bound for a subspace. In Fig. 5(b), the subtree in
the rectangle shows the initial SPT

I

constructed, and the entire tree
is the resulting SPT

I

for ⌧ = 7. Here, D = {v6, v7}. SPT
I

has
the following property.

Proposition 5.2: The SPT
I

constructed by Alg. 7 contains all nodes
on paths from s to any node in VT whose lengths are no larger than
⌧ . 2

Algorithm 8: CompLB-SPT
I

(Pt,u, Xu)

1 if u 6= t then N(u) {in-neighbors of u} else N(u) D;
2 lb +1;
3 for each v 2 N(u) do
4 if v /2 Pt,u and (v, u) /2 Xu then
5 if v /2SPT

I

then Compute lb(s, v) using Eq. (2);
6 else lb(s, v) the distance from s to v in SPT

I

;
7 lb min{lb,!(Pt,u) + !(v, u) + lb(s, v)};

8 if u = t and lb = +1 and D 6= VT then lb 0;
9 return lb;

Computing Initial Lower Bound for a Subspace using SPT
I

.
We compute the lower bound of a subspace using SPT

I

in a similar
way to CompLB (Alg. 3), by considering the immediate neighbors
of u. The algorithm is shown in Alg. 8, denoted CompLB-SPT

I

.
Note that, here Pt,u is a path from u to t in G and Xu is a subset of
the incoming edges to u. CompLB-SPT

I

differs from CompLB in
the following two aspects. Firstly, lb(s, v) is estimated by utilizing
SPT

I

in the same way as that in Section 5.2. Secondly, when u = t,
instead of considering all nodes of VT , we consider only the subset
that is in SPT

I

(i.e. D). The reason is that, the entire VT can be
very large, while the small subset D is sufficient for our purpose of
computing lb(Pt,u, Xu), which saves a lot of computations.

The correctness of CompLB-SPT
I

when u 6= t directly follows
from that of CompLB. However, when u = t, there are two cases
depending on whether there are any valid incoming edges to u.
1) If there is no valid incoming edge to u (i.e., every node of N(u)
is either in Pt,u or in Xu, Lines 3-4), then lb will be +1. We
reassign lb to 0 if D 6= VT . 2) Otherwise, lb 6= +1, which is
guaranteed to be a lower bound of the subspace hPt,u, Xui.

Testing Lower Bound using SPT
I

. By utilizing SPT
I

, we pro-
pose a more efficient algorithm for testing lower bound, denoted
TestLB-SPT

I

. We modify TestLB to develop TestLB-SPT
I

in the
same fashion as the development of CompLB-SPT

I

. Moreover,
we prune all nodes that are not in SPT

I

from consideration (i.e.,
from putting into QV ). Consequently, every lb(s, w) is computed
as the distance from s to w in SPT

I

; that is, Eq. (2) is not evaluated.
Therefore, TestLB-SPT

I

is more efficient than TestLB. We prove
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the correctness of TestLB-SPT
I

in the following lemma.

Lemma 5.2: Given a subspace S and ⌧ , TestLB-SPT
I

returns ; if
!(sp(S)) � ⌧ , and returns sp(S) otherwise. 2
Proof Sketch: The lemma follows from Lemma 5.1 and Proposi-
tion 5.2. 2
Example 5.3: We show running TestLB-SPT

I

for subspace h(v7),
{(v7, v8)}i with ⌧ = 6, where SPT

I

is shown in Fig. 5(b). Among
v7’s in-neighbors, only v3 is considered, since v13 and v14 are not
in SPT

I

. For v3, lb(v1, v3) = 3 which is the distance in SPT
I

.
Then, v3 is also pruned since !(v3, v7) + lb(v1, v3) = 7, and
TestLB-SPT

I

returns ;. For ⌧ = 7, SPT
I

remains the same. Then,
v3 is not pruned and the shortest path in h(v7), {(v7, v8)}i is ob-
tained, which is (v1, v3, v7) with length 7. 2
IterBound-SPT

I

Approach. Based on SPT
I

and the discussions
above, we propose an approach following Alg. 4 for processing
KPJ queries, denoted IterBound-SPT

I

. It runs on the reverse graph
of G, and a subspace is represented by hPt,u, Xui where Xu is a
subset of the incoming edges to u.
IterBound-SPT

I

improves the efficiency by computing SPT
I

and pruning all nodes not in SPT
I

from consideration when con-
ducting the iteratively bounding search. That is, we take as input
only the small subgraph of G induced by nodes in SPT

I

. Note that,
SPT

I

enlarges for a larger ⌧ , and the subgraph induced by nodes in
SPT

I

also enlarges; this guarantees that we can correctly process
any KPJ query.
Time Complexity. The time complexity of the IterBound-SPT

I

ap-
proach is O(kn(m0

+ n0

log n0

)), where n0 and m0 are the num-
ber of nodes and edges, respectively, in the subgraph G0 of G
that is induced by nodes w with ds(w) + lb(w, VT ) <= ⌧ (see
Line 10 of Alg. 5) for the largest ⌧ obtained in IterBound-SPT

I

.
Note that, n0 and m0 are usually small in real applications; thus,
IterBound-SPT

I

runs much faster than DA (see Alg. 1).

6. EXTENSIONS
In the following, we extend our techniques to other applications

including the case that the source node also has multiple physical
nodes and the case that landmarks are not available.

General KPJ. A general KPJ (GKPJ) query is an extension of
KPJ query where the source node also has multiple physical nodes,
denote as Q = {S, T, k}, where both S and T are categories. It
is to compute the top-k shortest paths from any node in VS to any
node in VT , where VS is the set of nodes of V belonging to category
S. We can convert a GKPJ query to a KPJ query by introducing
a virtual source node s and connecting s to all nodes in VS with
weights 0. Then, Q is reduced to a KPJ query Q0

= {s, T, k}
on the new graph, and all our proposed techniques can be used to
process the query.

Computing without Landmark. Our techniques are presented
based on landmarks which are used to estimate lb(u, VT ). Nev-
ertheless, when landmarks are not available, all our techniques can
still be directly applied by setting all lb(u, VT ) (i.e., computed by
Eq. (2)) to be 0. Specifically, for IterBound-SPT

I

, the landmark
is only used for constructing the SPT

I

using A* search [16], as
discussed in Section 5.3; thus, without landmark, we construct the
SPT

I

by setting lb(u, VT ) to be 0 (the A* search then becomes the
Dijkstra’s algorithm [11]), while other parts of IterBound-SPT

I

re-
main the same.

Moreover, without landmark, our techniques still perform well;
the reasons are as follows. The IterBound-SPT

I

approach mainly

consists of two parts: 1) incrementally constructing the partial short-
est path tree SPT

I

, 2) computing lower bound or shortest path for
a subspace. The dominating cost comes from the second part,
while landmark is only used in the first part. Thus, by running
IterBound-SPT

I

without landmark will only increase the cost of
the first part which is not a big factor in the total cost.

7. PERFORMANCE STUDIES
We conduct extensive performance studies to evaluate the effi-

ciency of our approaches against the baseline approaches for pro-
cessing KPJ queries. The following algorithms are implemented:

• DA [28] and DA-SPT [15]. They are in the deviation paradigm
as discussed in Section 3, and are the baseline approaches for
processing KPJ queries.

• BestFirst. It is the best-first approach as discussed in Sec-
tion 4.

• IterBound, IterBound
P

, and IterBound
I

. They are the it-
eratively bounding approaches with or without SPT as dis-
cussed in Section 5. IterBound

P

and IterBound
I

are abbre-
viations of IterBound-SPT

P

and IterBound-SPT
I

, respec-
tively.

• IterBound
I

-NL. It is the IterBound
I

approach however with-
out landmark, as discussed in Section 6.

Note that, 1) in our testings, a KSP query is also considered as a
KPJ query where the query category uniquely identifies the desti-
nation node; 2) the baseline approaches for processing KPJ queries
are the state-of-the-art techniques for processing KSP queries.

All algorithms are implemented in C++ and compiled with GNU
GCC by -O3 option. All tests are conducted on a PC with an In-
tel(R) Xeon(R) 2.66GHz CPU and 4GB memory running Linux.
We evaluate the performance of the algorithms on real datasets as
follows.

Dataset #Nodes #Edges
CAL 106, 337 213, 964

SJ 18, 263 47, 594
SF 174, 956 443, 604

COL 435, 666 1, 042, 400
FLA 1, 070, 376 2, 687, 902
USA 6, 262, 104 15, 119, 284

Table 1: Summary of dataset
Datasets. We use six real road networks with real/synthetic points
of interest (POIs), and each POI belongs to a category. They are:
California road network (CAL), San Joaquin road network (SJ),
San Francisco road network (SF), Colorado road network (COL),
Florida road network (FLA), and Western USA road network (USA).
The first three are downloaded from www.cs.utah.edu/~lifeifei/

SpatialDataset.htm, and the last three are from DIMACS (www.
dis.uniroma1.it/~challenge9/download.shtml). A sum-
mary is given in Table 1.

POIs. The CAL dataset is provided with real POIs, which have 62

different categories. For the other five road networks, we gener-
ate synthetic POIs randomly located on nodes. For each road net-
work, we generate four sets of POIs, denoted T1, T2, T3, T4, cor-
responding to different number of physical destination nodes (i.e.,
n⇥10

�4, 5n⇥10

�4, 10n⇥10

�4, 15n⇥10

�4 POIs, respectively),
where n is the number of nodes in a road network. For example, for
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COL, |T1| = 43, |T2| = 217, |T3| = 435, and |T4| = 653. Note
that, we generate the POIs in such a way that T1 ⇢ T2 ⇢ T3 ⇢ T4.

Graphs. We model each road network with POIs as a graph G.
Here, an edge (u, v) in G represents a road segment, and has a
non-negative weight !(u, v) which can be any measure of the road
segment, such as distance, travel time, travel cost, and etc. We take
distance as weight in our experiments. Each node belongs to the
categories of POIs that are located on it.2

Queries. A query consists of a source node s, a destination node
set VT indicated by category T , and a value k indicating the num-
ber of paths to found. For each query, we first choose a category T ,
and then randomly generate source nodes. For the CAL dataset, we
consider four representative categories, “Glacier”, “Lake”, “Crater”,
and “Harbor”, which have 1, 8, 14, and 94 physical nodes, respec-
tively. For the other datasets, we consider T1, T2, T3, and T4, and
choose T2 by default.

For a destination category T , the source nodes in a query are
randomly generated as follows. We sort all nodes in increasing
order regarding their shortest path lengths to category T , partition
them into 5 groups, and generate 5 query sets, Q1, Q2, Q3, Q4, Q5,
each of which consists of 100 nodes randomly selected from the
corresponding group. Thus, nodes in Qi are closer to destination
nodes than nodes in Qj do, for i < j. We use Q3 as the default
query set.

k is chosen from 10, 20, 30, and 50, with 20 as the default.

7.1 Experimental Results
Eval-I: Parameters. We evaluate the influence of landmark size
|L| and parameter ↵ on the performance of IterBound

I
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Figure 6: Parameter testing on CAL (Q3, k = 20)

Choosing |L|. In our approaches, we use landmarks for estimat-
ing lb(v, VT ), the lower bound of shortest distance from v to any
node in VT . The landmarks are chosen following the most popular
way in [16].3 Fig. 6(a) shows the processing time of IterBound

I

for different |L| values. Clearly, when |L| increases from 4 to 16,
the processing time decreases, because more landmarks can pro-
vide more accurate estimation of lb(v, VT ). However, when |L|
increases from 16 to 32, the processing time increases a little due
to longer computation time of lb(v, VT ). Therefore, we choose
|L| = 16.
Choosing ↵. The running time of IterBound

I

for different ↵ values
are illustrated in Fig. 6(b). Recall that ↵ is used in our iterative
bounding approaches for controlling the increasing ratio of ⌧ (i.e.,
2For simplicity, we assume that POIs are located on the nodes of
G. When a POI is on an edge (u, v), we can add a new node w to
G and connect w with u and v to replace (u, v). Note that, given
a query with category T , we only need to consider the set of POIs
belonging to category T .
3We firstly pick a random start node and select the farthest node
from the start node as the first landmark, and then iteratively choose
the node that is farthest away from the current set of landmarks as
the next landmark.

controlling the computation of a tighter lower bound, see Alg. 4).
The running time increases when ↵ increases from 1.1 to 1.8 due
to building a larger SPT

I

. However, when ↵ decreases from 1.1 to
1.05, the processing time also increases due to taking more itera-
tions to reach the final ⌧ . Therefore, we choose ↵ = 1.1.

Note that: 1) among our parameters, ⌧ is determined by ↵; 2)
better choices of |L| and ↵ will improve the performance of our
algorithm marginally as shown in Fig. 6. It will be our future work
to automatically find the best choice of |L| and ↵.
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Figure 7: Against baseline approaches on CAL (Varying Q, k)

Eval-II: Against the Baseline Approaches. Here, we evaluate the
performances of our approaches against the baseline approaches on
CAL dataset.
KPJ Query. The processing time of the seven approaches by vary-
ing query sets and k is demonstrated in Fig. 7, where the desti-
nation category is chosen from “Lake”, “Crater”, and “Harbor”.
In general, all our approaches, BestFirst, IterBound, IterBound

P

,
IterBound

I

, and IterBound
I

-NL, outperform the two baseline ap-
proaches, DA and DA-SPT. This is because our approaches use
a best-first paradigm to reduce the number of shortest path com-
putations. In Figures 7(a)-7(d), DA-SPT outperforms DA because
DA-SPT online builds a full SPT to facilitate the shortest path
computation. However, in Fig. 7(e)-7(f), DA-SPT performs worse
due to the dominating cost of building the full SPT. When the
lengths of shortest paths increase (i.e., varying Q from Q1 to Q5),
the running time of all approaches increases except DA-SPT which
is steady, due to the dominating cost of constructing the full SPT.
Moreover, although without landmarks, IterBound

I

-NL outperforms
all other approaches except IterBound

I

across all testings. The
trend of the processing time of these approaches by varying k is
similar to that of varying query set. One exception is that, the pro-
cessing time of DA-SPT also slightly increases due to computing
more shortest paths for larger k.
KSP Query. We test the approaches for processing KSP queries by
setting the destination category as “Glacier” which has only one
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Figure 8: Testing KSP queries on CAL (Varying Q and k)

physical destination node; thus, the KPJ query is a KSP query.
The results are shown in Fig. 8, which are similar to that for KPJ
queries in Fig. 7.
Summary. There is no clear winner between DA and DA-SPT,
and all our approaches perform better than these two baseline ap-
proaches. Despite using the same techniques, IterBound

I

outper-
forms IterBound

I

-NL, which demonstrates the effectiveness of us-
ing landmarks for estimating lower bounds. Therefore, in the fol-
lowing testings, we omit DA, DA-SPT, and IterBound

I

-NL, and
evaluate the other approaches which use different techniques and
all use landmark.
Eval-III: Evaluating Our Approaches. In this testing, we evalu-
ate the efficiency of our different approaches, BestFirst, IterBound,
IterBound

P

, and IterBound
I

, on SJ and COL.
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Figure 9: Our approaches by varying Q and k (T = T2)

Varying Q and k. The running time of the approaches on SJ and
COL by varying Q and k is shown in Fig. 9. Similar to that in
Fig. 7, the running time of these four approaches increases when
either Q varies from Q1 to Q5 or k increases. IterBound slightly
outperforms BestFirst due to less number of shortest path compu-
tations, however with more expensive lower bound computations.
IterBound

P

performs better than IterBound because of the faster
lower bound testing. IterBound

I

runs faster than IterBound
P

be-
cause IterBound

I

can further reduce the exploration area of a graph
by SPT

I

.
Varying Number of Destination Nodes (|T |). Fig. 10 shows the pro-
cessing time of these four approaches on SJ and COL by varying
the number of destination nodes (i.e., varying |T |). For all these
four approaches, the processing time decreases, when the num-
ber of destination nodes increases (i.e., T varies from T1 to T4).
This is because the shortest paths become shorter for more number
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Figure 10: Vary #(destination nodes) (Q = Q3, k = 20)

of destination nodes as shown in Fig. 11 which will be discussed
shortly. IterBound

I

outperforms IterBound
P

which then outper-
forms BestFirst and IterBound. The improvement of IterBound

I

over IterBound
P

becomes more significant when there are more
destination nodes, since IterBound

I

can prune destination nodes
and reduce the exploration area of a graph by SPT

I

.
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Fig. 11 illustrates the influence of the number of destination nodes
on the shortest path lengths. Specifically, for each category Ti, we
compute the longest length of shortest paths from nodes to Ti, and
report its percentile position in the observations of all n · n short-
est path lengths in the graph. For all datasets, the shortest path
lengths decrease with more number of destination nodes; thus all
approaches run faster as shown in Fig. 10. Note that, for a specific
Ti, the number of destination nodes belonging to Ti are different,
thus the shortest path lengths vary for different datasets; for exam-
ple, for T1, the number of destination nodes for SJ, SF, COL, FLA,
USA are 1, 17, 43, 107, and 626, respectively.
Summary. IterBound

I

outperforms the other approaches, BestFirst,
IterBound, and IterBound

P

, across all different datasets, different
number of destination nodes, different Q, and different k. Thus, in
the following we only evaluate our IterBound

I

approach.
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Figure 12: Scalability of IterBound
I

(T = T2, Q = Q3)

Eval-IV: Scalability Testing. The scalability testing results of
IterBound

I

by varying graph size and k are shown in Fig. 12. Al-
though the running time increases when either the graph size or
k increases, IterBound

I

is scalable enough to process very large
graphs. For example, when the graph size increases 40 times (i.e.,
from SJ to USA), the running time of IterBound

I

only increases
slightly (e.g., by no more than 3 times).
Eval-V: GKPJ Testing. In this evaluation, we test the efficiency of
IterBound

I

over DA-SPT, the state-of-the-art approach, for GKPJ
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queries Q = {S, T, k}. Here, the source category S has 4 physi-
cal nodes which are randomly chosen. Fig. 13 shows the running
time by varying the number of destination nodes (i.e., |T |) or k.
The trends of running time of DA-SPT and IterBound

I

are similar
to the previous evaluations. The improvement of IterBound

I

over
DA-SPT is more significant (e.g., by two orders of magnitude).
This is because the lengths of k shortest paths become smaller with
multiple source nodes.

8. CONCLUSION
In this paper, we studied the problem of top-k shortest path join

(KPJ). We adopted the best-first paradigm to reduce the number
of shortest path computations, compared to the existing deviation
paradigm, by pruning subspaces based on their lower bounds. To
improve the efficiency, we further proposed an iteratively bound-
ing approach to tightening lower bounds of subspaces which is
achieved by lower bound testing. Moreover, we proposed index
structures to significantly reduce the exploration area of a graph in
lower bound testing. We conducted extensive performance studies
using real road networks, and demonstrated that our proposed ap-
proaches significantly outperform the baseline approaches for KPJ
queries. Furthermore, our approaches can be immediately used to
process KSP queries, and they also outperform the state-of-the-art
algorithm for KSP queries by several orders of magnitude.
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ABSTRACT

Shortest path computation is one of the most fundamental
operations for managing and analyzing graphs. A number
of methods have been proposed to answer shortest path dis-
tance queries on static graphs. Unfortunately, there is lit-
tle work on answering distance queries on dynamic graphs,
particularly graphs with edge failures. Today’s real-world
graphs, such as the social network graphs and web graphs,
are evolving all the time and link failures occur due to var-
ious factors, such as people stopping following others on
Twitter or web links becoming invalid. Therefore, it is of
great importance to handle distance queries on these failure-
prone graphs. This is not only a problem far more difficult
than that of static graphs but also important for processing
distance queries on evolving or unstable networks. In this
paper, we focus on the problem of computing the shortest
path distance on graphs subject to edge failures. We pro-
pose SIEF, a Supplemental Index for Edge Failures on a
graph, which is based on distance labeling. Together with
the original index created for the original graph, SIEF can
support distance queries with edge failures efficiently. By
exploiting properties of distance labeling on static graphs,
we are able to compute very compact distance labeling for
all singe-edge failure cases on dynamic graphs. We exten-
sively evaluate our algorithms using six real-world graphs
and confirm the effectiveness and efficiency of our approach.

Categories and Subject Descriptors

E.1 [Data]: Data Structures—Graphs and networks; H.2.8
[Database management]: Database Applications—Graph
Indexing and Querying

General Terms

Algorithms, Experimentation, Performance

Keywords
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1. INTRODUCTION
Recent years have witnessed the fast emergence of massive

graph data in many application domains, such as the World
Wide Web, linked data technology, online social networks,
and Web of Things [21, 19, 22, 25]. In a graph, one of the
most fundamental challenges centers on the efficient compu-
tation of the shortest path or distance between any given
pair of vertices. For instance, distances or the numbers of
links between web pages on a web graph can be considered
a robust measure of web page relevancy, especially in rele-
vance feedback analysis in web search [21]. In RDF graphs
of linked data, the shortest path distance from one entity
to another is important for ranking entity relationships and
keyword querying [19, 14]. For online social networks, the
shortest path distance can be used to measure the closeness
centrality between users [22].

A large body of indexing techniques have been recently
proposed to process exact shortest path distance queries on
graphs [10, 23, 9, 8, 2, 26, 15]. Among them, a signifi-
cant portion of indexes are based on 2-hop distance label-
ing, which is originally proposed by Cohen et al. [12]. The
2-hop distance labeling techniques pre-compute a label for
each vertex so that the shortest path distance between any
two vertices can be computed by giving their labels only.
These labeling indexes, such as [10, 8, 2, 15], have been
proved to be efficient, i.e., being able to answer a distance
query within microseconds.

Motivation. The above mentioned approaches generally
make the assumption that graphs are static. However, in
reality, many graphs are subject to edge failures. In this pa-
per, we refer to graphs that are not subject to edge failures
as stable graphs, i.e., static graphs. Similarly, we refer to
graphs that are subject to edge failures as unstable graphs.
For example, the emerging social Web of Things calls for
graph data management with edge failures because smart
things are normally moving and their connectivity could be
intermittent, leading to frequent and unpredictable changes
in the corresponding graph models [11, 25]. Another exam-
ple is web graphs. It is not uncommon that some web links
become invalid as the web evolves. All these are examples
of unstable graphs, which are common in the real-world,
calling for efficient graph computations by considering link
failures. We believe that it is imperative to design novel
algorithms that can compute shortest path indexes for fast
response on distance queries avoiding any failed edge. Some
real-world applications/scenarios that require the computa-

 

 

145 10.5441/002/edbt.2015.14

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2015.14


tion of shortest path distance avoiding a failed edge are de-
scribed in the following.

Scenario 1. The most vital arc problem [17, 6] aims
to identify the edge on a given shortest path and the removal
of this edge results in the longest replacement path. Here, a
replacement path means a shortest path from a source vertex
to a destination vertex in a graph that avoids a specified edge.
To find the most vital arc in a graph, we need to compute
the shortest path distances efficiently when we are given an
arc (i.e., an edge) to avoid.

Scenario 2. In the sensitivity analysis and in many
analytical applications of transportation networks, govern-
ment agencies need to evaluate different road segments (i.e.,
to find how much a road segment is worth) through Vickrey
pricing [16], such that maintenance budget can be allocated
accordingly, or the amount of tolls can be adjusted reason-
ably [24]. For example, if tolls are not charged appropriately
and avoiding an expensive toll point causes only a small de-
tour, then it is more likely that most drivers would take the
detour, rather than pay for the toll.

Scenario 3. In order to develop game-theoretic and
price-based mechanisms to share bandwidth and other
network resources, a natural economic question is [16]: how
much is an edge in a network worth to a user who wants to
send data between two nodes along a shortest path? Or in
other words, what is the penalty of avoiding an edge in the
given network?

These application scenarios reveal an urge for handling
shortest path computations in a graph with single-edge fail-
ures. Here, single-edge failure refers to graph failures with
only one failed edge at a time [5]. Note that, other types of
edge failure, such as dual-failure in [13], may allow multiple
failed edges at a time. But they are considered much harder
than single-failure [13]. To shed light on these challenging
issues, we focus on single-edge failures in this paper.

Contributions. Since 2-hop labeling has shown its power
to support instant responses to shortest path distance queries
on stable graphs, our work aims at extending this technique
to support unstable graphs. Existing shortest path index-
ing techniques based on 2-hop labeling can be used to pre-
compute the whole shortest path index for a graph. The
resulted indexes can normally answer distance queries fast
using moderate storage space [2, 15]. However, applying in-
dexing techniques designed for static/stable graphs directly
to evolving/unstable graphs may lead to inefficiency. When
considering every single-edge failure case and constructing
a corresponding index for each case, the size of all these
indexes will become too big to manage. For instance, a
snapshot of the Gnutella peer-to-peer (P2P) file sharing net-
work in August 2002 contains more than 6,000 vertices1 and
20,000 edges. Using state-of-the-art method, Pruned Land-
mark Labeling (PLL) [2], the index size is slightly more than
5 MB. However, suppose we want to construct such index
for each single-edge failure case, the total index size would
be more than 5× 20, 000 = 105 MB.

To address the deficiency of existing shortest path in-
dexing techniques, this paper proposes a generic framework
named SIEF, a Supplemental Index for Edge Failures on a
1http://snap.stanford.edu/

graph, to construct compact shortest path indexes efficiently
for unstable graphs where single-edge failures may exist. As
an initial attempt on this challenging issue, we focus on un-
weighted, undirected graphs. Similar to other distance la-
beling based indexing methods [2, 15], our method can be
extended to weighted and/or directed graphs. We highlight
our main contributions in the following.

• We present the concept of well-ordering 2-hop distance
labeling and identify its important properties that can
be utilized to design algorithms for shortest path in-
dexes on graphs with edge failures.

• We analyze shortest path index constructions on graphs
with edge failures theoretically. We develop the corre-
sponding theorems as well as novel algorithms to en-
able constructions of compact indexes for all the single-
edge failure cases of the entire graph. By applying our
approach to the aforementioned Gnutella P2P dataset,
the size of the generated SIEF index together with the
original index created for the original graph is merely
14 MB, which is much more compact than 105 MB by
directly using PLL method [2] to construct indexes for
each single-edge failure case.

• We conduct extensive experiments on six real-world
graphs to verify the efficiency and effectiveness of our
method. The results show that our method can effi-
ciently answer shortest path distance queries avoiding
a failed edge with very compact labeling indexes.

The rest of this paper is organized as follows. In Section
2, we review the related work. In Section 3, we present some
preliminaries on 2-hop distance labeling. We then present
the framework and the details of our approach in Section 4.
In Section 5, we report the results of an extensive experi-
mental study using six graphs from real-world. Finally, we
present some concluding remarks in Section 6.

2. RELATED WORK
In this section, we review the major techniques that are

most closely related to our work.
Distance labeling has been an active research area in re-

cent years. In [10], Cheng and Yu exploit the strongly con-
nected components property and graph partitioning to pre-
compute 2-hop distance cover. However, the graph parti-
tioning process introduces high cost because it has to find
vertex separators recursively. Hierarchical hub labeling (HHL)
proposed by Abraham et al. [1] is based on the partial order
of vertices. Smaller labeling results can be obtained by com-
puting labeling for different partial order of vertices. In [18],
Jin et al. propose a highway-centric labeling (HCL) that
uses a spanning tree as a highway. Based on the highway, a
2-hop labeling is generated for fast distance computation.

Very recently, the pruned landmark labeling (PLL) [2] is
proposed by Akiba et al. to pre-compute 2-hop distance la-
bels for vertices by performing a breadth-first search from
every vertex. The key idea is to prune vertices that have
obtained correct distance information during breadth-first
searches, which helps reduce the search space and sizes of
labels. Further, query performance is also improved as the
number of label entries per vertex is reduced. IS-Label (or
ISL) is developed by Fu et al. in [15] to pre-compute 2-hop
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distance label for large graphs in memory constrained en-
vironments. ISL is based on the idea of independent set of
vertices in a large graph. By recursively removing an in-
dependent set of vertices from the original graph, and by
augmenting edges that preserve distance information after
the removal of vertices in the independent set, the remaining
graph keeps the distance information for all remaining ver-
tices in the graph. Apart from the 2-hop distance labeling
technique, a multi-hop distance labeling approach [8] is also
studied, which can reduce the overall size of labels at the
cost of increased distance querying time.

Tree decomposition approach has been recently investi-
gated [23, 4] for answering distance queries on graphs. Wei
proposes TEDI [23], which first decomposes a graph into a
tree and then constructs a tree decomposition for the graph.
A tree decomposition of a graph is a tree with each vertex
associated with a set of vertices in the graph, which is also
called a bag. The shortest paths among vertices in the same
bag are pre-computed and stored in bags. For any given
source and target vertices, a bottom-up operation along the
tree can be executed to find the shortest path. An improved
TEDI index is proposed by Akiba et al. in [4] that exploits
a core-fringe structure to improve index performance. How-
ever, due to the large size of some bags in the decomposed
tree, the construction time for a large graph is costly and
thus such indexing approaches cannot scale well.

Maintenance of 2-hop reachability labeling is also stud-
ied. For example, HOPI (2-HOP-cover-based Index) intro-
duces some maintenance techniques for the constructed in-
dex. HOPI is developed by Schenkel et al. in [20] and is de-
signed to speed up connection or reachability tests in XML
documents based on the idea of 2-hop cover. HOPI is able to
update indexes for insertions and deletions of nodes, edges
or even XML documents. To the best of our knowledge,
HOPI is the first work on maintenance of 2-hop labeling.
Recently, maintenance of 2-hop labeling for large graphs has
also been studied by Bramandia et al. in [7]. However, all
these studies focus on reachability queries and are based on
2-hop labeling but not on 2-hop distance labeling.

Incremental maintenance of 2-hop distance labeling is also
studied very recently by Akiba et al. in [3]. In that work, in-
cremental updates (i.e., edge insertions) of 2-hop labeling in-
dexes are investigated. To support fast incremental updates,
outdated distance labels are kept, which will not affect the
distance computation on the updated graphs in the incre-
mental case. However, for the decremental case (i.e., edge
deletions), this approach will not work, as outdated distance
labels must be removed first and then some necessary labels
of the 2-hop labeling index need to be recomputed. Hence,
their update algorithms cannot be applied on edge deletions
(i.e., edge failures), which will be discussed in this paper.

3. PRELIMINARIES

3.1 2-Hop Distance Labeling
The technique of 2-hop cover can be used to solve reacha-

bility problems (using reachability labels) and shortest path
distance querying problems (using distance labels) on graphs
[12]. Since our work focuses on the shortest path distance
querying problems, we adopt distance labels with the 2-hop
cover technique. We specifically refer to it as 2-hop distance
labeling or 2-hop distance cover.

Assume a graph G = (V,E), where V is a set of vertices
and E is a set of edges. For each vertex v ∈ V , there is a pre-
computed label L(v), which is a set of vertex and distance
pairs (u, δuv). Here u is a vertex and δuv is the shortest
path distance between u and v. Given such a labeling for all
vertices in G, denoted by L, for any pair of vertices s and t
in G, we have

dist(s, t, L) =min{δvs + δvt|(v, δvs) ∈ L(s)

and (v, δvt) ∈ L(t)}
(1)

If L(s) and L(t) do not share any vertices, we have dist(s, t, L)
=∞. The distance between any given vertices s and t in G is
denoted by dG(s, t). If we have dG(s, t) = dist(s, t, L) for all
s and t in G, we call the labeling result L a 2-hop distance
cover.

3.2 Well-Ordering 2-Hop Distance Labeling
For a connected graph G, there exists a sequence of ver-

tices σ =< v0, v1, v2, . . . , vn−1 >. We denote the order of
any vertex vi as σ[vi] and we have σ[vi] = i for the above
given vertex sequence. Based on this, we can define Well-
Ordering 2-Hop Distance Labeling in the following.

Definition 1 (Well-Ordering 2-Hop Distance Label-
ing). Suppose that (1) each vertex vi has a distance labeling
L(vi), and the labeling result L of all vertices forms a 2-hop
distance cover of G; (2) for any pair of vertices vi and vj ,
given that σ[vi] < σ[vj ], then vj is not in L(vi) and vi may
be in L(vj). We call such a 2-hop distance cover a well-
ordering 2-hop distance labeling. Alternatively we say that
a 2-hop distance cover has well-ordering property.

Similar concepts of well-ordering 2-hop distance labeling
also appear in recent research efforts such as HHL [1], PLL
[2], and ISL [15]. This confirms that well-ordering 2-hop
distance labeling is important in the related research area.
More importantly, we will show in this paper that the well-
ordering property is also a basic concept in the design of
index construction algorithms for distance labeling compu-
tation on unstable graphs where edges may fail.
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Figure 1: A graph example

In a graph containing multiple connected components,
suppose its 2-hop labeling is L. For any pair of vertices
u and v in different connected components, we can assert
that L(u) and L(v) do not share any vertex according to
the definition of 2-hop cover. Each connected component
has its own vertex orders. For such a graph, we will have
separate vertex orders for each connected component. We
denote a connected component containing vertex u as C(u).
If u and v belong to the same connected component, we have
C(u) = C(v).

Figure 1 shows an example graph with 11 vertices and
Table 1 shows a well-ordering 2-hop distance labeling result
L for the graph (L can be constructed by PLL [2] using the
same vertex ordering as that specified in the table). In the
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Table 1: 2-Hop Distance Labeling L for Figure 1
Label Entries
L(0) (0,0)
L(1) (0,1) (1,0)
L(2) (0,1) (2,0)
L(3) (0,1) (2,1) (3,0)
L(4) (0,1) (1,1) (4,0)
L(5) (0,2) (1,1) (2,1) (5,0)
L(6) (0,2) (2,2) (3,1) (4,2) (6,0)
L(7) (0,2) (2,2) (3,1) (6,1) (7,0)
L(8) (0,1) (4,1) (6,1) (8,0)
L(9) (0,3) (2,3) (3,2) (4,3) (6,1) (9,0)
L(10) (0,4) (2,4) (3,3) (4,4) (6,2) (9,1) (10,0)

table, the order of vertices is < 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 >.
Take L(5) as an example to further explain the idea of well-
ordering 2-hop distance labeling. L(5) is the label of vertex
5. By the well-ordering property, label entries in L(5) can
only contain vertices 0, 1, 2, 3, 4 and 5. Since label entries
containing vertices 3 and 4 are redundant in L(5) (this will
be explained in more details later in this section), label en-
tries in L(5) only contain vertices 0, 1, 2 and 5.

3.3 Properties of Well-Ordering 2-Hop Distance
Labeling

Technically speaking, if we index shortest paths for all
pairs using a labeling method, we will obtain an index that
occupies O(n2) disk space. This index can be considered
as a special 2-hop distance labeling. Obviously, the space
complexity of this is too high for large graphs. Constructing
a minimal 2-hop distance labeling has been proven to be NP-
hard [12]. Therefore, an alternative way to obtain labeling
results with reduced sizes is by using heuristic methods [10,
8, 2, 15]. Well-ordering 2-hop distance labeling is one of the
techniques that can help to design efficient algorithms for
constructing shortest path distance labeling indexes and for
index maintenance. We identify its useful properties in the
following.

Lemma 1. Given a well-ordering 2-hop distance labeling
L of a connected graph G, suppose u ∈ G and σ[u] is a
minimum among all vertices in G, then for any vertex v ∈ G,
we must have (u, δuv) ∈ L(v).

Proof. It is trivial to prove this when v = u since (u, 0) ∈
L(u). We prove the case when v ̸= u by contradiction. Sup-
pose there exists a vertex v ∈ G, (u, δuv) /∈ L(v). By the
definition of L, since σ[u] is minimum, L(u) will contain only
one label entry (u, 0). Then it is obvious that L(u) and L(v)
do not share any vertex, which leads to dist(u, v, L) = ∞.
This implies that u and v belong to different connected com-
ponents, which is false. Therefore, the lemma is proved.

Lemma 2. Given a well-ordering 2-hop distance labeling
L of a connected graph G, suppose s, t, u ∈ G and dist(s, t, L)
= dist(s, u, L)+dist(u, t, L), then u must be an internal ver-
tex of a certain shortest path between s and t.

Proof. Since dist(s, t, L) = dist(s, u, L) + dist(u, t, L),
there must exist some shortest path that starts from s,
passes u, and ends at t. Hence the lemma is proved.

Take vertices 5, 6 and 2 in Figure 1 as an example. From
Table 1, we have dist(5, 6, L)=3 and dist(5, 2, L)+dist(2, 6, L)

=1+2=3. From Figure 1, we can see that vertex 2 is an in-
ternal vertex on some shortest path, denoted as p, between
vertex 5 and vertex 6. In this case, we have p =< 5, 2, 3, 6 >.

Lemma 3. Given a well-ordering 2-hop distance labeling
L of a connected graph G, suppose s, t, u ∈ G and u has
minimum vertex order σ[u] among all shortest paths between
s and t. Then we must have (u, δus) ∈ L(s) and (u, δut) ∈
L(t) and dist(s, t, L) = δus + δut.

Proof. We prove this by contradiction. Without loss of
generality, suppose (u, δus) /∈ L(s). In order to calculate
dist(s, u, L), there must exist some vertex v other than u,
where (v, δvs) ∈ L(s), (v, δvu) ∈ L(u) and dist(s, u, L) =
δvs + δvu. According to Lemma 2, v must be an internal
vertex of some shortest path between s and u. Hence v
must also be an internal vertex of some shortest path be-
tween s and t. Meanwhile, by definition, we must have
σ[v] < σ[u]. This contradicts our assumption that u has the
minimum vertex order among all shortest paths between s
and t. Hence, we must have (u, δus) ∈ L(s). Furthermore, u
is an internal vertex of some shortest path between s and t,
thus dist(s, t, L) = δus+δut. Hence the lemma is proved.

Take vertices 1 and 6 in Figure 1 as an example. Paths
p1 =< 1, 0, 8, 6 >, p2 =< 1, 0, 3, 6 > and p3 =< 1, 4, 8, 6 >
are all the shortest paths between vertices 1 and 6. Vertex 0
is the one with minimum order along all these paths. From
Table 1 we can see that both vertices 1 and 6 contain a label
entry (0, δ). We can also easily check that dist(1, 6, L) =
δ0,1 + δ0,6 = 1 + 2 = 3.

Lemma 4. Given a well-ordering 2-hop distance labeling
L of a connected graph G, suppose σ[u] < σ[v]. If there is
a label entry (u, δuv) ∈ L(v), we must have for any label
entry (r, δrv) ∈ L(v), (1) δuv ≤ δrv + dist(r, u, L); (2) if
σ[r] < σ[u] and δuv = δrv+dist(r, u, L) then (u, δuv) ∈ L(v)
is a redundant label entry.

Proof. We first prove the first claim that δuv ≤ δrv +
dist(r, u, L). By definition and the triangle inequalities we
must have δuv = dG(u, v) = dist(u, v, L) ≤ δrv+dist(r, u, L).

We then prove the second claim. We need to prove that
if δuv = δrv + dist(r, u, L), then for any vertex t, when we
calculate dist(v, t, L), (u, δuv) in L(v) is not required. For t,
there are three cases: (1) (u, δut) /∈ L(t); (2) (u, δut) ∈ L(t)
but δuv + δut > dist(v, t, L); (3) (u, δut) ∈ L(t) and δuv +
δut = dist(v, t, L). For Case (1) and Case (2), it is trivial
since (u, δuv) in L(v) is not required to calculate dist(v, t, L).
For Case (3), according to Lemma 2, u is an internal vertex
of some shortest paths between v and t. Similarly, since
δuv = δrv + dist(r, u, L), r is an internal vertex of some
shortest paths between u and v, which means r is also an
internal vertex of some shortest paths between v and t. In
such case, we prove in the following that there must exist a
vertex s other than u and we have (s, δsv) ∈ L(v), (s, δst) ∈
L(t) where δst + δsv = dist(v, t, L).

Suppose s is the vertex with minimum vertex order among
all shortest paths between v and t. According to Lemma
3, we must have (s, δsv) ∈ L(v), (s, δst) ∈ L(t) and δst +
δsv = dist(v, t, L). Since σ[s] ≤ σ[r] < σ[u], s is not the
same vertex of u. Therefore, (u, δuv) in L(v) is not required
to calculate dist(v, t, L). Hence, the second claim is also
proved.
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Take label entries of vertex 5 in Table 1 as an example.
We have σ(3) < σ(5) and σ(2) < σ(3). We also have δ3,5 =
2 = δ2,5 + δ2,3. Therefore (3, 2) is a redundant label entry
in L(5), which can be removed from L(5).

4. THE SIEF APPROACH
In this section, we first provide an overview of our SIEF

approach. We then analyze the 2-hop distance labeling com-
putation on graphs with single-edge failures and introduce
a set of algorithms to achieve fast and compact index con-
structions.

4.1 SIEF Overview
After an edge fails on a graph, we observe that distances

of a considerable proportion of shortest paths between any
pair of vertices remain unchanged. Therefore, to construct a
new index for each single-edge failure case, we only need to
compute new labels for those vertices with changed shortest
path distances due to the edge failure. Overall, our index
construction approach can be divided into two main stages.
In the first stage, IDENTIFY, we identify affected vertices
after an edge fails. In the second stage, RELABEL, we re-
label all affected vertices with necessary additional label en-
tries for the single-edge failed graph. These new label entries
form a new part of the index, which is called a supplemental
index.

Before the detailed discussions of our algorithms, suppose
that the failed edge is (u, v) inG, and the new graph isG′, we
introduce a concept for the supplemental index construction:

Definition 2 (Affected vertices AV(u,v)). For any vertices
s and t, if dG′(s, t) ̸= dG(s, t), then s ∈ AV(u,v) and t ∈
AV(u,v).

To be specific, AV(u,v) contains all vertices whose distance
to some other vertex must have been changed due to the
failed edge (u, v). It is quite clear that supplemental indexes
should be constructed to maintain all new distances for each
single-edge failure case. In other words, supplemental in-
dexes are constructed based on all the vertices in AV(u,v).
Further, in order to be compact, the supplemental indexes
should only answer distances that cannot be answered by
the original index.

4.2 Identification of Affected Vertices
Before we can start to construct supplemental indexes, we

need to identify all the affected vertices in AV(u,v) first. A
naive method would be to compare distances for any possible
pair of affected vertices in the original graph G and the new
graph G′ with a failed edge (u, v), but that would be very
time consuming as it will need to test distances of O(n2)
pairs of vertices. In the following, we will try to identify
some important properties for vertices in AV(u,v) for us to
identify AV(u,v) more efficiently and accurately.

Lemma 5. After removing the failed edge (u, v) from graph
G, for any vertex s, t in G′, we must have dG′(s, t) ≥ dist(s, t,
L).

Proof. In the old graph G, there are only two types of
shortest paths: (1) shortest paths containing edge (u, v);
and (2) shortest paths not containing edge (u, v). For the
former, we have dG′(s, t) ≥ dG(s, t) = dist(s, t, L). For the
latter, we have dG′(s, t) = dG(s, t) = dist(s, t, L). Thus the
lemma is proved.

Lemma 6. After removing the failed edge (u, v) from graph
G, for any vertex s, t in G′, if dG′(s, t) > dist(s, t, L), and
suppose a shortest path between s and t in G is πG(s, t), then
we must have uv ∈ πG(s, t) or vu ∈ πG(s, t).

Proof. This can be proved by contradiction. Suppose
we have dG′(s, t) > dist(s, t, L) but uv /∈ πG(s, t) and vu /∈
πG(s, t), which means edge (u, v) does not appear in πG(s, t).
In such case, there must exist a path PG′(s, t) in G′ where
πG(s, t) = PG′(s, t). This means dG′(s, t) must be at most
the length of PG′(s, t), i.e., the length of πG(s, t). Thus, we
must have dG′(s, t) = dist(s, t, L′) ≤ dG(s, t). This contra-
dicts our assumption dG′(s, t) > dist(s, t, L).

According to Lemma 6 and the definition of affected ver-
tices, if we have dG′(s, t) > dist(s, t, L) = dG(s, t), we must
have that s, t ∈ AV(u,v). This further means the shortest
path(s) between s and t in the original graph G must con-
tain the failed edge (u, v). Then, after edge (u, v) fails, take
any one of these shortest paths (if multiple shortest paths
exist; if not, we will have one and only one shortest path con-
taining (u, v)) as an example, denoted as πG(s, t). Then it is
easy to imagine that πG(s, t) will become two segments: one
segment ends at u, denoted as Segu and the other segment
ends at v, denoted as Segv. Without loss of generality, sup-
pose s falls on the Segu and t falls on Segv. Since Segu and
Segv must also be shortest paths from s to u and from t to
v, respectively, this means we must have dG(s, u) = d′G(s, u)
and dG(t, v) = d′G(t, v). But in the meantime, we must have
dG(s, v) ̸= d′G(s, v) and dG(t, u) ̸= d′G(t, u) since otherwise
we will have dG′(s, t) = dG(s, t), which is impossible. Based
on this observation, we can see that vertices in AV(u,v) form
two disjoint sets: one set is AV(u,v)(u) and the other set is
AV(u,v)(v), where for ∀s ∈ AV(u,v)(u) and ∀t ∈ AV(u,v)(v),
we must have dG′(s, t) > dG(s, t), dG(s, u) = d′G(s, u) and
dG(t, v) = d′G(t, v). Since (u, v) is the failed edge, obviously,
we must have u ∈ AV(u,v)(u) or v ∈ AV(u,v)(v). Further,
it should be noted that, ∀s, t ∈ AV(u,v)(u), we must have
dG(s, t) = d′G(s, t). The same conclusion can be made on
∀s, t ∈ AV(u,v)(v).

Next, we are going to show that all vertices s ∈ AV(u,v)(u)
form a tree rooted at u and similarly, all vertices t ∈ AV(u,v)(v)
also form a tree rooted at v.

Lemma 7. After removing the failed edge (u, v), for any
vertex w in G′, suppose w is an affected vertex, i.e. w ∈
AV(u,v)(u) or w ∈ AV(u,v)(v). Without loss of generality,
we assume w ∈ AV(u,v)(u). Then we must have dG(w, v) =
dG(w, u) + 1.

Proof. Since w ∈ AV(u,v)(u), we must have that dG(w, v)
̸= d′G(w, v), which means that any shortest path between w
and v in G, denoted as pwv must contain the failed edge
(u, v), which must also be a shortest path between w and
v. Hence, there must exist a certain shortest path between
w and v containing edge (u, v) in the original graph and we
can denote it as pwv = pwu + (u, v). Hence, we must have
dG(w, v) = dG(w, u) + 1.

Lemma 8. After removing the failed edge (u, v), suppose
w in G′ is an affected vertex, i.e. w ∈ AV(u,v)(u) or w ∈
AV(u,v)(v). Without loss of generality, we assume w ∈ AV(u,v)

(u). Then there must exist a certain shortest path between
w and v containing edge (u, v) in the original graph, where
each internal vertex is an affected vertex in AV(u,v)(u).
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Algorithm 1 Identify affected vertices

Input: G, (u, v), distance vectors du, dv, d
′

u, d
′

v

Output: AV(u,v)(u), AV(u,v)(v)
1: Initialize flag m[t]← 0 for any vertex t in G
2: m[u]← 1
3: Q← ∅
4: Enqueue u into Q
5: while Q is not empty do
6: Dequeue t from Q
7: for all neighbor vertex r of t do
8: if m[r] = 0 then
9: if dv[r] = du[r] + 1 and d′v[r] ̸= du[r] + 1 then
10: AV(u,v)(u)← AV(u,v)(u) ∪ {r}
11: Enqueue r into Q
12: m[r]← 1
13: Repeat the above steps by mapping u ← v and v ← u

to identify AV(u,v)(v)
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Case (b): The failed edge is (6,9)Case (a): The failed edge is (0,8)

AV(0,8)(0)={0, 2} 
AV(0,8)(8)={8} 

AV(6,9)(6)={6, 7, 8, 0, 3, 4, 1, 2, 5} 
AV(6,9)(9)={9, 10} 

Figure 2: Affected vertices identification

Proof. Since w ∈ AV(u,v)(u), then according to Lemma
7, we must have the fact that any shortest path between w
and u, denoted as pwu, plus edge (u, v) in the original graph
must be a shortest path between w and v. Then, there must
exist a certain shortest path between w and v containing
edge (u, v) in the original graph and we can denote it as
pwv = pwu + (u, v).

It is clear that the internal vertices of pwv must also be on
some shortest path pwu. And all shortest paths from these
internal vertices to vertex v must contain edge (u, v), which
means, their distances to vertex v must have changed in the
new graph G′. Therefore, they must also be affected vertices
in AV(u,v)(u) like w.

Note that, according to Lemma 8, AV(u,v)(u) and AV(u,v)

(v) can be considered as trees rooted at u and v, respectively.
Moreover, we must have AV(u,v)(u)

⋂
AV(u,v)(v) = ∅. This

is because otherwise, any vertex r in AV(u,v)(u)
⋂

AV(u,v)(v)
must have dG(r, v) = dG(r, u)+1 and dG(r, u) = dG(r, v)+1,
which is impossible. Lemma 8 forms the basis of Algorithm
1. Note that, in Algorithm 1, we need to calculate distance
vectors du, dv, d

′

u and d′v for each single-edge failure case.
Here, du stores distances from all vertices in G to vertex u
while d′u stores distances from all vertices in G′ to vertex
u. Distance vectors dv and d′v are similar. The calculations
can be done efficiently using a BFS algorithm. To reduce
the calculation cost, we will fix an end point of failed edges,
i.e., we will firstly compute affected vertices for all edges
attached to u then we move to other vertices for processing
the rest single-edge failure cases.

Figure 2 shows two examples of identifying affected ver-
tices. It uses the same graph in Figure 1. In this figure,
the first example is Case (a), where the failed edge is (0, 8).

The second example is Case (b), where the failed edge is
(6, 9). In Case (a), starting from vertex 0, we identify the
affected vertex set rooted at 0 as AV(0,8)(0) = {0, 2} since
only vertices 0 and 2 have changed their distance to vertex
8. Meanwhile, starting from vertex 8, we identify the af-
fected vertex set rooted at 8 as AV(0,8)(8) = {8} since only
vertex 8 has changed its distance to vertex 0. Differently, in
Case (b), as can be observed in the figure, the original graph
will become two connected components rooted at vertices 6
and 9, respectively. In this case, it is obvious that we have
AV(6,9)(6) = {6, 7, 8, 0, 3, 4, 2, 5} and AV(6,9)(9) = {9, 10}.

4.3 Relabeling: Supplemental Index Construc-
tion

After identifying all affected vertices, we can start rela-
beling the affected vertices in order for fast computation of
shortest path distances on the graph with single-edge fail-
ures. Only supplemental indexes will be created, i.e., only
changed distance information will be captured in supplemen-
tal indexes. All the unchanged distance information will be
still computed using the original indexes (such as the dis-
tance labeling in Table 1 for the example graph in Figure
1). We develop two relabeling algorithms for the supplemen-
tal index construction, namely the BFS AFF algorithm and
the BFS ALL algorithm. Detailed descriptions of these two
algorithms are presented in the following.

4.3.1 BFS AFF algorithm
The BFS AFF algorithm relabels affected vertices using

the traditional BFS algorithm. The BFS AFF algorithm
uses a late label-pruning strategy which can save memory
usage during the relabeling process. The detail steps are
shown in Algorithm 2. To help understand the main idea of
the BFS AFF algorithm, Figure 3 also depicts an example of
the supplemental index construction process using the BFS
AFF algorithm.

The failed edge is (0,8) in this example and there are three
steps in Figure 3. Each step relabels one affected vertex. At
Step (1), BFS AFF algorithm performs BFS from vertex
0. The number beside each node is the distance from that
node to the BFS root, vertex 0. In this step, vertex 8 is
the only affected vertex in AV(0,8)(8) that has larger vertex
order than vertex 0. Therefore, the BFS process starting
from vertex 0 will stop at distance 2 and will not examine
vertices 9 and 10. After the BFS process stops, we add a
supplemental label entry to the supplemental label of ver-
tex 8, resulting in SL(0,8)(8) = {(0, 2)}. At Step (2), BFS
process starts from vertex 2. Note that, the distance infor-
mation has been discarded at this step. Similarly, vertex
8 is the only affected vertex in AV(0,8)(8) that has larger
vertex order than vertex 2. Then the BFS process starting
from vertex 2 will stop at distance 3. Then we may want
to add another label entry (2, 3) into SL(0,8)(8). But based
on the original index shown in Table 1 and the current sup-
plemental label SL(0,8)(8) = {(0, 2)}, we find that (2, 3) is a
redundant label entry in SL(0,8)(8) = {(0, 2)} since the dis-
tance between vertex 2 and vertex 8 can be computed based
on SL(0,8)(8) = {(0, 2)} and the original index in Table 1.
We call this the late-pruning strategy. Finally, at Step (3),
the BFS process will start from vertex 8. However, since no
vertex in AV(0,8)(0) has smaller vertex order than vertex 8,
no label entry will be added to the supplemental index at
this step. The final supplemental index that is constructed
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Algorithm 2 BFS AFF algorithm

Input: G, (u, v), AV(u,v)(u), AV(u,v)(v)
Output: The supplemental index SIu and SIv for the edge

failure case of (u, v)
1: G′ ← G− {(u, v)}

//Construct SIu for vertices in AV(u,v)(u)
2: SIu ← ∅
3: for all r ∈ AV(u,v)(u) (in ascending vertex order) do
4: Initialize supplemental label for r: SL← ∅
5: Start BFS algorithm to compute all the distances from

r to any vertices in AV(u,v)(v) that have larger vertex
order than σ(r)

6: for all vertex t in AV(u,v)(v) that has σ(t) > σ(r) do
7: if (t, dG′(t, r)) is not a redundant label entry in SL

then
8: SL← SL ∪ (t, dG′(t, r))
9: SIu ← SIu ∪ (r, SL)

//Construct SIv for vertices in AV(u,v)(v)
10: SIv ← ∅
11: for all r ∈ AV(u,v)(v) (in ascending vertex order) do
12: Initialize supplemental label for r: SL← ∅
13: Start BFS algorithm to compute all the distances from

r to any vertices in AV(u,v)(u) that have larger vertex
order than σ(r)

14: for all vertex t in AV(u,v)(u) that has σ(t) > σ(r)
do

15: if (t, dG′(t, r)) is not a redundant label entry in SL
then

16: SL← SL ∪ (t, dG′(t, r))
17: SIv ← SIv ∪ (r, SL)

for the failed edge (0, 8) on the graph shown in Figure 1 is
shown at Step (3). We will show later in Section 4.4 that
such supplemental index is adequate for distance query eval-
uation.

4.3.2 BFS ALL algorithm
The BFS ALL algorithm is very similar to the BFS AFF

algorithm. The major diference is that the BFS ALL algo-
rithm uses an early label-pruning strategy which consumes
more memory during the relabeling process but gains ac-
celeration of the relabeling process. The detail steps are
shown in Algorithm 3. Figure 4 also depicts an example of
the supplemental index construction process using the BFS
ALL algorithm.

The failed edge is also (0,8) in this example and there are
three steps in Figure 4. The main difference between BFS
ALL an BFS AFF algorithms is that, in the BFS ALL al-
gorithm, the distance information will be kept at each BFS
step, using a set of temporary labels stored in TL. This dis-
tance information in TL can be used to prune label entries
at the later BFS steps of the index construction process for
all vertices in the graph and some vertices can be pruned
during a BFS process. For example, at Step (2) in Figure
4, the number of vertices we need to visit (the vertices with
bold label entries) is only seven, while at Step (2) in Figure
3, that number is 10 (by counting the vertices with dis-
tance information). Therefore, three vertices can be pruned
at Step (2) in the BFS ALL algorithm. We call this the
early-pruning strategy. It is obvious that the BFS ALL al-
gorithm introduces more memory usage since BFS ALL has
TL while BFS AFF does not. But the benefit of TL is that it
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Figure 3: Supplemental index construction: BFS
AFF on failed edge (0, 8)

can prune vertices at an early stage, and as will be shown in
Section 5, this can speed up the BFS process greatly. Nev-
ertheless, the final supplemental index constructed by the
BFS ALL algorithm is the same as that constructed by the
BFS AFF algorithm as the construction of SIu and SIv in
both algorithms is the same.

4.4 Distance Query Evaluation on SIEF
For each single-edge failure case, we classify all possible

distance queries into different types. Suppose the graph is
G, the original labeling index is L, the failed edge is (u, v),
the affected vertices are in AV(u,v)(u) and AV(u,v)(v), and
the supplemental index is SI(u,v) (here, SI(u,v) = SIu ∪
SIv). We also denote G′ = G − {(u, v)}. Given any pair of
vertices s, t, we would like to compute the distance between
s, t on G′, denoted as dG′(s, t). Then we have the following
different cases:

• Case 1: s /∈ AV(u,v)(u)∪AV(u,v)(v) and t /∈ AV(u,v)(u)∪
AV(u,v)(v)

• Case 2: s /∈ AV(u,v)(u)∪AV(u,v)(v) and t ∈ AV(u,v)(u)∪
AV(u,v)(v), or similarly, s ∈ AV(u,v)(u)∪AV(u,v)(v) and
t /∈ AV(u,v)(u) ∪AV(u,v)(v)
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Algorithm 3 BFS ALL algorithm

Input: G, (u, v), AV(u,v)(u), AV(u,v)(v)
Output: The supplemental index SIu and SIv for the edge

failure case of (u, v)
1: G′ ← G− {(u, v)}

//Construct SIu for vertices in AV(u,v)(u)
2: SIu ← ∅
3: Initialize temporary labels TL← ∅
4: for all r ∈ AV(u,v)(u) (in ascending vertex order) do
5: Initialize supplemental label for r: SL← ∅
6: Start BFS algorithm to compute all the distances from

r to any vertices in AV(u,v)(v) that have larger vertex
order than σ(r) and record all temporary labels for all
encountered vertices in TL; during the BFS process,
if a new temporary label entry for a vertex w is redun-
dant in TL, all neighbor vertices of w can be ignored
by BFS

7: for all vertex t in AV(u,v)(v) that has σ(t) > σ(r) and
has been searched by the above BFS process do

8: if (t, dG′(t, r)) is not a redundant label entry in SL
then

9: SL← SL ∪ (t, dG′(t, r))
10: SIu ← SIu ∪ (r, SL)

//Construct SIv for vertices in AV(u,v)(v)
11: SIv ← ∅
12: Initialize temporary labels TL← ∅
13: for all r ∈ AV(u,v)(v) (in ascending vertex order) do
14: Start BFS algorithm to compute all the distances from

r to any vertices in AV(u,v)(u) that have larger vertex
order than σ(r) and record all temporary labels for
all encountered vertices in TL; during the BFS pro-
cess, if a new temporary label entry for a vertex w is
redundant in TL, then all neighbor vertices of w will
not be searched by BFS

15: for all vertex t in AV(u,v)(u) that has σ(t) > σ(r)
and has been searched by the above BFS process do

16: if (t, dG′(t, r)) is not a redundant label entry in SL
then

17: SL← SL ∪ (t, dG′(t, r))
18: SIv ← SIv ∪ (r, SL)

• Case 3: s ∈ AV(u,v)(u) and t ∈ AV(u,v)(u), or similarly,
s ∈ AV(u,v)(v) and t ∈ AV(u,v)(v)

• Case 4: s ∈ AV(u,v)(u) and t ∈ AV(u,v)(v), or similarly,
s ∈ AV(u,v)(v) and t ∈ AV(u,v)(u)

Case 1 is trivial and we must have dG′(s, t) = dG(s, t) =
dist(s, t, L).

In Case 2 and in Case 3, according to Lemma 6 and the
definition of affected vertices (see analysis in Section 4.2),
we must also have dG′(s, t) = dG(s, t) = dist(s, t, L).

In Case 4, suppose s ∈ AV(u,v)(u) and t ∈ AV(u,v)(v)
(the other case can be analyzed in the same way). Obvi-
ously, distance between s and t changes to a larger value
due to the failed edge. If s and t become disconnected to
each other in G′, both will not have labels in SI(u,v), then
we have dG′(s, t) = ∞. If s and t is still connected in G′

and without loss of generality, suppose the vertex order is
σ(s) < σ(t), then at least vertex t contains supplemental
label entries. This is because in both the BFS AFF algo-
rithm and the BFS ALL algorithm, the affected vertex with
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Figure 4: Supplemental index construction: BFS
ALL on failed edge (0, 8)

minimum vertex order in AV(u,v)(u) (which is at most σ(s))
must produce one supplemental label entry for vertex t in
SI(u,v) (see Lemma 3 for related details). For vertex s it-
self, if it does not produce any supplemental label entry for
vertex t in SI(u,v), then it must be because the produced
label entry is a redundant label. This means, in either case,
the label entries of the supplemental label for vertex t in
SI(u,v) must already contain adequate distance information
for the computation of dG′(s, t). For example, to calculate
dG′(2, 8) in Figure 4, SL(0,8)(8) = {(0, 2)} combining with
L(2) = {(0, 1) (2, 0)} in Table 1 is adequate and we can see
that dG′(2, 8) = 1 + 2 = 3.

4.5 Some Remarks

Initial Index Construction. Pruned Landmark Labeling (PLL)
technique presented in [2] is a state-of-the-art indexing tech-
nique for large static graphs. Indexes constructed by PLL
[2] already have well-ordering property defined in Section 3.
Therefore we use indexes constructed by PLL as the initial
indexes for all original graphs in our experiments.

Time Complexity. Our algorithms can be directly applied on
indexes constructed by PLL. Let w be the tree width [2] ofG,
n be the number of vertices and m be the number of edges in
G. Also let (u, v) be the failed edge. If let p = |AV(u,v)(u)∪
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AV(u,v)(v)| for each single-edge failure case (on average),
the time complexity of the BFS AFF algorithm is O(pn +
pm) as it requires to perform p times BFS to compute SIu
and SIv. Further, according to analysis of PLL in [2], the
number of label entries per vertex is O(w log n). Then the
time complexity of the BFS ALL algorithm is O(nw log n+
p2w log n), where O(nw log n) is the time upper bound to
build temporary labels TL (note that p BFS rounds are
enough to build the TL index that contains at most nw log n
label entries) and O(p2w log n) is the time upper bound for
redundancy tests.

5. EXPERIMENTS
We evaluated the performance of our proposed SIEF ap-

proach and this section reports the results. All experiments
were performed under Linux (Ubuntu 10.04) on a server pro-
vided by eResearch SA2. The server was running on Dell
R910 with 32 processing cores (four 8-core Intel Xeon E7-
8837 CPUs at 2.67 GHz), 1024 GB main memory and 3 TB
local scratch disk. All methods were implemented in C++
(the code of PLL [2] was obtained from the first author’s
code repository on GitHub3) using the same gcc compiler
(version 4.4.6) with the optimizer option O3. It is worth
mentioning that although we have a large amount of main
memory on the server, the memory usage of our approach is
in fact quite small and as observed during our experiments,
the memory usage was within 12 GB for all datasets.

5.1 Datasets
Table 2 lists the six real-world datasets used in our exper-

iments, which are briefly introduced as follows:

• Gnutella is a snapshot of the Gnutella peer-to-peer
file sharing network collected in August 2002. Vertices
represent hosts in the Gnutella network topology and
edges represent connections between the hosts.

• The dataset Facebook consists of circles (or friends
lists) from Facebook, which were collected from sur-
vey participants using a Facebook app called Social

Circles.

• Wiki-Vote contains all Wikipedia voting data from the
inception of Wikipedia till January 2008.

• Oregon is a graph of Autonomous Systems (AS) peer-
ing information inferred from Oregon route-views on
May 26 2001.

• Ca-HepTh collaboration network of Arxiv High Energy
Physics Theory category (there is an edge if authors
coauthored at least one paper). The data covers papers
in the period from January 1993 to April 2003 (124
months).

• Ca-GrQc collaboration network of Arxiv General Rela-
tivity category. Like Ca-HepTh, the data covers papers
in the period from January 1993 to April 2003 (124
months).

More details on these datasets can be found at the Stan-
ford Network Analysis Project website4. Similar to [3, 2],
we treat all graphs as undirected, unweighted graphs.
2http://www.ersa.edu.au/
3https://github.com/iwiwi/pruned-landmark-labeling
4http://snap.stanford.edu/

It should be noted that, in Table 2, |V | refers to the num-
ber of vertices and |E| refers to the number of edges. In
addition, IT denotes the indexing time or index construc-
tion time (in seconds) and LN denotes the average number
of label entries of each vertex. We obtained these IT and LN
results by using the Pruned Landmark Labeling (PLL) tech-
nique presented in [2]. As mentioned, we applied our index
construction algorithms directly on the indexes constructed
by PLL in our experiments.

Table 2: Real-world Datasets and Their Statistics
Dataset |V| |E| IT (s) LN

Gnutella 6,301 20,777 0.825 163.647
Facebook 4,039 88,234 0.173 25.887
Wiki-Vote 7,115 103,689 0.525 69.915
Oregon 11,174 23,409 0.080 11.189
Ca-HepTh 9,877 51,971 0.557 75.311
Ca-GrQc 5,242 28,980 0.141 43.828

5.2 Performance Evaluation
We have conducted extensive experiments to validate our

proposed approach. In the experiments, we compared the
numbers of affected vertices (Section 5.2.3), the average la-
bel entry numbers with and without considering edge fail-
ures (Section 5.2.1). We performed queries with and without
SIEF indexes (Section 5.2.4) and great efficiency improve-
ment was observed if using SIEF indexes. We also studied
the impact of our approach in terms of index size, identi-
fication time, and relabeling time for each dataset (Section
5.2.2 to 5.2.6). Note that, we construct SIEF indexes by
computing supplemental indexes for all single-edge failure
cases of a given graph.

5.2.1 Supplemental Label Entry Numbers
Figure 5 shows the difference between the original label

entry number (OLEN) without support of single-edge fail-
ures and the supplemental label entry number (SLEN) with
support of single-edge failures. SLEN and OLEN of Wiki-
Vote5 have the biggest gap, i.e., the ratio of SLEN to OLEN
is observed around 80. SLEN and OLEN of Facebook have
the second biggest gap and the ratio of SLEN to OLEN is
around 40. For other datasets, the ratios of SLEN to OLEN
are all under 10. This means, compared with the total num-
ber of label entries needed for the original graphs without
considering edge failures, in the case of edge failures, the to-
tal extra number of label entries (in supplemental indexes)
is less than 10 times of the number of the label entries in the
original index. These results indicate that the SIEF indexes
are very compact.

5.2.2 Index Size
Figure 6 shows the original index size for the graphs with

no failed edges and the supplemental index size when con-
sidering edge failures. The sum of the original index size and
the supplemental index size is the total index size for han-
dling shortest path distances on graphs with all single-edge
failure cases. From the figure, the Gnutella dataset shows
comparatively smaller proportion of its supplemental index
over its total index size while the Facebook dataset shows
5We use the first three letters in the names of each dataset
(e.g., Wik for Wiki-vote) for better illustration in the figure.
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bel entry numbers (SLENs) and original label entry
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largest proportion of its supplemental index over the related
total index size. The Wiki-Vote dataset has the largest sup-
plemental index size due to the fact that each single-failure
case incurs a large number of affected vertices as well as
a relatively large number of supplemental label entries (for
more details, please see Table 3).
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5.2.3 Affected Vertices
Table 3 presents the relationship between affected vertices

and average supplemental label entry number. Avg |AU |/|V |
represents the average percentage of affected vertices in a
single-edge failure case, showing the impact of a single-edge
failure on a graph. It is also the average proportion of af-
fected vertices of the original graphs. Avg |AU | represents
the average number of affected vertices from the graph and
Avg SLEN denotes the average number of supplemental la-
bel entries in a single-edge failure case.

From the table, we can see that the smallest percentage
and the smallest average number of affected vertices are both
observed in the Ca-GrQc dataset, with values of 1.486% and
77.884, respectively. We can also see from the table that the
average supplemental label number decreases (or increases)
together with the average number of the affected vertices.
Also around 36% of vertices are affected in the Wiki-Vote

dataset, which is the largest proportion. The largest average
number of affected vertices is observed in the Oregon dataset,
which is around 2,861 affected vertices for one failed edge.
However, no clear linear relationship is found between the
two. The largest gap occurs in the Oregon dataset, which
indicates that the label pruning process on the affected ver-
tices is quite powerful, leading to much fewer label entries
per affected vertex. Meanwhile, the smallest gap happens in
the Gnutella dataset and this indicates that label pruning
is not very effective in this dataset.

Note that, although the proportion of affected vertices
for a single-edge failure case could be large, as having been
clarified in Figure 6, the final SIEF index for all single-edge
failure cases is still of moderate sizes compared with the
original index.

Table 3: Affected Vertices
Dataset Avg |AU |/|V | Avg |AU | Avg SLEN

Gnutella 6.053% 381.386 78.445
Facebook 16.099% 650.241 47.042
Wiki-Vote 35.841% 2,550.090 396.971
Oregon 25.605% 2,861.070 45.323
Ca-HepTh 2.743% 270.881 51.095
Ca-GrQc 1.486% 77.884 13.064

5.2.4 Query Time
Table 4 shows the average BFS query time and the average

SIEF query time. The former represents query time without
using indexes proposed in this work, while the latter repre-
sents the query time when using SIEF indexes. From the ta-
ble, we can see that the difference for Oregon dataset is the
least, which still achieves at least 40 times faster when us-
ing SIEF indexes compared with the traditional BFS query
approach. The largest gap occurs in the Facebook dataset,
where the average BFS query time is around 500 times more
than the SIEF query time. These results show that when
using SIEF indexes, the query efficiency can be improved
significantly and the query response times are normally no
more than 5 µs. As mentioned in Section 4, we use supple-
mental indexes to support edge failures, the query process
needs to examine the supplemental indexes first. When ex-
amining the supplemental indexes, SIEF checks whether the
querying source and querying destination are both affected
vertices given the edge failure constraint using binary search
strategy. Based on the searching result, SIEF knows whether
we can compute the shortest path distance based only on the
supplemental indexes or based only on the original indexes.
Nevertheless, the querying process is still much faster. The
main reason is that the number of affected vertices for each
single-edge failure case is typically small (more details are
presented in Section 5.2.3) and hence the binary search pro-
cess finishes quickly. This results in fast query responses in
SIEF.

5.2.5 Identification Time
Table 5 shows the total time for identifying affected ver-

tices for all single-edge failure cases. From the figure, we
can see that, for the most datasets, the identification pro-
cess can be done fairly fast and is normally finished within
80 seconds. The exception is Wiki-Vote, which requires a
bit more than 600 seconds. The fast identification time is
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Table 4: Average Query Time
Dataset BFS Query Time SIEF Query Time

Gnutella 140.329 µs 0.452 µs
Facebook 243.060 µs 0.522 µs
Wiki-Vote 284.867 µs 1.100 µs
Oregon 163.465 µs 4.985 µs
Ca-HepTh 325.196 µs 0.689 µs
Ca-GrQc 159.412 µs 0.479 µs

mainly because the affected vertices can be identified in a
BFS manner and we only need to examine the distances be-
tween the affected vertices to one of the end vertices of a
failed edge.

Table 5: Average Identification Time
Dataset Identification Time

Gnutella 43.3708 s
Facebook 80.6844 s
Wiki-Vote 612.522 s
Oregon 35.6307 s
Ca-HepTh 36.2022 s
Ca-GrQc 4.32942 s

5.2.6 Labeling Time
Figure 7 shows the time for relabeling the affected vertices,

which need extra distance label information to maintain cor-
rect distances to some other vertices due to a single-edge
failure. Here, we used the estimated time for naive method
(shown as “Estd Time for Naive Method” in the figure) as
the baseline. The naive method refers to the method that
we recompute a complete distance labeling index for each
single-edge failure case. The process of labeling a new graph
with a single-edge failure should be almost the same as the
process of labeling the original graph. Therefore, the total
labeling time of the naive method can be estimated by mul-
tiplying the total edge number in the original graph, i.e.,
the total number of single-edge failure cases, with the index
time of the original graph (see Table 2).
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Figure 7: Labeling Time

Then, we compared the labeling times of the naive method
and the two labeling methods proposed in our work: BFS

AFF and BFS ALL. Recall that BFS AFF uses a late-label-
pruning strategy and avoids labeling any unaffected vertices
while BFS ALL uses an early-label-pruning strategy which
needs labeling the unaffected vertices. From the figure, we
can see that for some datasets, such as Gnutella, Ca-HepTh
and Ca-GrQc, BFS AFF outperforms the naive method be-
cause the label-pruning process incurs some overhead when
labeling unaffected vertices compared with the pure BFS
process. However, BFS AFF is beaten by the naive method
in terms of labeling time for other datasets, including Face-

book, Wiki-Vote and Oregon, which contain a large number
of vertices and/or a large number of edges. Hence, the late-
label-pruning strategy in BFS AFF does not work well on all
datasets. These results indicate that although label-pruning
incurs some overhead on top of the BFS process, the label-
pruning approach is quite effective in some datasets, espe-
cially datasets with more vertices and edges.

In contrast, BFS ALL performs the best on all datasets.
For some datasets, such as Facebook, Wiki-Vote and Ca-

Hepth, BFS ALL even performs orders of magnitude faster
than both the naive method and the BFS AFF method.
This confirms that the early-label-pruning strategy works
very well on various datasets and the overhead on labeling
unaffected vertices can be ignored due to the substantial
label-pruning power it brings (for more details, please refer
to Section 4.3).

6. CONCLUSION
This paper has studied the problem of computing the

shortest path distance on graphs with single-edge failures
based on 2-hop distance labeling techniques. The concept
of well-ordering 2-hop distance labeling and its properties
have been defined and analyzed. We have particularly fo-
cused on the constructions of compact distance labeling for
all possible single-edge failure cases, a challenging problem
that remains open, to the best of our knowledge. A generic
framework, SIEF, has been designed for this purpose. Based
on the most recent technique Pruned Landmark Labeling
(PLL) [2] that handles only static graphs, we have imple-
mented an extended version using the SIEF framework de-
veloped in this paper. Extensive experiments have also been
performed on six real-world graphs to confirm its effective-
ness and efficiency. SIEF is able to support compact in-
dex construction for all single-edge failure cases on graphs
efficiently. Specifically, the SIEF index size is compara-
ble to that of the indexes constructed for original static
graphs, which is very compact. SIEF can answer distance
queries with edge failure constraints several orders of mag-
nitude faster than traditional Breadth-First-Search (BFS)
algorithms.

In our future work, we will further investigate several as-
pects of answering distance queries on graphs with edge
failures. The first one centers on how to support distance
queries with more complex edge failure constraints, i.e., dual-
failure on edges. The second aspect is to further speed up the
index construction process in order to process larger graphs.
Finally, it is also interesting to investigate the problem of an-
swering distance queries on graphs with node failures, which
is even more challenging than edge failures.
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ABSTRACT
Cyber security is one of the most significant technical challenges in
current times. Detecting adversarial activities, prevention of theft
of intellectual properties and customer data is a high priority for
corporations and government agencies around the world. Cyber
defenders need to analyze massive-scale, high-resolution network
flows to identify, categorize, and mitigate attacks involving net-
works spanning institutional and national boundaries. Many of the
cyber attacks can be described as subgraph patterns, with promi-
nent examples being insider infiltrations (path queries), denial of
service (parallel paths) and malicious spreads (tree queries). This
motivates us to explore subgraph matching on streaming graphs in
a continuous setting.

The novelty of our work lies in using the subgraph distributional
statistics collected from the streaming graph to determine the query
processing strategy. We introduce a “Lazy Search" algorithm where
the search strategy is decided on a vertex-to-vertex basis depending
on the likelihood of a match in the vertex neighborhood. We also
propose a metric named “Relative Selectivity" that is used to se-
lect between different query processing strategies. Our experiments
performed on real online news, network traffic stream and a syn-
thetic social network benchmark demonstrate 10-100x speedups
over selectivity agnostic approaches.

1. INTRODUCTION
Social media streams and cyber data sources such as computer

network traffic are prominent examples of high throughput, dy-
namic graphs. Application domains such as cyber security, emer-
gency response, national security put a premium on discovering
critical events as soon as they emerge in the data. Thus, processing
streaming updates to a dynamic graph database for real-time situa-
tional awareness is an important research problem. These particular
data sources are also distinguished by their natural representation
as heterogeneous or multi-relational graphs. For example, a social

c�2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0
.

media data stream contains a diverse set of entity types such as per-
son, movie, images etc. and relations such as (friendship, like etc.).
For cyber-security, a network traffic dataset can be modeled as a
graph where vertices represent IP addresses and edges are typed by
classes of network traffic [12]. Our work is focused on continuous
querying of these dynamic, multi-relational graphs.

e = { protocol: RemoteDesktopConnection,  
        login:adminUser } 
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Figure 1: Graph based descriptions of attack patterns. a) In-
sider infiltration: This pattern shows how an attacker may
move laterally inside an enterprise, b) Denial of Service at-
tack, c) Information exfiltration: Victim browses a compro-
mised website. This downloads a script which establishes com-
munication with the botnet command and control.

For social networks, we are often inundated with the stream of
updates. Unless we choose to stay constantly connected to the so-
cial networks, it is highly desirable to report only the important
patterns/events as they occur in the data; for example, we may
choose to ask "tell me when two friends are meeting at a nearby
location". The stakes are much higher in the cyber-security do-
main. As the volume and throughput of network traffic or event log
datasets rise exponentially, the lack of ability to detect adversarial
actions in real-time provides an asymmetric advantage to attack-
ers. Internet backbone traffic collected by CAIDA 1), which we use
later as a dataset in our experiments typically accumulate 40 million
packets every minute. In a study titled “Data Breach Investigations
Report", US communications company Verizon analyzed 100,000
security incidents from the past decade and concluded that 90% of
the incidents fell into ten attack patterns. A number of these attacks
1http://www.caida.org
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can be naturally described as graph patterns. Figure 1 shows graph
based patterns for a number of these attacks. Organizations such
as internet service providers, content delivery networks etc. that
receive network traffic from a wide area network are ideally poised
to search for these attack patterns. Although there exists a signifi-
cant number of graph databases and graph processing frameworks
that scale to billion edge graphs, none of them support real-time
subgraph pattern matching as a primary feature. Periodic export
of network traffic flow or event alerts from log aggregation tools
to a graph database, followed by post-attack querying on the static
graph database is the most common workflow today. Despite cy-
ber security being a multi-billion dollar market worldwide, the re-
search on providing real-time querying capability on a single, large
streaming graph is rather scarce.

Continuous querying of a dynamic graph raises a number of
unique challenges. Indexing techniques that preprocess a graph
and speed up queries are expensive to periodically recompute in a
dynamic setting. Periodic execution of the query is an obvious solu-
tion under this condition, but the effectiveness of this approach will
reduce as the interval between query executions shrinks. Also, pe-
riodic searching of the entire graph can be wasteful where the query
match emerges slowly because we will find a partial match for the
query every time we search and potentially redo the work numerous
times. Very recent publications by Gao et al [7] and Mondal and
Deshpande [15] presents algorithms for implementing continuous
queries on graphs. This motivates us to study the problem of sub-
graph pattern matching in a streaming setting. We want to register
a pattern as a graph query and continuously perform the query on
the data graph as it evolves over time.

In addition to the cyber attack patterns in Figure 1, social queries
are also drawn from LSBench, a benchmark for reasoning on stream-
ing SPARQL data. A common theme that emerges is that all these
query graphs are heterogenous in nature. They are composed of dif-
ferent edge types (in cyber security) as well as different node and
edge types (in social media). None of the previous work on con-
tinuous pattern detection has addressed this issue of heterogeneity.
Exploiting the heterogeneity in both the query graph and the data
graph stream, and improving over heterogeneity agnostic contin-
uous pattern detection approaches is the primary contribution of
our research. The primary ideas behind our approach is described
below. We believe the simplicity of our approach is its greatest
strength, and it will allow easy adoption of our optimizations into
the distributed system implementations developed by others in the
field.
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Figure 2: Framework for subgraph pattern matching on
streaming graphs.

Figure 2 provides an overview of our approach. We approach the
problem from an incremental processing perspective where search
happens locally on every edge arrival. We do not search for the
entire query graph around every new edge arriving in the stream.
Given a query graph, the query optimizer decomposes it into smaller
subgraphs as ordered by their selectivity. The selectivity informa-
tion is obtained using the single-edge level and 2-edge path distri-
bution obtained from the graph stream (section 5). We store the
resulting decomposition into a data structure named SJ-Tree (Sub-
graph Join Tree) (section 3) that tracks matching subgraphs in the
data graph. For a new edge in the graph, we always search for the
most selective subgraph of the query graph. For other subgraphs
of the query graph, a search is triggered if and only if a match
for the previous subgraph in the selectivity order was obtained in
the neighborhood of the new edge. This algorithm named “Lazy
Search" is described in section 4. We introduce two metrics, Ex-

pected and Relative Selectivity, that captures the effectiveness of
a given query decomposition (section 5). Further, we demonstrate
how these metrics can be used to reason about the performance
from different decompositions and select the best performing strat-
egy.

1.1 Contributions
The most important takeaway from our work is that even as the

subgraph isomorphism problem is NP-complete, it is possible to
perform efficient continuous queries on dynamic graphs by exploit-
ing the heterogeneity in the data and query graph. More specific
contributions from the paper are listed below.

1. We present a dynamic graph search algorithm that demon-
strates speedup of multiple orders of magnitude with respect
to the state of the art.

2. We introduce two selectivity metrics for query graphs that are
estimated using efficiently obtainable distributional statistics
of single edge and 2-edge subgraphs from the graph stream.

3. We present an automatic query decomposition algorithm that
selects the best performing strategy using the aforementioned
graph stream statistics and Relative Selectivity.

Our observations are supported by experiments on datasets from
three diverse domains (online news, computer network traffic and
a social media stream).

2. BACKGROUND AND RELATED WORK
This section is aimed at providing an overview of the related

field and provide the context for the studied problem. We begin
with introducing the key concepts.

Multi-Relational Graphs We define a graph G as an ordered-
pair G = (V,E) where V is the set of vertices and the E is
the set of edges that connect the vertices. In the following, we
use V (G) and E(G) to indicate the set of vertices and edges as-
sociated with a graph G. A labeled graph is a six-tuple G =
(V,E,⌃V ,⌃E ,�V ,�E), where ⌃V and ⌃E are sets of distinct
labels for vertices and edges. �V and �E are vertex and edge la-
beling functions, i.e. �V : V ! ⌃V and �E : E ! ⌃E .

Dynamic Graphs We define dynamic graphs as graphs that are
changing over time through edge insertion or deletion. Every edge
in a dynamic graph has a timestamp associated with it and there-
fore, for any subgraph g of a dynamic graph we can define a time
interval ⌧(g) which is equal to the interval between the earliest and
latest edge belonging to g. We focus on directed, labeled dynamic
graphs with multi-edges in this work. The graph is maintained as

158



a window in time. Given a time window tW , edges are deleted as
they become older than tlast � tW , where tlast is the timestamp of
the newest edge in the graph.

Subgraph Isomorphism Given the query graph Gq and a match-
ing subgraph of the data graph (Gd) denoted as G

0
d, a matching be-

tween Gq and G
0
d involves finding a bijective function f : V (Gq) !

V (G
0
d) such that for any two vertices u1, u2 2 V (Gq), (u1, u2) 2

E(Gq) ) (f(u1), f(u2)) 2 E(G
0
d).

2.1 Problem Statement
Every edge in a dynamic graph has a timestamp associated with

it and therefore, for any subgraph g of a dynamic graph we can de-
fine a time duration ⌧(g) which is equal to the duration between
the earliest and latest edge belonging to g. Given a dynamic multi-
relational graph Gd, a query graph Gq and a time window tW , we
report whenever a subgraph gd that is isomorphic to Gq appears
in Gd such that ⌧(gd) < tW . The isomorphic subgraphs are also
referred to as matches in the subsequent discussions. Assume that
Gk

d is the data graph at time step k. If M(Gk
d) is the cumulative

set of all matches discovered until time step k and Ek+1 is the set
of edges that arrive at time step k + 1, we present an algorithm to
compute a function f (Gd, Gq, Ek+1) which returns the incremen-
tal set of matches that result from updating Gd with Ek+1 and is
equal to M(Gk+1

d )�M(Gk
d).

2.2 Related Work
Graph querying techniques have been studied extensively in the

field of pattern recognition over nearly four decades [4]. Two pop-
ular subgraph isomorphism algorithms were developed by Ullman
[20] and Cordella et al. [5]. The VF2 algorithm [5] employs a filter-
ing and verification strategy and outperforms the original algorithm
by Ullman. Over the past decade, the database community has
focused strongly on developing indexing and query optimization
techniques to speed up the searching process. A common theme
of such approaches is to index vertices based on k-hop neighbor-
hood signatures derived from labels and other properties such as
degrees and centrality [17, 18, 23]. Other major areas of work in-
volve exploration of subgraph equivalence classes [8] and search
techniques for alternative representations such as similarity search
in a multi-dimensional vector space [13]. Apart from neighborhood
based signatures, graph sketches is an important area that focuses
on generating different synopses of a graph data set [22]. Develop-
ment of efficient graph sketching algorithms and their applications
into query estimation is expected to gain prominence in the near
future.

Investigation of subgraph isomorphism for dynamic graphs did
not receive much attention until recently. It introduces new algo-
rithmic challenges because we can not afford to index a dynamic
graph frequently enough for applications with real-time constraints.
In fact this is a problem with searches on large static graphs as
well [16]. There are two alternatives in that direction. We can
search for a pattern repeatedly or we can adopt an incremental ap-
proach. The work by Fan et al. [6] presents incremental algorithms
for graph pattern matching. However, their solution to subgraph
isomorphism is based on the repeated search strategy. Chen et
al. [2] proposed a feature structure called the node-neighbor tree

to search multiple graph streams using a vector space approach.
They relax the exact match requirement and require significant pre-
processing on the graph stream. Our work is distinguished by its
focus on temporal queries and handling of partial matches as they
are tracked over time using a novel data structure. From a data-
organization perspective, the SJ-Tree approach has similarities with

the Closure-Tree [9]. However, the closure-tree approach assumes
a database of independent graphs and the underlying data is not dy-
namic. There are strong parallels between our algorithm and the
very recent work by Sun et al. [16], where they implement a query-
decomposition based algorithm for searching a large static graph
in a distributed environment. Here our work is distinguished by
the focus on continuous queries that involves maintenance of par-
tial matches as driven by the query decomposition structure, and
optimizations for real-time query processing. Mondal and Desh-
pande [15] propose solutions to supporting continuous ego-centric
queries in a dynamic graph, Our work focuses on subgraph isomor-
phism, while [15] is primarily focused on aggregate queries. We
view this as complementary to our work, and it affirms our belief
that continuous queries on graphs is an important problem area,
and new algorithms and data structures are required for its devel-
opment.

The query pattern matching approach recently proposed in [7]
is most closely related to our work with some important distinc-
tions. The authors build a vertex centric, query processing engine
for dynamic graphs on top of Apache Giraph, a distributed com-
puting framework inspired by the Pregel framework. Their query
decomposition approach is based on identifying optimal sub-DAGs
(directed acyclic graph) in the query graph. The DAGs’ are then
traversed to identify source and sink vertices to define message
transition rules in the Giraph framework. Although they address
significant challenges inherent of processing dynamic graphs, it is
not suitable for all types of queries. Specifically, queries that have
cyclic communications, such as infiltration attack query in Figure
1 cannot be decomposed in DAG to find exact matches. Also, in
our work we exclusively focus on query graphs with labeled edges
with specific constraints. This are not addressed in the framework
proposed in [7]. Our work makes no assumptions about the query
graph structure and will find exact matches even when there is no
apparent sink vertices. Moreover, the focus in [7] is on distributed
implementation, while we focus on selectivity based query decom-
position - that can improve performance for heterogeneous graphs.
We show via edge distribution and selectivity plots that real world
heterogeneous graphs have a strong skew in subgraph selectivity.
The novelty of our work lies in estimating the selectivity of sub-
graphs from the graph stream and using the selectivity to determine
the subgraph search strategy.

In summary, we consider these works to pursue two related but
distinct directions that needs to be implemented in a scalable sys-
tem.

3. A QUERY DECOMPOSITION APPROACH
We introduce an approach that guides the search process to look

for specific subgraphs of the query graph and follow specific tran-
sitions from small to larger matches. Following are the main intu-
itions that drive this approach.

1. Instead of looking for a match with the entire graph or just
any edge of the query graph, partition the query graph into
smaller subgraphs and search for them.

2. Track the matches with individual subgraphs and combine
them to produce progressively larger matches.

3. Define a join order in which the individual matching sub-
graphs will be combined. Do not look for every possible
way to combine the matching subgraphs.

Figure 3 shows an illustration of the idea. Although the current
work is completely focused on temporal queries, the graph decom-
position approach is suited for a broader class of applications and
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Figure 3: Illustration of the decomposition of a social query in
SJ-Tree.

queries. The key aspect here is to search for substructures with-
out incurring too much cost. Even if some subgraphs of the query
graph are matched in the data, we will not attempt to assemble the
matches together without following the join order.

The query decomposition approach can still suffer from having
to maintain too many partial matches. If a subgraph of the query
graph is highly frequent, we will end up tracking a large number
of partial matches corresponding to that subgraph. Unless we have
quantitative knowledge about how these partial matches transition
into larger matches, we face the risk of tracking a large number of
non-promising matching subgraphs. The “Lazy Search" approach
outlined earlier in the introduction enhances this further. For any
new edge, we search for a query subgraph if and only if it is the
most selective subgraph in the query or if one of the either ver-
tices in that edge participates in a match with the preceding (query)
subgraph in the join order.

This section is dedicated towards introducing the data structures
and algorithms for dynamic graph search. We begin with introduc-
ing the SJ-Tree structure (section 3.1) and then proceed to present
the basic algorithms (Algorithm 1 and 2). The “Lazy Search"-
enhanced version is introduced later in section 4. Automated gen-
eration of SJ-Tree is covered in section 5.

3.1 Subgraph Join Tree (SJ-Tree)
We introduce a tree structure called Subgraph Join Tree (SJ-

Tree). SJ-Tree defines the decomposition of the query graph into
smaller subgraphs and is responsible for storing the partial matches
to the query. Figure 3 shows the decomposition of an example
query. Each of the rectangular boxes with dotted lines will be rep-
resented as a node in the SJ-Tree. The query subgraphs shown in-
side each “box" will be stored as a node property described below.

DEFINITION 3.1.1 A SJ-Tree T is defined as a binary tree com-
prised of the node set NT . Each n 2 NT corresponds to a subgraph
of the query graph Gq . Let’s assume VSG is the set of correspond-
ing subgraphs and |VSG| = |NT |. Additional properties of the
SJ-Tree are defined below.

DEFINITION 3.1.2 A Match or a Partial Match is as a set of
edge pairs. Each edge pair represents a mapping between an edge
in a query graph and its corresponding edge in the data graph.

DEFINITION 3.1.3 Given two graphs G1 = (V1, E1) and G2 =
(V2, E2), the join operation is defined as G3 = G1 1 G2, such
that G3 = (V3, E3) where V3 = V1 [ V2 and E3 = E1 [ E2.

PROPERTY 1. The subgraph corresponding to the root of the SJ-
Tree is isomorphic to the query graph. Thus, for nr = root{T},
VSG{nr} ⌘ Gq .

PROPERTY 2. The subgraph corresponding to any internal node
of T is isomorphic to the output of the join operation between the
subgraphs corresponding to its children. If nl and nr are the left
and right child of n, then VSG{n} = VSG{nl} 1 VSG{nr}.

Therefore, each leaf of the SJ-Tree represent subgraphs that we
want to search for (perform subgraph isomorphism) on the stream-
ing updates. Internal nodes in the SJ-Tree represents subgraphs
that result from the joining of subgraphs returned by the subgraph
isomorphism operations.

PROPERTY 3. Each node in the SJ-Tree maintains a set of matches.
We define a function matches(n) that for any node n 2 NT , re-
turns a set of subgraphs of the data graph. If M = matches(n),
then 8Gm 2 M , Gm ⌘ VSG{n}.

PROPERTY 4. Each internal node n in the SJ-Tree maintains a
subgraph, CUT-SUBGRAPH(n) that equals the intersection of the
query subgraphs of its child nodes.

For any internal node n 2 NT such that CUT-SUBGRAPH(n) 6=
;, we also define a projection operator ⇧. Assume that G1 and G2

are isomorphic, G1 ⌘ G2. Also define �V and �E as functions
that define the bijective mapping between the vertices and edges of
G1 and G2. Consider g1, a subgraph of G1: g1 ✓ G1. Then g2 =
⇧(G2, g1) is a subgraph of G2 such that V (g2) = �V (V (g1))
and E(g2) = �E(E (g1)).

Our decision to use a binary tree as opposed to an n-ary tree is
influenced by the simplicity and lowering the combinatorial cost
of joining matches from multiple children. With the properties of
the SJ-Tree defined, we are now ready to describe the graph search
algorithm.

3.2 Dynamic Graph Search Algorithm

Algorithm 1 DYNAMIC-GRAPH-SEARCH(Gd, T, edges)
1: leaf -nodes =GET-LEAF-NODES(T )
2: for all es 2 edges do
3: UPDATE-GRAPH(Gd, es)
4: for all n 2 leaf -nodes do
5: gqsub =GET-QUERY-SUBGRAPH(T, n)
6: matches =SUBGRAPH-ISO(Gd, g

q
sub, es)

7: if matches 6= ; then
8: for all m 2 matches do
9: UPDATE-SJ-TREE(T, n,m)

We begin with describing our dynamic graph search algorithm
(Algorithm 1 and 2). The input to DYNAMIC-GRAPH-SEARCH
is the dynamic graph so far Gd, the SJ-Tree (T ) corresponding to
the query graph and the set of incoming edges. Every incoming
edge is first added to the graph (Algorithm 1, line 3). Next, we
iterate over all the query subgraphs to search for matches contain-
ing the new edge (line 5-6). Any discovered match is added to the
SJ-Tree (line 9).

Next, we describe the UPDATE-SJ-TREE function. Each node
in the SJ-Tree maintains its sibling and parent node information
(Algorithm 2, line 1-2). Also, each node in the SJ-Tree maintains
a hash table (referred by the match-tables property in Algorithm 2,
line 4). GET() and ADD() provides lookup and update operations
on the hash tables. Each entry in the hash table refers to a Match.
Whenever a new matching subgraph g is added to a node in the SJ-
Tree, we compute a key using its projection (⇧(g)) and insert the
key and the matching subgraph into the corresponding hash table
(line 12). When a new match is inserted into a leaf node we check
to see if it can be combined (referred as JOIN()) with any matches
that are contained in the collection maintained at its sibling node.
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A successful combination of matching subgraphs between the leaf
and its sibling node leads to the insertion of a larger match at the
parent node. This process is repeated recursively (line 11) as long
as larger matching subgraphs can be produced by moving up in the
SJ-Tree. A complete match is found when two matches belonging
to the children of the root node are combined successfully.

EXAMPLE Let us revisit Figure 3 for an example. Assuming we
find a match with the query subgraph containing a single “friend"
edge (e.g. {(“George", “friend", “John")}), we will probe the hash
table in the leaf node with “likes" edges. If the hash table stored
a subgraph such as {(“John", “likes", “Santana")}, the JOIN() will
produce a 2-edge subgraph {(“George", “friend", “John"), (“John",
“likes", “Santana")}. Next, it will be inserted into the parent node
with 2-edges. The same process will be subsequently repeated,
beginning with the probing of the hash table storing matches with
subgraphs with a “follows" edge.

Algorithm 2 UPDATE-SJ-TREE(node,m)

1: sibling = sibling[node]
2: parent = parent[node]
3: k =GET-JOIN-KEY(CUT-SUBGRAPH[parent], m)
4: Hs = match-tables[sibling]
5: Mk

s = GET(Hs, k)
6: for all ms 2 Mk

s do
7: msup = JOIN(ms,m)
8: if parent = root then
9: PRINT(’MATCH FOUND : ’, msup)

10: else
11: UPDATE-SJ-TREE(parent,msup)
12: ADD(match-tables[node], k,m)

4. LAZY SEARCH
Revisiting our example from Figure 3, it is reasonable to assume

that the “friend" relation is highly frequent in the data. If we de-
composed the query graph all the way to single edges then we will
be tracking all edges that match “friend". Clearly, this is waste-
ful. One may suggest decomposing the query to larger subgraphs.
However, it will also increase the average time incurred in per-
forming subgraph isomorphism. Deciding the right granularity of
decomposition requires significant knowledge about the dynamic
graph. This motivates us to introduce a new algorithmic extension.

Assume the query graph Gq is partitioned into two subgraphs
g1 and G1

q . We use the notation Gk
q to indicate what remains of

Gq after the k-th iteration in the decomposition process. If the
probability of finding a match for g1 is less than the probability
of finding a match for G1

q , then it is always desirable to search
for g1 and look for G1

q only where an occurrence of g1 is found.
Therefore, we select g1 to be the most selective edge or 2-edge
subgraph in the query graph and always search for g1 around every
new edge in the graph. Once we detect subgraphs in Gd that match
with g1, we follow the same approach to search for Gq in their
neighborhood. We partition G1

q further into two subgraphs: g2 and
G2

q , where g2 is another 1-edge or 2-edge subgraph.
DATA STRUCTURES With the SJ-Tree, the partitioning of Gq is

done upfront at the query compile time with g1, g2 etc becoming
the leaves of the tree. The main difference between Lazy Search
and that of Algorithm 2 is that we will be searching for g2 only
around the edges in Gd where a match with g1 is found. Therefore,
for every vertex u in Gd, we need to keep track of the gi-s such
that u is present in the matching subgraph for gi. We use a bitmap
structure Mb to maintain this information. Each row in the bitmap

refers to a vertex in Gd and the i-th column refers to gi, or the i-
th leaf in the SJ-Tree. If the search for subgraph gi is enabled for
vertex u in Gd, then Mb[u][i] = 1 and zero otherwise. Whenever
a matching subgraph g0 for gi is discovered, we turn on the search
for gi+1 for all vertices in V (g0). This is accomplished by setting
Mb[v][i+ 1] = 1 where v 2 V (g0).

ROBUSTNESS WITH SUBGRAPH ARRIVAL ORDER Consider a
SJ-Tree with just two leaves representing query subgraphs g1 and
g2, with g1 representing the more selective left leaf. The above
strategy is not robust to the arrival order of matches. Assume g

0
1

and g
0
2 are subgraphs of Gd that are isomorphic to g1 and g2 re-

spectively. Together, g
0
1 ⇥ g

0
2 is isomorphic to the query graph Gq .

Because we are searching for g1 on every incoming edge, g
0
1 will

be detected as soon as it appears in the data graph. However, we
will detect g

0
2 only if appears in Gd after g

0
1. If g

0
2 appeared in Gd

before g
0
1 we will not find it because we are not searching for g2 all

the time.
We introduce a small change to address this temporal ordering

issue. Whenever we enable the search on a node in the data graph,
we also perform a subgraph search around the node to find any
match that has occurred earlier. Thus, when we find g1 and enable
the search for g2 on every subsequent edge arrival, we also perform
a search in Gd looking for g1. This ensures that we will find g2
even if it appeared before g1.

Algorithm 3 summarizes the entire process. Lines 2-3 loop over
all news edges arriving in the graph and update the graph. Next,
given a new edge es, for each node in the SJ-Tree, we check to see
if we should be searching for its corresponding subgraph around
es (lines 4-8). The DISABLED() function queries the bitmap in-
dex and returns true if the corresponding search task is disabled.
GET-QUERY-SUBGRAPH returns the query subgraph gqsub corre-
sponding to node n in the SJ-Tree (line 9). Next, we search for
gqsub using a subgraph-isomorphism routine that only searches for
matches containing at least one of the end-point vertices of es (u
and v, mentioned in line 5-6). For each matching subgraph found
containing u or v, we enable the search for the query subgraph
corresponding the sibling of n in the SJ-Tree. If n was not left-
deep most node in the SJ-Tree, then we also query the left sibling
to probe for potential join candidates (QUERY-SIBLING-JOIN(),
line 16). Any resultant joins are pushed into the parent node and
the entire process is recursively repeated at one level higher in the
SJ-Tree.

5. SJ-TREE GENERATION
Here we address the topic of automatic generation of the SJ-Tree

from a specified query graph. We begin with introducing key defi-
nitions, followed by the decomposition algorithm.

DEFINITION Subgraph Selectivity Given a large typed, directed
graph G, the selectivity of a typed, directed subgraph g with k-
edges (denoted as S(g)) is the ratio of the number of occurrences
of g and the total number of all k-edge subgraphs in G. Instances
of g may overlap with each other.

DEFINITION Selectivity Distribution The selectivity distribu-
tion of a set of subgraphs Gk is a vector containing the selectiv-
ity for every subgraph in Gk. The subgraphs are ordered by their
frequencies in ascending order.

We present a greedy algorithm (Algorithm 4) for decomposing
a query graph into its subgraphs and generating a SJ-Tree. Our
choice for the greedy heuristic is motivated by extensive survey
of the literature on optimal join order determination in relational
databases [10, 14, 21]. A key conclusion of the survey states that
left-deep join plans (or left deep binary trees in this case) is one
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Algorithm 3 LAZY-SEARCH(Gd, T, edges)
1: leaf -nodes =GET-LEAF-NODES(T )
2: for all es 2 edges do
3: UPDATE-GRAPH(Gd, es)
4: for all n 2 leaf -nodes do
5: u =src(es)
6: v =dst(es)
7: if DISABLED(u, n) AND DISABLED(v, n) then
8: continue
9: gqsub =GET-QUERY-SUBGRAPH(T, n)

10: matches =SUBGRAPH-ISO(Gd, g
q
sub, e)

11: for all m 2 matches do
12: if n = 0 then
13: ENABLE-SEARCH-SIBLING(n,m)
14: else
15: Mj = QUERY-SIBLING-JOIN(n,m)
16: p = PARENT(n)
17: for all mj 2 Mj do
18: UPDATE(p,mj)
19: ENABLE-SEARCH-SIBLING(p,m)

of the best performing heuristics. The above mentioned studies
point to a large body of research using techniques such as dynamic
programming and genetic algorithms to find the optimal join or-
der. Nonetheless, finding the lowest cost join order or using a cost-
driven join order determination remains an interesting problem in
graph databases, and the approaches based on minimum spanning
trees or approximate vertex cover can provide an initial path for-
ward.

Inputs to Algorithm 4 are the query graph Gq and an ordered set
of primitives M . Our goal is to decompose Gq into a collection
of (possibly repeated) subgraphs chosen from M . Entries of M
are sorted in ascending order of their subgraph selectivity. Given
a query graph Gq , the algorithm begins with finding the subgraph
with the lowest selectivity in M . This subgraph is next removed
from the query graph and the nodes of the removed subgraph are
pushed into a “frontier" set. We proceed by searching for the next
selective subgraph that includes at least one node from the fron-
tier set. We continue this process until the query graph is empty.
SUBGRAPH-ISO performs a subgraph isomorphism operation to
find an instance of gM in Gq . Algorithm 4 uses two versions of
SUBGRAPH-ISO. The first version uses three arguments, where
the second argument is a vertex id v. This version of SUBGRAPH-
ISO searches Gq for instances of gM by only searching in the
neighborhood of v. The other version accepting two arguments
searches entire Gq for an instance of gM . REMOVE-SUBGRAPH
accepts two graphs as argument, where the second argument (gsub)
is a subgraph of the first graph (Gq). It removes all edges in Gq

that belong to gsub. A vertex is removed from Gq only when the
edge removal results in a disconnected vertex.

5.1 Selectivity Estimation of Primitives
We propose computing the selectivity distribution of primitives

by processing an initial set of edges from the graph stream. For
experimentation purposes we assume that the selectivity order re-
mains the same for the dynamic graph when we perform the query
processing. This work does not focus on modeling the accuracy of
this estimation. Modeling the impact on performance when the ac-
tual selectivity order deviates from the estimated selectivity order
is an area of ongoing work.

Which subgraphs are good candidates as entries of M? Fol-
lowing are two desirable properties for entries in M : 1) the cost

Algorithm 4 BUILD-SJ-TREE(Gq,M)

1: frontier = ;
2: while |V (Gq)| > 0 do
3: gsub = ;
4: for all gM 2 M do
5: if frontier 6= ; then
6: for all v 2 frontier do
7: gsub =SUBGRAPH-ISO(Gq, v, gM )
8: break
9: else

10: gsub =SUBGRAPH-ISO(Gq, gM )

11: if gsub 6= ; then
12: frontier = frontier [ V (gsub)
13: Gq =REMOVE-SUBGRAPH(Gq, gsub)

for subgraph isomorphism should be low. 2) Selectivity estimation
of these subgraphs should be efficient as we will need to periodi-
cally recompute the estimates from a graph stream. Based on these
two criteria, we select single edge subgraphs and 2-edge paths as
primitives in this study. Computing the selectivity distribution for
single-edge subgraphs resolves to computing a histogram of vari-
ous edge types. The selectivity distribution for 2-edge paths on a
graph with V nodes, E vertices and k unique edge types can be
done in O(V (E + k2)) time. Algorithm 5 provides a simple al-
gorithm to count all 2-edge paths. In our experiments, computing
the path statistics for a network traffic dataset with 800K nodes and
nearly 130 million edges takes about 50 seconds without any code
optimization.

Algorithm 5 uses a Counter() data structure, which is a hash-
table where given a key, the corresponding value indicates the num-
ber of times the key occurred in the data. A Counter() is updated
via the UPDATE routine, which accepts the counter object, a key
value and an integer to increment the corresponding key count. We
iterate over all vertices in the input graph (Gd) (line 2). For an
given vertex v, we count the number of occurrences of each unique
edge type associated with it (accounting for edge directions). Line
8 iterates over all unique edge types associated with v. Next, given
an edge type e1 and its count n1, we count the number of combi-
nations possible with two edges of same type (

�
n
2

�
). Next, we com-

pute the number of 2-edge paths that can be generated with e1 and
any other edge type e2. We impose the LEXICALLY-GREATER
constraint to ensure each edge is factored in only once in the 2-edge
path distribution.

Note that we use a Map() function instead of simply using the
type associated with every edge. Most of our target applications
have significant amount edge attributes in the graphs. As an ex-
ample, in a network traffic graph we use the protocol information
to determine the edge property. Thus, each network flow with the
same protocol (e.g. HTTP, ICMP etc.) are mapped to the same
edge type. Each flow is accompanied by multiple attributes such
as source and destination ports, duration of communication etc..
Therefore, we can provide a hash function to map any user de-
fined edge properties to an integer value. Thus, for queries with
constraints on vertex and edge properties, a generic map function
factors in both structural and semantic characteristics of the graph
stream.

Counting the frequency for larger subgraphs is important. Given
a query graph with M edges, ideally we would like to know the
frequency of all subgraphs with size 1, 2, ..,M � 1. Collecting the
frequency of larger subgraphs, specifically triangles have received
a significant attention in the database and data mining community
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[19]. Exhaustive enumeration of all the triangles can be expensive,
specially in the presence of high degree vertices in the data. Ap-
proximate triangle counting via sampling for streaming and semi-
streaming has been extensively studied in the recent years [11]. We
foresee incorporation of such algorithms to support better query
optimization capabilities for queries with triangles.

Algorithm 5 COUNT-2-EDGE-PATHS(Gd)
1: P = Counter()
2: for all v 2 V (Gd) do
3: Cv = Counter()
4: for all e 2 Neighbors(Gd, v) do
5: et = Map(e)
6: Update(Cv, et, 1)

7: Et = Keys(Cv)
8: for all e1 2 Et do
9: n1 = Count(Cv, e1)

10: key = (e1, e1)
11: Update(P, key, n1(n1 � 1)/2)
12: for all e2 2LEXICALLY-GREATER(Et, e1) do
13: n2 = Count(Cv, e2)
14: key = (e1, e2)
15: Update(P, key, n1n2)

5.2 Query Decomposition Strategies
Algorithm 4 shows that we can generate multiple SJ-Trees for

the same Gq by selecting different primitive sets for M . We can
initiate M with only 1-edge subgraphs, only 2-edge subgraphs or a
mix of both. As an example, for a 4-edge query graph, the removal
of the first 2-edge subgraph can leave us with 2 isolated edges in
Gq . At that stage, we will create two leaf nodes in the SJ-Tree
with 1-edge subgraphs. For brevity we refer to both the second and
third choice as 2-edge decomposition in the remaining discussions.
Clearly, these 1 or 2-edge based decomposition strategies has dif-
ferent performance implications. Searching for 1-edge subgraphs
is extremely fast. However, we stand to pay the price with mem-
ory usage if these 1-edge subgraphs are highly frequent. On the
contrary, we expect 2-edge subgraphs to be more discriminative.
Thus, we will trade off lowering the memory usage by spending
more time searching for larger, discriminative subgraphs on every
incoming edge.

DEFINITION Expected Selectivity We introduce a metric called
Expected Selectivity, denoted as ˆS(Tk). Given a SJ-Tree Tk, the
Expected Selectivity is defined as the product of the selectivities of
the leaf-level query subgraphs.

leaves(Tk) returns the set of leaves in a SJ-Tree Tk. Given a
node n, VSG(T, n) returns the subgraph corresponding to node n
in SJ-Tree T . Finally, S(g) is the selectivity of the subgraph g as
defined earlier.

ˆS(Tk) =
Y

n2leaves(Tk)

S(VSG(Tk, n)) (1)

DEFINITION Relative Selectivity We introduce a metric called
Relative Selectivity, denoted as ⇠(Tk, T1). Given a 1-edge decom-
position T1 and another decomposition Tk, we define ⇠(Tk, T1) as
follows.

⇠(Tk, T1) =
ˆS(Tk)
ˆS(T1)

(2)

We conclude the section with discussion on two desirable prop-
erties of a greedy SJ-Tree generation strategy.

THEOREM 1 Given the data graph Gd at any time t, assume that
the query graph Gq is not guaranteed to be present in Gd. Then ini-
tiating the search for Gq by searching for grare where grare ⇢ Gq

and 8g ⇢ Gq||E(g)| = |E(grare)|, frequency(g) > frequency(grare)
is in optimal strategy.

PROOF The time complexity for searching for a O(1) for a 1-
edge subgraph and O(d̄v) for a 2-edge subgraph. Therefore, the
runtime cost to search for grare is same as any other subgraph of
Gq with the same number of edges. However, searching for grare
will require minimum space because it has the minimum frequency
amidst all subgraphs with same size. Therefore, searching for grare
is an optimal strategy.

e"

a" b"

d"c"

Figure 4: Example SJ-Tree used in proof of theorem 2.

THEOREM 2 Given a set of identical size subgraphs {gk} such
that [n

kgk = Gq , a SJ-Tree with ordered leaves gk � gk+1 �
gk+2 requires minimal space when frequency(gk 1 gk+1) <
frequency(gk+2).

PROOF By induction. Assume a SJ-Tree with three leaves as
shown in Figure 4. Following the definitions of SJ-Tree, this is a
left-deep binary tree with 3 leaves. Therefore, frequency(c) de-
noted in shorthand as f(c) f(c) = min(f(a), f(b)). Substituting
for the frequency of c, space requirement for this tree S(T ) =
f(a) + f(b) + f(d) +min(f(a), f(b)). Thus, the space require-
ment for this tree is minimum if f(a) < f(b) < f(c).

Now we can consider any arbitrary tree where Tn refers to a tree
with a left subtree Tn1 and a right child ln+2. Above shows that T1

constructed as above will have minimum space requirement, and so
will T2 if f(a) < f(b) < f(c) < f(d).

OBSERVATION 3 Given gk, a subgraph of query graph Gq , it is
efficient to decompose gk if there is a subgraph g ⇢ gk, such that
frequency(g) >

⇣
frequency(gk)

d̄|V (gk)|

⌘
, where d̄ is the average vertex

degree of the data graph and |V (gk)| is the number of vertices in
gk.

PROOF Given a graph g, the average cost for searching for an-
other graph that is larger by a single edge is d̄ multiplied by the
number of vertices in gk, and the proof follows.

Space Complexity The space complexity of the SJ-Tree can be
measured in terms of the storage required by each leaf in the tree.
The storage for any node in the tree is approximated by the prod-
uct of the corresponding subgraph size (measured as the number of
edges) and its frequency. Therefore, the space complexity of the
SJ-Tree is S(T ) =

P
k |E(gk)|frequency(gk). Given two sub-

graphs gsmall and gbig , where gbig contains gsmall, the frequency
of gsmall serves as an upper bound for gbig , assuming no over-
lapping edges. Therefore, we can assign each node in the tree to
a group, where one node in each group serves to approximate the
frequency of rest of the nodes in the group. Suppose gr(i) is the
cardinality of the i-th group. Trivially,

P
i gr(i) = NT , where NT

is the number of nodes in the SJ-Tree.
Therefore, given a query graph Gq and a SJ-Tree T express-

ing one possible query decomposition, we can estimate its space
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complexity as S(T ) =
P

i gr(i)|E(gi)|frequency(gi). There
is clearly a tradeoff between the accuracy of this estimate and the
computation required to obtain the necessary measurements. Ap-
proximating the space complexity in terms of single edge subgraphs
is computationally easiest, although it would be a very loose bound
when the frequency of a single edge subgraph is orders of magni-
tude higher than larger subgraphs containing that single edge sub-
graph. Realistically, we foresee the groups being composed of
unique 1-edge, 2-edge subgraphs and triangles (if it exists in the SJ-
Tree) and approximate all larger subgraph in the SJ-Tree assigned
to these groups.

5.3 Comparison with selectivity agnostic ap-
proaches

Our pattern decomposition approach based on relative selectivity
provides an optimal way to look for discriminate patterns compared
to existing approaches. For e.g, consider the generic path query
graph in 5(a). A DAG based decomposition approach [7] may
look either for complete path query or decompose it randomly as
shown in 5(b). As the source vertex(s1) in such a pattern may be
lot more frequent than sink v4, our selectivity based approach will
clearly identify the s2->s3->s4 pattern as being more selective and
start processing search from there, clearly this is more optimal than
searching for every pattern starting at s1->s2.

v1# v2# v3# v4#

S1#<#S2#<#S3#

v1# v2# v3# v3# v4#

v1# v2# v2# v3# v4#

(a)#

(b)#

(c)#

e1# e2# e3#

Figure 5: (a) Example path query. Si indicates the selectivity of
edge ei. (b) A selectivity agnostic decomposition. ( c ) Decom-
position using our selectivity based approach.

6. EXPERIMENTAL STUDIES
We perform experimental analysis on two real-world datasets

(New York Times 1 (Internet Backbone Traffic data 1) and a syn-
thetic streaming RDF benchmark. In interest of space, we include
result for CAIDA dataseti and RDF benchark only, NYTimes per-
formance being similar to CAIDA. The experiments are performed
to answer questions in the following categories.

1. STUDYING SELECTIVITY DISTRIBUTION What does the se-
lectivity distribution of 2-edge subgraphs look like in real
world datasets? What is the duration of time for which the se-
lectivity distribution or selectivity order of 2-edge subgraphs
remains static?

2. COMPARISON BETWEEN SEARCH STRATEGIES In the pre-
vious sections, we introduced two different choices for query
decomposition (1-edge vs 2-edge path based) and two differ-
ent choices for query execution (lazy vs non-lazy). How do
the strategies compare?

1http://data.nytimes.com
1http://www.caida.org

3. AUTOMATED STRATEGY SELECTION Given a dynamic graph
and a query graph, can we choose an effective strategy using
their statistics?

COMPARISON WITH OTHER APPROACHES Although other con-
tinuous subgraph query systems exist ( [7, 15], their objectives are
different. Both focus on distributed system implementations, and
explore aggregate queries or approximate queries. Also, their sup-
port for the type of graph is different from ours. Our test datasets
drawn from cyber security and social networks involve directed
graphs with labeled vertices and edges. We believe that the research
contributions complement each other; hence, we compare our im-
plementation with a non-incremental approach that performs sub-
graph isomorphism for the query graph (using VF2) on every new
edge in the dynamic graph. .

6.1 Experimental setup
The experiments were performed on a 32-core Linux system

with 2.1 GHz AMD Opteron processors, and with 64 GB mem-
ory. The code was compiled with g++ 4.7.2 compiler with -O3
optimization.

Given a pair of data graph and query graph, we perform either of
two tasks: 1) query decomposition and 2) query processing.

Query decomposition: Query decomposition involves loading
the data graph, collecting 1-edge and 2-edge subgraph statistics and
performing query decomposition using the selectivity distribution
of the subgraphs. The SJ-Tree generated by the query decomposi-
tion algorithm is stored as an ASCII file on disk.

Query processing: The query processing step begins with load-
ing the query graph in memory, followed by initialization of the
SJ-Tree structure from the corresponding file generated in the query
decomposition step. We initialize the data graph in memory with
zero edges. Next, edges parsed from the raw data file are streamed
into the data graph. The continuous query algorithm is invoked
after each AddEdge() call to the data graph.

6.2 Data source description
Summaries of various datasets used in the experiments are pro-

vided in Table 1. We tested each dataset with a set of randomly
generated queries. The following describes the individual datasets
and test query generation.

Network Traffic The dataset is an internet backbone traffic dataset
obtained from www.caida.org. CAIDA (Cooperative Associ-
ation for Internet Data Analysis) is a collaborative program that
provides a wide collection of network traffic data. We used the
“CAIDA Internet Anonymized Traces 2013 Dataset" for experi-
mentation. The dataset contains 22 million network traffic flow
(subsequently referred to as netflow) records collected over a one
minute period. We excluded the traffic to/from IP addresses match-
ing patterns 10.x.x.x or 192.168.x.x. These address spaces refer to
private subnets and a communication from a given IP address from
these spaces can actually refer to multiple physical hosts in the real
word. As an example, every internet service provider configures the
routers or machines inside a home network with IPs selected from
the private IP address range. Therefore, if we see a request from
192.168.1.1 to google.com, there is no way to determine the exact
origin of this communication. From a graph perspective, allowing
private IP address and the subsequent aggregation of communica-
tion will result in the creation of vertices with giant neighbor lists,
which will surely impact the search performance. A detailed list of
use cases describing subgraph queries for cyber traffic monitoring
are described in [12].

Social Media Stream Our final test dataset is a synthetic RDF
social media stream available from the Linked Stream Benchmark
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Figure 6: Edge type distribution shown with the evolution of the dynamic graph.

Table 1: Summary of test datasets
Dataset Type Vertices Edges

Internet Backbone Traffic Network traffic 2,491,915 19,550,863
LSBench/CSPARQL Benchmark RDF Stream 5,210,099 23,320,426

New York Times Online News 64,639 157,019

(LSBench) [1]. We generated the dataset using the sibgenerator
utility with 1 million users specified as the input parameter. The
generated graph has a static and a streaming component. The static
component refers to the social network with user profiles and so-
cial network relationships. The streaming component includes 3
streams. The GPS stream includes user checkins at various loca-
tions. The Post and Comments stream includes posts and com-
ments by the users, subscriptions by users to forums, and a stream
of “likes" and “tags". Finally, the photo stream includes informa-
tion about photos uploaded by users, and “tags" and “likes" as ap-
plied to photos.

6.3 Selectivity Distribution
Figure 6 shows the edge distribution plotted over time. X-axis

shows the number of cumulative edges in the graph as it is grow-
ing. The plotted distribution is not cumulative. The edge distribu-
tion is collected after fixed intervals. The interval is 10 thousand,
100 thousand and 1 million respectively. There are 4, 7, and 45
edge types in these datasets. The first half of the RDF dataset con-
tains data for a simulated social network. The second half contains
simulated data about the activities in the network such as posts, and
checkins at locations The shift in the edge distribution around the
mid point reflects these different characteristics. The key observa-
tion is that the relative order of different types of edges stays similar
even as the graph evolves.

There were 14, 62 and 676 unique 2-edge paths present in the
New York Times, netflow and LSBench datasets. Figure 7 shows
the 2-edge path distribution for the LSBench dataset. We found
a small number of 2-edge subgraphs to dominate the distribution
across all the datasets. Other datasets show a similarly skewed dis-
tribution, and was omitted for space. The skew is heaviest for the
LSBench dataset, which is expected given the higher number of
unique edge types and the larger size of the dataset.

The goal of this analysis was to observe the variability in the
selectivity distribution over time. The selectivity distribution is ex-
pected to vary over time. However, it is the relative order of the
unique single edge or 2-edge subgraphs that matters from the query
decomposition perspective. For each of the test datasets, we took
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(a) Synthetic social data stream in RDF

Figure 7: 2-edge path distribution in each test data set. Each
point on X-axis represents a unique 2-edge path and Y-axis
shows its corresponding count.

multiple snapshots of the selectivity order and found it to be stable,
except with fluctuations for the very low frequency components
(data points on the left end of the distributions in Fig. 7). Sig-
nificant changes in the selectivity order can adversely impact the
performance of the query. Estimating the duration over which the
selectivity ordering stays stable for a given data stream, quantifi-
cation of errors based on shift in the distribution, and adapting the
query algorithm to handle such shifts is reserved for future work.

6.4 Query Performance Analysis
This section presents query performance results obtained through

query sweeps on the network traffic and social network dataset.
We restrict the analysis to these two datasets for their larger size.
The analysis on New York Times dataset made available in the Ap-
pendix section in the interest of space. For each query, we collect
performance from 4 different query execution strategies obtained
by 1-edge or 2-edge decomposition of a query graph and the lazy
vs. track everything approach adapted by the query algorithm. The
following tags are used to describe the plots in the remainder of the
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paper: a) “Single": 1-edge decomposition, search tracks all match-
ing subgraphs in SJ-tree, b) “SingleLazy": 1-edge based query de-
composition, use “Lazy" approach to search, c) “Path": 2-edge de-
composition, search tracks all matching subgraphs in SJ-Tree, and
d) “PathLazy": 2-edge decomposition with “Lazy" search.

6.4.1 Network Traffic and LSBench
We present aggregated results for each query group for LSBench

and CAIDA. Both of these datasets are orders of magnitude larger
than New York Times and the scale allows us to magnify the dif-
ferences between multiple strategies.

QUERY GENERATION We generate both path queries and binary
tree queries for the netflow data. Figure 8 shows two decompo-
sitions of an example query. The vertex labels are fixed to type
“ip" and the edge types are randomly chosen from a set of 7 proto-
cols: ICMP, TCP, UDP, IPv6, AH, ESP and GRE. The binary tree
queries were generated following the test generation methodology
described in [16]. The LSBench dataset is tested with path queries
and n-ary trees. A list of valid triples (vertex type, edge type , vertex
type) is generated using the LSBench schema. A tree query is gen-
erated by randomly selecting an edge from the set of valid triples
and then iteratively adding valid new edges from any of the nodes
available. All our query graphs are unlabeled. Using netflow data
as an example, we do not generate a query that has a label associ-
ated with any of the nodes. In practice, we expect users to employ
labeled queries such as finding a tree pattern in the network traffic
where the root of the tree has a IP address (i.e. label) from a cer-
tain subnet. For social data, we may look for paths with specified
user ids (node labels) on the source and the destination nodes on
the path. Here, our experiments are motivated to study the impact
of subgraph distributional statistics on query processing.

ip# ip# ip# ip# ip#
ESP# TCP# ICMP# GRE#

ip# ip# ip# ip#
TCP# ICMP# GRE#

ip# ip# ip#
ICMP# GRE#

ip# ip#
GRE#
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(a)

ip# ip#

ip#
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ip#
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ICMP#

ip# ip# ip# ip# ip#
ESP# TCP# ICMP# GRE#

(b)

Figure 8: 1 and 2-edge based decompositions of a path query
on netflow traffic data.

COMPARISON WITH OTHERS In our previous work [3] we had
compared the performance of our implementation with the IncI-
soMatch algorithm proposed by Fan et al. [6]. Our IncIsoMatch
implementation was based on a variant of the well-known VF2 al-
gorithm [5].

SUMMARIZATION OF RESULTS All queries of the same type
(path or tree) and size (3-hop length or 5 nodes) are denoted as
a group. We generated 100 queries for each group and then elim-
inated ones that contained 2-edge paths not seen in the sampled

path distribution. This was done for two reasons; first, inclusion
of an unseen 2-edge path combination makes the query artificially
discriminative. Our goal is to observe query processing time as a
function of varying selectivity, so including unusually discrimina-
tive queries bias our studies. Second, when asked to generate a
path-based decomposition, our SJ-Tree generator resorts to gener-
ating a single-edge based decomposition when a query subgraph
contains an unseen 2-edge path. This would bias our comparison
between a path-based decomposition and single-edge based decom-
position. Finally, for all the “valid" queries we further sampled
them by the Expected Selectivity computed using 2-edge path dis-
tribution and reduced each group to a smaller set of queries that
provide a near uniform sampling of the Expected Selectivity from
the larger set. Finally, the reported runtime for a given strategy
(e.g. “PathLazy") is obtained by averaging the runtimes from the
reduced set of queries,

Figure 9a-d shows the query processing times collected for both
datasets. The size of the query processing window was fixed at
8M triples, and the performance statistics were collected at at the
middle and at the end of the graph stream. We profiled different
components of the query processing such as the time spent in per-
forming subgraph isomorphism and the time spent in updating the
SJ-Tree. The latter is largely composed of the time spent in looking
up the hash tables in various nodes of the SJ-Tree, performing joins
between partial matches and inserting new entries. We found that
the subgraph isomorphism operation (for 1 or 2-edge subgraphs)
dominates the processing time. Considering both classes of queries
with diameter 4 and 5, the subgraph isomorphism operation con-
sumes more than 95% of the total query processing time.

A general observation is that the performance of non-incremental
search by VF2 is found to be 10-100x slower. The Y-axis is plot-
ted in log scale, and we can see how the run times of the “Path"
and “Single" approaches rise exponentially as the query sizes are
increased. Overall, we find the “SingleLazy" and “PathLazy" are
the best performing search approaches. As the tree queries show,
the growth rate in the query processing time is much slower for the
“Lazy" variants. This conclusively demonstrates the effectiveness
of restricting the search to where a match is emerging, and growing
the match by starting from the most selective sub-query.

6.5 Analysis via Relative Selectivity
Figure 10 shows the distribution of relative selectivity for queries

with 4 edges across all three datasets. We picked query graphs with
4 edges to find a common basis for comparing different type of
queries (k-partite vs. path queries) across multiple datasets, and the
discussion is equally applicable to larger or different query class
combinations. The top subplot shows the relative selectivity of
10 k-partite queries from the New York Times data. For netflow
and LSBench, we randomly sampled 25 queries from the randomly
generated path query collection. As can be seen, the relative selec-
tivity is very low for the netflow dataset. Following the definition of
relative selectivity, its value is lowered when the path distribution
based selectivity is low. In other words, there are some paths in the
query which have very low probability of occurrence. Therefore,
the “PathLazy" approach is superior for such queries. Empirical
observation on larger path queries and other tree queries seem to
suggest two prominent clusters of relative selectivity values. The
first one typically ranges from 0.001 and above, and the second
one contains values that are smaller by multiple orders of mag-
nitude. This suggests a heuristic that “PathLazy" strategy could
be employed for queries with relative selectivity below 0.001, and
“SingleLazy" be employed for queries above 0.001.
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(d) Runtime for Tree Queries on LSBench data.

Figure 9: Runtimes from Path and Tree Queries on Netflow
and LSBench.
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Figure 10: Distribution of Relative Selectivity across queries
with 4 edges in 3 datasets. Relative selectivity is shown on X-
axis in log scale.

7. CONCLUSION AND FUTURE WORK
We present a new subgraph isomorphism algorithm for dynamic

graph search. We analyzed multiple real-world datasets and discov-
ered that the distribution of 2-edge subgraphs are heavily skewed.
We further demonstrated with a “Lazy" search algorithm that a
query decomposition strategy exploiting this skew will be consis-
tently efficient. Finally, we concluded with a Relative Selectivity
based rule for selecting a search strategy.

The problem of continuous pattern detection is an emerging area,
and there is an open field to explore. While our 2-edge subgraph
based approach provides an initial foundation, deeper investiga-
tions are warranted for more accurate selectivity estimation. Sub-
sequent research can leverage on the significant body of work on
counting larger subgraphs such as triangles in streaming or semi-
streaming scenarios to obtain quantitative estimates of space com-
plexity of a given query decomposition. Adaptive query process-
ing is an important follow-up problem as well. A long standing
database query needs to be robust against shift in the data charac-
teristics. While we propose a fast algorithm for periodic recompu-
tation of the primitive distribution, we do not address the issues of
modeling the inefficiency from operating under a different selectiv-
ity order and migrating existing partial matches from one SJ-Tree
to another.
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APPENDIX
A. ANALYSIS OF DYNAMIC GRAPH SEARCH

ALGORITHM
At this point, it is probably obvious that different SJ-Tree struc-

tures can be generated from the same query graph (Figure 8). While
multiple factors can lead to generation of different SJ-Trees, one
primary factor is our choice for granularity of decomposition, the
size and the structure of the subgraphs we decompose the query to.

Henceforth, we often refer to these set of small subgraphs as search

primitives or simply primitives. As a first step to understand the
speed-memory tradeoff associated with different choices for prim-
itives, we begin with the complexity analysis of the dynamic graph
search described in Algorithm 1 and 2. A key operation in Algo-
rithm 1 is the process of subgraph isomorphism around every new
edge in the graph. Therefore, we exclusively focus on the complex-
ity analysis in terms of 1-3 edge subgraphs as candidates for search
primitives.

SINGLE EDGE SUBGRAPHS When the query graph (gqsub in Al-
gorithm 1, line 5) contains a single edge, checking if an edge from
the data graph (es) matches the query edge require comparing the
types and potentially other attributes of the edges. Depending on
the query constraint, we may need to look up the node label to
perform a string comparison or evaluate a regular expression. The
node labels or any other node-specific properties are stored in an
array leading to constant time access to node labels. Therefore, a
single-edge query can be matched in O(1) time.

TRIADS Assume that the query graph is a triad with three ver-
tices v1, v2 and v3, and edges ordered as e1 = (v1, v2), e2 =
(v2, v3), e3 = (v3, v1). For any edge e in the data graph, we can
detect a match with e1 in constant time. If e is matched, we search
the neighborhood of the vertex that matches with v2 to search for
e2. Denoting this vertex as v

0
2, the cost of this second level of search

is O(degree(v
0
2)). In case of a 3-edge subgraph, each of the suc-

cessful second level searches proceed to find a match for the third
edge. Thus, the cost of a 2-edge subgraph is O(degree(v

0
2)) and

a 3-edge subgraph is O(degree(v
0
2) ⇤ degree(v

0
3)). We can refine

these estimates to obtain an average cost of the search as O(d̄2) for
a 2-edge subgraph and O(d̄2d̄3) for a 3-edge subgraph, where d̄2
and d̄3 are the average degree of the vertices in the graph for the
types of v2 and v3.

The next step is to estimate a cost for the SJ-Tree update opera-
tion (Algorithm 2). We begin with the hash-join operation (Algo-
rithm 2, line 7). Assume the frequency of a graph giq is ni, where
the frequency of a subgraph is defined as the count of its instances
over an edge stream of length N . Therefore, over N edges, we can
expect O(n1) matches for g1q and O(n2) matches for g2q . There-
fore, H2 (hash table associated with the SJ-Tree node representing
g2q ) will be probed for a match O(n1) times over N edges and H1

(associated with the SJ-Tree node representing g1q ) will be probed
O(n2) times within the same period.

If we knew the frequency of Gq , henceforth referred as fS(Gq),
then we can also estimate the number of new subgraphs that will be
produced as the result of the hash-joins. Given that the frequency of
the larger subgraph can not exceed that of the more selective com-
ponent we can approximate O(n(Gq)) ' min (O(n1), O(n2))).
Therefore, the average work for every incoming edge in the graph
can be expressed as,�
fS(g

1
q) + fS(g

2
q) +O(n1) +O(n2) +min (O(n1), O(n2)))

�
/N .

The Hash-Join combined with leaf level searches provides the
simplest example of a SJ-Tree, a binary tree with height 1. In this
section, we analyze the time complexity of the query processing as
it happens in a multi-level SJ-Tree. Given any non-leaf node n, we
can obtain the expression for average work by adapting the com-
plexity expression shown above. Note that if a child of n, denoted
by nc, is not a leaf level node but an internal node, then the term
corresponding to the search cost (fS(g)) disappears. Additionally,
we can replace the search cost with the cost corresponding to the
average work incurred by the subtree rooted by nc. Therefore,
given a SJ-Tree (Tsj) the average work (C(Tsj)) can be obtained
by recursive computation from the root. C(Tsj) = C(root(TSJ))
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ABSTRACT
Semantic Web technologies are increasingly at the heart of many
integrated scientific and general purpose data warehouses. Flexible
querying of such diverse data collections with (partially) unknown
structures can be enabled using triple patterns with ‘unbound’ prop-
erties (edges with don’t care labels). When evaluating such queries
using relational joins, intermediate results contain redundancy due
to repeated combination of bound-property mappings with those of
the unbound properties. However, in distributed-processing con-
texts, the footprint of intermediate results directly impacts I/O and
communication costs. Given the popularity of MapReduce-based
platforms for periodic on-demand scaling using Cloud resources,
we propose an algebraic optimization technique that interprets unbound-
property queries on MapReduce, using a non-relational algebra based
on a TripleGroup data model. The approach enables shorter execu-
tion workflows and reduced costs for processing RDF queries on
MapReduce. This paper introduces new logical and physical oper-
ators, and query rewriting rules for interpreting unbound-property
queries using the TripleGroup-based data model and algebra. A
key optimization strategy is to concisely represent intermediate re-
sults as far along an execution workflow as possible, thus mini-
mizing the effects of redundancy. The proposed work is integrated
into Apache Pig. Experiments conducted on real-world and syn-
thetic benchmark datasets demonstrate their benefit over popular
relational-style MapReduce systems.

1. INTRODUCTION
The successful adoption of Semantic Web technologies to inter-

link diverse (related) datasets has led to large semantically-integrated
scientific (Uniprot [8], Bio2RDF [9]) and general purpose (DBpe-
dia [7], Billion Triple Challenge [1]) RDF data warehouses. The
heterogeneous and evolving nature of such data collections makes it
difficult for users to be familiar with different kinds of relationships
that exist in the data. Consequently, exploration of datasets in data-
integration [23] and data archival [36] scenarios require flexibility
in querying, i.e., the ability to use structural variables or “don’t
∗The work presented in this paper is partially funded by NSF grant
IIS-1218277.

(c) 2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

cares” in queries. SPARQL [28], the standard query language to
specify graph pattern queries on the Semantic Web, enables flexible
querying of datasets by allowing OPTIONAL substructures or sub-
structures with missing edge labels. The latter are called unbound-
property triple patterns and can be used to query unknown relation-
ships (“Scientists in some way associated to the same city”), rela-
tionships with partial knowledge (“Gene Ontology terms related to
a gene Rxr”), or to retrieve all available information about a re-
source (“What is known about the Hexokinase gene?”).

Consider an example SPARQL query Q1 on Bio2RDF, a Life
Sciences RDF dataset. Q1 is useful to analyse the Parkinson’s dis-
ease and involves two unbound-property triple patterns (1) and (5).

Query Q1 Description
SELECT ?s1, ?label1, ?s2, Retrieve gene ontology (GO) terms
?label2, ?o2 related to “rxr”, a gene of interest
WHERE { in analyzing Parkinson’s disease.

?s1 ?p1 ?o1 . (1) Q1 contains two star subpatterns,
FILTER regex(?o1, “rxr”) SJ1 (1-2) and SJ2 (3-5).
?s1 label ?label1 . (2) (1) matches triples whose object
?s2 xGO ?o2 . (3) contains string “rxr” (any property).
?s2 label ?label2 . (4) (5) specifies an unknown
?s2 ?p2 ?s1 . (5) relationship connecting the two

} star subpatterns in the query.

Other than querying scenarios in integrated data warehouses,
subqueries with unbound-property triple patterns are also generated
while optimizing ontological queries by rewriting them as a union
of conjunctive queries. Examples of unbound-property queries can
be found in real [23] and synthetic Semantic Web benchmarks [11],
as well as other studies [22, 36]. In fact, 84% of queries in [2] in-
volve unbound-property triple patterns.

Given a triple relation T and subset relations TxGO and Tlabel
with property types xGO and label, respectively, the subquery SJ2
can be evaluated using relational joins (TxGO 1 Tlabel 1 T ). Fig-
ure 1 (right) shows the subrelations of T participating in SJ2 and
a snapshot of the star-join result. An issue with intermediate re-
sults in such cases is redundancy. For example, the result for SJ2
in Figure 1(top right) contains repeated occurrences for matches
of the bound properties – xGO and label, with each match of the
unbound-property triple pattern. The numbers of matches for the
unbound-property triple pattern could be large if properties in the
input dataset have high multiplicity (gene9 is associated with mul-
tiple xRef ), further aggravating the issue of redundancy. High-
multiplicity properties are common in real-world social networks
as well as biological datasets such as Uniprot and Bio2RDF, e.g.,
some Uniprot properties have multiplicity as high as 13K.

For applications with periodic scale–up requirements, the grow-
ing trend is to employ cloud-processing platforms, e.g., Hadoop [10],
Dryad [16], Hive [37], Pig [26], that are based on the MapRe-
duce [12] computing model. However, any redundancy in interme-
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Figure 1: A MapReduce workflow for an unbound-property graph pattern query Q1 with two star subqueries SJ1 and SJ2; Join
result of unbound-property star subpattern SJ2 contains redundant information related to bound properties (xGO, label)

diate results impacts query processing costs, particularly for MapRe-
duce based distributed processing platforms that involve shipping
of intermediate results across the network. The intermediate re-
sult footprint also impacts additional costs associated with sorting
phases, materialization between the 2-steps of a MapReduce (MR)
execution cycle, and total disk space requirements to store all inter-
mediate states for fault-tolerance purposes. Hence, it is critical to
minimize the footprint of intermediate results.

1.1 Related Work
Optimizing Relational Query Plans on MapReduce: There have

been several efforts to shorten the length of MR workflows [6,
40, 15, 5, 27] to minimize the overall costs of MapReduce-based
processing, sharing scans [24, 25, 39] and computations [24, 13]
across MR workflows, cost-based and transformation-based MR
workflow optimizer [20], and data skew problems [19]. Multi-way
join algorithms [6, 40] cluster multiple joins into a single [6] or
few [40] MR cycles, but have not been applied to join-intensive
workloads. Amongst the MapReduce-based RDF processing sys-
tems, SHARD [32] uses initial MR cycles to cluster triples into star
subgraphs, followed by separate MR cycles to process each clause
in the SPARQL query. HadoopRDF [15] pre-processes triples us-
ing the vertical-partitioning (VP) [4] approach, and uses heuris-
tics to greedily group non-conflicting joins in a query to minimize
the required number of MR cycles. However, unbound-property
queries would require processing a union of all VP property rela-
tions. The HadoopDB-based extension [14] uses a hybrid database-
Hadoop architecture that exploits the partitioning scheme to push
part of the execution into the database/RDF-3X. Hash partitioning
on Subject can enable local evaluation of unbound-property star
subpatterns. However, once the execution is handed over to Hadoop
the redundancy in intermediate results impacts the disk I/O, sort-
ing, and communication costs for the rest of the execution work-
flow. In order to minimize the data shuffle costs, MRShare [24]
enables sharing of map output data across grouping operations on
a common input relation. Some other works proposed a value-

partitioning scheme [21] to manage reducer-unfriendly groups dur-
ing the cube computation process, and a reducer-routing strategy [38]
that groups intermediate keys to balance the data across reduc-
ers. The evaluation strategies proposed in this paper, i.e., lazy β-
unnesting strategies, are in similar spirit.

Optimizing unbound-property queries: Earlier studies [35, 34]
have shown that the vertical-partitioning (VP) [4] storage model
may be inefficient for unbound-property queries. Such queries re-
sult in multiple joins and large unions of VP relations, which gets
worse for data containing large number of property types. The
multi-indexing schemes in systems such as RDF-3x [22] could ben-
efit single-star unbound-property queries. However, such systems
may not scale well for large RDF graphs, particularly for queries
with low selectivity and unbound objects [15]. There have been
efforts [36] to optimize simple unbound-property queries to RDF
views over relational databases. Since naive translation of an unbound-
property query into SQL results in unions of multiple subqueries,
the proposed Group Common Term transformer [36] exploits com-
mon terms in complex disjunctive SQL queries and rewrites them
into a smaller number of queries. Our work proposes a scalable
solution for processing unbound-property queries on MapReduce-
based parallel processing platforms.

Prior Work. A previous work explored the use of a non-relational
data model and algebra, i.e., the Nested TripleGroup Data Model
and Algebra (NTGA) [30, 17], for efficient RDF query process-
ing on MapReduce. The NTGA allows an alternative interpretation
of queries in terms of a “grouping” operation and a set of triple-
groups, that enables shorter execution workflows when compared
to relational query plans in systems such as Hive and Pig. For ex-
ample, query Q1 requires 3 MR cycles altogether (two cycles for
computing star-joins SJ1, SJ2, and a third cycle to join the stars)
as shown in Figure 1, while the NTGA would compute both SJ1
and SJ2 in a single cycle using a “grouping” operation, followed
by a second cycle to compute the join between the stars.

Comparison with Redundancy due to Multi-valued Properties.
Unlike the normalized representation of intermediate results of re-

170



lational operations, the nested triplegroup data model can concisely
represent intermediate results with multi-valued properties, e.g.,

{ (gene9, xGO, {go1, go9}) // A single triplegroup representing
(gene9, label, retinoid...) // two n-tuples t1 and t4
(gene9, synonym, RCoR-1)} // by nesting object component

Though the “nested object” model and nesting-aware physical op-
erators [31, 29] reduce the I/O footprint of execution workflows,
a join involving an unbound-property triple pattern would still pro-
duce ‘n’ triplegroups (assuming n triples with subject gene9). More
importantly, all n triplegroups contain redundant bound-property
component. In this paper, we generalize the concept of triple-
group nesting to allow nesting of property-object components, to
implicitly represent intermediate results while evaluating unbound-
property queries. However, such an implicit representation involves
triples playing multiple roles, i.e., a triple may match the bound
and the unbound component of a query, which needs to be incor-
porated into the “unnest” process, referred here after as β-unnest.
Additionally, there are implications of when and what portion of a
triplegroup is β-unnested during the different phases of an execu-
tion workflow, resulting in choices for evaluation strategies. Specif-
ically, this paper makes the following contributions:

• We introduce new logical operators and query rewrite rules
that allow the translation of unbound-property queries into
NTGA-based logical plans. The correctness and sufficiency
of query rewrite rules is also presented.

• We introduce new physical operators that offer different eval-
uation strategies - eager vs. lazy β-unnesting of intermediate
results during query processing.

• Extensive evaluation using large RDF graphs, both Semantic
Web synthetic benchmark and real-world biological datasets,
demonstrates the efficiency of our approach over relational-
style processing of unbound-property queries in Pig and Hive.

2. PRELIMINARIES

2.1 MapReduce and Data Processing
In the MapReduce programming model, data processing tasks

are encoded as map and reduce functions, that are executed in par-
allel across a cluster of computing nodes. Relational operations
such as a join between two relations, maps to a processing cycle
consisting of two phases – the Map phase and the Reduce phase.
In the Map phase, a set of slave nodes (mappers) execute the map
function that tags each tuple based on the join key. Map output tu-
ples are partitioned on the join key and shuffled across the network
to another set of slave nodes (reducers). In the Reduce phase, each
reducer receives a collection of tuples with the same join key, and
computes the join. The output of the Reduce phase is written onto
the Hadoop Distributed File System (HDFS) and read back in a sub-
sequent cycle. Each MapReduce (MR) cycle involves costs associ-
ated with initial input data reads in the map phase (MRead), the data
shuffling costs between mappers and reducers that involve local
disk writes at the mappers (MWrite), sort-merge costs (MRSort)
as well as network transfer costs (MRTR), and finally the cost of
writing the reduce output to the HDFS (RWrite).

To evaluate graph pattern queries on MapReduce, one can ex-
ploit the fact that graph pattern queries often consist of multiple
star-structured subqueries e.g., SJ1 and SJ2 rooted at variables
?s1 and ?s2 in query Q1, that can be evaluated using a multi-way
join algorithm. For a graph pattern query with l star subpatterns,
the typical MapReduce execution plan generated by relational-like

platforms such as Hive and Pig consist of a sequence of MapReduce
cycles MR1,MR2, ..,MRn such that 1 ≤ n ≤ (l− 1) cycles are
used for executing the l star-joins, and (n − l) MapReduce cycles
for the remaining joins in the query. Our example query Q1 can
be evaluated in 3 MR cycles as shown in Figure 1: MRSJ1 and
MRSJ2 to compute star subpatterns SJ1 and SJ2 respectively,
followed by a third cycleMRJ1 to join the stars. Given such a MR
workflow W , the overall processing cost of W is:

Cost(W ) = cost(MR1) + cost(MR2) + ... + cost(MRn)

where the I/O, sorting, and network transfer costs of each cycle
compound across multiple cycles of a lengthy workflow. Further-
more, the portion of redundant data in the intermediate results di-
rectly impacts the HDFS writes (RWrite) for the current MR cycle,
and the scan costs (MRead) and shuffle costs (MRSh) of subse-
quent MR cycles. Hence, the redundancy has a ripple effect on the
costs of reads, writes, sorting and the data transfer costs across a
workflow with multiple MR cycles. Thus, lengthy workflows lead
to performance inefficiency and an important optimization goal is
to minimize the length of an MR execution workflow [6, 15, 40].

However, grouping of joins based on star structures does not
necessarily result in the typical join order generated using tradi-
tional cost-based optimization. One challenge is that most cloud
processing platforms are used in an on-demand model, where pre-
computed statistics for cost-based optimization may not be avail-
able or take too long to compute, resulting in long lead times. More
importantly, ordering joins in terms of their costs may generate
some linear subplans requiring one input as the full triple relation,
which in the absence of an index is a full scan. Such plans may in-
cur larger overhead due to HDFS reads, which outweighs the sav-
ings achieved by pushing selective joins ahead.

Our previous work [30, 17] explored an algebraic optimization
technique that rewrites graph pattern queries using operators that
are more MapReduce-cognizant. It has been demonstrated that
the underlying data model and algebra called the Nested Triple-
Group Data Model and Algebra (NTGA), not only results in short
execution workflows [30, 17], but also enable scan-sharing [18]
across star subpatterns, while reducing the I/O footprint of inter-
mediate results [31, 29]. In the next section, we overview the data
model and algebraic operators in NTGA that enable nimble exe-
cution workflows while evaluating RDF graph pattern queries on
MapReduce.

2.2 TripleGroup-based Processing of Graph Pat-
tern Queries on MapReduce

The NTGA data model represents the RDF database as sets of
related “group of triples” or TripleGroups. For example, triples
in the database can be modeled as a set of Subject TripleGroups,
each consisting of triples that share a common subject. For ex-
ample, triplegroups tg1 and tg2 in Figure 2 represent subject triple-
groups corresponding to triples sharing common subjects gene9 and
homo2, respectively. Given such a data model, answering graph pat-
tern queries translates to manipulation of triplegroups. Some of the
most relevant triplegroup operators are summarized in Figure 2 and
discussed below.

Algebraic Operators. Consider a query Q′ with two star sub-
patterns St1={label, gene_symb} and St2={label, xGO, xRef}.
NTGA’s grouping operator (γ) computes a set of subject triple-
groups TG based on the subject column as shown in Figure 2.
Given such a set of triplegroups TG, a match to a star subpattern is
a selection operation (σγ) that extracts a subset of triplegroups that
match the required join structure, i.e., a valid triplegroup must con-
tain at least one triple corresponding to each of the property types
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Consider a set of triplegroups TG = Sub(T) = { tg1, tg2 } such that  

Notation Semantics 

TripleGroup Filter 
 

 
Pbnd 

(TG) 

Enforces structural constraints in a star subpattern 
by matching the set of bound properties Pbnd and 
eliminating triplegroups in TG that violate the 
required join structure (structure-based validation) 
e.g., 

{label, gene_symb} 
(TG) = TG

{label, gene_symb}
 ={ tg1} 

 

TripleGroup Join 

 
⋈ (tp1:TG1, tp2: TG2) 

Joins triplegroups tg1 εTG1 and tg2 εTG2, based on 
the join conditions specified by triple patterns tp1 
and tp2 respectively. 
e.g., ⋈( ?s1  label ?label1 :TG

{label, gene_symb}
 ,  

               ?s2  xRef   ?s1       :TG
{label, xGO, xRef}  

)  =  { ntg } 
 

                (gene9, (label,   “retinoid…”), 
                               (xGO,     go1), 
                               (xGO,     go8), 
                               (xGO,     go9), 
                               (xRef,    {homo2,  (label,  “Homolog…”) 
                                                               (gene_symb,  rxrb)} 

ntg = 

 (gene9, label,   “retinoid..”), 
 (gene9, xGO,    go1), 
 (gene9, xGO,    go9), 
 (gene9, xGO,    go8), 
 (gene9, xRef,    homo2)        

tg2= ( gene9,                                                          ) 

(gene9, label, “retin…”,  xGO, go1,  xRef, homo2)  
(gene9, label, “retin…”,  xGO, go8,  xRef, homo2)  
(gene9, label, “retin…”,  xGO, go9,  xRef, homo2)  

≅ 

tg1= ( homo2,                                                           ) ≅  (homo2, label,  “Homol..”), 
 (homo2, gene_symb,    rxrb), 

Sub=gene9 ( Tlabel ⋈ TxGO ⋈ TxRef ) 

Sub=homo2 ( Tlabel ⋈ Tgene_symbol ) 

(homo2, label, “Homol…”,  gene_symb, rxrb)  

Figure 2: Example NTGA Operators

in the star subpattern. Triplegroup tg1 is a valid match for St1 and
is said to belong to the equivalence class TG{label,gene_symb} that
defines its join structure. Further, matching multiple star subpat-
terns translates to a disjunctive selection based on the set of prop-
erties in each star subpattern. For example, the two star subpatterns
in Q′ can be computed as follows:

σγ({label,gene_symb}∨{label,xGO,xRef})(TG)

Joins between star subpatterns can be computed using the join oper-
ator (1γ) that is semantically equivalent to the relational join oper-
ator but is defined on triplegroups. The object-subject join between
triplegroups tg1 and tg2 results in a nested triplegroup ntg whose
root is the triplegroup tg1 and child triplegroup is tg2. Before pro-
ceeding, we review the notion of content-equivalence that enables
lossless translation between relational algebra and NTGA plans.

Relational Algebra↔NTGA Plans. Triplegroups are ‘content-
equivalent’ (represented as∼=) to the set of n-tuples computed using
a set of relational-style joins. Let Stp be a star subpattern compris-
ing of the set of bound properties {P1, P2, ..., Pk}, and TStp be the
join result of vertically partitioned subset relations TP1 , TP2 ,...,TPk .
Let TStp(s) represent the subset of TStp with subject Sub = s.

TStp(s) = σSub=s(TP1 1 TP2 1 ... 1 TPk )

Each tuple in TStp(s) is of 3k arity (each property in Stp is asso-
ciated with 3 columns). Let πPi denote the projection of the (Sub,
Prop, Obj) columns corresponding to the parent relation TPi with
bound-propertyPi. Let tgs represent the set union of triples formed
by the 3 columns, i.e.

tgs = πP1(TStp(s)) ∪ πP2(TStp(s)) ∪...∪ πPk (TStp(s))
In summary, the tuples in TStp(s) can be vertically partitioned into
‘triples’ whose union is equivalent to a subject triplegroup tgs in
the NTGA data model. For our example data in Figure 2,

tg1 ∼= σSub=homo2(Tlabel 1 Tgene_symb)
tg2 ∼= σSub=gene9(Tlabel 1 TxGO 1 TxRef )

Benefits of NTGA Query Plans. For a query with ‘n’ star sub-
patterns, NTGA can compute ALL star subpatterns concurrently
using a single ‘grouping’ operation, by first ‘grouping’ the triples
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Figure 3: Evaluation of different groupings of star-joins (MR:
No. of MapReduce cycles, FS: No. of Full Scans)

into subject triplegroups and then applying a disjunctive selection
based on the multiple star subpatterns. This is in contrast to the
relational-style approach where each star subpattern is evaluated
as a relational-style join. The grouping-based star-join computa-
tion naturally fits the map-group-reduce theme in MapReduce, and
translates to just one MR cycle for computing all star-joins in the
query (as opposed to ‘n’ MR cycles using relational-style plans).
In addition to the reduction in the number of required MR cycles,
NTGA also results in reduced size of intermediate results. Multi-
ple related n-tuples resulting from relational-style joins involving a
multi-valued property are implicitly represented as a single triple-
group in NTGA. For example, the 3 n-tuples corresponding to Stp2
containing a multi-valued property xGO are implicitly represented
using a single triplegroup tg2 as shown in Figure 2. This is specifi-
cally important in minimizing the I/O footprint of long MapReduce
execution workflows while processing RDF graph pattern queries.

Consider a case study using 6 test queries (each with two star
subpatterns) using the BSBM synthetic benchmark dataset (43GB)
on a 10-node Hadoop cluster, as shown in Figure 3. The test queries
have varying join structures with Object-Subject join (Q1a, Q1b,
Q2a, Q2b) and Object-Object join (Q3a, Q3b) between star pat-
terns. Queries Q1b, Q2b, Q3b are variations of Q1a, Q2a, Q3a
respectively, where one of the two star-joins is highly selective
due to an additional filter on the object column. Additional de-
tails about the evaluated queries are available on the project web-
site [3]. We evaluated three different groupings of star subpat-
terns in a query, (i) a star-join per cycle approach (SJ-per-cycle),
(ii) most selective grouping of joins first but preserving star struc-
ture as much as possible to minimize MR cycles (Sel-SJ-first), and
(iii) concurrent evaluation of star-joins using the grouping-based
approach in NTGA. SJ-per-cycle approach requires 3 MR cycles
for all queries (2 of 3 cycles require full scan of triple relation).
For Object-Subject joins, Sel-SJ-first approach can group joins into
just 2 MR cycles (both cycles scan entire triple relation). For the
Object-Object join (Q3a, Q3b), Sel-SJ-first still requires 3 MR cy-
cles, but more importantly has very high HDFS reads due to full
scan of triple relation in all 3 cycles. In contrast, the NTGA ap-
proach is able to minimize the number of MR cycles (2 cycles for
all queries), as well as minimize the required number of full scans
of the triple relation, thus outperforming the other two approaches
for all test queries.

Earlier work on NTGA captures basic graph patterns. In this
work, we build on the advantages of the TripleGroup data model
and algebra for efficient evaluation of unbound-property graph pat-
tern queries on MapReduce. Specifically, the semantics of the group-
filter operator (σγ) requires all properties in the query structure to
be bound. However, to capture more complex patterns, the algebra
and the set of rewrite rules need to be extended. The following sec-
tion introduces a number of extensions which allow us to relax the
above constraint to provide an extended group-filter semantics for
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TSt1(S1)        
= Sub=S1 (TP1 ⋈ TP2⋈ T)  

                  
                = 

S1 P1 O1 S1 P2 O2 S1 P1 O1 

S1 P1 O1 S1 P2 O2 S1 P2 O2 

S1 P1 O1 S1 P2 O2 S1 P3 O3 

S1 P1 O1 S1 P2 O2 S1 P4 O4 

S1 P1 O1 

S1 P2 O2 

S1 P3 O3 

S1 P4 o4 

 tgS1           =     P1(TSt1(S1)
)       P2(TSt1(S1)

)        Pu(TSt1(S1)
) 

                
               =  
                
 
 
 
 
               =  
  

S1 P1 O1 

S1 P1 O1 

S1 P1 O1 

S1 P1 O1 

S1 P2 O2 

S1 P2 O2 

S1 P2 O2 

S1 P2 O2 

S1 P1 O1 

S1 P2 O2 

S1 P3 O3 

S1 P4 O4 

      

tgP1 

tgP2 tgPu 

Figure 4: Transformation: n-tuples to a triplegroup

evaluating unbound-property queries.

3. REWRITING UNBOUND-PROPERTY
QUERIES USING NTGA

Consider an unbound-property star pattern Stu = {Pbnd, Punbnd}
such that Pbnd = {P1, P2, ..., Pk} represents the set of bound prop-
erties and Punbnd represents an unbound property. Let TStu be the
star-join result of relation T (Sub, Prop,Obj) with vertically par-
titioned subset relations TP1 , TP2 ,...,TPk , and let TStu(s) represent
a subset of TStu with subject Sub = s.

TStu(s) = σSub=s(TP1 1 TP2 1 ... 1 TPk 1 T )

The tuples in TStu(s) have arity 3(k+1), where each property in
Stu is associated with 3 columns in TStu(s). Figure 4 represents
the tuples in TSt1(S1) for a star-pattern St1 with bound proper-
ties P1, P2 and an unbound property. To determine how Stu will
be evaluated using NTGA, it will be useful to develop some cor-
respondence between TStu(s) and a subject triplegroup in NTGA.
Note that a single triple may play multiple roles (occur multiple
times) in the result of an unbound-property star pattern – one as a
match for the bound property and the other as a match for the un-
bound property. For example, (S1, P1, O1) in Figure 4 occurs once
for the join with TP1 and once for the join with T . In the NTGA
data model, such multiple occurrences are implicitly represented
once, which must be accounted for in the transformation process.

Continuing with the transformation process, let πPi and πPu de-
note the projection of the (Sub, Prop, Obj) columns corresponding
to parent relation TPi with bound property Pi, and unbound prop-
erty Punbnd respectively. Let tgs represent the set union of triples
formed by the 3 columns, i.e.

tgs = πP1(TStu(s)) ∪...∪ πPk (TStu(s)) ∪ πPu(TStu(s))

Figure 4 denotes the triples in tgS1 for our example star-pattern
St1, formed by the set union of the partitions πP1 , πP2 , and πPu .
tgs has the following properties:

(i) ∀ti, tj ∈ tgs, the triples ti, tj agree on the subject column s.

(ii) ∃ non-empty subset of triples tgPi ⊆ tgs such that tgPi =
πPi(TStu(s)), for each bound property Pi ∈ Pbnd.

(iii) ∃ a non-empty subset of triples tgPu ⊆ tgs such that tgPu =
πPu(TStu(s)) and tgPu ∩ (tgP1 ∪ ... ∪ tgPk ) may be non-
empty.

Essentially, the tuples in TStu can be horizontally partitioned into
sets of tuples with the same Subject column, and each element in
the partition can be vertically partitioned into ‘triples’ whose union
is equivalent to a subject triplegroup tgs in the NTGA data model.
The use of set union instead of bag union ensures that we have
a triplegroup. Further, subsets of triples in tgs represent matches
to the bound and unbound-property triple patterns in Stu. This
process basically describes a sequence of translation steps from the
relational algebra to NTGA. In other words,

TStu(s) = σSub=s(TP1) 1 ... 1 σSub=s(TPk ) 1 σSub=s(TPu)
= tgP1 1 ... 1 tgPk 1 tgPu

Conversely, for our example star-pattern St1 in Figure 4, tuples in
TSt1(S1) are implicitly represented in tgS1 and can be produced by
(tgP1 1 tgP2 1 tgPu). A useful property is to distribute the join
with the unbound-property triple pattern across a union of subset
relations of T . In other words, if the triple relation T can be parti-
tioned into two subset relations, i.e., T = {TP ′u ∪ TP ′′u }. Then by
the distributivity of join over union, we have:

TPbnd 1 (TP ′u ∪ TP ′′u ) ≡ (TPbnd 1 TP ′u) ∪ (TPbnd 1 TP ′′u )

Evaluating Stu using NTGA requires applying group filter (σγ)
to match the required query structures. Recall that σγ is defined in
terms of a set of bound properties. One might consider evaluating
an unbound-property star-pattern query using σγ with a disjunction
of concrete pattern combinations. Each such combination will con-
sist of the set of bound properties Pbnd with each property in the
database. For example, if Pbnd = {P1, P2} is the set of bound-
properties in the star pattern and P = {P1, P2, ..., P10} represents
the set of all properties in the database. Then, the σγ expression is:

σγ({P1,P2,P1}∨{P1,P2,P2}∨...∨{P1,P2,P10})(TG)

This would filter out triplegroups that do not match any of the re-
quired pattern combinations. However, the approach of enumerat-
ing all possible pattern combinations may be inefficient depending
on the number of properties in the database. Additionally, the sub-
ject triplegroup tgs may contain additional triples relevant to other
patterns, and hence may not exactly match a single pattern combi-
nation. Hence, there is a need to relax the σγ to restrict the match-
ing of structural constraints to the bound properties of the unbound-
property star pattern. This means that triplegroups that contain all
the bound properties (may contain additional properties), should
be produced as part of the result for σγ . Once this is done, we
need to extract subsets of triples in tgs that are exact matches for
any of the required pattern combinations. This is achieved by ex-
tracting the subset of triples corresponding to Pbnd and generating
their union with each triple in the unbound-property subset tgPu .
In the following section, we provide the formal definitions for a
specialized group-filter operator (σβγ) and the unnest operator (β-
unnest) that extracts the perfect matches to the unbound-property
star-pattern. From here on, we assume the convenience function
tg.props() (st.props()) to retrieve the set of properties in a triple-
group tg (star pattern st).

DEFINITION 1. (β Group-filter) Given a set of subject triple-
groups TG and a star pattern Stu = {Pbnd, Punbnd} contaning
an unbound property, the β group-filter operator σβγ returns the
subset of triplegroups in TG that contain a non-empty subset of
triples matching all bound properties Pbnd. Specifically,

σβγ(Pbnd,Punbnd)(TG) := { tgi ∈ TG | Pbnd ⊆ tgi.props()}

Essentially, σβγ ensures that triplegroups contain a matching triple
for each of the bound properties in Pbnd. Additionally, triplegroups
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 (gene9, label,  “retinoid...”), 
 (gene9,  xGO,   go1),  
 (gene9,  xGO,   go1), 

ftg1 =  (gene9,  label,  “retinoid…”), 
            (gene9,  xGO,   go1),  
            (gene9,  synonym,  “RCoR-1”), 
            (gene9,  xGenBank, genbank1), 
            (gene9,  xRef,   homologene9)  

tgPbnd 

(a) -Group Filter:   ({label, xGO}, {?p})(TG) 
 

  
 = 
 
 
 
 
 
 
 = TG’ 

(b) -Unnest:   ({label, xGO}, {?p})(TG’)  
 
=   (gene9, label,  “retinoid...”), 

 (gene9,  xGO,   go1),  
 (gene9,  label,  “retinoid...”)  

ftg2 =  (go:id2, label,  “thiored..”), 
            (go:id2, symb, “Txrx-1”), 
            (go:id2, xRef,    hgnc:id1)} 

Incomplete 
tgPbnd  (gene9, label,  “retinoid...”), 

 (gene9,  xGO,   go1),  
 (gene9,  synonym, “RCoR-1”) 

 (gene9, label, “retinoid...”), 
 (gene9, xGO,   go1),  
 (gene9, xGenBank, genbank1) 

 (gene9, label, “retinoid...”), 
 (gene9, xGO,   go1),  
 (gene9, xRef,   homologene1) 

tgPbnd 

tgPbnd 

tgPbnd 

tgPbnd 

tgPbnd 

Figure 5: NTGA logical operators to evaluate unbound-property star-patterns

may also contain triples containing other property types. For ex-
ample, given Pbnd = {label, xGO}, triplegroup ftg1 forms a
valid result for the σβγ expression in Figure 5(a). However, ftg2
does not contain a matching triple for the bound property xGO and
hence gets filtered out.

DEFINITION 2. (β unnest) Given a set of triplegroups TG and
an unbound-property star pattern Stu = {Pbnd, Punbnd}, the unnest
operator µβ creates a set of triplegroups that are exact matches to
Stu. Specifically,

µβ(Pbnd,Punbnd)(TG):= { tgi = {tgPbnd ∪ ti} | tgPbnd , ti ⊆ tg,
tgPbnd .props() = Pbnd, tg ∈ TG }

In other words, the β-unnest operator extracts subsets of triples in a
triplegroup tg that match the different pattern combinations corre-
sponding to the unbound-property star-pattern. Figure 5(b) shows
the 5 perfect triplegroups that are produced by β-unnesting the
triplegroup ftg in Figure 5(a), each containing a subset of triples
tgPbnd matching the set of bound properties Pbnd, and a triple ti
that matches the unbound-property triple pattern.

LEMMA 1. Given a triple relation T and an unbound-property
star pattern Stu = {Pbnd, Punbnd} such that the set of bound
properties Pbnd = {P1, P2, ..., Pk} and Punbnd represents a sin-
gle unbound property, the following equivalence holds:

(TP1 1 ... 1 TPk 1 T ) ∼= µβPbnd( σ
βγ
(Pbnd,Punbnd)

( γs(T )))

Proof: Let TStu and TGStu represent the set of tuples and
triplegroups produced by evaluating an unbound-property star-pattern
Stu using relational joins and NTGA respectively. We need to
prove that all tuples in TStu are produced using NTGA. We prove
by contradiction. Let us assume that there exists a tuple tups ∈
TStu with subject s that cannot be produced using triples in tgs.
This can happen only if ∃ a triple ti ∈ tups such that ti /∈ tgs.
Firstly, since ti ∈ tups, we know that the subject of ti is s. If
ti.props() ∈ Pbnd, since ti’s subject is s, the σβγ ensures that
ti ∈ tgs. If ti.props() /∈ Pbnd, then σβγ still retains ti since its
subject is s. Hence, ti ∈ tgs. The only other case is when a triple
ti plays multiples roles (matches both bound and unbound parts)
which are implicitly represented in our data model. We rely on the
correctness of the µβ operator (illustrated earlier but proof omitted
for brevity) to complete the proof.

Generalization to Multiple Unbound Properties. The β-unnest
operator can be generalized to star-patterns containing multiple unbound-
property triple patterns. Let Pα, Pβ ,...,Pm represent the m un-
bound properties in a star-pattern. Then the β-unnest operator re-

sults in a set of triplegroups {tgαβ...m} each containing the bound-
property subset tgPbnd and m triples, one each matching the un-
bound properties Pα, Pβ ,...,Pm.

µβ(Pbnd,{Pα,Pβ ,..,Pm})(TG) := { {tgPbnd ∪ tα ∪ tβ ∪...∪ tm} }

such that tgPbnd ⊆ tg is the bound-property subset, i.e., tgPbnd .props()
= Pbnd, and triples tα, tβ , ...tm ⊆ tg ∈ TG.

4. TRANSLATION TO MAPREDUCE PLANS
The logical operators proposed in the previous section are inte-

grated into RAPID+ [17] (an NTGA-based extension of Apache
Pig). The query compilation process in RAPID+ begins with plans
of logical operators, which are compiled to plans of physical op-
erators, which could either be a single function or a function pair
corresponding to the map and reduce phases of the logical operator.
The MR plan is an assignment of physical operators to MR cycles.

The MR plan for an unbound-property query, executes the β-
group-filtering using the TG_UnbGrpFilter (σβγ) operator in the
reduce of the TG_GroupBy. This is followed by the β-unnest (µβ)
operator that produces a set of perfect triplegroups. Thus, both
TG_UnbGrpFilter and unnest can be executed in the reduce of
TG_GroupBy in a single MR cycle (MR1). We call this as eager
β-unnesting of triplegroups, represented in Figure 6(a). The joins
between the triplegroups matching the different subpatterns can be
computed using NTGA’s TG_Join operator in the subsequentMR
cycles. At the end of MR1 for this strategy, we have intermedi-
ate results (perfect triplegroups for the star pattern subqueries) that
contain redundancy with respect to the bound-properties. This in-
creases the cost of MR1.RWrite and HDFS read (MRi.MRead)
and shuffle costs (MRi.MRShuffle) for subsequent cycles MRi
that process the output of MR1. Therefore, optimization strate-
gies to minimize the redundancy in intermediate results of the star-
join computation phase would be useful to generate cost-effective
MapReduce workflows.

4.1 Optimization using β-Unnesting Strategies
The intuition is to concisely represent the result of an unbound-

property star-pattern as far along the MR workflow as possible.
Unbound-property query structures such as B4 in Figure 8 do not
involve further joins based on the bindings of the unbound-property
triple pattern, and thus can remain in its (nested) implicit represen-
tation till the end of the MR workflow. Query structures such as
our example query Q1 participate in joins based on the Object col-
umn of the unbound-property triple pattern. Hence, the star-join
results for such star subpatterns need to be β-unnested before the
join, since the map phase of TG_Join tags the triplegroups based
on the join key and partitions them to different reducers. We pro-
pose evaluation strategies to delay the β-unnesting of triplegroups.
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Figure 6: (a) eager β-unnest of a triplegroup during star-join,
(b) lazy full and (c) lazy partial β-unnest in later join phase

Lazy Map-side β-Unnest: The β-unnesting of triplegroups can
be delayed to a MR cycle that requires join on an unbound-property
triple pattern, such as cycle MRJ1 in Figure 6(b). Specifically, we
push the β-unnest operator to the map phase of the correspond-
ing TG_Join operator. We refer to the new physical operator as
TG_UnbJoin (reduce phase remains same as TG_Join). By de-
laying the β-unnesting of triplegroups, we can minimize the re-
dundancy in results of the star-join computation phase, and hence
avoid unnecessary writes, reads, and shuffle costs for all subse-
quent intermediate MR phases. However, the β-unnest operator
expands the map output of TG_UnbJoin, which impacts the shuf-
fling costs. Assuming that TG_UnbJoin is assigned to the kth MR
cycle MRk in the workflow, then the redundancy in map output
impacts (MRk.MWrite +MRi.MRSort +MRi.MRTR).
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Figure 7: Lazy partial β-unnesting (φ2)

Lazy Map-side Partial β-Unnest: We illustrate this strategy us-
ing Figure 7 . In order to support efficient look-up of (Property, Ob-
ject) pairs in a triplegroup, we use an optimized internal represen-
tation scheme (extended multi-map) represented here as AnnTG,
that concisely represents annotated triplegroups. Example anno-
tated triplegroup AnnTG{o1,o2,o3,o4,o5}

gene9 in Figure 7 represents the
subject triplegroup ftg1 (Figure 5(a)) which is a valid match for
the unbound-property star subpattern SJ2 in query Q1. Anno-
tated TG AnnTG

{o1,o2,o3,o4,o5}
gene9 contains 2 bound-property triples

(matching label and xGO) and 5 triples matching the unbound-
property triple pattern. A β-unnest operation produces 5 triple-
groups (all containing the same bound-property component) that
form a part of the map output for MRk. The default partitioning
scheme in Hadoop assigns the map output tuples to a reducer r
based on the hash value of the join key, i.e., hash(joinKey)%r.
In the case that we have just 2 reducers, it is possible that triple-
groups containing redundant bound-property component are parti-
tioned and assigned to the same reducer based on the join keys (ob-
ject of triples in the unbound-property component). For example,
AnnTG

{o1}
gene9 and AnnTG{o3}

gene9, may be assigned to the same Re-
ducer, e.g., Reducer1. The redundancy in the map output of MRk
can be minimized if triplegroups that are eventually assigned to the
same reducer are concisely represented during the shuffle phase,
i.e., they are not β-unnested completely. By avoiding a part of
the β-unnesting, we can reduce the size of map output, and hence
reduce the shuffling costs. We propose a partial β-unnesting strat-
egy that creates a set of triplegroups that each contain the bound-
property component tgPbnd , and a subset of the unbound-property
component tgPunbnd .

DEFINITION 3. (partial β-unnest) Given a set of triplegroups
TG, an unbound-property star-pattern Stu={Pbnd, Punbnd}, and
a partition function φm that partitions the triples in tgPunbnd into
m partitions, the partial-β-unnest operator µβ

′
produces a set of

triplegroups such that:

µβ
′

(Pbnd,φm)(TG) := { tgi = {tgPbnd ∪ partitioni} }

where
• ∀ tg ∈ TG, the bound-property subset tgPbnd ⊆ tg such

that tgPbnd .props() = Pbnd.

• A function φm assigns a triple tj ∈ tgPu ⊆ tg to partitioni,
i.e., φm : tj → partitioni, where i ∈ {1, 2, ...,m}.

The function φ partitions the triples in tgPunbnd into m buckets
based on the value of the join key. Essentially, µβ

′
produces a max-

imum of m triplegroups for each triplegroup tg ∈ TG. For exam-
ple, a partial β-unnest on AnnTG{o1,o2,o3,o4,o5}

gene9 in Figure 7 using
the partition function φ2 produces 2 triplegroups -AnnTG{o1,o3,o5}

gene9

andAnnTG{o2,o4}
gene9 respectively. This implies that φ2(o1) = φ2(o3) =

φ2(o5) = k1*. Similarly, AnnTG{o2}
gene9 and AnnTG

{o4}
gene9 are

assigned to the same partition and hence remain implicitly repre-
sented as a single triplegroup. The redundant content in the map
output is now a function of the partition range m. The partially β-
unnested triplegroups are tagged and assigned to the reducers based
on the partition key k*. Triplegroup join with lazy partial β-unnest
is implemented as a new physical operator, TG_OptUnbJoin. Fig-
ure 6(c) represents how the I/O footprint can be reduced by partial
and delayed β-unnesting at map phase of MRJ1.

4.1.1 Algorithms For Physical Operators:
Algorithm 1 gives an overview of the job workflow for two key

phases in the NTGA plan – Job1, that computes ‘matching’ triple-
group equivalence classes that match all star subpatterns in the
query, and Jobi, that computes the join between the triplegroup
equivalence classes.
Job1: Compute ‘matching’ TG equivalence classes. The input

to this job is a set of 3-tuples (triples) in the RDF database, and
the output is a set of annotated triplegroups AnnTG that match
the star subpatterns in the query. In the map phase, each tuple is
tagged based on the Subject component. In the reduce phase, all

175



Algorithm 1: MR job workflow for NTGA plan
Job1: Compute ‘matching’ triplegroup equivalence classes

Map:
TG_GroupBy.Map(Tuples T );

Reduce:
TG← TG_GroupBy.Reduce(Sub, List<Tuples>);
TG′←TG_UnbGrpFilter(TG,<EC, {Pbnd, Punbnd}>);

Jobi: Join between triplegroup equivalence classes
Map:
TG_OptUnbJoin.Map(TG′) //partial β-unnest

or TG_UnbJoin.Map(TG′) //β-unnest
Reduce:
TG′′←TG_OptUnbJoin.Reduce(TG′);
or TG′′←TG_UnbJoin.Reduce(TG′);

tuples corresponding to the same Subject component Sub are pro-
cessed in the same reduce(), producing subject triplegroups. This is
followed by a group-filtering phase to filter out triplegroups that vi-
olate the structural constraints in the query. Algorithm 2 shows the
pseudocode for the β group-filtering operator, TG_UnbGrpFilter.
The (Property, Object) pairs in a triplegroup (tempMap in line 1),
are matched with all equivalence classes (star subpatterns) in the
query (line 2). For each matching equivalence classEC, the bound
properties Pbnd are extracted (line 4). The tuples in the group
are considered relevant to the query only if they contain all bound
properties (lines 5-9). If the matched equivalence class contains an
unbound-property, the resultantAnnTG contains all the (Property,
Object) pairs for subject Sub (lines 6-7). If the matched equiva-
lence class does not contain any unbound-property, only the rele-
vant (Property, Object) pairs that match the bound properties are
retrieved into the resultant triplegroup (line 8). Essentially, a group
of tuples that does not contain the required set of bound properties
for any of the star subpatterns in the query is filtered out.

Algorithm 2: TG_UnbGrpFilter
β-GrpFilter (tg,ECList:<EC,{Pbnd, Punbnd}>);

1 tempMap← extract triples in tg;
2 matchedECList←match(tempMap,ECList);
3 foreach EC ∈ matchedECList do
4 Pbnd← extract bound properties inEC;
5 if Pbnd ⊆ tempMap.keySet then
6 ifEC contains unbound property then

//β group filtering
7 propMap← tempMap ;

else
//Extract only bound properties in EC

8 propMap← extract Pbnd entries from tempMap;

9 emit 〈AnnTG(Sub,EC, propMap)〉;

Jobi: Join between TG equivalence classes. The input to this
phase is a set of annotated triplegroups, belonging to the two equiv-
alence classes whose join is to be computed. The output is a set of
annotated triplegroups, representing the joined result between the
two equivalence classes. Based on the amount of redundancy in
intermediate results due to the unbound-property star subpattern, a
decision is made to either enable a partial or full β-unnest of the
map output. Star subpatterns where the unbound-property is asso-
ciated with a (partially) bound object, are not likely to cause redun-
dancy, and hence a full β-unnest is enabled (TG_UnbJoin opera-
tor). For all other cases, the TG_OptUnbJoin operator is used.

Algorithm 3 shows the map-reduce functions for the operator
TG_OptUnbJoin that integrates lazy partial-β-unnest operation. In
the map phase, the annotated triplegroups that join on Subject are
tagged using the Subject’s partition key k* computed using φm
(lines 1-3). For joins on Object, the AnnTG is partially β-unnested

Algorithm 3: TG_OptUnbJoin
Map (key:null, val: AnnTG atg) ;

1 if join on Sub then
2 k*← φm(atg.Sub);
3 emit 〈 k*, atg〉 ;

else if join onObj then
//Partially β-unnest atg using φm(Obj)

4 atgList← partial-β-unnest (atg, φm) ;
5 foreach partialMap ∈ atgList do
6 k*← extract k* for partialMap ;
7 emit 〈 k*, partialMap〉 ;

Reduce (key:k∗, val:List of AnnTGs TG′) ;
8 leftList← β-unnest leftEC AnnTGs from TG′;
9 rightHash← β-unnest rightEC AnnTGs from TG′;

10 foreach leftAnnTG ∈ leftList do
11 foreach prop ∈ leftAnnTG.propMap do

//Handle multi-valued property
12 objList← extract prop’s objects from leftAnnTG ;
13 foreach joinKey ∈ objList do
14 rightAnnTG← rightHash.get(joinKey) ;
15 emit 〈 joinTGs(leftAnnTG, rightAnnTG)〉;

using the partial-β-unnest operation. The partial-β-unnest
operator splits the (Property, Object) pairs in the triplegroup atg
based on the Object’s partition key resulting in a list of partially-
unnested AnnTGs (atgList in line 4). A map output tuple is gen-
erated for each partially-unnested AnnTG, tagged by its partition
key k*(lines 5-7). The replication factor Rep is now a function of
φm. In the reduce phase, all AnnTGs corresponding to the same
group key k* but different join keys are processed in the same re-
duce(). In order to selectively join them based on the original join
key, the AnnTGs corresponding to the right relation (rightEC)
are β-unnested into perfect triplegroups and hashed based on the
join key (rightHash in line 9). The algorithm iterates through
each AnnTG in the left relation (leftEC in line 8), and probes the
hashed relation (rightHash) based on the Object value (join key)
for each property (lines 10-14). Multi-valued properties have mul-
tiple Object values and the probing is done for each value (lines
12-13). When a match is found, the two AnnTGs are joined (line
15) as per the definition of TG_Join. The partition factor used by
φ depends on the size of input, potential redundancy factor, and
average number of tuples that can be processed by a reducer.

5. EVALUATION
We evaluated the proposed algebraic optimization techniques on

both real-world and synthetic datasets, and compared it with two
popular relational-style MapReduce systems, Apache Pig and Hive.
For NTGA, we evaluated two approaches for processing unbound-
property graph pattern queries – EagerUnnest (Section 4), and the
optimized LazyUnnest with map-side lazy β-unnesting. Experi-
ments were conducted on NCSU’s VCL [33], where each node in
the cluster was a dual core Intel X86 machine with 2.33 GHz pro-
cessor speed, 4G memory and running Red Hat Linux. 60 and
80-node Hadoop clusters (block size set to 256MB, 1GB heap-size
for child jvms) were used with Pig release 0.11.1, Hive 0.10.0 and
Hadoop 0.20.2. Only 20GB disk space was available per node, re-
quiring large clusters to support large scale data, i.e., the 80-node
Hadoop cluster made available ∼1.6TB HDFS disk space. Results
recorded were averaged over three trials.

Choice of Systems: Both Pig and Hive evaluate star-joins in a
single MR cycle (one-star-join-per-cycle), resulting in same length
workflows for all queries. Hive enables shared-scan of input re-
lations within an MR cycle, thus minimizing the overall HDFS
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Figure 9: Performance with varying unbound-property star patterns with (a) replication factor 2 (b) replication factor 1 (c) Perfor-
mance with varying size of bound-property component (BSBM-2M, 172GB, 60-node)
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Figure 8: Testbed unbound-property RDF queries

reads. Pig can execute independent MR cycles concurrently, which
is beneficial while evaluating multiple star subpatterns. NTGA ap-
proaches produce shorter workflows (all-star-joins in single MR
cycle) when compared to Hive/Pig for queries with multiple star
subpatterns. A triple relation is loaded as a 3-column table in
Hive, where as Pig (and NTGA) process them as flat files. In
Pig, the SPLIT operator is used to generate vertically-partitioning
relations. HadoopRDF [15] does not currently support unbound-
property queries and is not included for evaluation. Systems such
as HadoopDB [14] scale well but rely on a heavy pre-processing
phase that is more suitable for private clusters and less-evolving
data. We focus on on-demand and pay-as-you-go workloads that
involve quick exploration of datasets to get a sense of the data.

Testbed - Dataset and Queries: Real-world life sciences data
from Bio2RDF [9] was used for evaluation. The queried biological
data warehouse integrated 24 datasets, consisting of a total of∼4.7
billion triples (615GB in n-triple format). Two other real-world
datasets, DBPedia Infobox (DbInfobox) [7] dataset of size 4.4GB
(33.74M triples: 20.5M properties, 13.23M types) and the Billion
Triple Challenge 2009 dataset (BTC-09) [1] of size 193GB (1.5B
triples), were also used for evaluation. More than 45% of prop-
erties in both datasets are multi-valued with varying multiplicity.
Two synthetic datasets generated by the BSBM [11] data genera-
tor tool – BSBM-1M (85GB dataset with 1 million Products, total
∼370 million triples) and BSBM-2M (172GB dataset with 2 mil-
lion Products, total ∼700 million triples) were used for scalability
study. The evaluation tested unbound-property queries with vary-
ing selectivity, varying join structures (single join to more com-
plex structures with multiple star subpatterns) that are represented

in Figure 8. Graph patterns in queries A1-A6 have been extracted
from Bio2RDF demo queries [2]. Additional details about the eval-
uated queries, along with the Pig / Hive scripts, are available on the
project website [3].

Varying join structures (B1-B6): Scalability experiments were
conducted to evaluate different join structures with varying num-
ber of unbound-property triple patterns, and varying arity of star
subgraphs. Figures 9(a) and (b) show a performance compari-
son of Pig, Hive, and the NTGA approaches for two-star queries
with no unbound properties (B0), one unbound-property triple pat-
tern with join on unbound object (B1), one unbound property as-
sociated with a partially-bound object (B2), two unbound-property
triple patterns in the same star with one partially-bound object (B3),
and an unbound-property triple pattern (B4). Pig / Hive evaluate all
three queries using 3 MR jobs (one per star-join), while NTGA
evaluates them in 2 MR jobs. The queries involve a multi-valued
property prodFeature that impacts redundancy.

In order to avoid data loss during node failure, fault-tolerant sys-
tems such as Hadoop rely on replication of data blocks on multiple
nodes using a configurable parameter (dfs.replication). Initial set of
experiments were conducted using a replication factor of 2 for the
larger dataset BSBM-2M on a 60-node cluster (1.6TB disk space,
20GB per node). The results, shown in Figure 9(a), demonstrate
how critical it is to concisely represent intermediate results and
eliminate redundancy when possible. Missing bars marked with
‘X’ represent failed execution. Pig / Hive approaches failed during
the last job (join between stars) for all 5 queries due to shortage
of disk space. While EagerUnnest successfully executed for B0,
B1, and B2 by concisely representing subgraphs involving multi-
valued properties, it failed for queries B3 and B4. This is because
the double unbound-property triple patterns in B3 result in materi-
alization of large intermediate results during the star-join compu-
tation phase, and we see the benefit of pushing the β-unnesting to
a later phase (LazyUnnest) in executing this query. Similarly, for
query B4, LazyUnnest successfully executes by materializing con-
cise intermediate results, while other approaches fail.

In order to analyze the performance of the different approaches
on the larger dataset, the same set of queries were repeated after
reducing the HDFS replication factor to 1. Figure 9(b) shows the
results comparing the performance of the approaches for BSBM-
2M on the same 60-node cluster. In general, we see the bene-
fit of the NTGA approaches for all queries. Query B0 shows a
baseline case with all bound properties where Hive and NTGA ap-
proaches outperform Pig due to scan-sharing. Further, NTGA ap-
proaches concisely represent results containing multi-valued prop-
erty which leads to I/O savings. For query B1 (join on unbound-
property triple pattern), lazy partial β-unnesting reduces the shuffle
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Figure 10: Total HDFS writes with varying size of bound-
property component (BSBM-2M, 60-node)

costs and is 21% faster than eager β-unnesting (27% faster than Pig
and 26% faster than Hive). For query B2, all approaches evaluate
the filter on the partially-bound object associated with the unbound-
property triple pattern in the initial map phase, and from there on,
the execution is similar to the baseline query B0. As in the case
of replication factor 2, Hive and Pig failed again for B3 and B4.
The star subpattern with double unbound-property triple patterns
(one with partially-bound object) in B3, is concisely represented
in LazyUnnest with 80% less HDFS writes than EagerUnnest. In
queries, such as B4, where the unbound-property triple pattern does
not participate in join between stars, the lazy β-unnesting strategy
keeps the result compact till the end, thus saving on intermediate
disk reads / writes as well as final writes. Lazy β-unnesting using
LazyUnnest results in 61% less HDFS writes than EagerUnnest,
and overall has a 68% gain in performance times over the eager
β-unnesting approach.

Choice of Lazy β-Unnesting Strategies: Testbed queries con-
sist of varying structure of unbound-property triple patterns. For
example, unbound-property triple patterns in queries B2 and B3

have partially-bound objects, i.e., the user does not know the ex-
act property relationship but knows something about the object.
In such cases, it is likely that the number of triples matching the
unbound-property triple pattern are reduced and hence the asso-
ciated star-join is more selective, i.e., results in less number of
pattern combinations when compared to same triple pattern with
an unbound object. Other queries such as B1 consist of unbound-
property triple pattern with an unbound object. Though lazy β-
unnesting is beneficial for all cases, we wanted to study benefits
and overhead of lazy full and lazy partial β-unnest strategies. Fig-
ure 11 shows execution times for the last MR cycle (MRJ1) where
the join involving the unbound-property triple pattern is computed.
Since the size of input for MRJ1 is same for both approaches,
this analysis allows us to zoom into the map-side overhead for
full and partial β-unnest, savings in shuffle costs, and analysis of
reduce-side overhead in the case of partial-β-unnest. Our experi-
ments show that a lazy full β-unnest may be sufficient for unbound-
property queries with partially bound objects (queries B2 and B3).
However, unbound-property queries with an unbound object (B1
series), benefit from partial-β-unnest. Other experiments were cor-
roborative to these findings, and hence the LazyUnnest approach
reported in this section evaluate lazy full-β-unnest for unbound-
property queries with partially-bound-object patterns, and lazy partial-
β-unnest for those with unbound-object patterns.

Varying number of bound-property edges: Unbound-property
queries with bound-property triple patterns varying from 3 (B1-3bnd)
to 6 (B1-6bnd) were evaluated. Figure 10 shows the total amount
of HDFS writes for Pig, Hive and the NTGA approaches for the test
queries evaluated on a 60-node cluster with BSBM-2M. In general,
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Figure 11: Lazy Full vs. Lazy Partial Unnesting: A compara-
tive study of savings and overhead in MR cycle MRJ1
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Figure 12: Performance comparison (BSBM-1M, 85GB)

the increase in the number of bound-property components results
in a gradual increase in the size of reduce output for Pig and Hive,
while lazy β-unnesting keeps the result concise till the end of map
phase of the last MR job (Job2). The relational approaches pro-
duce 10 combinations of the bound component for the test queries
since the relational arity of the subgraph that matches the unbound-
property subpattern is 10. However, LazyUnnest compactly cap-
tures all the required combinations, resulting in approx. 80 to 86%
less HDFS writes than Hive / Pig for queries B1-3bnd to B1-6bnd,
respectively. Additionally, the reduce output for the NTGA ap-
proaches remain almost constant for such query patterns, which al-
lows more flexible exploration of large datasets. Figure 9(c) shows
a comparion of the execution times for all approaches. Note that
Pig failed for all queries beyond three bound-property subpatterns.
LazyUnnest (φ1K ) consistently outperformed the other approaches,
running about 25% faster than Hive.

Varying size of RDF graphs: Figure 12 shows the evaluation of
the BSBM queries using BSBM-1M (85GB) on the 60-node clus-
ter (HDFS replication factor 2). NTGA approaches successfully
executed for all datasets, with up to 80% less HDFS writes after
the star-join computation phase for query B1 when compared to
Hive. Once again it was observed that both Pig and Hive failed for
queries B3 and B4 due to insufficient disk space. This is due to the
high redundancy in star-join result that ripples into the next MR
job, impacting the scan and I/O costs. For query B2, LazyUnnest
outperforms all other approaches, executing about 75% faster than
both Pig and Hive. LazyUnnest reduces the redundancy in inter-
mediate results, and thus improves the execution time of the eager
β-unnesting approach (EagerUnnest) by 54% (65%) for query B3

(B4). Hive / Pig failed to execute for more complex queries such
as B5 and B6. These sets of experiments demonstrate the benefit
of the proposed strategies in mitigating the effect of redundancy on
MapReduce processing costs.

Real-world Unbound-property Queries (A1-A6): Figure 13
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Figure 13: Evaluation of real-world unbound-property queries
(Bio2RDF Life Sciences Dataset)

shows a performance comparison of Pig, Hive, and the two NTGA
approaches for Bio2RDF queries A1-A6 on a 80-node Hadoop clus-
ter. Queries A1 and A2 have one star subpattern with one unbound-
property triple pattern associated with partially-bound objects. For
query A1, while Hive / Pig approaches produce all combinations
of subtuples matching the bound property with triples matching
the unbound property (∼63K tuples), EagerUnnest produces ∼7K
triplegroups that concisely represent subtuples with multi-valued
properties. LazyUnnest achieves more concise representation of all
combinations corresponding to the unbound-property star pattern
and produces only ∼3K triplegroups. The impact of the savings
in HDFS writes due to elimination of redundancy in intermediate
results, becomes more clear with the two-star queries (A3-A6).

Queries A3 and A4 contain an unbound-property in each of the
two star subpatterns (one with partially-bound object). While Pig
/ Hive materialize 26GB of intermediate results in the star-join
computation phase for query A3, the NTGA approaches write only
about 1.3GB of data to the HDFS, contributing to the 32% perfor-
mance gain over Hive while computing the star subpatterns. The
LazyUnnest results in reduced HDFS writes in MR1, and reduced
scan costs and shuffling costs in MR2, resulting in additional 18%
performance gain over EagerUnnest in MR2. For query A4, Pig
initiates 4 MR jobs (initial map-only job to read entire input and
compress it, 2nd and 3rd MR jobs to compute the two star patterns,
and the 4th job to join the stars). However, Pig approach failed
(marked as ‘X’) due to lack of HDFS space while executing the last
job. Again, there is a huge savings in terms of HDFS writes, with
EagerUnnest and LazyUnnest producing only 1.8GB and 0.6GB of
intermediate results, respectively, after the initial star-join phase,
as opposed to 152GB of writes in Hive. An important factor that
results in large intermediate results with relational-style process-
ing, is the redundancy due to the presence of large number of high
multiplicity properties in biological datasets (representative of real-
world datasets). For A4, EagerUnnest and LazyUnnest approaches
are 48% and 53% faster than Hive, respectively.

Query A5 contains a star pattern with two unbound-property triple
patterns – one whose object matches a gene “nurr77”, and the other
with an unbound object, connecting the star to a single edge retriev-
ing the label property type. Hive executes A5 using 2 MR jobs,
with both jobs requiring a full-table scan. NTGA approaches also
execute using 2 MR jobs but with one full-table scan, resulting in
overall savings of about 1400s (22% gain) over Hive. The single
unbound-property triple pattern in query A6 partially binds the ob-
ject to “hexokinase”. While Hive uses 3 MR jobs, including 2 for
the star-join computation, Pig uses an extra map-only job to com-
press the input (total 4 jobs). NTGA’s LazyUnnest approach shows
a benefit of up to 48% over Hive.

DBPedia Queries (C1-C4): Additional experiments were con-
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Figure 14: Evaluation of real-world unbound-property queries
(DBInfobox and Billion Triple Challenge’09)

ducted on varying sizes of real-world datasets, 4.3GB DBInfobox
dataset (5-node cluster) and 193GB BTC-09 dataset (40-node clus-
ter) as shown in Figure 14. Four different query structures were
used. C1 and C2 are simple queries with single join that retrieve all
information about Scientists (unselective) and Sopranos TV series
(selective). In the case of DBInfobox dataset, since the data pro-
cessed is quite small, the benefit of the NTGA approach is not seen
for the first two queries. However, Pig does better than Hive since
it processes two copies of the input relation, and hence initiates
double the number of mappers and reducers. C3 and C4 represent
real-world scenarios during exploration where the relationship be-
tween entities (star subpatterns) is unknown. NTGA approaches
showed a performance gain of 20-22% and 50% over Hive and Pig
respectively for query C3, and resulted in approx. 80% less HDFS
writes than Hive. All four queries had redundancy factor greater
than 0.6. In particular, C4 which involved an unbound-property in
each of the two star patterns showed a redundancy factor close to
0.89, and hence showed major improvement (50% gain over both
Pig and Hive) with the lazy β-unnesting strategy.

Unbound-property queries on the BTC-09 dataset resulted in very
large HDFS reads which negatively impacted Pig the most, due
to its multiple scans per star-join. The scan-sharing across star
patterns in NTGA resulted in 50% less HDFS reads for the two
star queries. NTGA approaches resulted in 54% (25%) gains over
Pig (Hive) for query C3 with 1 unbound-property. The result of
the star-join phase for C4 (2 unbound properties) has redundancy
factor of 0.93 (0.75GB) and increases to 0.98 (14GB) in the final
output for Pig/Hive. The lazy β-unnesting strategy results in 98%
less HDFS writes, and have 70% (55%) performance gain over Pig
(Hive) for C4. In general, real-world data contained multiple multi-
valued properties with varying multiplicity, and highly benefited by
the generalized nested representation of triplegroups and lazy β-
unnesting strategies while processing unbound-property queries.

6. CONCLUSION
We propose a scalable solution for processing unbound-property

graph pattern queries on MapReduce, by minimizing the redun-
dancy in intermediate results that adds avoidable costs while pro-
cessing long execution workflows. The proposed approach uses a
nested triplegroup model to implicitly represent the intermediate
results and lazily ‘unnest’ them only when necessary. A combina-
tion of the two result in significant savings in intermediate HDFS
reads and writes, which form a major portion of query process-
ing costs on MapReduce. Additional savings in intermediate map-
reduce data shuffling costs can be achieved by delaying a portion
of the ‘unnest’ to the reduce phase. Experiments show promising
results for different query join structures with varying selectivities.
Future directions include exploring more complex structures with
multiple unbound-property patterns as well as unbound-property
queries with aggregation constraints.
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ABSTRACT
Social media and micro-blogging platforms have been suc-
cessful for communication and information exchange enjoy-
ing vast number of user participation. Given their millions
of users, it is natural that there is a lot of interest for mar-
keting and advertising on these platforms as attested by the
introduced advertising platforms on Twitter and Facebook.

In this paper, inspired by micro-blogging advertising plat-
forms, we introduce two problems to aid ad and marketing
campaigns. The first problem identifies topics (called anal-
ogous topics) that have approximately the same audience in
a micro-blogging platform as a given query topic. The main
idea is that by bidding on an analogous topic instead of the
original query topic, we reach approximately the same au-
dience while spending less of our budget. Then, we present
algorithms to identify expert users on a given query topic
and categorize these experts to finely understand their di-
versified expertise. This is imperative for word of mouth
marketing where individuals have to be targeted precisely.

We evaluate our algorithms and solutions for both prob-
lems on a large dataset from Twitter attesting to their e�-
ciency and accuracy compared with alternate approaches.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database applications—
Data mining ; J.4 [Social and Behavioral Sciences]: Eco-
nomics

Keywords
Social media, Micro-blogging advertising platforms, Analo-
gous topics, Alternative topics, Expert categorization

1. INTRODUCTION
Social media and micro-blogging have experienced expo-

nential growth in user acquisition and participation over the
last decade. Services such as Twitter, Facebook, and Pin-

©2015, Copyright is with the authors. Published in Proc. 18th Interna-
tional Conference on Extending Database Technology (EDBT), March 23-
27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0
.

terest allow millions of people to share billions of content
and interact on a daily basis. Social platforms are targets
of sophisticated advertising and marketing, mainly because
of the large number of users, and the enormous amount of
time users spend on them.

In micro-blogging platforms (e.g. Twitter), social con-
nections get established by “following” an individual u. By
establishing such a connection, you get to receive and view
all posts (tweets) produced by u. The set of all posts that
are visible by a user v is commonly referred to as the feed
(timeline) of v. The act of following someone explicitly ex-
presses interest in the information that person produces.

Social media and micro-blogging platforms are utilized by
many as important marketing vehicles. By amassing a large
number of followers, an individual or a company can broad-
cast messages targeted to these followers. Such messages
vary depending on the type of the account (e.g., celebrity,
professional, consulting, corporate) and what one wishes to
achieve (e.g., brand/product awareness, sales leads, or gen-
eral information dissemination). Typically, one produces in-
formation in the field of one’s expertise – which is a topic or
a set of topics that one knows well, professes, or is known for
as an expert in the community. For example a celebrity (say
a singer) will disseminate information of interest to fans,
such as tour dates, personal events and announcements, as
well as new songs and albums, whereas a company, say a
technology startup, shares information related to its prod-
ucts, and the overall technology product space.

Recently, new advertising platforms have been introduced
[10, 17]. In contrast to the keyword bidding model, as is
popular in the case of search engine advertising, the micro-
blogging platform takes a di↵erent approach. An advertiser
selects a topic q, bids a specific dollar amount, and provides
a post (known as a promoted post). The micro-blogging
advertising platform identifies all the users that are inter-
ested in the topic q based on some internal algorithms and
inserts the promoted post in the feed of these users (explic-
itly identifying it as a promoted post). The dollar amount
is utilized by an auction that determines the winning bidder
(for topic q). As an example, if we are interested in show-
ing a promoted post to those users that are interested in
music, we will bid an amount for the topic music and pro-
vide our promoted post. If we win, our promoted post will
be inserted in the feed of those accounts interested in topic
music. Commonly the amount we bid is per impression or
per engagement (i.e., per person seeing or clicking on the
promoted post).
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In such a setting there are numerous opportunities for op-
timization. Of immediate interest would be reaching the
same or approximately the same set of people with a lower
cost. For example, by bidding on the topic public relations
we can be successful only if we bid a price of x. What if
we knew that if we bid on the topic seo (search engine opti-
mization), we can reach the same people (and thus have the
same impressions) for a price y < x? The first problem we
outline in this paper is to produce a set of topics R analo-
gous to a topic q (that we wish to bid on). These topics have
the property that if we bid on one of them instead of q, our
promoted post will be inserted in the feed of approximately
(for a precise definition of approximate) the same people as
those in the case of q. Now, by examining the associated
cost of each topic, we can make a more informed decision
by comparing the savings versus how many interested indi-
viduals our posts will reach for each of the analogous topics
in R. We propose an algorithm called IAT to address this
problem (Section 3).

Note that by advertising on a cheaper topic t 2 R instead
of q, (1) (approximately) the same people see the ad and (2)
expectedly same people engage with the ad. The cost we
should spend in case of targeting t instead of q, therefore,
would be lower (1) per impression (in cost per impression
model) and (2) per engagement (in cost per engagement
model). Hence by bidding on t, we reach same audience
with a lower cost independent of the cost model in use.
Utilizing this technique provides a win-win situation for

advertisers and the advertising platforms (e.g., Google, Twit-
ter, etc.). Adopting the technique, advertisers who are in-
terested in a topic will have more options (more topics with
similar audience) to target. This prevents from the existence
of a very popular topic that is too expensive to target along-
side some cheaper topics that no one targets. In this situa-
tion, more advertisers a↵ord to advertise. Hence the revenue
of the advertising platform may significantly increase while
advertisers also obtain more savings per advertisement.
A second popular marketing activity on micro-blogging

platforms is to engage experts on specific topics into word of
mouth marketing campaigns. By having experts on a topic
become advocates of a product or a service, all of their fol-
lowers become informed about the product or service. This
is a typical form of word of mouth marketing. For exam-
ple, if we are interested to market a new cloud computing
product by word of mouth on a social media, we can engage
cloud computing experts and persuade them to adopt, use,
or talk about our product.
Finding the right advocates online is always challenging.

Commonly, a user’s account has a set of topics associated
with it highlighting its expertise. Even if we have an a pri-
ori knowledge of the specific topics we wish our advocates
to have expertise on, it may be impossible to find one that
spans all these topics. Thus, a more iterative approach is
desirable. Given that we can identify all experts on a single
topic q, it would be very useful if we are capable of catego-
rizing those experts based on other topics of their expertise.
That would enable us to examine them in a more refined
fashion and identify those that are closest to our topics of
interest. For example, a set of experts in both cloud comput-
ing and virtualization may be more suitable for us than a set
of experts in cloud computing and data centers. Being able
to compute such expert groups algorithmically, given one
specific topic of expertise q (cloud computing in our exam-

ple), is imperative. We have typically no knowledge of what
is the “right” number of groups and it is expected that some
experts belong to many groups. We propose an algorithm
(called CTE, Section 4) to group together all experts on any
given topic in a varying number of groups (corresponding to
high-level topics) based on the collective topics of expertise
of all these users.

The problems discussed in this paper are inspired by social
media and micro-blogging advertising platforms. Since the
internal algorithms utilized by these platforms are unknown
to public, we have proposed some models (e.g., expert iden-
tification, topic bidding model, etc. that are explained in the
next sections) and utilized them in this paper as a proof of
concept. We note that these models, our assumptions, and
our methods are not based on or designed for any specific
social media or micro-blogging platform.

As we have access to a large dataset from Twitter, we
evaluate the algorithms on this dataset for various queries.
Both IAT and CTE algorithms operate fast (a few minutes)
in all experiments stressing the practicality of our develop-
ments. In addition, we deploy a qualitative study demon-
strating the goodness of our findings and compare our CTE
algorithm with some baseline techniques (Section 5). A lit-
erature review is provided in Section 6, followed by Section 7
concluding our discussion.

2. THE TARGETS
Di↵erent social media and micro-blogging platforms such

as Twitter, Facebook, and Google+ have introduced the
concept of lists (circles in case of Google+). A list is a user-
defined set of accounts. Commonly, users create a list group-
ing their favourite accounts on a particular topic into that
list which they annotate with a descriptive title. For exam-
ple, in Twitter a user may create a list with the title of “pol-
itics” that include Twitter accounts @BarakObama, @Ange-
laMerkel, @HillaryClinton, @JohnKerry, and @DavidCameron.
The utility of a list is to provide quick filtering (by list title)
of posts from accounts belonging in the list. It is very typical
to group together accounts that profess or depict expertise
on a particular topic. A user can create multiple lists and
an account can belong to any number of lists.

We utilize the infrastructure of the Peckalytics system [2]
to associate with each account u, a set of topics T

u

extracted
from the titles of the lists containing that account. The pro-
cess of extraction includes tokenization of the title, common
word (stop word) and spam filtering, entity extraction, and
related word grouping via Wikipedia and WordNet. The
end result is, for each account u, a set of topics that best
describes the topics associated (by other users) with u. We
emphasize however, that any process of mapping an account
to a set of topics that best describes the account can be
utilized (e.g., machine learning methods). The techniques
presented herein will work fine without any modification.

A user u 2 U is an expert on topic t 2 T , i↵ t 2 T
u

. This
means that (for our specific way of extracting topics) other
users recognize u as an expert on topic t. We call topic t,
a topic of expertise for u. The set of experts on topic t is
denoted by E

t

. A user u 2 U is interested in topic t 2 T i↵
the probability that u follows (reads) any content (a post,
a shared video, a posted link, etc.) that is related to topic
t is higher than a given threshold ✓ 2 [0, 1]. For a topic t,
we refer to the set of all users who are interested in t as the
target set of topic t denoted by S

t

.
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Micro-blogging platforms utilize several factors (content
of posts, followers, etc.) to identify the interests of users
and subsequently form target sets. However, such factors
are largely proprietary. In this paper, we approximate the
target set of a topic t by partitioning it into two categories:
(1) users interested in t who are also expert on t (E

t

) and
(2) users interested in t who are not expert on t (I

t

). In
other words, users in E

t

are producers of contents related
to t, and users in I

t

are consumers of contents related to
t. Thus, S

t

= E
t

[ I
t

. For any topic t, the set of experts
E

t

is available to us; i.e., E
t

= {u|t 2 T
u

}. However, the I
t

sets are unknown to us (i.e., we do not know which users are
interested in a given topic t). One may suggest to retrieve
the interests for each user by taking the union of expertise
topics of all accounts this user follows. This approach has
some drawbacks. A given user (say u) may be an expert on
several topics. When another user (say v) follows u, the user
v may be interested in any of these topics but not necessarily
in all of them. It is not straightforward to determine which
topic is of interest to v, given the topics of u’s expertise. In
section 3.1, we present an approach to resolve this issue.

3. ANALOGOUS TOPICS
In an advertising scenario on a social media platform, by

placing a bid for a particular topic q, assuming that the bid is
granted, users in S

q

will observe the promoted post on their
feeds. Naturally, an interesting question is whether there is
any other topic t that is cheaper than q (i.e., it is possible
for a lower bid to be granted) with a target set S

t

“close”
to S

q

. If possible, this would reduce advertising cost. This
question is the key component of this Section. To formalize
the question, we introduce some definitions.

Definition 1. When a promoted post corresponding to a
topic q is shown to a user belonging to S

t

\ S
q

(for some
topic t), we say a true impression is achieved. If the pro-
moted post is shown to a user in S

t

\S
q

, we call that a false
impression. Note that X\Y denotes the set di↵erence be-
tween two arbitrary sets X and Y . As users in S

t

\S
q

are
not interested in q, presenting a promoted post to them is
not a desired outcome.

Definition 2. The distance between two arbitrary sets X
and Y , denoted by D(X,Y ), is the size of the symmetric dif-
ference between them: D(X,Y ) = |(X\Y ) [ (Y \X)|. More-
over, the distance between two topics q and t is the distance
between their target sets S

q

and S
t

: i.e., D(q, t) = D(S
q

, S
t

).

We note that a low distance between topics q and t trans-
lates to a high true impression and a low false impression
since D(S

q

, S
t

) = |(S
t

\S
q

)[(S
q

\S
t

)| = |S
t

\S
q

|+ |S
q

|� |S
t

\
S
q

|. Note that |S
q

| is a constant for a fixed query topic q.

Definition 3. A topic t is analogous to topic q i↵ the
distance between q and t is less than a given threshold k 2 N;
i.e., D(q, t) < k. That is, t is analogous to topic q i↵ the
true impression (S

t

\ S
q

) is high while the false impression
(S

t

\S
q

) is low.

The goal of this section is to identify a list of topics that
are analogous to a query topic q. These topics are ranked
subsequently based on a weight function (Equation 10) that
involves both true and false impression values. If any of
the analogous topics has a bidding cost lower than q, it is a
potential alternative for bidding purposes.

Problem 1. Let q be a given query topic. Identify all
topics t that are analogous (Definition 3) to q.

The solution to Problem 1 can be utilized by advertisers
to instigate advertising campaigns by choosing the analogous
topics instead of query topic q, target (approximately) the
same set of audiences, and pay less.

Problem 1 could be solved if the target sets for all topics
were known. Unfortunately, as explained in Section 2, find-
ing the targets sets is not straightforward (since the I

t

sets
are unknown). To address this problem, in the rest of this
section, we present an approach to identify analogous topics
without calculating the exact target sets.

3.1 Properties of analogous topics
The target set of a topic t can be partitioned into two

sets: the set of experts E
t

and the set of interested users I
t

.
According to Section 2, the set E

t

can be readily identified
utilizing the lists. However, I

t

is unknown. We aim to iden-
tify topics t such that I

t

and I
q

are “close” (for a suitable
definition of close).

We reason about approaches to identify these desired top-
ics. Through this reasoning, we gain some intuition about
the properties of analogous topics. Based on the discussion,
we conclude this section by introducing two properties of
analogous topics that enables us to identify them without
calculating the I

t

sets.
Approach I: A well-known measure of similarity between

two arbitrary sets X and Y is the correlation coe�cient, de-
noted by ⇢(X,Y ). The correlation between two sets can
be calculated utilizing the Pearson product-moment cor-
relation coe�cient [15]: ⇢(X,Y ) = cov(X,Y )

�X�Y
that is equal

to
n(

Pn
i=1 xiyi)�

Pn
i=1 xi

Pn
i=1 yip

(n

Pn
i=1 x

2
i�(

Pn
i=1 xi)

2
)(n

Pn
i=1 y

2
i �(

Pn
i=1 yi)

2
)

on a sample,

where n is the number of elements, and x
i

(y
i

) is 1 if the ith

element belongs to X (Y ) and 0 otherwise.
In Theorem 1, we show that there exists a direct transla-

tion between the correlation coe�cient and the distance of
two sets.

Theorem 1. For any two arbitrary sets X and Y , if the
correlation between them is greater than a threshold � 2
[�1, 1], there exist a threshold k 2 N, negatively associated
with � (k ⇠ ��), such that the distance between X and Y is
less than k:

8X,Y,8� 2 [�1, 1],

9k 2 N, k ⇠ ��, ⇢(X,Y ) > � , D(X,Y ) < k (1)

Proof Proof Sketch. An increase in ⇢(X,Y ) is equiv-
alent to an increase in

P
x
i

y
i

(number of similar items in
both sets) that is equivalent to a decrease in �P

x
i

y
i

hence
a decrease in D(X,Y ). Moreover, any increase in � and sub-
sequently ⇢(X,Y ) translates to a decrease in D(X,Y ) and
subsequently k.

Definition 4. We define the correlation between two ar-
bitrary topics t and t0, denoted by ⇢(t, t0), as the correlation
between their target sets; i.e., ⇢(t, t0) = ⇢(S

t

, S
t

0). Further-
more, we define the expertise correlation between two topics
t and t0, denoted by ⇢

E

(t, t0), as the correlation between their
sets of experts; i.e., ⇢

E

(t, t0) = ⇢(E
t

, E
t

0).

According to Theorem 1, for a given query topic q, all top-
ics with a high correlation value with q can be reported as
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the analogous topics. Since the target sets are unknown, the
correlation between two topics cannot be computed. How-
ever, we can compute the expertise correlation as follows
(the Pearson product-moment correlation coe�cient):

⇢
E

(t, t0) = ⇢(E
t

, E
q

) =
cov(E

t

, E
q

)
�
Et�Eq

=
n(

P
n

i=1

t
i

q
i

)� r.sp
(n

P
n

i=1

t2
i

� r2)(n
P

n

i=1

q2
i

� s2)
(2)

where n is the number of users, and r (s) is the number
of expert users on topic t (q). Moreover, t

i

(q
i

) is 1 if the
ith user is expert on topic t (q) and 0 otherwise. The de-
nominator is equal to

p
(nr � r2)(ns� s2). The correlation

coe�cient can vary from -1 (negatively correlated) to +1
(positively correlated).

A basic approach to approximate the correlation between
two topics might be to calculate the expertise correlation
between them and to utilize it as a metric to assess the
correlation between those topics; i.e., one may claim that
⇢(t, q) ⇠ ⇢

E

(t, q).
Note that a high expertise correlation between t and q

suggests that the distance between E
t

and E
q

is small (The-
orem 1). Thus, among experts, the true impression is large
and the false impression is small. The primary idea of Ap-
proach I is that if the expertise correlation between t and
q is high, one may conclude that the correlation between
the whole target sets S

t

and S
q

is high; hence, according to
Theorem 1, the distance between S

t

and S
q

would be small
and t would be analogous to q (Definition 3). Unfortunately,
this is not correct as clarified by the following example.

Example 1. Consider two topics “oil” and “Persian clas-
sic dance”. Note that as Persians actively argue about both
topics (suppose independently in separate posts), many users
may place them in lists corresponding to each topic. There-
fore, many Persians belong to the expertise sets of both top-
ics, creating a high expertise correlation between these topics.
In this sense, we may end up concluding that the topic “oil”
is analogous to the topic “Persian classic dance”. On the
other hand, however, the target sets of these two topics can
be very di↵erent. A person who is interested in “oil” is not
necessarily interested in “Persian classic dance”. In other
words, by targeting the interested users in one of these top-
ics, we do not target the users interested in the other topic.
Thus, a high correlation between sets of experts does not im-
ply the same for the corresponding sets of interested users;
therefore the target sets for these topics are not necessarily
related and ⇢(t, q) 6⇠ ⇢

E

(t, q).

This problem may be resolved by not looking at topics
“in isolation” but in conjunction with other topics. The
two topics “oil” and “Persian classic dance” have high exper-
tise correlation. However, let us consider other topics with
high expertise correlation to “oil” or “Persian classic dance”.
The topic “oil” has high expertise correlation to topics in
S
oil

= {energy, power, war, · · · } for example, whereas “Per-
sian classic dance” has high expertise correlation to topics
in S

dance

= {art,music, culture, · · · }. The expertise corre-
lation between topics in S

oil

and S
dance

is extremely low.
Example 1 suggests that a holistic view, that considers

the expertise correlation of all topics in conjunction rather
than individual topics in isolation, might help to determine

c s

q

Figure 1: Partitioning a graph of topics. Any op-
timal clustering algorithm would generate two clus-
ters as shown: node q may be assigned to each of
the two clusters. Note that an optimal clustering
will not generate a cluster {q, c, s}.

topics that are analogous to q. It is a natural tendency of
users to be interested in high-level topic categories as well
as topics under these categories. For example, if user u is
interested in Wimbledon (the tennis tournament), it is nat-
ural to assume, that with a high probability, u is interested
in the bigger category tennis as well as other tennis events
such as French Open, US Open, Australian Open, etc. If
u is interested in Oscars, it is safe to assume, with a high
probability, u is also interested in other film events such as
Golden Globe, BAFTA, Cannes film festival, Berlin film fes-
tival, etc. Based on this, we can conclude that for topics in
the same category (e.g., Wimbledon and US Open which are
both tennis events), the sets of interested users are close (i.e.,
if t

1

and t
2

are members of the same category of topics, the
distance D(I

t1 , It2) is small). This suggests that identifying
the topics in the category that topic q belongs would aid in
locating the analogous topics.

Approach II: One approach to incorporate this holistic
view might be to calculate the expertise correlation between
all topics and create a correlation graph where nodes repre-
sent topics and the weight of an edge between two arbitrary
nodes t and t0 is ⇢

E

(t, t0). Then partition (or classify) this
graph and report all topics in the partition containing topic
q, as the topics analogous to q. Unfortunately, this approach
has its own shortcomings as shown in the following example.

Example 2. Consider the graph shown in Figure 1. Each
node in this graph represents a topic with node q being the
query topic. All the nodes represented by a circle have a
high expertise correlation with each other, and all nodes rep-
resented by a square have a high expertise correlation with
each other. The expertise correlation is small between a cir-
cle and a square node. Node q has a high expertise cor-
relation with nodes c and s, and there is a high expertise
correlation between nodes c and s.

If we are looking for topics analogous to q, ideally one
should identify c and s. However, any clustering scheme
that relies on a global objective function based on the exper-
tise correlations will partition this graph into two clusters as
shown in Figure 1 without returning {q, c, s} as a separate
cluster. We note that for any algorithm that generates a
given number of partitions k, one can generalize this exam-
ple by creating sets of k di↵erent shapes, without changing
the behavior observed.
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The problem encountered in Example 2 is a result of the
fact that clustering algorithms rely on the optimization of
a global objective function that does not take into account
the original topic of interest q. Assigning q to a cluster takes
place based on the optimality of a global function, and that
can lead to poor performance in situations where the focus
is solely on q.

Conclusion: These two examples suggest that one needs
a hybrid approach considering both the direct expertise cor-
relation between each topic and q, as well as the expertise
correlation amongst the neighbors.

A topic t is analogous to topic q if and only if:

PROPERTY 1: The expertise correlation between q and
t is greater than a threshold �; i.e., ⇢

E

(q, t) > �.

PROPERTY 2: Topic t is in the same category of top-
ics as topic q. In other words, the topics having high
expertise correlation with topic t should have high ex-
pertise correlation with topic q and vice versa:

8t0; ⇢
E

(t, t0) > � , ⇢
E

(q, t0) > �

When property (1) is satisfied, the distance between E
t

and E
q

is small (Theorem 1). Moreover, property (2) sug-
gests that the distance between I

t

and I
q

is small. Therefore,
when both properties are satisfied, the distance between the
target set of topic t (S

t

= E
t

[I
t

) and the target set of topic
q (S

q

= E
q

[ I
q

) is small; thus t is analogous to q.
In most real world scenarios, it is impossible to identify

topics t that strictly satisfy both properties. Therefore, we
introduce a technique in Section 3.2 that considers both
properties, by defining a “trade-o↵” between them. In other
words, our approach assigns weights to any topic t based on
the direct expertise correlation between t and q (Property 1),
and at the same time penalizes that weight (by associating
a cost) if the topics having high expertise correlation with t
have low expertise correlation with q, or the topics with low
expertise correlation with t have high expertise correlation
with q (Property 2).

3.2 Computing analogous topics
Recall that U = {u

1

, u
2

, · · · , u
n

} denotes the set of users
and T = {t

1

, t
2

, · · · , t
m

} denotes the set of topics.

Definition 5. The expert coverage probability of topic
t 2 T , denoted by P(t), is the fraction of users in U that

are expert on t. In particular, P(t) = |Et|
|U| . Moreover, the

expert coverage probability of topic t 2 T given topic q (the
conditional expert coverage probability, denoted by P(t|q))
is the fraction of users in U 0 = E

q

that are expert on t. In

particular, P(t|q) = |Et\Eq |
|Eq | .

As an example, suppose U consists of 1000 users, among
them 10 users are expert on “drawing” and 50 users are ex-
pert on “music”. This leads to P(drawing) = 10/1000 =
0.01 and P(music) = 0.05.

For any two topics t and q, the probabilities P(t|q) and
P(t) may be significantly di↵erent. As an example, as-
sume we observe that among experts on topic “Picasso”,
60% are expert on “drawing” and 5% are expert on “music”.
Thus, P(drawing|Picasso) = 0.6 >> P (drawing) while
P(music|Picasso) = P(music) = 0.05 (showing that music
and Picasso are independent topics). We argue that these

changes in the expert coverage probability of di↵erent topics
given a fixed topic can be utilized as an equivalent measure
to Property 1.

We utilize a two-state automaton to study whether any
topic t is analogous to a given query topic q or not. This
automaton has two states N and A corresponding, respec-
tively, to the concepts of “Not-analogous” (t and q are not
analogous) and “Analogous” (t and q are analogous). Given
topic q, while considering topic t, the automaton can be
in one of the states N or A. The N state corresponds to
low conditional expert coverage probability and the A state
corresponds to high conditional expert coverage probability.
These states determine how far P(t|q) is from the original
P(t) assessing whether topic t satisfies Property 1 (Theo-
rem 2). For any topic t, we aim to identify the state of the
automaton with the maximum likelihood.

We deploy a binomial distribution as the basis to realize
such measurement. The binomial distribution is a density
function that determines the probability that r successes are
achieved in a sequence of d independent experiments, when
a success is yield with a fixed probability p. In the case of
topics and experts, this expresses the probability that among
d experts on q, r users are expert on a topic t where p = P(t).
Adhering to the binomial distribution, the probability that
the automaton is in state N for a topic t 2 T is:

P(N
t

|q) =
�
d

rt

�P(t)rt(1� P(t))d�rt

Z
(3)

where r
t

= |E
t

\ E
q

|, d = |E
q

|. Similarly the probability
that the automaton is in state A is:

P(A
t

|q) =
�
d

rt

�
(↵⇥ P(t))rt(1� ↵⇥ P(t))d�rt

Z
(4)

where ↵ > 1 (a constant), and ↵ ⇥ P(t) is the expected
expert coverage probability of t given q in case t is analo-
gous to q. Here, Z =

�
d

rt

�P(t)rt(1 � P(t))d�rt +
�
d

rt

�
(↵ ⇥

P(t))rt(1 � ↵ ⇥ P(t))d�rt is a normalizing constant. Since
the denominator Z is similar in both equations and does not
impact the calculations, hereafter, we ignore it and just con-
sider the numerators in calculating and comparing P(A

t

|q)
and P(N

t

|q).
Theorem 2. The value of P(At|q)

P(Nt|q) increases (decreases)

i↵ the distance D(E
t

, E
q

) decreases (increases).

Proof. Let ↵ be fixed. The value of P(At|q)
P(Nt|q) increases

(decreases) when ↵rt( 1�↵P(t)

1�P(t)

)d�rt increases (decreases). The

latter increases (decreases) when r
t

increases (decreases)
or P(t) decreases (increases). This is because ↵ > 1 and

0 < 1�↵P(t)

1�P(t)

< 1. Moreover P(t) decreases (increases) when

|E
t

| decreases (increases). In both cases D(E
t

, E
q

) decreases
(increases).

To incorporate Property 2, we create a correlation graph:
a graph G = (M,E) where any topic t 2 T�{q} corresponds
to a node in G. Moreover, for any two nodes m

i

,m
j

2
M representing topics t

i

and t
j

, the weight of the edge e
connecting m

i

and m
j

is w
e

= w(m
i

,m
j

) = ⇢
E

(t
i

, t
j

).

Definition 6. Suppose the state of the automaton for
any topic is determined. In particular, the automaton is in
state s

i

(N or A) when considering topic t
i

(t
i

corresponds
to node m

i

in G). The edge e = (m
i

,m
j

) is called inconsis-
tent if (w

e

> 0 and s
i

6= s
j

) or (w
e

< 0 and s
i

= s
j

).
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Definition 6 suggests that an edge e = (m
i

,m
j

) is in-
consistent if the automaton is in di↵erent states when the
expertise correlation between topics t

i

and t
j

(correspond-
ing to nodes m

i

and m
j

) is positive (⇢
E

(t
i

, t
j

) > 0) or when
the automaton is in the same state if ⇢

E

(t
i

, t
j

) < 0.
Problem 2 utilizes the automaton and the correlation graph

to identify the most likely states for all topics maximizingQ
ti2T�{q} P(s

i

|q) (or equivalentlyP
ti2T�{q} logP(s

i

|q)) where
s
i

2 {N ,A} is the state assigned to topic t
i

. To satisfy
Property 2, Problem 2 associates a cost with any inconsis-
tent edge.

Problem 2. Let G = (M,E) be the correlation graph for
topics in T � {q}. Identify the state of the automaton for
each node m

i

2 M (s
i

2 {N ,A}) to

maximize
X

mi2M

logP(s
i

|q)�
X

e2E

c
e

(5)

Note that c
e

is the cost of edge e = (m
i

,m
j

) that is equal
to |w

e

| if e is inconsistent or zero otherwise. By adding a
constant factor

P
e2E

we<0

w
e

to Equation 5, we get

(5) ⌘ maximize
X

mi2M

logP(s
i

|q) �
X

e=(mi,mj)2E

si 6=sj

w
e

(6)

Maximizing Equations 5 and 6 is equivalent to maximiz-
ing the probability that the correlation graph G is created
by a two-state automaton where the probability that the
automaton is in state N or A for each node in G is derived
by Equations 3 and 4 (corresponding to Property 1) and for
each edge e in G, the probability that the automaton main-
tains the same state over the two end-points of that edge
depends on w

e

(corresponding to Property 2).

Theorem 3. Problem 2 is NP-hard.

Proof. We reduce the max-cut problem to Problem 2.
In max-cut problem, given a weighted graph G, the goal is
to partition vertices of G into two subsets S

1

and S
2

such
that the weight of edges between S

1

and S
2

is maximized.
The max-cut problem is widely known to be NP-hard [12].

The reduction is as follows. Let us assume we want to
identify the maximum cut for the graph G. We create a
graph G0 where there is a node u0 in G0 for any node u in G.
For any edge e = (u

i

, u
j

) 2 G, we add an edge e0 = (u0
i

, u0
j

)
in G0 (u0

i

and u0
j

are the nodes in G0 corresponding to u
i

and
u
j

in G) with a weight of w
e

0 = �w
e

where w
e

is the weight
of edge e in graph G. Moreover, for any two nodes v

i

and v
j

in G not connected to each other, we add an edge between
their corresponding nodes v0

i

and v0
j

in G0 with a weight of
w

e

0 = 0. Finally, we set the probability that the automaton
is in the N or A state for any node in G0 to be equal. Identi-
fying the maximum cut for graph G reduces to solving Prob-
lem 2 for graph G0 by identifying the state of automaton for
any node in G0 that maximizes Equation 6 that is equivalent
to maximizing W =

P
e

0
=(u

0
i,u

0
j)2E

0
;su0

i
6=su0

j

(�w
e

0).

After identifying the optimal states of the automaton for
each topic, we define the set S

1

containing all nodes in G cor-
responding to nodes in G0 that are assigned with a N state
and S

2

containing all nodes in G corresponding to nodes in
G0 that are assigned with a A state. Thus, W =

P
e2E

0 we

where E0 contains all edges in E with an endpoint in S
1

and

the other endpoint in S
2

. In this sense, maximizing W is
equivalent to identifying the maximum cut.

To identify analogous topics, a more general approach
would be to model this process by a 3-state automaton. The
automaton, for any topic, can be in any of the 3 states “Dis-
similar”, “Independent”, or “Analogous”. The conditional
expert coverage probability of topic t on these states is, re-
spectively, a

1

, a
2

and a
3

where a
1

< a
2

< a
3

. In particu-
lar, a

2

= P(t) is the expert coverage probability for topic t
over U , a

1

is a lower conditional expert coverage probabil-
ity showing that the topics t and q are dissimilar (perhaps
negatively analogous), and a

3

is a higher conditional expert
coverage probability showing that the topics t and q are
analogous. In the present work, we simplify the model and
merge the “Dissimilar” and “Independent” states to form a
“Not-analogous” state N . This generalization can be con-
ducted easily following the developments in the section.

3.3 IAT: an algorithm to Identify Analogous
Topics

According to Theorem 3, Problem 2 is NP-hard. It in-
volves two parts: (1) maximizing the log-likelihood of expert
coverage probabilities over all nodes; i.e.,

P
mi2M

logP(s
i

|q),
and (2) minimizing the cost of inconsistent edges; i.e.,

P
e2E

c
e

.
The value for the first part can be calculated for each node
independently. Computing the second part, however, needs
to be aware of the states of the neighboring nodes.

We propose a technique (called IAT) that adopts a heuris-
tic approach to reduce the complexity of Problem 2. The
main root of the complexity in Problem 2 is the existence
of cycles in the graph. In an acyclic graph, we can order
nodes of the graph and identify the best state assignment
by optimizing both parts of Equation 5 node-to-node based
on this ordering. However, when the graph contains a cycle,
no ordering can be assumed between nodes in the cycle; the
states of all these nodes depend on each other (due to the
second part) and should be determined simultaneously. This
leads to a complex structure to deal with. The basic idea of
IAT is to obtain an acyclic subgraph (a spanning tree) of the
original graph. We, then, identify the optimal states based
on this tree. Our experiments show that by utilizing this
technique, we can e↵ectively locate the analogous topics.

This approach raises the question on how to choose the
spanning tree. In Problem 2, before determining the state
of a node, we consider the states of the neighboring nodes
in order to reduce the cost of inconsistent edges. Among
all edges connected to an arbitrary node u, some have the
highest probability to be inconsistent. We refer to these
as inconsistency-prone edges. The goal is to assign the
states such that (1) the log-likelihood of expert coverage
probabilities over all nodes is maximized and (2) the cost
of inconsistency-prone edges is minimized. The idea is that
since the inconsistency-prone edges are the most likely edges
to induce costs, a state assignment that reduces the cost over
these edges, reduces the cost over all edges.

To locate the inconsistency-prone edges, we define an ex-
pected cost value for each edge. The edges with high ex-
pected cost values are considered inconsistency-prone. Let
Â

u

= logP(Au|t)
logP(Au|t)+logP(Nu|t) determine the expected proba-

bility that u is associated with state A and N̂
u

= 1� Â
u

be
the expected probability that u is associated with state N .
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The expected cost of an edge e = (u, v) denoted by ĉ
e

is:

ĉ
e

=

(
|Â

u

� Â
v

|⇥ w
e

if w
e

� 0,

(1� |Â
u

� Â
v

|)⇥ |w
e

| if w
e

< 0.
(7)

where the value |Â
u

� Â
v

| (a value between 0 and 1) deter-
mines the di↵erence in probability of being associated with
state A for adjacent nodes u and v. High values of |Â

u

�Â
v

|
suggest that u and v are likely to be assigned with di↵erent
states. Having the expected cost values, Problem 3 identifies
the optimal acyclic subgraph.

Problem 3. Considering the expected cost of each edge
in the graph G = (M,E), identify an acyclic subgraph T =
(M,E⇤) with maximum sum of the expected costs over all
edges in E⇤.

Problem 3 is equivalent to the minimum spanning tree
problem. We can create a new graph G0 by negating the
weights of all edges in G and identifying the minimum span-
ning tree in G0. This tree would be the optimal solution for
Problem 3 that can be found utilizing any MST algorithm
such as Kruskal [11] or Prim [4]. The run time complexity
for these algorithms on a dense graph is O(m2) where m is
the cardinality of M .

Assume tree T is the optimal solution for Problem 3. The
IAT algorithm is a dynamic programming approach that
calculates two values LP (N

u

) and LP (A
u

) for any node u 2
M starting from leaves, going upwards to the root. For each
leaf u, LP (N

u

) = logP(N
u

|q) and LP (A
u

) = logP(A
u

|q)
that are calculated based on Equations 3-4. For any inner
node u, the values are calculated as follows:

LP (A
u

) = logP(A
u

|q)+ (8)
X

v2C(u)

max(LP (A
v

), LP (N
v

)� w(u, v)),

LP (N
u

) = logP(N
u

|q)+ (9)
X

v2C(u)

max(LP (A
v

)� w(u, v), LP (N
v

)),

where C(u) is the set of u’s children and w(u, v) is the weight
of edge (u, v).

When all values are calculated, IAT identifies the best
state assignment to all nodes by locating the chain of states
maximizing the value of max(LP (A

r

), LP (N
r

)) where r is
the root of the T .

The pseudo-code for IAT is presented as Algorithm 1.
Note that p

u

is the parent of u and C(u) is the set of u’s
children in Tree T . The variable APointer

u

(Npointer
u

)
saves the optimal state assigned to u when its parent p

u

is
assigned with a state A (N ). The function “argmax(a, b)”
returns A if a > b and returns N otherwise. Finally, s

u

holds the assigned state of node u. IAT reports all topics
that are assigned with state A as the analogous topics. For
each analogous topic t, we define a weight as

weight(t) = logP(A
t

|q)� logP(N
t

|q) (10)

This weight determines the improvement we achieve when
topic q is assigned with state A instead of N . Thus, top-
ics with higher weights correspond to more prominent rela-
tionships with topic q. Algorithm IAT ranks the analogous

topics based on these weight values and returns Q, a ranked
list of all nodes assigned with a A state.

Algorithm 1: The IAT algorithm

input : The correlation graph G = (M,E), Topic q
output: A ranked list of analogous topics Q
// Identify the optimal spanning tree

1 Calculate the expected cost of edges according to Eq. 7
2 Identify the optimal spanning tree T (e.g., by Prim)

// Probability calculations

3 Traverse T bottom-up (from leaves to the root):
4 foreach u 2 M do
5 LP (A

u

) = logP(A
u

|q) +P
v2C(u)

max(LP (A
v

), LP (N
v

)� w(u, v))

6 LP (N
u

) = logP(N
u

|q) +P
v2C(u)

max(LP (A
v

)�
w(u, v), LP (N

v

))
7 APointer

u

= argmax(LP (A
u

), LP (N
u

)� w(u, p
u

))
8 NPointer

u

= argmax(LP (A
u

)� w(u, p
u

), LP (N
v

))

// Identifying the state of the root

9 s
r

= argmax(LP (A
r

), LP (N
r

))
// Identifying the state for all nodes

10 Traverse F top-down (from roots to leaves):
11 foreach u 2 M do
12 s

u

= NPointer
u

;
13 if s

pu = “A” then
14 s

u

= APointer
u

// Sort the analogous topics

15 Q = ;
16 foreach u 2 M do
17 if s

u

= “A” then
18 Q = Q [ {u}
19 Sort Q based on Eq. 10

Theorem 4. The IAT algorithm identifies the optimal
state assignment on the tree. The run time complexity of
IAT is ✓(m2) where m is the number of topics.

Proof Proof Sketch. IAT is a standard dynamic pro-
gramming approach that solves Problem 2 step by step from
leaves to the root. The value LP (A

u

) is the optimal solution
for Problem 2 on the subtree rooted at u when the state of u
isA. Similarly LP (N

u

) is the optimal solution for Problem 2
on the same subtree when the state of u is N . Therefore the
value of max(LP (A

r

), LP (N
r

)) is the optimal solution for
the whole tree.

We can calculate the expected cost of each edge in con-
stant time. Since there are m2 edges, line 1 takes ⇥(m2).
Prim’s algorithm implemented with Fibonacci heap takes
⇥(m2) to identify the MST. The probability calculation phase
takes ⇥(m) since each edge in the MST can update LP of
one node only once. The state identification phase also takes
⇥(m) to calculate the optimal states for all nodes. Finally
it takes ⇥(m logm) to sort the analogous topics. Thus, in
total IAT takes ⇥(m2).

4. CATEGORIZING THE FOLLOWERS
In Section 1 we explained it is very helpful to categorize all

experts on a given topic q based on other topics of their ex-
pertise in order to engage them in word of mouth campaigns.
For example, among all experts on social media, those who
are expert on topics such as “consumer behavior”, “distribu-
tion channel”, “market-based pricing”, “sales”, etc. can be

187



potentially categorized together (in a big category of “Mar-
keting”); and those expert on topics such as “high ranking
placement”, “website visitors”, “Google results”, “search en-
gine tra�c”, “white hat seo”, etc. can form a big category
of “Search Engine Optimization”.

By categorizing the experts, we would be able to under-
stand them in a more refined fashion and to locate the ex-
perts that are the “right” advocates to instigate a popularity
propagation (based on word of mouth e↵ects) in the network.

4.1 CTE: an algorithm to Categorize Topics
and Experts

Let q be a topic, E
q

be the set of experts on q, and T
u

be the set of all topics user u is an expert on. We propose
an algorithm (called CTE) to categorize users u 2 E

q

based
on the topics of their expertise. We introduce four desirable
properties that CTE should have:
(1) Soft clustering: Users may be assigned to several cate-
gories. This is desirable as users usually have diverse topics
of expertise hence they might belong to various categories.
(2) Unknown number of categories k: The optimal number
of categories is unknown. The algorithm should identify the
best number of categories instead of requiring it as an input.
(3) Coping with high dimensional data: The number of top-
ics is large. On high dimensional datasets, any approach
based on distance (e.g., the traditional clustering algorithms)
is inaccurate since distances between all pairs converge.
(4) Considering the correlation between topics: Topics are
correlated; any approach that is based on an assumption
that dimensions (topics in this case) are independent is not
applicable.

In Sections 5 and 6, we argue that traditional clustering
algorithms fail to provide useful categorizations. Here, we
present an approach (satisfying the properties above) that
considers topics and users in two steps: first it categorizes
the topics without taking into account the users (topic cate-
gorization phase); and then it assigns each user u 2 E

q

based
on T

u

, to the topic categories (user assignment phase).
This separation of topics and users in categorization helps

to segment topics into partitions that are representing high-
level topic categories. When we utilize an approach that
simultaneously categorizes users in E

q

and topics in
S

u2Eq

T
u

(e.g., the bi-clustering techniques), topics are categorized
according to the correlations calculated utilizing the sets T

u

of users u in E
q

, instead of utilizing the sets T
u

of all users
in U . Incorporating the users in E

q

(instead of all users) to
capture correlations introduces coverage bias.

Coverage bias loosely means that users in E
q

are not rep-
resentative of the population. There are cases where the cor-
relation between two topics t

1

and t
2

is low but the topics are
highly correlated in the context of a query topic q (i.e., based
on users in E

q

). For example, consider topics“Queen’s park”
and “Government” in the context of topic “Ontario”. These
topics are not highly correlated in general. However, when
the set we consider consists of experts on “Ontario”, the two
topics would be highly correlated, since Queen’s park is the
home for the Legislative Assembly of Ontario and is usually
utilized as a metonym for the Government of Ontario. On
the other hand, there are cases where two topics t

1

and t
2

are highly correlated but when considered in the context of
experts on a query topic q, this correlation is small. Con-
sider two topics “football” and “rugby” given the query topic

“fifa” as an example. In general rugby and football are cor-
related due to the relation between rugby and the American
football. However, given the topic “fifa”, the term “football”
would usually refer to the international “football” that has
low correlation with “rugby”.

4.1.1 Topic categorization

The CTE algorithm runs in two phases: (1) topic cate-
gorization, and (2) user assignment. Topic categorization
starts by creating the correlation graph among topics as
discussed in Section 3.2 (incorporating all users in U in
weight calculations). Subsequently, we aim to segment top-
ics (graph nodes) into categories such that topics with posi-
tive expertise correlation values are located in the same cat-
egory and topics with negative expertise correlation values
are located in di↵erent categories.

Problem 4. Let G = (V,E) be a correlation graph where
topic t 2 S

u2Eq

T
u

corresponds to a node in V . Also, the

weight of the edge connecting any pair of nodes u
i

, u
j

2 V
(representing topics t

i

and t
j

) is w
uiuj = ⇢

E

(t
i

, t
j

). Segment
G into categories such that the sum of the weights of edges
with positive weights that are cut and edges with negative
weights that are uncut is minimized.

Bansal et. al. have shown that Problem 4 is NP-hard even
for a simple case where the weight of all edges are either �1
or +1 [1]. Demaine et. al. have shown that Problem 4 and
the weighted multicut problem are equivalent; Problem 4 is
APX-hard; and obtaining any approximation bound better
than ✓(log n) is di�cult (n = |V |). Utilizing the linear pro-
gramming rounding and “region growing” techniques, they
have proposed an algorithm to approximate Problem 4 with
a tight bound of ✓(log n) [5].

This approach models the problem as a linear program. A
zero-one variable x

uv

is defined for any pair of vertices u and
v. The equation x

uv

= 0 suggests that u and v are in the
same category; x

uv

= 1 declares the opposite. Problem 4
translates to

minimize
X

(u,v): wuv<0

|w
uv

|(1� x
uv

)+
X

(u,v): wuv>0

|w
uv

|x
uv

subject to the following constraints:
(1) x

uv

2 [0, 1], (2) x
uv

= x
vu

, and (3) x
uv

+ x
vw

� x
uw

.
A“region growing”technique is adopted, afterwards, to trans-
form the fractional values of x

uv

to integral values 0 or 1.
The basic idea is to grow balls around graph nodes (with a
fixed maximum radius). Each ball is reported as a category.
Therefore, two nodes u and v with a high value x

uv

would
be assigned to two di↵erent balls and finally two di↵erent
categories (equivalent to setting x

uv

= 1).
The run time complexity of the algorithm proposed by

Demaine et. al. is O(n7). This approach is not practical for
datasets containing a large number of topics. In our im-
plementation of topics based on Twitter lists, we construct
millions of topics for Twitter users. Any approach based on
an O(n7) algorithm is deemed not practical for our setting.

We propose a heuristic approach called MaxMerge to cat-
egorize the correlation graph when the graph is large. The
CTE algorithm utilizes MaxMerge in the topic categoriza-
tion phase. To start, MaxMerge constructs a category for
each vertex in G. The algorithm proceeds iteratively. In
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each iteration, it calculates the value�
AB

achieved by merg-
ing any pair of existing categories A and B. The value �

AB

is the average of the weights of edges with one end-point in
category A and one end-point in category B. According to
Problem 4, the objective is to categorize G such that the
edges with positive weights are in the same category and
the edges with the negative weights are amongst di↵erent
categories. The �

AB

value expresses our progress towards
the objective when the two categories are merged. At each
iteration, categories A and B having the maximum positive
value of �

AB

will be merged; MaxMerge continues as long
as this maximum positive value is greater than the average
weight of all node pairs in the whole graph (stating that
merging the two categories at hand should result in a value
that is higher than the average weight of one big category
that includes all topics). Pseudo code of MaxMerge is pro-
vided as Alg 2. The input is a graph G = (V,E).

Algorithm 2: The MAXMERGE algorithm

1 Let avr be the average of the weight of all edges in E
2 Consider each node as a category
3 foreach pair of categories A and B do
4 SUM =

P
weight of all edges between A and B

�
AB

= SUM/(|A| ⇤ |B|)
5 Max = max

A,B

�
AB

; A⇤, B⇤ = argmax
A,B

�
AB

6 if Max > avr then
7 Merge A⇤ and B⇤ to one category and Goto step 3

8 return all categories

Theorem 5. The run time complexity of Algorithm 2 is
O(m2 logm) where m = |V |.

Proof. Line 1 takes O(m2) since there are m2 edges be-
tween the topics. Line 2 takes O(m). At the beginning there
are O(m2) pairs of partitions and it takes O(1) to calculate
� values for each pair. Thus it take O(m2) to calculate
these values at the first iteration. We can store these values
in a priority queue. Based on the implementation it takes
O(m2) or O(m2 logm) to create this priority queue.

We do several iterations while Max > avr to merge the
partitions. The number of iterations is at most m � 1.
In each iteration, it takes O(logm) to find and delete the
max value, O(m) to merge the two partitions, O(m) to up-
date the values of � for the new merged partition, and
O(m logm) to update these values in the priority queue.
Note that if we merge two partitions A and B into the new
partition C, for any partition D: SUM

CD

= SUM
AD

+
SUM

BD

.
Therefore, overall the run time is O(m2 logm).

4.1.2 Assigning the experts

Once the topic categories are identified, we assign users in
E

q

to these categories. CTE assigns a user u 2 E
q

based on
T
u

(Algorithm 3): it assigns u to any category containing at
least one topic in T

u

. Note that adhering to this approach,
a user u can be a member of several partitions expressing
u’s diversified expertise on various high-level topics.

5. EXPERIMENTS
We evaluate the proposed algorithms IAT and CTE on

a dataset containing about 4.5 million lists (that is all lists
available in Twitter when we collected the data). Each list

Algorithm 3: Expert Assignments

1 Create an empty category C̃ for each topical category C
2 foreach user u in E

q

do
3 foreach topic category C do
4 if there exist topic t 2 C such that t 2 T

u

then

5 C̃ = C̃ [ {u}

6 Output all categories C̃

Table 1: The Impact of pruning on the number of
topics.

number number size: number
Query topic of of of topics after

experts topics the 1% pruning

social+media 375809 1360060 551
canada+politics 460 19080 1490
wine+Toronto 1337 27061 938

cloud+computing 56 2769 2769
fashion+trends 1112 36263 886

l
i

is associated with a topic t
i

(hence 4.5 million topics)1

For each user u in a list l
i

, the corresponding topic t
i

is
considered as a topic of expertise for u (i.e., t

i

2 T
u

). There
are 13.5 million distinct users in these lists.

We execute the algorithms on a machine with a 16 core
AMD OpteronTM 850 Processor. This machine runs Cen-
tOS 5.5 (kernel version 2.6.18-194.11.1.e15) and contains
100GB of memory. All algorithms are single-threaded and
are implemented in Java.

We observe similar trends when evaluating our algorithms
with di↵erent query topics. Here, we report results for the
following 5 queries: (1) canada+politics, (2) cloud+computing,
(3) social+media, (4) toronto+wine, and (5) fashion+trends.
For each query q (e.g., social+media), we retrieve all users
whose topics of expertise match each input query (e.g., all
users who are expert on social and also on media). These
users form the set of experts E

q

for the given query q.

5.1 Identifying the analogous topics
Identifying the analogous topics for the aforementioned

queries involves two steps: (1) creating the correlation graph,
and (2) assigning A or N states to topics (Algorithm IAT).

Figure 2(a) shows the distribution of topics and experts
for query social+media. We count how many users in E

q

(for a given query q) are expert in each topic in
S

u2Eq

T
u

.

We see a similar trend for all other queries. This figure sug-
gests that the curve displaying the number of experts on
each topic has a heavy tail. Thus, pruning the topics with
very small frequency can significantly help in improving per-
formance. The run time of identifying analogous topics for
the query social+media is measured utilizing di↵erent prun-
ing percentages and reported in Figure 2(b). Here, pruning
with a percentage of ↵ means that the topics that appear in
the expertise sets of less than ↵% of the experts are removed;

i.e., a topic t is pruned i↵
|{u2Eq |t2Tu}|

|Eq | < ↵

100

.

We see that a pruning of only 1 � 2% can significantly
decrease the run time. On the other hand, pruning does not
have a major impact on the accuracy of the results. The

1The precise process we follow to make this association can
be found in [2].
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Table 2: Analogous topics (topics are presented stemmed)
social media canada politics toronto wine cloud computing fashion trends

1 busi polit food tech fashion
2 entrepreneur news food wine cloud trendsett
3 pr canada foodi cloud comput blogger
4 polit politicsdemocraci economi food drink technolog blog
5 journalist canadian polit restaur a68 fashion blogger
6 seo media canada cloudcomput fashionista
7 entertain news polit wine cloudyp fashion beauti
8 info cdnpoli toronto food tech news media
9 internet market politico canadian cloud 0 design
10 communic peopl eat cloud virtual fashion blog
11 industri canadian toronto restaur virtual shop
12 advertis local chef restaur news news
13 fav progress media busi creativ
14 brand toronto resto vendor lifestyl
15 engag journalist food toronto techi fashion style
16 communiti blogger toronto foodi work beauti
17 inform interest we like eat drink softwar beauti fashion
18 onlin market cdn polit all cloud saa busi
19 digit market liber ontario cloudcomputingenthusiast inspir
20 cultur govern culinari clouderati entertain

topics that are reported as analogous are very similar for
all these pruning percentages (e.g., no di↵erence exists in
the top 10 topics when we prune the topics with various
percentages 0.1%-10%). We observe similar behavior for all
other queries. For the rest of this section, we use a pruning
of 1% of the topics to improve performance. Table 1 shows
the number of topics that are not pruned in this step for
the given five queries. According to Table 1, the pruning
step with even a very small value of 1% significantly reduces
the dimensionality of the problem. Hence, the problem can
be solved more e�ciently. The only exception here is the
query for cloud+computing. We note that this query has
56 experts. A pruning of 1% removes any topic appearing
in the expertise set of less than 0.56 users; thus, no topic is
removed in this case (all topics appear in the expertise set
of at least 1 user).

Table 2 reports the top-20 topics for each query as identi-
fied by IAT. The analogous topics are sorted based on Equa-
tion 10. In Table 2, we observe, for example, that topics
such as “busi(ness)” (topics are presented stemmed), “en-
trepreneur”, “journalist”, “seo”, “internet market(ing)”, and
“communic(ation)”are analogous to the query social+media.

The utility of this information is evident: instead of focus-
ing on topics such as social+media for advertising campaigns
(which due to their popularity could involve a high mone-
tary premium), one can focus on peripheral topics, not as
popular, but still be able to target an audience close to that
of the original query.

Running IAT takes about 0.1 seconds on average for queries
evaluated. Note that the majority of the run time to iden-
tify analogous topics is taken by the first step. The total
run time is bound by the time required to calculate the cor-
relation between the topics.

5.2 Categorizing experts and topics
The experts and topics categorization is done in two steps:

(1) creating the correlation graph, and (2) executing CTE.
As Figure 2(c) shows pruning significantly reduces the run
time here as well for query social+media. We report the
results when a pruning percentage of 1% is utilized. Similar

behavior is observed for the other cases. We define the size
of a query as the number of topics in

S
u2Eq

T
u

after prun-

ing takes place. Figure 2(d) reports the run time of CTE
versus the size for di↵erent queries. On average, CTE takes
less than 1 minute to run, making CTE practical for most
real settings. As Theorem 5 suggests, the run time of CTE
increases polynomially when the size increases.

We have evaluated the CTE algorithm for many queries
and observed similar trends in results of all experiments.
In what follows, due to space constraints, we present re-
sults using the query social+media. We stress however that
these results are typical and consistent across a wide range
of queries we experimented with. Thus, the specific query
social+media is representative of the results obtained with
algorithm CTE. Table 3 presents the categories identified
by CTE for social+media. In each case, we insert an expla-
nation for the set of topics in each category (in bold). It is
evident that the contents of each category are highly related;
i.e. from that point of view the results do make sense.

Evaluating the output of CTE qualitatively is challeng-
ing. To assess the utility of the results of CTE, we need
to compare it with other applicable approaches and most
importantly obtain confidence that the categories identified
are indeed the correct ones. In the absence of ground truth
to objectively compare the CTE approach with other appli-
cable approaches (such as clustering), we resort to develop
a base reference set that is manually constructed and com-
pare our results against the base set. Running the CTE
algorithm on multiple manually created base sets leads to
highly consistent results.

To create these base sets, we choose several topics, catego-
rize each topic into subsets pre-selected by us, and manually
annotate each set with a descriptive name. Hereafter, we call
these new datasets, the manually annotated datasets. These
manually annotated datasets, present a “ground truth” in
which we know (or expect) a preset number of categories to
appear. The goal is to categorize topics and users in the
manually annotated datasets utilizing di↵erent algorithms
(without taking the manual annotations into account) and
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Figure 2: Dataset distribution and run time analysis

Table 3: Topic categories for the query “so-
cial+media”. Rows represent categories including a
description followed by the topics in each category.
Tourism in North America (calgari, ottawa, van-
couver, toronto, chicago, san fransisco, seattle; hotel,
tourism, travel, beer, wine, restaurant, food, ...)
Australia (melbourn, sydney, australia, aussi)
UK (manchester, europe, uk, london)
Sports (tennis, golf, hockey, baseball, nfl, sport, foot-
ball)
Health (mental heath, health well, pharmacy, health-
care, doctor, medic, psychology, ...)
Education (edu, edtech, learn, university, science, re-
search, academy, ...)
Investments (invest, economia, economy, financ,
realest, realtor, real estat)
South by South “SXSW” festivals (sxsw, west texas,
austin, houston, dallas)
Law (legal, law, lawyer)
Twibes: groups of people with common interests
(twibe socialnetwork, twibe journal, twibe blog, twibe
writer, twibe travel, twibe photographi, twibe webdesign,
twibe internetmarket, twibe brand, twibe socialmedia,
twibe advertis, twibe entrepreneur, ...)

compare how close the results are to the manual annota-
tions. We compare CTE with the baseline clustering algo-
rithm k-means (denoted by kmeans in Figure 3) and 3 base-
line co-clustering algorithms Euclidean distance (denoted by
cocluster Euclidean), Information theoretic (denoted by co-
cluster IT), and minimum sum-squared residue co-clustering
(denoted by cocluster MSR) [3,6,7]. The following categories
form one sample manually annotated dataset:
(1) A category S

1

including topics {physics, math, chem-
istry}. We call this category, SCIENCE.
(2) A category S

2

including topics {democrats, republican,
politics}. We call this category, POLITICS.
(3) A category S

3

including topics {soccer, football, fifa}.
We call this category, SPORTS.
(4) A category S

4

including topics {google, tablet, android}.
We call this category, TECHNOLOGY.
We create a dataset D. The set of topics in D is S =
{physics, math, chemistry, democrats, republican, politics,
soccer, football, fifa, google, tablet, android}. Users in D
are all users who are expert in at least one topic in S (U 0 =
{u 2 U |T

u

\ S 6= ;} where U denotes the set of all users in
the Twitter dataset). For each user u 2 U 0, T

u

\ S is the
set of all topics (among topics in D) that u is an expert on.
We compare the results of CTE and the baseline algorithms
when deployed to categorize users and topics in D.

The optimal categorization of D is achieved when (1) the
topics in S are categorized into 4 categories S

1

, S
2

, S
3

,
and S

4

(in accordance with the way the data set was con-
structed); and (2) the users in U 0 are categorized into 4
categories of {users who are expert on a topic in S

1

}, · · · ,
{users who are expert on a topic in S

4

}.
Although algorithm CTE does not need a number of cat-

egories as input, the baseline clustering techniques do re-
quire the number of clusters (categories). Thus, we provide
them with the optimal number 4 providing them with an
advantage. Algorithm CTE identifies the optimal number
of categories without receiving it as an input.

To calculate the accuracy of an algorithm, we proceed
as follows. Assume algorithm X outputs topic categories
C

1

, C
2

, · · · , C
r

and user categories D
1

, D
2

, · · · , D
s

. We uti-
lize four annotations SCIENCE, POLITICS, SPORTS, and
TECHNOLOGY to label each category produced by X. A
category C

i

(D
i

) is labeled by the annotation having the
maximum number of entities in that category. For exam-
ple, consider a topic category C

1

= {physics, soccer, math}.
This category includes two topics in SCIENCE, one topic
in SPORTS, and no topic in POLITICS or TECHNOL-
OGY. Thus, we label the category C

1

as SCIENCE. More-
over, assume D

1

= {u
1

, u
2

, u
3

, u
4

}, where T
u1 = {soccer,

math}, T
u2 = {soccer}, T

u3 = {math, democrats}, and
T
u4 = {chemistry, republican}. We can observe that 3 users

in D
1

are experts on SCIENCE, 2 users on SPORTS, and 2
users on POLITICS. Therefore, we label the category D

1

as
SCIENCE.

The topic categorization accuracy (user categorization ac-
curacy) of an algorithm is the percentage of the topics (users)
that are labeled correctly. Note that in the previous exam-
ple, one topic is labeled inaccurately in C

1

(the topic soccer
is labeled as SCIENCE) and one user is labeled inaccurately
in D

1

(u
2

is labeled as SCIENCE without having any ex-
pertise on physics, math, or chemistry). Figure 3(a) reports
the accuracy for topic categories and Figure 3(b) shows the
accuracy for user categories for all algorithms. Figure 3
demonstrates the superiority of CTE when compared with
baseline clustering algorithms.

6. RELATED WORKS
Twitter lists are recently used to address a few questions

such as identifying users’ topics of expertise [2,16] and sepa-
rating elite users (e.g., celebrities) from ordinary users [18].
The problem of identifying a set of topics that can be uti-
lized as a substitute for an expensive topic is studied for the
case that target sets of topics are given and the cost for each
topic is known [9]. In many real settings we don’t have ac-
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Figure 3: Comparison between the accuracy of dif-
ferent clustering algorithms

cess to this information. This paper focuses on the problem
when the target sets and costs are unknown.

Automatons are utilized in several problems such as iden-
tifying bursts of activity in time-series data [13], spatial
datasets [14], and subgraphs of social networks’ graphs [8].
Perhaps the most similar work to our IAT algorithm is the
DIBA algorithm [8] that is proposed to identify the bursty
subgraphs of users in a social network when the informa-
tion burst happens as a result of an external activity (such
as an earthquake). We note that there are major di↵er-
ences between our IAT and DIBA algorithms: (1) DIBA is
mainly designed for unweighted graphs; (2) DIBA does not
consider negative edges. In fact, the optimization problem
(Problem 2) in presence of negative edges is NP-hard (The-
orem 3) while if all weights are non-negative, the problem
would become equivalent to min-cut and can be solved in
polynomial time [8]; (3) IAT addresses Problem 2 by locat-
ing the optimal cycle-free subgraph, while DIBA utilizes a
heuristic approach that randomly orders graph nodes and
attempts to find the best label for each node in this order;
this approach does not identify the optimal subgraph and
may ignore considering several important (costly) edges.

The traditional clustering algorithms can be categorized
to partitioning methods (e.g., k-means), hierarchical meth-
ods (top-down, bottom-up), Density-based (e.g., DBSCAN),
model-based (EM), link-based, bi-clustering, and graph par-
titioning (e.g., finding cliques or quasi-cliques in the graph,
and correlation clustering). These algorithms also su↵er
from several disadvantages in the case of our problem. To
the best of our knowledge none of these clustering algorithms
provide all of the four desirable properties (introduced in
Section 4.1); hence they are not applicable to categorize ex-
perts. For completeness, we compared our proposed algo-
rithm with some of these algorithms in Section 5.

7. CONCLUSION AND FUTURE WORKS
In this paper we introduce two problems. The first prob-

lem is to identify topics (called analogous) that have (ap-
proximately) the same audience on a micro-blogging plat-
forms as a query topic. The idea is that by bidding on an
analogous topic instead of the original query topic, we will
reach (approximately) the same audience while spending less
budget on advertising. This is inspired by the social media
advertising platforms. The second problem is to understand
the diversified expertise of the experts on the given query
topic and categorize these experts. We evaluate the tech-
niques proposed for both problems on a large dataset from
Twitter attesting their e�ciency and accuracy.

An important direction for future work is to study the
problems when the bids on each topic is known. This exten-
sion can assist advertisers to maximize their revenue while
minimizing the advertising cost.
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ABSTRACT
Recent advances in crowdsourcing technologies enable computa-
tionally challenging tasks (e.g., sentiment analysis and entity reso-
lution) to be performed by Internet workers, driven mainly by mon-
etary incentives. A fundamental question is: how should work-
ers be selected, so that the tasks in hand can be accomplished
successfully and economically? In this paper, we study the Jury
Selection Problem (JSP): Given a monetary budget, and a set of
decision-making tasks (e.g., “Is Bill Gates still the CEO of Mi-
crosoft now?”), return the set of workers (called jury), such that
their answers yield the highest “Jury Quality” (or JQ). Existing JSP
solutions make use of the Majority Voting (MV) strategy, which
uses the answer chosen by the largest number of workers. We show
that MV does not yield the best solution for JSP. We further prove
that among all voting strategies (including deterministic and ran-
domized strategies), Bayesian Voting (BV) can optimally solve JSP.
We then examine how to solve JSP based on BV. This is technically
challenging, since computing the JQ with BV is NP-hard. We solve
this problem by proposing an approximate algorithm that is com-
putationally efficient. Our approximate JQ computation algorithm
is also highly accurate, and its error is proved to be bounded within
1%. We extend our solution by considering the task owner’s “be-
lief” (or prior) on the answers of the tasks. Experiments on syn-
thetic and real datasets show that our new approach is consistently
better than the best JSP solution known.

1. INTRODUCTION
Due to advances in crowdsourcing technologies, computation-

ally challenging tasks (e.g., sentiment analysis, entity resolution,
document translation, etc.) can now be easily performed by human
workers on the Internet. As reported by the Amazon Mechanical
Turk in August 2012, over 500,000 workers from 190 countries
worked on human intelligence tasks (HITs). The large number of
workers and HITs have motivated researchers to develop solutions
to streamline the crowdsourcing process [6,7,14,25,27,31,43,44].

In general, crowdsourcing a set of tasks involves the following
steps: (1) distributing tasks to workers; (2) collecting the workers’
answers; (3) deciding final result; and (4) rewarding the workers.

c� 2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0.

An important question is: how should workers be chosen, so that
the tasks in hand can be completed with high quality, while mini-
mizing the monetary budget available? A related question, called
the Jury Selection Problem (or JSP), has been recently proposed by
Cao et al. [7]. Similar to the concept from law courts, a jury, or jury
set denotes a subset of workers chosen from the available worker
pool. Given a monetary budget and a task, the goal of JSP is to find
the jury with the highest expected performance within the budget
constraint. The kind of tasks studied in [7] is called the decision-
making task: a question that requires an answer of either yes or
no (e.g., “Is Bill Gates still the CEO of Microsoft now?”) and has
a definitive ground truth. Decision-making tasks [7,39,41,44] are
commonly used in crowdsourcing systems because of their con-
ceptual simplicity. The authors of [7] were the first to propose a
system to address JSP for this kind of tasks.

In this paper, we go beyond [7] and perform a comprehensive
investigation of this problem. Particularly, we ask the following
questions: (1) Is the solution in [7] optimal? (2) If not, what is
an optimal solution for JSP? To understand these issues, let us first
illustrate how [7] solves JSP.

Figure 1 shows a decision-making task, to be answered by some
of the seven workers labeled from A to G where each worker is as-
sociated with a quality and a cost. The quality ranges from 0 to 1,
indicating the probability that the worker correctly answers a ques-
tion. This probability can be estimated by using her background in-
formation (e.g., her performance in other tasks) [7,25,37]. The cost
is the amount of monetary reward the worker can get upon finishing
a task. In this example, A has a quality of 0.77 and a cost of 9 units.
For a jury, the jury cost is defined as the sum of workers’ costs in
the jury and the jury quality (or JQ) is defined as the probability
that the result returned by aggregating the jury answers is correct.
Given a budget of B units, a feasible jury is a jury whose jury cost
does not exceed B. For example, if B = $20, then {B,E, F} is
a feasible jury, since its jury cost, or $5 + $5 + $2 = $12, is not
larger than $20.

To solve JSP, a naive solution is to compute the JQ for every
feasible jury, and return the one with the highest JQ. [7] studies
how to compute JQ for a jury where the jury’s returned result is
decided by Majority Voting (MV). In short, MV returns the result
as the one corresponding to the most workers. In the following, we
consider each worker’s answer as a “vote” for either “yes” or “no”.
Let us consider {B,E, F} again, the probability that these workers
gives a correct result according to MV is 0.7·0.6·0.6+0.7·0.6·(1�
0.6)+0.7 ·(1�0.6) ·0.6+(1�0.7) ·0.6 ·0.6 = 69.6%. Moreover,
since {A,C,G} yields the highest JQ among all the feasible juries,
it is considered to be the best solution by [7].

As illustrated above, MV is used to solve JSP in [7]. In addition
to MV, researchers have proposed a variety of voting strategies,
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Optimal Jury Selection SystemDecision Making Task

Is Bill Gates
now the CEO
of Microsoft ?

 YES  (70%)    NO (30%)

A B C D E F G

( 0.77, $9 ) ( 0.7, $5 ) ( 0.8, $6 ) ( 0.65, $7 ) ( 0.6, $5 ) ( 0.6, $2 ) ( 0.75, $3 )

All candidate Workers Set ( quality, cost )
Budget Optimal Jury Set Quality Required

5  { F, G } 75% 5
10  { C, G } 80% 9
15  { B, C, G } 84.5% 14
20  { A, C, F, G } 86.95% 20

Budget-Quality Table B C G

( 0.7, $5 ) ( 0.8, $6 ) ( 0.75, $3 )

Budget 14

Figure 1: Optimal Jury Selection System.

such as Bayesian Voting (BV) [25], Randomized Majority Vot-
ing [20], and Random Ballot Voting [33]. Like MV, these voting
strategies decide the final result of a decision-making task based on
the workers’ votes. For example, BV computes the posterior prob-
ability of answers according to Bayes’ Theorem [3], based on the
workers’ votes, and returns the answer having the largest posterior
probability.

In this paper, we investigate an interesting problem: is it possible
to find the optimal voting strategy for JSP among all voting strate-
gies? One simple answer to this question is to consider all voting
strategies. However, as listed in Table 2, the number of existing
strategies is very large. Moreover, multiple new strategies may
emerge in the future. We address this question by first studying
the criteria of a strategy that produce an optimal solution for JSP
(i.e., given a jury, the JQ of the strategy is the highest among all the
possible voting strategies). This is done by observing that voting
strategies can be classified into two major categories: deterministic
and randomized. A deterministic strategy aggregates workers’ an-
swers without any degree of randomness; MV is a typical example
of this class. For a randomized strategy, each answer is returned
with some probability. Using this classification, we present the cri-
teria required for a voting strategy that leads to the optimal solution
for JSP. We discover that BV satisfies the requirements of an op-
timal strategy. In other words, BV is the optimal voting strategy
with respect to JQ, and will consistently produce better quality ju-
ries than the other strategies.

How to solve JSP with BV then? A straightforward solution is to
enumerate all feasible juries, and find the one with the largest value
of JQ. However, this approach suffers from two major problems:

1. Computing the JQ of a jury for BV requires enumerating an
exponentially large number of workers’ answers. In fact, we
show that this problem is NP-hard;

2. The number of feasible juries is exponentially large.

To solve Problem 1, we develop a polynomial-time-based ap-
proximation algorithm, which enables a large number of candidate
answers to be pruned, without a significant loss of accuracy. We
further develop a theoretical error bound of this algorithm. Par-
ticularly, our approximate JQ computation algorithm is proved to
yield an error of not more than 1%. To tackle Problem 2, we
leverage a successful heuristic, the simulated annealing heuristic,
by designing local neighborhood search functions. To evaluate our
solutions, we have performed extensive evaluation on real and syn-
thetic crowdsourced data. Our experimental results show that our
algorithms effectively and efficiently solve JSP. The quality of our
solution is also consistently better than that of [7].

We also study how to allow the provider of the tasks to place her
confidence information (called prior) on the answers of the task.
She may associate a “belief score” on the answers to the tasks, be-
fore the crowdsourcing process starts. For instance, in Figure 1, if
she is more confident that Bill Gates is still the CEO of Microsoft,
she can assign 70% to yes, and 30% to no. Intuitively, we prove

that under BV, the effect of prior is just the same as regarding the
task provider as another worker, having the same quality values as
the prior.

Figure 1 illustrates our crowdsourcing system, which we called
the “Optimal Jury Selection System”. In this system, the task
provider published a decision-making task. Then, based on the
the workers’ information (i.e., their individual quality and cost),
a “budget-quality table” is generated. In this table, each row con-
tains a budget, the computed optimal jury, its estimated jury quality
and the required budget for the jury. Based on this table, the task
provider can conveniently decide the best budget-quality combina-
tion. For example, she may deem that increasing the budget from
15 units to 20 units is not worthwhile, since the quality increases
only by around 2.5%. In this example, the task provider selects the
jury set {B,C,G} that is the best under a budget of 15 units. This
chosen jury set would cost her only 14 units.

Recall that [7] focuses on addressing JSP under MV on decision-
making tasks and we address the optimality of JSP on decision-
making tasks by considering all voting strategies, where each
worker’s quality is modeled as a single parameter. In reality, multi-
ple choice tasks [25,34,42] are also commonly used in crowdsourc-
ing and several works [1,34,36] model each worker as a confusion
matrix rather than a single quality score. We also briefly discuss
here the optimality of JSP for other task types and worker models,
and how our solutions can be extended to these other variants.

The rest of this paper is arranged as follows. We describe the
data model and the problem definition in Section 2. In Section 3,
we examine the requirements of an optimal voting strategy for JSP,
and show that BV satisfies these criteria. We present an efficient
algorithm to compute JQ of a jury set in Section 4 and develop fast
solutions to solve JSP in Section 5. In Section 6, we present our
experimental results. We discuss how our solutions can be extended
for other task types and worker models in Section 7. In Section 8,
we review the related works and Section 9 concludes the paper.

2. DATA MODEL & PROBLEM DEFINI-
TION

We now describe our data model in Section 2.1 and define the
jury selection problem in Section 2.2.

2.1 Data Model
In this paper, we focus on the decision-making tasks where each

task has two possible answers (either yes or no). We use 1 and
0 to denote yes and no, respectively. We assume that each task
has a latent true answer (or ground truth) t 2 {0, 1}, which is
unknown in advance. The task provider usually assigns a prior on
the task, which describes her prior knowledge in the probability
distribution of the task’s true answer. We denote the prior by ↵
where Pr(t = 0) = ↵, and Pr(t = 1) = 1�↵. If the task provider
has no prior knowledge for the task, then we assume ↵ = 0.5.

A jury (or jury set), denoted by J , is a collection of n workers
drawn from a set of N candidate workers W = {j1, j2, . . . , jN},
i.e., J ✓ W , |J | = n. Without loss of generality, let J =
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{j1, j2, . . . , jn}. In order to infer the ground truth (t), we leverage
the collective intelligence of a jury, i.e, we ask each worker to give
a vote for the task. We use V , a voting, to denote the set of votes
(answers) given by a jury J , and so V = {v1, v2, . . . , vn} where
vi 2 {0, 1} is the vote given by ji. We assume the independence
of each worker’s vote, an assumption also used in [7,18,25,34].

We follow the worker model in previous works [7,25,44], where
each worker ji is associated with a quality qi 2 [0, 1] and a cost
ci. The quality qi indicates the probability that the worker con-
ducts a correct vote, i.e., qi = Pr(vi = t), and the cost ci repre-
sents the money (or incentive) required for ji to give a vote. A few
works [7,25,37] have recently addressed how to derive the quality
and the cost of a worker by leveraging the backgrounds and an-
swering history of individuals. Thus, similar to [7], we assume that
they are known in advance.

We remark that the optimality of JSP and our solutions can
be extended to address other task types and worker models used
in [1,25,34,34,36,42]. We will briefly discuss these extensions in
Section 7.

2.2 Problem Definition
Let B be the budget of a task provider, i.e., a maximum of B

cost units can be given to a jury to collect their votes. Our goal is
to solve the Jury Selection Problem (denoted by JSP) which selects
a jury J under the budget constraint (

P
ji2J ci  B) such that the

jury’s collective intelligence is maximized.
The collective intelligence of a jury is closely related to the Vot-

ing Strategy, denoted by S, which estimates the true answer of the
task based on the prior, the jury and their votes. We say the esti-
mated true answer is the result of the voting strategy. A detailed
discussion about the voting strategy is given in Section 3.1.

In order to quantify the jury’s collective intelligence, we define
the Jury Quality (or JQ in short) which essentially measures the
probability that the result of the voting strategy is correct. The score
of JQ is given by function JQ(J, S,↵). We will give a precise
definition for JQ in Section 3.2.

Let ⇥ denote the set of all voting strategies and C denote the set
of all feasible juries (i.e., C = {J | J ✓ W ^P

ji2J ci  B}).
The aim of JSP is to select the optimal jury J⇤ such that

given ↵ and qi, ci (for i = 1, 2, . . . , N) (1)
J⇤

= argmax

J2C
max

S2⇥
JQ(J, S,↵) (2)

Note that existing work [7] only focuses on majority voting strat-
egy (MV) and solves argmaxJ2C JQ(J,MV, 0.5), which, as we
shall prove later, is sub-optimal for JSP.

In the rest of the paper, we first discuss how to derive the optimal
voting strategy S⇤ such that JQ(J, S⇤,↵) = maxS2⇥ JQ(J, S,↵)
(Section 3). We then talk about the computation of JQ(J, S⇤,↵)
(Section 4) and finally address of problem of finding J⇤ (Section 5).

Table 1 summarizes the symbols used in this paper.

3. OPTIMAL VOTING STRATEGY
In this section, we present a detailed description for the voting

strategy in Section 3.1. We then formally define JQ in Section 3.2.
Finally, we give an optimal voting strategy with respect to JQ in
Section 3.3.

3.1 Voting Strategies
As mentioned, a voting strategy S gives an estimation of the true

answer t based on the prior ↵, the jury J and their votes V . Thus,
we model a voting strategy as a function S(V, J,↵), whose result
is an estimation of t. Based on whether the result is given with

Table 1: Table of Symbols
Symbol Description

t the ground truth for a task, and t 2 {0, 1}
↵ prior given by the task provider, and ↵ = Pr(t = 0)

W a set of all candidate workers W = {j1, j2, . . . , jN}
J a jury, J ✓ W and |J | = n, J = {j1, j2, . . . , jn}
V a voting given by J , and V = {v1, v2, . . . , vn}
qi the quality of worker ji and qi 2 [0, 1]
ci the cost of worker ji
B the budget provided by the task provider
⇥ a set containing all voting strategies
C the set of all possible juries within budget constraint

degree of randomness, we can classify the voting strategies into
two categories: deterministic voting strategy and randomized vot-
ing strategy.

DEFINITION 1. A deterministic voting strategy S(V, J,↵) re-
turns the result as 0 or 1 without any degree of randomness.

DEFINITION 2. A randomized voting strategy S(V, J,↵) re-
turns the result as 0 with probability p and 1 with probability 1�p.

EXAMPLE 1. The majority voting strategy (or MV) is a typical
deterministic voting strategy, and it gives result as 0 if more than
half of workers vote for 0 (i.e.,

Pn
i=1 (1� vi) � n+1

2 ); otherwise,
the result is 1.

Its randomized counterpart is called randomized majority vot-
ing strategy (or RMV), which returns the result with probability
proportional to the number of votes. That is, RMV returns 0 with
probability p =

1
n

Pn
i=1 (1� vi), and 1 with probability 1� p.

Note that randomized strategies are often introduced to improve
the error bound for worst-case analysis [23]. And thus, they are
widely used when the worst-case performance is the main concern.

Table 2: Classification of Voting Strategies
Deterministic Voting Strategies Randomized Voting Strategies

Majority Voting (MV) [7] Randomized Majority Voting (RMV) [20]
Half Voting [28] Random Ballot Voting [33]

Bayesian Voting [25] Triadic Consensus [2]
Weighted MV [23] Randomized Weighted MV [23]

· · · · · ·

Table 2 shows a few voting strategies, which are introduced in
previous works, and their corresponding category.

3.2 Jury Quality
In order to measure the goodness of a voting strategy S for a

jury J , we introduce a metric called Jury Quality (or JQ in short).
We model JQ by a function JQ(J, S,↵) which gives the quality
score as the probability of drawing a correct result under the voting
strategy, i.e.,

JQ(J, S,↵) = Pr(S(V, J,↵) = t) (3)

where V 2 {0, 1}n and t 2 {0, 1} are two random variables
corresponding to the unknown jury’s voting, and the task’s latent
true answer. For notational convenience, we omit J and ↵ in S
when their values are understood and simply write S(V) instead
of S(V, J,↵).

Let {st} be the indicator function, which returns 1 if the state-
ment st is true, and 0 otherwise. Let ⌦ be the domain of V, i.e,
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⌦ = {0, 1}n. JQ(J, S,↵) can be rewritten as follows.

JQ(J, S,↵) = 1 · Pr(S(V) = t) + 0 · Pr(S(V) 6= t)

= E[ {S(V)=t}]

=

X

t2{0,1}

X

V 2⌦

Pr(V = V, t = t) · E[ {S(V )=t}]

We now give a precise definition for JQ as below.

DEFINITION 3 (JURY QUALITY). Given a jury J and the
prior ↵, the Jury Quality (or JQ) for a voting strategy S, denoted
by JQ(J, S,↵), is defined as

↵ ·
X

V 2⌦
Pr(V = V | t = 0) · E[ {S(V )=0}]

+ (1� ↵) ·
X

V 2⌦
Pr(V = V | t = 1) · E[ {S(V )=1}].

(4)

For notational convenience, we write Pr(V |t = 0) instead of
Pr(V = V |t = 0), and Pr(V |t = 1) instead of Pr(V = V |t =

1). Next, we give two marks in computing JQ.

1. Since workers give votes independently, we have

Pr(V | t = 0) =

Yn

i=1
q
(1�vi)
i · (1� qi)

vi

Pr(V | t = 1) =

Yn

i=1
qvii · (1� qi)

(1�vi)

2. E[ {S(V )=0}] and E[ {S(V )=1}] are either 0 or 1 if S is a
deterministic voting strategy; or value of p and 1 � p if S is
a randomized voting strategy (refer to Definition 2).

We next give an example to illustrate the computation of JQ.

EXAMPLE 2. Suppose ↵ = 0.5 and there are 3 workers in J
with workers’ qualities as 0.9, 0.6, 0.6 respectively. To compute JQ
for MV, we enumerate all possible combinations of V (2 {0, 1}3)
and t (2 {0, 1}), and show the results in Figure 2. The 3rd column
in each table represents the probability that a specific combination
(V and t) exists. The 4th column shows the result of MV for each
V . The symbol

p
indicates whether MV’s result is correct or not

(according to the value of t). And thus, JQ(J,MV,↵) equals to
the summation of probabilities where symbol

p
occurs. Take V =

{1, 0, 0} and t = 0 as an example. First, Pr(V = V, t = 0) =

0.018. Since
P3

i=1(1� vi) = 2 � n+1
2 = 2, we have MV (V ) =

0 = t. Thus, the probability 0.018 is added to JQ(J,MV,↵).
Similarly, for V = {1, 0, 0} and t = 1, as MV (V ) = 0 6= t, then
Pr(V = V, t = 1) = 0.072 will not be added to JQ(J,MV,↵).
Considering all V ’s and t’s, the final JQ(J,MV,↵) = 79.2%.

3.3 Optimal Voting Strategy
In the last two sections, we present a few voting strategies and

define Jury Quality to quantify the goodness of a voting strat-
egy. Thus an interesting question is: does an optimal voting strat-
egy S⇤ with respect to JQ exist? That is, given any J and ↵,
JQ(J, S⇤,↵) = maxS2⇥ JQ(J, S,↵). Note that if S⇤ exists,
we can then solve JSP without enumerating all voting strategies in
⇥ (refer to Equation 2).

To answer this question, let us reconsider Definition 3. Let
h(V ) = E[ {S(V )=0}]. We have (i) h(V ) 2 [0, 1]; and (ii)
E[ {S(V )=1}] = 1�h(V ). Also, let P0(V ) = Pr(V = V, t = 0),
and P1(V ) = Pr(V = V, t = 1). Hence, JQ(J, S,↵) can be
rewritten as

X
V 2⌦

[ P0(V ) · h(V ) + P1(V ) · (1� h(V )) ]

=

X
V 2⌦

[ h(V ) · (P0(V )� P1(V )) + P1(V ) ]

(a) Enumeration of all 23 = 8 possible votings in ⌦ ( t = 0 )

(b) Enumeration of all 23 = 8 possible votings in ⌦ ( t = 1 )

Figure 2: Example of JQ computation for MV and BV (↵ =

0.5, and the quality of workers are 0.9, 0.6, and 0.6)

This gives us a hint to maximize JQ(J, S,↵) and find the op-
timal voting strategy S⇤. Let h⇤

(V ) = E[ {S⇤(V )=0}]. It is ob-
served that P1(V ) is constant for a given V and h(V ) 2 [0, 1] for
all S’s (no matter it is a deterministic one or a randomized one).
Thus, to optimize JQ(J, S,↵), it is required that

1. if P0(V )� P1(V ) < 0, h⇤
(V ) = 0, and so, S⇤

(V ) = 1;

2. if P0(V )� P1(V ) � 0, h⇤
(V ) = 1, and so, S⇤

(V ) = 0.

We summarize this observation as below.

THEOREM 1. Given ↵, J , and V , the optimal voting strategy,
denoted by S⇤, decides the result as follows:

1. S⇤
(V ) = 1 if ↵ ·Qn

i=1 q
(1�vi)
i · (1� qi)

vi <

(1� ↵) ·Qn
i=1 q

vi
i · (1� qi)

(1�vi); or

2. S⇤
(V ) = 0, otherwise.

Note that S⇤ is a deterministic voting strategy, and it’s essentially
a voting strategy based on the Bayes’ Theorem [11]. The reason is
as follows. According to the Bayes’ Theorem, based on the ob-
served voting V , Pr(t = 0|V = V ) = P0(V )/Pr(V = V ),
and similarly Pr(t = 1|V = V ) = P1(V )/Pr(V = V ). There-
fore, P0(V )�P1(V ) < 0 indicates Pr(t = 0|V = V ) < Pr(t =
1|V = V ). And so, 1 has a higher probability to be the true answer
than 0. Thus, the voting strategy based on the Bayes’ Theorem re-
turns 1 as the result, which is consistent with S⇤ in Theorem 1.
Next, we give a formal definition for Bayesian Voting (BV) and
summarize the above observation in Theorem 1.

DEFINITION 4. The voting strategy based on the Bayes’ Theo-
rem, denoted by Bayesian Voting (or BV in short), returns the result
as 1, if Pr(t = 0) · Pr(V = V |t = 0) < Pr(t = 1) · Pr(V =

V |t = 0); or 0, otherwise.

COROLLARY 1. BV is optimal w.r.t. JQ, i.e., S⇤
= BV .

Note that the BV is also used in [1,18,25]. In the rest of the paper,
we use S⇤ and BV interchangeably. We remark that the optimality
of BV is based on two assumptions: (1) the prior and workers’
qualities are known in advance; (2) JQ (Definition 3) is adopted to
measure the goodness of a voting strategy.
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EXAMPLE 3. Let us reconsider Figure 2 and see how
JQ(J,BV,↵) is computed. The 5th column shows results given by
BV. The two numbers in bracket correspond to P0(V ) and P1(V ),
respectively. The value in parenthesis is the estimated true answer
returned by BV. We again use a symbol

p
to indicate the correct

voting result. Take V = {1, 0, 0} and t = 0 as an example. Since
↵ · (1� q1) · q2 · q3 = 0.018 < (1�↵) · q1 · (1� q2) · (1� q3) =
0.072, we have BV (V ) = 1 6= t, thus 0.018 is not added into
JQ(J,BV,↵). Otherwise, for V = {1, 0, 0} and t = 0, similarly
we derive that 0.072 is added in JQ(J,BV,↵). Recall Example 2,
when V = {1, 0, 0}, if we consider two cases of t, then 0.072 is
added into JQ(J,BV,↵); but here we have seen in Example 2 that
0.018 is added into JQ(J,MV,↵). By considering all V and t, we
have JQ(J,BV,↵) = 90% > JQ(J,MV,↵) = 79.2%.

Intuitively, the reason why BV outperforms other voting strate-
gies is that BV considers the prior and worker’s qualities in deriv-
ing the result of a voting V , and only the one with larger posterior
probability is returned. Thus, it is more likely to return a correct
answer than other strategies. For example, assume ↵ = 0.5 and the
voting V = {0, 1, 1} is given by workers with individual quality
0.9, 0.6 and 0.6 respectively. As 0.5 · 0.9 · (1� 0.6) · (1� 0.6) >
0.5 · (1� 0.9) · 0.6 · 0.6, BV returns 0 as the result. However, MV
does not leverage either the prior information or workers’ qualities,
and so, it returns 1, which is given by two lower quality workers.

Before we move on, we would like to discuss the effect of qi for
voting strategies. Intuitively, qi < 0.5 indicates that worker ji is
more likely to give an incorrect answer than a correct one. Thus, we
can either simply ignore this worker in the jury selection process,
or modify her answer according to the specific voting strategy. For
example, for MV, we can regard vote 0 as 1 and vote 1 as 0 if the
vote is given by a worker whose quality is less than 0.5; for BV,
according to its definition, it can reinterpret the vote given by a
worker with quality qi < 0.5 as an opposite vote given by a worker
with quality 1 � qi > 0.5.1 Moreover, in our experiments with
real human workers, we observed that their qualities were generally
well above 0.5. We thus assume that qi � 0.5 in our subsequent
discussions, without loss of generality.

4. COMPUTING JURY QUALITY FOR OP-
TIMAL STRATEGY

In the previous section, we have proved that BV is the opti-
mal voting strategy with respect to JQ. And thus, in order to solve
JSP, we only need to figure out J⇤ such that JQ(J⇤, BV,↵) is
maximized. An immediate question is whether JQ(J,BV,↵) can
be computed efficiently. Unfortunately, we find that computing
JQ(J,BV,↵) is NP-hard (Section 4.1). To alleviate this, we pro-
pose an efficient approximation algorithm with theoretical bounds
to compute JQ for BV in this section.

4.1 NP-hardness of computing JQ(J,BV,↵)

Note that [7] has previously proposed an efficient algorithm to
compute JQ(J,MV, 0.5) in O(n log n). However, this polyno-
mial algorithm cannot be adapted to compute JQ for BV. The main
reason is that computing JQ for BV is an NP-hard problem.

THEOREM 2. Given ↵ and J , computing JQ for BV, or
JQ(J,BV,↵), is NP-hard.

The proof is non-trivial and we present the detailed proof
in the technical report [15] due to space limits. The idea of

1Details of the reinterpretation can be found in the technical
report [15].

    

    

    

    

 

Figure 3: Expressing A0(V ) +A1(V ) using R(V ) and u(V )

the proof is that the partition problem [32] (a well-known NP-
complete problem) can be reduced to the problem of comput-
ing JQ(J,BV, 0.5) for some J . Hence, the computation of
JQ(J,BV, 0.5) is not easier than the partition problem. More-
over, computing JQ(J,BV, 0.5) is not in NP (it is not a decision
problem), which makes the problem of computing JQ(J,BV,↵)
for ↵ 2 [0, 1] NP-hard.

To avoid this hardness result, we propose an approximation al-
gorithm. We first discuss the computation of JQ(J,BV, 0.5) in
Section 4.2 and 4.3, and give its approximation error bound in Sec-
tion 4.4. Finally, we briefly discuss how to adapt the algorithm to
↵ 2 [0, 1] in Section 4.5.

4.2 Analysis of Computing JQ(J,BV, 0.5)

Let us first give some basic analysis for computing
JQ(J,BV, 0.5) before we introduce our approximation al-
gorithm. To facilitate our analysis, we first define a few symbols.

• A0(V ) = 0.5 · Pr(V | t = 0) · {BV (V )=0};
• A1(V ) = 0.5 · Pr(V | t = 1) · {BV (V )=1};
• V = {v̄1, v̄2, . . . , v̄n}, where v̄i = 1� vi (1  i  n).

From Figure 2 we observe that A0(V ) = A1(V ). For exam-
ple, A0({0, 1, 0}) = A1({1, 0, 1}) = 0.108 and A0({1, 0, 1}) =
A1({0, 1, 0}) = 0. The observation motivates us to consider
A0(V ) and A1(V ) together, and we can prove that

JQ(J,BV, 0.5) =
X

V 2⌦
[ A0(V ) +A1(V ) ]

=

X
V 2⌦

[ A0(V ) +A1(V ) ],
(5)

as V ! V defines a one-to-one correspondence between ⌦ and ⌦.
We further define u(V ) and w(V ) as follows.

u(V ) = lnPr(V |t = 0) =

Xn

i=1
[ (1� vi) ln qi + vi ln(1� qi) ],

w(V ) = lnPr(V |t = 1) =

Xn

i=1
[ vi ln qi + (1� vi) ln(1� qi) ],

Let R(V ) = u(V ) � w(V ) and �(qi) = ln

qi
1�qi

(as qi � 0.5,
�(qi) � 0), we have

R(V ) =

nX

i=1

[ (1�2vi)·�(qi) ], eu(V )
=

nY

i=1

q
(1�vi)
i ·(1�qi)

vi . (6)

As illustrated in Figure 3, we can express A0(V )+A1(V ) based
on the sign of R(V ) and the value of u(V ). And therefore,
JQ(J,BV, 0.5) =

P
V 2⌦

[ {R(V )>0} · eu(V )
+ {R(V )=0} · eu(V )

2 ].

Motivated by the above formula2, we can apply an iterative ap-
proach which expands J with one more worker at each iteration
and thus compute JQ(J,BV, 0.5) in n total iterations. In the k-
th iteration, we consider V k 2 {0, 1}k. We aim to construct a
map structure with (key, prob) pairs, where the domain of key is

2Note that the reason why A0(V ) 6= A1(V ) when u(V ) =

w(V ) is that as 0.5 · eu(V )
= 0.5 · ew(V ), based on Theorem 1,

BV (V ) = BV (V ) = 0, so A0(V ) = 0.5 ·eu(V ) and A1(V ) = 0.
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Figure 5: Principle of the bucket array.

{ R(V k
) | V k 2 {0, 1}k }, and the corresponding value of the

key, or prob is

prob =
X

R(V k)=key ^ V k2{0,1}k
eu(V

k) . (7)

Suppose in the k-th iteration, such a map structure is constructed.
Then in the next iteration, we can generate a new map structure
from the old map structure: for each (key, prob) in the old map
structure, based on the possible choices of vk+1 and by considering
two formulas in Equation 6, we have

1. for vk+1 = 0, the new key key + �(qk+1) is generated and
prob · qk+1 is added to the prob of the new key;

2. for vk+1 = 1, the new key key � �(qk+1) is generated and
prob · (1� qk+1) is added to the prob of the new key.

EXAMPLE 4. We give an example to illustrate the above pro-
cess in Figure 4, where n = 2 and �(q1) = �(q2) = 1.2.
Starting from (0, 1), for v1 = 0 and v1 = 1, it respectively cre-
ates (�(q1) : q1) and (��(q1) : (1 � q1)) in the first iteration.
Then it leverages the stored (key, prob) pair to generate new pairs
in the second iteration by considering different v2. Note that as
�(q1) = �(q2), if (�(q1), q1) takes v2 = 1 and (��(q1), (1�q1))
takes v2 = 0, then they go to the same key = 0, and their new
prob, q1 · (1� q2) and (1� q1) · q2 are added together.

4.3 Bucket-Based Approximation Algorithm
By our intractability result for JQ we know that the domain of

keys, or {R(V ) | V 2 {0, 1}n} is exponential. In order to address
this issue, we set a controllable parameter numBuckets and map
�(qi) to a bucket integer bi 2 [ 0, numBuckets ], where the interval
between adjacent buckets, called bucketsize (denoted as �) is the
same. Suppose numBuckets = d · n, i.e., a constant multiple of
the number of jury members, then, for each iteration, the number
of possible values in the key is bounded by 2dn2

+ 1 (in the range
[�dn2, dn2

]) Considering all n iterations, the time complexity is
bounded by O(dn3

), which is of polynomial order.
We detail this process in Algorithm 1. To start with, the function

GetBucketArray assigns bi to worker ji based on �(qi). The
computation of bi proceeds as follows. At first, we fix a range
[0, upper ] where upper = maxi2[1,n] {�(qi)}. Then, we divide
the range into numBuckets of buckets with equal length, denoted
by � =

upper
numBuckets . Finally, each worker ji’s bucket number

bi is assigned to its closet bucket: bi =

l
�(qi)

� � 1
2

m
. Figure 5

illustrates an example where numBuckets = 4. Since �(q1) is the
closet to bucket number 2, so b1 = 2, and similarly b2 = 3.

Algorithm 1 EstimateJQ

Input: J = {j1, j2 · · · jn}, numBuckets , n
Output: cJQ
1: b = GetBucketArray(J,numBuckets, n);
2: b = Sort(b); // sort in decreasing order, for pruning
3: J = Sort(J); // sort based on worker quality, similar as above
4: aggregate = AggregateBucket(b, n); // for pruning
5: cJQ = 0; // estimated JQ
6: SM [ 0 ] = 1; //initialize a map structure
7: for i = 1 to n do
8: M = map(); //initialize an empty map structure
9: for (key, prob) 2 SM do

10: flag, value = Prune(key, prob, aggregate[i]);
11: if flag =true then
12: cJQ+ = value;
13: continue // for pruning
14: if key + b[i] /2 M then
15: M [ key + b[i] ] = 0;
16: M [ key + b[i] ]+ = prob · qi; // for vi = 0

17: if key � b[i] /2 M then
18: M [ key � b[i] ] = 0;
19: M [ key � b[i] ]+ = prob · (1� qi); // for vi = 1

20: SM = M ;
21: for (key, prob) 2 SM do
22: if key > 0 then
23: cJQ + = prob;
24: if key = 0 then
25: cJQ + = 0.5 · prob;
26: return cJQ;

Algorithm 2 Pruning Techniques

def AggregateBucket(b, n):
aggregate = [ 0, 0 · · · 0 ]; // n elements, all 0
for i = n to 1 do

if i = n then
aggregate[i] = b[i];

else
aggregate[i] = aggregate[i+ 1] + b[i];

return aggregate

def Prune(key, prob, number):
flag =false;
if key > 0 and key � number > 0 then

flag =true; value = prob;
if key < 0 and key + number < 0 then

flag =true; value = 0;
return flag, value;

After mapping each worker to a bucket bi, we iterate over
n workers (step 7-20). For a given worker ji, based on each
(key , prob) pair in the stored map SM , we update key and prob,
based on two possible values of vi (steps 14-19)3 in the new map
M . SM will then be updated as the newly derived map M for next
iteration (step 20). Finally, the (key , value) pairs in SM are used
in the evaluation of the Jury Quality (steps 21-25), based on the
cases in Figure 3.

Pruning Techniques. We can further improve the running time of
the approximation algorithm by applying some pruning techniques
in Algorithm 2, in order to prune redundant computations. For ex-
ample, assume n = 5, and the derived b = [3, 7, 4, 3, 2]. In the
second iteration, consider the key = 3 + 7 = 10 (v1 = 0 and

3Note that as we only care about the sign (+, 0 or �) of R(V ),
and we approximate �(qi) as � · bi, we can map �(qi) to bi and
add/subtract the integer bi.
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v2 = 0). No matter what the rest of the three votes are, the aggre-
gated buckets cannot be negative (since 4 + 3 + 2 = 9 < 10), so
we can safely prune the search space for key = 10 (which takes
2

3
= 8 computations). To further increase the efficiency, in Al-

gorithm 2 we first sort the bucket array and J in decreasing order
(step 2-3), guaranteeing that the highest bucket is considered first,
and then compute the aggregate array via AggregateBucket (step
4), which makes the pruning phase (step 10-13) more efficient. The
function Prune uses aggregate to decide whether to prune or not.

4.4 Approximation Error Bound
Let cJQ denote the estimated value returned by Algorithm 1, and

JQ denote the real Jury Quality. We evaluate the additive error
bound on |JQ� cJQ| and we can prove that:

cJQ  JQ and JQ� cJQ < e
n�
4 � 1, (8)

where n is the jury size and � =

upper
d·n is the bucketsize. Interested

readers can refer to technical report [15] for the detailed proof.
We next show that the bound is very small (< 1% by setting

d � 200) in real cases. First we notice that (i) �(q) is a strictly in-
creasing function and (ii) �(0.99) < 5. So let us assume upper <
5. We can safely make the assumption, since if not, there exists a
worker of quality qi > 0.99, and then JQ 2 (0.99, 1], as Lemma 1
will show. Thus we can just return cJQ = qi > 0.99, which makes
JQ � cJQ < 1%. After dividing the interval [0, upper] into d · n
equal buckets, we have � < 5

d·n . Using this � bound in Equation 8,
we have JQ� cJQ < e

5
4·d � 1. By setting d � 200, the bound is

JQ� cJQ < 0.627% < 1%.

4.5 Incorporation of Prior
In the previous section, we have assumed a prior ↵ = 0.5.

Here, we drop this assumption and show how we can adapt our
approaches to a generalized prior ↵ 2 [0, 1], given by the task
provider. By Theorem 3, it turns out this is equivalent to com-
puting JQ(J 0, BV, 0.5), where J 0 is obtained by adding a worker
(with quality ↵) to J :

THEOREM 3. Given ↵ and J , JQ(J,BV,↵) =

JQ(J 0, BV, 0.5), where J 0
= J [ {jn+1} and qn+1 = ↵.

Due to lack of space, interested readers can refer to technical re-
port [15] for the detailed proof.

Thus we can use Algorithm 1 for any prior ↵, by adding to the
jury a pseudo-worker of quality ↵. Moreover, the approximation
error bound proved in Section 4.4 also holds.

In summary, to compute JQ(J,BV,↵), we have developed an
approximation algorithm with time complexity O(d · n3

), with an
additive error bound within 1%, for d � 200.

5. JURY SELECTION PROBLEM (JSP)
Now we focus on addressing J⇤

= argmaxJ2C JQ(J,BV,↵),
for C, the set of all feasible juries (i.e., C = {J | J ✓ W ^Pn

i=1 ci  B}).
Before formally addressing JSP, we turn our attention to two

monotonicity properties of JQ(J,BV,↵): with respect to vary-
ing the jury size (|J |), and with respect to a worker ji’s quality
(qi). These properties can help us solve JSP under certain cost con-
straints.

LEMMA 1 (MONOTONICITY ON JURY SIZE). Given ↵ and J
, JQ(J,BV,↵)  JQ(J 0, BV,↵), where J 0

= J [ {jn+1}.

LEMMA 2 (MONOTONICITY ON WORKER QUALITY).
Given ↵ and J . Let J 0

= J except that q0i0 � qi0 � 0.5 for some
i0, then JQ(J 0, BV,↵) � JQ(J,BV,↵).

PROOF. Due to space limits, interested reader can refer to tech-
nical report [15] about the proofs for Lemma 1 and 2.

A direct consequence of Lemma 1 is that “the more workers, the
better JQ for BV”. So for the case that each worker will contribute
voluntarily (ci = 0 for 1  i  N ) or the budget constraint satis-
fies on all subsets of the candidate workers W (i.e., B � PN

i=1 ci),
we can select all workers in W .

Lemma 2 shows that a worker with higher quality contributes not
less in JQ compared with a lower quality worker. For the case that
each worker has the same cost requirement c, i.e., ci = cj = c
for i, j 2 [1, N ], we can select the top-k workers sorted by their
quality in decreasing order, where k = min

�⌅
B
c

⇧
, N

 
.

Although the above two properties can indicate us to solve JSP
under certain conditions, the case for JSP with arbitrary individual
cost is much more complicated as we have to consider not only
the worker ji’s quality qi, but also her cost ci, and both may vary
between different workers.

We can formally prove that JSP is NP-hard in Theorem 4. Note
that JSP, in general, is NP-hard due to the fact that it cannot avoid
computing JQ(J,BV,↵) at each step, which is an NP-hard prob-
lem itself. Moreover, even if we assume the existence of a poly-
nomial oracle for computing JQ(J,BV,↵) (e.g., Algorithm 1),
the problem still remains NP-hard, as we can reduce a n-th or-
der Knapsack Problem [7] to it. Interested readers can refer to the
technical report [15] for more details.

THEOREM 4. Solving JSP is NP-hard.

5.1 Heuristic Solution
To address the computational hardness issue, we use the simu-

lated annealing heuristic [19], which is a stochastic local search
method for discrete optimization problems. This method can es-
cape local optima and is proved to be effective in solving a variety
of computationally hard problems [5,10].

The simulated annealing heuristic mimics the cooling process
of metals, which converge to a final, “frozen” state. A tempera-
ture parameter T is used and iteratively reduced until it is small
enough. For a specific value of T , the heuristic performs several
local neighbourhood searches. There is an objective value on each
location, and let � denote the difference in objective value be-
tween the searched location and the original location. For each
local search, the heuristic makes a decision whether to “move” to
the new location or not based on T and �:

1. if the move will not decrease the objective value (i.e., � �
0), then the move is accepted;

2. if the move will decrease the objective value (i.e., � < 0),
the move is accepted with probability exp(��

T ), i.e., by
sampling from a Boltzmann distribution [21].

The reason for not immediately rejecting the move towards a worse
location is that it tries to avoid getting stuck in local optima. Intu-
itively, when T is large, it is freer to move than at lower T . More-
over, a large � restricts the move as it increases the chances of
finding a very bad case.

We can apply the simulated annealing heuristic to solve JSP in
Algorithm 3 by assuming that each location is a jury set J ✓ W
and its objective value is JQ(J,BV,↵). What is important in sim-
ulated annealing is the design of local search. Before introducing
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Algorithm 3 JSP

Input: W = {j1, j2, . . . , jN}, B, N
Output: bJ
1: T = 1.0; // initial temperature parameter
2: X = [ x1 = 0, x2 = 0, . . . , xN = 0 ]; // all initialized as 0
3: bJ = ;; // estimated optimal jury set J⇤

4: M = 0; // the overall monetary incentive for selected workers
5: H = ;; // the set containing indexes for selected workers
6: while T � ✏ do
7: for i = 1 to N do
8: randomly pick an index r 2 {1, 2, . . . , N};
9: if xr = 0 and M + cr  B then

10: xr = 1; M = M + cr ;
11: bJ =

bJ [ {jr}; H = H [ {r};
12: else
13: X,M, bJ,H = Swap(X,M, bJ,H, r,B,N);
14: T = T/2; // cool the temperature
15: return bJ ;

Algorithm 4 Swap

Input: X, M, bJ, H, r, B, N

Output: X, M, bJ, H
1: if xr = 0 then
2: randomly pick an index k 2 H;
3: a = k ; b = r ; // store the index
4: else
5: randomly pick an index k 2 {1, 2, . . . , N}\H;
6: a = r ; b = k ; // store the index
7: if M � ca + cb  B then
8: � = EstimateJQ(

bJ \ {ja} [ {jb} )� EstimateJQ(

bJ);
9: if � � 0 or random(0, 1)  exp(��

T ) then
10: xa = 0; xb = 1; M = M � ca + cb;
11: bJ =

bJ \ {ja} [ {jb}; H = H\{a} [ {b};
12: return X, M, bJ, H

our design of local search, we first explain some variables to keep
in Algorithm 3: H is used to store the indexes of selected workers,
M is used to store their aggregated cost, and X = [x1, x2, . . . , xN ]

is used to keep the current state of each worker (xi = 1 indicates
that worker ji is selected and 0 otherwise). Starting from an initial
X , we iteratively decrease T (step 14) until T is small enough (step
6). In each iteration, we perform N local searches (steps 7-13), by
randomly picking an index r out of the N worker indexes. Based
on the randomly picked xr , we either select the worker if adding
the worker does not violate the budget B (steps 9-11), or execute
Swap, which is described in Algorithm 4. The decision to swap is
made based on different xr values:

1. if xr = 0, a randomly picked worker k 2 H is replaced
with worker r if the replacement does not violate the budget
constraint and the move is accepted based on � and T ;

2. if xr = 1, the algorithm performs similarly to the above
case, and it replaces worker r with a randomly picked worker
k 2 {1, 2, · · · , N}\H if the budget constraint still satisfies
and the move is accepted as above.

While the heuristic does not have any bound on the returned jury
( bJ) versus the optimal jury (J⇤), we show in the experiments (Sec-
tion 6) that it is close to the optimal by way of comparing the real
and estimated JQ (i.e., JQ(

bJ,BV,↵) and JQ(J⇤, BV,↵)).

6. EXPERIMENTAL EVALUATION
In this section we present the experimental evaluation of JQ and

JSP, both on synthetic data and real data. For each dataset, we first

evaluate the solution to JSP first, and then give detailed analysis
on the computation of JQ. The algorithms were implemented in
Python 2.7 and evaluated on a 16GB memory machine with Win-
dows 7 64bit.

6.1 Synthetic Dataset

6.1.1 Setup
First, we describe our default settings for the experiments. Sim-

ilar to the settings in [7], we generate each worker ji’s quality
qi and cost ci via Gaussian distributions, i.e., qi ⇠ N (µ,�2

)

and ci ⇠ N (bµ, b�2
). We also set parameters following [7], i.e.,

µ = 0.7, �2
= 0.05, bµ = 0.05 and b�2

= 0.2. By default,
B = 0.5, ↵ = 0.5 and the number of candidate workers in W is
N = 50. For JSP (Algorithm 3), we set ✏ = 10

�8; for JQ com-
putation (Algorithm 1), we set numBuckets = 50. To achieve
statistical significance of our results, we repeat the results 1,000
times and report the average values.

6.1.2 System Comparison
We first perform the comparison of JSP with previous works,

in an end-to-end system experiment. Cao et al. [7] is the only
related algorithm we are aware of, which solves JSP under the
MV strategy in an efficient manner. Formally, it addresses JSP as
argmaxJ2C JQ(J,MV, 0.5). We denote their system as MVJS
(Majority Voting Jury Selection System) and our system (Figure 1)
as OPTJS (Optimal Jury Selection System). We compare the two
systems by measuring the JQ on the returned jury sets.

The results are presented in Figure 6. We first evaluate the
performance of the two systems by varying µ 2 [0.5, 1] in Fig-
ure 6(a), which shows that OPTJS always outperforms MVJS, and
OPTJS is more robust with low-quality workers. For example,
when µ = 0.6, the JQ of OPTJS leads that of MVJS for 5%. By
fixing µ = 0.7, Figure 6(b)-(d) respectively vary B 2 [0.1, 1],
N 2 [10, 100], b� 2 [0.1, 1] and compare the performance of MVJS
and OPTJS, which all show that OPTJS consistently performs bet-
ter than MVJS. In Figure 6(b), OPTJS on average leads around 3%
compared with MVJS for different B; in Figure 6(c), OPTJS is bet-
ter than MVJS, especially when the number of workers is limited
(say when n = 10, OPTJS leads MVJS for more than 6%); in
Figure 6(d), compared with MVJS, OPTJS is more robust with the
change of b�.

In summary, OPTJS always outperforms MVJS and, moreover, it
is more robust with (1) lower-quality workers, (2) limited number
of workers and (3) different cost variances.

6.1.3 Evaluating OPTJS
Next, we test the approximation error of Algorithm 3 by fixing

N = 11 and varying B 2 [0.05, 0.5]. Because of its NP-hardness,
J⇤ is obtained by enumerating all feasible juries. We record the op-
timal JQ(J⇤, BV, 0.5) and the returned JQ(

bJ,BV, 0.5) in Fig-
ure 7(a). It shows that the two curves almost coincide with each
other. As mentioned in Section 6.1.1, each point in the graph is
averaged over repeated experiments. Thus, we also give statis-
tics of the difference JQ(J⇤, BV, 0.5) � JQ(

bJ,BV, 0.5) on all
the 10,000 experiments considering different B (B changes in
[0.05, 0.5] with step size 0.05) in Table 3, which shows that more
than 90% of them have a difference less than 0.01% and the maxi-
mum error is within 3%.

Our next experiment is to test the efficiency of Algorithm 3. We
set B = 0.5 and vary N 2 [100, 500]. The results are shown in
Figure 7(b). We observe that the running time increases linearly
with N , and it is less that 2.5 seconds even for high numbers of
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workers (N = 500). It is fairly acceptable in real situations as the
JSP can be done offline.

Table 3: Counts in different error ranges
% [ 0, 0.01 ] (0.01, 0.1] (0.1, 1 ] (1, 3 ] (3,+1)

Counts 9301 231 408 60 0

6.1.4 JQ Computation
We now turn our attention to the computation of JQ, which is an

essential part of OPTJS. We denote here by n the jury size.
We first evaluate the optimality of BV with respect to JQ. Due

to the fact the computing JQ in general is NP-hard, we set n = 11

and evaluate JQ for four different strategies: two deterministic ones
(MV-Majority Voting, and BV-Bayesian Voting), and two random-
ized ones (RBV-Random Ballot Voting4 and RMV-Randomized
Majority Voting). We vary µ 2 [0.5, 1] and illustrate the resulting
JQ in Figure 8(a). It can be seen that the JQ for BV outperforms
the others. Moreover, unsurprisingly, all strategies have their worst
performance for µ = 0.5 as the workers are purely random in that
case. But when µ = 0.5, BV also performs robust (with JQ 93.3%),
the reason is that other strategies are sensitive to low-quality work-
ers, while BV can wisely decides the result by leveraging the work-
ers’ qualities. Finally, the randomized version of MV, i.e., RMV,
performs not better than MV for µ � 0.5, as randomized strategies
may improve the error bound in the worst case [23]. The JQ under
RBV always keeps at 50% since it is purely random.

To further evaluate the performance of different strategies for
different jury sizes, and for a fixed µ = 0.7, we vary n 2 [1, 11]
and plot the resulting qualities in Figure 8(b). The results show that
as n increases, the JQ for the two randomized strategies stay the
same and BV is the highest among all strategies. To be specific,
when n = 7, the BV is about 10% better than MV. In summary,
BV performs the best among all strategies.

Having compared the JQ between different strategies, we
now focus on addressing the computation of JQ for BV, i.e.,
JQ(J,BV, 0.5) in Figure 9. We first evaluate the effect of the qual-
ity variance �2 with varying mean µ in Figure 9(a). It can be seen
that JQ has the highest value for a high variance when µ = 0.5. It’s
because under a higher variance, worker qualities are more likely
to deviate from the mean (0.5), and so, it’s likely to have more
high-quality workers.

Then we address the effectiveness of Algorithm 1 for approxi-
mating the real JQ. We first evaluate the approximation error in Fig-
ure 9(b) by varying numBuckets 2 [10, 200]. As can be seen, the
approximation error drops significantly with numBuckets, and is
very close to 0 if we have enough buckets. In Figure 9(c) we plot
the histogram of differences between the accurate JQ and the ap-
proximated JQ (or JQ � cJQ) over all repeated experiments by
setting numBuckets = 50. It is heavily skewed towards very low
errors. In fact, the maximal error is within 0.01%.

Finally, we evaluate the computational savings of the prun-
ing techniques of Algorithm 1 by varying the number of workers
n 2 [100, 500] in Figure 9(d). The pruning technique is indeed
effective, saving more than half the computational cost. More-
over, it scales very well with the number of workers. For example,
when n = 500, the estimation of JQ runs within 2.5s without prun-
ing technique, while finishing within 1s facilitated by the proposed
pruning methods.

6.2 Real Dataset
4RBV randomly returns 0 or 1 with 50%.

6.2.1 Dataset Collection
We collected the real world data from the Amazon Mechanical

Turk (AMT) platform. AMT provides APIs and allows users to
batch multiple questions in Human Intelligence Tasks (HIT). Each
worker is rewarded with a certain amount of money upon complet-
ing a HIT. The API also allows to set the number of assignments
(denoted m) to a HIT, guaranteeing it can be answered m times by
different workers. To generate the HITs, we use the public senti-
ment analysis dataset5, which contains 5,152 tweets related to var-
ious companies. We randomly select 600 tweets from them, and
generate a HIT for each tweet, which asks whether the sentiment of
a tweet is positive or not (decision making task). The ground truth
of this question is provided by the dataset. The true answers for yes
and no is approximately equal, so we set the prior as ↵ = 0.5.

To perform experiments on AMT, we randomly batch 20 ques-
tions in a HIT and set m = 20 for each HIT, where each HIT is
rewarded $0.02. After all HITs are finished, we collect a dataset
which contains 600 decision-making tasks, and each task is an-
swered by 20 different workers. We give several statistics on the
worker answering information. There are 128 workers in total, and
each of them has answered on average 600⇥20

128 = 93.75 questions.
Only two workers have answered all questions and 67 workers have
answered only 20 questions. We used these answers to compute ev-
ery worker’s quality, which is defined as the proportion of correctly
answered questions by the worker in all her answered questions.
The average quality for all workers is 0.71. There are 40 workers
whose qualities are greater than 0.8, and about 10% whose quality
is less than 0.6.

6.2.2 JSP
To evaluate JSP, for each question, we form the candidate work-

ers set W by collecting all 20 workers who answered the question,
i.e., having N = |W | = 20. We follow the settings in experiments
on synthetic data except that worker qualities are computed using
the real-world data. We then solve JSP for each question by vary-
ing B 2 [0.1, 1.0], N 2 [3, 20] and b� 2 [0, 1]. We compute the
average returned JQ by solving JSP for all 600 questions, which is
recorded as a point in Figures 10(a)-(c), respectively. It can be seen
that Figure 10(a)-(c) has a similar results pattern as Figure 6(b)-
(d), i.e., experimental results on the synthetic datasets. Especially,
OPTJS always outperforms MVJS in real-world scenarios.

6.2.3 Is JQ is a good prediction?
Finally, we try to evaluate whether JQ, defined in Definition 3,

is a good way to predict the quality for BV in reality. Notice that,
after workers give their votes, we can adopt BV to get the voting re-
sult, and then compare it with the true answer of the question. And
thus, the goodness of BV in reality can be measured by the “accu-
racy”, which counts the proportion of correctly answered questions
according to BV.

We now test whether JQ is a good prediction of accuracy in re-
ality. For each question, we vary the number of votes (denoted as
z). For a given z 2 [0, 20], based on the question’s answering se-
quence, we collect its first z votes, then
(i) for each question, knowing the first z workers who answered
the question, we can compute the JQ by considering these workers’
qualities. Then we take the average of JQ among all 600 questions;
(ii) by considering the first z workers’ qualities who answered the
question and their votes, BV can decide the result of the question.
After that, the accuracy can be computed by comparing voting re-
sult and the true answer for each question.

5http://www.sananalytics.com/lab/twitter-sentiment/

201



80%

85%

90%

95%

100%

 0.5  0.6  0.7  0.8  0.9  1

Ju
ry

 Q
u
al

it
y

µ

MVJS
OPTJS

(a) Varying µ

85%

90%

95%

100%

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Ju
ry

 Q
u
al

it
y

Budget

MVJS
OPTJS

(b) Varying B

90%

92%

94%

96%

98%

100%

 10  20  30  40  50  60  70  80  90  100

Ju
ry

 Q
u
al

it
y

The Number of Candidate Workers (N)

MVJS
OPTJS

(c) Varying N

96%

98%

100%

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Ju
ry

 Q
u
al

it
y

The Standard Deviation of Cost

MVJS
OPTJS

(d) Varying b�
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Figure 10: Real dataset evaluation

Now given a z 2 [3, 20], we compare the average JQ and ac-
curacy in Figure 10(d), which shows that they are highly similar.
Hence, it verifies that JQ for BV is really a good prediction of ac-
curacy for BV in reality.

7. EXTENSIONS TO VARIOUS TASK
TYPES AND WORKER MODELS

Previously we have talked about how to solve JSP under our
data model. Note that we have made two assumptions: (1) it is
a decision-making task with binary answer, and (2) each worker’s
quality is modeled as a constant. However, in reality, it is com-
mon for task provider to ask multiple-choice tasks. For example,
sentiment analysis tasks [25] require workers to label the senti-
ment (positive, neutral, or negative) of each task. In addition,
the worker’s quality can be modeled by measuring the sensitivity
and specificity of each possible answer [45], or the confusion ma-
trix (CM) [18]. Specifically, a confusion matrix C is a matrix of
size `⇥ ` where each element Cjk encodes the probability that the
worker votes for k when the true answer is j.

Our proposed algorithms can be easily extended to support these
variants. Due to the space limits, we only outline our basic ideas for
these extensions, and interested readers are recommended to refer
to our technical report [15] for more details.

We first clarify some notations for multiple-choice task. Note
that for a task with ` possible choices, denoted as {0, 1, . . . , `�1},
and there exists one unknown true answer 6 t 2 {0, 1, . . . , `� 1}.
The domain of the voting from a jury J is V 2 ⌦ = {0, 1, . . . , `�
1}n. Moreover, the prior is now a vector ~↵ = {↵0,↵1, . . . ,↵`�1}
s.t.

P`�1
j=0 ↵j = 1.

Following the same solution framework, we first briefly show
that BV is still the optimal voting strategy with respect to JQ under
this general model, and then sketch how to extend the JQ computa-
tion. Finally the extensions for JSP is addressed.

Optimal Strategy Extension:

6For the case that each task can have multiple true answers,
we can follow [30], which decomposes each task into ` decision-
making tasks, and publish these ` tasks to workers.
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To prove the optimality of BV for more general task here, we can
follow the same flow as in Section 3.3. Similar to Equation 4, here
E[ {S(V)=t}] can be expressed as:
X

V 2⌦

X`�1

t=0
Pr( t = t ) · Pr( V | t = t ) · E[ {S(V )=t} ]. (9)

For a given V 2 ⌦, as

(E[ {S(V )=0} ],E[ {S(V )=1} ], . . . ,E[ {S(V )=`�1} ])

defines a discrete probability distribution, it is not hard to prove that
the optimal strategy, or S⇤

(V ) is

S⇤
(V ) = argmax

t02{0,1,...,`�1}
↵t0 · Pr(V | t = t0), (10)

which corresponds to the Bayes’ Theorem [3] that chooses the re-
sult as the label t⇤ with highest posterior probability, i.e., t⇤ =

argmax t02{0,1,...,`�1} Pr(t = t0 | V ). Thus S⇤
= BV .

Jury Quality Computation Extension:
Recall the definition of JQ in Equation 9, to facilitate our under-

standing, we express E[ {S(V)=t}] in the following way
X`�1

t0=0
↵t0 ·

⇥ X
V 2⌦

Pr( V | t = t0 ) · E[ {BV (V )=t0} ]

⇤
(11)

This representation enables us to consider each possible true an-
swer separately. For each t0 2 {0, 1, . . . , `� 1}, we compute

H(t0) =
X

V 2⌦
Pr( V | t = t0 ) · E[ {BV (V )=t0} ]

and then linearly combines the computed H(t0) with ~↵ to get JQ.
So the question falls to the computation of H(t0).

To compute H(t0), for a V 2 ⌦, we have to keep track of
(1) whether BV (V ) = t0 or not, and
(2) if BV (V ) = t0, the value Pr(V | t = t0) should be added.
Similar to the analysis in Section 4.2, we apply an iterative ap-
proach, where in each iteration, we expand J with one more
worker. We develop a map structure with (key, prob) pairs to store
the above two mentioned information. The key is an `-tuple

✓
ln

Pr(V | t = t0) · ↵t0

Pr(V | t = 0) · ↵0
, . . . , ln

Pr(V | t = t0) · ↵t0

Pr(V | t = `� 1) · ↵`�1

◆

where the i-th element of the tuple is ln Pr(V | t=t0)·↵t0
Pr(V | t=i�1)·↵i�1

. Intu-
itively, given a V 2 ⌦, if BV (V ) = t0, then Pr(V | t = t0) ·↵t0 �
Pr(V | t = t) ·↵t for any t 2 {0, 1, . . . , `� 1}, which means that
the elements in the stored tuple are all � 0. The value prob corre-
sponding to a key is the aggregated probability Pr(V | t = t0) for
the same state. In the k-th iteration, the V k

= {0, 1, . . . , ` � 1}k,
for a key, we will generate ` new keys corresponding to different
votes, and update their individual prob for the next iteration. After
n iterations, based on identifying the keys whose elements are all
� 0, we can get JQ by aggregating the corresponding probs.

Since the values of elements in a tuple are unbounded, we can
follow the similar idea in Section 4.3, that is to map each worker’s
vote to a bucket number. Note that each element in the tuple can
be decomposed as the summation of individual worker’s vote, thus
the number of states in keys are bounded.

Jury Selection Problem Extension:
To address JSP, similarly we can prove that the monotonicity on

jury size by extending Lemma 1, which means that “the more work-
ers, the better JQ" still holds for more general case. As the worker
is modeled as a confusion matrix (with size ` ⇥ `), the extension
for Lemma 2 is non-trivial, and it stills remains an open question
on what kind of confusion matrix will contribute more to the JQ.

Previous works [18,34] have addressed how to rank workers (or to
detect spammers in all workers) based on their associated confusion
matrices, which may provide good heuristics for us.

For more general cost models where each worker requires arbi-
trary costs, the simulated annealing heuristic regards computing JQ
as a black box, so it can be simply extended here.

8. RELATED WORKS
Crowdsourcing. Nowadays, crowdsourcing has evolved as a prob-
lem solving paradigm [6] to address computer-hard tasks. To incor-
porate the crowd into query processing, crowdsourced databases
(e.g., CrowdDB [14], Deco [31], Qurk [27] and CDAS [25]) are
built, compared with traditional database systems, they do not hold
the closed-world assumption. As a novel paradigm, the power of
crowdsourcing has also been leveraged in other applications. For
example, in Optical Character Recognition [38], Entity Resolu-
tion [39,41], Tagging [43], Schema Matching [17,44], Web Table
Understanding [12], Data Cleaning [40] and so on.

Voting Strategy. In order to aggregate the collective wisdom of
a jury, given some specific voting of a task from the jury, voting
strategies are widely used to return a result, which is an estimation
of the ground truth for the task. For example, Majority Voting strat-
egy [7] strictly returns the answer corresponding to higher votes,
and Random Ballot Voting [33] randomly selects the returned re-
sult. Similarly other strategies [2,9,23–25,28,29] are also talked
about in a great deal. Different from their works, here we give
a systematic way to classify all the strategies into two categories,
and try to observe the optimal strategy in all these strategies under
the Jury Selection Problem. Note that different from our problem,
people may evaluate strategies under different purposes. For ex-
ample, [26] analyzes the optimal Bayesian manipulation strategies
by assessing the expected loss in social welfare, and [11] applies
Bayesian model to take a game-theoretic approach in characteriz-
ing the symmetric equilibrium of the game with juries.

Worker Model. To model a worker’s quality in crowdsourcing,
most existing works [7,25,28,44] define it as a constant parameter
indicating the probability that the worker correctly answers a ques-
tion, while other work [18] defines it as a confusion matrix, which
tries to capture relations between labels in questions and is specific
to choices in tasks. For the methods to derive worker’s quality, a
normal way is to leverage the answering history. If they are not suf-
ficient, [25] hides golden questions (questions with known ground
truth) and derive the quality based on the worker’s answers for
them, while other work [18] applies Expectation Maximization [8]
algorithm to iteratively updates worker’s quality until convergence.
For micro-blog services especially in Twitter, the retweet actions
are usually explored to derive the error rate for each worker [7]. In
our work we define worker’s quality by a constant parameter (com-
monly used by existing works) and assume that they are known
in advance. Moreover, we also extend our method to address the
confusion matrix mentioned in [18].

Online Processing. There are also some online processing sys-
tems [4,16,25] in crowdsourcing, which addresses how to assign
tasks to workers and process the workers’ answers. For exam-
ple, [25] proposes quality-sensitive answering model and terminate
assigning questions which has got confident answers; [4] proposes
an entropy-like approach to define the uncertainty of each question
and assigns questions with highest uncertainty; [16] proposes cost-
sensitive model to address which questions are better answered by
humans or machines. Different from them, we especially evalu-
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ate how to estimate the JQ before the workers are selected to an-
swer the questions, and the quality estimation can provide statistics
and guidance for the task publisher to wisely invest budget. Even
though existing work [25,28] tried to estimate the quality, they as-
sume that each worker is of the same quality.

Expert Team Formation. In social network, several works [13,22]
studied the problem of expert team formation, that is, given the ag-
gregated skill requirements for a task, how to find a team of experts
with minimum cost (communication cost or individual financial re-
quirement), such that the skill requirements are satisfied. Rather
than the skill requirements in [13,22], we focus on the probability
of drawing a correct answer, which requires to enumerate exponen-
tial number of possibilities and is indeed challenging. In fact we ad-
dress the Jury Selection Problem, which is firstly proposed by [7].
But we find that the solution is sub-optimal in [7], which cannot
leverage the known quality for workers. We formally address the
optimal JSP problem in the paper. Some other works [9,35] also
talk about how to wisely select sources for integration. The differ-
ence is that we assume the workers are given a multiple-label task
and the worker model is known, while in their problem setting, the
possible answers from different sources are not restricted, and the
sources’ exact real qualities are unknown in advance.

9. CONCLUSIONS
In this paper, we have studied Jury Selection Problem (JSP) for

decision-making tasks, whose objective is to choose a subset of
workers, such that the probability of having a correct answer (or
Jury Quality, JQ) is maximized. We approach this problem from an
optimality perspective. As JQ is related to voting strategy, we prove
that an existing strategy, called Bayesian Voting Strategy (BV) is
optimal under the JQ. Although computing JQ under BV is NP-
hard, we give an efficient algorithm with theoretical guarantees.
Moreover, we incorporate the task provider prior information, and
we show how to extend JQ computation for different worker mod-
els and task types. Finally we evaluate JSP under BV, we prove
several properties which can be used for efficient JSP computa-
tions under some constraints, and provide an approximate solution
to JSP by simulated annealing heuristics.
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ABSTRACT
In this paper, given a product database and a set of cus-
tomer preferences, we address the problem of discovering a
bounded set of r diverse products that attract the interests
of di↵erent customers. This problem finds numerous ap-
plications in electronic marketplaces, e.g., for selecting the
products that are placed in the home page of an online shop.
Existing approaches to tackle this problem fall short because
they ignore customer preferences, and instead rely solely on
products’ attributes. We model this problem as a diversity
problem, where each product is represented by its reverse
top-k result set, and seek r products that maximize their
diversity value. Since the problem is NP-hard, we employ
a greedy algorithm that takes as input the reverse top-k
result sets of all candidate products. To further improve
performance, we also design a more e�cient approximate
algorithm that does not require the computation of all re-
verse top-k sets. Our experimental evaluation demonstrates
the performance of the proposed algorithms and quality of
the selected diverse products.

1. INTRODUCTION
Top-k queries [17] help customers select a ranked set of k

products that best match their preferences out of an over-
whelmingly large collection of products. For a specific cus-
tomer, her preferences are expressed by means of a top-k
query, and highly ranked products in the top-k result are
more attractive to the customer. Thus, from the perspec-
tive of product sellers, the visibility and the potential market
of a product relates to the top-k queries for which the prod-
uct is highly ranked. Towards this direction, reverse top-k
queries [20] retrieve the set of user preferences for which a
product appears in their top-k lists. Reverse top-k queries
are very important for estimating the impact of the product
on the market, as the cardinality of the result set defines
an influence score [22] for the product, i.e., the number of
customers that value a particular product.
In this paper, we study the problem of finding the r most

c�2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0 .

User Preferences:

User w[1] w[2] w[3] Top-k

Bob 0.1 0.2 0.7 p1
Tom 0.1 0.3 0.6 p1
Jack 0.3 0.1 0.6 p2
Max 0.8 0.1 0.1 p3

Products:

Product p[1] p[2] p[3] Reverse top-k

p1 1 2 6 Bob,Tom
p2 2 1 6 Jack
p3 6 5 2 Max

Table 1: Example of product database and user pref-
erences.

diverse products based on the user preferences. The goal is
to find a set of products that are attractive to a wide range
of customers with di↵erent preferences. For instance, con-
sider an electronic marketplace that wishes to advertise r
products on its front page aiming to attract as many new
customers as possible. Advertising diverse products that
are attractive to di↵erent existing customers increases the
probability that a new customer finds one of those products
attractive. The strategy of advertising the r most influential
products [22], i.e., the r products that attract the highest
total number of customers, does not necessarily lead to a set
of diverse products and may fail to attract many new cus-
tomers, since such products may be attractive to customers
with similar preferences.

Consider for example the set of user preferences and prod-
ucts depicted in Table 1, where maximum values in prod-
uct attributes are preferable. Assume that the goal is to
advertise two products for attracting new customers. Our
proposed method selects the r = 2 most diverse products
based on user preferences, which in our example is the set
{p1, p3}. This set is more probable to attract more new cus-
tomers because p1 and p3 satisfy more diverse preferences.
For example, a customer with similar preferences to Jack is
highly probable to be attracted also to p1, even though it is
not the best option for her on the market. This is because
both p1 and p2 satisfy users that have high preference for
the third dimension (expressed with a high weight w[3]). On
the other hand, p3 satisfies users that have totally diverse
preferences compared to p1 and p2, namely users such as
Max that prefer the first dimension.

In this paper, we introduce the problem of finding the
r most diverse products based on user preferences. The
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user preferences are captured by the reverse top-k set of
each product. We model this problem as a dispersion prob-
lem [15] using as distance function the dissimilarity of the
reverse top-k sets. In this sense, the set of r objects with the
maximum diversity is returned to the user. Consequently,
the selected objects are appealing to many di↵erent cus-
tomers with dissimilar user preferences. Di↵erent from our
work, existing solutions for identifying diverse objects rely
solely on product attributes and largely overlook user pref-
erences [18]. On the other hand, approaches that identify r
objects with high total number of customers [12, 22], often
fail to discover truly diverse products that can be appealing
to new customers with di↵erent preferences than those of
the existing ones.

To summarize the contributions of this paper are:

• We study the novel problem of finding the r most di-
verse products based on user preferences. We model
this problem as a dispersion problem and define an ap-
propriate distance function that captures the dissimi-
larity of products based on their reverse top-k sets.

• As dispersion problems are known to be NP-hard [8],
we use a greedy algorithm that retrieves r diverse prod-
ucts, after computing the reverse top-k sets of the
products e�ciently.

• To improve the performance of our algorithm, we pro-
pose an alternative algorithm that progressively com-
putes an approximation of the reverse top-k sets of a
limited set of candidate products and retrieves a set of
r products of high diversity.

• We present maintenance techniques for updating the
r most diverse products in the case of dynamic data
in a cost-e�cient way. In addition, we generalize our
approach to support any set-based similarity function.

• We demonstrate the e�ciency and achieved diversity
of our algorithms using both synthetic and real-life
data sets.

The rest of this paper is organized as follows: Section 2
reviews the related work. Section 3 provides the necessary
preliminaries, while in Section 4 we formally define the r-
Diversity problem. Thereafter, in Section 5, we present a
greedy algorithm applied on the reverse top-k sets. In Sec-
tion 6, we provide a more e�cient algorithm that iteratively
computes an approximation of the reverse top-k sets and re-
fines the set of most diverse products. Section 7 addresses
the case of dynamic data, while Section 8 generalizes our
approach for set-based similarity functions. The experimen-
tal evaluation is presented in Section 9 and we conclude in
Section 10.

2. RELATED WORK
Reverse top-k queries. Vlachou et al. first introduced

the reverse top-k query in [20, 21]. Two versions of the
reverse top-k query were presented, namely monochromatic
and bichromatic. Based on the geometrical properties of the
monochromatic reverse top-k query, an algorithm for the two
dimensional case was proposed. For computing bichromatic
reverse top-k queries, an algorithm (called RTA) was pro-
posed that exploits the fact that similar queries share com-
mon results, in order to avoid evaluating the top-k queries

for all user preferences. Thereafter, several papers have
studied the problem of e�cient reverse top-k computation.
An e�cient algorithm for the two-dimensional monochro-
matic reverse top-k that relies on a novel index was pro-
posed in [4]. In [9], e�cient evaluation of multiple top-k
queries is studied, which in turn enables the computation of
the reverse top-k set of a query point. The proposed method
avoids evaluating the top-k queries one-by-one by grouping
similar queries and evaluate them in a batch. This approach
is suitable for processing many reverse top-k queries at once.
An approach for processing a large number of continuous
top-k queries has appeared in [27]. The proposed framework
can be employed to process reverse top-k queries e�ciently,
however it requires to build an index over the k-th ranked ob-
jects of each query that results in high pre-processing cost.
Recently, a novel branch-and-bound algorithm for reverse
top-k queries has appeared in [23], where both the object
data sets and the preferences set are indexed using an R-
tree.

Product impact and visibility. Several papers have
proposed methods that aim to quantify the impact of prod-
ucts in the market. DADA [11] aims to help manufactures
position their products in the market, based on three types
of dominance relationship analysis queries. Creating com-
petitive products has been studied in [24]. Customer iden-
tification and product positioning has been recently stud-
ied in [2], where the attractiveness of a product is defined
based on the concept of reverse skyline query. Nevertheless,
in these approaches user preferences are expressed as data
points that represent preferable products, whereas reverse
top-k queries examine user preferences in terms of weighting
vectors. Miah et al. [14] study a di↵erent problem, namely
how to select the subset of attributes that increases the visi-
bility of a new product. Product promotion is studied in [25,
26], where the aim is to find the most interesting regions for
promotion of a product. Only a few papers have proposed
methods for retrieving interesting products by using the re-
verse top-k queries. In [22], the influence of a product is de-
fined as the size of its reverse top-k set. Then, an algorithm
was presented to e�ciently retrieve the m most influential
products. Discovering k products with maximum number
of customers has been studied in [12], where the number
of customers is estimated as the size of the reverse top-k
set. The problems studied in [12, 22] di↵er from the diver-
sity problem studied in this paper. Both approaches focus
on maximizing the number of existing customers and ignore
the similarity of the retrieved reverse top-k sets. These ap-
proaches fail to take into account the fact that attracting
new customers requires promoting products that are attrac-
tive to customers with diverse preferences. Koh et al. [10]
consider as products packages consisting of multiple com-
ponents. They study the problem of creating and selecting
packages from an existing pool of components such that the
number of potential customers is maximized. Similarly to
the aforementioned approaches the number of potential cus-
tomers is estimated using reverse top-k sets, yet they do not
study the diversity of the result set.

Diversity in databases. Many approaches have been
proposed for retrieving a set of diverse objects. Angel et
al. [1] study the problem of retrieving k documents relevant
to a query q, but are also diverse with each other. The di-
versity is computed based on document similarity metrics.
Drosou et al. [7] study the problem of finding the k most
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Symbol Description

Rm m-dimensional dataspace
S Set of data objects
D Subset of S (D ✓ S)
p,q Data objects/products (p, q 2 S)
W Set of weighting vectors
w A weighting vector (w 2 W )
fw Preference function associated with w

k Value of top-k
TOPk(w) Top-k data objects based on w

RTOPk(p) Reverse top-k result set for object p
cp Centroid of vectors in set RTOPk(p)
d(p, q) Cosine distance between centroids cp, cq
d(u,v) Cosine distance between vectors u,v
div(D) Diversity value of a set of objects D
D⇤ Optimal solution of the r-Diversity problem
Dr(S) Approximate solution of the r-Diversity problem

Table 2: Overview of symbols.

diverse objects in a continuous data stream. DivDB, a sys-
tem that provides query result diversification, was presented
in [19]. Result diversification based on dissimilarity is stud-
ied also in [6]. Estimating the diversity of a set of points that
fulfill a special property has been studied mainly for select-
ing representative skyline points. For instance the diversity
of two skyline points can be defined as the distance between
them [16] or by using their sets of dominated points [13, 18].
More specifically, in [16] the authors define the set of rep-
resentative skyline to be a set of k objects that maximize
the minimum Euclidean distance between any two of the k
points. In [13], the representative skyline points are defined
based on the distinct number of dominated points. Valka-
nas et al. [18] estimate the diversity of two skyline points
by calculating the Jaccard distance of their respective sets
of dominated points. The main di↵erence to our work is
that the definitions of diversity in the above approaches rely
on the attribute values only and cannot exploit the existing
user preferences.

3. PRELIMINARIES
Given a space Rm, we assume that we have a set of data

objects S where each object p 2 S can be represented as an
m-dimensional point p = {p[1], . . . , p[m]} where p[i] 2 R+.
Each point p can be regarded as an object of a database and
each dimension of the point as a specific numerical attribute.
Without loss of generality, we assume that larger values are
preferable.

Given a scoring function f : S ! R+,a top-k query re-
turns the k objects of S with the best score. The scor-
ing functions used more often, are linear functions of the
form f(p) =

Pm
i=1 w[i]p[i] where w[i] � 0. Such functions

can be represented by an m-dimensional weighting vector

w = {w[1], . . . , w[m]}. In such cases we denote the function
that results from w as fw. When w represents the pref-
erences of a user over the objects in S we call this vector
preference vector or simply preference.

Definition 1. (Top-k query [20]) Given a data set S ✓
Rm

and a vector w 2 Rm
the result set TOPk(w) of the

top-k query is a set of points such that TOPk(w) ✓ S,
|TOPk(w)| = k and 8p1, p2 : p1 2 TOPk(w), p2 2 S �
TOPk(w) it holds that fw(p1) � fw(p2)

If we have a set of preferences W ✓ Rm over a set of
products S ✓ Rm then for a given product q, we say that
the result set of a reverse top-k query is a set RTOPk(q)
which consists of all the preference vectors w for which it
holds that q 2 TOPk(w).

Definition 2. (Reverse top-k query [20]) Given a set

of points S, a point p, and a set of vectors W we say that a

vector w belongs in the reverse top-k set RTOPk(p) of point
p, if and only if 9q 2 TOPk(w) such that fw(p) � fw(q).

We can also define the influence score of a data object p
as the cardinality of the set RTOPk(p). Table 2 provides an
overview of the most basic symbols used in this paper.

4. PROBLEM STATEMENT
Let p and q denote two products (data objects) from a

product database S. Also, given a set W of customer prefer-
ences (weighting vectors) and an integer k, let RTOPk(p) ✓
W and RTOPk(q) ✓ W denote the reverse top-k sets of
p and q respectively. We also define a distance function
d : S ⇥ S ! R+ as:

d(p, q) = fd(RTOPk(p), RTOPk(q))
that determines the dissimilarity of any two objects p and q
based on their corresponding reverse top-k sets. Notice that
this is a radically di↵erent approach from existing initiatives
that define the distance of two objects based on the objects’
attributes only.

The problem of selecting the r most diverse products from
a given set S can be viewed as a dispersion problem [7, 8, 15,
18], where the aim is to find r objects such that an objective
function of their distance d is optimized. The dispersion sum

problem maximizes the sum of pairwise distances between
the r selected products and it has been proved that it is
NP-hard by reduction from the clique problem [8].

Problem 1. (r-Diversity Problem). Given a set of

data objects S and a distance function d measuring the dis-

similarity between two objects, the r-Diversity problem is to

identify a subset D⇤ ✓ S such that:

D⇤ = argmax
D✓S
|D|=r

X

p,q2D
p 6=q

d(p, q)

The remaining challenge is to define an appropriate func-
tion fd that captures the dissimilarity of the reverse top-k
result sets. Hence, the function fd takes as input two sets
of weighting vectors and computes their dissimilarity. We
employ a function that relies on the concept of a centroid of
a set of vectors.

Definition 3. (centroid of RTOPk). Given a set of

data objects S, a set of weighting vectors W , and an object

p 2 S such that RTOPk(p) 6= ;, we define as the centroid
of p the vector:

cp =
1

|RTOPk(p)|
X

w2RTOPk(p)

w

Since each RTOPk set corresponds to exactly one data
point, the respective centroid corresponds to exactly one
data point as well. Therefore each data point can be mapped
to exactly one centroid vector and vice-versa.
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Figure 1: Example of dissimilarity function.

Definition 4. (Dissimilarity function fd). Given a

set of data objects S, a set of weighting vectors W , two ob-

jects p, q 2 S, and their respective centroids cp and cq, the
distance of p and q is defined based on the cosine similarity

of the centroids:

fd(RTOPk(p), RTOPk(q)) = 1� cos(cp, cq)

The advantage of using the centroid cp instead of the ac-
tual set of vectors RTOPk(p) is that the centroid is a com-
pact and accurate representation of the set, which in turn
allows e�cient processing of the dissimilarity function, com-
pared to other dissimilarity metrics that operate on sets of
arbitrary size. As a result, we use d(p, q) = 1 � cos(cp, cq)
as distance function in this paper1.

Example 1. Figure 1 shows an example of the reverse

top-k sets RTOPk(p) = {w1,w2,w3} and RTOPk(q) =
{w4,w5}, which belong to products p and q respectively. In

the Euclidean space, a linear top-k query can be represented

by a vector w [20, 21]. The magnitude of the query vector

does not influence the query result, as long as the direction

remains the same, therefore without loss of generality we as-

sume that

Pm
i=1 w[i] = 1. In the 2-dimensional space, all

weighting vectors belong to the line as depicted in Figure 1.

Moreover, top-k queries defined by similar weighting vec-

tors w are expected to produce similar result sets [20, 21].

Thus, the weighting vectors of the reverse top-k set of p are

expected to lie nearby on the line. Furthermore, for a hypo-

thetical weighting vector which lies on the line between w1

and w3, it is expected that p is highly ranked, and therefore it

is highly probable that this vector would belong to the reverse

top-k set of p.

The centroid of the weighting vectors captures the above
intuitions, and the angle between two centroids represents
the dissimilarity of the weighting vectors. Obviously, di↵er-
ent functions for set dissimilarity (hence also for measuring
distance) are supported by our approach, including (for in-
stance) the Jaccard similarity of the reverse top-k sets. Nev-
ertheless, the Jaccard similarity fails to capture the locality
of the weighting vectors.
Furthermore, we define the diversity div(D) of a set of

objects D ✓ S. Notice that the set D⇤ with the highest
diversity value div(D⇤) among all r-sets of points in S, is the
optimal solution for Problem 1. The diversity value div(D)
is normalized in [0,1].

1In a slight abuse of notation, we also use d(u,v) = 1 �
cos(u,v) to denote the cosine distance between any two vec-
tors u and w.

Definition 5. (Diversity value) Given a set of points

S, a subset D ✓ S of size r, and set of vectors W , we define

as diversity of D:

div(D)=

2
r(r � 1)

X

p,q2D
p 6=q

(1� cos(cp, cq))

5. ALGORITHMS WITH CENTROID COM-
PUTATION

The process of discovering r diverse products Dr(S) from
a set of products S consists of two main steps: (1) iden-
tifying a set C of candidate centroids that correspond to
candidate products for inclusion in the most diverse prod-
ucts (Section 5.1), and (2) selecting r of these candidates as
the most diverse products (Section 5.2).

Each candidate centroid in cp 2 C corresponds to one
product p 2 S and is the centroid vector of the RTOPk(p)
set of p. More formally C = {cp|p 2 S,RTOPk(p) 6=
;, cp is centroid of RTOPk(p)}. Obviously, products that
are not preferable for any customer are ignored.

Algorithm 1 describes the afore-described method and re-
turns a set of r diverse products. In line 1, the candidate
centroids C are computed using any of the methods that
will be described in Section 5.1. As the set of centroids C
may be large depending on the data distribution, a sample
R of fixed size s is created by picking centroids uniformly at
random (line 2). Finally, in line 3, the second step entails
solving the r-Diversity problem by applying a greedy algo-
rithm, called Diverse Product Selection Algorithm (DPSA),
on the sampled set of centroids R, as will be described in
Section 5.2.

Algorithm 1 r-Diverse Products

Input: S: set of products
W : set of weighting vectors
k: value of top-k and reverse top-k
s : size of initial sample
r : required number of diverse products

Output: Dr(S): the set of r most diverse products of S

1: C  CandidateCentroids(S, W , k)
2: R random subset of C with |R| = s
3: Dr(S) DPSA(C,R, r)
4: return Dr(S)

5.1 Retrieving the Candidate Centroids
Di↵erent alternatives exist in order to compute the set C

of candidate centroids. In the following, we present three
alternative methods for determining the set C. Notice that
all methods produce an identical set C of centroids.

The most straightforward method is to perform a reverse
top-k query for each product p in S and compute the cen-
troid vector of each set RTOPk(p) using Definition 3. We
denote this approach Rtopk . Its processing cost is basically
determined by the computation of |S| reverse top-k queries.
Since any existing algorithm for reverse top-k processing can
be employed for the underlying reverse top-k computation,
this method is quite generic.

An improvement of the first method is derived based on
the observation that some products have empty reverse top-
k sets (i.e., they do not belong to the top-k result of any
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weighting vector). Hence, it is possible to avoid processing
some reverse top-k sets. To achieve this, we exploit the pro-
gressive result generation of the algorithm in [22], which is
able to retrieve objects in decreasing order of the sizes of
their reverse top-k sets. We denote this method as Itopk

based on the fact that the algorithm [22] has been proposed
for retrieval of influential objects. As a result, we avoid pro-
cessing a reverse top-k query for objects with empty reverse
top-k sets, thus improving the performance of Rtopk .

The third method exploits the observation that it may be
more e�cient to process all top-k queries, instead of pro-
cessing multiple reverse top-k queries. Thus, we perform a
top-k query for each preference vector w 2W , which makes
straightforward the computation of the reverse top-k sets of
any data object, and hence also their respective centroids.
In fact, the top-k sets do not need to be maintained until all
top-k queries have been processed, but instead the centroids
can be calculated progressively. For each retrieved object in
the top-k result set, the centroid is updated by adding the
new vector w to its previous centroid, while also the number
of vectors per object is maintained. After finishing all top-k
queries, for each centroid the coordinates are divided by the
cardinality of the reverse top-k set. Since top-k queries for
all vectors in W are processed, we call this method all top-k,
i.e., Atopk . An advantage of Atopk is that the processing
cost in terms of top-k evaluations is fixed, namely |W | top-k
queries, in contrast to Rtopk and Itopk where in the worst
case the top-k evaluations can be up to |W | · |S|. Thus, the
e�ciency of Atopk is influenced slightly by the cardinality
of S, in contrast to Rtopk which computes the reverse top-k
set even for products with empty reverse top-k sets.

5.2 Diverse Product Selection Algorithm
After having computed the centroid vectors of all non-

empty reverse top-k sets, the next step is to find the r most
diverse centroids and the products that they represent. As
already mentioned, the r-Diversity problem is defined as a
dispersion problem that is known to be NP-hard [8]. Thus,
computing the optimal solution for the r-Diversity problem
is not feasible even for relatively small data sets. Hence,
we employ an algorithm that e�ciently computes an ap-
proximate solution of high quality [5]. More specifically, we
use a greedy algorithm, called Diverse Product Selection Al-
gorithm (DPSA), that iteratively selects the next centroid
that maximizes the value of the objective function. Its pseu-
docode is depicted in Algorithm 2.
Description. The algorithm takes as input the set of can-

didate centroids C, a random sample set R of the candidate
centroids that is going to be used, and an integer r which is
the desired number of most diverse products. It returns an
approximate set Dr(S) of the r most diverse products and
their centroids. The sample R is typically much smaller in
size than C, in order to reduce the cost of the first part of
the algorithm, which is to find the two most distant vectors
in R (line 2) and add them to the result set Dr(S) (line 3).
Then, the algorithm iteratively selects the next centroid cq
until r centroids have been retrieved (loop in line 4). Each
time, the selected centroid is the one that maximizes the
sum of distances from the already selected most diverse vec-
tors Dr(S). Notice that R is used only for the initialization
of Dr(S) (line 3), while the remaing centroids are selected
from C.
Complexity. The selection of the two most diverse prod-

Algorithm 2 Diverse Product Selection Algorithm DPSA()

Input: C : set of candidate centroids
R : sample of C
r : required number of diverse products

Output: Dr(S): the set of r most diverse products of S

1: cp1, cp2  cp1, cp2 : 8cpi, cpj 2 R : d(cp1, cp2) �
d(cpi, cpj)

2: C  C � {p1, p2}
3: Dr(S) {p1, p2}
4: while |Dr(S)| < r do

5: cq = argmax
c0q2C

⇣P
p2Dr(S) d(c

0
q, cp)

⌘

6: Dr(S) Dr(S)
S
{q}

7: C  C � {q}
8: end while
9: return Dr(S)

ucts (seeds) has a cost O(|R|2) = O(s2). The remaining
part of the algorithm has a cost of O(r2|C|) and therefore
the total cost is equal to O(s2 + r2|C|). If no sample is used
(s = |C|) in the seed selection then the algorithm will have
a cost of O(|C|2).

Implementation details. In each loop iteration of the
DPSA algorithm (lines 4-8), the algorithm calculates the
sum of distances between a centroid vector cq 2 C �Dr(S)
and the centroid vectors in Dr(S). As described above this
procedure has a cost of O(r2|C|). In the case of the cosine
distance we can reduce this cost to O(r|C|) by exploiting the
properties of the cosine function. As shown in Equation 1
the sum of distances of cq to all centroids in Dr(S) is equal

to |Dr(S)|�
c0q
|c0q|

· cDr(S). In that way it is only necessary to

calculate the centroid of Dr(S) before each loop iteration.

X

p2Dr(S)

d(c0q, cp) =
X

p2Dr(S)

1� cos(c0q, cp)

= |Dr(S)|�
c0q
|c0q|

·
X

p2Dr(S)

cp
|cp|

(1)

= |Dr(S)|�
c0q
|c0q|

· cDr(S)

6. SELECTIVE TOP-K ALGORITHM
The main drawback of the previous algorithm is that it

requires the computation of all centroids, which has a sig-
nificant processing cost regardless of the employed method
for candidate centroid computation. In particular, depend-
ing on the cardinality of W and S, the computation of the
centroids may be time-consuming. In order to alleviate this
shortcoming, in this section, we propose a method that fuses
the centroid computation with the selection of diverse ob-
jects. Our goal is to e�ciently compute an approximation
of the centroids (by evaluating only a handful of carefully
selected top-k queries), which is su�cient to produce a set
of r products with high diversity.

6.1 Centroid Approximation
Conceptually, the proposed algorithm uses a series of iter-

ations, where each iteration consists of three parts: (1) select
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a weighting vector wi in order to process the top-k query
it defines, (2) compute an approximation of the centroid-set
based on the results of all already processed top-k queries,
and (3) select diverse products by invoking the DPSA algo-
rithm (Section 5.2) with input the approximate centroid-set.
In each iteration, a top-k query based on wi is executed.
Some objects p 2 TOPk(wi) may not have been retrieved
before and those are added to the centroid-set. For the re-
maining objects p 2 TOPk(wi) the approximate centroid is
updated, since wi is added to their reverse top-k sets. In
fact, the reverse top-k sets are not maintained, but the cen-
troid of an object is computed progressively as in the case
of Atopk . Thus, in each iteration the centroid-set is only an
approximation of the candidate centroids C computed by
Algorithm 1 because (a) C may contain more centroids as
some objects may not have been retrieved yet and (b) the
centroids of an object p are estimated based on a limited
set of top-k queries only. However, in each iteration, the
candidate-set is enriched with the results of the next top-
k query. Additionally, a set of r diverse products Dr(S)
is computed based on the current set of centroids. Finally,
the selection of the next weighting vector to be processed
is based on maximizing the sum of distances to the set of
centroids defined by Dr(S).
The main idea of our algorithm is that the maximum

cosine distance (i.e., maximum diversity) of two objects is
bounded by the maximum cosine distance of any two weight-
ing vectors. Let us assume that w1 and w2 are the two
weighting vectors with the maximum cosine distance (the
most diverse). Let us further assume that there exist two
products p1 and p2 for which holds: RTOPk(p1) = {w1}
and RTOPk(p2) = {w2}. Then, it holds that for 2-Diversity
problem the optimal solution is {p1, p2} and their diversity
equals to 1 � cos(w1,w2), since cpi = wi. If more weight-
ing vectors belong to RTOPk(p1) then the diversity between
{p1, p2} decreases. Therefore, our algorithm starts by eval-
uating the top-k queries for the most diverse weighting vec-
tors. In each step, the most diverse weighting vector to the
current most diverse centroids is selected, as each centroid
may summarize several weighting vectors.

6.2 Algorithmic Description
Algorithm 3 shows the pseudocode of the proposed algo-

rithm that uses a limited set of top-k queries only. We call
this algorithm Selective Top-k Algorithm and denote it with
Stopk .
Description. The first major di↵erence to Algorithm 1

is that the initial centroid computation is avoided. First,
the algorithm computes a random sample W 0 (of size s) of
W (line 1) and the two most dissimilar weighting vectors
w1 and w2 of W 0 are selected (line 2). Notice that the
sample W 0 is produced uniformly at random, thus it follows
the distribution of W and is used only for the initialization
of bC. Applying the initialization step on W would result
in a cost of O(|W |2), while with the sample it is reduced
to O(|W 0|2). Next, the top-k queries for w1 and w2 are
processed and from the resulting merged set of products a
set bC of centroids is computed (line 3). Notice that bC is
computed based solely on the products retrieved thus far by
the two top-k queries. These centroids form the candidate
set for finding the most diverse products. In the following
step, the Algorithm 2 is invoked with input the candidate
set, and the two most diverse products are retrieved and

Algorithm 3 Selective Top-k Algorithm

Input: S: set of products
W : set of weighting vectors
k: value of top-k and reverse top-k
s : size of initial sample
r : required number of diverse products
steps : number of iterations (steps � r)

Output: Dr(S): the set of r most diverse products of S

1: W 0  random subset of W with |W 0| = s
2: w1,w2  w1,w2 : 8wi,wj 2 W 0 : d(w1,w2) �

d(wi,wj)

3: bC  ComputeCentroids(
S

x=1,2 TOPk(wx))

4: Dr(S) DPSA(bC, bC, 2)
5: i = 2
6: while i < steps do
7: i++

8: wi = argmax
w2W

⇣P
p2Dr(S) d(cp,w)

⌘

9: bC  ComputeCentroids(
S

x=1...i TOPk(wx))

10: Dr(S) DPSA(bC, bC,min(i+ 1, r))
11: end while
12: return Dr(S)

placed in Dr(S) (line 4). Note that bC is much smaller than

C, thus DPSA algorithm is applied on bC and no random
sample is required.

In each iteration, the most dissimilar weighting vector wi

to the centroid vectors cp (p 2 Dr(S)) is selected (line 8).
For this wi, the respective top-k query is executed and the
candidate list bC is updated as before (line 9). Then, the
DPSA algorithm is invoked again to produce a new set of
diverse products (line 10). The same procedure is repeated
for at least r steps. Notice that when the iteration counter i
is smaller than r, the algorithm produces i diverse products,
and only when i becomes greater than r does the algorithm
return r diverse products.

In order to improve further the approximation of the cen-
troids more iterations can be applied. The number of itera-
tions (steps) is a system parameter that captures an interest-
ing trade-o↵ between the diversity of the result set and the
processing time. Small values of steps increase the e�ciency
of the algorithm by reducing its processing time. In the ex-
perimental evaluation, we demonstrate that a small number
of iterations is su�cient to produce results with diversity
comparable to that of Algorithm 1, with significantly lower
processing cost. Notice that in the extreme case that the
number of iterations of Stopk is set equal to the cardinality
of W and also no sampling is used (s = |W |), the set of di-
verse products and number of required top-k queries will be
the identical with Atopk . Nevertheless, in this case, Stopk
will have the computational overhead of applying multiple
times the DPSA algorithm and finding the diverse weighting
vectors.

Example 2. Table 3 shows an example of the execution

of Stopk for r = 2. We assume that in the initialization

step vectors w1 and w2 are selected. Furthermore (assum-

ing k = 3), the top-3 results for the selected vectors are

depicted. After the initialization step, the sets of approxi-

mate centroids

bC contains 5 centroids (namely cp1 , ..., cp5),
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Initialization step:

TOPk(w1) = p1, p2, p3, TOPk(w2) = p2, p4, p5
cp1 = w1, cp2 = 1

2 (w1 +w2),
cp3 = w1, cp4 = w2, cp5 = w2

First step:

TOPk(w3) = p3, p4, p5
cp1 = w1, cp2 = 1

2 (w1 +w2), cp3 = 1
2 (w1 +w3)

cp4 = 1
2 (w2 +w3), cp5 = 1

2 (w2 +w3)
Second step:

TOPk(w4) = p1, p2, p6
cp1 = 1

2 (w1 +w4), cp2 = 1
3 (w1 +w2 +w4),

cp3 = 1
2 (w1 +w3), cp4 = 1

2 (w2 +w3),
cp5 = 1

2 (w2 +w3), cp6 = w4

Table 3: Example of Stopk .

which correspond to the data points that have been retrieved

by at least one top-k query. Algorithm 2 is applied on

bC and

we assume that cp1 and cp4 as the two most diverse vectors.

In the first iteration of Stopk, the most diverse (according to

cp1 and cp4) weighting vector of W is selected. In this step,

w3 is selected and the approximate centroids

bC are updated

based on TOPk(w3) as depicted in Table 3. Again, Algo-

rithm 2 is applied on

bC and cp1 and cp4 are identified as

the two most diverse vectors. Stopk continues with a second

iteration by evaluating w4. In this step, cp6 is added to

bC as

it belongs to TOPk(w4). Again Algorithm 2 will be invoked

and the most dissimilar weighting vector of W will be se-

lected. The same procedure continues until steps iterations

has been executed.

Complexity. To perform a cost analysis of the algo-
rithm, we need to identify its basic cost factors. These fac-
tors include the initial computation of the two most dis-
similar vectors (O(s2)), the processing cost of steps top-k
queries, the cost of determining the next most dissimilar
weighting vector (O(steps · r · |W |)) (line 8), and the cost
induced by invoking the DPSA algorithm steps times. The
cost of processing steps top-k queries will always be much
cheaper than Algorithm 1, which needs to process W top-
k queries (in the case of Atopk) to perform the centroid
computation. It should also be noted that the calls to the
DPSA algorithm are much cheaper, because it operates on
bC which is much smaller than C. Overall, the cost of the
algorithm is s2+ steps · r · |W |, since these are the dominant
cost factors, and the complexity is linear with respect to W
(O(steps · r · |W |)), when steps is small (r is typically small
anyway).

7. MAINTENANCE
In this section, we present techniques for maintaining the

diverse set of products in the case of dynamic data. In fact,
the methodology of Stopk (Algorithm 3) can be applied to
maintain the r-diverse products. We consider two cases: (1)
new products are inserted in the product database, and (2)
new preferences (in the form of weighting vectors) are added
in the customer preference database. Both cases actually
occur in online shops, when new products appear in the
market and new customer preferences are extracted from
social sites.

In order to support product insertions e�ciently, we ex-
ploit the top-k queries that where computed during the com-
putation of bC. Let W ⇤ be the set of weighting vectors for
which the top-k queries have been computed. We main-
tain for each weighting vector w 2 W ⇤ the score of the
k-th product. When a new product pnew is inserted in the
database, we check for each query w 2 W ⇤ if pnew has a
better score than the k-th product. If this does not occur
for any w 2W ⇤, we can safely ignore pnew, as it does not af-
fect the determination of the diverse products. On the other
hand, if pnew becomes top-k for some weighting vector w,
we compute the new centroids only for the a↵ected products
(i.e., pnew and the products pi that used to be at the k-th

rank, but were evicted by pnew) and update the set bC. We

then apply DPSA algorithm on bC and produce a new set of
diverse products. Note that in the first case, we can ensure
that the result set is the same as in the case where Stopk

would be executed on the updated data set, but this does
not hold for the second case. The similarity of the centroids
before and after the update can be used in order to decide
when the Stopk algorithm should be invoked to have a result
set of higher quality.

In order to be able to handle new preferences e↵ectively,
during the computation of the diverse product we main-
tain the minimum (min) of all maximal sums of distances
between a centroid and any selected weighting vector (i.e.,
the expression in line 8 of Algorithm 3). In the case of a
new weighting vector wnew, we follow the same principle as
Algorithm 3 to decide whether the respective top-k query
should be evaluated. If

P
p2Dr(S) d(cp,wnew) is larger than

min, then the top-k query for wnew is computed, the set
of centroids bC updated and DPSA algorithm is executed
on bC to produce a new set of diverse products. Intuitively,
when vector wnew induces small changes to the set of cen-
troids, we do not need to recompute the r-diverse products
as wnew would not have been selected by Stopk in any case.
Again, the retrieved diverse products are not the same as if
Stopk would be executed on the updated weighting vector
set, therefore a threshold on the similarity of the centroids
before and after the update may trigger executing Stopk to
get a set of higher quality.

8. SUPPORTING OTHER SET-BASED SIM-
ILARITY FUNCTIONS

In general, our approach is applicable also for other func-
tions that compute the similarity between sets of vectors.
In such a case, our algorithms would not calculate centroids
(which is simply a representation of a set of weighting vec-
tors), but would instead directly operate on the reverse top-
k sets of products. Following this line of thought, Ĉ would
represent a set of approximate reverse top-k sets (instead
of a set of centroids) and the computation of the most di-
verse sets becomes independent of the similarity or distance
function.

In more technical terms, Algorithm 1 would not calcu-
late centroids but would only maintain the reverse top-k
sets, and Algorithm 3 would not compute centroids incre-
mentally but would simply update the approximate reverse
top-k sets of products based on the executed top-k queries.
Then, Algorithm 2 can be directly applied to the reverse
top-k sets.

For instance, one popular similarity function is the Jac-
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Parameter Values

Datasets
UN, CO, AC, CL
NBA, HOUSE

Data cardinality

1K, 5K, 10K (Diversity Quality)
5K, 10K, 30K (Scalability Analysis)
100K, 200K, 500K (Sensitivity Analysis)
17265, 127930 (Real Datasets)

Weight cardinality
1K, 5K, 10K (Diversity Quality)
5K, 10K, 30K (Scalability Analysis)
100K, 200K, 500K (Sensitivity Analysis)
100K, 200K, 500K (Real Datasets)

# results(r)
3, 4, 5 (Diversity Quality)
10 (Scalability Analysis)
5, 10, 30 (Sensitivity Analysis)
5, 10, 30 (Real Datasets)

# top-k results(k)

10, 20 (Diversity Quality)
5, 10, 30, 50 (Scalability Analysis)
5, 10, 30, 50 (Sensitivity Analysis)
5, 10, 30, 50 (Real Datasets)

# dimensions(m)
3 (Diversity Quality)
3 (Scalability Analysis)
3, 4, 5, 6 (Sensitivity Analysis)

Table 4: Parameters (default values in bold).

card similarity, which is defined as the size of the intersection
divided by the size of the union of two sets. Our approach
readily supports the Jaccard similarity on reverse top-k sets,
as outlined above. Notice that the advantage of the cosine
similarity compared to Jaccard for the problem of finding di-
verse products is that it returns more fine-grained similarity
values. For example, in the case of disjoint sets, the Jaccard
similarity value equals to zero, and does not distinguish be-
tween the sets. Instead, the cosine similarity of the centroid
vectors allows us to distinguish between them by returning
a non-zero value. Moreover in the case of a set A that is
a subset of another set B (A ✓ B), the Jaccard similar-

ity is equal to |B|�|A|
|B| which can get arbitrarily close to the

maximum value. In such cases, using the Jaccard similarity
would not be helpful, as it could lead to selecting products
which are possibly covered by others. The centroid vectors
reduce this problem (they do not eliminate it) by choosing
sets that are selected by distant user preferences.

9. EXPERIMENTAL EVALUATION
In this section, we present the results of the experimen-

tal evaluation. All algorithms were implemented in Java
and the experiments run on 2x Intel Xeon X5650 Processors
(2.66GHz). The algorithms are disk-based and the index
structure used was an R-tree with a bu↵er size of 100 blocks
and the block size is 4KB. The main parameters and values
used through the experiments are presented in Table 4.

Data sets. For the data set S, we use both synthetic and
real data. We examine four di↵erent synthetic data distri-
butions, namely uniform (UN), correlated (CO), anticorre-
lated (AC) and clustered (CL). For the uniform data set, the
data object values for all m dimensions are generated inde-
pendently using a uniform distribution. The correlated and
anticorrelated data sets are generated as described in [3].
The clustered data set was created as follows: first 5 cluster
centroids were selected randomly. Then, each coordinate is
generated on the m-dimensional space by following a nor-
mal distribution on each axis with variance �2

S = 0.345, and
a mean equal to the corresponding coordinate of the cen-
troid. In addition, we use a real data set. HOUSE (House-
hold) consists of 127930 6-dimensional tuples, representing

the percentage of an American family’s annual income spent
on 6 types of expenditure: gas, electricity, water, heating,
insurance, and property tax. For the data set W of the
weighting vectors, we used a uniform (UN) distribution.

Algorithms. We implemented the three algorithms for
centroid computation (Rtopk , Itopk , and Atopk) coupled
with the DPSA algorithm as described in Section 5, and
the selective top-k algorithm (Stopk) described in Section 6.
We also implemented an exact algorithm (denoted opt) that
finds the optimal solution, but obviously cannot scale well.
For reverse top-k processing, Rtopk uses the state-of-the-art
BBR* algorithm [23], while Itopk uses the BB algorithm [22].
In all algorithms the data set is indexed by an R-tree and
for the top-k query processing we employ a state-of-the-art
branch-and-bound algorithm [17].

Metrics. The metrics under which we evaluated the
implemented algorithms were: (a) execution time required
by each algorithm, (b) I/O accesses, (c) achieved diversity
values. We also measured the number of processed top-k
queries, but in the interest of space we do not report them
since they follow exactly the I/O metric. We measure only
the I/O induced on the data set S, since the I/O on W are
caused by sequential access and accessing data sequentially
is much faster than the random accesses of S.

We conduct an experimental study varying the parameters
of dimensionality (3-6), cardinality (1K-500K) of S, cardi-
nality (1K-500K) of W , value of k (5-50), value of r (3-30),
sample size |W 0| (0.001|W |-0.1|W |), and number of steps
(100-1000). Each experiment was repeated 10 times over
di↵erent instances of the data sets with the same parame-
ters and di↵erent seed to the random generator, in order to
factor out the e↵ect of randomization. Average values are
reported in all cases.

Evaluation methodology. Our evaluation was divided
in three parts. In the first part (9.1), we compare the algo-
rithms Atopk and Stopk against the exact algorithm (opt)
in order to evaluate the quality of approximation of diver-
sity. In the second part (9.2), we evaluate the performance
of Stopk against the algorithms that rely on centroid compu-
tation (Rtopk , Itopk , and Atopk). In the last part (9.3 and
9.4), we perform a thorough sensitivity analysis of Atopk

(which proved to perform best among the algorithms with
centroid computation) against Stopk . We should stress that
the diversity of the result set of Stopk is calculated using the
whole set of preferences W , and not only the vectors used
for the identification of the most diverse products.

9.1 Quality of Diversity
The purpose of this series of experiments is to study the

loss of diversity compared to optimal solution when using
our algorithms Atopk and Stopk . Thus, we compare to
the optimal diversity produced by an exact algorithm (opt),
which examines all possible

�|S|
r

�
combinations of products

exhaustively to find the optimal solution. Recall that Rtopk
and Itopk produce exactly the same result set as Atopk and
therefore have also the same diversity. The default setup for
this series of experiments was: m=3, |S| = 5K, |W | = 5K,
k = 10, r = 5, s = 0.1 · |W |, steps = 100, S:UN, and W :UN.

Figure 2 depicts the diversity values for varying di↵er-
ent parameters, namely |S|, |W |, r and k. The diversity
achieved by the greedy algorithm (Atopk) is in most cases
quite close to optimal, while Stopk results in similar diver-
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Figure 2: Comparison to optimal diversity value.
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Figure 3: Performance when varying |W |.

sity values. As we can observe, our approximate algorithms
perform very well in comparison with the exact algorithm.
In the worst case, when the size of the objects data set is only
|S|=1000 objects (Figure 2(a)), the maximum di↵erence in
diversity is 19%. As the datasets grow in size, the diversity
of the result set of the approximate algorithms approaches
the optimal diversity. It is noteworthy that as the number
of returned objects (r) increases, the diversity value drops.
This behavior is expected as the more points we select the
smaller their average distance will become.

We omit the figures comparing the performance of our
algorithms to opt , since, as expected, our algorithms out-
performed the exact approach by 1-4 orders of magnitude in
terms of execution time.

9.2 Scalability Analysis
In this series of experiments we compare the performance

of the algorithms with centroid computation (described in
Section 5) in terms of execution time and I/O. We also in-
clude the Stopk algorithm in the charts for completeness.
The default setup for this series of experiments is m=3,
|S| = 10K, |W | = 10K, k = 10, r = 10, S:UN, W :UN,
steps = 100, s = 0.01 · |W |.

Varying weight cardinality |W |. As Figure 3 illus-
trates, Atopk and Stopk outperform by orders of magnitude
the Rtopk and Itopk algorithms in terms of execution time.
This di↵erence is not reflected in the measured I/O, because
of the use of the bu↵er of the R-tree. When the number of
issued top-k queries is considered, both Rtopk and Itopk

process at least one order of magnitude more top-k queries
than Atopk and Stopk . This processing cost is responsi-
ble for their slow runtime. We note that even though both
Rtopk and Itopk are more e�cient than Atopk when a single
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Figure 4: Performance when varying k.

reverse top-k query or a small number of influential points
is needed, they are less e�cient when they are run repeat-
edly multiple times. In this case, Atopk has a benefit and
performs better. In particular, Rtopk has no memory of the
completed executions for di↵erent queries, and therefore it
computes repeatedly the top-k results of many preference
vectors. On the other hand, Itopk performs fewer reverse
top-k queries than Rtopk , but shares the same shortcoming
for those reverse top-k queries that it processes. Therefore,
it faces the same problem as the Rtopk , however in not such
great extent. Similar conclusions are drawn when varying
the data cardinality |S|. The performance of the algorithms
is much less a↵ected by the increase of data cardinality, as
during the execution of the top-k queries very few data ob-
jects are accessed.

Varying k. Figure 4 illustrates the e↵ect of varying pa-
rameter k. Atopk consistently outperforms Rtopk and Itopk

in terms of time, while Stopk improves further the perfor-
mance in terms of both time and I/O. Atopk , Rtopk and
Itopk have the same performance in terms of I/O due to
the R-tree bu↵er employed during query processing. Fur-
thermore, for all algorithms, both time and I/O increase for
increasing values of k.

Since Atopk consistently outperforms the two other algo-
rithms (Rtopk and Itopk) that rely on centroid computation,
we use only Atopk in the remaining experiments as repre-
sentative of this family of algorithms.

9.3 Sensitivity Analysis
In this section, we provide a detailed sensitivity analy-

sis by varying di↵erent parameters that influence the per-
formance of our proposed algorithms. Due to space limi-
tations, for some setups we omit the figures depicting the
I/O since the time indicates the e�ciency of the algorithms.
The default setup for this series of experiments is m=3,
|S| = 100K, |W | = 100K, k = 30, r = 10, S:UN, W :UN,
steps = 500, s = 0.01 · |W |.

Sensitivity analysis for varying |S|, |W |, Data Dis-
tribution and m. In Figure 5, we study the behavior
of Atopk and Stopk for increasing cardinality of the data
set S and the weighting vectors W , as well as for various
data distributions (UN,CL,CO,AC) and dimensionality val-
ues m. First, we examine how the diversity values of Atopk
and Stopk for the di↵erent parameters are influenced (Fig-
ures 5(a)–5(d)). We observe that Stopk benefits from the
increased size of the data set and the preferences set. Stopk
retrieves a set of r objects that have similar diversity com-
pared to Atopk . In most cases the diversity achieved by
Stopk is almost equal to the one achieved by Atopk and
in some cases it is even slightly higher. This happens be-
cause Stopk locates the most diverse preferences and based
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Figure 5: Sensitivity analysis for varying |S|, |W |, data distribution and m.

on them it identifies the most diverse products. Atopk on
the other hand, bases the search for most diverse objects
on the centroids of the RTOPk sets of the products. For
increased dimensionality, as depicted in Figure 5(d), the di-
versity value of Stopk compared to Atopk is influenced more
than for the other parameters. Recall that the diversity be-
tween the products was calculated for Stopk using all vectors
in W and not only the ones used for the identification of the
products.

Figures 5(e)–5(h) show the execution time of the algo-
rithms with respect to various parameters. In Figure 5(e)
we notice that none of the algorithms is influenced signifi-
cantly by the data set cardinality, because top-k queries re-
quire retrieving only few data objects that are highly ranked
independently of the data set cardinality. Figure 5(f) (which
uses log-scale) shows that both algorithms are influenced in
a similar way while varying the number of weighting vec-
tors |W |, but Stopk is always more e�cient than Atopk .
In particular, the time increases with increasing number of
weighting vectors |W |. In Figure 5(g), we depict the per-
formance of both algorithms for di↵erent data distributions.
In the case of anticorrelated data the execution time for
Atopk is 4 times larger that in the case of a uniform distri-
bution. On the other hand, the performance of Stopk is not
a↵ected by anticorrelated values significantly. Figure 5(h)
shows that Stopk scales nicely for increased dimensionality,
in contrast to Atopk whose cost increases by one order of
magnitude when we go from 3 to 6 dimensions. This exper-
iment provides strong evidence for the scalability of Stopk
with increased number of dimensions.

Figures 5(i)–5(l) evaluate the performance of our algo-
rithms in terms of I/O accesses. The conclusions for the
I/O accesses are similar to those for the time, except for the

case of increasing the data set cardinality |S|. In Figure 5(i),
we notice that even though the time is not increased by vary-
ing |S|, the I/O accesses increase. Naturally, more I/O are
needed for processing a top-k query of a larger data set, but
this is not reflected on the time. Due to the bu↵ering, the
computational cost of processing multiple top-k queries is
more significant than the time needed to retrieve the rele-
vant index nodes. Nevertheless, in all cases Stopk outper-
forms Atopk in terms of I/O. For example Figure 5(l) shows
that Stopk is two orders of magnitude cheaper than Atopk

in I/O accesses as we increase the dimensions.
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Figure 6: Varying r.

Varying r. Figure 6 examines the e↵ect of varying the
number r of retrieved products on our algorithms. First, we
observe in Figure 6(a) a decreasing tendency of the diversity
value as r increases for both algorithms, which is expected as
also the diversity value of the optimal solution will decrease
as the most diverse products are selected first. As far as
the performance is considered, in Figure 6(b), the time of
Atopk is not influenced by the increase of r, because Atopk

computes all top-k queries independently of the size of the
result set r and the computational cost of DPSA algorithm
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is not significant compared to the cost of the top-k queries.
Stopk is also not significantly a↵ected, since the values of
r are relatively small, and the algorithm is executed steps
times in any case. Still, Stopk remains always much faster
than Atopk .

Varying k. In Figure 7, we gradually increase the pa-
rameter k of the reverse top-k queries from 5 to 50. In Fig-
ure 7(a), we notice that the diversity value is stable as k in-
creases, which seems counter-intuitive at first. By increasing
k the size of the reverse top-k set increases for some objects
and more objects have a non-empty reverse top-k set. How-
ever, this does not influence the diversity value significantly,
as the most diverse centroids may not change. Figure 7(b)
depicts the time obtained for di↵erent values of k. Although
we witness a small deterioration in the performance of both
algorithms, Stopk consistently outperforms Atopk . Process-
ing top-k queries is more time-consuming for higher values
of k and the DPSA algorithm gets slower with increasing
k because the number of candidates for finding the diverse
objects increases. We should add however, that the e↵ect of
parameter k has much smaller impact on the performance
of Stopk because Stopk performs a small number of top-k
queries.

Varying steps. The steps parameter is an essential pa-
rameter for the Stopk algorithm as it balances the e�ciency
of the algorithm and the diversity the algorithm achieves.
Recall that Stopk performs only steps top-k queries, which
is only a small fraction of the |W | top-k queries that Atopk
performs. On the other hand, Stopk executes also steps
times DPSA algorithm algorithm on a small set of approxi-
mate centroids, which is not necessary for Atopk . In Figure
8, we observe that the diversity achieved using very few vec-
tors is quite close to the diversity achieved by Atopk . As we
increase the steps parameter the achieved diversity increases
marginally. However the execution time increases propor-
tionally with the increase of the steps parameter. This ex-
periment verifies that a small value of steps is su�cient to
produce results of high diversity in a very e�cient way.

Varying sample size |W 0|. The size of sample of pref-
erences from which we select the two initial centroids plays
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Figure 10: House Dataset: varying |W|

an important role in the performance of the Stopk algo-
rithm. The complexity of the selection process is O(|W 0|2)
and therefore a large sample can have significant impact on
the performance of the algorithm. However, as shown in Fig-
ure 9, the increased cost in performance is not accompanied
by an increased gain in diversity. The reason behind this
fact is that once the sample is large enough to o↵er a good
representation of the whole set of preferences, further en-
largement will not help significantly in finding better initial
centroids.

9.4 Results on Real Data
We have also performed an evaluation of our algorithm

using a real data set. The conclusions drawn are overall
in accordance with the conclusions made by the evaluation
with synthetic data, thus verifying our findings. The default
setup for this series of experiments is |S| = 127930, |W | =
100K, k = 30, r = 10, W :UN, steps = 500, s = 0.01 · |W |.
The size of the data set used and the high complexity of the
exact algorithm (opt) did not allow the exact algorithm to
terminate and therefore we did not include its performance
results in this series of experiments.

Analysis for varying |W |, k, and r. Figures 10-12 de-
pict performance of the two algorithms. For all values of the
varying parameters Stopk achieves diversity values close to
the ones of Atopk . For both algorithms we notice a drop in
the diversity values when r is increases which is expected as
analyzed in 9.1. With respect to processing time it is evident
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that both parameters |W | and k play a significant role in the
performance of Atopk . This does not come as a surprise as
the processing cost of Atopk is dominated by the process-
ing cost of the top-k queries needed for the computation of
the centroids of the RTOPk sets for each product. On the
contrary Stopk is much less a↵ected by those parameters as
it performs a limited number of top-k queries. The increase
of parameter r has little e↵ect in both algorithms. The per-
formance di↵erence with respect to I/O is in all cases larger
than two orders of magnitude. Only exception is for k < 10
where Stopk is one order of magnitude more e�cient.

10. CONCLUSIONS
In this paper, we address the important problem of select-

ing the r most diverse products based on customers’ prefer-
ences. The reverse top-k set of each product is represented
by its centroid and the distance between centroids is then
expressed using cosine distance. In order to find products
that are attractive to customers with dissimilar preferences,
we define the r-Diversity problem as a dispersion problem
applied on the products’ reverse top-k sets. As dispersion
problems are known to be NP-hard, we propose two ap-
proximate algorithms that solve the problem. The first al-
gorithm computes the reverse top-k sets and then applies
a greedy algorithm that retrieves a set of products of high
diversity. The second applies the greedy algorithm on an
approximation of the reverse top-k sets by evaluating only
some carefully selected top-k queries. In our experimental
evaluation, we study the performance of the proposed algo-
rithms and the diversity of the retrieved products in various
experimental setups. In particular, we demonstrate that our
algorithms both achieve diversity values close to optimal and
are very e�cient in practice.
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ABSTRACT
Referential integrity is fundamental for data processing and
data quality. The SQL standard proposes di↵erent seman-
tics under which referential integrity can be enforced in prac-
tice. Under simple semantics, only total foreign key values
must be matched by some referenced key values. Under par-
tial semantics, total and partial foreign key values must be
matched by some referenced key values. Support for sim-
ple semantics is extensive and widespread across di↵erent
database management systems but, surprisingly, partial se-
mantics does not enjoy any native support in any known sys-
tems. Previous research has left open the questions whether
partial referential integrity is useful for any real-world ap-
plications and whether it can enjoy e�cient support at the
systems level. As our first contribution we show that e�cient
support for partial referential integrity can provide database
users with intelligent query and update services. Indeed, we
regard partial semantics as an e↵ective imputation technique
for missing data in query answers and update operations,
which increases the quality of these services. As our sec-
ond contribution we show how partial referential integrity
can be enforced e�ciently for real-world foreign keys. For
that purpose we propose triggers and exploit di↵erent index
structures. Our experiments with synthetic and benchmark
data sets confirm that our index structures do not only boost
the performance of the state-of-the-art recommendation for
enforcing partial semantics in real-world foreign keys, but
show trends that are similar to enforcing simple semantics.

1. INTRODUCTION
In his seminal paper [5] Codd introduced the principles of

entity and referential integrity as two fundamental corner-
stones of the relational model of data. While more than 100
classes of relational integrity constraints have been inves-
tigated [21], relational database management systems o↵er
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only native support for keys and foreign keys, which enforce
entity and referential integrity, respectively. Indeed, keys
and foreign keys provide principled mechanisms to process
quality data e�ciently. The SQL standard promotes the
use of two di↵erent semantics for referential integrity. Un-
der simple semantics, referencing tuples with null markers on
some of their foreign key columns satisfy referential integrity
by default. Under partial semantics, every referencing tuple
requires a referenced tuple that matches all total values on
the foreign key columns in the corresponding key columns.
Partial semantics o↵ers a higher degree of data quality as it
subsumes simple semantics.

Example 1. For illustration consider an example from
an Australian tourism company [8]. Tours in the Tour table
have a tour id, for example a tour such as the “Gold Coast
Grand Tour” has tour id GCG. Tours have a fixed sequence
of sites they visit. Sites are identified by a site code (e.g.,
MV) but also have a unique site name (e.g., Movie World).
The primary key on Tour is {tour id, site code}. Booking
orders by visitors, who can join a tour from any allocated
site, are stored in the Booking table. The foreign key

[tour id, site code] ✓ Tour[tour id, site code]

is defined on Booking. Consider the following database.
Tour

Tour id Site code Site name
GCG OR O’Reilly’s
BRT OR O’Reilly’s
BRT MV Movie World
RF BB Binna Burra
RF OR O’Reilly’s

Booking
Visitor id Tour id Site code Date

1006 BRF null Sep 19th

1001 BRT OR Nov 21st

1008 null BB Sep 5th

1012 null BR Nov 2nd

1011 RF null Oct 5th

Simple referential integrity is satisfied: the only total for-
eign key value (BRT,OR) in the Booking table is matched
in the Tour table. Partial referential integrity is violated:
for the partial foreign key value (BRF,null) in the Booking
table there is no tuple in the Tour table with value “BRF”
on tour id, and similarly for (null, BR).

While every database management system we know of-
fers built-in support to enforce simple referential integrity,
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it is surprising that none of them o↵ers built-in support to
enforce partial referential integrity [22]. Explanations for
this gap between the SQL standard and its implementations
have been brought forward by Härder and Reinhart, who an-
alyzed in great detail the requirements of partial referential
integrity on the operational level [9]. Two main questions
remain open two decades after they have been posed in [9]:

1. Is partial referential integrity useful for any real-world
application?

2. Can partial referential integrity be enforced e�ciently?

Contribution. In the present paper we provide a�rma-
tive answers to both questions. Our first main contribution
shows that partial referential integrity is useful for the two
most significant real-world applications of database technol-
ogy: updates and queries. More specifically, we propose
intelligent update and query services that are based on e�-
ciently enforcing partial semantics. Indeed, partial referen-
tial integrity can be exploited to impute missing data values.
Our intelligent updates provide database users with sound
choices to reduce the level of incompleteness in the database,
which is an important measure for the quality of data [7]. In
the example above, suppose that the last tuple is not already
part of the Booking table but about to be inserted. Based
on the assumption that the updated table shall satisfy par-
tial referential integrity, our update service would provide
the user with the option to replace the null marker by either
“BB” or “OR”. This service can be customized further de-
pending on the authorization rights of the user, for example.
Our intelligent query service provides database users with
additional query answers that result from the imputation of
missing data values in standard answers. In our example,
the standard answer to the query that selects tour id and
site code from tuples in the Booking table, may be aug-
mented by the tuples (RF,BB), and (RF,OR) based on the
partial semantics of the foreign key. We believe that intelli-
gent updates and queries o↵er a strong a�rmative answer to
the first open question, that goes beyond the straightforward
argument that partial referential integrity targets a higher
level of data quality than simple referential integrity. Note
that our applications cannot be supported by simple seman-
tics. Indeed, they provide strong motivation to investigate
the second open question, as the e↵ectiveness of the appli-
cations largely depend on the e�ciency of enforcing partial
semantics for real-world foreign keys. Based on our experi-
ence, the literature [6] and public schemata, most real-world
foreign keys have rarely more than four columns and the ref-
erenced key is commonly the primary key, or a candidate key
where all columns are NOT NULL. Our second main contribu-
tion is a detailed analysis of partial referential integrity at
the systems level, as proposed for future work in [9]. The
main finding is that partial semantics for“real-world”foreign
keys can be implemented in the form of triggers and enforced
e�ciently by a right combination of indices. In general, it
is worthwhile investigating which subsets of the foreign key
columns carry the most total values, and then define indices
on those subsets. As updates include the maintenance of all
a↵ected indices, having too many indices means that the loss
in time for their maintenance outweighs the gain in search
time when enforcing referential integrity. Some organiza-
tions may have a good knowledge of the top-k indices they
want to support, but we have made it part of our research

to shed further light on what a reasonable number k could
be. For this purpose, we applied our analysis to test data
in which null marker occurrences are evenly distributed be-
tween all possible subsets of columns. That is, we have the
least degree of information available about which indices to
define. Our recommendation for an n-column foreign key
is to exploit n + 1 indices on each of the referencing and
referenced tables: one compound index on the n columns,
and one index on each of the n individual columns. This
combination of indices outperforms any other combination
for all possible kinds of updates. The finding is confirmed by
experiments on two benchmark and one real life database.
We remark that the original proposal by Härder and Rein-
hart to utilize one index for each of the n key columns on
the referenced table and one compound index on the for-
eign key columns of the referencing table performs well only
for 2-column key relationships. Essentially, by doubling the
number of indices over their proposal, we improve the speed
for inserts by a factor of 7, and for deletions by a factor
of 123, on the largest data set considered with a 5-column
foreign key relationship. Note that this includes the main-
tenance of all indices involved. Further experiments explain
this performance boost over the original proposal: Adding
an index for each of the n foreign key columns on the refer-
encing table overcomes the poor performance of the original
proposal when deleting tuples from the referenced table that
have no alternative match for referencing tuples. Further-
more, adding a single index for the compound key on the
referenced table boosts the performance when inserting to-
tal tuples in the referencing table. The only trade-o↵ we
found is that the time for loading data on the referencing
table is 1.5 times more, due to building twice as many in-
dices. This one-time cost is feasible.
Organization. The remainder of this paper is organized
as follows. We comment on some related work in Section 2.
Details on the semantics of referential integrity constraints
in SQL are given in Section 3. We describe our ideas of
intelligent update and query services in Sections 4 and 5,
based on partial semantics. In Section 6 we propose triggers
as well as five di↵erent index structures for which we will
analyze the performance of enforcing partial referential in-
tegrity on synthetic data sets in Section 7, and on TPC-C
and TPC-H data sets in Section 8. We conclude in Section
9 where we also briefly comment on future work.

2. RELATED WORK
Work on referential integrity has largely addressed inclu-

sion dependencies. A seminal paper on the theory of inclu-
sion dependencies is [2], in which a finite axiomatization for
the associated implication problem is presented and the non-
k-ary-axiomatizability of both finite and unrestricted impli-
cation for functional and inclusion dependencies together is
demonstrated. An axiomatization which is not k-ary for the
finite implication of functional and inclusion dependencies is
presented in [18]. Undecidability of (finite) implication for
functional and inclusion dependencies taken together was
shown independently by [4] and [19]. Another seminal pa-
per is [12], which also observed the distinction between finite
and unrestricted implication for functional and inclusion de-
pendencies, generalized the chase to incorporate functional
and inclusion dependencies, and used this to characterize
containment between conjunctive queries. Databases have
benefited from referential integrity constraints and inclusion
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dependencies in areas as diverse as database design [15],
consistency enforcement [3], query optimization [12], data
cleaning [1], data quality [20], and data profiling [24]. In-
clusion dependencies have also been considered in XML [13]
and RDF [14].
The di↵erent semantics of referential integrity, as pro-

posed by the SQL standard [17], have not received much
attention from neither academia nor practice. As observed
in [22], there are no database management systems that of-
fer built-in support for enforcing partial referential integrity
while every database management system o↵ers built-in sup-
port for enforcing simple referential integrity. In [9] Härder
and Reinhart investigated the functional requirements for
preserving simple and partial referential integrity. Indeed,
they determined the number and kinds of searches necessary
for referential integrity maintenance, without implementa-
tion considerations. Their main result was that a combined
access path structure is the most appropriate for checking
simple semantics, while partial semantics requires very ex-
pensive and complicated check procedures. Their “best ad-
vice is to avoid the use of MATCH PARTIAL at all”. If required,
they recommend the use of one index for each of the key
columns on the referenced table and one compound index
on the foreign key columns of the referencing table. They
also investigate the performance of multi-dimensional access
paths by considering grid file structures. Here, the access
costs for partial match queries are remarkably more expen-
sive than their suggested index option. The main reason is
that grid files retrieve all matching tuples while partial refer-
ential integrity requires only one matching tuple. In conclu-
sion, Härder and Reinhart say that their “presented results
rely on the assumption that the search costs are indicative
for the entire costs of referential integrity maintenance. This
assumption has to be justified through further research es-
pecially at the system level. Another interesting question to
be answered is whether or not MATCH PARTIAL is useful for
a real world application”. Here, we address both questions.
In a research-in-progress paper [16] we performed a static

analysis of the costs for validating simple and partial se-
mantics in a fixed database. Therefore, the analysis did not
consider updates at all. It only applied to referential in-
tegrity constraints with two columns, and only considered
compound indices which refer to all columns of a foreign
key. The present paper presents a detailed analysis of the
costs for enforcing simple and partial semantics in a dynamic
database that is subject to updates; applies to foreign keys
with up to five columns, considers multiple index structures
on referenced and referencing tables, and proposes triggers
and the new intelligent query and update services.

3. REFERENTIAL INTEGRITY IN SQL
Foreign keys form one of the most fundamental classes

of integrity constraints, which implement Codd’s proposal
of referential integrity from his seminal paper [5]. Referen-
tial integrity maintains the relationship between two table
schemata, which are the referencing schema or child schema,
usually denoted by CS , and the referenced schema or par-
ent schema, usually denoted by PS . A referential integrity
constraint is commonly written as

[f1, . . . , fn] ✓ PS [k1, . . . , kn]

to denote the relationship between the sequence [f1, f2, . . .
, fn] of distinct column names on CS , usually called the for-

eign key, and the sequence [k1, k2, . . . , kn] of distinct column
names, which form a candidate key on PS . For i = 1, . . . , n,
the domains of the column names fi and ki must match. In-
tuitively, referential integrity requires that for each tuple c in
a child table C there is a matching tuple p in the parent ta-
ble P . The SQL standard recommends the use of the MATCH
clause to specify di↵erent ways for handling occurrences of
the null marker null in foreign key and key columns [17].

Under simple semantics, the foreign key constraint is sat-
isfied if for every tuple c in the child table C, either c(fi) =
null for some 1  i  n, or there is some tuple p in the
parent table P such that c(fi) = p(ki) for all i = 1, . . . , n.
More precisely,

8c 2 C

  
n̂

i=1

c(fi) 6= null

!
) 9p 2 P

 
n̂

i=1

c(fi) = p(ki)

!!
.

Hence, simple referential integrity is never violated by tuples
that are partially defined on the foreign key columns.

Under partial semantics, the foreign key constraint is sat-
isfied if for every tuple c in the child table C there is some
tuple p in the parent table P such that c[f1, . . . , fn] is sub-
sumed by p[k1, . . . , kn]. That is,

8c 2 C9p 2 P (c[f1, . . . , fn] v p[k1, . . . , kn])

Here, a tuple c over the column sequence [f1, . . . , fn] is sub-
sumed by a tuple p over the column sequence [k1, . . . , kn], if
for every i = 1, . . . , n, c(fi) = null or c(fi) = p(ki).

The table from Example 1 satisfies the foreign key con-
straint [tour id,site code] ✓Tour [tour id,site code] on table
Booking under simple semantics, but not under partial se-
mantics. For instance, the Booking-tuple (BRF,null) over
[tour id,site code] has noTour-tuple over [tour id, site code]
by which it is subsumed.

Enforcing some referential integrity constraint means that
each time the child or parent table is modified it must be ver-
ified that the constraint is satisfied by the modified database
instance. Therefore, referential integrity is particularly im-
portant for transactional databases, or for updates of im-
portant data such as master data.

In general, six basic updates must be addressed to accom-
modate all possible modifications on parent tables P or child
tables C. Tuple inserts into P and tuple deletions from C do
not cause a violation of referential integrity. The other four
update operations, however, hInsert a new tuple into Ci and
hUpdate Ci, hUpdate P i and hDelete a tuple from P i may
lead to modified tables that violate referential integrity. If a
tuple c from C references a tuple p from P , we call c a child
of p, and p a parent of c.
hDelete a tuple from P i: A tuple p from P may be the

only parent of some child c from C. That is, there is no
other tuple p0 in P which is a parent of c. Deleting such
single parents from P will always violate referential integrity.
hUpdate P i: This update can be interpreted as hDelete a

tuple from P i along with hInsert a new tuple into P i. There-
fore, it may only cause a referential integrity violation due
to the Delete action.
hInsert a new tuple into Ci: Referential integrity requires

for every newly inserted child c in C the existence of a parent
p in P . Otherwise, referential integrity is violated.
hUpdate Ci: An update of a child in C can be interpreted

as a delete from C followed by an insert into C. Only the
insert into C can lead to a violation of referential integrity.
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According to the SQL standard, inserts into C or updates
on C are only allowed if they result in a new child table that
satisfies the referential integrity constraints defined on CS .
However, di↵erent actions can be applied when a delete from
P or an update on P results in the violation of some referen-
tial integrity constraint. Based on the SQL standard, “CAS-
CADE”,“SET NULL”,“SET DEFAULT”,“RESTRICT”and
“NO ACTION” are available referential actions.

Under simple semantics, every child has at most one par-
ent. Under partial semantics, any child may have several
parents, given that the child has a null marker occurrence
in some of its foreign key columns. If the state of a child is
defined as the subset of the n foreign key columns on which
it is null, then each given parent may have up to 2n � 1
children that have pairwise di↵erent states. If u denotes the
number of null marker occurrences (0  u < n),

�
n
u

�
is the

number of distinct states with u null marker occurrences [9].

Example 2. Given a 3-attribute key with value h1, 2, 3i
on the key columns, the seven di↵erent states may result
from children with the following values on their foreign key
columns: h1, 2, 3i, hnull, 2, 3i, h1, null, 3i, h1, 2, nulli, hnull,
null, 3i, hnull, 2, nulli and h1, null, nulli. Each of the
non-total children may have some other parent. The par-
ent with h4, 2, 3i, for example, has also children with the
following values on their foreign key columns hnull, 2, 3i,
hnull, 2, nulli and hnull, null, 3i.

4. AN INTELLIGENT UPDATE SERVICE
We propose an intelligent update service that enables us to

give an a�rmative answer to Härder and Reinhart’s question
“whether or not MATCH PARTIAL is useful for a real world
application?” [9].
Null markers o↵er great flexibility for data entry, but

have serious consequences. Indeed, the level of informa-
tion completeness is an important factor for data quality
[7]. Partial data causes significant problems for enterprises:
it routinely leads to misleading analytical results and bi-
ased decisions, and accounts for loss of revenue, credibil-
ity and customers [7]. We propose the use of MATCH PAR-
TIAL for intelligent updates of data. For a given foreign key
[f1, . . . , fn] ✓ PS [k1, . . . , kn] on CS we propose the following
two strategies to reduce information incompleteness.

4.1 Intelligent Insertions
Suppose a new tuple c is inserted into the child table C

and c(fi) = null on some foreign key column f1, . . . , fn.
Then the database management system (DBMS) determines
all parents p of the parent table P where c[f1, . . . , fn] v
p[k1, . . . , kn]. For each of these parents p, the DBMS com-
putes the tuple cp that results from c by replacing each null
marker occurrence c(fi) = null by the value p(ki), where
i = 1, . . . , n. Finally, the tuples cp are presented as alterna-
tives to c for insertion into C.
For instance, suppose again that the tuple c = (1011, RF,

null, Oct 5th) is not already part of the Booking table in
Example 1, but about to be inserted into it. Our intelligent
update service would determine all possible parents of c in
Tour, which are p = (RF,BB,Binna Burra) and p0 = (RF,
OR, O’Reilly’s), and present the tuples cp = (1011, RF,BB,
Oct 5th) and cp0 = (1011, RF,OR, Oct 5th) as alternatives

to c = (1011,RF, null,Oct 5th) for insertion into Booking.

4.2 Intelligent Deletions
Suppose an existing tuple p is deleted from P . For all

children c of p in C where c[f1, . . . , fn] v p[k1, . . . , kn] and
c(fi) = null on some f1, . . . , fn, the DBMS determines
all alternative parents of p in P � {p}, i.e. those tuples
p0 2 P � {p} where c[f1, . . . , fn] v p0[k1, . . . , kn]. It then
computes the tuple cp0 that results from c by replacing each
null marker occurrence c(fi) = null by the value p0(ki),
where i = 1, . . . , n. Finally, for each child c of p the tuples
cp0 are presented as potential updates of c in C.

For instance, consider the tables from Example 1. Sup-
pose the tuple p = (RF,OR,O’Reilly’s) is deleted from
the Tour table. The only child of p in Booking is c =
(1011,RF, null,Oct 5th), and the only alternative parent of
c in Tour is p0 = (RF,BB,Binna Burra). Consequently,
the DBMS presents the tuple cp0 = (1011,RF,BB,Oct 5th)
as an update of the tuple c in Booking.

We propose two di↵erent approaches for implementing in-
telligent deletions. In Method 1, the existence of alternative
parents is first checked in P . Then the potential updates
are ranked according to the number of a↵ected children in
C and presented to the user for confirmation.

Algorithm 1 Intelligent Deletion: Method 1

Require: Deleted tuple: p[k1, . . . , kn], referential action
Ensure: Updated C under Partial Semantics
1: forall c 2 C such that

Vn
i=1 c(fi) 6= null andVn

i=1 c(fi) = p(ki) do Apply referential action
2: for u:=1 to n-1 do
3: S[u]  {Suj | the jth state of hk1, . . . , kni with u

nulls, for all j=1 to
�
n
u

�
}

4: for all Suj 2 S[u] do
5: Q[Suj ] {p0 2 P � {p}|Suj v p0[k1, . . . , kn]}
6: luj  number of c in C match Suj

7: lmj  number of c in C match Smj such that
m = u+ 1 to n� 1 and Smj v Suj

8: l0uj  luj + lmj

9: if Q[Suj ] = ; and luj 6= 0 then
10: Apply referential action on Suj states in C
11: l0uj  0

12: L {(l0uj , Q[Suj ]}
13: if 9 l0uj 6= 0 2 L then
14: S0

u  Suj with Max(l0uj)
15: Output: Set Q[S0

u] and S0
u (foreign key)

16: Input: If p0 2 Q[S0
u] is selected then Subsume all

c = Suj and c = Smj by p0

17: l0uj  0 and L {(l0uj , Q[S0
u]}

In Method 2, the intelligent system first finds all children
of the given parent. For each of these children, the system
then finds all alternatives. The choice of method depends
on the requirements of the application.

4.3 Implementation
The system is available on http://sqlkeys.info and has

been tested on the 3-column foreign key of the TPC-C bench-
mark database from the Transaction Processing Performance
Council (http://www.tpc.org). Figure 1 shows how users
can insert either their original record or a more informative
record, whatever is perceived to be the better choice. Fig-
ures 2 and 3 show screenshots of the two deletion methods.
Indeed, the choice of continuing with incomplete foreign keys
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Algorithm 2 Intelligent Deletion: Method 2

Require: Deleted tuple: p[k1, . . . , kn], referential action
Ensure: Updated C under Partial Semantics
1: forall c 2 C such that

Vn
i=1 c(fi) 6= null andVn

i=1 c(fi) = p(ki) do Apply referential action
2: for u:=1 to n-1 do
3: S[u]  {Suj | the jth state of hk1, . . . , kni with u

nulls, for all j=1 to
�
n
u

�
}

4: for all Suj 2 S[u] do
5: luj  number of c in C match Suj

6: L {(luj , Q[Suj ]}
7: if 9 luj 6= 0 2 L then
8: S0

u  Suj with Max(luj)
9: Q[S0

u] {p0 2 P � {p}|S0
u v p0[k1, . . . , kn]}

10: if Q[S0
u] = ; then

11: Apply referential action on S0
u states in C

12: else
13: Output: Set Q[S0

u] and S0
u (foreign key)

14: Input: If p0 2 Q[S0
u] is selected then Subsume

all c = Suj and c = Smj by p0 wherem = u+1
to n� 1 and Smj v Suj

15: luj  0 and L {(luj , Q[S0
u]}

Figure 1: Intelligent Update System: Insertion

is available to users, however, referential action will be ap-
plied on the foreign keys which violate partial referential
integrity.
Use cases. It is straightforward to envision novel use cases
of the intelligent update service. For example, when up-
dates are run manually, the user can be presented directly
with available choices for the imputation of null markers.
This can be customized further, for example, according to
the preferred number of such choices or to the access rights
the user enjoys. The decision should be based on the e�-
ciency and quality requirements for data entry as well as the
expertise of the user. When updates are run mechanically,
it is particularly advisable to record the available choices for
imputation in the form of a log. This log can be inspected
later on for analytical purposes, or to assist with data clean-
ing. An interesting use case occurs whenever transactions
are aborted due to null marker occurrences in child columns
that are part of the primary key. Exploiting partial seman-
tics to impute these occurrences by some matching consis-
tent values may result in the successful completion of the
transaction. In any case, the intelligent update service can

Figure 2: Intelligent Deletion Method 1

help reduce information incompleteness in ways current ser-
vices cannot.

Figure 3: Intelligent Deletion Method 2

5. AN INTELLIGENT QUERY SERVICE
The occurrence of null markers in query answers restricts

the insights that stakeholders can gain from data. It is there-
fore important that database systems raise user awareness of
actual data values that null markers may represent. By ex-
ample, we will now explain why partial referential integrity
constitutes a prime mechanism to reduce information incom-
pleteness in query answering. Consider the following query
which returns the tour id and site code of all bookings:

SELECT Tour id, Site code
FROM Booking

On our database from Example 1, the standard answer to
this query consists of the records that are written in normal
font below:

Tour id Site code
BRF null
BRT OR
null BB
RF BB

Tour id Site code
null BR
RF null
RF BB
RF OR

Partial semantics suggests to add the records written in
bold font, as these have corresponding parents in the Tour
table. As illustrated above, users benefit from highlighting
non-standard answers and placing them directly below the
records in the standard answer from which they originate.
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Summary. Our intelligent query and update services ex-
ploit partial semantics to minimize information incomplete-
ness. This results in higher quality data, better data-driven
decision making, and more competitive organizations. Both
services complement each other: Fewer choices for imputa-
tion mean fewer choices for intelligent updates, and more
choices for imputation mean more non-standard query an-
swers users can benefit from. So, whichever case we en-
counter at least one of the services is useful. It is beyond
the scope of this paper to go deeper into the specific ap-
plication of our proposed services. Instead, we see them as
strong drivers to investigate the second open question, that
is, whether partial semantics can be enforced e�ciently.

6. OPERATIONAL REQUIREMENTS
This section examines the two main operational require-

ments for enforcing partial semantics. First, we propose
implementation details in the form of triggers on child and
parent schemas. Next we discuss five di↵erent index struc-
tures. Their impact on the performance of enforcing partial
referential integrity will be analyzed in subsequent sections.

6.1 Triggers for Partial Referential Integrity
Foreign keys commonly enforce simple semantics in cur-

rent database management system implementations. Our
next goal is to define triggers that enforce partial referential
integrity under updates. For that purpose we first propose a
trigger on the referencing child schema CS . This trigger will
enforce partial referential integrity for hInserti and hUpdatei
modifications on any child table C. The referential action
we uniformly consider in our experiments is hSET NULLi.
We have designed a platform on www.sqlkeys.info which

generates triggers for enforcing partial semantics on any ar-
bitrary database with foreign keys up to size five. Below
is the SQL code for a trigger that implements a referential
integrity constraint on n = 3 columns:

Trigger on CS:
BEFORE INSERT ON CS FOR EACH ROW
Declare msg varchar(80);
If (new.f1 is not null and new.f2 is not null and

new.f3 is not null) then
if not exists (select * from PS where (k1=new.f1
and k2=new.f2 and k3=new.f3)) then
set msg =‘No reference is found, enter a valid value’;
signal sqlstate ’02000’ set message text = msg;
end if;

Elseif (new.f1 is not null and new.f2 is not null and
new.f3 is null) then if not exists(select * from PS

where (k1=new.f1 and k2=new.f2) LIMIT 1) then
set msg =‘No reference is found, enter a valid value’;
signal sqlstate ’02000’ set message text = msg;
end if;

Elseif (new.f1 is not null and new.f3 is not null and
new.f2 is null) then if not exists (select * from PS

where (k1=new.f1 and k3=new.f3) LIMIT 1) then
set msg =‘No reference is found, enter a valid value’;
signal sqlstate ’02000’ set message text = msg;
end if;

Elseif . . . /* similar for all 2n � 1 possible states */
End if;
End;

For hDeletei and hUpdatei modifications on the parent
schema PS another trigger is defined. The SQL code of
the trigger in the case of n = 3 columns is as follows:

Trigger on PS:
AFTER DELETE ON PS FOR EACH ROW
Update CS set f1 =null, f2 =null, f3 =null where

(old.k1 = f1 and old.k2 = f2 and old.k3 = f3);
If exists (select * from CS where (f2 is null and f3

is null and old.k1 = f1) limit 1) and not exists
(select * from PS where old.k1 = p.k1 limit 1)

then update CS set f1 =null, f2 =null, f3 =null
where ((f2 is null or f3 is null) and old.k1 = f1);

end if;
If exists(select * from CS where (f1 is null and
f3 is null and old.k2 = f2) limit 1) and not exists
(select * from PS where old.k2 = p.k2 limit 1)

then update CS set f1 =null, f2 =null, f3 =null
where ((f1 is null or f3 is null) and old.k2 = f2);

end if;
If exists (select * from CS where (f1 is null and f2
is null and old.k3 = f3) limit 1) and not exists
(select * from PS where old.k3 = p.k3 limit 1)

then update CS set f1 =null, f2 =null, f3 =null
where ((f1 is null or f2 is null) and old.k3 = f3);

end if; /* similar for all 2n � 1 possible states */
End;

6.2 Index Structures
One feature that significantly a↵ects the system behavior

is the index structure applied to the referenced and refer-
encing tables. An appropriate index structure can optimize
searches and improve the performance by several reads in
one scan.

0) No: No index is defined. This option is a baseline for
judging the performance of actual indices.

1) Full : One index is defined on [k1, . . . , kn] over PS , and
one index on [f1, . . . , fn] over CS . Full enforces simple
semantics [22]. Full might not improve partial refer-
ential integrity enforcement since a null marker in the
foreign key may lead to a complete scan on all parent
key values from the leftmost to the rightmost column
[9].

2) Singleton: One index is defined for each ki over PS ,
and for each fi over CS , for i = 1, . . . , n, resulting
in 2n indices. With individual access to each column
this approach is expected to boost the performance of
enforcing partially-defined foreign keys [9].

3) Hybrid : One index is defined for each ki over PS , and
a single index on [f1, . . . , fn] over CS , resulting in n+1
indices. According to [9], Hybrid takes advantage of
both Full and Singleton options, and the authors con-
jectured that Hybrid best supports partial semantic.

4) Powerset : One index is defined on each non-empty
subset of PS , and on each non-empty subset of CS , re-
sulting in 2n+1�2 indices. Powerset shows the impact
of having all possible indices available.

5) Bounded : One index is defined on [k1, . . . , kn] and
one index for each ki over PS , and one index is de-
fined on [f1, . . . , fn] and one index for each fi over
CS , for i = 1, . . . , n, resulting in 2n + 2 indices. This
structure combines Full, Singleton, and Hybrid, and
reduces Powerset to just the singletons (lower bound)
and the full subset (upper bound) instead of all sub-
sets. Bounded outperforms all other structures in our
experiments.
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Table 1: Execution Time (s) for Insertion with a 5-Column Foreign Key
Data Partial Semantics Simple
Set No Index Full Singleton Hybrid Powerset Bounded Semantics
Size Ave Max Ave Max Ave Max Ave Max Ave Max Ave Max Ave Max
15M 1.98 9.11 0.0066 0.109 0.019 0.187 0.0189 0.156 0.0157 0.312 0.0026 0.078 0.00076 0.046
10M 0.69 6.63 0.0065 0.093 0.019 0.188 0.0194 0.187 0.0148 0.343 0.0025 0.047 0.00085 0.031
8M 0.57 5.21 0.0066 0.094 0.019 0.187 0.0194 0.218 0.0145 0.312 0.0027 0.063 0.00109 0.031
5M 0.33 2.55 0.0068 0.078 0.019 0.172 0.0194 0.187 0.0137 0.125 0.0025 0.063 0.00103 0.031
3M 0.24 1.51 0.0067 0.094 0.021 0.234 0.0206 0.203 0.0127 0.297 0.0029 0.078 0.00110 0.047
1M 0.15 0.57 0.0069 0.078 0.022 0.156 0.0217 0.156 0.0087 0.093 0.0075 0.125 0.00123 0.016

Figure 4: Performance Trends for Enforcing Partial Semantics under Insertions and Di↵erent Indices

Insertions under 5-column keys Insertions under 4-column keys

7. EXPERIMENTS ON SYNTHETIC DATA
We report on some of our experiments to evaluate the per-

formance of enforcing partial semantics. Experiments were
run on a Dell Latitude E5530, Intel core i7, CPU 2.9GHz
with 8GB RAM. The operating system was Windows 7 Pro-
fessional, Service pack 1 on a 64-bit operating system. The
DBMS we used was MySQL version 5.6.

7.1 Description
All experiments involved two table schemata PS and CS

and the foreign key [f1, . . . , fn] ✓ PS [k1, . . . , kn] on CS .
Here, n varied between 2 to 5 to focus on the constraints
that mostly occur in practice. For n = 1 there is no di↵er-
ence between simple and partial semantics. Parent table P
and child table C were populated with synthetic data sets of
various sizes between 1M and 15M tuples in P and 1.5 times
as many tuples in C, respectively. Columns of the candi-
date key {k1, . . . , kn} on PS did not feature null, while null
markers did occur in the foreign key columns {f1, . . . , fn}
in C. This allows us to gain insights on the foreign keys
that mostly occur in practice. Each non-empty subset S of
{f1, . . . , fn} had the same number of tuples in C which fea-
tured null markers in all columns in S and no null markers in
any column outside of S. This also meant that the order of
columns in a compound index does not matter in the exper-
iments. We also run experiments where 50% and 80% of the
tuples in C featured null markers in the foreign key columns,
but the performances were very similar in each case. The
performance of enforcing [f1, . . . , fn] ✓ PS [k1, . . . , kn] was
measured as the average time to insert tuples in C and
to delete tuples from P , respectively, exploiting the trig-
gers and di↵erent index structures from Section 6. For each
data set and each index structure, the average was taken

over 5,000 deletes and 5,000 inserts, respectively. We also
compared the performance against that of simple seman-
tics, enforced by built-in foreign keys. Note that execution
times include the time for the trigger and the maintenance of
the index structure. All reported experiments used BTrees.
Applying Hash indices to our experiments resulted in sim-
ilar outcomes, showing worse performance with minor ex-
ceptions. For these reasons we do not further comment on
Hash indices here.

7.2 Impact of Indices
The impact of the index structures from Section 6 on the

performance of enforcing partial semantics is the central con-
tribution of our work. Tables 1 and 2 show the times to per-
form insertions into C and deletions from P , respectively,
on the di↵erent data sets and where n = 5. These times are
illustrated in Figures 4 and 5, respectively, along with the
results for the same tests where n = 4. As expected, the
use of indices leads to tremendous time savings for inser-
tions and deletions. Our experiments confirm Härder and
Reinhart’s calculations that Hybrid achieves a performance
similar to that of Singleton under insertions, and to that of
Full under deletions. That is, it combines the performance
gains of Singleton over Full under insertions, and the gains
of Full over Singleton under deletions [9]. However, Power-
set performs better than Hybrid under both insertions and
deletions, and Bounded is the clear winner for both opera-
tions. On the largest data set with the largest foreign key
size, for example, Bounded performs insertions/deletions on
average about 7/123 times faster than Hybrid. The di↵er-
ence is considerable: the average time for deletions is 7.03s
for Hybrid while it is 57ms for Bounded. Bounded is 6/9
times faster than Powerset on the largest data set. The

223



Table 2: Execution Time (s) for Deletion with a 5-Column Foreign Key
Data Partial Semantics Simple
Set No Index Full Singleton Hybrid Powerset Bounded Semantics
Size Ave Max Ave Max Ave Max Ave Max Ave Max Ave Max Ave Max
15M 286.04 824.7 9.16 203.1 110.45 813.9 7.03 142.20 0.531 0.967 0.057 0.296 0.0026 0.047
10M 201.38 480.3 5.91 151.3 109.00 651.7 4.42 100.34 0.442 0.904 0.047 0.234 0.0016 0.046
8M 128.04 393.7 4.93 119.8 93.32 572.8 3.72 82.41 0.401 0.92 0.042 0.218 0.0017 0.062
5M 85.79 255.48 3.7 86.15 39.2 337.1 3.04 67.76 0.330 0.79 0.037 0.188 0.0015 0.047
3M 52.65 138.76 1.7 63.43 15.4 143.3 1.36 41.52 0.255 0.655 0.041 0.156 0.0015 0.047
1M 19.61 41.77 0.62 13.58 3.5 25.4 0.44 8.70 0.140 0.577 0.057 0.266 0.0011 0.031

Figure 5: Performance Trends for Enforcing Partial Semantics under Deletions and Di↵erent Indices

Deletions on 5-column keys Deletions on 4-column keys

performance gain of Bounded over Powerset shows that the
additional time for maintaining further indices in Powerset
and to choose the index from all the options in Powerset
outweighs the time gains for the actual operations by Pow-
erset in comparison to Bounded. Due to space restrictions
we only present the results for 5-column foreign keys. For 3-
column and 4-column foreign keys the index structures show
similar behavior as the ones presented for 5-column foreign
keys. Table 3 illustrates the results of applying Bounded and
Hybrid on a synthetic data set of size 100M with a 5-column
foreign key.

Table 3: Execution Time (s) for 100M Data Set un-
der some Index Structures and 5-Column Foreign
Key

Insertion Deletion
Mean Max. Mean Max.

Hybrid 0.013 0.156 39.74 976.23
Bounded 0.0027 0.063 0.085 0.281
Simple S. 0.001 0.047 0.0021 0.062

Exception. Hybrid shows the best performance when n = 2
and the data set size is large. For example, on the largest
data set it takes 2.8/10.2ms for insertions/deletions, while
these times increase to 4.3/11.5ms on Powerset, see Figure 6.
Note that Powerset and Bounded coincide when n = 2.

Simple semantics. Of course, it takes longer to enforce
partial than simple semantics. However, the additional time
becomes feasible under Bounded. For example, for inser-
tions/deletions on the 15M data set with a 5-column foreign
key, partial semantics is enforced by about 2.6/57ms, re-
spectively. This takes 3.4/22 times longer than for simple

Figure 6: Deletions for 2-Column Foreign Keys

semantics, while it takes 22/2703 times longer than for sim-
ple semantics using Hybrid. Even on a data set with 100M
tuples, inserts and deletions can be processed within 2.7ms
and 84.8ms, respectively, using Bounded. This confirms the
feasibility of enforcing partial semantics on even large for-
eign key sizes.

7.3 Index Building
While the time to load data and build the indices is just

a one-time cost, we still include it in our analysis. Table 4
shows the time taken to load data and build the indices on
all data sets. Not surprisingly, the more indices are defined
the longer it takes to build them. Building Powerset is thus
time-consuming: more than 3hrs and 53mins on the largest
data set, while Hybrid takes just over 10mins. Bounded,
with twice as many indices as Hybrid, takes about 14mins
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Table 4: Times (s) for Loading Data and Building Indices for 5-Column Key
Data No Index Full Singleton Hybrid Powerset Bounded Foreign
Size C P C P C P C P C P C P key
15M 107.2 69.1 403.7 96.3 297.2 198.3 405.8 200.9 5269.2 8716.8 622.6 234.5 587.9
10M 69.0 43.9 234.5 63.8 199.2 132.9 242.6 134.7 2875.4 5305.8 366.8 156.7 262.0
8M 56.4 36.0 172.3 51.8 159.3 107.6 171.7 106.0 2061.3 4073.4 275.5 120.5 180.3
5M 42.2 22.8 99.3 32.2 95.2 67.0 94.2 63.9 1016.3 2298.1 160.5 77.6 100.9
3M 20.5 13.3 53.5 19.5 63.9 41.4 54.0 40.7 522.6 1162.0 96.2 47.1 53.6
1M 7.9 4.9 16.7 7.4 20.1 13.6 15.3 13.3 142.6 151.1 28.2 14.72 16.9

and 30s. The foreign key index is built in 9mins and 47s.

7.4 Impact of Update Size
We performed some experiments with transactions, that

is, atomic sets of update operations. The reported experi-
ments were conducted for the 5-column foreign key on the
data set with 15M tuples. The first experiment featured an
insert of 5,000 tuples into C, and the second experiment a
deletion of 2,000 tuples from P . The results are illustrated
in Table 5. The transaction with 5,000 inserts takes just un-
der 7s with Bounded, and nearly 90s with Hybrid. For the
transaction with 2,000 deletions it takes over 148mins with
Hybrid, and just under 111s with Bounded.

Table 5: Execution Time (s) of Transactions under
Index Structures on Data Set with 15M Tuples

5000 Insertions 2000 Deletions
Full 28.533 13413.16
Singleton 90.137 59191.81
Hybrid 89.65 8922.6
Powerset 102.81 605.71
Bounded 6.973 110.37
Simple S. 0.811 32.92

7.5 Extended Tests and Analysis
Deletions. Tables 2 and 5 show the poor performance
of Hybrid on delete actions, and that it is overcome by
Bounded. We will now analyze how Bounded achieves this.
For that purpose, we exploited MySQL’s explain statement
which shows the optimizer’s plan in executing the statements
of each test. Recall that Hybrid has only one compound in-
dex over all foreign key columns in CS . When we Delete
from P , this means that one scan through all tuples is re-
quired to apply the referential action to children that feature
null on the left most column. However, the referential ac-
tion is only needed when there is no alternative parent for
these children. Establishing that referential action must be
applied to children whose only parent has been deleted is
therefore poorly supported by Hybrid. We validated this
observation by applying a deeper analysis to the experiment
with our data set of 10M tuples. For this purpose, we call
a parent unique when it has only children for which it is
the only parent. Therefore, referential actions apply to all
children of a unique parent. Otherwise, the parent is called
non-unique. Table 6 shows the average execution time for
deleting unique and non-unique parents when Hybrid is ap-
plied.
Table 7 shows the average execution time for deleting non-

unique and unique parents when Bounded is applied.
These results show that Hybrid performs particularly poor

when deleting unique parents. The same analysis applies to

Table 6: Hybrid for Deletions, Average of Execution
Times
Key size Non-unique Parent Unique Parent
5-Column keys 0.525s 40.47s
4-Column keys 2.37s 18.68s
3-Column keys 0.022s 17.59s

Table 7: Bounded for Deletions, Average of Execu-
tion Times
Key size Non-Unique Parent Unique Parent
5-Column keys 0.051s 0.005522s
4-Column keys 0.00976s 0.00305s
3-Column keys 0.00348s 0.00167s

transactions. In fact, only 3% of the deleted parents were
unique. With Hybrid they occupied 145mins of the overall
time of 148mins, but with Bounded they occupied only 0.5s
of the overall time of 111s, refer to Table 13.

This poor performance ofHybrid can be avoided by adding
to Hybrid one index on each foreign key attribute fi on Cs.
The resulting structure consists of 2n + 1 indices in total,
and we refer to it by Hybrid+nSingle. Table 8 shows the
average execution time for deleting non-unique and unique
parents when Hybrid+nSingle is applied.

Table 8: Hybrid+nSingle for Deletions, Average of
Execution Time
Key size Non-Unique Parent Unique Parent
5-Column keys 0.413s 0.0061s
4-Column keys 2.29s 0.003s
3-Column keys 0.0237s 0.00233s

Another index structure that we have also tested is Hy-
brid+Compound, which consists of Hybrid plus one index
over the key columns of PS . Hybrid+Compound has there-
fore a total of n + 2 indices. For deletions, the additional
index improves the search for children which are not null in
the leftmost columns. This is demonstrated by comparing
the results for Non-Unique Parents in Tables 7 and 8.

Figure 7 illustrates how well Hybrid+nSingle and Hybrid+
Compound perform deletions in comparison to the other in-
dices. Clearly, the performance boost of Bounded over Hy-
brid for deletions is mainly due to adding nSingle.
Insertions. Figure 8 illustrates how well Hybrid+nSingle
and Hybrid+Compound perform insertions in comparison to
the other indices. Clearly, the performance boost of Bounded
over Hybrid for insertions is mainly due to adding Com-
pound.

A deeper analysis confirms our intuition that Hybrid per-
forms particularly poorly when inserting tuples that have
only total foreign key values. Figure 9 breaks down the per-
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Figure 7: Performances under Deletions with 5-
Column Foreign Keys

Figure 8: Performance under Insertions with 5-
Column Foreign Keys

formance of Hybrid and Hybrid+Compound into insertions
of tuples with only total foreign keys and those that are
partially null.

Figure 9: Performance under Insertions with 5-
Column Foreign Keys

Bounded is the only index structure that performs well
under insertions and deletions, since it does not su↵er from
poor performance for insertions like Hybrid+nSingle and for
deletions like Hybrid+Compound. In comparison to Hy-
brid+nSingle the better performances are achieved under
negligible additional costs for building the indices, see Ta-
bles 11 and 12.
Transactions. Table 13 shows how the new index struc-
tures perform in transactions. Hybrid+Compound performs
best for insertions but takes 149mins for deleting 2000 par-

Table 11: Index Building (IB) and Execution Time
of Bounded

Dataset IB for C IB for P Insert Delete
Size (s) (s) Ave. (s) Ave. (s)
15M 622.569 234.532 0.002678 0.0578
10M 366.821 156.73 0.00251 0.047189
8M 275.513 120.542 0.00271 0.0425
5M 160.463 77.563 0.00254 0.03723
3M 96.237 47.019 0.002988 0.04189
1M 28.173 14.742 0.00757 0.05729

Table 12: Index Building (IB) and Execution Time
of Hybrid+nSingle

Dataset IB for C IB for P Insert Delete
Size (s) (s) Ave. (s) Ave. (s)
15M 636.702 207.029 0.0189 0.5135
10M 367 136.204 0.0194 0.37
8M 282.409 109.045 0.01934 0.3316
5M 162.6 66.81 0.0194 0.43
3M 92.212 40.68 0.0197 0.2481
1M 28.25 13.26 0.02186 0.10149

ents, while Bounded takes just 110s. Hybrid+nSingle is the
runner-up to Bounded for deletions, but performs poorly for
insertions.

Table 13: Execution Time (s) of Transactions under
Index Structures

5000 Insertions
2000 Deletions

Unique p Others
Hybrid 89.65 8753.2 169.4
Hybrid+Compound 6.26 8830.8 104.05
Hybrid+nSingle 90.78 0.515 167.43
Bounded 6.973 0.499 109.9

8. BENCHMARK DATA
We extend our analysis of enforcing partial semantics to

some benchmark and real-world data. For that purpose,
we have run experiments on one two-column foreign key
from the TPC-H database and two three-column foreign
keys from the TPC-C database (www.tpc.org). In addi-
tion, we have tested one three-column foreign key from the
Gene Ontology (GO) database (www.geneontology.org/GO.
database.shtml). Table 9 shows the details of the for-
eign keys. Here, the data set size for test 1 on TPC-H
was 1.43GB, and for test 2 it was 10GB; for TPC-C it was
0.39GB, and for the GO database it was 100MB. Applying
the “Missing at Random” mechanism from [23], null mark-
ers were introduced randomly and spread evenly between
the foreign key columns.

We have tested the TPC-H benchmark with two di↵erent
data set sizes (0.8M and 8M tuples). Note that Powerset
and Bounded coincide on 2-column foreign keys and thus on
the experiments with TPC-H. The results of enforcing par-
tial and simple semantics on these databases are shown in
Table 10. The performances rank very similar to those on
the synthetic data sets. Our results on TPC-H confirm the
observed changes on the performance of Hybrid and Pow-
erset on larger data sets with 2-column foreign keys, see
Figure 6. The TPC-C data set with the 3-column foreign
keys confirms our result with the synthetic data sets that
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Table 9: Detail of the tested TPC databases
Database Parent table Child table Foreign key

Partsupp Lineitem [partkey, suppkey] ✓
TPC-H Test 1: 0.8M records 6M records 25% Null Partsupp[partkey, suppkey]

Test 2: 8M records 60M records 60% Null
TPC-C Customer Orders [O-W-ID,O-D-ID,O-C-ID] ✓

(90K records) (0.13M records) 55% Null Customer[C-W-ID,C-D-ID,C-ID]
TPC-C Orders Orderline [OL-W-ID,OL-D-ID,OL-C-ID] ✓

(0.13M records) (1.3M records) 20% Null Orders[O-W-ID,O-D-ID,O-ID]
Gene Term2term (T) Term2term-metadata [relationship-type-id, term1-id
Ontology (GO) (80k records) (TT) ,term2-id] ✓ [relationship-type-id
database (2200 records) 85% Null , term1-id, term2-id]

Table 10: Execution Time(ms) to Enforce Partial Referential Integrity on Benchmark Databases
No Index Full Singleton Hybrid Powerset Bounded Simple S.

TPC-H Test 1: Insert into Lineitem 161 1.8 1.6 1.3 1.1 - 1.06
Delete from Partsupp 10.92 (s) 6.1 148 5.6 4.3 - 2
TPC-H Test 2: Insert into Lineitem 1.97s 3.1 1.1 0.76 1.09 - 0.88
Delete from Partsupp 19.7 151.72 5.94 14.79 - 3.10
TPC-C: Insert into Orders 14.5 2.73 2.95 2.84 1.28 1.02 0.81
Delete from Customer 498 11.8 120.3 10.15 2.44 2.47 0.6
TPC-C: Insert into Orderline 9.23 2.44 1.9 2.25 1.62 1.31 1.21
Delete from Orders 2.92(s) 18.6 1.05(s) 15.58 3.78 3.52 1.285
GO Database: Insert into TT 15.6 6.16 1.31 1.16 2.37 1.3 1.12
Delete from T 54.2 2.11 17.35 12.6 2.4 1.87 1.06

Bounded outperforms Hybrid by a factor of 2 for insertions
and by 5 for deletions. Similar results have been observed
on the Gene Ontology database. The best times for enforc-
ing partial semantics are never over 6ms while the times for
enforcing simple semantics are never over 4ms.

9. CONCLUSION AND FUTURE WORK
Even two decades after its introduction to the SQL stan-

dard there are no database management systems with built-
in support for partial referential integrity. Härder and Rein-
hart had argued on the operational level that partial se-
mantics is too costly to implement [9]. They invited more
research on its motivation and its costs at the systems level
[9]. In this paper we addressed both questions. Firstly, we
proposed intelligent update and query services that impute
missing data values by exploiting partial semantics. In par-
ticular, we discussed how these services reduce information
incompleteness in the database and suggest possible values
by which null markers can be replaced in query answers.
Secondly, we proposed two main operational requirements
to enforce and speed up the enforcement of partial seman-
tics, and conducted several performance tests in MySQL.
Our tests were targeted at foreign keys that occur com-
monly in practice. These have very rarely more than five
columns and reference candidate keys without null marker
occurrences. Permitting occurrences of null in referenced
candidate keys only a↵ects our results marginally. Our first
major finding confirms on the system level what Härder and
Reinhart had calculated on the operational level: (1) The
performance of the Hybrid index structure matches that of
the Singleton index structure for insertions, and that of the
Full index structure for deletions. (2) Hybrid is the best
candidate to support MATCH PARTIAL, but only for 2-column
foreign keys. We proposed here the new index structure
Bounded for foreign keys with more than two columns. Our
second major finding is that Bounded outperforms Hybrid
for foreign keys with more than two columns. For example,

for a 5-column foreign key on a data set with 15M tuples
and a fair distribution of null markers, Bounded performed 7
times better for insertions and 123 times better for deletions.
The better performance was confirmed on other synthetic
data sets, for transactions, for two TPC-C data sets and a
three-column foreign key on the Gene Ontology database.
The only trade-o↵ we found concerns the loading time of
the data set and building of the indices, which essentially
were 1.5 times more in comparison to Hybrid. Our third
major finding is that the performance boost of Bounded for
deletions results from adding one index to Hybrid on each
foreign key column, and the performance boost of Bounded
for insertions results from adding one index on the com-
pound key to Hybrid. Overall, the enforcement of partial
semantics with Bounded was never slower than 300ms for
any atomic operation with a 5-column foreign key, while the
enforcement of simple semantics was never slower then 62ms.
Based on our results, we conclude that partial referential in-
tegrity can be enforced e�ciently for real-life foreign keys,
which opens up new applications such as intelligent queries
and intelligent updates that lead to better quality data and
better data-driven decision making. These applications do
not apply to simple referential integrity. Our results demon-
strate the benefits of partial semantics, and Bounded o↵ers
a principled approach to indexing foreign keys with partial
semantics that can be added on top of existing databases in
a non-intrusive fashion.

We hope our research will ignite future work on this topic.
Certainly there are many interesting questions that a sin-
gle paper cannot address, but which should be pursued in
future work to unlock many potential benefits. Other in-
dexing options can be studied, for example the combination
of compound indices over key attributes and multidimen-
sional access paths at the system level. An index option in-
cluding 2n compound n-ary indices over the referenced key
attributes [ki, . . . , kn, k1, . . . , ki�1] and referencing key at-
tributes [fi, . . . , fn, f1, . . . , fi�1], for i = 1, . . . , n, supports
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partial match index look-ups by the di↵erent prefixes of the
compound indices. However, our initial analysis shows that
Bounded outperforms this index option in deletions of 3, 4
and 5-column foreign keys by more than 3 times on data
sets with 15M tuples. The loading times of the data sets
and building of the indices in Bounded are always between
1.5 to 4 times cheaper. Exploiting 2n compound indices
over key attributes is not enough to support all the possible
partial match queries. For instance when n = 5, defining
2 ⇥ 5 compound indices in di↵erent orders only supports
21 of 31 match queries. Another interesting avenue deals
with the trade-o↵ between query and enforcement issues.
While our results show that enforcement and maintenance
of partial semantics are unlikely bottlenecks on databases
of enterprise-level size (10GB in test 2 for TPC-H), future
research should be aimed at guidelines for resolving con-
flicts between resources for query and update acceleration
in schemata for big data. While our solution of implement-
ing enforcement by database triggers and index primitives is
appealing in several ways, future work may reveal potential
performance gains that could be realized with an engine-
level implementation. For instance, there may be custom
index data structures that leverage partial and adaptive in-
dexing methods, as well as a more streamlined trigger exe-
cution in order to improve enforcement costs. Furthermore,
there are several techniques such as batching and shared ex-
ecution across updates that apply within transactions, and
could therefore optimize the enforcement of partial referen-
tial integrity in this context. Our proposed services of intel-
ligent queries and updates each open up their own areas of
future investigation. For updates it would be interesting to
investigate how large numbers of choices for imputations can
be represented or ranked, how logs of potential imputations
can best be processed by data analysts, or how unsuccessful
imputations can be reversed. For queries, it would be inter-
esting to find re-writings of SQL queries that return not only
standard but also non-standard answers that result from the
application of partial semantics, and to investigate the over-
head of such techniques. Information incompleteness is also
inherent in other data models such as graphs, RDF, or XML.
Finally, implication problems of inclusion dependencies un-
der SQL semantics should be studied [10, 11].
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ABSTRACT
Data market is an emerging type of cloud service that enables a
data owner to sell their data sets in a public cloud. Buyers who
are interested in a certain dataset can access the data in the mar-
ket via a RESTful API. Accessing data in the data market may not
be free. For example, it costs USD 12 per month to obtain 100
“transactions” from the WorldWide Historical Weather dataset in
Windows Azure Data Marketplace, where a transaction is a unit
of result size (e.g., a query result of 4400 records would consume
44 transactions as Windows Azure Data Marketplace confines one
transaction to 100 records). Therefore, in this paper, we present
PayLess, a system that helps data buyers to optimize their queries
so that they can obtain the query results by paying less to the data
sellers. Experiments over synthetic data and real data sets in Win-
dows Azure Marketplace show that PayLess can cost-effectively
handle SQL query processing over data markets.

1. INTRODUCTION
Data market [1, 16, 42] is an emerging type of cloud service

that enables a data owner to host and sell their datasets in a public
cloud. Buyers who are interested in a certain dataset can access
the data in the market via a RESTful API. The REST based API
has function-call like interface X ! Y , where X and Y are sets
of attributes: given a range or a value for an attribute in X , the
data market returns values for the attributes in Y (if no values are
specified for X , the whole table is returned). For example, the
Worldwide Historical Weather (WHW) dataset [13] in Windows
Azure Marketplace [1] may take a country name and a date, and
return a set of tuples, each details the temperature, precipitation,
dew point, sea level pressure, windspeed, and wind gust recorded
by each weather station in that country on that date.

Accessing data in the data market may not be free. For example,
it costs USD 12 to grant access to every 100 “transactions” to the
WHW data, where a transaction is a unit of result size (e.g., a query
result of 4400 records costs 44 transactions in Windows Azure Mar-
ketplace, which confines one transaction to 100 records). There is
an increasing trend of selling valuable datasets in data market [31].
Correspondingly, we envision that there is an increasing demand

c 2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0.

from end users (data buyers) to carry out analytics that involve
those datasets. To this end, in this paper, we present PayLess,
a system that helps users to optimize their queries so that they can
obtain the query results by paying less to the data sellers.

Query optimization is never trivial. First, from a data buyer’s (the
company or the organization) perspective, it is hard to know in ad-
vance how many queries will be posed by their end users eventually.
Otherwise, downloading the whole dataset would become a viable
plan when the foreknowledge tells that the number of transactions
incurred by user queries would eventually exceed the number of
transactions required to download the complete data set. Second,
query optimization would never work well without rich data statis-
tics. Unfortunately, datasets in data market are rarely tagged with
rich statistics (e.g., no value distribution), although basic informa-
tion like the size (cardinality) of each table and the domain size of
the attribute is usually available.

Tackling the above two challenges sounds not difficult, espe-
cially that we can build a learning optimizer like LEO [46] so that
it begins with little statistic and introduces a feedback loop to cor-
rect the statistics when more queries are issued. The evil, however,
lies in the detail of adopting the learning approach to data market
query optimization.

First, learning-based optimizers like LEO [46] and POP [38] are
originally designed for traditional databases that have full access to
the data. In contrast, the access pattern of data market is restricted
to only X ! Y style. When a data source has limited access pat-
terns, (a) operations might become complicated and (b) specialized
access paths may shine. An example of (a) is that a query that
asks Country = ‘Canada’ OR Country = ‘Germany’
has to decompose into two queries, one asks for Country =
‘Canada’ and another asks for Country = ‘Germany’. An
example of (b) is bind joins (other names include theta semi-join,
dependent join) [27]. To explain, consider the real access pat-
terns of Worldwide Historical Weather (WHW) dataset in Windows
Azure Marketplace listed in Figure 1a.1 The access patterns are
specified using a notation of binding patterns extended from [27].
We write R↵(A1, A2, A3) to denote a table R in the data mar-
ket with three attributes A1, A2, and A3 and binding pattern ↵.
We write ↵ = R(Ab

1, A
f

2 ) to denote a binding pattern that in
any query accessing R, the value of attribute A1 must be bound
(given/specified). In contrast, the value of attribute A2 is free to
be specified or not specified in any query. If an attribute is not in-
cluded in the binding pattern (e.g., A3), it is solely served as an
output attribute in a query result. In other words, if an access pat-
tern of a table has only free attributes, then we can download the
whole table by not specifying any value to any attribute.

Now, consider the following SQL query that asks the WHW

1The attribute names here are renamed for better exposition.
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Data Set Schema and Access Pattern ↵ Size
WHW Station↵1 (Country, StationID, City, State· · · ) 3962

↵1=Station(Countryf , StationIDf , Cityf )
Weather↵2 (Country, StationID, Date, Temperature · · · )19549140
↵2=Weather(Countryf , StationIDf , Datef )

EHR Pollution↵3 (ZipCode, Rank, Latitude, Longitude· · · ) 44210
↵3=Pollution(ZipCodef , Rankf )

local ZipMap (ZipCode, City )
(a)

Station Weather 

VCity= ‘Seattle’ and  
Country = ‘United States’ 

VCountry = ‘United States’ and 
Date t 20140601 and 
Date ≤ 20140630 

RESTful GET Call C2 
 (‘United States’, -, [20140601, 20140630]) 

# Records: 23640 
# Trans.: 237 

  ⋈ 
RESTful GET Call C1 
( ‘United States’, -, ‘Seattle’) 

# Records: 1 
# Trans.: 1 

(b) Plan P1

Station Weather 

VCity= ‘Seattle’ and  
Country = ‘United States’ 

VCountry = ‘United States’ and 
StationId = 3817 and  
Date t 20140601 and 
Date ≤ 20140630 

RESTful GET Call C3 
 (‘United States’, 3817, [20140601, 20140630]) 

# Records: 30 
# Trans.: 1 

 o ⋈ 
RESTful GET Call C1 
( ‘United States’, -, ‘Seattle’) 

# Records: 1 
# Trans.: 1 

(c) Plan P2

Figure 1: Query Processing in Data Market

dataset for the daily temperature of Seattle in June 2014:

SELECT Temperature -------// Query Q1
FROM Station, Weather
WHERE City = ‘Seattle’ AND

Country = ‘United States’ AND
Date >= 20140601 AND Date <= 20140630 AND
Station.StationID = Weather.StationID

Figure 1b shows an execution plan P1 for this SQL. It first
submits two RESTful GET calls C1 and C2, where C1 gets the
StationID of Seattle from Station table, and C2 gets the weather
records for all stations in the United States on June 2014 from
Weather table. The final query result is obtained by carrying out
a local join (i.e., regular join) operation at the end user (data buyer)
side because joins cannot be done at the data market [1]. In plan
P1, a total of 238 transactions were incurred – one was spent on
RESTful call C1 and 237 were spent on RESTful call C2 (there are
788 weather stations in the US and each station contributes 30 days
records, resulting in d788 ⇥ 30/100e = 237 transactions). Figure
1c shows an alternate execution plan P2. It first gets the list of Sta-
tionIDs of Seattle (call C1). Then, it carries out a bind join (�!1 )
operation that binds each StationID (e.g., 3817) to an individual
RESTful call to Weather. Finally, the weather records for each sta-
tion in Seattle are collectively retrieved and returned. In this case,
plan P2 incurs only two transactions: call C1 costs one transaction
and call C3, which returns 30 days of weather records for the only
one weather station in Seattle, costs also one transaction.

Second, although there are optimizers designed for queries over
remote data sources with limited access patterns (e.g., [17, 24, 27,
33–36, 40, 45]), they focus on minimizing the number of calls to
the remote data sources so as to reduce the overall execution time.

As an example, assume that there are 15 weather stations in Seat-
tle, those optimizers will pick plan P1 because it incurs only two
RESTful calls (C1 and C2). In data market, although P2 needs
to bind each Seattle’s weather station id, resulting in 1 + 15 = 16
RESTful calls and 16 transactions (each transaction returns 30 days
of records for each weather station), it is still more economy than
P1, which requires 238 transactions. On the other hand, if we fur-
ther assume that there are only 20 weather stations in the United
States and 15 of them are in Seattle. Then, plan P1 will cost only
1+d20⇥30/100e = 7 transactions. In contrast, plan P2 still costs
16 transactions. In this case, P1 is better than P2.

Summing up the above, we need a (i) learning-based optimizer
that (ii) includes bind join as an access path with the goal of (iii)
minimizing the amount of (intermediate) retrieved data measured in
terms of data market pricing units. Traditional learning-based opti-
mizers satisfy (i) and partially satisfy (iii)2 but not (ii). Optimizers
for queries over remote data sources satisfy only (ii). Therefore, the
principal contributions of this paper are centered around the issues
of building an optimizer for PayLess that satisfies all (i), (ii), and
(iii) above. Those include:

• Defining the cost model and search space for data market
query optimization.

• Devising effective techniques to reduce the amount of in-
termediate retrieved data (e.g., by adapting semantic query
rewriting methods) and integrating those techniques into our
optimizer.

• Implementing a prototype and evaluating its performance
through extensive experiments over synthetic data and real
data.

The remainder of this paper is organized as follows. Section 2
gives more background about the data market. Section 3 presents
the architecture of PayLess. Section 4 describes the details of Pay-
Less’s optimizer. Section 5 reports the results of the evaluation.
Section 6 discusses the related work and Section 7 concludes.

2. PRELIMINARIES
According to a recent survey [2], the three most established data

marketplaces are Factual [8], Microsoft Windows Azure Data Mar-
ketplace [1], and DataMarket [4]. Factual [8] and DataMarket [4]
are specialized data markets that sell datasets in a very specific do-
main (e.g., Factual sells mainly geographical data and DataMarket
sells mainly economic indicators). Microsoft Windows Azure Data
Marketplace offers data sets in all kinds and many popular data re-
sellers in smaller size like Wolfram Alpha [11], ESRI [7], World
Bank [12], data.gov [3], Xignite [14] also provide their data in the
Windows Azure Data Marketplace [1]. After Infochimps [9], one
of the early data market entrants, gradually leaves the data market
business [5, 10], Microsoft Windows Azure Data Marketplace is
becoming the de facto data market [2]. Therefore, in this paper, we
base our setting on Windows Azure Data Marketplace.

2.1 Data Market
A data market hosts and sells multiple datasets. Each dataset’s

access/binding pattern is defined by the data owner on per table
basis. For numeric attributes, the input can be bound with a single
value or a range like [150, 200). Datasets in data market are tagged
with very basic statistics, normally the domain of each attribute and
2Traditional optimizers also aim to generate plans that minimize
intermediate result size of each operation (e.g., push down selec-
tion).
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the number of records (cardinality).3 Datasets in a data market are
append-only because they are released for analytic purposes. New
data could be added periodically (e.g., every month). The price of
accessing data is mainly based on the number of tuples retrieved.
A transaction represents a page of t tuples (e.g., 100 tuples) and it
is the smallest pricing unit. Let p be the price per transaction for a
particular dataset. Then, the total price of a RESTful call is:

p · d number of resulting records
number of tuples per transaction (t)

e (1)

For easy exposition, in the subsequent discussion, we assume p =
$1 and a transaction page size is t = 100 tuples.

2.2 Queries over Data Market
Figure 2 shows the target setting of PayLess. An organization

is interested in carrying out certain analytics that involve datasets
hosted in a data market. The organization thus registers with the
data market to obtain the authentication access keys of the datasets.
The access keys are stored in PayLess, which constructs REST-
ful calls to the data market when necessary. PayLess encapsulates
the details of interacting with the data market and exposes a SQL
query interface for client query processing. A SQL query to Pay-
Less can query against both tables in a local DBMS and tables in
data market. The following is an example PayLess query that aims
to retrieve the average temperature for each city in a country whose
environmental pollution rank is lower than a threshold within a pe-
riod:

SELECT City, AVG(Temperature)
FROM Pollution, Station, Weather, ZipMap
WHERE Station.Country = Weather.Country = ? AND

Weather.Date >= ? AND Weather.Date <= ? AND
Pollution.Rank <= ? AND
Pollution.ZipCode = ZipMap.ZipCode AND
ZipMap.City = Station.City AND
Station.StationID = Weather.StationID

GROUP BY City

This query involves joining four tables: the Station and Weather
tables from the aforementioned Worldwide Historical Weather
(WHW) [13] dataset, another Data Market table, the Pollution table
from the Environmental Hazard Ranking (EHR) [6] dataset, and a
local table that maps Zip codes to a city name. The access patterns
of these tables are shown in Figure 1a. We expect SQL queries to
PayLess are parameterized queries embedded in certain applica-
tion so that users (e.g., data scientists) issue the queries by specify-
ing the parameter values via a web interface. We do not expect the
3If not publicly available, the data sellers would release the basic
statistic to data buyers upon email requests [1].
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organization restricts her users the number of queries to the data
market because that is counter-productive.

3. SYSTEM OVERVIEW
Figure 3 shows the architecture of PayLess. It is designed to be

lightweight and offloads most query processing to a DBMS query
engine. It accepts and parses a SQL query (with parameter val-
ues instantiated) 1 . The parser differentiates local tables and ta-
bles from the data market using the information (e.g., the table
name) obtained when registering with the data market (see Fig-
ure 2). Then, the optimizer of PayLess optimizes the query 2 by
consulting the statistics of local and data market data 3 . The op-
timized query is then passed to an execution engine 4 . A query,
after optimization, may be able to skip some or the entire access to
the data market. When it is necessary to access the data market, the
execution engine will pass the access requests to the data market
connector 5 and let the connector interact with the data market
5.1 5.2 . PayLess stores all the data market access requests and

their returned data in a semantic store 5.3 . Whenever new data is
retrieved from the data market, PayLess will update its statistics
5.4 . In our implementation, we implement our updatable statistics
using ISOMER [44]. After this step, all data required by a query
should be ready and stored in the DBMS and the execution engine
of PayLess instructs the DBMS query engine 6 to process the
query 7 . In the end, the execution engine of PayLess retrieves
the query result from the DBMS 8 and then returns it to the front
end 9 .

PayLess is supposed to be installed by each data buyer and
serves all the end users from the same data buyer. As a data buyer
would not be interested in all datasets available in the data market,
the storage space (for the DBMS) is not a problem here. Cache
management is out of PayLess’s interest because we deliberately
use cheap storage space to store all intermediate results (i.e., no
eviction) in order to eschew retrieving redundant data from the data
market. Besides, PayLess is indeed amenable for any updatable
statistic. As our focus of this paper is to give a proof-of-concept
first solution, we will test other updatable statistics (e.g., [25]) in
place of ISOMER in the next version of PayLess.

4. QUERY OPTIMIZATION
PayLess’s optimizer follows the typical bottom-up, cost-based,

and dynamic programming approach [28]. That is, it first consid-
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Figure 4: Bushy tree v.s. Left-deep tree

ers the best plan for single relations, then the best plan for joining
two relations, and then for three relations, so on. On top of that,
PayLess’s optimizer considers bind joins �!1 as an access path in
addition to the regular join 1. The key feature of PayLess’s opti-
mizer is that it carries out semantic query rewriting to optimize its
queries using the query results stored in the semantic store. Seman-
tic query rewriting [23] is not new, but later we will explain why it
is not included in limited access query optimizer (e.g., [17,27, 45])
and why it is helpful to us here. We will also explain the limita-
tions of current semantic query rewriting techniques in our setting
and our solutions to unlock their potential and integrate them into
our optimizer.

This section describes how to derive the optimal execution plan
after parsing a SQL query. We first propose several techniques to
reduce the plan search space and prove their correctness (see Sec-
tion 4.1). After that, we illustrate the semantic query rewriting
method used in PayLess (see Section 4.2). In the end, we end
with some discussions about our query optimization approach (see
Section 4.3).

4.1 Plan Space
When optimizing queries for limited access pattern data sources,

bushy trees are included in the plan space to avoid plans with Carte-
sian products [27]. For example, consider a query that joins four re-
lations U , R, S and T with access patterns: U(xf , yf ), R(yb, zf ),
S(tf , wf ), T (wb, zf ). Since R has a bind attribute y, it must re-
quire values for attribute y to retrieve tuples. In the example, the
only choice is thus to carry out a bind join U�!1R. Similarly, since
T has a bind attribute w, it must require values for attribute w to
retrieve tuples. In the example, the only choice is thus to carry out
a bind join S�!1T . After that, the only way is to join them together
by using a local join, resulting in a bushy tree like Figure 4a. So, if
only left-deep plans are allowed, a “logical” cross product must be
used to logically connect the relations like Figure 4b4.

Including bushy trees would significantly enlarge the search
space. In our problem setting, as our primary goal is to minimize
the money-to-pay, we exclude bushy trees in our plan space be-
cause:

THEOREM 1. Given any plan P , we can transform it to a left-
deep plan P 0 such that �(P ) � �(P 0), where �(·) denotes the
total price of a plan. In other words, the optimal plan must be one
of the left-deep plans.

PROOF. In what follows, we use the terms RESTful call, leaf
node, and relation/table interchangeably.

First, we re-iterate a very important fact:
4The cross product is just logically connecting intermediate results
U�!1R and S�!1T. Physically, (U�!1R) joins (S�!1T) is done by the
DBMS, using any equi-join implementation like hash-join.

Fact Only leaf nodes in P contribute to the price �(P ) because
they represent RESTful calls to the data market. Therefore, �(P )
equals to the sum of prices of leaf nodes in P .

Without loss of generality, we name the leaf nodes (RESTful
calls) in P from left-to-right as: C1, C2, · · · , Cn

.
We write P (k) to denote that, for all leaf nodes of P , if named

from left-to-right, the first k leaf nodes form a left-deep subtree.
So, given a plan P with n leaf nodes, if we write P (n), we mean
P is a complete left-deep tree. As an example, for the bushy tree
P in Figure 4a. P (1) and P (2) hold. As another example, let P be
the plan in Figure 4b, then we see that P (1), P (2), P (3) and P (4)

all hold.
Now, we proceed to prove �(P ) = �(P (1)) � �(P (2)) � · · · �

�(P (n)). In the following, we first prove �(P (1)) = �(P ) and
then prove that for a given 1  k  n� 1, we have �(P (k+1)) 
�(P (k)).
Base case: k = 1 P (1) simply means we just look at the left-most
leaf nodes of P without moving any nodes, so the cost of the whole
plan P is unchanged: �(P (1)) = �(P ).
General case: �(P (k+1))  �(P (k))
When C

k+1 is C
k

’s uncle: Figure 5a illustrates this case. In this
case, the left-most k + 1 leaf nodes form a left-deep subtree. So,
P k+1 holds. Note that we did not move any leaf node yet, so the
plan cost would not change: �(P (k+1)) = �(P (k)).
When C

k+1 is not C
k

’s uncle: Figure 5b illustrates this case. In
this case, the uncle node of C

k

, say U , must be a non-leaf node and
its subtree contains C

k+1. Let T
F

be the left-deep subtree rooted
at F , the father of C

k

. Further, we let G be the grandfather of C
k

.
Finally, we let T

UL

, T
UR

be the left and right subtrees rooted at U ,
respectively.

We now explain that making P (k+1) holds by joining T
F

with
C

k+1 through a new node G0 would not increase the overall plan
cost. Figure 5c illustrates the resulting plan P 0 with P 0(k+1) holds.

First, we see that the price of subtree T
F

is the same among P
and P 0.

Second, the price of C
k+1 is the same in both P and P 0 because

C
k+1 takes the same join result from T

F

no matter G or G0 is a
bind join or a regular (local) join.

Now, we consider the price for each node (other than C
k+1) in

T
UL

and T
UR

in P and P 0. Let C
u

be such a node. First, if C
u

does not require any binding from C
k+1, then the price of C

u

in P 0

is unchanged. Second, if C
u

requires binding values from C
k+1,

then the price of C
u

depends on the number of distinct binding
values from C

k+1. Note that in P 0, C
k+1 has been joined with the

others earlier than P , that causes the number of binding values to
C

u

possibly decreases. So, the price for C
u

would not increase.
Finally, we look at the subtree T

other

. As the result of the left
operand of T

other

remains the same, the price of T
other

is un-
changed.

As the price of any C
i

in P would not increase, we have
�(P (k+1))  �(P (k)).

Traditional optimizers include only left-deep plans as a heuristic
to improve the efficiency of the plan search. In PayLess, with
Theorem 1, enumerating only left-deep plans is not a heuristic but
with a guarantee that the optimal plan is not lost. Furthermore,
in PayLess, including Cartesian product is not a problem because
that would not contribute any extra data market transaction.

In addition to enumerating left-deep plans only (Theorem 1),
PayLess’s optimizer further trims the search space by first joining
all relations that incur zero price to the data market. Those relations
can either be local relations or relations whose required tuples can
be found in the semantic store. In the following, we show that such
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Figure 5: Illustration figures for Theorem 1

zero-price-relations-join-first idea retains the optimal plan in the
plan space:

THEOREM 2. Let P = hC1, C2, . . . , Cn

i be a left-deep plan
with a leaf node (RESTful call) C

i

whose price �(C
i

) = 0. Then,
the plan P 0 = hC

i

, C1, . . . , Cn

i has �(P 0)  �(P ).

PROOF. We divide the other calls into two groups: (1) RESTful
calls that executed before C

i

, i.e. C1 to C
i�1, and (2) RESTful

calls that executed after C
i

, i.e. C
i+1 to C

n

.
If we move C

i

to the left-deepest node of P :

• �(C
i

) is unchanged and remains 0.

• �(C
j

) for j > i is unchanged because the join results before
executing C

j

and the possible binding values for C
j

are the
same.

• �(C
j

) for j < i cannot increase. If C
j

does not use any
binding attributes, then moving C

i

before C
j

would not in-
crease �(C

j

). If C
j

uses binding values from a bind join,
then moving C

i

before C
j

would not increase (but may de-
crease) the number of bind join values for C

j

, and that would
not increase �(C

j

).

PayLess’s optimizer applies Theorem 2 repeatedly and moves all
zero price calls to the leftmost subtree of P . That way, the search
space of PayLess’s optimizer is further reduced.

Lastly, PayLess’s optimizer would prune some candidate sub-
plans during plan enumeration:

THEOREM 3. When searching for the best plan for a set C of
relations C1, C2, . . . , Cn

, if C can be partitioned into disjoint sub-
sets C1 . . . Cj

, where relations in C
i

cannot join with relations in
C
j

(unless using Cartesian product ⇥). Then the best plan for C
is Best(C1)⇥Best(C2)⇥ . . . Best(C

j

), where Best(C
i

) denotes
the best plan for the set of relations in C

i

.

PROOF. The proof is trivial because the relations in C
i

cannot
join with relations in C

j

, the price of calling C
j

would not be influ-
enced by C

i

. So, the best plan for C becomes simply connecting the
best subplans of C1 . . . Cj

using Cartesian product.

Consider a chain query that joins four relations: C = {U(v, w),
R(w, x), S(x, y), T (y, z)}. Assuming that the best plans deter-
mined for the pairs of relations are:

{U,R} {U, T} {U, S} {R,S} {R, T} {S, T}
Best Plan U�!1R U ⇥ T U ⇥ S R�!1S R⇥ T S�!1T

So, when determining the best plan for 3-way join, the candidate
plans that would be generated are:

{U,R, S} {U,R, T} {U, S, T} {R,S, T}
Candidate (U�!1R) 1 S (U�!1R) 1 T ... ...

Plans (U�!1R)�!1S (U ⇥ T ) 1 R ... ...
(U ⇥ S)�!1R (U ⇥ T )�!1R ... ...

... (R⇥ T ) 1 U ... ...

... (R⇥ T )�!1U ... ...
Observe that the set {U,R, T} can be partitioned into two dis-

joint subsets: C1 = {U,R} and C2 = {T}. So, we can apply
Theorem 3 to determine the best plan for the set {U,R, T} as
Best(U,R) ⇥ T , i.e., (U�!1R) ⇥ T . In other words, Theorem
3 eliminates many candidates (e.g., (R ⇥ T )�!1U ) and eliminates
their associated costing steps and semantic rewriting steps.

Let the total number of candidate plans in all levels of the dy-
namic programming approach be the size of the search space. For
a chain query with n relations whose attributes are all free. The use
of the above theorems can reduce the search space from t 6n�5n

down to t 2n
0
+ 2

3 · n03 with the optimal plan retained, where m
is the number of zero price relations and n0 = n�m. Specifically,
the original plan space with dynamic programming is:

n+
nX

k=2

(

 
n

k

!
· (

k�1X

i=1

 
k

i

!
· 4min{i,k�i}) ) t 6n � 5n

where k represents the level in dynamic programming (e.g., when
k = 2, we consider joining two relations). At level k, there are�
n

k

�
size-k subsets to be examined. For each size k subset, we can

form a plan by: (i) choosing a size i subset for the left subtree (and
the complementary size k � i subset for the right subtree), and (ii)
deciding the binding attributes for the join (at root). For (ii), each
call on the right subtree can bind with attributes from at most 2 calls
from the left subtree; thus, there are 2·2=4 binding choices per call,
and at most 4k�i choices per plan. We can tighten this number to
4min{i,k�i} when i is small and the left subtree can provide at most
4i binding choices.

The plan space of PayLess’s optimizer is:

4n0 +
n

0X

k=2

 
4 · k · (n0 � k + 1) + (

 
n0

k

!
� (n0 � k + 1))

!

t 2n
0
+

2
3
· n03

where m is the number of zero price relations and n0 = n � m.
Specifically by Theorem 2, we first build a plan with all local m
relations. Then, in dynamic programming, we consider growing
the plan by using the remaining n0 = n �m relations. At level k,
there are

�
n

0

k

�
size-k subsets. We can divide them into (i) discon-
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Figure 6: Generation of remainder queries

nected subsets (in which some relations must be joined by Carte-
sian product), and (ii) connected subsets. For the chain query, there
are n0 � k + 1 connected subsets and

�
n

0

k

�
� (n0 � k + 1) dis-

connected subsets. For each disconnected subset, we can compute
its best plan directly by Theorem 3. For each connected subset, we
can obtain it by Theorem 1, i.e., combining a size-(k � 1) subset
with a new call. There are k choices for the call and at most 2·2=4
binding choices for that call.

4.2 Semantic Query Rewriting
In PayLess, we store all RESTful queries issued to the data

market and their corresponding results in the semantic store. The
objective of doing so is to carry out semantic query rewriting, i.e.,
answer the queries using those stored results so as to reduce the
amount of data retrieved from the data market. Semantic query
rewriting falls into the category of rewriting queries using views
[29, 48]. Given a query Q, a set V of RESTful queries and their
corresponding stored results, the key step in semantic query rewrit-
ing is to compute the set Rem(Q,V) of remainder queries [23].
The set Rem(Q,V) essentially contains the set of RESTful queries
that has to be sent to the data market in order to retrieve the tuples
required by Q but not covered by V .

Before we delve deeper, we first explain why optimizers for
queries over remote data sources like [17, 27, 45] do not use se-
mantic query rewriting. Consider our example query Q1 (page 1),
which inquires about the daily temperature of Seattle in June 2014,
has been issued, and its 30 resulting tuples (one tuple for each day
in June) are stored in the semantic store. Assume that there is an-
other query Q2 being issued, with Q2 shares the same query tem-
plate like Q1 but the date ranges from May 2014 to July 2014 (3
months). Using semantic query rewriting, Q2 will generate two re-
mainder queries: one asks for weather records in May (31 records;
1 transaction), another asks weather records in July (31 records; 1
transaction). The final result is then obtained by union the above
with the stored results of Q1. The plan of using semantic query
rewriting incurs a total of two calls to the external data source. In
contrast, only one call to the external data source is required if Q2
is sent to the external data source without semantic query rewrite.
So, in the context of minimizing the number of calls to external
data sources, semantic query rewriting obviously is not a fruitful
technique because it decomposes a call to several sub-calls.

Now, we show that how could we adapt semantic query rewriting
to PayLess’s optimizer to yield competitive plans for data market
query processing. To illustrate, consider the example in Figure 6.
The example assumes that the results of two queries V1 and V2 have
been stored in the semantic store. Both V1 and V2 are range queries
on an integer attribute A whose domain is [0, 100]. V1 and V2

respectively cover the ranges [10, 20) and [30, 60) on attribute A
and have retrieved 28 and 91 tuples from table R. In what follows,
we write a query Q in the form as

Q : � R1(A[s, e], B = �, C), R2(C, ..)

which means it joins R1 and R2 using C as the join attribute, and
tuples in table R1 have values in numeric attribute A fall between

s and e and have values in categorical attribute B equal �.
Now, with V1 and V2, we assume the following query Q is posed:

Q : � R(A[0, 100])

Using the vanilla semantic query rewriting techniques, it will
generate an invalid remainder query QRem

invalid

:

QRem

invalid

: � R(A[0, 10) _ [20, 30) _ [60, 100])

In data market, QRem

invalid

is invalid because it involves dis-
junction, which is not supported by the access pattern of data
market. Therefore, our first step to adapt semantic query rewriting
techniques is to decompose remainder queries that violate the data
source access patterns into a set of valid remainder (sub)queries.
For the example above, PayLess will generate a set Rem1 of
remainder queries:

QRem

1 : � R(A[0, 10)) //21 tuples; 1 transaction
QRem

2 : � R(A[20, 30)) //34 tuples; 1 transaction
QRem

3 : � R(A[60, 100]) //123 tuples; 2 transactions
So, altogether, Rem1 will cost a total 4 transactions.
Note that such straightforward decomposition may not yield the

best plan. For example, the following is another possible set of
remainder queries Rem2 :

QRem

4 : � R(A[0, 30)) //21+28+34= 83 tuples; 1 transaction
QRem

3 : � R(A[60, 100])//123 tuples; 2 transactions
The remainder query QRem

4 , although overlaps with stored query
V1, will still cost d(21 + 28 + 34)/100e = 1 transaction. So,
altogether, Rem2 will cost a total 3 transactions only.

The example above illustrates a new and unique issue specific to
the generation of remainder queries in data market. Specifically,
we see that there are alternate ways to generate valid remainder
queries and it is possible that a lower overall price can be achieved
even when a remainder query overlaps with a stored query.

PayLess obviously does not want to miss the above opportunity
when optimizing the queries. So, we have devised a remainder
query generation method that leverages the above opportunity to
reduce the overall price to access the data market.

We illustrate our idea using a more general example in Figure
7a. In the example, the query Q is a 2d-query that inquires table R:

Q : � R(A1[30, 80], A2[0, 50])

In the example, we assume there are ten RESTful queries
V1, . . . , V10 stored in the semantic store. Figure 7b shows the inter-
section of Q and the complement of V , i.e., the data supposed to be
retrieved from the data market. Denoting that space as V , there are
alternate sets of remainder queries that can retrieve all the missing
data. For example, consider the following set of remainder queries
Rem3:

QRem

5 : � R(A1[50, 70), A2[30, 50])
QRem

6 : � R(A1[70, 80], A2[30, 40])
Rem3 covers the missing data in region 1. Alternately, the fol-

lowing set of remainder queries Rem4 can also cover data in region
1:

QRem

7 : � R(A1[50, 80), A2[30, 50])
From the above, we see that our goal boils down to finding a set

of bounding boxes that cover all the data regions in V using the
least number of data market transactions.

To achieve a good solution, we use a two-step approach. The first
step aims to generate a set of promising bounding box B candidates
that cover different data regions in V . The bounding box candidates
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Figure 7: Generation of remainder queries for data market

may possibly overlap with each other. The second step aims to
extract from B the best set of bounding boxes that cover all the data
regions in V in minimum price.

We now elaborate the first step. Specifically, we begin with a
decomposition of V into a union E of disjoint elementary boxes.
Figure 7c shows an example. On each dimension i, we collect a
separator set S

i

from the corners of each elementary box. For
example, elementary box E8 contributes values 50 and 70 to S1

and contributes values 0 and 10 to S2. Accounting for all el-
ementary boxes, then we have S1 = {30, 40, 50, 70, 80} and
S2 = {0, 10, 20, 30, 40, 50}. Then, we exhaustively construct a set
B of bounding boxes, where the extent of a bounding box B 2 B
on dimension i is picked from any two values in S

i

. For example,
the bounding box B1 in Figure 7c has extent [50, 80] on dimension
A1 and extent [0, 20] on dimension A2 when it picks values 50 and
80 from S1 and values 0 and 20 from S2. Each resulting bound-
ing box represents a remainder query that covers certain data to be
retrieved from the data market.

Algorithm 1 presents the pseudo-code of generating the bound-
ing boxes, with powerful pruning rules to prune unpromising
bounding boxes. First, it estimates the number of tuples falling
into each elementary box in E from ISOMER (Lines 2–3). Fig-
ure 7c shows an illustration with those estimates. (We will dis-
cuss the case of insufficient/inaccurate statistics in the Section 4.3).
Next, it enumerates a set of bounding boxes from the separator sets
S1, S2, ...Sd

, where d is the dimensionality of the query. It applies
two pruning rules to discard unpromising bounding boxes.

The first pruning rule (Line 6) prunes a bounding box B if it
is not tight. In other words, only minimum bounding boxes could
stay. Consider the bounding boxes B1 and B2 in Figure 7c. They
both contain the same set of elementary boxes E7, E8, E10 but B2

contains B1. Therefore, B2 is not a minimum bounding box and
is pruned. This makes sense because B2 has to download an extra
155 + 33 redundant tuples comparing with B1.

The second pruning rule (Line 8) prunes a bounding box if its
price is not smaller than the price sum of its individual elementary
boxes. Consider bounding box B3 Figure 7c. It requires d(125 +
60 + 40 + 155)/100e = 4 transactions. However, if E3 and E6

are individually retrieved, they collectively cost only d40/100e +
d60/100e = 2 transactions. So, in this case, B3 is not helpful and
is pruned as well.

Algorithm 1 would enumerate
�|Si|

2

�
d

bounding boxes for a d-
dimensional query in the worst case. However, because of the
high effectiveness of the pruning rules, the number of (minimum)
bounding boxes considered is indeed much fewer than the worst
case in practice.

The second step of our idea is to find the best subset of mini-
mum bounding boxes (generated from Algorithm 1) that cover all

Algorithm 1 Generating Candidate Remainder Queries
Input (elementary boxes E , separator sets {S1, S2, ..., Sn

})
Output (A collection of minimum bounding boxes B)

1: initialize B
2: for each elementary box E

i

in E do
3: E

i

.price estimate the price of E
i

4: enumerate every possible bounding box B using the separator
sets S1, S2, . . . , Sn

.
5: for each bounding box B do
6: if B is a minimum bounding box then . pruning rule 1
7: estimate the price of B
8: if B.price <

P
Ei2B

E
i

.price then . pruning rule 2
9: insert B into B

10: return B
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Figure 8: Generation of remainder queries with a categorical
attribute A2

the elementary boxes (all missing data) in minimum price. This
is a weighted set cover problem [22]. Specifically, the weighted
set cover problem states that, given (1) a set of elements E =
{E1, E2, ...} and (2) a family B of subsets of E , in which each
subset in B is associated with a cost

i

, find a collection of subsets,
namely the cover, Cover ✓ B, whose union of the elements in
Cover is E and the sum of cost of elements in Cover is the min-
imum. In our context, we have (1) E as all elementary boxes and
(2) B as the set of candidate minimum bounding boxes returned
by Algorithm 1, cost

i

is referred as a bounding box ’s estimated
transactions. To solve this NP-hard problem, we use the greedy
algorithm in [22] that runs in O(|B| · |E|) time with (1 + ln(|B|))
approximation ratio.

The generation of bounding boxes for queries with cate-
gorical attributes is illustrated as follows. Figure 8a shows
an example similar to the previous one but with attribute A2

now becomes a categorical attribute with the following domain:
{�1,�2,�3,�4,�5,�6}. We remark that there are no stored queries
that can span across multiple categorical values because of the lim-
itation of the access interface.
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Figure 8b shows the corresponding space V . Since A2 is a cat-
egorical attribute, the bounding box B1, which represents the fol-
lowing remainder query, is invalid:

: � R(A1[50, 80), A2 = �1 _A2 = �2)

Therefore, we will only generate bounding boxes that span either
one value or the whole domain of a categorical attribute. For exam-
ple, bounding boxes B2, which represents the following remainder
query, is valid and would be generated:

: � R(A1[50, 70), A2 = �5)

Similarly, bounding boxes B3, which represents the following
remainder query, is also valid and would be generated:

: � R(A1[30, 40))

The generation of bounding boxes for queries with bind joins
is illustrated as follows. Consider a relation U with binding pat-
tern U(Af

1 , A
f

2 ) and a relation S with binding pattern S(Ab

2, A
f

3 ),
where all attributes are integer attributes. Further, consider a query
V that joins U and S:

V : � U(A1[2, 3], A2), S(A2, A3[10, 15])

V needs a bind join because A2 is a bind attribute. So, assume
that there are four tuples t1, t2, t3, and t4 in U having values within
the range [2, 3] in attribute A1 and their corresponding values in at-
tribute A2 are 2, 5, 9, and 10, respectively. Then, the bind join is
carried out with S by binding the values 2, 5, 9, and 10 to S’s at-
tribute A2. Note that when retrieving tuples from S whose attribute
A2 has a value, say, 2, those tuples have to satisfy the other condi-
tion A3[10, 15] as well. Figure 9a illustrates the above process.

Now, assume the query results of V are stored in the semantic
store and let us consider a query Q that shares the same query tem-
plate as V but with a different query range:

Q : � U(A1[2, 5], A2), S(A2, A3[8, 18])

Note that in this case, assuming that we can estimate that two
tuples t

x

and t
y

will be retrieved from U for A1 = 4, one tuple
t
z

will be retrieved from U for A1 = 5 (we don’t need to estimate
the cardinality for A1 = 2 and A1 = 3 because we know the
exact cardinality from V ), exact values of t

x

, t
y

, t
z

’s attribute A2

are still unknown (denoted as ? in Figure 9b). In this case, it will
generate V like Figure 9c. Consequently, when enumerating the set
of candidate bounding boxes, we can generate a bounding box for
each individual elementary box (e.g., B1), for a range of known
values (e.g., B2), or for the whole domain (e.g., B3). In contrast,
we cannot generate a bounding box like B4 because the exact value
for A2 of t

z

is actually unknown.
Algorithm 2 shows the pseudo code of PayLess optimization. It

is self-explanatory and mainly summarizes what we have discussed
above, so we do not give it a walkthrough here.

4.3 Discussion
We end this section with a number of discussions about our

query optimization approach. First, as in traditional cost-based
query optimization, our approach relies on metadata like his-
tograms. In the beginning when no rich statistics such as value
distributions are available, PayLess’s optimizer would carry out
the cardinality estimation using the basic textbook methods (e.g.,
using the domain size and uniform distribution assumption).
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Figure 9: Example for 2D-Bind

Algorithm 2 PayLess Query Optimization
Input ( a query Q, a set V of RESTful queries and their stored
results, the metadata M for cost estimation )
Output ( the optimal plan P ⇤ : Best(Q) for the query Q )

1: R
local

 {C
i

2 Q : �(C
i

) = 0}; R0  {C
i

2 Q}�R
local

2: P
local

 the best subplan for R
local

; found by offloading to a
DBMS’s optimizer

3: for each C
i

2 Q do . size-1 subplans
4: Best(C

i

) SemanticRewrite(C
i

,V,M)
5: execute Line 1 again to update R

local

and R0

6: for each k from 2 to |R0| do . Theorem 2
7: for each size-k subset Rk of R0 do
8: if R

local

[Rk form ` disjoint subsets then .
Theorem 3

9: Best(Rk)  Best(Rk

1) ⇥ Best(Rk

2) ⇥ · · · ⇥
Best(Rk

`

)
10: else for each call C

i

2 Rk . Theorem 1
11: rewrite C

i

as
�!
C

i

by using binding from P
local

1
Best(Rk � C

i

)

12: P
bind

 SemanticRewrite(
�!
C

i

,V,M)
13: P

temp

 Best(Rk � C
i

) 1 Best(C
i

)
14: if �(P

bind

)  �(Best(C
i

)) then
15: P

temp

 Best(Rk � C
i

)�!1P
bind

16: update Best(Rk)  P
temp

if �(Best(Rk)) �
�(P

temp

)

Second, answering a query using the stored query results may in-
clude obsolete tuples if datasets permit in-place data update. How-
ever, so far the datasets we found in Windows Azure Marketplace
are append-only. In case in-place data update exists, we will intro-
duce several consistency levels into PayLess. That would allow
organizations that install PayLess to choose between consistency
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levels like (i) weak consistency, (ii) X-week consistency, or (iii)
full consistency. Weak consistency means all RESTful queries and
their results are stored in the semantic store (with obsolete results
get updated if new results are retrieved). Under weak consistency,
semantic query rewriting is always enabled. Queries may however
return partially obsolete results when there are in-place updates in
the data market’s datasets because it reuses some obsolete stored
results. Strong consistency means semantic query writing is sim-
ply disabled and PayLess always go to the data market to obtain
the latest results. X-week consistency is in the middle, it enables
semantic query rewriting using query results retrieved from the past
X weeks. The three options are trade-off between price-to-pay and
the freshness of the result.

5. EVALUATION
PayLess aims to help organizations to pay less when their end

users have to query against the data market. Without PayLess, one
option is to employ query optimizers for data sources with limited
access pattern because those optimizers at least consider binding
patterns and bind joins in their architecture. Another option is to
download all required tables from the data market upfront and carry
out local processing afterwards. Notice this “Download All” option
is not always bad. First, it is optimal if the queries have to scan the
whole dataset. In this case, once the whole dataset is downloaded,
all queries can work on the downloaded data locally. Second, if the
number of transactions incurred by user queries would eventually
exceed the number of transactions required to download the com-
plete data set, then downloading the whole dataset upfront would be
a more economical option. However, we re-iterate that it is always
tough to predict how many user queries would eventually be issued
in practice. Consider that the users walk away from the dataset for-
ever after issuing just a few queries (maybe due to no interesting
information is found), then downloading the whole dataset would
become a very costly option.

In this section, we evaluate the effectiveness of PayLess using
both real data and synthetic data. Specifically, we extract query
templates from a meteorological application that involves queries to
the Worldwide Historical Weather (WHW) [13] and Environmental
Hazard Rank (EHR) [6] datasets in Windows Azure Marketplace.
Table 1 lists the query templates and Figure 1a lists the sizes of the
tables. We generate valid query instances from those templates by
randomly assigning values to the parameters. A query instance is
valid if it returns non-empty results (e.g., we would not instantiate
Q4 with a country equals ‘USA’ but a zip code in Germany). We
also use the TPC-H workload in the experiments. We generate 1G
of TPC-H data and 1G of TPC-H skew data [19] with zipf = 1.
All parametric attributes in TPC-H queries are set as free attributes
in the experiments. We set the relations Nation and Region
local. By default, we set 100 tuples as one transaction (i.e., t =
100).

Overall effectiveness. We first study the overall effectiveness of
PayLess under different workloads and datasets. For comparison,
we include the results of using [27] to optimize the queries (denoted
as “Minimizing Calls” in the figure). We also include the results of
disabling semantic query rewriting (SQR) in PayLess (denoted as
“PayLess w/o SQR” in the figure). We respectively generated q
query instances per template. The query instances are issued in a
random order and the results are reported as an average over 30
repeated experiments. In this experiment, we set q = 10 and q =
200 for TPC-H workload and real workload, respectively.

Figure 10a illustrates the total (cumulative) number of data mar-
ket transactions used to answer the real queries. Except the “Down-

load All” option, when more queries are issued, the total (cumu-
lative) number of data market transactions increases. Comparing
with those data buyers who recklessly download the whole dataset
upfront, PayLess can now help them to answer the queries using
about two orders of transactions fewer. The number of transactions
used by PayLess grows slowly because many queries are rewritten
using the stored results in the semantic cache. PayLess can answer
the queries using about an order of transactions fewer than queries
optimized using [27]. That is because semantic query rewriting
(SQR) is not applicable to their setting but is a powerful helper here
in our data market setting. When we disable SQR, PayLess still
outperforms [27]. That is because PayLess can find optimal plans
in a reduced search space using progressively refined statistics. In
contrast, [27] has to find plans in a larger search space (including
bushy trees) using heuristics.

Figures 10b and c show the results of using TPC-H workload.
TPC-H queries scan a large portion of data. Therefore, without
rewriting the queries using the stored data, each query optimized
by [27] and PayLess (if SQR is disabled) would retrieve a large
portion of the data from the data market, and those data are largely
overlapping with each other. That explains why they are worse
than “Download All", because the latter only downloads the whole
dataset once. When PayLess is in full power with semantic query
rewriting, we see that the subsequent queries can largely reuse the
stored results, thereby saving a lot more transactions than “Down-
load All" until about 80 queries have been issued. When about 80
queries have been issued, all the data required by TPC-H queries
(indeed the whole TPC-H dataset) are stored by PayLess, there-
fore PayLess would not repeatedly retrieve the data from the data
market anymore. From the above experimental results, we regard
PayLess to be practically better than “Download All" in all means
because nobody could have known the number of queries to be is-
sued and the distribution of the data in practice. A data buyer can
freely query against any dataset in the data market and walk away
from that dataset anytime — she does not need to worry whether it
is worth or not to download the whole dataset in the beginning, or
switch to download the whole dataset when she finds out that she
has to ask more queries after she has burned a certain amount of
money.

Influence of number of tuples per transaction. We next study
whether the effectiveness of PayLess would be influenced by the
number of tuples per transaction, which could be a different value
in different data markets. Since [27] is consistently outperformed
by PayLess in all our experiments, so we remove it, together with
PayLess with semantic query rewriting disabled, from our discus-
sion.

Figure 11 shows the effectiveness of PayLess when we vary
the number of tuples per transaction t. Note that when t is smaller,
more transactions are required to retrieve the same number of tuples
from the data market. Therefore, the number of transactions used
by both PayLess and “Download All" must increase. Neverthe-
less, we see that the effectiveness of PayLess is not influenced by
that data market parameter. PayLess still outperforms “Download
All" under real data in all cases. In addition, it still outperforms
“Download All" on TPC-H and TPC-H skew data until the whole
dataset is retrieved.

Influence of number of query instances per query template. We
next study whether the effectiveness of PayLess would be influ-
enced by q, the number of query instances per query template. Fig-
ure 12 shows that the effectiveness of PayLess is not influenced by
that parameter. We see that PayLess still consistently outperforms
“Download All" on real data in all cases. In addition, it still outper-
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Table 1: Query Templates on Real Data Sets
Q1 SELECT * FROM Weather

WHERE Weather.Country = ? AND Weather.Date >= ? AND Weather.Date <= ?
Q2 SELECT COUNT(ZipCode) FROM Pollution

WHERE Pollution.Rank >= ? AND Pollution.Rank <= ?
Q3 SELECT AVG(Temperature) FROM Station, Weather

WHERE Station.Country = Weather.Country = ? AND Weather.Date >= ? AND
Weather.Date <= ? AND Station.StationID = Weather.StationID

GROUP BY City
Q4 SELECT Temperature FROM Station, Weather, ZipMap

WHERE Station.Country = Weather.Country = ? AND ZipMap.ZipCode = ? AND
Weather.Date >= ? AND Weather.Date <= ? AND
Station.StationID = Weather.StationID AND Station.City = ZipMap.City

Q5 SELECT * FROM Pollution, Station, Weather, ZipMap
WHERE Station.Country = Weather.Country = ? AND Weather.Date >= ? AND

Weather.Date <= ? AND Pollution.Rank >= ? AND Pollution.Rank <= ? AND
Pollution.ZipCode = ZipMap.ZipCode AND ZipMap.City = Station.City AND
Station.StationID = Weather.StationID
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Figure 11: Varying the number of results t per transaction

forms “Download All" on TPC-H and TPC-H skew data until the
whole dataset is retrieved.

Influence of data size. We also study whether the effectiveness of
PayLess would be influenced when the size of the data is varied.
As we cannot control the size of the real data, we control only the
size of the synthetic data.

Note that when the data size increases, “Download all” needs
more transactions to download the whole dataset. But PayLess
also needs to retrieve more tuples for each query. Figure 13 shows
that PayLess still outperforms “Download All" on TPC-H and
TPC-H skew data until the whole dataset is retrieved.

Effectiveness of search space reduction techniques. We have
also carried out an experiment to evaluate the effectiveness of our
techniques devoted to reducing the search space size. Figure 14
shows the average number of candidate (sub)plans for all query in-
stances under our default setting. We report the case when (i) SQR
is disabled (Disable SQR), (ii) both SQR and search space pruning
(Theorems 1 to 3) are disabled (Disable All), and (iii) nothing is
disabled (PayLess). We can see that our techniques significantly
reduce the search space by orders of magnitude. This is actually
what enables us to look for optimal plans. We notice that enabling

SQR indeed reduces the search plan because SQR would cause
some relations become local, which can then trigger Theorem 2.
This also explains why the average number of candidate (sub)plans
PayLess has to considered decreases when we increase the number
of query instances generated for each template. That is because if
we increase the number of query instances generated for each tem-
plate, that would retrieve more data from the data market, which in
turn increases the chance of using Theorem 2 to reduce the search
space.

Effectiveness of bounding box pruning. Our last experiment is
to evaluate the effectiveness of the bounding box pruning rules in
Algorithm 1. Figure 15 shows the average number of bounding
boxes generated for all query instances under our default setting.
We see that the two pruning rules can reduce about an order bound-
ing boxes generated.

Efficiency. In all experiments, the execution time of a query is, as
usual, dominated by the RESTful calls to the data seller. Neverthe-
less, a query can still finish within seconds. The query optimization
and the query execution part done by PayLess on the data buyer
side all finish within milliseconds. We omit the detailed numbers
here for space reasons.
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Figure 12: Varying the number of query instances (q) per tem-
plate
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Figure 13: Varying data size

6. RELATED WORK
To the best of our knowledge, this paper is the first to tackle

the issue of optimizing queries that access the data market. So far,
projects related to the data market are mainly developed for query
market. In their setting, the query market can support SQL. A data
buyer sends a SQL query that accesses a dataset in the query mar-

ket. The query market computes the results of the query and returns
the answer to the buyer. The research focus is how to set the price
of arbitrary SQL queries (e.g. [15,16,30,31,37,39,47]). The setting
of query market is different from our data market setting. Specif-
ically, existing data market like Windows Azure Marketplace [1]
and Xignite [14] are still charging data buyers according to the size
of retrieved data.

In terms of problem setting, PayLess is indeed more similar to
projects that support queries over remote data sources with limited
access patterns (e.g., [17, 20, 24, 27, 33–36, 40, 45]). Nevertheless,
as mentioned, all these projects have a very different focus with
us — they are designed to minimize the number of calls to exter-
nal data and/or the execution time. In contrast, PayLess focuses
on minimizing the amount of intermediate retrieved data measured
in terms of data market transactions. Besides, the optimization of
distributed queries with semi-join/magic sets [18,43] are similar to
PayLess; however, they do not consider limited access patterns.

In terms of implementation, PayLess has borrowed the idea of
learning optimizer from LEO [46] and has used feedback driven
histogram ISOMER [44]. However, PayLess has to develop its
own architecture, construct its own plan search space, and devise
its own semantic query rewriting technique (e.g., [21,23,32,41]) to
fit the data market. In computational geometry, the problem of par-
titioning an orthogonal polygon into rectangles (PiR) [26] is simi-
lar to our remainder query generation problem, but they are not the
same. Using Figure 7b as an example, the PiR problem would NOT
consider QRem

7 , which contains some empty regions. In contrast,
in our context, QRem

7 could be a good choice according to our cost
function.

7. CONCLUSION
This paper presents PayLess, a system that helps data buyers to

freely query against any dataset in the data market and walk away
from that dataset anytime. The data buyers do not need to worry
whether it is worth or not to download the whole dataset in the
beginning. They can simply issue their queries to PayLess and
PayLess optimizes their queries with the objective of minimizing
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their money-to-pay-to-data-sellers. Currently, our use-case does
not cover many end users using PayLess simultaneously. When
it does, we will incorporate multi-query optimization in PayLess
if users are willing to defer theirs to become a batch.
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ABSTRACT
Information extraction systems extract structured data from
natural language text, to support richer querying and anal-
ysis of the data than would be possible over the unstruc-
tured text. Unfortunately, information extraction is a com-
putationally expensive task, so exhaustively processing all
documents of a large collection might be prohibitive. Such
exhaustive processing is generally unnecessary, though, be-
cause many times only a small set of documents in a collec-
tion is useful for a given information extraction task. There-
fore, by identifying these useful documents, and not process-
ing the rest, we could substantially improve the efficiency
and scalability of an extraction task. Existing approaches
for identifying such documents often miss useful documents
and also lead to the processing of useless documents unnec-
essarily, which in turn negatively impacts the quality and
efficiency of the extraction process. To address these limita-
tions of the state-of-the-art techniques, we propose a prin-
cipled, learning-based approach for ranking documents ac-
cording to their potential usefulness for an extraction task.
Our low-overhead, online learning-to-rank methods exploit
the information collected during extraction, as we process
new documents and the fine-grained characteristics of the
useful documents are revealed. Then, these methods decide
when the ranking model should be updated, hence signifi-
cantly improving the document ranking quality over time.
Our experiments show that our approach achieves higher ac-
curacy than the state-of-the-art alternatives. Importantly,
our approach is lightweight and efficient, and hence is a sub-
stantial step towards scalable information extraction.

1. INTRODUCTION
Information extraction systems are complex software tools

that discover structured information in natural language
text. For instance, an information extraction system trained
to extract tuples for anOccurs-in(NaturalDisaster , Location)

c⃝2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0.

relation may extract the tuple <tsunami, Hawaii> from the
sentence: “A tsunami swept the coast of Hawaii.” Having
information in structured form enables more sophisticated
querying and data mining than what is possible over the nat-
ural language text. Unfortunately, information extraction is
a time-consuming task. A state-of-the-art information ex-
traction system to extract Occurs-in tuples may take more
than two months to process a collection containing about
1 million documents. Since document collections routinely
contain several millions of documents, improving the effi-
ciency and scalability of the extraction process is critical,
even over highly parallel computation environments.

Interestingly, extracting a relation of interest with a prop-
erly trained information extraction system rarely requires
processing all documents of a collection: Many times only a
small set of documents produces tuples for a given relation,
because relations tend to be topic-specific, in that they are
associated mainly with documents about certain topics. For
example, only 1.69% out of the 1.03 million documents in
collections 1-5 from the TREC conference1 produce Occurs-
in tuples when processed with a state-of-the-art informa-
tion extraction system and, not surprisingly, most of these
documents are on environment-related topics. If we could
identify the small fraction of documents that lead to the
extraction of tuples, we would extract all tuples while de-
creasing the extraction time by over 90% without any need
to change the information extraction system.

To identify the documents that produce tuples for an ex-
traction task, which we refer to as the useful documents, ex-
isting techniques (e.g., QXtract [2], PRDualRank [14], and
FactCrawl [7]) are based on the observation that such doc-
uments tend to share words and phrases that are specific
to the extraction task at hand. For example, documents
containing mentions of earthquakes—hence useful for the
Occurs-in relation—many times include words like “richter”
or “hypocenter.” These words and phrases can then be used
as keyword queries, to retrieve from the collection the (hope-
fully useful) documents that the extraction system will then
process. To discover these words and phrases, a critical step
in the process, these techniques analyze a sample of docu-
ments from the collection of interest. The size of this docu-
ment sample is necessarily small to keep the overhead of the
querying approach at reasonable levels.

Unfortunately, small document samples are unlikely to re-
flect the typically large variations in language and content

1http://trec.nist.gov/data.html
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that useful documents for an extraction task may exhibit.
For example, a document sample for Occurs-in may not
include any documents on (relatively rare) volcano erup-
tions, and hence these techniques may fail to derive queries
such as [lava] or [“sulfuric acid”] that would retrieve relevant,
volcano-related documents. As a result, the queries from ex-
isting techniques may suffer from low recall during extrac-
tion. Furthermore, precision is also compromised: standard
keyword search identifies documents whose topic is relevant
to the queries, without considering their relevance to the
information extraction task at hand.
To alleviate the precision-related issue above, FactCrawl [7]

moves a step beyond keyword search: after retrieving docu-
ments with sample-derived keyword queries, FactCrawl re-
ranks the documents according to a simple function of the
number and “quality”—based on their F-measure [27]—of
the queries that retrieved them, thus helping prioritize the
extraction effort. However, FactCrawl exhibits two key weak-
nesses: (i) for document retrieval and ranking, FactCrawl
relies on queries derived, once and for all, from a document
sample, and hence suffers from the sample-related problems
discussed above; (ii) for document ranking, FactCrawl relies
on a coarse, query-based document scoring approach that
is not adaptive (i.e., the scoring function does not change
as we observe new documents). Therefore, this approach
does not benefit from the information that is captured as
the extraction process progresses.
In this paper, we advocate an adaptive document rank-

ing approach that addresses the above limitations of the
state-of-the-art techniques. Specifically, we propose a princi-
pled, efficient learning-to-rank approach that prioritizes doc-
uments for an information extraction task by combining: (i)
online learning [30], to train and adapt the ranking mod-
els incrementally, hence avoiding computationally expensive
retrains of the models from scratch; and (ii) in-training fea-
ture selection [17], to identify a compact, discriminative set
of words and phrases from the documents to train ranking
models effectively and efficiently. Importantly, our approach
revises the document ranking decisions periodically, as the
ongoing extraction process reveals (fine-grained) characteris-
tics of the useful documents for the extraction task at hand.
Our approach thus manages to capture, progressively and
in an adaptive manner, the heterogeneity of language and
content typically exhibited by the useful documents, which
in turn leads to information extraction executions that are
substantially more efficient—and effective—than those with
state-of-the-art approaches, as we will see. In summary, we
present an end-to-end document ranking approach for ef-
fective and efficient information extraction in an adaptive,
online, and principled manner. Our main contributions are:

• Two low-overhead ranking algorithms for information ex-
traction based on learning-to-rank strategies. These al-
gorithms perform online learning and in-training feature
selection (Section 3.1).

• Two techniques to detect when adapting the ranking model
for information extraction is likely to have a significantly
positive impact on the ranking quality (Section 3.2).

• An experimental evaluation of our approach using mul-
tiple extraction tasks implemented with a variety of ex-
traction approaches (Sections 4 and 5). Our approach
has low overhead and manages to achieve higher accuracy
than the state-of-the-art approaches, and hence is a sub-
stantial step towards scalable information extraction.

2. BACKGROUND AND RELATED WORK
Information extraction systems extract structured infor-

mation from natural language text. For instance, an extrac-
tion system properly trained to extract tuples of an Occurs-
in(NaturalDisaster , Location) relation might extract the tu-
ple<tsunami, Hawaii> from the sentence: “A tsunami swept
the coast of Hawaii.” These systems often rely on com-
putationally expensive processing steps and, consequently,
processing all documents exhaustively becomes prohibitively
time consuming for large document collections [2]. Ideally,
we should instead focus the extraction effort on the use-
ful documents, namely, the documents that produce tuples
when processed with the information extraction system at
hand.

As a crucial task, information extraction optimization ap-
proaches (e.g., Holistic-MAP [31]) choose a document selec-
tion strategy to identify documents that are likely to be use-
ful. State-of-the-art approaches for such document selection
(e.g., QXtract [2], PRDualRank [14], and FactCrawl [7]) are
based on the observation that useful documents for a spe-
cific relation2 tend to share distinctive words and phrases.
Discovering these words and phrases is challenging because:
(i) many extraction systems rely on off-the-shelf, black-box
components (e.g., named entity recognizers), from which
we cannot extract relevant words and phrases directly; and
(ii) machine learning techniques for information extraction
do not generally produce easily interpretable models, which
complicates the identification of relevant words and phrases.
QXtract learns these words and phrases through document
classification: after retrieving a small document sample, QX-
tract automatically labels each document as useful or not by
running the extraction system of interest over these docu-
ments. QXtract can thus learn that words like “richter” or
“hypocenter” are characteristic of some of the useful doc-
uments for Occurs-in. Then, QXtract uses these learned
words and phrases as keyword queries to retrieve (other)
potentially useful documents (see Figure 1). More recent ap-
proaches (e.g., FactCrawl [7] and PRDualRank [14]) adopt
similar retrieval-based document selection strategies.

QXtract issues queries to the standard keyword search
interface of document collections in order to retrieve poten-
tially useful documents for extraction. Such keyword search
interface, unfortunately, is not tailored for information ex-
traction: the documents that are returned for a keyword
query are ranked according to how well they match the query
and not on how useful they are for the underlying informa-
tion extraction task [7]. For example, the query [tornado]
for the Occurs-in relation returns only 145 useful documents
among the top-300 matches from our validation split of the
New York Times annotated corpus3 (see Section 4) using
Lucene4, a state-of-the-art search engine library.

FactCrawl [7] moves a step beyond keyword search and re-
ranks the retrieved documents to prioritize the extraction ef-
fort (see Figure 1). Specifically, FactCrawl scores documents
proportionally to the number and quality of the queries that
retrieve them. FactCrawl determines the quality of each
learned query—and of the query generation method that

2Our approach is not applicable over open information ex-
traction scenarios (e.g., [4]) where most documents often
contribute tuples to the open-ended extraction task.
3http://catalog.ldc.upenn.edu/LDC2008T19
4http://lucene.apache.org/
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was used to generate the query—in an initial step, once
and for all, by retrieving a small number of documents with
the query and running them through the extraction system
in question. With this initial step, FactCrawl derives: (i)
for each query q, the F-measure Fβ(q), where β is a pa-
rameter that weights precision over recall; and (ii) for each
query generation method m, the average F avg

β (m) of the
Fβ value of all queries generated with method m. During
the extraction process, after retrieving documents with a
set Qd of queries learned via a query generation method
m, FactCrawl re-ranks the documents according to a scor-
ing function S(d) =

∑
q∈Qd

Fβ(q) · F avg
β (m). FactCrawl’s

document re-ranking process improves the efficiency of the
extraction, since the documents more likely to be useful
are processed earlier. However, FactCrawl exhibits two key
weaknesses: (i) for document retrieval and ranking, just as
QXtract (see discussion above), FactCrawl relies on queries
derived, once and for all, from a small initial document sam-
ple, and hence may miss words and phrases relevant to the
information extraction task at hand; and (ii) for document
ranking, FactCrawl relies on a coarse, query-based document
scoring approach that is not adaptive, and hence does not
benefit from the wealth of information that is captured as
the extraction process progresses.
Adaptive models have been used for information extrac-

tion in a variety of ways. Early influential systems for large-
scale information extraction, such as DIPRE [10] and Snow-
ball [1], have relied on bootstrapping to adapt to newly dis-
covered information. Starting with a small number of “seed”
tuples for the extraction task of interest, these systems learn
and iteratively improve extraction patterns and, simultane-
ously, build queries from the tuples that they discover using
these patterns. However, these systems are not suitable for
our problem for two main reasons. First, techniques based
on bootstrapping often exhibit far-from-perfect recall, since
it is difficult to reach all tuples in a collection by using pre-
viously extracted tuples as queries [2, 19]. Second, extrac-
tion systems are many times “black box” systems, which im-
pedes the alteration of their extraction decisions. Other ap-
proaches (e.g., [12]) have relied on label propagation: start-
ing with labeled and unlabeled examples, these approaches
propagate the given labels to the unlabeled examples based
on some example similarity computation. Such label propa-
gation approaches are not beneficial for our extraction sce-
nario, where the extraction system has already been trained
and we can obtain new labels (i.e., useful or not) for pre-
viously unseen documents automatically by running the ex-
traction system over them.

3. ONLINE ADAPTIVE RANKING
We now propose an end-to-end document ranking ap-

proach for scalable information extraction (see Figure 2)
that addresses the limitations of the state of the art. Our ap-
proach prioritizes documents for an information extraction
task—with a corresponding already-trained information ex-
traction system—based on principled, efficient learning-to-
rank approaches that exploit the full contents of the docu-
ments (Section 3.1). Additionally, our approach revises the
ranking decisions periodically as the extraction process pro-
gresses and reveals (fine-grained) characteristics of the use-
ful documents for the extraction task at hand (Section 3.2).
Our approach thus manages to capture, progressively and
in an adaptive manner, the heterogeneity of language and

Figure 1: QXtract and FactCrawl.

content typically exhibited by the useful documents, which
leads to extraction processes substantially more efficient—
and effective—than those with state-of-the-art approaches,
as we will show experimentally in Sections 4 and 5.

3.1 Ranking Generation
To prioritize the information extraction effort, by focus-

ing on the potentially useful documents for the extraction
system at hand, we follow a learning-to-rank approach (see
Ranking Generation step in Figure 2). Similarly to state-of-
the-art query-generation and ranking efforts (see Section 2),
we obtain a small document sample and automatically “la-
bel” it with the information extraction system, without hu-
man intervention. We use the documents in this sample,
with their words as well as the attribute values of tuples
extracted from them as features, to train an initial docu-
ment ranking model. After the initial document ranking is
produced, we start processing documents, in order, with the
information extraction system (see Tuple Extraction step in
Figure 2).5 Unfortunately, the initial ranking model is gen-
erally far from perfect, because it is learned from a neces-
sarily small document sample. So our approach periodically
updates and refines the ranking model (see Update Detec-
tion step in Figure 2), as new documents are processed and
the characteristics of the useful documents are revealed, as
we will discuss in detail in Section 3.2.

Unfortunately, state-of-the-art approaches for learning to
rank [23] are problematic for our document ranking setting
for two main reasons. First, such approaches tend to be
computationally expensive [29], so updating and revising the
ranking model continuously over time, as new documents
are processed, would result in an unacceptably high over-
head in the extraction process. Second, such approaches
tend to require a relatively small feature space [3]. In con-
trast, in our ranking setting the feature space, including the
document words and attributes of extracted tuples, is vast;
furthermore, the feature space continues to grow as new doc-
uments are processed. Therefore, we need to develop uncon-
ventional learning-to-rank techniques for our ranking prob-
5The pool of documents to process is either the full docu-
ment collection, for collections of moderate size over which
we have full access, or, alternatively, the documents re-
trieved with queries learned from the document sample. In
Sections 4 and 5, we discuss this issue further and experi-
mentally study these two scenarios.
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Figure 2: Our adaptive learning-to-rank approach
for information extraction.

lem, to address the above two limitations of state-of-the-art
approaches in an effective and efficient manner and with-
out compromising the quality of the ranking models that we
produce.
To address the efficiency limitation of learning-to-rank ap-

proaches, and to update the document ranking model effi-
ciently, we rely on online learning [8]. Using online learning,
we can train the ranking model incrementally, one document
at a time. Therefore, we can continuously adapt the rank-
ing model as we process new documents, without having
to retrain it from scratch. To adapt online learning to our
problem, the main challenge is to define an update rule for
the model—to be triggered when we observe new documents
along the extraction process—that is simple enough to be
efficient but, at the same time, sophisticated enough to pro-
duce high-quality models. From among the most robust on-
line learning approaches [8], the updates based on Pegasos
gradient steps [30] are particularly well suited for our ap-
proach because of their efficiency and accuracy. Specifically,
Pegasos gradient steps provide update rules that guarantee
that learning techniques based on Support Vector Machines
(SVM), the basis for some of the best-performing learning-
to-rank approaches, learn high-quality models efficiently.
To address the feature-set limitation of learning-to-rank

approaches, and to handle large (and expanding) feature
sets, we rely on in-training feature selection [17]. In a nut-
shell, with in-training feature selection the learning-to-rank
algorithm can efficiently identify the most discriminative fea-
tures, out of a large and possibly expanding feature set,
during the training of the document ranking model and
without an explicit feature selection step. To do so, we
rely on a sparse representation of the vectors that repre-
sent the feature weights, to discard all features with zero
value. Therefore, our objective is to penalize models that
rely on a large number of features with non-zero weight. In-
terestingly, we can rely on regularization [6] to control the
feature weight distribution in our learned models: regular-
ization penalizes models that have undesirable properties
such as having many features with non-zero weights, so we
can use it for in-training feature selection and also to avoid
overfitting. In our approach, we rely on a linear combina-
tion of two regularization methods, usually called elastic-net
regularization [35], which integrates: (i) the ℓ1-norm regular-
ization [32], which tends to learn models where only a small
subset of the features have non-zero weights; and (ii) the ℓ2-
norm regularization, which produces high-quality models by
avoiding overfitting. This combination is necessary because
the ℓ1-norm regularization does not perform well when the

number of documents is smaller than the feature space [35],
which is the case during early phases of the extraction pro-
cess.

We now propose two learning-to-rank strategies, BAgg-IE
and RSVM-IE, that overcome the limitations of state-of-the-
art learning-to-rank approaches by integrating online learn-
ing and in-training feature selection, as discussed above.
BAgg-IE: Our first strategy incorporates online learning
and in-training feature selection into a binary classification
scheme where documents are ranked according to their as-
signed label and prediction confidence. Since binary classi-
fiers optimize the accuracy of label assignment instead of the
instance order, they are not optimized for ranking tasks [18].
For this reason, BAgg-IE adopts a more robust approach
that exploits multiple binary classifiers based on bootstrap-
ping aggregation, or bagging [9]. With this approach, the
label assignments and confidence predictions derive from
the aggregation of the answers of a committee of classifiers,
rather than from an individual classifier. The intuition be-
hind BAgg-IE is that each classifier is able to evaluate dis-
tinct aspects of the documents, thus collectively mitigating
the limitations of each individual classifier. We adapt SVM-
based binary classifiers [20] to support online learning and
in-training feature selection. For online learning, our algo-
rithm is based on Pegasos, in which each text document is
a training instance and, hence, we update the model one
document at a time. For in-training feature selection, each
classifier in BAgg-IE combines the SVM binary classification
problem with the regularization components of the elastic-
net regularization framework that we discussed earlier, thus
yielding the following learning problem to solve:

argmin
w,b

λAll(
λL2

2
∥w∥2+(1−λL2)∥w∥1)+

∑

(d,y)∈S

ℓ(y⟨w,d⟩+b)

where b is the bias factor, ℓ is the hinge loss function, ℓ(t) =
max(0, 1−t), and ∥w∥1 and ∥w∥2 are the ℓ1 and ℓ2-norms of
the weight vector (i.e., the regularization components), re-
spectively. Moreover, λAll is the parameter that weights the
regularization component over the loss function, and λL2,
0 ≤ λL2 ≤ 1, is the parameter that weights the ℓ2-norm
regularization over the ℓ1-norm regularization.

The committee in BAgg-IE consists of three classifiers6,
trained over disjoint splits of the documents, which leads to
different feature spaces for each, and with balanced labels
(i.e., same number of useful and useless documents). Finally,
to obtain the score of a text document we sum over the nor-
malized scores of each classifier s(d) = 1

1+e−(w⊤d+b)
, which

accounts for the differences in the feature weights of each
classifier. In this equation, w and b are the weight vector
and bias factor, respectively, of the classifier.

In summary, BAgg-IE addresses the ranking problem as
an optimized classification problem. In contrast, our sec-
ond technique, RSVM-IE, which we describe next, adopts a
principled learning-to-rank approach natively.
RSVM-IE: Our second learning-to-rank strategy is based
on RankSVM [21], a popular and effective pairwise learning-
to-rank approach. Just as we did for BAgg-IE, we need to
modify RankSVM’s original optimization problem so that it
incorporates in-training feature selection and, in turn, suits
our ranking problem. In a nutshell, RankSVM scores the

6Additional classifiers would slightly improve performance
at the expense of substantial overhead.
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documents via a linear combination of the document fea-
tures: the score of a document d is s(d) =

∑
i wi · di, where

wi is the weight of feature i and di is the value of feature i in
document d. The objective of RankSVM is then to find the
set of weights w = {w1, ..., wn} that is optimized to deter-
mine, in a pair of documents, if a document is more relevant
than the other document. To achieve this, RankSVM learns
the feature weights by comparing the features of useful and
useless documents in pairs: each pair includes a useful and a
useless document, and the label indicates whether the useful
document is the first document in the pair.
By integrating the in-training feature selection discussed

above into the original RankSVM formulation, we obtain
the following optimization problem to solve for RSVM-IE:

argmin
w

λAll(
λL2

2
∥w∥2+(1−λL2)∥w∥1)+

∑

(i,j)ϵP

ℓ(w⊤(di−dj))

where all variables are defined as for BAgg-IE, and di and dj

represent a useful and a useless document, respectively. For
online learning, and in contrast to BAgg-IE, which uses the
individual documents in the Pegasos scheme, the training
examples are the pairs of useful and useless documents that
the extraction process observes, which is known as Stochastic
Pairwise Descent [29].
Unlike BAgg-IE, RSVM-IE is designed from the ground

up to address a ranking task, so we expect it to outperform
BAgg-IE. Moreover, we expect the overhead of RSVM-IE to
be substantially lower than that of BAgg-IE, since BAgg-
IE maintains multiple learned models (i.e., the classifiers in
the committee). This overhead becomes noticeable when
the models are frequently updated. Next, we explain our
approach to decide when an update of the ranking models
is desirable during the extraction process, thus reducing the
overall document re-ranking overhead.

3.2 Update Detection
As we mentioned in Section 3.1, our adaptive extraction

approach revises the ranking decisions periodically, to ac-
count for the new observations gathered along the extraction
process. To determine when to update the ranking model
(and, correspondingly, the document ranking), we introduce
the Update Detection step (see Figure 2). To make this de-
cision, we analyze whether the features of recently processed
documents differ substantially from those in the ranking
model. If this is the case, then we trigger a new ranking
generation step (Section 3.1), which uses the recently pro-
cessed documents as additional training examples. The new
training examples often reveal novel features, or lead to ad-
justing the weight of known features, which in turn helps to
more effectively prioritize the yet-unprocessed documents.
One possible approach for update detection is through fea-

ture shifting detection techniques [16]. Feature shifting pre-
dicts whether the distribution of features in a (test) dataset
differs from the distribution of the features in the training
data. Unfortunately, most feature shifting techniques are
problematic: First, they rely on computationally expensive
algorithms (e.g., kernel-based one-class SVM classifier [16]),
thus incurring substantial overhead when applied repeatedly.
Second, these techniques only detect changes in existing fea-
tures, so they do not handle well the evolving feature space
in our problem. Thus, the features that do not appear in the
ranking would not be considered in the comparison, unless

we re-train the kernel-based classifier from scratch, which
would be prohibitively expensive.

As efficient alternatives, we introduce two update detec-
tion approaches, namely, Top-K and Mod-C. Top-K eval-
uates a reduced set of highly relevant features, determined
independently from the ranking model, whereas Mod-C di-
rectly manipulates the low-level characteristics of the rank-
ing model to detect changes in the feature space.
Top-K: Our first approach exploits the fact that the pre-
dicted usefulness of the documents in the current ranking
varies the most when the highly influential features in the
ranking model change. For instance, if the word “lava”
becomes more frequent along the processed useful docu-
ments in our Occurs-in example, this feature will become
(temporarily) more relevant than others. In that case, the
predicted usefulness of documents that include such word
should increase accordingly to be prioritized over other doc-
uments. Based on this observation, Top-K compares the K
most influential features in the current ranking against the
K most influential features according to the recently pro-
cessed documents, and triggers an update when the differ-
ence between these two sets exceeds a given threshold τ , de-
termined experimentally, as we explain in Section 4. Overall,
Top-K consists of two key steps: (i) feature selection, which
selects the K most influential features; and (ii) feature com-
parison, which measures the distance between two sets of
features. To perform feature selection, we choose the K fea-
tures with highest weight in an SVM-based linear classifier
trained—and subsequently updated—on the same features
(i.e., words and tuple attributes) as the ranking algorithm.
To perform feature comparison, we compute a generalized
version of the Spearman’s Footrule7 [22], which considers the
relative position of the features and their weights. According
to this measure, the difference between feature weights will
be higher when heavily weighted features change positions.

As discussed, Top-K maintains its own set of relevant
features according to an SVM-based binary classifier. The
advantage of this approach is that it makes Top-K inde-
pendent of the ranking technique. However, the relevant
features in this classifier may differ from those in the rank-
ing model [18]. In our Occurs-in example, for instance, a
trained RankSVM model weighted the word “northern” as
a top-20 feature, whereas a linear SVM model trained on
the same documents weighted “northern” almost neutrally.
Such discrepancies in the feature relevance may cause up-
dates that have little impact on the document ranking or,
alternatively, may lead to missing necessary updates because
important features are not being evaluated. We now intro-
duce Mod-C, which works directly with the ranking models,
to capture feature relevance directly.
Mod-C: The techniques in Section 3.1 learn ranking mod-
els that consist of a vector of numeric weights, where each
weight represents the captured relevance of one feature. We
can then use a vector similarity metric, such as cosine sim-
ilarity [24], to measure the difference between the relevance
of features in two similar ranking models. Our second tech-
nique, Mod-C, exploits this observation and compares the
current ranking model to an “updated” ranking model that
also includes some of the recently processed documents. This

7The generalized version of the Spearman’s Footrule that we

use is given by
∑

i wi ·
∣∣∣
∑

j:j≤i wj −
∑

j:σ(j)≤σ(i) wj

∣∣∣, where
σ(i) is the rank of feature i and wi is its weight.
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updated ranking model includes only a fraction ρ of the
recently processed documents, since including all of these
documents would incur substantial overhead. To compare
the ranking models, Mod-C depends on a metric suitable
for the ranking model (e.g., cosine similarity for RSVM-IE)
and a threshold α, determined experimentally as we explain
in Section 4, that needs to be exceeded to trigger an up-
date. In our cosine similarity example, α would indicate
the maximum allowed angle between ranking models, hence
triggering an update when this angle is exceeded. Mod-C is
thus able to handle the real relevance of features, crucial to
precisely decide when an update in the ranking model will
improve the current document ranking.
In summary, we propose two update detection techniques

that decide efficiently when it is beneficial to revise the rank-
ing decisions to adaptively improve the extraction process.

4. EXPERIMENTAL SETTINGS
We now describe the experimental settings for the evalu-

ation of our adaptive ranking approach:
Datasets: We used the NYT Annotated Corpus [28], with
1.8 million New York Times articles from 1987 to 2007. We
split this corpus into a training set (97,258 documents), a de-
velopment set (671,457 documents), and a test set (1,086,944
documents). We evaluated different combinations of tech-
niques and parameters on the development set. We ran
the final experiments on the test set. Additionally, we used
collections 1-5 from the TREC conference8 to generate the
queries for the query-based sample generation that we ex-
plain later in this section.
Document Access: As mentioned in Section 3.1, we con-
sider two document-access scenarios: In the full-access sce-
nario, we rank all documents in a (moderately sized) docu-
ment collection. In contrast, in the (more realistic) search
interface access scenario, we retrieve the documents to rank
through keyword queries. We evaluate our ranking approach
over both scenarios. For the search interface access scenario
we learn the queries following QXtract (Section 2) to retrieve
an initial pool of documents. Also, we provide a search inter-
face over our collection using the Lucene indexer, to retrieve
additional documents as the extraction process progresses:
after each ranking update, we use the top-100 features of the
updated ranking model as individual text queries to retrieve
additional (potentially) useful documents.
Relations: Table 1 shows the broad range of relations from
different domains that we extract for our experiments, with
the number of useful documents for each relation in the test
set. Our relations include sparse relations, for which a rela-
tively small fraction of documents (i.e., less than 2% of the
documents) are useful, as well as dense relations.
Information Extraction Techniques: We selected the
extraction approach for each relation to include a variety of
extraction approaches (e.g., both machine learning and rule-
based approaches, as well as techniques with varying speed).
Specifically, we considered different entity and relation ex-
tractors for each relation, and selected the best performing
combination. However, for diversity, whenever we had ties
in performance, we selected the (arguably) less common con-
tender (e.g., a pattern-based approach to extract organiza-
tions and Maximum Entropy Markov Model [25], or MEMM,
for natural disasters):

8http://trec.nist.gov/data.html

Relation Useful Documents
Person–Organization Affiliation (PO) 185,237 (16.95%)
Disease–Outbreak (DO) 847 (0.08%)
Person–Career (PC) 458,294 (42.16%)
Natural Disaster–Location (ND) 18,370 (1.69%)
Man Made Disaster–Location (MD) 15,837 (1.46%)
Person–Charge (PH) 19,237 (1.77%)
Election–Winner (EW) 5,384 (0.50%)

Table 1: Relations for our experiments.

• For the Person–Organization Affiliation relation we used
Hidden Markov Models [13] and automatically generated
patterns [34] as named entity recognizers for Person and
Organization, respectively. We used SVM [15] to extract
the relation.

• For the Disease–Outbreak relation we used dictionaries
and manually crafted regular expressions as named entity
recognizers for Disease and Temporal Expression, respec-
tively. We used the distance between entities to predict if
they are related.

• For the remaining relations, we used Stanford NER9 to
find Person and Location entities, a MEMM [25] to find
Natural Disasters, and Conditional Random Fields [26]
to find the remaining entities. Then, we used the Sub-
sequence Kernel [11] to identify relations between these
entities.

Development Toolkits: We used the following off-the-
shelf libraries: (i) Lingpipe10, for rule-based named entity
extraction; (ii) OpenNLP11, for word and sentence segmen-
tation; (iii) E-txt2db12 and Stanford NER, to train and ex-
ecute named entity extractors based on machine learning;
and (iv) REEL13 [5], to train relation extraction models.
Sampling Strategies: We compared two techniques to col-
lect the initial document sample for our ranking techniques
(Section 3.1):

• Simple Random Sampling (SRS): SRS picks 2,000 docu-
ments at random from the collection (only for the full-
access scenario).

• Cyclic Query Sampling (CQS): CQS iterates repeatedly
over a list of queries and collects the unseen documents
from the nextK documents that each query retrieves until
it collects 2,000 documents. We learned 5 lists of queries
using sets of 10,000 random documents (5,000 useful and
5,000 useless) from the TREC collection by applying the
SVM-based method in QXtract [2].

Ranking Generation Techniques: We evaluated our rank-
ing generation techniques from Section 3.1. To obtain the
best parameters for these techniques, we performed several
experiments over our development set, varying λAll and λL2.
The parameter values that we determined experimentally
are as follows: for BAgg-IE, λAll = 0.5 and λL2 = 0.99;
while for RSVM-IE, λAll = 0.1 and λL2 = 0.99. Setting
λL2 = 0.99 results in an ℓ1-norm weight of 1 − λL2 = 0.01.
This weight in turn results in models with 10 times fewer
features—which are hence 10 times faster—than models that
only use the ℓ2-norm. Higher ℓ1-norm weights would lead to

9http://nlp.stanford.edu/software/CRF-NER.shtml
10http://alias-i.com/lingpipe/
11http://opennlp.apache.org/
12http://web.ist.utl.pt/ist155840/etxt2db/
13http://reel.cs.columbia.edu/
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lower-quality ranking models, as discussed in Section 3.
We also evaluated the following (strong) baselines:

• FactCrawl (FC): FC corresponds to our implementation
of FactCrawl [7], as described in Section 2.

• Adaptive FactCrawl (A-FC): We produced a new version
of FC that re-ranks the documents. Specifically, to make
FC more competitive with our adaptive ranking strategies,
A-FC recomputes the quality of the queries, and re-ranks
the documents with these new values after each document
is processed. In addition, A-FC learns new queries and
retrieves more documents before every re-ranking step.

(We evaluated other approaches, such as QXtract [2] and
PRDualRank [14], but do not discuss them further because
FactCrawl dominated the alternatives that we considered.)
Update Detection Techniques: We evaluated our up-
date detection techniques from Section 3.2:
• Top-K: We set K = 200, which experimentally led to

high coverage of the relevant features and small overhead
in feature comparison. We set τ = ε ·K, where ε indicates
how much each feature can change without impacting the
ranking. We experimented with several values of τ and
finally picked τ = 0.5 (ε = 0.0025).

• Mod-C: We evaluated several combinations of ρ and α:
the best value for ρ is 0.1, while the best angle values for
α are 5◦ and 30◦ for RSVM-IE and BAgg-IE, respectively.

We also compared against the following baselines:
• Wind-F: We implemented a näıve approach for update de-

tection that updates the ranking model after processing a
fixed number of documents. We experimented with sev-
eral values and observed no substantial differences. We re-
port our results for updating 50 times along the extraction
process, which leads to updates after 13,429 and 21,739
documents for the validation and test sets, respectively.

• Feat-S: We implemented an efficient version of feature
shifting [16] using an online one-class SVM based on Pe-
gasos [30]. We used a Gaussian kernel with γ = 0.01 and
k = 6, as suggested in [16]. Finally, we triggered an up-
date when the geometrical difference F = 1− S exceeded
a threshold τ = 0.55. Since the features of the documents
after each update tend to fluctuate, we only run Feat-S
after processing 700 new documents or more.

Executions and Infrastructure: We ran all experiments
over a cluster with 60 machines with a uniform configura-
tion: Intel Core i5-3570 CPU @ 3.40 GHz processors, with
8 GB of RAM, and OS Debian GNU/Linux 7 (wheezy). We
used multiple independent processes to test our approach
with different configurations. We executed each experiment
five times with different samples (i.e., five different random
samples and five different sets of initial sample queries), to
account for the effect of randomness in the results, and re-
port the average of these executions.
Evaluation Metrics: We use the following metrics:
• Average recall is the recall of the extraction process (i.e.,

the fraction of useful documents in the collection that have
been processed) at different points during the extraction
(e.g., after processing x% of the documents) and averaged
over all executions of the same configuration.

• Average precision is the mean of the precision values at
every position of the ranking [33], averaged over all the
executions of the same configuration.

• Area Under the ROC (AUC) is the area under the curve
of the true positive rate as a function of the false pos-
itive rate, averaged over all the executions of the same
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Figure 3: Average recall for Person–Charge for dif-
ferent base ranking generation techniques.
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Figure 4: Average recall for Disease–Outbreak for
different base ranking generation techniques.

configuration.
• CPU time measures the CPU time consumed for extract-

ing and ranking the documents.

5. EXPERIMENTAL RESULTS
We now present the results of the experimental evaluation

of our adaptive ranking approach. We tuned the configura-
tion of all components of our approach (i.e., the sampling
strategy, the learning-to-rank approach, and the update de-
tection approach) by exhaustively considering all possible
combinations over the development set and selecting the
best such combination. In the discussion below, for clarity,
we consider the configuration choices for each component
separately. Later, for the final evaluation of our approach
over the test set and against the state-of-the-art ranking
strategies, we use the best configuration according to the
development set experiments.
Impact of Learning-To-Rank Approach: To under-
stand the impact of using our learning-to-rank approach,
we first evaluate our techniques of Section 3.1, without the
adaptation step, against FC over the development set. Fig-
ure 3 shows the average recall for the Person–Charge re-
lation for the full-access scenario. (For reference, we also
show the performance of a random ordering of the docu-
ments, as well as of a perfect ordering where all useful doc-
uments are ahead of the useless ones.) Both RSVM-IE and
BAgg-IE consistently outperform FC. Interestingly, RSVM-
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Figure 5: Average recall for Person–Career for dif-
ferent base ranking generation techniques.

IE performs better in early phases of the extraction, while
BAgg-IE performs better in the later phases, which agrees
with our intuition from Section 3.1: RSVM-IE is at its core
a ranking optimization technique, while BAgg-IE is based
on classifiers. BAgg-IE separates useful from useless doc-
uments, thus obtaining high-accuracy in the middle of the
extraction process, which in turn leads to high recall later
on. We observed similar results for most of the relations
(e.g., Figures 4 and 5 show the results for Disease–Outbreak
and Person–Career respectively). However, RSVM-IE per-
forms better than BAgg-IE for sparse relations, so RSVM-
IE is preferable for such relations even in later phases of the
extraction process (see Figure 4). Overall, even without an
adaptation step, our techniques outperform the state-of-the-
art ranking technique FC.
Impact of Sampling Strategies: To understand the im-
pact of different sampling techniques to learn the initial
ranking model, we compared RSVM-IE and BAgg-IE using
the SRS and CQS sampling techniques (Section 4). Fig-
ure 6 shows the average recall for the Man Made Disaster–
Location relation in the full-access scenario for RSVM-IE,
both without the adaptation step (denoted with keyword
“Base” in the plot) as well as with adaptation (denoted with
keyword “Adaptive”). (The results for BAgg-IE were anal-
ogous; see Figure 7.) Using CQS, a sophisticated sampling
technique, has a generally positive impact relative to using
the (simpler) SRS strategy. The only exceptions were the
dense relations, namely, Person–Organization and Person–
Career, for which a simple random sample typically includes
a wide variety of useful documents, thus leading to high-
quality models.
Impact of Adaptation: We claimed throughout this pa-
per that refining the document ranking along the extraction
process significantly improves its efficiency. To support this
claim, Figure 6 shows the average recall of RSVM-IE for the
Man Made Disaster–Location relation for the full-access sce-
nario. (The results for BAgg-IE are analogous, although the
difference between the sampling techniques is higher than
for RSVM-IE; see Figure 7.) These results show that by
adapting the ranking model learned by RSVM-IE and, corre-
spondingly, the document ranking, we significantly improve
the efficiency of the extraction process. For example, Figure
6 shows that the adaptive versions of RSVM-IE can reach
70% of the useful documents after processing only 10% of
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Figure 6: Average recall for Man Made Disaster–
Location with different sampling techniques for the
base and adaptive versions of RSVM-IE.
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Figure 7: Average recall for Man Made Disaster–
Location with different sampling techniques for the
base and adaptive versions of BAgg-IE.

the collection, whereas the base (non-adaptive) versions only
reached 40% and 50% of the useful documents, for SRS and
CQS, respectively. This same behavior was replicated by
almost all relations. Additionally, as shown in Figure 6,
the sampling technique does not have a significant impact
anymore when we incorporate the adaptation step. Nev-
ertheless, we observed that the results of average precision
and AUC (see Table 2) are generally better for CQS than for
SRS, since CQS leads to processing more useful documents
at early stages of the extraction process.

Finally, we evaluated the number of new features incorpo-
rated into the ranking model during the adaptation step. In
early stages of the extraction process, an average of 200 (or
about 25% of the total number of features in the previous
models) are incorporated; a similar number of features is
removed in each adaptation step. However, in later stages,
this behavior changes as the models become more stable.
Specifically, the number of incorporated and removed fea-
tures drops to 10 after each adaptation step. These results
show that while the initial adaptation steps significantly
impact the ranking model, the later ones are insignificant.
Therefore, it is important to properly schedule the adapta-
tion step to avoid insignificant updates to the ranking model.
Impact of Update Detection: To evaluate the update
detection techniques that we introduced in Section 3.2, we
fix the document sampling to SRS, and evaluate the tech-
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Base SRS Base CQS Adaptive SRS Adaptive CQS
Rel. A. Precision AUC A. Precision AUC A. Precision AUC A. Precision AUC
PO 33.6±0.9% 76.7±1.0% 37.9±1.0% 77.7±0.9% 44.2±0.3% 82.7±0.1% 43.6±0.3% 82.7±0.1%
DO 2.3±1.1% 88.2±2.2% 3.1±0.6% 87.9±0.9% 3.0±1.0% 97.0±0.1% 3.8±0.6% 97.1±0.1%
PC 80.2±0.4% 86.9±0.2% 79.2±0.5% 86.5±0.4% 84.2±0.2% 89.9±0.1% 84.1±0.2% 89.9±0.1%
ND 6.1±1.1% 64.0±3.5% 13.1±0.9% 64.3±3.2% 10.2±0.9% 85.5±0.2% 16.4±0.8% 85.4±0.2%
MD 7.3±1.8% 67.4±3.2% 13.6±1.2% 76.6±3.6% 12.9±1.4% 88.6±0.2% 17.2±0.8% 89.2±0.1%
PH 28.6±0.7% 89.7±1.4% 28.1±1.1% 87.3±1.6% 33.0±0.6% 95.5±0.0% 33.4±0.6% 95.4±0.0%
EW 6.6±4.0% 79.5±8.6% 10.2±0.8% 84.6±1.4% 9.4±3.2% 94.9±0.5% 12.6±0.6% 95.3±0.1%

Table 2: Comparison of the impact of different document sampling techniques on the ranking quality for all
the relations with the base and adaptive versions of RSVM-IE for the full-access scenario.
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Figure 8: Average recall for Election–Winner for
different update methods with RSVM-IE.

niques according to their impact on the extraction process,
distribution of updates, and overhead. Figure 8 shows the
results of RSVM-IE for the Election–Winner relation for the
full-access scenario. (The behavior for the other relations is
analogous.) The Feat-S technique performed poorly in com-
parison to others, because Feat-S stops performing updates
when the features observed in the data stabilize with respect
to its kernel-based definition of shifting. For this reason,
Feat-S misses late updates that prioritize other still poorly
ranked useful documents. In addition, we observe that both
Top-K and Mod-C produce consistently better results than
Wind-F, especially at early stages of the extraction process,
thus leading to high recall early in the extraction process.
Overall, we show that both Top-K and Mod-C are robust
alternatives for update detection in terms of ranking quality.
We also studied the distribution of updates across the ex-

traction process, to understand the behavior of Top-K and
Mod-C. Figure 9 shows the number of updates that each
technique performs at different stages of the extraction pro-
cess. Top-K and Mod-C tend to update much more fre-
quently in early stages, where almost all documents carry
new evidence of usefulness, than in later stages. For in-
stance, most of the updates are performed while process-
ing the first 10% of the collection. This behavior leads to
ranking models that stabilize soon, since they are able to
overcome the usual lack of training data in the initial docu-
ment samples. Interestingly, despite the density of updates
early in the process, the overall number of updates of Top-K
and Mod-C remains smaller than that of Wind-F, since our
techniques avoid unnecessary updates in late phases of the
extraction process.
Additionally, we observed the percentage of features that

are added to and eliminated from the models: the adap-
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Figure 9: Distribution of updates for different
techniques over the Election–Winner relation with
RSVM-IE. (Darker shades represent earlier stages
of the extraction process.)

Update Technique CPU Time per Document
Wind-F 0.01±0.00 ms
Feat-S 5.72±0.29 ms
Top-K 1.89±0.71 ms
Mod-C 0.32±0.10 ms

Table 3: Average CPU time to perform update de-
tection after processing each document.

tation steps triggered by Top-K and Mod-C incorporate a
consistent percentage of new features (i.e., about 10% per
adaptation step) throughout the extraction process. This
behavior significantly differs from that of Wind-F, which in-
corporates a large fraction of new features in early phases of
the extraction process but only a small fraction of features
later on: Top-K and Mod-C only perform an update when
it will have a significantly positive impact on the model.

Finally, to evaluate the impact on efficiency of the update
detection techniques, we calculated the overhead per docu-
ment in terms of average CPU time, which we summarize
in Table 3. As expected, Wind-F incurs negligible over-
head (roughly 0.01 ms per document), since it only keeps a
counter of the processed documents, whereas Feat-S incurs
the highest overhead (5.72 ms per document). Our two tech-
niques, Top-K (1.89 ms per document) and Mod-C (0.32 ms
per document), exhibit a substantial difference in terms of
efficiency, since the overhead of Top-K is dominated by the
use of the binary classifier, as we discussed in Section 3.2. In
conclusion, and considering also the quality results, Mod-C
consistently outperforms the other techniques.
Scalability of our Approach: To understand how our
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Figure 10: Average CPU time of our techniques as
a function of the collection size for different target
recall values, for the Natural Disaster–Location re-
lation.
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Figure 11: Average CPU time to find a target num-
ber of documents (i.e., the number of useful doc-
uments in the subset with 10% of the collection)
for the Person–Organization Affiliation relation, as
a function of the collection size.

strategies scale with the document collection size, we pro-
duced 10 subsets of the test collection with different sizes
(from 10% to 100% of the total collection) and we measured
(i) the time overhead for producing the ranking and (ii) the
extraction time needed to reach a (fixed) target number of
useful documents in each subset. Figure 10 shows how the
size of the collection affects the CPU time needed to per-
form the ranking and extraction tasks with our techniques
for the Natural Disaster–Location relation: the CPU time
needed to perform an extraction task with our techniques
grows approximately linearly with the collection size, which
is desirable. Additionally, Figure 11 shows—for the Person–
Organization Affiliation relation—that the time needed to
find and process a target number of useful documents signif-
icantly drops as we increase the size of the collection. In this
figure, the target number of useful documents corresponds
to that in the subset of the collection that only contains 10%
of the documents. As shown, the time becomes almost con-
stant when the number of useful documents in the subset is
large enough for the ranking to reach the target number at
very early phases of the extraction process.
Comparison with State-of-the-Art Ranking Strate-
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(a) Disease–Outbreak
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(b) Person–Career

Figure 12: Average recall for different ranking ap-
proaches in the full-access scenario.

gies: We now compare our best performing ranking ap-
proaches with the state-of-the-art approaches discussed in
Section 4. We selected the best configuration for RSVM-IE
and BAgg-IE according to the previous experiments, which
involve CQS sampling and Mod-C update detection. Then,
we ran this configuration over the test set to compare with
FC and A-FC. We performed this experiment in the search
interface access scenario as well, with similar conclusions.
We compare the techniques on ranking quality and efficiency.

Table 4 shows the average precision and AUC of the four
techniques that we compare, for all relations and over the
full access scenario: RSVM-IE and BAgg-IE generally out-
perform the FactCrawl baselines by a large margin, and
RSVM-IE consistently outperforms BAgg-IE. Interestingly,
our adaptive version of FactCrawl, A-FC, does not exhibit
the same significant improvement compared to FC that we
observed between the adaptive and base versions of RSVM-
IE and BAgg-IE above: A-FC is unable to properly model
the usefulness of the documents when new features emerge,
since it only relies on a small number of features.

To understand the effects of the relation characteristics,
we studied the performance of the techniques over both
sparse (Figure 12a) and dense (Figure 12b) relations. The
performance gap is more evident for sparse relations than
it is for dense relations: The vocabulary around mentions
of sparse relations tends to be reduced and specific, which
makes it easier to model and prioritize the useful docu-
ments. Conversely, dense relations are scattered across di-
verse documents, thus co-occurring with a large variety of
words, which makes it difficult to select a set of features that
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BAgg-IE RSVM-IE FC A-FC
Rel. A. Precision AUC A. Precision AUC A. Precision AUC A. Precision AUC
PO 40.5±0.9% 78.2±0.6% 45.7±0.3% 82.4±0.1% 29.0±0.9% 68.9±0.5% 30.5±0.6% 71.9±0.8%
DO 3.5±1.3% 89.7±0.3% 8.3±0.2% 98.2±0.1% 1.5±0.4% 71.5±11.4% 1.6±0.4% 78.8±5.4%
PC 79.2±0.4% 83.7±0.4% 85.1±0.1% 88.6±0.1% 66.3±1.1% 76.3±0.4% 63.2±1.0% 72.9±0.5%
ND 10.2±1.4% 78.4±0.5% 18.9±0.6% 85.8±0.1% 6.0±0.4% 67.8±1.5% 7.1±0.4% 72.9±0.2%
MD 10.8±2.1% 81.4±1.2% 17.0±0.1% 88.0±0.0% 3.8±0.4% 67.1±1.7% 4.1±0.4% 69.9±1.5%
PH 22.3±2.6% 90.5±2.1% 33.8±0.3% 95.1±0.0% 10.0±1.5% 74.6±2.8% 11.0±1.2% 78.9±1.5%
EW 9.6±0.6% 90.2±0.2% 15.5±0.3% 95.4±0.1% 2.4±0.2% 78.1±1.5% 2.6±0.2% 80.5±1.3%

Table 4: Comparison of the rankings generated by different techniques for the full-access scenario.
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Figure 13: CPU time to obtain a target recall value.

precisely identifies useful documents. Regardless, RSVM-IE
and BAgg-IE still outperform the other techniques, since
they are able to handle feature spaces of variable sizes.
We evaluate efficiency by measuring the time—including

both ranking and extraction time—that each technique re-
quires to achieve different values of recall. We show the re-
sults for two relations that exhibit substantially different ex-
traction times according to their respective information ex-
traction system: (i) Natural Disaster–Location, which takes
an average of 6 seconds per document (Figure 13a); and (ii)
Person–Organization Affiliation, which takes an average of
0.01 seconds per document (Figure 13b). RSVM-IE outper-
forms the others, in agreement with our earlier findings. The
results for Person–Organization Affiliation are, in contrast,
slightly different. For this fast extraction task, the overhead
of the ranking technique can be problematic since it may
easily become larger than the extraction time per se. We
can observe such behavior for A-FC, which is less efficient
than a random ranking technique with no overhead: A-FC

(and, correspondingly, FC) relies on features that are expen-
sive to compute [7], which is problematic for the adaptive
case. However, the other techniques behave similarly as for
the more expensive relations, with RSVM-IE resulting in the
most efficient extraction process. Interestingly, for extrac-
tion tasks that incur lengthier extraction time, as is the case
for Natural Disaster–Location, the quality of the ranking has
a higher impact on efficiency than for other extraction tasks.

Overall, our experiments show that RSVM-IE outperforms
all other techniques in all settings and extraction tasks.
More specifically, RSVM-IE produces better rankings, while
incurring very little overhead. Finally, when combined with
Mod-C, RSVM-IE achieves much lower extraction times than
the alternative strategies that we studied. Indeed, even with
fast information extraction systems, adaptively ranking doc-
uments with RSVM-IE remained the best choice. Addition-
ally, we evaluated the scalability of our techniques and con-
firmed that as the size of the collection grows, so does the
positive impact of our approach, making it a substantial step
towards scalable information extraction.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we presented an adaptive, lightweight doc-

ument ranking approach for information extraction. Our
approach enables effective and efficient information extrac-
tion over large document collections. Specifically, our ap-
proach relies on learning-to-rank techniques that learn in a
principled way the fine-grained characteristics of the useful
documents for an extraction task of interest. Our techniques
incorporate (i) online learning algorithms, to enable a princi-
pled, efficient, and continuous incorporation of new relevant
evidence as the extraction process progresses and reveals the
real usefulness of documents; and (ii) in-training feature se-
lection, to enable the learning of ranking models that rely
on a small, discriminative set of features. Our experiments
show that our approach exhibits higher recall and precision
than state-of-the-art approaches, while keeping the overhead
low. Overall, our document ranking approach is a substan-
tial step towards scalable information extraction.

As future work, we plan to study how to estimate the
recall of the alternative document ranking approaches for
an information extraction task of interest. Through such
estimates, we could in turn estimate the extraction cost,
as a function of the number of processed documents, to
achieve a target recall value with each ranking approach.
We could then explore the recall-extraction cost tradeoff in
a robust, quantitative manner, and substantially enhance
recent optimization efforts for information extraction pro-
grams (e.g., [31]) by integrating our approach as an alter-
native document selection technique. As another direction
for future work, we plan to continue studying our document
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ranking approaches along other dimensions, so that, for ex-
ample, we can characterize ranking models according to the
diversity of the tuples that they tend to produce. Finally, we
aim at exploring parallelization approaches that, combined
with the ranking-based approach described in this paper,
can further speed up the execution of information extrac-
tion systems over large volumes of text data.
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ABSTRACT
We consider the problem of processing similarity queries
over a set of top-k rankings where the query ranking and
the similarity threshold are provided at query time. Spear-
man’s Footrule distance is used to compute the similarity
between rankings, considering how well rankings agree on
the positions (ranks) of ranked items (i.e., the L1 distance).
This setup allows the application of metric index structures
such as M- or BK-trees and, alternatively, enables the use
of traditional inverted indices for retrieving rankings that
overlap (in items) with the query. Although both techniques
are reasonable, they come with individual drawbacks for our
specific problem. In this paper, we propose a hybrid index-
ing strategy, which blends inverted indices and metric space
indexing, resulting in a structure that resembles both in-
dexing methods with tunable emphasis on one or the other.
To find the sweet spot, we propose an assumption-lean but
highly accurate (empirically validated) cost model through
theoretical analysis. We further present optimizations to the
inverted index component, for early termination and mini-
mizing bookkeeping. The performance of the proposed al-
gorithms, hybrid variants, and competitors is studied in a
comprehensive evaluation using real-world benchmark data
consisting of Web-search–result rankings and entity rankings
based on Wikipedia.

1. INTRODUCTION
One common way to counter the information deluge is

the formation of concise rankings that allow users and algo-
rithms to e↵ectively and e�ciently inspect the best perform-
ing items within a certain category. Ranking schemes are
used to impose an order between items—such as Google’s
PageRank or more traditional OLAP-style aggregation and
ranking functions used in databases for business intelligence
and other forms of insight-seeking analyses. Besides tangible
facts and objective ranking schemes, rankings are often also
crowd-sourced through mining user polls on the Web, in por-

⇤This work has been partially supported by the Excellence
Cluster on Multimodal Computing and Interaction (MMCI)
and the German Research Foundation (DFG) under grant
MI 1794/1-1.

c�2015, Copyright is with the authors. Published in Proc. 18th Interna-
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27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

tals such as IMDB (for movie ratings) or rankopedia.com, or
specifically created by users in form of favorite lists on per-
sonal websites or used in dating portals for matchmaking. A
core characteristic of such rankings is that they are rather
tiny in length, compared to the global domain of items that
could be ranked—consider the top-10 movies of all time com-
pared to the total number of produced movies or the top-10
Web search results for Britney Spears compared to more
than 100 million documents about her in Google’s index.
Access to rankings can serve ad-hoc information demands
or give access to deeper analytical insights. Consider for in-
stance the task of query suggestion in web search engines
that is based on finding historic queries by their result lists
with respect to the currently issued query, or dating portals
that let users create favorite lists that are used to search for
similarly minded mates.

As a generic access substrate for such services, we consider
querying sets of top-k rankings by means of distance func-
tions. That is, retrieving all rankings that have a distance
to the query less than or equal to a user-provided threshold.
We specifically focus on Spearman’s Footrule that is the
L1 distance metric between two rankings. Fagin et al. [18]
show that there is a metric Spearman’s Footrule adaptation
for top-k rankings, whose ranked items do not necessarily
match or overlap at all. Dealing with metrics immediately
suggests employing metric data structures like M-trees [14]
for indexing and similarity search. On the other hand, simi-
lar rankings, for reasonable query thresholds, should in fact
overlap in some (or all) of the items they rank. Searching
overlapping sets for ad-hoc queries [22, 30] or joins [25] is
a well studied research topic. Inverted indices or signature
trees are used to indexing tuples based on their set-valued
attributes [22]. Such indices are very e�cient to answer con-
tained-in, equal-to, or overlaps-with queries, but do not ex-
ploit the distances between the indexed rankings as metric
index structures do. In this work, we study a hybrid in-
dex structure that smoothly blends an inverted index with
metric space indexing. With an assumption-lean but highly
accurate theoretic cost model, we further show that the esti-
mated sweet spot reaches runtime performances almost iden-
tical to the manually tuned one.

1.1 Problem Statement and Setup
As input we are provided with a set T of rankings ⌧i (Ta-

ble 1). Each ranking has a domain D⌧i of items it contains.
We consider fixed-length rankings of size k, i.e., |D⌧i | = k,
but investigate the impact of various choices of k on the
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T
ranking id ranking content

⌧1 [2, 5, 4, 3]
⌧2 [1, 4, 5, 9]
⌧3 [0, 8, 5, 7]

Table 1: Sample set T of rankings (items are represented by
their ids).

query performance. The considered rankings do not contain
any duplicate items.

Rankings are represented as arrays or lists of items, where
the left-most position denotes the top ranked item. Without
loss of generality, in the remainder of the paper, we assume
that items are represented by their ids. The rank of an item
i in a ranking ⌧ is given as ⌧(i).

A distance function d quantifies the distance between two
rankings—the larger the distance the less similar the rank-
ings are. Therefore, for a given query ranking q, distance
function d, and distance threshold ✓, we want to find all
rankings in T with distance below or equal to ✓, that is,

{⌧i|⌧i 2 T ^ d(⌧i, q)  ✓}

In this work, we focus on the computation of Spearman’s
Footrule distance, but the proposed coarse index can be ap-
plied to any metric distance function. A more detailed intro-
duction to rankings specifically top-k rankings, metric dis-
tance functions, and how to work with items i that are not
in a ranking ⌧ is described in Section 3.

The objective of this work is to study in-memory indexing
and query processing techniques, with the overall aim to
decrease the average query response time. We consider ad-
hoc similarity queries over rankings, where the query ranking
and query similarity threshold are specified at query time.

1.2 Contributions and Outline
In this work, we make the following contributions:

• we present a coarse index and a cost model that al-
lows automated tuning of the coarsening threshold for
optimal performance

• we derive distance bounds for early stopping / pruning
inside position-augmented inverted indices—concepts
that are largely orthogonal to each other and can be
combined

• we show the results of a carefully conducted experi-
mental evaluation involving a suite of algorithms and
hybrids under realistic workloads derived from real-
world rankings

The remainder of this paper is organized as follows. Sec-
tion 2 discusses related work. Section 3 presents background
information on rankings and discusses distance functions for
rankings. Section 4 introduces a coarse, hybrid index that in-
dexes partitions of rankings. Section 5 describes a cost model
that allows picking the sweet spot between inverted-index-
access time and result-validation time. Section 6 shows how
to compute distance bounds and to enable e↵ective pruning
of entire index lists at runtime. Section 7 presents the ex-
perimental evaluation, while Section 8 concludes the paper.

2. RELATED WORK
There is an ample work on computing relatedness between

ranked lists of items, such as to mine correlations or anti-
correlations between lists ranked by di↵erent attributes; like
age and weight. Arguably, the two most prominent similarity
measures are Kendall’s tau and Spearman’s Footrule. Fagin
et al. [18] study comparing top-k lists, that is, lists capturing
a subset of a global set of items, rendering the lists incom-
plete in nature. In the scenarios motivating our work, like
similarity search of favorite/preference rankings, the lists are
naturally incomplete, capturing, e.g., only the top-10 movies
of all times. In this work, we focus on the computation of
Spearman’s Footrule distance, for which Fagin et al. [18]
show that it retains its metric properties also for incomplete
rankings under certain assumptions (cf., Section 3).

We primarily distinguish two indexing paradigms for han-
dling ranked lists. First, considering the similarity metric
among them and applying indexing techniques for metric
spaces. Second, treating ranked lists as plain sets and index-
ing them using methods like inverted indices.

Helmer and Moerkotte [22] present a study on indexing
set-valued attributes as they appear for instance in object-
oriented databases. Retrieval is done based on the query’s
items; the result is a set of candidate rankings, for which
the distance function can be computed. For metric spaces,
data-agnostic structures for indexing objects are known, like
the M-tree by Ciaccia et al. [14, 37]. For discrete metrics,
the tree structure proposed by Burkhard and Keller [10] re-
sembles an n-ary search tree, called BK-tree, where subtrees
group items according to their (discrete) distance to the par-
ent node. Similarly, Ganti et al. [21] present single-pass al-
gorithms for clustering data in metric distance space using
a R*-tree–style [7] structure for mapping objects to (evolv-
ing) clusters. The vantage-point tree [32, 36] partitions the
space by choosing vantage points (pivots) that segment the
space into two areas, similar to the k-d tree [8]. Chávez and
Navarro [12] describe an algorithm to create non-overlapping
partitions of data in a metric space based on pivots and
fixed-diameter or fixed-size partitions; several ways to choose
pivots are studied. We consider indexing clusters of rankings
to shrink the size of the inverted index, by considering parti-
tions of rankings within a pre-determined distance threshold
(Section 4)—e↵ectively trading-o↵ cluster retrieval time and
final result validation cost. The partitioning can be done in
any of the above ways; we choose the BK-tree [10]. The
book by Hanan Samet [26] gives a comprehensive overview
of indexing techniques for metric spaces. The recent work
by Wang et al. [34] propose MapReduce [16] algorithms for
all-pairs similarity search in metric spaces. Previously, Ja-
cox and Samet [24] proposed sequential algorithms for the
similarity join problem in metric spaces.

Augmenting the inverted index with rank information al-
lows computing the Footrule distance on the fly. For score-
ordered index lists used in top-k query processing, there
is a large variety of work. Most prominently, the family
of threshold algorithms [18] and variants like the work by
Bast et al. [4] that is emphasizing on disk-I/O optimal ac-
cess. For k nearest neighbor (KNN) or similarity queries, the
per-dimension information of the indexed objects is not pre-
sorted by “score” as this depends on the query that is not
known a priori. Work on KNN search in databases [9] trans-
forms the KNN problem into a range query over the involved
dimensions, that can be answered using standard database
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⌧ A ranking
⌧(i) The rank of item i in ranking ⌧
F (⌧i, ⌧j) Footrule distance between ⌧i and ⌧j
d(⌧i, ⌧j) Distance between ⌧i and ⌧j
dmax maximum distance between two rankings
T Set of rankings to be indexed
k Size of rankings
D⌧ Items contained in ranking ⌧
D Global domain of items
q Query ranking
✓ Similarity threshold, set at query time
✓C Maximum pairwise similarity within a

partition
Pi A partition of rankings. Partitions are

pairwise disjoint.

Table 2: Overview of notation used in this paper

indices that support range queries, like B+ trees [6]. Work
on similarity join in databases [2, 27, 28] focuses on defin-
ing and implementing the similarity join as relational op-
erators. Mamoulis [25] addresses processing joins between
sets (relations) of tuples with set-valued attributes. Terrovi-
tis et al. [29] considers containment queries over sets with
skewed data distributions. The work in [30] proposes combi-
nation of trees and inverted files to answer superset, subset
and equality queries over set-valued attributes. Recently, the
most prominent technique for answering set similarity joins
are the prefix-filtering based methods [35, 5, 11]. The main
idea behind this method is to reduce the size of the inverted
index. This is done by imposing a total ordering of the el-
ements in the universe U (or what we refer to as the dic-
tionary D), sorting the elements in the records, and then,
based on the threshold value, indexing only a prefix, and
not the complete records. Similarly, we propose a technique
for dropping some of the elements in the query (Section 6),
however, our technique does not require the threshold value
to be known during index construction. Additionally, we do
not require a global ordering to be imposed on the items
in the rankings, i.e., the rankings keep their original struc-
ture. Wang et al. [33] propose the AdaptJoin algorithm that
improves on previous prefix filtering work by using variable
length prefix scheme and a cost model that selects the most
e�cient prefix length for each object. They further propose
the AdaptSearch algorithm for processing ad-hoc queries us-
ing the same adaptive framework. As rankings can also be
seen as plain sets, AdaptSearch can be applied for comput-
ing relatedness between rankings as well.

When processing top-k, KNN, or similarity queries, the
ultimate goal is to identify the final result objects as soon as
possible, without exhaustive evaluation of scores/distances.
In the NRA algorithm by Fagin et al. [19] over score-sorted
index lists, this is achieved by maintaining score bounds for
each seen object. We come back to this in Section 6.

3. BACKGROUND ON RANKINGS AND DIS-
TANCE FUNCTIONS

Pairwise similar rankings can be retrieved by means of dis-
tance functions, like Kendall’s Tau or Spearman’s Footrule
distance, over all pairs or selectively for a given query rank-
ing. We first discuss metrics over complete rankings over

a single domain and then we discuss results on computing
distances for top-k lists (incomplete rankings).

Complete rankings are considered to be permutations over
a fixed domain D. We follow the notation by Fagin et al.
[18] and references within. A permutation � is a bijection
from the domain D = D� onto the set [n] = {1, . . . , n}. For
a permutation �, the value �(i) is interpreted as the rank
of element i. An element i is said to be ahead of an ele-
ment j in � if �(i) < �(j). For two permutations �1,�2 over
the same domain, the Kendall’s tau K(�1,�2) and Spear-
man’s Footrule F (�1,�2) measures are two prominent ways
to compute the distance between �1 and �2. Both measures
are distance metrics, that is, they have symmetry property,
i.e., d(x, y) = d(y, x), are regular, i.e., d(x, y) = 0 i↵ x = y,
and su�ce the triangle inequality d(x, z)  d(x, y)+ d(y, z),
for all x, y, z in the domain. Spearman’s Footrule metric is
the L1 distance between two permutations, i.e., F (�1,�2) =P

i |�1(i) � �2(i)| and in this work we specifically focus on
this metric, but the proposed coarse index can be applied to
any metric distance function. We refer the reader to Table 2
for an overview of the notation used in this paper.

We consider incomplete rankings, called top-k lists in [18].
Formally, a top-k list ⌧ is a bijection from D⌧ onto [k]. The
key point is that individual top-k lists, say ⌧1 and ⌧2 do not
necessarily share the same domain, i.e., D⌧1 6= D⌧2 . Fagin et
al. [18] discuss how the above two measures can be computed
over top-k lists.

There exists a Spearman’s Footrule adaptation that is also
a metric for top-k lists by considering an artificial rank l for
items not contained in a ranking, i.e., ⌧(i) = l if i /2 D⌧ .
Consider the rankings ⌧1 = [2, 5, 6, 4, 1], ⌧2 = [1, 4, 5], and
⌧3 = [0, 8, 4, 5, 7]. For a rank l = 6 for not-contained items,
we obtain F (⌧1, ⌧2) = 15, F (⌧2, ⌧3) = 17, and F (⌧1, ⌧3) = 22.

In this work, we assume that ⌧(i) takes values from 0 to
k � 1 (instead of 1 to k), and we fix the value of l to k as
suggested in [18]. It is clear that this does not a↵ect our
algorithms. We further consider only rankings of same size
k, thus the largest possible value of the Footrule distance is
k⇥ (k+1) and occurs if two disjoint rankings are compared.
The smallest distance is 0, for the compared rankings are
identical. In the rest of the paper, for ease of presentation,
we use normalized values for the Footrule distance and ✓,
ranging from 0 to 1, i.e., dmax = 1.

4. FRAMEWORK
Rankings can be considered as plain sets and accordingly

indexed in traditional inverted indices [22] that keep for each
item a list of rankings in which the item appears. At query
time such a structure allows e�ciently finding those rankings
that have one or more items in common with the query
ranking. A compact example is given below:

inverted index

item a

< ⌧1, ⌧5, ⌧7 >

item b

< ⌧4, ⌧9, ⌧12, ⌧19 >

The key point of using inverted indices is their ability to
e�ciently reduce the global amount of all rankings to poten-
tial candidates by eliminating the rankings with maximum
distance dmax to the query. This is done in the first query
processing phase, namely the filtering phase. In this phase,
for a given query ranking q and a user defined threshold ✓,
the inverted index is queried for each item in Dq. The ob-
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tained index lists are merged to identify all rankings that
have at least one overlapping item with the query ranking
q. These are considered candidates.

For each of them, the distance function d(q, ⌧) is evaluated
to identify the true results, i.e., the rankings where d(q, ⌧) 
✓. This is done in the validation phase. We refer to this
as the Filter and Validate (F&V) algorithm. Naturally, we
assume that the query threshold ✓ is strictly smaller than
the maximum possible distance dmax.

Although the inverted index is good for finding rankings
(sets) that intersect with the query, the F&V comes with
two drawbacks:

(i) It naively indexes all rankings and, hence, is of massive
size, despite the fact that often rankings are (near)
duplicates

(ii) The validate phase evaluates the distance function on
each ranking separately, although known metric in-
dex structures suggest pre-computing distances among
(similar) rankings for faster identification of true re-
sults

While directly using metric index structures, like M-Trees
[14] or BK-Trees [10], appears promising at first glance, they
are not ideal for boiling down the space to intersecting rank-
ings. In fact, we show in our experiments that using metric
data structures is an order of magnitude slower than using
pure inverted indexes.

To harness the pruning power of inverted indices but at
the same time not to ignore the metric property of the
Footrule distance, we present a hybrid approach that blends
both performance sweet spots by representing near duplicate
rankings by one representative ranking, which is then put
into an inverted index. That way, depending on how aggres-
sive this coarsening is, the inverted index drastically shrinks
in size, hence, lower response time, and the validation step
is benefiting from the fact that near duplicate rankings are
represented by a metric index structure.

Below, we describe more formally how such an index or-
ganisation is realized and how queries are processed on top
of it. We present a highly accurate cost model that allows
trading-o↵ the coarsening threshold to find the optimal trade-
o↵ between the inverted index cost and the cost to validate
rankings in the metric index structure.

4.1 Index Creation
The aim is to group together rankings that are similar to

each other—with a quantifiable bound on the maximum dis-
tance. That is, partitions Pi of similar rankings are created,
and each represented by one ⌧m 2 Pi, the so called medoid of
the partition. It is guaranteed that 8⌧i 2 P : d(⌧m, ⌧)  ✓C .
The distance bound ✓C is called the partitioning threshold.
We write ⌧m � ⌧ to denote that ranking ⌧ is represented by
ranking (medoid) ⌧m.

To find partitions of rankings, we employ a BK-tree [10],
an index structure for discrete metrics, such as the Footrule
distance. Figure 1 depicts the general shape of such a BK-
tree. Ignoring for a moment the di↵erent colors and black,
solid circles: each node represents an object (here, ranking)
and maintains pointers to subtrees whose root has a specific,
discrete distance. We create such a BK-tree for the given
rankings. Then, in order to create partitions of similar rank-
ings, the tree is traversed and, for each node, the children
with distance above ✓C are considered in di↵erent partitions.

The procedure continues recursively on these children. The
children within distance  ✓C are forming a partition with
their root node, which acts as the medoid. In Figure 1, each
partition is illustrated by its root (representative ranking)
shown as a black, solid circle, and the green subtrees below
it (those with distance 1 or 2). A partition is not represented
as a plain set (or list) of rankings, but by the correspond-
ing subtree of the BK-tree. The immediate benefit is that
these subtrees (that are full-fledged BK-tree themselves) are
used to process the original query (with threshold ✓) on the
clusters, without the need to perform an exhaustive eval-
uation of the partition’s rankings. Alternatively, any algo-
rithm that creates (disjoint) partitions of objects within a
fixed distance bound can be used, such as the approach by
Chávez and Navarro [12], which randomly picks medoids, as-
signs objects to medoids, and continues this procedure until
no object is left unassigned. We use this simple model to
reason about the trade-o↵s of our algorithm below.

Irrespective of the way to find medoids and their parti-
tions, medoids are rankings, too, and can be indexed using
inverted indices. In Section 6 we further propose techniques
for more e�cient retrieval of the rankings indexed with an
inverted index.

4.2 Query Processing

Lemma 1. For given query threshold ✓ and partitioning
threshold ✓C , at query time, for query ranking q, all medoids
⌧m with distance d(⌧m, q)  ✓ + ✓C need to be retrieved in
order not to miss a potential result ranking.

Lemma 1 ensures that rankings {⌧i|⌧m � ⌧i^d(⌧i, q)  ✓^
d(⌧m, q) > ✓} will not be omitted from the result set. In other
words, Lemma 1 avoids missing result rankings with distance
 ✓, which are represented by a medoid with distance > ✓.
On the other hand, since the medoids are indexed using an
inverted index, we assume that ✓ + ✓C < 1. This is needed
because medoids ⌧m that are not overlapping with q at all,
cannot be retrieved from the inverted index.

For each of the found medoids ⌧m (i.e., d(⌧m, q)  ✓ +
✓C), the rankings R := {⌧ |⌧m � ⌧} are potential result
rankings. For each such candidate ranking ⌧i 2 R it needs
to be checked if in fact d(q, ⌧i)  ✓. The rankings ⌧i 2 R
with d(q, ⌧i) > ✓ are so called false positives and according to
Lemma 1 there are no false negatives. As for each a↵ected
medoid ⌧m, the rankings in R are represented in form of
a BK-tree (or any other metric index structure), it is the
task of this tree to identify the true result rankings (i.e.,
eliminating the false positives).

Algorithm 1, depicts the querying using the relaxed query
threshold, and the subsequent retrieval of result rankings.
In this algorithm, as well as in the actual implementation,
the partitions, represented by the medoids, are arranged as
BK-trees, created at partitioning time.

It is clear that the partitioning threshold ✓C a↵ects the
cost for querying the metric index structure: The larger the
partitions are (i.e., the larger ✓C is) the larger is the tree to
be queried. On the other hand, then, there are less medoids
to be indexed in the inverted index. This apparent tradeo↵
is theoretically investigated in the following section to find
the design sweet spot between the naive inverted index and
the case of indexing the entire set of rankings in one metric
index structure.

256



method: processCoarse

input: QueryProcessor over Medoids qp, double ✓, ✓C ,
Map:Int! BK-Tree map

output: list of query results rlist
1 rTemp  qp.execute(✓+✓C) . query with relaxed threshold

2 for each id 2 rTemp
3 tree  map[id]
4 rList.addAll(tree.execute(✓))
5 return rList

Algorithm 1: Query processing using the coarse index.

5. PARAMETER TUNING
Setting the clustering threshold ✓C allows tuning the per-

formance of the coarse index. For a clustering threshold ✓C =
0, only duplicate rankings are grouped together, whereas for
✓C = 1 there is only one large group that consists of all
rankings. That means, for larger ✓C the inverted index be-
comes smaller, with more work to be done at validation time
inside the retrieved clusters. For smaller ✓C the inverted in-
dex is larger, but clusters are smaller, hence, less work to be
done in the validation phase. There are, hence, two separate
costs: filtering cost—the cost for querying the inverted in-
dex, and, validation cost—the cost for validating the par-
titions represented by the medoids returned as results by the
inverted index, in order to get the final query answers.

We try to make as few assumptions as possible and for
now we assume we know only the distribution of pairwise
distances. That is, for a random variable X that represents
the distance between two rankings, we know the cumulative
distribution function P [X  x], hence, we know how many
rankings of a population of n rankings are expected to be
within a distance radius r of any ranking, i.e., n⇥P [X  ✓C ].
We assume that medoids are also just rankings (by design)
and are accordingly distributed. According to the cluster-
ing method described by Chávez and Navarro [12], we ran-
domly select medoids, one after the other. After each se-
lected medoid, all rankings that are not yet assigned to any
medoid before and that are within distance ✓C to the cur-
rent medoid are assigned to it. The process ends as soon as
no ranking is left unassigned:
The radius r of the created partitions around the medoids

is modeled as P [X  ✓C ]. We are interested in the number
of medoids that need to be created to capture all rankings
in the database. This resembles the coupon collector prob-
lem [20]. The solution to this problem describes how many
coupons a collector needs to buy, in expectation, to capture
all distinct coupons available. The first acquired coupon is
unique with probability 1. The second pick is not seen before
with probability (c � 1)/c; c denoting the total number of
distinct coupons. The third pick with probability (c� 2)/c,
and so on. In the case of medoids and their partitions, we
specifically consider the variant of the coupon collector prob-
lem with package size larger or equal to one, i.e., batches of
coupons are acquired together. Within each such package,
there are no duplicate coupons. Figure 2 depicts the generic
sampling of the ranking space, where fixed-diameter circles
are forming the partitions around the medoid at the center.
The deviation from the standard coupon collectors prob-
lem is that for picking medoids, in each round of picks, the
medoid itself has not been selected before. Thus, the number

1 2 3 4 5 6 . . .

1 2 3 4 . . .

Figure 1: Creating partitions based on the BK-tree. The
green (distance 1 and 2) subtrees are indexed by their parent
node (medoid, as black dot). Distance 0 is not shown here.

of “coupons” that need to be acquired to get the ith distinct
coupon, given package size p = P [X  ✓C ]⇥ n, and a total
of c distinct coupons, which in our case is the number of
distinct rankings n is then:

h(n, i, p) =

(
1, if imod p = 0
n�(imod p)

n�i
, otherwise

(1)

And overall, the number of medoids (packages) is given as

M(n, ✓C) = p�1
n�1X

i=0

h(n, i, p) (2)

This gives us the expected number of medoids indexed by
the inverted index. Next, we first reason about the cost for
validating the partitions, and then we discuss the filtering
cost, i.e., the cost for querying the inverted index.

Cost for Validating Partitions

The number of medoids retrieved is following again the given
distribution of pairwise distances. Since we query the in-
verted index with threshold ✓ + ✓C we obtain

E[retrieved medoids] = P [X  ✓ + ✓C ]⇥M (3)

where M , for brevity, denotes M(n, ✓C).
Assuming that the retrieved medoids have the same size

on average, i.e., n/M for a total number of rankings n, we
have

E[candidate rankings] = P [X  ✓ + ✓C ]⇥ n (4)

candidate rankings retrieved that need to be checked against
the distance to the query ranking. This is also very intuitive.

For the case of brute-force evaluation of such candidate
rankings this is multiplied with the cost of computing the
distance measure. The cost of representing the partitions by
full-fledged BK-tree is expected to be lower, but it introduces
a complexity to the model. Our goal is to provide an easy
to compute, and yet accurate model. For a more complex
reasoning about the cost of querying the BK-tree we refer
the reader to [3].

Cost for Retrieving Partitions

When querying the inverted index with a threshold ✓+✓C to
find the resulting medoids, the overall cost is based on the
average index list length and the final medoids to be checked
against the threshold. We should first estimate the average
size of an index list in an inverted index.

We assume that the popularity of items in the rankings
follows Zipf’s law with parameter s. Sorting all items by
their popularity (frequency of appearance in the rankings),
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m1
m2

m3

m4

Figure 2: Four medoids with fixed-diameter partitions.

the law states that the frequency of the item at rank i is given
by f(i; s, v) = 1

isHv,s
, whereHv,s is the generalized harmonic

number and v is the total number of items. The size of the
index list for an item is equal to the number of rankings
that contain the item, i.e., n ⇥ f(i; s, v) for the ith most
popular item; where n is the number of indexed rankings.
Consider a random variable Y representing sizes yi of index
lists for items i. We are interested in E[Y ] =

P
i yi P [yi]

and assume that the chance of item i, that is the ith most
popular item, to be selected as a query item is following
the same Zipf distribution, f(k; s, v). That means, the items
appearing frequently in the data are also used often in the
queries. The average size of an index list is then given as
E[Y ] =

P
i n⇥f(i; s, v)

2. This is a generic result for inverted
indices, which in our cost model is applied on an inverted
index over M medoids (not n rankings) that together have
v0 distinct items; v0 is derived thereafter, so the expected
length of an inverted list for the inverted index is:

E[index list length] =
X

i

M ⇥ f(i; s, v0)2 (5)

For each query, k such index lists need to be accessed.
This is one part of the cost caused by the retrieval of the
medoids. For these k⇥E[index list length] medoids, we have
to compute the distance function, assuming that there are
no duplicate medoids retrieved.

The expectation of distinct items v0 within the medoids
is derived as follows. The probability that an item, out of
a global domain of v items, is not selected into a single
ranking of size k is ( v�1

v
)k, but we do know that a rank-

ing does not contain duplicate items, hence, P [¬selected] =
v�1
v
⇥ v�2

v�1 . . . v�k
v�k+1 = ⇧k

i=0
v�i

v�i+1 = 1 � ( k
v
). The proba-

bility that an item, out of a global domain of v items, is
not selected into a single ranking of size k, knowing that the
items in the ranking are unique, is P [¬selected] = 1 � ( k

v
).

The probability not to be selected in any of the M medoid
rankings is then (1� k

v
)M . And thus

E[v0] = v ⇥
 
1�

✓
1� k

v

◆M
!

(6)

To compute the overall cost, the above estimates are com-
bined as shown in Table 3. To bring both parts of the overall
cost to a comparable unit, we precompute the cost (runtime)
of a single Footrule computation CostFootrule(k) (for vari-
ous k) and the cost (runtime) to merge k lists of a certain
size, Costmerge(k, size).

Figure 3 shows the model for vary ✓C for the two datasets
used in the experimental evaluation (we refer the reader to
Section 7 for a description of the datasets). We empirically
estimated the skewness parameter s from samples of the
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Figure 3: The behavior of the theoretically derived perfor-
mance for varying ✓C .

datasets—s = 0.87 for the New York Times dataset (left
plot) and s = 0.53 for the Yago dataset (right plot)—and
fitted it in the above estimate of the expected index list
length.

Find medoids for query:

Inv. Index Cost: Costmerge(k,
P

i f(i; s, v
0)2 ⇥M)

+
Validation Cost: k

�P
i f(i; s, v

0)2 ⇥M
�
⇥ CostFootrule(k)

Validation of retrieved rankings:

Validation Cost: n⇥ P [X  ✓ + ✓C ]⇥ CostFootrule(k)

Table 3: Model of query performance (⇠runtime) of the
coarse index.

6. INV. INDEX ACCESS & OPTIMIZATIONS
Medoids are rankings as well and thus they can be indexed

using inverted indices. In this section, two optimizations over
inverted indices are presented.

First, a minimum-overlap criterion is derived; it indicates
how many of the k index lists can be dropped from consider-
ation, guaranteeing that no true result ranking can possibly
be missed.

For the second optimization, for a query ranking of size
k, the k corresponding index lists are accessed one after the
other, and the contained information in each list in the form
of (⌧i, ⌧(i)) are continuously aggregated for each (seen) rank-
ing. For each ranking observed during accessing the index
lists, upper and lower bounds for the true distance are de-
rived, to allow accepting or rejecting final result rankings
early.

6.1 Pruning by Query-Ranking Overlap
Consider a ranking ⌧ with D⌧ \Dq = ;, i.e., the items in ⌧

are not at all overlapping with the query’s items. It is easy to
see that the Footrule distance is F (⌧, q) = k⇥(k+1) = L(k),
considering rankings of length k. L(k) is used to denote this
lowest possible distance1. In the case of zero overlap, L(k)
is also the exact distance. In general, considering an overlap
of size ! between Dq and D⌧ , the smallest possible Footrule
distance L(k,!) in that case is given when the ! overlapping
items are perfectly matched and positioned in the top of
both lists, hence, L(k,!) = L(k � !). For a given query
threshold ✓, rankings with an overlap of ! items can be
safely ignored if L(k,!) > ✓. In practice, this means that
some index lists can be entirely omitted from being accessed.

1We use the naming lower and upper bounds for distances
instead of best and worst distances, for clarity.
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It is immediately clear how to turn this insight into en-
hancements of algorithms that work with an inverted in-
dex: Solving L(k,!) = ✓ for ! tells that rankings ⌧ with
F (⌧, q)  ✓ must not have an overlap smaller than ! =
b0.5(1 + 2k �

p
1 + 4✓)c. From this it immediately follows

that k � ! + 1 index lists are su�cient to retrieve all the
candidate lists since a ranking missing from these lists must
have an overlap smaller than !.

If we further take into consideration the position of the !
overlapping items, i.e., that they are positioned at the top of
both lists, then we can ensure correctness by retrieving k�!
lists if at least one of the retrieved lists is of an item posi-
tioned in the top ! places. In this case, we can miss rankings
that have an overlap of ! with the query, but we will never
miss rankings that have overlap of ! where these ! items
are positioned at the top ! places. This leads immediately
to the following lemma.

Lemma 2. For given query threshold ✓ and ranking size
k, k � ! index lists are su�cient to retrieve all the candi-
date rankings ⌧ with F (⌧, q)  ✓, where ! = b0.5(1 + 2k �p
1 + 4✓)c.
This is a generic result, independent of the actual choice

of the index lists that can be dropped. Still, the expected im-
pact of the candidate pruning is larger if the largest lists are
dropped. In fact, experiments will show that specifically for
the query-log–based benchmark, drastic performance gains
can be enjoyed, literally for free. For the remaining lists
and rankings within, the exact distance still needs to be
determined, as there are obviously so called false positives
with distance larger than the query threshold. But the above
lemma guarantees that there are no false negatives, i.e., no
ranking ⌧ with F (⌧, q)  ✓ is missed.

Algorithms that make use of this dropping of entire index
lists carry the su�x +Drop in the title.

6.2 Partial Information
Instead of having only ranking ids stored in the inverted

index, such that an additional lookup is required to get the
actual ranking content, we can augment the inverted index
to make it hold the rank information as well, such that the
true distance can be directly computed.

inverted index w/ ranks

item a

<(⌧1 : 3),(⌧5 : 1),(⌧7 : 4)>

item b

<(⌧4 : 2),(⌧9 : 11),(⌧12 : 1),(⌧19 : 2)>

In a List-at-a-Time fashion, the individual index lists
determined by the query are accessed one after the other.
Similarly to the NRA algorithm by Fagin et al. [19], for a
ranking ⌧ that has been seen only in a subset of the index
lists, we can compute bounds for its final distance. This is
done by keeping track of the common elements seen between
the query q and ranking ⌧ . The lower and upper bounds are
computed by reasoning about the yet unseen elements: A
lower bound distance L(⌧, q) is given by assuming the best
configuration of the unseen elements, that is, the remaining
elements are common to both q and ⌧ , and are addition-
ally present in the same ranks in both rankings. Thus, their
partial contribution to the Footrule distance is zero.

The upper bound distance U(⌧, q) is obtained when none
of the (yet) unseen elements in ⌧ will be present in the query
q. The partial distance contribution of such an item i, at rank
⌧(i) in ⌧ is |k � ⌧(i)|, and overall we have

⌧0 = [1, 2, 3, 4, 5] ⌧5 = [4, 5, 1, 2, 3]
⌧1 = [1, 2, 9, 8, 3] ⌧6 = [1, 6, 2, 3, 7]
⌧2 = [9, 8, 1, 2, 4] ⌧7 = [7, 1, 6, 5, 2]
⌧3 = [7, 1, 9, 4, 5] ⌧8 = [2, 5, 9, 8, 1]
⌧4 = [6, 1, 5, 2, 3] ⌧9 = [6, 3, 2, 1, 4]

Table 4: Sample set T of rankings

U(⌧, q) = L(⌧, q) +
X

i unseen

|k � ⌧(i)|

The bounds allow pruning of candidates: If L(⌧, q) > ✓ we
know that ⌧ is not a result ranking, since L(⌧, q) is mono-
tonically non-decreasing. Similarly, if U(⌧, q)  ✓, we report
⌧ as the result, as U(⌧, q) is monotonically non-increasing.
For small values of ✓, many candidates can be evicted early
on in the execution phase. For larger values of ✓, candidate
results can be reported early—reducing bookkeeping costs.

Consider for instance the set T of the rankings presented
in Table 4 and a query q = [7, 6, 3, 9, 5]. The index list for
item 7 is:

item 7

<(⌧3 : 0),(⌧6 : 4),(⌧7 : 0)>

We can compute the bounds for the seen rankings, ⌧3, ⌧6,
and ⌧7. For all these rankings, we know the seen element is
item 7 and we have 4 unseen elements, since k = 5. Thus,
L(⌧3, q) = L(⌧7, q) = 0 and L(⌧6, q) = 4, as ⌧3(7) � q(7) =
⌧7(7) � q(7) = 0, and ⌧6(7) � q(7) = 4 and for the unseen
items we assume they are on the same position in all rank-
ings. U(⌧3, q) = U(⌧7, q) = 20 and U(⌧6, q) = 24, as we
assume that all of the unseen elements are not present in ⌧3,
⌧6, and ⌧7.

These distance bounds are used in the following online
aggregation algorithm that encounters partial information.
Algorithms that make use of this pruning for partial infor-
mation carry the su�x +Prune in their title.

6.3 Blocked Access on Index Lists
When index lists are ordered according to the rank val-

ues, since the ranks are integers, there might be a sequence
of index lists whose ranks are the same. We refer to this se-
quence of index lists as a block of index lists. Formally, we let
the block Bi@j to denote the set of rankings in which item
i appears at position j. We additionally have a secondary
index, one for each index list, which stores the o↵sets of the
individual blocks.

The advantage with such an index list organization strat-
egy is that processing the entire index list can be avoided
in many cases. We describe this in detail. It is obvious that
result candidates which have a partial distance greater than
✓ can be pruned out. In such an index organization ap-
proach, we avoid processing blocks which would produce
candidates with a partial distance greater than ✓. Given a
query q = [q1, . . . , qk] with a threshold ✓, all result candi-
dates obtained while traversing the block Bi@j have a partial
distance of at least |j � i|. Thus, we modify the List-at-a-
Time algorithm so that blocks, Bi@j , where |j � i| > ✓ are
omitted, avoiding processing the bulk of the index list.

Consider for instance the inverted index in Figure 4, con-
structed according to the rankings in Table 4. For the query
q = [3, 2, 1] and ✓ = 1, blocks B3,1 need to be accessed for
item 3, B2,1, B2,1 and B2,3 for item 2. Finally, blocks B1,2,
B1,3 and B1,4 for item 1. In the process 17 out of 28 index
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item 1! (⌧0 : 0), (⌧1 : 0), (⌧6 : 0) , (⌧3 : 1), (⌧4 : 1), (⌧7 : 1), (⌧10 : 1) , (⌧2 : 2), (⌧5 : 2) , (⌧9 : 3) , (⌧8 : 4)

item 2! (⌧8 : 0) , (⌧0 : 1), (⌧1 : 1) , (⌧6 : 2), (⌧9 : 2) , (⌧2 : 3), (⌧4 : 3), (⌧5 : 3), (⌧10 : 3) , (⌧7 : 4)

item 3! (⌧9 : 1) , (⌧0 : 2) , (⌧6 : 3) , (⌧1 : 4), (⌧4 : 4), (⌧5 : 4)

item 4! (⌧5 : 0) , (⌧10 : 2) , (⌧0 : 3), (⌧3 : 3) , (⌧2 : 4), (⌧9 : 4)

. . .

Figure 4: Inverted Index for rankings in Table 4 with highlighted blocks of same-rank entries

lists are processed which accounts for less than 50% index
lists being accessed.

7. EXPERIMENTS
We implemented the described algorithms in Java 1.7 and

report on the setup and results of an experimental study.
The experiments are conducted on a quad-core Intel Xeon
W3520 @ 2.67GHz machine (256KiB, 1MiB, 8MiB for L1,
L2, L3 cache, respectively) with 24GB DDR3 1066 MHz (0.9
ns) main memory.

Datasets

Yago Entity Rankings: We have mined top-k entity rank-
ings out of the Yago knowledge base, as described in [23].
The facts, in form of subject/predicate/object triples, are
used to define constraints, for which the qualifying entities
are ranked according to certain criteria. For instance, we
generate rankings by focusing on type building and predi-
cate located in New York, ranked by height. This dataset,
in total, has 25,000 rankings.
NYT: We executed 1 million keyword queries, randomly
selected out of a published query log of a large US Inter-
net provider, against the New York Times archive [31] using
a unigram language model with Dirichlet smoothing as a
scoring model. Each query together with the resulting doc-
uments represents one ranking.

The two datasets are naturally very di↵erent: while the
Yago dataset features real world entities that each occur in
few rankings, the NYT dataset has many popular documents
that appear in many query-result rankings.

Algorithms under Investigation

• the baseline approaches Filter and Validate (F&V)
and Merge of Id-Sorted Lists (ListMerge) both de-
scribed below

• filter and validate technique combined with the opti-
mization based on dropping entire index lists (F&V+

Drop)
• blocked access with pruning (Blocked+Prune)
• blocked access with pruning based on both overlap and

pruning (Blocked+Prune+Drop)
• query processing on the coarse index using the F&V

technique (Coarse)
• query processing on the coarse index using the F&V+

Drop technique (Coarse+Drop)
• a competitor AdaptSearch, and Minimal F&V al-

gorithm, both described below

Next to the actual algorithms, we implemented a minimal
Filter and Validate algorithm (Minimal F&V) that has
for each query materialized a single index list in an inverted
index that contains exactly the true query-result rankings.

For each of these, the Footrule distance is computed. The
cost for the single index lookup and the Footrule computa-
tions serves as a lower bound for the performances of the
discussed algorithms.

We also implemented AdaptSearch [33] as the most re-
cent and competitive work on ad-hoc set similarity search
in main memory. We implemented AdaptSearch by follow-
ing the C++ implementation of the AdaptJoin algorithm
available online2. We computed the size of the prefix of the
query using the overlap threshold ! derived in Section 6. In
the validation phase, AdaptSearch computes the Footrule
distance for each of the candidate rankings.

The implementation of the M-tree is obtained from [15].
We implemented the BK-tree ourselves, according to the
original work in [10]. The inverted index implementations
make use of the Trove library3.

Merge of Id-Sorted Lists with Aggregation: If the
information within each index list is sorted by ranking id,
and further contains rank information, the problem of com-
puting the actual distances of the rankings to the query
ranking can be achieved using a classical merge “join” of
id-sorted lists. This is very e�cient, in particular as the in-
dex lists do not contain any duplicates. Cursors are opened
to each of the lists, and the distances of each ranking is fi-
nalized on the fly. There is no bookkeeping required as, at
any time, only one ranking is under investigation (the one
with the lowest id, if sorted in increasing order). Rankings
do either qualify the query threshold or not. It is clear that
this algorithm is threshold-agnostic, that is, its performance
is not influenced by the query threshold ✓; the index lists
have to be read entirely.

We mainly focus on rankings of size 10 since in a previous
study [1] we observed that at ranker.com most common are
rankings of size 10.

Performance Measures

• Wallclock time: For all algorithms we measure the wall-
clock time needed for processing 1000 queries.

• Distance function calls: For the filter&validate algo-
rithms, specifically F&V, F&V+Drop, Blocked+Prune+
Drop, Coarse, and Coarse+Drop, we measure the num-
ber of distance function computations performed.

For the coarse index processing techniques, we also inves-
tigate the performance of the individual phases.

7.1 Query Processing Performance

Inverted Index vs. Metric Index Structures

We first compare the two main concepts of processing sim-
ilarity queries over top-k rankings: First, the use of met-
2https://github.com/sunlight07/similarityjoin
3http://trove.starlight-systems.com/
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Figure 5: Performance of the M-tree vs. BK-tree (NYT)
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of inverted index (NYT)

ric index structures is compared, here, represented by the
BK-tree and the M-tree [37] (Figure 5). Second, the use of
inverted indices is compared to the BK-tree (Figure 6).

Figure 5 reports the query performance of the BK-tree
compared to the M-tree and Figure 6 on the query perfor-
mance of the BK-tree index structure versus the plain query
processing using the inverted index with subsequent valida-
tion, i.e., filter and validate, F&V. We see that the inverted
index performs orders of magnitudes better than the M-tree.
Although the M-tree is a balanced index structure it still
performs worse than the BK-tree. Chávez et al. [13] show
that balanced index structures perform worse than unbal-
anced ones in high dimensions—we calculated the intrinsic
dimensionality of both datasets to be around 13 (cf. [13] for
the definition of intrinsic dimensionality). Despite the better
performance of the BK-tree, the inverted index still outper-
forms it. Hence, only techniques using the inverted index
paradigm are further studied.

Coarse Index Performance Based on ✓C

Next, we studied the performance of the coarse index for dif-
ferent ✓C values. We focus on the performance of the coarse
index combined with the F&V technique as this combina-
tion resembles the model presented in Section 4 most. In
Figure 7, the filtering and validation times are shown when
varying ✓C and fixed k = 10, for both datasets. We see that
the curves resemble the ones plotted for the cost model in
Figure 3. Both dataset show a similar behavior of the execu-
tion time. The filtering time is reducing as we increase the
value of ✓C , since the number of indexed medoids reduces.
The validation time, on the other hand, is rising, since the
size of the partitions is increasing proportionally with ✓C .
Most importantly, we see that we can find a specific value of
✓C for which the coarse index performs optimally and this
value depends on the value of ✓+✓C as modeled in Section 4.

Cost Model Correctness

The performance of the coarse index if the trade-o↵ value of
✓c as computed by the model is chosen, is shown in the plots
in Figure 7 as a small rectangle. The vertical line denotes
the di↵erence between the performance of the coarse index
in case of the two trade-o↵ ✓c values—the modeled optimal
one and the real optimal one. We observe that except for
✓ = 0.1, for the NYT dataset, the di↵erence in performance

✓ = 0.1 ✓ = 0.2 ✓ = 0.3

NYT 29.47 10.23 4.75
Yago 3.28 0.41 2.38

Table 5: Di↵erence in ms between the minimal performance
of the coarse index, and the performance for the theoretically
computed best value of ✓c (k = 10)

is smaller than 11ms (Table 5). For ✓ = 0.1 the di↵erence is
29.47ms. For the Yago dataset, the di↵erence in performance
is less than 4ms for any value of ✓.

As we are considering the task of processing ad-hoc queries,
even choosing the optimal value of ✓C for some previously
defined maximum value of ✓ would result in a performance
close to the optimal one, as the performance of the coarse in-
dex remains stable in this region. The major increase in the
performance happens for very small values of ✓C or larger
than the optimal ✓C . We show this in the experiments com-
paring di↵erent algorithms, where we set ✓C = 0.5—the op-
timal value for ✓ = 0.3.

We also measure the performance of the coarse index com-
bined with the F&V+Drop technique as this should result in
even bigger performance gains. For this technique, we mea-
sured the optimal value for ✓C to be 0.06, since for smaller
values of ✓ + ✓C we can drop more index lists.

Comparison of Different Algorithms

Next, we study the performance of di↵erent query process-
ing methods performed over the two datasets; for rankings
of size 10 and 20 and ✓ ranging from 0 to 0.3. First, in
Figure 8 we compare the performance of the coarse index
with the remaining techniques, for the NYT dataset. For
a better visibility, we group the algorithms in the plots in
two groups. The first (left) group contains the Coarse and
Coarse+Drop techniques, the two baseline approaches F&V
and ListMerge, and the competitors AdaptSearch and Min-
imal F&V. The second (right) group contains the remaining
hybrid techniques.

We see that for all threshold values the coarse index, with
and without dropping index list, significantly outperforms
the AdaptSearch algorithm. In fact, the Coarse+Drop index
outperforms the competitor by at least factor of 34. The
coarse index outperforms the Minimal F&V technique by
a factor of up to 7, since the number of Footrule distance
function calls reduces significantly as shown in Figure 10.
Dropping entire lists from the query even further boosts the
performance of the coarse index, and results in up to 24
times better performance than the Minimal F&V. The base-
line approaches, although threshold agnostic, perform worse
than the rest of the algorithms. Increasing the values of ✓
degrades the performance of all the processing techniques ex-
cept for the baseline F&V and ListMerge techniques, as they
are threshold agnostic. In fact, because of its simple and ef-
ficient implementation, the ListMerge even outperforms the
AdaptSearch algorithm for ✓ � 0.1 for rankings with k = 10.
For k = 20, since we increase the number of lists that need
to be merged, the performance of the ListMerge is worse and
thus the AdaptSearch outperforms it for all values of ✓.

For rankings of size 10, all hybrid techniques outperform
AdaptSearch, but not the coarse index. The Blocked+Prune
algorithm dynamically computes the best score for the yet
unseen blocks to decide when to terminate further schedul-
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Figure 7: Trend of the filtering and validation time of the coarse index for k = 10, ✓ = 0.2 and varying ✓C . The small rectangle
depicts the performance of the coarse index if ✓C was chosen by the model and the vertical line the di↵erence in performance.

ing of blocks. In cases where the best blocks will not re-
sult in similar rankings, Blocked+Prune terminates early.
Thus, when searching for exact matches, the Blocked+Prune
technique performs especially well, outperforming Adapt-
Search by a factor of 1.2. Same as for the coarse index, drop-
ping lists further improves the performance of the Blocked+
Prune technique. Increasing the values of ✓ degrades the
performance of all the processing techniques. The Blocked+
Prune+Drop technique performs worse than the F&V+Drop,
because sorting the lists adds some overhead to the process-
ing while the pruning is not so e↵ective. The F&V+Drop
technique is performing very well, in fact we measured its
performance to be very close to the Minimal F&V, espe-
cially for small values of ✓. Although they are both based on
the same concept, F&V+Drop performs better than Adapt-
Search, first because it drops one index list more than Adapt-
Search, and second, because we are processing relatively
short rankings, thus the simple algorithms perform well.

Most of the query processing techniques display the same
behavior in the experiments performed on the Yago dataset
(Figure 9). What is di↵erent here is that none of the process-
ing techniques perform as good as the Minimal F&V, which
shows a runtime close to zero. This is due to the fact that the
items in the Yago dataset are more equally distributed. In
this dataset we have small clusters of similar rankings. How-
ever, the clusters seem to be di↵erent among them, allowing
more rankings to be pruned early on. Moreover, for the Yago
dataset the Blocked+Prune technique performs very poorly.
We believe this is because the overhead of sorting the index
list is too big for the small index size. In fact, we measured
that for 35% of the queries sorting of the index lists ac-
counts for a third of the execution time, when k = 10. The
percentage increases as we increase k. The simple baseline
ListMerge technique surprisingly outperforms the coarse in-
dex and the AdaptSearch algorithm. We believe that this
happens because of the small data size and the size of the
rankings. Still, ListMerge does not perform better than the
Coarse+Drop technique, except for ✓ = 0.3 and k = 10. For
this dataset, the AdaptSearch algorithm shows better per-
formance, performing better than the coarse index in most of
the cases. However, the Coarse+Drop technique and some
of the hybrid techniques still outperform the competitor,
AdaptSearch.

Distance Function Computations

The di↵erence in performance between the Coarse, Coarse+
Drop, F&V+Drop and Blocked+Prune+Drop algorithms can
be explained by looking at the number of distance functions
calls, shown in Figure 10. We see that for the Yago dataset

size in MB construction

time in sec.

NYT Yago NYT Yago

Plain Inverted Index 480 24 3.37 0.03
Augmented Inverted
Index

661 38 5.72 0.11

Delta Inverted Index 417 35 3.63 0.086
BK-tree 276 11 1206.75 12.11
M-tree 265 11 35.00 0.47
Coarse Index 367 26 1392.35 19.57

Table 6: Size and construction time of indices for k = 10

the final result set is very small, practically almost 1, and
the number of distance function computations performed
by all the algorithms is significantly larger than the final re-
sult set. On the other hand, for the NYT data set—where
we have a skewed distribution of the items—the number of
false positives is very small, resulting in a very good perfor-
mance of the F&V+Drop and Blocked+Prune+Drop pro-
cessing techniques. Combining these with the coarse index
even further reduces the number of distance function compu-
tations, i.e., the number of distance function computations is
smaller than the final result set. This is because for the exact
matching rankings in one partition, the Footrule distance is
not computed again during query processing time.

7.2 Index Size and Construction Time
In Table 6 the size and the index construction time is

shown for both datasets for k = 10. Delta Inverted Index is
the index used in the AdaptSearch algorithm. For the coarse
index, we set ✓C = 0.5. We see that all the indices are smaller
than 1GB. All indices store the complete rankings, thus
their sizes do not di↵er significantly. The rank-augmented
inverted index requires the most storage as it keeps both
the complete rankings, and the position augmented index
lists to support di↵erent processing techniques.

The construction time of the coarse index is the most ex-
pensive one, as we need to build a BK-tree, partition it and
add the medoids to the inverted index. The construction of
the BK-tree is expensive as the tree is unbalanced and in
worst case, we need O(n2) distance computations. The M-
tree index construction time is lower than the BK-tree. Both
construction times are worse than the one of the inverted in-
dex; creating the inverted index does not imply making any
distance computations. However, the construction time of
the plain inverted index is cheaper than the augmented one,
as we do not consider the position of the rankings.
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hybrid methods over inverted index (right block) (NYT).

 0

 10

 20

 30

 40

 50

 60

 70

0 0.1 0.2 0.3

tim
e

 m
e

a
su

re
d

 in
 m

ili
se

co
n

d
s

Threshold (θ)

k=10; Coarse θc=0.5; Coarse+Drop θc=0.06 

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

0 0.1 0.2 0.3

tim
e

 m
e

a
su

re
d

 in
 m

ili
se

co
n

d
s

Threshold (θ)

k=20; Coarse θc=0.5; Coarse+Drop θc=0.06

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

0 0.1 0.2 0.3

P
e

rf
o

rm
a

n
ce

 (
in

 M
ill

is
e

co
n

d
s)

Threshold (θ)

F&V
ListMerge

AdaptSearch
Minimal F&V

Coarse
Coarse+Drop

Blocked+Prune
Blocked+Prune+Drop

F&V+Drop

Figure 9: Comparing query processing over coarse index with baseline and competitor approaches (left block) and with other
hybrid methods over inverted index (right block) (Yago).

 0

 1000

 2000

 3000

 4000

 5000

 6000

0 0.1 0.2 0.3

N
u
m

b
e
r 

o
f 
D

F
C

 in
 t
h
o
u
sa

n
d
s

Threshold (θ)

NYT, k=10

 0

 1000

 2000

 3000

 4000

 5000

 6000

0 0.1 0.2 0.3

N
u
m

b
e
r 

o
f 
D

F
C

 in
 t
h
o
u
sa

n
d
s

Threshold (θ)

NYT, k=20

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

0 0.1 0.2 0.3

N
u
m

b
e
r 

o
f 
D

F
C

 in
 t
h
o
u
sa

n
d
s

Threshold (θ)

Yago, k=10

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

0 0.1 0.2 0.3

N
u
m

b
e
r 

o
f 
D

F
C

 in
 t
h
o
u
sa

n
d
s

Threshold (θ)

Yago, k=20

 0
 1000
 2000
 3000
 4000
 5000
 6000

0 0.1 0.2 0.3
N

u
m

b
e
r 

o
f 
D

F
C

 in
 t
o
u
sa

n
d
s

Threshold (θ)

NYT, k=10

F&V
F&V+Drop

Blocked+Prune+Drop
Coarse

Coarse+Drop
Minimal F&V
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It is di�cult to compare the complexity of the construc-
tion time of the di↵erent index structures, since the com-
plexity of the metric index structures is usually measured
in distance function computation, as this is the most costly
operation. On the other hand, in the case of the inverted
index there are no distance functions performed during con-
struction at all.

Lessons Learned

Combining the coarse index with the proposed optimiza-
tions on the inverted index always leads to performance im-
provements, independent of the distribution of the items in
the dataset. The experiments demonstrate that the Coarse+
Drop technique outperformed state-of-the-art algorithm for
similarity search, AdaptSearch, for both datasets. The sim-
ple yet accurate model for picking the optimal trade-o↵ point
(cf., Section 4) leads close to the best performance of the
coarse index. When the query threshold is not known, we
can tune the coarse index for the maximum query threshold
that we might have. In these cases, the coarse index shows to
perform better for a skewed dataset. When having a dataset
where the items are unevenly distributed, the F&V+Drop
algorithm alone results in huge gains as we only process the
smallest index lists. These, as the distribution of the items
is skewed, can often contain only few false positives. On the
contrary, when the dataset contains chunks of rankings simi-

lar to each other, i.e, we have more evenly distributed items,
the e↵ect of the early pruning of rankings is most expressed.
Thus in these cases, using the Blocked+Prune+Drop algo-
rithm, which combines the early pruning with dropping of
entire index lists, leads to the biggest benefits, for small val-
ues of ✓. Varying the size of the rankings does not have a
great impact on the di↵erent algorithms. Only when hav-
ing very small ranking sizes, for instance k=5, the simple
baseline ListMerge shows to perform well.

8. CONCLUSION AND OUTLOOK
In this paper, we addressed indexing mechanisms and query

processing techniques for ad-hoc similarity search inside sets
of rankings. We specifically considered Spearman’s Footrule
distance for top-k rankings and investigated the trade-o↵s
between metric index structures and inverted indices, known
in the literature for indexing set-valued attributes. The pre-
sented coarse index synthesizes advantages of metric-space
indexing and the ability of inverted indices to immediately
dismiss non-overlapping rankings. To understand and auto-
matically tune the necessary partitioning of the rankings, we
developed an accurate theoretic cost model; and showed by
experiments that it allows reaching performance close to the
optimal trade-o↵ point. Further, we presented an algorithm
that avoids accessing blocks of an index list during query
processing thereby improving performance. We derived up-
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per and lower distance bounds for such an online processing
and, further, studied the impact of dropping entire parts of
the query depending on the tightness of the query threshold.
The presented approaches are to a large extent orthogonal
and, by a comprehensive performance evaluation using two
real-world datasets, we showed that the individual benefits
add up, showing better performance than the competitor,
AdaptSearch.

As ongoing work we consider processing large batches of
queries, instead of the single ad-hoc queries we addressed
in this work. We believe that an approach similar to the
coarse indexing can be fruitful here: the query batch can be
partitioned into related medoid rankings to prune the search
space of potential result rankings.
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ABSTRACT
Reformulation-based query answering is a query processing
technique aiming at answering queries under constraints. It
consists of reformulating the query based on the constraints,
so that evaluating the reformulated query directly against
the data (i.e., without considering any more the constraints)
produces the correct answer set.

In this paper, we consider optimizing reformulation-based
query answering in the setting of ontology-based data access,
where SPARQL conjunctive queries are posed against RDF
facts on which constraints expressed by an RDF Schema
hold. The literature provides query reformulation algorithms
for many fragments of RDF. However, reformulated queries
may be complex, thus may not be efficiently processed by a
query engine; well established query engines even fail pro-
cessing them in some cases.

Our contribution is (i) to generalize prior query reformu-
lation languages, leading to investigating a space of refor-
mulated queries we call JUCQs (joins of unions of conjunctive
queries), instead of a single reformulation; and (ii) an ef-
fective and efficient cost-based algorithm for selecting from
this space, the reformulated query with the lowest estimated
cost. Our experiments show that our technique enables
reformulation-based query answering where the state-of-the-
art approaches are simply unfeasible, while it may decrease
its cost by orders of magnitude in other cases.

1. INTRODUCTION
The Resource Description Framework (RDF) [1] is a graph-

based data model promoted by the W3C as the standard for
Semantic Web applications. As such, it comes with an on-
tology language, RDF Schema (RDFS), that can be used to
enhance the description of RDF graphs, i.e., RDF datasets.
The W3C standard for querying RDF graphs is the SPARQL
Protocol and RDF Query Language (SPARQL) [2].

Answering SPARQL queries requires to handle the im-
plicit information modeled in RDF graphs, through the es-
sential RDF reasoning mechanism called RDF entailment.
Query answers are defined based on both the explicit and

c© 2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

the implicit content of an RDF graph. Thus, ignoring im-
plicit information leads to incomplete answers [2].

Two main methods exist for answering SPARQL queries
against RDF graphs, both of which consists of a reason-
ing step, either on the graphs or on queries, followed by a
query evaluation step. A popular reasoning method is graph
saturation (a.k.a. closure). This consists of pre-computing
and adding to an RDF graph all its implicit information,
to make it explicit. Answering queries through saturation,
then, amounts to evaluating the queries on the saturated
graph. While saturation leads to efficient query processing,
it requires time to be computed, space to be stored, and
must be recomputed upon updates. The alternative reason-
ing step is query reformulation. This consists in turning a
query into a reformulated query, which, evaluated against
a non-saturated RDF graph, yields the exact answers to
the original query. Since reformulation takes place at query
time, it is intrinsically robust to updates; the query refor-
mulation process in itself is also typically very fast, since
it only operates on the query, not on the data. However,
reformulated queries are often syntactically more complex
than the original ones, thus their evaluation may be costly
or even unfeasible.

Saturation-based query answering has been well studied
by now; efficient saturation algorithms have been proposed,
including incremental ones [3, 4, 5, 6]. Most RDF data
management systems use saturation-based query answering,
either by providing such a reasoning service on RDF graphs,
like 3store, OWLIM, Sesame, etc., or by simply assuming
that RDF graphs have been saturated prior to loading. Most
systems built on top of relational data management systems
(RDBMSs, in short) or RDBMS-style engines [7, 8, 9] fall in
this category.

Reformulation-based query answering has also been the
topic of many works [6, 10, 11, 12, 13], including ours [4,
14, 15]. Existing techniques apply to the Description Log-
ics (DL) [16] fragment of RDF, the conjunctive subset of
SPARQL subset and extensions thereof [10, 11, 14, 15, 17,
18, 19], including the “database fragment” of RDF we in-
troduced in [4], the most expressive RDF fragment to date.
Only a few RDF data management systems, such as Alle-
groGraph, Stardog or Virtuoso, use reformulation, in some
cases incomplete. The main reason is that state-of-the-art
techniques produce reformulated queries whose evaluation is
inefficient. A query is typically reformulated into an equiv-
alent large union of conjunctive queries (UCQ), maximally
contained in the original query w.r.t. the RDF Schema con-
straints [4, 6, 10, 11, 12, 14, 15, 17, 18], or in languages for
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which no well established off-the-shelf query engine exists,
such as nested SPARQL [19]. The technique of [13], when
translated to the RDF setting, reformulates a conjunctive
query into a so-called semi-conjunctive query (SCQ), which
is a join of unions of atomic queries. While in many cases
this performs better than the UCQ reformulations used in
prior work, we show that the reformulation of [13] is only
another point in a space, in which we automatically identify
the most efficient alternative. Finally, a mix of saturation-
and reformulation-based query answering has been investi-
gated in [11]. Only RDF Schema contraints are saturated
(thus need maintenance), which allows to avoid generating
as part of the reformulation, empty-answer subqueries. This
may reduce its syntactic size, but (depending on the abil-
ity of the underlying engine to detect empty-answers queries
early on) the resulting reformulated query may still be hard
to evaluate.

This work focuses on optimizing reformulation-based query
answering in RDF.

We consider the setting in which conjunctive queries (CQ),
once reformulated into unions of conjunctive queries (UCQ)
or semi-conjunctive queries (SCQ), are handled for evalua-
tion to a query evaluation engine, which can be an RDBMS,
a dedicated RDF storage and query processing engine, or
more generally any system capable of evaluating selections,
projections, joins and unions. As our experiments show, the
evaluation of reformulated queries may be very challenging
even for well-established relational or native RDF proces-
sors, which may handle them inefficiently or simply fail to
handle them, even on moderate-size datasets.

The approach we take is the following. Given a SPARQL
conjunctive query q and a query reformulation algorithm A
which turns a CQ into a UCQ, we explore a novel, large space
of alternative reformulations of q that we term JUCQ (for
joins of unions and conjunctive queries, and pick the JUCQ

reformulation with the lowest estimated cost. Each JUCQ

reformulation is obtained based on a carefully chosen set of
invocations of the algorithm A, guided by our cost model.

Contributions. The contributions we bring to the prob-
lem of efficiently answering SPARQL queries, through refor-
mulation, can be outlined as follows (see Figure 1):

1. We generalize the query reformulation approach, by
considering a large space of alternative (equivalent)
JUCQ reformulations. This space corresponds to the
yellow-background box in Figure 1; it includes and
significantly generalizes the prior works based on UCQ

or SCQ reformulation. We characterize the size of our
space of alternatives, and show that it is oftentimes
too large to be completely explored.

2. We define a cost model for estimating the evaluation
performance of our reformulated queries through a re-
lational engine; other functions can be used instead,
and we show that an RDBMSs’ internal cost model
can easily be used, too.

3. We devise a novel algorithm which selects one alter-
native reformulated query, namely qbest in Figure 1,
which (i) computes the same result as the UCQ re-
formulated query qref , and (ii) reduces significantly
the query evaluation cost (or simply makes it possible
when evaluating the plain reformulation fails!)

4. We implemented this algorithm and deployed it on top
of three well-established RDBMSs, which we show dif-

fer significantly in their ability to handle UCQ and SCQ

reformulations proposed in the previous work. Our ex-
periments confirm that our algorithm makes the most
out of each of these engines by leveraging their strengths
and avoiding their weaknesses thanks to the usage of
our cost model, which we calibrate separately for each
system. This makes reformulation feasible when UCQ

and/or SCQ fail, and brings performance improvements
of several orders of magnitude w.r.t. UCQ.

5. Finally, we compare our reformulation-based query an-
swering technique against saturation-based query an-
swering, both through an RDBMS and the native RDF
platform Virtuoso. These experiments confirm the
robustness and performance of our technique, show-
ing in particular that in some cases its performance
approaches that of saturation-based query answering.

In the sequel, Section 2 introduces RDF, SPARQL con-
junctive queries, query reformulation and the performance
issues raised by the evaluation of reformulated queries. Sec-
tion 3 characterizes our solution search space and formal-
izes our problem statement. In Section 4, we present our
cost model and solution search space exploration technique,
which we evaluate through experiments in Section 5. We
discuss related work in Section 6, then we conclude.

2. PRELIMINARIES
In Section 2.1 we introduce RDF graphs, modeling RDF

datasets. Section 2.2 presents the SPARQL conjunctive
queries, a.k.a. Basic Graph Pattern queries. In Section 2.3,
we recall the query reformulation algorithm from [4] used in
the present work, chosen because the RDF fragment it ap-
plies to is the largest known to date. However, as previously
explained, our optimization technique can use any CQ to UCQ

reformulation algorithm among those applicable to RDF.

2.1 RDF Graphs
An RDF graph (or graph, in short) is a set of triples of

the form s p o. A triple states that its subject s has the
property p, and the value of that property is the object o.
We consider only well-formed triples, as per the RDF speci-
fication [1], using uniform resource identifiers (URIs), typed
or un-typed literals (constants) and blank nodes (unknown
URIs or literals).

Blank nodes are essential features of RDF allowing to
support unknown URI/literal tokens. These are conceptu-
ally similar to the variables used in incomplete relational
databases based on V-tables [20, 21], as shown in [4].

Notations. We use s, p, o and :b in triples as placeholders.
Literals are shown as strings between quotes, e.g., “string”.
Finally, the set of values – URIs (U), blank nodes (B), and
literals (L) – of an RDF graph G is denoted Val(G).

Figure 2 (top) shows how to use triples to describe re-
sources, that is, to express class (unary relation) and prop-
erty (binary relation) assertions. The RDF standard [1] pro-
vides a set of built-in classes and properties, as part of the
rdf: and rdfs: pre-defined namespaces. We use these names-
paces exactly for these classes and properties, e.g., rdf:type
specifies the class(es) to which a resource belongs.

Example 1 (RDF graph). The RDF graph G below
comprises information about a book, identified by doi1: its
author (a blank node :b1 related to the author name, which
is a literal), title and date of publication.
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Figure 1: Outline of our approach for efficiently evaluating reformulated SPARQL conjunctive queries.

Assertion Triple Relational notation

Class s rdf:type o o(s)
Property s p o p(s, o)

Constraint Triple OWA interpretation

Subclass s rdfs:subClassOf o s ⊆ o

Subproperty s rdfs:subPropertyOf o s ⊆ o

Domain typing s rdfs:domain o Πdomain(s) ⊆ o

Range typing s rdfs:range o Πrange(s) ⊆ o

Figure 2: RDF (top) & RDFS (bottom) statements.

G =

{doi1 rdf:type Book,
doi1 writtenBy :b1,
doi1 hasTitle “Game of Thrones”,
:b1 hasName “George R. R. Martin”,

doi1 publishedIn “1996”}

RDF Schema. A valuable feature of RDF is RDF Schema
(RDFS) that allows enhancing the descriptions in RDF graphs.
RDFS triples declare semantic constraints between the classes
and the properties used in those graphs.

Figure 2 (bottom) shows the allowed constraints and how
to express them; domain and range denote respectively the
first and second attribute of every property. The RDFS
constraints (Figure 2) are interpreted under the open-world
assumption (OWA) [20]. For instance, given two relations
R1, R2, the OWA interpretation of the constraint R1 ⊆
R2 is: any tuple t in the relation R1 is considered as be-
ing also in the relation R2 (the inclusion constraint prop-
agates t to R2). More specifically, when working with the
RDF data model, if the triples hasFriend rdfs:domain Person
and Anne hasFriend Marie hold in the graph, then so does
the triple Anne rdf:type Person. The latter is due to the
rdfs:domain constraint in Figure 2.

RDF entailment. Implicit triples are an important RDF
feature, considered part of the RDF graph even though they
are not explicitly present in it, e.g., Anne rdf:type Person
above. W3C names RDF entailment the mechanism through
which, based on a set of explicit triples and some entail-
ment rules, implicit RDF triples are derived. We denote
by `iRDF immediate entailment, i.e., the process of deriving
new triples through a single application of an entailment
rule. More generally, a triple s p o is entailed by a graph G,
denoted G `RDF s p o, if and only if there is a sequence of
applications of immediate entailment rules that leads from
G to s p o (where at each step of the entailment sequence,
the triples previously entailed are also taken into account).

Example 2 (RDFS). Assume that the RDF graph G

in Example 1 is extended with the following constraints.
• books are publications:

Book rdfs:subClassOf Publication
• writing something means being an author:

writtenBy rdfs:subPropertyOf hasAuthor

doi1

Book

Publication

“Game of Thrones”

:b1

“George R. R. Martin”

“1996”

Person

writtenBy

hasAuthor

publishedIn

rdfs:subClassOf

rdfs:domain

rdfs:range

rdfs:subPropertyOf

hasTitle

writtenBy

hasName

rdf:type

rdf:type

hasAuthor rdf:type

rdfs:domain

rdfs:range

Figure 3: Sample RDF graph.

• books are written by people:
writtenBy rdfs:domain Book
writtenBy rdfs:range Person

The resulting graph is depicted in Figure 3. Its implicit
triples are those represented by dashed-line edges.

Saturation. The immediate entailment rules allow defin-
ing the finite saturation (a.k.a. closure) of an RDF graph
G, which is the RDF graph G∞ defined as the fixed-point
obtained by repeatedly applying `iRDF rules on G.

The saturation of an RDF graph is unique (up to blank
node renaming), and does not contain implicit triples (they
have all been made explicit by saturation). An obvious con-
nection holds between the triples entailed by a graph G and
its saturation: G `RDF s p o if and only if s p o ∈ G∞.

RDF entailment is part of the RDF standard itself; in
particular, the answers to a query posed on G must take into
account all triples in G∞, since the semantics of an RDF
graph is its saturation [2].

2.2 BGP Queries
We consider the well-known subset of SPARQL consisting

of (unions of) basic graph pattern (BGP) queries, modeling
the SPARQL conjunctive queries. Subject of several recent
works [4, 22, 23, 24], BGP queries are the most widely used
subset of SPARQL queries in real-world applications [24].
A BGP is a set of triple patterns, or triples/atoms in short.
Each triple has a subject, property and object, some of which
can be variables.

Notations. In the following we use the conjunctive query
notation q(x̄):- t1, . . . , tα, where {t1, . . . , tα} is a BGP; the
query head variables x̄ are called distinguished variables,
and are a subset of the variables occurring in t1, . . . , tα; for
boolean queries x̄ is empty. The head of q is q(x̄), and the
body of q is t1, . . . , tα. We use x, y, z, etc. to denote vari-
ables in queries. We denote by VarBl(q) the set of variables
and blank nodes occurring in the query q.

Query evaluation. Given a query q and an RDF graph
G, the evaluation of q against G is:

q(G) = {x̄µ | µ : VarBl(q)→ Val(G) is a total assignment
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such that tµ1 ∈ G, tµ2 ∈ G, . . . , tµα ∈ G}

where we denote by tµ the result of replacing every occur-
rence of a variable or blank node e ∈ VarBl(q) in the triple
t, by the value µ(e) ∈ Val(G).

Note that evaluation treats the blank nodes in a query
exactly as it treats non-distinguished variables [25]. Thus,
in the sequel, without loss of generality, we consider queries
where all blank nodes have been replaced by (new) distinct
non-distinguished variables.

Query answering. The evaluation of q against G uses only
G’s explicit triples, thus may lead to an incomplete answer
set. The (complete) answer set of q against G is obtained by
the evaluation of q against G∞, denoted by q(G∞).

Example 3 (Query answering). The following query
asks for the names of authors of books somehow connected
to the literal 1996:

q(x3):- x1 hasAuthor x2, x2 hasName x3, x1 x4 “1996”

Its answer against the graph in Figure 3 is q(G∞) =
{〈“George R. R. Martin”〉}. The answer results from G `RDF

doi1 hasAuthor :b1 and the assignment µ = {x1 ← doi1,
x2 ← :b1, x3 ← “George R. R. Martin”, x4 ← publishedIn}.
Observe that evaluating q directly against G leads to the empty
answer, which is obviously incomplete.

2.3 Query answering against RDF databases
The database (DB) fragment of RDF [4] is, to the best

of our knowledge, the most expressive RDF fragment for
which both saturation- and reformulation-based RDF query
answering has been defined and practically experimented.
The fragment is thus named due to the fact that query an-
swering against any graph from this fragment, called an RDF
database, can be easily implemented on top of any RDBMS.
This DB fragment is defined by:
• Restricting RDF entailment to the RDF Schema con-

straints only (Figure 2), a.k.a. RDFS entailment. Con-
sequently, the DB fragment focuses only on the ap-
plication domain knowledge, a.k.a. ontological knowl-
edge, and not on the RDF meta-model knowledge which
mainly begets high-level typing of subject, property
and object values found in triples with abstract RDF
built-in classes, e.g., rdf:Resource, rdfs:Class, etc.
• Not restricting RDF graphs in any way. In other words,

any triple allowed by the RDF specification is also al-
lowed in the DB fragment.

Saturation-based query answering amounts to precomput-
ing the saturation of a database db using its RDFS con-
straints in a forward-chaining fashion, so that the evalua-
tion of every incoming query q against the saturation yields
the correct answer set [4]: q(db∞) = q(Saturate(db)). This
technique follows directly from the definitions in Section 2.1
and Section 2.2, and the W3C’s RDF and SPARQL recom-
mendations.

Reformulation-based query answering, in contrast, leaves
the database db untouched and reformulates every incoming
query q using the RDFS constraints in a backward-chaining
fashion, Reformulate(q, db) = qref , so that the relational
evaluation of this reformulation against the (non-saturated)
database yields the correct answer set [4]: q(db∞) = qref(db).
The Reformulate algorithm, introduced in [23] and ex-
tended in [4], exhaustively applies a set of 13 reformulation
rules. Starting from the incoming BGP query q to answer

Triple #answers #reformulations #answers after
reformulation

(t1) 18, 999, 082 188 33, 328, 108
(t2) 0 4 3, 223
(t3) 396 3 683

Table 1: Characteristics of the sample query q1.

against db, the algorithm produces a union of BGP queries
retrieving the correct answer set from the database, even if
the latter is not saturated.

Example 4 (Query reformulation). The reformula-
tion of q(x, y):- x rdf:type y w.r.t. the database db (obtained
from the RDF graph G depicted in Figure 3), asking for all
resources and the classes to which they belong, is:

(0) q(x, y):- x rdf:type y ∪
(1) q(x,Book):- x rdf:type Book ∪
(2) q(x,Book):- x writtenBy z ∪
(3) q(x,Book):- x hasAuthor z ∪
(4) q(x,Publication):- x rdf:type Publication ∪
(5) q(x,Publication):- x rdf:type Book ∪
(6) q(x,Publication):- x writtenBy z ∪
(7) q(x,Publication):- x hasAuthor z ∪
(8) q(x,Person):- x rdf:type Person ∪
(9) q(x,Person):- z writtenBy x ∪
(10) q(x,Person):- z hasAuthor x
The terms (1), (4) and (8) result from (0) by instanti-

ating the variable y with classes from db, namely {Book,
Publication,Person}. Item (5) results from (4) by using the
subclass constraint between books and publications. (2), (6)
and (9) result from their direct predecessors in the list, and
are due to the domain and range constraints. Finally, (3),
(7) and (10) result from their direct predecessors and the
sub-property constraint present in the database.

Evaluating this reformulation against db returns the same
answer as q(G∞), i.e., the answer set of q.

3. OPTIMIZED REFORMULATION
We first introduce, by examples, the performance issues

raised by the evaluation of state-of-the-art reformulated
queries. We then introduce our novel reformulation search
space and formalize our optimization problem.

Motivating Example 1. Consider the three triples query
q1 shown below:

q1(x, y) :- x rdf:type y, (t1)
x ub:degreeFrom “http : //www.Univ532.edu”, (t2)
x ub:memberOf “http : //www.Dept1.Univ7.edu” (t3)

Table 1 gives some intuition on the difficulty of answering
q1 over an 108 triples LUBM [26] benchmark dataset:

The state-of-the-art CQ to UCQ reformulation-based query
answering needs to evaluate a reformulated query q′1, which
is a union of 2, 256 conjunctive queries, each of which con-
sists of three triples (one for the reformulation of each triple
in the original q1). This query appears in Table 2, where
all the triples t1, t2, t3 are reformulated together by a CQ to
UCQ reformulation algorithm denoted (.)ref . Observe that
in q′1, many sub-expressions are repeated; for instance, the
join over the single triples resulting from the reformulation
of triples (t2) and (t3) will appear for each of the 188 refor-
mulations of triple (t1). Evaluating q′1 on the 100 million
triples LUBM dataset takes more than 6 seconds, in the
same experimental setting.
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Joins of UCQs #reformulations exec.time (ms)

q′1 (t1, t2, t3)ref 2, 256 6, 387

q′′1 (t1)ref 1 (t2)ref 1 (t3)ref 195 1, 074, 026

(t1, t2)ref 1 (t3)ref 755 1, 968

(t1)ref 1 (t2, t3)ref 200 846, 710

q′′′1 (t1, t3)ref 1 (t2)ref 568 554

(t1, t2)ref 1 (t1, t3)ref 1, 316 2, 734

(t1, t2)ref 1 (t2, t3)ref 764 2, 289

(t1, t3)ref 1 (t2, t3)ref 576 588

Table 2: Sample reformulations of q1.

Triple #answers #reformulations #answers after
reformulation

(t1) 18, 999, 082 188 33, 328, 108
(t2) 18, 999, 082 188 33, 328, 108
(t3) 476 1 476
(t4) 509 1 509
(t5) 7, 299, 701 3 7, 803, 096
(t6) 7, 299, 701 3 7, 803, 096

Table 3: Characteristics of the sample query q2.

Alternatively, one could consider the equivalent query q′′1 =
(t1)ref ./ (t2)ref ./ (t3)ref , which joins the CQ to UCQ re-
formulation of each query’s triple. In other terms, q′′1 first
reformulates each triple (into, respectively, a union of 188,
4, and 3 queries), and then joins these unions. This query
corresponds to the simple semi-conjunctive queries (SCQ) al-
ternative proposed in [13]. While this avoids the repeated
work, its performance is much worse: it takes about 1074
seconds to evaluate.

Let us now consider the following equivalent query q′′′1 =
(t1, t3)ref ./ (t2)ref where t1, t2, t3 are the triples of the
query q1. Evaluating q′′′1 in the same experimental setting
takes 554 ms, more than 10 times faster than the initial
reformulation. The performance improvement of q′′′1 over q′′1
is due to the intelligent grouping of the triples t1 and t3 to-
gether. Such grouping of triples reduce the cardinality of the
respective reformulated queries. Thus, (t1, t3)ref has 2, 045
answers and 564 reformulations. Table 2 shows the number
of reformulations and execution time for all the eight possi-
ble combinations of triples.

Motivating Example 2. Consider now the six triples
query q2 shown below:
q2(x, u, y, v, z) :-

x rdf:type u, (t1)
y rdf:type v, (t2)
x ub:mastersDegreeFrom “http : //www.Univ532.edu”, (t3)
y ub:doctoralDegreeFrom “http : //www.Univ532.edu”, (t4)
x ub:memberOf z (t5)
y ub:memberOf z (t6)

Statistics on the query triples, when evaluated over a 100
million triples LUBM dataset, appear in Table 3. The CQ to
UCQ reformulation of q2, on the other hand, leads to a query
q′2 corresponding to a union of 318, 096 six triples queries.
Due to its complexity, q′2 could not be evaluated in the
same experimental setting1.

1Concretely, a stack depth limit exceeded error was thrown
by the DBMS. Further, other queries presented I/O excep-
tions thrown by the DBMS, in connection with a failed at-
tempt to materialize an intermediary result. While it may
be possible to tune some parameters to make the evalua-
tion of such queries possible, the same error was raised by
many large-reformulation queries, a signal that their pecu-
liar shape is problematic.

Now consider the query q′′2 = (t1)ref ./ (t2)ref ./ (t3)ref ./
(t4)ref ./ (t5)ref ./ (t6)ref , where t1, . . . , t6 are the triples
of q2; again, this corresponds to the SCQ reformulation pro-
posed in [13]. q′′2 is equivalent to qref2 , and in the same
experimental setting, it is evaluated in 229 seconds. This
is due to the large results of the (syntactically smal) sub-
queries (t1)ref , . . . , (t6)ref (especially the first two, each with
33, 328, 108 results), which required some time to join.

Finally, consider the query q′′′2 = (t1, t3)ref ./ (t3, t5)ref ./
(t2, t4)ref ./ (t4, t6)ref , also equivalent to q′2. Evaluating q′′′2
takes 524 ms, more than 430 times faster than one-triple
reformulation. As in the previous example, q′′′2 gains over
q′′2 by first, reducing repeated work, and second, intelligently
grouping triples so that the query corresponding to each triple
group can be efficiently evaluated and returns a result of
manageable size. In particular, the biggest-size triples (t1)
and (t2) had been grouped with (t3) and (t4) respectively, re-
sulting in smaller intermediate results of 2, 296 and 2, 475
rows respectively, and improving the perfomance. Grouping
triples (t3) and (t4) with the (t5) and (t6) respectively, yields
analogous performance improvements.

As the above examples illustrate, generalizing the state-
of-the-art query reformulation language of UCQs [4, 6, 10,
11, 12, 14, 15, 17, 18] or of SCQs [13], to that of joins of
UCQs, offers a great potential for improving the performance
of reformulated queries. We introduce:

Definition 3.1 (JUCQ). A Join of Unions of Conjunc-
tive Queries (JUCQ) is defined as follows:
• any conjunctive query (CQ) is a JUCQ;
• any union of CQs (UCQ) is a JUCQ;
• any join of UCQs is JUCQ.

In this work, we address the challenge of finding the best-
performing JUCQ reformulation of a BGP query against an
RDF database, among those that can be derived from a
query cover. We define these notions as follows:

Definition 3.2 (JUCQ reformulation). A JUCQ refor-
mulation qJUCQ of a BGP query q w.r.t. a database db1 is a
JUCQ such that qJUCQ(db2) = q(db∞2 ), for any RDF database
db2 having the same schema as db1.

Recall that two RDF databases have the same schema iff
their saturations have the same RDFS statements.

BGP query covering is a technique we introduce for ex-
ploring a space of JUCQ reformulations of a given query. The
idea is to cover a query q with (possibly overlapping) sub-
queries, so as to produce a JUCQ reformulation of q by joining
the (state-of-the-art) CQ to UCQ reformulations of these sub-
queries, obtained through any reformulation algorithm in
the literature (e.g., [4]). Formally:

Definition 3.3 (BGP query cover). A cover of a
BGP query q(x̄):- t1, . . . , tn is a set C = {f1, . . . , fm} of
non-empty subsets of q’s triples, called fragments, such that⋃m
i=1 fi = {t1, . . . , tn}, no fragment is included into another,

i.e., fi 6⊆ fj for 1 ≤ i, j ≤ m and i 6= j, and: if C consists of
more than 1 fragment, then any fragment joins at least with
another, i.e., they share a variable.

For example, a cover of our query q1 is {{t1, t2}, {t2, t3}}.

Definition 3.4 (Cover queries of a BGP query).
Let q(x̄):- t1, . . . , tn be a BGP query and C = {f1, . . . , fm}
one of its covers. A cover query q|fi,1≤i≤m of q w.r.t. C
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is the subquery whose body consists of the triples in fi and
whose head variables are the distinguished variables x̄ of q
appearing in the triples of fi, plus the variables appearing
in a triple of fi that are shared with some triple of another
fragment fj,1≤j≤m,j 6=i, i.e., on which the two fragments join.

For example, the cover {{t1}, {t2, t3}} of our query q1
leads to the cover queries q|f1(x, y):- x rdf:type y, and
q|f2(x):- x ub:degreeFrom “http : //www.Univ532.edu”,
x ub:memberOf “http : //www.Dept1.Univ7.edu”.

Query evaluation through an RDBMS is typically much
more efficient when all the atoms of the query are connected
through joins (in which case, properly optimized queries of-
tentimes run in linear time in the size of the data), than
when the query comprises a cartesian product (which leads
to unavoidable quadratic or higher complexity in the size of
the data). Therefore, in this work, we only consider frag-
ments which do not feature a cartesian product.

The theorem below states that evaluating a query q as
the join of the cover queries resulting from one of its covers,
yields the answer set of q:

Theorem 3.1 (Cover-based reformulation). Let
q(x̄):- t1, . . . , tn be a BGP query and C = {f1, . . . , fm} be
any of its covers,

qJUCQ(x̄):- qUCQ|f1 1 · · · 1 qUCQ|fm

is a JUCQ reformulation of q w.r.t. any database db, where
every qUCQ|fi is a UCQ reformulation of the cover query q|fi , for
1 ≤ i ≤ m.

An upper bound on the size of the cover-based reformu-
lation space for a given query of n triples is given by the
number of minimal covers of a set S of n elements [27],
i.e., a set of non-empty subsets of S whose union is S, and
whose union of all these subsets but one is not S. This
bound grows rapidly as the number n of triples in a query’s
body increases, e.g., 1 for n = 1, 49 for n = 4, 462 for n = 5,
6424 for n = 6 (http://oeis.org/A046165). In practice,
however, we require each fragment to share a variable with
another (if any), so that cover queries, hence cover-based
reformulations do not feature cartesian products. Therefore,
the number of cover-based reformulations is smaller than the
number of minimal covers.

In order to select the best performing cover-based refor-
mulation within the above space, we assume given a cost
function c which, for a JUCQ q, returns the cost c(q(db)) of
evaluating it through an RDBMS storing the database db.
Function c may reflect any (combination of) query evalua-
tion costs, such as I/O, CPU etc. As customary, we rely on
a cost estimation function cε, which statically provides an
approximate value of c. For simplicity, in the sequel we will
use c to denote the estimated cost.

The problem we study can now be stated as follows:

Definition 3.5 (Optimization problem). Let db be
an RDF database and q be a BGP query against it. The
optimization problem we consider is to find a JUCQ refor-
mulation qJUCQ of q w.r.t. db, among the cover-based refor-
mulations of q with lowest (estimated) cost.

Optimized queries vs. optimized plans. As stated
above and illustrated in Figure 1, we seek the best query
that is an optimized reformulation of q against db; we do
not seek to optimize its plan, instead, we take advantage

of existing query evaluation engines for optimizing and ex-
ecuting it. Alternatively, one could have placed this study
within an evaluation engine and investigate optimized plans.
We comment more the two alternatives in Section 6.

4. EFFICIENT QUERY ANSWERING
We present now the ingredients for setting up our cost-

based query answering technique. We introduce, in Sec-
tion 4.1, our cost model for JUCQ reformulation evaluation
through an RDBMS. We then provide, in Section 4.2, an
exhaustive algorithm that traverses the search space of re-
formulated queries, looking for a cover-based reformulation
with lower cost. Finally, in Section 4.3, we introduce a
greedy, anytime algorithm that outputs a best query cover
of the input BGP query, found so far. This one is then used
to evaluate the query as stated by Theorem 3.1.

4.1 Cost model
In this section we detail the cost of evaluating a JUCQ

(reformulation) sent to an RDBMS. Such a query is a join
of UCQs subqueries of the form: qJUCQ(x̄):- qUCQ1 ./ · · · ./ qUCQm .

The evaluation cost of qJUCQ is

c(qJUCQ) = cdb +
∑

qUCQi ∈q
JUCQ

(ceval(q
UCQ
i ) + cjoin(qUCQi,1≤i≤m) +

cmat(q
UCQ
i,1≤i≤m,i6=k)) + cunique(q

JUCQ) (1)
reflecting:

(i) the fixed overhead of connecting to the RDBMS cdb;
(ii) the cost to evaluate each of its UCQ sub-queries qUCQi ;

(iii) the cost of eliminating duplicate rows from each of its
UCQ sub-query results;

(iv) the cost to join these sub-query results;
(v) the materialization costs: the SQL query correspond-

ing to a JUCQ may have many sub-queries. At exe-
cution time, some of these subqueries will have their
results materialized (i.e., stored in memory or on disk)
while at most one sub-query will be executed in pipeline
mode. We assume without loss of generality, that
the largest-result sub-query, denoted qUCQk , is the one
pipelined (this assumption has been validated by our
experiments so far); and

(vi) the cost of eliminating duplicate rows from the result.
In the above, duplicates are eliminated because existing

reformulation algorithms (and accordingly, our work) oper-
ate under set semantics.

Notations. For a given query q over a database db, we
denote by |q|t the estimated number of tuples in q’s answer
set. Recall that q|{ti} stands for the restriction of q to its
i-th triple. Using the notations above, the number of tuples
in the answer set of q|{ti} is denoted |q|{ti}|t.

Duplicate elimination costs are estimated using well-known
textbook formulas [28]; more details appear in [29].

UCQ evaluation costs are estimated by summing up the
estimated costs of the CQs:

ceval(q
UCQ
i ) = cunique(q

UCQ
i ) +

∑
qCQ∈qUCQi

ceval(q
CQ)

The cost of evaluating one conjunctive query ceval(q
CQ),

where qCQ(x̄):- t1, . . . , tn, through the RDBMS is made of
the scan cost for retrieving the tuples for each of its triples,
and the cost of joining these tuples:

ceval(q
CQ) = cscan(qCQ) + cjoin(qCQ)
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We estimate the scan cost of qCQ to:

cscan(qCQ) = ct ×
∑
ti∈qCQ

|qCQ|{ti}|t

where ct is the fixed cost of retrieving one tuple.
The join cost of qCQ represents the respective CPU and

I/O effort; assuming efficient join algorithms such as hash-
or merge-based etc. are available [28], this cost is linear in
the total size of its inputs:

cjoin(qCQ) = cj ×
∑
ti∈qCQ

|qCQ|{ti}|t

Therefore, we have:

ceval(q
UCQ
i ) = (ct + cj)×

∑
qCQ∈qUCQi

∑
ti∈qCQ

|qCQ|{ti}|t (2)

UCQ join cost. As before, we consider the join cost to be
linear in the total size of its inputs:

cjoin(qUCQi,1≤i≤m) = cj ×
∑
qUCQi

∑
qCQ∈qUCQi

∑
ti∈qCQ

|qCQ|{ti}|t (3)

UCQ materialization cost. Finally, we consider the mate-
rialization cost associated to a query q is cm × |q|t for some
constant cm:

cmat(q
UCQ
i,1≤i≤m,i 6=k) = cm ×

∑
qUCQi ,i 6=k

∑
qCQ∈qUCQi

∑
ti∈qCQ

|qCQ|{ti}|t (4)

where qUCQk is the largest-result sub-query, and the one which
is picked for pipelining (and thus not materialized).

Injecting the equations 2, 3 and 4 into the global cost for-
mula 1 leads to the estimated cost of a given JUCQ. This for-
mula relies on estimated cardinalities of various subqueries
of the JUCQ, as well as on the system-dependent constants
cdb, cscan, cjoin and cmat, which we determine by running a
set of simple calibration queries on the RDBMS being used.
The details are straightforward and we omit them here.

4.2 Exhaustive query cover algorithm (ECov)
As a yardstick for the quality of the query covers we find,

we developed an exhaustive query cover finding algorithm,
called ECov, that traverses the search space of reformulated
queries and outputs a query cover leading to a cover-based
reformulation with lowest cost.

Given a BGP query q and a database db, ECov enumerates
all the possible query covers, estimates the cost of the cor-
responding cover-based reformulations, and returns a query
cover with the lowest estimated cost. We use this cover as
“golden standard”, i.e., the best solutions based on our cost
estimation function,

4.3 Greedy query cover algorithm (GCov)
We now present our optimized query cover finding algo-

rithm (GCov). Intuitively, GCov attempts to identify query
covers such that the estimated evaluation cost of each cover
fragment (once reformulated), together with the estimated
cost of joining the results of these reformulated fragments, is
minimized. Performance benefits in this context are attained
from two sources: (i) avoiding the explosion in the size of
the reformulated queries that results when many triples,
each having many reformulations, are in the same fragment,
and (ii) avoiding reformulated fragments with very large re-
sults, since materialising and joining them is costly. The
key intuition for reaching these goals is to include highly
selective, few-reformulations triples in several cover frag-
ments. Observe that this is different from (and orthogonal

Algorithm 1: Greedy query cover algorithm (GCov)

Input : BGP query q(x̄:- t1, . . . , tn), database db

Output: Cover Cbest for the BGP query q
1 C0 ← {{t1}, {t2}, . . . , {tn}};
2 T ← {t1, t2, . . . , tn};
3 Cbest ← C0; moves← ∅; analysed← ∅;
4 foreach f ∈ C0, t ∈ T s.t. t 6∈ f ∧ connected(f, {t})
∧ C0.add(f, t) 6∈ analysed do

5 analysed← analysed ∪ C0.add(f, t);
6 if C0.add(f, t) est. cost ≤ Cbest est. cost then
7 moves← moves ∪ (C0, f, t);

8 while moves 6= ∅ do
9 (C, f, t)← moves.head();

10 C′ ← C.add(f, t);
11 if C′ est. cost ≤ Cbest est. cost then
12 Cbest ← C′;
13 foreach f ∈ C′, t ∈ T s.t. t 6∈ f ∧

connected(f, {t}) ∧ C′.add(f, t) 6∈ analysed do
14 analysed← analysed ∪ C′.add(f, t);
15 if C′.add(f, t) estimated cost < Cbest

estimated cost then
16 moves← moves ∪ (C′, f, t);

17 return Cbest;

to) join ordering, which the underlying query evaluation en-
gine (RDBMS in this study) applies independently to each
reformulated subquery.

GCov (Algorithm 1) starts with a simple cover C0 con-
sisting of one triple fragments, and explores possible moves
starting from this state. A move consists of adding to one
fragment, an extra triple connected to it by at least one
join variable, such that the estimated cost associated to
the cover-based reformulation thus obtained is smaller than
that before the addition. A move may reduce the cost in
two ways: (i) by making a fragment more selective, and/or
(ii) by leading to the removal of some fragments from the
cover. For instance, let {{t1, t2}, {t1, t3}, {t3, t4}} be a cover
of a four-triples query. The move which adds t4 to the first
fragment, also renders {t3, t4} redundant. Thus, the cover
resulting from the move is: {{t1, t2, t4}, {t1, t3}}.

Possible moves based on the initial cover C0 are developed
and added to the list moves, sorted in the increasing order
of the estimated cost their bring. Next (line 8), GCov starts
exploring possible moves. It picks the most promising one
from the sorted moves list and applies it, leading to a new
query cover C′. If its estimated cost is smaller than the best
(least) cost encountered so far, the best solution is updated
to reflect this C′ (line 12), and possible moves based on C′

are developed and added to the sorted moves list.
GCov explores query covers in breadth-first and greedy

fashion, adding to the moves list the possible moves starting
from the current best cover, and selecting the next move
with smallest cost. In practice, one could easily change the
stop condition, for instance to return the best found cover
as soon as its cost has diminished by a certain ratio, or after
a time-out period has elapsed etc.

5. EXPERIMENTAL EVALUATION
We now present an experimental assessment of our ap-
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LUBM q Q01 Q02 Q03 Q04 Q05 Q06 Q07 Q08 Q09 Q10 Q11 Q12 Q13 Q14 Q15

|qref | 136 136 34 564 2 188 156 12 8, 496 13 1 1 2 376 3, 384
|q(db)| (1M) 123 123 41 26, 048 982 5, 537 0 269 0 47, 268 1, 530 88 4, 041 20, 205 0
|q(db)| (100M) 123 123 41 2, 432, 964 92, 026 523, 319 0 269 0 4, 409, 039 142, 337 7, 773 376, 792 1, 883, 960 0

LUBM q Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23 Q24 Q25 Q26 Q27 Q28

|qref | 2 1 940 2, 444 4 1 1 752 52 156 2, 256 156 318, 096
|q(db)| (1M) 5, 364 5, 388 47, 348 60, 342 228, 086 60, 342 16, 134 100 12 19 5 1 0
|q(db)| (100M) 501, 063 503, 395 4, 425, 553 5, 632, 454 2, 128, 9440 5, 632, 454 1, 510, 695 11, 820 1, 508 1, 463 5 1 495

DBLP q Q01 Q02 Q03 Q04 Q05 Q06 Q07 Q08 Q09 Q10

|qref | 684 292 1, 387 1, 387 4 19 19 1, 721 361 1, 923, 349
|q(db)| 4, 898 16, 424 5, 259, 462 60, 900 19, 576 9, 562 9, 562 203, 462 20 80

Table 4: Characteristics of the queries used in our study.

proach. Section 5.1 describes the experimental settings. Sec-
tion 5.2 studies the effectiveness and efficiency of our opti-
mized reformulation-based query answering technique. Sec-
tion 5.3 widens our comparison to saturation-based query
answering, then we conclude. For space reasons, more ex-
periment descriptions are relegated to [29].

5.1 Settings
Software. We implemented our reformulation-based query
answering framework in Java 7, on top of three well-known
RDBMSs, namely: PostgreSQL v9.3.2, System A (last
available free edition version), and System B (last available
free edition version). For each RDBMS, we instantiated
the cost formulas introduced in Section 4.1 with the proper
coefficients, learned by running our calibration queries on
that system.

Hardware. All the RDMBSs run on 8-core Intel Xeon
(E5506) 2.13 GHz machines with 16GB RAM, using Man-
driva Linux release 2010.0 (Official).

Data. We conducted experiments using DBLP (8 million
triples) [30] and LUBM [26] with 1 and 100 millions triples.

In our experiments, RDFS constraints are kept in mem-
ory, while RDF facts are stored in a Triples(s, p, o) table,
indexed by all permutations of the s, p, o columns, leading a
total of 6 indexes. Our indexing choice is inspired by [8, 9],
to give the RDBMS efficient query evaluation opportunities.
Further, as in [4, 8, 9, 23], for efficiency, the Triples(s, p, o)
table’s data are dictionary-encoded, using a unique integer
for each distinct value (URIs and literals). The dictionary
is stored as a separate table, indexed both by the code and
by the encoded value.

Queries. We used 28 and 10 BGP queries for our evalu-
ation on LUBM and DBLP data sets, respectively. The
queries can be found in [29], while their main characteristics
(number of union terms in their UCQ reformulation, denoted
|qref |, as well as the number of results when evaluated on
our data sets) are shown in Table 4.

Some queries are modified versions of LUBM benchmark
queries, in order to remove redundant triples2. We de-
signed the others so that (i) they have an intuitive meaning,
(ii) they exhibit a variety of result cardinalities, (iii) they
exhibit a variety of reformulations, some of which are syntac-
tically complex, to allow a study of the performance issues
involved and (iv) none of their triples is redundant.

2A query triple is redundant when it can be inferred from
the others based on the RDFS constraints. For instance,
when looking for x such that x is a person and x has a
social security number, if we know that only people have
such numbers, the triple “x is a person” is redundant.

All measured times are averaged over 3 (warm) execu-
tions. Moreover, queries whose evaluation requires more
than 2 hours were interrupted; we point them out when com-
menting on the experiments’ results.

5.2 Optimized reformulation
In this section, we compare our reformulation-based query

answering technique with those from the literature based on
UCQs and SCQs.

Effectiveness: is an optimizer needed? The first ques-
tion we ask is whether exploring the space of JUCQ alterna-
tives is actually needed, or could one just rely on a simple
(fixed) query cover?

The UCQ reformulation used in many prior works is a par-
ticular case of the JUCQ reformulations we introduced in this
work; it corresponds to a cover of a single fragment made
of all the query triples (recall q′1 in Motivating Example
1, Section 3). From a database perspective, it corresponds
to pushing the joins below a single (potentially large) union.
At the other extreme, the SCQ reformulation proposed in [13]
is a particular case of JUCQ reformulation obtained from a
cover where each query triple is alone in a fragment (re-
call q′′1 in the same example). The SCQ reformulation can
thus be thought of as pushing all unions below a the joins.
Both the UCQ and SCQ reformulations correspond to a cover
where each triple appears in exactly one fragment, whereas
our JUCQs do not have this constraint; further, the UCQ and
SCQ reformulations do not take into account quantitative in-
formation about the data and query.

We compared the performance of query answering through:
(i) UCQ reformulation; (ii) SCQ reformulation; (iii) the JUCQ

recommended by the exhaustive ECov algorithm; (iv) the
JUCQ recommended by our greedy GCov algorithm.

Figure 4 shows the evaluation times for LUBM queries on
the 100M dataset, on the three RDBMSs we tested; observe
the logarithmic time axis. Missing bars correspond to execu-
tions which timed out or were infeasible. Figure 4 shows
that neither UCQ nor SCQ reformulation are reliable options.
Indeed, UCQ is the slowest for many queries on System Aand
Postgres, sometimes by more than an order of magnitude,
and it fails for Q9, Q15, Q18(forLUBM100M), Q19 and Q28

on System A, to which we add Q6, Q14 and Q16 on Post-
gres (for LUBM 100M). SCQ is very inefficient on System
B, and also on Postgres for Q1, Q2, Q3, Q8 etc.; it is almost
always the worst choice for System B. In contrast, the GCov-
chosen JUCQ always completes and is the fastest overall in all
but Q24, Q25 and Q27 on Postgres. Figure 4 also shows
that the GCov JUCQ performs as well as the ECov one, thus
the greedy is making smart choices. In Figure 4, the GCov
JUCQ is up to 4 orders of magnitude faster than the SCQ re-
formulation and two orders of magnitude faster than UCQ (on
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Figure 4: LUBM 100M query answering through UCQ, SCQ, ECov and GCov JUCQ reformulations, against System A, Postgres and
System B.

Figure 5: DBLP query answering through UCQ, SCQ, ECov and GCov JUCQ reformulation, against System A.

LUBM 1M, it wins by 3 orders of magnitude w.r.t. UCQ [29]).
We end by noting that the Q16 cover chosen by ECov for
Postgres has failed to execute due to insufficient memory in
our runtime environment; we believe this could be avoided
by further tuning the server execution parameters etc.

Figure 5 further highlights that no fixed reformulation
technique is always the best, not even if one fixes the system
and the dataset. In this figure, SCQ performs very well for
Q6 and Q7, and very poorly for Q8 and Q9; on the latter,
UCQ times out. In contrast, JUCQ performance is robust, the
best in all cases but Q6 and Q7, and for those it is not very
far from the optimum. These experiments highlight the
interest of the JUCQ reformulation space, and the usefulness
of our cost model in guiding ECov and GCov search.

GCov performance We now turn to considering the num-
ber of covers: overall (as explored by the exhaustive ECov),
and the subset traversed by our greedy GCov; these are de-
picted in Figure 6 also in logarithmic scale. While the search
space can be very large (e.g., for LUBM Q2, Q9 or Q12),
GCov only explores a small subset thereof. The same figure
also shows the running time of GCov, ECov, and the time
to build the UCQ and SCQ reformulations respectively (again,
observe the logarithmic time axis). The time is spent to:

obtain the statistics necessary for estimating the number of
results of various fragments; reformulate each fragment, esti-
mate its cost, and all other steps shown in Algorithm 1. We
see that GCov’s running time may be one order of magni-
tude less than the one of ECov; building the (cost-ignorant)
UCQ and SCQ is faster, but we have seen that their evalua-
tion may be very inefficient. Our algorithms last longest for
queries with a huge UCQ reformulation (such as LUBM Q28,
recall Section 5.1) and/or on queries with many joins be-
tween triples, such as LUBM Q12: such queries enable many
possibilities to add an triple to a fragment, leading to a new
cover (recall from Definition 3.3 that a fragment in a cover
is not allowed to contain a cartesian product).
Alternative: using the RDBMS cost estimation The
second question we study is the quality of our cost estima-
tion, that is crucial in guiding GCov decisions. The golden
standard one can compare against is the RDBMS’s internal
cost estimation function: this is because any cover we chose
is evaluated by sending it (as a SQL statement) to the sys-
tem which optimizes it according to its internal cost model.
Thus, the cost function used by GCov should be as close as
possible to the RDBMS one.

For this comparison, whenever we needed to estimate the
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Figure 6: Number of query covers explored by the algorithms (top) and algorithm running times (bottom) for the LUBM queries.

Figure 7: Cost model comparison.

cost of a cover, we sent to Postgres an explain statement for
the corresponding cover-based reformulation, and extracted
from its result Postgres’ cost estimation3

Figure 7 shows the evaluation time of the JUCQ reformula-
tions chosen by ECov and GCov, based on one hand on our
cost function, and on the other hand on the Postgres one.
Most of the time, the results are similar, demonstrating that
our cost model is indeed close to the one of Postgres. In a
few cases (LUBM Q12 and Q16), using Postgres’ cost model
helped avoid bad ECov decisions; however, for the LUBM
queries Q9, Q15, Q18, Q19, Q26 and Q28, the ECov JUCQ

chosen based on Postgres’ cost estimation was unfeasible.
Figure 7 demonstrates that our cost model (Section 4.1)

has lead our algorithm to evaluation choices very similar to
the ones that Postgres made, validating its accuracy.

5.3 Comparison with saturation
As explained in the Introduction, graph saturation and

query reformulation are the two main techniques for an-
swering queries under constraints. Saturation-based query
answering can be very efficient, once the data is saturated;
however, if the RDF graph is updated, the cost of maintain-
ing the saturation may be very high [4]. In contrast, query
reformulation is performed directly at query time, and so it
naturally adapts to the current state of the database. The
performance trade-off between saturation- and reformulation-
based query answering depends on the schema, on the nature

3Doing this for every examined cover slowed down our search
significantly, thus we do not recommend actually running
GCov out of a RDBMS based on the RDBMS’s internal
cost model.

of updates, and on the data statistics [4].
In this section, we show how our optimized JUCQ

reformulation-based query answering technique impacts the
performance comparison with saturation-based query an-
swering. Figure 8 compares on the LUBM 1M dataset:
(i) UCQ reformulation; (ii) saturation-based query answering
based on Postgres; (iii) saturation-based query answering
based on Virtuoso v6.1.6 (open-source, multithreaded edi-
tion); and (iv) our GCov-chosen JUCQ. As expected, UCQ

reformulation performs much worse than saturation-based
query answering, and worse than the GCov JUCQ by up to
three orders of magnitude. On some queries, such as Q15

or Q23−Q28, saturation keeps its advantage even compared
to our optimized JUCQ reformulation. However, on queries
such as Q3 −Q14 and Q16 −Q22, the JUCQ reformulation is
close to (competitive with) saturation-based query answer-
ing, which is remarkable given that reformulation reasons at
query time, and considering the performance gap observed
between the two in previous works, e.g., [4].

5.4 Experiment conclusion
Our experiments lead to the following conclusions.

(1). Confirming the intuition given by our example in Sec-
tion 3, the space of JUCQ reformulation comprises alterna-
tive reformulations of a given BGP query w.r.t. the RDFS
constraints, whose evaluation is (i) feasible when UCQ refor-
mulation fails, and (ii) up to 4 orders of magnitude more
efficient than a fixed reformulation strategy, such as UCQ

or SCQ. (2). While ECov is slow for large-reformulation
queries, GCov identifies covers leading to efficient reformu-
lations quite fast, confirming the feasibility of our optimized
reformulation technique at query time. (3). The cost model
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Figure 8: Query answering through Virtuoso and Postgres (via saturation, respectively, optimized reformulation).

on which our search is based performs globally well; in par-
ticular, when calibrated for Postgres, we have shown it leads
to chosing covers very close to the ones obtained when rely-
ing on Postgres’ internal cost model. (4). While saturation-
based query answering has reasons to be much more efficient
than reformulation techniques (if one is willing to disregard
the initial cost of saturating the database, as well as any cost
related to saturation maintenance!), our efficient reformula-
tion technique is in many cases competitive with saturation-
based query answering, both through a relational server and
through the native-RDF Virtuoso server. This confirms the
important performance improvement brought by our work
to reformulation-based query answering in RDF; recall that
any CQ to UCQ reformulation algorithm could be used with
our cost-based GCov optimization technique.

6. RELATED WORK
The context of our work is the problem of answering con-

junctive queries against RDF facts, in the presence of RDFS
constraints. As mentioned in the introduction, solutions
from the literature rely on RDF graph saturation, on query
reformulation, or by mixing both [11]; our work focused on
making query answering based on reformulation performant.
Below, we position our work w.r.t. these two techniques.

Saturation-based query answering. When using graph
saturation, all the implicit triples are computed and explic-
itly added to the database; query answering then reduces
to query evaluation on the saturated database. Well-known
SPARQL compliant RDF platforms such as 3store [31],
Jena [32], OWLIM [33], Sesame [34], Oracle Semantic Graph
[35] support saturation-based query answering, based on (a
subset of) RDF entailment rules.

RDF platforms originating in the data management com-
munity, such as Hexastore [9] or RDF-3X [8], ignore entailed
triples and only provide query evaluation on top of the RDF
graph, which is assumed to be already saturated.

The drawbacks of saturation w.r.t. updates have been
pointed out in [3], which proposes a truth maintenance tech-
nique implemented in Sesame. It relies on the storage and
management of the justifications of entailed triples (which
triples beget them). This technique incurs a high overhead
of handling justifications when their number and size grow.
Therefore, [36] proposes to compute only the relevant justi-
fications w.r.t. an update, at maintenance time. This tech-
nique is implemented in OWLIM, however [33] points out
that updates upon RDFS constraint deletions can lead to
poor performance. More efficient saturation maintenance
techniques are provided in [4, 6] based on the number of
times triples are entailed.

Reformulation-based query answering. When us-
ing query reformulation, a given BGP query is reformulated

based on the RDFS constraints into a target language, such
that evaluating the reformulated query through an appro-
priate engine yields the query answer.
UCQ reformulation [4, 6, 10, 11, 12, 14, 15, 17, 18] applies

to various fragments of RDF, ranging from the Description
Logics (DL) one up to the Database one, the largest for
which this technique have been considered so far. UCQ refor-
mulation corresponds in this work to a JUCQ reformulation
obtained from a single fragment query cover. SCQ reformula-
tion [13] was defined for the DL fragment of RDF. In our set-
ting, it corresponds to a JUCQ reformulation obtained from a
query cover in which each triple is alone in a fragment. Our
experiments have shown that the evaluation performance for
both UCQ or SCQ reformulation can be very poor.

Among popular RDF data management systems, the only
ones supporting reformulation-based query answering are
Stardog, Virtuoso (which supports only the rdfs:subClassOf
and rdfs:subPropertyOf RDFS rules) and AllegroGraph [37]
which supports the four RDFS rules but whose reasoning im-
plementation is incomplete4. Virtuoso is based on SCQ refor-
mulation, while Stardog uses UCQ reformulation; we found no
information about AllegroGraph’s query reformulation lan-
guage. Nested SPARQL is the target reformulation language
in [19]; in contrast, we focus on translating into a commonly
supported language such as JUCQs which in turn can be ef-
ficiently evaluated by an SQL engine. In [11], the schema is
maintained saturated and reformulation is applied at run-
time. Our approach could apply in that setting, to improve
their reformulation performance.

Datalog has also been used as a target reformulation lan-
guage. For instance, Presto [12, 38] reformulates queries
in a DL-Lite setting into non-recursive Datalog programs.
These DL-Lite formalisms are strictly more expressive from
a semantic constraint viewpoint than the RDFS constraints
we consider. Thus, their method could be easily transferred
(restricted) to the DL fragment of RDF which, as previ-
ously mentioned, is a subset of the database fragment of
RDF that we consider. However, these works did not con-
sider cost-driven performance optimization based on data
statistics and a query evaluation cost model as in our work.

From a database optimization perspective, the performance
advantage we gain by adding selective triples next to very
large ones within query covers’ fragments is akin to the semi-
join reducers technique, well-known from the distributed
database context [39]. It has been shown e.g., in [40] that
semi-join reducers can also be beneficial in a centralized con-
text by reducing the overall join effort. In this work, we use a
technique reminiscent of semi-joins in order to pick the best
query-level formulation of a reformulated query, to make its

4As stated at http://franz.com/agraph/support/
documentation/v4/reasoner-tutorial.html#fnr0-2014-09-16
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evaluation possible and efficient; this contrasts with the tra-
ditional usage of semi-joins at the level of algebraic plans.
On one hand, working at the plan level enables one to intel-
ligently combine traditional joins and semi-joins to obtain
the best performance. On the other hand, producing (as we
do) an output at the query (syntax) level (recall Figure 1)
enables us to take advantage of any existing system, and of
its optimizer which will figure out the best way to evaluate
such queries, a task at which many systems are good once
the query has a ”reasonable” shape and size. Further, ex-
pressing optimized reformulations as queries allows us not to
(re-)explore the search space of join orders etc. together with
the (already large) space of possible reformulated queries.

7. CONCLUSION
Our work is placed in the setting of query answering against

RDF graphs in the presence of RDF Schema constraints.
In particular, we focus on improving the performance of
reformulation-based RDF query answering.

We have identified a space of alternative JUCQ reformu-
lations, whose evaluation (based on a standard, semantics-
unaware query processor) may be (i) feasible even when the
prominent UCQ reformulation is not, and (ii) more efficient
by up to three orders of magnitude. Further, we have pre-
sented a cost model for such JUCQ alternatives, and proposed
an anytime greedy cost-based algorithm capable of identify-
ing such efficient alternatives. Our technique may be used
with any CQ-to-UCQ query reformulation algorithm (recall
Figure 1) and thus we consider it a big step forward toward
making reformulation-based query answering efficient. This
is particularly useful in contexts when the data and/or con-
straints are updated, and saturation-based techniques incur
high maintenance costs as illustrated e.g., in [4]; in contrast,
applying at query time, reformulation-based query answer-
ing is naturally robust to updates, and (through cost-based
techniques such as the one described in our work) close to
saturation-based performance but without its drawbacks.
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RDF databases,” in Reasoning Web, 2009.

[20] S. Abiteboul, R. Hull, and V. Vianu, Foundations of
Databases. Addison-Wesley, 1995.

[21] T. Imielinski and W. Lipski, “Incomplete information in
relational databases,” JACM, vol. 31, no. 4, 1984.

[22] M. Stocker, A. Seaborne, A. Bernstein, C. Kiefer, and
D. Reynolds, “SPARQL basic graph pattern optimization
using selectivity estimation,” in WWW, 2008.
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ABSTRACT 

XML semantic-aware processing has become a motivating and 

important challenge in Web data management, data processing, 

and information retrieval. While XML data is semi-structured, yet 

it remains prone to lexical ambiguity, and thus requires dedicated 

semantic analysis and sense disambiguation processes to assign 

well-defined meaning to XML elements and attributes. This 

becomes crucial in an array of applications ranging over 

semantic-aware query rewriting, semantic document clustering 

and classification, schema matching, as well as blog analysis and 

event detection in social networks and tweets. Most existing 

approaches in this context: i) ignore the problem of identifying 

ambiguous XML nodes, ii) only partially consider their structural 

relations/context, iii) use syntactic information in processing 

XML data regardless of the semantics involved, and iv) are static 

in adopting fixed disambiguation constraints thus limiting user 

involvement. In this paper, we provide a new XML Semantic 

Disambiguation Framework titled XSDF designed to address each 

of the above motivations, taking as input: an XML document and 

a general purpose semantic network, and then producing as output 

a semantically augmented XML tree made of unambiguous 

semantic concepts. Experiments demonstrate the effectiveness of 

our approach in comparison with alternative methods. 

Categories and Subject Descriptors 

H.3.3 [Information Storage and Retrieval]: Information Search 

and Retrieval - Content Analysis and Indexing; I.7.1 [Document 

and Text Processing]: Document and Text Editing – Document 

management; I.7.2 [Document Preparation]: Document 

Preparation – Markup languages. 

General Terms 

Algorithms, Measurement, Performance, Design, Experimentation. 

Keywords 

XML semantic-aware processing, ambiguity degree, sphere 

neighborhood, XML context vector, semantic network, semantic 

disambiguation. 

1. INTRODUCTION 
In the past decade, there has been extensive research around XML 

data processing taking advantage of the semi-structured nature of 

XML documents to improve the quality of Web-based 

information retrieval and data management applications [28]. The 

majority of existing approaches use syntactic information in 

processing XML data, while ignoring the semantics involved [48]. 

Yet, various studies have highlighted the impact of integrating 

semantic features in XML-based applications, ranging over 

semantic-aware query rewriting and expansion [11, 40] 

(expanding keyword queries by including semantically related 

terms from XML documents to obtain relevant results), XML 

document classification and clustering [49, 53] (grouping together 

documents based on their semantic similarities, rather than 

performing syntactic-only processing), XML schema matching 

and integration [13, 55] (considering the semantic meanings and 

relations between schema elements and data-types), and more 

recently XML-based semantic blog analysis and event detection 

in social networks and tweets [2, 7]. Here, a major challenge 

remains unresolved: XML semantic disambiguation, i.e., how to 

resolve the semantic ambiguities and identify the meanings of 

terms in XML documents [23], which is central to improving the 

performance of XML-based applications. The problem is made 

harder with the volume and diversity of XML data on the Web. 

Usually, heterogeneous XML data sources exhibit different ways 

to annotate similar (or identical) data, where the same real world 

entity could be described in XML using different structures and/or 

tagging, depending on the data source at hand (as shown in Figure 

1, where two different XML documents describe the same 

Hitchcock movie). The core problem here is lexical ambiguity: a 

term (e.g., an XML element/attribute tag name or data value) may 

have multiple meanings (homonymy), it may be implied by other 

related terms (metonymy), and/or several terms can have the same 

meaning (synonymy) [23]. For instance (according to a general 

purpose knowledge base such as WordNet [14]) the term “Kelly” 

in XML document 1 of Figure 1 may refer to Emmet Kelly: the 

circus clown, Grace Kelly: Princess of Monaco, or Gene Kelly: 

the dancer. However, looking at its context in the document, a 

human user can tell that “Kelly” here refers to Grace Kelly. Yet 

while seemingly obvious for humans, such semantic ambiguities 

remain extremely complex to resolve with automated processes.  

 
 

<?xml version= “1.0”?> 

<films> 

    <picture title= “Rear Window”> 

        <director> Hitchcock </director> 

        <year> 1954 </year> 

        <genre> mystery </genre> 

        <cast> 

              <star> Stewart </star> 

              <star> Kelly </star> 

        </cast> 

        <plot>A wheelchair bound   

                   photographer spies on his  

                   neighbors …</plot> 

        … 

    </picture> 

</films> 

 

a. Doc 1 

 

<?xml version= “1.0”?> 

<Movies> 

    <Movie year= “1954”> 

        <Name> Rear Window </Name> 

        <Directed_By>Alfred Hitchcock</Directed_By>

        <Actors> 

             <Actor>                             

                 <FirstName>Grace</FirstName> 

                 <LastName>Kelly</LastName> 

             </Actor> 

             <Actor> 

                 <FirstName>James</FirstName> 

                 <LastName>Stewart</LastName> 

             </Actor> 

        </Actors> 

        …   

    </Movie>                          

</Movies>               b. Doc 2 
 

Figure 1. Sample documents with different structures and 

tagging, yet describing the same information. 
 

In this context, word sense disambiguation (WSD), i.e., the 

computational identification of the meaning of words in context 

[39], could be central to automatically resolve the semantic 

ambiguities and identify the meanings of XML element/attribute 
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tag names and data values, in order to effectively process XML 

documents. While WSD has been widely studied for flat textual 

data [20, 39], yet, the disambiguation of structured XML data 

remains largely untouched. The few existing approaches to XML 

semantic-aware analysis (cf. Section 2) have been directly 

extended from traditional flat text WSD, and thus show several 

limitations, motivating this work: 

- Motivation 1: Completely ignoring the problem of semantic 

ambiguity: most existing approaches perform semantic 

disambiguation on all XML document nodes (which is time 

consuming and sometimes needless) rather than only 

processing those nodes which are most ambiguous, 

- Motivation 2: Only partially considering the structural 

relations/context of XML nodes (e.g., solely focusing on 

parent-node relations [52], or ancestor-descendent relations 

[50]). For instance, in Figure 1, processing XML node 

“cast” for disambiguation: considering (exclusively) its 

parent node label (i.e., “picture”), its root node path labels 

(i.e., “films” and “picture”), or its node sub-tree labels (i.e., 

“star”), remains insufficient for effective disambiguation. 

- Motivation 3: Making use of syntactic processing 

techniques such as the bag-of-words paradigm [49, 52] 

(commonly used with flat text) in representing XML data as 

a plain set of words/nodes, thus neglecting XML structural 

and/or semantic features as well as compound node labels,  

- Motivation 4: Existing methods are mostly static in adopting 

a fixed context size (e.g., parent node [52], or root path [50]) 

or using preselected semantic similarity measures (e.g., 

edge-based measure [29], or gloss-based measure [50]), such 

that user involvement/system adaptability is minimal. 
 

The main goal of our study is to provide an effective method to 

XML semantic analysis and disambiguation, overcoming the 

limitations mentioned above. We aim to transform traditional 

syntactic XML trees into semantic XML trees (or graphs, when 

hyperlinks come to play), i.e., XML trees made of concept nodes 

with explicit semantic meanings. Each concept will represent a 

unique lexical sense, assigned to one or more XML 

element/attribute labels and/or data values in the XML document, 

following the latter’s structural context. To do so, we introduce a 

novel XML Semantic Disambiguation Framework titled XSDF, a 

fully automated solution to semantically augment XML 

documents using a machine-readable semantic network (e.g., 

WordNet [14], Roget’s thesaurus [60], FOAF [2], etc.), 

identifying the semantic definitions and relationships among 

concepts in the underlying XML structure. Different from existing 

approaches, XSDF consists of four main modules for: i) linguistic 

pre-processing of XML node labels and values to handle 

compound words (neglected in most existing solutions), ii) 

selecting ambiguous XML nodes as primary targets for 

disambiguation using a dedicated ambiguity degree measure 

(unaddressed in existing solutions), iii) representing target nodes 

as special sphere neighborhood vectors considering a 

comprehensive XML structure context including all XML 

structural relations within a (user-chosen) range (in contrast with 

partial context representations using the bag-of-words paradigm), 

and iv) running sphere neighborhood vectors through a hybrid 

disambiguation process, combining two approaches: concept-

based and context-based disambiguation, allowing the user to 

tune disambiguation parameters following her needs (in contrast 

with static methods). We have implemented XSDF to test and 

evaluate our approach. Experimental results reflect our 

approach’s effectiveness in comparison with existing solutions. 

The remainder of this paper is organized as follows. Section 2 

reviews the background and related works. Section 3 develops our 

XML disambiguation framework. Section 4 presents experimental 

results. Section 5 concludes the paper with future works. 

2. BACKGROUND & RELATED WORKS 

2.1 Word Sense Disambiguation 
WSD underlines the process of computationally identifying the 

senses (meanings) of words in context, to discover the author’s 

intended meaning [20]. The general WSD task consists of the 

following main elements: i) selecting words for disambiguation, 

ii) identifying and representing word contexts, iii) using reference 

knowledge sources, and iv) associating senses with words. 
 

Selecting words for disambiguation: two possible methods 

exist: i) all-words, or ii) lexical-sample. In all-words WSD, e.g., 

[10, 44], the system is expected to disambiguate all words in a 

(flat) textual document. In lexical-sample WSD, e.g., [18, 44], 

specific target words are selected for disambiguation, which are 

usually the most ambiguous words, chosen using supervised 

learning methods trained to identify salient words in phrases [39].  
 

Identifying and representing context: the context of a word in 

traditional flat textual data usually consists of the set of terms in 

the word’s vicinity, i.e., terms occurring to the left and right of the 

considered word, within a certain predefined window size [26]. 

Thus, the traditional bag-of-words paradigm to represent context 

terms is broadly adopted with flat textual data [20, 39].  
 

Using reference knowledge sources: distinguished as corpus-

based or knowledge-based. The corpus-based approach, e.g., [3, 

4, 11], considers previously disambiguated words, and requires 

supervised learning from sense-tagged corpora (e.g., SemCor 

[36]) to enable predictions for new words. Knowledge-based 

methods, e.g., [33, 39, 49], use machine-readable knowledge 

bases (i.e., ontologies, thesauri and/or taxonomies, e.g., WordNet 

[14], Roget’s thesaurus [60], ODP [28], etc.) providing ready-

made sense inventories to be exploited in WSD.  
 

Associating senses with words: categorized as supervised or 

unsupervised. Supervised methods, e.g., [31, 39, 57], use 

machine-learning techniques with corpus-based training data 

provided to a learning algorithm that induces rules to be used for 

assigning meanings to words. Unsupervised methods, e.g., [29, 

43, 48], are usually knowledge-based where reference knowledge 

bases (e.g., WordNet) are processed as semantic networks made 

of concepts representing word senses, and links connecting 

concepts, representing semantic relations (hyponymy, meronymy, 

etc., [14, 46], cf. Figure 2). Here, WSD consists in identifying the 

semantic concept (word sense) in the semantic network that best 

matches the semantic concepts of terms appearing in the context 

of the target word, using a measure of semantic similarity [9, 42].  
 

Semantic similarity measures in a semantic network: can be 

classified as edge-based, node-based, and gloss-based [9]. Edge-

based methods [25, 59] estimate similarity as the shortest path (in 

edges, weights, or number of nodes) between concepts being 

compared. Node-based approaches [27, 45] estimate similarity as 

the maximum amount of information content concepts share in 

common, based on the statistical distribution of concept (term) 

occurrences in a text corpus (e.g., the Brown corpus [15]). Gloss-

based methods [5, 6] evaluate word overlap between the glosses 

of concepts being compared, a gloss underlining the textual 
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definition describing a concept (e.g., the gloss of the 1st sense of 

word Actor in WordNet is “A theatrical performer”, cf. Figure 2).  
 

 

Figure 2. Extract of the (weighted) WordNet semantic 

network. Numbers next to concepts represent concept 

frequencies (based on the Brown text corpus [15]). 

Sentences next to concepts represent concept glosses. 
 

Note that unsupervised/knowledge-based WSD has been largely 

investigated recently (including most methods targeting XML 

data), in comparison with supervised and corpus-based methods, 

which usually require extensive training and large test corpora 

[39], and thus do not seem practical for the Web. The reader can 

refer to [20, 39] for reviews on traditional WSD.  

2.2 XML Semantic Disambiguation 
Few approaches have been developed for semantic 

disambiguation of XML and semi-structured data. The main 

challenges reside in the notion of XML (structural) 

contextualization and how it is processed, as described below. 

2.2.1 XML Context Identification 
While the context of a word in traditional flat textual data consists 

of the set of terms in the word’s vicinity [26], yet there is no 

unified definition of the context of a node in an XML document 

tree. Different approaches have been investigated: i) parent node, 

ii) root path, iii) sub-tree, and iv) versatile structural context. 
 

Parent node context: The authors in [51, 52] consider the parent 

node to be the context of an XML data element, and process a 

parent node and its children as one (canonical) entity, deemed as 

the simplest semantically meaningful structural entity. The 

authors utilize context-driven search techniques (structure 

pruning, identifying relatives, etc.) to determine the relations 

between canonical trees. These are used to assign semantic node 

labels using a reference ontology [47], generalizing/specializing 

node concepts following their labels and positions in the XML tree. 

Root path context: In [49, 50], the authors extend the notion of 

XML node context to include the whole XML root path, i.e., the 

path consisting of the sequence of nodes connecting a given node 

with the root of the XML document (or document collection). 

They perform per-path sense disambiguation, comparing every 

node label in each path with all possible senses of node labels 

occurring in the same path (using gloss-based and edge-based 

semantic similarity measures from [6, 59] applied on WordNet) to 

select the appropriate sense for the node label being processed. 

Sub-tree context: The authors in [56] consider the set of XML 

node labels contained in the sub-tree rooted at a given element 

node to describe the node’s XML context. The authors apply a 

similar paradigm to identify the contexts of all possible node label 

senses in WordNet. Consequently, they compare the XML label 

context to all candidate sense contexts in WordNet, identifying 

the sense (concept) with the highest context similarity. 

Versatile structural context: In [29], the authors combine the 

notions of parent context and descendent (sub-tree) context in 

disambiguating generic structured data (e.g., XML, web 

directories, and ontologies). They propose various edge-weighting 

measures (namely a Gaussian decay function) to identify 

crossable edges, such that nodes reachable from a target node 

through any crossable edge belong to the target node’s context. 

Then, they compare the target node label with each candidate 

sense (concept) corresponding to the labels in the target node’s 

context (using edge-based semantic similarity [24] applied on 

WordNet) in order to identify the highest matching concept. 

2.2.2 XML Context Representation and Processing 
Another concern in XML-based WSD is how to effectively 

process the context of an XML node (once it has been identified) 

considering the structural positions of XML data. Most existing 

WSD methods - developed for flat textual data (Section 2.1) 

and/or XML-based data [49-52] - adopt the bag-of-words model 

where context is processed as a set of words surrounding the 

term/label (node) to be disambiguated. Hence, all context nodes 

are treated the same, despite their structural positions in the XML 

tree. One approach in [29] extends the traditional bag-or-words 

paradigm with additional information considering distance 

weights separating the context and target nodes: identified as 

relational information model [29]. The authors employ a specially 

tailored Gaussian decay function estimating edge weights such as 

the closer a node (following a user-specified direction), the more 

it influences the target node’s disambiguation [29].  

2.2.3 Associating Senses with XML Nodes 
Once the contexts of XML nodes have been determined, they can 

be handled in different ways. Two interesting approaches, both 

unsupervised and knowledge-based, have been adopted in this 

context, which we identify as: concept-based and context-based. 

On one hand, the concept-based approach adopted in [49, 50] 

consists in evaluating the semantic similarity between target node 

senses (concepts) and those of its context nodes, using measures 

of semantic similarity between concepts in a semantic network, 

selecting the target sense with maximum similarity. On the other 

hand, the context-based approach introduced in [56] consists in 

building context vectors for each target node sense (concept) in 

the semantic network, and building a context vector for the target 

node in the XML document tree, and then comparing context 

vectors to select the target sense with maximum vector similarity.  

A hybrid approach in [29] combines variants of the two preceding 

approaches to disambiguate generic structured data (including 

XML). Yet while producing quality results, the authors do not 

compare their solution with XML disambiguation methods. 

Wrapping up: we identify four major limitations motivating our 

work (which have been highlighted in Section 1): most existing 

methods i) completely ignore the problem of semantic ambiguity,  

ii) only partially consider the structural relations/context of XML 

nodes (e.g., parent-node [52] or ancestor-descendent relations 

[50]), ii) neglect XML structural/semantic features by using 

syntactic processing techniques such as the bag-of-words 

paradigm [49, 52],  and iv) are static in choosing a fixed context 

(e.g., parent node [52], or root path [50]) or preselected semantic 

similarity measures, thus minimizing user involvement. 
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3. XML DISAMBIGUATION FRAMEWORK 
In order to address all motivations above and provide a more 

complete and dynamic XML disambiguation approach, we 

introduce XSDF as an unsupervised and knowledge-based 

solution to resolve semantic ambiguities in XML documents. 

XSDF’s overall architecture is depicted in Figure 3. It is made of 

four modules: i) linguistic pre-processing, ii) nodes selection for 

disambiguation, iii) context definition and representation, and iv) 

XML semantic disambiguation. The system receives as input: i) 

an XML document tree, ii) a semantic network (noted SN), and 

iii) user parameters (to tune the disambiguation process following 

her needs), and produces as output a semantic XML tree.  
  

 

Figure 3. Overall XSDF architecture. 
 

We develop XSDF’s main modules in the following, starting with 

the XML and semantic data models adopted in our study. 

3.1 XML and Semantic Data Models 
XML documents represent hierarchically structured information 

and can be modeled as rooted ordered labeled trees (Figure 4.a 

and b), based on the Document Object Model (DOM) [58]. 
 

Definition 1 - Rooted Ordered Labeled Tree: It is a rooted 

tree in which the nodes are labeled and ordered. We denote by 

T[i] the ith node of T in preorder traversal, T[i].  its label, T[i].d its 

depth (in number of edges), and T[i].f its out-degree  (i.e., the 

node’s fan-out). R(T)=[0] designates the root node of tree T 
1 ● 

 

An XML document can be represented as a rooted ordered 

labeled tree where nodes represent XML elements/attributes, 

labeled using element/attribute tag names. Element nodes are 

ordered following their order of appearance in the XML 

document. Attribute nodes appear as children of their containing 

element nodes, sorted2 by attribute name, and appearing before all 

sub-elements [41, 61]. Element/attribute text values are stemmed 

and decomposed into tokens (using our linguistic pre-processing 

component), mapping each token to a leaf node labeled with the 

respective token, appearing as a child of its container 

element/attribute node, and ordered following their order of 

appearance in the element/attribute text value (Figure 4.a).  

Note that element/attribute values can be disregarded (structure-

only) or considered (structure-and-content) in the XML document 

                                                                 

1  Tree and rooted ordered labeled tree are used interchangeably hereafter. 

 2 While the order of attributes (unlike elements) is irrelevant in XML [1], 

yet we adopt an ordered tree model to simplify processing [44, 58]. 

tree following the application scenario at hand. Here, we believe 

integrating XML structure and content is beneficiary in resolving 

ambiguities in both element/attribute tag names (structure) and 

data values (content). For instance, in the document of Figure 1.a, 

considering data values “Kelly” and “Stewart” would be 

beneficial to disambiguate tag label “cast”. The same applies the 

other way: “cast” can help disambiguate “Kelly” and “Stewart”. 

Also, we provide the formal definition of a semantic network, as 

the semantic (knowledge base) data model adopted in our study3. 

Definition 2  – Semantic network: It is made of concepts 

representing groups of words/expressions designating word 

senses, and links connecting the concepts designating semantic 

relations, and can be represented as SN=(C, L, G, E, R, f, g):  
 � C: set of nodes representing concepts in SN (synsets as in 

WordNet [14]), � L: set of words describing concept labels, � G: set of glosses describing concept definitions, � E: set of edges connecting concept nodes, E � C u C, � R: set of semantic relations, R = {Is-A, Has-A, Part-Of, Has-

Part…}, the synonymous words/expressions being 

integrated in the concepts themselves, � f: function designating the labels, sets of synonyms, and 

glosses of concept nodes, f: C o L, Ln, G where n designates 

the number of synonyms per concept,  � g: function designating the labels of edges,  g: Eo R. 
 

Note that c � SN designates a semantic concept with c. its label, 

c.syn its set of synonymous words, and c.gloss its gloss. We also 

designate by SN  a weighted semantic network: augmented with 

concept frequencies (cf. Figure 2) statistically quantified from a 

given text corpus (e.g., the Brown corpus [15]) ●  [1] 
 

In our current study and tests, we adopt WordNet [14] as a 

reference semantic network, being a commonly used lexical 

reference for the English language. Yet, any other knowledge 

base can be used based on the application scenario, e.g., ODP [28] 

for describing semantic relations between Web pages, or FOAF 

[2] to identify relations between persons in social networks.  

Note that after disambiguation, target nodes in the XML 

document tree would consist of semantic concept identifiers 

extracted from the reference semantic network, where non-target 

XML nodes remain untouched (cf. Figure 4.b). 

3.2 Linguistic Pre-Processing 
Linguistic pre-processing consists of three main phases: i) 

tokenization, ii) stop word removal, and iii) stemming, applied on 

each of the input XML document’s element/attribute tag names 

and text values, to produce corresponding XML tree node labels. 

Here, we consider three possible inputs: 

� Element/attribute tag names consisting of individual words, � Element/attribute tag names consisting of compound words, 

usually made of two individual terms (t1 and t2)4 separated 

by special delimiters (namely the underscore character, e.g., 

“Directed_By”), or the use of upper/lower case to distinguish 

the individual terms (e.g., “FirstName”), � Element/attribute text values consisting of sequences of 

words separated by the space character. 
 

                                                                 

3 Knowledge base & semantic network are used interchangeably hereafter. 
4 More than two terms per XML tag name is unlikely in practice [59]. 
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Figure 4. Sample input (syntactic) XML tree and output 

(semantic) XML trees. 
 

 

Considering the first case, no significant pre-processing is 

required, except for stemming (when the word is not found in the 

reference semantic network). Considering the second case (i.e., 

compound words, usually disregarded in existing methods), if t1 

and t2 match a single concept in the semantic network (i.e., a 

synset in WordNet, e.g. first name), they are considered as a 

single token. Otherwise, they are considered as two separate 

terms, and are processed for stop word removal and stemming. 

Yet, they are kept within a single XML node label ( ) in order to 

be treated together afterward, i.e., one sense will be finally 

associated to , which is formed by the best combination of t1 and 

t2’s senses (in contrast with studies in [29, 56] which process 

token senses separately as distinct labels). As for the third case, 

we apply traditional tokenization (i.e., the text value sentence is 

broken up into a set of word tokens ti), processed for stop word 

removal and stemming, and then represented each as an individual 

node (xi) labeled with the corresponding token (xi.  = ti), and 

appearing as children of the containing element/attribute node. 

3.3 Node Selection for Disambiguation 
Given an input XML tree, the first step is to select target nodes to 

disambiguate, which (we naturally assume) are the most 

ambiguous nodes in the document tree. Thus we aim to provide a 

mathematical definition to quantify an XML node ambiguity 

degree which can be used to select target nodes for 

disambiguation (answering Motivation 1). To do so, we start by 

clarifying our assumptions about XML node ambiguity: 

x Assumption 1: The semantic ambiguity of an XML node is 

related to the number of senses of the node’s label: i) the 

more senses it has, the more ambiguous the node is, ii) the 

less senses it has, the less ambiguous the node is. 
 x Assumption 2: The semantic ambiguity of an XML node is 

related to its distance from the root node of the document 

tree: i) the closer it is to the root, the more ambiguous it is, 

ii) the farther it is from the root, the less ambiguous it is. 
 

Assumption 2 follows the nature of XML and semi-structured 

data, where nodes closer to the root of the document tend to be 

more descriptive of the whole document, i.e., having a broader 

meaning, than information further down the XML hierarchy [8, 

61]. In other words, as one descends in the XML tree hierarchy, 

information becomes increasingly specific, consisting of finer 

details [54], and thus tends to be less ambiguous. 
 x Assumption 3: The semantic ambiguity of an XML node is 

related to its number of children nodes having distinct labels: 

i) the lesser the number of distinct children labels, the more 

ambiguous the node is, ii) the more the number of distinct 

children labels, the less ambiguous the node is. 
 

Assumption 3 is highlighted in the sample XML trees in Figure 5. 

One can clearly identify the meaning of root node label “Picture” 

(i.e., “motion picture”) in Figure 5.a., by simply looking at the 

node’s distinct children labels. Yet the meaning of “Picture” 

remains ambiguous in the XML tree of Figure 5.b (having several 

children nodes but with identical labels). Hence, we believe that 

distinct children node labels can provide more hints about the 

meaning of a given XML node, making it less ambiguous. 

x Assumption 4: An XML node which label has only one 

possible sense is considered to be unambiguous (i.e., 

semantic ambiguity is minimal), regardless of its distance 

from the tree root and its number of distinct children labels. 

 

 

a. Distinct children node labels. b. Identical children node labels.
 

Figure 5. Sample XML document trees. 
 

While our goal is to quantify XML semantic ambiguity, yet this 

can be done in many alternative ways that would be consistent 

with the above assumptions. Hence, we first provide a set of 

propositions that map to the above assumptions, which we will 

utilize to derive our ambiguity degree measure.  
 

Proposition 1: The ambiguity degree of an XML node x in 

tree T increases when the number of senses of x.  is high in the 

reference semantic network SN, or else it decreases such that: 
 

> @(x. ) - 1
Amb (x. , SN)  =  0,1    

Max( (SN)) - 1
Polysemy

senses

senses
�  (1)

where Max(senses(SN)) is the maximum number of senses of a 

word/expression in SN (e.g., in WordNet 2.1 [14], Maxpolysemy = 

33, for the word “head”)  
 

Proposition 2: The ambiguity degree of an XML node x in 

tree T increases when the distance in number of edges between x 

and R(T) is low, or else it decreases such that: 
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> @x.d
Amb (x, T)  = 1 -  0,1    

Max( (T))
Depth

depth
�  (2)

 

where Max(depth(T)) is the maximum depth in T  
 

Proposition 3: The ambiguity degree of an XML node x in 

tree T increases when the number of children nodes of x having 

distinct labels, designated as .x f , is low, or else it decreases:  
 

> @x.f
Amb (x, T)  = 1 -  0,1    

Max( - (T))
Density

fan out
�  (3)

 

where ( - (T))Max fan out  is the maximum number of children 

nodes with distinct node labels in T. We identify this factor as 

node density factor to distinguish it from traditional node fan-out: 

number of children nodes (regardless of label, cf. Definition 1)  
 

From the above propositions, we can derive a general definition 

for XML ambiguity degree: 
 

Definition 3  – XML Node Ambiguity Degree: Given an 

XML tree T, a node x � T, and a reference semantic network SN, 

we define the ambiguity degree of x, Amb_Deg(x), as the ratio 

between AmbPolysemy(x. , SN) on one hand, and the sum of             

1-AmbDepth(x, T) and 1-AmbDensity(x, T) on the other hand: 
 

> @Polysemy

Depth Density

                              Amb_Deg(x, T, SN)  = 

w  Amb (x. , SN)
0,1

w (1 Amb (x, T)) w (1 Amb (x, T)) 1

Polysemy

Depth Density

u �u � � u � �
(4)

 

where  wPolysemy, wDepth, wDensity � [0, 1] are independent weight 

parameters allowing the user to fine-tune the contributions of 

polysemy, depth, and density factors respectively ● 
 

Lemma 1:  The ambiguity degree measure Amb_Deg in 

Definition 3 varies in accordance with Propositions 1-3, and 

conforms to Assumptions 1-4  
 

Proofs of Propositions 1-3 and Lemma 1 have been omitted for 

space limitations, and can be found in [38]. 

 

Special case: When the label of node x consists of a compound 

word made of tokens t1 and t2, we compute Amb_Deg(x) as the 

average of the ambiguity degrees of t1 and t2. 
 

Amb_Deg is computed for all nodes in the input XML tree. Then, 

only the most ambiguous nodes are selected as targets for 

disambiguation following an ambiguity threshold ThreshAmb 

automatically estimated or set by the user, i.e., nodes having 

Amb_Deg(x, T, SN) t ThreshAmb, whereas remaining nodes are left 

untouched. Note that the user can disregard the ambiguity degree 

measure: i) by setting wPolysemy = 0 so that all nodes end up having 

Amb_Deg = 0 regardless of constituent polysemy, depth, and 

density factors, or ii) by setting ThreshAmb = 0 so that all nodes are 

selected for disambiguation regardless of their ambiguity degrees.  

Note that the fine-tuning of parameters is an optimization problem 

such that parameters should be chosen to maximize 

disambiguation quality (through some cost function such as f-

measure, cf. Section 4). This can be solved using a number of 

known techniques that apply linear programming and/or machine 

learning in order to identify the best weights for a given problem 

class, e.g., [19, 30, 37]. Providing such a capability, in addition to 

manual tuning, would enable the user to start from a sensible 

choice of values (e.g., identical weight parameters to consider all 

ambiguity features equally, i.e., wPolysemy= wDepth= wFan-out =1, with 

a minimal threshold ThreshAmb = 0 to consider all results initially) 

and then optimize and adapt the disambiguation process following 

the scenario and optimization (cost) function at hand. We do not 

further address the fine-tuning of parameters here since it is out of 

the scope of this paper (to be addressed in an upcoming study). 

3.4 Context Definition and Representation 

3.4.1 XML Sphere Neighborhood 
For each target node selected from the previous phase, node 

contexts have to be defined and processed for disambiguation. 

While current approaches only partly consider the semi-structured 

nature of XML in defining disambiguation contexts (Motivation 

2), we introduce the XML sphere neighborhood context model, 

inspired from the sphere-search paradigm in XML IR [17]5, 

taking into account the whole structural surrounding of an XML 

target node (including its ancestors, descendants, and siblings) in 

defining its disambiguation context. We define the notion of XML 

ring as the set of nodes situated at a specific distance from the 

target node. An XML sphere would encompass all rings included 

at distances less or equal to the size (radius) of the sphere.  
 

Definition 4  – XML Ring: Given an XML tree T and a 

target node x � T, we define an XML ring with center x and 

radius d as the set of nodes located at distance d from x, i.e., Rd (x) 

= {xi � T | Dist(x, xi) = d} ● 
 

 

 
 

Figure 6. Sample XML (ring and) sphere neighborhoods. 
 

The distance between two XML nodes in an XML tree, Dist(xi, 

xj), is typically evaluated as the number of edges separating the 

nodes. For instance, in tree T of Figure 6.a, the distance between 

nodes T[2] and T[6] of labels “cast” and “Kelly” respectively is 

equal to 2. Hence, the XML ring R1(T[2]) centered around node 

T[2] (“cast”) at distance 1 consists of nodes: T[1] (“Picture”), 

T[3] (“star”) and T[5] (“star”). Note that our approach can be 

straightforwardly extended to consider different kinds of tree 

node distance functions (including edge weights, density, or 

direction, etc. [16, 21]). Yet, we restrict ourselves to the most 

intuitive notion of node distance here, and report the investigation 

of other distance functions to a dedicated study. 

                                                                 

5  While comparable with the concept of XML sphere exploited in [19], the 

latter consists of an XML retrieval paradigm for computing TF-IDF 

scores to rank XML query answers, which is orthogonally different, in 

its use and objectives, from our disambiguation proposal. 
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Definition 5  – XML Sphere6: Given an XML tree T, a 

target node x � T, and a set of XML rings ( )jdR x  � T, we 

define an XML sphere with center x and radius d as the set of 

nodes in the rings centered around x at distances less or equal to 

d, i.e., Sd(x) = {xi � T  |  xi � ( )jdR x � dj ≤ d} ● 

 

In  Figure 6.b, the XML sphere S2(T[2]) centered around node 

T[2] of label “cast” with radius 2 consists of: ring R1(T[2]) of 

radius 1 comprising nodes T[1] (“picture”), T[3]  (“star”) and 

T[5] (“star”), and ring R2(T[2]) of radius 2 comprising nodes T[0] 

(“Films”), T[4] (“Stewart”), T[6] (“Kelly”), and T[7] (“Plot”). 

The size (radius) of the XML sphere context is tuned following 

user preferences and/or the nature of the XML data at hand (e.g., 

XML trees might contain specialized and domain-specific data, 

and thus would only require small contexts to achieve good 

disambiguation, whereas more generic XML data might require 

larger contexts to better describe the intended meaning of node 

labels and values, cf. experiments in Section 4).  

3.4.2 Context Vector Representation 
Having identified the context of a given XML target node, we 

need to evaluate the impact of each of the corresponding context 

nodes in performing semantic disambiguation (in contrast with 

existing methods using the bag-of-words paradigm where context 

is processed as a set of words/nodes disregarding XML structure: 

Motivation 3). Here, we introduce a relational information 

solution based on the general vector space model in information 

retrieval [32] (in comparison with the specific decay function 

used in [29]), designed to consider the structural 

proximity/relations among XML nodes in computing 

disambiguation scores following our sphere neighborhood model. 

Our mathematical formulation follows two basic assumptions: 
 x Assumption 5: XML context nodes closer to the target node 

should better influence the latter’s disambiguation, whereas 

those farther away from the target node should have a smaller 

impact on the disambiguation process.  

This is based on the structured nature of XML, such as nodes 

closer together in the XML hierarchy are typically more related 

than more separated ones. 
 x Assumption 6: Nodes with identical labels, occurring 

multiple times in the context of a target node, should better 

influence the latter’s disambiguation in comparison with 

nodes with identical labels occurring a lesser number of times. 
 

This is based on the notion of context in WSD, where words 

occurring multiple times in the context of a target word have a 

higher impact on the target’s meaning. Therefore, we represent 

the context of a target XML node x as a weighed vector, which 

dimensions correspond to all distinct node labels in its sphere 

neighborhood context, weighted following their structural 

distances from the target node. 

Definition 6 – XML Context Vector: Given a target node 

x � XML tree T, and its sphere neighborhood Sd (x) � T, the 

corresponding context vector ( )d xV

 

is defined in a space which 

dimensions represent, each, a single node label r � Sd (x), such as 

1 < r < n where n is the number of distinct node labels in Sd (x). 

                                                                 

6  The notion of sphere here is equivalent to that of a disk in 2D space. 

Yet, we adopt the sphere nomination for clearness of presentation.   

The coordinate of a context vector ( )d xV  on dimension r, 

 ( )
( )

d
rV x

w , stands for the weight of label r in sphere Sd (x) ● 
 

Definition 7 – XML Node Label Weight: The weight 

 ( )
( )

d
rV x

w  of node label r in context vector ( )d xV  

corresponding to the sphere neighborhood Sd (x) of target node x 

and radius d, consists of the structural frequency of nodes xi � Sd 

(x) having label xi.  = r. It is composed of a normalized 

occurrence frequency factor � �, ( )r dFreq S x  (based on 

Assumption 6) defined using a structural proximity factor � �, ( )i dStruct x S x  (based on Assumption 5). Formally, given 

|Sd(x)| the cardinality (in number of nodes) of Sd(x): 
 

 ( )
( )

d
rV x

w � � � � > @d d

Freq d

Freq ,S (x) 2 Freq ,S (x)
 0,1

Max S (x) 1

r ru  ��  
(5)

 � �, ( )r dFreq S x  underlines the total number of occurrences of 

nodes xi � Sd (x)  having label xi.  = r, weighted w.r.t. structural 

proximity, formally: 

� � � �
d

d

d i d

 ( ) /

 .  = 

xi
ri

Sx
x  

11

d 1 2

S (x)
Freq ,S (x) Struct x ,S (x)    ,  r �

�
�

ª º �« »¬ ¼¦
(6)

� �, ( )i dStruct x S x

 

underlines the structural proximity between 

each context node xi � Sd (x) having xi.  = r, and the target 

(sphere center) node x, formally:  
 

� � i
i d

1 ,1
d 1

Dist(x, x )
Struct x ,S (x)   1   

d 1 �ª º � �« »¬ ¼�  
(7)

The denominator in � �, ( )i dStruct x S x

 

is incremented by 1 (i.e., 

d+1) to allow context nodes occurring in the farthest ring of the 

sphere context Sd(x), i.e., the ring Rd(x) of radius d, to have a non-

null weight in ( )d xV , and thus a non-null impact on the 

disambiguation of target node x ● 

 

For instance, given the XML tree in Figure 6, Figure 7 shows 

context vectors of sphere neighborhoods S1(T[2]) and S2(T[2]) 

centered around node T[2] of label “Cast”.  One can realize that 

label weights in Figure 7 increase as nodes occur closer to the 

target node (Assumption 5), and as the number of node label 

occurrences increases in the sphere context (Assumption 6, e.g., 

in 
1 ]( [2 )TV , 

 1(“ ”)
“ ” 2( )

V Cast
Starw u 

 
 1(“ ”)

“ ”( )
V Cast

Picturew
 

since 

node label “Star” occurs twice in S1(T[2]) while “Picture” occurs 

once; also in 
2 ]( [2 )TV ). Formally: 

 

Lemma 2: The context vector weight measure 
 ( )

( )
d

rV x
w  

in Definition 7 varies in accordance with Assumptions 5 and 6   
 

The lemma’s proof is omitted here, and can be found in [38], 

along with detailed computation examples. 

In short, context nodes are weighted based on their labels’ 

occurrences as well as the sizes (radiuses) of the sphere contexts 

to which they correspond, varying context node weights and thus 

their impact on the target node’s disambiguation accordingly. 

283



 Cast Picture Star     

]( [2 )1 TV  0.4 0.2 0.4    
 

      

 

 Cast Picture Star Films Stewart Kelly Plot 

]( [2 )2 TV 0.25 0.1667 0.3334 0.0835 0.0835 0.0835 0.0835

 

Figure 7. Sample sphere context vectors based on the sphere 

neighborhoods in Figure 6. 

3.5 XML Semantic Disambiguation 
Once the contexts of XML nodes have been determined, we 

process each target node and its context nodes for semantic 

disambiguation. Here, we propose to combine two strategies: the 

concept-based approach and the context-based approach. The 

former is based on semantic concept comparison between target 

node senses (concepts) and those of its sphere neighborhood 

context nodes, whereas the latter is based on context vector 

comparison between the target node’s sphere context vector in the 

XML tree and context vectors corresponding to each of its senses 

in the reference semantic network. The user will be able to 

combine and fine-tune both approaches (answering Motivation 4). 

3.5.1 Concept-based Semantic Disambiguation 
It consists in comparing the target node with its context nodes, 

using a combination of semantic similarity measures (edge-based, 

node-based, and gloss-based, cf. Section 2.1) in order to compare 

corresponding semantic concepts in the reference semantic 

network. Then, the target node sense with the maximum similarity 

(relatedness) score, w.r.t. context node senses, is chosen as the 

proper target node sense. To do so, we propose an extension of 

context-based WSD techniques (cf. Section 2.2.3) where we: 

� Build upon the sphere neighborhood context model, to 

consider XML structural proximity in evaluating the 

semantic meanings of context nodes (in comparison with the 

traditional bag-of-words context model), 

� Allow an extensible combination of several semantic 

similarity measures, in order to capture semantic relatedness 

from different perspectives (in comparison with most 

existing methods which exploit pre-selected measures). 
 

Definition 8 – Concept-based Semantic Score: Given a 

target node x � XML tree T and its sphere neighborhood Sd (x) � 

T, and given sp as one possible sense for x.  in a (weighted) 

reference semantic network SN , we define Concept_Score(sp, 

Sd(x), SN ) to quantify the semantic impact of sp as the potential 

candidate for the intended sense (meaning) of x.  within context 

Sd(x) in T w.r.t. SN , computed as the average of the weighted 

maximum similarities between sp and context node senses:  
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where i
js  designates the jth sense of context node xi.  � Sd (x), 

and i
p j  , )Sim s s SN( , designates the semantic similarity measure 

between senses sp and i
js
 
w.r.t. SN  ●    

Definition 9 – Semantic Similarity Measure: It quantifies 

the semantic similarity (relatedness) between two concepts (i.e., 

word senses) c1 and c2 in a reference (weighted) semantic network 

SN 7, computed as the weighted sum of several semantic 

similarity measures8. Formally: 

Sim(c1, c2, SN ) = wEdge SimEdge (c1, c2, SN) +   

           wNode  SimNode(c1, c2, SN )) +  

                       wGloss  SimGloss(c1, c2, SN))    �[0, 1] 

(9)

 

where:  

� wEdge+ wNode + wGloss =1 and (wEdge, wNode, wGloss) ≥ 0 � SimEdge is a typical edge-based measure from [59], 

� SimNode is a typical node-based measure from [27], 

�  SimGloss is a normalized extension of a typical gloss-based 

measure from [6] ●  
 

Special case: If the target node label x.  is a compound word 

consisting of two tokens t1 and t2 for which no single match was 

found in the reference semantic network SN  (cf. Section 3.2), an 

average score for each possible combination of senses (sp, sq) 

corresponding to each of the individual token senses (sp for token 

t1, and sq for t2) is computed to identify the sense combination 

which is most suitable for the compound target node label:  
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Note that a compound context node label xi.  which tokens 
1
it  

and 
2
it  do not match any single concept in SN , is processed 

similarly to a compound target node label. 

3.5.2 Context-based Semantic Disambiguation 
It consists in comparing the target node sphere neighborhood in 

the XML tree with each of its possible sense (concept) sphere 

neighborhoods in the reference semantic network. To do so, we 

adopt the same notions of sphere neighborhood and context vector 

(Definitions 4-7) defined for XML nodes in an XML tree, to build 

the sphere neighborhood and context vector of a semantic concept 

in the semantic network. The only difference here is that sphere 

rings in the semantic network are built using the different kinds of 

semantic relations connecting semantic concepts (e.g., 

hypernyms, hyponyms, meronyms, holonyms, cf. Definition 2), in 

contrast with sphere rings in an XML tree which are built using 

XML structural containment relations (Definition 1). Here, given 

                                                                 

7  SN  designates a semantic network SN weighted with corpus statistics 

needed to compute a node-based similarity  measure [29, 48]. Yet, the 

original non-weighted semantic network SN is sufficient to compute 

typical edge-based and gloss-based measures (cf. Section 2.1). 
8   Here, we use three typical semantic similarity measures, yet any other 

semantic similarity measure can be used, or combined with the latter. 
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a reference semantic network SN, a semantic concept c � SN, and 

a radius d, we designate by Rd(c), Sd(c), and ( )d cV  the ring, 

sphere, and context vector of radius d corresponding to concept c 

in SN respectively. Note that linguistic pre-processing (cf. Section 

3.2) can be applied to concept labels (when needed9) before 

building context vectors and computing vector weights. Formally:  
 

Definition 10 – Context-based Semantic Score: Given a 

target node x � XML tree T, its sphere neighborhood Sd (x) � T 

and context vector  ( )d xV , and given sp as one possible sense for 

x.  in a reference semantic network SN, with its sphere 

neighborhood Sd (sp) � SN and context vector ( )pd sV , we define 

Context_Score(sp, Sd(x), SN) to quantify the semantic impact of sp 

as the potential candidate designating the intended sense 

(meaning) of x.  within context Sd(x) in T w.r.t. SN, computed 

using a vector similarity measure between ( )d xV  and ( )pd sV : 
 

Context_Score(sp, Sd(x), SN) = cos( ( )d xV , ( )pd sV ) � [0, 1] (11)

where cos designates the cosine vector similarity measure10 ●    
 

Special case: If the target node label x.  is a compound word 

consisting of tokens t1 and t2 for which no single match was found 

in the reference semantic network SN, an integrated score for each 

possible combination of senses (sp, sq) corresponding to each of 

the individual token senses (sp for token t1, and sq for token t2) is 

computed. Here, the sphere neighborhoods and context vectors of 

individual senses sp and sq are combined together to represent the 

context sphere of the combination of senses (sp, sq) in SN:  
  

Concept_Score((sp, sq), Sd(x), SN)= cos( ( )d xV , ( ),
p qd s sV ) > @0,1�  (12)

where ( ),p qd s sV  is a compound context vector generated based 

on compound sphere neighborhood Sd(sp, sq) = Sd(sp)  Sd(sq). 

3.5.3 Combined Semantic Disambiguation 
While concept-based and context-based disambiguation can be 

applied separately as described in the above sections, yet we 

allow the user to combine and fine-tune both approaches 

(answering Motivation 4), producing a combined score as the 

weighted sum of concept-based and context-based scores: 
 

Concept_Score(sp, Sd(x),SN )  = 

wConcept u Concept_Score(sp, Sd(x),SN ) + 

               wContext u Context_Score(sp, Sd(x), SN)       � [0, 1]

(13)

 

where wConcept+ wContext =1 and (wConcept, wContext) ≥ 0 
 

Note that disambiguation algorithms have been omitted for space 

limitations. Overall complexity simplifies to the sum of the 

complexities of concept-based and context-based disambiguation 

processes, i.e., O(|senses(x. )| u |Sd(x)| u |senses(xi. )|), and 

O(|senses(x. )| u (|Sd(x)| + |Sd(sp)|) respectively (cf. details in [38]). 

                                                                 

9 This depends on the semantic network (not required with WorldNet). 

4. EXPERIMENTAL EVALUATION 
We have developed a prototype titled XSDF11 to test and compare 

our approach with its most recent alternatives. We have evaluated 

two criteria: i) semantic ambiguity and ii) disambiguation quality. 

4.1 Experimental Test Data 
We used a collection of 80 test documents gathered from several 

data sources having different properties (cf. Table 3), which we 

describe and organize based on two features: i) node ambiguity, 

and ii) node structure (cf. Table 1). The former feature highlights 

the average amount of ambiguity of XML nodes in the XML tree, 

estimated using our ambiguity degree measure, Amb_Deg � [0, 

1]. The latter feature describes the average amount of structural 

richness of XML nodes, in terms of node depth, fan-out, and 

density in the XML tree, estimated as the sum of normalized node 

depth (1-AmbDepth), fan-out, and density (1-AmbDensity) factors, 

averaged over all nodes in the XML tree, formally: 
 

> @Depth DensityFan-out
w x.d w x.fw x.f

Struct_Deg(x, T) = + 0,1
Max( (T)) Max( - (T)) Max( - (T))depth fan out fan out

u uu � � (14)

where wDepth+ wFan-out + wDensity =1 and (wDepth, wFan-out, wDensity) ≥ 

0. In other words, high node depth, fan-out, and/or density here 

indicate a highly structured XML tree, whereas low node depth, 

fan-out, and/or density indicate a poorly structured (relatively 

flat) tree. In our experiments, we set equal weights wDepth = wFan-

out = wDensity = 1/3 when measuring Struct_Deg (cf. Table 1). In 

this study, we do not address the issue of assigning weights, 

which could be performed using optimization techniques (e.g., 

linear programming and/or machine learning [19, 30, 37]) to help 

fine-tune input parameters and obtain optimal results (cf. Section 

3.3). Such a study would require a thorough analysis of the 

relative effect of each parameter on disambiguation quality, which 

we report to a dedicated subsequent study. 
 

Table 1. XML test documents organized based on average 

node ambiguity and structure. 

 Structure + Structure – 

Ambiguity + 
Group 1 

Amb_Deg = 0.1127 & 

Struct_Deg = 0.6803 

Group 2 
Amb_Deg = 0.1378 & 

Struct_Deg = 0.6621

Ambiguity – 
Group 3 

Amb_Deg = 0.0625 & 

Struct_Deg = 0.612 

Group 4 
Amb_Deg = 0.0447 & 

Struct_Deg = 0.5515

4.2 XML Ambiguity Degree Correlation 
We compare XML node ambiguity ratings produced by human 

users with those produced by our system (i.e., via our ambiguity 

degree measure, Amb_Deg, cf. Section 3.3), using Pearson’s 

correlation coefficient, pcc = GXY/(VX+VY) where: x and y 

designate user and system generated ambiguity degree ratings 

respectively, VX and VY denote the standard deviations of x and y 

respectively, and GXY denotes the covariance between the x and y 

variables. The values of pcc � [-1, 1] such that: -1 designates that 

one of the variables is a decreasing function of the other variable 

(i.e., values deemed ambiguous by human users are deemed 

unambiguous by the system, and visa-versa), 1 designates that one 

of the variables is an increasing function of the other variable 

                                                                                                           

10 We adopt cosine since it is widely used in IR [35]. Yet, other vector 

similarity measures can be used, e.g., Jaccard, Pearson corr. coeff., etc.  
11 Available online at http://sigappfr.acm.org/Projects/XSDF/ 
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(i.e., values are deemed ambiguous/unambiguous by human users 

and the system alike), and 0 means that the variables are not 

correlated. Five test subjects (two master students and three 

doctoral students, who were not part of the system development 

team) were involved in the experiment. Manual ambiguity ratings 

(integers � [0, 4], i.e., � [min, max] ambiguity) where acquired 

for 12-to-13 randomly pre-selected nodes per document, i.e., a 

total of 1000 nodes (during an average 10 hours rating time per 

tester) and then correlated with system ratings, computed with 

variations of Amb_Deg’s parameters to stress the impact of its 

factors (AmbPolysemy, AmbDepth, and AmbDensity): i) Test #1 considers 

all three factors equally (wPolysemy = wDepth = wDensity = 1), ii) Test 

#2 focuses on the polysemy factor (wPolysemy =1 while wDepth = 

wDensity = 0), iii) Test #3 focuses on the depth factor (wDepth =1 

while wPolysemy = 0.2 and wDensity = 0), iv) Test #4 focuses on the 

density factor (wDensity =1, wPolysemy = 0.2 and wDepth = 0).  

Results compiled in Table 2 highlight several observations. First, 

XML ambiguity seems to be perceived and evaluated similarly by 

human users and our system – obtaining maximum positive 

correlation between human and Amb_Deg scores – when highly 

ambiguous and highly structured XML nodes are involved (e.g., 

Group 1). Second, ambiguity seems to be evaluated differently by 

users and our system when less ambiguous and/or poorly 

structured XML nodes are involved, attaining: negative or close 

to null correlation when low ambiguity and/or poorly structured 

XML nodes are evaluated (e.g., Groups 2, 3, and 4). This might 

be due to the intuitive understanding of semantic meaning by 

humans, in comparison with the intricate processing done by our 

automated system. For instance, in the case of documents of 

Dataset 9 of Group 4 (conforming to the personnel.dtd grammar 

of the Niagara XML document collection, cf. [38]), the meaning 

of child node label “state” under node label “address” was 

obvious for our human testers (providing an ambiguity score of 

0/4). Yet, the interpretation of the meaning of “state” is not so 

obvious for a machine, especially using a rich lexical dictionary 

such as WordNet where word “state” has 8 different meanings. 

Here, a label considered relatively unambiguous form the user’s 

point of view was assigned a higher ambiguity score by the 

system based on the expressiveness of the lexical reference. 
 

Concerning Amb_Deg’s parameter weight variations (for wPolysemy, 

wDepth, and wDensity) with tests 2, 3, and 4, all three parameters 

seem to have comparable impacts on ambiguity evaluation. Note 

that evaluating XML node ambiguity is not addressed in existing 

approaches (they do not select target nodes, but simply 

disambiguate all of them, which can be complex and needless). 

4.3 XML Semantic Disambiguation Quality 
In addition to evaluating our XML ambiguity degree measure, we 

ran a series of experiments to evaluate the effectiveness of our 

XML disambiguation approach. We used the same test datasets 

described previously. Target XML nodes were first subject to 

manual disambiguation (12-to-13 nodes were randomly pre-

selected per document yielding a total of 1000 target nodes, 

allowing the same human testers to manually annotate each node 

by choosing appropriate senses from WordNet, which required an 

average 22 hours per tester) followed by automatic 

disambiguation. We then compared user and system generated 

senses to compute precision, recall and f-value scores. 

4.3.1 Testing with Different Configurations 
We first tested the effectiveness of our approach considering its 

different features and possible configurations, considering: i) the 

properties of XML data (w.r.t. ambiguity and structure), ii) 

context size (sphere neighborhood radius), and iii) the 

disambiguation process used (concept-based, context-based, and 

the combined approach). We only show f-value levels in Figure 8 

for space limitation (precision and recall levels follow similar 

patterns). Several interesting observations can be made here. 
 

Table 2. Correlation between human ratings and system 

generated ambiguity degrees (cf. graphs in [38]). 

 
Test #1 

All factors 

Test #2 

Polysemy 

Test #3 

Depth 

Test #4 

Density 

Group 1 Doc 1 0.394 0.411 0.335 0.439 

Group 2 Doc 2 0.017 0.181 0.243 0.139 

Group 3 

Doc 3 -0.087 -0.139 -0.071 -0.138 

Doc 4 0.408 0.438 0.390 0.398 

Doc 5 -0.184 -0.185 -0.131 -0.235 

Group 4 

Doc 6 -0.284 -0.291 -0.243 -0.316 

Doc 7 -0.177 -0.190 -0.254 -0.143 

Doc 8 -0.119 -0.025 0.033 -0.156 

Doc 9 -0.452 -0.301 -0.251 -0.456

Doc 10 -0.258 0.180 0.412 0.276 
 
 

1) Considering XML data properties, one can realize that our 

approach produced consistent f-value levels � [0.55, 0.69] over 

all the tested configurations. The highest levels were reached with 

Dataset 1 of Goup1 having high ambiguity and rich structure, 

which resonates with the node ambiguity results discussed in the 

previous section (highly ambiguous and structurally rich XML 

nodes seem to be most effectively processed by our approach). 
 

2) Considering context size, optimal f-value levels are obtained 

with the smallest sphere neighborhood radius d=1 with Group 1 

(high ambiguity and rich structure XML nodes), whereas optimal 

levels are obtained with larger contexts having d=3                   

with Groups 2, 3, and 4 (low ambiguity and/or poor structure). 

This is expected since increasing context size with highly 

ambiguous/structure rich XML would increase the chances of 

including noise (e.g., unrelated/heterogeneous XML nodes) in the 

disambiguation context and thus disrupt the process. Yet, 

increasing context size with less ambiguous/poorly structured 

XML could actually help in creating a large-enough and/or rich-

enough context to perform effective disambiguation. 
 

3) Considering the disambiguation process, one can realize that 

the concept-based approach12 generally produces higher f-value 

levels in comparison with the context-based approach, the latter 

appearing to be more sensitive to context size. This is expected 

since the context-based approach primarily depends on the notion 

of context and context nodes, in both the XML document and 

semantic network, and thus increasing/decreasing context size 

would disturb its effectiveness. The effect of context size here 

could be aggravated when using a rich semantic network (such as 

WordNet) where a small increase in sphere neighborhood radius 

could include a huge number of concepts (synsets) in the semantic 

network context vector, thus adding considerable noise. 

To sum up, the above results emphasize the usefulness and need 

for a flexible approach (such as ours), allowing the user to fine-

tune the disambiguation process in order to optimize 

disambiguation following the nature and properties of the data.

                                                                 

12 When applying the concept-based approach, semantic similarity 

measures were considered with identical parameter weights (wEdge = 

wNode = wGloss = 1/3 = 0.3334), since evaluating the effectiveness of 

different semantic similarity measures is out of the scope of this paper. 
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Table 3. Characteristics of test documents. 

Groups Datasets 
Source 

dataset 
Grammar N# of docs 

Avg. N#   

of nodes   

per doc 

Node label polysemy 

(N# of senses) 
Node Depth Node Fan-out Node Density 

Avg. Max. Avg. Max. Avg. Max. Avg. Max. 

Group 1 1 Shakespeare collection1 shakespeare.dtd 10 192.054 7.052 30 3.687 6 0.604 20 0.38 6 

Group 2 2 Amazon product files2 amazon_product.dtd 10 113.333 8.407 72 4.309 7 0.539 13 0.38 6 

Group 3 

3 SIGMOD Record3 ProceedingsPage.dtd 6 39.375 4.615 16 2.743 6 0.692 9 0.692 9 

4 IMDB database4 movies.dtd 6 15.475 4 10 2.666 5 1.066 5 1 5 

5 Niagara collection5 bib.dtd 8 26.5 4.384 13 2.961 5 0.884 5 0.884 5 

Group 4 

6 W3Schools6 cd_catalog.dtd 4 16.5 3.937 10 2.312 3 0.812 6 0.812 6 

7 W3Schools food_menu.dtd 4 16 2.375 7 2.437 3 0.562 4 0.562 4 

8 W3Schools plant_catalog.dtd 4 11.675 3.454 15 2 3 1.181 6 1.181 6 

9 Niagara collection personnel.dtd 4 19 3.947 9 2.368 5 1.157 4 1.157 4 

10 Niagara collection club.dtd 4 15.5 4.533 10 2.266 4 1.4 5 1.4 5 
 

Table 4. Comparing our method with existing approaches 

Approaches 

Considers 

linguistic        

pre-processing  

Considers tag 

tokenization 

(compound terms) 

Addresses XML  

node ambiguity 

Integrates an 

inclusive XML 

structure context 

Flexible w.r.t. 

context size 

Adopts relational 

information approach

Combines the results     

of various semantic 

similarity measures 

Straightforward 

mathematical 

functions 

Disambiguates 

XML structure 

and content 

RPD [50] √  x  x  x  x  x  x  x  x 
VSD [29] √  √  x  √  √  √  x  x  x 

XSDF (our approach) √  √  √  √  √  √  √  √  √ 
 

 

 

 

a. F-value results with Group 1. b. F-value results with Group 2.

 

c. F-value results with Group 3. d. F-value results with Group 4.

 

Figure 8. Average f-value scores considering different features and 

configurations of our approach. 13 14 15 16 17 18 

4.3.2 Comparative Study 
In addition, we evaluated the effectiveness of our approach in 

comparison with two of its most recent alternatives: RPD (Root 

Path Disambiguation) [50], and VSD (Versatile Structure 

Disambiguation) [29]. A qualitative comparison is shown in Table 

4. We ran a battery of tests considering the different features and 

configurations or our approach. Here, we provide a compiled 

presentation considering optimal input parameters for our 

approach19 (i.e., context size d=1 when processing Group 1, d=3 

when processing Groups 2, 3, 4, using the concept-based 

                                                                 

13 Available at http://metalab.unc.edu/bosak/xml/eg/shaks200.zip 
14 Available at simply-amazon.com/content/XML.html 
15 Available at  http://www.acm.org/sigmod/xml 
16 Data extracted from http://www.imdb.com/ using a wrapper generator. 
17 Available at http://www.cs.wisc.edu/niagara/ 
18 Available from http://www.w3schools.com 
19 Manually identified from repeated tests with different parameter values. 

 

disambiguation process with all groups) and its alternatives (as 

indicated in corresponding studies). Results in Figure 9 show that 

our method yields precision, recall, and f-value levels higher than 

those achieved by its predecessors, with almost all test groups 

except with Group 4 where RPD produces better results. In fact, 

XML nodes in Group 4 are less ambiguous and poorly structured 

in comparison with remaining test groups. Hence, choosing a 

simple context made of root path nodes has proven to be less 

noisy in this case, in comparison with the more comprehensive 

context models used with our approach and with VSD. 
 

 

 

 

a. Results with Group 1.  b. Results with docs of Group 2.

 

 

 

c. Results with Group 3.  d. Results with Group 4.

 
 

Figure 9. Average PR, R and F-value scores comparing our approach 

with RPD [50] and VSD [29]. 
 

One can also realize that our method produces highest precision, 

recall, and f-value levels with Group 1 (high ambiguity and rich 

structure XML nodes), with an average 35% improvement over 

RDP and VSD (Figure 9.a), in comparison with average 25%, 5%, 

and almost 0% improvements with Groups 2, 3, & 4 respectively. 

This concurs with our results of the previous section: our method 

is more effective when dealing with highly ambiguous nodes 

within a rich XML structure, in comparison with less 

ambiguous/poorly structured XML. 

XSDF (our approach) RPD VSD 

d = 1 d = 3 d = 5 (or d=4 if Max(Depth(T)) = 4)

Concept- 

based 

Context- 

based 

Combined 

approach 

Precision Recall F-value 

Concept- 

based 

Context-

based 

Combined

approach 

Concept- 

based 

Context- 

based 

Combined 

approach 

Concept- 

based 

Context-

based 

Combined

approach 

Precision Recall F-value 

Precision Recall F-value Precision Recall F-value 
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5. CONCLUSION 
This paper introduces a novel XML Semantic Disambiguation 

Framework titled XSDF, to semantically annotate XML 

documents with the help of machine-readable lexical knowledge 

base (e.g., WordNet), which is a central pre-requisite to various 

applications ranging over semantic-aware query rewriting [11, 

40], XML document classification and clustering [49, 53], XML 

schema matching [13, 55], and blog analysis and event detection 

in social networks [2, 7]. XSDF covers the whole disambiguation 

pipeline from: i) linguistic pre-processing of XML node labels to 

handle compound words (neglected in most existing solutions), to 

ii) selecting ambiguous nodes for disambiguation using a 

dedicated ambiguity degree measure (unaddressed in most 

solutions), iii) representing target node contexts as comprehensive 

and flexible (user chosen) sphere neighborhood vectors (in 

contrast with partial and fixed context representations, e.g., parent 

node or sub-tree context), and iv) running a hybrid 

disambiguation process, combining two (user chosen) methods: 

concept-based and context-based (in contrast with static methods). 

Experimental results w.r.t. user judgments reflect our approach’s 

effectiveness in selecting ambiguous XML nodes and identifying 

node label senses, in comparison with existing solutions.  

We are currently investigating different XML tree node distance 

functions (including edge weights, density, direction, etc. [16, 

21]), to define more sophisticated neighborhood contexts. Fine-

tuning user parameters using dedicated optimization techniques 

[19, 30] is another work in progress. We are also investigating the 

use of additional/alternative lexical knowledge sources such as 

Google [22], Wikipedia [12], and FOAF [2] to acquire a wider 

word sense coverage, and thus explore our approach in practical 

applications, namely semantic blog and wiki document clustering.   
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ABSTRACT
In the age of statistical and scientific databases, there is an
emerging trend of integrating analytical algorithms into data-
base systems. Many of these algorithms are based on linear
algebra with large, sparse matrices. However, linear algebra
expressions often contain multiplications of more then two
matrices. The execution of sparse matrix chains is nontrivial,
since the runtime depends on the parenthesization and on
physical properties of intermediate results. Our approach
targets to overcome the burden for data scientists of select-
ing appropriate algorithms, matrix storage representations,
and execution paths. In this paper, we present a sparse
matrix chain optimizer (SpMachO) that creates an execu-
tion plan, which is composed of multiplication operators and
transformations between sparse and dense matrix storage
representations. We introduce a comprehensive cost model
for sparse-, dense- and hybrid multiplication kernels. More-
over, we propose a sparse matrix product density estimator
(SpProdest) for intermediate result matrices. We evaluated
SpMachO and SpProdest using real-world matrices and
random matrix chains.

Categories and Subject Descriptors
G.1.3 [Numerical Linear Algebra]: Sparse, structured,
and very large systems

General Terms
sparse linear algebra, optimization

1. INTRODUCTION
In the era of big data and data deluge, scientists and

data analysists are confronted with a time-consuming im-
plementation overhead, when they want to scale and speed
up their existing, handcrafted code that has been working

(c) 2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

for years on small data sets. This set the way for new data-
base applications in the fields of scientific computations and
advanced analytics on large data. However, since most of
the algorithms in science and data mining are composed of
linear algebra expressions, conventional SQL-based relational
database management systems (RDBMS’s) did not match
the requirements. On the other hand, numerical algebra sys-
tems like R are known for e�cient linear algebra algorithms,
but they lack scalability and data manipulation capabili-
ties. As a consequence, the demand of data scientists for a
scalable system that provides a basic set of e�cient linear
algebra primitives attracted the attention of the database
community [11]. Recently emerged systems like SciDB [8] or
SystemML [6] reacted by providing a R or R-like interface
and deep integrations of linear algebra primitives, such as
sparse matrix-matrix and matrix-vector multiplications.
In business environments, data analysts often load data

from a relational database into a numerical algebra system
to perform their analysis by means of linear algebra. For
example, financial analysts that use a RDBMS for storing
stock price data need the functionality of SQL, e.g., in order
to get the average stock prizes, or to find all stocks that
belong to a certain group. On the other side, they might
want to use matrix multiplications to find correlations [24]
of stocks and derivatives.
Matrices as first-class citizens have been integrated in

many systems, for example in array DBMS’s [8], data ware-
houses [19], or in-memory column stores [20], but only little
has been done in the direction of optimizing the execution
of linear algebra expressions. In this paper, we focus on
optimizing the execution of sparse linear algebra expressions
based on physical properties. The idea is the following: next
to the RDBMS optimizer that creates optimized execution
plans from SQL expressions, we propose a component (Fig. 1)
that generates an optimal execution plan for linear algebra,
which is using the native storage and execution engine of the
system, and additional operators for linear algebra, such as
a matrix multiplication operator.
As most of the big matrices occurring in the real world

are sparse, linear algebra expressions often contain multipli-
cations of three or more sparse, or mixed dense and sparse
matrices, e.g. in transitive closure computations, Markov
chains [27], linear transformation [13], or linear discrete dy-
namical systems [4]. An e�cient execution of sparse matrix
chain multiplications is nontrivial, in particular, if inter-
mediate result matrices become dense. In many situations
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Figure 1: DBMS example architecture.

the runtime performance can be significantly improved by
changing the execution order, or by switching from a sparse
to a dense multiplication algorithm in later stages. Since
data scientists are usually not familiar with algorithmic de-
tails of multiplication kernels and system parameters, and
do not have profound knowledge of the characteristics of
their matrices, it makes sense to leave these decisions to the
system.

In particular, the contributions of this work are:

• SpMachO, a general matrix chain multiplication op-
timizer based on a dynamic programming approach,
which leverages density estimations of intermediate re-
sults and di↵erent multiplication kernels to minimize
the total execution runtime. The optimization problem
and the SpMachO algorithm are presented in sections 2
and 3.

• SpProdest, a sparse matrix density estimator, which
predicts the density structure of intermediate and final
result matrices, by using a novel skew-aware stochastic
density propagation method. It is described in detail
in sections 4 and 5.

• An extensive evaluation and comparison of the execu-
tion runtime of the SpMachO-generated plan against
alternative execution strategies and other numerical
algebra systems, which is presented in section 6.

Finally, we will discuss the related work in section 7, followed
by the conclusion in section 8.

2. EXPRESSION OPTIMIZATION
A lot of data scientists work with numeric algebra systems

to run their linear algebra algorithms. However, the user
is often let alone with the execution order, although the
way of executing large sparse matrix expressions contains a
significant optimization potential.
Consider a set of linear algebra expressions that consist

of matrix multiplication and addition on general Rm⇥n ma-
trices. Further operations, like subtraction or division by
a matrix A can be represented by using the corresponding
inverse of addition (�A), or inverse of multiplication A�1,
respectively. Thus, the expression can be reduced to a form:

C = A
0

+A
1

·A
2

· ... ·A
p

+A
p+1

· ...A
l

+ ...,

From a mathematical perspective, the number of operations
needed for the element-wise addition of intermediate results,
or any element-wise operation in general, is independent from
the execution order, thus, it is the same for (A+B) +C as
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Figure 2: Eight of the possible 128 execution plans for the
multiplication of three sparse matrices A

1

·A
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3

. ⇥ are
binary multiplication operators, S/D denotes the internal
sparse/dense representation type of matrices, and T are
unary storage type transformations of matrices.

for A+ (B +C). Although this indi↵erence might not hold
in practise, when di↵erent physical representations are used,
the addition part in the computation of C is rather cheap,
since the complexity is at most O(mn) for dense matrices.
Most of the execution time is spent in the computation of
multiplications

A
1

·A
2

· ... ·A
p�1

·A
p

, A
i

2 Rmi⇥mi+1 , (1)

so the work of this paper focus on the optimization of matrix
chain multiplications. The algebraic degree of freedom to
execute expression (1) consists in the setting of parenthesis,
since matrix multiplications are associative. Altering the
parenthesization does not change the result, but the number
of operations required in the computation of the complete
chain can vary significantly. Finding the optimal parenthe-
sization for a dense, non-square matrix chain multiplication
is well understood and serves as a text book example for
the use of dynamic programming [16, 12]. The idea is to
iteratively construct the optimal parenthesization as a com-
bination of optimal sub-parenthesizations, by minimizing a
cost recurrence expression with respect to the split point k

C
⇡

B

(ij)

= min
ik<j

�

C
⇡

B

(ik)

+ C
⇡

B

((k+1)j)

+ TM
�

A
[i...k]

,A
[k+1...j]

�  

. (2)

For the mathematical formulation, we introduce

• ⇡(ij): a parenthesization for the matrix (sub)chain
A

[i...j]

⇡B(ij) denotes the optimal (“best”) one.

• C
⇡

: the cost for executing the matrix chain multiplica-
tion, given a certain parenthesization ⇡.

• TM
�

A
[i...k]

,A
[k+1...j]

�

: the cost function for multiplying
the two matrices that result from the subchains A

[i...k]

and A
[k+1...j]

In the textbook case, the combination cost TM
�

A
[i...k]

,A
[k+1...j]

�

is set equal with the number of flops for multiplying the two
dense intermediate result matrices. By using the classical
inner product algorithm the costs can be exactly determined
a priori as m

i

m
k+1

m
j+1

.
However, the dense matrix case has certain limitations

that restricts its relevance in practice. Most important,
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many of the real-world matrices in big data environments
are sparse. A sparse matrix is not only defined by its row
and column dimensions m and n, but also by the number
and the pattern of non-zero elements N

nz

, or the density1

⇢ = Nnz
mn

. As a matter of fact, algorithms on sparse matrices
have a di↵erent complexity: unlike the naive inner product
algorithm for dense matrices, the cost of a multiplication of
two sparse matrices rather depends on the number of non-
zero elements than on their dimensions. Moreover, sparse
matrices are stored in a di↵erent data structure than dense
matrices, which leads to di↵erent actual costs depending on
the characteristics of the physical representation. Most of the
related work on matrix chain multiplications consider either
dense-only [16, 12] or sparse-only [9] multiplications, being
agnostic to the fact that the densities of the intermediate
result matrices can vary significantly from the initial matrices.
For example, the density of the result matrix C = A · B
can be much higher, or even less than that of both A and
B (see Fig. 5). Despite the mathematical complexity, it is
in many cases more e�cient to continue using algorithms on
dense matrix representations, if the density exceeds a certain
threshold. This can be reasoned with the e�cient and well-
tuned implementations of dense matrix multiplication kernels
in BLAS2.

Our idea is to take the individual di↵erences of the di↵erent
matrix representations and multiplication kernels into ac-
count, and to exploit the potential performance benefits from
changing the physical implementation of the initial matrices
or intermediate results. We construct an execution plan
for the chain expression that can contain dense, sparse and
mixed dense/sparse matrix multiplications. Furthermore,
the execution plan can contain conversions from a sparse
into a dense representation. Therefore, we adopted the idea
of dynamic programming and modified it in such a way that
it incorporates the physical properties of the matrices. We
extended the recurrence (2) by adding the input and output
storage types as independent dimensions, and added cost
functions for the storage type conversions:
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⇧
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(3)

• ⇧(ij): execution plan for a matrix (sub)chain multipli-
cation. It contains the execution order as well as all
storage transformations. ⇧B denotes the optimal plan.

• SX : storage type, which is either dense or sparse. The
superscript X labels each of the five matrices that are
considered per execution node. X = l: left subplan
output-, r: right subplan output-, 1: left input-, 2:
right input-, o: current product output matrix .

• TT
S

Y

�

A
[i..k],S

X

�

: cost function for the conversion of a

matrix from type SX into type SY .

1In the remainder of this paper, we refer to the non-zero
structure using ⇢ rather than N

nz

2Basic Linear Algebra Subprograms,
http://www.netlib.org/blas/

Since the cost functions TM in equation (3) depend on the
storage types of the input and output matrices, as well as
their densities, it could be beneficial to convert a matrix from
one into the other representation prior to the multiplication
because conversions are usually less costly than multiplica-
tions. For example, if the initial matrices are in a sparse
representation, and the dense multiplication kernel plus the
conversion has a far lower cost than the sparse multiplication,
then they are first converted into the dense representation.
As a matter of fact, the value of the conversion cost TT

S

(A, S)
equals zero for identity transformations, i.e., when a matrix
is already in the optimal representation. Hence, besides the
parenthesization split point k, we vary the input and output
storage types for each step in recurrence (3).
Some of the parameters that contribute to the cost func-

tions TM/TT(·), for example the density ⇢ of intermediate
results, are not known prior to the execution and have to
be estimated. Therefore, we developed the sparse matrix
product density estimator SpProdest, which is described
in section 4 and 5 of this paper. The resulting costs derived
from recurrence (3) are minimal, given that the estimated
costs encoded in TM and TT are determined precisely. In par-
ticular, the optimality, or goodness, of SpMachO depends on
two parts, which potentially contain uncertainties: first, the
accuracy of the quantitative cost model of the multiplication
kernels, and second, the precision of the density estimates
provided by SpProdest.

The total number of the possible execution plans using our
model (3) for a matrix chain multiplication of length p is

C
p�1

· 23(p�1), (4)

where C
p�1

denotes the Catalan number C
n

= (2n)!

(n+1)!n!

.
C
p�1

reflects the number of possible parenthesizations,
which is the same as for the textbook case [12]. The second
factor is related to the 23 {left input-, right input-, output-}
storage type combinations that are connected with each of the
p�1 type multiplication nodes. The number in (4) resembles
the size of the search space, which grows exponentially. To
give an example, it yields 2560 for a matrix chain of length
p = 4 and already 1376256 for p = 6. As in [12], SpMachO
solves the recurrence (3) in O(p3) time using a bottom-up
dynamic programming approach.

3. SpMachO
The pseudocode of SpMachO is sketched in Algorithm 1.

The cost of the optimal sub-chain multiplications and the
relevant plan information (split points and storage types per
sub-chain) are cached in three-dimensional array structures.
For each combination in the inner loop, the method chk-
MemLimit checks if the total memory consumption of the
matrices and intermediate results in the current plan configu-
ration would exceed the system limit. The memory required
for dense m ⇥ n matrices is O(mn), and O(N

nz

= mn⇢)
for sparse matrices. Since SpMachO optimizes the runtime
performance, the plan may contain conversions from sparse
into dense matrix representations whenever the dense kernel
leads to a lower overall runtime, due to the e�cient dense
kernel implementation. However, the conversions into dense
representations potentially increase the memory consumption
compared to a sparse-only plan. Our strategy is that every
conversion is allowed, as long as the total memory consump-
tion at every point in time does not exceed a hard memory
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Algorithm 1 SpMachO

1: function spMacho(MatrixChain A
[1..p]

,TM,TT)
2: ⇢̂[][] spProdest(A

[1..p]

)
3: for 1  j < p, j > i � 0 do
4: for i  k < j do
5: for types 2 {sparse, dense} do
6: if !chkMemLimit(A, k, ⇢, types) then
7: continue
8: q  TT(A

[i..k..j]

, ⇢̂[][], types)
9: q  q +TM(A

[i..k..j]

, ⇢̂[][], types)
10: if q < cost[i][j][So] then
11: cost[i][j][So] q
12: plan[i][j][So] k, types

13: if cost[1][p][·] � MAXVAL] then
14: /* memory exceed exception */
15: else
16: return min(plan[1][p][sparse], plan[1][p][dense])

limit. Execution paths that would exceed the memory limit
are automatically skipped (line 6). We assume that there is
at least one plan that does not exceed the memory limit. If
not, SpMachO returns with an exception (line 13). Finally,
the resulting plan, which can be converted into a directed
acyclic graph representation as of Fig. 2, is returned to the
system for execution.
The complexity of Algorithm 1 is O(p3), which can be

derived from the dynamic programming loop and is the same
as in the dense-only problem. The additional complexity
by the introduction of storage type transformations yields
a constant factor, since the inner loops over the storage
types do not depend on the chain length p. A few pruning
methods can be applied to reduce the execution plan space,
for example, by excluding that the product of two dense
can be sparse. However, they do not lower the asymptotic
complexity of the algorithm.
The system executes the plan using the corresponding

transformation and matrix multiplication operators. While
the unary transformation operator either performs a dense-
to-sparse or a sparse-to-dense storage transformation, the
eight-fold multiplication operator delegates the execution
to one of the multiplication kernels. We implemented all
algorithms in our prototype using row-major 2D-arrays for
dense- and the columnar compressed sparse row layout (CSR)
for sparse matrices, since they are to our notion the most
common physical representations, and are used in many
numerical libraries, e.g. the Intel Math Kernel Library [1].
As mentioned in the beginning, we already showed in [20]
that these representations can be mapped onto a columnar
storage layout of an in-memory columnar DBMS.

3.1 Multiplication Kernels
There are eight di↵erent general matrix multiply (gemm)

kernels that are used in our system. We will use the notation
xyz gemm to denote a multiplication kernel, where x is the
left-hand input-, y is the right-hand input type and z the
output matrix storage type, which can be either sparse (sp)
or dense (d). Some of the kernels, for example the stan-
dard BLAS ddd gemm, or spdd gemm, are implemented by
vendor-tuned C++ libraries, so we call the library instead of
providing an own implementation. As of the current status,
this is done only for ddd gemm, for which we use the Intel

Table 1: The matrix multiplication kernels for the product
Cm⇥n = Am⇥k · Bk⇥n and their cost functions used in
SpMachO. N⇥ denotes the number of actual multiplications,
the hat indicates the corresponding estimated value. ↵,�, �
are constant parameters.

Kernel Cost Function

ddd gemm ↵(mkn)
spdd gemm ↵N̂⇥

dspd gemm ↵(mk) + �N̂⇥

spspd gemm ↵NA

nz

+ �N̂⇥

ddsp gemm ↵N̂⇥ + �N̂C

nz

+ �(mn)
spdsp gemm ↵NA

nz

+ �N̂⇥ + �N̂C

nz

dspsp gemm ↵N̂⇥ + �N̂C

nz

+ �(mk)
spspsp gemm ↵NA

nz

+ �N̂⇥ + �N̂C

nz

MKL implementation.
Table 1 lists the kernels that are used in our system. In

order to obtain the optimal execution plan via solving recur-
rence (3), the cost model and its corresponding parameters
have to be determined accurately for each multiplication ker-
nel. Since the actual runtime depends on many parameters
and external influences, an exact determination cannot be
guaranteed. However, even for small variations, the plan gen-
erated by SpMachO is still near-optimal, which we verified
in the evaluation in section 6.

3.2 Execution Time Cost Model
The cost for multiplying two dense or sparse matrices

generally depends on the matrix dimensions m,k, n, the
number and pattern of non-zero elements of both the input
and the result matrices, and the implementation details of
the corresponding kernel algorithm. The idea is to reduce
the dimensions to a set of only a few, significant dimensions,
and create the cost model based on the reduced dimension
set. On average, it is a fair approximation to assume that
the runtime of a single multiplication only depends on the
number of non-zero elements, and not on the individual non-
zero pattern variations. Hence, we are able to reduce the
parameter space to the dimensions m,k, n, ⇢

A

, ⇢
B

, and ⇢̂
C

,
which corresponds to the product density estimation, which
is determined by SpProdest.
As an example, we will examine the spspsp gemm kernel

that uses the popular Gustavson algorithm [18]. The algo-
rithm is based on the sparse accumulator method, which is
still commonly used for sparse matrix implementations [15].
In order to not repeat the algorithm description in detail, we
only sketch the derivation of our cost model for spspsp gemm,
which we consider as the most interesting kernel.

For reasonably large sparse matrices, the runtime of sparse
kernels is often dominated by main memory bandwidth.
Hence, mainly the memory accesses contribute to the run-
time of an algorithm, which is in conformance to the external
memory (I/O) model. For spspsp gemm, the access pattern
can be formulated as

TM(m, k, n, ⇢
A

, ⇢
B

) = m⇥ (read
rowA

+ k⇢
A

⇥ (read
colA,rowB

+

n⇢
B

⇥ (read
colB,valA,valB

+write
colC,valC

)) + n⇢̂
C

write
colC,valC

),

where the read/write denote the accesses to the respective
data structures (rowA, rowB, etc.) in memory. For example,
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Figure 3: Measured runtimes (markers) and time estimates
(lines) for di↵erent matrix multiplication kernels.

a read on colA has a higher average cost than a read on colB,
since a complete row of matrix B is touched in-between two
consecutive colA-reads, thus, the system has most probably
evicted the cache line of colA and has to fetch it again. The
exact number of cycles, and hence, the required time per
read or write access depends on whether the addressed cache
line resides in the system cache. However, since we consider
large matrices with sizes that are by factors larger than the
last level system cache, we approximate the read and write
accesses as fixed time constants in our model. Moreover,
instead of determining the individual time constants for the
read

X

/write
X

access, we abstracted them into few parame-
ters, which can then be determined empirically. Therefore,
we expand the expression of TM and accumulate the time
constants of the read/write accesses into the constant param-
eters ↵, �, �, and obtain a simple time approximation for the

Wall-clock time

T ⇡ ↵(m · k · ⇢
A

| {z }

N

A
nz

) + �(m · k · ⇢
A

· n · ⇢
B

| {z }

ˆ

N⇥

) + �(m · n · ⇢̂
C

| {z }

ˆ

N

C
nz

),

which only depends on the constant parameters
↵ = T (read

colA,rowB

)

� = T (read
colB,valA,valB

+ write
colC,valC

)

� = T (write
colC,valC

)

and the derived dimensions:

• NA

nz

: the number of non-zeros in matrix A

• N̂⇥: the estimated number of multiplications

• N̂C

nz

: the estimated number of non-zero elements in the
result matrix

For the other kernels, the cost function can be deduced in
a similar manner. Because of space limitations, we will not
discuss them in this paper. Table 1 lists the cost function
for each kernel. Each cost function is a linear combination
of di↵erent derived dimensions, weighted by constant pa-
rameters ↵,�, �. The constant parameters are estimated for
each kernel by a multilinear least-squares fit. Since they are
dependent on the system hardware, the fit has to be done
once for each system configuration.

Fig. 3a shows the scaling behavior of the matrix multiplica-
tion kernels spspsp gemm, spspd gemm and ddd gemm with
respect to matrix dimension and density. We observe that our
cost models (lines) conform well with the actual algorithm
runtimes (markers). From the right plot in Fig. 3a we can
infer the following example scenarios: if the density ⇢

A

has
a higher value than about 0.1, then it can be worthwhile to
convert A into a dense representation and continue with the
dense kernel – of course only if the dense representation does
not exceed the available memory. If the density is below,
it is probably best to select the spspd gemm kernel. For
⇢
A

⌧ 0.01 and depending on the following multiplications
and the estimated intermediate result densities, it might be
best to take with the spspsp gemm kernel.
In Fig. 3b, we fixed the densities ⇢

A

, ⇢
B

and the product
(m · k · n), and only varied the relative matrix shapes m

k

⌘ k

n

.
At both edges of each plot the matrices are extremely rectan-
gular. The deviation of the actual times from our estimates
shows that our cost model has limited accuracy in these
extreme cases. However, the deviation is still acceptable,
since the times are always overestimated. Overestimation is
more robust than underestimation, because SpMachO would
then just select another multiplication kernel, whereas in the
latter case the deviation would propagate into the overall
estimation. It is worthwhile mentioning that one conclusion
we deduce from Fig. 3b is that simplistic cost models, which
solely depend on the number of non-zero multiplications
N⇥, are not able to describe the shape dependency, since
N⇥ ⌘ const. is fixed in each plot.

4. DENSITY ESTIMATION
The estimation of the intermediate result matrix densities

is a crucial part of the SpMachO optimizer, since the cost
models of the sparse multiplication kernels primarily depend
on the number of non-zero elements, and hence, the matrix
densities ⇢. Our approach is to encode the non-zero structure
into the smallest possible set of values without losing too
much information.
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Figure 4: Assignment of non-zero population densities for
two di↵erent matrices using a) scalar density, b) density map.

4.1 Scalar Density
A matrix can be considered as a two-dimensional object

which has a certain population density ⇢ of non-zero matrix
elements. As an example, Fig. 4 a) shows a 4 ⇥ 4 matrix,
which has five non-zero elements, and thus, a total population
density of ⇢ = 5/16 ⇡ 0.31. The scalar density value does
not reflect any patterns in the matrix, but it contains all
relevant information if, and only if, the matrix is uniformly
populated with non-zero elements. Then, the probability
of a randomly picked matrix element for being non-zero is
p((A)

ij

6= 0) = ⇢, which is 0.31 in the example of Fig. 4 a).

Lemma 4.1. Under the condition that the non-zero elements
are uniformly distributed, the density estimate ⇢̂ of a product
of two matrices C = A·B can be calculated using probabilistic
propagation

⇢̂
C

= ⇢̂
A·B = 1� (1� ⇢

A

⇢
B

)k. (5)

The estimate of Eq. (5) is unbiased, i.e. E[⇢̂
C

] ⌘ ⇢
C

.

For the sake of simplicity, we denote the operation in Eq. (5)
with the symbol �, thus, ⇢̂

C

= ⇢
A

� ⇢
B

. Lemma 4.1 can be
derived as follows: using the inner product formulation, the
elements c

ij

of the result matrix are calculated as
P

k

a
ik

b
kj

.
The probability for a

ik

being non-zero is p(a
ik

6= 0) = ⇢
A

,
for b

kj

accordingly: p(b
kj

6= 0) = ⇢
B

. Thus, every summand
a
ik

b
kj

is nonzero with probability p
nz

(a
ik

)^p
nz

(b
kj

) = ⇢
A

⇢
B

.
c
ij

is non-zero if any of the summands a
ik

b
kj

is non-zero.
We leverage the inverse probability and obtain p(c

ij

= 0) =
⇧

k

(1 � ⇢
A

⇢
B

). Finally, with p(c
ij

6= 0) = 1 � p(c
ij

= 0)
and p(c

ij

6= 0) = ⇢
C

, equation (5) results. We remark that
we are assuming no cancellation, i.e., a sum of products of
overlapping non-zero elements never cancel to zero, which is a
very common assumption in the mathematical programming
literature [10].
Eq. (5) can be used as an O(1) estimator for the result

density prediction of a multiplication of two matrices A
and B that have uniform non-zero patterns. Hence, the
prediction of a chain multiplication of p matrices has a linear
time complexity O(p). Moreover, the density prediction is
independent of the parenthesization.

4.2 Estimation Errors
However, the obvious disadvantage of maintaining a scalar

density is that ⇢̂ is only valid for matrices with uniformly
distributed non-zero elements. Although the uniform as-
sumption holds for many matrices to a certain degree, there

· =

· =

Figure 5: Product density in extreme non-uniform cases. The
upper row shows how two half-populated matrices cancel to
zero. The lower row shows how two, almost empty sparse
matrices produce a full matrix (outer vector product).

are many matrices that have distinguishable non-zero pat-
terns, i.e. a topology with some regions that are significantly
more dense than others. For these matrices, a density predic-
tion according to equation 5 does not provide an accurate,
unbiased result.

In extreme non-uniform cases, equation (5) could produce
an asymptotic maximum error of 100%. Fig. 5 shows two
example cases where the ⇢̂ estimate according to (5) fails
significantly: In the first case, the product of two n ⇥ n
matrices with each ⇢ = 0.5 cancel out into an empty matrix
with ⇢ = 0, whereas the naive estimate according to Eq. 5 is
⇢̂ = 1�(0.75)n

n!1����! 1. Hence, the density value is maximal
overestimated. The second example is a multiplication of
two sparse ⇢ = 1

n

matrices, which are zero except one column
in A and the matching row in B. The resulting full matrix
has ⇢ = 1, whereas the naive prediction gives ⇢̂ = 1� (1�
1

n

2

)n
n!1����! 0.

In order to lower the average estimation error, we estimate
matrix densities on a finer granularity. SpProdest uses a
density map for non-uniform sparse matrices, which is able
to reflect a 2D matrix pattern on a configurable, granular
level.

4.3 Density Map
The density map ⇢

A

of a m ⇥ n sparse matrix A is ef-
fectively a m

b

⇥ n

b

density histogram. It consists of
�

mn

b

2

�

density values (⇢)
ij

, each referring to the density of the corre-
sponding block A

ij

of size b⇥ b in matrix A. As an example,
Fig. 4b) shows the density map of a 4⇥ 4 matrix with blocks
of size 2⇥ 2.

In the following we sketch how the density map ⇢̂
C

of the
result matrix C are estimated from the density maps ⇢

A

and
⇢
B

of its factor matrices. Therefore, it is necessary to take a
glance at blocked matrix multiplication. Assuming square
blocks, the product matrix C can be represented as

C =

✓
A

11

·B
11

+A
12

·B
21

A
11

·B
12

+A
12

·B
22

A
21

·B
11

+A
22

·B
21

A
21

·B
12

+A
12

·B
22

◆
. (6)

First, we define an estimator for the addition of two ma-
trices:

Lemma 4.2. Under the condition that the non-zero ele-
ments are uniformly distributed, the density estimate ⇢̂ of the
addition of two matrices C = A ·B can be calculated using
probabilistic propagation

⇢̂
A+B

= ⇢
A

+ ⇢
B

� (⇢
A

⇢
B

) ⌘ ⇢
A

� ⇢
B

. (7)

The derivation of Lemma 4.2 is similar to that of Lemma 4.2,
which is why we leave it out for space reasons.
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Then, combining Eq. (6) with (5) and (7), one obtains

⇢̂
C

=

✓
⇢
A

11

� ⇢
B

11

� ⇢
A

12

� ⇢
B

21

⇢
A

11

� ⇢
B

12

� ⇢
A

12

� ⇢
B

22

⇢
A

21

� ⇢
B

11

� ⇢
A

22

� ⇢
B

21

⇢
A

21

� ⇢
B

12

� ⇢
A

22

� ⇢
B

22

◆

for the density propagation of a 2⇥ 2 map. Density maps
of a finer granularity, i.e. with more than four blocks, are
calculated accordingly.
As a result, the average density estimation error is signif-

icantly lowered when using density maps compared to the
scalar density estimation, which we verified empirically in
the evaluation section (Fig. 6.) As a matter of fact, the
smaller the block size and the higher the granularity, the
more information is stored in the density map and finer struc-
tures can be resolved. However, the runtime of the density
map estimation also grows with the granularity, since its
complexity is in O(

�

n

b

�

3

), and hence, O(p
�

n

b

�

3

) for a chain
estimation of length p. For infinitesimal block sizes b! 1⇥1,
the estimation error vanishes completely, but the determina-
tion of ⇢̂

C

is then equivalent with the corresponding boolean
matrix multiplication of A ·B, and has the same problem
complexity as the actual multiplication. Thus, the block size
configuration is generally a trade-o↵ between accuracy and
runtime of the prediction.
However, we employ a greedy strategy, which reduces

the runtime by using density maps only for matrices with
a skewed non-zero distribution, and the scalar density for
matrices with an approximately uniform distribution. To
decide whether a given matrix has an uniformly distributed or
a skewed non-zero pattern we define a quantitative disorder
measure for sparse matrices.

4.4 Matrix Disorder Measures
We introduce two measures to quantify how the non-zero

pattern of a sparse matrix deviates from an (approximate)
uniform distribution. Since we already introduced the density
map that involves blocks of di↵erent densities, it is natural
to approach the problem from same the block-granular level.

4.4.1 Variance Analysis

One way of deciding whether or not a matrix is approxi-
mately uniformly distributed is to make use of a statistical
hypothesis testing method. The scalar density propagation
formulas as shown in Lemmas 4.1 and 4.2 are based on the
assumption that every element of the matrix has the same
probability to be populated, and the probability is equal
to the overall density ⇢. Using this assumption as the null
hypothesis H

0

, the number of non-zero elements in each
b⇥ b-block would follow a binomial distribution B(N, p) with
N = b2 and p = ⇢. This can be deduced in the same way as
a coin toss experiment, where the number of experiments N
is equal to the number of potential elements in a block, and
the success probability p = ⇢ equals the global population
density. From elementary statistics [7] we get

E[Nb⇥b

nz

] = b2⇢, E[V (Nb⇥b

nz

)] = b2⇢(1� ⇢) (8)

for the expectation values of for the number of non-zero
elements N

nz

in one b ⇥ b and the variance of Nb⇥b

nz

when
assuming a binomial distribution B(b2, ⇢).

The (dis-)conformance of the null hypothesis H
0

with the
reality can be determined using a simple one-factorial vari-
ance analysis. Therefore, we use the F -test [7], a likelihood
quotient test, which checks the conformance of the observed

variance of two random, normally distributed3 variables X
and Y . If the test statistic f = V

X

/V
Y

(ratio of variances
in X and Y ) exceeds a critical value f

crit

according to an
↵-quantile of the F -distribution, then H

0

is rejected, mean-
ing that X and Y are not of the same distribution with
probability 1-↵.

For a matrix with N
B

b⇥ b blocks, we define

V
observed

=
1

N
B

� 1

X

ij

(N
nz

(ij)� E[Nb⇥b

nz

])2 (9)

f =

✓

V
observed

V
expected

◆

=

✓

V
observed

E[V (Nb⇥b

nz

)]

◆

(10)

For uniformly distributed matrices, f has the expectation
value E[f ] = 1. The exact choice of the threshold, however,
depends on the sample size, i.e. the number of blocks N

B

and the desired accuracy.

4.4.2 Entropy

A known measure for the disorder of elements is the entropy

N

X

i

�p
i

ln p
i

, (11)

which is defined over a space with N entities (or states) i
that have a relative probability p

i

. The entropy is used in
a variety of contexts. To name an example, the Shannon
entropy [26] is used in information theory to quantify the in-
formation content of a message with N characters as entities.
In a similar manner, we can define and quantify the informa-
tion content of the non-zero pattern of a sparse matrix, by
identifying the p

i

with the local block density ⇢
ij

.
The entropy (11) is maximal if each entity has the same

probability. In the terms of sparse matrices, the theoretical
disorder is maximized if every block has the same local density
⇢
ij

⌘ ⇢. The scaled entropy

H̃ =
H

H
max

=

P

NB
ij

⇢
ij

ln ⇢
ij

N
B

⇢ ln ⇢
2 [0, 1] (12)

is sensitive to the matrix density skew, which we evaluated
in section 6. However, in contrast to f , the entropy is rather
suited for measuring relative changes in the non-zero disorder,
and it is hard to interpret the absolute value of H̃.

5. SpProdest
SpProdest is sketched in algorithm 2. First, the disorder

measure � =
p

1/f is retrieved (getDisorder) for each
matrix, which is a modified version of f according to Eq. (10).
Then, � is used to decide whether to store a only scalar
density value, or a density map (line 4). If � is lower than a
certain threshold �

T

, then the density map is created, if the
disorder is higher, then a scalar density is chosen. Finally,
the density estimates are calculated by using the probabilistic
density propagation method (EstProdDensity), according
to equations (5) and (7). Note that instead of calculating
� and ⇢̂ for each expression (line 4-7), they can be cached
as matrix statistics in the system, and reused for further
multiplications.

The complexity of SpProdest depends on the actual gran-
ularity of the density map. Assuming a chain multiplication

3for su�ciently large N and Np ! const., the binomial
distribution can be approximated by a normal distribution
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Algorithm 2 SpProdest

1: function spProdest(MatrixChain A
[1..p]

)
2: ⇢̂[][] 0
3: for Matrix A

i

2 A
[1..p]

do
4: �  getDisorder(A

i

)
5: if � < �

T

then
6: ⇢̂[i][i] scalarDensity(A

i

)
7: else
8: ⇢̂[i][i] densityMap(A

i

)

9: for 1 < j < p do
10: for j > i > 0 do
11: ⇢̂[i][j] estProdDensity(⇢̂[i][j�1], ⇢̂[j][j])

return ⇢̂[][]

of p square matrices, the time complexity would be in the
best case O(p) (no map) and in worst case O(p(n

b

)3), which
is equal to the chain multiplication of p n

b

⇥ n

b

matrices,
where n

b

is the dimension of the density grids. Analogously,
the space complexity of SpProdest is best case O(p), worst
case O(p(n

b

)2). In practice, the overhead of the SpProdest
component is negligible against the potential speedup gained
by the SpMachO, which is manifested in our evaluation in
section 6.3.

6. EVALUATION
In this section, we first evaluate the accuracy of spProdest

according to the deviation in the result sparse matrix densi-
ties. Second, we apply SpMachO on di↵erent matrix chains
and compare the execution runtime against R and a popular
commercial numerical algebra system for matrix computa-
tions (called system A here), and two further execution
approaches. The platform for our prototype implementation
is a two-socket Intel Xeon X5650 CPU with 2⇥ 6 cores with
2.66 GHz and a total of 48 GB RAM.

6.1 Density Estimate Accuracy
As mentioned in section 4, the density ⇢

C

of a matrix
C = A ·B depends not only on the densities of the factor
matrices ⇢

A

and ⇢
B

, but also on their non-zero patterns,
especially on the pattern skew. To show the e↵ect of the non-
zero pattern skew on the density estimation, we generated a
set of matrices with increasing skew. The skew parameter ⇠ in
our example defines the slope of a linear ascend in the density
distribution with increasing row number r: ⇢(r) = ⇠ · r. We
fixed the total density of A, thus, N

nz

=const.
The left-hand plot in Fig. 6 shows the actual density ⇢

C

and the estimated densities using the scalar density and
the density map approach with di↵erent block sizes. In our
example, the density of the product matrix ⇢

C

decreases
with increasing pattern skew. This conforms with our notion,
that in most cases a higher skew at constant density leads to
a lower density of the result matrix, although there are cases
which show the opposite behavior, for example, as in Fig. 5.

Nevertheless, it is clearly observable that a finer granularity
of the density map, and thus, a smaller block size, results in
a better density estimation. The idea is to choose the block
size as large as possible, since a finer granular density grid
negatively influences the runtime performance of spProdest.
We chose a block size of 256 ⇥ 256 as a good compromise
between accuracy and estimation runtime. The right-hand
plot of Fig. 6 confirms that the disorder measures are both
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Figure 6: Left: Estimated density ⇢̂
C

vs. actual density
(⇢

C

) of the product matrix C = A · B using the scalar
and the density map estimation with di↵erent grid block
sizes (BS). Matrices: A 2 R4096⇥2048,B 2 R2048⇥4096 and
average density h⇢i = 0.1. Right: Influence of the matrix
A,B nonzero skew on the disorder measures �, H̃.

sensitive to the nonzero skew, but the teststatistic-based
disorder measure � is much more sensitive to the skew than
the entropy-based H̃. In particular we can observe that
the trivial scalar density provides a su�cient accuracy for
approximately uniform nonzero patterns (⇠ ! 0).

6.2 Plan Ranking
In this experiment we evaluate the total cost model ac-

curacy of SpMachO by comparing the estimated runtime
against the actual runtime of each possible plan. Hence, Sp-
MachO is optimal if the plan with the lowest actual runtime
has also the lowest estimated runtime. However, this experi-
mental verification of optimality requires to run all possible
execution plans, which is not feasible for longer matrix chains
due to the exponentially growing number of plans according
to Eq. (4). Thus, we did a “brute-force evaluation” only for
matrix chains of length p = 3:

AS

1

·AS

2

·AS

3

. (13)

Although there are only two ways of setting the parenthesis
in this expression, with all the possible storage type transfor-
mations per multiplication node, one obtains 128 di↵erent
execution plans. Fig. 2 shows some of the possible plans, to
illustrate the problem complexity. The execution plans are
composed of

• multiplication operators D/S⇥D/S

D/S

, which can ei-
ther produce a sparse result matrix or a dense one. For
a chain of length p there are exactly p�1 multiplication
operators.

• transformation operator T
S/D

S/D

that transforms the
intermediate result from one storage representation into
another (which is either dense or sparse.) There can
be none or up to 23p�1 transformation operators.

SpMachO estimates the cost for each operator via the cost
functions TM,TT described in section 2. As a consequence, each
operator estimation potentially contributes to the absolute
execution runtime error.
In this experiment, we first executed all 128 plans and

measured the actual execution runtime. Thereafter, we com-
puted the runtime estimations using SpMachO’s cost model
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Figure 7: Vertical histogram of the actual (bars on left-hand
side) and estimated (bars on right-hand side) runtimes of all
128 possible execution plans. The edges denote the plan (dis-
)placement, the linewidth correlates with the corresponding
number of plans. The vertical time axis has a logarithmic
scale.

for each plan. Fig. 7 shows the histograms for the actually
measured (left-hand side) and the estimated (right-hand side)
execution runtimes. Note that the vertical axis has a logarith-
mic scale, hence, the width of the upper bins refers to a larger
time interval than the width of the lower bins. The connect-
ing edges in-between the bins of the two histograms show
where the plans of the actual runtime histogram are placed
in the estimated runtime histogram. If there is an ascending
edge, for example from the lowest bin in the left histogram
to the second lowest bin of the right histogram, then there is
at least one plan, whose runtime was overestimated. If the
edge is horizontal, then the estimated runtimes of all plans
corresponding to this edge are within the same time interval
as their actual runtimes. The width of the edges indicates
how many plans are a↵ected. It is worthwhile mentioning
that for the selection of the best execution plan, the quan-
titative estimation of execution runtimes could potentially
di↵er arbitrarily from the actual runtimes, as long as the esti-
mated order of the plans preserves the actual runtime order
correctly. This condition is only violated for the edges that
are crossing another edge. If the total runtime for a plan is
significantly under- or overestimated, its corresponding edge
crosses multiple other edges. Indeed, the goodness of the
cost model can be defined by the number of edges crossings,
weighted by the number of plans per crossing edge.

The majority of estimations, which are shown in Fig. 7,
are in the correct corresponding time bin. Although there
are quite a few crossings, especially in the middle part, most
of the edges only span over to the neighboring bin. Moreover,
for the selection of the most e�cient plan, only the lower
part of Fig. 7 is relevant. In particular, the plan with the
lowest estimated runtime, which is generated by SpMachO,
should be contained in the lowest bin of the actual runtime
histogram. Since all edges of the lowest estimated time bin
originate from the lowest actual time bin, we observe that the
SpMachO selected plan is at least among the top k plans, if
not the best.

6.3 Performance Comparison
We compared the absolute execution runtime of a matrix

chain multiplication expression using the optimized plan by
SpMachO against R and the commercial system A. Both

systems contain classes and algorithms for dense and sparse
matrices. In R (V3.0.0) we used the Cran R matrix pack-
age[2] (V1.0.12), in system A we used the native sparse
matrix representation. In addition,we included the following
alternative execution approaches to the measurement:

• Left-deep, sparse only: All matrices are multiplied
using a sparse-sparse into sparse multiplication using
the spspsp gemm kernel (S⇥S

S

), starting with the first
left pair and proceeding into the right direction.

• Right-deep, sparse-dense-dense: The outermost
right pair is multiplied using sparse-sparse into dense
multiplication (S⇥S

D

). Then, the matrices on the left
are consecutively multiplied with the right-hand dense
intermediate result matrix using the sparse-dense into
dense multiplication kernel (spdd gemm, S⇥D

D

).

Both approaches use the same infrastructure as SpMachO.
The reason why we chose exactly these two specific execution
strategies is that either of them turned out to be good (or
even optimal) for a reasonable large fraction of matrix chains.
In particular, they yield good performance if the inter-matrix
skew is low, i.e., the dimensions and the densities do not
di↵er, since in these cases, the impact of parenthesization
on the optimization is less significant. We also tried other
alternatives to the dynamic programming approach of Sp-
MachO, for example, a method that picks an execution plan
based on the metaheuristic simulated annealing. However,
due to the high dimensionality of the search space and the
large discrepancy in the runtimes, it turned to be out to be
far worse in most cases, hence, we did not include it in the
measurements.

6.3.1 Data Set

Since there are currently no standardized benchmarks for
large scale linear algebra expressions, it is generally di�cult
to provide a comprehensive performance comparison. There-
fore, we created two performance experiments: first, we took
real world-matrices of di↵erent domains and compared the
execution runtime of self-multiplication chains (matrix pow-
ers). Thereafter, we generated random matrices of di↵erent
dimension and density skews in order to study the systematic
behavior of SpMachO.

Table 2: Sparse matrices of di↵erent dimensions and pop-
ulation densities. The ⇢ = N

nz

/(n ⇥ n) value denotes the
population density (rounded) of each matrix. All matrices
are square (n⇥ n.)

Name Matrix Domain Dim. N
nz

⇢ · 102 [%]

NCSM1 Nuclear Physics 3440 2.930M 24.7
PWNET Power Eng. 8140 2.017M 3.0
JACO1 Econometric 9129 56K 0.07

Tab. 2 lists the matrix data sets which we used in the
evaluation. The first matrix NCSM1 is taken from a nuclear
physics group, the other two (PWNET, JACO1) are from
the Florida Sparse Matrix Collection4.

In our prototype system, some of the multiplication kernels
are implemented single-threaded, whereas other kernels have
parallel implementations. Although we emphasize that the
4http://www.cise.ufl.edu/research/sparse/matrices/
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Figure 8: Left Column: Measurement of the execution run-
time of sparse matrix chains (matrix powers). Right : The
total runtime of SpMachO is visually separated into its
components: the plan execution, the SpProdest runtime
and the dynamic programming part.

conceptual execution plan optimization of SpMachO works
orthogonal to the individual performance of the multiplica-
tion kernels, the absolute execution runtime does obviously
also depend on the low level implementation of each algo-
rithm. Hence, there is still potential to reduce the overall
runtime further by switching completely to massively par-
allelized multiplication kernels. However, although we use
mostly sequential kernels in the prototype, our algorithm
was still able to outperform R and the commercial system A.

6.3.2 Self Multiplications

In this part we discuss the performance of matrix self
multiplications (matrix powers), which is for example used
for the calculation of Markov chains models.
The left column of Fig. 8 shows the absolute runtimes

using SpMachO versus R, commercial system A, and the
right-deep spspsp and left-deep spdd approaches. The first
notion is that the relative performance speedup of SpMa-
chO becomes more significant with increasing chain length.
For matrices with a relatively high density, e.g. NCSM1,
SpMachO outperforms the other systems even for a single

multiplication already by several factors. In this case, Sp-
MachO recognizes that it is worth to convert the matrix
into dense representations prior to the multiplication. For
the second matrix chain (PWNET), the performance gap
is increasing with the chain length up to a speedup factor
of five. Only in the third plot (JACO1), the overhead of
SpMachO amortizes not before a chain length of four. In
this relatively simple case of matrix self multiplications, the
speedup is related to the density evolution of the intermediate
results. When the matrix reaches a relatively high density in
an early stage of the execution plan, SpMachO is likely to
choose dense formats and proceed with dense multiplication
kernels, whereas the use of sparse-only kernels will have a
poor performance for every additional multiplication. That
also explains why the right-deep spdd gemm strategy is often
optimal, e.g. for the PWNET matrix chain.

The right column in Fig. 8 shows the separate runtimes of
each component of SpMachO, which are: the plan execution,
the SpProdest runtime, and the dynamic programming loop.
The runtime of the dynamic programming part is negligible
and only visible for longer chains (10-12). Note that we the
SpProdest cost can be further reduced, if we cache the
density maps. As of now, they are created once prior to
each expression execution, consuming most of SpProdest’s
runtime.

As a side note, the R and commercial system A runtimes
show astonishing similarity with our left-deep spspsp gemm
approach. We assume that they use a similar way of execu-
tion.

6.3.3 Random Matrix Chains

In the next experiment, we used three di↵erent, randomly
created matrices. Products of three matrices are very com-
mon in many applications, for example in algorithms that
contain matrix factorizations.
In order to observe the systematic influence of the data

skew on the execution runtime, we varied three skew di-
mensions: the matrix shape skew, the inter-matrix density
skew and the matrix intra-density skew (as of section 6.1).
For each skew dimension, we varied a parameter ⇠ 2 [0, 1]
that quantifies the skew in a range from zero (no skew) to
one (maximum skew). More precisely, the parameter dimen-
sions (m/n)

i

, ⇢
i

and the intra-density skews ⇠
i

, are randomly
picked from a <min, max, average> distribution, where ⇠
corresponds to the deviation from the average value.
Since we created the matrices randomly for each skew

parameter configuration, one single configuration can have
various random instances, which results in a potentially large
variety of di↵erent runtimes. This is reasoned by the fact
that a skew in the matrices can a↵ect the execution runtime
in both directions – increasingly or decreasingly. Generally
speaking, a large skew in the data can dramatically slow
down naive execution approaches, but also reveals a large
optimization potential for SpMachO by exploiting the skew.
In contrast to the previous self-multiplication experiment,
a skew in the matrices leads to a higher influence of the
parenthesization, and the selection of storage representations
and algorithms.

To be independent of particular random matrix instances,
we repeated the measurement multiple times, hence, we took
25 di↵erent randomly created sparse matrix chains of length
three per configuration. Fig. 9 shows for each skew configura-
tion a box plot with the corresponding median, lower quartile,
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. We varied in x-direction:
the inter-density skew (left), the shape skew (middle) and the intra-density skew (right). The bounding <min,max,avg>
distributions for the data skew are <0.001, 0.5, 0.025> for matrix densities, and <32, 16384, 3072> for the matrix dimensions.
The intra-density skew ⇠ was chosen according to Fig. 6 with values ranging from 0 to 0.5.

upper quartile and whiskers of the execution runtimes. Note
that our measured runtime of SpMachO includes the time
for the density estimation (SpProdest). We observe the fol-
lowing characteristics: First, for low skew parameters, both
SpMachO and the right-deep spdd outperform the other
approaches for most of the instances. For unskewed matrices,
this underlines the result that we already obtained in the
previous experiment for matrix chains with similar densi-
ties, i.e. that the right-deep spdd multiplication execution
is optimal if intermediate results are rather dense. Second,
and more interesting, is the development of the runtime
distributions with higher data skews. In the inter-density
skew experiment (left plot), the median execution time in R,
the commercial system A and the left-deep spspsp approach
increases, whereas the SpMachO median time stays low and
gets even lower for ⇠ = 1. Moreover, the variance in time
of SpMachO grows notably slower than these of the other
systems. In the other two plots, we see a similar picture, al-
though most of the median execution times decrease slightly
in the shape skew experiment (middle plot), and more sig-
nificantly in the intra-density skew experiment (right plot).
Here, the increased intra-density skew leads in the majority
of cases to a reduced execution runtime, which conforms to
our notion. Still, in quite a few cases the runtime of the
other systems explodes, leading to the observed high variance
and scattering of the execution times. The right-deep spdd
approach is more robust, but not optimal for high skews. In
contrast, SpMachO is able to reveal the skew and exploit
it for optimization. As a result, we observe that SpMachO
has a by far better worst-case behavior than the established
systems.

7. RELATED WORK
As this work has overlaps with multiple research areas, we

subdivide the discussion into the major subtopics:

7.1 Optimization of Linear Algebra Expres-
sions

Despite the optimization potential, we did not find that
common numerical algebra systems optimize the execution
of linear algebra expressions based on matrix sparsity and
dimension characteristics. In contrast, the idea of optimizing

linear algebra operations on system level has been men-
tioned in SystemML [14, 6], which describes a Hadoop-based
machine-learning framework with an R-like declarative lan-
guage. However, the cost model they describe in [6] is based
on independent, one-dimensional scaling functions, and they
assume full density (⇢ = 1) for intermediate results. In [5]
they mention that they optimize by assuming “independence
with regard to the sparsity of intermediates”. In contrast, we
observed that particularly in situations with large density
di↵erences (inter-density skew) the density of intermediate
results influences the optimization significantly. Since simple
models are unable to reconstruct the complicated runtime
behaviour of matrix multiplication kernels, we also put our
focus on accurate cost models from an algorithmic perspec-
tive. In addition, our cost analysis revealed that matrix
dimensions and the matrix sparsity can not be regarded as
independent parameters.

7.2 Matrix Chain Multiplication and Density
Estimation

In contrast to dense matrix chain multiplication, which has
been discussed thoroughly in the past decades, e.g. in [12,
16, 21], there is little work about sparse matrix chain multi-
plications. Interesting work that should be mentioned in this
context is from Cohen [9, 10], who extended the dynamic
programming approach idea to sparse matrices. In her work,
she minimizes the overall number of floating point operations
that are needed to compute the matrix chain product by
predicting the non-zero structure for intermediate result ma-
trices on row/column-level. The density prediction algorithm
of [10] is based on random number propagation in a layered
graph, and has a fixed complexity ⇥(

P

N
nz,i

). However, as
observed in section 2, the actual runtime cost of sparse matrix
multiplication kernels are not just proportional to number
of floating point operations. Moreover, coming from a real
system perspective, we consider not only pure sparse-sparse
matrix multiplications, but leverage sparse-dense transfor-
mations and the coexistence of sparse and dense matrices to
optimize on a more complete level.

7.3 Join Optimization
The problem of sparse matrix chain multiplication is re-
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lated to join enumeration and cardinality estimation in a
relational database management system RDBMS. This con-
nection is more obvious when sparse matrices are represented
as hrow, col, vali triple tables [20]. In fact, a multiplication
can then be expressed as a join aggregation [3]. The use of
dynamic programming in join optimization [25, 22] and join
plan generation with respect to physical table properties [17]
were inspiring for this work, as well as the use of multidi-
mensional histograms [23] for the optimization of queries on
multidimensional data. Although the mathematical charac-
teristics of matrices and multiplications require a slightly
di↵erent perspective, it is an interesting aspect that some
of the ideas of relational join optimization can be used for
linear algebra.

8. CONCLUSION
In times of emerging analytical and scientific databases,

many systems [8, 6] started to deeply integrate linear algebra.
This work shows that integrating linear algebra operations,
such as matrix multiplications, is not just adding algorithms
to the database engine. In fact, due to di↵erent matrix
representations, algorithms, and the presence of data skew,
we observed that a naive execution of sparse matrix products
can be up to orders of magnitude slower than an optimized
one.
In this paper we presented SpMachO, which optimizes

sparse, dense and mixed matrix multiplications of arbitrary
length, by creating an execution plan that consists of trans-
formation and multiplication operators. By using detailed
cost functions of di↵erent sparse, dense and mixed matrix
multiplication kernels, SpMachO leads to a faster and more
robust execution compared to widely used algebra systems.
Moreover, our density prediction approach SpProdest with
an entropy-based skew awareness enables accurate memory
consumption and runtime estimates at each stage in the
execution plan.
To put it in a nutshell, we showed how methods inspired

from database technology can improve linear algebra compu-
tations, and took a step into the direction of taking complex-
ity from data scientists – who should not be required to have
profound knowledge about the connections between math-
ematical optimizations, matrix characteristics, algorithmic
complexities and the hardware parameters of their system.
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ABSTRACT
In this paper, we present a method for the e�cient eval-
uation of threshold queries of derived fields for large nu-
merical simulation datasets stored in a cluster of relational
databases. The datasets produced by these simulations are
in the TB and even PB ranges. Data-intensive computa-
tions that examine entire time-steps of the simulation data
are impractical to perform locally by the user, taking days
or months to iterate over the entire dataset. The inte-
grated method for the evaluation of threshold queries that
we have developed achieves scalability through data-parallel
execution of the computations on the nodes of an analysis
database cluster. We extend the scientific analysis environ-
ment with the introduction of an application-aware cache for
query results, building on the concept of semantic caching.
The cache has little overhead and improves query perfor-
mance by over an order of magnitude for queries that hit
the cache. Caching the results of threshold queries preserves
both the I/O and computation e↵ort used to obtain them. In
the case of computational turbulence, this allows scientists
to quickly focus on the most intense events and interesting
regions in any time-step or the dataset as a whole, which
greatly speeds up the rate of scientific exploration and dis-
covery.
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H.2.8 [Database Management]: Database Applications
– Scientific Databases; H.2.4 [Database Management]:
Systems – Distributed Databases; J.2 [Computer Appli-
cations]: Physical Sciences and Engineering – Physics
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scientific databases, data-intensive computing, threshold queries,
turbulence
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1. INTRODUCTION
Better instruments, faster and bigger supercomputers and

easier collaboration and sharing of data in the sciences have
introduced the need to manage increasingly large datasets.
Data-intensive systems and architectures have been devel-
oped with the goal of storing and providing fast access to
such datasets. Examples of such analysis environments in-
clude the GrayWulf and Data-Scope clusters [31, 10] at Johns
Hopkins, which have capacity of 1.1PB and 11PB respec-
tively. One of their missions is to provide persistent storage
and public access to world-class numerical simulation data.
These systems di↵er from the traditional HPC environments
in that they aim to achieve high aggregate throughput by
balancing computation capabilities with I/O and network
bandwidth. The computing systems and services developed
on top of these platforms are more than pure storage engines
and usually have complex analysis routines built-in, which
has largely been driven by the “move the computation to
the data” paradigm [14]. These built-in analysis routines
are most often not novel themselves. They implement core
scientific functionality for the study of the particular scien-
tific phenomena, which was observed or simulated in the first
place. The analysis routines however require novel evalua-
tion strategies and methods for their execution. They have
to operate on large array datasets distributed across multiple
nodes of a cluster of relational databases. In order to reduce
their running times, they have to make e�cient use of the
cluster resources and incorporate leading data management
techniques.

Finding the locations or regions of highest vorticity or
those with the largest norms of the velocity or other fields
of interest enables new insights in the study of fluid dynam-
ics. Analysis of this kind coupled with the ability to ana-
lyze time-series datasets both forward and backward in time
has transformed our understanding of turbulence [12]. Fur-
thermore, threshold, top-k queries and similarity search in
general are important in many di↵erent disciplines. We in-
troduce an e�cient evaluation strategy for threshold queries
over time-series datasets stored in a cluster of relational
databases. Our method evaluates not only threshold queries
of the vector or scalar field data stored in the database, but
also performs thresholding of derived fields.

The main challenge that our approach tackles is that the
data-intensive computation of derived fields has to be car-
ried out on-demand for extremely large array datasets stored
in an analysis cluster environment comprised of multiple
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database nodes. We focus on the evaluation of threshold
queries of fields derived from the data stored in the cluster
as these queries are the most interesting scientifically. How-
ever, our approach applies to the evaluation of top-k queries,
rollup queries and data-reducing queries in general. The es-
tablished data management techniques that our approach
combines make the approach easy to understand. It can
be applied to other scientific analysis environments, which
manage large datasets in a database management system.
Examples include the Sloan Digital Sky Survey [28], the Mil-
lennium Simulation [23] and the Open Connectome Project
[6].

Evaluating threshold queries within the database cluster
allows scientists with modest computational and network
capability to narrow down on and examine some of the most
interesting regions and features in the dataset and focus on
the subsequent analysis needed to understand these events.
It is impractical to materialize all possible derived fields and
store them alongside the raw data due to the large size of the
datasets and the limits of available storage. Obtaining the
derived field and thresholding locally by the user requires
not only the computation of the derived field over an entire
time-step server-side but also the transfer of a large amount
of data over the network, most of which are subsequently
discarded. One of our collaborators reported that such a
local evaluation of a threshold query over an entire time-step
took over 20 hours. It would take months to iterate over the
entire dataset. This highlighted the need for providing the
capability through an integrated approach, which performs
the evaluation server-side.

Database, operating and file system caches are e↵ective at
speeding up access to the large amounts of data stored on
disk. However, this might not be su�cient for some applica-
tions, because these application-independent caches cannot
exploit dataset-specific structure and application-level infor-
mation [20]. Moreover, even if the data are available in one
or more of these application-independent caches the com-
putation associated with the derived field still needs to be
performed for each point on the grid, because results of pre-
vious computations are not cached. We will demonstrate
that an integrated approach, which computes the derived
fields on-demand in a data-parallel manner, performs the
evaluation over an entire time-step in a few minutes. Stor-
ing the query results in an application-aware semantic cache
further reduces the running times to several seconds.

Thresholding allows scientists to obtain and examine the
regions containing the most intense events and features in
the dataset in the case of turbulence. These are often the
locations that have the largest vorticity norms and have in-
tense vortices or reconnection events. In magnetohydrody-
namics, the locations of largest electric current are of great
interest for similar reasons. It is important that threshold
queries are evaluated in an e�cient manner, because often
further subsequent examination and analysis is required to
understand the physics that drive these intense events.

There are several challenges that arise during the eval-
uation of threshold queries of derived fields in an analysis
database cluster. The field variables have to be evaluated
on-demand from the array data stored in the database clus-
ter. The evaluations are data-intensive as they perform ker-
nel computations on extremely large multidimensional ar-
ray datasets. A kernel computation computes the value at
a grid location using the data points at a set of neighbor-
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Figure 1: Architecture of the JHTDB.

ing locations. Kernel computations have to be performed
at each location on the grid as opposed to at a particular
number of target locations. The evaluation needs to be dis-
tributed across the nodes of the database cluster to avoid
the unnecessary movement of data over the network and to
achieve scalability. Techniques that target the traditional
supercomputing environments do not translate directly to
the distributed database setting of an analysis cluster envi-
ronment.

We present a method for the e�cient evaluation of thresh-
old queries over fields derived from the raw vector or scalar
fields of the numerical simulation stored in the database.
Our method makes e↵ective use of the cluster resources and
achieves high throughput and scalability. We exploit the
parallelism available in the cluster by means of data-parallel
execution of the computations. We extend the database
management system with an application-aware cache for
query results. We build on the idea of an application-aware
cache introduced by Lopez et al. [20] and more broadly on
the concept of semantic caching [9]. Rather than caching
just data as is the case in system caches and the tree-cache
described by Lopez et al., we cache query results along
with query metadata and subsequent queries are evaluated
against the cache. This leads to query performance improve-
ment of over an order of magnitude.

The contributions of this paper are the following:

• Computing derived fields of large simulation data on-
demand and evaluating threshold queries on them at
extreme scale. This provides large data analytics ca-
pabilities that examine entire time-steps of the simula-
tion transparently to the user in a production analysis
environment.

• Achieving this through the combination of existing
data management techniques such as data parallelism
and semantic caching as well as taking advantage of
heterogeneous scientific cluster architectures (sharded
relational DBMS with several SSDs per node).

• Evaluating the proposed method on data-intensive work-
loads in a live production environment and showing
scalability results on datasets hundreds of terabytes in
size.
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Figure 2: Probability density function of the norm
of the vorticity field for a representative time-step
for the MHD dataset.

2. JOHNS HOPKINS TURBULENCE
DATABASES

Data-intensive architectures and compute clusters built
from commodity hardware rely on parallel I/O to multiple
disks and high network bandwidth to achieve high through-
put. Such systems have only recently been deployed for the
storage of large numerical simulation datasets. The virtual
laboratories built on these systems make use of relational
database system technology to store and manage large ar-
ray datasets. Relational database systems however often do
not support all of the functionality that scientists are inter-
ested in out of the box. It is either up to the user to develop
more sophisticated analysis routines locally or such capabil-
ities have to be built into the database through user-defined
functions or stored procedures.

The method that we have developed for the evaluation
of threshold queries of derived fields was deployed and inte-
grated into the Johns Hopkins Turbulence Databases (JHTDB)
[19, 26]. It solves a pressing problem in a production scien-
tific analysis environment, which di↵ers from the traditional
supercomputing environments and provides large data ana-
lytics capabilities transparently to the public. The JHTDB,
built on top of the GrayWulf and Data-Scope clusters, serves
as a public virtual laboratory for the study of turbulent phe-
nomena. The JHTDB stores several datasets, which are the
output of high-resolution numerical simulations of turbu-
lence. The 3d time-series data are partitioned into small sub-
cubes and stored in relational databases distributed across
the nodes of the cluster. Access to the data is provided
by means of Web-services and a variety of analysis func-
tions have been implemented and can be executed through
Web-service calls (Fig. 1). At present the service hosts
four datasets, which are available publicly. The data are
the output of numerical simulations of forced isotropic tur-
bulence, magnetohydrodynamics (MHD), channel flow tur-
bulence and homogenous buoyancy driven turbulence. The
total amount of space occupied by the datasets is over 230
TB.

The database nodes are part of the GrayWulf [31] and
Data-Scope [10] clusters. Each node is running Windows
Server 2008 and SQL Server 2008 R2. The data for each
dataset reside on a regular three-dimensional spatial grid
with the exception of the channel flow data, which has an

irregular y dimension. The data are partitioned spatially
across 4 to 8 database nodes, and each database node hosts
one or more databases. We use the Morton z-order space-
filling curve to distribute the data across nodes and databases
[26]. Each time-step is spatially subdivided into database
atoms, which are of size 83. Each such atom is indexed
by the time-step, which it belongs to and by the Morton
code of it’s lower left corner. This combination of index and
data forms a record in the database. Queries to the data
and derived fields, such as derivatives and filtered quanti-
ties are evaluated through stored procedures or user-defined
functions implemented in the Common Language Runtime
(CLR) framework.

The Web-services are hosted on a front-end Web-server,
which handles user requests and hosts the main Web-page
portal. The Web-server acts as a mediator sending the
users’ requests to the database nodes and initiating their dis-
tributed evaluation. Each request is broken down into mul-
tiple parts based on the spatial layout of the data. Each part
is asynchronously submitted for evaluation to the database
which stores the data needed for the evaluation. The Web-
server assembles the results from the distributed computa-
tion and sends them back to the client.

The JHTDB provides a variety of data-intensive analysis
routines that are executed on the database nodes. These
include interpolation, di↵erentiation, particle tracking and
spatial filtering. These tasks are often data-intensive and
in order to leverage the capabilities of the cluster we have
developed data-driven batch processing techniques for their
evaluation [17, 16]. Most of these tasks usually operate on
subsets of the space or a collection of individual target loca-
tions within a time-step.

In contrast, threshold and top-k queries usually have to
examine the entire data volume of a time-step or a significa-
tion portion of it. Furthermore, the data product of thresh-
old queries is much smaller in relation to the amount of data
that need to be examined. This fact combined with the fact
that subsequent queries can reuse previously computed re-
sults makes the query results suitable to caching.

3. SCIENTIFIC USE CASES
One of the applications of thresholding in turbulence is

to find the locations of maximum vorticity in a particular
time-step or the dataset as a whole. The locations of maxi-
mum vorticity are usually associated with the most intense
vortices in the dataset and often have interesting and com-
plex reconnection events associated with them. Once ob-
tained from the service, these locations can be clustered in
both 3d and 4d. This allows scientists to examine their evo-
lution with the flow and make subsequent analysis queries
as needed in order to study these events. The relationship
between di↵erent “worms” (see Figure 3) that connect and
reconnect at those locations is of the most interest.

The vorticity is computed from the velocity field by taking
its curl:
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We use finite di↵erencing methods of di↵erent orders for the
evaluation of the curl. For example, with 4th-order centered
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Figure 3: 3D (single time-step) cut through the 4D cluster containing the most intense event.

finite di↵erencing each partial derivative is evaluated from
the 4 adjacent grid node values as follows:

df

dx

����
xn

=
2

3�x
[f(x

n+1)� f(x
n�1)]

� 1
12�x

[f(x
n+2)� f(x

n�2)], (2)

where f denotes any one of the three components of the
velocity and �x is the width of the grid in the x direction.
The partial derivatives along y and z are computed in the
same fashion. Figure 2 shows the distribution of the values
of the norm of the vorticity field in the MHD dataset for a
representative time-step. This is indicative of how the values
are distributed in the dataset as a whole. This coarse view
of the data can be used by scientists to guide the selection
of threshold values.

Figure 3 shows the most intense event observed in the
forced isotropic turbulence dataset. The locations of maxi-
mum vorticity in the dataset were clustered in this case in
4d using a friends-of-friends algorithm. It is interesting to
note that the cluster containing the most intense event in
the entire dataset develops from nothing (i.e. it does not
appear in the first few time-steps) and it takes less than the
timespan stored in the database for it to develop. Figure
3 also shows that most interactions between worms are not
simple. There are several worms interacting in a complex
way at the same time. Similar type of analysis and the fact
that the entire time history of the simulation is available
in a database cluster, which provides built-in sophisticated
analysis routines revealed flux-freezing breakdown in MHD
turbulence [12], showing why solar flares last minutes rather
than the millions of years that conventional theory would
predict.

In addition to obtaining the regions of largest vorticity,
there is substantial interest in studying the regions with
highest values for other fields, such as the second and third
velocity gradient invariants (Q and R). These invariants are
scalar quantities whose values contain information about the

topology of the flow and the rates of vortex stretching and
rotation. In MHD, finding the locations with largest val-
ues for the electric current can lead to new insights into
the development of the most intense reconnection events of
magnetic field sheets in the simulated plasma. Similarly to
the vorticity, the electric current is derived from the mag-
netic field by taking its curl. The list of fields of interest,
on which scientists would like to perform threshold queries
certainly does not stop here and is indicative of how valu-
able this functionality is in the study of turbulence and fluid
dynamics.

4. THRESHOLD QUERY EVALUATION
Threshold queries of derived fields submitted to the JHTDB

are evaluated using a data-parallel execution strategy and
the query results are cached in an application-aware seman-
tic cache. In addition to query results, the cache stores their
semantic descriptions and query metadata and parameters
used to obtain them. The evaluation strategy for queries
that do not hit the cache is driven by the spatial partition-
ing of the data across the nodes of the cluster.

Derived fields computation: The databases store only
the raw field data from the simulation (e.g. velocity, pres-
sure, magnetic field etc.). However, the threshold queries of
most interest to science users produce all locations where the
values of a derived field are above a given threshold. Thus,
the derived field in question has to be computed from the
raw data first. For most derived fields of interest, this com-
putation has local support. It has an associated localized
kernel of computation around each grid node. Therefore,
the value of the derived field at each grid node depends on
the value of the stored field at all of the grid locations, which
are part of the kernel of computation.

Distributed data-parallel execution: In most cases
threshold queries operate over an entire time-step. Each
such query is subdivided by the mediator into queries sub-
mitted to each of the database nodes. Each node evaluates
the query over the data that it has stored locally. Only a
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Figure 4: Points with values above 7 times the root
mean square value of the vorticity for a single time-
step.

small amount of data along the boundary need to be re-
quested from adjacent nodes. The size of the band of data
that may not be available locally is equal to a kernel half-
width. Such a band is needed on each of the sides of the
box forming the domain of the computation. The data are
read into memory and the particular field requested is com-
puted at each of the locations on the grid. The same strat-
egy applies when utilizing multiple processes per node. The
norm or absolute value of the derived field at each location
is compared against the specified threshold and if the value
is higher, it is maintained along with the spatial coordinates
of the location in a list.

We impose a limit on the maximum number of locations
that can be returned as a result of a threshold query in
order to prevent having to return the entire time-step or a
significant fraction of it for queries with thresholds that are
set too low. Currently this limit is set conservatively to 106

locations, which is su�cient to examine a time-step in detail.
In the case of the vorticity, the values above 8 times the root
mean square value, which is about 25% of the maximum, are
contained within 2.6⇥105 points in each time-step. Figure 4
shows all the points in a single time-step with values above 7
times the root mean square value. There are 2.4⇥105 points
in the figure. Given that we are interested in extreme events,
obtaining the locations with values even within 50% of the
maximum would be su�cient. At the same time this also
limits the amount of data that have to be returned to the
user over the network as well as the amount of data that have
to be cached. Users receive an error message notifying them
if their request has a threshold that is set too low. If a user
is interested in obtaining more data he or she can request
the values of the derived field directly. Alternatively, if they
are interested in the density distribution of values they can
examine the probability density function (e.g. Fig. 2), which
is computed using a similar strategy to threshold queries.

N
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Figure 5: Distributed evaluation of threshold
queries and architecture of the application-aware
cache. Each database node has local cache tables,
which reside on solid-state drives attached to the
node.

Application-aware cache for query results: A cen-
tral part of the evaluation strategy for threshold queries that
we have developed is the introduction of an application-
aware cache for query results (Fig. 5). The results of these
queries are small compared to the amount of data that need
to be examined and the results can be used to answer subse-
quent queries as long as they are within the same region and
specify the same or higher threshold. Each database node
has a local cache. Cache entries are indexed by the field,
time-step, spatial region and the threshold requested. We
use a least recently used cache replacement policy. All mod-
ifications of and queries to the cache are executed within a
transaction with snapshot isolation level to avoid dirty-reads
or an inconsistent view of the cache.

Caching the query results preserves the computational ef-
fort in addition to substantially reducing I/O. The cached
data are for the particular derived field that was queried
and not the raw data of the simulation fields. Thus, we do
not have to derive the requested field from the raw data for
queries that hit the cache. This results in a substantial im-
provement in query performance as we only have to scan a
small set of data and do not need to perform any additional
computation.

Not all query results are suitable to caching. Most of
the queries submitted to the JHTDB other than thresh-
old queries request data at a collection of target locations.
Given that there are 10244 possible locations for three of the
datasets and 6⇤10244 locations for the channel-flow dataset
the chance of reuse for the results of these queries is ex-
tremely small. This is why the cache currently stores only
the results of threshold queries. Nevertheless, it can easily
be extended to cache the results of other query types as well
if that becomes advantageous.

The cached query results are stored in a table in the
database and the overall size of the cache is limited by the
amount of available SSD disk space, not memory. Given a
limit of ⇠106 points per time-step for a threshold query, the
space required to cache the maximum number of points in-
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cluding the index space and database overhead is ⇠40MB.
Therefore for a dataset containing 1024 time-steps, as is the
case for the isotropic turbulence and MHD datasets part of
the JHTDB, a cache size of 40GB is su�cient to cache the
query results for threshold queries of a derived field over
the entire dataset. The currently available SSD disk space
per node is ⇠200GB, which will be su�cient to maintain
the threshold results for nearly five derived fields over the
entire dataset. In contrast, computing and materializing
a scalar derived field for the entire dataset would require
⇠5TB (15TB for vector fields).

Algorithm 1 Get points above threshold using cache

Require: Dataset d, Field f , Timestep t, Threshold k,
Query box q = [x

l

, y
l

, z
l

, x
u

, y
u

, z
u

]
1: procedure GetThreshold

2: points List()
3: updateCache false
4: query  SELECT * FROM cachedb..cacheInfo

WHERE dataset = d AND field = f
AND timestep = t

5: command SqlCommand(query)
6: reader  command.ExecuteReader()
7: if reader.HasRows() then
8: k

s

 reader[“threshold”] . Stored threshold
9: start reader[“startIndex”]
10: end reader[“endIndex”]
11: ordinal reader[“ordinal”]
12: if k � k

s

& q 2 [start, end] then
13: query SELECT * FROM cachedb..cacheData

WHERE cacheInfoOrdinal = ordinal
14: command SqlCommand(query)
15: reader  command.ExecuteReader()
16: while reader.Read() do
17: location reader[“zindex”]
18: norm reader[“dataV alue”]
19: if norm � k & location 2 q then
20: points.Add(new Point(location, norm))
21: end if
22: end while
23: else
24: updateCache true
25: end if
26: else
27: updateCache true
28: end if
29: if updateCache then
30: Retrieve data covering q from DB.
31: for all p 2 q do
32: Compute f at p.
33: if kf(p)k � k then
34: points.Add(new Point(p, kf(p)k))
35: end if
36: end for
37: Update cacheInfo and cacheData tables.
38: end if
39: return points
40: end procedure

The entire cache is comprised of two database tables. The
cacheInfo table stores metadata for the cached entries. It
stores information about the dataset, field, time-step, start
and end coordinates of the spatial region examined and the

threshold value used. The cacheData table stores the loca-
tions of all of the grid points, for which the field queried
has a norm higher than the specified threshold. The cache-
Data table is foreign key constrained with the ordinal of the
cacheInfo table. This allows us to quickly find a record in the
cacheInfo table and retrieve all of the cached entries using
an index lookup.

Overall execution of threshold queries: Algorithm 1
illustrates the process of obtaining all points with norms
of the specified field above the given threshold from the
database in the presence of a cache. The mediator sub-
mits a query to each of the database nodes storing the raw
data asynchronously. Each node begins evaluation of the
query by executing Algorithm 1. First a cache lookup is
performed. If the data for the requested field, time-step
and spatial region are available in the cache and if the spec-
ified threshold is higher than the one stored in the cache
the query can be answered from there. The records are re-
trieved from the cache and the ones that have a higher value
are returned to the mediator and subsequently back to the
user. If the data stored in the cache have a higher thresh-
old than the one requested the cache needs to be updated.
Similarly, if the cache does not have an entry for the spec-
ified parameters the query needs to be evaluated from the
raw data. In those cases the raw data are read into mem-
ory with data along the boundary requested from adjacent
nodes as needed. The specified field is derived at each loca-
tion on the grid and the norm or absolute value of the field
is compared against the threshold. The locations where the
values are higher than the threshold need to then be stored
in the cache. If the cache does not have enough space for
the new records, space is freed up by removing the least
recently used data across all quantities. Reading from, up-
dating or modifying the cache is done within a transaction
with snapshot isolation level. Snapshot isolation allows us
to avoid locking the tables that serve as the cache for each
transaction. This provides for a higher degree of parallelism
and avoids any potential deadlocks from queries running in
parallel.

5. EXPERIMENTAL RESULTS
We evaluate the developed method for the execution of

threshold queries to large numerical simulation datasets with
the goal of analyzing the benefits and overhead from the
introduction of the application-aware cache. We also analyze
the scaling properties of the method. Finally, we show that
an integrated method that performs the evaluation on the
database nodes near the data is several orders of magnitude
faster than the user requesting the derived filed of interest
from the database and evaluating the threshold locally.

5.1 Experimental Setup
The experiments were run on the production database

nodes of the JHTDB through a development Web-server
hosting the Web-services. We used the MHD dataset (Sec.
2) for the experimental runs. This dataset is partitioned
across 4 database nodes according to spatial regions in the
Morton z-order. The database nodes are 2.66 GHz dual
quad-core Windows 2008 servers with SQL Server 2008 R2
and 24 GB of memory. Each node has 24 2TB SATA disks
arranged as a set of four RAID-5 arrays. The database files
are striped across the nodes and their associated disk arrays.
The tables storing the data are partitioned spatially along
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Figure 6: Execution time for threshold queries at
di↵erent threshold levels compared with the execu-
tion time of the same queries in the absence of a
cache.

contiguous ranges of the Morton z-curve and the data for
each partition reside in one database file.

For this evaluation we looked at the performance of thresh-
old queries to the vorticity field. The vorticity field is rep-
resentative of derived fields that have to be computed from
the stored data. It is defined as the curl of the velocity field.
As described in section 3 thresholding the vorticity field is
important in the study of fluid dynamics and obtaining the
locations of maximum vorticity can lead to new insights into
the development of the most intense vortices observed in the
dataset.

5.2 Evaluation of cache effectiveness
The central part of the strategy that we have developed

for the evaluation of threshold queries of derived fields is the
application-aware cache, which stores the results of these
queries. We first evaluate the overhead associated with the
introduction and maintenance of the cache. Figure 6 com-
pares the execution time of queries in the absence of a cache
with the execution time of the same queries, which interro-
gate the cache first (blue and red bars in the figure). The
execution times are also shown in Table 1. For these experi-
ments we requested the locations with norms of the vorticity
above thresholds at di↵erent levels. We refer the reader to
Figure 2, which shows the distribution of values of the norm
of the vorticity field in the MHD dataset to get an appre-
ciation of the di↵erent threshold values used in the exper-
iments. For the first set the threshold was set high (80.0)
and only ⇠4,300 points (or 0.0004% of all points) were above
the threshold. For the second set a medium threshold (60.0)
was chosen and ⇠87,000 points (or 0.0081% of all points)
were above the threshold. Finally, a low threshold (44.0)
was chosen for the last set and there were ⇠900,000 points
(or 0.0847% of all points) above the threshold. For each set
a random time-step was chosen and the queries were run
against that time-step. The measurements were taken from
the point of view of the end user.

As we can see from the results shown in Figure 6 the
overhead associated with querying the cache first is minimal,
less than 3% and within the margin of error. The cache was
initially populated by executing several hundred unrelated
queries and contained several million entries. During the

“cache-miss” runs cache entries for the particular time-step
queried were dropped before each run, making sure that
each query would produce a cache miss and would have to
be evaluated from the raw data. The execution times were
averaged over 10 runs. We utilized 4 processes per database
node for the evaluation of each query. The method shows
stable running time across di↵erent time-steps and threshold
levels in the absence of a cache and during cache misses. The
running time increases slightly only because of the larger
result set that has to be returned to the user.

Vorticity
threshold

Points
above
threshold

Average Running time (s.)
No cache With

cache
(miss)

With
cache
(hit)

80.0 4247 97.1 100.2 0.5
60.0 86580 113.7 115.9 1.2
44.0 909274 111.6 115.0 9.1

Table 1: E↵ectiveness of caching.

Cache hits reduce the running time of threshold queries
by over an order of magnitude as shown in Figure 6 and
Table 1. This is because we do not have to compute the
requested derived field from the raw data, which eliminates
the associated I/O. Only the cache entries need to be looked-
up, which is substantially less data than the raw vector or
scalar field data. For the queries with large result sets it is
actually the network time taken to transfer the results to
the user that dominates the overall execution as opposed to
the I/O or computation time as we show later. Cache hits
are evaluated by first warming up the cache by submitting
the same set of threshold queries of the vorticity field as
before. We then submit several more unrelated queries with
di↵erent time-steps and threshold values in order to pollute
the cache. Finally, we issue the original set of queries and
measure their running times. Let us focus on the query with
low threshold, which returns ⇠900,000 points. Given that
valid threshold values are limited to those that result in no
more than 1,000,000 points it is likely that all subsequent
queries to this time-step will result in a cache hit as their
threshold is likely to be equal or higher than the cached
one. Currently we observe fairly high cache-hit ratios as the
workload is very structured and queries tend to examine the
same regions in space and time.

5.3 Scaling and Distributed Evaluation
The evaluation of threshold queries of derived fields from

the raw data is both I/O and computationally bound. These
queries examine the entire data volume of a simulation time-
step and are, therefore, good candidates for a data-parallel
distributed evaluation. Our data-parallel implementation
exhibits good vertical and nearly ideal horizontal scaling as
shown in Figure 7. For the scale-up experiments (Fig. 7(a)),
we used the same queries and threshold values as for the runs
shown in Figure 6 and Table 1 but with varying number of
processes per node. Cache entries for the time-step queried
were again dropped before each run in order to evaluate the
scaling properties of the computation of the derived field
from the stored data. The computations for all of the de-
rived fields of interest (such as the vorticity) at each grid
point need data from adjacent grid points only. Therefore,
each node of the cluster is able to compute the derived field
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(b) Scale-out to multiple nodes

Figure 7: Execution time for threshold queries at di↵erent threshold levels – high, medium and low. The
scale-up evaluation was performed utilizing 1-8 processes per server on a 4-node cluster. The scale-out
evaluation was performed on 1 through 8 nodes.

from data available locally with only a small amount along
the boundary of each region having to be retrieved from
adjacent nodes. Each computation is independent and em-
barrassingly parallel. This allows us to make use of multiple
processes per node and scale out to multiple database nodes.

We observe nearly a two times speedup when going from
a single process per node to two processes per node (Fig.
7(a)). The speedup diminishes to 1.4 times when going to
4 processes and little speedup is observed with 8 processes
per node. While the computation time scales with increased
process count, the time to perform I/O does not as the data
on each node reside in the same database table and on the
same set of disks. Additionally, I/O redundancy increases
as the process count increases as data along the boundary
of each region are requested by multiple processes. SQL
Server already utilizes parallelism to perform the I/O even
when data are retrieved utilizing a single query. Finally, the
experiments were run on the live production database nodes,
which were also servicing other user queries in addition to
operating system and other SQL Server processes. Never-
theless, running with 4 processes per node is nearly 2.6 times
faster when compared to running with a single process.

The scale-out experiments show a nearly perfect linear
speedup as the evaluation is distributed to an increasing
number of database nodes (Fig. 7(b)). For these experi-
ments we issued queries with the same threshold levels as
before to a cold cache. We utilized a single process per
database node to evaluate the horizontal scaling of the com-
putation. The evaluation benefits not only from the addi-
tional computational resources with the addition of database
nodes to the cluster but also from the increased memory size.
The data needed for the computation of each derived field
are read into memory and the larger memory size means
that there is less contention with other system and applica-
tion processes and it is less likely that virtual memory needs
to be used. SQL Server also benefits from a larger bu↵er
pool, which reduces the I/O time.

As expected, we observe even weaker speedup when the
queries perform nothing but I/O and the number of pro-
cesses per node is increased. Figure 8 compares the running
time of the queries with a medium threshold and executed

0"

50"

100"

150"

200"

250"

300"

1" 2" 4" 8"

Ex
ec
u&

on
)&
m
e)
(s
.))

Number)of)processes)

Total"running"3me"
I/O"Only"

Figure 8: Execution time for threshold queries eval-
uated utilizing di↵erent number of processes per
server compared with the time taken to perform the
I/O only.

with varying number of processes per node with the time
taken to perform the I/O only. The I/O time is about half
of the total running time for these queries. SQL Server al-
ready makes use of parallelism internally and the data have
to be retrieved from the same set of disks. Nevertheless, the
I/O time does decrease with additional processes, this is be-
cause the data reside in a partitioned table and the data in
each partition are placed in a separate file on one of the disk
arrays. Depending on how the data requests are scheduled
in SQL Server this allows for the disks arrays to be driven
in parallel. Additionally, with more processes per node the
data can also be consumed faster. It is worth noting that
the total running time for the queries evaluated with 4 or 8
processes is about the same as the time it takes to perform
the I/O only with a single process.

So far we have presented the e↵ectiveness of evaluating
threshold queries of derived fields on the database cluster
storing the raw simulation data. The data-parallel compu-
tation of the derived fields allows us to evaluate a threshold

308



0"

20"

40"

60"

80"

100"

120"

4247" 86580" 909274"

Ex
ec
u&

on
)&
m
e)
(s
.))

Number)of)points)above)threshold)

Mediator3user"
communica9on"
Mediator"+"DB"
communica9on"
Compute"

I/O"

Cache"lookup"

(a) Vorticity

0"

20"

40"

60"

80"

100"

120"

3801" 75062" 809735"

Ex
ec
u&

on
)&
m
e)
(s
.))

Number)of)points)above)threshold)

Mediator4user"
communica:on"
Mediator"+"DB"
communica:on"
Compute"

I/O"

Cache"lookup"

(b) Q-criterion

0"

20"

40"

60"

80"

100"

120"

1452" 11195" 939716"

Ex
ec
u&

on
)&
m
e)
(s
.))

Number)of)points)above)threshold)

Mediator4user"
communica:on"
Mediator"+"DB"
communica:on"
Compute"

I/O"

Cache"lookup"

(c) Magnetic field

0"
1"
2"
3"
4"
5"
6"
7"
8"
9"

10"

4247" 86580" 909274"

Ex
ec
u&

on
)&
m
e)
(s
.))

Number)of)points)above)threshold)

Mediator4user"
communica:on"

Mediator"+"DB"
communica:on"

Cache"lookup"

(d) Vorticity (cache hit)
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Figure 9: Breakdown of the execution time for threshold queries requesting di↵erent fields and at di↵erent
threshold levels – high, medium and low.

query over an entire 10243 time-step part of a 20TB dataset
in less than two minutes. The introduction of an application-
aware cache for the query results of these queries reduces
this time to several seconds when there is a cache hit. In
contrast, one of our science collaborators reported that his
evaluation of this functionality performed locally would take
over 20 hours to complete. To perform the evaluation lo-
cally the user requests the derived field of interest from the
database by submitting multiple queries over subregions of
a time-step. This is necessary as requesting a derived field
over an entire time-step will overload the network. Derived
fields may have even more components than the scalar or
vector field stored in the database. For example, the veloc-
ity gradient (needed for the computation of the vorticity)
has 9 components compared with the 3 components of the
velocity. Given a single-precision floating-point representa-
tion, this makes the velocity gradient of an entire time-step
at least 36GB in size. A Web-service request will be much
larger due to the overhead of wrapping the data in an xml
format. After the field of interest is obtained locally the user
has to threshold it to get the final result, which is reasonably
fast, but discards most of the data that have been requested
to yield a small in size result.

5.4 Evaluation of Additional Fields
The data-parallel evaluation of threshold queries shows

stable execution time for di↵erent derived fields in addi-
tion to the di↵erent threshold levels and time-steps queried.
The execution times depend on the complexity of the com-
putation needed to evaluate the particular derived field re-
quested. Figures 9(a), 9(b) and 9(c) show a breakdown of
the execution time of threshold queries of di↵erent derived
fields, which are evaluated from the raw data and a cold
cache using 4 processes per node on a 4 node cluster. Almost
the entire time is spent performing the I/O and computation

associated with the derived field requested.
The vorticity field and the Q-criterion have similar I/O

requirements as they have the same kernels of computation
and are both derived from the velocity gradient. The vor-
ticity has 3 components and its computation only examines
6 of the 9 components of the velocity gradient, which are
also examined in pairs (see Eq. 1). On the other hand,
even though the Q-criterion is a scalar value, it is computed
through a non-linear combination of all 9 of the components
of the velocity gradient. This means that the velocity gra-
dient has to be computed at each grid location before the
Q-criterion is evaluated, which is reflected in the increased
computation time that we observe for the Q-criterion. The
magnetic field is one of the raw fields of the magnetohydro-
dynamics dataset that are stored in the database. Therefore,
there is no additional computation needed to derive it from
the data, every data point has to be simply compared with
the threshold level specified. This is why the computation
time is much smaller compared to the queries for the vortic-
ity and the Q-criterion. The I/O time for the magnetic field
is also smaller. This is because its kernel of computation
is a single point and therefore there are no additional data
along the boundary that have to be requested from adja-
cent nodes. In that case all of the data needed are available
locally for each database node.

In all of these cases, the time taken to interrogate the
cache is negligible. The mediator time to distribute the
queries and assemble the results as well as the time to trans-
fer them to the user are also substantially smaller than the
I/O and computation times. As expected they increase pro-
portionally to the number of points in the result set.

It is interesting to note that the time taken to perform a
cache lookup is relatively small even in the case of a cache
hit as can be seen in Figures 9(d), 9(e) and 9(f). This is
because the cache tables reside on SSDs attached to each
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database node (see Fig. 5) and retrieving the data is always
done through a clustered index lookup. In the cases of a
cache hit, the majority of the time is spent simply trans-
ferring the results from the database nodes to the mediator
and then back to the user. These times remain more or less
constant between the cases of cache misses and cache hits
(top row and bottom row of Fig. 9). Caching the results of
threshold queries e↵ectively preserves the I/O and computa-
tional e↵ort spent during their initial evaluation and results
in over an order of magnitude speedup for all the di↵erent
fields requested as we can see in Figure 9.

6. RELATED WORK
Only select few database systems o↵er support for arrays

as first-class citizens. Even fewer provide the fault-tolerance,
scalability and availability guarantees necessary for a system
managing multi-terabyte datasets in a production setting.
This is part of the reason why we have chosen to repre-
sent the array data in the JHTDB as a collection of binary
large objects in a relational DBMS and perform the array
manipulation tasks necessary at the application level. The
systems that provide support for arrays and aim to handle
large array data e�ciently are RasDaMan [5], SciDB [30]
and MonetDB/SciQL [34]. RasDaMan partitions raster ob-
jects into tiles, which are stored in a traditional relational
database system. This approach is similar to how the nu-
merical simulation data are handled in the JHTDB. Ras-
DaMan provides RasQL [4], which is a SQL-92 based query
language for the manipulation of raster images. SciDB is
an array database system build from the ground up. Array
attributes are partitioned vertically and each attribute ar-
ray is decomposed into overlapping chunks. SciDB provides
a declarative Array Query Language (AQL) and an Array
Functional Language (AFL). Users can create arrays with
named dimensions with AQL and make use of the functional
operators defined in AFL, such as SLICE, SUBSAMPLE,
SJOIN, FILTER and APPLY. SciQL’s focus is on language
design and integration with SQL:2003 syntax and semantics.
It is implemented within the MonetDB framework [24].

Database systems support rollup queries, including top-k
queries, but in most cases these queries apply only simple
linear score functions on the attribute values of individual
records. Additionally, many top-k query evaluation tech-
niques rely on the score functions being monotone in order to
perform early pruning (see [15] for a survey of top-k evalua-
tion strategies). This is an assumption that we cannot make
for the functions used to compute all the di↵erent possible
derived fields of interest in fluid mechanics. Even approaches
that aim to work with general score functions [11, 33] as-
sume that the function operates on the attributes of a single
record. In contrast, our approach performs a kernel com-
putation at each grid location in order to obtain the value
of a derived field at that location and examines the vector
or scalar array data at all neighboring locations, which are
within the kernel of the computation. The functions used
to derive the field may even be non-linear. Finally, a top-k
approach may not be suitable in the cases where scientists
are interested in performing threshold queries at di↵erent
time-steps as the same threshold level will produce di↵erent
number of points in the result set for di↵erent time-steps.

The processing of top-k queries has been studied exten-
sively in the context of distributed and relational database
systems. A survey of di↵erent techniques in the case of cen-

tralized processing is given in [15]. In the case of distributed
processing di↵erent approaches focus on horizontally [3, 32]
or vertically [7, 8, 13, 21, 22] distributed data. None of
these approaches deal with array data stored in a relational
database system. Zhao et al. propose an algorithm for the
processing of top-k queries in large-scale distributed envi-
ronments called BRANCA [35]. They build on the idea of
semantic caching [27] and make use of branch caches, which
store results of previous top-k queries with respect to the
data stored on each server. The caching mechanism that
we use is similar in that regard, but the queries that are
evaluated in our system operate on derived fields, which are
computed at each location by accessing data from a sur-
rounding region. The queries described in [35] operate over
the attributes of individual records only using simple linear
score functions.

Aßfalg et al. introduce the concept of threshold queries
in time-series databases [2]. Their definition of threshold
queries di↵ers from the threshold queries described in this
paper. They are concerned with determining the time-series,
which exceed a user-defined threshold at time frames similar
to the time-series specified in the query. Thus, their defi-
nition of threshold queries is concerned with the temporal
relationship between the time-series stored in the database
(usually one dimensional sequence of measurements) and the
time-series given in the query. In contrast, our approach fo-
cuses on reporting all of the spatial locations of a multidi-
mensional field where the norm or absolute value of the field
exceeds a user prescribed threshold.

In a system called the tree cache, Lopez et al. [20] make
use of a small application-aware cache to reduce access time
to large datasets stored on disk. The tree cache stores in-
dividual octants of octree datasets and exploits application-
specific information to determine which octants to cache and
to perform query reordering. This work has inspired the use
of an application-aware cache for the evaluation of threshold
queries. In contrast to the tree cache, we do not cache raw
data objects, but rather query results. Caching query results
preserves the computational e↵ort in addition to reducing
I/O, which has a much bigger impact on query performance
and substantially reduces the size of the cache. Additionally,
the cache that we introduce resides on disk rather than in
memory, which greatly increases its potential size. Lopez et
al. also explore approximate querying through aggregation,
which can be fairly easily supported by our system but is
of limited use as scientists performing threshold queries are
usually interested in obtaining the exact locations where a
field is at its highest values.

Sampling approaches [29, 25] o↵er an alternative to the
on-demand computation of derived fields and the evaluation
of threshold queries on them. The goal of both techniques
is to not return large data volumes, but focus on the most
intense events and interesting regions in the dataset. The
computation of derived fields is carried out on the nodes
of the database cluster and takes a look at the dataset as a
whole, while the user obtains only a small subset of the data,
where the derived field in question is above the prescribed
threshold. Sampling approaches can potentially omit some
locations and while useful for generating initial impressions
may not be suitable if the exact locations where a field is at
its highest values are desired.

Andrade et al. [1] describe a database system and an
optimization framework build on the concept of active se-
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mantic caching. An active semantic cache aims to fully or
partially reuse cached query results or aggregates through
automated transformations of these aggregates. Similarly
to our work they focus on real scientific data-analysis appli-
cations. The method that we have developed for the eval-
uation of threshold queries complements the active seman-
tic caching approach and could be used in that framework.
Our work has focused on extending a relational database
system (Microsoft’s SQL Server) as opposed to designing a
new database system from the ground up as described by
Andrade et al. [1].

7. CONCLUSIONS AND FUTURE WORK
We have presented an e�cient strategy for the evaluation

of threshold queries of derived fields in large numerical simu-
lation datasets. The thresholded fields are derived from the
stored simulation data in a distributed data-parallel man-
ner. The computations scale with the cluster resources and
are performed on the database nodes, where the data are
stored. This new capability allows researches to quickly ob-
tain and focus on regions of special interest even if they
lack the computing capabilities or data transfer rates neces-
sary to examine entire time-steps or large parts of the entire
dataset.

We have introduced an application-aware cache for the
query results of threshold queries. Cache hits reduce query
running times by over an order of magnitude. The cache
adds minimal overhead during the evaluation of queries even
if there is a cache miss and has modest storage requirements.
The cache is represented as a set of database tables and
resides on disk rather than in memory. Each database node
has local cache tables, which allows the cache to scale-out
as the cluster grows.

The introduction of an application-aware cache for query
results lays the groundwork for the creation of a landmark
database. Such a database can store the locations of the
highest vorticity regions in the dataset or more broadly re-
gions of interest and their associated statistics.

The Web-services approach to archived numerical simu-
lation datasets provides public access to high quality sim-
ulation data to anyone with an internet connection. The
Web-services methods can be called from any modern pro-
gramming language and we provide C, Fortran and Matlab
client libraries for the JHTDB. The evaluation of each query
submitted through a Web-service call is carried out on the
nodes of the database cluster by means of a stored proce-
dure or a user-defined function that has been implemented
and deployed to handle these requests. This allows us to
fine-tune the execution of these procedures and handle all
requests transparently to the user. However, this approach
also has drawbacks. Adding new functionality means adding
to a long list of Web-service calls and requires substantial
implementation e↵ort. In the case of threshold queries the
stored procedure performing the evaluation must have an
implementation for each derived field of interest even though
the execution is handled by the same Web-service call.

In the future, we plan to develop declarative and graph-
ical user interfaces that will allow users to combine exist-
ing building blocks and perform computations that have not
been explicitly implemented. Additionally, we plan on de-
ploying a server-side computing environment for users simi-
lar to the CasJobs service for the Sloan Digital Sky Survery
[18]. In such an environment users can run queries in batch

mode and save their results in a personal database called
MyDB, which resides on the servers near the data. This
will allow for much greater flexibility in the type of compu-
tations that can be performed in addition to substantially
decreasing the network overhead.
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ABSTRACT
In this paper, we consider large graphs that evolve over
time, such as graphs that model social networks. Given
two instances of the graph at two points in time, we ask
to identify the top pairs of nodes whose shortest path dis-
tance has decreased the most. We call these pairs converg-
ing. The straightforward way to address this problem is by
computing the shortest path distances of all pairs at both
instances and keeping the ones with the largest di↵erences.
Since for large networks this is computationally infeasible,
we consider a budgeted version of the problem, where given
a fixed budget of single-source shortest path computations,
we seek to identify nodes that participate in as many con-
verging pairs as possible. We evaluate a number of di↵erent
approaches for our problem, that employ centrality-based,
dispersion-based, and landmark-based distance estimation
metrics. We also consider a classification-based approach
that builds a classifier that combines the above features for
predicting whether a node participates in one of the top con-
verging pairs. We present experimental results using real-
world datasets that show that we are able to identify the
large majority of the top converging pairs on a very small
budget.

Categories and Subject Descriptors
H.2 [Database Management]: Applications; E.1 [Data
Structures]: Graphs and networks

General Terms
Algorithms, Experimentation, Performance

Keywords
graphs, top-k, shortest paths
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1. INTRODUCTION
A variety of natural or man-made complex systems can be

modeled as networks. Prominent examples include the In-
ternet, the Web, transportation networks, online social net-
works such as Facebook, Twitter and LinkedIn, biological
systems such as protein interactions or metabolic pathways,
the global economy, and many more. All these systems con-
sist of individual entities that are interconnected to form a
complex system. Understanding them is not possible with-
out understanding the underlying network. The network
carries a significant amount of information about the func-
tionality of the system as a whole as well as for its individual
entities [9].

A central piece of information revealed through the net-
work is that of proximity. Using the network structure, we
can determine how close two individuals are in a social net-
work, or how easy it is to navigate between di↵erent web
pages. There are several ways of measuring proximity, or
similarity, within the network (see, for example [6] for a re-
cent survey). A commonly used proximity measure is the
length of the shortest path distance between two nodes in
the graph. Although simple, the shortest path distance is
still the first notion of proximity we want to compute when
examining the relationship of two individual entities. In
many cases, it also provides an actionable piece of informa-
tion: It is the path by which we want to route information
between two individuals; the path we want to follow when
moving from one place to another in a tra�c network; the
quickest way to create a connection within a professional
network.

A succinct characteristic of real-life networks is their con-
tinuous evolution. New nodes and edges are added, often
at an exponential pace. Even when observing a fixed set
of nodes, their relationship can change dramatically by the
addition of new edges among nodes in the set, or to other
nodes outside the set. As a result, new shortest paths are
created and the relationships between individuals are con-
stantly updated.

Identifying the pairs of nodes that came the closest to each
other is important in our understanding of the network, and
it may be crucial for some applications. For example, in
social networking sites such as Facebook or LinkedIn, if two
distant users come closer over time, this could imply the
appearance of similar interests or activities between them.
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Hence, this further knowledge can help in making more suit-
able friendship recommendations. In economic networks,
the decrease of the shortest path between two major players
could signal a change of strategy, or have future implica-
tions for their growth. In a criminal or terrorist network, it
is critical to know which suspects have come closer to each
other; such moves may be indications of future actions or
coalitions.

There could be also an application of this problem in
protein-protein interaction networks, where the nodes are
proteins within a cell and they are connected by edges if
there is a possible interaction between them [3]. As new
experiments reveal new connections, for two given proteins,
the knowledge that they came closer together in the graph
makes them candidates for an upcoming interaction. Fur-
thermore, if a certain protein comes closer to multiple others,
they may be part of the same community [12], with all un-
derlying proteins having the same specific function within
the cell.

In this paper, we address the following problem. Given
two snapshots of an evolving network, we ask for the k pairs
of nodes whose shortest path distance has decreased the
most between the two snapshots. We call such pairs of nodes
converging. There is a simple polynomial-time solution to
our problem: Compute the all-pair shortest path distances
in the two graph instances and find the pairs with the largest
distance change. However, even if we used fast algorithms
that approximate shortest path computation, e.g., [20], it
would still require time quadratic in the size of the graph
for just producing the pairs. Given that real graphs have
size in the order of thousands or millions, we need solutions
that scale linearly with the size of the graph.

Despite its significance, the problem of identifying the top-
k converging pairs has received limited attention. The only
related work we are aware of is the work in [14] which pro-
vides an approach based on the endpoints of the new edges
in the second snapshot. In this paper, we address the prob-
lem from a di↵erent perspective, by predicting the nodes of
the converging pairs. We formally define good candidate
nodes as those nodes that belong to a cover of the set of the
top-k converging pairs. We also introduce a novel budget
formulation of the problem, where to achieve the required
result, we are given a fixed budget of m ⌧ n single-source
shortest-path computations. We propose a suite of algo-
rithms for identifying good candidate nodes based purely on
the structural properties of the two graph instances. These
algorithms are based on node centrality, node dispersion and
landmark-based distance estimations. Then, we build a clas-
sifier that combines the proposed algorithms to e↵ectively
identify the approach that is the most appropriate for each
setting. By further extending the classifier to include fea-
tures of the graph, such as the graph density, we were able to
build a“global” classifier that works on any graph. The clas-
sifier takes advantage of our novel method of characterizing
good candidate nodes.

Our experiments with four real datasets show that we can
identify most of the converging pairs with a budget equal to
a very small percentage of the graph nodes. For example,
for the Internet links dataset, with a budget of just 0.5%
of the nodes, we are able to locate over 90% of the top-
k converging pairs for various values of k. Furthermore,
our classifiers are successful in identifying converging pairs
and match the performance of the best algorithm for each

dataset.
In summary, in this paper we make the following contri-

butions:

• We formalize the problem of finding the top-k con-
verging pairs in a graph under budget constraints as a
problem of finding a vertex cover of an appropriately
defined graph over the set of these pairs.

• We propose a suite of methods for identifying candi-
date nodes that best cover the set given a fixed budget
of shortest path computations.

• We show how to combine our techniques into a single
algorithm that makes use of all the proposed features.

• We perform extensive experiments that show that our
techniques work well in practice, being able to find
the top-k converging pairs with only a small number
of shortest path computations. Compared to the ap-
proach in [14] our algorithms are more e↵ective in iden-
tifying converging pairs, while having strong budget
guarantees.

The rest of this paper is structured as follows. In Sec-
tion 2, we present related work. In Section 3, we introduce
the problem of identifying the top-k converging pairs and
formulate it as a vertex cover problem. In Section 4, we
present a suite of algorithms for identifying candidate nodes
for the converging pairs. Experimental results are presented
in Section 5. Finally, in Section 6, we provide conclusions
and directions for future work.

2. RELATED WORK
Dynamic social network analysis has received a lot of at-

tention, including research on community evolution, e.g., [2],
and on graph generation models, e.g., [15]. In this paper,
we focus on a di↵erent aspect. Given two graph instances,
we ask what are the pairs of nodes that came closer to each
other. This problem is di↵erent from the problem of in-
crementally maintaining shortest path distances in dynamic
graphs, e.g., [7, 23]. Here we just want to identify the k
pairs of nodes whose shortest path distance has changed
the most, without re-estimating the distances for all pairs.
Recent work also addresses the problem of monitoring the
proximity of nodes in bipartite time-evolving social graphs
[21]. The authors propose pre-computing and storing all pair
distances for a small number of nodes so as to incrementally
update distances and maintain the top-k most closely con-
nected pairs, or the most central nodes. In contrast here,
we consider general graphs (non bipartite) and search for
the top-k pairs with the largest decrease in their shortest
path distance.

Another line of research addresses graph augmentation
problems that ask to find a set of edges to add to a graph so
as the graph satisfies specific properties including ones in-
volving shortest path distances. In the context of social net-
works, recent work considers augmentation problems within
the context of improving content propagation. The authors
of [22] ask which edges to add or delete in a graph so as to
improve the information dissemination process and in par-
ticular to increase the leading eigenvalue of the adjacency
matrix of the graph. Other recent work addresses the prob-
lem of recommending edges to add so as to maximize content
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spread but in addition ensure that the recommendations are
also relevant [4]. The authors of [18] study the problem of
selecting a k-size subset of the non-existing or ghost edges
of a graph such that if they are added to the graph will
minimize the average all pairs shortest path distances. The
authors of [19] study the same problem as in [18] but the
added edges are selected from a given set of candidate edges
(e.g., the edges added between two snapshots). Di↵erent to
this work, we do not assume that we can select edges to de-
crease the shortest paths, but rather that edges have already
been added as part of the evolution of the network, and we
want to find the pairs that were most a↵ected.

The work most closely related to ours is that of [14] that
studies essentially the same problem. However, their work
does not impose a budget constraint on the shortest path
computations. Algorithmically, their work focuses on the
endpoints of new edges and relies on identifying critical edges
that lie in the shortest paths of many pairs. Such notions
necessitate the use of betweenness measures [9], which in
general are expensive to compute. In comparison, our work
introduces the idea of allocating a fixed budget of m short-
est path computations, as well as the formalization of good
candidate endpoints as the ones belonging to the maximum
cover of the top-k converging pairs. The latter can also form
the basis for building e↵ective classifiers for the problem. We
compare with the approach in [14] in our experiments.

There is a rich literature in using landmarks for shortest
path estimation in large graphs, e.g., [20, 23, 25]. Various
approaches for selecting landmarks have been proposed, in-
cluding the ones used here. However, the problem addressed
in our work is di↵erent from previous work in that we want
to estimate shortest path changes rather than actual short-
est paths. It is interesting to consider additional methods
for selecting landmarks, such as the approach proposed in
Orion [25] that maps graphs into a multi-dimensional Eu-
clidean coordinate space, but it is beyond the scope of this
work.

A di↵erent point of view in the point-to-point distance
estimation problem, which bears some similarity with our
approach, is considered in [5]. They propose the use of ma-
chine learning techniques for predicting the distance between
two nodes of a graph. Aiming to answer real-time point-to-
point distance queries, they propose to use linear functions
that combine vertex-based attributes, such as the closeness
centrality with landmark-based attributes, while incorporat-
ing di↵erent approaches on selecting lower bound and upper
bound landmarks.

Finally, there is a large body of research on link prediction
(e.g., [16]) that asks to predict which pairs of nodes will be
connected in future snapshots. In this work, we are given
the future snapshot, and we are interested in the e�cient
computation of converging pairs of nodes, not predicting
direct links.

3. PROBLEM DEFINITION
We consider undirected (weighted) graphs that change

over time. Let Gt = (Vt, Et) denote the graph at time in-
stant t. As is the most common case with social networks,
we consider only node and edge insertions. Thus, a dynamic
graph can be seen as a sequence of slices S1, S2, . . . St , . . . ,
of node and edge insertions. Gt = (Vt, Et) is the graph that
results by aggregating all slices up until t.

For two nodes u, v, and time instant t, we use dt(u, v) to

denote their shortest path distance in Gt. We call a pair
of nodes u, v 2 Vt, connected if u, v belong to the same
connected component of Gt.

Now assume two graph instances, Gt1 = (Vt1 , Et1) and
Gt2 = (Vt2 , Et2), with t2 > t1. Take two connected nodes
u, v in Gt1 that are at distance dt1(u, v). When considering
the graph Gt2 the addition of new nodes and edges can only
decrease the distance between u, and v. Let �t1,t2(u, v) =
dt1(u, v)� dt2(u, v) denote the decrease in distance between
u and v. We are interested in identifying the pairs of con-
nected nodes for which we have a sharp decrease in distance,
that is �(u, v) is large. We focus on connected nodes since
the distance between non-connected nodes is infinite, and
thus, in this case, the problem comes down to finding the
disconnected components that got connected.

More formally, we define our problem as follows.

Problem 1 (top-k converging pairs). Given two
graph instances Gt1 and Gt2 , at time instants t1 and t2,
respectively, t2 > t1, and a value k, find the k connected
pairs u, v of nodes in Gt1 with the largest �t1,t2(u, v) value
among all pairs of connected nodes in Gt1 . We call these
pairs of nodes the top-k converging pairs.

There is a simple polynomial-time solution for our prob-
lem. We compute the shortest paths of all (connected) pairs
of nodes in Gt1 and Gt2 and we find the ones that have
the largest decrease. Regardless of how fast we compute the
shortest paths – there are fast algorithms for approximate
shortest path computation, e.g., [20] – just outputting the
paths for all pairs requires time O(n2), where n is the num-
ber of nodes in Gt1 . For networks with millions of nodes
this is impractical both in terms of storage and time. We
need solutions that scale linearly with the number of nodes
in the graph.

To address this issue, we want to reduce the number of
nodes for which we need to compute the shortest paths. We
view a shortest path computation (SP computation) as a
unit of computational cost, and we assume that we have a
fixed computational budget that we can use for our task.
This is the number m of SP computations we can perform,
which is dictated by our resources and our application. We
want to retrieve as many of the top-k converging pairs as
possible, under the budget constraints.

We will first establish what is the minimum possible num-
ber of shortest path computations. Let P denote the set of
the top-k converging pairs that we want to compute. As-
sume that we are given a set C such that for every pair
(u, v) 2 P , either u 2 C, or v 2 C. If we compute all short-
est paths for the nodes in C in Gt1 and Gt2 , and we keep
the top-k ones with the highest �t1,t2 value, then we obtain
again the set P . The space and time requirements for this
algorithm is O(n|C|). Note that the size of the set C is at
most k, so the complexity of the problem would be linear
in the size of the graph. The set C is a cover for the set of
pairs in P .

To formalize the definition of the set C, given Gt1 , Gt2

and k, we define a new graph Gp
k = (V1, P ), defined over

the nodes V1 of graph G1, V1 ✓ Vt1 , such that there is an
edge between two nodes u and v in Gp

k, if and only if, (u, v)
is a top-k converging pair. The set C described above is a
vertex cover of the graph Gp

k, since for every edge (u, v) 2 P
of Gp

k at least one of the endpoints of the edge belongs to C.
That is, every edge is covered by at least one vertex. Given
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a vertex cover of the graph Gp
k, we can obtain the set P of

the top-k converging pairs e�ciently.
Obviously, when tackling Problem 1, we do not have ac-

cess to graph Gp
k, or its cover, i.e., the set C. Actually, even

if we knew graph Gp
k, obtaining a vertex cover C of mini-

mum size is an NP-hard problem. However, using Gp
k, we

can now reformulate our problem as follows.

Problem 2 (budgeted path cover). Given two graph
instances Gt1 and Gt2 , at time instants t1 and t2 respec-
tively, with t2 > t1, a value k, and a budget m, find a set of
nodes M ✓ Vt1 of size m such that the number of edges of
Gp

k covered by M is maximized.

We note again that we do not have access to the graph
Gp

k. Problem 2 is a harder version of Problem 1, where our
computational budget is limited. However, the definition of
Problem 2 dictates our approach for solving Problem 1. Our
goal is to identify a set of candidate nodes M that are likely
to be in the cover of Gp

k. Towards this end, we have a fixed
computational budget which is defined by the number m of
nodes for which we can compute the single-source shortest
paths distances in Gt1 and Gt2 .

Note that even if we had access to the graph Gp
k find-

ing the minimum vertex cover, or the set of m nodes that
maximize coverage is an NP-hard problem. However, it is
known [24] that the greedy algorithm that each time selects
the node that covers the largest number of the uncovered
edges provides a solution with a logarithmic approximation
ratio, that works well in practice. The greedy algorithm also
has an approximation ratio for the max-coverage problem,
where given a budget of m vertices we want to find the ones
that maximize the coverage of edges. In our experiments,
when we want to compare against a “good” solution, we use
the vertex cover produced by the greedy algorithm. We will
often refer to the greedy solution as the cover of the Gp

k
graph.

4. ALGORITHMIC TECHNIQUES
We now outline a generic algorithm for finding the top-

k converging pairs. As an intermediate step, our algorithm
addresses Problem 2, finding a set M of nodes that cover the
largest number of the top-k converging pairs. We propose a
suite of algorithms for solving Problem 2. In the following,
we shall use the term candidate nodes and candidate end-
points interchangeably to denote the nodes in M .

4.1 Finding the Top-k Converging Pairs
In Algorithm 1, we describe a generic algorithm for find-

ing the top-k converging pairs. The algorithm relies on the
function ComputeCandidateEndpoints that returns a set
M of candidate endpoints of size m. We discuss the candi-
date generation below. The number of candidate endpoints
m is small and thus it is feasible to compute all shortest
path distances between M and the nodes in Vt1 in graphs
Gt1 and Gt2 . Given these distances, we can compute the
�t1,t2(u, v) values for the pairs in M ⇥ Vt1 and select the
top-k pairs with the highest values.

4.2 Candidate Endpoint Generation
We now describe the algorithms for generating candidate

endpoints, that is, identifying nodes that best cover the top-
k converging pairs, i.e., the edges ofGp

k. Our algorithms take

Algorithm 1 Generic top-k Algorithm.

Input: Graph snapshots Gt1 = (Vt1 , Et1), Gt2 = (Vt2 , Et2),
k, m

Output: The set of the top-k converging pairs

1: M  ComputeCandidateEndpoints(Gt1 ,Gt2 , m)
2: D1  m ⇥ n-dimensional array with shortest path di-

stances in Gt1 between the nodes in M and Vt1 .
3: D2  m ⇥ n-dimensional array with shortest path di-

stances in Gt2 between the nodes in M and Vt2 .
4: �t1,t2  D1 �D2.
5: return the top-k pairs (i, j) with the highest values in

�t1,t2 .

as input the two graph instances, Gt1 and Gt2 , and the value
m, and produce as output a set M ⇢ Vt1 of m nodes. We
want to select M such that M covers the largest number of
the top-k converging pairs. The size m of M is determined
by our resource budget: it is the number of nodes for which
we can a↵ord to compute the single-source shortest paths in
Gt1 and Gt2 .

We consider the following approaches in selecting the nodes
for the set M :

• Centrality-based: In this case, we select nodes based
on their degree or the change in their degree.

• Dispersion-based: In this case, we select nodes that
are highly dispersed in the graph Gt1 , that is, they
are far apart from each other. These nodes are likely
to participate in a large number of top-k converging
pairs, since they were far apart in the first place.

• Landmark-based: In this case, we select a small
sample L ⇢ Vt1 of the nodes in Gt1 to act as land-
marks. We select the candidate endpoints based on
the changes of their shortest path distances from these
landmarks.

• Hybrid: In this case, we use again a landmark-based
approach, but instead of sampling randomly the set of
landmarks L, we use a dispersion-based approach to
guide our choice.

• Classification-based: In this case, we use features
provided from the previous algorithms to build a clas-
sifier that predicts whether a node is a good candidate
endpoint.

• The Incidence family of algorithms: In this case,
we consider some of the algorithms in [14] for selecting
the candidate endpoints.

We now discuss each of the above approaches in detail.

4.2.1 Centrality-based selection
With this approach, we use the centrality of nodes in the

graph Gt1 to guide us in the selection of candidate nodes.
The motivation is that nodes central in graph Gt1 are likely
to be part of the shortest paths for many nodes. Thus they
seem a reasonable choice as candidate endpoints. Further-
more, we consider also nodes that had a large increase in
their centrality, either in absolute terms or relative to the
original value.
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A simple and easy to compute centrality measure is the
node degree. Formally, let degt(u) denote the degree of
node u in graph Gt. The algorithm Degree ranks nodes in
descending order of degt1(u) and selects the top-m nodes.
The algorithm DegDiff ranks nodes in descending order of
degt2(u) � degt1(u) and selects the top-m nodes. Finally,
the DegRel ranks nodes in descending order of (degt2(u)�
degt1(u))/degt1(u) and selects the top-m nodes.

4.2.2 Dispersion-based selection
With this approach, we want to select as candidates the

m nodes in Gt1 that are the furthest apart from each other.
That is, we want M to contain the most dispersed set of
nodes. We define this in two di↵erent ways.

The first approach is to select nodes such that the average
distance between all pair of selected nodes is maximized:

M = arg max
S✓Vt1
|S|=m

1�
m
2

�
X

vi,vj2S

dt1(vi, vj) (1)

This approach tends to select nodes in the perimeter of the
graph.

Alternatively, we can select nodes such that the minimum
distance between any two pairs of the selected nodes is max-
imized:

M = arg max
S✓Vt1
|S|=m

min
vi,vj2S

dt1(vi, vj) (2)

This approach tends to select nodes that “cover” the graph.
Even if we had the pairwise distances between all nodes,

finding the optimal set of nodes for both cases is an NP-
hard problem (for example, see [13] for a recent discussion
on this topic). We thus use a greedy algorithm that at each
step selects the node that maximizes the dispersion with
respect to the nodes selected so far. We refer to the algo-
rithm that maximizes the average distance as MaxAvg and
to the algorithm that maximizes the minimum distance as
MaxMin.

4.2.3 Landmark-based selection
With this approach, we make use of a set L ⇢ Vt1 of `

nodes that we call landmarks and compute the distances of
all nodes in Gt1 and Gt2 from the nodes in L. We select our
candidates based on how close they came to the landmarks
in graph Gt2 .

Specifically, let L = (w1, . . . , w`) be an ordered set of
landmark nodes of graph Gt1 , with ` ⌧ |Vt1 |. We associate
with each node u 2 Vt1 , two `-dimensional vectors, DL1(u)
and DL2(u), where DL1(u)[i] = dt1(u,wi) and DL2(u)[i] =
dt2(u,wi). The vector �Lt1,t2(u) = DL1(u)�DL2(u) cap-
tures the change in the shortest path distance from u to the
landmarks in L.

We now select as candidate endpoints the nodes that came
“closest” to the landmarks L in the graph Gt2 . To measure
the degree of distance change, we use the L1 and L1 norms
of the vector �Lt1,t2(u).

k�Lt1,t2(u)k1 =
X̀

i=1

�Lt1,t2(u)[i] (3)

k�Lt1,t2(u)k1 =
`

max
i=1

�Lt1,t2(u)[i] (4)

Table 1: Shortest-path computations for di↵erent ap-
proaches

Approach Candidate Generation top-k Pairs
Degree-based 0 2m
Dispersion-based m m
Landmark-based 2` 2m� 2`
Hybrid 2` 2m� 2`
Classification-based 3 · 2` 2m� 3 · 2`

In the SumDiff algorithm, we select the m nodes with the
largest L1-norm, while in the MaxDiff algorithm, we select
them nodes with the largest L1-norm. The intuition is that
these are nodes that became more central in the graph Gt2

and thus are likely to participate in many changed shortest
paths. The SumDiff algorithm is somewhat related in mo-
tivation to the greedy algorithm for finding the minimum
vertex cover. The node with the largest L1-norm value is
the node that covers the most of the distance changes in the
(`⇥ n)-matrix �Lt1,t2 .

4.2.4 Hybrid selection
With the hybrid approach, we attempt to get the best

of both worlds by combining the dispersion-based approach
with the landmark based approach. Specifically, we use the
dispersion-based techniques to select the ` landmarks, and
then apply the landmark based approach.

This hybrid approach is motivated by two factors. First,
in order to obtain the landmark distances in the graphs Gt1

and Gt2 , we need to pay a cost of ` shortest path computa-
tions in each graph. When selecting a set of random land-
marks this cost comes with no payo↵ since it is unlikely that
the randomly selected nodes will cover any of the converging
pairs. Using the nodes selected from the dispersion based
algorithm guarantees that we will obtain some benefit from
the landmark selection. Second, intuitively, it seems that
dispersed nodes should work better as landmarks since they
cover di↵erent parts of the graph, and thus we can better
capture the fact that a node came closer to some part of the
graph.

Depending on the algorithm that we use for the land-
mark selection policy, and the norm we use for measur-
ing the change in the distance to the landmarks, we get
four di↵erent algorithms, namely the MaxAvg-SumDiff

(masd), MaxAvg-MaxDiff (mamd), MaxMin-SumDiff

(mmsd) and MaxMin-MaxDiff (mmmd) algorithms.

4.2.5 Classification-based selection
Our goal in the candidate endpoint generation is to iden-

tify nodes that are likely to cover the largest number of
converging pairs. We can think of most of the previous algo-
rithms as methods for identifying features that characterize
good candidates. A natural extension of the above approach
is to combine all these features into a single algorithm us-
ing a classifier that will try to predict whether a node is a
“good” endpoint or not. The benefit of such an approach
is that it combines multiple features instead of one, and it
automatically finds the appropriate features to use for each
dataset without manual inspection. However, we need to
allocate resources for training the classifier.

An important question in this setting is how to determine
the positive class for the classifier. What do we mean by
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Table 2: Dataset Characteristics

Dataset
No of nodes No of edges diameter max �t1,t2 not-connected
Gt1 Gt2 Gt1 Gt2 Gt1 Gt2 Gt1

Actors 1,851 1,886 45,584 56,981 5 5 3 0
Internet links 21,835 25,526 83,857 104,824 12 11 6 80

Facebook 4,436 4,734 25,197 31,498 12 11 7 27
DBLP 15,391 17,992 38,866 48,618 17 15 9 3,864

“good” endpoint? For this task we make use of the vertex
cover of the graph Gp

k, that we obtain with the greedy al-
gorithm. This is a collection of nodes that concisely cover
the changed paths, and thus it is reasonable to use them
as the positive class for our classification task. As features,
we use features employed by our algorithms such as the de-
gree of the nodes in Gt1 , and Gt2 , the degree di↵erence,
and the relative degree di↵erence, the L1 and L1 norm of
the distances to random landmarks and landmarks selected
accordingly to the MaxMin and MaxAvg algorithms. We
train one such classifier for each dataset as described in the
experiments. We refer to this classifier, as the local classifier
of the dataset.

We also consider a classifier that can operate on any dataset.
For this classifier, we extend the feature set with features
characteristic of the dataset. In particular, we consider the
density, and the maximum degree of the two graph snap-
shots. The resulting classifier, termed global classifier, once
trained, can be used to generate candidate endpoints for the
top-k converging pairs for any two snapshots of any graph.

For the classification, we use logistic regression. The ben-
efit of the logistic regression algorithm is that it outputs a
probability for a node to belong to a given class, in our case
to the vertex cover. We sort the nodes in decreasing order
of this probability and we output the top-m nodes.

4.2.6 Incidence Algorithm
To the best of our knowledge, the first paper that ad-

dresses the problem of identifying the top converging pairs
in evolving social networks, is [14]. In this paper, the nodes
that receive new edges in the second timestamp are called
active and are considered as the most probable nodes to
participate in the top converging pairs. The Incidence Al-
gorithm is introduced, where after constructing the set of
the active nodes A, a number of |A| shortest path computa-
tions is performed on both instances of the graph, in order
to obtain the pairs with the maximum distance di↵erence.

There are two variations of the Incidence Algorithm. In
the first one, called Selective Expansion, the neighbors of
the endpoints in A are also considered as candidates. Every
neighbor is evaluated according to the number of its impor-
tant edges. For this purpose, the notion of edge importance
in a social network is introduced, which is an estimate of the
edge betweenness centrality, computed using a randomly se-
lected set of shortest path trees. In our experiments, we
used the actual edge betweenness centrality, giving an ad-
vantage to the Incidence algorithm. In this variation, the
algorithm proceeds iteratively, inserting to A new neighbors,
and executing Incidence, until there are no more new pairs
discovered.

The second variation of the Incidence Algorithm proposes
a number of rank strategies for the active nodes, in order
to choose the top few of them that are likely to participate

in the converging pairs. The rank policies are divided to
degree-based and betweeness-based. Among other strate-
gies concerning weighted social graphs (which we do not
consider in our work), the authors of [14] rank the active
nodes using four di↵erent policies: their degree in Gt2 , their
degree di↵erence between the two graph instances, the sum
of the importance of the edges that a node received in Gt2

and finally the di↵erence of the last measure among Gt1 and
Gt2 .

4.3 Complexity
Recall that the value m is not only the number of can-

didate endpoints, but also the computational budget we
have in terms of time and space, that determines how many
single-source shortest-path computations we can a↵ord to
perform on graphs Gt1 and Gt2 . Therefore, all algorithms
perform exactly 2m shortest path computations. Table 1
demonstrates how these computations are allocated in the
di↵erent phases of the algorithm, for di↵erent selection poli-
cies. The first phase concerns the shortest path computa-
tions required for selecting the candidate endpoints. The
second phase involves the computation of the single-source
shortest-paths for the candidate endpoints, in both snap-
shots. For the generated pairs, we compute the decrease in
their shortest paths, and select the k ones whose distance
decreased the most.

Note that the dispersion based methods need to compute
shortest paths only in the graph Gt1 , in order to select the
candidate endpoints. We still need to compute the shortest
paths on Gt2 though, in order to output the top-k pairs.
Also the classifier requires 3 · 2` shortest path computations
for computing the landmarks in three di↵erent ways, in order
to produce the features.

5. EXPERIMENTAL EVALUATION
In this section, we compare the performance of the various

algorithms and classifiers in terms of identifying the actual
top-k converging pairs for various values of the available
budget m.

5.1 Datasets and Setting
To evaluate the performance of our algorithms, we need to

be able to compute the true top-k converging pairs. There-
fore, we use datasets of manageable size, for which it is fea-
sible to compute all-pairs shortest paths. We consider the
following four real datasets:

• The Actors dataset, where the nodes are actors and
there is a connection between two film actors if they
both appeared in the same movie. The dataset was
obtained from the IMDB web site1, and it spans the
years from 1998 to 2010.

1http://www.imdb.com
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Table 3: Characteristics of the Gp
k graphs (number of nodes and edges) and their maximum vertex cover (number of nodes).

Dataset i = 0 i = 1 i = 2

Actors
� = 3 � = 2 � = 1

endpoints pairs maxcover endpoints pairs maxcover endpoints pairs maxcover
35 27 10 1,350 4,081 446 1,851 202,899 9

Internet links
� = 6 � = 5 � = 4

endpoints pairs maxcover endpoints pairs maxcover endpoints pairs maxcover
28 46 8 382 734 41 9,196 17,896 194

Facebook
� = 7 � = 6 � = 5

endpoints pairs maxcover endpoints pairs maxcover endpoints pairs maxcover
4 2 2 44 37 16 409 591 60

DBLP
� = 9 � = 8 � = 7

endpoints pairs maxcover endpoints pairs maxcover endpoints pairs maxcover
6 4 2 68 68 12 289 462 46

• The Internet links dataset is an undirected graph rep-
resenting the AS-level connectivity of the Internet [17,
10] (an Autonomous System (AS) represents a single
administrative domain on the Internet). Each node in
the graph is an AS and an edge between two nodes rep-
resents a message that was exchanged between them,
using the inter-domain routing protocol.

• The Facebook dataset, where nodes are users of Face-
book, and edges between two nodes denote friendship.
The dataset contains 31,498 connections, which were
created sequentially in 31,498 di↵erent time points.

• The DBLP dataset, where nodes are authors and there
is an edge between two authors if they wrote a paper
together. The dataset was obtained from the DBLP
site2 and includes articles of 14 top conferences in data
mining, databases, theory and the WWW from 1983
to 2013.

Each dataset was divided into two snapshots, so that the
initial snapshot, Gt1 , contains 80 percent of the edges, and
the second snapshot, Gt2 , contains the entire graph. Table
2 provides a summary of the characteristics of each dataset.

In selecting the values of k on which to evaluate our al-
gorithms, we note that for any given k, there are many ties,
that is, there are many pairs with the same shortest path
change. This means that there are many di↵erent sets of
top-k converging pairs and Gp

k graphs. We set k to a value
that guarantees a single optimal solution. Specifically, for
two graph instances Gt1 and Gt2 , let � be the maximum
distance decrease over all connected pairs of nodes in Gt1 .
We test our algorithms by assigning values to k that corre-
spond to the number of pairs whose distance change is at
least equal to �, where � takes values �, �� 1, and �� 2.
Setting k as above makes the problem harder, since there is
a single optimal solution that we must retrieve that includes
all converging pairs with shortest path distance change at
least �. For smaller values of the given k, our algorithms
work even better, since in this case, retrieving any of (many)
tying pairs su�ces.
In Table 3, we report for each dataset the number of pairs

whose path distance change is at least � = � � i, for i =
0, 1, 2, the number of distinct endpoints involved in these
pairs, and the size of the maximum cover as computed by
the greedy algorithm. For example, for the DBLP dataset,
2http://dblp.uni-trier.de/

for � = 8 (� � 1), there are 68 pairs whose distance was
reduced by at least 8. These pairs involved 68 distinct nodes,
and they can be covered with 12 nodes. When running our
algorithms we set k = 68, that is, we look for the top-68
converging pairs.

The main parameter of our algorithms is the available
budget expressed through parameter m, i.e., the number
of candidate endpoints for which we can compute short-
est paths. The performance of an algorithm is measured
in terms of coverage: The percentage of top-k converging
pairs that are retrieved by the algorithm. Note that these
are pairs with at least one endpoint in the candidate set
produced by the algorithm. The goal of the experiments
is to study the cost-coverage tradeo↵. We want to under-
stand how the coverage grows as we increase the budget, and
the maximum coverage we can obtain with a small budget
(m = 100). For simplicity, we fix the number ` of landmarks
to 10 for all algorithms. A larger number of landmarks did
not improve the performance.

In Table 4 we give an overview of the algorithms we con-
sider, and a quick index for the algorithm names.

5.2 Single Feature Algorithms
In this experiment, we evaluate the performance of the

proposed single-feature algorithms (all algorithms, except
for the classification-based algorithms). Our evaluation is in
terms of coverage of the top-k converging pairs.

We first evaluate the coverage of our algorithms (percent-
age of top-k converging pairs found) for a fixed budget m
= 100 and various values of k. Table 5 reports the coverage
of converging pairs with distance change at least � for vari-
ous �, which corresponds to a number of di↵erent k values,
ranging from k = 2 for Facebook and � = 7 to k = 202,899
for Actors and � = 1. The bold entries correspond to the
best performing algorithm for a particular input.

As shown, the centrality-based algorithms (based on de-
gree) achieve the lowest coverage almost always for all datasets
but for Actors. The algorithm that orders the candidate
endpoints according to their degree in the original graph
has actually almost zero coverage for all datasets, indicat-
ing that degree is negatively correlated with participation
to changed shortest paths. It appears that nodes with very
high degree are already central in the graph, and thus most
of their shortest paths are already short. Surprisingly the
degree di↵erence is also an ine↵ective feature for selecting
good candidates. This can be explained from the prefer-
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Table 4: Overview of Candidate Selection Algorithms.

Degree Selects the m nodes with the largest degt1(u).
DegDiff Selects the m nodes with the largest degt2(u)� degt1(u).
DegRel Selects the m nodes with the largest (degt2(u)� degt1(u))/degt1(u).
MaxMin Selects greedily m nodes in the first snapshot, such that each new node maximizes the minimum distance

to the already selected nodes.
MaxAvg Selects greedily m nodes in the first snapshot, such that each new node maximizes the average distance to

the already selected nodes.
SumDiff Selects the m nodes with the largest sum of distance decreases from a set of random landmarks L.
MaxDiff selects the m nodes with the largest maximum distance decrease from a set of random landmarks L.
MMSD MaxMin-SumDiff: Uses MaxMin for landmark selection, and SumDiff for selecting the m nodes.
MMMD MaxMin-MaxDiff: Uses MaxMin for landmark selection, and MaxDiff for selecting the m nodes.
MASD MaxAvg-SumDiff: Uses MaxAvg for landmark selection, and SumDiff for selecting the m nodes.
MAMD MaxAvg-MaxDiff: Uses MaxAvg for landmark selection, and MaxDiff for selecting the m nodes.
IncDeg Selects the m of the active nodes with the largest degt2(u)� degt1(u) [14].
IncBeet Selects the m of the active nodes with the largest increase in the total betweenness of their incident

edges [14].

ential attachment principle [1]: nodes with high degree are
more likely to obtain new links. We indeed observed strong
correlation between degree and degree change. Relative de-
gree di↵erence mitigates the e↵ect of high degree to some
extent, and this is why it performs better than degree and
degree di↵erence on all datasets. Still it underperforms com-
pared to other algorithms. The poor performance of the
centrality-based algorithms indicates that approaches based
on the endpoints of the new edges as the one in [14] are
less e�cient than selecting candidate nodes based on other
features.

The exception to the above observations is the Actors
dataset. For this dataset, DegRel is among the best algo-
rithms. We note that this is a dense dataset where many of
the top changed shortest paths are reduced to single edges.
In this setting, the addition of new edges to a node has a
stronger e↵ect on the shortest path changes.

The dispersion-based algorithms are relatively successful
in discovering the converging pairs. MaxAvg outperforms
MaxMin in almost all cases. MaxAvg gives preference to
nodes in the outskirts of the graph while MaxMin tends to
select nodes that cover the di↵erent clusters in the graph [8].
Peripheral nodes are more likely to come significantly closer
to other nodes in the graph. The satisfactory performance
of the dispersion-based algorithms and the fact that they
do not require knowledge of the second snapshot indicates
that dispersion techniques could also be used as predictors
of converging pairs.
From the two landmark-based algorithms, SumDiff works

consistently better thanMaxDiff. SumDiff considers nodes
that came closer to many landmarks and thus discovers
nodes that become central in the new graph. We think of the
SumDiff algorithm as a sampling of the distance changes
of the nodes in the graph. Nodes with high SumDiff value
are likely to have come close to many nodes in the graph.
Thus, in some sense, SumDiff is trying to approximate the
methodology of the greedy algorithm for finding a vertex
cover for Gp

k.
Finally, among the hybrid algorithms, the best coverage

is attained in most cases by MaxMin-SumDiff (MMSD).
The MaxMin-SumDiff algorithm exploits the ability of the
MaxMin algorithm to select representative landmarks that
cover the initial graph and the ability of SumDiff to select
nodes that come closer to all these representative nodes.

Note that although in general MaxAvg is a better disper-
sion algorithm than MaxMin, MaxMin-based landmark se-
lection tends to outperform MaxAvg-based selection. This
is reasonable, since, for landmark selection, it is better to se-
lect nodes that cover the graph rather than peripheral nodes.

We now study the coverage achieved for di↵erent values of
the budget m. Figure 1 shows the coverage achieved by the
landmark-based algorithms for various values of m for all
datasets. In general, the algorithms based on SumDiff con-
verge faster confirming our intuition that they cover many
pairs. The plot also demonstrates that landmark-based al-
gorithms waste part of their computational budget in com-
puting shortest path distances for the l = 10 random nodes
selected as landmarks that are not likely to be endpoints.
Thus, these algorithms obtain no coverage for this computa-
tion. On the other hand, the hybrid algorithms benefit from
the fact that they choose meaningful candidates as land-
marks, and as a result the e↵ort for the landmark shortest
path computations is not wasted. Also, notice that MASD

and MMSD attain 90% coverage for m smaller than 50.
We also look into the set of candidate endpoints generated

by our algorithms to see to what extent this set consists of
(1) nodes in Gp

k and (2) nodes in the vertex cover of Gp
k pro-

duced by the greedy algorithm. We refer to the second set
as greedy-cover. For this experiment we use the Facebook
dataset and � = 6 (k = 37). We study the best-performing
algorithms for this dataset: the landmark-based and hybrid
algorithms. Figure 2(a) reports the percentage of the can-
didate nodes that belong to Gp

k and Figure 2(b) the per-
centage that belongs to greedy-cover for various values of
m. Similar behavior is noticed for the other datasets and al-
gorithms. Not surprisingly, we observe that algorithms that
cover many paths also have high intersection with both sets.
It is interesting to note that the algorithms based on SumD-

iff have the largest intersection with the greedy-cover, that
is, they discover high-quality candidate nodes.

5.3 Classification-based methods
In our experiments, we observed that di↵erent algorithms

perform well for di↵erent datasets. A natural question is
whether we can combine the individual algorithms to gen-
erate better candidate endpoints and if so, how we should
weight the contribution of each individual algorithm. To this
end, we view the above algorithms as features and use them
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Table 5: Coverage: percentage of converging pairs found for m = 100.

Actors Internet links Facebook DBLP
� = 3 � = 2 � = 1 � = 6 � = 5 � = 4 � = 7 � = 6 � = 5 � = 9 � = 8 � = 7
k = 27 k = 4,081 k = 202,899 k = 46 k = 734 k = 17,896 k = 2 k = 37 k = 591 k = 4 k = 68 k = 462

Degree 0 3.99 5.10 0 0 0.19 0 0 0.51 0 0 0
DegDiff 37.04 37.03 22.46 0 0.27 1 0 5.41 6.77 0 7.3 5.2
DegRel 100 66.16 34.24 41.30 44.82 45.17 0 70.27 44.50 100 57.35 39.61
MaxMin 59.26 28.13 14.0 67.39 65.67 66.12 100 64.87 50.42 75 52.94 42.42
MaxAvg 100 43.23 17.03 86.96 81.88 78.65 50 86.49 93.40 75 58.82 47.62
SumDiff 74.07 57.59 28.34 96.96 95.05 95.07 55 93.24 93.37 75 84.12 69.83
MaxDiff 83.33 31.74 16.97 92.39 92.00 88.31 45 84.32 87.73 77.5 74,41 63.31
MMSD 96.30 56.26 27.14 97.83 95.1 96.0 50 94.56 90.86 75 79.41 62.34
MMMD 37.04 25.41 15.06 97.83 88.69 80.16 50 83.78 80.20 75 72.06 67.53
MASD 100 54.64 27.11 97.83 95.1 95.60 50 89.19 92.22 75 86.77 67.53
MAMD 44.44 26.32 15.06 95.65 94.41 82.09 0 89.19 81.56 75 88.24 76.19
IncDeg 37.04 37.44 22.77 0 0 0.32 0 2.7 3.9 75 45.6 32.47
IncBeet 29.63 27 15.34 0 0.41 0.73 0 16.22 8.63 0 2.94 1.73

to build a classifier to predict whether a node is a“good”can-
didate endpoint or not. More precisely we use the following
features: the degree of the nodes in the first snapshot; the
degree di↵erence; the degree relative di↵erence; the L1 and
L1 norm of the distances to random landmarks and land-
marks selected accordingly to the MaxMin and the MaxAvg
algorithms. All features are normalized in the interval [-1,1].
An important benefit of using a classifier is that it automat-
ically finds the appropriate features for each dataset.

For the positive class of the classifier, that is for the class
that corresponds to “good” endpoints, we use the vertex
cover computed by the greedy algorithm for the graph Gp

k.
As shown by our experiments, participation of a node in the
vertex cover is a strong indication that a node is a good
candidate. We also experimented with using all endpoints
in Gp

k, and the results were very similar.
We use the LIBLINEAR implementation of the logistic

regression classifier [11]. The logistic regression classifier
outputs a probability for every node to belong to the positive
class. Using this probability, we order the nodes according
to their likelihood of being good endpoints. We sort the
nodes in descending order of this probability and we output
the top-m nodes.

For the evaluation of the classifier, we split each dataset
into four snapshots. To train the classifier, we use snap-
shots G0

t1 that includes 40 percent of the edges and G0
t2 that

includes 60 percent of the edges. To test the classifier, we
use snapshots Gt1 that includes 80 percent of the edges and
Gt2 that includes the full graph, that is, the same snapshots
used for the evaluation of the single-feature algorithms. This
allows for a direct comparison of the results. We used the
same � for both training and testing.

We consider two types of classifiers. A local classifier
build for each dataset which we denote as L-Classifier,
and a global classifier that can work for any dataset which
we denote as G-Classifier. For the global classifier, we ex-
tract additional features from all datasets. In particular, we
compute the density and the maximum node degrees of the
training graph snapshots that we normalize appropriately
within the interval [-1, 1]. We create the global classifica-
tion model using training data from all four datasets in equal
proportions.

Figure 3 compares the coverage achieved by L-Classifier

and G-Classifier, with the best algorithm for each dataset.
Note that the best algorithm is di↵erent for each dataset.
The classification algorithm is able to automatically detect
the appropriate features and produce a solution that has
high coverage for each dataset. Note that the classifiers are
handicapped by the set-up cost of the landmark computa-
tion (the first 30 shortest-path computations). Still, they
are able to catch up with the best algorithm.

The only case where this does not happen is for the Ac-
tors dataset, when using G-Classifier. The poor per-
formance can be explained by the di↵erentiation of Actors
dataset compared to the other datasets (Section 5.2). Since
75% of the training set for G-Classifier consists of fea-
tures extracted from the Facebook, Internet links, and DBLP
datasets, and only 25% of Actors features, theG-Classifier

fails to produce a high coverage.

5.4 The Incidence algorithms
Finally, we compare our work to the approach in [14]. For

this comparison, we implemented the original version of the
Incidence algorithm, which does not use any kind of budget
in the shortest path computations. This algorithm achieves
very high coverage as shown in Table 6. However the set
of the active nodes A, which is the set of nodes for which
we need to compute the shortest paths, is a large fraction of
the original graph. The smallest set A is computed for the
DBLP dataset, and it is 11.66% of the Gt1 size (m = 1,794).
In comparison our budget (m = 100) does not exceed 0.65%
of the graph size. The largest set A is computed for the
Facebook dataset, and it is around 66% of Gt1 , while our
budget of m = 100 candidates is just 2.25% of the graph.
Given the large number of candidates used by Incidence, the
algorithm achieves almost complete coverage. At the same,
time the time complexity is excessively high. For e�ciency
reasons, we did not test the e↵ectiveness of Selective Expan-
sion, as it is a recursive process that is very time consuming.
It would lead us to use a very large set of candidate nodes
and eventually to solve the problem by performing the base-
line algorithm (computing all-pairs shortest paths), which is
prohibitively expensive.

We also compare with the approach of [14] under bud-
get constraints. Table 5 shows the best of the degree-based
policies, IncDeg, where the active nodes are ranked by their
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Table 6: The percentage of Gt1 that the active nodes form and the coverage of Incidence Algorithm.

Actors Internet links Facebook DBLP
� = 3 � = 2 � = 1 � = 6 � = 5 � = 4 � = 7 � = 6 � = 5 � = 9 � = 8 � = 7

Incidence active nodes m = 1,197 (64.66%) m = 5,071 (23.22%) m = 2,914 (65.7%) m = 1,794 (11.66%)
Incidence coverage 100 100 99.35 89.13 95.1 93.91 100 100 99.32 100 97.1 90.9
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Figure 1: Coverage of the top-k converging pairs, for the (a) Actors dataset and � = 3 (k = 27), (b) Internet links dataset
and � = 6 (k = 46), (c) Facebook dataset and � = 6 (k = 37), and (d) DBLP dataset and � = 8 (k = 68).
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Figure 2: (a) Intersection of candidate nodes with (a) the nodes of Gp
k and (b) the greedy-cover set, for various values of m

for the Facebook dataset and � = 6 (k = 37).
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Figure 3: Coverage of the top-k converging pairs, achieved by best algorithm, G-Classifier, L-Classifier trained with the vertex
cover computed by the greedy algorithm, for the (a) Actors dataset and � = 3 (k = 27), (b) Internet links dataset and � = 6
(k = 46), (c) Facebook dataset and � = 6 (k = 37), and (d) DBLP dataset and � = 8 (k = 68).

degree change and IncBeet, where active nodes are ranked
by the increase of the betweeness centrality of the edges in-
cident to the nodes. We compute the actual edge between-
ness centrality instead of estimating it, giving an advantage
to the IncBeet algorithm. We can observe in Table 5 that
IncDeg and IncBet have low performance. In particular, for
the Internet links dataset, with � = 4 and m = 100 (0.5% of
Gt1 size), MMSD achieves almost 96% coverage, while the
coverage of IncBet does not exceed 1%. In almost all of our
experiments, with exception the case of the DBLP dataset
with � = 9, both of the two best variations of the Incidence

algorithm underperform in term of coverage, as they can not
discover more than 50% of the top converging pairs.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we focus on the problem of identifying top-k

converging pairs of nodes, that is, pairs of nodes that came
closer together between two snapshots of an evolving social
graph. We address the problem using purely structural prop-
erties of the two graph instances. Since a brute-force method
for computing all pair shortest path distances in the two in-
stances is not cost e↵ective, we tackle the problem from a
di↵erent angle, by predicting the endpoints of such pairs.
In doing so, we introduce two novel ideas: (1) allocating a
fixed budget of m shortest-path computations and (2) for-
mally defining good candidate endpoints as those belonging
to the vertex cover of the top-k converging pairs. We pro-
pose a suite of algorithms for selecting candidate nodes and
build a classifier that combines them to e↵ectively identify

the most appropriate algorithm for each setting. The clas-
sifier takes advantage of our novel method of characterizing
good candidate endpoints.

For future work, an interesting variation of the problem
to consider is the converging pair prediction task, where we
are given only the initial graph snapshot and we are asked
to “predict” the converging pairs. This problem can be seen
as an extension of the link prediction problem which asks
whether a single edge will be added between a pair of nodes.
Finally, our work can be extended by considering non struc-
tural properties, such as additional attributes of the edges
or nodes.
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ABSTRACT
Outlier or anomaly detection in large data sets is a funda-
mental task in data science, with broad applications. How-
ever, in real data sets with high-dimensional space, most
outliers are hidden in certain dimensional combinations and
are relative to a user’s search space and interest. It is often
more e↵ective to give power to users and allow them to spec-
ify outlier queries flexibly, and the system will then process
such mining queries e�ciently. In this study, we introduce
the concept of query-based outlier in heterogeneous informa-
tion networks, design a query language to facilitate users to
specify such queries flexibly, define a good outlier measure
in heterogeneous networks, and study how to process out-
lier queries e�ciently in large data sets. Our experiments on
real data sets show that following such a methodology, in-
teresting outliers can be defined and uncovered flexibly and
e↵ectively in large heterogeneous networks.

1. INTRODUCTION
Heterogeneous networks are the networks composed of

multi-typed, interconnected vertices and links. Since the
real world information entities are interconnected, form-
ing numerous, gigantic networks, heterogeneous information
networks are ubiquitous and form the basic semantic struc-
ture of interconnected data. Thus, detecting anomalies or
finding outliers in such networks becomes an important task
in network analysis. Although outlier detection has been
studied extensively in data mining and various application
fields [5, 14], outlier detection in heterogeneous information
networks poses several unique challenges:

1. Unlike many outlier analysis methods that work on ho-
mogeneous datasets (e.g., find anomalous communica-
tions in a communication network), this new endeavor
needs fundamental changes on the definition and detec-
tion of outliers since it involves heterogeneously typed
vertices and links.

⇤The first two authors made equal contributions.
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Creative Commons license CC-by-nc-nd 4.0

2. In a gigantic network, and particularly in a heteroge-
neous network, it is unrealistic to discover all outliers
using “global” techniques. The variety of vertex types,
edge types, and paths connecting particular vertices
creates many potential viewpoints from which outliers
may be classified. These views are di�cult to compare
and possibly conflicting.

3. Data analysts (as users) need to obtain results
promptly to react to outliers or further elaborate their
queries. This creates a big challenge to e�ciently pro-
cess outlier queries in heterogeneous information net-
works.

Based on the above observations, we propose a new out-
lier detection task, called query-based outlier detection in
heterogeneous information networks, by facilitating users to
compose various kinds of outlier queries flexibly in heteroge-
neous networks via a novel query language; defining a new
outlier measure, called NetOut, to measure the outlierness
in such heterogeneous networks; and developing an e�cient
network detection algorithm for this task. The following is
an example that illustrates our ideas.

Motivating example. The DBLP network is a network
generated from the computer science bibliographic publica-
tion database1 that consists of a set of vertex types: paper
(P ), venue (V ), author (A), and term (T ). A research pub-
lication entry essentially generates a set of links of the types
P � V , P � A, and P � T , each connecting in the network
a paper with its publication venue, set of authors and set of
terms, respectively.

It is unrealistic and meaningless to find outliers with re-
spect to all types of the vertices in the entire heterogeneous
network. However, it is more interesting to give users free-
dom to specify what they want. For example, a user can
confine the outliers to be among the coauthors of Christos
Faloutsos (i.e., all the authors connected with Christos via
at least one joint paper).

Even for this author set, it is still unclear what aspect
the outliers should be judged by: should the outliers be
judged based on their publication venues or their collabo-
rators? The former may lead to finding those who pub-
lish multiple papers in rather di↵erent venues than the ma-
jority of Christos’ coauthors; whereas the latter may find
those who have rather di↵erent collaboration behavior than
the majority of his coauthors. Di↵erent judgment criteria
lead to rather di↵erent results, which makes it essential to

1http://www.informatik.uni-trier.de/~ley/db
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ask users to specify the criteria explicitly. Furthermore, a
user may like to find outliers among Christos’ coauthors,
not compared within this coauthor set itself but compared
with another explicitly specified set, such as prolific EDBT
authors (e.g., those who have published at least 10 papers
in EDBT).

From this example, one can see that it is necessary to pro-
vide an outlier query language with which a user can specify
the candidate set (e.g., Christos’ coauthors), the aspect (e.g.,
publishing venues) by which the outliers will be judged, and
sometimes the reference set (e.g., prolific EDBT authors).
With such primitives, a user can flexibly and unambiguously
specify the outliers to be mined in a heterogeneous network.

Besides providing flexible ways for users to interact with
the system to specify outlier queries in networks, another
important issue is how to define the outlier measures for
heterogeneous networks. Taking the query, “finding outlying
co-authors of Christos in terms of their publishing venues”, it
is important to work out a good outlier measure in heteroge-
neous networks so that one can readily identify the outliers
among Christos’ co-authors who published multiple papers
at rather di↵erent venues than that by the majority coau-
thors of Christos. Such intuition may help us work out a new
definition of outlier measure in heterogeneous networks.

In this study, we work on this interesting problem and
have made the following contributions.

1. We introduce the concept of query-based outlier in het-
erogeneous information networks, formalize di↵erent
components for an outlier query in such networks, and
develop a user-friendly, meta-path based outlier query
language that allows users to interact with the outlier
detection system using their intuition;

2. We introduce a new outlier measure, NetOut, which
defines query-based outlierness in heterogeneous infor-
mation networks, with respect to the queries specified
by users;

3. We develop an e�cient computation method to find
query-based outliers in heterogeneous information net-
works and analyze our performance improvement in
the e�ciency study.

The rest of the paper is organized as follows. Section 2
discusses the related work. Section 3 introduces the basic
concepts. Section 4 introduces the formal definition of out-
lier query, and designs a query language as an interface for
users to specify outlier queries. Section 5 develops a new
outlier measure, NetOut, and shows its e↵ectiveness. Sec-
tion 6 outlines the implementation of the proposed outlier
detection system as well as several query optimization tech-
niques. The performance study of the comparative methods,
as well as the e�ciency study are reported in Section 7. We
present an overall discussion in Section 8 and provide con-
cluding remarks in Section 9.

2. RELATED WORK
Outlier detection. The field of outlier detection has been
explored for years. A good overview of outlier detection
techniques can be found in surveys [5, 14].

Our work is most related to the thread of research on net-
worked data outlier detection. There are some early explo-
rations on network outlier detection on bipartite graphs [23].

But most existing studies are confined to homogeneous net-
works. For example, Gao et al. [6] studied contextual out-
liers in (homogeneous) networks, i.e. outliers deviating from
their closely connected peers; Akoglu et al. [1] proposed
OddBall, which takes several network structural properties
as features to identify outliers in weighted graphs; Gupta et
al. [8] studied outliers in terms of their abnormal dynamics
among communities; Perozzi et al. [19] and Li et al. [18] ex-
plored outlier detection in attributed graphs. Zong et al. [30]
studied how to detect abnormal network events and their
possible sources. However, these methods are not applicable
to heterogeneous information networks. For heterogeneous
networks, Gupta et al. [7] proposed to measure outlierness
based on community distribution of each vertex in the net-
work; Gupta et al. [9] also studied outlier detection based
on assumption of association-based cliques in networks.

Although a great variety of research has been done on out-
lier detection given a data set, few of them really consider
doing outlier detection in a query-based fashion. Gupta et
al. [11] proposed using a template subgraph as a query for
finding outlier subgraphs, but the definition of a query in
this work is not general enough to be extended to most com-
mon use cases. E�cient mining of top-k outliers in large
databases has been studied in early research. For exam-
ple, Ramaswamy et al. [20] proposed a partition-based algo-
rithm to mine top-k outliers in very large databases, using a
distance-based outlier detection algorithm [17]; Jin et al. [15]
presented an algorithm based on“micro-clusters”to find top-
k outliers using the local outlier factor (LOF) measure [4].
Nevertheless, they only optimize for a certain type of outlier
definition on the entire data set. Schubert et al. [22] pro-
posed a generalized point of view for local outlier detection,
but it does not explicitly consider the query-based scenario.
In this work we generalize the outlier detection framework
and give users flexibility to specify their own definition of
an outlier.

Query languages for heterogeneous networks. Man-
aging data organized in heterogeneous information networks
is a challenging problem. Compared to a traditional rela-
tional database, data is organized in an arbitrary and poten-
tially more complicated graphical structure. There are sev-
eral di↵erent threads of research on developing graph query
languages and optimizing queries. A comparison of di↵erent
graph database models can be found in [2, 3]. Research re-
lated to the semantic web usually organizes information into
machine-readable web information represented in a language
called Resource Description Framework (RDF) [12]. Opti-
mization of the RDF query language SPARQL is studied
in [21]. Cypher2 is another query language utilized by open-
source graph database Neo4j; while GraphQL [13] is another
query language which supports querying by graph structure.
For graph query optimization, Yan et al. [26, 27] and Zhao et
al. [29] proposed indexing strategies to e�ciently process
graph queries. As knowledge graphs have attracted more
studies in recent years, there is also some recent research on
querying schema-less graphs. Kasneci et al. [16] studies key-
word search on knowledge graphs; Yang et al. [28] propose
an SQL framework where users do not need to specify the
querying graph schema/structure precisely. Gupta et al. [10]
proposed a method to e�ciently find the top-k most inter-

2http://docs.neo4j.org/chunked/stable/
cypher-introduction.html
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Figure 1: Bibliographic network schema and instantiated
network.

esting subgraphs in a heterogeneous network. However, as
far as we know, none of the current graph query languages
explicitly support queries for outlier detection in graphs.

3. PRELIMINARIES
Real-world informational or abstract entities are often in-

terconnected, forming multiple gigantic networks. When
such networks can be structured around a small number of
entity/link types, many interesting properties can be ex-
plored systematically. Here we introduce a few related con-
cepts.

Definition 1 (Heterogeneous information net-
work). A heterogeneous information network [25] is an in-
formation network with multiple types of vertices. Without
loss of generality, it can be defined as a directed network
G = (V, E ;�, T ) where V is the set of vertices, and E is
the set of edges. There is a vertex type mapping function
� : V ! T where T is the set of types, i.e., each vertex
v 2 V belongs to a particular type T 2 T . For undirected
cases, an undirected edge can be viewed as two symmetric
directed edges. When there exists only one vertex type, the
network reduces to a homogeneous information network.

A bibliographic network, such as DBLP, is a heteroge-
neous information network where there are four types of
vertices: paper (P ), venue (V ), author (A), and term (T ),
and an edge type represents a type of link between two ver-
tex types (e.g., P�V represents that paper P was published
in venue V ).

To formalize the relationships between two vertices in a
heterogeneous network, meta-paths [24] have been used to
represent semantic links at the schema level.

Definition 2 (Meta-path). In a heterogeneous net-
work G, a meta-path is an ordered sequence of vertex types,
denoted as P = (T0 � T1 � . . .� Tl), or P = (T0T1 . . . Tl),
where Tx 2 T .

In a bibliographic network, Pca = (APA) is a meta-path,
representing the coauthorship between two authors.

We also introduce two basic operators for meta-paths.

Definition 3 (Reversal of a meta-path). A meta-
path P = (T0T1 . . . Tl) can be reversed, where the reversed
path is denoted as P�1 = (TlTl�1 . . . T0).

As an example, if P = (APV ), then its reversal P�1 =
(V PA).

Definition 4 (Concatenation of meta-paths).
Given two meta-paths P1 = (T1,0 . . . T1,l) and P2 =
(T2,0 . . . T2,l0). If T1,l = T2,0, then P1 can be concate-
nated by P2, where the concatenated meta-path is denoted
as (P1P2) = (T1,0 . . . T1,lT2,1 . . . T2,l0).

For example, if we have two meta-paths P1 = (APV )
and P2 = (V PT ), P1 can be concatenated by P2, and the
concatenated meta-path (P1P2) = (APV PT ).

Meta-paths provide the schema to instantiate actual paths
in a heterogeneous network.

Definition 5 (Meta-path instantiation). We say
an instantiation of P is a path in G, denoted as p =
(v0v1 . . . vl), satisfying �(vx) = Tx, 8x = 0, 1, . . . , l. A meta-
path can be instantiated by di↵erent paths. We represent the
set of all path instances of meta-path P between vertices vi
and vj by ⇡

P

(vi, vj).

As an example, for authors Ava and Liam in Figure 1(b),
the number of instantiations of meta-path Pca = (APA)
connecting them represents the number of papers they have
coauthored, denoted as |⇡

Pca(Ava, Liam)| = 1. Similarly,
for authors Liam and Zoe, the number of instantiations of
meta-path Pca connecting them is |⇡

Pca(Liam, Zoe)| = 2.
Based on the definition of a meta-path, we can define the

“neighbors” of a vertex in a heterogeneous network. Dif-
ferent from traditional homogeneous networks, immediate
neighbors of a certain vertex could be of di↵erent types and
therefore have di↵erent semantics. Also, vertices that are
multiple hops away from the given vertex can be meaning-
ful “neighbors”. For the sake of generality, we define the
neighborhood of a vertex with respect to a given meta-path.
Formally,

Definition 6 (Neighborhood). In a heterogeneous
network G, we define the neighborhood of a certain ver-
tex vi with regard to a given meta-path P as N

P

(vi) =
{vj |⇡P

(vi, vj) 6= ;}.
For example, the set of coauthors of author Zoe in Figure

1(b) can be represented by N
Pca(Zoe) = {Ava, Liam}.

Every vertex vj , in the neighborhood of vertex vi, is con-
nected to vi by at least one instantiation of the specified
meta-path. However, multiple instantiations may exist. To
better characterize the neighborhood of a vertex, we fur-
ther define a vector representation of the neighborhood as a
“neighbor vector”.

Definition 7 (Neighbor vector). We define a func-

tion �
P

: V 7! N|V | as the neighbor vector function. With
regard to a given meta-path P, it returns the neighbor vector
given a certain vertex as input, where the j-th dimension is
the count of paths instantiated by P between vi and vj . More
precisely,

�
P

(vi) =
h
|⇡

P

(vi, v1)|, . . . , |⇡P

(vi, vn)|
i

For example, given meta-path Pca, Zoe’s neighbor vector
contains the count of papers co-authored with each of her co-
authors, �

Pca(Zoe) = [Ava : 1,Liam : 2,Zoe : 5]. Alterna-
tively, Zoe’s neighbor vector given meta-path Pv = (APV )
is the count of papers that she has published in each venue,
�
Pv (Zoe) = [ICDE : 2,KDD : 3].
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4. OUTLIER QUERIES
In this section, we formalize the definition of a query in

the context of outlier detection in heterogeneous informa-
tion networks. We also design a query language for users to
specify queries.

4.1 General Formalization
Generally, a declarative query for outliers consists of two

parts, a candidate set containing all the candidates that are
potentially meaningful outliers, and a reference set providing
a reference for outliers to be compared. In most outlier
detection frameworks, the candidate set and the reference
set are both assumed to be the entire data set. In our query-
based outlier detection framework, users are provided with
the flexibility to specify the candidate and reference sets of
their interest, which enables our framework to be applicable
to a broader range of scenarios.

Another important part of a user query is how the vertices
should be compared. In a heterogeneous network, vertices
can be compared in many di↵erent ways. For example, a
pair of authors in a bibliographic information network can
be compared based on how much their coauthors overlap, or
how many common conferences they attend. Users should
be given the flexibility to determine how they would like to
compare two vertices.

There are two alternative ways to formulate the compar-
ison method in a query. One is to directly ask the user to
define a comparison function  : Sc ⇥ Sr 7! R to compare
vertices in the candidate and reference sets; another is to ask
the user to declare how a vertex should be characterized, and
leave the implementation of the comparison method to the
system. In most cases users are clear about the semantics
of the desired outliers (e.g. comparing two authors based on
their coauthors), but do not necessarily understand how to
formulate a comparison function accordingly (e.g. comparing
two authors by the number of their common coauthors), so
we adopt the second query formulation where users specify
how to characterize vertices using a meta-path based lan-
guage.

Based on the principles above, we assemble a query for
outlier detection with the following modules: the candidate
set, the reference set, feature meta-path(s) to specify how
a vertex is characterized in the context of outlier detection,
and an optional vector used to weight feature meta-paths.
To be precise,

Definition 8 (General outlier query). An outlier
query in a heterogeneous network G is denoted by Q =
(Sc, Sr,P,w), where Sc ⇢ V is the candidate set of vertices,
from which the outliers will be chosen; Sr ⇢ V is the refer-
ence set of vertices, serving as the reference of normal ver-
tices; P = (P1, . . . ,Pm) is a collection of feature meta-paths,
describing the user’s intuition of which aspects should char-
acterize candidate vertices; w 2 Rm is a weighting vector for
feature meta-paths, and by default is an all-one vector if not
specified by users. The outlier detection algorithm should re-
turn outliers as a subset of the candidate set, i.e. ⌦ ⇢ Sc,
that are significantly di↵erent from vertices in Sr, in terms
of the given meta-paths and weighting vector.

As an example, if we want to find outliers among Chris-
tos Faloutsos’ coauthors, then Sc should be defined as all of
Christos’ coauthors. In the most intuitive scenario the refer-
ence set Sr will be the same as Sc. A more complicated query

could consist of finding outliers among Christos Faloutsos’
coauthors who are unusual with respect to all computer sci-
ence authors. In this case Sc should still be all of Christos’
coauthors, but Sr should be all authors in computer science.

We also need to explicitly state how we are going to de-
fine outliers. For example, if we want to find outliers among
Christos’ coauthors who publish papers in substantially dif-
ferent venues, then it would be appropriate to define a sin-
gle feature meta-path (APV ) to extract all the publishing
venues of each author.

Notice that although not explicitly pointed out in the def-
inition, in this paper, we are assuming that all the vertices
in Sc

S
Sr are of the same type, which is a more intuitive

scenario. Also, we require all the meta-paths P1, . . . ,Pm

has their first element in the same vertex type as vertices in
Sc and Sr, otherwise we cannot extract meaningful features
from the given feature meta-paths.

To bring this general framework to real-world use cases
in heterogeneous information networks, we need a powerful
query language for users to specify the query.

4.2 Outlier Query Language
In this subsection, we present an outlier query language.

It is capable of e↵ectively supporting most outlier queries in
a heterogeneous information network. Outlier detection is
not part of the basic functionality supported by traditional
SQL languages and relational databases. Due to the com-
plexity of heterogeneous information networks, writing in
SQL to specify an outlier detection query can be extremely
awkward. Therefore, we define a query language for our
outlier detection problem. Notice that although our query
language is designed specifically for outlier detection queries
in heterogeneous information networks, with minor modifi-
cation it can also be applied to other types of data sets such
as relational databases.

General Formulation. The general structure of a state-
ment for an outlier query is:

FIND OUTLIERS FROM ... //Candidate set
COMPARED TO ... //Reference set
JUDGED BY ... //Feature meta-paths
TOP ...; //Number of outliers to return

In the FROM or COMPARED TO clauses, users can specify a
set of vertices. For the FROM clause, users specify the candi-
date set Sc, namely the set of vertices from which outliers
are selected. The COMPARED TO clause is used to specify the
reference set Sr, namely the set of vertices used as a refer-
ence. Notice that the COMPARED TO clause is optional. If it
is not specified, the reference set Sr will be the same as the
candidate set Sc.

In the JUDGED BY clause, users are required to give a single
feature meta-path P or a collection of feature meta-paths P.
The weights of di↵erent feature meta-paths may optionally
be provided. Vertices in Sr and Sc are compared based
on the feature meta-paths and their weights. The top-k
outliers, where k is specified in the TOP clause, are returned
as results.

In the next part of this subsection, we introduce how to
actually specify a set of vertices, and how to specify a collec-
tions of (weighted) feature meta-paths. Then we give several
examples.

328



Specifying candidate/reference set. In the simplest
case, users can refer to a certain vertex by its type and name:

venue{"EDBT"}

which returns all the venue-typed vertices with exactly the
name “EDBT”.

In many cases, users are interested in outliers in a certain
local area in the network. Therefore, we allow the user to
specify the neighborhood of a certain vertex, with regard to
the definition in Section 3. Recall that to define a neigh-
borhood requires a specific vertex vi and meta-path P. We
use the dot operator to concatenate di↵erent types and rep-
resent a meta-path, where the first element is a specified
vertex. As an example:

venue{"EDBT"}.paper.author

returns the neighborhood of venue-typed vertex EDBT with
respect to meta-path (V PA). More formally it returns
N

P

(vi), where vi is the vertex that represents the venue
EDBT and P = (V PA). Semantically, it is the set of all the
authors with papers published in the venue EDBT.

We also allow users to specify additional conditions in a
WHERE clause, to further restrict the vertices selected in the
candidate or reference set. For example, the set of authors
who have published in the conference EDBT and who have
published more than 10 papers can be specified as:

venue{"EDBT"}.paper.author AS A
WHERE COUNT(A.paper) > 10

Multiple SQL-style operations can be applied to extract
each vertex set. For instance, a user can generate the union
of multiple sets using the UNION operator:

venue{"EDBT"}.paper.author
UNION
venue{"ICDE"}.paper.author

which will return the set of authors who have published in
EDBT or ICDE.

Alternatively, a user can generate the intersection of sev-
eral sets using the INTERSECT operator:

venue{"EDBT"}.paper.author
INTERSECT
venue{"ICDE"}.paper.author

which will return the set of authors who have published in
both EDBT and ICDE.

Specifying feature meta-paths. A meta-path in our
query language can simply be represented as an ordered list
of types separated by dots. For example, in a bibliographic
network, we can specify the feature meta-path (APV ) to
compare authors with respect to their publishing venues as:

author.paper.venue

in the JUDGED BY clause.
If there are multiple aspects, namely multiple feature

meta-paths, that a user would like to use when classify-
ing outliers, we separate di↵erent meta-paths by commas
“,”. For example, a user may judge outlier authors based
on both their publishing venues and their coauthors. Meta-
paths (APV ) and (APA) are given as feature meta-paths
and we write in the JUDGED BY clause:

author.paper.venue, author.paper.author

We have shown that our query language can support the
specification of a collection of feature meta-paths P. When
users want to define di↵erent weights for di↵erent meta-
paths, we also allow users to specify the weights in this
query language, by writing the weight after a colon following
the corresponding meta-path. As an example, suppose the
user wants to judge outliers based on both their publishing
venues and their coauthors, weighting the venues with twice
the importance of coauthors. We can write in the JUDGED BY
clause

author.paper.venue: 2.0, author.paper.author

where as author.paper.author is explicitly assigned a
weight, it is by default weighted as 1.

Notice, we require that all specified feature meta-paths
have the same type in their first element as vertices in Sc

and Sr.

4.3 Example queries
Example 1. To find the top-10 outliers among Chris-
tos’ coauthors in terms of venues they publish (i.e., find 10
authors in Christos’ coauthor who publish in the weirdest
venues), we write the query:

FIND OUTLIERS
FROM author{"Christos Faloutsos"}.paper.author
JUDGED BY author.paper.venue
TOP 10;

Since no reference set is specified, the outliers are determined
by comparing with others in the candidate set A.

Example 2. Alternatively, a user might want to find
outliers in Christos’ coauthors who are significantly di↵erent
from the authors in the KDD community, in terms of the
venues they publish in and their coauthors. We can write
this query as:

FIND OUTLIERS
FROM
author{"Christos Faloutsos"}.paper.author

COMPARED TO
venue{"KDD"}.paper.author

JUDGED BY
author.paper.venue,
author.paper.author

TOP 10;

Example 3. To find the top-50 outliers among SIGMOD
authors, who have published at least 5 papers, with respect
to their coauthors (weight 1) and the vocabulary used in
their paper titles (weight 3), we write the query:

FIND OUTLIERS
FROM venue{"SIGMOD"}.paper.author AS A

WHERE COUNT(A.paper) >= 5
JUDGED BY

author.paper.author,
author.paper.term : 3.0

TOP 50;
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5. NETWORK-BASED OUTLIER MEA-
SURE: NETOUT

There have been many outlierness measures for numerical
and categorical data. However, defining a good outlierness
measure for use in heterogeneous information networks is
still a challenging problem. The major challenge is the am-
biguity of outlier semantics, as there are multiple types of
paths connecting vertices.

Basic principle. In this section we define the properties
of an outlier in a heterogeneous information network given a
specific query. We address the problem for the query of find-
ing outlier vertices among a set of candidate vertices with
respect to a set of reference vertices, when judged by a spe-
cific feature meta-path. The feature meta-path and sets of
candidate and reference vertices are given in the query for-
mulation. The definition should be intuitive while utilizing
the rich information provided by the network.

In general, an outlier among a group is an object that dif-
fers substantially from the rest of the group. In the context
of finding outliers in a network, we look for vertices that are
least connected to the group, but it is also important to con-
sider each vertex’s maximum potential for connectivity when
comparing its group connectivity with that of other vertices.
In the context of our specific problem, we follow the basic
principle that outlying vertices should be most structurally
disconnected from the reference set, with respect to their
expected potential for connectivity.

5.1 Normalized Connectivity
We begin by presenting a measure to express the connec-

tivity between two individual vertices with respect to their
potential connectivity. Later we will apply it between indi-
vidual candidate vertices and all vertices in the reference set
to determine an outlier score for each candidate vertex.

In our query language we allow the user to specify a col-
lection of feature meta-paths P. In this section we only
consider queries where P consists of a single feature meta-
path P. Finding outliers given a collection of weighted fea-
ture meta-paths can be done in a number of ways. The
connectivity between vertices can be redefined, or indepen-
dent outlier scores can be computed considering each feature
meta-path independently and then averaged. We leave the
problem of determining the best method to a future study.

The meta-path P can be viewed by the user as specifying
a traditional feature type which will be used to judge the
outlierness of each candidate vertex. We are interested in
finding outliers that are most structurally disconnected, so
we construct the symmetric meta-path linking the candidate
type to itself, Psym = (PP�1).

We can now define the connectivity  between two ver-
tices, va and vb, as the number of path instantiations of
Psym between the two vertices, (va, vb) = |⇡

Psym(va, vb)|.
The visibility of vertex va is the connectivity between va and
itself, (va, va), which is a measure of a vertex’s potential
connectivity with other vertices. We define the normalized
connectivity between vertices va and vb as the ratio of their
connectivity to va’s visibility:

Definition 9 (Normalized Connectivity). Given
heterogeneous network G containing two vertices va and vb
of type T 2 T and symmetric meta-path Psym = (PP�1) =
(T . . . T ), the normalized connectivity between va and vb is

Authors Papers Venues

1

2

3

Jim

Mary

Figure 2: Path instantiations of the meta-path (APV PA)
connecting authors Jim and Mary

defined as ̃(va, vb) =
(va,vb)
(va,va)

=
|⇡Psym (va,vb)|

|⇡Psym (va,va)|

Note that ̃(va, vb) 6= ̃(vb, va) when (va, va) 6= (vb, vb).
Normalized connectivity can be interpreted in terms of a
random walk beginning at va along meta-path Psym. The

probability of ending at vb is
|⇡Psym (va,vb)|

||�Psym (vi)||1
, where � is the

neigbor vector function defined in Section 3. The proba-

bility of returning to va is
|⇡Psym (va,va)|

||�Psym (vi)||1
. The probability

of ending at vb divided by the probability of returning to
va is then |⇡P (va,vb)|

|⇡P (va,va)|
, which is the normalized connectivity

̃(va, vb). This fits with our intuition well. The probabil-
ity of returning to va acts as a normalization constant such
that the normalized connectivity between va and itself will
always be 1. When va is more connected to vb than itself,
̃(va, vb) > 1. When va is less connected to vb than it-
self, ̃(va, vb) < 1. Comparing ̃(va, vc) with ̃(vb, vc) shows
whether it is more likely to arrive at vc in a random walk be-
ginning at va or vb (normalized by the likelihood of returning
to the original vertex).

Example 4. We use a concrete example (Cf. Figure 2) to
illustrate the behavior of normalized connectivity. We ex-
amine two authors Jim and Mary in a bibliographic network
G given feature meta-path P = (APV ).

The connectivity (path count) between Jim and Mary is
2⇥4+1⇥2+3⇥6 = 28. The normalized connectivities in this
example are ̃(Jim,Mary) = 0.5 and ̃(Mary, Jim) = 2.
This reflects that Jim’s connectivity with Mary is half his
connectivity with himself, while Mary’s connectivity with
Jim is twice that with herself.

5.2 Outlier Measure: NetOut
To measure a certain vertex vi’s outlierness with regard to

a given reference set Sr we sum the normalized connectivity
between vi and all vertices in Sr. This gives vi’s connectivity
to the reference set as a whole, normalized by its potential
connectivity. The lower this normalized group connectivity,
the more likely that vi is an outlier. We define the outlierness
measure NetOut as:
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Definition 10 (Outlierness in Heterogeneous
Networks: NetOut). In a heterogeneous network G,
given a query Q, for any vi 2 Sc, the outlierness can be
measured by

⌦NetOut(vi;Q) =
X

vj2Sr

̃(vi, vj)

where smaller ⌦ values correspond to greater likelihood of
being an outlier. We refer to ⌦NetOut(vi;Q) as simply
⌦(vi;Q) outside this section when there is no potential am-
biguity.

Rather than summing vi’s normalized connectivity with
every vertex in the reference set, we could find the mini-
mum or maximum normalized connectivity between vi and
any vertex in the reference set. In many cases finding the
minimum normalized connectivity is not meaningful because
many vertices in the candidate set are completely discon-
nected from at least one vertex in the reference set. To
evaluate the usefulness of finding the maximum normalized
connectivity consider two vertices vi and vj . Vertex vi is
moderately connected to one vertex in the reference set but
completely disconnected from every other context vertex.
Vertex vj is weakly connected to every vertex in the refer-
ence set. In most cases it is hard to justify that vj should
be a stronger outlier than vi.

Summing the normalized connectivities has the additional
advantage of computational e�ciency. Computing NetOut
for every vertex in the candidate set can be reduced to an
O(|Sr|+ |Sc|) operation. In comparison, using the minimum
or maximum normalized connectivity instead would always
require O(|Sr|⇥ |Sc|) time.

Next we justify our use of normalized connectivity when
defining NetOut by comparing with the similarity measures
PathSim and cosine similarity.

PathSim. Superficially it may appear that a similarity
measure could be used instead of normalized connectivity in
our outlier detection problem. The normalized connectivity
between two vertices is not a true similarity measure because
it lacks symmetry. In this section we introduce the similarity
measure PathSim for comparison, to justify the need for
normalized connectivity.

In a previous study of similarity search in heterogenous
information networks [24], PathSim was introduced as an
interesting measure to define network-based structural sim-
ilarity. The PathSim measure between two vertices vi and
vj following a meta-path P in a heterogeneous information
network is defined as,

PathSim
Psym(vi, vj) =

|⇡
Psym(vi, vj)|�|⇡

Psym(vi, vi)|+ |⇡
Psym(vj , vj)|

�
/2

For comparison purposes we define:

⌦PathSim(vi;Q) =
X

vj2Sr

PathSim
Psym(vi, vj)

PathSim
Psym(vi, vj) is defined by the connectivity be-

tween vi and vj divided by the average of vi and vj ’s visibil-
ity. Based on this formula, PathSim assigns high similarity
values to the vertices that are strongly connected (i.e., there
are many paths between vi and vj following the meta-path)

but having low average visibility (i.e., there are not many
other paths from vi or vj reaching vi or vj itself).

PathSim has demonstrated its promise at similarity search
in heterogeneous information networks. Comparing to Sim-
Rank or Personalized PageRank, PathSim assigns lower sim-
ilarity to vertices whose connectivity is high but whose vis-
ibilities di↵er.

Cosine Similarity. We define a comparable version of
NetOut using the cosine similarity instead of normalized
connectivity:

⌦CosSim(vi;Q) =
X

vj2Sr

�
P

(vi) · �P

(vj)
||�

P

(vi)||2 ⇥ ||�
P

(vj)||2

Where �
P

(vi) is the neighbor vector function defined in
Section 3.

NetOut Example. We consider a toy example to demon-
strate NetOut’s properties. Table 1 shows the publication
records of candidate authors. In this example we consider a
query giving the reference set composed of 100 authors with
publication records identical to Sarah’s and feature meta-
path P = (APV ). Table 2 shows NetOut scores for each
candidate author. We compare with outlier scores computed
using PathSim and the cosine similarity in place of normal-
ized connectivity in the NetOut formula.

Sarah is clearly not an outlier, with ⌦(Sarah;Q) = 100
(normalized connectivity with identical vertices of 1 multi-
plied by the size of the reference set). Rob has an unusual
publication record and a low NetOut score, signifying he is
a potential outlier. Lucy’s publication di↵ers from authors
in the reference set, but is more similar than Robs, giving
her a higher NetOut score than Rob.

Next we compare NetOut scores with outlier scores com-
puted using PathSim and the cosine similarity in place of
normalized connectivity. PathSim is computed using the
meta-path (APV PA). The cosine similarity is computed
using each author’s neighbor vector (defined in Section 3).
All three measures find the same outlier ordering for Sarah,
Rob, and Lucy.

Joe has published only two papers in the venue SIG-
GRAPH. While SIGGRAPH is an unusual venue, Joe’s pub-
lication record is currently unstable and likely to change over
the course of his life. It is possible that his first publications
are simply noise. NetOut does not classify Joe as an out-
lier. While his connectivity with authors in the reference
set is low, this is expected because of his low visibility. In
a random walk beginning at Joe following the meta-path
(APV PA), the probability of reaching an author in the ref-
erence set is the same as the probability of returning to Joe.
However, the PathSim and cosine similarity versions both
classify Joe as an outlier with very low scores.

Emma is clearly a very unusual author, and this is appar-
ent in her NetOut score. She has only published in the un-
usual venue SIGGRAPH and she has published more papers
than the authors in the reference set, so we can assume her
publication record is stable at this point. Her outlier score
computed using PathSim is actually higher than Joe’s, be-
cause her visibility is more similar to the visibility of authors
in the reference set. Emma’s outlier score computed using
the cosine similarity is the same as Joe’s. Both have neigh-
bor vectors with the same direction, so their cosine similarity
with other authors is identical. NetOut computed using nor-
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Table 1: Publication records of candidate and reference ver-
tices. The reference set contains 100 authors with identical
publication records, given by the reference author.

VLDB KDD STOC SIGGRAPH

Reference Author 10 10 1 1

Sarah 10 10 1 1
Rob 0 1 20 20
Lucy 0 5 10 10
Joe 0 0 0 2

Emma 0 0 0 30

Table 2: NetOut outlier scores of select candidate vertices
given a query whose feature meta-path is P = (APV ) and
reference set is given in Table 1, compared with scores com-
puted using PathSim and the cosine similarity in place of
normalized connectivity.

⌦NetOut ⌦PathSim ⌦CosSim

Sarah 100 100 100
Rob 6.24 9.97 12.43
Lucy 31.11 32.79 32.83
Joe 50 1.94 7.04

Emma 3.33 5.44 7.04

malized connectivity finds outliers without bias towards any
particular visibility, while PathSim and the cosine similarity
are biased towards authors with low visibility.

NetOut Experimental Comparison. To further ex-
plain our use of normalized connectivity, rather than a sym-
metric similarity measure such as PathSim or CosSim, we
employ a concrete example on DBLP data set to compare
the results returned by di↵erent methods.

We construct a query, to find top-5 outliers among all the
coauthors of Christos Faloutsos, in terms of their publish-
ing venues. The context and candidate sets are specified as
Faloutsos’ co-authors and the feature meta-path is given by
P = (APV ).

The comparison results are shown in Table 3. The top
outliers found by NetOut defined using normalized connec-
tivity are active in fields besides data mining, which is Chris-
tos’ primary focus, and have a wide range of visibilities.
Adam Wright has published roughly 30 papers, while Katia
P. Sycara has published roughly 300 papers. In contrast, all
the top-5 outliers found by PathSim or CosSim are authors
who have published less than 2 papers, which makes them
uninteresting as outliers. This further demonstrates the in-
herent bias towards candidate vertices with low visibility
when using PathSim or the cosine similarity.

6. IMPLEMENTATION
In this section we briefly introduce some technical details

regarding the implementation of our query-based outlier de-
tection system. We first introduce a basic baseline imple-
mentation and then optimizations to improve the e�ciency
of query execution.

6.1 Baseline
There are two basic steps to execute an outlier query: re-

trieve the candidate and reference sets Sc and Sr and calcu-
late the outlierness of each vertex in the reference set based

on the given feature meta-paths.
For retrieval of Sc and Sr, the basic operations are find-

ing a vertex vi given its name and type and then traversing
the network from vi while counting the instantiations of the
given meta-path. The first operation can be naively imple-
mented by a hash table, or a trie, which is relatively e�cient.
The second basic operation, materializing a meta-path P,
has time complexity exponential to the length of P.

A näıve way to calculate the outlierness measure would be
to first calculate the normalized connectivity ̃(·, ·) between
each vertex in the candidate set Sc and each vertex in the
references set Sr, then sum up all the ̃(vi, ·) for each ver-
tex in Sc to obtain the outlierness. However, this has time
complexity of O(|Sr|⇥ |Sc|).

Recall the definition of connectivity, (·, ·):

(vi, vj) = |⇡
Psym(vi, vj)|

= �
P

(vi) · �P

(vj)

The calculation of NetOut can be re-written as:

⌦(vi;Q) =
X

vj2Sr

̃(vi, vj)

=
X

vj2Sr

(vi, vj)
(vi, vi)

=
X

vj2Sr

�
P

(vi) · �P

(vj)
�
P

(vi) · �P

(vi)

=
1

||�
P

(vi)||22

0

@�
P

(vi) ·
0

@
X

vj2Sr

�
P

(vj)

1

A

1

A(1)

Notice that the term
P

vj2Sr
�
P

(vj) remains the same

for all vi 2 Sc. Therefore we can first calculate it, then
calculate the outlierness value NetOut for all vertices vi 2
Sc. Therefore, the time complexity of calculating NetOut
for every candidate vertex is only O(|Sr|+ |Sc|).

However, even if the calculation of NetOut is e�cient, it
is still relatively slow compared to actually obtaining the
neighbor vector �

P

(vi) for a given vi and meta-path P.
Materializing this neighbor vector requires traversal of the
heterogeneous network, which can be time-consuming when
the specified meta-path is long or the degree of the ver-
tex of interest is high. Therefore we aim to optimize the
query processing time by reducing the materialization time
of meta-paths.

6.2 Optimization
Pre-materialization. To accelerate the materialization
of meta-paths, we can pre-compute the materialization of
length-2 meta-paths. Depending on the pattern of user
queries we may compute all length-2 paths or only a subset.
To be more precise, for each vertex vi 2 V , and all possible
P such that |P| = 2, we can calculate and store the vector
�P (vi).

In the execution of a query, it may be necessary to
calculate �P (vi) for an arbitrary meta-path P. We can
always decompose P into several length-2 meta-paths as
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Table 3: Comparing di↵erent outlierness measure, with query Sc = Sr =author(“Christos Faloutsos”).paper.author and feature
meta-path P = (APV ) Outliers found by normalized connectivity are interesting outliers, while outliers found by PathSim or
CosSim are authors with very few papers, which are not interesting.

Method ⌦NetOut ⌦PathSim ⌦CosSim

Ranking Name ⌦-value Name ⌦-value Name ⌦-value
1 Adam Wright 2.54 Wenyao Ho 1.07 John Chien-Han Tseng 0.0022
2 Philip Koopman 2.55 Fernanda Balem 1.12 Fernanda Balem 0.0038
3 Nicholas D. Sidiropoulos 3.29 Rebecca B. Buchheit 1.31 Guoqiang Shan 0.0046
4 Katia P. Sycara 3.64 John Chien-Han Tseng 1.41 Wenyao Ho 0.0066
5 David S. Doermann 3.65 Chi-Dong Chen 1.47 Chi-Dong Chen 0.0077

P = (P1 · · · Pk), where |P1| = · · · = |Pk�1| = 2. If the
original meta-path P is even-length, then |Pk| = 2.

Notice that for any P = (P1P2), we have

�P (vi) =
X

vj

|⇡
P1(vi, vj)|�P2(vj)

= [�
P2(v1), . . . ,�P2(vn)]�P1(vi)

which implies that by decomposing an arbitrary meta-path
P into several length-2 meta-paths, we can calculate �

P

(vi)
by multiplication of indexed vectors. Even if the original
meta-path is odd-length, we only need to traverse the net-
work for a single hop. Retrieving an index can be of O(1) by
storing the vectors in a hash table and the time complexity
of multiplication is a↵ordable when the vectors are sparse.

By e�ciently retrieving �
P

(vi), multiple steps in the query
processing benefit, including the retrieval of candidate set
Sc and reference set Sr, and the calculation of connectivity
functions.

Selective pre-materialization. The aforementioned in-
dexing strategy pre-calculates the indexed vectors for all ver-
tices with regard to all length-2 meta-paths. This exhaustive
indexing strategy guarantees e�ciency improvement, but
can also result in a large index table. To achieve reason-
able e�ciency while conserving memory, we may only want
to construct length-2 meta-paths starting from a certain set
of vertices.

To this end, a strategy is to count the frequency with
which di↵erent vertices appear in queries. The query set
used for selecting vertices for building indices is referred to
as“initialization query set”for SPM. The initialization query
set can be existing query logs, or else synthetic queries when
query logs are not available. A certain absolute or relative
threshold is set, and length-2 meta-paths are only computed
beginning at vertices that appear in queries with frequency
above the set threshold.

7. EXPERIMENTAL RESULTS
In this section we evaluate experimental performance.

7.1 Experiment Setup
Data set. We employ a bibliographic data set from
ArnetMiner3 to construct a heterogeneous information net-
work. The data set consists of 2, 244, 018 publications and
1, 274, 360 authors in the field of computer science. The

3http://arnetminer.org/AMinerNetwork

Table 4: Query templates used to construct query sets for
e�ciency experiments. 10,000 random authors are selected
and substituted where indicated by “·” in each query tem-
plate.
Number Query Templates

Q1

FIND OUTLIERS FROM author{·}.paper.author
JUDGED BY author.paper.venue
TOP 10;

Q2

FIND OUTLIERS IN author{·}.paper.venue
JUDGED BY venue.paper.term
TOP 10;

Q3

FIND OUTLIERS IN author{·}.paper.term
JUDGED BY term.paper.venue
TOP 10;

heterogeneous network contains 4 types of vertices: paper,
venue, author and term. Possible type of edges include
paper-author (written-by), paper-venue (published in) and
paper-term (title contains).

Query sets. In order to check the e�ciency perfor-
mance of our algorithm, we randomly select 10,000 author-
typed vertices from the heterogeneous information networks.
Three di↵erent types of queries are shown in Table 4, which
are referred to as “query templates”. For each template, we
substitute the randomly selected vertices into the position
indicated by the dot “·”, to generate 10,000 queries. We re-
fer to each set of queries as Qi. These randomly generated
query sets are used in e�ciency studies.

Comparison methods. In e�ciency studies, we compare
the following implementations.

• Baseline. The baseline implementation without pre-
materialization (Cf. Equation (1)).

• Pre-Materialization (PM). All length-2 meta-path in-
stantiations are pre-computed and stored.

• Selective Pre-Materialization (SPM). A subset of all
length-2 meta-path instantiations are pre-computed
and stored, for selected vertices that frequently appear
in Sc given a set of specified queries, where the relative
frequency threshold is set to 0.01.

We use the set of all possible queries for the given query
template as the initialization query set in SPM.
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7.2 Case Study
We examine the e↵ectiveness of our proposed outlierness

measure by checking the experimental results of several typ-
ical queries. The results are summarized in Table 5.

In our first two experiments we use Christos Faloutsos’
coauthors as the candidate and reference sets. We use
author.paper.venue in the first experiment as the single
feature meta-path and author.paper.author in the second.

The first query we try is to find outliers with regard to
their publishing venues. The returned top-10 outliers of
Christos’ coauthors are actually quite deviated from his re-
search field (with one exception), which is data mining. For
example, Adam Wright works on biomedical informatics;
Philip Koopman is in the area of embedded systems. In-
terestingly, Nicholas D. Sidiropoulos publishes most of his
work in the community of signal processing. However, one of
his research interests is tensor analytics and mining, which
is closely related to Christos Faloutsos’ research interests.
As we are judging outliers based on publishing communi-
ties, Nicholas D. Sidiropoulos is still listed as one of the
top outliers. Although most of the aforementioned outliers
are relatively established authors in their own fields, John
Chien-Han Tseng is a student who has published only one
paper in the venue KDIR (a very rare venue for authors in
the reference set to publish in). Tseng’s appearance demon-
strates that our method does not discriminate against can-
didate outliers based on their visibility.

In the second query, we still search for outliers among
Christos’ coauthors, but judged by their coauthors. The re-
sults are substantially di↵erent from the first query, with
only one overlapping author (Katia P. Sycara). This is
evidence that in a heterogeneous information network out-
liers can be reasonably defined in multiple ways, resulting in
totally di↵erent outcomes. Without user-specified queries,
mining outliers can be an ill-defined problem leading to se-
mantic ambiguity. The top outliers are still mainly in fields
other than data mining, with an interesting exception: Ee-
Peng Lim is a researcher who also focuses on social network
analysis and mining 4, with a significant number of papers
published in data mining venues. Lim is still listed as an out-
lier among Christos’ coauthors, as his collaborator network
does not overlap much with Christos’ collaborators. This
is a typical example of the importance of providing a spe-
cific outlier definition. Outliers under one definition could
be totally normal given another definition.

In the third query, we attempt to find outliers among
KDD authors, with respect to their publishing venues. The
top outlier turns out to be “NULL” which represents miss-
ing data. Other top outliers are also interesting: Wolfgang
Glänzel is a professor of economics and business, with the
majority of his papers published in economic related venues;
Paul M. Thompson has published most papers in medical or
neuroscience venues.

7.3 Efficiency Studies
We also examine the e�ciency performance of our di↵er-

ent query optimization strategies. In this experiment, we
process the query sets generated from the query template
in Table 4 and measure the system performance by query
processing time.

4https://sites.google.com/site/aseplim/

Table 5: Case study of NetOut results on several queries.
Sc = Sr = author(“Christos Faloutsos”).paper.author

P = author.paper.venue

Ranking Name ⌦-value
1 Adam Wright 2.54
2 Philip Koopman 2.55
3 Nicholas D. Sidiropoulos 3.29
4 Katia P. Sycara 3.64
5 David S. Doermann 3.65
6 Asim Smailagic 3.69
7 John Chien-Han Tseng 4.00
8 Daniel P. Siewiorek 4.22
9 Jessica K. Hodgins 4.52
10 Dimitris N. Metaxas 4.57

Sc = Sr = author(“Christos Faloutsos”).paper.author
P = author.paper.author

Ranking Name ⌦-value
1 Dimitris N. Metaxas 1.06
2 Bin Zhang 1.06
3 Hui Zhang 1.07
4 Lionel M. Ni 1.07
5 Bin Liu 1.08
6 Joel H. Saltz 1.08
7 Yang Wang 1.08
8 Hao Wang 1.08
9 Ee-Peng Lim 1.12
10 Katia P. Sycara 1.13

Sc = Sr = venue(“KDD”).paper.author
P = author.paper.venue

1 NULL 1.27
2 Wolfgang Glänzel 4.99
3 Paul M. Thompson 6.46
4 Yehuda Lindell 9.21
5 Kwan-Liu Ma 12.2
6 Dhabaleswar K. Panda 13.23
7 Christos Davatzikos 13.95
8 Andrzej Skowron 14.62
9 Anil K. Jain 15.75
10 Fillia Makedon 15.95

Improved e�ciency with pre-materialization. In
Figure 3 we compare the performance of the baseline imple-
mentation, the implementation with all length-2 meta-paths
pre-materialized (PM), and the selective pre-materialized
version with relative frequency threshold 0.01 (SPM). With
pre-materialization the e�ciency can always be improved
significantly, 5-100 times faster than the baseline implemen-
tation. This verifies the e↵ectiveness of the indexing strat-
egy. The performance of SPM is generally worse than the
fully materialized version PM, but is more than 10 times
faster than the baseline in query set Q3.

In-depth e�ciency analysis of SPM. For the SPM
strategy, we conduct a study to look into the processing
time spent on di↵erent parts. As shown in Figure 4, For
almost all query sets, most of the processing time is spent
on materializing feature meta-paths of vertices without pre-
materialization. Loading pre-stored instantiations of feature
meta-paths for vertices with materialization is the least time
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Figure 3: Comparing total execution time for 10,000 ran-
domly generated queries between the baseline implementa-
tion and the implementation with pre-materialization.
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Figure 4: In-depth analysis of query processing time us-
ing selective pre-materialization strategies with the relative
frequency threshold set to 0.01. “Not indexed vectors” in-
dicates processing time spent on meta-path materialization
from vertices without pre-materialization; “Indexed vectors”
indicates time spent looking up pre-materialized meta-paths
from materialized vertices; “Outlierness calculation” indi-
cates calculation time of NetOut.

consuming part, while calculating NetOut can be slower.
Calculating inner products between vectors is potentially
more expensive than retrieving vectors from indices.

Threshold studies for SPM. We check the performance
of SPM strategies with di↵erent relative frequency thresh-
old. We construct indices with the relative frequency thresh-
old set at 0.001, 0.01, 0.05, and 0.1 respectively, and com-
pare both the processing time and index size, as shown in
Figure 5. Not surprisingly, the index size decreases as the
threshold rises, while the average query processing time also
increases. A relatively optimal threshold is likely to be found
between 0.01 and 0.05, considering both factors.
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Figure 5: Comparison of e�ciency performance with
di↵erent relative frequency threshold in selective pre-
materialization indexing strategy.

8. DISCUSSION
Alternative query language design. There are other
ways to define the query language with more generality. It
is possible to allow users to specify functions that are not
meta-path based for measuring the similarity between two
vertices, or to allow users to define their own outlierness
measure, etc.. However, maximizing the generality will re-
quire users to have more expertise knowledge, which violates
our principle to provide users with a more declarative lan-
guage. In comparison, our language design is simple and
satisfies most needs for data analysis.

Outlierness measure. The outlierness measure NetOut
we defined in this paper is easy to compute compared
to many state of the art outlier detection algorithms. It
is still possible to substitute other outlier detection algo-
rithms based on our query-based outlier detection frame-
work, as long as they support the input specified by our
queries. However, most of them are not e�cient enough to
be suited for users’ exploratory query behavior. Our exper-
iments comparing with other outlier detection algorithms
(e.g. LOF [4]) suggest that they cannont produce better re-
sults than NetOut.

Extensions. Although we frame our query-based out-
lier detection study in a closed-schema heterogeneous in-
formation network data set, our framework can easily be
extended to a broader range of data sets. For example,
our query language can be applied to open-schema networks
such as a knowledge graph, and the baseline implementa-
tion of NetOut should also be applicable. It is also possible
to apply our query-based outlier detection idea on tradi-
tional relational databases, with a structure similar to our
defined outlier query language, but changing the meta-path-
based language into SQL. It would be interesting to develop
a query-based outlier detection system for di↵erent types of
data sets, based on our defined framework and query lan-
guage, while exploring the implementation challenges.

There are additional directions to further facilitate users’
exploratory interaction with the system. For example, in-
stead of returning the top-k outliers after the user specifies
the query, it might be helpful to visualize outliers to provide
more insight. Alternatively, the system could find the ap-
proximate top-k outliers, with confidences, while the query
is being processed so that users can determine whether to
continue processing the query. The system might even be
able to suggest how the users can modify their queries to get
more interesting, or more unusual, outliers.
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9. CONCLUSION
In this paper, we propose a query-based outlier detec-

tion framework. We design a query language for outlier de-
tection in heterogeneous information networks, which gives
users flexibility to mine various types of outliers based on
their intuition. We also propose NetOut, a novel meta-path
based outlierness measure for mining outliers in heteroge-
neous networks, and show its e↵ectiveness compared to other
outlierness measures. We finally present implementation de-
tails, where we utilize pre-materialization and selective pre-
materialization to optimize query processing time. Experi-
mental results show that our proposed query-based outlier
detection framework can e�ciently return meaningful results
for a range of queries.
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ABSTRACT
Constrained skyline queries retrieve all points that optimize some
user’s preferences subject to orthogonal range constraints, but at
significant computational cost. This paper is the first to propose
caching to improve constrained skyline query response time. Be-
cause arbitrary range constraints are unlikely to match a cached
query exactly, our proposed method identifies and exploits similar
cached queries to reduce the computational overhead of subsequent
ones.

We consider interactive users posing a string of similar queries
and show how these can be classified into four cases based on how
they overlap cached queries. For each we present a specialized so-
lution. For the general case of independent users, we introduce the
Missing Points Region (MPR), that minimizes disk reads, and an
approximation of the MPR. An extensive experimental evaluation
reveals that the querying for an (approximate) MPR drastically re-
duces both fetch times and skyline computation.

1. INTRODUCTION
Constrainted Skyline A constrained skyline query [3] is an ef-
fective way of filtering a constrained dataset to points that express
all optimal trade-offs of the dataset’s attributes. For example, if
searching for cheap 3+ star hotels near a conference venue, one ho-
tel is said to dominate another if it is at least as highly rated, well
priced and near as the latter, yet strictly better than the other hotel
on at least one of these metrics. The constrained skyline is the set
of points that satisfy the given constraints and are not dominated by
any others that satisfy the constraints. In practice, the constraints
are critical in allowing users to determine the skyline on the data
relevant to them. E.g. average income earners may not be inter-
ested in luxury hotels nor backpacker hostels, so a non-constrained
skyline cannot capture their preferences. Constraints reduce the
input size, yet, paradoxically, makes computing the skyline quite
challenging, because, unlike an unconstrained skyline which can
simply be pre-materialized, the skyline points are unpredictable.

The naive approach, presented in [3], is to execute a range query
to fetch points satisfying the constraints, and then compute the sky-
line over those points using an efficient skyline algorithm (e.g., [7,

c� 2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0
.

8, 16, 23]). This has the advantage of simplicity, but the perfor-
mance is highly sensitive to the selectivity of the range query. The
best known technique is the I/O-optimal BBS algorithm [19], which
uses an R-tree index and a heap-based priority queue to guide the
search for skyline points, while pruning paths in an R-Tree if out-
side the constraints. In this paper, we outperform BBS by reusing
partial query solutions.
Caching A fair assumption is that many users will pose con-
strained skyline queries on the same dataset. Where users have
similar needs, the constraint regions likely overlap. For example,
young backpackers will all typically search with price constraints
that match a cheap budget, producing similar queries. Business
travellers, conversely, may be more concerned with location than
price; a distinct set of similar queries.

P
ric

e

Distance to conference venue

Old constraints
New constraints
Point

Removed from 
skyline
Added to skyline

Skyline point

Figure 1: Small constraint changes have large impacts on skylines

Additionally, an iterative, exploratory query-refine cycle is com-
mon in search tasks [18], where a user issues a query, observes
the results, and then adjusts constraints to manipulate the results.
Hence, even a single user can produce strings of highly similar
queries, each with distinct skylines [6, 17].

So, this paper addresses a natural question: how can the re-
sults of a constrained skyline query be reused to speed up subse-
quent, similar ones? In contrast to existing techniques (e.g., [3,
19]), we can obtain significant speed-up by decomposing a range
query into disjoint smaller ones, and discarding those that a pre-
vious cached query result implies are unnecessary, hence reading
fewer data points than the isolated query necessitates.
Challenges Despite the apparent simplicity of overlapping two
range queries to compare results, caching constrained skylines is
deceptively challenging. Unlike previous research on caching (sub-
space) skyline queries [2, 14, 20] where constraints are not consid-
ered, cache hits with exact matching constraints are quite unlikely,
especially for real-valued and high-dimensional data. Therefore,
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we investigate how to infer partial skyline solutions from overlap-
ping, rather than matching, query constraints, which would yield a
low cache hit rate.

This, however, introduces a new challenge, because small changes
to constraints can have a profound impact on the skyline [6]. For
example, Figure 1 shows an “old” (solid) and “new” (dashed) con-
strained skyline query on a toy hotel example, where the minor in-
crease to the Price-constraint from the “old” to the “new” query is
enough to eliminate a skyline point (minus), which promotes three
previously dominated points into the skyline (plus). To address this
challenge, we introduce the notion of stability which characterizes
when solution points will be shared among old and new queries.
Even in difficult, unstable cases, we show how a previous query’s
solution points, even when not satisfying the current constraints,
can prune the current search range.

Finally, dimensionality poses a natural challenge for caching con-
strained skylines by increasing the pruning complexity (as we show
in Section 5.3). Therefore, we present an effective approxima-
tion technique that balances the number and selectivity of small
range queries. As a result, we can outperform baseline and the I/O-
optimal BBS algorithms by several factors, and scale elegantly with
increasing workloads.
Contributions Despite the cost of constrained skylines, this pa-
per is the first to investigate how caching can drastically improve
their running time. After reviewing related work (Section 2) we
introduce the problem formally (Section 3) and make the follow-
ing novel contributions (Sections 4-6) before concluding the paper
(Section 8).

• For the exploratory use case, in which subsequent queries
differ only by one constraint, we present a case-by-case break-
down of the four possible overlap relationships, along with
how to compute the constrained skyline for each (Section 4);

• For the general case of arbitrary constraint overlap, we in-
troduce an algorithm to compute the Missing Points Region
(MPR), which is the minimal region that must be queried
from disk. We also introduce an Approximate MPR (aMPR),
sacrificing minimality for fewer independent range queries
(Section 5);

• We introduce a caching algorithm, Cache-Based Constrained
Skyline (CBCS) that handles cache searching, management
and use based on the earlier analysis (Section 6); and

• We conduct an extensive experimental evaluation of our method
to show when our caching yields superior efficiency for re-
lated queries relative to baselines and state-of-the-art (Sec-
tion 7).

2. RELATED WORK
Constrained skylines The skyline operator [3] was introduced
along with a straightforward extension to constrained skyline queries
that first retrieves all data satisfying the constraints, and then ap-
plies any skyline algorithm (e.g., [7,8,16,23]). Subsequently, the R-
tree-based method BBS [19] supports constraints by pruning paths
in the R-tree if they are outside the constraint region. BBS is I/O-
optimal and state-of-the-art when not using caching. We include it
in our empirical study (Sect. 7).

For arbitrary subsets of dimensions, known as subspaces, [10]
partitions data and queries vertically onto several low-dimensional
R-trees. Without subspaces, their approach is essentially a constraint-
based version of the NN method [15], shown in [19] to be in-
ferior to BBS for constrained skylines. [9] study distributed con-
strained skylines where distributed local skylines are merged into

a global result. Efficiency gains come from computing indepen-
dent local skylines at data sites in parallel, meaning that a non-
distributed application is equivalent to computing the constrained
skyline naively. [1] study constrained subspace skylines in a hori-
zontally partitioned P2P environment. Constrained subspace sky-
lines are computed in order of potential dominance on each node,
avoiding those pruned by earlier nodes. It suffers the same lim-
itations as [9]. [22] study continuous constrained skyline queries
for streams, determining areas that could influence the current sky-
line. The problem is different from ours, namely maintenance of
fixed constrained skylines for dynamic data, rather than dynamic
constraints. [11] study query optimization of Semi-skylines, which
use partial order preferences. If applied only to traditional con-
straints, the method corresponds to recomputation from scratch for
any change in constraints. [4] estimates the cardinality of (con-
strained) skylines in a DBMS and can be used to assess which sky-
line algorithm to apply in the naive approach.

A user study [17] uses existing constrained skyline algorithms
to investigate how users understand, issue and interact with con-
strained skylines. Finally, [6] study how dynamic changes of con-
straints and subspaces affect skyline membership. Neither [6] nor
[17] offer algorithmic contributions.
Caching skylines [12] and [5] study caching of subspace sky-
lines in a P2P setting using local caches with a superpeer network
and a centralized index, respectively. Neither support constrained
skylines. [2] study caching of subspace skylines, where results are
cached directly and used to answer queries in related subspaces.
[14] caches partial-order domain user preferences to process queries
with similar user preferences. [20] caches dynamic skylines, where
domination is based on the distance to a query. None of them
consider constraints and thus suffer from the same issues as [12]
and [5].

In conclusion, existing constrained skylines algorithms demand
recomputation from scratch if constraints differ even slightly. Also,
existing caching approaches only support identical constraints, which
is unlikely to occur in practice, especially when considering, e.g.,
exploratory search scenarios, real-valued data, multiple users and
several dimensions. In this work, we limit the number of points
read and dominance tests performed, by reusing cached results on
similar constraints.

3. PRELIMINARIES
Let S be a set of data points over an ordered set of numerical

dimensions D, where the value of s 2 S in dimension i 2 D is
denoted s[i]. A set of constraints, C =

⌦

C,C
↵

, is a pair of points
indicating the minimum value, C[i], and the maximum value, C[i],
for each dimension i 2 D. A constraint region, RC , is the set of
all possible points satisfying constraints C:

RC =
n

p 2 R|D| | 8i 2 D : C[i]  p[i]  C[i]
o

.

Observe that RC describes a |D|-dimensional hyper-rectangle, like
the rectangles in Figure 1. Similarly, the constrained data, SC , is
the set of data points that satisfy constraints C:

SC =
�

s 2 S | 8i 2 D : C[i]  s[i]  C[i]
 

.

We note the following properties relating constraint regions and
constrained data:

1. Given constraints C, the set of points SC satisfying con-
straints C form a (possibly empty) subset of the set of points
in the region RC described by C: SC ✓ RC .
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Data & space notation
S Dataset S
D Dimensions of S
R =

n

p 2 R|D|
o

Region of potential |D|-dimensional
points

SC Points in S limited by constraints C
RC Region R limited by constraints C
p, q Points in region R
s, u, t, v Points in dataset S.
p[i], s[i] Value in dimension i of point p, s, resp.

Query notation
C =

⌦

C,C
↵

Constraints consisting of low/high limits
C[i], C[i] Lower/upper constraint on dimension i
Sky(S,C) Skyline on S constr. by C
s � t Point s dominates point t
DR(s) Dominance region of point s
DR(s, C) Dominance region of point s constrained

by C
RQ(C) = (SC \RC) Range query on the region constrained by

C

Table 1: Notation

2. (Data determines space) s 2 SC =) s 2 RC .

3. (Space only contains constrained data) p 2 RC =) p 2
SC _ p /2 S.

In this paper we study how to efficiently answer constrained sky-
line queries (Def. 1) given S and C, if an in-memory cache (Def. 3)
is available. The skyline is defined through the concept of dom-
inance [3]: a point s 2 S (or, analogously, s 2 R) dominates
another point t 2 S, denoted s � t, iff 9i 2 D : s[i] < t[i] and
8j 2 D, s[j]  t[j].1 In order words, s is at least as small as t on
every attribute, and strictly smaller on at least one.

The conventional skyline of S, denoted Sky(S), is the subset of
points not dominated by any other points in S:

Sky(S) = {s 2 S | @t 2 S : t � s} .

These are exclusively those points that minimize some linear
function over the dataset’s dimensions. Figure 2 illustrates the sky-
line with black points for our running hotel example.

The constrained skyline is the set of points that satisfy the con-
straints while not being dominated by any other points that also
satisfy the constraints (Definition 1). Equivalently, it is the skyline
over input SC .

Definition 1 (Constrained skyline [3, 19]).
Given S,C, the constrained skyline, denoted Sky(S,C), is:

Sky(S,C) = Sky(SC) = {s 2 SC | @t 2 SC : t � s} .

Figure 2 also illustrates a constrained skyline as the set of gray
points in the rectangle spanned by constraints C =

⌦

C,C
↵

. Note
here again that the constrained skyline can be very different from
the conventional skyline (black points).

Every point s 2 S (or s 2 R) has a dominance region [10],
denoted DR(s), which is the hyper-rectangular region in which
any point p is dominated by s (Definition 2).
1Assumed without loss of generality: a preference for maximiza-
tion can be handled by multiplying an attribute by -1.
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C_

DR(s,C)

s

DR(t)

t

Figure 2: Illustration of a skyline (black points) and constrained
skyline (grey points inside the rectangle) on our running example.
Also shown are dominance regions (solid gray rectangles).

Definition 2 (Dominance region [10]).
For point s 2 S, the dominance region is defined as:

DR(s) = {p 2 R | s � p} .

For any s 2 S, DR(s) \ Sky(S) = ;; so dominance regions
help detect subsets of points that need not be fetched from disk.
In the presence of constraints C, each point s also induces a con-
strained dominance region, denoted DR(s, C), which is the por-
tion of DR(s) that satisfies C. The gray rectangles in Figure 2
illustrate DR(t) for a conventional skyline point and DR(s, C)
for a constrained skyline point.

Lastly, our objective is to resolve constrained skyline queries
using in-memory constrained skyline cache items. A cache item
(Definition 3) is a 3-tuple consisting of an earlier queried set of
constraints, the resultant constrained skyline, and the skyline’s min-
imum bounding rectangle (MBR).

Definition 3 (Constrained skyline cache).
An in-memory cache holding n cache items {I1, . . . , In}, where
each cache item Ii is a 3-tuple:

Ii = hSky(S,C),MBR, Ci

Sky(S,C) is the skyline result on constraints C and MBR is the
minimum bounding rectangle of Sky(S,C).

With the notation in place (and summarized in Table 1), the prob-
lem studied in this paper can now be stated as follows:

Problem Statement (Cache-based constrained skyline).
Given S, C0, and an in-memory cache {I1, . . . , In}, utilize a cache
item Ii to compute Sky(S,C0) without fetching all of SC0 .

4. EXPLOITING RELATED QUERIES
Recall from Section 2 that existing caching techniques for sky-

lines require an exact match on constraints. A user who continu-
ally modifies, say, the price or distance constraints as he/she re-
fines his/her hotel search therefore produces a long string of cache
misses, despite having made only small, incremental changes to
his/her query.

In this section, we focus on these incremental changes, where
old constraints C and new constraints C0 overlap in all but one
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Figure 3: Cases (a)-(d) of incrementally changing one constraint at a time; our solutions fetch only the points in the gray regions.

dimension. In doing so, we both address the potential for large
computational savings in this principal case and build intuition for
the general methods presented in Section 5.

Specifically, we use Sky(S,C) to limit how much of SC0 that
must be fetched from disk to determine Sky(S,C0). We first in-
troduce the concept of stability to characterize when constrained
skylines share solution points (Section 4.1). Then, we identify the
four possible (and easily detectable) manners in which incremental
constraint changes may overlap, presenting specialized solutions
for each (Section 4.2).

4.1 Skyline stability
Clearly, a cache item for Sky(S,C) indicates which points from

S are in Sky(S,C). More importantly, it also implies which points
from SC are not in Sky(S,C). Stability (Definition 4) captures
this insight relative to new constraints, C0.

Definition 4 (Constrained skyline stability).
We say that Sky(S,C) is stable relative to C0 iff:

s 2 Sky(S,C0) =) (s /2 SC) _ (s 2 Sky(S,C))

In other words, Sky(S,C) is stable relative to C0 if points from
SC not in Sky(S,C) are also not in Sky(S,C0). Otherwise, we
call Sky(S,C) unstable relative to C0. We observe in Theorem 1
that stability is guaranteed when, for all i 2 D, C[i] � C0[i] (or,
trivally, when constraints do not overlap).

Theorem 1 (Guaranteed stability).
Sky(S,C) is guaranteed to be stable relative to C0 iff:

(8i 2 D : C0[i]  C[i]) _
(9i 2 D : C0[i] > C[i] _ C

0
[i] < C[i])

The full proof of Theorem 1 is in Appendix 9, but the intu-
ition is that new constraints can only invalidate the skyline if they
shrink the constraint region, removing skyline points and thereby
their dominance region influence on the skyline result. Stability is
gauranteed since no point s 2 SC dominated by removed point
t 2 Sky(S,C) can satisfy an upper constraint that t does not sat-
isfy.

From Definition 4 and Theorem 1 come two natural consequences.
First, for stable cases, we need only fetch points in the new part of
the constraint region that did not satisfy the old constraints (Corol-
lary 1). Second, a skyline result is unstable if and only if an “old”
skyline point s 2 Sky(S,C) is outside the “new” constraints C0,
and it dominated points that still satisfy the new constraints (Corol-
lary 2).

Corollary 1. If Sky(S,C) is stable relative to C0 then:

8s 2 Sky(S,C0) : (s 2 Sky(S,C)) _ (s 2 (SC0 \ SC))

Corollary 2. Sky(S,C) is unstable relative to C0 iff:

9t 2 Sky(S,C) : t /2 SC0 ^
9s 2 (SC \ SC0) : t � s ^
@u 2 (Sky(S,C) \ SC0) : u � s

4.2 Incremental constraint changes
With the theory of stability in place, we show how any incre-

mental change can be solved with minimum points read. For each
of four possible cases, we prove the correctness and minimality
(proofs in Appendix 9) of our solution and illustrate the intuition of
the ideas by example/illustration.

Figures 3a-3d show the four cases for incremental changes of
constraints C (the solid rectangle), one dimension at a time: (a)
decreasing a lower constraint, (b) decreasing an upper constraint,
(c) increasing an upper constraint and (d) increasing a lower con-
straint. Note that we always have only these four cases, regardless
of dimensionality. The initial constraints C = hC,Ci and new
constraints C0, as well as the change �C from C to C0 are dis-
played in each figure. For each case, the part of SC0 that we fetch
is enclosed in the gray region. Note that while the illustrated gray
regions are all rectangular, this only holds for |D| = 2 as we will
show in Section 5.3.
Case (a): Decreasing a lower constraint (Fig. 3a) From The-
orem 1, Sky(S,C) is stable relative to C0, and from Corollary 1
all new skyline points lie in �C. Instead of fetching all of SC0 ,
we can fetch just the points in (RC0 \ RC). Further pruning is not
possible: no points in Sky(S,C) dominate any part of �C.

Theorem 2 (Case (a) solution).
If C

0
= C, 9i : C0[i] < C[i], 8j 2 D \ {i} : C0[j] = C[j], then:

Sky(S,C0) = Sky(Sky(S,C) [ S�C , C
0)

In the example (Fig. 3a), a, b and c are fetched from the database
with a, c as new skyline points (illustrated by a plus sign), while
existing d, f are dominated by a and c under constraints C0 (illus-
trated by a minus sign). The final skyline is a, c, e, i. Without the
cached Sky(S,C), we must read 12 points, a-l, from disk.
Case (b): Decreasing an upper constraint (Fig. 3b) Again,
from Theorem 1, Sky(S,C) is stable wrt C0. From Corollary 1
the skyline points in Sky(S,C0) are in Sky(S,C) or in �C. Since
RC0 is enclosed in RC , we need simply remove the previous sky-
line points not satisfying the new constraints.
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Theorem 3 (Case (b) solution).
If C0 = C, 9i : C0

[i] < C[i], 8j 2 D \ {i} : C0
[j] = C[j], then:

Sky(S,C0) = Sky(S,C) \ SC0

In this example (Fig. 3b), only i falls outside the new constraints
and is simply removed to obtain the new skyline.
Case (c): Increasing an upper constraint (Fig. 3c) As before,
Sky(S,C) is stable relative to C0 (Theorem 1), and new skyline
points in Sky(S,C0) are in Sky(S,C) or in �C (Cor. 1). Un-
like before, however, we use the dominance regions of points in
Sky(S,C0) to further prune parts of �C:

Theorem 4 (Case (c) solution).
If C0 = C, 9i : C0

[i] > C[i], 8j 2 D \ {i} : C0
[j] = C[j], then:

Sky(S,C0) = Sky(Sky(S,C) [
{s 2 S�C | @t 2 Sky(S,C) : t � s}, C0)

We thus prune S�C such that we only read ((SC0 \ SC) \ {s 2
S�C | 9t 2 Sky(S,C) : t � s}). In the example (Fig. 3c), RC0

contains 18 points, the logic of Case (a) reduces it to 9 points, and
we eventually fetch only 2 points, m and n.
Case (d): Increasing a lower constraint (Fig. 3d) Unlike Cases
(a)-(c), Sky(S,C) is not stable relative to C0. Despite this insta-
bility, we can use the old skyline result by determining invalidated
parts of the cache item and reevaluate these under constraints C0.
Using what is left of Sky(S,C) within the queried constraints C0

we prune regions before reading from disk. Since no two sky-
line points dominate each other (Def. 1), the remaining part of
Sky(S,C) is not invalidated:

Theorem 5 (Case (d) solution).
If C

0
= C, 9i : C0[i] > C[i], 8j 2 D \ {i} : C0[j] = C[j], then:

Sky(S,C0) = Sky((Sky(S,C) \ SC0) [
{s 2 (SC \ SC0) |
9t 2 (Sky(S,C) \ S�C) : t � s ^
@u 2 (Sky(S,C) \ SC0) : u � s}, C0)

Thus, we avoid reading (SC \ SC0) fully, and retrieve only
((SC \SC0) \ {s 2 (SC \SC0) | @t 2 (Sky(S,C)\S�C) : t �
s _ 9u 2 (Sky(S,C) \ SC0) : u � s}).

In the example (Fig. 3d) instead of 7 points, we only fetch g.
Throughout all examples, we save the latency of fetching unnec-
essary points, and the cost of conducting dominance tests over an
otherwise larger input.

5. ARBITRARY CONSTRAINT CHANGES
In this section, we build on the intuition from Section 4 to handle

the general case where the number of constraint changes is arbi-
trary. We first generalize the gray regions of the previous section
into the Missing Points Region (MPR), the minimal area that must
be fetched (Section 5.1), and introduce an efficient algorithm to
compute it (Section 5.2). We then illustrate how the MPR grows ar-
bitrarily complex with dataset dimensionality (Section 5.3) and in-
troduce an effective approximation to reduce that complexity (Sec-
tion 5.3).

5.1 The Missing Points Region
Given constraints C and C0, the Missing Points Region (the gray

rectangles in Figure 3) is the minimum, possibly disjoint, region
of points for which neither C0 nor Sky(S,C) can be used to infer
said points’ inclusion/exclusion in Sky(S,C0). It is comprised of

those parts of RC0 that do not overlap the dominance region of
any point s 2 Sky(S,C), lies outside RC , or, in unstable cases,
where 9t 2 (Sky(S,C) \ (SC \ SC0)), s 2 (SC \ SC0) : t � s
(Definition 5).

Definition 5. (Missing Points Region)
Given Sky(S,C), C0, the Missing Points Region, MPR, is:

MPR = {p 2 RC0 | (p 2 (RC0 \ (RC \RC0)) _
9t 2 (Sky(S,C) \ (RC \RC0)) : p 2 DR(t, C)) ^
@u 2 (Sky(S,C) \RC0) : p 2 DR(u,C0)}

The MPR is both complete and minimal in the sense that, with
knowledge only of Sky(S,C) and C0, any point in MPR could be
in Sky(S,C0) (Theorems 6 and 7, respectively).

Theorem 6. (Completeness)
Given Sky(S,C), C0, where RC \RC0 6= ;, we have:

Sky(S,C0) = Sky((Sky(S,C) \ SC0) [ (MPR \ SC0), C0)

The full proof of Theorem 6 is in Appendix 9, but the intuition
is that there are only two ways in which points can be missing:
(1) Expansion of C and (2) Invalidation of C. All expanded and
invalidated areas are fetched unless guaranteed excluded by known
points from Sky(S,C). The remaining non-invalidated regions of
SC remain stable.

Theorem 7. (Minimality)
Given only Sky(S,C), C0, where SC \ SC0 6= ;, any point in
MPR \ SC0 could be in Sky(S,C0).

The full proof of Theorem 7 is also in Appendix 9, but the in-
tuition is that by definition no known point outside MPR can dom-
inate a point inside MPR, only points inside MPR can dominate
each other. Thus to minimize MPR further, we must know the con-
tents of MPR, which we cannot do without fetching the points in
MPR.

5.2 Computing the MPR
We present our algorithm to compute the MPR, which, per The-

orem 7 is used to minimize points fetched. Our general approach
is to start with the hyper-rectangle hC0, C

0i and continually split it
using C and Sky(S,C) into sub-hyper-rectangles such that many
of them can be immediately discarded. At the end, we are left with
a set H of disjoint, axis-orthogonal hyper-rectangles (i.e., range
queries) covering the exact region of the MPR.

The advantage of this approach is three-fold: 1) it calculates the
MPR in a form (set of range queries) that can be queried directly;
2) the primary operation, splitting axis-orthogonal hyper-rectangles
with axis-orthogonal hyperplanes, is simple and efficient; and 3)
the continual discarding of hyper-rectangles controls |H|, impor-
tant because the algorithm runs O(|H| · |Sky(S,C)| · |D|).

In general, the algorithm consists of three steps: taking regions
unknown to the cache; adding invalidated regions (in the unsta-
ble case); and removing the dominance regions of cached skyline
points. Algorithm 1 presents the pseudocode (with unstable case
handling omitted due to space constraints).

Lines 2–10 calculate the overlap region, o = ho, oi, the area sat-
isfying both C and C0, by splitting the space into sections based
on the boundary of the cache item for each dimension, eventually
yielding the overlap region and disjoint regions around it. In the
stable case o can simply be removed (Line 11); we discuss the un-
stable case later. Line 12 discards any hyper-rectangle h = hh, hi
for which h = o, since h is clearly in a dominance region. Af-
ter Line 12, the first of the three steps is complete, and H captures
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Algorithm 1 MPR - Stable Sky(S,C) relative to C0

Input: I = hSky(S,C),MBR,Ci, C0

Output: A set of range queries
1: H Set of hyperrectangles (Initially only RC0 )
2: for all dimensions i 2 D do
3: for all hyperrectangles r 2 H do
4: Copy r to r, r\, and r�
5: Add to r constraint p[i]  C[i]
6: Add to r\ constraints C[i]  p[i]  C[i]
7: Add to r� constraint C[i]  p[i]
8: Del r from H and, if satisfiable, add r, r\ and r�
9: end for

10: end for
11: Remove overlap region o = (RC \RC0) from H
12: Remove h 2 H where h = o.
13: for all skyline points u 2 Sky(S,C) do
14: for all dimensions i 2 D do
15: for all r 2 H not marked with u and DR(u)\ r 6= ; do
16: Copy r to r and r�
17: Add to r constraint p[i]  u[i]
18: Add to r� constraint p[i] � u[i]
19: Mark r with u and flag r� as dominated
20: if r and r� are satisfiable then
21: Remove r and add r and r� to H
22: end if
23: end for
24: end for
25: Discard all r 2 H flagged as dominated
26: end for
27: Return H as range queries

all regions outside the cache in which missing skyline points could
exist. Lines 13–26 conduct the third step, looping through each di-
mension of each skyline point to split the remaining h 2 H. With
each split we flag one part of h as processed by the current point and
the other as being dominated. The dominated part can be discarded
on Line 25, and the flagging of the other part avoids unnecessarily
resplitting it. For simplicity of presentation, we assumed no points
lie on a range query border. This assumption can be removed by
setting either inequality to be strict on Lines 5–7, 16–21. Finally,
the unstable case is solved similarly; we simply run a slight mod-
ification of Algorithm 1 as a preprocessing step to determine the
invalidated regions, and add those to the set H between Lines 11
and 12. The modification is an inversion of the logic: we want to
process (not discard) the overlap region, o, and discard (not keep)
the rest. We want to keep (not discard) that which overlaps dom-
inance regions and discard (not keep) the rest. This inverted logic
produces a quite small set H0 that exactly represents the unstable,
invalidated region. By adding H0 to H after Line 11, it is then
reduced exactly the same as the stable part of the MPR.

5.3 Approximating the MPR
In 2D cases (such as Figures 3 and 4a), the MPR (gray region)

of the changed constraints (the dashed lines) relative to the old sky-
line (solid black points) is a simple rectangle. However, each new
dimension adds complexity. By considering a third dimension (Fig-
ure 4b), the same 8 points and set of constraints produces an MPR
consisting of 8 rectangular regions (the hollow part on top). This
complexity grows for each distinct z-coordinate because the dom-
inance region of each skyline point is (logically) subtracted from
the MPR.

(a) 2D projection (b) 3D projection

Figure 4: More dimensions = more complex dominance regions

Therefore, we introduce the Approximate MPR (aMPR). The
aMPR is a conservative approximation of the MPR which produces
no false negatives by simplifying the structure of MPR, thus creat-
ing a structure that decomposes into fewer, but larger, disjoint range
queries. This in turn produces a superset of the points in MPR, thus
guaranteeing completeness at a lower processing cost. The aMPR
represents a middle ground approach between the minimum reads
of the MPR and the maximum points read of the naive approach
in [3].

The aMPR arises from a simple observation. As mentioned ear-
lier, the complexity of the MPR comes from pruning with many
multidimensional dominance regions at once. However, of all sky-
lines points, those nearest to C0 are likely to prune the most points.
(This is the same intuition as for sort-based skyline algorithms [8].)
So, we use only the dominance region of a small set of k near-
est neighbors (NN) to C0, rather than all skyline points. Algo-
rithmically, the loop on Line 13 is replaced with the assignment,
u {NN1, . . . ,NNk}. The optimal number of nearest neighbors
to use and the trade-off presented by the approximation is evaluated
experimentally in Section 7.

6. CACHE-BASED CONSTRAINED SKYLINE
With the components introduced in Sections 4-5, our Cache-

Based Constrained Skyline (CBCS) method works as follows. We
assume an in-memory cache with n cache items {I1, . . . , In}, or-
ganized by an R⇤-tree indexing the MBR of each cached skyline.
Upon receiving a query Sky(S,C0), we perform a search on the
R⇤-tree fetching all cache items where RC0 \MBR 6= ;. If none
exist, Sky(S,C0) is computed naively. If more than one cache item
is returned, we select the most efficient based on a cache search
strategy (Section 6.1). We then compute the MPR as per Sec-
tion 5. Finally we fetch the points in the MPR, merge them with
the cached Sky(S,C), and compute Sky(S,C0).

6.1 Cache search strategies
A cache search strategy takes m query-overlapping cache items

{I1, . . . , Im} as input and aims to return the cache item most ef-
ficient for computation of the query. We suggest several cache
search strategies, which we will compare experimentally in Sec-
tion 7. Random chooses a cache item uniformly at random among
the m overlapping ones. MaxOverlap chooses the cache item with
the highest degree of overlap with the query region. MaxOverlapSP
functions as MaxOverlap, except it prefers cache items whose sky-
line Sky(S,C) is stable relative to C0 even if there is an unstable
option with a higher degree of overlap. Prioritized1D gives prefer-
ence to simple cases of single changes (as in Sect. 4.2) as follows:
Case 2, Case 3, Case 1, General case stable (i.e. not 1D), Case
4 and General case unstable. Ties are broken using MaxOverlap.
The case prioritizes were chosen by experimental evaluation. Pri-
oritizednD(C1,C2,C3,C4) generalizes this case-prioritization idea,
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by independently scoring the four cases (i.e., C1 . . . C4) and penal-
izing cache items for each dimension where constraints differ from
the queried. Initial experiments have shown PrioritizednD(10,0,5,20)
performs well, thus we use it as PrioritizednD (Std). To demon-
strate the importance of proper priorities, we also include a variant
PrioritizednD(10,50,30,0) denoted PrioritizednD (Bad). Finally
OptimumDistance chooses the cache item whose lower constraint
corner is closest to the lower corner of the queried constraints, to
give priority to likely dominating regions.

6.2 Cache replacement & dynamic data
Common cache replacement strategies (i.e., LRU, LCU) are sup-

ported by insertion and use counters on the R⇤ tree. Dynamic data
can be supported by viewing each cache item as a separate dataset
with a continuous skyline query maintained by any existing method
(e.g. [13, 19, 21]). Due to space constraints, evaluation of cache re-
placement strategies and dynamic data are omitted from Section 7
and left for future work.

6.3 Multiple cache items
As an extension to the work presented in this paper, one might

consider exploiting more than one overlapping cache item during
processing. Such a strategy could be beneficial given the increased
pruning ability from two cache items. However due to the added
complexity, more range queries would be generated, cache search
strategies would become more complicated and the number of dif-
ferent overlap cases would require elaborate specialized processing
methods. These added complexities merit a separate research effort
into such a method and thus we leave this for future work.

7. EXPERIMENTAL EVALUATION
In this section, we provide an extensive experimental evaluation

of our CBCS method, investigating scalability, the effectiveness of
the approximate MPR, and the cache search strategies. We exper-
imentally compare CBCS to the existing BBS method for comput-
ing constrained skylines, as well as a Baseline method that fetches
all points in SC with a range query and applies a standard sky-
line algorithm (as suggested in [3]). We use the Sort-Filter Skyline
(SFS) [8] algorithm in both the Baseline method and our own CBCS
method. While more complex skyline algorithms, e.g., BSkyTree
[16], might produce faster overall runtimes, our contribution is or-
thogonal in that the benefit of our CBCS method is independent of
the skyline algorithm used, as we show in Section 7.3.

Experiments are performed on Linux with kernel 3.2.0-61-generic,
an Intel Core 2 Quad Q8400 2.66 Ghz CPU and 8 GB memory.
All algorithms are implemented in Java, using a publicly avail-
able Java-based R-tree implementation 2. Data is stored in Post-
greSQL 9.1.13 with each dimension indexed by a standard B-tree.
The cache is implemented as a simple in-memory cache, organized
through an R⇤-tree that indexes the MBR for each cache item.

All methods are evaluated in separation with the DBMS restarted
between runs for fair comparison. In preliminary experiments, we
also tested a baseline using sequential scan, but it was consistently
slower than the baseline using the indexes; so, we omit it for space.

We evaluate with synthetic data by generating independent, cor-
related and anti-correlated data using the standard generator from
[3]. For real data we use a Danish real estate dataset covering al-
most 4.2 million properties in Denmark as of 2005. The full 2005
dataset is not publicly available but the current 2013 version can be
browsed online 3.
2http://libspatialindex.github.com
3https://www.ois.dk/

7.1 Query workload generation
Existing constrained skyline work does not study sets of queries,

but only single queries. We therefore construct a query generator
mimicking interactive search patterns as studied also in relation to
constrained skyline queries earlier [6, 17]. The generator chooses
an initial set of constraints for each i 2 D with C[i] and C[i]
set randomly between 0 and 3 standard deviations from the mean
of dimension i, modeling that, for example, average-sized houses
are most likely to be searched. Subsequent constraint changes are
modeled as follows: 1) The dimension to vary is chosen randomly;
2) whether to increase/decrease lower/upper constraints is chosen
at random; and 3) a new query is generated from the old, with a
5% � 10% change in the chosen dimension and direction. Step 3)
is repeated 1� 10 times to mimic an interactive scenario with one
user posing several similar queries. All steps are repeated until the
desired number of queries has been generated.

We evaluate all methods with two different query workloads:
(1) the aforementioned Interactive exploratory search and (2) In-
dependent queries in a multi-user system. Workload (1) assumes
an empty cache and uses the generator to create 5 independent sets
of 100 queries mimicking 5 ⇥ 100 actions in an interactive ex-
ploratory search. Workload (2) assumes a preloaded cache with
2000 queries, where we receive a number of new independent sin-
gle queries each generated like the initial query in the generator.

Unless stated otherwise locally, the cache search strategies used
are MaxOverlapSP for interactive exploratory search queries and
PrioritizednD (Std) for independent queries.

7.2 Interactive Search - Dataset size & Dimen-
sionality

Figures 5a-5c show the average running time of our CBCS using
aMPR compared to BBS and Baseline, for increasing dataset size
on 5D data. Initial experiments showed using 1 NN for aMPR gave
the most consistently good results for interactive search scenarios.
CBCS average performance is labeled aMPR, further broken down
into aMPR (Stable) and aMPR (Unstable) for performance on sta-
ble/unstable cases respectively. Results are averaged over the same
5⇥100 interactive exploratory search queries. For distributions we
see that all methods scale approximately linearly. This is expected
since the same range query will require a linear amount of extra
processing for each increase in dataset size, regardless of the result-
ing constrained skyline. By comparing Baseline to the CBCS meth-
ods, we also see that we scale significantly better than the Baseline
on average for all distributions, especially when the cached skyline
is stable relative to the queried constraints in aMPR (Stable). In
these cases, a partial skyline result requires fetching only a small
subset of what Baseline fetches. Thus we both read fewer points
and conduct fewer dominance tests. However, while aMPR scales
well on average and the stable cases in aMPR (Stable) scale very
well, the unstable cases in aMPR (Unstable) fare less well. As
discussed in Section 4.2, instability can cause recomputation if a
cached skyline point falls outside of the new constraints. Still, the
only case in which the aMPR (Unstable) does not outscale Baseline
is on independent data with � 2M points.

Interestingly, BBS performs worse than Baseline in several cases
and consistently for independent data. This is most likely due to
the overhead in R-tree queries when few entire regions are pruned
or included in the skyline. As a final note, observe the scales
in Figures 5a-5c differ and that, perhaps surprisingly, correlated
data is more of a challenge for the methods than independent data.
Broadly speaking independent data is evenly distributed and corre-
lated data is grouped in sections of the dataspace. The same queries
that returned a given number of datapoints for the independent data
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(c) Anti-correlated

Figure 5: Scalability with increasing dataset size for interactive exploratory search queries (|D| = 5)
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Figure 6: Scalability with increasing dataset size for interactive
exploratory search queries (Independent, |D| = 3)
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Figure 7: Efficiency with increasing dimensionality (|S| =
1M , |D| > 5)

can thus return significantly more for correlated data, if the queries
happen to cover where the data is most concentrated. This is ex-
actly what we see here, since the average number of points read is
7 times higher for correlated data than for independent data. Note
that despite this, the performance of each method is not reduced 7
times, because the computation of the skyline on corrrelated data
points is much faster.

Figure 6 shows the same experiment as in Figures 5a-5c but for
a 3-, rather than 5-, dimensional independent dataset. We include
the exact MPR with a stable/unstable split as with aMPR. Just as in
Figure 5a, we see that BBS, Baseline and aMPR all scale linearly.
However while BBS performs better, the Baseline is still faster for
independent data, since the increased efficiency of the R-tree in
|D| = 3 is equally matched by the benefit of simpler dominance
tests in the Baseline. The aMPR method remains superior to the
Baseline as in Figure 5a, but due to the decreased dimensionality
even unstable cached skylines in aMPR (Unstable) are scaling well.
Finally the use of the exact MPR rather than the aMPR means sta-
ble cache items yield superior results since MPR prunes more of
the search space than aMPR. However while the same superior
pruning applies to unstable cache items, the MPR method is sig-
nificantly slower than the aMPR, since cache invalidation yields a
prohibitive amount of range queries with subsequent random ac-
cess latency for MPR. We will discuss a further breakdown of these
performance factors for aMPR and MPR in Section 7.3. Finally
we observe scalability with regard to |D| in Figure 7. Note that,

unlike unconstrained skyline queries, fixing the dimensionality in
constrained skylines has some important implications. Depending
on the constraints, adding a dimension may in fact increase the ef-
ficiency of a constrained skyline query by reducing the input size.
In order to avoid such arbitrary effects, we expand the queries from
Figures 5a-5c by adding an unconstrained dimension to each query
for each dimension over 5. The dimensionality results for |D| = 8
are thus constrained on 5 dimensions and unconstrained on 3.

As expected, all methods deteriorate exponentially with |D| as
the skyline size increases. For BBS, the performance of the un-
derlying R-tree degrades and for the aMPR, the number of range
queries generated increases (see Section 7.3).

7.3 CBCS performance breakdown
We further analyze CBCS by investigating 3 key factors: the

number of points fetched, the number of range queries issued, and
the types of constraint changes.

7.3.1 Number of points read from disk
Figure 8a shows points read by Baseline and aMPR for the exper-

iment from Figure 5a. The number of points read by Baseline in-
creases significantly with dataset size, while the increase for aMPR
is limited except for the unstable cases in aMPR (Unstable). This is
key to the performance of aMPR since the number of points read is
primarily influenced by the difference in cardinality between sets
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Figure 8: Avg. number of points read (Independent, |S| = 1M )
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(a) Interactive exploratory search queries
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(b) Independent queries

Figure 9: Avg. number of range queries generated (Indepen-
dent, |S| = 5k)

SC and SC0 , rather than the actual size of each set. The larger
increase for aMPR (Unstable) arises both from the likelihood of
cached skyline points being outside the queried constraints and in-
creasing the number of new points included due to invalidation in-
side the cache item.

Figure 8b which shows the average number of points read from
disk for Baseline, aMPR and MPR in comparison, corresponding to
Figure 6. The same pattern as in Figure 8a can be seen for Baseline
relative to aMPR, while MPR consistently reads fewer points than
aMPR from disk, since it is the minimal set. While an unstable
cached skyline yields relatively many reads for aMPR, the exact
opposite is the case for MPR. This illustrates that while computing
the exact invalidation of a cache item is computationally expensive,
the extent of invalidation is limited.

7.3.2 Number of range queries generated
Figure 9 shows the average number of range queries for MPR and

aMPR with 1,3,6 and 10 NNs on interactive (Figure 9a) and inde-
pendent (Figure 9b) workloads. Both graphs use logarithmic scales
and the dataset is limited to 5k points so that we can scale MPR to
higher dimensions. Figure 9a reveals that the exact MPR rapidly
generates extra queries as |D| increases, e.g., a 6D query/cache
item pair generates almost 50k disjoint range queries to cover the
MPR. This number would be even higher for > 5K points. For the

aMPR, the reduced hyperplane splitting, while increasing the num-
ber of points read, greatly decreases the amount of queries gen-
erated dependent on the amount of NNs used. Note that we did
not include results for MPR for dimensionalities 8,9 and 10, since
just generating the range queries here took several hours for each
query. Thus the approximation really improves scalability as |D|
increases.

Figure 9b confirms these trends for independent queries as well,
but both methods generate more queries and the increase is more
rapid, because the queries generated overlap less in higher dimen-
sions. Observe that the number of NNs can be used to manipulate
the tradeoff between reading few points from disk and decreasing
random access. While large quantities of range queries seem prob-
lematic, they do not necessarily deteriorate the performance of the
method. Considering e.g. Figure 9b for |D| = 4 and #NN = 10,
on average ⇡ 61 queries were generated for aMPR, but the num-
ber actually reading data only averaged 33. The remaining queries
were discarded by the DBMS without any disk seeks because the
B-trees detect the empty queries. For |D| = 10 and #NN = 10
these numbers increase to 13353 queries generated of which only
114 read data from disk.

Note that with only 5K, no stable cases were generated for |D|>4.
From Theorem 1, this is not surprising, since just one dimension i
where C0[i] > C[i] causes instability of Sky(S,C) relative to C0.
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Figure 10: Avg. ms per stage (Independent, |S| = 1M , |D| = 3)

So, for independent queries, CBCS methods work best for lower di-
mensional settings, and shows most benefit for exploratory queries.

7.3.3 Types of constraint changes
Figure 10 breaks down computation for 1M points (settings as in

Figure 6) into 3 stages: processing, fetching, and skyline computa-
tion, corresponding to the main-memory selection of range queries,
the latency to read points from disk, and the running of SFS, respec-
tively. Baseline has no processing stage, but suffers long fetching.
Conversely, aMPR has light processing, which reduces fetching
and then, having fewer input points, skyline computation. Con-
sidering specific types of changes, aMPR Case 2 has no fetching
stage or computation stage, since this is a simple case which only
requires removing cached skyline points. aMPR Case 3 shows a
slight processing stage followed by a significantly smaller fetching
stage than both Baseline and aMPR Case 1 since we are able to
prune the search space significantly using cached skyline points.
Note that while the relative gains of the fetching stage from aMPR
Case 1 to aMPR Case 3 are only half, a larger portion of points is
pruned, with random access being more time consuming.

To conclude, we see that the superior performance of aMPR and
MPR arises primarily from the reduced reads from disk, which re-
duces both fetching and skyline computation. Also, the perfor-
mance is independent of the skyline algorithm used, since this is
anyway not a bottleneck. Finally we see that the MPR requires
too many range queries for mid- to high-dimensional data, but the
aMPR generates a small, stable number of range queries indepen-
dent of the dataset size.

7.4 Cache search strategies
Our last synthetic experiment shows the distribution of response

times for each proposed cache search strategy from Section 6.1,
using aMPR on 5 ⇥ 100 interactive queries (Figure 11a) and 500
independent queries (Figure 11b).

Compared to the Random strategy we can see there is a clear
benefit in using overlap as a guiding factor (observe MaxOverlap,
MaxOverlapSP and in part Prioritized1D which uses MaxOverlap
to settle ties). High overlap yields smaller MPRs, especially in
stable cases. On the other hand, prioritizing only stable cases is
not a good strategy for independent queries, as is clear from Max-
OverlapSP: such queries are likely to vary in several dimensions
such that choosing solely on stability may select an item with poor
overlap or many changed dimensions. Instead a balanced ranking-
based approach like PrioritizednD (Std) is most promising, since it
not only considers stability but also case complexity. PrioritizednD
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Figure 11: Cache search strategies (|S| = 1M , |D| = 5)

(Bad) shows poor performance demonstrating that the case-based
scoring is important for performance. Finally, OptimumDistance
performs poorly: considering only closeness in terms of dominance
fails to capture the complexity of cases and overlap.

7.5 Real data
We study real data covering ⇠ 4.2 million properties in Den-

mark as of 2005 using 4-dimensions suitable for constrained sky-
line computation: year (year of construction), sqrm (size in m2),
valuation (property tax valuation) and price (actual sales price).
The final dataset size is 1.28M records after removing records with
missing data. Figures 12a and 12b respectively show the distribu-
tion of response times for 10⇥ 100 exploratory search queries and
50 independent queries. Figure 12a shows our aMPR method is
superior to both Baseline and BBS, with BBS managing about 2.2
seconds on average per query and Baseline performingly signif-
icantly better at about 0.45 seconds. Note the average response
time of aMPR (Unstable) is actually low due to limited invalida-
tion, while the worst case invalidation yields response times above
the average for Baseline. Figure 12b shows a set of independently
generated queries. Here Baseline varies heavily in performance due
to varying query selectivities, while BBS is stable with the chang-
ing constraints. The remaining 3 plots show aMPR with varying
numbers of NNs. The number of NNs chosen in this case has a
large impact on performance, since using only 1 as with the ex-
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Figure 12: Performance on Danish property data (|S| = 1.28M ,
|D| = 4)

ploratory queries yields poorer results than BBS, while 5 NNs or 10
NNs greatly outperforms it. Using more than 10 NNs however did
not provide any significant further benefit in this case.

In conclusion, the major performance factors are the number of
disk reads performed and the degree of random access due to mul-
tiple range queries. We have shown that CBCS performs substan-
tially better on related queries than existing methods. The perfor-
mance benefit remains stable for increasing dataset size and di-
mensionality, when using approximate aMPR. The cache search
strategy is a clear determinator of the resulting performance with
the main factors being average overlap, stability and case distribu-
tions.

8. CONCLUSION
In this paper we introduced a novel method for computing con-

strained skylines using an in-memory cache. Our method was en-
visioned under two common types of query workloads with re-
lated queries, namely interactive search and multi-user systems.
We determined four possibilities for incremental query/cache over-
lap, analyzed them and presented specialized techniques for each.
For general query/cache overlap, we introduced the Missing Points
Region, which minimizes points read from disk by exploiting the
cache item’s relation to the query. To increase the practical per-
formance of this general method, we introduced a conservative ap-

proximation of the MPR, called aMPR, to balance the trade-off be-
tween resultant range queries and points read from disk. Finally we
introduced a set of heuristics to choose the most efficient overlap-
ping cache item for a query. Our extensive experimental evaluation
revealed, among other things, that the choice of cache item to use
for processing has a big impact on performance and that our method
significantly outperforms existing approaches when related queries
are present.
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APPENDIX
Proof of Theorem 1. Consider left [L] and right [R] sides of the
OR expression. From [R] we have (9i 2 D : C0[i] > C[i] _
C

0
[i] < C[i]) =) RC\RC0 = ;, thus Sky(S,C) is stable in this

case. For [L] we prove (8i 2 D : C0[i]  C[i]) implies stability,
by contradiction. Assume 9s 2 Sky(S,C0) : (s 2 SC) ^ (s /2
Sky(S,C)). From Def 1, this implies 9t 2 SC : t � s. This in
turn means s 2 Sky(S,C0) =) t /2 SC0 =) 9i 2 D : C

0
[i] <

t[i]  s[i]  C[i], i.e. t and s both do not satisfy constraints C0

and thus s /2 Sky(S,C0) contradicting the assumption. Observe
that [L] and [R] are the only situations with guaranteed stability,
since cases not satisfying Thm 1 must have RC \ RC0 6= ; and
9i 2 D : C[i] < C0[i]  C[i]. Thus for u 2 Sky(S,C), C[i] 
u[i] < C0[i]  C[i] we could have v 2 SC , u � v and C[i] 
u[i] < C0[i]  v[i]  C[i]. Since u /2 SC0 we might then have
v 2 Sky(S,C0), making Sky(S,C) unstable relative to C0.

Proof of Theorem 2. Since Sky(S,C) is stable relative to C0 given
Thm 1, equality follows from Cor 1. Minimality holds since @s 2
Sky(S,C), t 2 S�C : s � t.

Proof of Theorem 3. Observe SC0 ⇢ SC and that Sky(S,C) is
stable relative to C0 given Thm 1. Thus we must have Sky(S,C0) ✓
Sky(S,C) and Sky(S,C0) = Sky(S,C) \ SC0 follows. Mini-
mality holds since the reduction simply removes cached skyline
points and no further reads are necessary.

Proof of Theorem 4. Observe Sky(S,C) is stable relative to C0

given Thm 1. Thus equality follows from Cor 1 since for s 2
Sky(S,C0) we either have s 2 Sky(S,C) or s 2 S�C , where
@t 2 Sky(S,C) : t � s.

Minimality holds since 8u 2 Sky(S,C), v 2 (Sky(S,C) [
{s 2 S�C | @t 2 Sky(S,C) : t � s} : u ⌥ v), i.e. we have no
further known points to prune S�C with.

Proof of Theorem 5. Given Thm 1, Sky(S,C) may be unstable
relative to C0 and we observe SC0 ⇢ SC . At this point we have two
possibilities given Cor 2: [St] Sky(S,C) is stable relative to C0, or
[Ust] Sky(S,C) is unstable relative to C0. If case [St] holds, then
Sky(S,C0) = Sky(S,C) \ SC0 since there is no invalidation.
If case [Ust] holds, then from Cor 2 we have 9t 2 Sky(S,C) :
t 2 S�C ^ 9s 2 (SC \ SC0) : t � s ^ @u 2 (Sky(S,C) \

SC0) : u � s, i.e. there exists a removed skyline point which has
invalidated part of the cache. Since [St] and [Ust] correspond to the
two unioned skyline inputs in Thm 5, completeness holds by virtue
of Def 1.

To observe that minimality holds, we first note that from Def 1
we must have @s 2 Sky(S,C), t 2 (Sky(S,C) \ S�C) : s � t
=) 8s 2 (Sky(S,C) \ SC0) : s 2 Sky(S,C0), i.e. a removed
skyline point cannot dominate a remaining skyline point. Thus
minimality holds since only {s 2 (SC\SC0) | 9t 2 (Sky(S,C)\
S�C) : t � s} is affected by instability given Cor 2 and only
Sky(S,C) \ SC0 is available for pruning.

Proof of Theorem 6. We prove equality in right [R] and left [L] di-
rections. For [R] we assume w 2 Sky(S,C0). We then have two
cases: [1] w 2 (RC \ RC0) and [2] w 2 (RC0 \ (RC \ RC0)),
i.e. w is either in the overlapping region between cache and query
([1]) or outside the cache ([2]).

If we have case [1], then given Cor 2 we have w 2 (Sky(S,C)\
RC0)_ (9t 2 (Sky(S,C)\ (RC \RC0)) : w 2 DR(t, C)^@u 2
(Sky(S,C) \ RC0) : w 2 DR(u,C0)), i.e. w is a cached skyline
point or a point included due to invalidation. If instead case [2]
holds, then we simply have @u 2 SC0 : u � w due to Def 1.

Combined we thus have (w 2 (Sky(S,C) \ RC0)) _ (w 2
{p 2 RC0 | (p 2 (RC0 \ (RC \ RC0)) _ 9t 2 (Sky(S,C) \
(RC \ RC0)) : p 2 DR(t, C)) ^ @u 2 (Sky(S,C) \ RC0) : p 2
DR(u,C0)}) which is equivalent to w 2 Sky((Sky(S,C)\SC0)[
(MPR \ SC0), C0) by virtue of Def 1.

For the opposite direction, [L], we assume w 2 Sky((Sky(S,C)\
SC0)[(MPR\SC0), C0). We again have two cases: [St] Sky(S,C)
is stable relative to C0, and [Ust] Sky(S,C) is unstable relative to
C0.

If we have case [St], then given Cor 1 we have (w 2 (Sky(S,C)\
SC0)) _ (w 2 (RC0 \RC)), i.e. w is either a cached skyline point
or outside the cache.

If instead we have case [Ust], then given Cor 1 and 2, we have
((w 2 (Sky(S,C)\SC0)) _ (w 2 (RC0 \RC)))_ (w 2 (RC \
RC0)^(9t 2 (Sky(S,C)\(RC\RC0)) : w 2 DR(t, C))^(@u 2
(Sky(S,C) \ RC0)) : w 2 DR(u,C0)), i.e. w is either a cached
skyline point, a point outside the cache or a point included due to
invalidation.

Now observe that the region RC0 can be expressed as RC0 =
(RC \ RC0) [ (RC0 \ (RC \ RC0)). We now prove by contra-
diction that any w satisfying the right hand side of Thm 6 must
also be in Sky(S,C0). So we assume w /2 Sky(S,C0) =) 9v 2
Sky(S,C0) : w 2 DR(v, C0) given Def 1. We then have two cases
[I] v 2 (RC \RC0) and [O] v 2 (RC0 \ (RC \RC0)).

If [I] then v 2 Sky(S,C)_9t 2 (Sky(S,C)\(RC\RC0)) : v 2
DR(t, C)) which implies w /2 Sky((Sky(S,C)\SC0)[(MPR\
SC0), C0) given Def 1 yielding a contradiction.

If [O] then v /2 (RC \RC0) =) v /2 (Sky(S,C) \RC0) =)
@u 2 (Sky(S,C) \ RC0) : u � v =) v 2 MPR given Def 5,
also yielding a contradiction. Hence w 2 Sky(S,C0).

Proof of Theorem 7. Proof by contradiction. Assume p 2 MPR
and p /2 Sky(S,C0) can be guaranteed. From Def 1, p /2 Sky(S,C0)
=) 9t 2 Sky(S,C0) : t � p. Observe that t must be known
before fetching for us to prune with it, thus t � p =) t 2
(Sky(S,C) \ RC0) =) t 2 Sky(S,C), i.e. t is part of the
cached skyline. By the definition of MPR (Def 5), this contradicts
our assumption since all p 2 RC0 where 9u 2 (Sky(S,C) \
RC0) : p 2 DR(u,C0) are excluded from MPR. Thus the MPR is
minimal.
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ABSTRACT
Skyline queries are a well-studied problem for multidimen-
sional data, wherein points are returned to the user i↵ no
other point is preferable across all attributes. This leaves
only the points most likely to appeal to an arbitrary user.
However, some dominated points may still be interesting,
and the skyline o↵ers little support for helping the user un-
derstand why some interesting points are omitted from the
results. In this paper, we introduce the Sky-not query. Given
a query point p, a dataset S, and constraints with bounding
corners qL and qU, the Sky-not query returns the alterna-
tive constraints q0L closest to qL for which p is in the skyline.
This equips the user with an understanding of not just that
a point was dominated, but also how severely. He can then
assess himself whether the point is competitive.

We first propose theoretical results that show how to dras-
tically reduce the input processed by a Sky-not query, inde-
pendent of any algorithm. We then o↵er a skyline-like and
an e�cient recursive algorithm for solving Sky-not queries,
which we evaluate in an extensive experimental evaluation.

1. INTRODUCTION
When exploring unfamiliar data, the skyline operator [3]

can identify balances among multiple (possibly conflicting)
attributes. It selects only those data points for which no
other point is preferable across all attributes. Consider the
canonical example of selecting a hotel, given the fictitious
ones in Table 1. Budget Sleepz (B) is both cheaper and
closer to the beach than Cozy Cabin (C); so, it is said to
dominate the latter. The skyline is exactly and only those
points not dominated by any others, in this case not includ-
ing Cozy Cabin, but including the remainder: {A,B,D,E}.
For a user, however, this indicates only that C is dominated
by some other point, not which, nor how severely. C may
be a reasonably competitive choice, even if it is dominated.

More generally, a (skyline) query typically includes range
constraints (i.e., a WHERE clause) for more sophisticated ex-
pression. The user searching for hotels may want the most

c� 2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

ID Name Price/nt Distance
A Abode Abroad 45 2100m
B Budget Sleepz 30 4200m
C Cozy Cabin 40 4500m
D Diamond Harbour Inn 175 300m
E Extravagansium 325 100m

Table 1: A fictitious city’s hotel o↵erings.

a↵ordable option, but not something “cheap.” Or, he may
want a location remote from the city, but reachable within a
few hours. Setting these constraints perfectly can be a chal-
lenging and iterative process, since notions such as “cheap”
and “a few hours” are intentionally under-specified by the
user and data-dependent. Yet, the constraints can have
substantial impact on the query results, both adding and
removing skyline points [6]. For the user, there is no sup-
port for understanding why data points are dominated, nor
by how much. Especially when comparing several similar
queries, the di↵erences can be quite perplexing [18].

Furthermore, not all decision criteria are necessarily re-
flected in the data attributes. Other factors might con-
tribute to preferring a non-skyline point. For example, a
user may favour Cozy Cabin on recommendation from a
friend or because of a successful advertising campaign. In
such a case, the skyline may do a disservice by hiding results
that the user expects, ones that match the constraints of his
search and are valid options from his perspective. In this
paper, we introduce explanations for data points excluded
by skyline queries. The user can then appraise whether the
extra 10 euro per night and 7% from the beach is a tolerable
trade-o↵ and adjust his query accordingly, if he wants.

Figure 1 illustrates the technical problem. Given range
constraints (qL, qU), one retrieves a skyline of just hotels
A and B, yet C also satisfies the constraints. How does
one explain to the user C’s absence? In other words, why
is C dominated? Similarly to other questions of why-not
provenance [4, 11, 19, 24], we wish to report an alternative
query (i.e., new constraints) so that C is no longer omitted
from the results. We find a new position (one candidate is
denoted by a star in the figure) for the lower constraints,
qL, so that all points dominating C are eliminated. This
illuminates the relationship of point C to the rest of the
data and, furthermore, concretely recommends to the user
a potentially better-suited query.

However, finding the best explanation—the best new po-
sition for qL—is non-trivial: anywhere within the rectangle
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Figure 1: Hotels from Table 1 mapped to points in the plane,
shown with a constrained region (qL, qU), enclosed by dashed
lines. A Sky-not query for point C relocates qL to a position,
such as the star, after which C is in the skyline.

(qL,C) could potentially improve C’s query fate, since the
only things that are obvious (later in this paper) is that qL’s
old position should dominate its new position (so that every
change is an improvement) and that the new position must
still dominate C (so that C satisfies the constraints). The
best position is the one closest to the original position but
that promotes C to the skyline.

In this paper, we introduce and propose solutions for this
novel query, the Sky-not Query, which quantifies why a query
point p is not in a skyline. Algorithmically, we introduce
a recursive algorithm that prioritizes cases that favour our
pruning rules to e�ciently relocate qL. In comparison to a
baseline algorithm and an adaptation of ideas from [12, 14,
17, 21], we show in a detailed experimental evaluation that
the Sky-not query can be computed very e�ciently.

Contributions and Outline
In this paper, we make the following contributions:

• we introduce the Sky-not Query to improve the use-
ability of the skyline operator (Section 2);

• we derive theoretical properties of Sky-Not Queries,
including duality with the SkyDist problem studied
in [12,14], that lead to algorithm-independent improve-
ments in e�ciency (Section 4); and

• we give two novel algorithms, BRA and PrioReA, based
on theoretical analysis (Section 5) for achieving im-
pressive empirical performance (Section 6).

Additionally, we survey related literature in Section 3 and
conclude in Section 7.

2. THE SKY-NOT QUERY
In this section, we introduce the novel Sky-not query for

explaining the absence of a given point in a skyline result.
We first recall some general concepts from literature about
skylines (Definitions 1-4), before presenting the problem def-
inition (Definition 5).

Generally, we assume a dataset of records represented by
a set of Euclidean points, S. For example, the hotels from
Table 1 are represented as points in Figure 1. Given S, we
denote the dimensionality of the Euclidean space by d and
the i’th attribute of a point s 2 S by s[i]. Without loss of
generality and for the sake of simplifying prose, we assume

all attribute values are in the range [0,M), for some positive
real, M , and that smaller values are preferable.1

2.1 Constrained Skylines
To define the skyline formally, we first define dominance

(Definition 1). One point dominates another if it is at least
as desirable in every dimension, and strictly more desirable
in at least one. Formally:

Definition 1 (Dominance [3]).
Point s dominates point t, denoted s � t, i↵

8i 2 [0, d), s[i]  t[i] and 9j 2 [0, d) such that (s.t.) s[i] < t[i].

If neither s dominates t nor t dominates s, then s and t are
incomparable, denoted s �� t. The relation s � t denotes
that either s � t or 8i 2 [0, d), s[i] = t[i].

For example, from Table 1, Hotel B dominates Hotel C
because it is both cheaper and nearer (B is to the lower-
left of C in Figure 1). A stronger case is strict dominance
(Definition 2), in which strict equalities are used:

Definition 2 (Strict dominance).
Point p strictly dominates point q, denoted p �� q, i↵ 8i 2
[0, d), p[i] < q[i].

Given range constraints, where qL denotes the lower bound
(0 if unspecified) on every attribute and qU denotes the up-
per bound on every attribute (M if unspecified), we call the
subset of points satisfying the constraints the constrained
dataset (Definition 3):

Definition 3 (Constrained Dataset).
Given a set of points, S and a constraint region (qL, qU), the
constrained dataset, denoted S(qL,qU), is the set of points
{s 2 S : qL �� s �� qU}. We say that each point s 2 S(qL,qU)

is inside the constraint region.

For example, given the constraints in Figure 1, only A, B,
C are in the constraint region. The skyline (Definition 4)
is the set of points inside the constraint region that are not
dominated by any other points inside the constraint region:

Definition 4 ((Constrained) Skyline Query(S) [3]).
Given a set of points, S, and a constraint region, (qL, qU), a
skyline query returns the set:

SKY(S, (qL, qU)) = {s 2 S(qL,qU) : 6 9t 2 S(qL,qU), t � s}.
The set SKY(S, (qL, qU)) is called the skyline of S(qL,qU).

For example, in Table 1, with qL = (0, 0) and qU =
(350, 5000), Hotel C is dominated by Hotel B, but all other
hotels are incomparable to each other. Therefore, the sky-
line is {A,B,D,E}. On the other hand, with constraints
qL = (35, 1000) and qU = (250, 5000), as shown with the
outer, dotted rectangle in Figure 1, only A and C satisfy the
constraints and neither dominate each other; so, they are
both in the skyline: {A,C}.
2.2 Problem Definition

We now define the Sky-not query (Definition 5). Infor-
mally, given a constrained skyline instance and a query point
p, a Sky-not query, denoted SN(S, p, (qL, qU) ,�) determines
the minimum cost change to qL after which p would be in
the skyline. Formally:
1The first assumption is justified by normalization and the
second assumption can hold by multiplying values by �1
where maximization is instead preferred.

350



Definition 5 (Sky-not Query, SN(S, p, (qL, qU) ,�)).
Given S, p 2 S, (qL, qU), s.t. qL �� p �� qU, distance func-
tion, � : Rd ⇥ Rd ! R+, 2a Sky-not Query returns point:

q

0
L = argmin

q2(qL,qU),p2SKY(S,(q0L,qU)�(qL, q).

Again considering Figure 1, we could move qL to the
starred position, and then C is in the skyline (i.e., the starred
position solves the Sky-not query). However, this is not the
optimal solution: q

0
L = (30, 1000) also solves the Sky-not

query, but is closer to qL than the starred position.
By learning the Sky-not query result, q0L, a user can im-

mediately understand how competitive p is relative to the
skyline and evolve his subsequent queries accordingly.

3. RELATED WORK
The Sky-not Query (Section 2) ties together a couple of

active research topics, which we survey in this section.

Skyline The skyline operator was introduced [3] with two
disk-based algorithms, a block-nested loop (BNL) and a
partitioning-based (D&C) approach. Since, BNL has been
improved with the use of pre-sorting [8] and early termi-
nation conditions [1]. The D&C algorithm has been im-
proved with progressively better partitioning schemes [15,
27]. Also, new index-based algorithms based on B-Trees [23]
and R-Trees [20] have been proposed. Of these algorithms,
BSkyTree [15] reports the best performance; although, this
can be improved using multiple processing cores [7].

Although the skyline was proposed in the context of a gen-
eral SQL query with a WHERE clause [3], Papadias et al. [20]
were the first to propose algorithms specifically for handling
constraints, a problem they term the constrained skyline and
the subject of study here. The presence of constraints makes
the skyline operator much more flexible and practical, be-
cause most real queries involve a WHERE clause.

Although the skyline is considered as a tool for interac-
tivity, say in discovering user preferences, little research has
considered this aspect. Literature on “interactive skylines”
(e.g., [16]) seeks to learn user preferences. Our perspective
on interactivity here is in helping the user understand the
data, not their preferences over the attribute domains. To
this end, existing work is quite limited. Magnani et al. [18]
conducted a user study that showed users are perplexed
when posing consecutive queries if new dominance relation-
ships cause previous query results to disappear. Chester et
al. [6] conducted an experimental study of how much the sky-
line changes when users evolve their constraints. Both these
works assess the impact on the user of interacting with the
skyline, but neither provide solutions for helping the user to
evolve queries towards his/her objective.

Why-not Queries Providing the user with an explana-
tion for a missing answer [4,11,19] is a relatively new goal in
database research. The general idea of why-not queries is to
provide a user, who has a specific solution record in mind,
with specific details into the cause for its being omitted from
the results. Why-not queries have been studied for relational
(i.e., SPJUA, sort-project-join-union-aggregate) queries [2,

2Throughout this paper, we assume the distance function
is L1 (i.e., Manhattan) norm: �(s, t) =

P
d�1
i=0 |s[i]� t[i]|;

so, we will drop � from the notation. The ideas presented
easily generalize to any weighted L

p

norm.

10], top-k queries [9], and reverse skyline queries [13],3 but
the definitions and techniques do not straight-forwardly ap-
ply for skyline queries because each query type excludes can-
didate results for quite di↵erent reasons (no common join
key, low weighted sum, & dominance).

However, we do adapt two key ideas from other why-not
query types. Because explanations can be arbitrarily com-
plex, it is preferable to determine minimal explanations [28].
Our experiments (Section 6) reveal that Sky-not queries
favour explanations involving fewer dimensions changing.
Additionally, there are generally two ways of manipulating
a query result [24]: either by changing the data or the query
parametres. Here, we focus on changing the query, since
this is more often under the user’s control. With respect to
changing the data, some research has gone into manipulat-
ing skyline query results [12,14,17,21] from a Business Intel-
ligence perspective, where the objective is to modify one’s
product o↵erings in order to penetrate the skyline. We elab-
orate on the relationship between changing the query and
the data in Theorem 5. Lastly, our problem di↵ers from cre-
ating competitive products [25]: we aim to determine why
an existing product is not in the skyline, not to create new
(meta-)products from a collection of existing products.

Technically related papers We overlap some technical
material from tangentially related papers. Our algorithms
first find all the points that cause the absence of p in the
skyline, then relocate qL. To detect the causative points,
we borrow the idea of close dominance [22] (Definition 6).
Regarding relocation, Cheema et al. [5] introduce the idea
of “safe zones” for dynamic skylines, wherein the safe zone
of a point is those query positions in which the point is
still a skyline point. Our objective is to find the nearest
query point where all safe zones are violated. DeltaSky [26]
maintains a view of skyline points to handle deletions.

4. PROPERTIES OF THE SKY-NOT QUERY
In this section, we introduce some algorithm-independent

theoretical insights into the Sky-not query. In particular, we
show both that the solution space (qL, p) can be discretized
and that the input size can be reduced (Section 4.1). This
gives a smaller, finite search space for the problem. We also
show duality of the problems of changing the data vs. the
query to manipulate a skyline result (Section 4.2). Con-
sequently, techniques for both problems are mutually ex-
changeable (and, indeed, we do exactly this in our experi-
mental evaluation, Section 6).

4.1 Reduction and Discretization
We start with a couple properties of a Sky-not query so-

lution that are quickly evident from the definitions.

Proposition 1 (Transitive Order). qL �� q

0
L �� p �� qU.

Proposition 2 (Undominated Data).
8s 2 S(qL,qU), s � p =) q

0
L 6� s.

Proposition 1 simply states that the solution q

0
L must nec-

essarily increase or keep the values of qL and must strictly
dominate neither p nor qU; otherwise, p will not be in the
skyline. Proposition 2 simply states that the solution q

0
L

3Despite the similar name, a reverse (dynamic) skyline query
is quite di↵erent from a skyline query, focusing on dynamic,
spatial proximity and an inversion of the skyline problem.
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(a) Points in the plane with close domi-

nance relationships indicated by arrows
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qU 
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(b) In this Sky-not query, p is dominated

by three points in the constraint region

qU 

p 
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t 

u 

(c) By solving the points that closely

dominate p, s is also solved transitively

Figure 2: An example of close dominance and how it relates to Sky-not queries

must be placed such that it does not dominate any point
s that dominates p; otherwise, s will still satisfy the con-
straints, still dominating p, and thus p will not be in the
skyline. Together, these propositions suggest that the solu-
tion will lie somewhere inside (qL, p).

This hyper-rectangular solution space contains infinitely
many points. Lemma 3 discretizes the search space. Specif-
ically, it states that the value of q0L on each dimension i is
either the same as the original lower constraint, qL[i] or as
one of the data points, s[i], s 2 S. Thus, there is only (an
exponential number of) finite possible solutions.

Lemma 3 (Sky-not Discretization).
Let q0L = SN(S(qL,qU), p, (qL, qU)). Then,

8i 2 [0, d)9s 2
⇣
S(qL,qU)

[
{qL}

⌘
s.t. q0L[i] = s[i].

The basic idea of the proof is that if there were a solution
that was not composed of existing values, then we could find
a better one that was.

Proof. We prove this by contradiction. Let q0L be a solution
such that 9j 2 [0, d)8s 2 �S(qL,qU)

S{qL}
�
, q

0
L[i] 6= s[i]. Let

S
<

be the points s 2 S(qL,qU) [ {qL} with s[j] < q

0
L[j]. Let

s be the point in S
<

with the highest s[j] value. Then,
construct a point q

00
L such that q

00
L[i] = q

0
L[i] if i = j and

q

00
L[j] = s[j]. Then, q00L is closer to qL than is q

0
L. Moreover,

8s 62 S
<

, 9i 6= j s.t. s[i] < q

0
L[i] = q

00
L[i], because q

0
L[i] 6� s

and q

0
L[j] < s[j]. Also, 8s 2 S

<

, it is still the case that
q

00
L 6� s, because s[j]  q

00
L[j]. Lastly, q

00
L 2 (qL, qU), since

q

0
L 2 (qL, qU), and they di↵er only on the j’th attribute, for
which q

00
L[j] = qL[j]. Therefore, 8s 2 S(qL,qU), q

00
L[s] 6� s and

p 2 SKY(S, [q00L, qU]).
Lemma 3 discretized the solution space based on the points

s 2 S. Lemma 4 reduces the solution space even further by
showing that only some of the points that dominate p also
influence the solution. For this lemma, we borrow the con-
cept of close dominance (Definition 6) from literature: if s
dominates t, then it also closely dominates t if there is no
other point “in between them”:

Definition 6 (Close dominance [22]).
Given points s, t 2 S, we say that s closely dominates t,
denoted s 2 t, i↵ s � t^ 6 9u 2 S : s � u � t.

Figure 2a illustrates the close dominance relationship. No-
tice that, although s �� u, s 62 u, because the dominance can
be ascertained transitively through t. Lemma 4 states that
it is only the values of points that closely dominate p that
might be used in the Sky-not query solution. In Figure 2b,
s need not be considered, because s 62 p.

Lemma 4 (Close dominance is su�cient).
Let C = {s 2 S : s 2 p} be the set of points in S(qL,qU) that
closely dominate p. Then,

SN(C, p, (qL, qU)) = SN(S, p, (qL, qU)).
The basic idea behind the proof is that by handling all

the points in C, one handles all points in S(qL,qU) by means
of transitivity.

Proof. We show that finding a point q0L that does not dom-
inate any point in C is both necessary and su�cient for
upgrading p to the skyline.

Necessary: Note that t 2 C =) t 2 S(qL,qU) ^ t � p,
by construction. So, by Proposition 2, q

0
L 6� t (i.e., they

necessarily fall outside the constraints).
Su�cient: Consider any point s 2 C \ S(qL,qU). Then,
9t 2 C s.t. 8i 2 [0, d), s[i]  t[i], because s � t. But,
because t 2 C =) q

0
L 6� t, then 9j 2 [0, d) s.t. t[i] < q

0
L[i].

By transitivity, s[i] < q

0
L[i]; so, q

0
L 6� s.

The algorithmic consequence of Lemma 4 is that we can
first find the much smaller set C and then execute whichever
algorithm on C instead of S(qL,qU) for an immediate improve-
ment in e�ciency. In Figure 2c, it is su�cient to solve the
two points that closely dominate p, because solving t tran-
sitively implies that s is also solved.

4.2 Duality
Finally, we show an interesting result, that the Sky-not

query is a dual form of a generalization of the SkyDist prob-
lem (Definition 7) in literature. The SkyDist problem is to
find the cheapest way to modify p so that it will be in the
skyline. That is to say, the SkyDist problem changes the
data, rather than the query, to upgrade p. We redefine it
below with the addition of constraints, which are needed for
the duality result.
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Definition 7 (Skyline Distance Problem [14]).
Given S, p, (qL, qU), find the point p0 2 (qL, qU) closest to p

such that p0 2 SKY(S [ {p0}, (qL, qU)).
We show that the SkyDist and Sky-not queries are dual

problems of each other. First, define a transform function
f(x) = M � x, overloaded for points and sets, f(p) = p̂ :
p̂[i] = f(p[i]) and f(S) = {f(s) : s 2 S} by applying the
function to each value of a point and each point of a set.
Let p

0 = SD(S, p, (qL, qU)) be an instance and solution to
a SkyDist problem. Then we have Theorem 5, that the
Sky-not query result on the transformed data is exactly the
transformation of the SkyDist result on the original data:

Theorem 5 (SkyDist-SkyNot Duality).
SN(f(S), f(p), [f(qU), f(qL)]) = f(SD(S, p, (qL, qU))).
Proof. To show that the solutions are equivalent, we show
first that distance is preserved by the transformation func-
tion; so that the optimality of any solution is consistent. We
then show that the transform of a point that solves the Sky-
Not instance solves the SkyDist instance, and vice versa.

Distance-preserving: Let s, t be points. Then:

�(s, t) =
d�1X

i=0

|s[i]� t[i]| =
d�1X

i=0

|(M � s[i])� (M � t[i])|

=
d�1X

i=0

|f(s[i])� f(t[i])| = �(f(s), f(t)).

This holds in the opposite direction, because f(f(s)) = s.
Mutually solving:

q = SN(f(S), f(p), (f(qU), f(qL)))
=) f(qU) � q � f(qL), 8s 2 f(S), q 6� s

=) 9i 2 [0, d) : s[i] < q[i]

=) 9i 2 [0, d) : f(q[i]) < f(s[i]) =) f(s) 6� f(q)

=) qL � f(q) � qU, 8s 2 S, s 6� f(q).

f(p0) = f(SD(S, p, (qL, qU))) =) 8s 2 S, s 6� p

0

=) f(p0) 6� f(s) =) 8s 2 f(S), f(p0) 6� s.

In fact, the above holds for any order-inverting and distance-
preserving transformation function.

The signficance of this result is that techniques developed
for SkyDist and Sky-not queries are mutually exchangeable
by applying the transform. However, the addition of con-
straints enables new analytical approaches that lead to more
e�cient computation, as we will show in our experimental
evaluation, where we apply the duality transform to existing
SkyDist techniques (Section 6).

5. ANSWERING SKY-NOT QUERIES
In this section, we present two algorithms for solving Sky-

not queries, based on the insight from the previous section.

5.1 Bounding Rectangle Algorithm
Here, we introduce the Bounding Rectangle Algorithm

(BRA). We begin with theoretical analysis to deduce a finite
set of candidate positions to which qL can be moved in order
to position p in the skyline (Section 5.1.1). We then build
an algorithm to e�ciently calculate those positions and find
the optimal solution from within them (Section 5.1.2).

s 

t 

u 

qL({s,t}) 

qL 

p 

(a) The creation of qL({s, t}) with the minimum value from

{s, t} on each attribute and of rectangle (qL, qL({s, t})). Stars

represent the 2

d

projections of the rectangle.

s 

t 

u 

qL({s,t}) 

qL({t,u}) qL({s,u}) 

qL 

p 

(b) All three possible combinations of two points are shown

with their resultant rectangles. Arrows represent strict dom-

inance relationships, the origin of which are points that are

not valid solutions.

Figure 3: Bounding rectangles and their application in BRA.

5.1.1 Bounding Rectangles and Candidate Positions

Recall from Lemma 3 that solutions will take values from
points in the dataset and from Lemma 4 that the set C

contains all the points that need to be considered. We for-
malize that set with Corollary 6 below. We then show that
this set can be further pruned by taking into account how
these points relate to each other (Theorem 7).

First, however, we need to introduce a little more notation
for use in this subsection. Let Pd

(C) be the subsets of C
with at most d elements, and let T 2 Pd

C be such a sub-
set. Furthermore, let qL(T ) be the corner of the minimum
bounding rectangle of T that is closest to qL (the bottom left
corner in two dimensions). Notice that R

T

= (qL, qL(T )) is
itself a (possibly degenerate) hyper-rectangle. Finally, de-
note by x(R

T

) the 2d corners of (qL, qL(T )).
Recall that a minimum bounding rectangle of a set of

points T is the unique smallest hyper-rectangle that con-
tains all points in T . The lowermost corner (i.e., the one
closest to qL) is the one containing the smallest value on
each attribute of any point in T . It represents the best pos-
sible combination of values from points in T . Sets with more
than d points are not interesting, because we only combine
values for up to d dimensions.

Figure 3a illustrates these concepts. The set C = {s, t, u}
has P2C = {{}, {s}, {t}, {u}, {s, t}, {s, u}, {t, u}}. Let T =
{s, t}. The minimum bounding rectangle of T is the dashed
rectangle to the top-right in the figure, and its qL(T ) is
shown as a hollow circle. The dashed rectangle to the lower-
left is (qL, qL(T )). The 2d corners are marked with stars.
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Each of the 2d corners of hyper-rectangle (qL, qL(T )) has
a unique set of attributes with values equal to those of qL
and the others equal to those of qL(T ). They correspond to
solutions with fewer than all values changed. So, Corollary 6
states that if we take all subsets T of up to d points from C

and consider all the corners on the hyper-rectangle traced
from qL to qL(T ), we will include all possible combinations of
all points in C, and therefore also have the optimal solution
somewhere in the (finite) set.

Corollary 6 (BRA search space).
q

0
L = SN(S, p, (qL, qU)) 2 S

T2Pd

(C) x(RT

).

Proof. This follows directly from Lemmata 3 and 6, because
all possible combinations of all points in C are contained inS

T2Pd

(C) x(RT

).

Corollary 6 includes all possible solution points, but also
many more. Theorem 7 gives the key idea for the BRA,
that it is only those points in the set that do not dominate
any others in the set that are possibilities. The property
of not strictly dominating any other corner points is both
necessary and su�cient for indicating that any given corner
point correctly positions p in the skyline.

Theorem 7 (Central BRA postulate).
q solves SN(S, p, (qL, qU)) i↵ 8x2 S

T2Pd

(C) x(RT

), q 6�� x.

The basic idea behind the proof is that it is certainly suf-
ficient, because every point c 2 C is a corner point for some
rectangle; so, not dominating any corner points for any rect-
angles implies that no point in c is dominated either. It is
necessary because any dominated point will produce some
rectangle with a corner point that is also dominated.

Proof. Su�cient:

8x2
[

T2Pd

(C)

x(R
T

), q 6�� x

=) 8x2
[

T2P1(C)

x(R
T

), q 6�� x

=) 8x2
[

t2C

x([qL, t]), q 6�� x =) 8t 2 C, q 6�� t.

Necessary: Assume for the sake of contradiction that
9x2 S

T2Pd

(C) x(RT

) s.t. q �� x. Let T denote the subset

of C that produced the hyper-rectange with that corner.
Then, 9t 2 T : q �� t =) 9s 2 C : q �� s and, thus, q
cannot be a valid solution of SN(S, p, (qL, qU)).

The concept behind Theorem 7 is illustrated in Figure 3b.
Three of the hyper-rectangles are shown, along with all their
corner points. Arrows depict that the originating corner
strictly dominates the destination corner. One can verify
in the figure that all positions with arrows dominate some
point in C, whereas all positions without arrows (namely
qL({s, t}) and qL({t, u})) do not.

5.1.2 Algorithm description

Theorem 7 suggests an elegant way to adapt existing sky-
line algorithms to solve a Sky-not query, since the candidate
solutions are the points in X =

S
T2Pd

(C) x(RT

), and the

optimal solution is the point x 2 X closest to qL. So, we
adapt the Block-Nested-Loop (BNL) [3] skyline algorithm,

Algorithm 1 Bounding Rectangle Algorithm (BRA)

Input: S, p, qL, qU
Output: q0L, the optimal Sky-not solution on (S, p, (qL, qU))
1: Create empty set C
2: for all s 2 S do
3: if qL � s � p � qU then
4: for all c 2 C do
5: if s � c then
6: add false; break
7: else if c � s then
8: C  C \ {c}
9: if add then
10: C  C

S{s}
11: Create queue W sorted by ascending proximity to qL

12: for all x2 S
T2Pd

(C) x(RT

) do

13: for all p 2 W do
14: if x�� p then
15: add false; break
16: else if p �� x then
17: W W \ {p}
18: if add then
19: W W

S{x}
20: Return W[0]

using a window sorted by proximity to qL, to produce the
set X. The head of the window once all points have been
processed is the optimal solution, since Corollary 6 states
that all possible solutions are in that set.

Specifically, Algorithm 1 first computes the set C (Lines
1 � 10) and then iterates through all corner points to find
those that are valid solutions (Lines 11�19). By storing the
valid solutions in a queue that is sorted by proximity to qL,
the head of the list is the optimal solution (Line 20).

Both steps follow the same control flow. We go through
every point s, x and compare it to every other point c, p

in our current solution set. If s is dominated by c, then
c is removed from the current solution set. If s does not
dominate any c, then it is added. The di↵erence with x, p is
that we require strict dominance.

The running time of the algorithm thus depends on the
maximum size that the window W becomes. We know the fi-
nal solution is correct and optimal on account of Theorem 7.

5.2 Prioritized Recursion Algorithm
In this section, we introduce our Prioritized Recursion Al-

gorithm (PrioReA), which uses a few theoretical conclusions
to discover good solutions very quickly, and use it to prune
the majority of the search space.

5.2.1 Algorithmic Foundations

The objective in this section is to build towards a sound
recursive formulation of the problem and a series of theo-
retical pruning rules that can be used to limit the search
space. We can then describe a recursive algorithm, based
on that formulation, which uses the pruning rules to pursue
the optimal solution dramatically faster.

We begin with two lemmata that give rise to the prun-
ing rules and recursion. First, we note that the problem is
monotonic in the sense that solutions on subsets of points
are necessarily at least as good as those on supersets. Specif-
ically, Lemma 8 states that if one adds points to S, the cost
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of the solution cannot decrease. The key observation is that
adding more points to an input set forces a solution to be
farther from qL if it is not to strictly dominate any of the
points in either the subset nor the superset.

Lemma 8 (Monotonically increasing cost).
Let q

0
L = SN(S, p, (qL, qU)) and q

00
L = SN(S 0

, p, (qL, qU)).
Then, S ⇢ S 0 =) �(qL, q

0
L)  �(qL, q

00
L).

Proof. q

0
L is the closest point to qL that dominates all points

in S. q

00
L must also dominate all points in S, since S ⇢ S 0;

so, it cannot be closer to qL than q

0
L is.

The second lemma defines a lower bound on the solution
cost. Specifically, Lemma 9 states that, if one discovers the
point s whose smallest attribute value (relative to qL’s) is
farthest from qL’s value on that attribute, this di↵erence
lower bounds the cost of the optimal solution. Here, the
observation is that this value is the smallest value that could
conceivably guarantee that no point is strictly dominated.

Lemma 9 (Lower bound on solution cost).
max

s2S min
i2[0,d) (s[i]� qL[i])  SN(S, p, (qL, qU)).

Proof. Since 8s 2 S, q0L 6�� s, q0L must be larger or equal to
at least one value of every point.

Lemma 8 is valuable for pruning the search space, because
it indicates that if we find a recursive call to be unpromising,
then all recursive calls using a superset of those points will
be likewise unpromising. Lemma 9 is useful because it allows
estimating the optimal solution that will be returned by a
recursive call without actually calculating it. Thus, we can
often use the estimate to determine that a recursive call
cannot possibly produce a better solution than what we have
already seen.

This brings us to the main theorem for this section, which
formulates the problem recursively. Specifically, Theorem 10
states that if we partition a set of points C based on whether
they have a value > x on dimension i, then the solution q

0
L

with q

0
L[i] = x that is closest to qL is exactly the di↵erence

between q

0
L[i] and qL[i] plus the cost of the best possible

solution with q

0
L[i] = qL[i] on the higher-valued partition.

Theorem 10 (Basis for recursion).
Let C

i>x

= {s 2 C : s[i] > x} and Q

i>x

= {q 2 [qL, p] :
8s 2 C

i>x

, q 6�� s}. Then, for x � qL[i]:

�(qL, argmin
q2Q

i>qL[i]:q[i]=x

�(qL, q))

= �(qL, argmin
q

02Q

i>x

:q0[i]=qL[i]�(qL, q
0)) + (x� qL[i]).

Proof. Note that for a point q with q[i] = x, 6 9s 2 C with
s[i]  x such that q �� s. All other points, those in C

i>x

,
must have a lower value than q on some other attribute; i.e.,
must be dominated by the projection of q onto the point
q

0 where q

0[i] = qL[i] (i.e., is not changed from the original
constraint). So, �(qL, q) is exactly the distance of the pro-
jection q

0 from qL plus the distance from q to q

0, since all
distances are positive in all directions.

Finally, we note the three pruning rules that are straight-
forward consequences of the earlier lemmata in this section.
In particular, Corollary 11 states that if we have already seen
a point whose cost (i.e., distance to qL) is less than the sum
of the distance of a given point from qL and the lower bound

Algorithm 2 Prioritized Recursion Algorithm (PrioReA)

Input: C, p, qL,D
Output: q0L, the optimal Sky-not solution on (S, p, (qL, qU))
1: if C = ; then
2: Return qL

3: best p

4: Sort d 2 D by p[d]� qL[d], ascending
5: for all d 2 D do
6: Sort s 2 S by s[d]� qL[d], descending
7: maxmin 0
8: for all s 2 C do
9: if s[d]� qL[d] + maxmin < �(qL, best) then
10: rec PrioReA(C[0,...,s�1],D \ {d}, qL, p)
11: if �(qL, rec) + s[d]� qL[d] < �(qL, best) then
12: best rec, best[d] s[d]
13: else if �(qL, rec) � �(qL, best) then
14: Break {Pruning rule (2).}
15: else if maxmin �best then
16: Break {Pruning rule (2’).}
17: else
18: Do nothing {Pruning rule (1).}
19: if maxmin < min

d

02D s[d0]� qL[d
0] then

20: maxmin min
d

02D s[d0]� qL[d
0]

21: Return best

on the recursive call, then, independent of the recursive call,
the given point cannot produce a better solution than what
has already been seen. This comes directly from Lemma 9
and Theorem 10.

Corollary 11 (Pruning Rule (1)).
If 9q 2 (qL, p) , i 2 [0, d), x � qL[i] s.t.
�(qL, q)  (x� qL[i]) + max

s2C

i>x

min
i2[0,d) (s[i]� qL[i]))

then 8q0 2 (qL, p) : q
0[i] = x,�(qL, q)  �(qL, q

0).

The second pruning rule, Corollary 12, states that if we
have already seen a point whose cost is less than the cost of
the best solution returned by a recursive call on C

0, then we
need never consider any recursive calls on supersets of C0.
This comes directly from Lemma 8.

Corollary 12 (Pruning Rule (2)).
If 9q 2 (qL, p) , i 2 [0, d), x � qL[i] s.t.
�(qL, q)  �(qL, argmin

q

02Q

i>x

:q0[i]=qL[i]�(qL, q
0)) then

8x0  x,�(qL, q)  �(qL, argmin
q

02Q

i>x

0 :q0[i]=qL[i]�(qL, q
0)).

Finally, a variant of the second pruning rule, Corollary 13,
states that if we have already seen a point with cost less than
the lower bound estimate of the recursive call, we can also
safely dismiss all recursive calls on supersets.

Corollary 13 (Pruning Rule (2’)).
If 9q s.t. �(qL, q) < max

s2C

min
i2[0,d) (s[i]� qL[i]) then,

8C0
, C ✓ C

0, q is the best possible solution.

5.2.2 Algorithm Description

Algorithm 2 describes the PrioReA algorithm. At a high
level, it is a recursive algorithm, based on Theorem 10, that
selects a dimension d and fixes a value x for that dimension.
Any point s with s[d]  x is clearly not strictly dominated.
With all the other points s0 2 C, s

0[d] > x, and the remaining
dimensions d

0 6= d, we recurse to find an optimal solution.
The combination of the result from the recursion with the

355



value x on dimension d is argmin
q

02Q:q0[i]=x

�(qL, q
0), the

best possible solution with value x on dimension d.
To set the value x on a recursive call with points C

0, we
sort the points in c 2 C

0 by descending c[d] value (Line 6)
and iterate the sorted list (Line 8). We know from the dis-
cretization lemma, Lemma 3, that these are the only values
that need to be considered. By iterating in descending or-
der, we prioritize recursive calls with smaller inputs: it is
the set of all points preceding the current one that still need
to be resolved on the recursive call.

If we first compute C as in Lines 1�10 of Algorithm 1, and
then we iterate through all dimensions (Line 5) and for all
possible values to which each of those dimensions could be
set (Line 8), we are guaranteed to find the optimal solution,
because we will have covered the entire search space of BRA
that was defined in Corollary 6, with performance O(nd).

However, PrioReA uses Corollaries 11-13 to avoid the ma-
jority of that search space. We maintain track of the best
solution globally seen, the point q in the corollaries. Then,
whenever the conditions of the corollaries are met (Lines 13,
15, or 17), we can avoid the recursive call (Line 18) or even
break the loop entirely (Lines 14 or 16).

Furthermore, we prioritize the recursive calls exactly to
push the best seen point, q, as close to qL as early as possible.
Specifically, we always choose next the dimension wherein
p is closest to qL, because this increases the likelihood of
finding a good value x on that dimension that is also close
to qL. We always choose points closest to p first, rather than
qL, so that the recursive calls have fewer points and we need
to change fewer dimensions to reach a solution.
The e↵ectiveness both of the pruning rules and of the

prioritizations we evaluate next, in Section 6.

6. EXPERIMENTAL EVALUATION
In this section, we provide an extensive experimental eval-

uation of the contributions made thus far. We describe the
basic, common setup for the experiments in Section 6.1. We
evaluate the impact of Section 4.1 in Section 6.2 by measur-
ing how large is the set C of points that closely dominate
p, as a function of the input parametres. In Section 6.3,
we compare the query performance of our two algorithms
from Section 5 against adaptations using Theorem 5 of state-
of-the-art algorithms for the SkyDist problem. Finally, in
Section 6.4, we investigate our recursive algorithm in more
depth, particularly the e�cacy of its pruning rules and the
average depth of the recursion.

6.1 Experimental Setup
Algorithms: We implement four algorithms in C++ for
comparison. This includes both BRA and PrioReA from
Section 5. We also adapt and implement the Sort-Projection
(sort proj) and Space-Partition (space part) methods of
Huang et al. [12], since these were shown to be the most
e�cient SkyDist algorithms [12]. All four implementations
start from the same reduced input set, C, based on the the-
oretical analysis in Section 4.
Environment: All experiments are run on a commodity
machine with an i7-2700 quad-core processor clocked at 3.4
GHz, 16 GB of memory, and Ubuntu on kernel version 3.13.0.
The code is compiled using the GNU C++ compiler version
4.8.2 with full optimization. Since BRA is embarassingly
parallel (and the slowest running), we run it on 8 threads
(hyperthreading is enabled). All other algorithms are single-
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(b) |C| vs. |S| (d = 4, 8).

Figure 4: Variation of the size of the reduced input, C,
relative to the full input, S.

threaded.4

Datasets: We generate random datasets using the data gen-
erator standard to skyline research [3] to produce normalized
datasets of anticorrelated (A) and correlated (C) distribu-
tions. The selection of dataset cardinality (n) and dimen-
sionality (d), query constraints (qL, qU), and query points
(p) varies according to the objective of each sub-study.

6.2 Regarding close dominance and |C|
Experiment description: By Lemma 4, it is not the size
of the input dataset that governs performance, but the size
of the set C, the points that closely dominate p. We begin
by empirically gauging the impact on the input size it has
to apply this lemma.

We run 104 random trials for each configuration and re-
port the average. For each trial, we pick a point p 2 S
uniformly at random. We then select each lower constraint,
qL[i], uniformly from the data range, [0, p[i]]), independently
for each attribute. Since qU does not influence the set C, we
set it to the maximum value (i.e., 1) on each attribute. With
this setup, we then compute the set C using Lines 1� 10 of
Algorithm 1 and record the number of points, |C|.
Results and discussion: The results are reported in Fig-
ure 4. In Figure 4a, we vary data dimensionality (d) from
2� 10 in increments of 1 and hold the data cardinality (|S|)
fixed at one million points. The pink line with x’s shows the
results for correlated data, and the orange line with o’s, for
anticorrelated data. Note that the y-axis, representing |C|,
is logarithmic.

The results in this plot are very surprising, because cor-
related data exhibits more challenging behaviour than the
anticorrelated data. In typical skyline experiments, anticor-
related data produces larger skylines (output). This slows
performance because performance is typically dependent on
the size of the output. Similarly, increases in d also hinder
performance, because they also increase the size of the out-
put. Here, however, we see that the reduced input set for

4Parallelizing the slowest running algorithm allows us to
scale up the experiments without compromising fairness
among the competitive algorithms.
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Figure 5: Execution time of the algorithms and the computation of C as a function of input parametres (|S| = 106).

Sky-not queries is larger on correlated data, and grows ex-
ponentially with d. On anticorrelated data, it peaks around
d = 6, then decreases with subsequent increases in d.

This counter-intuitive behaviour can be understood clearly
by considering the extra requirement imposed by close dom-
inance (Definition 6): that c 2 C i↵ 6 9c0 2 S s.t. c � c

0 � p.
On correlated data, it is likely that, for a randomly chosen
point p, many other points dominate it. However, there are
also many dominance relationships among them. As d in-
creases, the points that dominate p become incomparable to
each other. For points c � c

0 that both dominate p, only
c 2 C. However, if c �� c

0, then c

0 2 C as well.
Considering anticorrelated data, on the other hand, there

are much fewer points that originally dominate p. So, for
low-dimensional increases to d, we observe the same trend
as with correlated data, but less pronounced. However, by
d = 6, this e↵ect has been saturated, and most points that
dominate p are incomparable to each other. For subsequent
increases in d, many points in C that dominate p become
incomparable to it; so, the size of the set shrinks.
Figure 4b, on the other hand, shows behaviour with in-

creases data cardinality (|S|). Because di↵erent values of
d exhibited quite di↵erent results, we plot twice as many
curves here: two for d = 4 and two for d = 8 (either side
of the peak for the anticorrelated data). The pink lines are,
again, correlated data; the orange, anticorrelated. The x’s
correspond to d = 8 and the o’s, d = 4.
Here, we see easily predicted behaviour. By increasing the

number of points in S, we consequently increase the number
of points in C. For anticorrelated data and for d = 4 on
correlated data, the relationship is roughly linear, but the
savings o↵ered by Lemma 4 is dramatic. Only 1/104 of the
points need to be processed. All possible solutions involving
values from any of the other 9999/10000 of the data points
can be discarded early in preprocessing by all algorithms.
The exceptional case is the higher-dimensional, correlated

data. This again grows steeply in accordance with Figure 4a.
Of the additional points, many dominate p because the data
is correlated, but many also are incomparable to each other
because of the higher dimensionality.
In summary, this study shows that Lemma 4 can dra-

matically reduce the input, and thus also the search space.
Counter-intuitively, it also demonstrates that for Sky-not
queries, correlated data is much more challenging than an-
ticorrelated data, with the former becoming exponentially
more challenging with increases in d > 6 and the latter be-

coming easier under the same conditions.

6.3 On the scalability of the algorithms
Experiment description: We next compare the four al-
gorithms in terms of execution time, using the same exper-
imental configurations as in Section 6.2. In contrast to the
query generation methodology of [12], which first chooses m
skyline points, and then generates a virtual query point that
is dominated by all of them, our methodology ensures that
query points still come from the original underlying distri-
bution. So, we expect to observe performance following the
trends illustrated in Figure 4. For readability, we separate
the cardinality plots using di↵erent dimensionality.
Results and discussion: Figure 5 shows performance of
the algorithms with respect to d. We also include the time
taken to compute the set C, which is not included in the
time for any of the four algorithms. Generally speaking,
it is relatively e�cient compared to all the algorithms. The
exception, relative to PrioReA, on correlated data for higher
d, is quite interesting. Recall that C is computed BNL-style
with a window of current points to which each candidate
is compared. Much like anticorrelated data slows skyline
computation in BNL with increasing d, the correlated data
slows the generation of C with increasing d.

Figure 5a gives performance on anticorrelated data, and
Figure 5b, correlated. A first observation is the di↵erent
scales on the y-axis. As expected from the larger C input
set, the correlated data generally takes longer to compute for
all algorithms. Another immediate observation is that, ex-
cepting PrioReA, all the algorithms deterioate rapidly after
a threshold dimensionality. For BRA, this is unfortunately
just d = 3; so, we exclude it from all subsequent experiments
due to its poor scalability. Evidently, the combination of a
large window size, W, and a still quite large search space,
make BRA prohibitively slow.

In agreement with the findings in [12], we observe space part
to be both faster and more scalable than sort proj. They
both deteriorate rapidly after a threshold dimensionality–
sort proj at d = 5 and space part at d = 8. Interestingly,
these thresholds are independent of the data distribution,
which suggests that it is not |C|, which is decreasing on the
anticorrelated data, that is the cause. Rather, it is strictly
a function of the dimensionality.

In contrast, PrioReA scales quite gracefully with increas-
ing dimensionality, independent of the data distribution. We
investigate why in Section 6.4.
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Figure 6: Query performance vs. |S| (d = 4).
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Figure 7: Query performance vs. |S| (d = 8).

Next, we consider increasing |C|. Figure 6 shows results
with d = 4 and Figure 7 shows results with d = 8. Because
BRA did not scale to these dimensionalities, we exclude it
from these plots. Similarly, sort proj did not scale to d =
8; so, we instead show the preprocessing time.

With the exclusion of the slower-performing algorithms,
we can portray a more granular comparison of the algo-
rithms. We see now that, even at d = 4, PrioReA is al-
ready an order-of-magnitude faster than the next fastest al-
gorithm. We will investigate this di↵erence in the next sub-
section. All three algorithms scale gracefully with increases
in cardinality, but sort proj and space part have a much
larger scaling factor than PrioReA.

In summary, this study shows that PrioReA has much
better scalability than the other three algorithms, with re-
spect to both d and |S|. We also see that the preprocessing
phase is e�cient for the savings in Section 6.2.

6.4 Granular Analysis of Recursion
We saw in Section 6.3 that space part substantially out-

performs both BRA and sort proj and that PrioReA out-

performs space part by an additional order of magnitude.
Here, we conduct more granular experiments to explain the
performance. Since both space part and PrioReA are re-
cursive algorithms, we compare them in Section 6.4.1 based
on the number of recursive calls each makes. Then, in Sec-
tion 6.4.2, we evaluate the success rate of PrioReA’s pruning
rules from Section 5.2.1.

6.4.1 Number of recursive calls

Experiment description: In order to better understand
the discrepancy in performance between space part and
PrioReA, we study here the average number of recursive
calls made by each algorithm. To do this, we insert a global
counter variable into the source code of the recursive method
for each algorithm. We adopt the same experimental con-
figurations as in the earlier tests.
Results and discussion: Figure 8 gives results of the re-
cursion experiments. Here, the pink lines represent space part
and the orange lines represent PrioReA. The lines with x’s
show correlated data and the lines with o’s, anticorrelated.
The y-axis is the number of times the recursive method is
invoked per Sky-not query, plotted on a logarithmic scale.

Figure 8a shows the variation with respect to d with |S| =
106. It is worth contrasting this to Figure 5, the query times
for the same configurations. On the correlated data, we ob-
serve that the number of recursive calls made by space part
grows dramatically, even on the logarithmic scale. Note that
the growth pattern of |C| in Figure 4a has the same inflec-
tion point at d = 4. Intuitively, the number of recursive calls
is increasing with the e↵ective input size, |C|.

For the anticorrelated data, the number of recursive calls
still grows exponentially for space part, but more control-
lably. With each addition of a dimension, the number of par-
titions created by space part doubles, but the occupancy of
these partitions shrinks (because the same number of points
are distributed among a larger number of partitions).

In contrast, the number of recursive calls made by PrioReA
is stable with increasing d, indicating that the condition on
Line 9 of Algorithm 2, which tests whether or not to recurse
on a subset of dimensions, is not a↵ected strongly by the
number of dimensions, only by the quality of the solutions
yet seen. This e↵ect is distribution-independent.

Figure 8b shows the variation with respect to |S| with
d = 8. Note that the scale of the y-axis is di↵erent from
the previous plot. We only show the results for d = 8, since
they are mirrored, but less pronounced, at d = 4. Contrast
these results to the query times in Figure 7. Here, we ob-
serve that, in contrast, to increases in d, the behaviour of
both algorithms is relatively stable. In fact, they almost ex-
actly mirror the trends in Figure 4b, which show |C|. With
increasing input size, the algorithms both incur proportion-
ately more recursive calls.

Note, importantly, that there is a large deviation, over an
order of magnitude, between the number of recursive calls
made by space part and PrioReA on anticorrelated data.
It is di�cult to see in the plot because the range of the scale
must be very large to fit space part on correlated data.

In summary, we see the query time performance of space part
exhibits the same behaviour as the number of recursive calls,
with sharp inflection points as d increases and more stable
growth with |S|. For PrioReA, the stable query times are
matched by a stable number of recursive calls.

358



A
ve

ra
g

e
 #

 o
f 

C
a

lls

102

103

2 4 6 8 10

SPACE_PART (C)
SPACE_PART (A)
PrioReA (C)
PrioReA (A)

(a) # of recursive calls vs. d (|S| = 10

6
).

A
ve

ra
g

e
 #

 o
f 

C
a

lls

102103

104

1e4 5e4 1e5

SPACE_PART (C)
SPACE_PART (A)
PrioReA (C)
PrioReA (A)

(b) # of recursive calls vs. |S| (d = 8).
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Figure 9: Success rate of pruning rules relative to input configurations.

6.4.2 Pruning efficacy

Experiment description: Our last experiment investi-
gates why the number of recursive calls for PrioReA is so
stable. In particular, because recursive calls are averted by
the pruning rules introduced in Section 5.2.1, we evaluate
their success rates. We use, again, the same configurations,
and add global counters at Lines 12, 14, 16, and 18 of Algo-
rithm 2 to profile the percentage of invocations taking each
path through the possible conditions.
Results and discussion: Figure 9 presents the results.
Pruning rules 2 and 20 are combined, since they both break
the loops early based on the result of, or estimation of, the
quality of the solution on the recursion, respectively. Prun-
ing rule 1, on the other hand, does not break the loop, and
is based on an estimate of the cost for a current value, s[d].

Here, the y-axis indicates the fraction of times that the
relevant condition evaluates favourably for the given pruning
rule. The pink lines represent correlated data and the orange
lines, anticorrelated. Rule 1 is depicted with o’s and Rule 2,
with x’s. The combined success rate, 1� (1�Rule1) ⇤ (1�
Rule2), is computed analytically and plotted.

Figure 9a shows the success rates with respect to d, with
|S| = 106. Interestingly, as d increases, so does the success
rate of both pruning rules. This is the e↵ect of our pri-
oritizing the most promising (i.e., closest) dimensions first,
obtaining good solutions very quickly. As the dimensionality
increases, so do the number of choices of dimensions to prior-
itize. Additionally, the reasonably good solutions are found
quite quickly, regardless of how many iterations through the

loops we need, and can subsequently improve pruning power.
As d increases, so too does the number of iterations through
the loops on the first recursive call. However, the first few
find the good solutions and boost the pruning potential for
the increased number of subsequent iterations.

Rule 1 is, for d > 2, more e↵ective than Rule 2. However,
it is also tested first in Algorithm 2. So, easily pruneable
cases are pruned by Rule 1 and never evaluated by Rule 2.
All cases evaluated by Rule 2 were missed by Rule 1; so, it
is not surprising that the success rate of pruning these cases
is slightly lower.

Both pruning rules are more often successful on correlated
data than on anticorrelated data. As with increases in d, this
is because there are more tests in general (the loop on Line
6 of Algorithm 2 is larger), but a relatively constant number
of unsuccessful, early evaluation of the pruning conditions.

By d = 4, we see that the combined success rate of the
pruning rules is very nearly 100% on both data distribu-
tions, which clearly explains why the number of recursive
calls observed in Section 6.4.1 was stable with increasing d.

Figure 9b shows the success rates with respect to |S|, with
d = 8. As before, we omit highly similar results for d = 4.
Here we see that, aside from initial relatively large jumps
in input size, increases in cardinality do not especially a↵ect
the pruning rates. At d = 8, they are very high, nearly 100%
in combination, on smaller datasets as well. Note here that
the scale on the y-axis is smaller than Figure 9a, and that
the success rates are consistently above 80% for both rules.

In summary, the evaluation of the pruning rules shows
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that, indeed, they are responsible for pruning the majority
of the recursive calls, which, in turn, was shown to reflect
the query performance. As the size of C grows, so too do the
pruning rule success frequencies. Consequently, PrioReA is
able to outperform the competing algorithms consistently
and scale gracefully.

7. CONCLUSION AND OUTLOOK
In this paper, we introduced the Sky-not query to em-

power a user to better understand skyline results. Given a
point p and a constrained skyline query, the Sky-not query
returns the minimal change to the user’s constraints that
places p in the skyline. This can be used both to understand
how competitive p is relative to the skyline and to dynami-
cally adapt queries to fit user needs and expectations.

Towards this, we first conducted a theoretical study of
Sky-not queries, showing that the space of possible solutions
can be discretized and the set of relevant input points can
be dramatically reduced. We also showed Sky-not queries
are dual to the minimum skyline distance problem, imply-
ing techniques for each can be shared. We then presented
two novel algorithms: BRA transforms the Sky-not query
one highly resembling a new skyline instance, and adapts
the BNL skyline algorithm; PrioReA uses theoretically mo-
tivated pruning rules in a recursive framework. The latter
we showed has excellent empirical performance, largely on
account of the success rate of the pruning rules.

We focused in this paper on improving the usefulness of
skyline queries that include selection, perhaps the most fun-
damental element of database queries. There is much in-
teresting work to be done in expanding this research with
other clauses, such as joins and aggregations, where there
is yet more complexity for the user to understand query re-
sults. Furthermore, there is a broad range of applications
for skyline queries, such as road networks and social network
graphs, and these settings may provide unique, specific chal-
lenges for supporting user understanding of skyline results.
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ABSTRACT
Similarity search is crucial to many applications. Of particular in-
terest are two flavors of the Hamming distance range query, namely,
the Hamming select and the Hamming join (Hamming-select and
Hamming-join, respectively). Hamming distance is widely used in
approximate near neighbor search for high dimensional data, such
as images and document collections. For example, using prede-
fined similarity hash functions, high-dimensional data is mapped
into one-dimensional binary codes that are, then linearly scanned
to perform Hamming-distance comparisons. These distance com-
parisons on the binary codes are usually costly and, often involves
excessive redundancies. This paper introduces a new index, termed
the HA-Index, that speeds up distance comparisons and eliminates
redundancies when performing the two flavors of Hamming dis-
tance range queries. An efficient search algorithm based on the
HA-index is presented. A distributed version of the HA-index is
introduced and algorithms for realizing Hamming distance-select
and Hamming distance-join operations on a MapReduce platform
are prototyped. Extensive experiments using real datasets demon-
strates that the HA-index and the corresponding search algorithms
achieve up to two orders of magnitude speedup over existing state-
of-the-art approaches, while saving more than ten times in memory
space.

1. INTRODUCTION
Hamming-distance search over big data plays an important role

in a large variety of applications. For example, widely used search
engines, such as Google, Baidu, and Bing, use Hamming-distance
search in their image content-based search engines that usually in-
dex billions of images (e.g., refer to [1]). Typically, each image is
modeled by a high-dimensional vector of extracted features, e.g.,
color histograms, texture features, and edge orientation. Then,
based on the learned similarity hash function, e.g., as in [1, 2, 3],
each image is converted into a binary code. Given a query image
that gets modeled with the same high-dimensional vector of fea-
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tures, the search engine maps it into a binary code and performs a
Hamming-distance search to find images whose binary codes have
a Hamming distance smaller than a given threshold ĥ from the
query image. Hamming search is also widely used to detect dupli-
cate web pages in applications, e.g., web mirroring, plagiarism, and
spam detection [4]. A similarity hash function [5] is applied to map
a high-dimensional vector into a binary code, then a Hamming-
distance range search finds web documents that are similar to the
query document.

Typically, computing the Hamming distance between two binary
codes is performed by an Exclusive-Or operation (XOR, for short)
that is followed by a count operation to sum up the number of ones
in the XOR result. The number of ones corresponds to the num-
ber of differing bits between the two binary codes. Thus, a linear
scan over the binary codes of the underlying dataset takes place to
perform the XORing, the counting, and the ranking to retrieve the
objects within a certain range of tq (i.e., the ones within the prede-
fined Hamming distance threshold ĥ). Due to the linear scan, this
approach is slow. When joining two tables via a Hamming distance
predicate, the linear scan approach induces a quadratic cost to eval-
uate the join. An efficient indexing of the binary codes is called for
to perform the Hamming range query and avoid a complete scan
over the underlying dataset, while remaining low on memory us-
age.

The Hamming distance problem [6, 7] is first studied for small
distance thresholds, i.e., ĥ = 1. An algorithm proposed by Manku
et al. [4] uses multiple hash tables to enhance query speed. How-
ever, duplicating the hash entries multiple times for the entire
datasets is expensive and performance tends to degrade as a lin-
ear scan over tuples within a bucket is required. HEngine [8] ex-
tends Manku’s algorithm to improve the query’s speed with less
memory. However, HEngine is sensitive to the Hamming distance
threshold ĥ, and it needs to generate one-bit differing binary code
with each query, then carry out several binary searches over sorted
hash tables. Recently, MapReduce as a reliable distributed com-
puting model has been adopted for handling a variety of similarity
queries, e.g., [4, 9, 10, 11, 12]. Existing techniques for Hamming-
distance queries cannot be easily extended for MapReduce. The
reason is that most of the existing techniques use centralized mul-
tiple hash-table indexes. Because MapReduce needs to write inter-
mediate data on disk when shuffling data between the mappers and
the reducers, rearranging multiple indexes and multiple versions of
the same data can be quite inefficient.

In this paper, we focus on two variants of the Hamming
distance query problem, namely Hamming-distance-based select
and Hamming-distance-based join (for short, Hamming-select and
Hamming-join, respectively). We propose a new index, termed the
HA-Index, that is designed to reduce redundant and duplicate dis-
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tance computations during the Hamming-distance search. The HA-
Index assumes that the underlying datasets are preprocessed; data
is mapped from the high-dimensional space into one-dimensional
binary codes that are fixed-length strings of 0’s and 1’s. Then, the
binary codes are sorted using the Gray ordering [13]. Sorting the
binary codes in this way helps group together multiple binary codes
that share a common substring or non-contiguous yet similar se-
quences of bits. By computing the distances between the query
binary code and similar substrings, many redundant distance com-
putations can be avoided.

The contributions of this paper are as follows.

• Based on properties of binary codes, we introduce two ap-
proaches to improve the performance of Hamming-select and
Hamming-join. The first approach uses a simple Radix-tree
index from the literature. The second approach is based on
the HA-Index with both a static and a dynamic version. We
also introduce the maintenance operations, i.e., build, insert,
update, and search operations, for the dynamic HA-Index.

• For Hamming-joins over large and skewed data, we propose
an efficient data partitioning technique for balancing data
computations among servers, and introduce a distributed ver-
sion of the HA-Index to reduce data shuffling inside MapRe-
duce.

• We conduct an extensive experimental study using real
datasets and demonstrate that the HA-Index (i) enhances
the performance of Hamming-select and Hamming-join by
two orders of magnitude over state-of-the-art techniques, and
(ii) saves memory usage by more than one order of magni-
tude. We also evaluate how the proposed index improves
approximate algorithms for kNN-select and kNN-join oper-
ations.

The rest of this paper proceeds as follows. Section 2 dis-
cusses related work. Section 3 presents the problem definition.
Section 4 introduces the centralized-server approach for approx-
imate Hamming-select and Hamming-join. Section 5 introduces
the distributed version of the HA-Index using MapReduce and ex-
plains how Hamming-select and Hamming-join can be performed
in MapReduce. Section 6 presents and discusses the experimental
results. Finally, Section 7 contains concluding remarks.

2. RELATED WORK
Using the Hamming distance as a similarity metric has been

studied in the theory community, e.g., [6, 7]. When the Hamming-
distance query threshold is small, i.e., ĥ = 1, Yao et.al [7]
propose an algorithm with O(m log log(n)) query time and
O(nm log(m)) space. Yao’s algorithm recursively cuts the query
binary code and each binary code in the dataset in half, and then
finds exact matches in the dataset for the left or the right half of
the query binary code. [14] demonstrates that similarity search in
chemical information via the Tanimoto Similarity metric can be
transformed into a Hamming-distance query.

Hamming-distance queries are attracting more attention for pro-
cessing large volumes of data. A relatively recent work [4] uses
multiple hash tables, and hence more space, to reduce the linear
computation of the Hamming distance during query time. The idea
behind this approach is that if two binary codes are within a Ham-
ming distance ĥ, then at least one of the ĥ+1 segments are exact
matches for two binary codes. This algorithm needs to replicate

Table 1: Symbols and their definitions

Symbol Definition
Rd d-dimensional vector space
n, |R| Number of tuples in dataset R
m, |S| Number of tuples in dataset S
tq Query tuple
k The required number of nearest neighbors
||ti, tj ||h Hamming distance between tuples ti and tj
H Similarity Hash function
Ui Binary code for tuple ti
L = |U | Length of the binary code U
li The ith bit in the binary code
ĥ Hamming distance threshold
ĥ-select(tq, S) Hamming distance select for

tuple tq and datasets S
ĥ-join(R,S) Hamming distance join between datasets

R and S
N Number of data partitions

the database multiple times, and it sorts each copy based on parts
of the segments. The Hamming-distance computation is still per-
formed in a linear fashion over tuples of the same bucket in a cer-
tain hash table. Thus, it fails to scale as data size increases. For
performing a Hamming-join of two datasets, say R and S, [4] ex-
tends the sequential approach to MapReduce by broadcasting Table
R into each server, then applying a sequential algorithm betweenR
and S. This approach is subject to a very heavy shuffling cost and
servers cannot work in a load-balanced way when data is skewed.
HEngine [8] adopts a similar idea to that in [4], but uses approx-
imate matching instead by generating multiple one-bit difference
binary codes. The HEngine uses less memory but achieves lim-
ited performance speedup. HmSearch [14] is an exact matching
approach that index over signature of the binary codes. The size of
the index increases dramatically, because HmSearch need to gen-
erated large amount of unique signatures. If used in the context of
MapReduce, the shuffling cost between the mappers and the reduc-
ers is expected to be expensive. Our proposed HA-Index extracts
and groups similar binary codes from among the various tuples to
reduce the cost of shuffling and hence is applicable to MapReduce
as we illustrate later in this paper. Through data sampling, we parti-
tion that data in a way that uniformly distributes the dataset among
the reducer servers and hence enables better load balancing. Exper-
imental comparison with [4, 8] shows that our proposed HA-Index
is two orders of magnitude faster and uses ten times less memory
as illustrated in the experimental section of this paper.

Two related and popular operations to Hamming distance queries
are the k-nearest-neighbor select (kNN-select) and k-nearest-
neighbor join (kNN-join) [15, 16]. Given a dataset, say S, and
a query focal point, say tq , kNN-select finds in S the k-nearest-
neighbors to tq . Given two datasets, say R and S, R kNN-join
S finds the k-nearest-neighbors in S for each tuple in R. In
high-dimensional spaces and because of the curse of dimensional-
ity [17], data-independent hash-based approximate kNN (e.g., lo-
cality sensitive hashing (LSH) [18]) has attracted attention as it can
speed-up query execution while having acceptable error margins.
Recently, data-dependent hashing has been proposed to learn the
hash function, sayH(), given the underlying dataset, e.g., as in [2].
There has been a plethora of work in learning good and represen-
tative hash functions, e.g., [2, 3, 1]. Given the learned similarity
hash function H(), a tuple, say ti, is mapped into its binary code,
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say Ui, i.e., H(ti) = Ui. Afterwards, all the binary codes of the
dataset R are scanned to find data tuples that are different from
the query’s binary code Ui by at most ĥ bit-positions. If the an-
swer set size is more than k, then only the k-closest answers are
retained. However, if the size of the result set is less than k, then a
larger distance threshold is estimated and the near neighbor query
is repeated. The process is stopped when k or more answers are
reported. Notice that the core of the method for approximate kNN
search is a Hamming-distance query with a threshold ĥ. In our
experiments, we use the state-of-the-art approach [2] to learn the
hash function, and show how our proposed approach can speed up
approximate kNN-select and kNN-join.

3. PRELIMINARIES

3.1 Hamming-distance-based Similarity Op-
erations

We assume that data tuples represent points in a d-dimensional
metric space, say Rd. Given two data tuples, say ti and tj , let
||ti, tj || be the distance between ti and tj in Rd. The Hamming
distance between ti and tj , denoted by ||ti, tj ||h, helps in retrieving
the tuples in a dataset that are within some threshold from an input
tuple, either ti or tj in this case. Table 1 summarizes the symbols
used in this paper.

DEFINITION 1. Hamming-distance-based Similarity Se-
lect [4] (referred to as Hamming-select, for short): Given a query
tuple, say tq , and a dataset, say S, with its corresponding collection
of binary codes, denoted by US , and an integer, say ĥ, that repre-
sents the similarity threshold for the Hamming distance, Hamming-
select identifies a subset from S, denoted by ĥ-select(tq, S) for
short, where ∀o ∈ ĥ-select(tq, S), ||o, tq||h ≤ ĥ.

Similarly, we define the Hamming-distance-based similarity join
as follows.

DEFINITION 2. Hamming-distance-based Similarity Join
(referred to as Hamming-join, for short): Given two collections
of binary codes, say UR and US , that correspond to two datasets,
say R and S, respectively, and an integer, say ĥ, that represents
the similarity threshold for the Hamming distance, Hamming-join
identifies the set ĥ-join(R, S) of tuple pairs such that (ti, tj) ∈ ĥ-
join(R, S) iff ti ∈ R and tj ∈ S and ||ti, tj ||h ≤ ĥ.1

EXAMPLE 1. Consider the set of binary codes given in Ta-
ble 2a and a Hamming distance threshold ĥ = 3. The
query tuple tq has a binary code “101100010". The output of
the Hamming-distance-based similarity select is {t0, t3, t4, t6}.
Using the same Hamming distance threshold ĥ, the out-
put of the Hamming-distance-based similarity join for the
datasets in Tables 2b and 2a is {(r0, t0), (r0, t3), (r0, t4),
(r0, t6)},{(r1, t0), (r1, t3), (r1, t4), (r1, t6)}, {(r2, t3)}.

From the example above, one can produce the output set by sim-
ply scanning the table one tuple at a time, performing Hamming
distance calculation via the XOR operation, and reporting the tuple
as an output if the computed Hamming distance is smaller than or
equal to ĥ. If |S| = n, then the cost of computing Hamming-select
consists of O(n) tuple reads and O(n) Hamming-distance compu-
tations. Similarly, the cost of computing Hamming-join between
1Different from the kNN-join, ĥ-join for datasets R and S is sym-
metric, i.e., ĥ-join(R, S)= ĥ-join(S, R).

Table 2: An example illustrating a Hamming-distance query.

(a) Table S

tuple binary U
t0 001 001 010
t1 001 011 101
t2 011 001 100
t3 101 001 010
t4 101 110 110
t5 101 011 101
t6 101 101 010
t7 111 001 100

(b) Table R

tuple binary U
r0 101 100 010
r1 101 010 010
r2 110 000 010

0 1

01

t0

01

0 1

1100110011001100

001010 011101

01010 11101 10110 01010

t1

t3 t5 t4 t6

t7t2

Figure 1: Radix Tree

the two datasets R and S, where |R| = m and |S| = n respec-
tively, with a nested-loop join algorithm, consists of O(mn) tuple
reads and O(mn) Hamming-distance computations. The focus of
this paper is to develop a Hamming-distance-based tree index to
reduce the above costs.

4. HAMMING-SELECT ALGORITHMS
In this section, we first introduce the basic concept and principles

of binary hash codes, and illustrate the Radix-Tree-based approach.
We then introduce two variants of our proposed HA-Index, namely
the static and dynamic HA-indexes along with their associated al-
gorithms.

4.1 Properties of Binary Codes
DEFINITION 3. A binary code Û is said to be a fixed-length

substring (FLSS) of another binary codeU if |U | = |Û | and there
exist i and j, 1 ≤ i, i + j ≤ |U | such that ∀i, i ≤ v ≤ i + j, and
U [v] = Û [v]. Thus, only the bits between i and i+ j are the same
and all the remaining can be any combination of 0s and 1s.

For example, consider Tuple t0 in Table 2a. Let · denote a 0 or a
1. Based on the above definition, Û=“ · · · ·0101 · ” is one FLSS
of t0’s binary code “001101010". Alternatively, V̂ =“101 · · · · · ·”
is not an FLSS of t0’s binary code.

DEFINITION 4. A binary code, Û , is the fixed-length Sub-
Sequence (FLSSeq, for short) of a binary code U if there ex-
ists a strictly increasing sequence of indices of U such that ∀j ∈
{1, 2, . . . , k′}, we have U [j] = Û [j] and |U | = |Û |.

For example, Û=“ · · · 0 · 1 · 1 · ” is one possible FLSSeq of
t0’s binary code “001001010" in Table 2a. Thus, Û belongs to Set
FLSSeq of Tuple t0. To compute the Hamming distance between
an FLSSeq and a query binary code, we only count the bit differ-
ence in the corresponding effective bit positions. For instance, if
one FLSSeq is Û=“ · · · 0 · 1 · 1 · ” and the query binary code is
U=“001001010", the Hamming distance ||Û , U ||h=2.
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PROPOSITION 1. Hamming Downward Closure Property A
binary code U ∈ ĥ-select(tq, S) iff each FLSS of U , say UFLSS ,
(each FLSSeq of U , say UFLSSeq , respectively) meets the condi-
tion ||tq, UFLSS ||h ≤ ĥ (||tq, UFLSSeq||h ≤ ĥ, respectively).

We omit the proof for simplicity. Instead, we illustrate the above
proposition using the following example.

EXAMPLE 2. Refer to the Hamming-distance query in Exam-
ple 1 and Table 2. Suppose that the Hamming-distance threshold
ĥ = 2. Consider the following example cases:

• Case 1: Given a query binary code tq = “110010010", since
one FLSS, UFLSS = “001 · · · · · ·”, is the binary code of
an FLSS for both t0 and t1 and ||UFLSS , tq||h ≥ 3, then
neither t0 nor t1 can belong to ĥ-select(tq, S).

• Case 2: Given a query binary code tq = “110110010", the
binary code “ · 11001100” is an FLSS (UFLSS) for both
t2 and t7, ||UFLSS , tq||h ≥ 3, thus, neither t2 nor t7 can
belong to ĥ-select(tq, S).

• Case 3: Given a query binary code tq = “110100010", the
binary code “1010 · 1 · · · ” is an FLSSeq for both t3 and
t5, ||UFLSSeq, tq||h ≥ 3, therefore, neither t3 nor t5 can
belong to ĥ-select(tq, S).

4.2 Radix-Tree-Based Approach
The idea behind using a Radix-Tree index (also termed the PA-

TRICIA trie) [19] is to merge the XOR operations for various bi-
nary codes if they happen to share FLSSs, e.g., similar to Case 1
of the example above. One XOR operation on a common FLSS
can be used to verify all participant tuples in this FLSS. Thus,
we can build a prefix tree out of the binary codes. Based on the
above closure property (Proposition 1), we can compute the Ham-
ming distance with prefixes of the Radix-Tree from the root to find
qualifying binary codes in a top-down fashion.

EXAMPLE 3. Figure 1 gives the corresponding Radix-Tree for
the binary codes in Table 2. From the Radix-Tree, Tuples t0 and t1
in Table 2 share the same FLSS UFLSS = “001 · · · · · ·”. Given the
query binary code tq = “110010110” and a Hamming-distance
query threshold ĥ = 2, both Tuples t0 and t1 can be discarded
without computing the whole Hamming distance for all binary po-
sitions, because the Hamming distance from UFLSS with the first
three bits of tq is bigger than the predefined threshold ĥ. Thus,
processing the Hamming-distance-based select can stop early at
the upper level of the Radix-Tree.

Notice that although useful in the above example, the Radix-
Tree-based approach has several disadvantages, mainly due to its
prefix-sensitiveness. For example, Tuples t2 and t7 in Figure 1 are
split into two branches in the Radix-Tree, although only the first bit
in the two tuples is different while all their remaining bits are the
same. Thus, the search path would go to different branches of the
tree and redundant computations in these two branches cannot be
avoided. In the worst case, if the binary codes in the Radix-Tree
do not share common prefixes, then searching from the root will
bring the computation cost as bad as O(2L), because it would go
through every branch of the Radix-Tree. As a result, we propose the
HA-Index to address the prefix-sensitivity of the Radix-Tree-based
approach.

001 011 101

001 011 101

100010 101

111

110

N1 N2 N3 N4

N5 N6 N7 N8

N9 N10 N11 N12110

Figure 2: Static HA-Index

4.3 Static HA-Index
The idea behind the Static HA-Index is to share the common sub-

strings, i.e., the maximal FLSSs, in contrast to sharing the com-
mon prefixes for the binary codes of the underlying dataset. Thus,
redundant Hamming distance computations can be avoided. Recall
Case 2 of Example 2, the FLSS for t2 and t7 is “·01101010”. For
the Radix-Tree-based approach in Figure 1, searching for the qual-
ifying tuples would proceed to different paths, which introduces re-
dundant computations. Thus, if we are able to realize an index that
shares the common FLSSs, we would be able to avoid redundant
and unnecessary Hamming-distance computations.

Static bit segmentation: We segment the binary codes into
fixed-length contiguous substrings (called fixed-length segments).
For instance, assuming that each segment is of Size 3, the binary
code for tuple t2 is divided into three segments, “011”, “001”
and “100”. The path along these segments can be traced via an
undirected path. For example, the path that corresponds to tuple
t2 is illustrated in Figure 2 where it connects Nodes N2 to N11

via Intermediate Node N6. Meanwhile, the path of Tuple t7 in-
cludes Nodes N4, N6 and N11. Thus, Tuples t2 and t7 can share
the same vertex nodes N6 and N11. While traversing the index,
the Hamming-distance computation for Nodes N6 and N11 will be
performed only once. In the next section, we demonstrate how the
Static HA-Index can be used to evaluate both the Hamming-select
and Hamming-join operations.

The static HA-Index has several limitations though. Both the
height and the length of the paths in the Static HA-index are sen-
sitive to the segment size. Because the segment sizes are fixed,
it is possible to miss common bit substrings that do not align to
segment boundaries. Also, both the Radix-Tree and the static HA-
Index optimize for the FLSSs of the binary codes. An index that
would support FLSSeqs, in contrast to just the FLSSs (recall that
the FLSSs are subsets of the FLSSeqs), would allow for more
shared distance computations and hence additional savings. Con-
sider Case 3 of Example 2. Both the Radix-Tree and Static-HA-
Index approaches fail to capture the common FLSSeq between t3
and t5. In the next section, we introduce the Dynamic HA-Index to
address these limitations.

4.4 Dynamic HA-Index

DEFINITION 5. Gray Order: is an ordering of the binary
codes such that consecutive binary codes differ only by one bit,
i.e., the Hamming distance between two consecutive binary codes
that are sorted according to the Gray order is equal one [13].

PROPOSITION 2. Gray Order and Clustering: When the bi-
nary codes are ordered based on the Gray order, data tuples are
naturally clustered [20],i.e., the Hamming distance between con-
secutive ordered binary codes is small as the consecutively ordered
binary codes share common FLSSeqs.
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N1 N2 N3 N4 N5 N6

N7 N8 N9 N10

N12N11

….0.010 ….1.101 0…….. 1.….... ….101.. ….010..

..10.1... 101......

00.…... …1...10.1..0.100 ...0.1...

t0 t3 t1 t5 t2 t7 t4 t6

Figure 3: Dynamic HA-Index

For instance, the data tuples in Table 2 can be ordered based on
the Gray order of their corresponding binary codes in descending
order, and the resulting sorted order is {t0, t1, t2, t7, t4, t6, t3, t5}.
Observe that the sorted binary codes provide two important prop-
erties, namely the downward closure and the clustering properties,
that facilitate efficient Hamming-distance-based query processing.
Thus, our aim is to realize an index structure that preserves and
leverages these properties. The Dynamic HA-Index will strategi-
cally divide the binary codes into segments (i.e., sequences of data
points that are close in their binary values according to the Gray
order). As such, the clustering property is preserved to ensure that
nodes with similar FLSSeqs are close to each other in the index.
For example, Tuples t2 and t7 are ordered next to each other, and
these properties can overcome the prefix-sensitivity of the Radix-
Tree-based approach.

In the Dynamic HA-Index, the leaf nodes store data tuples while
the non-leaf nodes store the FLSSeqs of the children nodes. Re-
fer to Figure 3 for an illustration. Internal node N1 represents the
FLSSeq = “···0·010” of Tuples t0 and t3. Internal nodeN2 rep-
resents the FLSSeq = “ · · ·1 ·101” that is common to both Tuples
t1 and t5. Furthermore, Internal Node N7 represents the FLSSeq
for Nodes N1 and N2. Notice, all the descendants of an HA-Index
node can be safely discarded from further Hamming-distance com-
putations if the node’s corresponding FLSSeq does not qualify the
Hamming-distance threshold, thereby reducing computation over-
heads.

4.5 Dynamic HA-Index Manipulation
The primary objective of all the Dynamic HA-Index manipula-

tion algorithms, including build, delete, and insert, is to maintain
the FLSSeq properties of the index while keeping the size of the
index reasonably small.

Bulkloading builds the Dynamic HA-Index in a bottom-up fash-
ion. It has two steps. The first step sorts all the data tuples accord-
ing to the Gray order of their nondecreasing binary codes. The
second step scans these tuples sequentially using a sliding win-
dow with w slots to form index nodes. Algorithm 1 illustrates
the pseudo-code to build the Dynamic HA-Index. A queue is ini-
tialized to store the temporary nodes from the window (Line 2).
From the tuples within a window, Function extractFLSSeq ex-
tracts the maximal FLSSeqs from the tuples’ binary codes to form
new parent nodes (Line 5), and denotes the new binary code of
the child node. Then, the new temporal node is inserted into the
queue (Line 7). For instance, Tuples t0 and t1 share the same
FLSSeq = “0010 · 1 · · · ”. Thus, this FLSSeq’s corresponding
new node is formed and is inserted into the queue. To save memory
storage, Function extractFLSSeq captures the binary code of
t0 as “ · · · ·0 · 010”. Therefore, the non-leaf nodes with the same
FLSSeq are consolidated into one node. Hence, Tuple t3 would
be denoted with the same binary code as that of t0, and would share

Algorithm 1: H-Build
Input: T : Set of data points, w: Window, md: Depth of HA-index, s:

Sliding window size
Output: HA:HA-Index for dataset T

1 Sort T based on the non-decreasing Gray order of the tuples’ binary
codes;

2 q: Queue;
3 for each data element ti of T inside Window w do
4 var n, n̂: Node;
5 n, n̂← extractFLSSeq(ti, · · · , ti+w); // n, the parent node of n̂
6 if n̂ is new then
7 insert n̂ into the current level of the HA-Index.
8 end
9 else

10 update n̂’s frequency
11 end
12 if n is not empty then
13 q.enqueue(n);
14 end
15 else
16 put Tuple ti inside Window w into the top level of the

HA-Index;
17 end
18 w← w+s; //sliding the window
19 end
20 var d:0, begin:0, end:q.size;
21 while q is not empty and d ≤md do
22 // Process similar to Lines 4-18
23 // Use two pointers for q to record the HA-Index depth d
24 end

the same binary codes. Notice that we record the frequency of each
node (Line 6-11). For example, Node N1 represents the binary
code for t0 and t3. Thus, the frequency for N1 is 2. If tuples inside
the window do not share any FLSSeq among each other, these
tuples are linked to the top level of the HA-Index (Line 16). The
window continues to slide until all the data points are scanned in
the first round. Lines 21-24 merge the internal nodes as Lines 4-18
and we can use two pointers begin and end for the queue to in-
dicate the depth. The building process continues until the desired
depth is reached.

In addition, more than one leaf node can be linked to the same
internal node, e.g., Tuples t1 and t5 are linked to Internal Node
N1 in Figure 3. Thus, we build a hash table for the bottom node,
e.g., N1, where the key is the leaf node’s binary codes, and value
is the tuple’s ID. Naturally, if users only want to learn the quali-
fying binary codes, then there is no need to keep the leaf nodes of
The HA-Index. An HA-Index without leaf nodes could save the
overhead of building hash tables, and can be used in MapReduce
Hamming-join as in Section 5.

Deletion removes a tuple with its corresponding binary code
from a Dynamic HA-Index. Algorithm 2 gives the corresponding
process. First, a leaf node that contains the tuple to be deleted
is located by depth-first search using the tuple’s binary code as the
search key. One stack is used to denote the unexplored paths. Func-
tion bitmatch tests whether one binary code is the FLSS or
FLSSeq of the deleted tuple (Lines 3 and 14). Then, the tuple is
removed from the HA-Index. After deletion, the frequency of the
corresponding node needs to be decremented (Lines 5 and 16). If
one node contains 0 or less entries, it is removed.

Inserting a new data tuple into a Dynamic HA-Index is similar to
the deletion process. Insertion uses a depth-first search to locate the
corresponding leaf node, then the search process looks for the leaf
node that shares the maximalFLSSeq with the newly inserted data
tuple. If no such leaf node is found, we put the newly inserted data
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Algorithm 2: H-Delete
Input: tq : Deleted query tuple,HA: HA-Index for queried dataset

1 s: Stack;
2 for each top level node ni in HA do
3 if bitmatch(tq , ni) then
4 s.push(ni);
5 ni.frequency← ni.frequency-1 ;
6 remove ni from HA if ni.frequency is 0 ;
7 end
8 end
9 while s is not empty do

10 var n: Node;
11 s.pop(n);
12 if n is a non-leaf node then
13 for all child nodes c of n do
14 if bitmatch(tq , ni) then
15 s.push(ni);
16 ni.frequency← ni.frequency-1 ;
17 remove ni from HA if ni.frequency is 0 ;
18 end
19 end
20 end
21 else
22 break;
23 end
24 end

tuple into a temporary buffer. When the buffer reaches a predefined
maximum size, a process similar to H-Build is invoked to append
these newly inserted tuples into the existing HA-Index. We omit
these details here for brevity as they are similar to Algorithms H-
Delete and H-Build.

4.6 HA-Index Query Processing
With the dataset organized in an HA-Index, H-Search traverses

the index to visit the relevant index nodes in a breadth-first order
with a queue to keep track of the unexplored qualifying paths that
match the query’s binary code. Algorithm 3 gives the pseudocode
for H-Search. Initially, H-Search fetches the index nodes/data
points from the top level of the HA-Index (Lines 2-6). If the Ham-
ming distance between the query tuple and the pattern of the cor-
responding node is smaller than the threshold ĥ, then the node is
inserted into the queue. For the non-top level nodes, in each round,
the binary code of a node is examined against the query binary code
by invoking a Hamming-distance computation. If its correspond-
ing Hamming distance is smaller than the threshold (Line 12), the
node is further explored (Lines 13-17). When a leaf node of the
HA-Index is reached, the qualified data tuples are collected and are
inserted into ret (Line 23-25). The algorithm terminates when all
the entries from the qualifying nodes are examined.

To illustrate the H-Search Algorithm, consider the tuples in Ta-
ble 2a. Figure 3 gives the corresponding HA-Index. The execution
trace is given in Table 3. Suppose that the query binary code is
tq = “010001011” and the Hamming-distance threshold is 3. Ini-
tially, the Hamming distance between tq and the top-level entries,
i.e., ||N11, tq||h = 1 and ||N12, tq||h = 3, where both are no big-
ger than 3. Thus, Nodes N11 and N12 are pushed into the queue,
and ret is still empty. Next, the children nodes of N11, i.e., Nodes
N7 and N8 are visited. The Hamming distances ||N7, tq||h = 1
and ||N8, tq||h = 4 are computed. As a result, the correspond-
ing qualifying binary codes for Nodes N11 and N7 are combined,
which results in the pattern “0010 · 1 · · · ”. Thus, [N7, N11] is
put into the queue. But Node N8 is discarded from the qualifying
candidates because the path N11 → N8 has a combined Hamming

Algorithm 3: H-Search

Input: tq : Query tuple, ĥ: Hamming distance query threshold, HA:
HA-Index for queried dataset

Output: ret: Qualified tuple in HA within Hamming distance ĥ from
tuple tq

1 q: Queue.
2 for each top level node ni in HA do
3 if hdist(tq , ni) ≤ ĥ then
4 ni.h← hdis(tq , c);
5 q.enqueue(ni);
6 end
7 end
8 while q is not empty do
9 var n:Node;

10 q.dequeue(n);
11 if n is a non-leaf node then
12 for all children node c of n do
13 if (hdis(tq , c)+n.h)≤ ĥ then
14 var m:Node;
15 m.b← combine(c.b, n.b); //combine binary code of

c and n
16 m.h← hdis(tq , c)+n.h; //update Hamming distance
17 m.children← c.children ;
18 q.enqueue(m);
19 end
20 end
21 end
22 else
23 var binary← getBinary(n);
24 var tuple← gettuple(binary);
25 ret.insert(tuple);
26 end
27 end
28 output ret;

distance ||N11, tq||h + ||N8, tq||h > 3. Then, N12 is explored
and its children nodes(e.g.,N9 and N10) are visited. According
to the Hamming-distance closure properties, [N9, N12] is inserted
into the queue as well, while N10 is discarded. The H-Search pro-
cess continues until the queue is empty as shown in Table 3. Finally,
Tuple t0 is reported as one output tuple qualifying the query. No-
tice that each node maintains a visited flag to indicate whether the
node has already been visited or not. This helps avoid redundant
Hamming-distance computations. For example, Nodes N1 and N2

are already visited. Therefore, we do not need to compute the Ham-
ming distance for both nodes again, and hence avoid unnecessary
distance computation overhead. In addition, Algorithm H-Search
for the dynamic HA-Index can be applied to the static HA-Index,
and thus is not repeated in the paper.

Table 3: Sample execution trace for H-Search that corresponds to
searching the dataset in Table 2a given the query binary code tq =
“010001011”

Queue Qualified tuples ret
N11, N12 ∅
N12, [N7, N11] ∅
[N7, N11], [N9, N12] ∅
[N9, N12] t0
∅ t0

4.7 Analysis
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EXAMPLE 4. Assume that we have eight tuples t0 =
“000”, t1 = “001”, t2 = “010”, · · · , and t7 = “111”, where
all binary codes are distinct. At most 3 bits are needed to represent
all the tuples, i.e., the length L of the hash values is 3. According
to the H-Build process with Window Size of 2, the output HA-Index
is illustrated in Figure 4.

000 110... 111...001

0.. 1..

.0. .1.

..0 ..1

Figure 4: Full binary codes and the corresponding HA-Index

Observe that the number of internal nodes of this HA-index
is 6, and the number of edges is 8. Based on the breadth-first-
search strategy of the H-Search algorithm, the worst search cost
is bounded by the number of internal nodes and the number of
edges, denoted by |V | and |E|, respectively. Refer to Figure 4
for illustration. The search cost is at worst 14. Suppose that
the number of distinct binary codes is nd, and nd = 2L. An
HA-Index for this example is illustrated in Figure 4. The reason
is that the FLSSeq for the binary codes in the same window is
maximized with Length L − 1, and this FLSSeq also shares the
maximum similar patterns with its neighboring FLSSeq. There-
fore, for the dataset with nd = 2L data points and the built HA-
Index as in Figure 4, the number of internal nodes |V | = 2L
or |V | = 2 log2 nd, and number of edges |E| = 4(L − 1) or
|E| = 4(log2 nd − 1). This can be proven via induction (De-
tails are omitted for brevity). Thus, the worst case for H-Search on
this HA-Index is |V | + |E| = 2 log2 nd + 4(log2 nd − 1), i.e., is
O(log2 nd). This indicates that H-Search can achieve the best per-
formance under this scenario. We will discuss more general cases
later.

Window size We discuss the relationship between window size,
say as w, and binary string length L. Inspired by the previous ex-
treme example, it is desirable that the n tuples can span the space of
binary strings of L bits. L can be chosen such that L = dlog2 ne,
i.e., 2L−1 < n ≤ 2L. Thus, if n is closer to 2L, then the cor-
responding HA-Index is closer to the extreme case in our motivat-
ing example above. On the other hand, the smallest value for n is
2L−1 + 1, and this is the worst case, i.e., the sparsest distribution
of tuples on the space of binary strings of Length L. For the sim-
plicity of discussion, we assume that the hashed binary strings are
uniformly distributed.

Under the above assumption, the maximum Hamming distance
Lm for a window of size of w satisfies dlog2 we ≤ Lm ≤ L. If
Lm = L, then the binary strings in the same window cannot be
merged together since no shared bit position exists. Therefore, a
careful choice should be made on the window size w. The extreme
case when w = n is apparently a bad choice since no sharing pat-
tern can be extracted from the window. A similar argument applies
for w = 1. For smaller values of w, many internal nodes are gen-
erated and this results in indexes with larger heights. A suggested
value for the window size w is w = 2dL/2e when n ≈ 2L. Sup-
pose that w = 2dL/2e, then the maximum Hamming distance Lm

in each window satisfies dL/2e ≤ Lm ≤ L.
Number of nodes in an HA-Index If n ≈ 2L, suppose that

there are only few windows with Lm = L and we denote the num-
ber of these binary codes within that window as δ1. Since the leaves
share about half of the bits in their binary codes, this results in

a number of 2dL/2e + δ1 of internals nodes 1-level higher above
the leaves, where δ1 � 2dL/2e. With the HA-index progressively
growing, a higher level with 2dL/4e+δ2 internal nodes can be built
where δ2 � δ1. In the same way, the HA-index grows to the high-
est level with 2dL/2he + δh uppermost internal nodes, where h is
the height of the index. Thus, the total number of nodes |V | in the
HA-index can be estimated by:

|V | = 2dL/2e + 2dL/4e + · · ·+ 2dL/2he +

h∑
i=1

δi

= 2dlog2 n1/2e + 2dlog2 n1/4e + · · ·+
h∑

i=1

δi

< 2× 2dlog2 n1/2e +

h∑
i=1

δi

< 2× 2dlog2 n1/2e

= O(
√
n).

We can safely ignore the delta part since the summation is negligi-
ble compared to the dominant term.

If n ≈ 2L−1, then the window size w needs to shrink to a proper
length. Based on the assumption of uniform distribution of the bi-
nary strings and Gray ordering, a proper window size can be set to
w = 2dL/4e. The maximum Hamming distance Lm within a win-
dow satisfies dL/4e ≤ Lm ≤ L. A similar analysis suggests that
the number of internal nodes |V ′| satisfies:

|V ′| = 2dL/4e + 2dL/42e + · · ·+ 2dL/4he +

h∑
i=1

δ′i

= 2dlog2 n1/4e + 2dlog2 n1/42e + · · ·+ 2dlog2 n1/4he +

h∑
i=1

δ′i

= O( 4
√
n).

Number of Edges in an HA-Index For the number of edges in
an HA-index, there are two extreme cases. Suppose that n ≈ 2L

and we have already discussed that the two levels above the leaves
contain 2dL/2e and 2dL/4e internal nodes, respectively. The worst
case is that each of the 2dL/2e nodes connects to each of the 2dL/4e

nodes. This induces about 23L/4 edges. Similarly, the edge number
can be estimated,

|E| = 23L/4 +23L/8 + · · ·+23L/2h+1

< 2× 23L/4 = O(
4
√
n3).

On the other hand, the best estimate is that there are no cross edges
between the children and different parents. For this case, a lower
bound of the number of edges is O(

√
n), which is similar to the

number of vertices.
Query Cost and Storage Space of the HA-Index The cost

of H-Search is bounded by the number of nodes and edges, i.e.,
|V | + |E|. Therefore, the worst cost for H-Search is traversing
all the edges and nodes in the HA-index. This indicates that H-
Search can be bounded in the range [O(

√
n), O(

4
√
n3)]. Mean-

while, besides the storage of the leaf nodes, the space usage of the
HA-index also depends on the sum of the number of nodes and
edges, i.e., [O(

√
n), O(

4
√
n3)]. Compared to the state-of-the-art

approaches [4, 8], the HA-Index does not need to maintain several
copies of the dataset. Thus, it can be kept in memory for fast query
processing. Furthermore, the internal nodes of the HA-Index store
enough binary information for the whole dataset, and hence intro-
duce low overhead to broadcast an HA-Index to each server.
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Figure 5: An overview of Hamming-join processing in MapRe-
duce.

5. PARALLEL ALGORITHM FOR
HAMMING-JOIN

To process Hamming-join on two datasets, say R and S, one
straightforward approach is to build an HA-Index for R, then ex-
ecute H-Search on the built index for each tuple of S. However,
to build an HA-Index for R, sorting R would be slower as R gets
larger. Secondly, executing H-Search between each tuple of S and
the HA-Index for R would make the query time bounded by the
number tuples in S. In this section, we address these limitations
of the centralized environment and introduce Hamming-join on the
MapReduce platform [21].

To support Hamming-join over MapReduce, we focus on two
important issues. First, load balancing is important because the
slowest mapper or reducer determines the job running time. Sec-
ondly, data shuffle from the mappers to reducers usually results in
large disk I/O and network communication costs that heavily influ-
ences the run-time performance. Therefore, we not only need to
reduce the data shuffle cost, but also make sure data partitions in
each mapper or reducer are well balanced.

5.1 Overview of MapReduce-based
Hamming-join

In this section, we introduce our implementation of the
Hamming-join operation in MapReduce. As Figure 5 illustrates,
the proposed algorithm includes three phases as explained below.

• Preprocessing phase Retrieve a sample from DatasetsR and
S. Then, use the sampled data to learn the hash function H .
To handle data skew, build a data histogram for the sampled
data and learn the data partitioning rule for the entire MapRe-
duce job.

• Global HA-Index building phase Assume that the size of
R is smaller than that of S. Partition R based on the pivot
values from the data preprocessing step, then build the HA-
Index for each partition using MapReduce by calling the H-
Build function. Then, merge each local HA-Index to realize
a global HA-Index for R.

• Hamming-join phase To join HA-Index of R with tuples in
S, two possible options are applicable based on the size of
R. More details are given later.

To learn the hash function, we utilize a random sample obtained
from both R and S using reservoir sampling [22]. With the learned

hash function H , high-dimensional data tuples in R and S are
mapped into their corresponding binary codes. As discussed in the
previous section, hash binary codes are ordered using the Gray or-
der to preserve the clustering property. Hence, the data in each
partition is more likely to share common FLSSeq patterns. Then,
we build the data histogram for the binary codes of the sampled
data, and get a set of pivot values, denoted by Pv, for each Partition
Ptm. This guarantees that each partition receives approximately
the same amount of data, where data in the various partitions is or-
dered according to the Gray order. More formally, given a set of
data partitions Pt, and a set Pv of corresponding binary code val-
ues that form the partitioning pivots, Tuple ti ∈ Ptm, if the Gray
order for ti’s binary code, say Ûi, belongs to the pivot range, i.e.,
Ûi ∈ [Pvm,Pvm+1), where Pvm and Pvm+1 are the pivot values
for Partition Ptm.

Thus, let |Ptm| be the number of tuples belonging to Partition

Ptm, Pivot set Pv partition dataset R, s.t R =
N⋃

m=1

Ptm, and

|Ptm| ' |Ptm+1|. Therefore, we can build the HA-Index and
Hamming-join in each server as illustrated below.

5.2 Global HA-Index Building
Given the set of pivot values Pv selected in the preprocessing

step, a MapReduce job partitions the data and builds an HA-Index
locally in each partition. Specifically, before launching the map
function, the selected pivots Pv and the learned hash function H
are loaded into memory in each mapper via distributed cache in
MapReduce. A mapper sequentially reads each input data tuple,
say ti, from the mapper’s corresponding partition. The hash func-
tion maps the high-dimensional input data tuples into their corre-
sponding binary codes, i.e., U . Then, a binary search is performed
for the closest pivots in Pv. For the closest partition region, Par-
tition ID is assigned. Finally, the mapper(s) produce(s) as output
each object ti along with its Partition ID, original dataset tuple
identifier (R or S), and its binary code value U .

In the data shuffling phase, the key-value pairs emitted by all
map functions are grouped by each distinct Partition ID, and a re-
duce function is called within each node. Each reduce function
computes the local HA-Index via the H-Build function of Section
4, and produces the local HA-Index as output. In addition, a post-
processing step to merge the various local HA-Indexes into one
global HA-Index. Mainly, non-leaf nodes with the same FLSSeq
from the different local HA-Indexes are merged into one node, and
the corresponding edges between the index nodes are relinked. Be-
cause the HA-Index is relatively small, the processing overhead is
acceptable. After the first MapReduce job finishes, the global HA-
Index for dataset R is built. This index is used by H-Search in the
next phase.

5.3 Hamming-join
The second MapReduce job performs the Hamming-join in two

possible ways.
Option(A): When Dataset R is small, i.e., storage of the leaf

nodes of the HA-Index does not dominate the space of the HA-
Index, the HA-Index maintains the leaf nodes as in Figure 3.
Next, the Map function partitions Dataset S into N parts, i.e.,

S =
N⋃
i=1

Si. Then, it duplicates the global HA-Index for Dataset

R and broadcasts to each server. The Map function computes the
Hamming-join for Partition Si and the replicated HA-Index of R.
Specifically, before launching the MapReduce Job, the master node
broadcasts the pivots Pv, the hash function H , and the global HA-
Index of R to various servers. The main task of the mapper in the
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second MapReduce Job is to map high-dimensional data into bi-
nary codes, then partition dataset S into N partitions. Next, each
reducer performs the Hamming-join between a pair of HA-Index
and Ŝi, and output the Hamming-join results.

Option(B): If Dataset R is big, e.g.,the number of tuples |R|
is more than millions, the storage of leaf nodes of the HA-Index
dominates the space usage of the HA-Index. Therefore, the HA-
Index of Dataset R does not maintain leaf nodes, and is duplicated
to each server. By this way, the H-Search Algorithm 3 only re-
turns the qualifying binary codes for Hamming-select, and a post-
precessing step is carried out to find the tuple IDs for the qualify-
ing binary codes. Take query tuple t6 in Table 2a as an example.
The H-Search algorithm computes binary codes from Table 2b, i.e.,
“101100010" and “101010010", which have a Hamming distance
of 3 from t6. In order to find the tuple IDs for those qualifying bi-
naries, one post-processing step is invoked. Naturally, if Dataset R
fits into memory, then the qualifying binaries are joined with R’s
hash table in memory. On the other hand, if Dataset R is too large
to fit in memory, MapReduce hash-join [23] for Dataset R and the
qualifying binaries is applied.

5.4 Shuffle Cost Analysis
The performance of MapReduce Hamming-join depends on the

running time of Hamming-select as well as on the data shuffling
cost. Let |R| = m and |S| = n, respectively, d be the data dimen-
sion, and N be the number of partitions. In the previous work [4],
Dataset R is duplicated and broadcast to each server, and the data
shuffling cost is approximate to O(mNd + nd). In this work,
instead of duplicating the whole dataset R, only the HA-Index,
is broadcast to each server. Hence, the data shuffling cost is re-
duced toO(|HA|N +n), where |HA| is the size of the HA-index.
As introduced in Section 4, the space storage of HA is bound to
[O(
√
m), O(

4
√
m3)]. Therefore, the shuffling cost is bounded in

[O(
√
mN + n), O(

m
√
n3N + n)].

6. PERFORMANCE EVALUATION
We implement all the algorithms in Java. The experiments for

Hamming-select are performed on an Intel(R) Xeon (R) E5320
1.86 GHz 4-core processor with 8G memory running Linux. The
experiments on MapReduce are performed on a cluster of 16 nodes
of Intel(R) Xeon (R) E5320 1.86 GHz 4-core machines with 8GB
of main memory running Linux. We use Hadoop 0.22 and apply
the default cluster environment setting. We evaluate the perfor-
mance of the proposed techniques using the following three high-
dimensional real datasets: (1) NUS-WIDE2 is a web image dataset
containing 269,648 images. We use 225-D block-wise color mo-
ments as the image features, thus obtaining a 225-dimension data.
(2) Flickr3 is a an image hosting website. We crawled 1 million im-
ages and extracted 512 features via the GIST Descriptor [24] (the
data dimension is 512). (3) DBPedia4 data aims to extract struc-
tured content from Wikipedia. We extract 1 million documents,
and then apply standard NLP techniques to pre-process the doc-
uments, e.g., to remove stop words. We use the Latent Dirichlet
Allocation (LDA) [25] model to extract topics, and we keep 250
topics for each document.

To evaluate the performance on larger data sizes, we syntheti-
cally generate more data while maintaining the same distribution
as the original data distribution, e.g., as in [9, 10]. Suppose that the
original dataset D has k dimensions. First, we get the frequencies
2http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
3htttp://www.flickr.com
4http://wiki.dbpedia.org/About

of values in each dimension, and then sort the data in ascending
order of their frequencies. Therefore, k copies of the dataset D are
generated, one copy per dimension, e.g.,Dj one copy of the dataset
that is sorted based on the j-th dimension. Then, for each tuple, say
t, in Dataset D, t ∈ D, we create a new tuple, say t̂, according to
the position of each component of t in the corresponding sorted
copy Dj . For example, t = (t1, . . . , tj , . . . , td) and t′j is the first
value larger than tj in copy Dj , then t̂ = (t′1, . . . , t

′
j , . . . , t

′
d). If

tj is the largest element in Copy Dj , then t̂j = tj . We use“×s" to
denote the increase in dataset size, where s ∈ [5, 25] is the increase
or scale factor. We consider the following approaches to evaluate
Hamming-select:

(1) Nested-Loops is the naive approach to linearly XOR and
count the binary data to perform the Hamming-distance compu-
tation. (2) MultiHashTable [4] is the state-of-the-art to search bi-
nary codes for similarity hashing that uses multiple-hash tables to
reduce the linear search cost. While a large number of hash tables
can achieve better performance, we limit ourselves to just 4 and
10 hash tables to avoid memory overflow. For short, we refer to
these two possibilities, as MH-4 and MH-10. (3) HEngines [8] is
the most recent work to improve the MultiHashTable approach in
query time and memory usage. (4) Radix-Tree is the approach in-
troduced in Section 4.2. (5) Static HA-Index (SHA-Index) and
Dynamic HA-Index (DHA-Index) are the approaches introduced
in Sections 4.3 and 4.4, respectively. SHA-Index(32) or DHA-
Index(32) means that the length of the binary code is 32 bits.

We further evaluate the following approaches for kNN-select,
and show how the approximate kNN-select can benefit from the en-
hancement of HA-Index searching over binary codes: (1) Locality-
Sensitive Hashing(E2LSH) [18] is the state-of-the-art implemen-
tation for the data-independent LSH. We use 20 hash tables for
E2LSH. (2) LSB-TREE [26] uses the Z-order curve to map high-
dimensional data into one-dimensional Z-values, and index the Z-
values using a B-tree. In our experiments, we build the LSB-Tree
with 25 trees to compare the performance.

Also, we evaluate the following approaches to test the Self-
Hamming-join, and verify how our approach of Map-Reduce
Hamming-join can speedup the state-of-art algorithm for exact
Self-kNN-join: (1) Parallel-exact-KNN-join (short as PGBJ) [10]
is the state-of-the-art approach for performing exact kNN-join over
multi-dimensional data in MapReduce, and it is 10 times speedup
over the Z-order curve based approach [11]. We get the imple-
mentation generously provided by the authors [10]. (2) Parallel
Hamming-join via MultiHashTable (PMH, for short) that han-
dles approximate batch queries for web page duplicate identifica-
tion [4]. PMH-10 means that 10 hash tables are used. (3) Parallel
Hamming-join via Dynamic HA-Index (MRHA-Index, for short)
is the approach introduced in Section 5. Specifically, in terms of
the Hamming-join phase, if Option A is used, we term it MRHA-
Index-A, and if Option B is used, we term it MRHA-Index-B.

The performance measures for each algorithm include the query
time, the index update time, the index building time, memory us-
age, and the data shuffling cost. All performance measures are av-
eraged over eight runs. Some running times are not plotted because
they would use more than five hours. Unless mentioned, the default
value of k is 50, and the Hamming-distance threshold ĥ is 3. We
choose the state-of-the-art Spectral Hashing [2] as the hash func-
tion in our experiments, but our approach is not limited to this hash
function.

6.1 Results for Hamming-select

6.1.1 Effectiveness of the HA-Index
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Figure 6: Effect of the Hamming-distance threshold on Hamming select.
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Figure 7: Shuffling cost of Hamming-join and kNN-join.

Table 4 summarizes the query time, index update time, and mem-
ory space usage by the various approaches. Specifically, index up-
date corresponds to the operation to delete one tuple first, then in-
sert the same tuple back into the index. From Table 4, we have the
following observations: 1) The Radix-Tree and HA-index-based
approaches outperform the naive nested-loop and state-of-the-art
methods [4, 8] on query time for the three datasets, mainly because
the new proposed approach avoids many redundant Hamming-
distance computations, and avoids scanning all the underlying data
when they are hashed into the same bucket; 2) The HA-Index-based
approach, i.e., the Static and Dynamic HA-Indexes, outperforms
the Radix-Tree approach. The speedup is around 10 times be-
cause the Radix-Tree behaves as a prefix tree when many of the
binary codes do not share long common prefixes, and hence can-
not avoid the redundant Hamming distance computations; 3) The
Static HA-Index shows better index-update time than that of the
Dynamic HA-Index because the static segmentation enables us to
track different binary segmentations directly, thus, we can search
the paths of binary codes more efficiently; 4) The Radix-Tree and
the HA-Index-based approaches save more memory than the state-
of-the-art methods [4, 8] because the HA-Index-based approaches
do not need to duplicate tuples and can share common FLSSs
and FLSSeqs for different binary codes. This can reduce memory
usage further; 5) For the Dynamic-HA-Index, if only the internal
nodes of the HA-Index are kept, the memory usage can be reduced
further. For instance, the memory usage for the Flickr and DBpedia
datasets is reduced from 251MB and 225MB to 63MB and 47MB,
respectively.

6.1.2 Effect of Hamming-Distance Threshold
We evaluate whether the running time of proposed approach is

sensitive to the query threshold ĥ. Figure 6 gives the data query
time when varying the Hamming-distance threshold. Notice that
the query time of both the HA-Index-based approaches increases
relatively slowly as the threshold increases. The reason is that the
searching process in the HA-Index usually terminates early in the

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
50

60

70

80

90

100

110

120

Window length

R
u
n
n
in

g
 t

im
e(

m
s)

 

 

depth=7

depth=6

depth=5

depth=4

(a) Building Time

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Window length

R
u

n
n

in
g

 t
im

e(
m

s)

 

 

depth=7

depth=6

depth=5

depth=4

(b) Query Processing Time.

Figure 8: DHA-Index building time and query processing when
varying the window size.

upper-level nodes, and this can improve the query speed. On the
other hand, the searching path length of the Radix-Tree is not under
control, and it tends to reach each leaf node when the Radix-Tree
shares very little and changes to a prefix-tree-like format. How-
ever, state-of-the-art methods [4, 8] are sensitive to the Hamming-
distance threshold because both approaches have to scan interme-
diate data to filter out non-qualifying tuples. Hence, the bigger ĥ is,
the more intermediate results that need to be scanned. This directly
degrades the performance.

6.1.3 Effect of HA-Index Parameters
We study the effects of the window length and the index depth

of the dynamic HA-Index w.r.t. the index building and query pro-
cessing times. The window length is normalized by the number of
tuples in the dataset. Figure 8a illustrates that the building time for
the HA-index drops as the depth decreases. The reason is that in-
dex construction stops early while the depth is small. Meanwhile,
the HA-Index building time grows as the window size increases be-
cause the time to extract the same subpatterns for binaries of one
window depends on the number of tuples inside the window. Mean-
while, the query processing time demonstrates stable growth as the
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Table 4: Overall comparative study for Hamming-select: The dynamic-HA-Index is the most efficient in terms of query time and space
usage, the binary code length is 32 bits. Notice for DHA-Index, 28/11 means 28MB and 11MB space usage for internal and leaf nodes were
kept or only internal nodes, respectively.

(a) NUS-WIDE

method query
time(ms)

update
time(ms)

space
usage

Nested-Loops 16.42 15.22 /
MH-4 6.22 0.21 475
MH-10 4.91 0.25 531
HEngines 3.53 0.45 210
Radix Tree 1.61 0.19 39
SHA-Index 0.87 0.16 29
DHA-Index 0.68 0.18 28/11

(b) Flickr

query
time(ms)

update
time(ms)

space
usage

42.97 41.19 /
16.09 0.60 712
14.03 0.83 1204
14.75 1.14 820
3.98 0.64 365
1.75 0.52 254
0.74 0.58 251/63

(c) DBPedia

query
time(ms)

update
time(ms)

space
usage

59.16 53.53 /
40.28 0.45 819
34.46 0.64 1364
36.91 1.91 763
17.64 0.44 352
3.54 0.43 239
1.07 0.51 225/47

window size and index depth increase. Observe that the window
size increases four times and the query processing time only grows
by less than 10%. Thus, the HA-Index is not sensitive to these
parameters.

6.1.4 Comparison of Approaches for kNN-Select
As introduced in Section 2, Hamming-select is a core operation

for evaluating approximate kNN-select. In this section, we demon-
strate the performance gains when using the HA-Index to speedup
approximate kNN-select. Table 5 illustrates the runtime for data
querying and index construction for LSH, LSB-Tree, and the HA-
Index-based approaches. Observe that the HA-Index-based ap-
proach outperforms the state-of-the-art methods on all tasks when
the binary code length is relatively large (i.e., 32 or 64 bits).
Compared to the LSH approach, both HA-index-based approaches
achieve two orders of magnitude speedup. The reason is that the
LSH approach assumes uniformity in the distribution of the under-
lying data while real datasets are not uniform. In addition, the LSB-
Tree can improve the query time compared to the LSH approach.
However, the time to build the LSB-Tree index is expensive (more
than 24 hours). In addition, the query and index building times
for the HA-Index-based approach increases relatively smoothly as
the binary code length increases. This demonstrates that the HA-
Index approach is robust with the binary code length. Finally, the
LSB-Tree consumes extensive disk space to store the index, LSB-
Tree uses more than 20GB to store the index for the Flickr data,
while the HA-Index-based approach only takes less than 300MB.
This significantly reduces disk I/O time for the HA-Index-based
approach.

6.2 Results of Hamming-join in MapReduce.

6.2.1 Shuffling Cost
We measure the effect of data size on the shuffling cost for PGBJ,

PMH and the MRHA-Index. Figure 7 gives the data shuffle costs
when the data size varies. The shuffle cost is plotted in logarith-
mic scale. The smaller the shuffle costs, the better the performance
is. We observe that the shuffle costs for approximate kNN-join ap-
proach, i.e., PMH and MRHA-INDEX, are 10 times smaller when
compared to the PGBJ approach. The reason is that the hashing
technique maps the high-dimensional data into binary codes, and
hence the data shuffling cost does not depend on the dimensions
of the data. Notice that the data shuffling cost for PGBJ increases
linearly with the data size. This is two orders of magnitude worse
when compared to the data shuffling cost for the MRHA-INDEX
approach. Duplicating and distributing the HA-Index into different
nodes can improve the data shuffle cost 10 times less than that of

Table 5: Comparison with the state-of-the-art kNN-select ap-
proaches, when the dataset size is set to 300k tuples.

Dataset Algorithm Query
time(ms)

Index
build time

NUS-WIDE

LSH 2400 680(s)
LSB-Tree(25) 47 37(Hr)
SHA-Index(32) 2.74 68(s)
SHA-Index(64) 4.78 97(s)
DHA-Index(32) 1.64 87(s)
DHA-Index(64) 2.43 103(s)

Flickr

LSH 340 1080(s)
LSB-Tree(25) 63 50(Hr)
SHA-Index(32) 2.21 176(s)
SHA-Index(64) 3.54 189(s)
DHA-Index(32) 2.17 210(s)
DHA-Index(64) 2.88 244(s)

DBpedia

LSH 266 340(s)
LSB-Tree(25) 59 44(Hr)
SHA-Index(32) 2.94 150(s)
SHA-Index(64) 4.88 290(s)
DHA-Index(32) 2.18 230(s)
DHA-Index(64) 3.85 310(s)

the PMH approach. On the other hand, the larger shuffle cost would
stop the PGBJ approach from achieving a linear speedup and its
corresponding execution time shows quadratic increase. The corre-
sponding running times are given below. Finally, for the Hamming-
join step in the HA-Index-based approach, Option B saves more
data shuffling cost than Option A because the former does not need
to duplicate the whole dataset into each server, and hence the space
usage of the HA-Index remains relatively small.

6.2.2 Scalability and Speedup
We investigate the scalability of the three approaches in Figure 9.

The figure presents the results by varying the data size from 1 to 25
times of the original dataset sizes. From the figure, the overall ex-
ecution time of PGBJ shows quadratic increase when the data size
increases. For example, PGBJ’s running time is almost 13 hours
when the data is DBPedia×15, which is excessively slow. The ap-
proximate kNN-join via similarity hashing always outperforms the
PGBJ approach. Comparing with the state-of-the-art PMH-10 ap-
proach, the running time of the HA-Index outperforms PMH-10 by
5 times.

6.2.3 Effect of Data Sampling

371



5 10 15 20 25
0

1

2

3

4

5

6

Data Size(times the original)

R
u
n
n
in

g
 t

im
e(

x
 1

0
3
 s

)

 

 

PGBJ

PMH−10

MRHA−INDEX−A

MRHA−INDEX−B

(a) NUS-WIDE

5 10 15 20 25
0

2

4

6

8

10

12

14

Data Size(million)

R
u

n
n

in
g

 t
im

e(
x

 1
0

3
 s

)

 

 

PGBJ

PMH−10

MRHA−INDEX−A

MRHA−INDEX−B

(b) Flickr

5 10 15 20 25
0

5

10

15

20

Data Size(million)

R
u
n
n
in

g
 t

im
e(

x
 1

0
3
 s

)

 

 

PGBJ

PMH−10

MRHA−INDEX−A

MRHA−INDEX−B

(c) DBPedia

Figure 9: Speedup and scalability: Running time of Mapreduce Hamming-join and kNN-join.
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Figure 10: Effect of sampling on query processing time, and preci-
sion/recall when varying the sampling data size.

Figure 10a gives the query execution time for the various pro-
cessing phases of Hamming-join. From the Figure, more sam-
pling of the data reflects the global data distribution more clearly,
and this helps the sampling data pivot to partition different regions
more evenly, and hence, improves the parallel HA-Index building
and Hamming-join query time. The hash function learning usually
takes more time, but for real-world applications, we only need to
learn the hash function again when a certain amount of the new data
is updated, which can save the time. Figure 10b illustrates how data
sampling affects the query quality. Observe that the precision and
recall can moderately improve as the sampling data size increases.
However, the recall value is low.

7. CONCLUDING REMARKS
In this paper, we study the problem of efficiently performing

the Hamming-select and Hamming-join operations. The proposed
HA-Index approach executes the Hamming-distance-based similar-
ity operations while avoiding unnecessary Hamming-distance com-
putations. Extensive experiments using real datasets demonstrate
that the proposed approaches outperforms the state-of-the-art tech-
niques by two orders of magnitude. In future, it would be interest
to explore hamming-distance similarity operation for relational op-
eration i.e.,intersection [27].
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ABSTRACT
HDFS has become an important data repository in the enterprise
as the center for all business analytics, from SQL queries, machine
learning to reporting. At the same time, enterprise data warehouses
(EDWs) continue to support critical business analytics. This has
created the need for a new generation of special federation between
Hadoop-like big data platforms and EDWs, which we call the hy-
brid warehouse. There are many applications that require correlat-
ing data stored in HDFS with EDW data, such as the analysis that
associates click logs stored in HDFS with the sales data stored in
the database. All existing solutions reach out to HDFS and read the
data into the EDW to perform the joins, assuming that the Hadoop
side does not have the efficient SQL support.

In this paper, we show that it is actually better to do most data
processing on the HDFS side, provided that we can leverage a so-
phisticated execution engine for joins on the Hadoop side. We
identify the best hybrid warehouse architecture by studying various
algorithms to join database and HDFS tables. We utilize Bloom
filters to minimize the data movement, and exploit the massive par-
allelism in both systems to the fullest extent possible. We describe
a new zigzag join algorithm, and show that it is a robust join al-
gorithm for hybrid warehouses which performs well in almost all
cases.

1. INTRODUCTION
Through customer engagements, we observe that HDFS has be-

come the core storage system for all enterprise data, including en-
terprise application data, social media data, log data, click stream
data, and other Internet data. Enterprises are using various big
data technologies to process this data and drive actionable insights.
HDFS serves as the storage where other distributed processing frame-
works, such as MapReduce [11] and Spark [43], access and operate
on the large volumes of data.

At the same time, enterprise data warehouses (EDWs) continue
to support critical business analytics. EDWs are usually shared-
nothing parallel databases that support complex SQL processing,
updates, and transactions. As a result, they manage up-to-date data

⇤Work described in this paper was done while the author was work-
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†Work described in this paper was done while the author was work-
ing at IBM
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27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0
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and support various business analytics tools, such as reporting and
dashboards.

Many new applications have emerged, requiring the access and
correlation of data stored in HDFS and EDWs. For example, a
company running an ad-campaign may want to evaluate the effec-
tiveness of its campaign by correlating click stream data stored in
HDFS with actual sales data stored in the database. These appli-
cations together with the co-existence of HDFS and EDWs have
created the need for a new generation of special federation between
Hadoop-like big data platforms and EDWs, which we call the hy-
brid warehouse.

Many existing solutions [37, 38] to integrate HDFS and database
data use utilities to replicate the database data onto HDFS. How-
ever, it is not always desirable to empty the warehouse and use
HDFS instead, due to the many existing applications that are al-
ready tightly coupled to the warehouse. Moreover, HDFS still does
not have a good solution to update data in place, whereas ware-
houses always have up-to-date data. Other alternative solutions ei-
ther statically pre-load the HDFS data [41, 17, 18], or fetch the
HDFS data at query time into EDWs to perform joins [14, 13, 28].
They all have the implicit assumption that SQL-on-Hadoop sys-
tems do not perform joins efficiently. Although this was true for
the early SQL-on-Hadoop solutions, such as Hive [39], it is not
clear whether the same still holds for the current generation so-
lutions such as IBM Big SQL [19], Impala [20], and Presto [33].
There was a significant shift last year in the SQL-on-Hadoop so-
lution space, where these new systems moved away from MapRe-
duce to shared-nothing parallel database architectures. They run
SQL queries using their own long-running daemons executing on
every HDFS DataNode. Instead of materializing intermediate re-
sults, these systems pipeline them between computation stages. In
fact, the benefit of applying parallel database techniques, such as
pipelining and hash-based aggregation, have also been previously
demonstrated by some alternative big data platforms to MapRe-
duce, like Stratosphere [5], Asterix [6], and SCOPE [10]. More-
over, HDFS tables are usually much bigger than database tables,
so it is not always feasible to ingest HDFS data and perform joins
in the database. Another important observation is that enterprises
are investing more on big data systems like Hadoop, and less on
expensive EDW systems. As a result, there is more capacity on
the Hadoop side. Remotely reading HDFS data into the database
introduces significant overhead and burden on the EDWs because
they are fully utilized by existing applications, and hence carefully
monitored and managed.

Split query processing between the database and HDFS has been
addressed by PolyBase [13] to utilize vast Hadoop resources. HDFS
clusters usually run on cheaper commodity hardware and have much
larger capacity than databases. However, PolyBase only considers
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pushing down limited functionality, such as selections and projec-
tions, and considers pushing down joins only when both tables are
stored in HDFS.

Federation [21, 2, 34, 40, 30] is a solution to integrate data stored
in autonomous databases, while exploiting the query processing
power of all systems involved. However, existing federation so-
lutions use a client-server model to access the remote databases
and move the data. In particular, they use JDBC/ODBC interfaces
for pushing down a maximal sub-query and retrieving its results.
Such a solution ingests the result data serially through the sin-
gle JDBC/ODBC connection, and hence is only feasible for small
amounts of data. In the hybrid warehouse case, a new solution that
connects at a lower layer is needed to exploit the massive paral-
lelism on both the HDFS side and the EDW side.

In this paper, we identify an architecture for hybrid warehouses
by 1-) building a system that provides parallel data movement by
exploiting the massive parallelism of both HDFS and EDWs to the
fullest extent possible, and 2-) studying the problem of efficiently
executing joins between HDFS and EDW data. We start by adapt-
ing well-known distributed join algorithms, and propose extensions
that work well between a parallel database and an HDFS cluster.
Note that these joins work across two heterogeneous systems and
hence have asymmetric properties that needs to be taken into ac-
count.

HDFS is optimized by large bulk I/O, and as a result record level
indexing does not provide significant performance benefits. Other
means, like column-store techniques [1, 31, 29], need to be ex-
ploited to speed up data ingestion.

Parallel databases use various techniques to optimize joins and
minimize data movement. They use broadcast joins when one of
the tables participating in the join is small enough, and the other is
very large, to save communication cost. The databases also exploit
careful physical data organization for joins. They rely on query
workloads to identify joins between large tables, and co-partition
them on the join key to avoid data communication at query time.

In the hybrid warehouse, these techniques have limited applica-
bility. Broadcast joins can only be used in limited cases, because
the data involved is usually very large. As the database and the
HDFS are two independent systems that are managed separately,
co-partitioning related tables is also not an option. As a result, we
need to adapt existing join techniques to optimize the joins between
very large tables when neither is partitioned on the join key. It is
also very important to note that no existing EDW solution in the
market today has a good solution for joining two large tables when
they are not co-partitioned.

We exploit Bloom filters to reduce the data communication costs
in joins for hybrid warehouses. A Bloom filter is a compact data
structure that allows testing whether a given value is in a set very
efficiently, with controlled false positive rate. Bloom filters have
been proposed in the distributed relational query setting [25]. But
they are not used widely, because they introduce overhead of ex-
tra computation and communication. In this paper, we show that
Bloom filters are almost always beneficial when communicating
data in the hybrid warehouse which integrated two heterogeneous
and massively parallel data platforms, as opposed to the homoge-
neous parallel databases. Furthermore, we describe a new join al-
gorithm, the zigzag join, which uses Bloom filters both ways to
ensure that only the records that will participate in the join need
to be transferred through the network. The zigzag join is most ef-
fective when the tables involved in the join do not have good local
predicates to reduce their sizes, but the join itself is selective.

In this work, we consider executing the join both in the database
and on the HDFS side. We implemented the proposed join algo-

rithms for the hybrid warehouse using a commercial shared-nothing
parallel database with the help of user-defined functions (UDFs),
and our own execution engine for joins on HDFS, called JEN. To
implement JEN, we took a prototype of the I/O layer and the sched-
uler from an existing SQL-on-Hadoop system, IBM Big SQL [19],
and extended it with our own runtime engine which is able to pipeline
operations and overlay network communication with processing
and data scanning. We observe that with such a sophisticated ex-
ecution engine on HDFS, it is actually often better to execute the
joins on the HDFS side.

The contributions of this paper are summarized as follows:

• Through detailed experiments, we show that it is often better
to execute joins on the HDFS side as the data size grows,
when there is a sophisticated execution engine on the HDFS
side. To the best of our knowledge, this is the first work that
argues for such a solution.

• We describe JEN, a sophisticated execution engine on the
HDFS side to fully exploit the various optimization strategies
employed by a shared-nothing parallel database architecture,
including multi-threading, pipelining, hash-based aggrega-
tion, etc. JEN utilizes a prototype of the I/O layer and the
scheduler from IBM Big SQL and provides parallel data move-
ment between HDFS and an EDW to exploit the massive par-
allelism on both sides.

• We revisit the join algorithms that are used in distributed
query processing, and adapt them to work in the hybrid ware-
house between two heterogeneous massively parallel data
platforms. We utilize Bloom filters, which minimize the data
movement and exploit the massive parallelism in both sys-
tems.

• We describe a new join algorithm, the zigzag join, which
uses Bloom filters on both sides, and provide a very efficient
implementation that minimizes the overhead of Bloom filter
computation and exchange. We show that the zigzag join
algorithm is a robust algorithm that performs the best for hy-
brid warehouses in almost all cases.

The rest of the paper is organized as follows: We start with
a concrete example scenario, including our assumptions, in Sec-
tion 2. The join algorithms are discussed in Section 3. We imple-
mented our algorithms using a commercial parallel database and
our own join execution engine on HDFS. In Section 4, we describe
this implementation. We provide detailed experimental results in
Section 5, discuss related work in Section 6, and conclude in Sec-
tion 7.

2. AN EXAMPLE SCENARIO
In this paper, we study the problem of joins in the hybrid ware-

house. We will use the following example scenario to illustrate the
kind of query workload we focus on. This example represents a
wide range of real application needs.

Consider a retailer, such as Walmart or Target, which sells prod-
ucts in local stores as well as online. All the transactions, either
offline or online, are managed and stored in a parallel database,
whereas users’ online click logs are captured and stored in HDFS.
The retailer wants to analyze the correlation of customers’ online
behaviors with sales data. This requires joining the transaction ta-
ble T in the parallel database with the log table L on HDFS. One
such analysis can be expressed as the following SQL query.
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SELECT L.url_prefix, COUNT(*)
FROM T, L
WHERE T.category = ‘Canon Camera’
AND region(L.ip)= ‘East Coast’
AND T.uid=L.uid
AND T.tdate >= L.ldate AND T.tdate <= L.ldate+1
GROUP BY L.url_prefix

This query tries to find out the number of views of the urls visited
by customers with IP addresses from East Coast who bought Canon
cameras within one day of their online visits.

Now, we look at the structure of the example query. It has local
predicates on both tables, followed by an equi-join. The join is
also coupled with predicates on the joined result, as well as group-
by and aggregation. In this paper, we will describe our algorithms
using this example query.

In common setups, a parallel database is deployed on a small
number (10s to 100s) of high-end servers, whereas HDFS resides
on a large number (100s to 10,000s) of commodity machines. We
assume that the parallel database is a full-fledged shared-nothing
parallel database. It has an optimizer, indexing support and sophis-
ticated SQL engine. On the HDFS side, we assume a scan-based
processing engine without any indexing support. This is true for all
the existing SQL-on-Hadoop systems, such as MapReduce-based
Hive [39], Spark-based Shark [42], and Impala [20]. We do not
tie the join algorithm descriptions to a particular processing frame-
work, thus we generalize any scan-based distributed data processor
on HDFS as a HQP (HDFS Query Processor). For data charac-
teristics, we assume that both tables are large, but the HDFS table
is much larger, which is the case in most realistic scenarios. In
addition, since we focus on analytic workloads, we assume there
is always group-by and aggregation at the end of the query. As
a result, the final query result is relatively small. Finally, without
loss of generality, we assume that queries are issued at the paral-
lel database side and the final results are also to be returned at the
database side. Note that forwarding a query from the database to
HDFS is relatively cheap, so is passing the final results from HDFS
back to the database.

Note that in this paper we focus on the actual join algorithms for
hybrid warehouses, thus we only include a two-way join in the ex-
ample scenario. Real big data queries may involve joining multiple
tables. For these cases, we need to rely on the query optimizer in
the database to decide on the right join orders, since queries are is-
sued at the database side in our setting. However, the study of the
join orders in hybrid warehouse is beyond the scope of this paper.

3. JOIN ALGORITHMS
In this section, we describe a number of algorithms for joining a

table stored in a shared-nothing parallel database with another table
stored in HDFS. We start by adapting well-known distributed join
algorithms, and explore ways to minimize the data movement be-
tween these two systems by utilizing Bloom filters. While existing
approaches [27, 26, 25, 24, 32] were designed for homogeneous
environments, our join algorithms work across two heterogeneous
systems in the hybrid warehouse. When we design the algorithms,
we strive to leverage the processing power of both systems and
maximize parallel execution.

Before we describe the join algorithms, let’s provide a brief in-
troduction to Bloom filters first. A Bloom filter is essentially a bit
array of m bits with k hash functions defined to summarize a set of
elements. Adding an element to the Bloom filter involves applying
the k hash functions on the element and setting the correspond-
ing positions of the bit array to 1. Symmetrically, testing whether
an element belongs to the set requires simply applying the hash

DB Worker HQP

2. Send  BFDB

3. Scan HDFS 
table TH, apply 
local predicates, 
projection and  
BFDB

4. Send filtered HDFS table TH’

5. Execute the join and 
aggregation (shuffle/broadcast 
data as needed) 

1. Apply local predicates & 
projection on TDB, and build 
BFDB

Figure 1: Data flow of DB-side join with Bloom filter

functions and checking whether all of the corresponding bit posi-
tions are set to 1. Obviously, the testing incurs some false positives.
However, the false positive rate can be computed based on m, k and
n, where n is the number of unique elements in the set. Therefore,
m and k can be tuned for desired false positive rate. Bloom filter
is a compact and efficient data structure for us to take advantage of
the join selectivity. By building a Bloom filter on the join keys of
one table, we can use it to prune out the non-joinable records from
the other table.

3.1 DB-Side Join
Many database/HDFS hybrid systems, including Microsoft Poly-

base [13], Pivotal HAWQ [15], TeraData SQL-H [14], and Oracle
Big Data SQL [28], fetch the HDFS table and execute the join in
the database. We first explore this approach, which we call DB-side
join. In the plain version, the HDFS side applies local predicates
and projection, and sends the filtered HDFS table in parallel to the
database. The performance of this join method is dependent on the
amount of data that needs to be transferred from HDFS. Two fac-
tors determine this size: the selectivity of the local predicates over
the HDFS table and the size of the projected columns.

Note that the HDFS table is usually much larger than the database
table. Even if the local predicates are highly selective, the filtered
HDFS table can still be quite large. In order to further reduce the
amount of data transferred from HDFS to the parallel database, we
introduce a Bloom filter on the join key of the database table after
applying local predicates, and send the Bloom filter to the HDFS
side. This technique enables the use of the join selectivity to filter
out HDFS records that cannot be joined. This DB-side join algo-
rithm is illustrated in Figure 1.

In this DB-side join algorithm, each parallel database node (DB
worker in Figure 1) first computes the Bloom filter for their lo-
cal partitions and then aggregate them into a global Bloom filter
(BFDB) by simply applying bitwise OR. We take advantage of the
query optimizer of the parallel database. After the filtered HDFS
data is brought into the database, it is joined with the database data
using the join algorithm (broadcast or repartition) chosen by the
query optimizer. Note that in the DB-side join, the HDFS data may
need to be shuffled again at the database side before the join (e.g.
if repartition join is chosen by the optimizer), because we do not
have access to the partitioning hash function of the database.

In the above algorithm, there are different ways to send the database
Bloom filter to HDFS and transmit the HDFS data to the database.
Which approach works best depends on the network topology and
the bandwidth. We defer the discussion of detailed implementation
choices to Section 4.

3.2 HDFS-Side Broadcast Join
The second algorithm is called HDFS-side broadcast join, or

simply broadcast join. This is the first algorithm that executes the
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Figure 2: Data flow of HDFS-side broadcast join
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Figure 3: Data flow of HDFS-side repartition join with Bloom
filter

join on the HDFS side. The rational behind this algorithm is that if
the predicates on the database table are highly selective, the filtered
database data is small enough to be sent to every HQP node, so that
only local joins are needed without any shuffling of the HDFS data.
When the join is executed on the HDFS side, it is logical to push-
down the grouping and aggregation to the HDFS side as well. This
way, only a small amount of summary data needs to be transferred
back to the database to be returned to the user. The HDFS-side
broadcast join algorithm is illustrated in Figure 2.

In the first step, each database node applies local predicates and
projection over the database table. Each database node broadcasts
its filtered partition to every HQP node (Step 2). Each HQP node
performs a local join in Step 3. Group-by and partial aggregation
are also carried out on the local data in this step. The final aggre-
gation is computed in Step 4 and sent to the database in Step 5.

3.3 HDFS-Side Repartition Join
The second HDFS-side algorithm we consider is the HDFS-side

repartition join, or simply repartition join. If the local predicates
over the database table are not highly selective, then broadcasting
the filtered data to all HQP nodes will not be a good option. In this
case, we need a robust join algorithm. We expect the HDFS table
to be much larger than the database table in practice, and hence it
makes more sense to transfer the smaller database table and execute
the final join at the HDFS side. Just as in the DB-side join, we can
also improve this basic version of repartition join by introducing a
Bloom filter. Figure 3 demonstrates this improved algorithm.

In Step 1, all database nodes apply local predicates over the
database table, and project out the required columns. All database
nodes also compute their local Bloom filters which are then aggre-
gated into a global Bloom filter and sent to the HQP nodes. In this
algorithm, the HDFS side and the database agree on the hash func-
tion to use when shuffling the data. In Step 2, all database nodes use
this agreed hash function and send their data to the identified HQP
nodes. This means that once the database data reaches the HDFS

side, it doesn’t need to be re-shuffled among the HQP nodes. In
Step 3 of the HDFS-side repartition join, all HQP nodes apply the
local predicates and projection over the HDFS table as well as the
Bloom filter sent by the database. The Bloom filter further filters
out the HDFS data. The HQP nodes use the same hash function
to shuffle the filtered HDFS table. Then, they perform the join and
partial aggregation (step 4). The final aggregation is executed on
the HDFS side in Step 5 and sent to the database in Step 6.

3.4 HDFS-Side Zigzag Join
When local predicates on neither the HDFS table nor the database

table are selective, we need to fully exploit the join selectivity to
perform the join efficiently. In some sense, a selective join can
be used as if it were extended local predicates on both tables. To
illustrate this point, let’s first introduce the concepts of join-key se-
lectivity and join-key predicate.

Let T 0
DB be the table after local predicates and projection on the

database table TDB , and T 0
H be the table after local predicates and

projection on the HDFS table TH . We define JK(T 0
DB) as the set

of join keys in T 0
DB , and JK(T 0

H) as the set of join keys in T 0
H . We

know that only the join keys in JK(T 0
DB) \ JK(T 0

H) will appear
in the final join result. So, only JK(T 0

DB)\JK(T 0
H )

JK(T 0
H

) fraction of the
unique join keys in T 0

H will participate in the join. We call this frac-
tion the join-key selectivity on T 0

H , denoted as ST 0
H

. Likewise, the

join-key selectivity on T 0
DB is ST 0

DB
=

JK(T 0
DB)\JK(T 0

H )

JK(T 0
DB

) . Lever-
aging the join-key selectivities through Bloom filters is essentially
like applying extended local predicates on the join key columns of
both tables. We call them join-key predicates.

Through the use of a 1-way Bloom filter, the DB-side join and the
repartition join described in previous sections are only able to lever-
age the HDFS-side join-key predicate to reduce either the HDFS
data transferred to the database or the HDFS data shuffled among
the HQP workers. The DB-side join-key predicate is not utilized
at all. Below, we introduce a new algorithm, zigzag join, to fully
utilize the join-key predicates on both sides in reducing data move-
ment, through the use of 2-way Bloom filters. Again, we expect the
HDFS table to be much larger than the database table in practice,
hence the final join in this algorithm is executed on the HDFS side,
and both sides agree on the hash function to send data to the correct
HQP nodes for the final join.

The zigzag join algorithm is described in Figure 4. In Step 1, all
database nodes apply local predicates and projection, and compute
their local Bloom filters. The database then computes the global
Bloom filter BFDB and sends it to all HQP nodes in Step 2. Like in
the repartition join with Bloom filter, this Bloom filter helps reduce
the amount of HDFS data that needs to be shuffled.

In Step 3, all HQP nodes apply their local predicates, projection
and the database Bloom filter BFDB over the HDFS table, and
compute a local Bloom filter for the HDFS table. The local Bloom
filters are aggregated into a global one, BFH , which is sent to all
database nodes. At the same time, the HQP nodes shuffle the fil-
tered HDFS table based on the agreed hash function. In Step 5, the
database nodes receive the HDFS Bloom filter BFH and apply it to
the database table to further reduce the number of database records
that need to be sent. The application of Bloom filters on both sides
ensure that only the data that will participate in the join (subject to
false positive of the Bloom filter) needs to be transferred.

Note that in Step 5 the database data need to be accessed again.
We rely on the advanced database optimizer to choose the best strat-
egy: either to materialize the intermediate table TDB0 after local
predicates and projection are applied, or to utilize indexes to access
the original table TDB . It is also important to note that while the
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Figure 4: Data flow of zigzag join

HDFS bloom filter is applied to the database data, the HQP nodes
are shuffling the HDFS data in parallel, hence overlapping many
steps of the execution.

In Step 6, the database nodes send the further filtered database
data to the HQP nodes using the agreed hash function. The HQP
nodes perform the join and partial aggregation (Step 7), collabora-
tively compute the global aggregation (Step 8), and finally send the
result to the database (Step 9).

Note that zigzag join is the only join algorithm that can fully
utilize the join-key predicates as well as the local predicates on both
sides. The HDFS data shuffled across HQP nodes are filtered by the
local predicates on TH , the local predicates on TDB (as BFDB is
built on TDB after local predicates), and the join-key predicate on
T 0
H . Similarly, the database records transferred to the HDFS side

are filtered by the local predicates on TDB , the local predicates on
TH (as BFH is built on TH after local predicates), and the join-key
predicate on T 0

DB .
Although Bloom filters and semi-join techniques are known in

the literature, they are not widely used in practice due to the over-
head of computing Bloom filters and multiple data scans. However,
the asymmetry of slow HDFS table scan and fast database table ac-
cess makes these techniques more desirable in a hybrid warehouse.
Note that a variant version of the zigzag join algorithm which exe-
cutes the final join on the database side will not perform well, be-
cause scanning the HDFS table twice, without the help of indexes,
is expected to introduce significant overhead.

4. IMPLEMENTATION
In this section, we provide an overview of our implementation

of the join algorithms for the hybrid warehouse and highlight some
important details.

4.1 Overview
In our implementation, we used IBM DB2 Database Partition-

ing Feature (DPF), which is a shared-nothing distributed version of
DB2, as our EDW. We implemented all the above join algorithms
using C user-defined functions (UDFs) in DB2 DPF and our own
C++ MPI-based join execution engine on HDFS, called JEN. JEN
is our specialized implementation of HQP used in the algorithm de-
scriptions in Section 3. We used a propotype of the I/O layer and
the scheduler from an early version of IBM Big SQL 3.0 [19], and
build JEN on top of them. We also utilized Apache HCatalog [16]
to store the meta data of the HDFS tables.

JEN consists of a single coordinator and a number of workers,
with each worker running on an HDFS DataNode. JEN workers are
responsible for reading parts of HDFS files, executing local query
plans, and communicating with other workers, the coordinator, and
DB2 DPF workers. Each JEN worker is multi-threaded, capable of

exploiting all the cores on a machine. The communication between
two JEN workers or with the coordinator is done through TCP/IP
sockets. The JEN coordinator has multiple roles. First, it is respon-
sible for managing the JEN workers and their state so that workers
know which other workers are up and running in the system. Sec-
ond, it serves as the central contact for the JEN workers to learn the
IPs of the DB2 workers and vice versa, so that they can establish
communication channels for data transfers. Third, it is also respon-
sible for retrieving the meta data (HDFS path, input format, etc) for
HDFS tables from HCatalog. Once the coordinator knows the path
of the HDFS table, it contacts the HDFS NameNode to get the lo-
cations of each HDFS block, and evenly assigns the HDFS blocks
to the JEN workers to read, respecting data locality.

At the DB2 side, we utilized the existing database query engine
as much as possible. For the functionalities not provided, such as
computing and applying Bloom filters, and different ways of trans-
ferring data to and from JEN workers, we implemented them us-
ing unfenced C UDFs, which provide performance close to built-in
functions as they run in the same process as the DB2 engine. The
communication between a DB2 DPF worker and a JEN worker is
also through TCP/IP sockets. Note that to exploit the multi-cores
on a machine we set up multiple DB2 workers on each machine of
a DB2 DPF cluster, instead of one DB2 worker enabled with multi-
core parallelism. This is mainly to simplify our C UDF implemen-
tations, as otherwise we have to deal with intra-process communi-
cations inside a UDF.

Each of the join algorithms is invoked by issuing a single query
to DB2. With the help of UDFs, this single query executes the
entire join algorithm: initiating the communication between the
database and the HDFS side, instructing the two sides to work col-
laboratively, and finally returning the results back to the user.

4.1.1 The DB-Side Join Example
Let’s use an example to illustrate how the database side and the

HDFS side collaboratively execute a join algorithm. If we want to
execute the example query in Section 2 using the DB-side join with
Bloom filter, we submit the following SQL query to DB2.

with LocalFilter(lf) as (
select get_filter(max(cal_filter(uid))) from T
where T.category=‘Canon Camera’
group by dbpartitionnum(tid)
),
GlobalFilter(gf) as (
select * from
table(select combine_filter(lf) from LocalFilter)
where gf is not null
),
Clicks(uid, url_prefix, ldate) as (
select uid, url_prefix, ldate
from GlobalFilter,
table(read_hdfs(‘L’, ‘region(ip)= \‘East Coast\’’,
‘uid, url_prefix, ldate’, GlobalFilter.gf, ‘uid’))
)
select url_prefix, count(*) from Clicks, T
where T.category=‘Canon Camera’ and Clicks.uid=T.uid
and days(T.tdate)-days(Clicks.ldate)>=0
and days(T.tdate)-days(Clicks.ldate)<=1
group by url_prefix

In the above SQL query, we assume that the database table T is
distributed across multiple DB2 workers on the tid field. The first
sub query (LocalFilter) uses two scalar UDFs cal_filter
and get_filter together to compute a Bloom filter on the local
partition of each DB2 worker We enabled the two UDFs to execute
in parallel, and the statement group by dbpartitionnum(tid)
further makes sure that each DB2 worker computes the Bloom filter
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on its local data in parallel. The second sub query (GlobalFilter)
uses another scalar UDF combine_filter to combine the local
Bloom filters into a single global Bloom filter (there is only one
record which is the global Bloom filter returned for GlobalFilter).
By declaring combine_filter "disallow parallel", we make
sure it is executed once on one of the DB2 workers (all local Bloom
filters are sent to a single DB2 worker). In the third sub query
(Clicks), a table UDF read_hdfs is used to pass the following
information to the HDFS side: the name of the HDFS table, the
local predicates on the HDFS table, the projected columns needed
to be returned, the global database Bloom filter, and the join-key
column that the Bloom filter needs to be applied. In the same UDF,
the JEN workers subsequently read the HDFS table and send the
required data after applying predicates, projection and the Bloom
filter back to the DB2 workers. The read_hdfs UDF is executed
on each DB2 worker in parallel (the global Bloom filter is broad-
cast to all DB2 workers) and carries out the parallel data transfer
from HDFS to DB2. After that, the join together with the group-by
and aggregation is executed at the DB2 side. We pass a hint of the
cardinality information to the read_hdfs UDF, so that the DB2
optimizer can choose the right plan for the join. The final result is
returned to the user at the database side.

Now let’s look into the details of the read_hdfs UDF. Since
there is only one record in GlobalFilter, this UDF is called
once per DB2 worker. When it is called on each DB2 worker, it
first contacts the JEN coordinator to request for the connection in-
formation to the JEN workers. In return, the coordinator tells each
DB2 worker which JEN worker(s) to connect to, and notifies the
corresponding JEN workers to prepare for the connections from
the DB2 workers. This process is shown in Figure 5. Without the
loss of generality, let’s assume that there are m DB2 workers and
n JEN workers, and that m  n. For the DB-side join, the JEN
coordinator evenly divides the n workers into m groups. Each DB2
worker establishes connections to all the workers in one group, as
illustrated in Figure 5. After all the connections are established,
each DB2 worker multi-casts the predicates on the HDFS table, the
required columns from the HDFS table, the database Bloom filter
and the join-key column to the corresponding group of JEN work-
ers. At the same time, DB2 workers tell the JEN coordinator which
HDFS table to read. The coordinator contacts the HCatalog to re-
trieve the paths of the corresponding HDFS files and the input for-
mat, and inquires the HDFS NameNode for the storage locations of
the HDFS blocks. Then, the coordinator assigns the HDFS blocks
and sends the assignment as well as the input format to the workers.
After receiving all the necessary information, each JEN worker is

t1
t1

t1

t1
t2

t3

DB-side join broadcast join repartition & zigzag join

Figure 6: Data transfer patterns between DB2 workers and
JEN workers in the join algorithms

ready to scan its share of the HDFS data. As it scans the data, it
directly applies the local predicates and the Bloom filter from the
database side, and sends the records with required columns back to
its corresponding DB2 worker.

4.2 Locality-Aware Data Ingestion from HDFS
As our join execution engine on HDFS is scan-based, efficient

data ingestion from HDFS is crucial for performance. We pur-
posely deploy the JEN workers on all HDFS DataNodes so that
we can leverage data locality when reading. In fact, when the JEN
coordinator assigns the HDFS blocks to workers, it carefully con-
siders the locations of each HDFS block to create balanced assign-
ments and maximize the locality of data in a best-effort manner.
Using this locality-aware data assignment, each JEN worker mostly
reads data from local disks. We also enabled short-circuit reads for
HDFS DataNodes to improve the local read speed. In addition,
our data ingestion component uses multiple threads when multiple
disks are used for each DataNode to further boost the data ingestion
throughput.

4.3 Data Transfer Patterns
In this subsection, we discuss the data transfer patterns of dif-

ferent join algorithms. There are three types of data transfers that
happen in all the join algorithms: among DB2 workers, among JEN
workers, and between DB2 workers and JEN workers. For the data
transfers among DB2 workers, we simply rely on DB2 to choose
and execute the right transfer mechanisms. Among the JEN work-
ers, there are three places that data transfers are needed: (1) shuf-
fle the HDFS data for the repartition-based join in the repartition
join (with/without Bloom filter) and the zigzag join, (2) aggregate
the global HDFS Bloom filter for the zigzag join, and (3) compute
the final aggregation result from the partial results on JEN workers
in the broadcast join, the repartition join and the zigzag join. For
(1), each worker simply maintains TCP/IP connections to all other
workers and shuffles data through these connections. For (2) and
(3), each worker sends the local results (either local Bloom filter
or local aggregates) to a single designated worker chosen by the
coordinator to finish the final aggregation.

The more interesting data transfers happen between DB2 work-
ers and JEN workers. Again, there are three places that the data
transfer is needed: shipping the actual data (HDFS or database),
sending the Bloom filters, and transmitting the final aggregated re-
sults to the database for all the HDFS-side joins. Bloom filters and
final aggregated results are much smaller than the actual data, how
to transfer them has little impact on the overall performance. For
the database Bloom filter sent to HDFS, we multi-cast the database
Bloom filters to HDFS following the mechanism shown in Figure 5.
For the HDFS Bloom filter sent to the database, we broadcast the
HDFS Bloom filter from the designated JEN worker to all the DB2
workers. The final results on HDFS is simply transmitted from the
designated JEN worker to a designated DB2 worker. In contrast to
the above, we put more thoughts on how to ship the actual data be-
tween DB2 and HDFS. Figure 6 demonstrates the different patterns
for transferring the actual data in the different join algorithms.
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Figure 7: Interleaving of scanning, processing and shuffling of
HDFS data in zigzag join

DB-side join with/without Bloom filter. For the two DB-side
joins, we randomly partition the set of JEN workers into m roughly
even groups, where m is the number of DB2 workers, then let each
DB2 worker bring in the part of HDFS data in parallel from the
corresponding group of JEN workers. DB2 can choose whatever
algorithms for the final join that it sees fit based on data statis-
tics. For example, when the database data is much smaller than
HDFS data, the optimizer chooses to broadcast the database table
for the join. When the HDFS data is much smaller than the database
data, broadcasting the HDFS data is used. In the other cases, a
repartition-based join algorithm is chosen. This means that when
the HDFS data is transferred to the database side, it may need to be
shuffled again among the DB2 workers. To avoid this second data
transfer, we would have to expose the partitioning scheme of DB2
to JEN and teach the DB2 optimizer that the data received from
JEN workers has already been partitioned in the desired way. Our
implementation does not modify the DB2 engine, so we stick with
this simpler and non-invasive data transfer scheme for the DB-side
joins.

Broadcast join. There are multiple ways to broadcast the database
data to JEN workers. One way is to let each DB2 worker connect
to all the JEN workers and deliver its data to every worker. An-
other way is to have each DB2 worker only transfer its data to one
JEN worker, which further passes on the data to all other work-
ers. The second approach puts less stress on the inter-connection
between DB2 and HDFS, but introduces a second round of data
transfer among the JEN workers. We found empirically that broad-
cast join only works better than other algorithms when the database
table after local predicates and projection is very small. For that
case, even the first transfer pattern does not put much strain on the
inter-connection between DB2 and HDFS. Furthermore, the sec-
ond approach actually introduces extra latency because of the extra
round of data transfer. For the above reasons, we use the first data
transfer scheme in our implementation of the broadcast join.

Repartition join with/without Bloom filter and zigzag join.
For these three join algorithms, the final join happens at the HDFS
side. We expose the hash function for the final repartition-based
join in JEN (DB2 workers can get this information from the JEN
coordinator). When a database record is sent to the HDFS side, the
DB2 worker uses the hash function to identify the JEN worker to
send to directly.

4.4 Pipelining and Multi-Threading in JEN
In the implementation of JEN, we try to pipeline operations and

parallelize computation as much as possible. Let’s take the sophis-
ticated zigzag join as an example.

At the beginning, every JEN worker waits to receive the global
Bloom filter from DB2, which is a blocking operation, since all the
remaining operations depend on this Bloom filter. After the Bloom

filter is obtained, each worker starts to read its portion of the HDFS
table (mostly from local disks) immediately. The data ingestion
component is able to dedicate one read thread per disk when mul-
tiple disks are used for an HDFS DataNode. In addition, a separate
process thread is used to parse the raw data into records based on
the input format and schema of the HDFS table. Then it applies the
local predicates, projection and the database Bloom filter on each
record. For each projected record that passes all the conditions,
this thread uses it to populate the HDFS-side Bloom filter, and ap-
plies the shuffling hash function on the join key to figure out which
JEN worker this record needs to be sent to for the repartition-based
join. Then, the record is put in a send buffer ready to be sent. All
the above operations on a record are pipelined inside the process
thread. At the same time, a pool of send threads poll the send-
ing buffers to carry out the data transfers. Another pool of receive
threads simultaneously receive records from other workers. And
for each record received in a receive thread, it uses the record to
build the hash table for the join. The multi-threading in this stage
of the zigzag join is illustrated in Figure 7. As can be seen, scan-
ning, processing and shuffling (sending and receiving) of HDFS
data are carried out totally in parallel. In fact, the repartition join
(with/without Bloom filter) also shares the similar interleaving of
scanning, processing and shuffling of HDFS data. Note that reading
from HDFS and shuffling data through networks are expensive op-
erations, although we only have one process thread which applies
the local predicates, Bloom filter and the projection, it is never the
bottleneck.

As soon as the reading from HDFS finishes (read threads are
done), a local Bloom filter is built on each worker. The work-
ers send local Bloom filters to a designated worker to compute the
global Bloom filter and pass it on to the DB2 workers. After that,
every worker waits to receive and buffer the data from DB2 in the
background. Once the local hash table is built (the send and receive
threads in Figure 7 are all done), the received database records are
used to probe the hash table, produce join results, and subsequently
apply a hash-based group-by and aggregation immediately. Here
again, all the operations on a database record are pipelined. When
all the local aggregates are computed, each worker sends its partial
result to a designated worker, which computes the final aggregate
and sends to a single DB2 worker to return to the user.

Note that in our implementation of the zigzag join, we choose to
build the hash table from the filtered HDFS data and use the trans-
ferred database data to prob the hash table for the final join, al-
though the database data are expected to be smaller in most cases.
This is because the filtered HDFS data is already being received
during the scan of the HDFS table due to multi-threading. Empir-
ically, we find that the receiving of the HDFS data is usually done
soon after the scan is finished. On the other hand, the database
data will not start to arrive until the HDFS table scan is done, as
the HDFS side bloom filter is fully constructed only after all HDFS
data are processed. Therefore, it makes more sense to start building
the hash table on the filtered HDFS data while waiting for the later
arrival of the database data. The current version of JEN requires
that all data fit in memory for the local hash-based join on each
worker. In the future, we plan to support spilling to disk to over
come this limitation.

5. EXPERIMENTAL EVALUATION
Experimental Setup. For the HDFS cluster, we used 31 IBM

System x iDataPlex dx340 servers. Each consisted of two quad-
core Intel Xeon E5540 64-bit 2.8GHz processors (8 cores in total),
32GB RAM, 5x DATA disks and interconnected using 1Gbit Ether-
net. Each server ran Ubuntu Linux (kernel version 2.6.32-24) and
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Java 1.6. One server was dedicated as the NameNode, whereas the
other 30 were used as DataNodes. We reserved 1 disk for the OS,
and the remaining 4 for HDFS on each DataNode. HDFS replica-
tion factor is set to 2. A JEN worker was run on each DataNode and
the JEN coordinator was run on the Namenode. For DB2 DPF, we
used 5 servers. Each had 2x Intel Xeon CPUs @ 2.20GHz, with 6x
physical cores each (12 physical cores in total), 12x SATA disks, 1x
10 Gbit Ethernet card, and a total of 96GB RAM. Each node runs
64-bit Ubuntu Linux 12.04, with a Linux Kernel version 3.2.0-23.
We ran 6 database workers on each server, resulting in a total of 30
DB2 workers. 11 out of the 12 disks on each server were used for
DB2 data storage. Finally, the two clusters were connected by a 20
Gbit switch.

Dataset. We generated synthetic datasets in the context of the
example query scenario described in Section 2. In particular, we
generated a transaction table T of 97GB with 1.6 billion records
stored in DB2 DPF and a log table L on HDFS with about 15 bil-
lion records. The log table is about 1TB when stored in text format.
We also stored the log table in the Parquet columnar format [31]
with Snappy compression [36], to more efficiently ingest data from
HDFS. The I/O layer of our JEN workers is able to push down pro-
jections when reading from this columnar format. The 1TB text log
data is reduced to about 421GB in Parquet format. By default, our
experiments were run on the Parquet formatted data, but in Sec-
tion 5.4, we will compare Parquet format against text format to
study their effect on performance. The schemas of the transaction
table and the log table are listed below.

T(uniqKey bigint, joinKey int, corPred int, indPred
int, predAfterJoin date, dummy1 varchar(50), dummy2
int, dummy3 time)

L(joinKey int, corPred int, indPred int, predAfterJoin
date, groupByExtractCol varchar(46), dummy char(8))

The transaction table T is distributed on a unique key, called
uniqKey, across the DB2 workers. The two tables are joined on
a 4-byte int field joinKey. In both tables, there is one int column
correlated with the join key called corPred, and another int column
independent of the join key called indPred. They are used for local
predicates. The date fields, named predAfterJoin, on the two tables
are used for the predicate after the join. The varchar column group-
ByExtractCol in L is used for group-by. The remaining columns
in each table are just dummy columns. Values of all fields in the
two tables are uniformly distributed. The query that we ran in our
experiments can be expressed in SQL as follows.

select extract_group(L.groupByExtractCol), count(*)
from T, L
where T.corPred<=a and T.indPred<=b
and L.corPred<=c and L.indPred<=d
and T.joinKey=L.joinKey
and days(T.predAfterJoin)-days(L.predAfterJoin)>=0
and days(T.predAfterJoin)-days(L.predAfterJoin)<=1
group by extract_group(L.groupByExtractCol)

In the above query, the local predicates on T and L are on the
combination of the corPred and the indPred columns, so that we
can change the join selectivities given the same selectivities of the
combined local predicates. In particular, by modifying constants a
and c, we can change the number of join keys participating in the
final join from each table; but we can also modify the constants b
and d accordingly so that the selectivity of the combined predicates
stay intact for each table. We apply a UDF (extract_group) on the
varchar column groupByExtractCol to extract an int column as the
group-by column for the final aggregate count(*). To fully exploit

HDFS tuples shuffled DB tuples sent
repartition 5,854 million 165 million

repartition(BF) 591 million 165 million
zigzag 591 million 30 million

Table 1: Zigzag join vs repartition joins (�T = 0.1, �L = 0.4,
SL0 = 0.1, ST 0 = 0.2): # tuples shuffled and sent

the SQL support in DB2, we build one index on (corPred, indPred)
and another index on (corPred, indPred, joinKey) of table T. The
second index enables calculations of Bloom filters on T using an
index-only access plan.

There are 16 million unique join keys in our dataset, so we create
Bloom filters of 128 million bits (16MB) using 2 hash functions,
which provides roughly 5% false positive rate. Note that exploring
the different combinations of Bloom filter size and number of hash
functions have been well studied before [9] and is beyond the scope
of this paper. Our particular choice of the parameter values gave us
good performance results in our experiments.

Our experiments were the only workloads that ran on the DPF
cluster and the HDFS cluster. But, we purposely allocated less
resources to the DPF cluster to mimic the case that the database
is more heavily utilized. For all the experiments, we reported the
warm-run performance numbers (we ran each experiments multiple
times and excluded the first run when taking average).

In all the figures shown below, we denote the database table T
after local predicates and projection as T’ (predicate selectivity de-
noted as �T ), and the HDFS table L after local predicates and pro-
jection as L’ (predicate selectivity denoted as �L). We further rep-
resent the join-key selectivity on T’ as ST 0 and the join-key selec-
tivity on L’ as SL0 .
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Figure 8: Zigzag join vs repartition joins: execution time (sec)

5.1 HDFS-Side Joins
We first study the HDFS-side join algorithms. We start with

demonstrating the superiority of our zigzag join to the other reparation-
based joins and then investigate when to use the broadcast join ver-
sus the repartition-based joins.

5.1.1 Zigzag Join vs Repartition Joins
We now compare the zigzag join to the repartition joins with and

without Bloom filter. All three repartition-based join algorithms
are best used when local predicate selectivities on both database
and HDFS tables are low.

Figure 8 compares the execution times of the three algorithms
with varying predicate and join-key selectivities on the Parquet for-
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matted log table. It is evident that the zigzag join is the most ef-
ficient among the all repartition-based joins. It is up to 2.1x faster
than the repartition join without Bloom filter and up to 1.8x faster
than the repartition join with Bloom filter. When we zoom in the
last three bars in Figure 8(a), Table 1 details the number of HDFS
tuples shuffled across the JEN workers as well as the number of
database tuples sent to the HDFS side for the three algorithms. The
zigzag join is able to cut down the shuffled HDFS data by roughly
10x (corresponding to SL0 = 0.1) and the transferred database
data by around 5x (corresponding to ST 0 = 0.2). It is the only
algorithm that can fully utilize the join-key predicates as well as
the local predicates on both sides. In Figure 9, we fix the predicate
selectivities �T = 0.1 and �L = 0.4 to explore the effect of dif-
ferent join-key selectivities SL0 and ST 0 on the three algorithms.
As expected, with the same size of T’ and L’, the performance of
zigzag join improves with when the join-key selectivity SL0 or ST 0

decreases.
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Figure 9: Zigzag join (�T = 0.1, �L = 0.4) with different SL0

and ST 0 values: execution time (sec)

5.1.2 Broadcast Join vs Repartition Join
Besides the three repartition-based joins studied above, broad-

cast join is another HDFS-side join. To find out when this algo-
rithm works best, we compare broadcast join and the repartition
join without Bloom filter in Figure 10. We do not include the repar-
tition join with Bloom filter or the zigzag join in this experiment, as
even the basic repartition join is already comparable or better than
broadcast join in most cases. The tradeoff between the broadcast
join and the repartition join is basically broadcasting T’ through
the interconnection between the two clusters (the data transfered is
30⇥T’ since we have 30 HDFS nodes) vs sending T’ once through
the interconnection and shuffling L’ within the HDFS cluster. Due
to the multi-threaded implementation described in Section 4.4, the
shuffling of L’ is interleaved with the reading of L in JEN, thus this
shuffling overhead is somewhat masked by the reading time. As a
result, broadcast join performs better only when T’ is significantly
smaller than L’. In our setting, broadcast join is only preferable
when predicate on T is highly selective, e.g. �T  0.001 (T’ 
25MB). In comparison, repartition-based joins are the more stable
algorithms, and the zigzag join is the best HDFS-side algorithm in
almost all cases.

5.2 DB-Side Joins
We now compare the DB-side joins with and without Bloom fil-

ter to study the effect of Bloom filter. As shown in Figure 11,
Bloom filter is effective in most cases. For fixed local predicates
on T (�T ) and join-key selectivity on L’ (SL0 ), the benefit grows
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Figure 10: Broadcast join vs repartition join: execution time
(sec)

significantly as the size of L’ increases. Especially for selective
predicate on T, e.g. �T = 0.05, the impact of the Bloom filter is
more pronounced. However, when the local predicates on L are
very selective (�L is very small), e.g. �L  0.001, the size of L’
is already very small (e.g. less than 1GB when �L = 0.001), the
overhead of computing, transferring and applying the Bloom filter
can cancel out or even outweigh its benefit.
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Figure 11: DB-side joins: execution time (sec)

5.3 DB-Side Joins vs HDFS-Side Joins
Where to perform the final join, on the database side or the HDFS

side, is a very important question that we want to address in this pa-
per. Most existing solutions [13, 15, 14, 28] choose to always fetch
the HDFS data and execute the join in the database, based on the
assumption that SQL-on-Hadoop systems are slower in performing
joins. Now, with the better designed join algorithms in this paper
and the more sophisticated execution engine in JEN, we want to
re-evaluate whether this is the right choice any more.

We start with the join algorithms without the use of Bloom filters,
since the basic DB-side join is used in the existing database/HDFS
hybrid systems, and the broadcast join and the basic repartition join
are supported in most existing SQL-on-Hadoop systems. Figure 12
compares the DB-side join against the best of the HDFS-side joins
(repartition join is the best for all cases in the figure). As shown in
this figure, DB-side join performs better only when the predicate
selectivity on the HDFS table is very selective (�L  0.01). For
lower selectivities, probably the common case, the repartition join
shows very robust performance while the DB-side join very quickly
deteriorates.
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Now, let’s also consider all the algorithms with Bloom filters and
revisit the comparison in Figure 13. In most of the cases, the DB-
side join with Bloom filter is the best DB-side join and zigzag join
is the best HDFS-side join. Comparing this figure to Figure 12, the
DB-side join still works better in the same cases as before, although
all performance numbers are improved by the use of Bloom filters.
The zigzag join shows very steady performance (execution time
increases only slightly) with the increase of the L’ size, in compar-
ison with the steep deterioration rate of the DB-side join, making
this HDFS-side join a very reliable choice for joins in the hybrid
warehouse.

The above experimental results suggest that blindly executing
joins in the database is not a good choice any more. In fact, for
common cases when there is no highly selective predicate on the
HDFS table, HDFS-side join is the preferred approach. There are
several reasons for this. First of all, the HDFS table is usually much
larger than the database table. Even with decent predicate selectiv-
ity on the HDFS table, the sheer size after predicates is still big.
Second, as our implementation utilizes the DB2 optimizer as is, the
HDFS data shipped to the database may need another round of data
shuffling among the DB2 workers for the join. Finally, the database
side normally has much less resources than the HDFS side, thus
when both T’ and L’ are very large, HDFS-side join should be con-
sidered.
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Figure 12: DB-side join vs HDFS-side join without Bloom fil-
ter: execution time (sec)
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Figure 13: DB-side join vs HDFS-side join with Bloom filter:
execution time (sec)

5.4 Parquet Format vs Text Format
We now compare the join performance on the two different HDFS

formats. We first pick the zigzag join, which is the best HDFS-side
join, and the DB-side join with Bloom filter as the representatives,
and show their performance on the Parquet and text formats in Fig-
ure 14.
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Figure 14: Parquet format vs text format: execution time (sec)

Both algorithms run significantly faster on the Parquet format
than on the text format. The 1TB text table on HDFS has already
exceeded the aggregated memory size (960GB) of the HDFS clus-
ter, thus simply scanning the data takes roughly 240 seconds in both
cold and warm runs. After columnar organization and compression,
the table is shrunk by about 2.4x, which can now well fit in the local
file system cache on each DataNode. In addition, projection push-
down can also be applied when reading from the Parquet format.
Therefore, it only takes 38 seconds to read all the required fields
from the Parquet data in a warm run. This huge difference in the
scanning speed explains the big gap in the performance.
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Figure 15: Effect of Bloom filter with text format: execution
time (sec)

Next, we investigate the effect of using Bloom filter in joins on
the text format. As shown in Figure 15, the improvement by Bloom
filter is less dramatic on the text format than on the Parquet format.
In some cases of the repartition join and the DB-side join, the over-
head of computing, transferring and applying the Bloom filter even
outweighs the benefit it brings. Again, the less benefit of Bloom
filter is mainly due to the expensive scanning cost for the text for-
mat. In addition, there is another reason for the less effectiveness
of Bloom filter in the repartition join and the zigzag join. Both al-
gorithms utilize a database Bloom filter to reduce the amount of
HDFS data to be shuffled, but with multi-threading, the shuffling
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is interleaved with the scan of HDFS data (see Section 4.4). For
text format, the reduction of the shuffling cost is largely masked by
the expensive scan cost, resulting in the less shown benefit. How-
ever, for the zigzag join, with a second Bloom filter to reduce the
transferred database data, its performance is always robustly better.

5.5 Discussion
We now discuss the insights from our experimental study.
Among the HDFS-side joins, broadcast join only works for very

limited cases, and even when it is better, the advantage is not dra-
matic. Repartition-based joins are the more robust solutions for
HDFS-side joins, and the zigzag join with the 2-way Bloom filters
always brings in the best performance.

Bloom filter also helps the DB-side join. However, with its
steep deterioration rate, the DB-side join works well only when
the HDFS table after predicates and projection is relatively small,
hence its advantages are also confined to limited cases. For a large
HDFS table without highly selective predicates, zigzag join is the
most reliable join method that works the best most of the time, as
it is the only algorithm that fully utilizes the join-key predicates as
well as the local predicates on both sides.

HDFS data format significantly affects the performance of a join
algorithm. Columnar format with fast compression and decompres-
sion techniques brings in dramatic performance boost, compared to
the naive text format. So, when data needs to be accessed repeat-
edly, it is worthwhile to convert text format into the more advanced
format.

Finally, we would like to point out that a major contribution to
the nice performance of HDFS-side joins, is our sophisticated join
execution engine on HDFS. It borrows the well-known runtime op-
timizations from parallel databases, such as pipelining and multi-
threading. With our careful design in JEN, scanning HDFS data,
network communication and computation are all fully executed in
parallel.

6. RELATED WORK
In this paper, we study joins in the hybrid warehouse with two

fully distributed and independent query execution engines in an
EDW and an HDFS cluster, respectively. Although there has been
rich literature on distributed join algorithms, most of these existing
works study joins in a single distributed system.

In the context of parallel databases, Mackert and Lohman de-
fined Bloom join, which uses Bloom filters to filter out tuples with
no matching tuples in a join and achieves better performance than
semijoin [25]. Michael et al showed how to use a Bloom filter based
algorithm to optimize distributed joins where the data is stored in
different sites [26]. In [12], DeWitt and Gerber studied join al-
gorithms in a multiprocessor architecture and demonstrated that
Bloom filter provides dramatic improvement for various join algo-
rithms. PERF Join [24] reduces data transmission of two-way joins
based on tuple scan order instead of using Bloom filters. It passes a
bitmap of positions instead of a Bloom filter of values, in the second
phase of semi-join. However, unlike Bloom join, it doesn’t work
well in parallel settings, when there are lots of duplicated values.
Recently, Polychroniou et al proposed track join [32] to minimize
network traffic for distributed joins by scheduling transfers of rows
on a per join key basis. Determining the desired transfer schedule
for each join key, however, requires a full scan of the two tables be-
fore the join. Clearly, for systems where scan is a bottleneck, track
join would suffer from this overhead.

There has also been some work on join strategies in MapRe-
duce [8, 3, 4, 23, 44]. Changchun et al. [44] presented several
strategies to build the Bloom filter for the large dataset using MapRe-

duce, and compared Bloom join algorithms of two-way and multi-
way joins.

In this paper, we also exploit Bloom filters to improve distributed
joins, but in a hybrid warehouse setting. Instead of one, our zigzag
join algorithm uses two Bloom filters on both sides of the join to
reduce the non-joining tuples. Two-way Bloom filters require scan-
ning one of the tables two times, or materializing the intermediate
result after applying local predicates. As a result, two-way Bloom
filters are not as beneficial in a single distributed system. But, in our
case we exploit the asymmetry between HDFS and the database,
and scan the database table twice. Since HDFS scan is a domi-
nating cost, scanning the database table twice, especially when we
can leverage indexes, does not introduce significant overhead. As
a result, our zigzag join algorithm provides robust performance in
many cases.

With the need of hybrid warehouses, joins across shared-nothing
parallel databases and HDFS have recently received significant at-
tention. Most of the work either simply moves the database data to
HDFS [37, 38], or moves the HDFS data to the database through
bulk loading [38, 17], external tables [41, 17] or connectors [18,
38]. There are many problems with these approaches. First, HDFS
tables are usually pretty big, so it is not always feasible to load them
into the database. Second, such bulk reading of HDFS data into the
database introduces an unnecessary burden on the carefully man-
aged EDW resources. Third, database data gets updated frequently,
but HDFS still does not support updates properly. Finally, all these
approaches assume that the HDFS side does not have proper SQL
support that can be leveraged.

Microsoft Polybase [13], Pivotal HAWQ [15], TeraData SQL-
H [14], and Oracle Big Data SQL [28] all provide on-line approaches
by moving only the HDFS data required for a given query dynami-
cally into the database. They try to leverage both systems for query
processing, but only simple predicates and projections are pushed
down to the HDFS side. The joins are still evaluated entirely in the
database. Polybase [13] considers split query processing, but joins
are performed on the Hadoop side only when both tables are stored
in HDFS.

Hadapt [7] also considers split query execution between the database
and Hadoop, but the setup is very different. As it only uses single-
node database severs for query execution, the two tables have to be
either pre-partitioned or shuffled by Hadoop using the same hash
function before the corresponding partitions can be joined locally
on each database.

In this paper, we show that as the data size grows it is better to
execute the join on the HDFS side, as we end up moving the smaller
database table to the HDFS side.

Enabling the cooperation of multiple autonomous databases for
processing queries has been studied in the context of federation [21,
2, 34, 40, 30] since the late 1970s. Surveys on federated database
systems are provided in [35, 22]. However, the focus has largely
been on schema translation and query optimization to achieve max-
imum query push down into the component databases. Little at-
tention has been paid on the actual data movement between dif-
ferent component databases. In fact, many federated systems still
rely on JDBC or ODBC connection to move data through a sin-
gle data pipe. In the era of big data, even with maximum query
push down, such naive data movement mechanisms result in seri-
ous performance issues, especially when the component databases
are themselves massive distributed systems. In this paper, we pro-
vide parallel data movement by fully exploiting the massive paral-
lelism between a parallel database and a join execution engine on
HDFS to speed up the data movement when performing joins in the
hybrid warehouse.
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7. CONCLUSION
In this paper, we investigated efficient join algorithms in the con-

text of a hybrid warehouse, which integrates HDFS with an EDW.
We showed that it is usually more beneficial to execute the joins
on the HDFS side, which is contrary to the current solutions which
always execute joins in the EDW. We argue that the best hybrid
warehouse architecture should execute joins where the bulk of the
data is. In other words, it is better to move the smaller table to the
side of the bigger table, whether it is in HDFS or in the database.
This hybrid warehouse architecture requires a sophisticated execu-
tion engine on the HDFS side, and similar SQL capabilities on both
sides. Given the recent advancement on SQL-on-Hadoop solutions
[19, 20, 33], we believe this hybrid warehouse solution is now fea-
sible. Finally, our proposed zigzag join algorithm, which performs
joins on the HDFS side, utilizing Bloom filters on both sides, is the
most robust algorithm that performs well in almost all cases.
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ABSTRACT
Smart electricity meters have been replacing conventional meters
worldwide, enabling automated collection of fine-grained (every
15 minutes or hourly) consumption data. A variety of smart meter
analytics algorithms and applications have been proposed, mainly
in the smart grid literature, but the focus thus far has been on what
can be done with the data rather than how to do it efficiently. In
this paper, we examine smart meter analytics from a software per-
formance perspective. First, we propose a performance benchmark
that includes common data analysis tasks on smart meter data. Sec-
ond, since obtaining large amounts of smart meter data is diffi-
cult due to privacy issues, we present an algorithm for generat-
ing large realistic data sets from a small seed of real data. Third,
we implement the proposed benchmark using five representative
platforms: a traditional numeric computing platform (Matlab), a
relational DBMS with a built-in machine learning toolkit (Post-
greSQL/MADLib), a main-memory column store (“System C”),
and two distributed data processing platforms (Hive and Spark).
We compare the five platforms in terms of application development
effort and performance on a multi-core machine as well as a cluster
of 16 commodity servers. We have made the proposed benchmark
and data generator freely available online.

1. INTRODUCTION
Smart electricity grids, which incorporate renewable energy

sources such as solar and wind, and allow information sharing
among producers and consumers, are beginning to replace con-
ventional power grids worldwide. Smart electricity meters are a
fundamental component of the smart grid, enabling automated col-
lection of fine-grained (usually every 15 minutes or hourly) con-
sumption data. This enables dynamic electricity pricing strategies,
in which consumers are charged higher prices during peak times
to help reduce peak demand. Additionally, smart meter data ana-
lytics, which aims to help utilities and consumers understand elec-
tricity consumption patterns, has become an active area in research
and industry. According to a recent report, utility data analytics is
already a billion dollar market and is expected to grow to nearly 4
billion dollars by year 2020 [16].

c� 2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0
.

A variety of smart meter analytics algorithms have been pro-
posed, mainly in the smart grid literature, to predict electricity
consumption and enable accurate planning and forecasting, extract
consumption profiles and provide personalized feedback to con-
sumers on how to adjust their habits and reduce their bills, and
design targeted engagement programs to clusters of similar con-
sumers. However, the research focus has been on the insights that
can be obtained from the data rather than performance and pro-
grammer effort. Implementation details were omitted, and the pro-
posed algorithms were tested on small data sets. Thus, despite the
increasing amounts of available data and the increasing number of
potential applications1, it is not clear how to build and evaluate a
practical and scalable system for smart meter analytics. This is ex-
actly the problem we study in this paper.

1.1 Contributions
We begin with a benchmark for comparing the performance of

smart meter analytics systems. Based on a review of the related
literature (more details in Section 2), we identified four common
tasks: 1) understanding the variability of consumers (e.g., by build-
ing histograms of their hourly consumption), 2) understanding the
thermal sensitivity of buildings and households (e.g., by building
regression models of consumption as a function of outdoor tem-
perature), 3) understanding the typically daily habits of consumers
(e.g., by extracting consumption trends that occur at different times
of the day regardless of the outdoor temperature) and 4) finding
similar consumers (e.g., by running times series similarity search).
These tasks involve aggregation, regression and time series analy-
sis. Our benchmark includes a representative algorithm from each
of these four sets.

Second, since obtaining smart meter data for research purposes
is difficult due to privacy concerns, we present a data generator for
creating large realistic smart meter data sets from a small seed of
real data. The real data set we were able to obtain consists of only
27,000 consumers, but our generator can create much larger data
sets and allows us to stress-test the candidate systems.

Third, we implement the proposed benchmark using five state-
of-the-art platforms that represent recent data management trends,
including in-database machine learning, main-memory column
stores, and distributed analytics. The five platforms are:

1. Matlab: a numeric computing platform with a high-level lan-
guage;

2. PostgreSQL: a traditional relational DBMS, accompanied by
MADLib [17], an in-database machine learning toolkit;

1See, e.g., a recent competition sponsored by the United States
Department of Energy to create new apps for smart meter data:
http://appsforenergy.challengepost.com.
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3. “System C”: a main-memory column-store commercial sys-
tem (the licensing agreement does not allow us to reveal the
name of this system);

4. Spark [28]: a main-memory distributed data processing plat-
form;

5. Hive [25]: a distributed data warehouse system built on top
of Hadoop, with an SQL-like interface.

We report performance results on our real data set and larger re-
alistic data sets created by our data generator. Our main finding is
that System C performs extremely well on our benchmark at the
cost of the highest programmer effort: System C does not come
with built-in statistical and machine learning operators, which we
had to implement from scratch in a non-standard language. On the
other hand, MADLib and Matlab make it easy to develop smart me-
ter analytics applications, but they do not perform as well as Sys-
tem C. In cluster environments with very large data sizes, we found
Hive easier to use than Spark and not much slower. Spark and Hive
are competitive with System C in terms of efficiency (throughput
per server) for several of the workloads in our benchmark.

Our benchmark (i.e., the data generator and the
tested algorithms) is freely available for download at
https://github.com/xiufengliu. Due to privacy issues, we are
unable to share the real data set or the large synthetic data sets
based upon it. However, a smart meter data set has recently
become available at the Irish Social Science Data Archive2 and
may be used along with our data generator to create large publicly
available data sets for benchmarking purposes.

1.2 Roadmap
The remainder of this paper is organized as follows. Section 2

summarizes the related work; Section 3 presents the smart meter
analytics benchmark; Section 4 discusses the data generator; Sec-
tion 5 presents our experimental results; and Section 6 concludes
the paper with directions for future work.

2. RELATED WORK

2.1 Smart Meter Data Analytics
There are two broad areas of research in smart meter data analyt-

ics: those which use whole-house consumption readings collected
by conventional smart meters (e.g., every hour) and those which
use high-frequency consumption readings (e.g., one per second)
obtained using specialized load-measuring hardware. We focus on
the former in this paper, as these are the data that are currently col-
lected by utilities.

For whole-house smart meter data feeds, there are two classes of
applications: consumer and producer-oriented. Consumer-oriented
applications provide feedback to end-users on reducing electricity
consumption and saving money (see, e.g., [10, 21, 24]). Producer-
oriented applications are geared towards utilities, system operators
and governments, and provide information about consumers such
as their daily habits for the purposes of load forecasting and clus-
tering/segmentation (see, e.g., [1, 3, 5, 8, 12, 13, 14, 15, 22, 23]).

From a technical standpoint, both of the above classes of appli-
cations perform two types of operations: extracting representative
features (see, e.g., [8, 10, 13, 14]) and finding similar consumers
based on the extracted features (see, e.g., [1, 12, 23, 24, 26]).
Household electricity consumption can be broadly decomposed
into the temperature-sensitive component (i.e., the heating and
2http://www.ucd.ie/issda/data/commissionforenergyregulationcer/

cooling load) and the temperature-insensitive component (other ap-
pliances). Thus, representative features include those which mea-
sure the effect of outdoor temperature on consumption [4, 10, 23]
and those which identify consumers’ daily habits regardless of tem-
perature [1, 8, 13], as well as those which measure the overall vari-
ability (e.g., consumption histograms) [3]. Our smart meter bench-
mark, which will be described in Section 3, includes four represen-
tative algorithms for characterizing consumption variability, tem-
perate sensitivity, daily activity and similarity to other consumers.

We also point out recent work on smart meter data quality
(specifically, handling missing data) [18], symbolic representation
of smart meter time series [27], and privacy (see, e.g., [2]). These
important issues are orthogonal to smart meter analytics, which is
the focus of this paper.

2.2 Systems and Platforms for Smart Meter
Data Analytics

Traditional options for implementing smart meter analytics in-
clude statistical and numeric computing platforms such as R and
Matlab. As for relational database systems, two important tech-
nologies are main-memory databases, such as “System C” in
our experiments, and in-database machine learning, e.g., Post-
greSQL/MADLib [17]. Finally, a parallel data processing platform
such as Hadoop or Spark is an interesting option for cluster environ-
ments. We have implemented the proposed benchmark in systems
from each of the above classes (details in Section 5).

Smart meter analytics software is currently offered by several
database vendors including SAP3 and Oracle/Data Raker4, as well
as startups such as Autogrid.com, C3Energy.com and OPower.com.
However, it is not clear what algorithms are implemented by these
systems and how.

There has also been some recent work on efficient retrieval of
smart meter data stored in Hive [20], but that work focuses on sim-
ple operational queries rather than the deep analytics that we ad-
dress in this paper.

2.3 Benchmarking Data Analytics
There exist several database (e.g., TPC-C, TPC-H and TPC-DS)

and big data5 benchmarks, but they focus mainly on the perfor-
mance of relational queries (and/or transactions) and therefore are
not suitable for smart meter applications. Benchmarking time se-
ries data mining was discussed in [19]. Different implementations
of time series similarity search, clustering, classification and seg-
mentation were evaluated. While some of these operations are
relevant to smart meter analytics, there are other important tasks
such as extracting consumption profiles that were not evaluated in
[19]. Additionally, [19] evaluated standalone algorithms whereas
we evaluate data analytics platforms. Furthermore, [7] bench-
marked data mining operations for power system analysis. How-
ever, its focus was on analyzing voltage measurements from power
transmission lines, not smart meter data, and therefore the tested
algorithms were different from ours. Finally, Arlitt et al. propose a
benchmark for smart meter analytics that focuses on routine com-
putations such as finding top customers and calculating monthly
bills [9]. In contrast our work aims to discover more complex pat-
terns in energy data. Their workload generator uses a Markov chain
model that must be trained using a real data set.

3http://www.sap.com/pc/tech/in-memory-computing-
hana/software/smart-meter-analytics/index.html
4http://www.oracle.com/us/products/applications/utilities/meter-
data-analytics/index.html
5https://amplab.cs.berkeley.edu/benchmark
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We also note that the TCP benchmarks include the ability to gen-
erate very large synthetic databases, and there has been some re-
search on synthetic database generation (see, e.g., [11]), but we are
not aware of any previous work on generating realistic smart meter
data.

3. THE BENCHMARK
In this section, we propose a performance benchmark for smart

meter analytics. The primary goal of the benchmark is to measure
the running time of a set of tasks that will be defined shortly. The
input consists of n time series, each corresponding to one elec-
tricity consumer, in one or more text files. We assume that each
time series contains hourly electricity consumption measurements
(in kilowatt-hours, kWh) for a year, i.e., 365 ⇥ 24 = 8760 data
points. For each consumption time series, we require an accompa-
nying external temperature time series, also with hourly measure-
ments.

For each task, we measure the running time on the input data set,
both with a cold start (working directly from the raw files) and a
warm start (working with data loaded into physical memory). In
this version of the benchmark, we do not consider the cost of up-
dates, e.g., adding a day’s worth of new points to each time series.
However, adding updates to the benchmark is an important direc-
tion for future work as read-optimized data structures that help im-
prove running time may be expensive to update.

Utility companies may have access to additional data about their
customers, e.g., location, square footage of the home or family size.
However, this information is usually not available to third-party
applications. Thus, the input to our benchmark is limited to the
smart meter time series and publicly-available weather data.

We now discuss the four analysis tasks included in the proposed
benchmark.

3.1 Consumption Histograms
The first task is to understand the variability of each consumer.

To do this, we compute the distribution of hourly consumption for
each consumer via a histogram. The x-axis in the histogram de-
notes various hourly consumption ranges and the y-axis is the fre-
quency, i.e., the number of hours in the year whose electricity con-
sumption falls in the given range. For concreteness, in the proposed
benchmark we specify the histograms to be equi-width (rather than
equi-depth) and we always use ten buckets.

3.2 Thermal Sensitivity
The second task is to understand the effect of outdoor tem-

perature on the electricity consumption of each household. The
simplest approach is to fit a least-squares regression line to the
consumption-temperature scatter plot. However, in climates with a
cold winter and warm summer, electricity consumption rises when
the temperature drops in the winter (due to heating) and also rises
when the temperature rises in the summer (due to air conditioning).
Thus, a piecewise linear regression model is more appropriate.

We selected the recently-proposed algorithm from [10] for the
benchmark, to which we refer as the 3-line algorithm. Consider a
consumption-temperature scatter plot for a single consumer shown
in Figure 1 (the actual points are not shown, but a point on this plot
would correspond to a particular hourly consumption value and the
outdoor temperature at that hour). The upper three lines correspond
to the piecewise regression lines computed only for the points in
the 90th percentile for each temperature value and the lower three
lines are computed from the points in the 10th percentile for each
temperature value. Thus, for each time series, the algorithm starts
by computing the 10th and 90th percentiles for each temperature
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Figure 1: Example of the 3-line regression model.

value and then computes the two sets of regression lines. In the final
step, the algorithm ensures that the three lines are not discontinuous
and therefore it may need to adjust the lines slightly.

As shown in Figure 1, the 3-line algorithm extracts useful infor-
mation for customer feedback. For instance, the slopes (gradients)
of the left and right 90th percentile lines correspond to the heat-
ing and cooling sensitivity, respectively. A high cooling gradient
might indicate an inefficient air conditioning system or a low air
conditioning set point. Additionally, the height at the lowest point
on the 10th percentile lines indicates base load, which is the elec-
tricity consumption of appliances and devices that are always on
regardless of the temperature (e.g., a refrigerator, a dehumidifier,
or a home security system).

3.3 Daily Profiles
The third task is to extract daily consumption trends that occur

regardless of the outdoor temperature. For this, we use the periodic
autoregression (PAR) algorithm for time series data from [8, 13].
The idea behind this algorithm is illustrated in Figure 2. At the top,
we show a fragment of the hourly consumption time series for some
consumer over a period of several days. We are only given the total
hourly consumption, but the goal of the algorithm is to determine,
for each hour, how much load is temperature-independent and how
much additional load is due to temperature (i.e., heating or cool-
ing). Once this is determined, the algorithm computes the average
temperature-independent consumption at each hour of the day, il-
lustrated at the bottom of Figure 2. Thus, for each consumer, the
output consists of a vector of 24 numbers, denoting the expected
consumption at different hours of the day due solely to the occu-
pants’ daily habits and not affected by temperature.

For each consumer and each hour of the day, the PAR algorithm
fits an auto-regressive model, which assumes that the electricity
consumption at that hour of the day is a linear combination of the
consumption at the same hour over the previous p days (we use p =
3, as in [8]) and the outdoor temperature. Thus, it groups the input
data set by consumer and by hour, and computes the coefficients of
the auto-regressive model for each group.

3.4 Similarity Search
The final task is to find groups of similar consumers. Customer

segmentation is important to utilities so they can determine how
many distinct groups of customers there are and design targeted
energy-saving campaigns for each group. Rather than choosing
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Figure 2: Example of a daily profile.

a specific clustering algorithm for the benchmark, we include a
more general task: for each of the n time series given as input,
we compute the top-k most similar time series (we use k = 10).
The similarity metric we use is cosine similarity. Let X and Y be
two time series. The cosine similarity between them is defined as
their dot product divided by the product of their vector lengths, i.e,

X·Y
||X||⇤||Y || .

3.5 Discussion
To recap, the proposed benchmark consists of 1) the consump-

tion histogram, 2) the 3-line algorithm for understanding the ef-
fect of external temperature on consumption, 3) the periodic auto-
regression (PAR) algorithm to extract typical daily profiles and 4)
the time series similarity search to find similar consumers. The first
three algorithms analyze the electricity consumption of each house-
hold in terms of its distribution, its temperature sensitivity and its
daily patterns. The fourth algorithm finds similarities among differ-
ent consumers. While many more smart meter analytics algorithms
have been proposed, we believe the four tasks we have chosen accu-
rately represent a variety of fundamental computations that might
be used to extract insights from smart meter data.

In terms of computational complexity, the first three algorithms
perform the same task for each consumption time series and there-
fore can be parallelized easily, while similarity search has quadratic
complexity with respect to the number of time series. Comput-
ing histograms requires grouping the time series according to con-
sumption values. The 3-line algorithm additionally requires group-
ing the data by temperature, and requires statistical operators such
as quantiles and least-squares regression lines. The PAR and simi-
larity algorithms require time series operations. Thus, the proposed
benchmark tests the ability to extract different segments of the data
and run various statistical and time series operations.

4. THE DATA GENERATOR
Recall from Section 3 that the proposed benchmark requires n

time series as input, each corresponding to an electricity consumer.
Testing the scalability of a system therefore requires running the

benchmark with increasing values of n. Since it is difficult to ob-
tain large amounts of smart meter data due to privacy issues, and
since using randomly-generated time series may not give accurate
results, we propose a data generator for realistic smart meter data.

The intuition behind the data generator is as follows. Since elec-
tricity consumption depends on external temperature and daily ac-
tivity, we start with a small seed of real data and we generate the
daily activity profiles (recall Figure 2) and temperature regression
lines (recall Figure 1) for each consumer therein. To generate a
new time series, we take the daily activity pattern from a randomly-
selected consumer in the real data set, the temperature dependency
from another randomly-selected consumer, and we add some white
noise. Thus, we first disaggregate the consumption time series of
existing consumers in the seed data set, and we then re-aggregate
the different pieces in a new way to create a new consumer. This
gives us a realistic new consumer whose electricity usage combines
the characteristics of multiple existing consumers.

Figure 3 illustrates the proposed data generator. As a pre-
processing step, we use the PAR algorithm from [13] to generate
daily profiles for each consumer in the seed data set. We then run
the k-means clustering algorithm (for some specified value of k,
the number of clusters) to group consumers with similar daily pro-
files. We also run the 3-line algorithm and record the heating and
cooling gradients for each consumer.

Now, creating a new time series proceeds as follows. We ran-
domly select an activity profile cluster and use the cluster centroid
to obtain the hourly consumption values corresponding to daily ac-
tivity load. Next, we randomly select an individual consumer from
the chosen cluster and we obtain its cooling and heating gradients.
We then need to input a temperature time series for the new con-
sumer and we have all the information we need to create a new
consumption time series6. Each hourly consumption measurement
of the new time series is generated by adding together 1) the daily
activity load for the given hour, 2) the temperature-dependent load
computed by multiplying the heating or cooling gradient by the
given temperature value at that hour, and 3) a Gaussian white noise
component with some specified standard deviation �.

5. EXPERIMENTAL RESULTS
This section presents our experimental results. We start with an

overview of the five platforms in which we implemented the pro-
posed benchmark (Section 5.1) and a description of our experimen-
tal environment (Section 5.2). Section 5.3 then discusses our ex-
perimental findings using a single multi-core server, including the
effect of data layout and partitioning (Section 5.3.1), the relative
cost of data loading versus query execution (Section 5.3.2), and the
performance of single-threaded and multi-threaded execution (Sec-
tion 5.3.3 and 5.3.4, respectively). In Section 5.4, we investigate the
performance of Spark and Hive on a cluster of 16 worker nodes. We
conclude with a summary of lessons learned in Section 5.5.

5.1 Benchmark Implementation
We first introduce the five platforms in which we implemented

the proposed benchmark. Whenever possible, we use native statis-
tical functions or third-party libraries. Table 1 shows which func-
tions were included in each platform and which we had to imple-
ment ourselves.

The baseline system is Matlab, a traditional numeric and statisti-
cal computing platform that reads data directly from files. We use

6In our experiments, we used the temperature time series corre-
sponding to the southern-Ontario city from which we obtained the
real data set.
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Figure 3: Illustration of the proposed data generator.

Table 1: Statistical functions built into the five tested platforms
Function Matlab MADLib System C Spark Hive

Histogram yes yes no no yes
Quantiles yes yes no no no

Regression yes yes no third third
and party party
PAR library library

Cosine no no no no no
Similarity

the built-in histogram, quantile, regression and PAR functions, and
we implemented our own (very simple) cosine similarity function
by looping through each time series, computing its similarity to ev-
ery other time series, and, for each time series, returning the top 10
most similar matches.

We also evaluate PostgreSQL 9.1 and MADLib version 1.4 [17],
which is an open-source platform for in-database machine learn-
ing. As we will explain later in this section, we tested two ways of
storing the data: one measurement per row, and one customer per
row with all the measurements for this customer stored in an array.
Similarly to Matlab, everything we need except cosine similarity
is built-in. We implemented the benchmark in PL/PG/SQL with
embedded SQL, and we call the statistical functions directly from
within SQL queries. We use the default settings for PostgreSQL7.

Next, we use System C as an example of a state-of-the-art com-
mercial system. It is a main-memory column store geared towards
time series data. System C maps tables to main memory to improve
I/O efficiency. In particular, at loading time, all the files are mem-
ory mapped to speed up subsequent data access. However, System
C does not include a machine learning toolkit, and therefore we
implemented all the required statistical operators as user-defined
functions in the procedural language supported by it.

We also use Spark [28] as an example of an open-
source distributed data processing platform. Spark reports im-
proved performance on machine learning tasks over standard
Hadoop/MapReduce due to better use of main memory [28]. We

7We also experimented with turning off concurrency control and
write-ahead-logging which are not needed in our application, but
the performance improvement was not significant.

use the Apache Math library for regression, but we had to imple-
ment our own histogram, quantile and cosine similarity functions.
We use the Hadoop Distributed File System (HDFS) as the under-
lying file system for Spark.

Finally, we test another distributed platform, Hive [25], which is
built on top of Hadoop and includes a declarative SQL-like inter-
face. Hive has a built-in histogram function, and we use Apache
Math for regression. We implemented the remaining functions
(quantiles and cosine similarity) in Java as user-defined functions
(UDFs). The data are stored in Hive external tables.

In terms of programming time to implement our benchmark,
PostgreSQL/MADLib required the least effort, followed by Mat-
lab and Hive, while Spark and especially System C required by far
the most effort. In particular, we found Hive UDFs easier to write
than Spark programs. However, since we did not conduct a user
study, these programmer effort observations should be treated as
anecdotal.

In the remainder of this section, we will refer to the five tested
platforms as Matlab, MADLib, C (or System C), Spark and Hive.

5.2 Experimental Environment
We run each of the four algorithms in the benchmark using each

of the five platforms discussed above, and measure the running
times and memory consumption. We use the following two test-
ing environments.

• Our server has an Intel Core i7-4770 processor (3.40GHz,
4 Cores, hyper-threading is enabled, two hyper-threads per
core), 16GB RAM, and a Seagate hard drive (1TB, 6 GB/s,
32 MB Cache and 7200 RPM), running Ubuntu 12.04 LTS
with 64bit Linux 3.11.0 kernel. PostgreSQL 9.1 is installed
with the settings “shared _buffers= 3072MB, temp_ buffers=
256MB, work_ mem=1024MB, checkpoint_segments =64"
and default values for other configuration parameters.

• We also use a dedicated cluster with one administration node
and 16 worker nodes. The administration node is the mas-
ter node of Hadoop and HDFS, and clients submit jobs
there. All the nodes have the same configuration: dual-
socket Intel(R) Xeon(R) CPU E5-2620 (2.10GHz, 6 cores
per socket, and two hyper-threads per core), 60GB RAM,
running 64bit Linux with kernel version 2.6.32. The nodes
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Figure 6: Cold-start vs. warm-start,
3-line algorithm, 10GB real dataset.

are connected via gigabit Ethernet, and a working directory
is NFS-mounted on all the nodes.

Our real data set consists of n = 27, 300 electricity consumption
time series, each with hourly readings for over a year. We also
obtained the corresponding temperature time series. The total data
size is roughly 10 GB. We also use the proposed data generator to
create larger synthetic data sets of size up to one Terabyte (which
corresponds to over two million time series), and experiment with
them in Section 5.4.

5.3 Single-Server Results
We begin by comparing Matlab, MADLib and System C running

on a single multi-core server, using the real 10GB dataset.

5.3.1 Data Loading and File Partitioning
First, we investigate the effect of loading and processing one

large file containing all the data versus one file per consumer. Fig-
ure 4 shows the time it took to load our 10-GB real data set into
the three systems tested in this section, both in a partitioned (one
file per consumer, abbreviated “part.”) and non-partitioned (one big
file, abbreviated “un-part.”) format. The partitioned data load also
includes the cost of splitting the data into small files. The loading
time into PostgreSQL is the slowest of the three systems, but it is
more efficient to bulk-load one large CSV file than many smaller
files. System C is not significantly affected by the number of files.
Matlab does not actually load any data and instead reads from files
directly. The single bar reported for Matlab, of roughly 4.5 min-
utes, simply corresponds to the time it took to split the data set into
small files.

Once data are loaded into tables in PostgreSQL or System C, the
number of input files no longer matters. However, Matlab reads
data directly from files, so the goal of our next experiment is to
investigate the performance of analytics in Matlab given the two
partitioning strategies discussed above. Figure 5 shows the running
time of the 3-line algorithm using Matlab on (partitioned and non-
partitioned) subsets of our real data sets sized from 0.5 to 2 GB.
(We observed similar trends when running the other algorithms in
the benchmark). The impact on Matlab is significant: it operates
much more efficiently if each consumer’s data are in a separate file.
Upon further investigation, we noticed that Matlab reads the entire
large file into an index which is then used to extract individual con-
sumers’ data; this is slower than reading small files one-by-one and
running the 3-line algorithm on each file directly.

Based on the results of this experiment, in the remainder of this
section, we always run Matlab with one file per consumer.

5.3.2 Cold Start vs. Warm Start
Next, we measure the time it takes each system to load data into

main memory before executing the 3-line algorithm (we saw sim-
ilar trends when testing other algorithms from the benchmark). In
cold-start, we record the time to read the data from the underly-
ing database or filesystem and run the algorithm. In warm-start,
we first read the data into memory (e.g., into a Matlab array, or in
PostgreSQL, we first run SELECT queries to extract the data we
need) and then we run the algorithm. Thus, the difference between
the cold-start and warm-start running times corresponds to the time
it takes to load the data into memory.

Figure 6 shows the results on the real data set. The left bars
indicate cold-start running times, whereas the right bars represent
warm-start running times and are divided into three parts: T1 is the
time to compute the 10th and 90th quantiles, T2 is the time to com-
pute the regression lines and T3 is the time to adjust the lines in case
of any discontinuities in the piecewise regression model. Cold-start
times are higher for all platforms, but Matlab and MADLib spend
the most time loading data into their respective data structures, fol-
lowed by System C. Overall, System C is easily the fastest and the
most efficient at data loading—most likely due to efficient memory-
mapped I/O. Also note that for each system, T2, i.e., the time to run
least-squares linear regression, is the most costly component of the
3-line algorithm.

Figure 6 suggests that System C is noticeably more efficient than
Matlab even in the case of warm start, when Matlab has all the data
it needs in memory. There are at least two possible explanations
for this: Matlab’s data structures are not as efficient as System C’s,
especially at the data sizes we are dealing with, or Matlab’s im-
plementation of linear regression and other statistical operators is
not as efficient as our hand-crafted implementations within Sys-
tem C. We suspect it is the former. To confirm this hypothesis, we
measured the running time of multiplying two randomly-generated
4000x4000 floating-point matrices in Matlab and System C. In-
deed, Matlab took under a second, while System C took over 5
seconds.

5.3.3 Single-Threaded Results
We now measure the cold-start running times of each algorithm

in single-threaded mode (i.e., no parallelism). System C has con-
figuration parameters that govern the level of parallelism, while
for Matlab, we start a single instance, and for MADLib, we es-
tablish a single database connection. We use subsets of our real
data sets with sizes between 2 and 10 GB for this experiment. The
running time results are shown in Figure 7 for 3-line, PAR, his-
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(a) 3-line (b) PAR (c) Histogram (d) Similarity

Figure 7: Single-threaded execution times of each algorithm using each system.

(a) 3-line (b) PAR (c) Histogram (d) Similarity

Figure 8: Memory consumption of each algorithm using each system.

Figure 9: Two table layouts for storing smart meter data in
PostgreSQL.

togram construction and similarity search, from left to right. Note
that the Y-axis of the rightmost plot is different: similarity search
is slower than the other three tasks, and the Matlab and MADLib
curves end at 4GB because the running time on larger data sets was
prohibitively high. System C is the clear winner: it is a commercial
system that is fast at data loading thanks to memory-mapped I/O,
and fast at query execution since we implemented the required sta-
tistical operators in a low-level language. Matlab is the runner-up
in most cases except for histogram construction, which is simpler
than the other tasks and can be done efficiently in a database system
without optimized vector and matrix operations. MADLib has the
worst performance for 3-line, PAR and similarity search.

Figure 8 shows the corresponding memory consumption of each
algorithm for each platform; the plots correspond to running the
“free -m” command every five seconds throughout the runtime of
the algorithms and taking the average. Matlab and System C have
the lowest memory consumption; recall that for Matlab, we use sep-
arate files for different consumers’ data and therefore the number
of files that need to be in memory at any given time is limited.

In terms of the tested algorithms, 3-line has the lowest mem-
ory usage since it only requires the 10th and 90th percentile data
points to compute the regression lines, not the whole time series.
The memory footprint of PAR and histogram construction is higher
because they both require the whole time series. The memory us-
age of similarity search is higher still, especially for Matlab and
MADLib, both of which keep all the data in memory for this task.
On the other hand, since System C employs memory-mapped files,
it only loads what is required.

The relatively poor performance of MADLib may be related to
its internal storage format. In the next experiment, we check if us-
ing the PostgreSQL array data type improves performance. Table 1
in Figure 9 shows the conventional row-oriented schema for smart
meter data which we have used in all the experiments so far, with
a household ID, the outdoor temperature, and the electricity con-
sumption reading (plus the timestamp, which is not shown). That
is, each data point of time time series is stored as a separate row, and
a B-tree index is built on the household ID to speed up the extrac-
tion of all the data for a given consumer. Table 2 in Figure 9 stores
one row for each consumer (household) and uses arrays to store all
the temperature and consumption readings for the given consumer
using the same positional encoding. Using arrays, the running time
of 3-line on the whole 10 GB data set went down from 19.6 min-
utes to 11.3 minutes, which is faster than Matlab and Spark but
still much slower than System C (recall the leftmost plot in Fig-
ure 7). The other algorithms also ran slightly faster but not nearly
as fast as in System C: the PAR running time went down from 34.9
to 30 minutes, the histogram running time went down from 7.8 to
6.8 minutes, and the running time of similarity search (using 6400

391
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Figure 10: Speedup of execution time on a single multi-core server using the 10GB real dataset.

(a) 3-line algorithm (b) PAR algorithm (c) Histogram construction (d) Similarity search

Figure 11: Execution times using large synthetic data sets.

households, which works out to about 2 GB) went down from 58.3
to 40.5 minutes. Finally, we also experimented with a table layout
in between those in Table 1 and Table 2, namely one row per con-
sumer per day, which resulted in running times in between those
obtained from Table 1 and Table 2.

5.3.4 Multi-Threaded Results
We now evaluate the ability of the tested platforms to take advan-

tage of parallelism. Our server has 4 cores with two hyper-threads
per core and so we vary the number of processes from 1 to 8. Again,
we can do so directly in System C, but we need to manually run
multiple instances of Matlab and start up multiple database con-
nections in MADLib. The histogram, 3-line and PAR algorithms
are easy to parallelize as each thread can run on a subset of the
consumers without communicating with the other threads. Simi-
larity search is harder to parallelize because for each time series,
we need to compute the cosine similarity to every other time series.
We do this by running parallel tasks in which each task is allocated
a fraction of the time series and computes the similarity of its time
series with every other time series.

Figures 10(a)–10(d) show the speedup obtained by increasing
the number of threads from 1 to 8 for each algorithm. Again, we
continue to use the 10-GB real data set. Each plot includes a di-
agonal line indicating ideal speedup (i.e., using two connections or
cores would be twice as fast as using one).

The results show that Matlab and System C can obtain nearly-
linear speedup when the degree of parallelism is no greater than
four. This makes sense since our server has four physical cores,
and increasing the level of parallelism beyond four brings diminish-
ing returns due to increasing resource contention (e.g., for floating

point units) among hyper-threads. Matlab appears to scale better
than MADLib, but this may be an artifact of how we simulate par-
allelism for these two platforms: Matlab instances effectively run
in a shared-nothing fashion because each consumer’s data are in a
separate file, while MADLib uses multiple connections to the same
database server, with each connection reading data from a single
table.

5.4 Cluster Results
We now focus on the performance of Spark and Hive on a clus-

ter using large synthetic data sets. We set the number of parallel
executors for Spark and the number of MapReduce tasks for Hive
to be up to 12 per node, which is the number of physical cores8.

5.4.1 System C vs. Spark and Hive
In the previous batch of experiments, System C was the clear

performance winner in a single-server scenario. We now compare
System C against the two distributed platforms, Spark and Hive,
on large synthetic data sets of up to 100GB (for similarity search,
we use 6,000 up to 32,000 time series). This experiment is unfair
in the sense that we run System C on the server (with maximum
parallelism level of eight hyper-threads) but we run Spark and Hive
on the cluster. Nevertheless, the results are interesting.

Figure 11 shows the running time of each algorithm. Up to 40GB
data size, System C is keeping up with Spark and Hive despite run-
ning on a single server. Similarity search performance of System C
8We experimented with different values of these parameters and
found that Spark was not sensitive to the number of parallel execu-
tors while Hive generally performed better with more MapReduce
tasks up to a certain point.
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(a) 3-Line, PAR and Histogram construc-
tion; 100GB data set

(b) Similarity search, 32k households

Figure 12: A comparison of throughput per server of System C, Spark and Hive.

(a) 3-Line (b) PAR (c) Histogram (d) Similarity

Figure 13: Execution times using the first data format in Spark and Hive.

is also very good.
Figure 12 illustrates another way of comparing the three systems

that is more fair. Part (a) shows the throughput, for 3-Line, PAR
and histogram construction, in terms of how many households can
be handled per second per server when using the 100GB synthetic
data set. That is, we divide the total throughput of Spark and Hive
by 16, the number of worker nodes in the cluster. Using this metric,
even at 100GB, System C is competitive with Spark and Hive on 3-
Line and PAR, and better on the simple algorithm of histogram con-
struction. Similarly, part (b) shows that the throughput per server
for similarity search is higher for System C at 32k households.

5.4.2 Spark vs. Hive using Different Data Formats
In this experiment, we take a closer look at the relative perfor-

mance of Spark and Hive and the impact of the file format, using
synthetic data sets up to a Terabyte. We use the default HDFS
text file format, with default serialization, and without compres-
sion. The three options we test are: 1) one file (that may be par-
titioned arbitrarily) with one smart meter reading per line, 2) one
file with one household per line (i.e., all the readings from a single
household on a single line), and 3) many files, with one or more
households per file (but no household scattered among many files),
and one smart meter reading per line. Note that while the first for-
mat is the most flexible in terms of storage, it may require a reduce
step for the tested algorithms since we cannot guarantee that all the
data for a given household will be on the same server. The second
and third options do not require a reduce step.

In Hive, we use three types of user-defined functions with the
three file formats: generic UDF (user defined function), UDAF

(user defined aggregation function) and UDTF (user defined table
function). UDF and UDTF typically run at the map side for the
scalar operations on a row, while UDAF runs at the reduce side for
an aggregation operations on many rows. We use a UDAF for the
first format since we need to collate the numbers for each household
to compute the tested algorithms. We use a generic UDF for the
second format, for which map-only jobs suffice. We use a UDTF
for the third format since UDTFs can process a single row and do
the aggregation at the map side, which functions as a combiner.
For the third format, we also need to customize the file input for-
mat, which takes a single file as an input split. We overwrite the
isSplitable() method in the TextInputFormat class by
returning a false value, which ensures that any given time series
is processed in a self-contained manner by a single mapper.

First data format. Figure 13 shows the execution time of the
four tested algorithms on various data set sizes up to a Terabyte.
Spark is noticeably faster for similarity search (in Hive, we imple-
mented this as a self-join, which resulted in a query plan that did not
exploit map-side joins, whereas in Spark we directly implemented
similarity search as a MapReduce job with broadcast variables and
map-side joins), slightly faster for PAR and histogram construction,
and slower for 3-Line construction as the data size grows. Figure 14
shows the speedup relative to using only 4 out of 16 worker nodes
for the Terabyte data set, with the number of worker nodes on the
X-axis. Hive appears to scale slightly better as we increase the
number of nodes in the cluster. Finally, Figure 15 shows the mem-
ory usage as a function of the data set size, computed the same way
as in Figure 8. Spark uses more memory than Hive, especially as
the data size increases. As for the different algorithms, 3-Line is
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(a) 3-Line (b) PAR (c) Histogram (d) Similarity, 64k households

Figure 14: Speedup obtained using the first data format in Spark and Hive.

(a) 3-Line (b) PAR (c) Histogram (d) Similarity

Figure 15: Memory consumption of each algorithm in Spark and Hive.

the most memory-intensive because it requires temperature data in
addition to smart meter data.

Second data format. Figure 16 and 17 show the execution times
and the speedup, respectively, with one time series per line. For
3-Line, PAR and histogram construction, we do not require a re-
duce step. Therefore the running times are lower than for the first
data format, in which a single time series may be scattered among
nodes in the cluster. Spark and Hive are very close in terms of
running time because they perform the same HDFS I/O. We also
see a higher speedup than with the first data format thanks to map-
only jobs, which avoid an I/O-intensive data shuffle among servers
compared to jobs that include both map and reduce phases. Simi-
larity search is slightly faster than with the first data format; most
of the time is spent on computing the pair-wise similarities, and
the only time savings in the second data format are due to not hav-
ing to group together the readings from the same households. Note
that similarity search still requires a reduce step to sort the simi-
larity scores for each households and find the top-k most similar
consumers.

Third data format. Here, we only use the 100GB data set with
a total of 260,000 households and we vary the number of files from
10 to 10,000; recall that in the third data format, the readings from
a given time series are guaranteed to be in the same file. We test
two options in Hive: a UDTF with the customized file input format
described earlier, and a UDAF in which a reduce step is required.
We do not test similarity search since the distance calculations be-
tween pairs of time series cannot be done in one UDTF operation.
Figure 18 and Figure 19 show the execution times and the speedup,
respectively. Hive with UDTF wins in this format since it does
not have to perform a reduce step. Furthermore, while Hive does

not seem to be affected by the number of files, at least between
10 and 10,000, Spark’s performance deteriorates as the number of
files increases. In fact, we also experimented with more files, up to
100,000, and found that Spark was not even runnable due to “too
many files open” exceptions.

5.5 Lessons Learned
Our main finding is that System C, which is a commercial main-

memory column store, is the best choice for smart meter analytics
in terms of performance, provided that the resources of a single
machine are sufficient. However, System C lacks a built-in ma-
chine learning toolkit and therefore we had to invest significant
programming effort to build efficient analytics applications on top
of it. On the other hand, Matlab and MADLib are likely to be more
programmer-friendly but slower. Furthermore, we found that Mat-
lab works better if each customer’s time series is stored in a sepa-
rate file and that PostgreSQL/MADLib works well when the smart
meter data are stored using a hybrid row/column oriented format.

As for the two distributed solutions, Spark was slightly faster but
Hive scaled slightly better as we increased the number of worker
nodes. Moreover, we found Hive easier to use due to its DBMS-like
features and a declarative language. Furthermore, we showed that
the choice of data format matters; we obtained best performance
when each time series was on a separate line, which eliminated the
need to group data explicitly by household ID and thus avoided an
I/O-intensive data shuffle among servers. This feature allows our
implementations to remain competitive in terms of efficiency with
respect to System C for 3-line and PAR, whereas cluster computing
frameworks in general are known to suffer from poor efficiency
compared to centralized systems [6].
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(a) 3-Line (b) PAR (c) Histogram (d) Similarity

Figure 16: Execution times using the second data format in Spark and Hive.

(a) 3-Line (b) PAR (c) Histogram (d) Similarity, 64k households

Figure 17: Speedup obtained using the second data format in Spark and Hive.

6. CONCLUSION AND FUTURE WORK
Smart meter data analytics is an important new area of research

and practice. In this paper, we studied smart meter analytics from
a software performance perspective. We proposed a performance
benchmark for smart meter analytics consisting of four common
tasks, and presented a data generator for creating very large smart
meter data sets. We implemented the proposed benchmark us-
ing five state-of-the-art data processing platforms and found that
a main-memory column-store system offers the best performance
on a single machine, but systems such as MADLib/PostgreSQL
and Matlab are more programmer-friendly due to built-in statistical
and machine learning operators. In cluster environments, we found
Hive easier to use than Spark and not much slower. Compared
to centralized solutions, we found Hive and Spark competitive in
terms of efficiency for CPU-intensive data-parallel workloads (3-
line and PAR).

We are currently building a smart meter analytics system that in-
cludes the four algorithms from the proposed benchmark and many
more. As part of this ongoing project, we are investigating new
ways of improving the efficiency and effectiveness of smart me-
ter data mining algorithms, including parallel implementation. An-
other interesting direction for future work is to investigate real-time
applications using high-frequency smart meters (which are not yet
widely available, but are likely to become cheaper and more com-
mon in the future), such as alerts due to unusual consumption read-
ings, using data stream processing technologies. Finally, we are
interested in developing a general time series analytics benchmark
for a wider range of applications.
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ABSTRACT

Crowd-selection is essential to crowdsourcing applications, since

choosing the right workers with particular expertise to carry out

specific crowdsourced tasks is extremely important. The central

problem is simple but tricky: given a crowdsourced task, who is

the right worker to ask? Currently, most existing work has mainly

studied the problem of crowd-selection for simple crowdsourced

tasks such as decision making and sentiment analysis. Their crowd-

selection procedures are based on the trustworthiness of workers.

However, for some complex tasks such as document review and

question answering, selecting workers based on the latent category

of tasks is a better solution.

In this paper, we formulate a new problem of task-driven crowd-

selection for complex tasks. We first develop a bayesian gener-

ative model to exploit “who knows what” for the workers in the

crowdsourcing environment. The model provides a principle and

natural framework for capturing the latent skills of workers as well

as the latent categories of crowdsourced tasks. The inference of

the latent skills of workers is based on past resolved crowdsourced

tasks with feedback scores. We assume that the feedback scores

can illustrate the performance of the workers for the tasks. We then

devise a variational algorithm that transforms the latent skill infer-

ence with the proposed model into a standard optimization prob-

lem, which can be solved efficiently. We verify the performance

of our method through extensive experiments on the data collected

from three well-known crowdsourcing platforms for question an-

swering tasks such as Quora, Yahoo ! Answer and Stack Overflow.

1. INTRODUCTION
In recent years, crowdsourcing techniques [18] have attracted a

lot of attention due to their effectiveness in real-life applications.

They tackle the tasks including image tagging [19], decision mak-

ing [12, 16] and natural language processing, which are hard for

computers, but relatively easy for human workers. Some successful
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Research, Beijing, China.

C 2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
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crowdsourcing examples for question answering tasks that appear

include Quora [23], Yahoo ! Answer [5] and Stack Overflow [1],

where users submit questions and get answers from the crowd. Us-

ing crowdsourcing techniques, these tasks can be solved well by

human workers.

Despite the success of crowdsoucing techniques, the crowd-selection

still remains challenging. Earlier approaches usually focus on the

problem of crowd-selection for simple tasks where the selection

procedure is based on the trustworthiness of workers [12, 7, 16, 31,

2]. However, in many cases, the task-driven crowd-selection is a

better solution. Consider a question answering task t, “What are the

advantages of B+ Tree over B Tree?”. The existing crowd-selection

procedure may not work in this case. Since the trustworthy workers

may not be skilled in the area of computer science, therefore, they

may not be able to answer this question.

In this paper, we formulate a new problem of task-driven crowd-

selection. We focus on addressing the following three challenging

issues.

• Crowd Modeling. We extend the crowd modeling from single-

dimensional trustworthiness to multi-dimensional skills for

task-driven crowd-selection. Thus, we model the strength-

s and weaknesses of workers on latent category of tasks.

However, the existing latent skill models [28, 33] based on

Multinomial distribution1 are difficult to apply to our prob-

lem. The skill values on the latent categories are normalized

to one for the property of Multinomial distribution. Thus, the

skills of workers on specific latent categories cannot be com-

parable. For example, the latent skills of worker wi is (CS

0.9, Math 0.1) and the latent skills of worker wj is (CS 0.8,

Math 0.2). Given a CS-based task above, the existing mod-

els select wi since its skill value on CS is higher. However,

it might be that wj is better on CS while wj solves more

Math-based tasks. Thus, the skill value of their models can-

not infer the strengths and weaknesses of workers on specific

latent categories. We propose a novel crowd model to tackle

this problem.

• Latent Skill Inference. The probabilistic inference for the

latent skills of workers is based on the past resolved tasks.

The existing inference approaches are either based on the

content of tasks [28, 33, 32] or answer consistency with other

workers [19]. However, we argue that the skills of workers

are not necessarily related to the number of their resolve tasks

or the difference between their answers and others. We con-

sider the feedback score of the resolved tasks to illustrate the

1http://en.wikipedia.org/wiki/Multinomial_
distribution
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latent skills of workers. We argue that the feedback score is

a better quality measure for the job done by workers. Nowa-

days, the feedback score has been widely used in crowd-

sourcing platforms such as the satisfactory rate in Amazon

Mechanical Turk 2 and Crowdflower 3 , and the thumbs-up

in Question Answering System like Quora, Yahoo ! Answer

and Stack Overflow. We propose a novel latent skill infer-

ence method based on resolved tasks with feedback scores.

• Incremental Crowd-Selection. The crowdsourced tasks are

always in quantity and arriving in high speed. Therefore, it

is time consuming for latent category inference of the crowd-

sourced tasks in batch. In this work, we first devise a bayesian

model that builds a latent category space and infers the skill-

s of workers on that space based on the past resolved tasks.

Next, we propose an incremental latent category inference

algorithm that projects the newly coming tasks into the ex-

isting latent category space. Then, we can select the workers

who are skilled in these categories to solve the tasks.

In this paper, we propose a bayesian model for task-driven crowd-

selection. Our contributions are summarized as follows:

• We first propose the problem of task-driven crowd-selection

for crowdsourced tasks.

• We propose a novel crowd model for modeling the skills

on latent category space that enables the task-driven crowd-

selection. The model also makes the skills of workers on

specific latent task categories become comparable.

• We make the use of the feedback scores of the resolved tasks

for latent skill inference. We consider the the feedback scores

as the quality measure of the job done by the workers.

• We devise a variational algorithm that transforms the com-

plex latent skill inference problem into a high-dimensional

optimization problem, which can be solved efficiently.

• We develop an incremental crowd-selection algorithm that

chooses the right workers for coming crowdsourced tasks in

the real time.

• We evaluate our algorithm on the data collected from three

well-known crowdsourcing applications Quora, Yahoo ! An-

swer, and Stack Overflow. For all datasets tested, we show

that the quality of the selected workers based on our crowd

model is more superior to that of other existing worker mod-

els including TSPM [8] and DRM [28].

Organizations. The rest of the paper is organized as follows.

Section 2 gives an overview of the architecture of our method. Sec-

tion 3 surveys the related works. Section 4 presents our bayesian

model for task-driven crowd-selection. Section 5 introduces a vari-

ational algorithm for our proposed model. We present the incre-

mental crowd-selection procedure in Section 6. We report the ex-

perimental results in Section 7 and conclude the paper in Section 8.

2. OVERVIEW
In this section, we give an overview of the architecture for task-

driven crowd-selection.

We illustrate the architecture of our task-driven crowd-selection

system in Figure 1. The core component of our system is crowd

2https://www.mturk.com/
3http://crowdflower.com/

Figure 1: An Architecture for Task-Driven Crowd-Selection

manager. The main functionalities of crowd manager are laten-

t skill inference for workers and choose the right crowd for giv-

en crowdsourced tasks. The crowd model is stored in the crowd

databases which support crowd insertion, crowd update and crowd

retrieval. The red lines show the process of latent skill inference for

workers as well as build latent category space for tasks, which is

based on resolved tasks with feedback scores. The crowd databas-

es are then updated. The blue line show the process of task-driven

crowd-selection. Given a coming crowdsourced task, the crowd

manager first projects it into the built latent category space. Nex-

t, the crowd manager returns the workers online as the candidate

crowd for this task. The crowd manager then ranks the workers

who are skilled in this task. The top ranked workers are chosen

for solving the task. After that, the task dispatcher distributes this

task to the selected workers. Finally, the system keeps collect the

answers return by the selected workers.

In summary, our task-driven crowd-selection system can auto-

matically ask the right crowd to process the crowdsourced tasks.

The system is able to incrementally project the coming tasks to the

existing latent category space such that the workers can be chosen

in the real time. In the following sections, we present the idea and

the methods of implementing this task-driven crowd-selection sys-

tem.

3. RELATED WORK
Crowdsourcing has been widely used to solve challenging prob-

lems by human intelligence in comprehensive areas. Some suc-

cessful applications that appear include CrowdDB [6], Qurk [14],

CrowdSearch [29], HumanGS [15] and CDAS [12].

Recently, the crowdsourcing techniques have been applied in

several research areas such as database management, machine learn-

ing and information retrieval. The crowdsourcing techniques on en-

tity resolution were studied in [24, 26]. CrowdScreen [16] applied

the crowdsourcing techniques in decision making. Guo et al. [9]

and Venetis et al. [21] studied the problem of finding maximum

element in the crowdsourcing databases. In [20], Trushkowsky et

al proposed a method for crowdsourced enumerated query. In [4],

Davidson et al proposed the top-k and group-by queries on crowd-

sourcing databases. Kaplan et al [11] aimed to select the right ques-

tion for planing queries. Zhang et al [30] reduced the uncertainty

for schema matching using crowdsourcing techniques. Marcus et

al [13] studied the count query with the crowd. Park et al [17] aimed

to find a best query query plan for crowdsourced data. Welinder et

al [25] and Gao et al [7] proposed crowdsourcing based online al-

gorithm to find the ground truth. Wu et al [27] studied the query
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Worker

Latent Category

c1 c2

w1 0.3 2.5

w2 3.4 1.1

w3 4.7 1.1

w4 4.7 0.5

w5 1.8 0.5

w6 2.4 2.7

w7 3.7 0.3

Table W

Worker Feedback

Score

w1 0

w2 3

w3 4

w4 4

w5 2

w6 2

w7 3

Task

Latent 

Category

c1 c2

t 0.9 0.1

Table C

Table S

Task Text

t What are the advantages of B+ Tree over B Tree?

Table T

Vocabulary Model

Figure 2: An Example of Generating Feedback Scores

processing over sensitive crowdsourced data.

The problem of crowd-selection is still the key component in

these crowdsourcing applications, which has been studied in [12, 2,

3, 7]. However, these existing methods choose the crowd based on

the trustworthiness of the workers, which may not be effective for

complex crowdsourced tasks. In this paper, we study the problem

of task-driven crowd-selection. We extend the crowd model from

single-dimensional trustworthiness to multi-dimensional skills and

propose a bayesian model for the skill variance of workers.

The most related works are TSPM [8] and DRM [28] for model-

ing the skills of workers. However, these methods model the skills

of workers based on Multinomial Distribution, which we argue its

limitation that it cannot distinguish the strengths and weaknesses

of workers on specific latent category of the crowdsourced tasks

in Section 1. In our experimental studies, we also show that the

crowd-selection based on our novel crowd model outperforms both

TSPM and DRM.

4. A BAYESIAN MODEL FOR TASK-DRIVEN

CROWD-SELECTION
In this section, we present a bayesian model to infer the laten-

t skills for workers as well as build the latent category of tasks

for task-driven crowd-selection. The model exploits “who knows

what” based on resolved tasks with feedback scores. Specifically,

we calculate the posterior distribution of all possible worker skill-

s, and find the most probable one with the maximum probability.

Intuitively, this model best explains the feedback scores for the re-

solved tasks.

We start by illustrating an example of generating feedback scores

on the jobs for a crowdsourced task, illustrated in Figure 2. After

that, we introduce some basic notions and notations in Section 4.1,

and define the problem in Section 4.2. Then, we present a gen-

erative process for task-driven crowd-selection in Section 4.3 and

define the bayesian model in Section 4.4. We give a summary of

notions and notations in Table 1.

Consider a question answering task “What are the advantages of

B+ Tree over B Tree?” from Quora in Figure 2. We give the latent

categories of this task in Table C. We assume that the vocabularies

of this task are generated by its latent categories and the language

model. The language model is vocabulary distribution over laten-

t task categories. We can see that seven workers answered this

question task and returned their answers. The latent skills of the

workers are given in Table W and the feedback scores for their an-

swers are given in Table S. The feedback scores are the number of

thumbs-up for their returned answers in Quora. We assume that the

feedback scores for the workers are proportional to their skills (i.e.

S ≈ WCT ). For instance, the feedback score of worker w3 can be

interpreted as w3
1 × c1 + w3

2 × c2 = 4.7× 0.9 + 1.1× 0.1 ≈ 4.

Table 1: Summary of Notations

Notation Meaning

T A collection of N tasks {t1, . . . , tN}

W Latent skills of M workers {w1, . . . , wM}

C Latent categories on N tasks {c1, . . . , cN}
A Task assignment {a11, . . . , aij , . . . , aMN}
S Feedback scores {s11, . . . , sij , . . . , sMN}
L Number of vocabularies in the task

vjp The p-th vocabulary in task tj
zjp Latent category of vocabulary vjp in task tj
wi Latent skills of a worker wi = {wi

1, . . . , w
i
K}

cj Latent categories of a task cj = {cj1, . . . , c
j
K}

Σc,νc Prior for latent category

Σw,νw Prior for worker skill

β
z
j
p

Prior for vocabulary

4.1 Notation
In this section, we introduce the notation used in the paper.

4.1.1 Crowdsourced Task T

The crowdsourced task tj is represented as a bag of vocabularies

tj = {(v1,#v1), (v2,#v2), . . ., (vL,#vL)} where #vp is the

number of vocabulary vp in task tj and L is the number of vocab-

ularies. For example, the task tj in Figure 2 can be represented

as tj = {(advantage, 1), (B, 1), (B+, 1), (over, 1), (tree, 2),
(what, 1)}. We denote a collection of N crowdsourced tasks as T .

4.1.2 Latent Task Category C

The latent category of a task tj is considered as a probability

distribution cj = {cj1, c
j
2, . . . , c

j
K} where K is the number of la-

tent categories. We consider that c
j
k is the probability of task tj in

category ck. The sum of the probability of a task tj on the latent

categories is c
j
1+c

j
2 . . .+c

j
K = 1. For example, the latent category

of task tj in Figure 2 is cj = {cj1, c
j
2} = {0.9, 0.1}. We consider a

collection of latent category of N crowdsourced tasks as C.

4.1.3 Latent Worker Skill W

The latent skills of worker wi on K categories is wi = {wi
1,

wi
2, . . ., wi

K} where wi
k is a positive real number illustrating the

ability of the worker on the latent category ck. For example, the

latent skills of workers w2 is {w2
1, w

2
2} = {3.4, 1.1} and the latent

skills of worker w1 is {w1
1, w

1
2} = {0.3, 2.5}. For latent category

c1 based task, employing w2 is a better choice. On the other hand,

the performance of w2 is better on c2 based task. We denote a

collection of the latent skills of M workers as W . We explain the

inference of W in Section 4.3.

4.1.4 Task Assignment A

The task assignment A is a N × M binary matrix where the

entry aij indicates the assignment of task tj to worker wi (i.e. aij

can be either 0 or 1). In this paper, we assume that a task can be

assigned to more than one worker and a worker can have multiple

tasks. For example, the assignment of task tj and worker w1 is

a1j = 1 in Figure 2. The task assignment A can be incremented

when new tasks are resolved or new workers are involved in the

crowdsourcing environment.

4.1.5 Task Feedback Score S
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The task feedback score S is a N×M matrix where the entry sij
indicates the score of the job done by worker wi on task tj . For ex-

ample, the feedback score of worker w2 on task tj is 3 in Figure 2.

The range of feedback score depends on the specific crowdsourcing

applications. Here, we introduce two types of feedback scores used

in this work.

• Best Answer. We consider the best answer as the feedback to

illustrate the quality of answers in Yahoo ! Answer. The best

answer is given by the question asker. Consider a resolved

question answering task tj . For the worker wi receives best

answer, the feedback score on the work is sij = 1. For

other workers, we define feedback scores for them based on

Jaccard distance between their answers and the best answer

where 0 ≤ skj ≤ 1 and k ̸= i.

• Thumbs-up. We regard thumbs-up as the feedback to illus-

trate the quality of answers in both Quora and Stack Over-

flow. The thumbs-up for answers are given by the users

of Quora and Stack Overflow. We consider the number of

thumbs-up as the feedback score sij .

4.2 Problem Definition
We now formulate the problem of task-driven crowd-selection as

follows:

Given a task tj , how to choose the right online workers who

are skilled in solving the task? We build a bayesian model based

on resolved crowdsourced task (T,A, S) such that the following

computational issues are effectively addressed: (1) For the coming

task tj , it can be projected to the latent category space cj of our

model. (2) After solving the task, the skills of workers involved

can be updated. Thus, the task-driven crowd-selection is based on

the strengths of workers on the latent category of the task wi(cj)T .

The top-k crowd-selection is to find a subset R of k workers such

that

R = arg max
|R|=k

∑

i∈R

w
i(cj)T (1)

where (cj)T is a transposed vector of latent category cj .

4.3 A Generative Process
In this section, we illustrate the generative process for the feed-

back scores on the task-driven crowd-selection. For brevity, we

show the generative process of the feedback scores S = {s11, . . .,

sNM} based on N crowdsourced tasks T = {t1, t2, . . ., tN} and

M workers W = {w1, w2, . . ., wM}.

Now, we denote a set of model parameters ϕ = {W , Σw, C,

Σc, τ , βc}. The parameters W and Σw are the prior for latent

worker skill while C and Σc are the prior for latent task category.

The parameter τ is variance between the feedback score and the

predictive performance of the workers. The parameter βc is the

language model that generates the vocabularies of the task based on

latent category c. We outline the generative process in Algorithm 1.

4.3.1 Generating Latent Worker Skill W

For the latent skills of worker wi ∈ W , we assume that the skills

on the latent categories are generated from a Normal distribution,

given by

w
i ∼ Normal(µw,Σw)

∼ 1

(2π)K/2|Σw|1/2
exp{−1

2
(wi − µw)

T
Σ

−1
w (wi − µw)}

(2)

where µw is the mean of the skills on latent categories and Σw

is the correlation of skills on latent categories. It is a generalized

way to model the skills on latent categories while a special way is

to assume the independence of skills on latent categories. In that

case, Σw is a diagonal matrix.

4.3.2 Generating Latent Task Category C

For the latent category of task tj ∈ T , we assume that cj is

generated from a Normal distribution, given by

c
j ∼ Normal(µc,Σc)

∼ 1

(2π)K/2|Σc|1/2
exp{−1

2
(cj − µc)

T
Σ

−1
c (cj − µc)}

(3)

where µc is the latent category distribution for all the crowdsourced

tasks. The parameter Σc is the correlation of latent category distri-

bution for all the crowdsourced tasks.

4.3.3 Generating Task Vocabulary V

For the latent category of vocabulary vjp in task tj , we assume zjp
is generated from a discrete distribution, given by

z
j
p ∼ Discrete(logistic(cj))

∼ exp(cjk)
∑K

k=1 exp(c
j
k)

. (4)

where logistic(cj) is a logistic function that transforms the latent

category cj to a discrete distribution.

Based on the latent category zjp, the vocabulary is generated from

a discrete distribution, given by

v
j
p ∼ β

z
j
p
= p(vjp|β, z

j
p) (5)

where β is a vocabulary distribution over latent categories. The

parameter β is used as the language model to generate the vocabu-

laries of all the crowdsourced tasks.

4.3.4 Generating Task Feedback Score S

For the feedback score sij on the task tj assigned to the worker

wi, we assume that sij is generated from a Normal distribution,

given by

sij ∼ Normal(wi(cj)T , τ)

∼ 1

τ
√
2π

exp{− (sij − wi(cj)T )2

2τ2
} (6)

where the parameter τ is the variance of the Normal distribution.

The product wi(cj)T is the predictive performance of worker wi

on the task tj .

We now present the details of the generative process for the feed-

back scores S on the crowdsourced task T in Algorithm 1. Algo-

rithm 1 generates the skills of workers by Normal distribution with

parameters µw and Σw from Line 1 to Line 3. Next, Algorithm 1

generates latent categories for the crowdsourced tasks by Normal

distribution with parameters µc and Σc in Line 5. The latent cat-

egory of the vocabulary zjp is generated by a discrete distribution

with logistic function based on cj in Line 7. Then, the vocabular-

ies of task tj is generated by the language model β and the latent

category for vocabularies zj in Line 8. After that, Algorithm 1 gen-

erates the feedback scores S on the workers for the tasks T from

Line 1 to Line 15. The feedback score is generated by Normal

distribution based on the predictive performance of workers on the

task wi(cj)T . Finally, Algorithm 1 returns the feedback score S in

Line 16.
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Algorithm 1 Generating feedback scores for resolved tasks

Input: A set of tasks T , task assignment A, a set of model

parameters ϕ = {W , Σw, C, Σc, τ , βc}
Output: Feedback scores S

1: for each worker wi ∈ W do

2: Choose skills wi by Equation 2.

3: end for

4: for each task tj ∈ T do

5: Choose latent category cj by Equation 3

6: for each vocabulary vjp ∈ tj do

7: (a) Choose a latent category zjp by Equation 4

8: (b) Choose the text for vocabulary vjp by Equation 5

9: end for

10: end for

11: for each crowdsourced task tj ∈ T do

12: for each employed worker wi ∈ Aj do

13: Generate feedback score sij by Equation 6

14: end for

15: end for

16: return feedback scores S

4.4 Model Definition
In the previous discussion, we described a generative process for

the feedback scores on the crowdsourced tasks. We now formally

define a bayesian model that represents the underlying joint distri-

bution over the vocabularies of tasks V and the feedback scores of

tasks S.

Given a set of model parameters ϕ = {µw, Σw, µc, Σc, τ , β},

and task assignment A, we factorize the joint distribution over V

and S, given by

p(V, S|A,ϕ) =

∫

C

∫

W

p(W |µw,Σw)p(C|µc,Σc)p(Z|C)

× p(V |Z,β)p(S|WC
T
, τ)dCdW

where

p(W |µw,Σw) =
∏

wi∈W

p(wi|µw,Σw),

p(C|µc,Σc) =
∏

cj∈C

p(cj |µc,Σc),

p(Z|C) =
∏

tj∈T

L
∏

p=1

discrete(logistic(cj)),

p(V |Z) =
∏

tj∈T

L
∏

p=1

β
z
j
p
,

p(S|WC
T
, τ) =

∏

tj∈T

∏

aij=1

p(sij |w
i(cj)T , τ),

and p(wi|µw,Σw), p(c
j |µc,Σc), discrete(logistic(cj)), βz

j
p

, and

p(sij |w
i(cj)T , τ) are defined from Equation 2 to Equation 6, re-

spectively. For brevity, we omit the conditional part of the joint

distribution p(V, S|A,ϕ) and abbreviate it to p(V, S) in the rest of

this paper.

Based on the model, the problem of worker skill estimation prob-

lem can be transformed into a probabilistic inference problem, name-

ly, finding the maximum a posterior (MAP) configuration of the

worker skill W and latent task category C conditioning on the re-

solved tasks (V, S). That is to find

(W ∗
, C

∗
, Z

∗) = arg max
W,C,Z

p(W,C,Z|V, S) (7)

where p(W,C,Z|V, S) is the posterior distribution of W and C

given collected resolved tasks (V, S). However, it is difficult to

compute the joint posterior distribution of W and C,

p(W,C,Z|V, S) =

∫

ϕ

p(W,C,Z,ϕ|V, S)dϕ (8)

where

p(W,C,Z,ϕ|V, S) =
p(W,C,Z,ϕ, V, S)

∫

W,C,Z,ϕ
p(W,C,Z,ϕ, V, S)dWdCdZdϕ

.

This distribution is intractable to compute due to the coupling be-

tween the model parameters in ϕ. To tackle this problem, we de-

velop an efficient and effective approximation in the next section.

5. A VARIATIONAL ALGORITHM
In this section, we propose a variational algorithm to approxi-

mate the distribution p(W,C,Z|V, S) defined in Equation 8. The

basic idea of our variational algorithm is to approximate the distri-

bution p(W,C,Z|V, S) using a variational distribution q(W,C,Z)
that is tractable for the maximization over W , C and Z in Equa-

tion 7.

5.1 Family of Variational Distributions
We restrict the variational distribution to a family of distributions

that factorize as follows:

q(W,C,Z) =

M
∏

i=1

q(wi)

N
∏

j=1

(q(cj)

L
∏

p=1

q(zjp)).

Then, we further require the distribution in this family to take the

following parametric form:

q(W,C,Z|λw, νw,λc, νc,φ)

=
M
∏

i=1

q(wi|λi
w, diag((ν

i
w)

2))
N
∏

j=1

(q(cj |λj
c, diag((ν

j
c )

2))

×
L
∏

p=1

q(zjp|φ
j
p)),

where

q(wi|λi
w, diag((ν

i
w)

2)) = Normal(λi
w, diag((ν

i
w)

2)),

q(cj |λj
c, diag((ν

j
c )

2)) = Normal(λj
c, diag((ν

j
c )

2)),

q(zjp|φ
j
p) = discrete(φj

p).

diag(·) is a diagonal matrix where the entries outside the main di-

agonal are all zero. Here λi
w, diag((νi

w)
2), λj

c, diag((νj
c )

2), φj
p

are variational parameters. For brevity, we denote the collection of

variational parameters as ϕ′ = {λw, diag(ν
2
w),λc, diag(ν

2
c ),φ}
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in the rest of the paper. Thus, the inference for W , C, and Z in

Equation 7 can be simplified as follows:

(W ∗
, C

∗
, Z

∗)

= [argmax
w1

q(w1), . . . , argmax
wM

q(wM ),

argmax
c1

q(c1), . . . , argmax
cN

q(cN ),

argmax
z1

q(z1), . . . , argmax
zN

q(zN )]

= [arg max
λ1
w,diag((ν1

w)2)
q(w1), . . . , arg max

λM
w ,diag((νM

w )2)
q(wM ),

arg max
λ1
c,diag((ν

1
c )

2)
q(c1), . . . , arg max

λN
c ,diag((νN

c )2)
q(cN ),

argmax
φ1

q(z1), . . . , argmax
φN

q(zN )].

5.2 Stationary Points of L(q)

The goal of the variational algorithm is to find the variational dis-

tribution that is close to the true posterior p(W,C,Z|V, S). This is

equivalent to optimizing the variational parameters ϕ′ with respect

to some distance measure, given by

ϕ
′ = argmax

ϕ′
D(q(ϕ′)||p(W,C,Z|V, S))). (9)

In this work, we adopt the Kullback-Leibler (KL) divergence which

is commonly used to measure the difference between two distribu-

tions. It is defined as

KL(q||p) =

∫

ϕ′

q(ϕ′) log
q(ϕ′)

p(W,C,Z|V, S)
dϕ

′

where KL divergence is a function of the variational parameters

λw, diag(ν2
w), λc, diag(ν2

c ), φ. However, directly optimizing the

KL divergence is infeasible because the KL divergence involves the

term p(W,C,Z|V, S), which is intractable.

Instead, we solve an equivalent maximization problem, whose

objective function is defined as

L(q) =

∫

ϕ′

q(ϕ′) log
p(W,C,Z, V, S)

q(ϕ′)
dϕ

′

= Eq[log p(W |µw, diag(ν
2
w))] + Eq[log p(V |Z,β)]

+ Eq[log p(C|µc, diag(ν
2
c ))] + Eq[log p(Z|C)]

− Eq[log p(W |λw, diag(ν
2
w))]− Eq[log p(Z|φ)]

− Eq[log p(C|λc, diag(ν
2
c )] + Eq[log p(S|WC

T
, τ)].

The expectations are taken with respect to the variational distribu-

tion q(·|·) and subscripts denote the variational parameters involved

in the expressions.

The equivalent between these two optimization problem can eas-

ily be seen as their objective functions sum up to a constant

KL(q||p) + L(q) = log p(V, S).

However, it is difficult to compute the expected log probability of

p(Z|C) in Equation 5. To preserve the lower bound of L(q), we

upper bound the log normalize with a Taylor expansion, given by

Eq[log p(Z|C)] = Eq[Z
T
C]− Eq[log(

K
∑

k=1

exp{Ck})]

≥ Eq[Z
T
C]− ε

−1(
K
∑

k=1

Eq[exp{Ck}])

+ 1− log ε = E
′

q[log p(Z|C)].

where ε is a new variational parameter. Thus, we replace the term

Eq[log p(Z|C)] with E′

q[log p(Z|C)] in L(q) and obtain a lower

bound of L(q), denoted as L′(q).
In order to maximize the objective function L(q), we take the

derivatives of its lower bound L′(q) with respect to the variational

parameters λw, νw, λc, νc, φ, ε, and set these derivatives to zeros.

∇ϕ′L′(q) = (
∂L′(q)

∂λw
,
∂L′(q)

∂νw
,
∂L′(q)

∂λc
,
∂L′(q)

∂νc
,
∂L′(q)

∂φ
,
∂L′(q)

∂ε
) =

−→
0 .

For clarity, we put all the derivations in Appendix 10.1. We report

the solutions to the optimization problem by

λ
i
w = (Σ−1

w +
1

τ2

∑

tj :aij=1

((λj
c)

T
λ
j
c + diag((νj

c )
2)))−1

× (Σ−1
w µw +

1

τ2

∑

tj :aij=1

sijλ
j
c), (10)

(νi
w,k)

2 = (
∑

tj :aij=1

(λj
c,k)

2 + (νj
c,k)

2

τ2
+ Σ

−1
w,kk)

−1
, (11)

φ
j
p ∝ exp(λj

c,v +
1

L

T
∑

j=1

L
∑

p=1

1[vjp = v] log βc,v), (12)

εj =

K
∑

k=1

exp(λj
c,k +

(νj
c,k)

2

2
), (13)

for all i = 1, . . . ,M , k = 1, . . . ,K, and v = 1, . . . , V .

However, L′(q) is not amenable to analytic maximization with

respect to λj
c and νc. Thus, we use the conjugate gradient algorithm

with derivative

∂L′(q)

∂λ
j
c

= (Σ−1
c +

1

τ2

∑

wi:aij=1

(λi
w(λ

i
w)

T + diag((νi
w)

2)))λj
c

+ Σ
−1
c µc +

1

τ2

∑

wi:aij=1

sijλ
i
w + Lφ

j

− 1

εj
exp{λj

c +
(νj

c )
2

2
} (14)

∂L′(q)

∂ν
j
c,k

= (
∑

wi:aij=1

(λi
w,k)

2 + (νi
w,k)

2

τ2
+ Σ

−1
c,kk)(ν

j
c )

2

− 1

εj
exp{λj

c +
(νj

c )
2

2
} (15)

for all j = 1, . . . , N and k = 1, . . . ,K.

5.3 Optimization Procedure
Based on the estimated stationary points, we optimize the model

parameters ϕ = {µw,Σw, µc,Σc, τ,βc,v} in this section.

We take the derivative of the lower bound L′(q) with respect to

the model parameters ϕ, and set these derivatives to zeros.

∇ϕL
′(q) = (

∂L′(q)

∂µw
,
∂L′(q)

∂Σw
,
∂L′(q)

∂µc
,
∂L′(q)

∂Σc
,
∂L′(q)

∂τ
,
∂L′(q)

∂βc,v
) =

−→
0 .

For clarity, we put all the derivations in Appendix 10.2. We re-

port the solutions to the optimization problem by
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Algorithm 2 Iterative Optimization Algorithm

Input: a set of task assignments A, a set of resolved tasks

(W,T,R),a limit on the number of iterations nmax

Output: variational parameters ϕ′ and model parameters ϕ

1: n ← 0
2: repeat

3: (a) Given ϕ, update ϕ′ according to Equations (10)-(15)

4: (b) Given ϕ′, update ϕ according to Equations (16)-(21)

5: n ← n+ 1
6: until L′(q(n))− L′(q(n−1)) ≤ ε or n > nmax

7: return ϕ′ and ϕ

µw =
1

M

M
∑

i=1

λ
i
w (16)

Σw =
1

M

M
∑

i=1

(diag((νi
w)

2) + (λw − µw)(λw − µw)
T )(17)

µc =
1

N

N
∑

j=1

λ
j
c (18)

Σc =
1

N

N
∑

j=1

(diag((νj
c )

2) + (λc − µc)(λc − µc)
T ) (19)

τ
2 =

1

|A|

∑

aij=1

{s2ij + (λi
w)

T
diag((νj

c )
2)λi

w

+ (λj
c)

T
diag((νi

w)
2)λj

c − 2sij(λ
i
w)

T
λ
j
c

+ ((λi
w)

T
λ
j
c)

2 + Tr(diag((νi
w)

2)diag((νj
c )

2))} (20)

βk,v ∝
T
∑

j=1

L
∑

p=1

φ
j
p,k1(v

j
p = v) (21)

for all s = 1, . . . ,K and v = 1, . . . , V .

We present our optimization method in Algorithm 2. Algorith-

m 2 iteratively updates the variational parameters ϕ′ and model

parameters ϕ in Lines 3 and 4 until the objective function becomes

convergent. The objective function L′(q) can be persistently im-

proved by variational algorithm, stated in [22]. Because the value

of L′(q) is finite, Algorithm 2 is guaranteed to converge with a

finite number of iterations.

6. CROWD-SELECTION ALGORITHM
In this section, we introduce our crowd-selection algorithm based

on bayesian model.

Given a new crowdsourced task tj , we want to estimate its latent

category such that the workers skilled in cj can be selected. We first

compute its variational parameters λj
c and νj

c under our bayesian

model with parameters {µc,Σc,βk,v}. The estimation procedure

is similar to Algorithm 2, but the terms depending on worker skil-

l and feedback scores are removed. Thus, we compute its latent

category using conjugate gradient algorithm with derivative

∂L′(q)

∂λ
j
c

= Σ
−1
c λ

j
c + Σ

−1
c µc + Lφ

j − 1

εj
exp{λj

c +
(νj

c )
2

2
} (22)

∂L′(q)

∂ν
j
c,k

= Σ
−1
c,kk(ν

j
c )

2 − 1

εj
exp{λj

c +
(νj

c )
2

2
} (23)

Algorithm 3 Task-Driven Crowd-Selection Algorithm

Input: A task tj , worker skill W , model parameters ϕ, number of

workers k, a limit on the number of iterations nmax

Output: A set of selected workers R

1: n ← 0
2: repeat

3: (a) Update variational λj
c and νj

c by Equations (22)-(23)

4: (b) Update φj and εj by Equations (12)-(13)

5: until n > nmax

6: Sample cj ∼ Normal(λj
c, ν

j
c )

7: Choose selected workers R by Equation 1

8: return selected workers R

and the update for φj and εj are given in Equations 12 and 13.

We now present the details of the task-driven crowd-selection in

Algorithm 3. Given a new task tj and model parameters ϕ, Algo-

rithm 3 selects top-k workers R for this task. In the first phrase,

Algorithm 3 computes the variational parameters λj
c and νj

c for the

latent category of task tj from Line 2 to Line 5. The latent category

for task tj is sampled by a Normal distribution with mean λj
c and

variance νj
c in Line 6. In the second phrase, Algorithm 3 chooses

a set of workers R based on worker skill W and latent category cj

by Equation 1 in Line 7. Finally, Algorithm 3 returns the selected

workers R in Line 8.

7. EXPERIMENTAL STUDY
In this section, we evaluate the performance of our algorithms.

All the algorithms, including those we compared within the exper-

iments, were implemented in Java (we will release all our source

codes if the paper is published) and tested on machines with Win-

dows OS, Intel(R) Core(TM2) Quad CPU 2.66Hz, and 60GB of

RAM memory.

7.1 Datasets
We collect the data from three well-known crowdsourcing appli-

cations Quora, Yahoo ! Answer and Stack Overflow. Some statis-

tics of the datasets are reported in Table 2.

7.1.1 Quora

We gathered our Quora dataset through web-based crawls be-

tween August and early September 2012. We limited these crawls

to 10 requests/second to minimize the impact on Quora4.

We start our crawls using 100 randomly selected questions. The

crawls follow a BFS pattern through the related questions link for

each question. In total, we collect 444,000+ unique questions. Each

question page contains a complete list of answers, and the respon-

dent and voters for each answer. As shown in Table 2, this question-

based crawl produced 444,000+ unique questions, 887,000+ unique

answers, and 95,000+ unique users who answered a question. For

each answer, we consider the number of thumbs-up voted by the

crowd as the quality measure.

7.1.2 Yahoo ! Answer

We collect our Yahoo ! Answer dataset5 through its API from

Jan, 2012 onwards. In total, we collect 8866,000+ unique ques-

tions. On the average, each question has around three respondents.

4http://www.quora.com/
5http://answers.yahoo.com/
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Table 2: Statistics of Real Datasets
Dataset Total Questions Total Users Total Answers

Quora 444k 95k 887k

Yahoo ! Answer 8866k 1004k 26903k

Stack Overflow 83k 15k 236k

We also crawl the best answer for each question from Yahoo ! An-

swer, which is used to mark the best answerer. As shown in Ta-

ble 2, the API-based crawl produced 8866,000+ unique questions,

26903,000+ unique answers, and 1004,000+ unique users who an-

swered a question.

7.1.3 Stack Overflow

We download the Stack Overflow dataset from the website6. This

dataset containing the questions and the related answerers posted

between February 18, 2009 and June 7, 2009. For each answer of a

question, the Stack Overflow provides the score of the answer. We

consider the answer with the highest score as the best answer. The

statistics of the dataset is given in Table 2.

7.2 Experimental Settings
We detail the experimental settings in this subsection, including

the algorithm for comparison, the measures we use to assess the

performance of the algorithms.

7.2.1 Algorithms for Comparison

We compare our task-driven crowd-selection algorithm, denoted

as TDPM (Task-Driven Probabilistic Model), to several state-of-

the-art algorithms such as Vector Space Model (VSM), Dual Role

Model (DRM) [28] and Topic Sensitive Probabilistic Model (TSP-

M) [8].

• VSM. The VSM algorithm selects the workers based on the

cosine similarity between the crowdsourced task and the his-

torical tasks resolved by the workers. Consider tj as a bag of

vocabularies for the given task defined in Section 4.1. Then,

we define tiw as a bag of vocabularies of the task resolved by

worker wi where tiw =
⋃

tj :aij=1 t
j . The ranking score of

worker wi is given by

ŝij =
(tj)T tiw

√

(tj)T tj
√

(tiw)T tiw
.

where the numerator (tj)T tiw is a dot product of vocabulary

vectors tj and tiw.

• DRM. The DRM algorithm models the skills of workers as

a Multinomial distribution. Then it carries out the estima-

tion using Probabilistic Latent Semantic Analysis [10] for

skills of worker wi as well as the latent category of the task

cj . Given a crowdsourced task tj , the crowd-selection of

DRM on workers is proportional to the predictive perfor-

mance wi(cj)T .

• TSPM. The TSPM algorithm also models the skills of work-

ers as a Multinomial distribution. The estimation of worker

skill wi and latent category of the task cj are based on La-

tent Dirichlet Allocation. Similarly, the crowd-selection of

TSPM on workers is based on the predictive score of workers

on task tj which is wi(cj)T .

6http://www.ics.uci.edu/˜duboisc/
stackoverflow/

However, the sum of weights on the skills of all workers are nor-

malized to one (i.e.
∑K

k=1 w
i
k = 1) because the property of Multi-

nomial distribution. We argue that their models can not compare

the skills of workers on a specific latent category (i.e. wi
k > w

j
k ?).

We devise another model-based approach to tackle this problem.

7.2.2 Job Quality Assessment

We assess the performance of our algorithm by two measure-

ments: precision and recall.

We employ the formula ACCU to measure the precision of the

crowd-selection algorithms, which is also used in DRM [28] and

TSPM [33]. ACCU is defined as the ratio of the rank of the right

worker to the total number of candidate workers. The formula of

ACCU is given by

ACCU =
|R|−Rbest − 1

|R|− 1

where R is the set of selected workers and Rbest is the rank of right

worker in R. We consider the rank of the best answerer as Rbest

in Yahoo ! Answer while we regard the rank of the worker with

highest score as Rbest in Quora and Stack Overflow.

We propose to use TopK to measure the recall of the crowd-

selection algorithm. The TopK is defined as the ratio of the number

of times that the rank of right worker is less than K to the total

number of crowdsourced tasks N . The formula of TopK is given

by

TopK =
|{tj |Rj

best ≤ K}|

N
.

In this experiment, we evaluate the recall of the crowd-selection

algorithms using Top1 and Top2.

7.3 Performance Results
We report and discuss the performance results of our TDPM,

with VSM, TSPM and DRM, for each of the three datasets as fol-

lows.

7.3.1 Performance on Quora

For Quora dataset, we first extract the group of workers based on

their participation in solving tasks. We denote the group of workers

who solve more than n tasks in Quora as Quoran. For example,

Quora3 is a group of workers who solve more than three tasks

in Quora. Quora1 consists of all the workers in Quora. In this

experiment, we extract nine groups of workers for testing, denoted

as Quora1, Quora2, . . ., Quora9.

To analyze the extracted groups, we define task coverage of a

group to be the ratio of the number of distinct task solved to the

total number of tasks. We illustrate task coverage of the groups

by varying the task participation threshold in Figure 3(a). We also

show the size of the groups by varying the task participation thresh-

old in Figure 3(b). We can see that the task coverage of Quora5

is above 0.92 while the number of workers in Quora5 is around

30,000+ (only one third of the total workers). We can conclude

the size of the group with high task participation threshold is small

and the crowd-selection from these groups can achieve high task

coverage.

Then, we test the performance of the crowd-selection algorithms

on different groups. For fairness, we randomly choose 10k ques-

tions for each group where the right worker for each testing ques-

tion must be in the group.

The running time of the algorithms in Quora for Top1 and Top2

crowd-selection are illustrated in Figures 4(a) and 4(b). We can

see that the running time of all the algorithms increase with respect
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Table 3: Precision of Crowd-Selection Algorithms in Quora (The Best Score in Bold)

Algorithm Quora1 Quora5 Quora9

/Category 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50

VSM 0.859 0.873 0.881

TSPM 0.935 0.936 0.936 0.935 0.935 0.945 0.946 0.947 0.946 0.946 0.953 0.953 0.952 0.953 0.953

DRM 0.936 0.935 0.936 0.936 0.935 0.945 0.946 0.945 0.946 0.948 0.952 0.952 0.954 0.952 0.953

TDPM 0.945 0.948 0.950 0.951 0.951 0.957 0.959 0.961 0.961 0.962 0.962 0.965 0.966 0.966 0.966

Table 4: Recall of Crowd-Selection Algorithms in Quora (The Best Score in Bold)

Algorithm Quora1 Quora2 Quora3 Quora4 Quora5

/TopK 1 2 1 2 1 2 1 2 1 2

VSM 0.733 0.887 0.737 0.891 0.74 0.894 0.743 0.897 0.745 0.899

TSPM 0.882 0.957 0.866 0.939 0.848 0.918 0.831 0.9 0.814 0.882

DRM 0.882 0.956 0.866 0.937 0.844 0.916 0.829 0.9 0.815 0.883

TDPM 0.8906 0.963 0.877 0.944 0.868 0.928 0.852 0.912 0.852 0.912
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Figure 3: Statistics of the Crowd in Quora

to the groups of workers who participate more. This is because

the questions answered by active workers are usually popular and

attract more workers. Thus, the running cost for selecting right

workers increases. We also observe that the running time increases

slowly for DRM, TSPM and our TDPM since the estimation of

latent category of the given task is the main computation cost.

Now, we investigate the effectiveness of the crowd-selection al-

gorithms. For the Quora dataset, we set the number of latent task

category k = 10, 20, 30, 40, and 50, respectively. We demonstrate

the precision of the crowd-selection algorithms in Table 5 and the

recall in Table 6.

We show the precision of the crowd-selection algorithm on three

groups Quora1, Quora5 and Quora9 by varying the number of

latent categories from 10 to 50 in Table 5. We can observe that the

precision of our algorithm is more superior to the other three algo-

rithms on all the number of latent categories set. We can also find

that the precision of all the algorithms increases when we select the

crowd from more active workers (i.e. we select the workers from

the group Quoran). Then, we conclude that the active workers are

usually the providers of the best answers. For all the algorithms

based on the latent category, we notice that the precision increases

and then becomes convergent when we add the number of latent

categories.

We illustrate the recall of the algorithms for Top1 and Top2 Crowd-

Selection on five groups in Table 6. We can see that both Top1 and

Top2 recall of our algorithm is superior than other algorithms for

all groups tested. We can also notice that the TopK recall of all

the algorithms decreases with respect to the groups of workers who

participate more. As mentioned, the questions answered by active

workers are popular and the number of workers increases. Thus,

the Topk crowd-selection becomes uncertain and the TopK recall

of all algorithms decreases in Table 6.
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Figure 4: Running Time of Crowd-Selection Algorithms in

Quora

7.3.2 Performance on Yahoo ! Answer

For Yahoo ! Answer dataset, we extract five groups of workers

for testing, denoted as Y ahoo10, Y ahoo15, . . ., Y ahoo30.

We illustrate task coverage of the groups by varying the task par-

ticipation threshold in Figure 5(a). We also demonstrate the size

of the groups by varying the task participation threshold in Fig-

ure 5(b). We can see that the task coverage of Y ahoo30 is around

0.93 while the number of workers in Y ahoo30 is around 100k (only

one tenth of the total workers).

We also randomly choose 10k questions for testing. The run-

ning time of the algorithms in Yahoo ! Answer for Top1 and Top2

crowd-selection are illustrated in Figures 6(a) and 6(b). We can see

that the running time of all algorithms increase for the questions

answered by more active workers.

Now, we validate the precision of the crowd-selection algorithms

in Table 5 and the recall in Table 6. We report the precision of the

crowd-selection algorithms on Y ahoo10, Y ahoo15 and Y ahoo20
with respect to the number of latent categories. Compared with

Quora, we find the precision of the crowd-selection algorithms on

Yahoo ! Answer converges faster on the number of latent cate-

gories. The precision of VSM is much lower in Table 5. This is

because the questions in Yahoo ! Answer are very short compared

with the questions in Quora. We show the Top1 and Top2 recal-

l of the crowd-selection algorithms on Y ahoo10, Y ahoo15, . . .,

Y ahoo30 in Table 6. Both Top1 and Top2 recall of the crowd-

selection algorithm decrease for the questions selected for more

active workers.

7.3.3 Performance on Stack Overflow

For Stack Overflow dataset, we extract five groups of workers

for testing denoted as Stack1, Stack3, . . ., Stack12.
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Table 5: Precision of Crowd-Selection Algorithms in Yahoo ! Answer (The Best Score in Bold)

Algorithm Y ahoo10 Y ahoo15 Y ahoo20
/Category 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50

VSM 0.665 0.676 0.685

TSPM 0.855 0.849 0.848 0.847 0.847 0.884 0.879 0.878 0.877 0.877 0.905 0.900 0.899 0.899 0.899

DRM 0.846 0.847 0.847 0.847 0.847 0.877 0.878 0.877 0.877 0.877 0.898 0.900 0.8992 0.900 0.898

TDPM 0.945 0.947 0.948 0.949 0.949 0.965 0.969 0.970 0.969 0.970 0.981 0.984 0.984 0.984 0.985

Table 6: Recall of Crowd-Selection Algorithms in Yahoo ! Answer (The Best Score in Bold)

Algorithm Y ahoo10 Y ahoo15 Y ahoo20 Y ahoo25 Y ahoo30
/TopK 1 2 1 2 1 2 1 2 1 2

VSM 0.518 0.721 0.515 0.717 0.511 0.708 0.504 0.702 0.496 0.693

TSPM 0.695 0.833 0.655 0.810 0.644 0.805 0.637 0.802 0.626 0.795

DRM 0.655 0.823 0.636 0.815 0.629 0.811 0.628 0.809 0.626 0.809

TDPM 0.823 0.908 0.815 0.904 0.811 0.903 0.809 0.901 0.809 0.901
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We show task coverage of the groups by varying the task partici-

pation threshold in Figure 7(a). We illustrate the number of workers

in the groups by varying the task participation threshold in Fig-

ure 7(b). We can find that the task cover of Stack12 is around 0.9

while the number of workers in Stack12 is less than 5k (only one

sixth of the total workers).

We randomly choose 1k questions for testing. The running time

of the algorithms in Stack Overflow for Top1 and Top2 crowd-

selection are illustrated in Figures 8(a) and 8(b). We can see that

the running time of all algorithm increase more rapidly than the

running time in Quora and Yahoo ! Answer. This is because that

there are more workers providing answers for popular questions in

Stack Overflow.

We now show the precision of the crowd-selection algorithms

in Table 7. We observe that the precision of crowd-selection algo-

rithms increases quickly when we select active workers. We con-

clude that this is because the users in Stack Overflow usually trust

the workers with high reputation such that the active workers are

more likely to get best score. We also find that the precision of

VSM algorithm is competitive in Table 7. This is because that we

use the wisely labeled tags of the questions for vocabularies of the

tasks. We illustrate the Top1 and Top2 recall of the crowd-selection

algorithms in Table 8. We can notice that the Top1 and Top2 recall

of crowd-selection algorithms in Stack Overflow is lower than the

recall in other two datasets when we select the workers for more

popular questions. We argue that this is because the popular ques-

tions in Stack Overflow attract more workers to solve them.

7.3.4 Conclusion on Performance Comparison

In conclusion, the results in Sections 7.3.1, 7.3.2, and 7.3.3

show that TDPM consistently attains high crowd-selection quality

in terms of both precision and recall. Compared with the state-of-

the-art algorithms, our TDPM algorithm benefits from two aspects
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Figure 6: Running Time of Crowd-Selection Algorithms in Ya-

hoo ! Answer

new worker skill model and task feedback score. The new work-

er skill model makes the skills of workers on latent task categories

become comparable. We also utilize the task feedback score which

can be widely collected in many crowdsourcing platforms to further

improve the estimation of the skills of workers on latent categories.

In this experimental study, we also find that the crowd-selection

from active workers also can greatly improve the precision.

8. CONCLUSION
We studied the problem of task-driven crowd-selection for crowd-

sourced tasks. Unlike the existing works based on the trustworthi-

ness, our work is to devise a bayesian model that exploits “who

knows what” for the workers in crowdsourcing system. The model

builds the latent category space of the crowdsourced tasks as well

as infers the latent skills of workers on the space. The probabilistic

inference for the proposed bayesian model is based on the feedback

scores of the past resolved tasks. We then develop a variational al-

gorithm that transforms the probabilistic inference into a standard

optimization problem, which can be solved efficiently. We also

devise an incremental crowd-selection algorithm that projects the

coming tasks into the existing latent category space and choose the

highly skilled workers for the tasks. We validate the performance

of our algorithm based on the data collected from three well-known

crowdsourcing applications: Quora, Yahoo ! Answer and Stack

Overflow.
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10. APPENDIX

10.1 Variational Parameter Estimation
We derive the partial derivatives one by one, starting with ∂L′

∂λw
.

For simplicity, we collect the terms involving λw in L′ as

L
′

λi
w

= Eq [log p(W |µw, diag(ν
2
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By setting ∂L′
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For φc,v , we have

L
′

φc,v
= Eq [log p(Z|C)] + Eq [log p(V |Z, β)] − Eq [log p(Z|φ)]]

= λcφ + φ log βc,v − φ log φ.

By setting ∂L′

∂φc,v
= 0, we have

φc,v ∝ exp(λ
j
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j
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For ε, we have
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10.2 Model Parameter Estimation
We estimate the model parameters based on the derived varia-

tional parameters.
We first maximize L′(q) with respect to µw, given by

L
′
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=
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By setting ∂L′
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= 0, we have
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The derivations for µc and Σc are similar to the above.
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ABSTRACT
We study the problem of query evaluation with the help of
the crowd, when the value of the queried attributes is not
available in the database and is also hard for the crowd to
estimate. Rather than asking users directly about these at-
tributes, we propose a novel alternative approach that first
uses the crowd to dismantle the query attributes into finer
related ones (whose value estimation is easier), then assem-
ble them to yield better estimation for the query attributes.
We show that it is sometimes beneficial not to only disman-
tle the query attributes themselves, but rather to continue
dismantling newly discovered attributes. We provide a care-
ful statistical analysis to estimate the potential benefit (and
cost) of dismantling each of the so-far-discovered attributes.
Building on this analysis, we present an e↵ective algorithm
that balances between attributes dismantling and obtaining
essential statistics about them (for estimating properties like
“di�culty” and “contribution” of attributes) to decide how
many crowd members should be asked about each attribute
and how the answers should be assembled together. A thor-
ough experimental analysis demonstrates the feasibility and
e↵ectiveness of the approach.

1. INTRODUCTION
We consider the problem of query evaluation with the help

of the crowd, when the value of the query attributes is hard
to estimate. Rather than asking users directly about these
attributes, we propose a novel alternative approach that first
uses the crowd to dismantle the query attributes into finer
related ones (whose value estimation is easier), then assem-
ble them to yield better estimation for the query attributes.

To illustrate, assume that we want to evaluate a query
over a database of objects, testing and retrieving the val-
ues of certain attributes. This is a standard task when
the attribute values are available explicitly in the database,
but becomes challenging when they are not. For example,
consider an imaginary cooking website CrowdCooking.com
(CC) - a large recipes website where people can post their

(c) 2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0.

own recipes and other people can search and use them.
Up until now, CC only allowed basic keyword search, but
they now wish to upgrade their search capabilities to in-
clude more sophisticated searches, allowing people to search,
e.g., for dessert recipes that are easy to make, have less
than X calories and contain a certain amount of proteins.
While NLP/text-analysis techniques could be used to eval-
uate some of these search criteria, this may be costly and
inaccurate. An alternative approach that emerged in recent
years is to use the crowd of web users for finding the value of
the missing query attributes - Is a dish a dessert or not? How
many calories/proteins does it contains? Etc. As crowd an-
swers may be erroneous, a common approach is to ask mul-
tiple users about each missing query attribute and compute
some aggregation (usually average/median) of the answers.
The number of crowd members that need to be asked about
a given attribute is typically determined by the di�culty
of the question and the budget constraints1. For example,
three users probably su�ce to determine with a high prob-
ability that a certain dish is a dessert, but more are likely
to be required to determine its number of calories. In fact,
a key problem of this approach is that some attributes (like
protein amount) are so di�cult or un-intuitive for the crowd
to evaluate, that the convergence to the final answer might
be slow and thus require high budget [31]. Another disad-
vantage is that query attributes are handled separately and
potential mutual information (for example between dessert
and calories) which could be used to reduce the number of
required questions, or to improve accuracy, is ignored.

A first solution to this problem was proposed in [27]. In-
stead of asking the crowd directly about the attributes men-
tioned in the query, it was suggested to also ask for the
value of other (usually simpler) related attributes, and then
derive the value of the query attributes from the answers.
For example, to estimate the amount of protein in a certain
dish one may ask what quantities of high protein ingredi-
ents (such as meat, dairy, eggs, nuts and soy) does it con-
tains. In this solution, queries are processed in two steps:
(1) An o✏ine preprocessing phase that, given a query, de-
termines which object’s attributes should be asked about,
how many users should estimate each of those attributes
and how the obtained values should be assembled together,
and (2) an online query evaluation phase, where each object
in the database is processed using the scheme derived in the
o✏ine step. For example, consider a query about the protein

1In common crowdsourcing platforms, crowd questions have
some (small) monetary cost, and thus the number of ques-
tions per object is typically bounded by the allocated budget
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amount in recipes in CC. Assuming a budget of 20 questions
per recipe, the preprocessing phase may derive a formula of
the form: 0.5protein amount(10) + 0.13grams of meat(3) +
0.15grams of dairy(4) + 3number of eggs(3). In the formula,
attribute name(n) denotes the average value of n users an-
swers when asked about the given attribute. The formula
indicates that rather than using the full budget to ask users
directly about protein amount, a better estimation would be
obtained by asking only 10 crowd members, then averaging
the derived value with a linear combination of estimated
values for three other related attributes - grams of meat,
grams of dairy, number of eggs (computed by asking 3, 4
and 3 crowd members about them, respectively). We will
explain later how such formulas are derived.

While this approach is shown to provide results supe-
rior to those obtained by asking the same overall number
of questions only about the query attributes [27], a great
obstacle is that it requires the use a domain expert that
provides the list of related attributes for each query. This
use of experts-in-the-loop limits the scalability of the ap-
proach and its applicability to fully-automated crowd-only
platforms. In contrast, in the present paper, we provide a
solution which is entirely crowd-based. Our goal is to replace
the domain-expert by the Wisdom of Crowds, asking users
to assist in “dismantling” di�cult attributes and identifying
those related attributes that can assist in query evaluation.
Note that even harder related attributes may improve re-
sults they force di↵erent ways for estimations, which is one
of the foundations of the wisdom of crowds principle.

As we will show, a successful solution will need to ad-
dress two main challenges. The first is determining which
object attributes should we best ask the crowd to disman-
tle. We show that it is sometimes beneficial to not only dis-
mantle the query attributes themselves, but rather to con-
tinue dismantling newly discovered attributes. We provide
a fine hypothetical analysis to estimate the potential ben-
efit (and cost) of dismantling each of the so-far-discovered
attributes and thereby determining which questions to ask
the crowd. The second related challenge that we address
is budget management. Given a budget (e.g., number of
questions that can be asked to the crowd) for the o✏ine
preprocessing step, we need to use it both for dismantling
the query attributes, as well as for obtaining some statistics
about them (e.g., the distribution of user answers, the cor-
relations between attributes value, etc.). Such statistics are
required to estimate properties like “di�culty” and “contri-
bution”of each attribute in order to decide how many crowd
members should be asked about each attribute and how the
answers should be assembled together. Our algorithm pro-
vides a careful analysis that allows to balance the budget
between these two complimentary tasks.

We present in this article the following contributions:

1. We propose a simple and generic model for modeling a
database of objects with infinite unknown attribute names
and values, the type of questions that can be posed to the
crowd and the characteristics of those answers.

2. Given an online per-object budget and an o✏ine prepro-
cessing budget, we use the model to present an algorithm
that ideally uses the o✏ine budget for deriving linear for-
mulas (like the one illustrated above) that best exploit the
online budget for deriving the values of query attributes.
Our algorithm consists of five inter-related components

for which we explain what type of information is required
and what crowd questions may be used to obtain it. We
provide a generic black-box description for each compo-
nent (which allows to plug-in di↵erent implementations)
and propose a concrete implementation.

3. Since the success of our framework depends on the dis-
covery of relevant attributes, we focus our attention on
this problem. We formally show how the potential gain
(and cost) of each possible attribute dismantling ques-
tion can be estimated and how this estimation can then
be used to design an iterative algorithm that optimally
chooses which crowd questions should be asked at each
point. The estimation is based on a careful analysis of
the already gathered information as well as on predic-
tions about the potential e↵ect of each question on the
following algorithm components.

4. Of particular challenge are queries with more than one
attribute. There is a fine tradeo↵ here between the gain
that one may obtain by discovering underlying correla-
tions between attributes, and the cost (in terms of crowd
questions) required for such discovery. Our algorithm uses
a fine analysis of the current data to predict potential con-
tributions and to balance the two.

5. Finally, we present a thorough experimental analysis of
our approach over two real-life data sets as well as syn-
thetic data. We examine the various parts of our al-
gorithm and its performance as a whole. We compare
our algorithm to several existing/alternative approaches,
showing that it consistently outperforms them in achiev-
ing lower average error for the same budget. Our experi-
ments also demonstrate the necessity of di↵erent parts of
the algorithm for accurate attribute dismantling, which
later translates to accurate attribute value estimation.

The paper is organized as follows. The model and all rel-
evant notations are presented in Section 2. To simplify the
presentation we first consider in Section 3 the case where
the query contains a single attribute. Queries with multiple
attributes are then considered in Section 4. Our experimen-
tal study is presented in Section 5. We discuss related work
in Section 6 and conclude in Section 7.

2. PRELIMINARIES
We start by describing our model and notations, then for-

mally define the problem that we study.

Objects, attributes and queries. Our data set consists of
a set of objects. We use O to denote the possibly infinite
domain of objects, and o, oi to denote an individual ob-
ject in O. In our running example, O is the set of all food
recipes. An object may have attributes. We use A to de-
note the domain of attribute names and a,ai to denote an
individual attribute name in A. We focus here on numer-
ical attributes. Boolean attributes may be viewed here as
numerical attributes with a value between 0 and 1, whereas
multi-value attributes can be modeled by one such boolean
attribute per value. In our running example, A includes all
possible recipe properties such as time to prepare, is soup,
is tasty, protein amount, is brown, number of eggs, etc.

For an object o 2 O, an attribute name a 2 A, a set of
objects O ⇢ O and a set of attribute names A ⇢ A, we use

410



the following notations: (1) o.a denotes the value of the at-
tribute a of the object o, (2) o.a(⇤) denotes an estimation of
that value (3) o.A ⌘ {o.a | a 2 A} denotes the set of values
for attributes in A of object o, (4) O.a ⌘ {o.a | o 2 O} is
the set of values of attribute a of the objects in O. We will
sometimes abuse notations and consider these sets as ran-
dom variables over objects in O (to be explained later). Fi-
nally (5) DO⇥A denotes a data table with rows correspond-
ing to objects in O and columns to attributes in A, along
with some representation for each object.

Given a query Q over some data table D, we define A(Q)
as the set of Q’s query attributes. W.l.o.g one may think of
Q as an SQL query and ofA(Q) as the set of attribute names
appearing in Q. In our running example Q might be, for in-
stance, select number of calories, protein amount from CC
where dessert=true. In this example, A(Q) = {is dessert,
number of calories, protein amount}. As some attributes
(and their values) may be missing from the data table D,
we will need to learn them from the crowd.

Crowd questions. Crowd workers may be asked four types
of questions:

Attribute Value Questions (for brevity, value questions)
- Here a crowd member is asked to provide an estimation
of the value of an o.a. An example of a value question
in our running example is showing a worker a recipe and
asking her for the value of number of eggs. For an ob-
ject o 2 O and an attribute a 2 A, o.a(1) denotes the
random variable representing the estimation of one ran-
dom worker’s when asked about o.a. We use the (1) nota-
tion also for estimations of groups of values (for example,
O.A(1) ⌘ {o.a(1) | o 2 O, a 2 A}).

Attribute Dismantling Questions (for brevity, disman-
tling questions) - A crowd member is given here an at-
tribute’s name and requested to give another attribute’s
name that may provide some information about the value
of the former. We assume (as later confirmed in our exper-
iments) that workers are more likely to provide attributes
that are correlative with the attribute in question. An
example for a dismantling question may be which recipe’s
attribute may help estimate its number of calories. An
answer may be is dietetic. For simplicity we assume that
answers that refer to the same property (like large, big,
grand) can be reasonably identified and merged to a single
representative. This may be done, e.g., using a common
thesaurus/NLP tools. (We will show however that our
technique can work even without this).

Dismantling Verification Questions (for brevity, verifi-
cation questions) - Here we use crowd workers to verify
that a previously suggested attribute ai may indeed help
in estimating the value of another attribute aj . An ex-
ample for a verification question is does knowing if a dish
is black may help in determining its number of calories.
The likely crowd answer here is No.

Example Questions - Here workers are given some at-
tributes’ names and are asked to provide an example of
an object o 2 O along with its values for the attributes.
An example for such a question is asking a user to upload
a recipe along with its calorie value. For simplicity we
will assume below that the given value is the correct one
(otherwise the it can be estimated via value questions).

For all tasks we assume workers are independent and that
spam filters are employed to avoid malicious workers.

Other notations. We further adopt and use some common
notations. From statistics we use EX [f(x)] for expectation,
VarX [f(x)] for variance, �X(f(x)) for standard deviation,
CovX,Y (f(X), g(Y )) for covariance and ⇢X,Y (f(x), g(y)) for
correlation. The lower indexes specify the random variables
and we omit them when they are clear from context. From
algebra, we use MT to denote a matrix M ’s transpose, M�1

to denote M ’s inverse and Diag(f(i)) for diagonal matrix
where the i’th value of the diagonal is equal to f(i).

Problem definition. A user allocates a per-object budget
B

obj

which is the number of value questions that can be
asked on a given object, in the online query evaluation phase,
for estimating the value of the query attributes. To deter-
mine how to best use this budget, the user also allocates a
preprocessing budget B

prc

2. An (o✏ine) preprocessing phase
uses this to gather some information from the crowd (using
the type of questions described above) and consequently de-

rive a set of formulas of the form o.a(⇤) =
P

A la(ai)o.a
(b(a

i

))

i

for each a 2 A(Q), which determine how objects should be
processed in the online query evaluation phase. The seman-
tics of such formula is to first ask the crowd b(ai) value
questions about each attribute o.ai, then calculate the av-
erage answer for each o.ai (denoted o.a

(b(a
i

))

i ) and finally
calculate an estimation for o.a using a linear regression[12]
with predictors la(ai). An example of such a formula, for
the attribute protein amount, was given in the Introduction.

The function b in the formulas determines how many ques-
tions (if any) will be asked about each object’s attribute, and
intuitively reflects the “di�culty” of each attribute. Since
the total value questions per object need to obey the B

obj

budget constraint, b must satisfy
P

a2A b(a)  B
obj

. We
call such function b a budget distribution of size B

obj

.
For a given budget distribution function b and a linear

regression formula l, we define an error in the estimation
of a single attribute’s value as Er(o.a(⇤) | b, l) = (o.a �P

A la(ai)o.a
(b(a

i

))

i )2. We then define the error of an at-
tribute estimation as the mean square error over all objects
Er(O.a(⇤) | b, l) = EO[Er(o.a(⇤) | b, l)] and the query er-
ror as Er(Q(D)(⇤) | b, l) = P

a2A(Q)

Er(O.a(⇤) | b, l). Note
that for simplification we assume the errors of all attributes
to be of equal importance. All our results also apply to a
weighted error definition, as discussed later. Our goal here
will be to minimize the query error Er(Q(D)(⇤)). Namely,
to find b and l which minimize it, and to do this using at
most a budget B

prc

.

3. OUR SOLUTION
We start by presenting a high-level informal description

of our algorithm, what data do we collect and what is that
data used for. Next, we provide a detailed formal descrip-
tion of the functionality of the di↵erent components, as well
as references to existing solutions for some of them. We
then return to the components that are in the heart of our
contribution and provide concrete novel solutions for them.

To simplify the presentation we will assume below that
the query contains only a single attribute, that we call the

2W.l.o.g. it is assumed that B
prc

>> B
obj
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target attribute, namely A(Q) = {at}. We consider the gen-
eral case afterwards. We also assume that no attributes are
initially available for the objects in the queried data table.
For instance, in our running example this means that we are
only given the recipes and no explicit attributes for them.
The algorithm can be naturally extended to the general set-
ting.

Data: Q,B
obj

, B
prc

1 E
B

 GetExamples(N
1

, k);
2 while CollectingAttributesCondition = True do

3 a GetNextAttribute(A,S,B
obj

);
4 A A [ a;
5 S  UpdateStatistics(S, a,E

B

);
6 b FindBudgetDistribution(S);
7 E

L

 GetExamples(N
2

, b);
8 l FindRegression(b, E

L

);
9 return l, b

Algorithm 1: The base case solution

Algorithm 1 depicts a general description of our solution.
Table 1 shows the di↵erent information items being collected
throughout its execution. It contains objects (first column),
true values of objects’ attributes (second column), and sets

of workers’ answers to value questions (denoted {oi.a(1)

j }n
1

in all other columns where n is the answers set size). We
use this table to illustrate what is done by Algorithm 1. We
later explain how exactly this is done (what crowd tasks are
involved, etc.). Note that some notations in Table 1 may
not yet be clear at this point, but will be explained later.

At the beginning, the only information available is the
name of the query attribute (Table 1’s “True Values for
A(Q)” header). We first collect a set of example objects
E

B

= {e
1

, . . . , eN
1

} 2 O along with their true value for at.
Those objects and values are shown in Table 1a. We then
iteratively add new attribute columns in Table 1a by disman-
tling existing attributes, thereby discovering new attribute
names (the “Value Questions Answers for A

final

” headers)
and then obtaining values for them from workers. During
this iterative process, we also use the crowd answers to cal-
culate some statistics (not shown in the table) on the discov-
ered attributes, which we use for deciding which attributes
need to be dismantled next. When this collection process
ends (we will explain later how this is determined), we use
the statistics again to calculate a budget distribution b. Fi-
nally, to compute the linear regression l we collect a second
set of examples E

L

, along with their value for at (Table 1b’s
Objects and True Value columns). We use b to collect crowd
answers for the remaining attributes, then use all the gath-
ered information to learn the linear regression l. Now that
we derived both b and l, the preprocessing phase ends.

Later, in the query evaluation phase, b and l are used
to collect estimations about the objects in the queried data
table D (the Answers in 1c) and use it to calculate and
return Q(D) (the “True Values” column in 1c).

3.1 The Algorithm Components
Algorithm 1 consists of five logical components: finding

relevant attributes (lines 3-4), collecting statistics about them
(lines 1 and 5), calculating a budget distribution (line 6),
learning a linear regression (lines 7-8) and managing the
preprocessing budget (line 2). We discuss them next.
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for A(Q) for A

final

a
1

a
1

a
2

· · · al

e
1

e
1

.a
1

{e
1

.a
(1)

1

}k
1

{e
1

.a
(1)

2

}k
1

. . . {e
1

.a
(1)

l }k
1

...
...

...
...

. . .
...

eN
1

eN
1

.a
1

{eN
1

.a
(1)

1

}k
1

{eN
1

.a
(1)

2

}k
1

. . . {eN
1

.a
(1)

l }k
1

(a) Data used to calculate b
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(c) Data used in the online phase
Table 1: Data collected during the algorithm

Finding Attributes. We identify here a set of attributes
that may assist in estimating the value of the query at-
tribute. This is done using dismantling questions, followed
by corresponding verification questions. A key observation
here is that it is sometimes beneficial to not only ask users
to dismantle the query attribute itself, but rather to con-
tinue dismantling newly discovered attributes. Indeed, since
the human mind is associative, asking diverse questions is
important for better learning a domain [7]. For example,
in our CC example, when asking a user to dismantle pro-
tein amount, we may get the attribute meat content as an
answer, but the distinction between red meat and white meat
(which have di↵erent protein amounts) may be only ob-
tained when asking users to dismantle meat content.

We denote by Am the set of known related attributes af-
ter m iterations (and respectively A

0

= A(Q) and A
final

is
the final subset). We denote by Am+1|a

j

= Am [ ansj the
random variable representing this set, assuming the next
dismantling question is for attribute aj . Our goal will be
to choose aj such that Am|a

j

allows minimal error. More
formally, we wish to find

argmax ajEA
m|a

j

=A[ min
l,b

8a 62A b(a)=0

Er(Q|b, l)] (1)

As this choice obviously depends on how the budget distri-
bution b and the linear regression l are selected, we leave the
solution of expression 1 for section 3.2.1. For now we only
note that after asking the selected dismantling question and
getting a new attribute name for an answer, we use verifi-
cation questions to ensure that the obtained new attribute
name is indeed a relevant one. Here we use standard al-
gorithms such as [25] to determine the required number of
questions for making a decision.

Since a dismantling question in our setting is always fol-
lowed by corresponding verifications questions, from here on
whenever we use the term dismantling question we also refer
to its following verification questions.

Collecting Statistics. As mentioned, we need to collect
some information about Am - the set of known related at-
tributes after m iterations - and the way workers answer
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A(Q) Am

a
1

a
1

a
2

· · · al

Am

a
1

Sc[1] So[1] Sa[1, 1] Sa[1, 2] · · · Sa[1, l]
a
2

Sc[2] So[2] Sa[2, 1] Sa[2, 2] · · · Sa[2, l]
...

...
...

...
...

. . .
...

al Sc[l] So[l] Sa[l, 1] Sa[l, 2] · · · Sa[l, l]

Table 2: Statistics calculated during the algorithm

them. Our main tool for finding those statistics is gath-
ering samples of the crowd responses and analyzing them.
We do so by asking value questions about a set of exam-
ple objects collected using example questions. Formally, our
goal is to find an accurate estimation for the trio SA =
(SoA, SaA, ScA) (or just S when the index is clear from con-
text), depicted in Table 2 and defined as follow (for reasons
that will be clear later).

Sc - Statistics about agreement among crowd workers. More
precisely, a vector of the average variances of workers an-
swers to value questions. Formally, ScA is a vector of size
|A| where ScA[a] = EO[Var[o.a(1)]]). For instance, in our
example we can expect Sc[healthy] > Sc[tomato] as it is
easier to identify if a recipe contains a tomato. This is the
second column of Table 2.

So - Statistics about how informative are the attributes.
More precisely, this is the covariance vector between work-
ers answers to the di↵erent attribute and the query at-
tribute. Formally, SoA is a vector of size |A| and SoA[a] =
|CovO(o.a(1), o.at)|. For example, if at = dessert, we can

expect S
o

[sweet]

�(sweet)

> S
c

[cheese]

�(cheese)

as most desserts are sweet (and

most non-desserts are not) but cheese can be easily found
both in desserts and in non-desserts. This is the third
column of Table 2.

Sa - Statistics about how much distinctive are attributes (in
comparison to the other attributes). More precisely, this
is the covariance matrix over crowd’s answers to di↵erent
attributes. Formally, SaA is a matrix of size |A|⇥ |A| and
SaA[ai, aj ] = |CovO(o.a(1)

i , o.a
(1)

j )|. For example, we can

expect S
a

[Spicy, Sugar]

�(Spicy)�(Sugar)

> S
a

[Easy to make,Sugar]

�(Easy to make)�(Sugar)

as sugar
usually indicates a non-spicy food but does not imply
anything about the complexity of the recipe. This is the
fourth column of Table 2.

Our goal is to get relatively good estimations of these mea-
sures for a low budget. We describe how this is done in
section 3.2.2.

Calculating a budget distribution . Once the relevant at-
tributes are identified and the relevant statistics are calcu-
lated we run a strictly computational algorithm to find b. As
it was shown in [27], when applying the best linear regression

to some table D
(b)
O⇥A (a notation that means D

(b)
O⇥A[o, a] =

o.a(b(a))), the error is E[E.at]
2�So

T (Sa+Diag(Sc

(a)
b(a)

))�1So.
The first element is independent of b, so we have that the
best budget distribution is

argmax
b

So
T (Sa +Diag(

Sc(a)
b(a)

))�1So (2)

[27] also showed that finding this optimal b is Np-hard in
B

obj

and therefore an approximating algorithm is appropri-
ate. They provide such algorithm, which is a variation of the
well known greedy forward selection. We use this algorithm
as the FindQuestionsDistribution method in Algorithm 1.

Learning a Linear Regression. The last part of the algo-
rithm is deciding on a linear regression l. Since we can not
find the overall best linear regression, we minimize the error
over some training set representing the online phase data
(meaning that the estimation of each attribute a is done ac-
cording to b(a)). We get this set by using example questions
(getting object and target values) and value questions (get-
ting attribute values). To reduce costs we re-use previously
collected data. When collecting objects we skip the first N

1

example questions, and when collecting estimations we only
ask b(a) � k value questions for each e.a. This is line 7 in
Algorithm 1 and how we collect Table 1b’s data.

Once such training set exists, further computations are
applied to find a linear regression l that minimizes the error
over it. The problem of finding a linear regression that min-
imizes the mean square error is a well studied problem [12]
and there are many algorithms for it that we can just use.
Specifically, we used a singular value decomposition (SVD
[15]) algorithm, but since it is used as a black box other
algorithms can also fit. This is line 8 in Algorithm 1.

Managing the Preprocessing Budget. To fully understand
where and how budget is spent, one needs to first see the
actual implementation presented next. We thus postpone
this discussion to section 3.2.3.

3.2 Concrete Solutions
Finally, we can focus on our implementations. We wish to

remind that although they are described separately, all the
components are in fact intertwined.

3.2.1 Finding Attributes
Recall that our objective is to solve expression 1. Knowing

now, that the error behaves like expression 2 we can state a
more specific objective - finding

argmax
a
j

argmax
b

So
T
A

m|a
j

(SaA
m|a

j

+

Diag(
ScA

m|a
j

(a)

b(a)
))�1SoA

m|a
j

(3)

As an exact solution can only be made after asking all que-
tions and calculating all SA

m|a
j

, we use the current statistics

SA
m�1

and estimate the next statistics SA
m|a

j

, for every aj .

We also calculate the probability of it remaining the same as
only a first seen answer will e↵et it. We then use those esti-
mations and solve expression 3. Described here are general
schemes of the estimations. Full calculations can be found
in the our paper[22].

Pr(new | a
j

) - We need to estimate the probability to get a
new answer. We do so by assuming it depends only on the
number of questions asked so far and then using a simple
Bernoulli-Bayesian model with the number of questions
asked about aj so far (nj). The results are

Pr(new | aj) =
nj + 1

n2

j + 3nj + 2
(4)

S
o

Am|aj
- We need to estimate the covariance of the next

answer and the target (So[ansj ]). By definition of corre-

lation we have So[ansj ] =
⇢(a

t

,ans
j

)

⇢(a
t

,a
j

)

�(ans

j

)

�(a
j

)

So[aj ]. �(aj)

and So[aj ] are known. �(ansj) is assumed to be indepen-
dent with aj and can therefore be ignored. That leaves
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only the correlations’ ratio. We previously assumed ansj
is highly correlated to aj , we now approximate this as

E[⇢(aj , ansj)] ⇡ 0.5, which translates to
⇢(a

t

,ans
j

)

⇢(a
t

,a
j

)

⇡ 0.5.

We address this approximation later. This results in

SoA
m|a

j

[a] ⇡
⇢

0.5
�(a

j

)

SoA
m�1

[aj ] a = ansj
SoA

m�1

[a] otherwise
(5)

S
c

Am|aj
- We need to estimate the variance of the next an-

swer (Sc[ansj ]). Since there is no reason for it to change
over di↵erent dismantling questions we can use the same
distribution for every j. Because FindRegression is not
analytic (as we will see later), instead of measuring an
exact distribution (which will make it impossible to cal-
culate) we take an ’optimism in the face of uncertainty’
approach [20] and assume a very low constant value for it
(8j Sc(ansj) ⇡ 0). We then get

ScA
m|a

j

[a] ⇡
⇢

0 a = ansj
ScA

m�1

[a] otherwise
(6)

S
a

Am|aj
- We need to estimate the covariances between

the new answer and the previously discovered attributes
(Sa[ai, ansj ], ai 2 Am�1

). Again, since there is no rea-
son for this to change over di↵erent dismantling questions
we can just take the same distribution for every j. For
similar reasons (calculations practicality), we again take
the ’optimism in the face of uncertainty’ approach. We
(wrongfully) assume no correlation between the new and
the existing attributes. This assumption cannot be taken
for Sa[ansj , ansj ], but this factor cancelled anyway in the
Er(Q) calculation. We then get

SaA
m|a

j

[au, av] ⇡
8
<

:

1 au = av = ansj
0 ansj 2 {au, av}
SaA

m�1

[au, av] otherwise
(7)

By putting results 4, 5, 6 and 7 into expression 3 we get that
the best next dismantling question is

argmax
a
j

Pr(new | aj)[G(aj)� L(Am�1

, B
obj

, 1)] (8)

where Pr(new | aj) was described before, G(aj) =
0.25S

o

[a
j

]

2

�(a
j

)

2

and L(A, u, v) = maxb of size u SoA(SaA+Diag(Sc

A

b
))�1SoA�

maxb of size u�v SoA(SaA +Diag(Sc

A

b
))�1SoA.

Intuitively, when adding a new attribute, some of the record
budget moves from the old attributes to the new one. G
measures the gain from the new attribute and L measures
the loss caused by decreasing budget from the old attributes.
The reasons for those being the only changes are the low cor-
relation assumptions we took while estimating SA

m|a
j

.

As all of those values can be calculated, this concludes the
GetNextAttribute method in Algorithm 1. This is also how
we get each “Value Questions Answers” header in Table 1.
It is easy to see that one dismantling question at the end of
each iteration is the only crowd task.

3.2.2 Collecting Statistics
As explained, our goal in this part is to find a good ap-

proximation for (SoA, SaA, ScA) while using a minimal bud-
get. Following our iterative process for finding attributes, we
build S in an inductive way. Namely, for each new attribute

we calculate SA
m

based on SA
m�1

and questions about the
new attribute.

For our current simplified case, there exists an approx-
imation method in [27] that have proven itself before and
that we can easily adapt. When we later discuss the general
case, we will return to this part and refine the calculation.
The ideas we take from [27] are to estimate SA

final

(which is
defined over O) by calculating it over example set E

B

and
then, for each object, estimating the behavior of o.a(1) based
on k sample answers (for a very small k). We use those ideas
in an inductive way

A�1

- We leave Sc,Sa,So empty but collect a set of examples
E

B

with target at value by asking N
1

example questions
(N

1

is a parameter studied in [27]). This is line 1 in Al-
gorithm 1 and during it we collect Table 1a’s objects and
true values.

Am - For the new attribute a we ask k values questions
about e.a for every e 2 E

B

. We then update S by keeping
all previous values and adding (1) So[a] = EE

B

[e.a(k)·e.at],

(2) Sa[a, ai] = Sa[ai, a] = EE
B

[e.a(k) · e.a(k)
i ] for every

ai 2 Am and (3) Sc[a] = EE
B

[VarEstk(e.a
(1))]. This is

the UpdateStatistics method in algorithm 1. During each
step we get a sub-column in the answers column of Table
1a, a row in Table 2 and a sub-column in the right column
of Table 2.

It should be easy to see how this algorithm is compliant with
the ideas mentioned above. It should also be easy to see that
during this part we use the crowd for N

1

example questions
and kN

1

|A
final

| value questions.

3.2.3 Management of the Preprocessing Budget
In our algorithm the preprocessing budget is used for

• Finding A
final

by asking attributes and attributes verifica-
tion questions. This costs n dismantle questions where n
is the number of dismantling questions we choose to ask.

• Calculating the statistics SA
final

by asking example and
value questions. This costs N

1

example questions and
kN

1

|A
final

| value questions, where |A
final

| depends on n.

• Collecting a training set of N
2

samples for l’s learning.
This costs (N

2

�N
1

) example questions and (N
2

�N
1

)B
obj

+
N

1

(B
obj

�P
A min{b(a), k}) value questions.

As N
1

and k are external parameters, the only variables are
n and N

2

. Therefore, the only open question is when to
stop asking dismantling questions (line 2 in algorithm 1).
We solve this tradeo↵ by applying a common simple linear
lower bound for N

2

as a function of b ([16]). Note that as our
only tradeo↵ is n vs. N

2

, this mechanism is also appropriate
when considering di↵erent costs for di↵erent crowd tasks.
As to the case of di↵erent cost that may apply for di↵erent
questions of the same type (for example, numeric vs. binary),
the appropriate coe�cients need to be added. In this case,
we also follow [27] idea and, during all components, divide
each attribute’s contribution by its cost.

Remarks. We conclude this section by commenting on the
correctness and complexity of the algorithm. First, it is easy
to see that the algorithm operates within the preprocessing
budget B

prc

. Second, it is also easy to see that the algorithm
running time is polynomial with respect to the two budgets
B

prc

and B
obj

.

414



4. EXTENDED SOLUTION
We focused so far on the simplified case where the query

has a single attribute. We next consider the general case of
multiple query attributes.

A naive solution is to equally split the online and o✏ine
budgets between the query attribute and solve the prob-
lem for each one separately. This however ignores possible
correlation between the query attributes and their compo-
nents. For example, consider a query with two attributes
A(Q) = {calories, is dessert}. It is easy to see that many
related attributes (e.g., sugar, fat,. . . ) are good indicators
for both target attributes, and budget would be saved if we
reuse values. To address this we consider all the query at-
tributes together, extending Algorithm 1 to handle multiple
target attributes. We first present below a simple exten-
sion, then discuss its shortcomings, and then generalize it
to overcome them. Our first extension generalized the algo-
rithm components as follows.

GetExamples - Instead of asking the crowd for examples
with one value for the single query attribute we now ask
for examples with multiple attribute values - one per query
attribute. (We later discuss what to do if users cannot
provide all these values simultaneously.)

GetNextAttribute - Expression 8 is refined to consider all
the attributes:

argmax
a
j

X

a
t

Pr(new | aj)[G(at, aj)� L(at, Am�1

, B
obj

, 1)]

(9)

UpdateStatistic - Instead of updating the So statistics of
a
new

for a single query attribute, we now need to update
Soa

t

[a
new

] for every query attribute at 2 A(Q). Note that
we added here the at notation to So since there are now
several query attributes. Sa and Sc remained the same
since they are independent of Q.

FindQuestionsDistribution - Instead of equation 2 we
now have a refined version

argmax
b

X

a
t

2A(Q)

So
T
(a

t

,A)

(SaA +Diag(
Sc[a]
b(a)

)�1So
(a

t

,A)

(10)

FindRegression - Since l is now a set of linear regressions,
we need to run this method |A(Q)| times. Since all la

t

are independent this yields an optimal solution.

Note that for GetExamples we assumed above that it is
possible to ask workers for examples with several attributes
values. This may be problematic in practice: If the number
of query attributes is too large, workers may not be willing
to make the e↵ort of providing all of their values; It may
also be the case that a single crowd member does not know
the value of all attributes, even for their own examples. To
overcome this, instead of using just one set of examples E

B

with all query attributes, we will collect multiple sets of
examples E

Ba
t

, one for each query attribute (or a small
subset thereof). In this case, the collected data in Table 1a
is replaced by the one depicted in Table 3.

Looking at this table we can see that although the in-
formation can be used to derive b, it comes with an ad-
ditional cost: It is easy to see that the amount of data

True Values for A(Q) Value Questions Answers for A
final
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Table 3: Data collected in the general case

we need to collect now depends both on |A
final

| and on
|A(Q)|. Therefore, if we want to allow A

final

to grow with
A(Q), our cost will grow quadratically. It is also easy to
see that most of this growth is due to cost of redundant
value questions. For example, consider A(Q) = {is dessert,
number of calories,protein amount, easy to make}. One can
assume that although there is likely to be a correlation be-
tween number of calories and is dessert this is not the case
for easy to make and protein amount so collecting statistics
for all pairs is a waste of budget. To reduce this redundant
overhead we take two steps. First, we choose carefully which
data to collect (i.e., which E

Ba
t

.a value questions should we
asked). Second, for pairs for which data had not been col-
lected, we estimate Soa

t

[a] based on the other collected data.
We explain this next.

Collection. Our choice of which data to collect is based on
the following observation. The two cases one wants to avoid
are (1) missing a highly correlated attribute-target pair and
(2) wasting budget on a poorly correlated attribute-target
pair. Therefore, whenever we get a new attribute aj we pair
it with all query attributes at for which we have a reason
to believe that Soa

t

[aj ] is not negligible. In our heuristic,
we define Soa

t

[aj ] as negligible i↵ its value is less than a
half of the maximal value maxa2A(Q)

Soa[aj ]. Our estima-
tion here for Soa

t

[aj ] is done in the same way we described
earlier in section 3.2.1. This results in the following rule
- when asking a dismantling question about ai and get-
ting an answer aj , ask value questions about E

Ba
t

.aj i↵
⇢(ai, at) > 0.5maxa2A(Q)

⇢(aj , a).

Estimation. Finally, to estimate the missing So’s values we
use a graph model and define G = (U, V,E) as a weighted bi-
partite graph with U(G) = A(Q) and V (G) = Am. The idea
is to make each edge’s weight w(a, at) represent the value of
Soa

t

[a] and then estimating missing edges by distances on a
graph. Ideally, we would have defined w(a, at) = Soa

t

[a].
However, since So is not normalized and also not a dis-
tance function, this is impossible. To overcome this, we
employ a method described in [29] and use angular dis-
tance as our weight function - w(at, aj) = �(O.at, O.aj) =

arccos
S
o

a

t

[a
j

]

�(a
t

)�(a
j

)

. The idea behind angular distance is to con-

sider an inner-product space where the vectors are random
variables and the inner-product is covariance. This allows
to prove that � is indeed a distance function that answer
what we looked for. Using the fact that in the angular dis-
tance space �

1

+�
2

= arccos(cos(�
1

) cos(�
2

)), we define our
estimation of So as

Soa
t

[aj ] = �(at) · �(aj) ·
8
<

:

cos(w(aj , ai)) edge exists
cos(S.P(at, aj)) path exists
0 otherwise

(11)
where S.P stands for (multiplication) shortest path.
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Weighted query attributes. To conclude, note that in our
discussion so far we assumed the errors of all attributes to be
of equal weight. In practice some normalization may be re-
quired. For example, is healthy is on a scale of [0, 1] whereas
number of calories may reach thousands. In this case, each
at 2 A(Q) is associated with a weight !t and our goal is to

minimize
P

a
t

2A(Q)

!tE[(O.a
(⇤)
t � O.at)

2]. When following
the previous calculation this simply results in adding weights
to expression 9.

5. EXPERIMENTS
We analyze our solution experimentally along through di-

mensions. We start with a general proof of concept - an
examination of our algorithm as a whole. We then move
to an analysis of its components, their necessity and their
quality. We conclude with an analysis of how di↵erent as-
sumptions and parameters can influence the results.

5.1 Experiments Settings and Datasets
We used three datasets - two with real life objects and

real crowd answers, and one synthetic. Crowd answers from
value and attribute questions were gathered through Crowd-
Flower[3] - a platform for presenting small tasks to crowds.
The answers collected in initial experiments was recorded in
a database and reused in following experiments, so that re-
sults of multiple runs/algorithms may be compared in equiv-
alent settings. To compare our performance to [27] that used
experts to obtain relevant attributes, we also added to our
database the data collected in that work. For example ques-
tions, in order to have a true ’gold standard’ (known target
answers), we used our lab members as crowd.

We designed our crowd interface and payment following
the guidelines in [13] and the work of [27]. Our crowd tasks
consist of a set of value (resp. dismantling) questions that a
crowd member needs to answer. We set the payment for bi-
nary value question to 0.1 and to 0.4 for general numeric
values. For dismantling and example questions, that were
not studied in [27], we set the payment to 1.5 per answer,
following our preliminary experiments that showed this to
be the minimal price that kept workers’ feedback positive,
and set the price of an example question to 5 as this is a
relatively hard task. (We will show however in the sequel
that the trends in our results are robust to changes in these
numbers). As for other parameters we used the following:
the number of value samples k used for estimating statistics
when deriving budget distributions was 2, as this is the rec-
ommended number for the corresponding black-box that we
used[27]. The number of examples N

1

was set to 200 to keep
our costs low while still having many examples. For learn-
ing the linear regression, the examples number N

2

was set
to 50+8⇤#attributes, a common practice in such tasks [16].
For attribute weights, unless otherwise stated, we gave each
query attribute a weight in reverse proportion to its vari-
ance (!t = 1

V ar(O.a
t

)

). This normalize all errors to a similar

scale (standard deviations), so that no query attribute will
be negligible. We will explicitly mention below where using
other weights a↵ects the results.

Human Pictures Data Set. In this set of experiments our
objects are people and the only information available for
them is their picture. The query attributes in the di↵er-
ent experiments include Weight, Height, Age, Bmi (body

Ques-

tion

Answer

Fre-

quency

Bmi

Weight 33%
Height 33%
Age 6%

Attrctive 2%

Height

Age 22%
Shoe Size 9%

Taller Then
You

7%

Weight 6%

Age

Wrinkles 15%
Gray Hair 10%

Old 10%
Children 3%

Attractive

Good Facial
Features

17%

Fat 6%
Has Good Style 6%

Works Out 1%

(a) Pictures Domain

Ques-

tion

Answer

Fre-

quency

Calories

Has Eggs 8%
Low Calories 4%

Dessert 2%
Healthy 2%

Protein

Has Meat 13%
Number of

Eggs
4%

High Protein 4%
Vegetarian 2%

Healthy

Low Salt 8%
Natural 8%

Fat Amount 4%
Bitter 4%

Easy To
Make

Number of
Ingredients

17%

Fast 10%
Tasty 5%

Expensive 2%

(b) Recipes Domain
Table 4: Attribute dismantling questions and their answers

Sc So�(ai)�(aj) Sa�(ai)�(aj)
Bmi Age Bmi Weight Heavy Attractive Works Out Wrinkles

Bmi 30 0.88 0.63 1 0.94 0.86 0.48 0.4 0.26
Weight 189 0.86 0.7 0.94 1 0.82 0.53 0.39 0.28
Heavy 0.14 0.89 0.6 0.86 0.82 1 0.44 0.46 0.27

Attractive 0.13 0.45 0.44 0.48 0.53 0.44 1 0.32 0.28
Works Out 0.11 0.36 0.29 0.4 0.39 0.46 0.32 1 0.15
Wrinkles 0.16 0.25 0.52 0.26 0.28 0.27 0.28 0.15 1

(a) Pictures Domain
Sc So�(ai)�(aj) Sa�(ai)�(aj)

Calories Protein Calories Low Calorie Desset Healty Vegetarian Eggs
Calories 80707 0.41 0.34 1 0.2 0.07 0.15 0.18 0.03

Low Calorie 0.06 0.18 0.08 0.2 1 0.1 0.26 0.1 0.13
Desset 0.08 0.26 0.5 0.07 0.1 1 0.44 0.34 0.38
Healthy 0.2 0.02 0.16 0.15 0.26 0.44 1 0.06 0.27

Vegetarian 0.13 0.26 0.52 0.18 0.1 0.34 0.06 1 0.14
Eggs 0.05 0.11 0.26 0.03 0.13 0.38 0.27 0.14 1

(b) Recipes Domain
Table 5: Examples for statistics in the di↵erent domains

mass index, defined as weight(kg)

height(m)

2

) and Attractiveness. The

objects O were taken from the publicly available Photo-
graphic Height/Weight Chart [4], where people post pictures
of themselves announcing their own height and weight. We
used reported value as the true values for Height, Weight
and Bmi. For other target values, we used an average over
many value question estimations.

Examples of answers received when asking workers to dis-
mantle various attributes are depicted in Table 4. The
first column depicts the attribute to dismantle, the sec-
ond column contains some related attributes suggested by
the crowd, the last column shows the percentage of all an-
swers that each attribute name was returned. Examples of
statistics gathered for the attributes are depicted in Table
5 (this is a concrete example of Table 2, but unlike Table 2
it shows attributes correlation and not covariance to make
things more intuitive for the reader).

Recipes Data Set. In this set of experiments our objects
are recipes and the data available for them in the database
is the recipe’s name, picture and unstructured ingredients-
list. The query attributes in the di↵erent experiments in-
clude Proteins, Calories, Good for kids, Easy to make and
Healthy. The objects are the 500 most popular recipes in
allrecipes.com[1] website, normalized to one serving. We
used nutritious values found in this website as true values for
the matching query attributes. For other query attributes
we again used average value derived from multiple value
questions. Here again, examples of some answers obtained
for dismantling questions and statistics on the attributes are
depicted in tables 4 and 5 respectively.
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Synthetic Data. To neutralize our own subjectivity/belief
w.r.t which object attributes are hard/easy, we also ran ex-
periments on a synthetically generated domain. For this
we automatically generated a set of objects and attributes
(with some dependencies between them) and mocked crowd
answers about them (in compliance with the assumptions
on crowd’s answers mentioned in the paper). The details of
this process can be found in the full paper [22]. The experi-
ment results are consistent with those for real-life data and
are thus omitted here.

5.2 Proof of concept
We compared our algorithm, which we call DisQ (short

for Dismantling queries), to existing practices. We use the
following algorithms as baselines:

NaiveAverage - In this common approach, the online phase
simply asks questions about the attributes in A(Q) and

returns their average o.a
(B

obj

)

t . For |A(Q)| > 1 we split
the budget by the weights. This algorithm has no o✏ine
preprocessing phase.

SimpleDisQ - This is a simplified version of our algorithm,
which captures the best that can be done today without
using an expert. It runs similar to DisQ, but without the
attribute dismantling phase.

We compared these two algorithms to our algorithm. We
did so for all three data sets and for di↵erent query attributes
and query sizes. We also tested with di↵erent preprocess-
ing budgets B

prc

and di↵erent per-object budgets B
obj

. For
B

obj

we used the range of 0.4-10 . The lower bound was
set to match 1 numeric value-question. The upper bound
was set as it is a fairly large amount and as most of the ex-
periment graphs show stagnation after it. For B

prc

we used
the range of $10-35. We have taken those values since the
graphs stagnate outside those boundaries. For each value we
executed 30 experiments and took the average result. Note
that although we took the average, all observations are true
in general as most results are very close to the average.

Varying B
prc

. Figure 1a shows results for a query with
A(Q) = {Bmi} (using the pictures data set) for varying
preprocessing budgets. We will show more results later. We
start with an example where |A(Q)| = 1 to isolate di↵erent
e↵ects. We fixed B

obj

to 4 and used di↵erent B
obj

values.
We used B

obj

= 4 as it is over the graph’s knee (as we will
see later). Note that since NaiveAverage does not involve
learning and since the number of examples in SimpleDisQ is
always N

1

(since A
final

is very small), DisQ is the only al-
gorithm that changes with B

prc

. One can easily see that for
every B

prc

value our algorithm has the lowest average error.
The di↵erence is especially significant for large B

prc

values
as for those ranges A

final

is bigger. We can also see that
the improvement is slowly stagnating which is the expected
result if the “important” attributes are found quickly.
To ilustrate how an algorithm’s output looks like, we provide
here an example for one of the dismantles when B

prc

= $25.
Bmi(⇤) = 0.6Bmi(5) + 11.9Heavy(10) + 0.4Works Out(1) +
0.2Age(1) � 2.7Attractive(3) � 0.2Tall(2) + 10.6.

Varying B
obj

. We continue with the same Bmi example but
now considering varying online per-object budget. Figure 1d
show the errors for this case. We used B

prc

= $30 as it is
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again over the graphs’ knee, but similar behavior is shown
for other values. First, note that all algorithms improve as
B

obj

increases and that this improvement is slowly decaying.
This is what one could expect as a bigger B

obj

means a big-
ger crowd (and should therefore mean better accuracy) and
since it is known that every additional worker has declining
marginal utility. Second, note that both SimpleDisQ and
DisQ achieve lower error than NaiveAverage. This clearly
shows how combining artificial intelligence with the wisdom-
of-crowds leads to improved results. Finally, It is easy to see
that the average results from our algorithm are superior to
those of the other algorithms. This is especially noticeable
for lower B

obj

budget but is also true for higher B
obj

. And
again, although the we show results for the average case,
this is true for most cases. One can see, for example, that in
order to achieve an accuracy of less than 0.067 one needs to
spend 10 per object in SimpleDisQ but only 6 per object
in our algorithm. This statement is still true after including
the extra budget for the preprocess phase, since the cost of
learning a regression when B

obj

= 10 exceed the $30 used
in our algorithm for B

obj

= 6 . In figure 2 we show more
examples of the budget necessary for achieving di↵erent ac-
curacies in the di↵erent algorithms.

Other Examples. Figures 1c and 1f show equivalent graphs
for a case of two query attributes (Bmi, Age) and figures 1b
and 1e show equivalent graphs in the recipes domain (for
the query attribute Protein). It is easy to see that all of our
observations about the first example (Bmi) are also true
when adding to it a second attribute (Age). In the case of
Protein, however, this is only partly true. Consider first fig-
ure 1e. At a first glance it looks di↵erent from figure 1d.
However, a closer look shows that all our observation still
hold. The only di↵erence is that NaiveAverage performs
much worse and this changes the proportions of the graph.
We believe this is because Protein is much less intuitive than
Bmi. Next, consider figure 1b. Here, in addition to the dif-
ferent proportions we also see a di↵erent trend. Unlike the
previous cases where we saw that increasing B

obj

always de-
creased the error, in the case of proteins we see increase in
error for B

obj

> 4 . The reason for this lies in CollectingAt-
tributesCondition. Since our stopping criteria for discover-
ing new attributes depends on B

obj

, for higher B
obj

we have
less budget for the dismantling which in turn result in less
attributes and therefore in a larger error. The e↵ect of a
smaller attributes set A

final

also exists for Bmi, but in that
case its e↵ect was smaller than the e↵ect of the increased
B

obj

. A reasonable conclusion is that for large B
obj

budget
one should also provide a large B

prc

budget.

The experiments described above demonstrate the trends
in all of our experiments: In all settings our algorithm out-
performs the competing algorithms. Increasing improve-
ments are observed when query attributes are di�cult and
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Figure 1: Error in query estimation for varying B

prc

(top row) and varying B
obj

(bottom row)

the relative improvement normally grows with the budget al-
located to the preprocessing increases, in particular in cases
when the per-object online budget is small.

5.3 Algorithm Components
We next examine the individual algorithm components.

In particular we analyze our attributes dismantling method
and the processing of multiple query attributes.

5.3.1 Dismantling Attributes
We considered two dimensions here.

Finding Relevant Attributes. We first tested if the crowd
can give good answers to attribute dismantling questions,
and if so, then how. We created gold standard attributes
sets for di↵erent data domains and query attributes, and
tested the crowd coverage for these attributes (percentage
of discovered attributes). We computed the performance of
our dismantling process and of a naive approach that asks
questions only about the attributes explicitly appearing in
the query. For defining the gold standard in the pictures do-
main (for the query attributes Height and Weight) we used
the expert-provided attributes from [27]. For the gold stan-
dard in the recipes domain (for the query attributes Proteins
and textitCalories) we used an expert dietitian.

For all queries our algorithm yielded over 80% coverage,
and we compensated for the missing attributes by other
discovered attributes not mentioned by the experts. This
shows that the crowd could indeed replace the experts for
this task. In contrast, the coverage for the naive algorithm
fell below 50%, demonstrating the necessity of our choice to
dismantle additional attributes. We further validated these
observations by considering two additional real-life attribute
domains: house prices (using [18] as a gold standard), and
laptop prices (using [9]), obtaining similar results.

The GetNextAttribute Method. We next compared our
technique for choosing the next attribute to dismantle to
a simpler alternative where the only attributes considered

are the ones appearing explicitly in the query. We call this
variant OnlyQueryAttributes. (We also considered variations
of OnlyQueryAttributes and DisQ that chose questions at
random, but since those variation are very naive and were
consistently inferior to our algorithm we omitted those re-
sults). Two example experiment, for the recipes domain
with and the query attribute protein are shown in figure
3b (for B

prc

= 30 and varying B
obj

) and figure 3a (from
B

obj

= 4 and varying B
prc

). First, it is easy to see that our
previous observations on DisQ in figures 1b and 1e also hold
for OnlyQueryAttributes. Second, DisQ consistently outper-
form OnlyQueryAttributes illustrating again the necessity of
our approach. This intensifies as B

prc

grows since there exist
enough budget to learn many attributes so the low variety
of answers to the dismantling question only about protein
becomes apparent. Similar trends were observed in all set-
tings - di↵erent query attributes, query length and domains.
The only thing to note is that in some specific cases, when
the answers to the dismantling questions about the query
attributes were varied enough the di↵erence between the al-
gorithms became noticeable only for large B

prc

.

5.3.2 Statistic Estimation
We next examine our method for collecting partial statis-

tics in queries with multiple attributes. As the main issues
here are which attributes should be paired with which query
attributes, and how to compensate for the missing pairs, we
compared our solution to the following baselines.

TotallySeparated - This is the naive solution that solves
the problem separately for each query attribute, splitting
the budget equally between them.

Full - This is a simplified variant of our algorithm that does
not optimize the computation and simply gathers statis-
tics for all attribute pairs.

OneConnection - This is another simplified variant that
does consider only some of the pairs, but uses a more
naive heuristic for choosing them: When a new attribute
is discovered, it is paired only with one query attribute.
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Figure 3: Error in estimation for A(Q) = {Protein}

NaiveEstimations - Finally, this variant selects the pairs
using our technique, but rather than inferring individual
values for the missing pairs, it assigns to all a default value
that equal to the average So value.

A sample of the results, for the pictures domain and the
query attributes Bmi andAge are shown in figures 4a (B

obj

=
4 , varying B

prc

) and figure 4b (B
prc

= $50, varying B
obj

).
We set here B

prc

to $50 to highlight the trends, as we will
shortly discuss. First, note that all the variations follow the
general trends of our algorithm as discussed above, in regard
for their dependencies in B

prc

and B
obj

. Second, it is easy
to see the relatively bad performances of the TotallySeper-
ated baseline (especially for lower B

prc

) which demonstrates
the advantage of asking about several query attributes to-
gether. Third, in comparison to Full, our algorithm con-
sistently achieves better (or at least as good) results when
considering reasonable B

prc

(as in figure 4a). This e↵ect was
even more noticeable in the synthetic domain where we could
test large queries. For some queries, however, these trends
change for very high B

prc

as the saved budget from the non-
important pairs is wasted on even more non-important new
attributes. Next, in compare to OneConnection, our algo-
rithm achieves at least as good results for all budgets, and
better results for high B

prc

. The reason for that is that
for large budgets OneConnection saves budget in the be-
ginning on redundant connections, but that budget is then
referred to even more redundant attributes. In some cases,
however, and for low B

prc

, OneConnection did get better
results, but only very marginally. The reason is the tradeo↵
between B

obj

and flexible-B
prc

we discussed before which
e↵ects DisQ more. Finally, our algorithm consistently out-
performs NaiveEstimations. This is true for every budget
since our estimation method incures no crowd cost.

5.4 Dependency on Assumptions
Our last set of experiments examined the robustness of

our algorithm to some changes in underlying our assump-
tions. We briefly discuss the assumptions considered and
our conclusions. A detailed description of the experiments
and results can be found in our full paper [22].
Attributes Quality: We tested resilience to receiving also
some irrelevant attributes in the dismantling process. This
did not a↵ect the previous trends, but as expected required
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Figure 4: Error in estimation for A(Q) = {Bmi,Age}
somewhat higher preprocessing budget (B

prc

) for obtaining
same error rates.
Normalization Mechanism: We tested the necessity of iden-
tifying di↵erent answers about the same property as one.
Here again, our algorithm can work with imperfect (or even
no) unification and the trends stay the same. Somewhat
higher B

prc

is again needed for obtaining same error rates.
Answer’s Correlation Parameter: We used di↵erent con-
stants (instead of just 0.5) for E[⇢(aj , ansj)] when estimating
SA

m|a
j

. The results remained similar.

Crowd-Tasks Payment: We tested how a di↵erent pricing
models for crowd tasks impact the results. Change in prices
changed some of the gradients in the varying-B

prc

graphs
but the trends remained the same.

6. RELATED WORK
Using the crowd as a source of knowledge, and for solving

problems, has attracted much research in recent years [11].
The crowd was shown to be a useful tool for many types
of tasks, including, but not restricted to, value estimation
[24], data filtering [25], information collection [5], natural
languages processing [6] etc. However, to our knowledge, our
work is the first to consider using the crowd for discovering
query-related attribute names. There has also been much
work dealing with the collection of data via various platforms
(e.g., payment [2] or games [10]), and the e↵ective collection
of such data (e.g., how to best present questions [13], how
to filter spam [19], when to stop asking [30] etc.). Our work
exploits these platforms and previous results. The concept of
removing experts from crowd processes was also researched
before[14], but not in the context of query estimation.

Our work is also influenced by previous work in machine
learning, and on the use of supervised learning for regression
learning (e.g., [12]). A more specific problem related to our
challenge is feature selection [17] - how to e↵ectively narrow
a set of attributes for some learning process. Two models
that are particularly interesting are budget learning ([23]),
where the issue is deciding which is the most valuable feature
to measure next under a limited budget, and meta-features
(e.g., [28]), where the issue is trying to predict unseen fea-
tures behavior based on some properties and similarity to
other features. All of those problems, however, focus on a
given predefined set of attributes. They also do not con-
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sider the selection of the same attribute name more than
once (required here due the uncertainty of crowd answers).

Previous work has also dealt with the combination of
crowd and learning (e.g., [8]). The common combinations
are to use the crowd to label a data set (e.g., [32]) or for
filling attributes values (e.g., [21], [26]).Closest to our work
is that of [27] which also deals with estimating one attribute
value by asking about others, but, as explained in the Intro-
duction, requires experts-in-the-loop. While we use some of
their results as basic building blocks, a major contribution
here is our crowd-based attribute dismantling along with
the careful statistical analysis that allows for an e↵ective
experts-free algorithm.

7. CONCLUSION AND FUTURE WORK
We studied in this paper the problem of query evaluation

when the value of the queried attributes is not available in
the database and is also hard for the crowd to estimate. We
proposed a novel approach that uses the crowd to dismantle
the query attributes into finer related ones (whose value es-
timation is easier), then assembles them to yield better esti-
mation for the query attributes. Given an online per-object
budget and an o✏ine preprocessing budget, we presented an
algorithm that ideally uses the o✏ine budget for dismantling
the query attributes and deriving linear formulas that best
exploit the online budget for deriving the values of query
attributes. We have also demonstrated the e↵ectiveness of
the approach through experimental study on both real-life
crowd and synthetic data.

We focus in the paper on the minimization of the expected-
mean-square-error. Other error measures may also be of in-
terest for future research. For example, a recall-precision
measurement may fit more for boolean query attributes like
gluten free (for recipes), or for a categorical attribute like
cousin type where the number of possibilities may be large.
We also considered only linear formulas for assembling at-
tributes values. While this has proved to provide good ex-
perimental results, more general rules may be useful in cer-
tain situations and we intend to study this in future work.
In our development we assumed that we are given an on-line
per-object budget and an o✏ine preprocessing budget and
used the later to optimize the usage of the former. Deter-
mining automatically what these budgets should be and the
ideal ratio between them is an intriguing future research.
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ABSTRACT
We examine the problem of recommending items to ad-hoc user
groups. Group recommendation in collaborative rating datasets
has received increased attention recently and has raised novel chal-
lenges. Different consensus functions that aggregate the ratings of
group members with varying semantics ranging from least misery
to pairwise disagreement, have been studied. In this paper, we ex-
plore a new dimension when computing group recommendations,
that is, affinity between group members and its evolution over time.
We extend existing group recommendation semantics to include
temporal affinity in recommendations and design GRECA, an ef-
ficient algorithm that produces temporal affinity-aware recommen-
dations for ad-hoc groups. We run extensive experiments that show
substantial improvements in group recommendation quality when
accounting for affinity while maintaining very good performance.

1. INTRODUCTION
Group recommendation refers to finding the best items that a

set of users will appreciate together. It is an active research area
as exemplified by numerous publications [3, 6, 13, 20, 23]. The
main focus of existing work in group recommendation is the de-
sign of appropriate consensus functions that aggregate individual
group members’ preferences to reflect the group’s preference for
each item. A variety of functions have been used ranging from ma-
jority voting to least misery. In this paper, we are interested in ex-
ploring how affinity between group members and its evolution over
time affect group recommendations. To the best of our knowledge,
our work is the first to study affinity and its evolution over time in
combination with existing group consensus functions.

The premise of this work relies on a simple conjecture that is,
a user appreciates recommendations differently in the company of
different people and at different times. When with girlfriends, a
female user may want to watch a romantic movie that she may not
want to watch with men. When with her parents, she may prefer
to go to a nice Italian restaurant while she would prefer a burger
joint with her kids. In addition, her appreciation of an item with
the same group of people may change over time depending on how
their connection and shared interests evolve. In other terms, the

© 2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

affinity of a user with other group members should be captured in
how that user appreciates an item.

Previous studies on single user recommendation have shown that
contextual dimensions such as a user’s mood and company or time
and place, may affect her preferences [1, 2]. Indeed, according
to behavioral research studies [5, 14, 18], consumers use differ-
ent decision-making strategies and favor different brands and prod-
ucts depending on their context. Such observations can be incorpo-
rated in different ways into single user recommendations. In [1], a
multidimensional recommendation model is developed to account
for contextual information into a user’s recommendation, one of
which could be her affinity with other users. However, to the best
of our knowledge, multidimensional recommendation has not been
applied to group recommendation. In group recommendation, we
conjecture that each user will have a relative preference for an item
depending on her affinity with other group members. Formalizing
the semantics of relative preference raises two new challenges: (i)
how to account for user affinities in the definition of relative pref-
erence and (ii) how to combine relative preference with popular
group recommendation consensus functions [13].

A major difficulty when addressing (i) is to integrate the evolu-
tion of affinities between users over time. For example, interns at
a research lab may subscribe to a Facebook group during their in-
ternship. When the internship period is over, the group becomes
an alumni of the research lab and affinities between its members
will likely change. Therefore, if events such as workshops or con-
ferences are to be recommended to the alumni group in the future,
affinities between its members should be accounted for, in order to
decide which subgroup would be interested in which event. While
numerous recent studies have shown the importance of accounting
for time in recommender systems [8, 15, 17, 25], they have focused
on user-item preferences and single-user recommendations. In this
work, we propose two dynamic models to capture temporal affini-
ties: a discrete model where time is discretized over a set of time
periods and affinities computed for each sub-period, and a contin-
uous model where time is represented as an exponential function
that positively or negatively affects affinity over time. Both mod-
els have a static component that denotes how close two users are
in a time-independent fashion and a dynamic component that cap-
tures the drift that the affinity of a user-pair exhibits compared to
the overall user population. Finally, while the discrete model is an
approximation of the continuous one, they are both used to capture
increasing and decreasing affinities.

Clearly, combining user-item preferences of group members in-
dependently of each other to produce group recommendations is
not enough to capture the impact of affinities on those recommen-
dations. In other terms, applying the well-known group consensus
functions such as aggregated voting, average preferences or least
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misery on individual group members’ preferences, does not cap-
ture a scenario where the same user appreciates the same item dif-
ferently in different groups. Therefore, we propose a two-step ap-
proach to address (ii). First, we modify individual user-item prefer-
ences on-the-fly to account for affinities and then we apply a group
consensus function over the modified preferences. This approach
has the benefit of dissociating recommendation computation from
affinity computation and therefore being able to use relative prefer-
ences with any group recommendation consensus semantics.

No recommendation work would be complete without consid-
ering both recommendation effectiveness and efficiency. Those
two dimensions raise new challenges when dealing with relative
preference, namely, (i) how to assess the quality of group recom-
mendations? and (ii) how to efficiently compute affinity-aware rec-
ommendations on-the-fly for ad-hoc groups? To address (i), we
build a Facebook application and generate movie recommendations
using MovieLens dataset1. We leverage friendship and common
page-likes to compute affinities and run an extensive set of exper-
iments varying group size, cohesiveness (rating similarity between
group members) and affinity between group members. To address
(ii), we develop GRECA, an algorithm that non-trivially adapts the
family of threshold algorithms [10], to account for affinities be-
tween user pairs that evolve over time. GRECA leverages index
structures that are extremely efficient with updates for maintaining
time-variant affinities, and are used to efficiently produce the top-
k recommended itemset for a group. In fact, as affinity between
users evolves over time, GRECA does not need to recalculate any of
the previously calculated affinities and just augments the index to
account for the latest affinities. In addition to being instance opti-
mal, the key novelty of GRECA is the use of a new buffer condition
for termination, which constitutes a clear departure from traditional
top-k style algorithms [10]. This condition simply implies that just
by examining the items in the buffer, GRECA can terminate with
the guarantee to have found the correct top-k itemset.

Our experiments consistently indicate that incorporating tempo-
ral affinities into group consensus functions is most effective for
dissimilar user groups as well as low-affinity user groups whose
preference significantly evolves over time. Prior work has shown
that such groups generally take longer to reach consensus [20]. Our
performance experiments demonstrate that GRECA achieves a save
up of 75% or beyond in the number of accesses. These results
strongly corroborate the effectiveness of our proposed solutions to
include temporal affinities in group recommendation functions.

The paper makes the following technical contributions:

• We motivate the need to account for user affinities between
group members when computing recommendations and pro-
pose to capture affinities in the relative preference of indi-
vidual group members for each item. Relative preference
modifies a user-item preference with the user’s affinity with
other group members.

• Since affinities may evolve over time, we propose two mod-
els, discrete and continuous, to represent (positive or neg-
ative) affinity drift of two users over time. This dynamic
component is combined with a static component, that cap-
tures how close two users are in a time-independent fashion,
in order to form temporal affinities.

• We extend group recommendation semantics, i.e., average
preferences, least misery and pairwise disagreement, to in-
clude temporal affinities and design GRECA, an efficient al-
gorithm that computes recommendations on-the-fly for ad-

1http://movielens.umn.edu/

hoc groups. GRECA uses a new early termination condition
to efficiently produce the top-k itemset for a group.

• We run extensive experiments using Facebook and Movie-
Lens datasets and examine the impact of our temporal affin-
ity model on group recommendation quality and efficiency.

The paper is organized as follows. Section 2 contains our for-
malism. GRECA, our recommendation algorithm is provided in
Section 3. Extensive experimental evaluation is given in detail in
Section 4. Related work is summarized in Section 5 and conclusion
in Section 6.

2. DATA MODEL AND PROBLEM
We present a data model that captures temporal affinities and

define our problem of recommending items to ad-hoc groups.
The underlying scenario that will be used to illustrate our model

is a social network of individuals who have some intrinsic charac-
teristics (e.g., birthplace, gender and age) and who express inter-
ests for items via likes and votes as in Facebook and Twitter. At
any given point in time, we are interested in recommending con-
tent items (e.g., movies, books, conferences) to an ad-hoc group.
Parts of this scenario will be used in this section and one instance
will be described in specific details in Section 3.1.

In our model, we assume a set of m items I = {i1, i2, . . . , im}
and a set of n users U = {u1, . . . , un

} out of which any ad-hoc
group G ✓ U can be built. To simplify exposition, we will not for-
malize user or item attributes and will refer to them when needed in
our example. We consider time as a set of consecutive timestamps
that form periods. Each period p is a time interval of the form [s, f ]
where s is its starting timestamp and f its ending timestamp.

2.1 Dynamic User Affinity Models
Affinity describes the bonding between a pair of users (u, u0

) and
is denoted a↵ (u, u0

). It could be as simple as explicit friendship or
users in the same age group or more sophisticated such as users who
like similar movies, have visited similar places and have friends
who live in different parts of the world. For simplicity, we assume
that affinity between a user pair is symmetric, i.e., a↵ (u, u0

) =

a↵ (u0, u). More importantly, a↵ (u, u0
) is dynamic and changes

over time. We therefore compute affinity a↵ (u, u0, p) for a time
period p = [s, f ]. This dynamic affinity captures changes over time
by combining its static and dynamic components defined below.

• Static Affinity - a↵S (u, u
0
): This is a time-agnostic affinity

component and is used to capture how close two users are
in a time-independent fashion. Stable factors such as birth-
place, age, and education naturally contribute to this com-
ponent. However, depending on the application, other di-
mensions could be accounted for. For example, Facebook
friendship being stable, we use it to model static affinity in
our experiments (Section 4.1.2).

• Dynamic Affinity - a↵V (u, u0, p): This is a time-variant com-
ponent that captures affinity between two users u and u0

during period p by considering how close they are during
that period. For example, shared political interests, common
likes, and shared interests for world events, vary over time
and could contribute to formulating this component. Intu-
itively, the objective is to capture the aggregated drift that
the affinity of a user pair exhibits for every time period from
the beginning of time s0 to the end of the current period
p = [s, f ], compared to the overall user population.
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More specifically, time starts at the beginning of time s0 and
is segmented into subsequent time periods p0, . . . , pnow

of
varying lengths. Given two time periods p

i

= [s
i

, f
i

] and
p
j

= [s
j

, f
j

], p
i

 p
j

is used to denote that p
i

precedes p
j

,
i.e., s

i

 s
j

and f
i

 f
j

. Determining the right granularity
of a time period depends on the application at hand and the
frequency of user actions and is orthogonal to our model. For
example, in a social network such as Facebook, and when
affinities are computed using shared posts, granularity may
vary from hours to days depending on the time of year. On
Twitter, granularity is finer and may vary from minutes to
hours since post frequency is higher. Not all time periods are
of the same length.
Given a time period p = [s, f ], for every time period p0

that is included in the interval starting at the beginning of
time s0 and ending at f , the end of p, the periodic affinity
drift is calculated as a difference between the periodic affin-
ity a↵ P

(u, u0, p0) between users u and u0 and the average
periodic affinity Avga↵ P

(p0) of the whole user population.
These drifts are aggregated over all time periods included in
the interval [s0, f ] and normalized to generate a↵V (u, u0, p).
Formally,

a↵V (u, u0, p) =
⌃

p

0p

(a↵ P

(u, u0, p0)� Avga↵ P

(p0))

�

(1)
The exact formulation of � depends on how time is mod-
eled (discrete or continuous) and is described. Interestingly,
a↵V (u, u0, p) could be either positive or negative and de-
pends on how the affinity of (u, u0

) evolves compared to the
overall population.
The exact formulation of a↵ P

(u, u0, p0) depends on the ap-
plication. In our Facebook experiment in Section 4.1.2, we
use common page likes between u and u0 during period p0.
Finally, Avga↵ P

(p0) is defined as follows:

Avga↵ P
(p0) =

2⇥ ⌃(u,u0)2U,u 6=u

0a↵ P

(u, u0, p0)

|U|2 � |U|

We now describe our dynamic affinity models that use a↵S (u, u
0
)

and a↵V (u, u0
) as building blocks. The first model relies on dis-

cretized time periods to capture a↵V whereas the second repre-
sents time in a continuous fashion.

• Discrete Dynamic Affinity Model: In this model, the a↵S and
a↵V affinity components are aggregated using a linear func-
tion over a set of discretized time periods. Therefore, �, the
denominator in Equation 1, is simply the number of time pe-
riods between s0, the beginning of time, and e, the end of
p. This simple aggregation also allows us to design efficient
algorithms.
a↵ D

(u, u0, p) =a↵S (u, u
0
) + a↵V (u, u0, p)

• Continuous Dynamic Affinity Model: For this model, time is
considered in a continuous fashion. In this case, the denomi-
nator in Equation 1, �=f -s0 is the length of time between the
the beginning of time s0 and f , the end of p. As a natural rep-
resentation to capture continuous time, we consider an expo-
nential function, which is also supported in prior work [17].
Formally,
a↵ C

(u, u0, p) = a↵S (u, u
0
)⇥ e�(f�s0)

Here � is the rate of growth/decay of affinity and could sim-
ply be replaced by a↵V (u, u0, p) in Equation 1 to represent
the cumulative effect of affinity drift over time.

Consequently, the discrete time model could be viewed as an ap-
proximation of the continuous one where time is discretized into
sub-periods and each user pair’s affinity is normalized over the
number of periods (Equation 1). Alternatively, the continuous model
treats time as a single interval [f -s0] and captures an exponential
growth, resp., decay, affinity model when a↵V (u, u0, p) is positive,
resp., negative.

In both a↵ D

(u, u0, p) and a↵ C

(u, u0, p) affinity drift could be
negative or positive thereby capturing situations in practice where
affinity between two users may increase or decrease over time. We
believe that the ability to capture this varying rate of change is im-
portant in practice in particular for social networks where different
users exhibit different interests over time.

2.2 User-Item Preference Models
We now show how affinities are accounted for in computing the

preference of a user for an item in a group. We first describe how
affinity is incorporated into user-item preferences without account-
ing for time then we show how to modify the formulation to com-
pute time-aware user-item preferences.

Time-Agnostic User-Item Preference: Given a group G, the
preference of a user u 2 G for an item i 2 I is denoted pref (u, i,G)
and depends on two components:

• Absolute preference - apref (u, i). This describes how much
u likes item i akin to the predicted rating of u for i. Existing
single-user recommendation algorithms, such as collabora-
tive filtering, could be used to compute apref (u, i).

• Relative preference - rpref (u, i,G). This component cap-
tures that a user likes an item i if close members in the group
G also like i and similarly that a user dislikes an item i if
close members in the group G dislike i. Affinity between
group members is used to capture how close they are. More
formally, rpref (u, i,G) combines the affinity of a user u
with other members u0 2 G, denoted a↵ (u, u0

), with the
preference of u0 for item i, denoted apref (u0, i).

rpref (u, i,G) = ⌃8u0 6=u2Ga↵ (u, u0
)⇥ apref (u0, i)

The overall affinity-aware user-item preference is a simple com-
bination of these two factors: pref (u, i) = apref (u, i)+rpref (u, i,G)

Time-Aware User-Item Preference: We now modify the defi-
nition of relative preference to capture temporal affinities:

rpref (u, i,G, p) = ⌃8u0 6=u2Ga↵ (u, u0, p)⇥ apref (u0, i).

Therefore, a user u’s overall preference on item i during time
period p can be simply formulated as:

pref (u, i,G, p) = apref (u, i) + rpref (u, i,G, p)

2.3 Group Consensus Models
Members of a group may not always have the same preferences

for items and a consensus function needs to aggregate user-item
preferences into a single group’s preference for an item. Intuitively,
there are two main aspects in a consensus function [20]. First, the
preference of a group for an item needs to reflect the degree to
which the item is preferred by all group members. The more group
members prefer an item, the higher its group preference. Second,
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the group preference needs to capture the level at which members
disagree or agree with each other. All other conditions being equal,
an item that draws high agreement should have a higher score than
an item with a lower overall group agreement. We call the first as-
pect group preference and the second aspect group disagreement.
We revisit the definitions we introduced in [3] to include a time
component.

Group Preference: The preference of an item i by a group G
during a time period p, denoted gpref (G, i, p), is an aggregation
over the preferences of each group member for that item. We con-
sider two commonly used aggregation strategies:
Average Preference: 1

|G|
P

u2G (pref (u, i,G, p))
Least-Misery Preference: minu2G(pref (u, i,G, p))

Group Disagreement: The disagreement of a group G over an
item i during a time period p, denoted dis(G, i, p), reflects the de-
gree of consensus in the user-item preferences for i among group
members over time. We revisit the two most common disagreement
computation methods:

1) Average Pair-wise Disagreements:
dis(G, i, p) = 2

|G|(|G|�1)

P
(|pref (u, i,G, p) � pref (v, i,G, p)|),

where u 6= v and u, v 2 G;

2) Disagreement Variance:
dis(G, i, p) = 1

|G|
P

u2G (pref (u, i,G, p)�mean(i,G, p))2, where
mean(G, i, p) is the mean of all the individual preferences for item
i over time.

The average pair-wise disagreement function computes the av-
erage of pair-wise differences in preferences for the item among
group members, while the variance disagreement function com-
putes the mathematical variance of the preferences for the item
among group members. Intuitively, the closer the preferences for i
between users u and v, the lower their disagreement for i.

Time-Aware Group Consensus: We combine group preference
and group disagreement in a time-aware consensus function, de-
noted F(G, i, p). The function combines group preference and dis-
agreement for an item i and a group G into a single group con-
sensus score using the following formula: F(G, i, p) = w1 ⇥
gpref (G, i, p)+w2⇥ (1�dis(G, i, p)) where w1+w2 = 1.0 and
each specifies the relative importance of preference and disagree-
ment in the overall group consensus.

Note that the formulation of group consensus incorporates tem-
poral affinities by aggregating the relative user-item preferences of
its members with disagreement. The proposed formulation is or-
thogonal to how affinities are modeled and incorporated into in-
dividual relative preferences. This way accounting for temporal
affinities in group recommendation is orthogonal to the consensus
function used to aggregate group members.

2.4 Problem Definition
Given a group G, a time-aware consensus function F and an

integer k, the objective is to recommend to G the k best itemset
I
G

that accounts for its members’ affinities during a period p, such
that:

• |IG | = k

• 8i 2 IG , u 2 G, i is not individually recommended to u

• @j 2 I, s.t. F(G, j, p) > F(G, i, p), where j /2 IG , i 2
IG , i.e., there does not exist any other item j in I whose
consensus score is higher than any item in i in IG .

3. INSTANCE OPTIMAL ALGORITHMS
In this section, we discuss how to efficiently compute k affinity-

aware recommendations for ad-hoc groups, meaning for groups
that are not known beforehand. Recall that given a group G, the
goal, stated in Section 2, is to find the k best items to recommend
to G according to a consensus function F .

We propose instance optimal algorithms to compute top-k items
for a given group under different group consensus functions. The
overall intuition of this algorithm is appropriately adapted from
the family of Fagin-style top-k algorithms [10]. These algorithms,
such as, Threshold algorithms TA or No Random Access Algorithm
NRA, rely on a function that aggregates multiple score components
into a single score for each item. Those algorithms are used in
Web search to compute the score of each item (a document in that
case) as a combination of its component scores (its scores for each
keyword in the search query). These algorithms aim to find the k
items that rank the highest (the ones with the highest aggregated
scores) in as little time as possible. They take sorted item lists
that correspond to each component and scan them using sequen-
tial and random accesses (SAs and RAs), and the computation can
be terminated without scanning the input lists fully, using stopping
conditions based on score bounds (thresholds). Early stopping is
possible when the ranking function is monotone [10].

LEMMA 1. The temporal affinity-aware consensus function F
is monotonic w.r.t. absolute preference lists and user-affinity lists
for the dynamic user-affinity model, and pair-wise disagreement
lists.

PROOF. (sketch): In a prior work [3], we showed that all three
group consensus functions without considering time-agnostic affin-
ity (average preference, least misery and pair-wise disagreement)
are monotone. If all group members, except a user u, rate items
i1 and i2 the same, i1 will have at least the same group prefer-
ence as i2 if u rates i1 no less than i2. This holds for both the
average and least-misery. For pair-wise disagreement, we showed
that our group disagreement functions (pair-wise and variance) can
be transformed into aggregations of individual pair-wise disagree-
ments and become monotone.

Monotonicity remains true with the introduction of affinities and
time. For an item i, if both users like i highly, higher affinity be-
tween them only improves i’s overall preference. On the contrary,
for an item j, if they like j as highly as they do i, lower affinity
between them only decreases j’s overall preference. Introduction
of time in the affinity model only makes the affinity calculation
time-dependent by changing the temporal granularity at which it is
computed; however, the relationship between dynamic affinity and
the group consensus of an item does not change.

As a result, we can design instance optimal algorithms with the
early stopping.

3.1 Running Example and Data Structures
We now describe the data structures necessary to run Fagin-style

top-k processing algorithms via an example that will also be used
to illustrate our algorithm, GRECA.

Imagine a group G formed with three users u1, u2, u3. Given an
itemset I = {i1, i2, i3}, our objective is to identify the best item
(k = 1) to recommend to the group at time period p (for example,
January 2014). Also, assume that the system has information about
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Algorithm 1 Group Recommendation with Temporal Affinities
(GRECA)
Require: Group G, k, consensus function F ;
1: Retrieve user preference lists PL

u

for each user u in group G;
2: Retrieve pair-wise affinities for a↵S , a↵V for each period;
3: Sc

r

= {r
u

}, the last user preference from PL
u

, 8u 2 G
4: Sca↵S

= {a↵S
u,v

}, the last pair-wise a↵S affinity values read
8u, v 2 G

5: Sca↵V
= {a↵V

u,v

}, the last pair-wise periodic affinity values read
for each time period p0, 8u, v 2 G

6: Cursor cur = getNext() round-robin accesses to PL
u

, a↵S and
a↵V lists

7: while (cur <> NULL) do
8: Get entry e at cur
9: if !(in B(topKHeap, e)) then

10: ComputeUB(e,F)
11: ComputeLB(e,F)
12: Add e in B
13: else
14: Update ComputeUB(e,F) and ComputeLB(e,F)
15: end if
16: Sc

th

= ComputeTh({E},F) considering all current cursor posi-
tions

17: if Sc
th

 B.k
th

LB&|B| = k then
18: return topKList(B, k);
19: Exit;
20: else
21: if CheckBuffer(B) is satisfied then
22: return topKList(B, k)
23: Exit;
24: else
25: cur = getNext()
26: end if
27: end if
28: end while
29: return topKList(B, k)

group members u1, u2, u3 for one year, i.e., January 2013 to Jan-
uary 2014. The user-item preference lists of those group members
are provided in Table 1. Each list contains items preferred by each
user sorted in decreasing order of preference.

The item preference of a member u of a group G is a combi-
nation pref (u, i,G, p) = apref (u, i) + rpref (u, i,G, p), where
rpref is the relative preference that accounts for the temporal affin-
ity of u with other group members.

u1 u2 u3

i1 5 i1 5 i3 2
i2 1 i2 1 i1 2
i3 1 i3 0.5 i2 1

Table 1: Absolute Preference Lists PL
u

of u1, u2, u3

Affinity between users consists of two components, static affinity
a↵S and dynamic affinity a↵V . The detailed interpretations of
these affinities and how they are calculated are given in Section 2.
Out of the two aforementioned affinities, the latter is time-aware,
where time is considered in a continuous fashion or over a discrete
set of time periods (for example, two equal periods p1 and p2 each
of six months in our case). For simplicity, we consider the discrete
model in this example. The a↵S affinity involves all user-pairs
thereby creating 3⇥ (3�1)/2 (i.e. n(n�1)/2 in general) entries.
For every time period p0, similarly, there is a periodic affinity list
of the same size. Notice that each affinity list a↵V or a↵S with
n(n� 1)/2 entries could further be partitioned into a set of n� 1

lists, where the i-th list stands for user u
i

with n � i entries. For

example, we can have a La↵S (u1) that stores u1’s static affinity
with u2 and with u3, one for La↵S (u2) with u2’s affinity with u3

only (storing u1’s affinity here again is redundant), and no static
affinity list needs to be created for user u3. This partitioning allows
us to design efficient algorithms, as we describe later in Section 3.
Table 2 contains a↵S affinity lists of all users sorted in decreasing
order and Tables 3 and 4 contain a↵V affinity of users in periods
p1 and p2 respectively. Note that the temporal affinity of users u1

and u2 has decreased between periods p1 and p2.
In the above example, temporal affinity between user pairs (u, u0

)

is modeled in a discrete manner as a↵ D

(u, u0, p). To facilitate ef-
ficient computation, it is easy to see that the different absolute pref-
erence lists and time-variant affinity lists are to be pre-computed.
Even for a small group such as the one in the example with 3 users,
there are 3 absolute preference lists. Furthermore, the all-pair user
affinities for a given time period p0 are to be stored as well, either
as a single list with n(n � 1)/2 entries, or decomposed over a set
of n � 1 lists, where the i-th list represent user u

i

’s affinities with
n � i other users. Since the period affinities are independent of
each other, we must precompute such lists for every time period.
For the example case, this requires either creating 2 periodic affin-
ity lists to capture a↵V affinity and one static affinity list to capture
a↵S . Each of these lists have n(n � 1)/2 entries (as a single list
or splitted in n � 1 lists, as described in the example). The size
of each list is quadratic in the number of users, but the number
of such lists (T ) is a function of how time is discretized into pe-
riods. Even for a small group such as ours, many lists are to be
used in the computation. Notice that all these user-affinity lists are
required to compute the complete score of any item, because, the
relative preference rpref (u, i,G, p) for every item requires access-
ing all T ⇥n(n�1)/2 entries. An algorithm such as TA must read
all those entries to compute the complete score of an item and will
hence incur a large number of RAs.

We argue that all these accesses are not always necessary. For in-
stance, based on preferences in Tables 1 to 4, we consider scanning
item i1 in PL

u1 . If we were following TA method, to compute
the complete score of this item, 21 RAs are needed, i.e., one RA for
each apref (u, i1) component and 6 RAs for each rpref (u, i1, p)
component where u 2 {u1, u2, u3}. Note that to compute the
score of a single item i1, we have accessed all entries in a↵S (u1),
a↵V (u1, p1) and a↵V (u1, p2) lists. For instance, entries in the list
a↵S (u1) is the static affinity scores between (u1, u2) and (u1, u3)

where we have accessed both.
Instead, our instance optimal algorithm GRECA makes only se-

quential accesses, i.e., SAs like NRA and potentially avoids con-
suming all these T ⇥ n(n � 1)/2 entries to determine the top-k
itemset. Following previous example, if for instance a↵S (u1, u3)

(in Table 2) is not yet scanned, we avoid making an RA to get this
value, but based on NRA principle, we use the score under the cur-
sor in the list of Table 2 (i.e., initially a↵S (u1, u2)) to compute a
partial score for i1. Details are mentioned in Section 3.2.
GRECA returns the top-k itemset which contains the best set of

k-items, although the rank among the returned itemset may not be
fully distinguishable (i.e. giving rise to a partial order). This is
rather reasonable, because k is usually small, and the group is po-
tentially interested in all of the k-items.

3.2 GRECA
For ease of exposition, we describe GRECA using the simplest

group consensus function Average Preference considering time-
aware affinity. The other group consensus functions mimic its be-
havior. The algorithm exploits the settings as is described in the
example in Section 3.1.
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u1 u2

u1u2 1 u2u3 0.3
u1u3 0.2

Table 2: Static Affinity Lists La↵S

u1 u2

u1u2 0.8 u2u3 0.2
u1u3 0.1

Table 3: La↵V Lists for Period p1

u1 u2

u1u2 0.7 u2u3 0.1
u1u3 0.1

Table 4: La↵V Lists for Period p2

Without loss of generality, for a given group with n users, GRECA
uses n user-item preference lists, where each list PL

u

for user
u has m items that are sorted in decreasing user-item preference.
Each PL can be obtained with any single user recommendation
strategy (in our experiments in Section 4, we use collaborative fil-
tering). In addition, GRECA uses n � 1 static affinity lists, and
another n� 1 dynamic periodic affinity lists for each time period.

The algorithm runs in a round-robin fashion over the aforemen-
tioned lists by making only SAs. It reads an entry e = (i, r), where
i is the item-id and r is the user u’s absolute preference score for
i, or an entry e0 = (u0, r0), where r0 is the pair-wise affinity of
(u, u0

). Affinity between a pair of users is either static or periodic
(i.e. dynamic), and the computation does not distinguish between
these two kinds. The algorithm invokes the following 3 different
subroutines to determine whether to continue further or to safely
terminate and return the top-k itemset during its execution:

(a) Compute Upper-Bound of an Item: ComputeUB(i): UB
i

computes the highest score that an item i can have in G based on so
far accesses.

(b) Compute Lower-Bound of an Item: ComputeLB(i):
LB

i

computes the lowest score that an item i can have in G based
on so far accesses.

(c) Compute Global Threshold: ComputeTh({E}): Input to
this function is the current set {E} of entries read from all the lists.
The output is simply a numeric score that captures the highest score
that an unseen item can have for group G.

Subroutines can be invoked after reading one entry from each
type of list (preference list, static affinity list or dynamic affinity
list) to make sure all types of lists are visited before or after reading
the j-th entry from all lists.

The first two subroutines return the latest bounds of an item i.
Then, those updated bounds are pushed into an item buffer that is
maintained throughout the execution of the algorithm. We describe
our proposed buffer management strategy later on. Naturally, these
two subroutines are to be invoked for all encountered items so far.

Illustration of the Subroutines: The upper-bound score of an
item i is simply the highest score it can have on current accesses. It
is computed by combining the actual encountered values for some
of the entries and then assigning the current cursor readings to the
rest. Consider our three-user group described in Section 3.1 and
assume that ComputeUB(i3) is invoked after the cursor reads the
second entry at PL

u2 . At that point, apref (u3, i3) = 2 is encoun-
tered, but for the other two users, these are to be approximated
based on the current cursor readings. For example, the highest
score of apref (u1, i3) = 1, apref (u2, i3) = 1. Similarly, static
and dynamic periodic affinities of users u1, u2 and u2, u3 are en-
countered, but those of u1, u3 are to be guessed based on the latest
cursor reading from the respective lists. This gives rise to
ComputeUB(i3)= ⌃8i2{1,2,3}UB[apref (ui

, i3)] + UB[rpref (u
i

, i3,G, p)]
= 13.02 (by ignoring normalization and final averaging).

The computation of the lower-bound of an item i is similar ex-
cept that it replaces the unseen entries of the function with the low-
est possible score. For example, instead of assigning apref (u1, i3) =
1, apref (u2, i3) = 1, it will consider those values to be 0 (as-
suming that the smallest absolute preference for an item could be
0). The same will happen in affinity calculation; as an example,
it substitutes a↵S (u1

,

u3) = 0, instead of 0.8 in the upper-bound
computation case. When invoked using item i1, ComputeLB(i1)
returns a value of 14.2 (ignoring normalization and final averag-
ing).

Computation of ComputeTh({E}) is rather simple. It simply
incorporates each of the entries in {E} in the function and returns
a numeric score.

Buffer Management Strategy: Once the upper-bound and lower-
bound scores of each item are computed, they are pushed into a
buffer B and are sorted in decreasing order of lower-bound score.
The buffer is implemented as a heap data structure which allows ef-
ficient updates since it requires to maintain sorted lists of potential
results and, in some cases, item lower-bounds and upper-bounds
need to be updated (for example, when the item is encountered
again in one of the lists).

Stopping Condition: The algorithm has both global threshold
computation and buffer management strategies. We now show that
the buffer management itself is sufficient to govern early stopping.
More importantly, unlike traditional threshold algorithms, GRECA
cannot terminate only based on the threshold condition in the cases,
where the buffer contains more than k items.

• Using the Global Threshold: If the current global threshold
is not larger than the lower-bound score of the k-th item in
the buffer, GRECAwill not find any item later on whose score
is larger than the current threshold. On the other hand, if the
current threshold is no larger than the lower-bound of the k-
th item in the buffer, any unseen item can never be in the top-
k itemset. This implies that a subset of the items in the cur-
rent buffer is the actual top-k itemset. If the buffer contains k
items only, then GRECA can safely terminate and return those
items in the buffer as the answer. However, in general, when
the buffer has more than k-items, to precisely determine the
actual top-k itemset, it needs to apply the buffer management
strategy that we describe now.

• Using the Buffer: A key novelty of GRECA is in using only
the buffer condition for termination. This condition sim-
ply implies that just by looking into the items in the buffer,
GRECA can terminate, as well as declare the partially ordered
correct top-k itemset. The buffer stopping condition works
as follows: the buffer contains k0-items (k0 > k) such that
the lower-bound of the k-th item score is no smaller than the
upper-bound score of each of the remaining k0 � k items.
In that case, those remaining k0 � k items could be safely
pruned. Interestingly, satisfying this condition implies satis-
fying the threshold condition as well, as Theorem 1 states.
The remaining k items are returned as answers.
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• Global Threshold and Buffer Management: Global thresh-
old can simply determine that the current buffer contains a
subset of items which are the actual top-k itemset. In a gen-
eral case, where the buffer has more than k items, GRECA
applies the buffer stopping conditions to determine that sub-
set. It is still possible that the buffer condition for stopping
is not met. In that case, GRECA resumes computation until
the buffer condition is satisfied or all lists are exhaustively
scanned.

Theorem 1. Satisfying the buffer condition for termination im-
plies that the global threshold condition for termination is met.

PROOF. (sketch): At a given snapshot during the execution of
GRECA, the score returned by ComputeTh({E}) is strictly not
greater than the upper-bound score of any item that is already seen
and in the buffer, i.e., ComputeUB(i) � ComputeTh({E}).
Therefore, if the buffer condition is satisfied (meaning that the lower
bound of the k-th item score in the buffer is not smaller than the
upper-bound score of the remaining k0 � k items), this automat-
ically implies, that the lower bound of the k-th item score is not
smaller than the current global threshold. Hence the proof.

For our running example in Section 3.1, this returns i1 as the
top-1 item to the group.

The pseudocode of GRECA is presented in Algorithm 1. In ad-
dition to the group G and k, it takes the preference and affinity
lists of G as inputs as well as the consensus function F . Lines
9 � 14 either add a new item into the buffer B and compute its
lower-bound and upper-bound scores, or update the latest lower-
bound and upper-bound score of an existing item and reorganize
the buffer. Line 16 computes the global threshold condition us-
ing the function ComputeTh(); lines 17 � 19 checks if the thresh-
old stopping condition is satisfied. Otherwise, the control goes on
to line 21 on wards and CheckBuffer(B) checks whether the
stopping condition is met using the buffer. The computation con-
tinues unless one of these conditions are satisfied, or all lists are
exhaustively scanned. Of course, in the latter case, there is no save-
up. However, as our experimental results exhibits, GRECA achieves
speed-up, compared to its naive counterpart.

LEMMA 2. GRECA returns correct top-k itemset.

PROOF. Notice that GRECA returns from the buffer those k-
items whose lower-bound scores are the highest and larger than the
upper-bound score of any remaining item. As Theorem 1 proves
that this also implies that the global threshold at that point cannot
be larger than the lower-bound score of the k-th item in the buffer.
Notice that the threshold captures the highest score that any unseen
item can have. Due to the monotonicity property of the consen-
sus function, global threshold decreases gradually, implying that
the highest score of any item gets only smaller, as more entries are
scanned from the lists. Therefore, when GRECA terminates and out-
puts the itemset with the highest top-k lower-bound scores, this im-
plies that any other items that are discarded or unseen cannot have
higher score than the returned itemset. Hence the proof. However,
since the complete score of many of the items may not be computed
upon termination, the output may give rise to a partial order among
the top-k items.

LEMMA 3. GRECA is instance optimal.

PROOF. (sketch): In [10], authors prove that NRA is instance
optimal with optimality ratio m and no deterministic algorithm can

perform any better. GRECA mimics the cursor movement of tra-
ditional NRA, however, it has a different stopping condition. The-
orems 1 and 2 prove that our stopping condition implies both the
threshold stopping condition and result correctness, therefore, the
instance optimality of GRECA holds. A detailed proof is deferred
to an extended version of the paper.

4. EXPERIMENTS
We evaluate our group recommendation method from two major

angles: effectiveness and efficiency. We conduct an extensive user
study on Facebook to demonstrate that group recommendation with
the consideration of temporal affinity is superior to solely relying
on aggregating individual preferences (Section 4.1). We also run
comprehensive experiments to show that GRECA achieves scalable
performance when computing temporal affinity-aware recommen-
dations for ad-hoc groups (Section 4.2).

We implement our prototype system using JDK 1.8.0. All scala-
bility experiments are conducted on an 2.4 GHz Intel Core i5 with
8 GB of memory on OS X 10.9.5 operating system.

Dataset Description: We use the MovieLens 1M ratings dataset 2

for our evaluation. MovieLens is a collaborative rating database
where users provide a rating ranging from 1 to 5 for movies (5
being the best). Table 5 contains the statistics of the 1M ratings
dataset.

# users # movies # ratings
6,040 3,952 1,000,209

Table 5: The MovieLens 1M Dataset

Individual User Preferences: We use collaborative filtering [2]
to generate individual user preferences where user similarity is com-
puted with cosine similarity over vec(u), i.e., the ratings of u for
each movie.

cos(~u, ~u0
) =

~u⇥ ~u0

k~uk2 ⇥ k~u0k2

4.1 Quality Experiment
We exploit the availability of Facebook users for our user study

which gives us the opportunity to obtain preferences of real users
and leverage the social graph for affinities. Our aim is to com-
pare our temporal affinity-aware group recommendation with naive
methods without consideration of time or affinity. Our group rec-
ommendations are produced and compared using the following con-
sensus functions (as discussed in Section 2).

• Average Preference (AP), which computes the group prefer-
ence for an item as the average of individual group members’
preferences for that item.

• Least-Misery Only (MO), which computes the group pref-
erence for an item as the minimum among individual group
members’ preferences for that item.

• Pair-wise Disagreement (PD), which computes the group
preference for an item as the combination of its average and
its pair-wise disagreement between individual group mem-
bers’ preferences.

2http://movielens.umn.edu
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For each of these functions, we incorporate time-aware affinity
to compute the relative user preference to an item at a given time
(see Section 2 for an exact definition of relative preference.)

We developed an application using the Facebook API3 and re-
cruited 72 Facebook users overall to rate movies from the Movie-
Lens 1M dataset. We obtained 1981 ratings. Our Facebook applica-
tion asks only for public profiles and friend list access permissions.
Also, we anonymize the dataset by mapping Facebook IDs to a ran-
dom 5-digit number. The study is conducted in two phases: User
Collection Phase and Quality Assessment.

Summary of Results: In summary, we observe that including
temporal affinity in group recommendation significantly improves
user satisfaction. The amount of satisfaction is variable and is de-
pendent on how groups are formed. In particular, dissimilar user
groups as well as those with low-affinity users whose preference
significantly evolves over time, are most satisfied. We found that
prior work has indeed shown [20] that reaching consensus among
such group members is indeed difficult. In addition, we found that
PD, in general, is the method of choice and works best for dissim-
ilar and high affinity groups. This observation is also in line with
one of our prior results [22] where we showed that including dis-
agreement in group consensus generates higher quality recommen-
dations. We also observe that incorporating time models produces
better results for high affinity groups suggesting that groups with
high affinity are most sensitive to temporal affinities. Finally, the
continuous time model is preferred by large groups of dissimilar
members. That could be explained because it better captures vari-
ability for groups whose members are more sensitive to differences
between them. The discrete model on the other hand, is a good ap-
proximation of the continuous one in the case of high affinity and
high similarity groups.

4.1.1 User Collection Phase
In this phase, the goal is to recruit users and collect their data.

Later, collected users are used to form different groups and perform
judgments on group recommendations. For this aim, we start with
13 seed users (denoted S). Users in S have to complete two tasks:
i. rate at least 30 movies in MovieLens, and ii. invite between 10
and 20 of their friends to participate in the study. The set of friends
of a seed user s 2 S is denoted friends(s). Note that we consider
[

s2S

friends(s) \ S = ;. Friends are only asked to rate movies
and not invite friends, i.e., we stop at the depth 1 of the social graph
for this study.

We select a subset of MovieLens movies for participants to pro-
vide their preferences. We consider two factors in selecting those
movies: familiarity and diversity. On one hand, we want to present
users with a set of movies that they do know about and therefore
can provide ratings for. On the other hand, we want to maximize
our chances of capturing different tastes among movie-goers. To-
wards those two goals, we select two sets of movies. The first set is
called the popular set, which contains the top-50 movies in Movie-
Lens in term of popularity (i.e. the number of users who rated a
movie in the set). The second set is called diversity set, which con-
tains the 25 movies with the highest variance among their ratings
and that are ranked in the top-200 in terms of popularity. Each par-
ticipant rates movies in one of two pre-computed sets: the Similar
Set which consists entirely of movies within the popular set and
the Dissimilar Set which consists of the top-25 movies from the
popular set and the 25 movies from the diversity set.

Users are instructed to provide a rating between 1 and 5 (5 being

3https://developers.facebook.com

the best) for at least 30 movies listed in random order, according to
their preferences.

4.1.2 Static and Dynamic Affinities
In addition to ratings, we store anonymized lists of friends and

page-likes for each user. Since Facebook friendship is relatively
stable over time, we use it to compute static affinity: a↵S (u, u

0
) =

|friends(u) \ friends(u0
)|. We normalize all static affinity values

in a group by the maximum pair-wise value in the group to obtain
a number between 0 and 1.

Page likes are dynamic and are used to compute the time-varying
component of affinity. To calculate dynamic affinity for each user,
we store all pages (s)he has ever liked in Facebook and for each
page, we record the timestamp of when the user liked it and the
page category (music, movie, etc.). There exist 197 different page
categories in Facebook. For privacy reasons, we do not record the
name of the liked pages. Thus the periodic affinity between two
users u and u0 in time-period p is calculated as: a↵ P

(u, u0, p) =

|page_likes(u, p) \ page_likes(u0, p)| where page_likes(u, p) is
the set of page categories whose pages are liked by u in time-period
p. Then we calculate a↵V (u, u0, p) using Equation 1. We also nor-
malize dynamic affinity values to be between 0 and 1. We consider
6 different two-month consecutive periods (Section 4.2.1). Note
that the average standard deviation over number of common page-
likes for all user pairs during 6 periods is 0.42.

4.1.3 Group Formation
We consider three main factors in forming user groups, i.e., group

size, group cohesiveness and affinity strength. Size and cohesive-
ness (i.e. how similar are group members in their movie tastes) are
akin to prior work [22].

We hypothesize that varying group sizes will influence reach-
ing consensus among the members and therefore to which degree
members are satisfied with the group recommendation. We choose
two group sizes, 3 and 6, representing small and large groups, re-
spectively.

Similarly, we assume that group cohesiveness is also a significant
factor in their satisfaction with group recommendation. As a result,
we form two kinds of groups: similar and dissimilar. A similar
group is formed by selecting users who i. have watched Similar
movies and ii. have the maximum summation of pair-wise simi-
larities (between group members based on their provided ratings)
among all groups of the same size. A dissimilar group is formed by
selecting users who i. have completed the Dissimilar movie set and
ii. have the minimum summation of pair-wise similarities among
all groups of the same size.

Finally, we consider groups with low and high affinity between
members. We set affinity to be high if each pair-wise affinity in a
group is equal to 0.4 or higher.

4.1.4 Quality Assessment
In the second phase of the study, users are instructed to de-

cide which of the recommended movies they are satisfied with in a
group. We form 8 groups out of Facebook users by considering dif-
ferent combinations of group size, group cohesiveness and affinity
strength. Each user evaluates movies in two phases: Independent
and Comparative.

Independent Evaluation: In the independent evaluation, a user,
who is a member of a group, observes a single recommendation list
at each time and is asked to say how satisfied she is with watch-
ing those movies with other group members using a scale between
0 and 5 (5 being the best). Figure 1 illustrates the results of this
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Figure 1: Independent Evaluation

evaluation phase. The score is reported as a percentage, i.e., a re-
sult with an average score of 5 gets 100%. Four parameters play a
role in generating different recommendation lists in Figure 1, i.e.,
affinity awareness, time model (discrete vs. continuous), temporal
awareness and consensus function. Figure 1. A illustrates results
with default values, i.e., affinity-aware, discrete, time-aware and
AP consensus function. In all other figures, only one parameter
value changes, i.e., affinity-agnostic in B, time-agnostic in C, con-
tinuous time model in D, MO function in E and finally PD func-
tion in F . That parameter is mentioned in the title of each chart in
Figure 1.

We observe that in general, participants give a score of at least
80% to A, which is the default case with discrete temporal affin-
ity. Participants in dissimilar groups have scored A with 90.66%
preference while it is 10% lower for similar groups. This could
be interpreted as: averaging individual ratings and using a discrete
time model works well for groups formed by users who like dif-
ferent movies. Interestingly, the same result holds for low affinity
and high affinity groups. This potentially shows that our model is
robust to time-varying tastes. On the other hand, the low preference
of high affinity groups show that members of those groups benefit
from another consensus function, i.e., PD (chart F ).

Lists without affinity (chart B) and time awareness (chart C)
have at most 55% and 60% overall preference respectively. This
margin of 20% difference in preference with the temporal affin-
ity case (chart A) shows explicitly the importance of affinity and
temporal affinity in group recommendation. In B, worst results
are obtained for small (30.08%), high affinity (36.66%) and similar
groups (40%) where we observe a decrease in satisfaction. This
potentially shows those are the groups that would best benefit from
using affinity in computing their recommendations. In C the worst
results are for dissimilar and large groups (both 50.19%). One ex-
planation is that dissimilar large groups, i.e., those who differ in
their movie tastes among many members, prefer temporal recom-
mendations, i.e., movies that are generated by taking into account
their friendship and page-like differences over time.

Groups with different tastes (dissimilar, large and low affinity)
prefer the continuous time model (chart D). This is potentially be-
cause of a higher precision in capturing time. Considering the time
as a whole from the beginning of time is needed to deliver recom-

mendations that satisfy all members of those heterogeneous groups.
In case of MO (chart E), we observe a superior satisfaction for dis-
similar and low affinity groups as increase in uncertainty in large
groups leads members to like MO better.

Comparative Evaluation: In the comparative evaluation, users
are asked to compare two lists l1 and l2 at a time and pick the list
they prefer. Following the closed world assumption, when a list is
not chosen by a user, it means that it is not preferred. A user has to
choose one and only one of the proposed lists. Figure 3 illustrates
the preferences of l1 over l2.

First, a user is asked to compare affinity-aware (l1) vs. affinity-
agnostic (l2) recommendations. In A, we observe that in general,
in 75% of the cases, affinity-aware recommendations are preferred.
They are mostly appreciated by small groups followed by high
affinity groups. Larger groups have less preference for affinity-
aware results. A large group potentially leads to higher variability
of preference and weaker affinity among its members, thus natu-
rally prohibiting an early agreement.

In the second comparative study, we examine the effect of tem-
poral affinity by comparing time-aware (l1) vs. time-agnostic (l2)
recommendations. In B, we observe that in most groups, tempo-
ral recommendations are preferred in over 80% of the cases. This
leaves no doubt that participants like better results obtained based
on time. It also shows that high affinity groups prefer not only
affinity-based results, but also its temporal version. Small groups
have also exhibited a high preference. This is because in groups
with fewer members or groups whose participants deeply know
each other, the effect of time manifests itself more strongly. Fi-
nally, high preference for large groups show that the temporal di-
mension of affinity is a useful component for such groups to obtain
higher quality results, because group members potentially observe
that their common affinity history plays a role in recommendations.

We now examine which of the discrete or the continuous tempo-
ral affinity models is better and in which case. In C, we observe
that in general, the discrete time model is preferred for groups with
strong connections between members (high affinity and high simi-
larity). In the case of dissimilar and large groups, it is the contin-
uous model that is preferred. The continuous nature of the latter
is certainly better to capture variability for groups whose members
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are more sensitive to differences between them while the discrete
one is a good approximation of the continuous model in the case of
high affinity and high similarity groups.

Finally, we compare different group consensus functions. This
time, we compare 3 different lists together which are results of AP,
MO and PD consensus functions. We are interested to discover
which function delivers more satisfactory results when we account
for temporal affinities. Figure 2 illustrates this comparison. In
short, while the choice of which consensus function to apply heav-
ily depends on group characteristics, there exists a general prefer-
ence for PD especially in the case of loosely connected groups (low
affinity and dissimilar groups). That could be explained by the fact
that PD favors items that minimize disagreement between group
members which is more appropriate for dissimilar group members.

In summary, it is shown that AP is highly preferred in small and
high affinity groups. Whenever AP has a high preference, PD is
also highly preferred. MO provides higher quality results for larger
groups (this is consistent with our findings in [22]) and for groups
with loose connections.

Table 1

Table 2

Sim Diss Small Large High Aff Low Aff

AP 27.7777777777778 22.2222222222222 44.4444444444444 16.6666666666667 38.8888888888889 22.2222222222222

MO 22.2222222222222 33.3333333333333 16.6666666666667 44.4444444444444 16.6666666666667 33.3333333333333

PD 50 44.4444444444444 38.8888888888889 38.8888888888889 44.4444444444444 44.4444444444444
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Figure 2: Qualitative Evaluation of Consensus Functions

4.2 Scalability Experiment
Experiment Settings: Unless otherwise stated, we form 20 dif-

ferent random groups by selecting a subset of users who partici-
pated in our quality experiment. The default settings of the rest
of the parameters are, group size = 6, k = 10, number of items =
3900, consensus function = AP. Unless otherwise stated, affinity
is computed using the discrete time model. For each scalability
experiment, we compute the average percentage of SAs needed by
GRECA in different settings. The percentage of SAs represents the
computational cost that GRECA incurs, compared to a naive algo-
rithm which entirely scans all lists. A smaller percentage exhibits
higher scalability.

We conduct experiments by varying time periods, result size
(k), group size, number of input items, similarity and dissimilarity
among items and users in the group, and considering the discrete
and continuous affinity models. Our results illustrate the scalabil-
ity of GRECA with different group consensus functions. We only
present a subset of these results. The omitted results are similar to
the ones presented. All results are presented with standard error
bars, wherever applicable.

Summary of Results: First and foremost, we observe that GRECA
is highly scalable with varying k, group size, number of items and
enables a significant saveup in the number of accesses (almost al-
ways, more than 75% accesses are avoided) with early termination.
Then, we observe that the pruning ability is highest for similar user
groups. We observe that the score distribution of top-k itemsets
for such groups is different from the rest of items, therefore, the
stopping condition in the buffer is satisfied early. Third, we ob-
serve that GRECA is effective across all group consensus functions.
In fact, for some of the complex group consensus functions that

consider user disagreement, GRECA incurs the smallest percent-
age of accesses ensuring the highest saveup in computation cost.
Fourth, GRECA scales linearly with an increasing number of peri-
ods. Finally, we observe that GRECA is effective both for discrete
and continuous models.

4.2.1 Varying Time Period
We explore discretizing time into periods of different lengths:

week, month, two-month, season and half-year. Since dynamic
affinity relies on user page-likes in Facebook and liking a page is
not a frequent action, many time segments were empty after dis-
cretization (Figure 4). The length of a time period should be cho-
sen in such a way that each period contains enough data to compute
affinities. Figure 4 shows that two-month periods achieve a good
balance between the percentage of non-emptiness (65%) and the
number of periods (6). We hence pick a two-month discretization
for the rest of our experiments.

Table 1

Table 2

Non-empty 
Periods (%)

# of Periods

Week 26.01 53

Month 54.35 12

Two-Month 67.4 6

Season 77.18 4

Half-Year 97.83 2
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Figure 4: Different Time Periods

Figure 6 illustrates the average number of accesses in each pe-
riod. As expected, this figure shows a linear behavior in general,
as going to subsequent periods increases the number of lists. An
exception happens in period 5 where its average #SA is very close
to its next period. By looking more carefully at the underlying data
distribution, we noticed that the number of common page-likes be-
tween user pairs in period 5 is very low. Therefore, scanning this
period does not help to update bounds in order to have early termi-
nation.

Figure 6: Average Percentage of SAs for Different Periods in
Discrete Time Model

4.2.2 Varying k, Group Size and Number of Items
In Figure 5, we illustrate the scalability of GRECA by varying

result size, group size and number of items. In A, we vary k from
5 to 30 and run GRECA with the AP consensus function for 20
different groups with 6 members. We observe that GRECA scales
linearly with varying k. The algorithm always produces a saveup
of 81% or higher.
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Figure 3: Comparative Evaluation
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Figure 5: Average Percentage of SAs by Varying Result Size, Group Size and Number of Items

In B, we examine the effect of different group sizes on perfor-
mance. The results clearly demonstrate that GRECA scales well
with varying group sizes. The average saveup is greater than 77%.

In C, we vary the number of available items for group recom-
mendation from 900 to 3900. The results demonstrate that the
number of accesses does not necessarily increase with that. This
observation is unsurprising as the number of accesses depends on
the score distribution of the item preferences and user affinities.
GRECA saves more than 83% accesses even in the worst case.
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Figure 7: Average Percentage of SAs for Similar, Dissimilar,
High Affinity and Low Affinity Groups

4.2.3 Similarity/Dissimilarity
We examine the effect of similarity on GRECA in two ways: first,

we compare the number of accesses between groups with similar
and dissimilar ratings; then, we compare groups with high and low
affinities. Figure 7 contains the result. The results demonstrate that
the effectiveness is higher for similar groups in both cases (item
based similarity and high affinity).

4.2.4 Time Models
We examine the effect of continuous and discrete time models

on GRECA. The average number of SAs for the continuous model
is 16.32% and 16.6% for the discrete one. This means that in both

cases, we obtain a saveup greater than 83%. The number of ac-
cesses for both methods are very similar with a slight superiority
for the discrete model.

4.2.5 Consensus Functions
In this last performance study, we compare different consensus

functions. Figure 8 contains the results. We introduce two different
versions of PD based on [22] by varying the weights used in the lin-
ear combination of rating aggregation (w1) and disagreement (w2)
s.t. w1 +w2 = 1. In PD V1, we consider w1 = 0.8 and in PD V2,
w1 = 0.2.
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Figure 8: Average Percentage of SAs for Different Consensus
Functions

All results clearly demonstrate that GRECA achieves significant
saveups for those consensus functions. They also show that PD V2
outperforms PD V1. During our post-analysis, we observed that a
higher weight on disagreement allows faster stopping, because the
items have smaller scores. MO is the next best performer achieving
as high as 83% in accesses’ saveups.

5. RELATED WORK
Group recommendation has been designed for various domains

such as news pages [21], tourism [11] and music [7]. A group may
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be formed at any time by a random set of users with different in-
terests, a number of persons who explicitly choose to be part of
a group, or by computing similarities between users with respect
to some similarity functions and then clustering similar users to-
gether [19, 3].

There are two dominant strategies for group recommendations
[4, 3]. The first approach creates a pseudo-user representing the
group and then makes recommendations to that pseudo-user, while
the second strategy computes a recommendation list for each group
member and then combines them to produce a group’s list. For
the latter, a widely adopted approach is to apply an aggregation
function to obtain a consensus group preference for a candidate
item. However, to the best of our knowledge, none of the existing
functions account for the influence between group members [24].

Affinities may be strong emotional bonds, like links between
family members or a clique of close friends. Those links may also
be relatively weak thereby breaking with the passage of time or
the occurrence of relationship-damaging events. In [16], an affinity
model is proposed for group recommendation based on NEO-FFI 4

personality test. Another model is proposed in [12] where 3 differ-
ent components (social relationship, expertise and disagreement)
are aggregated to form affinity. A possible extension of our work
could make use of that affinity definition.

On e-commerce platforms, recent studies have proved the im-
portance of time in recommender systems. In [8], Yi Ding et al.
assign different weights to different rating records based on their
creation time, and reveal the existence of a dynamic change in user
interests. Liang Xiong et al. [25] improved the accuracy of recom-
mendations by incorporating the global evolution pattern of user
preferences. Potentially the most similar contributions to ours on
time models are [17, 15] where Yehuda Koren et al. take temporal
dynamics of user and item biases into consideration for individual
recommendations. To the best of our knowledge, no previous work
has studied a time model for group recommendations.

Threshold algorithms [9] have been used extensively for recom-
mendation. Their attractiveness lies in monotonic score aggrega-
tion functions, which operate on sorted input and enable the early
pruning of low-ranked answers. In this work, we adapt NRA to ag-
gregate individual preferences, disagreement and temporal affinity
lists to compute temporal recommendations and propose a novel
stopping condition and prove correctness and instance optimality.

6. CONCLUSION
We examined affinity-aware group recommendation over time

and developed GRECA, an efficient algorithm with unique features
that distinguish it from state-of-the-art recommendation algorithms.
Our proposed semantics is compatible with popular group consen-
sus functions. Our extensive experiments with real Facebook users
and Movielens datasets assess the high quality of temporal affinity-
aware recommendations for groups with different characteristics
(small/large groups, similar/dissimilar groups, high and low affin-
ity groups). In the future we would like to study the maintenance of
our index structures over time in relationship with how often affin-
ity between users changes. In particular, we are examining how to
combine incremental clustering with our indices in order to deter-
mine the minimum amount of information to store that guarantees
instance optimality. Moreover, we plan to extend our performance
studies to larger groups with thousands of users.

4Neuroticism Extroversion Openness Five Factor Inventory
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ABSTRACT
In this paper we propose a novel query type, termed top-k
spatio-textual preference query, that retrieves a set of spatio-
textual objects ranked by the goodness of the facilities in
their neighborhood. Consider for example, a tourist that
looks for “hotels that have nearby a highly rated Italian
restaurant that serves pizza”. The proposed query type
takes into account not only the spatial location and tex-
tual description of spatio-textual objects (such as hotels and
restaurants), but also additional information such as ratings
that describe their quality. Moreover, spatio-textual objects
(i.e., hotels) are ranked based on the features of facilities
(i.e., restaurants) in their neighborhood. Computing the
score of each data object based on the facilities in its neigh-
borhood is costly. To address this limitation, we propose
an appropriate indexing technique and develop an efficient
algorithm for processing our novel query. Moreover, we ex-
tend our algorithm for processing spatio-textual preference
queries based on alternative score definitions under a unified
framework. Last but not least, we conduct extensive exper-
iments for evaluating the performance of our methods.

1. INTRODUCTION
An increasing number of applications support location-

based queries, which retrieve the most interesting spatial
objects based on their geographic location. Recently, spatio-
textual queries have lavished much attention, as such queries
combine location-based retrieval with textual information
that describes the spatial objects. Most of the existing
queries only focus on retrieving objects that satisfy a spa-
tial constraint ranked by their spatio-textual similarity to
the query point. However, in addition users are quite of-
ten interested in spatial objects (data objects) based on the
quality of other facilities (feature objects) that are located
in their vicinity. Feature objects are typically described
by non-spatial attributes such as quality or rating, in ad-
dition to the textual description. In this paper, we propose
a novel and more expressive query type than existing spatio-

c⃝2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0 .
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Figure 1: Motivating example.

textual queries, called top-k spatio-textual preference query,
for ranked retrieval of data objects based the textual rele-
vance and the non-spatial score of feature objects in their
neighborhood.

Consider for example, a tourist that looks for “hotels that
have nearby a highly rated Italian restaurant that serves
pizza”. Figure 1 depicts a spatial area containing hotels
(data objects) and restaurants (feature objects). The qual-
ity of the restaurants based on existing reviews is depicted
next to the restaurant. Each restaurant also has textual in-
formation in the form of keywords extracted from its menu,
such as pizza or steak, which describes additional character-
istics of the restaurant. The tourist also specifies a spatial
constraint (in the figure depicted as a range around each
hotel) to restrict the distance of the restaurant to the hotel.
Obviously, the hotel h2 is the best option for a tourist that
poses the aforementioned query. In the general case, more
than one type of feature objects may exist in order to sup-
port queries such as “hotels that have nearby a good Italian
restaurant that serves pizza and a cheap coffeehouse that
serves muffins”. Even though spatial preference queries
have been studied before [16, 17, 14], their definition ig-
nores the available textual information. In our example, the
spatial preference query would correspond to a tourist that
searches for “hotels that are nearby a good restaurant” and
the hotel h1 would always be retrieved, irrespective of the
textual information.

In this paper, we define top-k spatio-textual preference
queries and provide efficient algorithms for processing this
novel query type. A main challenge compared to traditional
spatial preference queries [16, 17, 14] is that the score of
a data object changes depending on the query keywords,
which renders techniques that rely on materialization (such
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as [14]) not applicable. Most importantly, processing spa-
tial preference queries is costly in terms of both I/O and
execution time [16, 17]. Thus, extending spatial preference
queries for supporting also textual information is challeng-
ing, since the new query type is more demanding due to the
additional textual descriptions.
A straightforward algorithm for processing spatio-textual

preference queries is to compute the spatio-textual preference
score for each data object and then report the k data objects
with the highest score. We call this approach Spatio-Textual
Data Scan (STDS) and examine it as a baseline, while our
main focus is to reduce the cost required for computing the
spatio-textual score of a data object.
Moreover, we develop an efficient and scalable algorithm,

called Spatio-Textual Preference Search (STPS), for process-
ing spatio-textual preference queries. STPS follows a differ-
ent strategy than STDS, as it retrieves highly ranked fea-
ture objects first, and then searches data objects in their
spatial neighborhood. Intuitively, data objects located in
the neighborhood of highly ranked feature objects are good
candidates for inclusion in the top-k result set. The main
challenge tackled with STPS is determining efficiently the
best feature objects from all feature sets that do not violate
the spatial constraint.
To further improve the performance of our algorithms,

we develop an appropriate indexing technique called SRT-
index, that not only indexes the spatial location, the textual
description and the non-spatial score, but in addition takes
them equally into consideration during the index creation.
Finally, we extend our algorithm for processing spatio-textual
preference queries based on alternative score definitions un-
der a unified framework. To summarize the contribution of
this paper are:

• We propose a novel query type, called top-k spatio-
textual preference query, that ranks the data objects
based on the quality and textual relevance of facilities
(feature objects) located in their vicinity.

• A novel indexing technique called SRT-index is pre-
sented that is beneficial for processing spatio-textual
preference queries.

• We present two algorithms for processing spatio-textual
preference queries, namely Spatio-Textual Data Scan
(STDS) and Spatio-Textual Preference Search (STPS).

• We extend our algorithm STPS for processing spatio-
textual preference queries based on alternative score
definitions under a unified framework.

• We conduct an extensive experiment evaluation for
studying the performance of our proposed algorithms
and indexing technique.

The rest of this paper is organized as follows: Section 2
overviews the relevant literature. In Section 3, we define the
spatio-textual preference query. Our novel indexing tech-
nique (SRT-index) is presented in Section 4. In Section 5 we
describe our baseline algorithm, called spatio-textual data
scan (STDS). An efficient algorithm, called Spatio-Textual
Preference Search (STPS), is proposed in Section 6. More-
over, we extend our algorithms for processing spatio-textual
preference queries based on alternative scores in Section 7.
We present the experimental evaluation in Section 8 and we
conclude in Section 9.

2. RELATED WORK
Recently several approaches have been proposed for spatial-

keyword search. In [8], the problem of distance-first top-k
spatial keyword search is studied. To this end, the authors
propose an indexing structure (IR2-Tree) that is a combi-
nation of an R-Tree and signature files. The IR-Tree was
proposed in another conspicuous work [6, 11], which is a
spatio-textual indexing approach that employs a hybrid in-
dex that augments the nodes of an R-Tree with inverted
indices. The inverted index at each node refers to a pseudo-
document that represents all the objects under the node.
During query processing, the index is exploited to retrieve
the top-k data objects, defined as the k objects that have
the highest spatio-textual similarity to a given data location
and a set of keywords. Moreover, in [13] the Spatial Inverted
Index (S2I) was proposed for processing top-k spatial key-
word queries. The S2I index maps each keyword to a distinct
aggregated R-Tree or to a block file that stores the objects
with the given term. All these approaches focus on ranking
the data objects based on their spatio-textual similarity to
a query point and some keywords. This is different from our
work, which ranks the data objects based on textual rele-
vance and a non-spatial score (quality) of the facilities in
their spatial neighborhood. [5] provides an all-around eval-
uation of spatio-textual indices and reports on the findings
obtained when applying a benchmark to the indices.

Spatio-textual similarity joins were studied in [1]. Given
two data sets, the query retrieves all pairs of objects that
have spatial distance smaller than a given value and at the
same time a textual similarity that is larger than a given
value. This differs from the top-k spatio-textual preferences
query, because the spatio-textual similarity join does not
rank the data objects and some data objects may appear
more than once in the result set. Prestige-based spatio-
textual retrieval was studied in [2]. The proposed query
takes into account both location proximity and prestige-
based text relevance.

The m-closest keywords query [18] aims to find the spa-
tially closest data objects that match with the query key-
words. The authors in [3] study the spatial group keyword
query that retrieves a group of data objects such that all
query keywords appear in at least one data object textual
description and such that objects are nearest to the query
location and have the lowest inter-object distances. These
approaches focus on finding a set of data objects that are
close to each other and relevant to a given query, whereas in
this paper we rank the data objects based on the facilities
in their spatial neighborhood. In [4], the length-constrained
maximum-sum region (LCMSR) query is proposed that re-
turns a spatial-network region of constrained size that is
located within a general region of interest and that best
matches query keywords.

Ranking of data objects based on their spatial neighbor-
hood without supporting keywords has been studied in [15,
7, 16, 17, 14]. Xia et al. studied the problem of retriev-
ing the top-k most influential spatial objects [15], where the
score of a data object p is defined as the sum of the scores
of all feature objects that have p as their nearest neighbor.
Yang et al. studied the problem of finding an optimal lo-
cation [7], which does not use candidate data objects but
instead searches the space. Yiu et al. first considered com-
puting the score of a data object p based on feature objects
in its spatial neighborhood from multiple feature sets [16, 17]
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and defined top-k spatial preference queries. In another line
of work, a materialization technique for top-k spatial prefer-
ence queries was proposed in [14] which leads to significant
savings in both computational and I/O cost during query
processing. The main difference is that our novel query is
defined in addition by a set of keywords that express desir-
able characteristics of the feature objects (like “pizza” for a
feature object that represents a restaurant).

3. PROBLEM STATEMENT
Given an object dataset O and a set of c feature datasets

{Fi | i ∈ [1, c]}, in this paper, we address the problem of
finding k data objects that have in their spatial proximity
highly ranked feature objects that are relevant to the given
query keywords. Each data object p ∈ O has a spatial loca-
tion. Similarly, each feature object t ∈ Fi is associated with
a spatial location but also with a non-spatial score t.s that
indicates the goodness (quality) of t and its domain of values
is the range [0, 1]. Moreover, t is described by set of keywords
t.W that capture the textual description of the feature ob-
ject t. Figure 2 depicts an example of a set of feature objects
that represent restaurants and shows the non-spatial score
and the textual description. Table 1 provides an overview
of the symbols used in this paper.

Symbol Description
O Set of data objects
p Data object, p ∈ O
c Number of feature sets
Fi Feature sets, i ∈ [1, c]
t Feature object, t ∈ Fi

t.s Non-spatial score of t
t.W Set of keywords of t

dist(p, t) Distance between p and t
sim(t,W) Textual similarity between t and W

s(t) Preference score of t
τi(p) Preference score of p based on Fi

τ(p) Spatio-textual preference score of p

Table 1: Overview of symbols.

The goal is to find data objects that have in their vicin-
ity feature objects that (i) are of high quality and (ii) are
relevant to the query keywords posed by the user. Thus,
the score of the feature object t captures not only the non-
spatial score of the feature, but its textual similarity to a
user specified set of query keywords.

Definition 1. The preference score s(t) of feature
object t based on a user-specified set of keywords W is de-
fined as s(t) = (1 − λ) · t.s + λ · sim(t,W), where λ ∈ [0, 1]
and sim() is a textual similarity function.

The textual similarity between the keywords of the feature
and the set W is measured by sim(t,W) and its domain of
values is the range [0, 1]. The parameter λ is the smooth-
ing parameter that determines how much the score of the
feature objects should be influenced by the textual informa-
tion. For the rest of the paper, we assume that the textual
similarity is equal to the Jaccard similarity between the key-
words of the feature objects and the user-specified keywords:
sim(t,W) = |t.W

⋂
W|

|t.W
⋃

W| .
For example, consider the restaurants depicted in Fig-

ure 2. Given a set of keywords W = {italian, pizza} and

λ = 0.5 the restaurant with the highest preference score is
Ontario’s Pizza with a preference score s(r6) = 0.9, while
the score of Beijing Restaurant is s(r1) = 0.3, since none of
the given keywords are included in the description of Beijing
Restaurant.

Given a spatio-textual preference query Q defined by an
integer k, a range r and c-sets of keywordsWi, the preference
score of a data object p ∈ O based on a feature set Fi is
defined by the scores of feature objects t ∈ Fi in its spatial
neighborhood, whereas the overall spatio-textual score of p is
defined by taking into account all feature sets Fi, 1 ≤ i ≤ c.

Definition 2. The preference score τi(p) of data ob-
ject p based on the feature set Fi is defined as: τi(p) =
max{s(t) | t ∈ Fi : dist(p, t) ≤ r and sim(t,Wi) > 0}.

The dist(p, t) denotes the spatial distance between data
object p and feature object t and we employ the Euclidean
distance function. Continuing the previous example, Fig-
ure 4 shows the spatial location of the restaurants in Figure 2
and a data point p that represents a hotel. The preference
score of p based on the restaurants in its neighborhood (as-
suming r = 3.5 and W = {italian, pizza}) is equal to the
score of r6 (τi(p) = s(r6) = 0.9), which is the best restaurant
in the neighborhood of p.

Definition 3. The overall spatio-textual preference score
τ(p) of data object p is defined as: τ(p) =

∑
i∈[1,c] τi(p).

Figure 3 shows a second set of feature objects that repre-
sents coffeehouses. For a tourist that looks for a good hotel
that has nearby a good Italian restaurant that serves pizza
and a good coffeehouse that serves espresso and muffins, the
score of p would be τ(p) = s(r6) + s(c5) = 0.9 + 0.78233 =
1.6833.

Problem 1. Top-k Spatio-Textual Preference Queries (STPQ):
Given a query Q, defined by an integer k, a radius r and c-
sets of keywords Wi, find the k data objects p ∈ O with the
highest spatio-textual score τ(p).

4. INDEXING
The main difference of top-k spatio-textual preference queries

to traditional spatio-textual search is that the ranking of a
data object does not depend only on spatial location and
textual information, but also on the non-spatial score of the
feature object. In particular, the preference score s(t) of
feature object t is defined by its textual description and its
non-spatial score, while the spatial location is used as a fil-
ter for computing the preference score τi(p) of data object
p. Thus, efficient indexing of the textual description and the
non-spatial score of feature objects is a significant factor for
designing efficient algorithms for the STPQ query.

4.1 Index Characteristics
In this paper, we assume that the data objects O are in-

dexed by an R-Tree, denoted as rtree. However, for the
feature objects, it is important that the non-spatial score
and the textual description are indexed additionally. Each
dataset Fi can be indexed by any spatio-textual index that
relies on a spatial hierarchical index (such as the R-Tree).
However, each entry e of the index must in addition main-
tain: (i) the maximum value of t.s of any feature object t in
the sub-tree, denoted as e.s, and (ii) a summary (e.W) of
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name rating x y textual description
r1 Beijing Restaurant 0.6 1 2 Chinese, Asian
r2 Daphne’s Restaurant 0.5 4 1 Greek, Mediterranean
r3 Espanol Restaurant 0.8 5 8 Italian, Spanish, European
r4 Golden Wok 0.8 2 3 Chinese, Buffet
r5 John’s Pizza Plaza 0.9 8 4 Pizza, Sandwiches, Subs
r6 Ontario’s Pizza 0.8 7 6 Pizza, Italian
r7 Oyster House 0.8 6 10 Seafood, Mediterranean
r8 Small Bistro 1.0 3 7 American, Coffee, Tea, Bistro

Figure 2: Feature objects (Restaurants)
name rating x y textual description

c1 Bakery & Cafe 0.6 4 1 Cake, Bread, Pastries
c2 Coffee House 0.5 4 7 Cappuccino,Toast, Decaf
c3 Coffe Time 0.8 3 10 Cake, Toast, Donuts
c4 Cafe Ole 0.6 6 2 Cappuccino, Iced Coffee, Tea
c5 Royal Coffe Shop 0.9 5 5 Muffins, Croissants,Espresso
c6 Mocha Coffe House 1.0 10 3 Macchiato, Espresso, Decaf
c7 The Terrace 0.7 6 9 Muffins, Pastries, Espresso
c8 Espresso Bar 0.4 7 6 Croissants, Decaf, Tea

Figure 3: Feature objects (Coffeehouses)
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Figure 4: An example of a STPQ query.
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Figure 5: Hilbert-based keyword ordering.

all keywords of any feature t in the sub-tree. To ensure cor-
rectness of our algorithms, there must exist an upper bound
ŝ(e) such that for any t stored in the sub-tree rooted by the
entry e it holds:

ŝ(e) ≥ s(t)

The above property guarantees that the preference score s(t)
of a feature object t is bounded by the bound ŝ(e) of its
ancestor node e. The efficiency of the algorithms directly
depends on the tightness of this bound. In turn, this depends
on the similarity between the textual description and the
non-spatial score of the features objects that are indexed in
the same node.
In the following, we propose an indexing technique that

leads to tight bounds since objects with similar textual in-
formation and non-spatial score are stored in the same node
of the index.

4.2 Indexing based on Hilbert Mapping
Our indexing approach maps the textual description of

feature objects to a value based on the Hilbert curve. Let w
denote the number of distinct keywords in the vocabulary,
then for each feature t the keywords t.W can be represented
as a binary vector of length w. For instance, assuming a
vocabulary {pizza, burger, spaghetti}, we can use an active
bit to declare the existence of the “pizza” keyword at the
first place, “burger” at the second, and “spaghetti” at the
last. Moreover, we suggest a mapping of the binary vector
to a Hilbert value, denoted as H(t.W). For the above w=3
keywords, the defined order is 000,010,011,001,101,111,110
and 100. Figure 5 shows the ordering of the keywords based
on the Hilbert values. The benefit of this order is that it
ensures us that vectors with distance 1 have only one differ-
ent keyword, while if the distance is w′, then the maximum
number of different keywords is bound by w′. This means
that consecutive vectors in the afore-described order have
only few different keywords, which means that objects with
sequential H-values are highly similar also based on the Jac-
card similarity function.
Using the Hilbert mapping of the textual information,

each feature object t can be represented as a point in the
4-dimensional space {t.x, t.y, t.s, H(t.W)}. Our index-

ing technique, called SRT-index, uses a spatial index, such
as a traditional R-Tree, that is built on the mapped 4-
dimensional space. In terms of structure, the SRT-index
resembles a traditional R-Tree that it is built on the spa-
tial location, the non-spatial score (rating), and the Hilbert
value of the keywords of the feature objects altogether. The
only modification needed during the index construction is
the method used for updating the Hilbert values of a node.
When the Hilbert value of a node is updated because a
new object is added, then the previous Hilbert value as well
the Hilbert value of the new object are mapped to binary
vectors, the disjunction of the binary vectors is computed,
mapped to a new Hilbert value and stored in the node. No-
tably, the exact spatial index used for indexing the mapped
space does not affect the correctness of our algorithms, but
only their performance. In our experimental evaluation, we
use bulk insertion [9] on our novel indexing technique.

During query processing the bound ŝ(e) of a node e can
be set as:

ŝ(e) = (1− λ) · e.s+ λ · |e.W
⋂

W|
|W|

where W is the set of query keywords, while e.W is the set
of all keywords of all feature objects t indexed by the node
e. The set e.W is computed based on the Hilbert mapping
and the aggregated Hilbert value H(e.W) stored in the node
entry e of the SRT-tree. It holds that ŝ(e) ≥ s(t).

To summarize, the SRT-index overcomes the difficulty
that other indexing approaches face, being unable to iden-
tify in advance what are the branches of the index that store
highly ranked and relevant feature objects to the query. The
reason is that this indexing mechanism can identify effec-
tively the promising parts of the hierarchical structure at a
low cost, since during the index construction the similarity
of the spatial location, the non-spatial score, as well as the
textual description are taken into account.

5. SPATIO-TEXTUAL DATA SCAN (STDS)
Our baseline approach, called spatio-textual data scan

(STDS), computes the spatio-textual score τ(p) of each data
object p ∈ O and then reports the k data objects with the
highest score. Algorithm 1 shows the pseudocode of STDS.
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In more detail, for a data object p, its score τi(p) for ev-
ery feature set Fi is computed (lines 3-5). The details on
this computation for range queries are described in Algo-
rithm 2 that will be presented in the sequel. Interestingly,
for some data objects p we can avoid computing τi(p) for
some feature sets. This is feasible because we can deter-
mine early that some data objects cannot be in the result
set R. To achieve this goal, we define a threshold τ which
is the k-th highest score of any data object processed so far.
In addition, we define an upper bound τ̂(p) for the spatio-
textual preference score τ(p) of p, which does not require
knowledge of the preference scores τi(p) for all feature sets

Fi: τ̂(p) =
∑

i∈[1,c]

{τi(p), if τi(p) is known
1, otherwise

. The algorithm

tests the upper bound τ̂ based on the already computed
τi(p) against the current threshold (line 6). If τ̂ is smaller
than the current threshold, the remaining score computa-
tions are avoided. After computing the score of p, we test
whether it belongs to R (line 6). If this is case, the result
set R is updated (line 7), by adding p to it and removing
the data object with the lowest score (in case that |R| > k).
Finally, if at least k data objects have already been added to
R, we update the threshold based on the k-th highest score
(line 9).

Algorithm 1: Spatio-Textual Data Scan (STDS)

Input: Query Q = (k, r, {Wi})
Output: Result set R sorted based on τ(p)

1 R = ∅; τ = −1;
2 foreach p ∈ O do
3 for i = 1 . . . c do
4 if τ̂(p) > τ then
5 τi(p) = Fi.computeScore(Q, p) ;

6 if τ(p) > τ then
7 update(R) ;
8 if |R| ≥ k then
9 τ = kth score ;

10 return R ;

The remaining challenge is to compute efficiently the score
based on the spatio-textual information of the feature ob-
jects. The goal is to reduce the number of disk accesses
for retrieving feature objects that are necessary for comput-
ing the score of each element p ∈ O. Algorithm 2 shows
the computation of preference score τi(p) for feature set Fi.
First, the root entry is retrieved and inserted in a heap (line
1). The heap maintains the entries e sorted based on their
values ŝ(e). In each iteration (lines 2-11), the entry e with
the highest value ŝ(e) is processed, following a best-first ap-
proach. If e is a data point and within distance r from p
(line 5), then the score τi(p) of p has been found and is re-
turned (line 7). If e is not a data point, then we expand it
only if it satisfies the query constraints (line 9). More de-
tailed, if the minimum distance of e to p is smaller or equal
to r and its textual similarity is larger than 0, e is expanded
and its child entries are added to the heap (line 11). Other-
wise, the entire sub-tree rooted at e can be safely pruned.
Correctness and Efficiency: Algorithm 2 always reports
the correct score τi(p). The sorted access of the entries,
combined with the property that the value ŝ(e) of the entry
is an upper bound ensure its correctness. Moreover, it can
be shown that Algorithm 2 expands the minimum number of

Algorithm 2: Spatio-Textual Score Computation on Fi

(computeScore(Q, p))

Input: Query Q, data object p
Output: Score τi(p)

1 heap.push(Fi.root);
2 while (not heap.isEmpty()) do
3 e ← heap.pop() ;
4 if e is a data object then
5 if (dist(p, e) ≤ r) then
6 τi(p) = s(e) ;
7 return τi(p) ;

8 else
9 if (mindist(p, e) ≤ r) and (sim(e,Wi) > 0) then

10 for childEntry in e.childNodes do
11 heap.push(childEntry) ;

entries, in the sense that if an entry that is expanded was not
expanded, it could lead to computing a wrong score. This
is because only entries with score higher than any processed
feature object are expanded, and such entries may contain in
their sub-tree a feature object with score equal to the score
of the entry.
Performance improvements: The performance of STDS
can be improved by processing the score computations in a
batch. Instead of a single data object p, a set of data objects
P can be given as input to Algorithm 2. Then, an entry is
expanded if the distance for at least one p in P is smaller
than r. When a feature object is retrieved, for any p for
which the distance is smaller than r the score is computed
and those data objects p are removed from P. The same
procedure is followed until either the heap or P is empty.
Algorithm 1 can be easily modified to invoke Algorithm 2
for all data objects in the same leaf entry of the R-tree (rtree)
that indexes the data objects O. For sake of simplicity, we
omit the implementation details, even though we use this
improved modification in our experimental evaluation.

6. SPATIO-TEXTUAL PREFERENCE SEARCH
(STPS)

In this section we propose a novel and efficient algorithm,
called Spatio-Textual Preference Search (STPS), for pro-
cessing spatio-textual preference queries. STPS follows a
different strategy than STDS, as it involves two major steps,
namely finding highly ranked feature objects first, and then,
retrieving data objects in their spatial neighborhood. In-
tuitively, if we find a neighborhood in which highly ranked
feature objects exist, then the neighboring data objects are
naturally highly ranked as well.

6.1 Valid Combination of Feature Objects
In a nutshell, the goal is to find sets of feature objects

C = {t1, t2, . . . , tc} where ti ∈ Fi (1 ≤ i ≤ c), such that the
spatio-textual preference score of each ti is as high as possi-
ble and the feature objects are located in nearby locations.

In the general case, a data object may be highly ranked
even in the case where a certain kind of feature object does
not exist in its neighborhood, though feature objects of other
kinds might compensate for this. For example, consider the
extreme case where all data objects have only one type of
feature object in their spatial neighborhood. For ease of pre-
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Algorithm 3: Spatio-Textual Preference Search (STPS)

Input: Query Q
Output: Result set R sorted based on τ(p)

1 while (|R| ≤ k) do
2 C = nextCombination(Q) ;
3 R = R∪ getDataObjects(C) ;
4 return R ;

sentation, we denote as ∅ a virtual feature object for which
it holds that dist(p, ∅) = 0, dist(ti, ∅) = 0 and s(∅) = 0
∀ti, p. This virtual feature object is used for presenting uni-
fied definitions for the case where the spatio-textual score of
the top-k data objects is defined based on less than c feature
objects. More formally put, we define the concept of valid
combination of feature objects as:

Definition 4. A valid combination of feature objects is a
set C = {t1, t2, . . . , tc} such that (i) ∀i ti ∈ Fi or ti = ∅, and
(ii) dist(ti, tj) ≤ 2r ∀i, j. The score of the valid combination
C is defined as s(C) =

∑
1≤i≤c s(ti).

The following lemma proves that it is sufficient to examine
only the valid combinations C of feature objects in order to
retrieve the result set of a top-k spatio-textual preference
query.

Lemma 1. The score of any data object p ∈ O is defined
by a valid combination of feature objects C = {t1, t2, . . . , tc},
i.e., ∀p : ∃C = {t1, t2, . . . , tc} such that τ(p) = s(C)

Proof. Let us assume that there exists p such that: τ(p) =∑
i∈[1,c] τi(p) with τi(p) = {s(ti) | ti ∈ Fi : dist(p, ti) ≤

r and sim(ti,Wi) > 0} and C = {t1, t2, . . . , tc} is not a valid
combination of feature objects. Since C = {t1, t2, . . . , tc} is
not a valid combination of feature objects, there exists 1 ≤
i ̸= j ≤ c such that dist(ti, tj) > 2r but also dist(p, ti) ≤ r
and dist(p, tj) ≤ r. Based on the triangular inequality it
holds: dist(ti, tj) ≤ dist(p, ti) + dist(p, tj) ≤ r + r ≤ 2r,
which is a contradiction.

6.2 STPS Overview
Algorithm 3 provides an insight to STPS algorithm. At

each iteration, the following steps are followed: (i) a special
iterator (line 2) returns successively the valid combinations
of feature objects sorted based on their score (we discuss the
details on the implementation of the iterator in the following
subsection), (ii) up to k data points in the spatial neighbor-
hood of these features are retrieved (line 3). Data objects
that have already been previously retrieved are discarded,
while the remaining data objects p have a score τ(p) = s(C)
and can be returned to the user incrementally. If k data ob-
jects have been returned to the user (line 1), the algorithm
terminates without retrieving the remaining combinations of
feature objects. Differently to the STDS algorithm, STPS
retrieves only the data objects that most certainly belong to
the result set.

6.3 Spatio-Textual Feature Objects Retrieval
Algorithm 4 shows the pseudocode for retrieving the valid

combinations C = {t1, t2, . . . , tc} of feature objects sorted
based on their spatio-textual preference score s(C). We first
give a scketch of our algorithm and then we will elaborate

Algorithm 4: Spatio-Textual Feature Objects Retrieval
(nextCombination(Q))

Input: Query Q
heapi: heap maintaining entries of Fi

heap: heap maintaining valid combinations of feature
objects
Di: set of feature objects of Fi

Output: C: valid combination with highest score
1 while (∃i : not heapi.isEmpty()) do
2 i← nextFeatureSet() ;
3 ei ← heapi.pop() ;
4 while (not ei is a data object) do
5 for childEntry in ei.childNodes do
6 heapi.push(childEntry) ;

7 ei ← heapi.pop() ;

8 Di = Di ∪ ei ;
9 heap.push(validCombinations(D1, · · · ,ei ,· · · , Dc)) ;

10 mini = s(ei) ;
11 τ = max1≤j≤c(max1 + · · ·+minj + · · ·+maxc) ;
12 C ← heap.top() ;
13 if (score(C) ≥ τ) then
14 heap.pop() ;
15 return C;

further on the details in the following of this section. In
each iteration, a feature set Fi is selected (line 2) based on
a pulling strategy implemented by nextFeatureSet(). The
spatio-textual index that stores the feature objects of the
feature set Fi is accessed and the feature objects ti are re-
trieved based on their score s(ti) that aggregates their non-
spatial score, but also their textual similarity to the query
keywords (lines 3-7). The retrieved feature objects are main-
tained in a list Di (line 8) and are used to produce valid com-
binations C of feature objects (line 9). Moreover, a thresh-
olding scheme is employed to decide when the combination
with the highest score has been retrieved (lines 11-15).

We denote as maxi the maximum score of Di and mini

the minimum score of Di. Thus, mini represents the best
potential score of any feature object of Fi that has not been
processed yet. Moreover, in Algorithm 4 the variables heapi,
Di, maxi, mini, and heap are global variables. They are
initialized as following heapi: the root of Fi, Di = ∅ and
heap = ∅, mini = ∞. Variable maxi is the score of the
highest ranked feature object of Fi and is set the first time
the Fi index is accessed.
Accessing Fi: In each iteration, Algorithm 4 accesses one
spatio-textual index that stores the set Fi (lines 3-7). The
entries of the spatio-textual index responsible for the fea-
ture objects of Fi are maintained in heapi, which keeps the
entries e sorted based on ŝ(e). Moreover, for sake of simplic-
ity, we assume that heapi.pop() will return a virtual feature
object ti = ∅ (with score equal to 0) as final object. In each
iteration an entry ei of the spatio-textual index is retrieved
from heapi (line 3). If the entry ei corresponds to a node
of the index, the entry is expanded and its child nodes are
added to the heapi (lines 5-6). Algorithm 4 continues re-
trieving from heapi entries, until an entry that is a feature
object is retrieved (line 4). When an entry ei is retrieved
that corresponds to a feature object, ei is inserted in the list
Di (line 8).
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Creation of C: After retrieving a new feature object ei,
new valid combinations C are created by combining ei with
the previously retrieved feature objects tj maintained in the
lists Dj (line 9). For this, the method validCombinations is
called, which returns all combinations of the objects in Dj

and ei, by discarding combinations for which the condition
dist(ti, tj) ≤ 2r ∀i, j does not hold. The new valid combi-
nations are inserted in the heap (line 9) that maintains the
valid combinations sorted based on their score s(C).
Thresholding scheme: Algorithm 4 employs a threshold-
ing scheme to determine if the current best valid combi-
nation can be returned as the valid combination with the
highest score. The threshold τ represents the best score of
any valid combination of feature objects that has not been
examined yet. The best score of the next feature object tj
retrieved from Fj is equal to minj , since the feature objects
are accessed sorted based on s(tj). Obviously, for the re-
maining feature sets we assume that the new feature object
tj is combined with the feature objects that have the highest
score. Thus, τ = max1≤j≤c(max1+ · · ·+minj+ · · ·+maxc)
(line 11) is an upper bound of the score for any valid com-
bination that has not been examined yet. In line 13, we test
whether the best combination of feature objects in the heap
has a score higher or equal to the threshold τ . If so, the
best combination in the heap is the next valid combination
with the best score. Otherwise, additional feature objects
from feature sets Fi have to be retrieved until it holds that
the top element of the heap achieves a score which is higher
than τ .
Pulling strategy: In the following, we proposed an ad-
vanced pulling strategy that prioritizes retrieval from fea-
ture sets that have higher potential to produce the next valid
combination C. A simple alternative would be to access the
different feature sets in a round robin fashion.
The order in which the feature objects of different fea-

ture sets are retrieved is defined by a pulling strategy, i.e.,
nextFeatureSet() returns an integer between 1 and c and
defines the pulling strategy. In addition, nextFeatureSet()
never returns i if heapi is empty.

Definition 5. Given c sets of feature objects Di, the pri-
oritized pulling strategy returns m as the next feature set
such that τ = max1 + · · ·+minm + · · ·+maxc.

The main idea of the prioritized pulling strategy is that in
each iteration the feature set Fm that is responsible for the
threshold value τ is accessed. It is obvious that the only way
to reduce τ is to reduce the minm, since retrieval from the
remaining feature sets cannot reduce τ . Thus, retrieving the
next tuple from the feature set Fm may reduce the threshold
τ and may produce new valid combinations that have a score
equal to the current threshold.

6.4 Retrieval of Qualified Data Objects
In the following, we study the reciprocal actions taken

upon the formation of a highly ranked combination of feature
objects.
In Algorithm 3 (line 3) getObjects(C) is invoked to re-

trieve from rtree all data objects in the neighborhood of the
feature objects in C. This method starts from the root of
the rtree and processes its entries recursively. Entries e for
which ∃i such that ti ∈ C with dist(e, ti) > r are discarded.
The remaining entries are expanded until all objects p for
which it holds that dist(p, ti) ≤ r are retrieved.
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Figure 6: Data objects within qualifying distance
from C = {r6, c5}.

Example. Consider for example the feature sets depicted
in Figure 2 and in Figure 3. Given a query with r = 3.5,
W1 = {italian, pizza} and W2 = {espresso, muffins},
the restaurant and the coffeehouse with the highest scores are
r6 and c5 respectively. Since it holds that dist(r6, c5) ≤ 2r,
the set C = {r6, c5} is a valid combination of feature objects.
Assume that the set of data objects is O = {p1, p2, . . . , p10}
as depicted in Figure 6. For the data objects p6, p9 and p10
it holds that dist(pi, c5) ≤ r and dist(pi, r6) ≤ r, and their
spatial-textual score is τ(p6) = τ(p9) = τ(p10) = 1.6833.
These data objects are guaranteed to be the highest ranked
data objects and can be immediately returned to the user.
For k ≤ 3, our algorithm terminates without examining
other feature combinations.

7. VARIANTS OF TOP-K SPATIO-TEXTUAL
PREFERENCE QUERIES

In this section, we extend our algorithms for processing
spatio-textual preference queries based on alternative score
definitions under a unified framework. We provide formal
definitions for the alternative score definitions, namely influ-
ence preference score and nearest neighbor preference score.
Moreover, we discuss for all query types the necessary mod-
ifications to our query processing algorithms.

7.1 Influence-Based STPQ Queries
In contrast to the preference score defined in Definition 1

(in the following referred to as range score), in this section
we define an alternative score that does not pose a hard
constraint on the distance, but instead gradually reduces the
score based on the distance. We call this variant influence
preference score.

Definition 6. The influence preference score τi(p) of
data object p based on the feature set Fi is defined as: τi(p) =

max{s(t) · 2
−dist(p,t)

r | t ∈ Fi : sim(t,Wi) > 0}.

The overall spatio-textual score τ(p) of data object p is
defined as in the case of the range score, and the query
returns the k objects with the highest score.

The STDS algorithm, as defined in Algorithm 1 can be
easily adapted for the case of influence score. Only the func-
tion computeScore(Q, p) must be modified according to the
definition of the score variant. Thus, in Algorithm 2 each
entry in line 11 will be prioritized according to the influ-
ence preference score. In addition, the range restriction is
removed in line 5 and line 9. No further modifications are
needed, thus in the following we focus on the modifications
and optimizations needed for STPS algorithm.
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Algorithm 5: STPS for influence score

Input: Query Q
Output: Result set R sorted based on τ(p)

1 τ = 0 ;
2 score = −1 ;
3 while (|R| ≤ k) or (best > τ) do
4 C = nextCombination(Q) ;
5 best = s(C) ;
6 R = R∪ getDataObjects(C) ;
7 τ = k-th score in R ;

8 return R ;

STPQ queries based on the influence preference score can
be efficiently supported by the STPS algorithm with few
modifications. Algorithm 5 shows the modified STPS for
influence preference score. The algorithm continues until at
least k data object have been retrieved and until we are sure
that none of the remaining data objects can have a better
score. We use the score of the k-th data object of the cur-
rent top-k result (line 7) to set a threshold τ . Hence, if
the best score of any unseen combination is smaller or equal
to τ , the algorithm naturally terminates. In more details,
C = nextCombination(Q) is the same with Algorithm 4
and returns the best combination based on score s(C), but
without discarding combinations whose distance is greater
than 2r. Thus, in each iteration the combination C with the
highest τ(p) =

∑
i∈[1,c] τi(p) is retrieved. Recall that for the

case of the range preference score, all data objects that were
located in distance smaller than r from all feature objects
of C had a score equal to s(C). Instead in the case of the
influence preference score, s(C) is an upper bound for the
score of all data objects based on C. This is because, the
computed score is the influence score only for the objects
with distance 0, while all other objects have a smaller influ-
ence score. Therefore, getDataObjects(C) must be modified
accordingly.
In more details, getDataObjects() retrieves the k points

that have the highest influence score, by starting a top-k
query on the R-Tree (rtree) of the data objects. The root
is inserted in a heap sorted by the influence score (τ(p) =
∑

i∈[1,c] τi(p)2̇
−dist(p,ti)

r ). For non-leaf entries e the influence
score is computed based on the mindist. Then, the influence
score of an entry is an upper bound of any object in the
subtree. After retrieving k data objects, we have retrieved
the k data objects with the highest influence score for this
combination of feature objects. Further improvement can be
achieved if getDataObjects() stops retrieving data objects
based on τ , which reduces the I/Os on rtree. If τ is given to
getDataObjects() then it will return at most k data objects
that have a score smaller than τ . Line 6 merges the results
while it removes objects that have been retrieved before.
Thus, if an object that is already in the heap is retrieved
again the score with the highest value is kept.
After retrieving k data objects with the highest τ(p) in

line 6 (Algorithm 5), the score of the k-th data object in
R is used as a threshold τ (line 7). The best score of any
unseen combination is best = s(C), which is also an upper
bound for the score of any unseen data object, since this is
the score for distance 0. Hence, if the best score is greater
than τ , we have to retrieve additional objects. If the score

s(C) of the next combination is smaller than or equal to the
threshold we stop retrieving other combinations.

7.2 Nearest Neighbor STPQ Queries
In the next score variant, each data object takes as a score

the goodness of the feature objects that are its nearest neigh-
bors. In particular, for each feature set the score of the near-
est feature object is considered for computing the score of a
data object.

Definition 7. The nearest neighbor preference score
τi(p) of data object p based on the feature set Fi is defined
as: τi(p) = {s(t) | t ∈ Fi : dist(p, t) ≤ dist(p, t′) ∀t′ ∈
Fi and sim(t,Wi) > 0}

The overall spatio-textual score τ(p) of data object p is
defined as in the case of the range score, and the query
returns the k objects with the highest score. Again, STDS
treats nearest neighbor queries similarly as in Algorithm 2
with subtle changes. The range predicate is removed in line
5 and line 9, while the child entries are prioritized in the
heap according to their minimum distance from the data
object p.

Regarding STPS, Algorithm 3 is directly applicable for the
nearest neighbor score by modifying nextCombination(Q)
of Algorithm 4 to return the best combination based on
score s(), but without discarding combinations that have a
distance > 2r, as also in the case of the influence score. The
remaining challenge is given a combination C to retrieve the
data objects that satisfy the nearest neighbor requirement.

Generally, it is more difficult compared to the other score
variants to retrieve the data objects for a given combination
C. We need to retrieve all data objects for which the near-
est neighbor ti based on Fi belongs to C. For each feature
object ti of C, there exists a region in which all data points
that fall into that region have ti as their nearest neighbor.
This region corresponds to the Voronoi cell [12] and this
problem has been studied for finding reverse nearest neigh-
bors [10]. Only the data objects in the intersection of all
regions need to be retrieved. In fact, we compute incremen-
tally the Voronoi cell for each feature object ti of C, which
allows us to discard early combinations for which the inter-
section becomes empty. We omit further implementation
details due to space limitations.

8. EXPERIMENTAL EVALUATION
In this section, we evaluate the performance of our algo-

rithms STDS and STPS, presented previously in Section 5
and Section 6 respectively, for processing spatio-textual pref-
erence queries over large disk-resident data. Moreover, we
study the gains in performance of our algorithms caused by
the SRT index proposed in Section 4 compared to an existing
indexing technique (IR2-Tree [8]). In order to ensure a fair
comparison, we modify the IR2-Tree to support score val-
ues of feature objects. To this end, we add to the leaf nodes
of IR2-Tree the scoring values for the feature objects, and
maintain in ancestor (internal) nodes the maximum score of
all enclosed feature objects. All experiments run on an Intel
2.2GHz processor equipped with 2GB RAM.

8.1 Experimental Setup
Methodology. In our experimental evaluation, we vary
four important parameters of the datasets in order to study
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the scalability of the proposed techniques (Section 8.2). These
parameters are: (i) the cardinality of the feature sets |Fi|,
(ii) the cardinality of the set of data objects |O|, (iii) the
number of feature sets c, and (iv) number of distinct key-
words indexed. Moreover, we study four different query pa-
rameters to study how the characteristics of the query in-
fluence the performance of the algorithms (Section 8.3). In
more details, we vary (i) the query radius r, (ii) the number
k of retrieved data objects, (iii) the smoothing parameter
λ between textual similarity and non-spatial score, and (iv)
the number of keywords of the query for each feature set.
Finally, we evaluate the performance of STPS for the in-
fluence score variant (Section 8.4) as well as for the nearest
neighbor variant (Section 8.5).
Tested ranges for all parameters are shown in Table 2.

The default values are denoted as bold. When we vary one
parameter, all others are set to their default values.

Parameter Range
Cardinality of dataset 50K,100K, 500K, 1M
Cardinality of features sets 50K,100K, 500K, 1M
Number of feature sets c 2, 3, 4, 5
Indexed keywords 64,128, 192, 256
Radius r (norm. in [0, 1]) .005, .01, .02, .04, .08
k 5,10, 20, 40, 80
Smoothing parameter .1, .3, .5, .7, .9
Queried keywords 1,3, 5, 7, 9

Table 2: Experimental parameters.

Datasets. For evaluating our algorithms, we use both real
and synthetic datasets. The real dataset, which was ob-
tained from factual.com, describes hotels (≈ 25K objects)
and restaurants (≈ 79K objects). In more details we col-
lected restaurant and hotels that are annotated with their lo-
cation. Moreover, for the collected restaurants we extracted
their rating and their textual description of the served food,
mentioned as “cuisine”. The number of distinct values of
keywords for the cuisine is around 130 and each restaurant
description may contain one or more keywords. Our datasets
contain collected hotels and restaurants for 13 US states
that are the states for which factual.com lists sufficient
data. In addition, we created synthetic clustered datasets
of varying size, number of keywords and number of feature
sets. Approximately 10, 000 clusters constitute each syn-
thetic dataset. The number of distinct keywords is set to
256 as a default value and each feature object is charac-
terized by one or more keywords that are picked randomly.
The spatial constituent of all datasets has been normalized
in [0, 1]× [0, 1]. Every reported value is the average of 1, 000
random queries, which are generated in a similar way as the
synthetic data and follow the same data distribution.
Metrics. The efficiency of all schemes is evaluated accord-
ing to the average execution time required by a query (time
consumed in the CPU and to read disk-pages). In our figures
we break down the execution time into the time consumed
due to the disk accesses (dark part of the bars) and the time
needed for processing the query (CPU time) which is the
white part of the bars. The time consumed due to the disk
accesses relates to the number of the required I/Os.

8.2 Scalability Analysis
In this section, we evaluate the impact of varying differ-

Feature objects |Fi| 50000 100000 500000 1000000
IR2-tree 13427.3 13854.6 25223.1 31434.6
SRT 12301.7 13187.9 18725.1 23046.3

Data objects |O| 50000 100000 500000 1000000
IR2-tree 13073.2 13854.6 21074.2 27846.0
SRT 11718.1 13187.9 18267.4 23444.9

Number c of Fi 2 3 4 5
IR2-tree 13854.6 27842.6 33625.0 40188.4
SRT 13187.9 14104.9 32071.1 38340.7

Indexed keywords 1 2 3 4
IR2-tree 13698.7 13854.6 15655.6 16209.6
SRT 13121.4 13187.9 13207.9 13887.8

Table 3: STDS execution time (in msec) for syn-
thetic dataset.

ent parameters on the efficiency of our algorithms. In order
to perform a scalability analysis, we employ the synthetic
dataset for this set of experiments. First, we show the scal-
ability limitations of STDS for large datasets (Table 3), and
then we explore in more detail the significantly superior per-
formance of STPS.

Table 3 shows the results for STDS when varying dif-
ferent parameters of the dataset. For the default setting,
STDS requires over 13 seconds for range queries. Evidently,
when a large number of data objects is involved STDS does
not scale well and the absolute time required is high. The
main reason is that STDS associates all data objects with c
feature objects, which is particularly time-consuming. This
experiment demonstrates that a plain algorithm for solving
the problem can lead to prohibitive processing cost. Since
STDS performs badly for all experimental setups, we omit
STDS for the rest of experimental evaluation, and study the
performance of STPS coupled with two different indexing
techniques.

Figure 7 illustrates the results for the same experiment as
above, but for the STPS algorithm. We implemented STPS
over two different indexes: (i) our SRT index (proposed in
Section 4), and (ii) the modified IR2-Tree [8] whose nodes
are enhanced with the maximum score of enclosed feature
objects. In summary, the results clearly demonstrate that
STPS scales with all parameters and that SRT indexing al-
ways outperforms IR2-tree. Moreover, in both cases, the
STPS algorithm exhibits high performance, as witnessed
by the low execution time, which stems from its ability
to quickly identify qualified feature combinations. Conse-
quently, the significant gains in processing time (orders of
magnitude compared to STDS) are mostly due to the effec-
tive design of the algorithm. The SRT index additionally
offers a speedup of x2 compared to the IR2-Tree, which fur-
ther improves the overall performance.

Figure 7(a) shows the execution time when increasing the
cardinality of the feature sets. STPS scales well since the
execution time increases only by a factor of at most x3, when
increasing the dataset by one order of magnitude. This in-
crease is due to the increased size of the data structures and
the additional processing required to traverse a bigger data
structure and find valid combinations of high score. When
comparing the index structures, the SRT index is faster, due
to the clustering of all score constituents (distance, textual
similarity, and non-spatial score) in the 4-dimensional space.

Figure 7(b) shows the obtained results when increasing
the number of data objects. Again, STPS scales well, and,
in fact, even better than in the previous experiment. Ob-
viously, a larger dataset of data objects does not affect the
performance so much as larger feature sets. Again, the use
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Figure 7: Scalability for synthetic dataset.
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Figure 8: Range query parameters for real dataset.

of SRT indexing consistently outperforms the IR2-Tree.
In Figure 7(c), we increase the number of feature cate-

gories c. As expected, this has a stronger effect on perfor-
mance, since the cost required to retrieve the highest ranked
combinations increases with the number of possible combi-
nations, which, in turn, increases exponentially with c. Still,
the performance of STPS is not severely affected, especially
in the case of the SRT index which scales gracefully with c.
In Figure 7(d), we illustrate how the performance is af-

fected by the number of distinct keywords in the dataset.
Apparently, a higher number of keywords causes higher ex-
ecution times. The reason is twofold. First, as the number
of distinct keywords increases, it is less probable to find fea-
ture objects that are described by all queried keywords, thus
more feature objects need to be retrieved in order to ensure
that no other combination has a higher score. Secondly, the
node capacity of the index structures drops, thus the height
of the index structures may increase, thus causing more IOs.
In any case, the increase in the absolute value of execution
time is relatively small (20 msec), even when we increase the
vocabulary by a factor of 4 (from 64 to 256 keywords).

8.3 Varying Query Parameters
In Figure 8, we study the effect of varying query parame-

ters for the real dataset. First, in Figure 8(a), we evaluate
the impact of increasing the query radius r on the perfor-
mance of STPS. We notice that for smaller values of r the
execution time increases and the gain of SRT indexing com-
pared to IR2-tree drops. For small radius, access to more
qualified combinations of feature objects is required, since
only few data objects are located in their neighborhood.
Therefore, for both indexing approaches the execution time
increases mainly due to the increase of the IOs. Since a high
percentage of the feature objects need to be retrieved for
each feature set, the gain of SRT indexing is small. How-
ever, difference in performance becomes obvious for greater
values of r, and hence, finding relevant feature objects in
terms of textual description and good non-spatial score be-

comes most important for accessing only few feature objects.
Figure 8(b) illustrates the execution time when varying

the size of result set k. Overall, the execution time increases
as k increases. Specifically, with higher values of k more
combinations of feature objects are retrieved to compose the
result set, which again lead to more IOs to retrieve the qual-
ifying feature objects that constitute valid combinations.

In Figure 8(c), we vary the smoothing parameter λ. In
general, both approaches exhibit relatively stable perfor-
mance for varying values of λ. The performance of IR2-tree
is not affected by the smoothing parameter, since the feature
objects are not grouped into blocks based on the non-spatial
score nor based on their textual similarity. We note for the
IR2-tree that objects with similar textual descriptions are
stored throughout the index, regardless of their non-spatial
score; unlike the SRT index where they are clustered to-
gether in the same block. As a result, a significant overhead
is evident when searching for relevant objects all over the
IR2-tree. On the other hand, the SRT index is built by tak-
ing into account non-spatial score, the textual information
and the spatial location. Thus, STPS that uses SRT index
is consistently more efficient regardless of the value of the
smoothing parameter.
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Figure 9: Query parameters for synthetic dataset.

In Figure 8(d), we vary the number of queried keywords
per feature set from 1 to 9. The number of queried keywords
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Figure 10: Scalability for synthetic dataset and infuence queries.
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Figure 11: Influence query for real dataset.

has little impact on performance, except for the special case
where one keyword is queried for each feature set. This is
because both of the indexing techniques aggregate in the
non-leaf nodes the textual information of the leaf nodes,
which makes it much easier to find objects that contain one
keyword, rather than finding objects that are described with
more keywords. Nevertheless, the gain in execution time of
SRT indexing compared to the IR2-tree is obvious.
Figure 9 depicts results obtained from the synthetic dataset,

when varying different query parameters. We notice the
same tendency as in the case of the real dataset. In gen-
eral, we observed that range queries are costlier for the
real dataset. This is due to the data distribution: our real
dataset, which was extracted from factual.com, consists of
restaurants and hotels in the US forming just a few clusters.
On the other hand, our synthetic dataset is substantially
larger and contains a few thousands of clusters. Hence, the
data from the latter dataset are more dispersed compared
to the former. Last but not least, the SRT indexing consis-
tently outperforms the IR2-tree.

8.4 Influence-based Preference Score
In this section, we study the performance of STPS for the

influence-based score variant of the spatio-textual preference
queries. Figure 10 shows the scalability analysis of STPS for
this query variant. By comparing the results to Figure 7,
which studies the execution time of the range score vari-
ant for the same parameters, we conclude that the required
execution time is comparable and in some cases slightly in-
creased. This is because more data object for each combi-
nation must be retrieved (for the influence-based score vari-
ant), since data objects that are further away than r may
also have a non-zero score. Nevertheless, the additional cost
is not significant in our experiments, and we notice the same
tendency in execution time as in the case of range score, thus
similar conclusions can be drawn. Moreover, the SRT index-
ing technique is beneficial in all setups.
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Figure 12: Influence query for synthetic dataset.

Figure 11 shows the execution time of STPS for the real
dataset when varying query parameters. In Figure 11(a),
time decreases for large k values compared to the range score
(Figure 8(b)), because combinations with high score are as-
sociated with all data objects. Even though the score of the
object is reduced based on the distance, still their score is
high enough to retrieve fewer combinations. For smaller k
values the execution time is not affected significantly. In
Figure 11(b), we evaluate the performance of STPS when
varying the number of queried keywords. We notice that the
execution time is similar to Figure 8(d), which depicts the
results of the same experiment for range score.

Finally, in Figure 12, we study the performance of STPS
for the synthetic dataset when varying query parameters.
The execution time is similar and slightly higher to the ex-
ecution time needed for the range score (Figure 9), while
the behavior of STPS when varying query parameters is the
same. Again, the SRT indexing technique improves the per-
formance of STPS consistently.

8.5 Nearest Neighbor Preference Score
In this section, we evaluate the performance of STPS for

the nearest neighbor score variant. In general, we noticed
that the execution time is higher compared to the other
score variants, which is due to the Voronoi cell computa-
tions required for retrieving the data objects. In the charts,
we illustrate separately with a striped pattern the IO (lower
striped part) and the CPU-time (upper striped part) re-
quired to compute the respective Voronoi cells. Moreover,
it is expected that for a given combination, few data objects
satisfy the nearest neighbor constraint, which leads to re-
trieval of more combinations compared to the other variants.
Therefore, we notice in the charts that the execution time is
high even if the Voronoi cell computations is not considered
(without stripped parts). We note that for static data the
Voronoi cells can be pre-computed in a special structure,
and therefore significantly reduce the execution time.
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Figure 13: Scalability of nearest neighbor variant.
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Figure 14: Varying k for nearest neighbor variant.

Figure 13 depicts the execution time for STPS for the syn-
thetic dataset, while varying the size of the feature and ob-
ject datasets. In Figure 13(a) we notice that for large feature
sets the dominant cost is finding the data objects for a given
combination (i.e., computing the Voronoi cells), rather than
retrieving the combination with the highest score. Com-
puting the Voronoi cells requires retrieval of feature objects
from the spatio-textual index of Fi to define the borders of
the cell. This cost is higher for the SRT indexing method
compared to the IR2-tree, since the IR2-tree is built based
on spatial information only and nearby feature objects are
stored in the same node. Nevertheless, SRT indexing is still
beneficial for STPS, but the gain is smaller than for the other
variants. Similar conclusions can be drawn when varying the
cardinality of the dataset O, as depicted in Figure 13(b).
In Figure 14, we vary the parameter k both for real (Fig-

ure 14(a)) and synthetic datasets (Figure 14(b)). We notice
that the execution time does not increase significantly when
increasing k for the real dataset. This is because there exist
some combinations for which their feature objects are the
nearest neighbor for many data objects. Thus, the same ef-
fort is needed for retrieving few or many data objects. This is
not the case for the synthetic dataset (Figure 14(b)), where
the execution time increases for higher values of k.

9. CONCLUSIONS
Recently, the database research community has lavished

attention on spatio-textual queries that retrieve the objects
with the highest spatio-textual similarity to a given query.
Differently, in this paper, we address the problem of ranking
data objects based on the facilities (feature objects) that are
located in their vicinity. A spatio-textual preference score
is defined for each feature object that takes into account a
non-spatial score and the textual similarity to user-specified
keywords, while the score of a data object is defined based
on the scores of feature objects located in its neighborhood.
Towards this end, we proposed a novel query type called
top-k spatio-textual preference query and present two query
processing algorithms. Spatio-Textual Data Scan (STDS)
first retrieves a data object and then computes its score,

whereas Spatio-Textual Preference Search (STPS) first re-
trieves highly ranked feature objects and then searches for
data objects nearby those feature objects. Moreover, we
proposed an indexing technique that improves the perfor-
mance of our algorithms. Furthermore, we show how our al-
gorithms can support different score variants. Finally, in our
experimental evaluation, we put all methods under scrutiny
to verify the efficiency and the scalability of our method for
processing top-k spatio-textual preference queries.
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ABSTRACT
In many routing applications, it is unclear whether driving to a cer-
tain destination yields the desired success. For example, consider
driving to an appointment and looking for a parking spot. If there
are generally few parking spots in the area or if occupancy of spots
is currently high, the search may not be successful. In this case, the
search is continued, possibly into a different area, where chances
of success are higher. We generalize this problem and introduce
a probabilistic formalization to model the availability of resources
at certain locations. Our probabilistic model considers short term
observations (e.g., vacant parking spots) as well as long term ob-
servations (e.g., average occupancy time) to adapt to the level of
information currently available. In contrast to previous models,
we allow resources to reappear after a probabilistically modeled
amount of time (e.g., a car leaves a spot). Based on this model, we
propose the so-called probabilistic resource route query with reap-
pearance. In order to compute feasible solutions to this query in
interactive time, we propose two greedy approaches. Furthermore,
we examine backtracking for computing exact solutions and extend
the proposed method into a significantly more efficient branch and
bound algorithm. In our experiments, we investigate two realistic
applications, examine the benefit of our model, and compare algo-
rithmic solutions w.r.t. result quality and computational efficiency.

1. INTRODUCTION
With increasing gas prices, escalating greenhouse gas emissions

and heavy traffic congestion in metropolitan areas, optimizing traf-
fic is of great ecological and social importance. While the basic
routing task of finding a path from start to target is a well-explored
research area, there are other routing tasks common in everyday life
which have drawn less attention so far. An example are trip plan-
ning queries (TPQ) which are specified by a start location, a target
location and a number of resource types which have to be visited
along the trip. For instance, the user might provide the resource
types “ATM”, “gas station”, and “department store”. The result of
such a query is the shortest path from start to target visiting exactly
one instance of each resource type. There are several variants to
this kind of problem which will be reviewed in Section 2.

(c) 2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0.

A problem relevant to everyday life is guiding a user through a
road network to enable them to find a resource for which the avail-
ability at certain locations is uncertain. There are several exam-
ples for this task. For instance, consider parking spots: although it
might be known that certain streets allow parking, it is generally not
known whether there will be any vacant spots upon arrival. Another
example are drivers of electric cars looking for public charging sta-
tions. In some developing countries, hospitals with emergency ca-
pacities are scarce. Thus, ambulances often visit more than one
hospital before being able to hospitalize their patient. In all of
these cases, it holds that if the resource is not available upon ar-
rival, the search must be continued to other resource locations until
an available resource is found. Hence, guiding a user to the clos-
est resource does not yield a satisfactory solution. Instead, in order
to yield a sufficiently large probability of success, a route visiting
several resource locations is required. A general problem of finding
such routes is that there are two contrary characteristics describing
the quality of a route. The first quality measure is the overall like-
lihood of finding an available resource when following the route.
The second quality measure is the cost, e.g., the expected travel
time or distance, until the respective resource is found. These two
measures are complementary, because continuing the search to an-
other resource location will always increase the success probability
but also – without exception – the cost. Thus, it is not possible to
minimize the cost while maximizing the probability of success.

In order to compute the success probability of a route, it is neces-
sary to employ information about the availability of resources at all
known resource locations. In this paper, we assume a system which
collects observations on the availability (and conversely the con-
sumption) of resources over time. These so-called long term obser-
vations are then used to compute probability distributions model-
ing general resource availability. Furthermore, the system provides
current information about resource status at query time. We refer
to this kind of information as short term observations. For exam-
ple, long term observations correspond to the average time a park-
ing spot remains vacant or occupied. Short term observations, on
the other hand, provide information about currently vacant spots.
Depending on the scenario, the amount of short term observations
might be limited, e.g., only a limited number of parking spots are
equipped with occupancy sensors while the rest is detected and re-
ported by other roaming cars. At first glance, short term obser-
vations might seem sufficient for a successful search. However,
knowing that a resource is available at the moment, does not mean
that it still will be upon arrival. Thus, as time progresses, the in-
fluence of short term observations on the probability of finding a
resource decays. Long term observations address this problem in
three ways. First, if there is no short term observation available for
a resource, the expected vacancy time of a resource can compen-
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sate for the lack of current information. Furthermore, long term
observations can be used to predict the probability that a currently
available resource will still be vacant upon arrival. And, finally,
long term observations can serve as an estimate for the expected
occupancy time, i.e., the expected time until a consumed resource
becomes available again. For example, in the parking spot scenario
this corresponds to the expected parking duration.

In this paper, we present a statistical model describing a road net-
work comprising resource locations of a specific resource type. Our
model incorporates both types of information described above, i.e.,
long term as well as short term observations. From a formal point of
view, our model describes each resource location as a continuous-
time Markov chain with two states, available and consumed.
Based on this model, we introduce the following query: For a given
query location, compute a route for which the probability of finding
an available resource exceeds a given probability threshold (e.g.,
90 %) while minimizing the (expected) cost, e.g., travel time or
distance. A route may be extended infinitely, and each extension
adds to the success probability but also to its cost. Thus, in order
to optimize one measure, we have to bound the other. More pre-
cisely, the best route may be the one with the least cost among
all routes exceeding the probability threshold. Or, converesely,
the best route may be the one with the highest success probabil-
ity among all routes not exceeding a cost threshold.

Since our model allows for reapparance of resources, the search
space of possible solutions is unlimited. However, in many appli-
cations the time frame of finding a suitable answer is rather small
as users only tolerate limited answering time. Therefore, we inves-
tigate two greedy search heuristics which promise admissible re-
sults in efficient time. To allow the computation of optimal results,
we examine a recursive backtracking approach to avoid exhaustive
search. Furthermore, we propose a lower bound for the remaining
increase in cost used in a highly efficient branch and bound so-
lution providing optimal results. We evaluate our approach within
real world road networks on the application of finding parking spots
and on the application of finding charging stations for electric ve-
hicles. To conclude, the contributions of this paper are as follows:

• A novel probabilistc model describing the availability of re-
sources in road networks. We model resources as continuous-
time Markov chains which are parametrized by long term as
well as short term observations and allow to model the reap-
parance of previously consumed resources.

• A new type of query, the Probabilistic Resource Route Query
with Reappearance (PRRQR).

• An approximate solution to the PRRQR employing two dif-
ferent search heuristics, as well as optimal solutions based
on backtracking and branch and bound.

The rest of the paper is organized as follows: Section 2 sum-
marizes related work about similar types of queries. In Section 3,
our probabilistic model is described, followed by the formal def-
inition of the PRRQR. Section 5 describes the heuristics, bounds
and query algorithms introduced to process PRRQRs. The results
of our experimental evaluation are presented in Section 6. The pa-
per is concluded with a summary and an outlook for future work in
Section 7.

2. RELATED WORK
In this section, we survey existing work on similar tasks. First,

we will give a review of basic query types related to the one in-
troduced in this paper. Then, we address works which model the

existence of resources in a probabilistic way. All of the following
query types have the same meta-task, namely, guiding a user to a
certain resource. In all of these scenarios, a database which stores
the resources and their respective locations is assumed. Although
this task may also be carried out in Euclidean space, we restrict
ourselves to road networks, as most of the applications are traffic-
related.

The simplest type of query guiding a user to the next available
resource is the nearest neighbor query (NNQ). In this setting, the
user specifies a location – typically his current location – as well
as some type of resource. The result of the NNQ is the optimal
path (fastest, shortest, etc.) to the closest location providing the
resource. As NNQ are a well-explored research area, we will not
go into detail on their solutions. An extension of this query are
trip planning queries (TPQ) [2] (also referred to as route planning
queries [1] or route search queries [10]). In this problem setting,
the user specifies a selection of different resources, e.g., “ATM”,
“restaurant”, “florist”, “cinema”. Additionally to his start location
the user may specify a target location. The result of a TPQ is the
optimal path from start to target visiting at least one instance of
each resource. Computing TPQs is NP-complete because in the
case that each specified resource type occurs exactly once the TPQ
degenerates to the Traveling Salesman Problem (TSP).

In another variation of the problem, the order in which resources
are visited may be constrained, as described in [9] or [7]. For in-
stance, if planning a date, the order of resources might be restricted
by the constraints that the ATM has to be visited first and the florist
should be visited before the restaurant and the cinema. However,
since the task usually maintains an NP-hard subproblem, solutions
to any of these problems typically employ heuristics ([1], [9]).

In the settings presented so far, the existence of a resource at its
location is considered to be guaranteed. In many real world ap-
plications, however, a resource will only be available with a certain
probability. If no table or seats have been reserved, not all locations
of type “restaurant” or “cinema” might have the resource available.
The same holds for the resource type “florist” if looking for specific
flowers. In all of these cases, the requested resource is available
with a certain probability (and consumed with the converse prob-
ability), i.e., prior to arrival it is not known with certainty whether
the resource is available or consumed. At first glance, these kinds
of uncertainty may seem congruent. However, there are significant
differences which require specific modeling. We distinguish the
following types of uncertainty.

Assume a surfer is looking for good waves and is considering
different beaches. At every beach, the waves might be sufficient
with a certain probability. If available, the resource “waves” cannot
be consumed by the presence of other surfers. Thus, we refer to the
probability of finding waves as static (resource) uncertainty. This
uncertainty is independent from the time of arrival and the presence
of competitors.

Now, consider a cinema where seats are a limited resource. If
no seats have been reserved, the probability of finding seats for
a particular show decays as screening time approaches. Since in
this case a limited quantity of the resource is consumed over time,
we refer to this type of uncertainty as time-decaying (resource)
uncertainty. Contrastingly, while all tables at a certain restaurant
might be occupied now, there might be one available later the same
evening. In this case, the quantity of the resource might decay (or
more generally: change) over time but regenerate at a later point in
time. This is a significant difference to the other scenarios where
revisiting resources does not yield any benefit. However, in this
scenario, although the resource might have been consumed upon ar-
rival, it might make sense to revisit after an adequate waiting time.
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We refer to this kind of uncertainty as time-dependent (resource)
uncertainty with reappearance.

To the best of our knowledge, there is no previous work support-
ing short term observations or taking time-dependent uncertainty
with reappearance into account. Therefore, we shall now review
works which incorporate static as well as time-decaying resource
uncertainty. While we provide an abstract problem definition (cf.
Section 3) and applications based upon this definition, some works
focus on their application and adapt their problem definition to the
respective use case. Nevertheless, these works can – with some
restrictions – in many cases be extended to incorporate general re-
sources.

The authors of [10], for example, compute paths which guide
the user along certain resources. In their follow-up work, [7], this
problem is extended by ordering constraints (as in some of the ex-
amples above). Both papers present algorithms based on greedy
search heuristics as well as on heuristics which minimize the ex-
pected distance until search success. In both papers, resources
may have assigned success probabilities. However, these proba-
bilities reflect static uncertainty, i.e., non-time-dependent and non-
reappearing. The same holds for [4] and its follow-up work [8]
where probabilistic k-route queries are introduced and examined.
Here, the authors introduce a confidence value which corresponds
to the existence probability of a resource at each location, also re-
flecting static uncertainty. Employing different heuristics, the pre-
sented algorithms find approximate solutions by clustering resource
locations that maximize the expected success.

In contrast, the authors of [3] take time-dependency into account
and assume a linear decay for the vacancy of parking spots. Al-
though this model is aimed at a specific application, it may be gen-
eralized to abstract resources. Note, however, that this model does
not allow reappearance of resources which is a significant short-
coming, especially in this application. This is because a typical
strategy looking for a parking spot is roaming the target area un-
til someone vacates a spot, i.e., a resource reappears. The authors
propose two approaches to maximizing the probability of finding a
parking spot. The first approach finds the optimal result, however,
this is done employing full enumeration on the time-varying TSP.
Due to the brute force nature of this algorithm, query processing
quickly becomes infeasible with increasing number of resource lo-
cations. The second approach is an algorithm that clusters resource
locations before solving a TSP on the clusters. Subsequently, the
optimal solution within each cluster is searched. Based on a heuris-
tic, this algorithm yields an approximation of the optimal result,
while providing a considerable speed-up.

There are various methods, focusing on the application of taxi
pickups as well as ridesharing, such as [12], [14],[11] and [5]. In
[12], the task is equivalent to solving a classic TSP, i.e., ordering
different but fixed pickup locations such that the total distance is
minimized. The authors rely on a genetic algorithm approach to
solve this problem. In [14],[5] and [11] the task is more compli-
cated. Here, the task is first of all to assign cabs to a set of currently
available customers. After this assignment is done, a route for pick-
ing up and dropping off the customers has to be found. Thus, only
the last part of the query is related to our work. Furthermore, none
of the works considers uncertainty w.r.t. customer availability.

3. PROBLEM SETTING
In this section, we formalize our problem setting. First, we define

the graph which represents the underlying road network. Then, we
introduce the probabilistic model which describes resource avail-
ability and consumption.

3.1 Road Network Graph
For a given road network, we let G = (V,E) denote the corre-

sponding graph, i.e., the vertices (or nodes) v 2 V correspond to
crossings, dead ends, etc., and the edges e 2 E ✓ V ⇥ V rep-
resent directed road segments connecting the vertices. We refer to
this graph as Road Network Graph. Furthermore, let c : E ! R+

0

denote the function which maps every edge onto its respective cost,
e.g., travel time or distance. If the employed cost function is not
travel time, we additionally assume the travel time to be known
and given by a function t : E ! R+

0 (as resource availability is
dependent on the time of arrival). By route, we mean a consec-
utive set of edges (possibly with cycles), i.e., r = (e1, . . . , en)

where all ei are taken from the corresponding set of edges and for
all 1  j  n � 1 : ei = (u, v) ) ei+1 = (v, w). The cost
of a route r = (e1, . . . , en) is defined as the accumulated cost of
its edges, i.e., c(r) =

Pn
i=1 c(ei). By path, we mean a cycle-free

route.

3.2 Probabilistic Model
In the following, we introduce our probabilistic model. As men-

tioned before, at every resource location the respective resource
may either be available or consumed. However, prior to ar-
rival at the location, it is not known which of the two is the case.
Our probabilistic model has to be able to reflect all three kinds of
uncertainty: static, time-decaying, and time-dependent uncertainty
with reappearance. While the former two kinds of uncertainty are
rather straightforward, the latter requires more work and a novel
approach.

The static uncertainty of a resource is easily expressed by a ran-
dom variable X which takes the values 0 or 1, representing the
states available and consumed, respectively, where the prob-
abilities of X are P(X = 0) = p and P(X = 1) = 1� p for some
p 2 [0, 1]. For illustration, recall the example of a surfer looking
for waves at a beach. Independent of the time of their arrival there
will be waves with probability p.

In the case of time-decaying uncertainty, we propose modeling
the probability that a resource X is available at time t > 0 as e��t

for some � > 0. Consequently, at time t = 0, the resource is
available with probability 1, but it decreases as time progresses and
asymptotically approaches 0. Or, in other words, the probability
that X is consumed is the cumulative distribution function of an
�-exponentially distributed random variable. This coincides with
the intuition of modeling waiting times as exponentially distributed
random processes. For illustration, recall the example of buying
tickets to the movies, where the probability of available seats is 1

at t = 0 but decreases as screening time approaches.
Now, let us turn to the case of time-dependent uncertainty with

reappearance which is the core of this work, as it is the only con-
cept that can model the use cases of our experiments (parking spots,
charging stations). As before, resource availability has two states,
but now, there may occur multiple state transitions at arbitrary points
in time. Therefore, we propose modeling each resource as a stochas-
tic process. The most common type of stochastic processes are
Markov chains which model the transition probabilities within a
system with a given number of states. When a system transitions
from one state into another, the future state is only dependent on
the present state. This property is central to Markov chains and re-
ferred to as memorylessness or Markov property. Markov chains
can either assume discrete or – as in our case – continuous time.
In a discrete model, there exist equal time steps, and for each step,
the probability of transitioning into another state can be computed.
In a continuous-time model, the sojourn time in each state, i.e., the
time until the next state transition, is perceived as a random vari-
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able itself. The notion of memorylessness extends naturally to the
case of continuous time.

Thus, we model time-dependent resource availability with reap-
pearance at each resource location as a continuous-time Markov
chain (CTMC). More precisely, each resource location r

i is now
represented by a family of random variables {Xi

t , t � 0} with
values in the state set {0, 1}. Note that there exists a one-to-one
relationship between each resource location, and its resource mod-
eled by the respective CTMC. Thus, we denote the CTMC of each
resource location r

i by X

i and denote the set of all CTMCs by X ,
where |X | = |R|. We may use the term resource for the geolo-
cation associated with a resource as well as for the corresponding
CTMC. When not clear from the context, we will state explicitly
which of the two is referred to. Also, we assume the resources,
more specifically their CTMCs, to be mutually independent. The
independence assumption keeps the model general and applicable
even if the available observations are limited.

Besides its state space, a CTMC is (under the reasonable assump-
tion of time-homogeneity) defined by the family of transition matri-
ces {Pt, t � 0} and the (infinitesimal) generator matrix Q. Using
the Kolmogorow equations, each may be computed from the other
by solving the first order differential equation P

0
(t) = P (t)Q. For

more mathematical details, we refer the reader to [13]. We omit the
explicit calculations here and restrict ourselves to explaining the
connection between P (t), Q and the states of a resource.

In our case, Q is a 2 ⇥ 2-matrix. Its diagonal entries reflect the
parameters of the random variables modeling the sojourn time of
each state while the non-diagonal entries reflect the rate of transi-
tion into another state. Q has the following form:

Q =

✓
�� �

µ �µ

◆

The family of transition matrices P (t) for t � 0 is defined as
follows:

P (t) =

 
µ

�+µ +

�
�+µe

�(�+µ)t �
�+µ �

�
�+µe

�(�+µ)t

µ
�+µ �

µ
�+µe

�(�+µ)t �
�+µ +

µ
�+µe

�(�+µ)t

!
(1)

For each resource, the sojourn times of its states available
and consumed are modeled as exponentially distributed random
variables with parameters � and µ, respectively. This, again, coin-
cides with the convention of modeling waiting times as exponen-
tially distributed. The expected value of an exponential distributed
random variable exp(�) is 1/�. Thus, the expected sojourn time in
the state of availability is 1/�, and the expected sojourn time in the
state of consumption is 1/µ. One application on which we evaluate
our model in Section 6 is finding vacant parking spots. In this use
case, 1/� would be the expected vacancy time, analoguously, 1/µ
would be the time until an occupied spot becomes vacant again. Of
course, these parameters may be different for each resource loca-
tion if enough observations for an individual estimation are avail-
able. Therefore, it is possible for each resource to have distinctly
parametrized Q and P (t).

Let us shortly explain how the assumed observations are used
for parameter estimation. As mentioned before, our model allows
to incorporate short term as well as long term observations. The
latter are used for parameter estimation in the following way: Con-
sider a resource X , which has an unknown expected sojourn time
in the state available but is assumed to be exponentially dis-
tributed with parameter �. Given a number of observations x =

(x1, . . . , xr), i.e., exemplary measurements of the time span dur-
ing which X stays available, we can easily estimate � using the
maximum likelihood estimator. The according likelihood function
is given by:

L(�) =

rY

i=1

� exp(�xi) = �

r
exp(��rx̄)

where x̄ = 1/r

P
xi denotes the mean of all measurements. Dif-

ferentiating the logarithmized likelihood function yields the max-
imum likelihood estimator ˆ

� = 1/x̄, which is simply the inverse
of the mean value. The parameter µ may of course be estimated
analoguously.

Now, let us review some properties of the transition matrices
{P (t), t � 0} central to the model. Given a resource X and its
sojourn time parameters � and µ, we can compute P (t) as in Equa-
tion 1. If we also have an initial probability distribution based on
short term observations of the states of X at time t0 = 0 (denoted
as ⇡0), we can compute the according probability distribution after
an arbitrary point in time t � 0 (denoted as ⇡t) as follows:

⇡t = ⇡0P (t)

Note that P (0) = I is the identity matrix (cf. Equation 1) which
means that if no time has passed, the probability distribution of
t0 is still active. For example, if there is an observation at t0 of
X being in state consumed, then ⇡0 = (0, 1). The consump-
tion of resource X is certain – but only at this particular point in
time. As time progresses, it becomes more likely that the state
changes. Therefore, the original probability distribution ⇡0 (given
by the observation) changes. Note that this reflects the notion of
reappearance of previously consumed resources. This is expressed
in the (exponentially) decaying influence of the second summands
in every entry of P (t) (cf. Equation 1). Eventually, the original ob-
servation becomes obsolete. This can be seen from the convergence
of P (t) as t!1:

lim

t!1
P (t) =

 
µ

�+µ
�

�+µ
µ

�+µ
�

�+µ

!

Asymptotically both rows of P (t) are equal. This implies the
initial observation has no more influence on the probability distri-
bution of X as t ! 1. For example, whether the initial obser-
vation was consumed, i.e., ⇡0 = (0, 1), or available, i.e.,
⇡0 = (1, 0) is without significance. In any case, limt!1 ⇡t is the
so-called stationary distribution as introduced below.

In our case, a resource X is a finite-state Markov chain where all
states communicate and thus X has a unique stationary distribution
⇡ [13]. By definition: ⇡P (t) = ⇡, 8t � 0. Solving this system of
equations, we get:

⇡ = (⇡1,⇡2) =

⇣
µ

�+µ
�

�+µ

⌘

This is equal to the rows of limt!1 P (t) which supports the intu-
ition of t having no more influence on the probability distribution.
For example, if no observation for X is available, the only unbi-
ased assumption is the stationary distribution since it assumes the
respective share of both states w.r.t. � and µ.

Let us use all of the above in an example related to one of our
applications: Let X be a CTMC modeling the vacancy of a park-
ing spot at a certain location. We make the following assumptions
on the model: If available (meaning vacant), we expect X to
be consumed (meaning occupied) within 5 minutes. This means,
the sojourn time of state available is a 1/5-exponentially dis-
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tributed random variable. If X is consumed, we expect the occu-
pant to leave within 20 minutes. Hence, the sojourn time of state
consumed is a 1/20-exponentially distributed random variable.
As mentioned before, P (0) = I . Let us investigate how P (t)

changes as time (non-infinitely) progresses. For instance, after 1
and after 3.5 minutes:

P (1) ⇡
✓

0.8 0.2

0.05 0.95

◆
P (3.5) ⇡

✓
0.52 0.48

0.12 0.88

◆

Assume that at t0 = 0 X has been observed as available, i.e.,
P(X0) = (1, 0). Then at t = 1 the spot will still be available
with probability 0.8. After 3.5 minutes this probability will have
decreased to 0.52. Now, consider a different scenario where at
t = 0 X has been observed as consumed, then after 1 minute
it is available with probability 0.05. After 3.5 minutes this
probability will have increased to 0.12.

To conclude, we now have a probabilistic model on our hands
which is capable of describing all three kinds of resource uncer-
tainty introduced in Section 2. The core contribution of this model
is its ability to reflect resource reappearance. Also, it allows effi-
cient resource-specific parametrization by incorporating long term
and short term observations.

4. QUERY DEFINITION AND RESULT SET
Now that we have defined the probabilistic model, we turn to

our query and its result. Both are best described using an alter-
native graph, referred to as resource graph ˆ

G. Therefore, in this
section, we will first define the resource graph. Subsequently, we
introduce two measures which are then used to define the Proba-
bilistic Resource Route Query with Reappearance (PRRQR) and
its result.

4.1 Resource Graph
We assume that for a road network graph and a query node q a set

of suitable resources X (q) = {X1
, . . . , X

N} is given. In the ma-
jority of applications, only a reasonable subset of resources might
qualify. For example, parking spots should be within walking dis-
tance of the driver’s destination. In this case, the query node would
be the driver’s position when he reaches the vicinity of his destina-
tion. An according range query to a database would then retrieve
suitable parking opportunities on which a PRRQR would be exe-
cuted. For every resource X

i, we assume distribution parameters
�

i
, µ

i and possibly an initial distribution ⇡

i
0 as given.

The set of vertices of the resource graph is defined as ˆ

V :=

{q} [ X , where q 2 V denotes the query node. The edges of
the resource graph, ˆ

E, represent cost-optimal paths between re-
source locations in the underlying road network. Thus, each route
in the resource graph can be expanded into a corresponding route
in the transportation network (cf. Figure 1(a)). Let us note that
even in cases where cost does not refer to the travel time, we will
also compute the travel time of every cost-optimal path because it
is needed to determine the success probability. Although it is possi-
ble to compute the cost-optimal path between each pair of resource
locations, we will require ˆ

E to contain only a minimal set of edges
by removing transitive connections. A transitive connection is a
path within the road network that contains at least one intermedi-
ate resource location. For example, if along the cost-optimal path
from X

A to X

B resource location X

C is encountered, then X

A

and X

B would not be connected in the resource graph (cf. Fig-
ure 1(b)). However, ˆ

G would contain edges connecting X

A and
X

C as well as XC and X

B . We explicitly exclude transitive con-
nections from the resource graph for two reasons. First, transitive

(a) Optimal direct paths between re-
sources are marked green, fastest
paths with intermediate resources are
marked red.

(b) Edges of the resource graph
(marked continuously green) and ex-
cluded transitive connections (marked
dashed red).

Figure 1: Illustration of a query node q and resources A,B,C

in a road network graph (a) and the respective resource graph
(b).

links do not allow computing the success probability correctly be-
cause the intermediate resource locations are not considered. Sec-
ond, the existence of transitive connections leads to the inefficient
traversal of identical subpaths.

We also compute the cost-optimal paths from the query node q

to all resource locations. As there is no gain in returning to the
query node, paths ending at q are excluded from the computation.
Algorithm 1 describes the computation of ˆ

E which is illustrated in
Figures 1. Note that in order to compute ˆ

E, we need to compute all
cost-optimal paths within the road network graph and then prune
the transitive connections. It is not possible to avoid the computa-
tion of transitive connections directly.

The cost function of the road network graph G naturally extends
to ˆ

G. Since every edge in ˆ

G corresponds to an cost-optimal path
in G, the cost function ĉ :

ˆ

E ! R+
0 maps an edge of ˆ

E to the
accumulated costs of the respective path in G. Analogously, ˆt :

ˆ

E ! R+
0 maps an edge of ˆ

E to the accumulated time of the
respective cost-optimal path in G.

Combining the above, we define the resource graph as ˆ

G =

ˆ

G(q,X ) := (

ˆ

V ,

ˆ

E, ĉ,

ˆ

t). Note that ˆ

G holds all the query-relevant
information since it contains the query node q as well as the re-
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Algorithm 1: Computation of ˆ

E

Input: Query setting X (q), q

Output: Edges ˆ

E of resource graph ˆ

G

1 begin
2 ˆ

E  ;
3 foreach X 2 X (q) do
4 Compute fastest path p from q to X

5 if no intermediate resource on p then
6 ˆ

E  ˆ

E [ p

7 end
8 Compute multi-target Dijkstra from X to all

X

0 2 X \X in G

9 foreach fastest path p from X to X

0 do
10 if no intermediate resources on p then
11 ˆ

E  ˆ

E [ p

12 end
13 end
14 end
15 end

source locations X (q). Therefore, speaking of a query setting, we
mean q and X (q) as well as the according resource graph ˆ

G.

4.2 Resource Routes and PRRQR
Relying on ˆ

G, we may now define the possible solutions to our
query. For a given query setting q,X (q) and the according resource
graph ˆ

G, a resource route is a route r in ˆ

G, starting at query node
q = X

0. Note that by construction of the resource graph a resource
route only follows optimal paths between resources. We describe
a resource route as a set of edges (in ˆ

G), i.e., r = (er1 , . . . , ern),
where eri 2 ˆ

E for all 1  i  n. Since in our context the order
of resources is of particular interest, we introduce a specific no-
tation for it. Recall that every edge in ˆ

E connects two resources
unless it starts at the query node. Hence, along a resource route
r with n edges we encounter n resources. Note that these re-
sources are not necessarily distinct, as r may contain cycles. Let
Xr = (X

r1
, . . . , X

rn
) denote the n resources along r. To intro-

duce a measure for the success probability of a complete route, we
start by defining the success probability of a resource route.

DEFINITION 1. For a given resource route r along resources
(X

r1
, . . . , X

rn
), let ti denote the time of arrival at Xri , i.e., t0 <

t1 < · · · < tn, and let ci denote the accumulated cost up to re-
source X

ri . Furthermore, let {P (X

ri
, t), t � 0} denote the tran-

sition matrices of Xri (dependent on the parameters of Xri ) and
let ⇡0(X

ri
) denote the initial distribution of the states of Xri (de-

pendent on the availability of short term observations regarding
X

ri ). Then the probability distribution of Xri at ti is defined as:
�
P(Xri

ti
= 0),P(Xri

ti
= 1)

�
:= ⇡ti(X

ri
) = ⇡0(X

ri
)P (ti)

Hence, the success probability of Xri at arrival time ti is the prob-
ability that resource X

ri is in state available at time ti, i.e.,
P(Xri

ti
= 0).

Note that in accordance with the probabilistic model as presented
in Section 3, we denote state available of a resource X by X =

0 and the state consumed by X = 1. Based on this definition, we
are able to define the success probability for a complete resource
route:

DEFINITION 2. Let q,X (q),

ˆ

G be a query setting and r be a re-
source route in ˆ

G. The Success Probability of r, denoted by PS(r),
is defined as the probability of the complementary event of not find-
ing any available resource along r:

PS(r) := 1�
✓ nY

i=1

P(Xri
ti

= 1)

◆

Given the success probability, we now need to find a second mea-
sure which measures the effort of finding an available resource, i.e.,
the expected cost of a resource route:

DEFINITION 3. Let q,X (q),

ˆ

G be a query setting and r be a
resource route in ˆ

G. The Expected Cost of r, denoted by Ec(r), is
defined as:

Ec(r) :=

nX

i=1

✓
ci · P(Xri

ti
= 0) ·

i�1Y

j=1

P(Xrj
tj

= 1)

◆

Relying on both measures, we can now define the Probabilistic
Resource Route Query with Reappearance (PRRQR):

DEFINITION 4. Let q be a query node, X (q) the set of corre-
sponding resources, ˆG the according resource graph. Furthermore,
let 0 ⌧ ⇢ < 1 denote a probability threshold. The result of a
PRRQR with threshold ⇢, denoted by PRRQR(⇢), is the resource
route in ˆ

G with minimal expected cost among all resource routes
which exceed the probability threshold ⇢.

PRRQR(⇢) = argmin{Ec(r) | PS(r) � ⇢}

Note that there exists a straightforward variation of the PRRQR.
Instead of thresholding the success probability, one could bound
the maximal cost. Given a cost threshold ⌧ > 0, the query result
is the resource route maximizing the success probability while not
exceeding the cost bound ⌧ . In this case, it is usually more reason-
able to employ ⌧ as a strict bound on the maximal cost instead of
bounding the the expected cost. For example, consider driving an
electric vehicle with a limited remaining range. Bounding the ex-
pected distance misses the point, only bounding the actual driven
distance (while maxmimizing the success probability) will provide
a suitable route. This variation of the query is also examined our
experiments. However, in the following, we focus on the first (and
more sophisticated) case to keep the description compact.

5. QUERY PROCESSING
In this section, we present algorithms for processing PRRQRs.

First, we propose two heuristics which are employed in a greedy
search that computes approximations of the optimal results. After-
wards, we will present two methods computing optimal solutions,
relying on backtracking as well as on branch and bound. In the fol-
lowing, let 0 < ⇢ < 1 be a probability threshold, and let ˆ

G be the
resource graph according to a given query setting q,X (q).

Let us note some aspects central to the PRRQR before going into
the details of the algorithms. Given ˆ

G and the query position q, then
all resource routes start at q by definition. Hence, the set of possi-
ble solutions may be conceived as a search tree rooted at q where
each branch is a sequence of resource locations. For a probability-
constrained PRRQR with ⇢ = 1, i.e., a PRRQR requiring certainty
of finding a resource, this search tree is infinite. The effect is caused
by the time-dependent decay inherent in our model. Thus, a certain
observation of availability of a particular resource will no longer be
certain at the time of arrival. As a result, the success probability of
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a resource route can only asymptotically converge against 1. Even
when ⇢ < 1, the search space is generally very large. This is be-
cause considering resource reappearance adds considerably to the
complexity of the task. Similar to the Traveling Salesman Problem
(TSP), there is no local optimality w.r.t. the resource subsequences
that can be exploited. Hence, it is not possible to tell whether a
resource route r can be extended into an optimal solution based on
its current PS(r) and Ec(r). Furthermore, it is easy to see that all
permutations of the set of resources can be found in the search tree.
Thus, from a theoretic point of view the problem is NP-complete.
Only by setting the threshold ⇢ < 1, the search space becomes
finite.

One precomputational step which all algorithms have in com-
mon is the computation of the resource graph ˆ

G and its edges which
constitute cost-optimal paths between resource locations in the un-
derlying road network graph. The pseudocode for this operation
is given in Algorithm 1. The set of edges ˆ

E is realized as an ad-
jacency matrix A of dimension N + 1 ⇥ N , where |X (q)| = N

is the number of suitable resources of the respective query setting.
For notational reasons, we denote the query node q by X

0. The
entries aij , 0  i  N, 1  j  N of A are defined as:

aij =

(
c(p(X

i
, X

j
)) @Xk 2 p(X

i
, X

j
), i, j, k pairw. inequal

1 else

where p(X

i
, X

j
) denotes the cost-optimal path from X

i to X

j

within the underlying road network graph. A holds the cost of
all cost-optimal paths, both pairwise between resources as well as
from q to any resource, if no intermediate resources are located
along this path. A, however, does not hold any information about
paths from any resource to q, because the query node is not a re-
source and thus does not yield any gain toward the query goal. In
case cost does not refer to travel time, we also compute the travel
times of the cost-optimal paths. Recall the example of a query set-
ting and its resource graph, as illustrated in Figure 1.

The according adjacency matrix of this scenario is given by:

A B C
q 1 t(p(q,B)) t(p(q, C))

A 1 1 t(p(A,C))

B 1 1 t(p(B,C))

C t(p(C,A)) t(p(C,B)) 1

As mentioned before, depending on the application, the subset of
suitable resource locations may be query-dependent. However, as
the total set of resource locations is known prior to the query, it is
possible to precompute the above adjacency matrix. If at query time
a selection of suitable resources is required, the non-relevant rows
and columns may simply be ignored. In the following, we consider
an appropriate adjacency matrix as given. This assumption is not to
the disadvantage of any of the proposed algorithms, as they all rely
on the resource graph ˆ

G and its edges modeled by the adjancency
matrix.

5.1 Heuristic Solutions
In order to cope with the complexity of the PRRQR, we pro-

pose two search heuristics employed in greedy algorithms. Both
heuristics aim at exceeding the given probability threshold by ex-
tending a (partial) resource route r by the “best” next resource
location. The first heuristic greedily chooses the resource loca-
tion which yields the best success probability upon arrival, while
the second heuristic greedily chooses the resource location which
yields the best tradeoff between success probability upon arrival

and cost to reach the location from the present one. Formally,
we propose to evaluate a possible extension of resource route r

along resources (Xr1
, . . . , X

ri�1
) by one of the resource locations

{X1
, . . . , X

N} according to the following heuristics:

(1) Extend r by X

ri such that

X

ri
= argmax{P(Xrj

tj
= 0) | 1  j  N}

(2) Extend r by X

ri such that

X

ri
= argmax{P(Xrj

tj
= 0)/ĉ(erj ) | 1  j  N}

where ĉ(erj ) denotes the cost for traveling from resource lo-
cation X

rj�1 to X

rj along the an cost-optimal path.

In conclusion, our greedy approaches G1 and G2 proceed as fol-
lows: For a given query setting q,X (q) and a probability threshold
0 < ⇢ < 1 all cost-optimal paths from q to all resource locations
adjacent to q w.r.t. the adjacency matrix are computed. Then, G1
and G2 choose the most promising extension according to the ex-
tension strategies (1) and (2), respectively. If the success probabil-
ity of the obtained resource route does not exceed the probability
threshold ⇢, the procedure is repeated for all resource locations ad-
jacent to the current one w.r.t. the adjacency matrix. As soon as the
success probability exceeds ⇢, we have found a viable solution.

5.2 Optimal Results
The greedy approach described above aims at the computation

of reasonable resource routes in efficient time. However, in some
applications, quality is more important than efficiency. For these
cases, we propose two different approaches which guarantee op-
timal results. We present a backtracking algorithm and a further
accelerated branch and bound approach.

5.2.1 Optimal Results through Backtracking
The backtracking approach, denoted by BT, starts at query node

q and gradually expands resource routes as long as they qualify as
result candidates. A resource route disqualifies as a result candi-
date if it exceeds the expected cost of the currently best resource
route. During the expansion, BT explores the search tree (rooted
at q) in depth-first order. Note that this search tree is generally in-
finite. Consequently, it is of even greater importance to exclude
resource routes from expansion early on in the algorithm. There-
fore, we conduct a prior initialization step equal to an execution of
the greedy G2 algorithm. This generates a valid resource route in
efficient time, its expected cost may be used as a first bound. We
omit the initialization step here (since it is equal to the description
of G2 above). Instead, we only give the recursive procedure as
presented in Algorithm 2.

The procedure expandRecursive is initially called with a
trivial resource route only consisting of query node q and an un-
specified resource (which is reset to an adjacent resource during the
first run). The expected cost of the result generated by G2 is held
in a global variable Mc as an initial upper bound for the expected
cost. While traversing the search tree Mc will be tightened by find-
ing better solutions. In line 3, candidates which do not qualify as
results are excluded, while in line 6 possible result are generated
(i.e., resource routes exceeding the probability threshold). The ac-
tual search tree traversal is realized recursively in lines 10, 11. If
an expansion r

0 of a resource route r is better than the current best
route along this subtree r̂ (w.r.t. the expected cost), then r̂ is up-
dated to r

0 and Mc is updated to Ec(r
0
) (lines 13,14). Thus, by

sequential traversal of the search tree, BT returns the optimal re-
sult upon termination. However, due to the exponential number of
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Algorithm 2: Expansion step of BT
1 expandRecursive(Resource route r,
2 resource X)

Data: Upper bound for Ec, Mc
Output: Optimal resource route r̂

3 begin
4 if Ec(r) > Mc then
5 return ;
6 end
7 if PS(r) > ⇢ then
8 return r

9 end
10 initialize variable holding current best route r̂ = ;
11 foreach resource X adjacent to last resource of r

do
12 r

0  expand(r,X)
13 if r̂ = ; _ Ec(r

0
) < Mc then

14 r̂ = r

0

15 Mc  Ec(r̂)

16 end
17 end
18 return r̂

19 end

branches and the technically infinite length of the branches runtime
is prone to degenerate. Therefore, we propose another algorithm
which computes optimal results in significantly less time.

5.2.2 Optimal Results through Branch and Bound
Like the backtracking algorithm BT, this branch and bound ap-

proach, denoted by BB, relies on an upper bound for the expected
cost (Mc) which is tightened as the algorithm progresses. Addition-
ally, BB incorporates a forward estimation for the expected cost a
route minimally needs to exceed the probability threshold ⇢. The
forward estimation is a lower bound for the expected cost w.r.t. a
resource route and ⇢. Consequently, if this lower bound exceeds
the upper bound for the expected cost Mc, r can be excluded from
further expansion, i.e. the respective subtree can be pruned.

Algorithmically, BB is similar to BT, except for the mentioned
forward estimation. This forward estimation is incorporated into
Algorithm 2 as an if(mc < Mc))-statement spanning from line 11
through line 17, where mc is the output of procedure
forwardEstimation, as presented in Algorithm 3. Before each
possible expansion of a resource route r, forwardEstimation
is called with r and the probability threshold ⇢. In lines 3-7 the pa-
rameters are set which are subsequently used to compute the lower
bound for the expected travel time. tnow is the absolute travel time
of input resource route r. tmin is the fastest travel time between
any two resources. Thus, topt is the minimal possible arrival time
at the next resource w.r.t. the absolute travel time of r. popt and
mc are initialized with PS(r) and Ec(r), respectively. Both values
are updated in the while loop (lines 8-13) until popt � ⇢, i.e. until
the optimal success probability exceeds the threshold. Now, let us
investigate the operations in the while loop. First, pmax is defined
as the maximal probability among all resources at the minimal pos-
sible arrival time topt. Note that we only allow observations to be
incorporated into the model until query time. Therefore, pmax is
monotonically decreasing in topt, and it converges against the min-
imal value of all stationary distributions in state consumed. mc
is extended by a new summand reflecting a hypothetical and opti-

Algorithm 3: Forward Estimation of BB
1 forwardEstimation(Resource route r,

current Ec bound Mc)

Output: Upper bound for the success probability
of any extension of r until it exceeds Mc

2 begin
3 tnow  arrival time at last resource of r
4 tmin  mine2Ê

ˆ

t(e)

5 topt  tnow + tmin
6 popt  PS(r)

7 mc  Ec(r)

8 while mc < Mc do
9 pmax  maxX2X (q) P(Xtopt = 0)

10 mc  mc +
�
topt · pmax(1� popt)

�

11 popt  1�
�
(1� popt)(1� pmax)

�

12 topt  topt + tmin

13 end
14 return popt

15 end

mal journey to the resource with maximal probability and minimal
cost. Consequently, the success probability bound is updated to the
probability of the complementary event of not finding any available
resource along this optimal journey. By this strategy, in every itera-
tion of the while loop, a journey to an optimal next resource causing
minimal cost is simulated. Thus, the maximal success probability
is aggregated while assuming minimal cost. We prove this in the
following lemmas. We introduce the following terminology: For a
given resource route r we refer to any iteration of the while loop of
Algorithm 3 as an optimal extension. This coincides with the above
described intuition.

LEMMA 1. In any optimal extension the gain of the updated
values m0

c  mc and p

0
opt  popt yield the best possible trade-off

between expected cost and success probability. More specifically,
let r be a resource route with Ec(r) = mc, PS(r) = popt and travel
time topt. Then the following statement holds: For any possible
extension r

0 of r to another resource:

m

0
c �mc

p

0
opt � popt

<

Ec(r
0
)� Ec(r)

PS(r0)� PS(r)

PROOF. In order to prove this lemma, we need to formulate the
success probability of a resource route r differently:

PS(r) = 1�
nY

i=1

P(Xri
ti

= 1)

=

nX

i=1

✓
P(Xri

ti
= 0) ·

i�1Y

j=1

P(Xrj
tj

= 1)

◆

Note that the equality indeed holds. This is because the event of
finding at least one available resource can be described by the
complementary event of not finding any resource in state available.
Equally, it can be described as the union of events that resource
X

ri is available but all other resources thus far were consumed.
Now, for a given resource route r, let r0 denote an arbitrary exten-
sion of r by another resource X with respective arrival time t. By
the alternative definition of PS, we have PS(r

0
) = PS(r)+tP(Xt =

0) · (1� PS(r)). Recall that Ec(r) = mc and PS(r) = popt.
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Now, we show our claim:

m

0
c �mc

Ec(r0)�mc
<

p

0
opt � popt

PS(r0)� popt

c

0
optp

0
opt(1� PS(r))

c(r)P(Xt = 0)(1� PS(r))
<

p

0
opt(1� PS(r)

P(Xt = 0)(1� PS(r)

By definition, t0opt  topt + tmin, where tmin denotes the minimal
travel time in ˆ

E. Consequently, t0opt < t, therefore, the inequality
holds which proves the claim.

LEMMA 2. Let r be a resource route. The forward estimation
of the expected cost as computed by Algorithm 3 is indeed a lower
bound.

PROOF. This follows from the following properties:

(i) The number of optimal extensions needed until r exceeds the
probability threshold is at most the number of actual exten-
sions needed.

(ii) Every optimal extension of r yields a better trade-off than an
actual extension.

(iii) No sequence of actual extensions of r can exceed the proba-
bility threshold while yielding a lower expected cost than the
sequence of optimal extensions chosen by Algorithm 3.

(i) follows directly from the definition of popt  1�
�
(1�popt)(1�

pmax)
�
. In every optimal extension, popt is increased by the maxi-

mally possible value. Therefore, no other sequence of extensions
can yield a faster increase. (ii) is the statement of Lemma 1. Fi-
nally, (iii) follows from both, (i) and (ii).

Note that all of the above is easily applied to the case where in-
stead of minimizing the expected cost w.r.t. a probability threshold
we maximize the probability w.r.t. an absolute cost bound (as intro-
duced at the end of Section 4.2). For example, consider the back-
tracking expansion Algorithm 2. Instead of dismissing (storing) a
route r if Ec(r) > Mc (“<” holds), in the complementary scenario,
a route r is dismissed (stored), if c(r) > Mc (“<” holds). Simi-
larly for the forward estimation presented in Algorithm 3. Again,
the expected cost Ec(r) is to be replaced with the absolute cost
c(r). While the absolute cost bound is not exceeded, optimal path
extensions are simulated, adding maximal success probability to
the path. When the cost bound is exceeded and the maximal cur-
rent best success probability is not surpassed, the search tree can be
pruned. If, on the other hand, the success probability is surpassed
by the optimal path extension, the path (and its subtree in the search
tree) qualifies as a candidate. As for the theoretic arguments, they
apply analoguously, therefore we omit an adapted version due to
space limitations.

Concludingly, we have presented four algorithms for solving the
proposed PRRQR in this section. G1 and G2 follow a greedy
heuristic to produce approximate results, while BT and BB pro-
duce exact results. BB is an extension of BT which makes use of a
lower bound forward estimation of the expected cost. In the above
lemmas, we have shown correctness of the proposed bound.

6. EXPERIMENTAL EVALUATION
We evaluate our model and our algorithms on settings in real

world road networks extracted from OpenStreetMap1 (OSM) using
the MARiO framework [6]. All experiments were conducted on a
1http://www.openstreetmap.org/

desktop computer equipped with an Intel Core i7-3770 CPU and
32 GB RAM, running Java 1.64 (64-Bit) on Linux 3.13 x86_64.
Different algorithms are always tested on the same randomly gen-
erated scenario before comparing results. Runtime evaluations are
based on Java’s nanotime clock and performed for each algorithm
individually excluding preliminary steps like graph population and
building of the adjacency matrix. Computation of the latter takes
around 250 milliseconds, for standard settings in the Parking and
Charging scenarios, respectively. Note that all cost-optimal paths
were computed using Dijkstra’s algorithm. Choosing a different
routing algorithm and/or employing a speed-up technique would
yield the same benefit for all compared approaches. Modifying
the path computation algorithm is an easy task, however, on a city
scale (which the applications require) this would hardly yield any
computational benefit. We present experiments for two realistic ap-
plications:

• Parking scenario (located in Bamberg, Germany): Given a
probability threshold, we provide a route along parking spots
which surpasses the threshold and minimizes the expected
travel time. This scenario is based on ground truth extracted
from OSM metadata.

• Charging scenario (located in Brussels, Belgium): Given a
query position and a range limit (as used by electric vehi-
cles), we provide a route along charging stations not exceed-
ing the range limit and maximizing the success probability.

Note that these scenarios are complementary w.r.t. the criterion
which is bounded and the criterion which is to be optimized, as
explained in Section 4.1. While Charging relies on an hard numeric
bound (remaining range), Parking relies on the more sophisticated
expected value bound. Therefore we choose Parking as our main
scenario. We will not present all charts for both scenarios, however
noting that corresponding charts show the same behavior.

6.1 Parking Scenario
We generated the following test cases on the road network of the

city of Bamberg, Germany, containing approximately 10.000 nodes
and 20.000 edges as well as nearly exhaustive metadata regarding
parking spots. For every test case, a target node is randomly drawn
from all road network nodes of degree� 1 within a three kilometer
radius from the city center. Then, an isochrone of 800 meters walk-
ing distance is computed around the target. Let N be the number of
resources (according to the ground truth) within the isochrone. In
our experiments, resources are rather dense, i.e., 25  N  100.
Subsequently, the query node q is randomly drawn from all nodes
within the isochrone. This corresponds to the use case where we
expect the user to trigger the query when they are in the vicinity
of their target. The average and maximal distance from q to a re-
source are by construction 800 and 1600 meters, respectively. Fi-
nally, M  N observations of resource availability are randomly
distributed among the resource locations, and the respective sojourn
times in the states available and consumed are set. For rea-
sons of clarity, in our experimental settings the sojourn times are
set to the same configurations for all resources. We assume the
expected time a spot stays vacant (available) to be 3 minutes
and the expected time a spot stays occupied (consumed) to be 90
minutes. Note that the resources could easily be parametrized sep-
arately to model differently volatile resources. In this scenario, a
probability threshold is given, and as a cost function we use travel
time as formalized in Definition 3. The optimal resource route is the
one with the least expected travel time among all resource routes
with a success probability exceeding the threshold.
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(a) BB-related algorithms

(b) G2-related algorithms

Figure 2: Illustration of the influence of model complexity on
the quality of results (Parking scenario.

First, we want to evaluate how much the additional information
held by our probabilistic model improves result quality. Recall that
our model supports reappearance and incorporates short term ob-
servations, two properties that distinguish this work from others. In
order to prove that the gain in result quality outweighs the gain in
model complexity, we trim our algorithms BB (branch and bound)
and G2 (greedy approach with probability per cost heuristic) to par-
tially ignore the information provided by the underlying model. In
a first step, we disable the possibility of resource reappearance, we
denote these approaches by BB-R and G2-R, respectively. This
means, BB-R and G2-R proceed like their respective counterparts
but do not revisit resources which have previously been observed
as consumed. This corresponds to a simpler probabilistic model
without the feature of resource reappearance. In a second step, we
additionally disable short term observations. We denote these ap-
proaches by BB-R-O and G2-R-O. They proceed like BB-R and
G2-R, respectively, but additionally ignore any short term observa-
tions. Hence, the variations emulate an even simpler model which
only allows static uncertainty, as used in [4], for example.

The results for the BB-related and the G2-related algorithms are
shown in Figures 2(a) and 2(b), respectively. Both figures depict
the same settings. It is obvious that requiring a greater probabil-
ity threshold results in resource routes with longer expected travel
time. Therefore, the overall increase in expected travel time is con-

(a) Expected travel time relative to optimal solution

(b) Calculation time

Figure 3: Illustration of quality as well as efficiency of all algo-
rithms in the Parking scenario.

sequential. Both figures clearly show that the algorithms which
rely on greater information, i.e., use a more complex model, yield
better results. Figure 2(a) visualizes the results of the branch and
bound approaches which are optimal w.r.t. to the information avail-
able. As claimed, BB on average outperforms BB-R, its coun-
terpart which does not allow reappearance by at least 20 percent.
BB-R, in turn, outperforms its counterpart which does not incorpo-
rate short term observations, BB-R-O. This supports the previously
made claim that resource reappearance and short term observations
do indeed improve the quality of results. From Figure 2(b) we ob-
serve, that simpler algorithms also benefit from the additional in-
formation contained in the model. Comparing the two figures, BB-
algorithms of course yield better results than G2-algorithms and
do so with significantly less variance than the greedy approaches.
This is because the heuristics rely on chance in the form of benefi-
cial problem settings in order to generate near-optimal results.

Next, let us investigate the performance of the algorithms pre-
sented. As mentioned before, there exists no work which is fully
comparable. However, as the PRRQR is related to the TSP and
clustering is commonly used to approximate the TSP (as in [3]), we
use this concept to implement an approximative comparison part-
ner denoted by TS. It is important to mention that TS does not sup-
port resource reappearance, because otherwise the heuristic would
not visit sufficiently many distinct resources to achieve a compara-
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Figure 4: Influence of the number of resources and the number
of observations on the expected travel time, i.e., result quality
(for a probability threshold of 0.7). (The gray shades only serve
an aesthetic purpose.)

ble success probability. Before we present the results, let us explain
how TS proceeds. In a first step, TS conducts a k-medoid clustering
on the set of all resources, where experimentally k = 6 has proven
adequate. Subsequently, a TSP on the cluster medoids (starting at
the query node) is solved. Then follows the actual resource route
computation. It starts at the query node and computes the cost-
optimal path to the first medoid. In the respective cluster, a greedy
depth-first search (starting at the medoid) is conducted, returning
an approximation of the cluster-internal cost-optimal path. From
the last resource of the cluster we compute the cost-optimal path
to the next medoid. This procedure is continued until the resource
route exceeds the given probability threshold. TS serves as an algo-
rithmic competitor based on a simpler probabilistic model but with
a solid heuristic that has proven efficient when solving TSP-related
problems. Note that the cost-optimal paths between all resources
are precomputed in order to make the comparison to our algorithms
– which use the precomputed adjacency matrix – fair.

We compare TS to all algorithms introduced in Section 5, i.e.,
the two greedy approaches G1 and G2 as well as the exact so-
lutions BT and BB. Figure 3(a) shows the quality of the results
produced by the approximative algorithms, i.e., G1, G2, and TS.
Their respective expected travel times are given relative to the op-
timal results. The higher the probability threshold, i.e., the more
complex the task, the greater the discrepancy between optimal re-
sults and approximation. Although G2 relies on the rather simple
probability-to-cost ratio heuristic, it significantly outperforms its
comparison partners. While G2 yields near-optimal results in the
easier settings, the optimal solutions in the most elaborate scenario
(probability threshold 0.9) undercut its expected travel times on av-
erage by about 30 percent. This gain in quality, however, comes
at the price of calculation time, as depicted in Figure 3(b). This
illustration shows the averaged runtimes of all algorithms when in-
creasing the required probability threshold. The greedy approaches
generate results in almost interactive time, while BB, BT, and TS
are around two to three orders of magnitude slower. However, it
is important to note that two orders of magnitude only correspond
to around 100 ms of calculation time. Comparing the exact algo-
rithms, we observe that BB outperforms BT which can be attributed
to the forward estimation. The competitive approach TS performs
in constant time of about 150 milliseconds (for the same number of
resources), however generating the worst results.

(a) Success probability

(b) Calculation time

Figure 5: Illustration of quality as well as efficiency of selected
algorithms in the Charging scenario.

Finally, we want to explore how volatile the results are w.r.t. the
model parameters. We restrict ourselves to the optimal solution
provided by BB, seeing as the quality ratio of optimal to approx-
imative solutions has been explored above. Figure 4 depicts the
influence of the number of parking spots relative to the number of
short term observations of vacant parking spots. Thus, each circle
in the plot corresponds to a pair of parameter values, and the diame-
ter of each circle represents the average expected travel time of this
scenario in seconds, as do the numbers in the corner circles. The
result shows the expected behavior that with an increasing number
of parking spots, expected travel time decreases. Furthermore, for
any given scenario, it can be seen that the increased amount of short
term observations also reduces the expected time until a vacant spot
is found. Similarly expectable behavior is observed when varying
the sojourn time parameters 1/� and 1/µ, therefore further charts
are omitted.

6.2 Charging Scenario
For Charging we generated test cases on the road network of the

city of Brussels, Belgium, containing approximately 30.000 nodes
and 67.000 edges. For every test case a query node is randomly
drawn from all road network nodes of degree � 1 within a 6 kilo-
meter radius of the city center. Then, an isochrone of 6 kilome-
ters is computed around the query node, wherein 6 resource loca-
tions are randomly drawn. We have evaluated other numbers of
resources but the results do not reveal additional information and
are therefore omitted here. Compared to Parking, where nearly ev-
ery street holds at least one resource, this scenario models resource
scarcity. Again, if N denotes the number of resources (6 in our
experiments), then M  N observations of resource availability
are randomly distributed among these resource locations. The ex-
pected time a charging station remains vacant (available) is set
to 30 min, and the expected time it remains occupied (consumed)
is set to 50 minutes. As before, every charging station may be
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parametrized individually, however we pass on it for reasons of
clarity and lack of ground truth. In this scenario an absolute dis-
tance bound of 6 kilometers is given, emulating the remaining range
of an electric vehicle with low battery. Note that in contrast to Park-
ing, this bound is strict and cannot be exceeded. Every algorithm
computes a route with an absolute distance of 6 kilometers, the op-
timal resource route is the one with maximal success probability.

In a first setting, we compare the result quality of our exact al-
gorithm BB, our greedy solution G2 and BB-R (cf. Figure 5(a)),
the branch and bound variation which does not incorporate resource
reappearance. Additionally to the scarcity of resources, the remain-
ing range (6 kilometers) is only double the average distance from
query node to the next resource (3 kilometers, as resources are dis-
tributed uniformly within the isochrone). Due to these tightened
constraints, superiority of the optimal results generated by BB be-
comes more apparent. In almost three out of four runs, BB yields
a success probability of over 95 percent, outperforming G2 sig-
nificantly. While the greedy heuristic worked well before, it is now
easily lead down a considerably less beneficial branch of the search
tree. Nonetheless, G2 still produces slightly better results than BB-
R. Again, this advocates our model which supports resource reap-
pearance. Even an approximative approach on our model yields
better results than an exact algorithms on a less sophisticated model
due to lack of information. Of course, a simpler model needs less
intricate function evaluations. In our case, however, the difference
is merely a matter of microseconds, as depicted in Figure 5(b).

Concludingly, we have empiricially proven the benefit of our
probabilistic model. It improves the quality of results by incor-
porating richer information, especially for complex but also for
simpler tasks while not causing any significant computational over-
head. On the contrary, our greedy approaches deliver competitive
results in near-interactive time while our branch and bound ap-
proach yields optimal solutions in efficient time.

7. SUMMARY AND OUTLOOK
In this paper, we investigate probabilistic route queries in road

networks where the user is guided along a set of resources in order
to maximize the probability of encountering an available resource.
We aim to find a route with minimal expected cost among all routes
exceeding a given probability threshold. We propose a novel frame-
work in which resources are modeled as continuous-time Markov
chains with two states, available and consumed. In contrast
to similar problems, our framework allows for consumed resources
to reappear and takes short term as well as long term observations
into account. The introduced query, referred to as PRRQR, is theo-
retically NP-complete and has an unlimited search space.

To solve this problem, we propose approximative as well as op-
timal solutions. We employ two different search heuristics in a
greedy algorithm to achieve a trade-off between accuracy and cal-
culation time. Furthermore, solutions using backtracking and a
branch and bound approach provide optimal solutions in competi-
tive time. We demonstrate the superiority of our model as well as
the efficiency and effectiveness of our algorithms on two realistic
applications. The first is the search of a vacant parking spot, and
the second is the search for a vacant charging station for electric
vehicles.

For future work, we want to turn to settings considering other
types of observations like competing drivers looking for the same
type of resource. Furthermore, we want to investigate the influence
of edge costs which might change during the search.
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ABSTRACT
Advances in geo-sensing technology have led to an unprecedented
spread of location-aware devices. In turn, this has resulted into a
plethora of location-based services in which huge amounts of spa-
tial data need to be efficiently consumed by spatial query proces-
sors. For a spatial query processor to properly choose among the
various query processing strategies, the cost of the spatial operators
has to be estimated. In this paper, we study the problem of estimat-
ing the cost of the spatial k-nearest-neighbor (k-NN, for short) op-
erators, namely, k-NN-Select and k-NN-Join. Given a query that
has a k-NN operator, the objective is to estimate the number of
blocks that are going to be scanned during the processing of this
operator. Estimating the cost of a k-NN operator is challenging for
several reasons. For instance, the cost of a k-NN-Select operator is
directly affected by the value of k, the location of the query focal
point, and the distribution of the data. Hence, a cost model that
captures these factors is relatively hard to realize. This paper in-
troduces cost estimation techniques that maintain a compact set of
catalog information that can be kept in main-memory to enable fast
estimation via lookups. A detailed study of the performance and
accuracy trade-off of each proposed technique is presented. Ex-
perimental results using real spatial datasets from OpenStreetMap
demonstrate the robustness of the proposed estimation techniques.

1. INTRODUCTION
The ubiquity of location-aware devices, e.g., smartphones and

GPS-devices, has led to a variety of location-based services in
which large amounts of geo-tagged information are created every
day. This demands spatial query processors that can efficiently pro-
cess spatial queries of various complexities. One class of opera-
tions that arises frequently in practice is the class of spatial k-NN
operations. Examples of spatial k-NN operations include: (i) Find
the k-closest hotels to my location (a k-NN-Select), and (ii) Find
for each school the k-closest hospitals (a k-NN-Join).

The k-NN-Select and k-NN-Join operators can be used along
with other spatial or relational operators in the same query. In this
∗This research was supported in part by National Science Founda-
tion under Grants IIS 0916614, IIS 1117766, and IIS 0964639.

c⃝2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0
.

case, various query-execution-plans (QEPs, for short) for the same
query are possible, but with some of the QEPs having better exe-
cution times than the others. The role of a query optimizer is to
arbitrate among the various QEPs and pick the one with the least
processing cost. In this paper, we study the problem of estimating
the cost of the k-NN-Select and k-NN-Join operators.

To demonstrate the importance of estimating the cost of these op-
erators, consider the following example query: ‘Find the k-closest
restaurants to my location such that the price of the restaurant is
within my budget’. This query combines a spatial k-NN-Select with
a relational select (price ≤ budget). There are two possible QEPs
for executing this query: (i) Apply the relational select first, i.e., se-
lect the restaurants with price ≤ budget and then get the k-closest
out of them, or (ii) Apply an incremental k-NN-Select (i.e., dis-
tance browsing [14]) and evaluate the relational select on the fly;
execution should stop when k restaurants that qualify the relational
predicate are retrieved. Clearly, the two QEPs can have different
performance. Thus, it is essential to estimate the cost of each pro-
cessing alternative in order to choose the cheaper QEP. Observe
that distance browsing is also applicable to non-incremental k-NN-
Select (i.e., to QEP(i)). [14] proves that for non-incremental k-NN-
Select, the number of scanned blocks is optimal in distance brows-
ing. Thus, in this paper, we model the cost of distance browsing
being the state-of-the-art for k-NN-Select processing.

In addition to modeling the cost of the k-NN-Select, we study
the cost of the k-NN-Join. The k-NN-Join is a practical spatial op-
eration for many application scenarios. For example, consider the
following query that combines a relational or a spatial predicate
with a k-NN-Join predicate. Assume that a user wants to select
for each hotel, its k-closest restaurants (k-NN-Join predicate) such
that the restaurant/hotel’s price is within the user’s budget (rela-
tional predicate), or that the restaurant/hotel’s location is within a
certain downtown district (spatial range predicate). Clearly, esti-
mating the cost of a k-NN-Join is important to decide the ordering
of the relational, spatial, and k-NN operators in the QEP. A k-NN-
Join can also be useful when multiple k-NN-Select queries are to
be executed on the same dataset. To share the execution, exploit
data locality and the similarities in the data access patterns, and
avoid multiple yet unnecessary scans of the underlying data (e.g.,
as in [11]), all the query points are treated as an outer relation and
processing is performed in a single k-NN-Join. In this paper, we in-
troduce a cost model for locality-based k-NN-Join processing [22],
which is the state-of-the-art in k-NN-Join processing.

While several research efforts (e.g., see [2, 3, 4, 5, 7, 15, 17, 18,
23]) estimate the selectivity and cost of the spatial join and range
operators, they are not applicable to k-NN operators. For instance,
the cost of a spatial range operator is relatively easy to estimate be-
cause the spatial region of the operator, in which the query answer
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resides, is predefined and fixed in the query. In contrast, the spa-
tial region that contains the k-nearest-neighbors of a query point,
in the case of a k-NN-Select, or a point of the outer relation in the
case of a k-NN-Join, is variable since it depends on the value of
k, the location of the point, and the density of the data (i.e., its
distribution). These three parameters render the problem of k-NN
cost-estimation more challenging.

In this paper, we introduce the Staircase technique for estimat-
ing the cost of k-NN-Select. The Staircase technique distinguishes
itself from existing techniques by the ability to quickly estimate the
cost of any query using an O(1) lookup. The main idea of the Stair-
case technique is to maintain a compact set of catalog information
that summarize the cost. We perform various optimizations to limit
the size of the catalog such that it can easily fit in main-memory.
We empirically compare the performance of the Staircase technique
against the state-of-the-art technique [24]. We show that the Stair-
case technique has better accuracy for spatial non-uniform data
in the two-dimensional space while achieving orders-of-magnitude
gain in query estimation time. Having a fast query execution time is
vital for location-based services that serve multiple queries at very
high rates, e.g., thousands of queries per second. Thus, estimating
the cost needs to be extremely fast as it is a preliminary step before
the query itself is executed.

In addition to estimating the cost of k-NN-Select, we introduce
three new techniques for estimating the cost of k-NN-Join. Simi-
larly to the Staircase technique, the proposed techniques employ a
compact set of catalogs that summarize the cost and enable fast es-
timation. First, we present the Block-Sample as our baseline tech-
nique. Then, we introduce the Catalog-Merge technique that has
better estimation time than the Block-Sample technique, but incurs
relatively high storage overhead. Then, we introduce the Virtual-
Grid technique that incurs less storage overhead than the Catalog-
Merge technique. To the best of our knowledge, estimating the cost
of k-NN-Join has not been addressed in previous work.

The contributions of this paper can be summarized as follows:

• We introduce the Staircase technique for estimating the k-
NN-Select cost.

• We introduce three novel techniques for estimating the k-
NN-Join cost, namely the Block-Sample, Catalog-Merge,
and Virtual-Grid techniques.

• We conduct extensive experiments to study the performance
and accuracy tradeoff that each of the proposed technique
offers. Our experimental results demonstrate that:

– the Staircase technique outperforms the techniques
in [24] by two orders of magnitude in estimation time
and by more than 10% in estimation accuracy,

– the Catalog-Merge technique achieves an error ratio of
less than 5% while keeping the estimation time below
one microsecond, and

– the Virtual-Grid technique achieves an error ratio of
less than 20% while reducing the storage required to
maintain the catalogs by an order of magnitude com-
pared to the Catalog-Merge technique.

The rest of this paper proceeds as follows. Section 2 intro-
duces some preliminaries and discusses the related work. Section 3
presents the Staircase technique for estimating the cost of k-NN-
Select. Section 4 presents the Block-Sample, Catalog-Merge, and
Virtual-Grid techniques for estimating the cost of k-NN-Join. Sec-
tion 5 provides an experimental study of the performance of the
proposed techniques. Section 6 contains concluding remarks.
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Figure 1: The MINDIST and MAXDIST metrics. In distance
browsing [14], when k = 2 and q is a query focal point of a
k-NN-Select, only blocks A and C are scanned, i.e., cost = 2.

2. PRELIMINARIES & RELATED WORK
We focus on the variants of the k-NN operations given below.

Assume that we have two tables, say R and S, that represent two
sets of points in the two-dimensional space. For simplicity, we use
the Euclidean distance metric.

• k-NN-Select: Given a query-point q, σk,q(R) returns the k-
closest to q from the set of points in R.

• k-NN-Join: R ✶kNN S returns all the pairs (r, s), where
r ∈ R, s ∈ S, and s is among the k-closest points to r.

Observe that the k-NN-Join is an asymmetric operation, i.e., the
two expressions: (R ✶kNN S) and (S ✶kNN R) are not equiva-
lent. In the expression (R ✶kNN S), we refer to Relations R and
S as the outer and inner relations, respectively.

We assume that the data points are organized in a spatial index
structure. However, we do not assume a specific indexing struc-
ture; our proposed techniques can be applied to a quadtree, an R-
tree, or any of their variants, e.g. [12, 20, 13, 6, 16]. These are
hierarchical spatial structures that recursively divide the underly-
ing space/points into blocks until the number of points inside a
block satisfies some criterion (e.g., being less than some threshold).
We assume the existence of an auxiliary index, termed the Count-
Index. The auxiliary index does not contain any data points, but
rather maintains the count of points in each data block.

We make extensive use of the MINDIST and MAXDIST met-
rics [19]. Refer to Figure 1 for illustration. The MINDIST (or
MAXDIST) between a point, say p, and a block, say b, refers to the
minimum (or maximum) possible distance between p and any point
in b. Similarly, the MINDIST (or MAXDIST) between two blocks is
the minimum (or maximum) possible distance between them. In
some scenarios, we process the blocks in a certain order according
to their MINDIST from a certain point (or block). An ordering of
the blocks based on the MINDIST from a certain point (or block) is
termed MINDIST ordering.

Before describing how to estimate the cost of the k-NN oper-
ations, we briefly describe the state-of-the-art algorithms for pro-
cessing the k-NN-Select and k-NN-Join.

Existing k-NN-Select algorithms prune the search space follow-
ing the branch-and-bound paradigm. [19] applies a depth-first al-
gorithm to read the index blocks in MINDIST order with respect to
the query point. Once k points are scanned, the distance between q
and the k-farthest point encountered is marked. Refer to Figure 1
for illustration. Assume that k = 2. Scanning the blocks starts with
Block A (MINDIST = 0). Two points, y and z, are encountered, so
the distance between q and z (the farthest) is marked and scanning
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the blocks continues (Block C then Block B) until the MINDIST
of a scanned blocks is greater than the distance between q and z.
Thus, the overall number of blocks to be scanned is 3.

The above algorithm is suboptimal and cannot be applied for in-
cremental k-NN retrieval. The distance browsing algorithm of [14]
achieves optimal performance and can be applied for incremental
as well as non-incremental k-NN processing. The main idea of this
algorithm is that it can incrementally retrieve the nearest-neighbors
to a query point through its getNextNearest() method. Two
priority queues are maintained: (1) a priority queue for the blocks
that have not been scanned yet (blocks-queue for short), and (2)
a priority queue for the tuples in the already scanned blocks that
have not been returned as nearest-neighbors yet (tuples-queue for
short). The entries in the tuples-queue are prioritized based on the
distance from the query point, while the entries in the blocks-queue
are prioritized based on the MINDIST from the query point. Upon an
invocation of the getNextNearest() method, the top, say t, of
the tuples-queue is returned if the distance between t and the query
point is less than the MINDIST of the top of the blocks-queue. Oth-
erwise, the top of the blocks-queue is scanned and all its tuples are
inserted into the tuples-queue (ordered based on the distance from
the query point). To illustrate, we apply the distance browsing al-
gorithm to the example in Figure 1. Assume that k = 2. Block A
is scanned first. Points y and z are inserted into the tuples-queue.
The MINDIST of Block C is less than the distance of the top of the
tuples-queue, and hence Block C is scanned and Point x is inserted
into the tuples-queue. Now, Point x is retrieved as the nearest-
neighbor followed by Point y. Observe that the algorithm avoids
scanning Block B. Thus, the overall number of scanned blocks is 2
that is less than the number of blocks to be scanned if the algorithm
in [19] is applied.

In addition to being optimal, the distance browsing algorithm is
quite useful when the number of neighbors to be retrieved, i.e., k,
is not known in advance. One use case is when a k-NN-Select
predicate is combined with a relational predicate within the same
query. Consider, for example, a query that retrieves the k-closest
restaurants that provide seafood. The distance browsing algorithm
gets the nearest restaurant and then examines whether it provides
seafood or not. If it is not the case, the algorithm retrieves the
next nearest restaurant. This process is repeated until k restaurants
satisfying the condition (i.e., provide seafood) are found.

Being the state-of-the-art in k-NN-Select processing, we model
the cost of the distance browsing algorithm in this paper. Observe
that the cost of the distance browsing algorithm is dominated by
the number of blocks that get scanned. Thus, given a k-NN-Select,
the goal is to estimate the number of blocks to be scanned with-
out touching the data points. Observe that this goal is challenging
because the cost depends on: (1) the value of k, (2) the location
of the query point, and (3) the distribution of the data that directly
affects the structure of the index blocks. These factors have direct
impact on the cost. Refer to Figure 1 for illustration. If the value
of k is relatively large, MINDIST scanning of the blocks will con-
tinue beyond Block C, and thus leading to a larger overall number
of scanned blocks. Similarly, if the location of q is different, the
MINDIST values will change, and thus leading to different block or-
dering during the MINDIST scan, and different overall number of
scanned blocks. Also, if the distribution of the data is different, the
index blocks will have completely different shapes and locations in
space, and this will affect the values of MINDIST, and hence will
affect the overall number of scanned blocks.

[8, 9, 24] study the problem of estimating the cost of a k-
NN-Select operator for uniformly distributed datasets. The au-
thors of [24] further extend their techniques to support non-uniform

datasets. The main idea is to estimate the value of Dk (Figure 1),
i.e., the smallest radius of a circle centered at the query point and
that contains k points. Once the value of Dk is estimated, the num-
ber of blocks that overlap with the circle whose center is the query
point and whose radius is Dk is determined. This number can be
computed by scanning the blocks of the Count-Index in MINDIST
order from q.

Given a non-uniform dataset, [24] assumes that the points in each
block are uniformly distributed and that each block has a constant
density. Histograms are maintained to estimate the density of each
block in the index. To estimate the cost, [24] applies the following
algorithm. The blocks of the Count-Index are scanned in MINDIST
order from q. Hence, the scanning starts from the block, say b,
that is closest (according to MINDIST ) to q. Observe that if q falls
within any block, the MINDIST corresponding to that block will
be zero, and hence scanning will start from that block. Given the
density of Block b, the area of a circle containing k points for that
density is computed and then the value of Dk is determined. If
the circle is fully contained inside Block b, the search terminates;
otherwise, further blocks are examined and the combined density of
these blocks is computed. Given the combined density, the area of
a circle containing k points is determined. This process is repeated
until the computed circle is fully contained within the bounds of the
examined blocks. We refer to this algorithm as the density-based
algorithm.

Although the density-based algorithm in [24] achieves good es-
timation accuracy, it incurs relatively high overhead in many cases.
For instance, if the value of k is high or if the density of the blocks
around the query point is low, the algorithm will keep extending
its search region by examining further blocks until its search region
contains k points. In addition, at each iteration of the algorithm, the
combined density of the encountered blocks is computed, which
can be a costly operation. The process of estimating the cost of a
database operator has to be extremely fast. Typically, a database
query optimizer keeps a set of catalog information that summarizes
the cost estimates. Then, given a query, it performs quick lookups
or simple computations to estimate the corresponding cost. With
that goal in mind, we propose a new cost estimation technique that
incurs no computational overhead at query time, but rather requires
O(1) lookups.

Several query processing techniques have been proposed in the
literature for processing k-NN-Join operators, e.g., [10, 25, 22].
[22] represents the state-of-the-art technique in k-NN-Join and
has proved to achieve better performance than other existing tech-
niques. The key idea that distinguishes [22] from other existing
techniques is that in any other technique, each point in a block inde-
pendently keeps track of its k-nearest-neighbors encountered thus
far with no reuse of neighbors of one point as being neighbors of
another point in its spatial proximity. In contrast, [22]’s approach
identifies a region in space (termed locality) that contains all of the
k-nearest-neighbors of all the points in a block. Once the best pos-
sible locality is built, each point searches only the locality to find its
k-nearest-neighbors. This block-by-block processing methodology
results in high performance gains.

A naive way to estimate the cost of a k-NN-Join operator us-
ing the density-based algorithm of [24] is to treat every point from
the outer relation as a query point for a k-NN-Select operator and
then aggregate the cost across all the points from the outer rela-
tion. However, this approach is costly. Furthermore, this approach
does not capture the rationale behind the block-by-block process-
ing methodology in k-NN-Join processing as stated above. This
calls for efficient cost estimation techniques that can represent the
cost of the state-of-the-art techniques in k-NN-Join processing.
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Figure 2: Variability of the cost (number of blocks to be scanned) of a query point given its position with respect to the center of the
block. Assume that the dashed circle includes exactly k points. The cost tends to increase as the query point gets farther from the
center of the block. The maximum cost is at the corners of the block if we assume uniform distribution of the points within the block.

3. K-NN-SELECT COST ESTIMATION

3.1 The Staircase Technique
In this section, we present the Staircase technique; a new tech-

nique for estimating the cost (i.e., number of blocks to be scanned)
of a k-NN-Select σk,q(R). The main idea of the Staircase tech-
nique is to maintain a set of catalog information that enables quick
estimation of the cost via lookups. Conceptually, the catalog should
reflect the cost of a k-NN-Select for every possible query location
and for every possible value of k. Given a query point, say q, and
the value of k, we can search the catalog and determine the cost.
However, maintaining a catalog that covers the domains of these
two parameters (k and the location of q) is prohibitively expensive
in terms of computation cost and storage requirements. The num-
ber of possible locations of q is infinite and the value of k can range
from 1 to the size of the underlying table.

One key insight to improve the above approach is to exploit the
spatial locality of the k-NN operation to reduce the size of the cat-
alog. We observe that the k-nearest-neighbors of a query point, say
q1, are likely to be among the k-nearest-neighbors of another query
point, say q2, if q1 and q2 are within the spatial proximity of each
other. In addition, any spatial index structure aims at grouping the
points that are within spatial proximity in the same block. This
means that the k-nearest-neighbors of the points of the same block
have high overlap, and hence the query points that fall within the
same block are likely to have similar costs. Given a query point,
say q, we can estimate the cost corresponding to q by the cost cor-
responding to the center of the block in which q is located.

Although the above approach yields good estimation accuracy,
it is slightly inaccurate because the cost corresponding to a query
point, say q, may vary according to the location of q with respect
to the center of the block, say b, in which q is located. For a fixed
value of k, the cost corresponding to q is minimum if q is near the
center of b and tends to increase as q gets far from the center until it
reaches its maximum value in the corners of b. Refer to the example
in Figure 2 for illustration of this observation. This observation is
particularly true if we assume that within a leaf index block, the
points are uniformly distributed. Such assumption is practically
reasonable. A typical spatial index tends to split the data points
(which can be non-uniformly distributed) until the points are almost
balanced across the leaf blocks, and hence points that are within the
same block tend to have a uniform distribution within that block.

Applying the above observation, we estimate the cost corre-
sponding to a query point, say q, by combining two values: 1) the
cost corresponding to the center of the block, Ccenter , (i.e., the
minimum cost), and 2) the cost corresponding to one of the corners,
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Figure 3: Cost estimation with respect to the center of a block.

Ccorner , (i.e., the maximum cost). More precisely, the estimated
cost can be computed as:

Cost = Ccenter +∆ · 2L
Diagonal

, (1)

where Diagonal is the length of the diagonal of the block, L is the
distance between q and the center of the block, and

∆ = Ccorner − Ccenter. (2)

Refer to Figure 3 for illustration.
Thus, we do not need to precompute the k-NN cost for every

possible query location. Instead, we precompute the cost only for
the center and the corners of every block. Although this can reduce
the size of the catalog, we still need to precompute the cost for ev-
ery possible value of k, i.e., from 1 to the size of the table. This can
still be prohibitively expensive because it needs to be performed for
every block in the index.

We observe that the cost corresponding to any query point tends
to be constant for different ranges of values of k. The reason is
that the number of points in a block is relatively large, and hence
the cost (number of blocks to be scanned) tends to be stable for a
range of values of k. To illustrate this idea, consider the example
in Figure 1. Assume that Blocks A and B have 1000 points each.
Assume further that k1 = 500 tuples in Block A have a distance
that is less than the MINDIST betweeb Block B and the query point
q. Applying the distance browsing algorithm [14] as explained in
Section 2, points in Block A will be inserted in the tuples-queue.
The k1 points in Block A will be retrieved from the tuples-queue
before Block B is scanned. Thus, the cost (number of scanned
blocks) will equal to 1 for k ∈ [1, k1]. For k > k1, Block B will
have to be scanned, and thus the cost will equal to 2. However,
the cost will remain equal to 2 for k ∈ [k1 + 1, k2], where k2
equals the number of points in the tuples-queue that have distance
less than the MINDIST between Block C and the query point q.

To better illustrate the above observation, we use the Open-
StreetMap dataset and build a quadtree index on top (as detailed
in Section 4), and then measure the cost corresponding to a ran-
dom query point. Figure 4 illustrates that the cost is constant for
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Figure 4: Stability of the cost for different values of k.

large intervals of k.1 The shape of the graph resembles a staircase
diagram (and hence the name Staircase for the technique). As the
figure demonstrates, the cost is constant for relatively large inter-
vals of k. For instance, when k ∈ [1, 520], the cost is 3 blocks,
and when k ∈ [521, 675], the cost is 7 blocks. Observe that this
stability increases as the maximum block capacity increases, i.e.,
the intervals become larger.

We leverage the above stability property to reduce the storage
size associated with every block in the index. Instead of blindly
computing the cost corresponding to the center (and the corners)
of a block for every possible value of k, we determine the values
of k at which the cost changes. We store a set of intervals and
associate with each interval the corresponding cost. We refer to
this information as the catalog. The catalog is a set of tuples of the
form ([kstart, kend], size). Refer to Figure 4 for illustration.

3.2 Building the Catalog
The process of building a catalog, be it for the center of a block

or for one of the corners, is straightforward. Similarly to the dis-
tance browsing algorithm in [14], we maintain two priority queues,
a tuples-queue and a blocks-queue. The blocks-queue orders the
blocks according to a MINDIST scan. In contrast, the tuples-queue
orders the points according to their distance from the query point,
say q. We start with the block in which q is located and insert all
the block’s points into the tuples-queue. At this point, the cost = 1.
We keep removing points from the tuples-queue until the MINDIST
in the blocks-queue is less than the top of the tuples-queue. The
number of points, say k1, removed so far from the tuples-queue
represents the first interval in the catalog, i.e., ([1, k1], 1). Then,
we scan the next block in the blocks-queue, insert all its points into
the tuples-queue, and increment the cost. We repeat this process
until all the blocks are scanned or a sufficiently large value of k is
encountered. Pseudocode of the process of building the catalog of
a query point is illustrated in Procedure 1.

For every block in the index, we precompute five catalogs, one
for the center and one for each corner. We merge the four catalogs
corresponding to the corners into one catalog that stores for each
value of k, the maximum cost amongst the four corners. Thus,
we store only two catalogs, one for the center (center-catalog, for
short), and one that corresponds to the maximum cost at the corners
(corners-catalog, for short).

3.3 Cost Estimation
Given a query with a k-NN-Select at Location q, the cost can

be estimated as follows. First, we identify the block that encloses q
and then search in the center-catalog and the corners-catalog for the

1A similar behaviour occurs for any query point, but with different
values.

Procedure 1 Building the k-NN-Select-Cost Catalog.
Terms: q: The query point to which we need to build the catalog.

MAX_K: The maximum possible/maintained value of k.
1: tupleQ← ∅; blockQ←MINDIST scan w.r.t. q
2: cost← 0; currentK ← 1; catalog ← ∅
3: while (currentK < MAX_K) do
4: currentBlock ← blockQ.next()
5: cost++
6: tupleQ.insert(currentBlock.allPoints) ordered ac-

cording to the distance from q
7: startK ← currentK
8: while (tupleQ.top.distance ≤ blockQ.top.MINDIST ) do
9: tupleQ.removeTop()

10: currentK ++
11: end while
12: catalog.add([startK, currentK], cost)
13: end while
14: return catalog
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intervals to which the value of k belongs. Observe that the above
process for building a catalog yields a sorted list of ranges of values
of k, and hence binary search can be applied to find the enclosing
interval and the corresponding cost in logarithmic time w.r.t. the
number of intervals. Then, the cost is estimated using Equations 1
and 2.

Because the Staircase technique relies on precomputing the esti-
mates, the auxiliary index that contains the statistics, e.g., counts
and cost estimates, has to be a space-partitioning index, e.g.,
quadtree or grid, so that the query point always falls inside a block.
Observe that the structure of the auxiliary index can be independent
of the index that contains the actual data points, i.e., the data-index.
If the data-index is a space partitioning index, then the auxiliary
index can have the same exact structure as the data-index. If the
data-index is a data-partitioning index, e.g., R-Tree, then the struc-
ture of the auxiliary index will be different. In either case, the query
point will never be outside a block in the auxiliary index, and hence
we will always be able to estimate the cost

Because the number of blocks in the index can be large, the stor-
age overhead of the catalogs can be significant. We hence limit the
maximum value of k that a catalog supports to a practically large
constant, e.g., k = 10, 000. This would result in compact cata-
logs that can be practically maintained for each index block. In
the case when a k-NN-Select query has a k value that is greater
than 10, 000, we can estimate its cost by applying the algorithm
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in [24] using the Count-Index. Figure 5 illustrates the typical flow
of a k-NN-Select query. Queries with k > 10, 000 (that do not
arise frequently in practice) are directed to the Count-Index. All
other queries (k ≤ 10, 000) are served through the catalogs. In
Section 5, we show that for a real dataset of 0.1 Billion points, the
overhead to store all the catalogs is less than 4 MBs.

4. K-NN-JOIN COST ESTIMATION
As highlighted in Section 2, the state-of-the-art technique [22]

in k-NN-Join processing applies a block-by-block mechanism in
which, for each block from the outer relation, the locality blocks
are determined from the inner relation. The locality blocks of a
block, say bo, from the outer relation represent the minimal set of
blocks in which the k-nearest-neighbors of any point ∈ bo exist.
Thus, each point from the outer relation searches only the locality
of its enclosing block to find its k-nearest-neighbors.

Before estimating the cost of k-NN-Join, we briefly explain how
the locality of a block is computed. Given a block from the outer re-
lation, say bo, the corresponding locality blocks in the inner relation
are determined as follows. Blocks of the inner relation are scanned
in MINDIST order from bo. The sum of the count of points in the
encountered blocks is maintained. Once that sum reaches k, the
highest MAXDIST, say M , of an encountered block is marked and
scanning of the blocks continues until a block of MINDIST greater
than M is encountered. The encountered blocks represent the lo-
cality of bo. For example, consider the process of finding the lo-
cality of Block Q in Figure 6 where k = 10. Blocks are scanned
in MINDIST order from Block Q. This means that scanning starts
with Block Z. Assume that Block Z contains 700 points. Now,
the sum of the count of points in the encountered blocks (in this
case, only Block Z) exceeds k. The MAXDIST between Block Q
and Block Z is marked, and scanning the blocks continues (Blocks
X , Y , and T , respectively) until Block L is encountered. At this
point, scanning is terminated because Block L has MINDIST from
Block Q that is greater than the marked MAXDIST (between Blocks
Q and Z). Hence, the number of blocks in the locality of Block Q
is 4.

A naive way to estimate the cost (i.e., the total number of scanned
blocks) of a k-NN-Join is to compute the size of the locality blocks
for each block in the outer relation and sum these sizes. However,
this can be expensive because the number of blocks in the outer re-
lation can be arbitrarily large. In the rest of this section, we present
three different techniques that address this problem.

k kNN Cost
1 25

2 25

3 25

4 25

5 25

6 25

7 25

8 25

9 25

10 25

11 25

12 25

13 25

14 25

15 25

16 25

17 25

18 25

19 25

20 25

21 25

22 25

23 25

24 25

25 25

26 25

27 25

28 25

29 25

30 25

31 25

32 25

33 25

34 25

35 25

36 25

37 25

38 25

39 25

40 25

41 25

42 25

43 25

44 25

45 25

46 25

47 25

48 25

49 25

50 25

51 25

52 25

53 25

54 25

55 25

56 25

57 25

58 25

59 25

60 25

61 25

62 25

63 25

64 25

65 25

66 25

67 25

68 25

69 25

70 25

71 25

72 25

73 25

74 25

75 25

76 25

77 25

78 25

79 25

80 25

81 25

82 25

83 25

84 25

85 25

86 25

87 25

88 25

89 25

0

14

28

42

56

70

1 2000 4000 6000 8000 10000
k

N
um

be
r o

f L
oc

al
ity

 B
lo

ck
s

�1

(a)

/ 77

Catalog

35

[kstart, kend] Locality  
Size

[1, 313] 25

[314, 5380] 41

[5381, 6537] 54

[6538, 9368] 57

[9369, 10882] 63

(b)

Figure 7: Stability in the size of the locality for different values
of k.

4.1 The Block-Sample Technique
Instead of computing the locality for each block of the outer rela-

tion, we pick a random sample of these blocks, compute the locality
size of each block in the sample, and then aggregate the total size
and scale it to the total number of blocks in the outer relation. We
refer to this technique as the Block-Sample technique.

Given a set of no blocks from the outer relation, we pick a ran-
dom sample of size s. If the aggregate locality size of the s blocks
is agg, then we estimate the overall join cost as agg×no

s . The sam-
ple blocks are chosen to be spatially distributed across the space in
which the blocks of the outer relation reside. To get such sample of
blocks, we do either a depth-first or breadth-first index traversal for
the blocks of the outer relation and skip blocks every no

s .
Although the above technique can result in high accuracy when

the sample size increases, it incurs computational overhead upon
receiving a k-NN-Join query. As mentioned earlier in Section 2,
a typical query optimizer requires fast estimation of the cost, pos-
sibly through quick catalog-lookups. With this goal in mind, we
introduce next a catalog-based approach.

4.2 The Catalog-Merge Technique
The main idea of the Catalog-Merge technique is to precompute

the size of the locality of each block in the outer relation and store
it in a catalog. Given a k-NN-Join query, we can simply aggregate
the precomputed values in the catalogs of the blocks of the outer
relation. However, the size of the locality depends on the value of
k, so we need to precompute it for every possible value of k, which
can be prohibitively expensive.

Similarly to the case of k-NN-Select, we observe that the size
of the locality of a given block tends to be constant (stable) for
relatively large intervals of k. To illustrate, consider the example
in Figure 6. Assume that Block Z has 700 points. If k has any
value between 1 and 700, exactly the same set of blocks will rep-
resent the locality of Block Z, i.e., the size of the locality will be
the same. To better illustrate this observation, we use the Open-
StreetMap dataset and build a quadtree index on top (as detailed
in Section 4), and then measure the locality size of a randomly se-
lected block.2 Figure 7 illustrates that the size of the locality is
stable for large intervals of k.

To build the locality-catalog of a block, we identify the inflection
points in the range of values of k at which the locality size changes,
e.g., k = 313, 5380, . . . , 9368 in Figure 7. This can be performed
using binary search within the range of values of k. In particular,
we start with k = 1 and compute the locality size, say S. Then,
we perform a binary search for the smallest value of k at which the

2A similar behaviour occurs for any block, but with different val-
ues.

462



locality size would be greater than S, i.e., the inflection point, say
ki. At this moment, we identify the first range of values as [1, ki−
1]. Afterwards, we perform another binary search starting from
k = ki to get another range of values of k. This process is repeated
until no inflection points are found, i.e., when the maximum value
of k is reached.

A more efficient approach is to build the locality-catalog incre-
mentally through two rounds of MINDIST scan of the Count-Index.
These MINDIST scan rounds can be achieved using two priority
queues in which the blocks of the Count-Index are ordered accord-
ing to their MINDIST from the block we need to build the catalog
for. The two MINDIST scan rounds are interleaved. One scan ex-
plores the blocks that should contain at least C points. We refer
to this scan as Count-Scan. The other scan explores the blocks that
have MINDIST≤ the highest MAXDIST value of the explored blocks
so far from Count-Scan. We refer to this queue as Max-Scan. We
maintain a counter, say C. Whenever a block from Count-Scan is
retrieved, its MAXDIST, say M , is marked and the value of C is
incremented by the number of points in the retrieved block. Then,
blocks from Max-Scan are scanned until the MINDIST is greater
than the highest value encountered for M . At this point, a new en-
try is created in the catalog by aggregating the number of blocks
retrieved from Max-Scan thus far. This process is repeated until
C reaches the maximum value of k or all the blocks of the inner
relation are consumed by Count-Scan.. Pseudocode for the process
is given in Procedure 2. Refer to Figure 6 for illustration, where
we compute the catalog of Block Q. We start with C = 1. In
Count-Scan, we explore Block Z, update C to be 700, and mark
the highest MAXDIST encountered. Then, in Max-Scan, we explore
Blocks X , Y , and T because their MINDIST is less than the largest
MAXDIST encountered. At this moment, we create a catalog en-
try ([1, 700], 4) that represents the start and end values of C with
the cost of four blocks (namely, Z, X , Y and T ). Afterwards, we
continue Count-Scan to explore Block X . Assuming that Block X
has 500 points, we update C to be 700 + 500 = 1200 and also
mark the MAXDIST between Blocks X and Q. Then, in Max-Scan,
we explore Block L because its MINDIST is less than the highest
MAXDIST marked thus far. Now, the cost is incremented by 1 due
to Block L. We create a new catalog entry ([701, 1200], 5).

Observe that the above approach is cheap because it relies only
on counting (using the Count-Index) with no scan of the data. As-
sume that for a given block from the outer relation, the number of
blocks in its locality is L. The above approach visits each of the L
blocks at most twice, i.e., the running time is O(L) per block.

Note that, by definition, the locality conservatively includes all
the blocks needed for the k-NN search (see [22] for details), i.e., the
locality contains the k-NN for every point in the outer block, say Q.
Although it is true that for some k1 > k all the nearest-neighbors of
some points in Q may exist in already scanned blocks (by Count-
Scan), there will be some points, e.g., near the corners of Q, that
might have some of their k-NN in unscanned blocks. Hence, in our
approach, we jump into new ranges of k (and new corresponding
cost) whenever a block is retrieved through Count-Scan.

Observe that if a block retrieved from Count-Scan has MAXDIST
that is less than or equal to the highest MAXDIST encountered thus
far, it will not lead to any scan in Max-Scan, and hence will lead
to a repeated cost in the next entry of the catalog. For instance, in
Figure 6, if the MAXDIST between Blocks Q and Z is greater than
the MAXDIST between Block Q and Block X (the next in Count-
Scan), then the next new entry in the catalog will be ([701, . . .], 4),
i.e., will have the same cost. To get rid of these redundant entries in
the catalog, we continue Count-Scan until the value of the highest
encountered MAXDIST changes.

Procedure 2 Building the locality-catalog of a block.
Terms: Q: The block to which we need to build the catalog.

MAX_K: The maximum possible/maintained value of k.
1: // Initializations:
2: CountScan←MINDIST Scan from Q
3: cBlock ← CountScan.next()
4: MaxScan←MINDIST Scan from Q
5: mBlock ←MaxScan.next()
6: C ← 1; aggCost← 0;
7: Catalog ← ∅; highestMaxDist← 0
8: while (C < MAX_K) do
9: startK ← C

10: while (cBlock.MAXDIST ≤ highestMaxDist) do
11: C+ = cBlock.count
12: cBlock ← CountScan.next()
13: end while
14: highestMaxDist← cBlock.MAXDIST from Q
15: endK ← C
16: while (mBlock.MINDIST ≤ highestMaxDist) do
17: aggcost++
18: mBlock ←MaxScan.next()
19: end while
20: Catalog.add([startK, endK], aggCost)
21: end while
22: return Catalog
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4.2.1 Preprocessing
For each block in the outer relation of the k-NN-Join, we com-

pute a temporary catalog that is similar to the one in Figure 7(b). If
the number of blocks in the outer relation is no, then this process
requires O(no · L), where L is the average size of the locality of
a block. This can be costly if no is large. To solve this problem,
we take a spatially distributed random sample of the blocks of the
outer relation. We compute a temporary catalog only for the sam-
ple blocks and not for each block in the outer relation. Afterwards,
we merge all the temporary catalogs, and produce a single catalog
that contains the aggregate cost of all the temporary catalogs. Each
entry in the final catalog has the form ([kstart, kend], size), where
size is the estimated join cost when kstart ≤ k ≤ kend.

Because each temporary catalog is sorted with respect to the
ranges of values of k, we apply a plane sweep over the ranges
of values of k and aggregate the cost. To illustrate, consider the
example in Figure 8. k1 is the smallest value of k in the catalog
entries. This means that the aggregate cost for the interval [1, k1]
is 2+5+6+4 = 17. k2 is the next smallest value of k, and hence
another interval [k1, k2] with aggregate cost = 17 − 5 + 13 = 25
is created in the output catalog. Similarly, for interval [k2, k3], the
aggregate cost = 25 − 4 + 8 = 29 and for interval [k3, · · · ], the
aggregate cost = 29−6+9 = 32. A min-heap is used to efficiently
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determine the next smallest value across all the temporary catalogs
in the plane sweep process.

To reduce the size of the catalog, we limit the maintained values
of k to some practically large constant, e.g., 10,000. In Section 5,
we show that for a real dataset of 0.1 Billion points, the size of the
catalog is about 1 MB.

4.2.2 Cost Estimation
Observe that the resulting k-NN-Join catalog is sorted w.r.t. the

values of k. Given a k-NN-Join query, we can lookup the estimate
cost using a binary search to find the catalog entry corresponding
to the given k value.

Although the process of building the catalog is performed once,
it can be costly if the number of tables in the database schema is
large, say n. The k-NN-Join catalog information is required for
every possible pair of tables in the database schema, and hence
2×

(
n
2

)
catalogs need to be built (because the k-NN-Join is asym-

metric). Although sampling can speed up the merging process of
the temporary catalogs, it is still expensive to compute 2 ×

(
n
2

)
,

i.e., a quadratic number of catalogs across the database tables. To
address this issue, we introduce our third cost estimation technique
that requires only a linear number of catalogs.

4.3 The Virtual-Grid Technique
Similarly to the Catalog-Merge technique, in the Virtual-Grid

technique, we maintain a set of catalog information that is built
only once before executing any queries. The key idea is to estimate
the cost corresponding to a dataset, say D, when D is the inner rela-
tion of a k-NN-Join. Given the n relations in the database schema,
where each can potentially be an outer relation in a k-NN-Join with
D, instead of computing n catalogs corresponding to D, we com-
pute only one catalog that corresponds to the join cost between a
virtual index and D.

4.3.1 Preprocessing
Refer to Figure 9 for illustration. Given the index of a dataset

(e.g., the red quadtree decomposition in the figure), we assume the
existence of a virtual grid that covers the whole space.3 For each
block (grid cell) in the virtual-grid, we compute a catalog that is
similar to the one in Figure 7(b) with the difference that the locality
is computed with respect to the given index. We associate all these
virtual-grid catalogs with the given index (e.g., the quadtree). We
repeat this process for each relation in the database schema, i.e.,
associate with every index a virtual-grid-cost. Observe that unlike
the Catalog-Merge approach, this requires linear storage (and pre-
processing time) overhead.

4.3.2 Cost Estimation
Given a k-NN-Join query, we retrieve the virtual-grid corre-

sponding to the inner relation. Then, we estimate the cost by scal-
ing the cost corresponding to the part of the virtual-grid that over-
laps with the outer relation. In particular, for each grid cell, say
C, in the virtual-grid, we retrieve the locality size, say L, stored in
C’s catalog. Then, we select the blocks in the outer relation that
overlap with C. This can be performed using a range query on
the outer relation. For each of the overlapping blocks, say O, in
the outer relation, we multiply L by the ratio between the diagonal
length of Block O and the diagonal length of Block C. We sum
these products across all the cells of the virtual-grid. The overall
sum represents the join cost estimate.

3This can be achieved for real datasets where the bounds of the
earth are fixed.
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Figure 9: The Virtual-Grid technique for k-NN-Join cost esti-
mation.

Figure 10: A sample of OpenStreetMap GPS data and the cor-
responding region-quadtree decomposition overlaid on top.

Assuming that the number of blocks in the outer relation is no,
the estimation process is O(no). The reason is that eventually,
all the blocks of the outer relation get selected (through the range
query performed at each grid cell). In other words, regardless of
the grid size, all the blocks will be selected and the corresponding
products have to be aggregated. In Section 5, we study the estima-
tion time for different grid sizes while fixing the size of the outer
relation and demonstrate that the estimation time is almost constant
for different grid sizes.

5. EXPERIMENTS
In this section, we evaluate the performance of the proposed esti-

mation techniques. We realize a testbed in which we implement the
state-of-the-art techniques for k-NN-Select estimation [24] as well
as our proposed estimation techniques. To have a ground truth for
the actual cost of the k-NN operators, we implement the Distance
Browsing algorithm for k-NN-Select as well as the locality based
k-NN-Join. Our implementation is based on a region-quadtree in-
dex [21], where each node in the quadtree represents a region of
space that is recursively decomposed into four equal quadrants,
or subquadrants, with each leaf node containing points that cor-
respond to a specific subregion. The maximum block capacity in
the quadtrees used in our experiments is set to 10,000 points. All
implementations are in Java. Experiments are conducted on a ma-
chine running Mac OS X on Intel Core i7 CPU at 2.3 GHz and 8
GB of main memory.

We use a real spatial dataset from OpenStreetMap [1]. The num-
ber of data points in the dataset is 0.1 Billion points. Figure 10
displays a sample of the data that we plot through a visualizer that
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Figure 11: k-NN-Select estimation accuracy.

we have built as part of our testbed. The figure also displays a
region-quadtree decomposition that is built on top of the data.

To test the performance of our techniques at different data scales,
we insert portions of the dataset into the index at multiple ratios.
For instance, for scale = 1, we insert 10 Million points, for scale =
2, we insert 20 Million points, and so on until scale = 10 in which
all the 0.1 Billion points are inserted. Our performance metrics are
the estimation accuracy (i.e., error ratio), the estimation time, the
preprocessing time, and the storage overhead. We limit the maxi-
mum maintained value of k in all the catalogs to 10,000.

5.1 KNN-Select Cost Estimation
In this section, we present the performance of the Staircase tech-

nique in estimating the cost of a k-NN-Select and compare it with
the density-based technique of [24]. We evaluate two variants of the
Staircase technique, 1) Center-Only, where the cost corresponding
to a query point, say q, is estimated as the cost corresponding to the
center in which q is located, and 2) Center+Corners, where the cost
is estimated using Equations 1 and 2.

5.1.1 Estimation Accuracy
In this experiment, we measure the average error ratio in estimat-

ing the cost of 100,000 queries that are chosen at random. For each
query, we compute the actual cost, compare it with the estimated
cost, and measure the error ratio. We compute the average error
ratio of all the queries.

Figure 11 illustrates that the Staircase technique achieves a
smaller error ratio than that of the density-based technique. The
error ratio reaches less than 20% when the cost is estimated using
the Center+Corners variant.

5.1.2 Estimation Time
In this experiment, we measure the time each estimation tech-

nique requires to estimate the cost of a query. Figure 12 illus-
trates that the Staircase technique is almost two orders of mag-
nitudes faster than the density-based technique. Observe that the
Center+Corners variant of the Staircase technique is slightly slower
than the Center-Only variant because the former requires two cat-
alog lookups, one from the center-catalog and the other from the
corners-catalog. Also, observe that the estimation time of the
density-based technique increases as the value of k increases. The
reason is that the density-based technique keeps scanning the in-
dex blocks until the encountered blocks are estimated to contain k
points. In contrast, the estimation time of the Staircase technique
is constant regardless of the value of k because the Staircase tech-
nique relies on just a single catalog lookup (two lookups in case of
the Center+Corners variant).
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Figure 12: k-NN-Select estimation time.
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Figure 13: Preprocessing time of the k-NN-Select estimation
techniques.

5.1.3 Storage Overhead and Preprocessing Time
In this experiment, we measure the storage requirement and pre-

processing time of each estimation technique. Observe that the
density-based technique has no preprocessing time requirements
because it precomputes no catalogs.

Figure 13 illustrates that the Staircase technique incurs relatively
high preprocessing overhead to precompute the catalogs of all the
index blocks. Observe that as the scale factor increases, the pre-
processing time increases because more blocks will need to be
processed. Also, observe that the Center-Only variant incurs less
preprocessing overhead than the Center+Corners variant because
the former computes only one catalog per block while the latter
computes five catalogs and merges four of them. Notice that this
preprocessing phase is an offline process that does not affect the
performance of the online cost estimation process.

Figure 14 illustrates that density-based technique consumes little
storage overhead, basically, due to the density values maintained
at each block in the index. In contrast, the Staircase technique
has higher storage overhead due to the maintained catalogs. Ob-
serve that as the scale factor increases, the storage overhead in-
creases because more blocks will be present in the index and each
of them will have a separate catalog. However, the storage require-
ments of the Staircase technique are less than 4 MBs even for the
largest scale factor. Also, observe that the Center-Only variant of
the Staircase technique incurs less storage overhead than the Cen-
ter+Corners variant because the former maintains only one catalog
per block while the latter maintains two catalogs.

5.2 K-NN-Join Cost Estimation
In this section, we study the performance of the proposed tech-

niques for estimating the k-NN-Join cost, namely the Block-
Sample, Catalog-Merge, and Virtual-Grid techniques.
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Figure 14: Storage requirements of the k-NN-Select estimation
techniques.

5.2.1 Estimation Accuracy
In this experiment, we estimate the cost of a k-NN-Join between

two indexes of 0.1 Billion points each for a random value of k, com-
pare it with the actual cost, and then calculate the error ratio. We
repeat this process for various sampling sizes for both the Block-
Sample and Catalog-Merge techniques, and for various grid sizes
for the Virtual-Grid technique. Figure 15 illustrates that the Block-
Sample and Catalog-Merge techniques can reach an error ratio that
is less than 5% for a sample size > 400. Figure 16 illustrates that
the Virtual-Grid technique achieves less than 20% error ratio.

Sample Size Sampling Catalog-
Merge

50 0.7009162811 0.7008260071 0.2990837189 0.2991739929

100 0.3707252654 0.3696292927 0.6292747346 0.6303707073
150 0.2661080514 0.2067652432 0.7338919486 0.7932347568
200 0.1582350472 0.1564650453 0.8417649528 0.8435349547
250 0.1091684442 0.1091684442 0.8908315558 0.8908315558
300 0.0724024064 0.0425112648 0.9275975936 0.9574887352
350 0.0485313713 0.045096186 0.9514686287 0.954903814
400 0.045080457 0.0436056034 0.954919543 0.9563943966
450 0.045080457 0.045080457 0.954919543 0.954919543
500 0.0589030922 0.0436056034 0.9410969078 0.9563943966
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Figure 15: k-NN-Join estimation accuracy.

Grid Size Virual Grid
4x4 0.1543370573 0.8456629427

5x5 0.1397974233 0.8602025767
6x6 0.1303050121 0.8696949879
7x7 0.1392917668 0.8607082332
8x8 0.1285501486 0.8714498514
9x9 0.1356028624 0.8643971376
10x10 0.1464797119 0.8535202881
11x11 0.1483712172 0.8516287828
12x12 0.1425453636 0.8574546364
13x13 0.1466681863 0.8533318137
14x14 0.1714311058 0.8285688942
15x15 0.173836256 0.826163744
16x16 0.1673257427 0.8326742573
17x17 0.1519085974 0.8480914026
18x18 0.1504335353 0.8495664647
19x19 0.1868052966 0.8131947034
20x20 0.171106626 0.828893374
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Figure 16: k-NN-Join estimation accuracy.

5.2.2 Estimation Time
In this experiment, we measure the time required to estimate the

cost of a k-NN-Join between two indexes of 0.1 Billion points each.
Figure 17 gives the performance for different values of k. The
number of samples used in the Catalog-Merge and Block-Sample
techniques is fixed to 1000. The grid size used in the Virtual-Grid
technique is 10 × 10. As the figure demonstrates, the Catalog-

Merge technique is more than four orders of magnitude faster than
the Block-Sample and Virtual-Grid techniques. The reason for this
variance in performance is that the Catalog-Merge technique main-
tains one catalog for every pair of relations (indexes) in which the
estimate cost is maintained; the cost is directly retrieved from the
catalog via one lookup. In contrast, the Block-Sample technique
computes the locality for a sample of blocks, which is costly. Also,
the Virtual-Grid technique aggregates the cost across each of the
grid cells after computing the overlap with the outer relation, which
is costly as well.
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128 0.0075605 0.1058457 2.60E-06 1.55E-05
256 0.0060793 0.1170518 2.30E-06
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Figure 17: k-NN-Join estimation time.

Figure 18 gives the performance of the Block-Sample and
Catalog-Merge techniques for different sample sizes. Observe that
the estimation time of the Block-Sample technique increases as
the sample size increases.4 In contrast, the estimation time of the
Catalog-Merge technique is constant irrespective of the sample size
because estimation is performed through one lookup through a pre-
computed catalog, i.e., the sample size only affects the preprocess-
ing time as we show next.

sample size Time Sampling Time Merge
100 0.1102873 2.48E-06

200 0.1172895 2.10E-06
300 0.1356163 1.90E-06
400 0.1534903 1.90E-06
500 0.1673582 2.70E-06
600 0.1936306 2.00E-06
700 1.9159E-01 2.00E-06
800 0.2346427 2.10E-06
900 0.2266451 2.00E-06

1000 0.2276914 2.10E-06
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Figure 18: k-NN-Join estimation time.

Grid Size Virual Grid
4x4 0.005845521

5x5 0.005810047
6x6 0.005900621
7x7 0.006028725
8x8 0.006025884
9x9 0.005755117
10x10 0.006101544
11x11 0.006016441
12x12 0.00609417
13x13 0.005938993
14x14 0.005900037
15x15 0.005836762
16x16 0.006137285
17x17 0.006070622
18x18 0.006049724
19x19 0.006123976
20x20 0.006066035
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Figure 19: k-NN-Join estimation time.

4The slope of the curve is low due to the use of a log-scale.
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Figure 19 gives the performance of the Virtual-Grid technique
for different grid sizes. As the figure demonstrates, the estimation
time is almost constant regardless of the grid size. As highlighted
in Section 4, the reason is that the time required for estimation de-
pends on the number of blocks in the outer relation, not on the
number of cells in the grid. For each grid cell, the overlapping
blocks from the outer relation have to be retrieved regardless of the
size of the grid.

5.2.3 Storage Overhead and Preprocessing Time
In this experiment, we measure the storage and preprocessing

time requirements for maintaining a set of catalogs for the estima-
tion of k-NN-Join queries between 10 indexes that we create. We
test the performance at different scale factors, i.e., create 10 differ-
ent indexes for each scale factor. For instance, if the scale factor is
5, this means that we create 10 indexes and insert 50 Million points
into each of them.

In Figure 20, we fix the grid size in the Virtual-Grid technique
to 10 × 10 and the sample size for the Catalog-Merge technique
to 1000. As the figure demonstrates, the Virtual-Grid technique re-
quires almost an order of magnitude less storage than the Catalog-
Merge techniques. The reason is that the Catalog-Merge technique
maintains a catalog for every pair of indexes, i.e, 2 ×

(
10
2

)
= 90

catalogs. In contrast, the Virtual-Grid technique maintains a cata-
log for every index, i.e., only 10 catalogs. Figure 21 demonstrates
that the Virtual-Grid technique requires a constant amount of pre-
processing time (about two seconds) regardless of the scale factor.
The reason is that the preprocessing time depends on the number
of grid cells; for each grid cell, a catalog is computed.

Merge VG No With
979 383 1.05732 0.041364

1235 383 1.3338 0.041364
1600 383 1.728 0.041364
1788 383 1.93104 0.041364
1922 383 2.07576 0.041364
1788 383 1.93104 0.041364

SF Ladder Ladder (No 
Corners)

1726 383 1.86408 0.041364

1 1.05732 0.041364 1613 383 1.74204 0.041364

2 1.3338 0.041364 1549 383 1.67292 0.041364
3 1.728 0.041364 1539 383 1.66212 0.041364
4 1.93104 0.041364
5 2.07576 0.041364
6 1.93104 0.041364
7 1.86408 0.041364
8 1.74204 0.041364
9 1.67292 0.041364

10 1.66212 0.041364
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Figure 20: Storage requirements of the k-NN-Join estimation
techniques.

Merge VG
0.0558084 0.246354 5.022756 2.46354
0.0534019 0.246354 4.806171 2.46354
0.0658084 0.264411 5.922756 2.64411
0.0734019 0.243485 6.606171 2.43485
0.0724877 0.243437 6.523893 2.43437

SF VG Sampling Merge 8.24852E-02 0.345739 7.423668 3.45739
1 2.46354 0 5.022756 0.0805076 0.260742 7.245684 2.60742

2 2.46354 0 4.806171 8.19151E-02 0.237085 7.372359 2.37085
3 2.64411 0 5.922756 0.0892106 0.240105 8.028954 2.40105
4 2.43485 0 6.606171 9.7598E-02 0.25227 8.78382 2.5227
5 2.43437 0 6.523893
6 2.45739 0 7.423668
7 2.60742 0 7.245684
8 2.37085 0 7.372359
9 2.40105 0 8.028954

10 2.5227 0 8.78382
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Figure 21: Preprocessing time of the k-NN-Join estimation
techniques.

In Figure 23, we fix the scale factor to 10. As Figs. 22(a)
and 23(a) demonstrate, the Catalog-Merge technique requires more
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362 0.39096
506 0.54648
613 0.66204
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1173 1.26684
sample size Time Sampling 1229 1.32732
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Figure 22: Storage requirements of the k-NN-Join estimation
techniques.

sample size Time Sampling Time Merge
100 3.186099 2.48E-06 0.0354011

200 3.5950122 2.10E-06 0.03994458
300 4.0731507 1.90E-06 0.04525723
400 4.5092259 1.90E-06 0.05010251
500 4.9857399 2.70E-06 0.05539711
600 5.5953702 2.00E-06 0.06217078
700 6.1541415 2.00E-06 0.06837935
800 6.3598923 2.10E-06 0.07066547
900 7.2662589 2.00E-06 0.08073621

1000 9.3590946 2.10E-06 0.10398994
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Figure 23: Preprocessing time of the k-NN-Join estimation
techniques.

storage and preprocessing time as the sample size increases. The
reason is that, as the sample size increases, more temporary cata-
logs get created during the process of merging the catalogs, which
are likely to result in more entries in the final merged catalog. Sim-
ilarly, Figs. 22(b) and 23(b) demonstrate that the Virtual-Grid tech-
nique requires more storage and preprocessing time as the grid size
increases because it maintains a catalog for every grid cell.
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Summary

29

Estimation 
Time

Estimation 
Accuracy

Storage 
Overhead

Preprocessing 
Time

k-NN-Select 
Cost 

Estimation

Density-Based Medium Medium None None

Staircase (Center-Only) Low Medium Low Medium

Staircase (Center+Corners) Low High Low High

k-NN-Join 
Cost 

Estimation

Block-Sample High High None None

Catalog-Merge Low High Medium Medium

Virtual-Grid Medium Medium Low Low

Figure 24: Summary of the pros and cons of each estimation technique.

6. CONCLUDING REMARKS
In this paper, we study the problem of estimating the cost of the

k-NN-Select and k-NN-Join operators. We present various estima-
tion techniques; Figure 24 summarizes the tradeoffs each technique
offers. Performance evaluation using real spatial datasets from
OpenStreetMap demonstrates that: 1) the Staircase technique for
k-NN-Select cost estimation is faster than the state-of-the-art tech-
nique [24] by more than two orders of magnitude and has better
estimation accuracy; 2) the Catalog-Merge and Virtual-Grid tech-
niques for k-NN-Join cost estimation achieve less than 5% and
20% error ratio, respectively, while keeping the estimation time be-
low one microsecond and one millisecond, respectively; and 3) the
Virtual-Grid technique reduces the storage required to maintain the
catalogs by an order of magnitude compared to the Catalog-Merge
technique.
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ABSTRACT
Non-independent reasoning (NIR) allows the information about one
record in the data to be learnt from the information of other record-
s in the data. Most posterior/prior based privacy criteria consider
NIR as a privacy violation and require to smooth the distribution
of published data to avoid sensitive NIR. The drawback of this ap-
proach is that it limits the utility of learning statistical relationship-
s. The differential privacy criterion considers NIR as a non-privacy
violation, therefore, enables learning statistical relationships, but at
the cost of potential disclosures through NIR. A question is whether
it is possible to (1) allow learning statistical relationships, yet (2)
prevent sensitive NIR about an individual. We present a data per-
turbation and sampling method to achieve both (1) and (2). The
enabling mechanism is a new privacy criterion that distinguishes
the two types of NIR in (1) and (2) with the help of the law of large
numbers. In particular, the record sampling effectively prevents the
sensitive disclosure in (2) while having less effect on the statistical
learning in (1).

Categories and Subject Descriptors
H.2.7 [Database Management]: Database Administration—Secu-
rity, integrity, and protection; H.2.8 [Database Applications]: Da-
ta Mining

General Terms
Algorithm, Data Privacy, Theory

Keywords
Data Privacy, Differential Privacy

1. INTRODUCTION

(c) 2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT). March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

1.1 Motivation
Many privacy definitions/criteria have been proposed in the lit-

erature and many ways exist to categorize them, such as semantic
methods vs syntactic methods, prior/posterior methods vs differen-
tial methods, etc. See surveys [1][2][3] for details. Another way to
categorize privacy definitions is by whether non-independent rea-
soning (NIR) is considered as a privacy violation. In NIR, the in-
formation about one record in the data can be learnt from the in-
formation of other records in the data, under the assumption that
these records follow the same underlying distribution. A classifier
is a master example of NIR where the class information of a new
instance is learnt from the distribution in a related training set.

Most posterior/prior based privacy definitions consider NIR as
a privacy violation, such as l-diversity [4], t-closeness [5], ⇢1-⇢2
privacy [6], �-likeness [7], small sum privacy [8] and �-growth [9].
These criteria quantify the risk to an individual by the information
learnt from the subpopulation containing that individual. To avoid
privacy violation, the information learnt is required to have a small
change compared to a prior of an adversary, and this often requires
to “smooth” the distribution in the published data. One drawback
of this approach is that it is hard to model the prior of the attacker
[10][11]. Another drawback is that it limits the desired utility of
learning statistical relationships. For example, �-growth postulates
that the distribution in each subpopulation should be close to the
global distribution in the whole data set. This requirement makes
it difficult to learn novel statistical relationships such as “smokers
tend to have lung cancer” in the subpopulation of smokers.

At the other side of the aisle, differential privacy [10] considers
NIR as a non-privacy violation, as stated in [11] (page 4): “We ex-
plicitly consider non-independent reasoning as a non-violation of
privacy; information that can be learned about a row from sources
other than the row itself is not information that the row could hope
to keep private”. Instead of avoiding the occurrence of disclosures,
the differential privacy criterion seeks to mask the impact of a s-
ingle individual on such occurrences. A popularized claim is that,
even if an attacker knows all but one records, the attacker will not
learn much about the remaining tuple. As indicated above, this
comes with the price of permitting disclosures through NIR. In-
deed, the recent study in [12] suggests that disclosures could occur
under differential privacy if records are correlated, and the study in
[13] demonstrates that a Bayes classifier could be built using on-
ly differentially private answers to predict the sensitive attribute of
an individual. In this paper we propose that a sensitive disclosure
of NIR could occur in more general cases: no correlation among
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Table 1: {Prof-school, Prof-specialty, White, Male}! >50K (Conf=83.83%)

✏ = 0.01 (b = 200) ✏ = 0.1 (b = 20) ✏ = 0.5 (b = 4)
Mean SE Mean SE Mean SE

Conf 0 1.34392 1.36299 0.860966 0.0985138 0.832659 0.0645165
|ans1 � ans01|/ans1 0.614742 0.533185 0.0693353 0.0272098 0.0262412 0.0144438
|ans2 � ans02|/ans2 0.570118 0.983959 0.102247 0.0820627 0.069974 0.0636316

records is required and only two differentially private query an-
swers are needed to infer the sensitive attribute value. The example
below demonstrates such a disclosure.

EXAMPLE 1. Consider the ADULT data set [14] that contain-
s 45,222 records (without missing values) from the 1994 Census
database. We did not observe any record correlation in this data
set. Consider the five attributes Education, Occupation, Race, Gen-
der, and Income. The Income attribute has two values, “50K”,
for 75.22% of records, and “>50K”, for 24.78% of records. We
assume that learning the Income value for a record is sensitive. On
the raw data, the following two count queries Q1 and Q2 return
the answers ans1 = 501 and ans2 = 420, respectively:

Q1: “Prof-school ^ Prof-specialty ^ White ^ Male”,
Q2: “Prof-school ^ Prof-specialty ^ White ^ Male ^ >50K”.

These answers imply the following rule with the confidence Conf =
ans2
ans1

= 0.8383.

{Prof-school, Prof-specialty, White, Male}! >50K.

Since this confidence is significantly higher than the overall fre-
quency 24.78% of the value “>50K”, this rule may violate the pri-
vacy of the individuals matching the condition of Q1. While this
rule seems expected, it does demonstrate the potential risk of NIR
on a real life data distribution. After all, truly sensitive data and
findings are difficult to obtain and publish.

The differential privacy mechanism will return the noisy answers
ans0i = ansi + ⇠i, i = 1, 2, where the noises ⇠i’s follow some dis-
tribution, and an adversary has to gauge Conf by Conf 0 =

ans02
ans01

.

Consider the widely used Laplace noise distribution Lap(b) = 1
2b

exp(� |⇠|
b
), where b is the scale factor. The setting of b = �/✏

would ensure ✏-differential privacy for the sensitivity � of the query
function. Let us set � = 2 to account for the two count queries.
Note that the effect of a larger � can be simulated by the effect of
a smaller ✏ because b = �/✏.

Table 1 shows the mean of Conf 0 and the relative error |ansi�ans0i|
ansi

of query answers over 10 trials of random noises, and the standard
error (SE) of the mean. Conf 0 measures the disclosure (in red) and
|ansi�ans0i|

ansi
measures the utility of query answers (in blue). At the

higher privacy level ✏ = 0.01, Conf 0 deviates substantially from
Conf = 0.8383, but the utility of the noisy answers is also poor
because of the large relative errors and SE. At the lower privacy
level ✏ = 0.5, the utility of noisy answers improves significantly,
but Conf 0 = 0.8327 is within 1% difference from Conf with a s-
mall SE (i.e., 0.0645); in this case any instances of ans01 and ans02
are sufficient to gauge the income level of an individual. 2

To ensure a good utility, a fixed (and small) scale b of noises
is essential. Indeed, improving utility through reducing noises is
a major focus of the work on differential privacy (see [15] for a
list). As the query answer becomes larger, such noises become
less significant, which improves the utility of noisy answers ans0i,
therefore, the accuracy of ans02

ans01
. Thus, the good utility of ans0i

comes together with the risk of disclosures. A general and quan-
titative analysis on this type of attack will be presented in Section
2. Choosing a large noise scale (i.e., a smaller ✏) helps thwart such
attacks, but it also hurts the utility for data analysis. In fact, as
long as the noise scale stays fixed, the noises eventually become
insignificant for large query answers.

1.2 Our Approach
The question we study in this paper is how to (A) allow learn-

ing statistical relationships (such as “smokers tend to have lung
cancer”), and at the same time, (B) prevent learning sensitive in-
formation about an individual (such as “Bob likely has HIV”). As
discussed above, posterior/prior based privacy criteria provide (B)
but not (A), whereas the differential privacy criterion provides (A)
but not (B). The difficulty of providing (A) and (B) is that they
both make use of NIR, one for utility and one for privacy violation.
The key lies at distinguishing these two types of learning. The next
example illustrates the ideas of our approach.

EXAMPLE 2. Consider a table D(Gender, Job,Disease), where
Gender and Job are public and Disease is sensitive. Assume that
Disease has 10 possible values. To hide the Disease value, for each
record in D, uniform perturbation [16] for a given retention prob-
ability, say 20%, will retain the Disease value in the record with
20% probability and replace it with a value chosen uniformly from
the 10 possible values of Disease at random with the remaining
80% probability. This can be implemented by tossing a biased coin
with head probability 20%. Let D⇤ denote the perturbed data.

D⇤ can be utilized to reconstruct the distribution of Disease in a
given subset of records. Consider any subset S of D, the counter-
part S⇤ for D⇤, and any Disease value d. Let fd denote the (actual)
frequency of d in S, f⇤d denote the (observed) frequency of d in S⇤,
and E[F ⇤d ] denote the expectation of f⇤d (over all coin tosses). All
frequencies are in fraction. The following equation follows from
the perturbation operation applied to the data:

E[F ⇤d ] = (0.2 + 0.8/10)fd + (0.8/10)(1� fd) (1)

Approximating the unknown E[F ⇤d ] by the observed f⇤d , we get an
estimate of fd as f⇤

d�0.08

0.2 . This estimate is the maximum likelihood
estimator (MLE) [16] computed using the perturbed S⇤.

Given the published D⇤, suppose that an adversary tries to learn
the likelihood that Bob, a male engineer with a record in D, has
breast cancer or BC for short. One way is considering the subset
Sme for all male engineers in D, and another is considering the
subset Se for all engineers in D. Let Mme

d and Me
d be the MLE

for a disease d in Sme and Se, respectively. Two questions can be
asked.

Question 1: Which of Mme
BC and Me

BC should be used to
quantify the risk to Bob? Sme contains exactly the records that
match all Bob’s public information, whereas Se contains additional
records that do not belong to Bob. Without further information,
Sme is more relevant to Bob than Se, so Mme

BC should be used
as the risk to Bob. If the additional records for female engineers
follow a different distribution on BC from those for male engineers,
Me

BC most likely is not useful for inferring whether Bob has breast
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cancer. We will discuss the case where the additional records have
the same distribution as Bob in Section 3.4. On the other hand,
the frequency Me

d for some disease d (e.g., cervical spondylosis)
may be useful for data analysis, such as learning the statistical
relationship that career engineers tend to have d. This leads to the
next question.

Question 2: How to limit the accuracy of Mme
BC while pre-

serving the accuracy of Me
d for data analysis? The errors of

Mme
d and Me

d were caused by approximating the unknown E[F ⇤d ]
with the observed f⇤d in Equation (1). From the law of large num-
bers, f⇤d is closer to E[F ⇤d ] when more records are randomized (i.e.,
more coin toss). Since S⇤e contains more records than S⇤me, Me

d is
more accurate for estimating the frequency of d in Se than Mme

d

for estimating the frequency of d in Se. We can leverage this gap to
limit the accuracy of Mme

BC while preserving the accuracy of Me
d .

2

This example illustrates two types of reconstruction for MLEs.
The reconstruction of Mme

BC based on Sme is called personal re-
construction because it aims at a particular individual by matching
all public attributes of Bob; the reconstruction of Me

d based on Se

is called aggregate reconstruction because it aims at a large pop-
ulation without specifically targeting any individual. We argue (in
Section 3.2) that personal reconstruction is the source of privacy
concerns whereas aggregation reconstruction is the source of u-
tility. The law of large numbers suggests that these two types of
reconstruction respond differently to the reduction of record per-
turbation. We leverage this gap to limit the accuracy of personal
reconstruction while preserving the accuracy of aggregate recon-
struction.

The small count privacy and large count utility in [8] use the
number of records involved to distinguish the reconstruction for
privacy concern and the reconstruction for utility. It is not clear how
to set appropriate thresholds for such sizes. Indeed, it could be the
case that two reconstructions are performed on two subsets of data
with the same size but one aims at finding an individual’s sensitive
information while the other aims at finding general patterns.

1.3 Contributions
Here are the main contributions in this work:
Contribution 1 (Section 2): We present a condition to character-

ize the occurrence of disclosures of differentially private answers
through NIR. For the Laplace noise distribution, this condition is
simple and neat as it is expressed in terms of the ratio of the scale
factor to the query answer.

Contribution 2 (Section 3): We propose an inaccuracy require-
ment on personal reconstruction as a new privacy criterion called
reconstruction privacy. This criterion imposes a minimum value
� for the best upper bound on Pr

h
F 0�f

f
> �

i
for the actual and

estimated frequency f and F 0 of a sensitive value in a personal
reconstruction, where � and � are privacy parameters. Note that
F 0�f

f
is the error of the reconstruction for f , which should not

be confused with the relative increase of the attacker’s belief such
as the �-likeness [7], (n, t)-closeness [17] and (c, 2)-diversity [4].
This criterion does not bound the maximum value of F 0 or f or re-
quire them to be close to the global distribution, making it suitable
for learning statistical relationships through aggregate reconstruc-
tion. Also, this criterion avoids modeling the prior of an adversary,
which can be tricky as shown in [10][11].

Contribution 3 (Sections 4): We present an efficient test of re-
construction privacy. First, we show a conversion between an upper
bound for the tail probability of Poisson trials into an upper bound

on Pr
h
F 0�f

f
> �

i
. Then, we obtain an efficient test of reconstruc-

tion privacy by adapting the notion of reconstruction privacy to an
existing upper bound for Poisson trials, i.e., the Chernoff bound.

Contribution 4 (Section 5): We present an efficient algorithm
for producing a perturbed version D⇤ that satisfies a given specifi-
cation of reconstruction privacy. The algorithm is highly efficient
because it only needs to sort the records once and make another
scan on the sorted data.

Contribution 5 (Section 6): We evaluate two claims. The first
claim is that reconstruction privacy could be violated by real life
data sets even after data perturbation. The second claim is that the
proposed method can preserve utility for statistical learning while
providing reconstruction privacy.

2. OBSERVATIONS ON DIFFERENTIAL PRI-
VACY

In this section, we answer the question under what condition-
s would differentially private answers disclose sensitive informa-
tion through NIR? The standard ✏-differential privacy mechanis-
m [10] ensures that, for any two data sets D1 and D2 differing
on at most one record, for all queries Q of interest, and for any
value ↵ in the range for noisy answers, Pr[K(D1, Q) = ↵] 
exp(✏) Pr[K(D2, Q) = ↵], where K(Di, Q) is a noisy answer
a+ ⇠ for the actual answer a and a random noise ⇠ following some
distribution. The scale E[|⇠|] of noises depends on the query class
and the privacy parameter ✏. The purpose of the noise is to mask
the impact of a single record on query answers.

Let us construct a disclosure by differentially private answers.
Let SA denote the sensitive attribute (e.g., diseases) and NA de-
note the public attributes. Suppose that an adversary tries to deter-
mine whether a participating individual t has a particular value sa
on SA. Let t.NA denote the values for t on NA, which is known
to the adversary. The adversary issues two count queries:

Q1 :NA = t.NA

Q2 :NA = t.NA ^ SA = sa
(2)

Let X = x + ⇠1 and Y = y + ⇠2 be the noisy answers for Q1

and Q2 returned by the ✏-differential privacy mechanism, where
x and y are actual answers and ⇠i’s are the noises. Note y

x
 1

and y
x

represents the chance that t has the sa value on SA. Note
Y
X

= y+⇠2
x+⇠1

= y/x+⇠2/x
1+⇠1/x

.
The intuition that Y

X
may lead to a disclosure is as follows. For

any ⇠i of a fixed scale, as the answer x increases, ⇠2/x and ⇠1/x
decrease and Y

X
approaches y

x
. If y

x
is large enough (which is appli-

cation specific), the adversary learns that t has the sensitive value
sa with a high probability. This construction is general because
it does not assume record correlation and does not depend on the
noise distribution except that the noises have a fixed scale. Below,
we formalize this intuition. First, we show a lemma.

LEMMA 1. Let x and y be the true answers to Q1 and Q2,
x 6= 0. Let X = x + ⇠1 and Y = y + ⇠2 be the noisy answers
for Q1 and Q2 with the noises ⇠i having the zero mean and the
variance V . Then

E[ Y
X
] ' y

x
(1 + V

x2 ) and V ar[ Y
X
] ' V

x2 (1 +
y2

x2 )

PROOF. Note that E[ Y
X
] is not equal to E[Y ]

E[X] . Using the Taylor
expansion technique [18, 19], E[ Y

X
] and V ar[ Y

X
] can be approxi-

mated as follows:

E[
Y
X

] ' E[Y ]
E[X]

+
cov[X,Y ]
E[X]2

+
V ar[X]E[Y ]

E[X]3
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V ar[
Y
X

] ' V ar[Y ]
E[X]2

� 2E[Y ]
E[X]3

cov[X,Y ] +
E[Y ]2

E[X]4
V ar[X]

The error of the approximation is the remaining terms of the Taylor
expansion that are dropped. E[X] = x and E[Y ] = y (because
noises have the zero mean), V ar[X] = V ar[Y ] = V , and the
covariance cov[X,Y ] = cov[x+ ⇠1, y + ⇠2] = cov[⇠1, ⇠2]. Since
⇠1 and ⇠2 are unrelated, cov[⇠1, ⇠2] = 0. Substantiating these into
the above equations and simplifying, we get E[ Y

X
] and V ar[ Y

X
] as

required.

For any noise distribution with the zero mean and a fixed vari-
ance V , as the query answer x increases, V

x2 decreases, E[ Y
X
] ap-

proaches y
x

and V ar[ Y
X
] approaches zero. In general, E[ Y

X
] ap-

proaching y
x

does not entail Y
X

approaching y
x

, for particular in-
stances X and Y . However, if V ar[ Y

X
] approaches zero, the devi-

ation of Y
X

from E[ Y
X
] approaches zero, Y

X
approaches y

x
. This is

summarized in the next corollary.

COROLLARY 1. For any noise distribution with the zero mean
and a fixed variance V , as the query answer x increases, Y

X
ap-

proaches y
x

.

To our knowledge, Corollary 1 covers all noise distributions em-
ployed by the differential privacy mechanism, including Laplace
mechanism [10], Gaussian mechanism [20], and Matrix mechanis-
m [21], because these distributions have a zero mean and a fixed
variance. To see how large x is needed for Y

X
to be accurate e-

nough for y
x

, let us consider the Laplace mechanism Lap(b) =
1
2bexp(�|⇠|/b), but a similar analysis can be performed for oth-
er mechanisms. b is the scale factor. Lap(b) has the zero mean
and the variance V = 2b2. The setting b = �/✏ ensures ✏-
differential privacy, where � is the sensitivity of the queries of in-
terest, which roughly denotes the worst-case change in the query
answer on changing one record in any possible database. � is a
property of the queries, not a property of the database. Hence, V
is fixed for a given query class and Corollary 1 applies to Lap(b).
Substituting y

x
 1 and V

x2 = 2b2

x2 = 2
�
b
x

�2 into Lemma 1 and
simplifying, we get a simple bound on |E[ Y

X
] � y

x
| and V ar[ Y

X
]

in terms of the scale factor b and the query answer x (but not the
privacy parameter ✏ or the sensitivity � of queries).

COROLLARY 2. Let X and Y be the noisy answers for actual
answers x and y, where the noises follow the Laplace distribution
Lap(b). (i) |E[ Y

X
]� y

x
|  2

�
b
x

�2
. (ii) V ar[ Y

X
]  4

�
b
x

�2
.

Table 2: 2
�
b
x

�2

HHHHb
x 5000 1000 500 200 100

b = 10 (✏ = 0.2) 0.000008 0.0002 0.0008 0.005 0.02
b = 20 (✏ = 0.1) 0.000032 0.0008 0.0032 0.02 0.08
b = 40 (✏ = 0.05) 0.000128 0.0032 0.0128 0.08 0.32
b = 200 (✏ = 0.01) 0.0032 0.08 0.32 2 8

Thus, the value of 2
�
b
x

�2 is an indicator of how close Y
X

is to
y
x

. Table 2 shows the values of 2
�
b
x

�2 for various query answers x
and settings of b (within the brackets is the corresponding privacy
parameter ✏ for the setting of � = 2, which accounts for answer-
ing the two queries Q1 and Q2 in a row). The boldface highlights
where 2

�
b
x

�2 is small enough so that Y
X

is a good indicator of y
x

.
Take (b = 20, x = 500) as an example where 2

�
b
x

�2
= 0.0032.

|E[ Y
X
] � y

x
|  0.0032 and V ar[ Y

X
]  0.0032 ⇥ 2 = 0.0064.

Indeed, Corollary 2 quantifies a condition of the occurrence of dis-
closures in terms of b

x
: as a rule of thumb, a ratio b

x
 1

20 would
ensure that Y

X
is a good indicator of y

x
because 2

�
b
x

�2  2
400 . In

this case, if y
x

is high enough to be considered as sensitive, a sen-
sitive disclosure would occur through accessing noisy answers X
and Y . This condition also suggests that such disclosures cannot
be avoided by choosing a large scale factor b if the actual answer x
can be arbitrarily large.

We end this section with an explicit acknowledgement of disclo-
sures by differential privacy from [10]: “Note that a bad disclosure
can still occur, but our guarantee assures the individual that it will
not be the presence of her data that causes it, nor could the disclo-
sure be avoided through any action or inaction on the part of the
user”. In the rest of the paper, we present an approach to avoid the
disclosures of NIR in a data perturbation approach. This effort can
be considered as an action on the part of the data publisher.

3. PROBLEM STATEMENT
We define our model of data perturbation, privacy criterion, and

the problems we will study.

3.1 Data Perturbation
As in [7, 9, 22], we consider a table D that has one sensitive (pri-

vate) attribute denoted by SA and several pubic attributes denoted
by NA = {A1, · · · , An}. We assume that the domain of SA has
m > 2 sensitive values, sa1, · · · , sam.

Assumptions. To hide the SA information of a record, we per-
turb the SA value but keep the attributes in NA unchanged in a
record. We assume that an adversary has no prior knowledge on
positive correlation between NA and SA; otherwise, the public in-
formation on NA already discloses the information about SA. The
adversary can have prior knowledge on correlation among the at-
tributes in NA, which presents no problem because we never mod-
ify the attributes in NA. We also assume that an adversary has no
prior knowledge about correlation among SA of different records.
This assumption can be satisfied by including exactly one record
from a set of correlated records, as suggested in [23].

Prior knowledge on negative correlation [24] deserves some more
explanations. Consider the negative correlation “females do not
have prostate cancer”. This correlation tells that the observed prostate
cancer is not the original SA value for a female, but does not tell
what is the original value because each of the remaining m � 1
values has an equal probability. For this reason, we assume that m
is larger than 2 (or even larger) so that guessing a remaining value
has enough uncertainty. We should emphasize that this situation is
not unique for data perturbation, and differentially private answers
have similar issues: if the noisy answer for the query on “Female
and Prostate Cancer” is -5 (or more generally, too small according
to prior knowledge), the above negative correlation would disclose
a small range of the noise added, i.e., -5 or less, after observing
the noisy answer, which invalids the Laplace distribution assump-
tion. In general, if too much information is leaked through prior
knowledge, no mechanism will work.

One criticism on distinguishing SA and NA is that such distinc-
tion can be tricky sometimes. This deserves some clarification as
well. One approach that does not make such distinction is treat-
ing all attributes as sensitive attributes and randomizing a record
over the Cartesian product of the domains of all attributes [25][23].
Unfortunately, this approach is vulnerable to undoing the random-
ization by removing “infeasible” records added during randomiza-
tion. An example of infeasible records is (Age=1, Job=prof, Dis-
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ease=HIV) since a 1-year child can not possibly be a professor, so
the adversary can easily tell that this record was added by random-
ization. Treating Age and Job as public attributes and randomiz-
ing only Disease can avoid this problem. In general, treating and
randomizing more attributes like sensitive ones when they are ac-
tually public attributes would introduce more vulnerabilities to the
removal of “infeasible” records. In this sense, randomizing only
the truly sensitive attribute actually provides more protection.

We produce the perturbed version D⇤ of D by applying uniform
perturbation [25][16][6] on SA as follows. For a given retention
probability p, where 0 < p < 1, for each record in D, we toss
a coin with head probability p. If the coin lands on head, retain
the SA value in the record; if the coin lands on tail, replace the SA
value in the record with a value picked from the domain of SA with
equal probability (i.e., 1�p

m
) at random. This perturbation operator

is characterized by the following matrix Pm⇥m:

Pji =

⇢
p+ 1�p

m
if j=i (retain sai)

1�p
m

if j 6=i (perturb sai to saj) (3)

A proper choice of the retention probability p can ensure some
privacy requirements, such as ⇢1-⇢2 privacy [6][25]. We end this
section with a comparison between output perturbation and data
perturbation in the current work. In output perturbation, such as
the differential privacy approach, a noise is added to the query an-
swer and the noisy answer is used as is. For this reason, a small
and fixed noise scale is essential for good utility. As discussed in
Sections 1.1 and 2, as the data size increases, such noises are vul-
nerable to NIR. In data perturbation, the SA value in each record is
perturbed independently and the original distribution of SA must
be reconstructed from the perturbed records by taking into account
the perturbation operation performed. As the data size increases,
the number of record perturbation increases proportionally, which
is less vulnerable to NIR. In addition, data perturbation is more a-
mendable to record insertion because each record is perturbed inde-
pendently and the reconstruction is performed by the user himself.
In contrast, updating (published) noisy query answers can be tricky
because a new record could affect multiple queries and a correlated
change of query answers can be exploited by the adversary to learn
the information about the new record.

3.2 Types of Reconstruction
We adopt the following notation. Let NA = {A1, · · · , An}.

For 1  i  n, let xi be either a domain value of Ai or a wildcard,
denoted by�, that matches every domain value of Ai. D(x1, · · · , xn)
denotes the subset of records in D that match xi on every Ai,
and D⇤(x1, · · · , xn) denotes the corresponding subset for D⇤. If,
for 1  i  n, xi is a non-wildcard, D(x1, · · · , xn) is a per-
sonal group. If at least one xi is a wildcard, D(x1, · · · , xn) is
an aggregate group. For example, for NA = {Gender, Job},
D(male, eng) is a personal group and D(�, eng) is an aggregate
group. Intuitively, a personal group contains all records that can
not be distinguished by any information other than SA. For exam-
ple, even if an adversary may know the age of Bob, this informa-
tion is not helpful to distinguish any record in the personal group
D(male, eng) because all records in the personal group are exactly
identical on NA. Without confusion, we call both D(x1, · · · , xn)
and D(x1, · · · , xn)

⇤ a personal or aggregate group as there is an
one-to-one correspondence between the two.

In Example 2, we argued that the personal group D⇤(male, eng)
should be used to quantify the risk of inferring the disease breast
cancer for the male engineer Bob, instead of the aggregate group-
s D⇤(�, eng), D⇤(male,�), or D⇤(�,�). The rationale is that
unless further information is available, it is to the adversary’s ad-

vantage not to use a record that is known not belonging to Bob.
In Section 3.4 we will consider the case where further information
is available to the adversary and using additional records not be-
longing to Bob may help the adversary. An analogy is short-listing
the suspect of a robbery: if the eyewitness has reported that the
suspect was a male blonde caucasians (i.e., the public attributes),
it makes sense to focus on the subset of male blonde caucasian-
s in the police database, instead of examining all male caucasians
records. The above observation motivates the following two types
of reconstruction.

DEFINITION 1. A personal reconstruction refers to estimating
the frequencies of the SA values in a personal group g based on
the perturbed g⇤. An aggregate reconstruction refers to estimating
the frequencies of the SA values in an aggregate group g based on
the perturbed g⇤. 2

We consider a personal reconstruction as the source of privacy
concern because it aims specifically at an individual by matching
all the individual’s public information. In contrast, we consider an
aggregate reconstruction as the source of utility because it aims at
a larger population without specifically targeting a particular indi-
vidual. These different roles of reconstruction are stated in the next
principle.

DEFINITION 2 (SPLIT ROLE PRINCIPLE). A personal recon-
struction aims specifically at a particular individual and is respon-
sible for privacy violation. An aggregate reconstruction aims at a
larger population and is responsible for providing utility. As far as
privacy protection is concerned, it suffices to ensure that personal
reconstruction is not accurate. 2

Remarks. The Split Role Principle provides only a relative pri-
vacy guarantee because some disclosure can still occur to an indi-
vidual through aggregate reconstruction in the name of utility, such
as “females tend to have breast cancer (compared to males)”. But
our principle assures the individual that such disclosures are not
specifically targeting him or her, and those that do (i.e., personal
reconstruction) have been made unreliable. In fact, any statistical
database with any non-trivial utility incurs some amount of dis-
closure [10]. Our principle assures that only a limited amount of
disclosure is incurred by enabling non-trivial utility.

3.3 Reconstruction Privacy
Under the Split Role Principle, our privacy guarantee is that all

personal reconstructions are not effective for learning the informa-
tion about SA. To formalize this guarantee, consider a personal
group g⇤ and g, and a particular SA value sa. Let f denote the fre-
quency of sa in g and let F 0 denote the estimate of f obtained from
the personal reconstruction based on g⇤. Note that F 0 is a random
variable because D⇤ is a result of coin tosses. F 0�f

f
is the relative

error of F 0. A larger F 0�f
f

means that an adversary faces more
uncertainty in using F 0 to gauge of the likelihood of sa for an indi-
vidual. The next definition formalizes an “inaccuracy requirement”
on F 0�f

f
.

DEFINITION 3 (RECONSTRUCTION PRIVACY). Let � > 0 and
� 2 [0, 1]. sa is (�, �)-reconstruction-private in a personal group

g⇤ if Pr
h
F 0�f

f
> �

i
< U or Pr

h
F 0�f

f
< ��

i
< L, for some

U and L, implies �  min{U,L}. A personal group g⇤ is (�, �)-
reconstruction-private if every sa is (�, �)-reconstruction-private in
g⇤. D⇤ is (�, �)-reconstruction-private if every personal group g⇤

is (�, �)-reconstruction-private. (All probabilities are taken over
the space of coin tosses during the perturbation of SA values.) 2
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Note that reconstruction privacy is a property of the perturba-
tion matrix P, not a property of a particular instance of D⇤. In
plain words, (�, �)-reconstruction-privacy ensures that the small-
est upper bound is not less than �; in this sense, the adversary
has difficulty to get an accurate estimate of f , and the larger �
or � is, the greater this difficulty is. As an example, violating
(0.3, 0.3)-reconstruction-privacy by g⇤ means that the adversary
can get a smaller-than-0.3 upper bound on Pr

h
F 0�f

f
> 0.3

i
or

Pr
h
F 0�f

f
< �0.3

i
. This implies at least one of the following:

Pr
h
F 0�f

f
 0.3

i
� 70%, where F 0 > f

Pr
h
F 0�f

f
� �0.3

i
� 70%, where F 0 < f

Our definition considers such a high probability of a small error as
a potential risk.

Remarks. F 0 � f should not be confused with the change in
the posterior belief of an adversary. In fact, f is the probability of
sa in the personal group g and F 0 is the estimate of f based on
the personal reconstruction for g⇤, and F 0�f

f
is the relative error

of the estimate. Our definition considers a small estimation error
as a privacy risk, regardless of the absolute value of f , on the ba-
sis that any accurate person reconstruction is potentially a risk be-
cause it discloses the actual distribution of SA that aims at a target
individual. The choice of the relative error, instead of the abso-
lute error, is necessary because a larger actual frequency f requires
a larger absolute error for protection. Bounding the accuracy of
estimating f , instead of bounding the posterior belief of an adver-
sary, has two important benefits: it allows the room for learning
statistical relationships (through aggregate reconstruction), and it
frees the publisher of measuring the adversary’s prior belief and
specifying a threshold for posterior beliefs, which can be tricky
[10][11]. Finally, the choice of smallest upper bounds, rather than
lower bounds, on Pr

h
F 0�f

f
> �

i
and Pr

h
F 0�f

f
< ��

i
, allows

us to leverage the literature on upper bounds for random variables
to estimate Pr

h
F 0�f

f
> �

i
.

DEFINITION 4 (ENFORCING PRIVACY). Given a database D,
a retention probability p (1 > p > 0) for perturbing SA, and pri-
vacy parameters � and �, devise an algorithm that enforces (�, �)-
reconstruction-privacy on D⇤ while preserving aggregate recon-
struction as much as possible. 2

By leaving the retention probability p as an input parameter to
our problem, other privacy criteria, such as ⇢1-⇢2 privacy, can be
enforced through a proper choice of p. In this sense, reconstruc-
tion privacy can be considered as an additional protection on top of
other privacy criteria.

3.4 Generalized Personal Groups
Consider two personal groups g⇤ = D(male, eng) and g0⇤ =

D(female, eng). Our reconstruction privacy limits the recon-
struction for each personal group, but does not limit the reconstruc-
tion for the combined g⇤[g0⇤, i.e., the aggregate group D⇤(�, eng),
because the reconstruction for g⇤[g0⇤ is not relevant to an individ-
ual, assuming that males and females have a different distribution
on SA, such as on breast cancer. However, this argument may be
invalid if the adversary has further knowledge about the distribu-
tion of SA values. For example, suppose that FavoriteColor is
another public attribute and that the favorite color of an individu-
al has nothing to do with the diseases, the adversary may do re-
construction after aggregating all personal groups that differ only

in the values on FavoriteColor, and such reconstruction is more
accurate than the reconstruction based on a single personal group
because it uses more randomized records. In this case, aggregate
groups disclose sensitive information.

To address this issue, for each public attribute Ai, if two domain
values xi and x0i (e.g., male and female) of Ai have the same
impact on SA, we will merge xi and x0i into a single generalized
value, and we define personal groups based on such generalized
values. With this preprocessing, every generalized value of Ai now
has a different impact on SA, thus, has a different distribution on
SA. Then our previous argument that an aggregate group does not
provide a representative statistics for a target individual remain-
s valid because such groups combine several sub-populations that
follow a different distribution on SA.

So the question is how to identify the values of Ai that have
the same impact on SA. To this end, the well studied �2-squared
test that tells if two data sets are from different distributions can be
used. For two domain values xi and x0i of Ai, let oij (resp. o0ij) be
the number of records in D satisfying Ai = xi (resp. Ai = x0i)
and SA = saj , 1  j  m. Let Oi = [oi1, · · · , oim] and
O0i = [o0i1, · · · , o0im], which represents the distributions of SA
conditioned on xi and x0i. In proper statistical language, can we
disprove, to a certain required level of significance, the null hy-
pothesis that the two data sets Oi and O0i are drawn from the same
population distribution function? Disproving the null hypothesis in
effect proves that the data sets are from different distributions.

Since |Oi| =
Pm

j=1 oij and |O0i| =
Pm

j=1 o
0
ij are not necessar-

ily equal, our case is that of two binned distributions with unequal
number of data points. In this case, the degree of freedom is equal
to m and the �2 value is computed as [26]:

�2 =
mX

j=1

⇣p
|O0i|/|Oi|oij �

p
|Oi|/|O0i|o

0
ij

⌘2

oij + o0ij
(4)

Then we obtain the expected value of �2 by checking the chi-square
distribution with two parameters, the degree of freedom (e.g., m)
and the value of significance, the maximum probability that the
computed �2 from Equation (4) could be greater than the expected
�2. We set the conventional setting of 0.05 for significance. If
the value computed by Equation (4) is greater than this expected
value of �2, we can disprove the null hypothesis that the two data
sets Oi and O0i are drawn from the same population distribution
function because the probability for this is less than 5% (i.e., the
significance). Otherwise, we consider that the two data sets are
consistent with a single distribution function.

We represent the �2 test results for all pairs (xi, x
0
i) of values of

Ai using a graph. Each value xi of Ai is a vertex in the graph and
we connect two vertices xi and x0i if the �2 test on (xi, x

0
i) fails

to disprove the above null hypothesis. Finally, for each connected
component of the graph, we merge all the values in the component
into a single generalized value. This method ensures that any two
values xi and x0i from different components have a different impact
on SA.

In the rest of the paper, we assume that the domain values of each
public attribute Ai are generalized values produced by the above
merging procedure and that the personal and aggregate groups de-
fined in Section 3.2 are based on such generalized domain values.

4. TESTING PRIVACY
An immediate question is how to test (�, �)-reconstruction-privacy.

From Definition 3, this requires to obtain the smallest upper bounds
U and L on Pr

h
F 0�f

f
> �

i
and Pr

h
F 0�f

f
< ��

i
. The follow-
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Table 3: Notations

Symbols Meaning
D,D⇤ the raw data and perturbed version
S, S⇤ a subset of records and perturbed version
g, g⇤ a personal group and perturbed version
m the domain size |SA|
t a target individual
sai a domain value of SA
fi the frequency of sai in S
o⇤i the count of sai in S⇤

O⇤i the variable for o⇤i
F 0i the variable for the estimate of fi
 �
f ,
 �
F 0,
 �
O⇤ the column-vectors of fi, F 0i , O⇤i

P the perturbation matrix in Equation (3)
p the retention probability
(�, �) privacy parameters

ing discussion refers to a subset S of D and the corresponding
subset S⇤ of D⇤. |S| denotes the number of records in S. Let
(f1, · · · , fm) be the frequencies of SA values (sa1, · · · , sam)
in S, (O⇤1 , · · · , O⇤m) be the variables for the observed counts of
(sa1, · · · , sam) in S⇤, and (F 01, · · · , F 0m) be the variables for an
estimate of (f1, · · · , fm) reconstructed using S⇤. These vectors
are also written as column-vectors

 �
f ,
 �
O⇤, and

 �
F 0. When no con-

fusion arises, we drop the subscripts i from fi, O
⇤
i , F

0
i . Table 3

summarizes the notations used in this paper.

4.1 Computing F 0

First of all, let us examine the computation of F 0. Example 2
illustrates the basic idea of computing the estimate F 0 of f for a
particular SA value sa based on the perturbed data. Generalizing
that idea to the vectors

 �
F 0 and

 �
f , our perturbation operation im-

plies the equation P ·
 �
f = E[

 �
O⇤]
|S| , where P is the perturbation ma-

trix in Equation (3). Approximating E[
 �
O⇤] by the observed counts

 �
O⇤, we get the estimate of

 �
f given by P�1 ·

 �
O⇤

|S| , where P�1 is
the inverse of P. This estimate is called the maximum likelihood
estimator (MLE).

THEOREM 1 (THEOREM 2, [16]). P�1 ·
 �
O⇤

|S| is the MLE of
 �
f

under the constraint that its elements sum to 1. Let
 �
F 0 denote this

MLE. 2

The next lemma gives an equivalent computation of
 �
F 0 without

referring to P�1.

LEMMA 2. For any subset S of D and any SA value sa, (i)
E[O⇤] = |S|(fp + (1 � p)/m), (ii) F 0 = O⇤/|S|�(1�p)/m

p
, and

(iii) E[F 0] = f .

PROOF. (i) O⇤ comes from two sources of records in S: those
that have the SA value sa and are retained, and those that have
a SA value other than sa and are perturbed to sa. The expected
number of the records in the first source is |S|f(p+(1�p)/m), and
the expected number of the records in the second source is |S|(1�
f)(1�p)/m). Summing up the two gives E[O⇤] = |S|(fp+(1�
p)/m). This shows (i).

(ii) From Theorem 1,
 �
F 0 = P�1 ·

 �
O⇤

|S| . Let
 ��
1�p
m

denote the
column-vector of the constant 1�p

m
of length m. We have

 �
O⇤

|S| = P ·
 �
F 0 = p

 �
F 0 +

 ���
1� p
m

Thus, F 0 = O⇤/|S|�(1�p)/m
p

, as required for (ii).
(iii) Taking the mean on both sides of the last equation, E[F 0] =

E[O⇤]/|S|�(1�p)/m
p

. Substituting E[O⇤] in (i) and simplifying, we
get E[F 0] = f . This shows (iii).

Lemma 2(iii) implies that F 0 is an unbiased estimator of f . Lem-
ma 2(ii) gives a computation of F 0 in terms of the known values
O⇤, |S|, p, m without referring to P�1. In the rest of the paper,
we adopt this computation of F 0 in the definition of reconstruction
privacy (Definition 3).

4.2 Bounding Pr
h
F 0�f

f > �
i

and Pr
h
F 0�f

f < ��
i

Recall that F 0 = O⇤/|S|�(1�p)/m
p

from Lemma 2(ii). To bound

Pr
h
F 0�f

f
> �

i
and Pr

h
F 0�f

f
< ��

i
, we first obtain the upper

bounds for the error of observed O⇤ and then convert them into the
upper bounds for the error of reconstructed F 0. The next theorem
gives the conversion between these bounds.

THEOREM 2 (BOUND CONVERSION). Consider any subset S
of D and any SA value sa with the frequency f in S. Let O⇤ be
the observed count of sa in S⇤ and let F 0 be the MLE of f . Let
µ = E[O⇤]. For any functions U(!, µ) and L(!, µ) of ! and µ,
and for a comparison operator

L
that is either < or >,

1. Pr
h
O⇤�µ

µ
> !

iL
U(!, µ) if and only if Pr

h
F 0�f

f
> �

i

L
U(!, µ);

2. Pr
h
O⇤�µ

µ
< �!

iL
L(!, µ) if and only if Pr

h
F 0�f

f
< ��

i

L
L(!, µ).

where � = !µ
|S|pf .

PROOF. We show 1) only because the proof for 2) is similar.
From F 0 = O⇤/|S|�(1�p)/m

p
(Lemma 2(ii)), O⇤ = |S|(F 0p +

(1 � p)/m), and from Lemma 2(i), µ = |S|(fp + (1 � p)/m).
So O⇤�µ

µ
> ! , O⇤ � µ > !µ , |S|p(F 0 � f) > !µ ,

F 0�f
f

> !µ
|S|pf . 1) follows by letting � = !µ

|S|pf .

According to Theorem 2, if we have the smallest upper bound-
s on Pr

h
O⇤�µ

µ
> !

i
or Pr

h
O⇤�µ

µ
< �!

i
, we immediately have

the smallest upper bounds on Pr
h
F 0�f

f
> �

i
or Pr

h
F 0�f

f
< ��

i
.

This conversion does not hinge on the particular form of the bound
functions U and L, and applies to both upper bounds (when

L
is

<) and lower bounds (when
L

is >). Therefore, finding the small-
est upper bounds for F 0 is reduced to that for O⇤. The latter can
benefit from the literature on upper bounds for tail probabilities of
Poisson trials. Markov’s inequality and Chebyshev’s inequality are
some early upper bounds, for example. The Chernoff bound, due
to [27], is a much tighter bound as it gives exponential fall-off of
probability with distance from the error. The following is a simpli-
fied yet tight form of the Chernoff bound.

THEOREM 3 (CHERNOFF BOUNDS, [27]). Let X1, · · · , Xn

be independent Poisson trials such that for 1  i  n, Xi 2
{0, 1}, Pr[Xi = 1] = pi, where 0 < pi < 1. Let X = X1+ · · ·+
Xn and µ = E[X] = E[X1] + · · ·+ E[Xn]. For ! 2 (0,1),

Pr


X � µ

µ
> !

�
< U(!, µ) = exp(� !2µ

2 + !
) (5)

and for ! 2 (0, 1],

Pr


X � µ

µ
< �!

�
< L(!, µ) = exp(�!2µ

2
).2 (6)
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The observed count O⇤ of sa in S⇤ is equal to X = X1 +
· · · +Xn, where Xi is the indicator variable whether the i-th row
in S⇤ has the value sa. If the i-th row has sa prior to perturbation,
pi = p + (1 � p)/m, otherwise, pi = (1 � p)/m. E[O⇤] =
|S|(fp+ (1� p)/m) (Lemma 2). To obtain the upper bounds for
F 0, we instantiate the upper bounds U and L for O⇤ in Equations
(5) and (6) into Theorem 2. This gives the next corollary.

COROLLARY 3 (UPPER BOUNDS FOR F 0). Let ! = �|S|pf
µ

and µ = |S|(fp+ (1� p)/m). For ! 2 (0,1),

Pr


F 0 � f

f
> �

�
< U(!, µ) = exp(� !2µ

2 + !
) (7)

and for ! 2 (0, 1],

Pr


F 0 � f

f
< ��

�
< L(!, µ) = exp(�!2µ

2
).2 (8)

Note that ! = �pf
pf+(1�p)/m and µ = |S|(fp + (1 � p)/m).

�, p, f,m are constants. Reducing |S| decreases µ, which increas-
es the upper bounds U and L exponentially. Thus, reducing |S| ef-
fectively thwarts the attacker from bounding Pr

h
F 0�f

f
> �

i
and

Pr
h
F 0�f

f
< ��

i
by a small upper bound. Our enforcement algo-

rithm presented in the next section is based on this observation.
A remaining question is whether U = exp(� !2µ

2+!
) and L =

exp(�!2µ
2 ) in Corollary 3 derived from the Chernoff bound for

O⇤ are the smallest upper bounds for F 0, as required by the defi-
nition of (�, �)-reconstruction-privacy. Suppose not. There would
exist a smaller upper bound U2 on Pr

h
F 0�f

f
> �

i
or a smaller

upper bound L2 on Pr
h
F 0�f

f
< ��

i
. Then Theorem 2 implies

that U2 and L2 are better bounds than the Chernoff bounds U and
L for O⇤. However, the fact that the Chernoff bound remained in
use in the past 60 years suggests that finding smaller upper bounds
is difficult. Until the Chernoff bound is improved, we assume that
the upper bounds U and L in Corollary 3 are the best upper bounds
for F 0. This assumption is not a real restriction because Theorem
2 allows us to “plug in” any better bound for O⇤ for a better bound
for F 0. If the adversary finds a better bound than the Chernoff
bound and the data publisher still uses the Chernoff bound. If the
better bound is a general result and the publisher refuses to “plug
in” it, the responsibility is with the publisher. Otherwise, under our
assumptions about prior knowledge in Section 3.1, getting a bet-
ter bound requires knowledge about the random coin tosses in the
perturbation process. Like all randomized mechanisms, we assume
that actual results of random trails are not available to the adversary.

4.3 Testing
With the upper bounds L and U in Corollary 3, it is straightfor-

ward to test whether (�, �)-reconstruction-privacy holds by testing
�  min{L,U}. We can further simplify this test. For ! in the
range (0, 1], it is easy to see L < U , therefore, �  min{L,U}
degenerates into �  L. Substituting the expressions for ! and µ

in Corollary 3 into L(!, µ), we get L = exp(� (�pf)2|S|
2(fp+(1�p)/m) ),

where � is in the range (0, 1+ (1�p)/m
pf

], which corresponds to the
range (0, 1] for !. Substituting the expression for L into �  L
gives rise to the following test of (�, �)-reconstruction-privacy.

COROLLARY 4. Let sa be a SA value, g be a personal group,
and f be the frequency of sa in g. For � 2 (0, 1 + (1�p)/m

pf
] and

� 2 [0, 1], sa is (�, �)-reconstruction-private in g⇤ if and only if

|g|  �2(fp+ (1� p)/m) ln �
(�pf)2

2 (9)

Given D, the personal groups g and the frequencies f for all
SA values in g can be found by sorting the records in D in the
order of all attributes in NA followed by SA. Therefore, all the
quantities in Equation (9) are either given (i.e., �, �, p,m) or can
be computed efficiently (i.e., f and |g|). A larger |g|, f, p makes
this inequality less likely hold, thus, makes (�, �)-reconstruction-
privacy more likely violated. In fact, under these conditions there
are either more random trials or more retention of the SA value,
which leads to a more accurate reconstruction.

5. ENFORCING PRIVACY
If reconstruction privacy is not satisfied, we can restore recon-

struction privacy by satisfying the condition in Equation (9) for
every SA value and every personal group. Observe that the right-
hand side of Equation (9) decreases as f increases. Therefore, a
personal group g⇤ satisfies reconstruction privacy if and only if
|g|  sg , where

sg =
�2(fp+ (1� p)/m) ln �

(�pf)2
(10)

and f is the maximum frequency for any SA value in g. Anoth-
er interpretation is that sg is the maximum number of independent
trials if g⇤ is to satisfy reconstruction privacy. If |g| > sg , re-
construction privacy is violated (because of too many independent
trails). To fix this, one approach is increasing sg to the current
group size |g| by reducing f or p (note that m,�, � are fixed). This
approach is not preferred because reducing f will distort the data
distribution and reducing p has a global effect of making the per-
turbed data too noisy. Our approach is reducing |g| to the size sg
by sampling a subset g1 of the size sg and perturbing g1 instead
of g. This sampling essentially reduces the excessive number of
independent random trials. To ensure sg1 = sg , g1 must preserve
the (relative) frequency of every SA value in g (to the right-hand
side of Equation (10) unchanged after sampling). Preserving fre-
quencies also helps minimize the distortion to data distribution. Af-
ter perturbing the sample g1, a scaling step is needed to scale the
perturbed g⇤1 back to the original size |g| to minimize the impact
on the global distribution. Below, we present an algorithm named
Sampling-Perturbing-Scaling (SPS) to meet both the group size re-
quirement and the frequency preservation requirement.

Sampling-Perturbing-Scaling (SPS) algorithm. The input is a
database D, the retention probability p (0 < p < 1), the domain
size m of SA, and the privacy parameters � and �. The output is a
modified version of D⇤ that satisfies (�, �)-reconstruction-privacy.
For each personal group g in D, this algorithm computes a modified
version g⇤2 of g⇤, then outputs D⇤2 =

S
g⇤2 . In a preprocessing step,

we sort the records in D by the attributes in NA and followed by
SA. The result is a collection of personal groups g together with
the frequencies f of every SA value in g.

For each personal group g in D, compute sg as in Equation (10),
if |g|  sg , g already satisfies the maximum group size constraint,
let g⇤2 = g⇤. We assume |g| > sg . In the following, g⇤2 is produced
in three steps: Sampling, Perturbing, and Scaling, described below.
Let ⌧ = sg/|g|, called the sampling rate.

1. Sampling(g, sg) takes a sample of the records in g while p-
reserving the frequency of each SA value. For each SA val-
ue sa occurring in g, let gsa denote the subset of the records
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in g that have sa. Note that all records in gsa are identical.
We pick any b|gsa|⌧c records from gsa and pick one addi-
tional record from gsa with the probability |gsa|⌧�b|gsa|⌧c.
Let g1 be the set of the picked records. Return g1.

2. Perturbing(g1, p,m) perturbs the SA values of the records
in g1 with the retention probability p, as in the Uniform Per-
turbation described in Section 3.1. Return g⇤1 .

3. Scaling(g⇤1 , |g|) scales up g⇤1 to the original size |g| while p-
reserving the frequency of each SA value. Let ⌧ 0 = |g|/|g⇤1 |.
For each record r⇤ in g⇤1 , let g⇤2 contain b⌧ 0c duplicates of
r⇤ and one additional duplicate of r⇤ with the probability
⌧ 0 � b⌧ 0c. Return g⇤2 .

Remarks. Several points are worth noting. First, Sampling kicks
in only if |g| exceeds the maximum size sg; otherwise, all record-
s in g will be used for perturbation. Therefore, if the data set is
small enough to have such a poor accuracy that already satisfies
reconstruction privacy, our algorithm will behave like the standard
uniform perturbation without performing sampling. In this case,
the poor accuracy is not caused by our sampling, but by the inade-
quate amount of data. Second, the duplication in Scaling does not
introduce new random trials because it is performed after the per-
turbation in g⇤1 . The adversary may notice some duplicate records
in g⇤2 , but this is not a problem because privacy is actually achieved
on g⇤1 before the scaling step.

Complexity analysis. Let |D| denote the number of records in
D. The sorting step takes |D|log|D| time to generate all personal
groups. Subsequently, each of the steps Sampling, Perturbing,
and Scaling takes one data scan. A more efficient implementation,
however, is to perform these three steps in a single data scan: as a
record r is sampled, immediately we perturb the SA value of r
and then duplicate the perturbed record a certain number of times
as described, and add the duplicates to g⇤2 . In total, the algorithm
takes (|D|log|D|+ |D|) time.

5.1 Analysis
We prove two claims about the output D⇤2 = [g⇤2 . The first claim

is on privacy guarantee: each g⇤2 in D⇤2 is (�, �)-reconstruction-
private. The second claim is on utility: for any subset S consisting
of one or more personal groups and the corresponding subset S⇤2 in
D⇤2 , F 0g2 is an unbiased estimator of f , where f is the frequency of a
particular SA value in S and F 0g2 is the estimate of f reconstructed
from S⇤2 , respectively. We first present some facts.

Let g be a personal group. Assume |g| > sg . Let g1, g⇤1 , g⇤2 be
computed for g and let O⇤g , O⇤g1 , O

⇤
g2 be the observed count for a

particular SA value sa in g⇤, g⇤1 , g
⇤
2 , respectively. Let fg and fg1

be the frequency of sa in g and g1. Let F 0g, F 0g1 , F
0
g2 be the MLE

reconstructed from g⇤, g⇤1 , g
⇤
2 . We avoid to use f1, F

0
1, F

0
2 as these

symbols have been used as the frequencies for SA values sa1 and
sa2. Let u ' v denote that u and v are equal modulo the random
trial for the additional record in Scaling and Sampling.

• Fact 1: fg1 ' fg and |g1| ' sg . This is because Sampling
preserves the frequency of sa in g and the sample g1 has the
size sg .

• Fact 2: O⇤g2/|g
⇤
2 | ' O⇤g1/|g

⇤
1 |. This is because Scaling from

g⇤1 to g⇤2 preserves the frequency of sa.

• Fact 3: F 0g1 ' F 0g2 . This follows from F 0gi =
O⇤

gi
/|g⇤i |�(1�p)/m

p
,

i = 1, 2 (Lemma 2(ii)) and Fact 2.

• Fact 4: E[O⇤g2 ] ' E[O⇤g ]. From Lemma 2(i), E[O⇤g1 ] =
|g1|(fg1p + (1 � p)/m) ' sg(fg1p + (1 � p)/m) (Fact
1). Since Scaling duplicates each record in g⇤1 by |g|

sg
times,

E[O⇤g2 ] '
|g|
sg
⇥ E[O⇤g1 ] = |g|(fg1p + (1 � p)/m). From

Lemma 2(i), E[O⇤g ] = |g|(fgp+(1�p)/m). Then fg1 ' fg
(Fact 1) implies E[O⇤g2 ] ' E[O⇤g ].

THEOREM 4 (PRIVACY). For each personal group g, g⇤2 re-
turned by the SPS algorithm is (�, �)-reconstruction-private.

PROOF. If |g|  sg , g⇤2 = g⇤, by Corollary 4, g⇤2 is (�, �)-
reconstruction-private. We assume |g| > sg . In this case, g⇤1 is
(�, �)-reconstruction-private because |g1| ' sg (Fact 1). We claim
F 0
g2
�fg

fg
'

F 0
g1
�fg1

fg1
, which implies that F 0g2 has the same tail

probability for error as F 0g1 ; therefore, g⇤2 is (�, �)-reconstruction-
private because g⇤1 is. This claim follows from fg1 ' fg (Fact 1)
and F 0g1 ' F 0g2 (Fact 3).

THEOREM 5 (UTILITY). Let S be a set of records for one or
more personal groups in D, S⇤ be the corresponding set for D⇤,
and S⇤2 be the corresponding set for D⇤2 . Let f be the frequency
of a SA value sa in S, and let F 0 and F 0S2

be the estimates of f
reconstructed from S⇤ and S⇤2 . Then E[F 0S2

] ' f .

PROOF. Let O⇤2 =
P

O⇤g2 , O⇤ =
P

O⇤g , |S⇤| =
P

|g⇤|, and
|S⇤2 | =

P
|g⇤2 |, where

P
is over the personal groups g for S.

|S⇤| ' |S⇤2 |. From Lemma 2(ii), E[F 0] = E[O⇤]/|S⇤|�(1�p)/m
p

and E[F 0S2
] =

E[O⇤
2 ]/|S⇤

2 |�(1�p)/m
p

. From Fact 4, E[O⇤] ' E[O⇤2 ].
Thus, E[F 0] ' E[F 0S2

]. From Lemma 2(iii), E[F 0] ' f , thus,
E[F 0S2

] ' f .

Intuitively, Theorem 5 says that the estimate reconstructed using
the corresponding records in D⇤2 is an unbiased estimator of the
actual frequency.

6. EXPERIMENTAL STUDIES
We evaluate two claims. The first claim is that reconstruction

privacy could be violated on real life data sets. The second claim is
that the proposed SPS algorithm eliminates personal reconstruction
with minor sacrifice on the utility of aggregate reconstruction.

6.1 Experimental Setup
We implemented the proposed SPS algorithm as described in

Section 5 in C++ and ran all experiments on an Intel Xeon(R)
E5630 CPU 2.53GHZ PC with 12GB of RAM. We utilized two
publicly available data sets. The first one is the ADULT data set
[14]. This data set has 45,222 records (without missing values)
extracted from the 1994 Census database with the attributes Educa-
tion, Occupation, Race, Gender, and Income. We chose Income as
SA and the remaining attributes as the public attributes NA. The
second data set is the CENSUS data previously used in [28][22].
This data set contains personal information about 500K American
adults with 6 discrete attributes Age, Gender, Education, Marital,
Race, and Occupation. We chose Occupation as SA and the re-
maining attributes as NA. We considered five samples of CEN-
SUS of sizes 100K, 200K, 300K, 400K, 500K. These data sets
have different characteristics: ADULT represents a small data set
with very few SA values (with Income having only two values),
whereas CENSUS represents a large data set with a large number
of balanced distributed SA values (with Occupation having 50 val-
ues). We want to see how these characteristics would affect the
evaluation of our claims.
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As discussed in Section 3.4, the values for public attributes with
the same impact on SA have to be aggregated before generating
personal groups. The aggregation affects data sets to some extent.
Tables 4 and 5 show the impacts on the domain size of each public
attribute, the total number of personal groups (e.g., |G|), and the
averaged personal groups size (e.g., |D|/|G| with |D| as the total
number of records) of ADULT and CENSUS 300K. In the rest of
this section, we use the generalized values of public attributes.

Table 4: NA Aggregation Impact on ADULT

Domain Size of NA |G| |D|/|G|Education Occupation Race Gender
Before Aggregation 16 14 5 2 2240 20
After Aggregation 7 4 2 2 112 404

Table 5: NA Aggregation Impact on CENSUS 300K

Domain Size of NA |G| |D|/|G|Age Gender Education Marital Race
Before Aggregation 77 2 14 6 9 116424 3
After Aggregation 1 2 14 6 9 1512 331

The utility of the published data is evaluated by the accuracy of
answering count queries of the form:

SELECT COUNT (⇤) FROM D

WHERE A1 = a1 ^ · · · ^Ad = ad ^ SA = sai

(11)

where Aj 2 NA, aj 2 dom(Aj), and sai 2 dom(SA). The
answer to the query, ans, is the number of records in D satisfying
the condition in the WHERE clause. Such answers can be used
to learn statistical relationships between the attributes in NA and
SA. Given the perturbed data D⇤, ans is approximated by est =
|S⇤| ⇤ F 0, where S⇤ is the set of records in D⇤ satisfying A1 =
a1^ · · ·^Ad = ad, |S⇤| is the size of S⇤, and F 0 is the MLE given
by Lemma 2(ii) based on S⇤. The relative error of est is defined
as |est�ans|

ans
. A smaller relative error means a larger accuracy and

better utility. Queries on only NA are not considered because such
queries have zero relative error.

Data mining and analysis typically focuses on low dimensional
statistics, such as 1D or 2D marginals with a size above a sani-
ty bound [29]. We generated a pool of 5,000 count queries with
the query dimensionality d in {1, 2, 3} and with the selectivity
ans/|D| � 0.1%. For each query, we selected d from {1, 2, 3}, s-
elected d attributes from NA without replacement, selected a value
ai 2 dom(Ai) for each selected attribute Ai, and finally selected a
value sai 2 dom(SA). All selections are random with equal prob-
ability. If the query’s selectivity is 0.1% or more, we replaced the
NA value with aggregated values and then added it to the pool. Re-
call that we aggregated NA values based on their impact on SA as
in Section 3.3. The query pool simulates the set of possible queries
generated from real life, therefore, the original NA value (before
aggregation) is used to generate the query pool. Since we protect
reconstruction privacy on aggregated personal groups we evaluate
relative error on these aggregated personal groups as well. We re-
port the average of relative error over all queries in this pool. In
addition, since D⇤ is randomly generated in each run, we reported
the average of 10 runs to avoid the bias of a particular run.

Table 6: Parameter Table

Parameters Settings
p 0.1, 0.3, 0.5, 0.7, 0.9
� 0.1, 0.2, 0.3, 0.4, 0.5
� 0.1, 0.2, 0.3, 0.4, 0.5

The uniform perturbation, denoted by UP, as described in Sec-
tion 3.1 has been used as a privacy mechanism in [25][16][6]. But
these privacy mechanisms do not address the disclosure of personal
reconstruction. Our method addresses this disclosure by applying
UP to sampled data. So our evaluation has two parts. First, we
evaluate how often reconstruction privacy is violated by the per-
turbed data D⇤ produced by UP. Then, we evaluate the cost of
achieving reconstruction reconstruction by our SPS algorithm. This
cost is measured by the increase in the relative error for queries an-
swered using D⇤2 produced by SPS, compared to the relative error
of queries answered using D⇤ produced by UP. The same reten-
tion probability p is used for both UP and SPS. Table 6 shows the
settings of p, �, and � with the default settings in boldface.
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Figure 1: Maximum group size sg vs. maximum frequency f

Below, a group means a personal group. First, we study the con-
dition |g|  sg for testing whether a group g⇤ satisfies reconstruction-
privacy as described in Section 5, where sg is the maximum thresh-
old on the group size defined as

sg =
�2(fp+ (1� p)/m) ln �

(�pf)2
(12)

f is the maximum frequency of any SA value occurring in g. Fig-
ure 1 plots the relationship between sg and f (for the default set-
tings of � and �). Note that the range of f is [0.5, 0.9] for ADULT,
but is [0.1, 0.9] for CENSUS. This is because ADULT contains on-
ly 2 distinct SA values, as a result, f is at least 50% in all personal
groups. Each curve corresponds to a setting of p. For each curve in
Figure 1, the region above the curve represents the area where this
condition fails, that is, |g| > sg for a given f . The large area above
these curves suggests that the maximum group size sg can be easily
exceeded, and thus, there is a good chance of violating reconstruc-
tion privacy. Observing both Figure 1 and Equation (12) we get
that, when parameters: �, � and p are given, the value of m and
f have opposite effects on the value of sg , particularly, f becomes
the dominant factor when f is small (e.g., when f  0.3 in Figure
1). The value of sg boosts when f is smaller, implying that person-
al groups with smaller f tend to be reconstruction private because
it is easier for them to satisfy the condition of |g|  sg . We will
confirm this observation on the two real life data sets shortly.

6.2 ADULT Data Set
Violation. Figure 2 shows the extent to which reconstruction

privacy is violated on the perturbed ADULT data set D⇤ produced
by UP. This extent is measured at two levels. vg represents the per-
centage of groups that violate reconstruction privacy. vr represents
the percentage of records contained in a violating personal group,
i.e., the coverage of the violating groups in terms of the number
of individuals affected. We consider this coverage because all the
records in a violating group are under the same risk of accurate
personal reconstruction.

Both violations in terms of vr and vg are obvious. Take the de-
fault setting of p = 0.5, � = 0.3 and � = 0.3 as an example. The
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Figure 2: ADULT: Privacy Violation
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Figure 3: ADULT: Relative Error

85% of all groups are violating and covering more than 99% of the
records. This privacy risk is interpreted as follows: with probability
of 1� � = 70%, the estimate F 0 of some SA value is within a rel-
ative error of � = 30%, and this case covers more than vr = 99%
of all individuals. The large coverage is expected because a larger
group more likely violates reconstruction privacy (Figure 1).

Cost. Figure 3 shows the increase of relative error due to the
sampling of SPS. Compared to UP, the relative error for SPS in-
creases about 50% in the worst case. This increase is due to the
sampling required to eliminate the violation of reconstruction pri-
vacy. Considering the large coverage of the violation (i.e., vr in
Figure 2), having such increase of error is reasonable. We empha-
size that this increase is due to the large f in personal groups in
ADULT. Recall that f is no less than 50% and when f is larger
personal groups tend to violate reconstruction privacy (Figure 1).
Note that ADULT is not general in real life in terms of very few
number of SA values, for other data sets with more SA values, the
increased error would be reduced, which will be confirmed soon on
the CENSUS data set. Choosing a small p helps eliminate viola-
tion, but also quickly increases the relative error for both UP and
SPS (Figures 2a and 3a). Indeed, a too small p makes the perturbed
data become nearly pure noises. This study confirms our discussion
at the beginning of Section 5 that the approach of reducing p does
not preserve utility.

6.3 CENSUS Data Set
Violation. CENSUS is a larger data set with a much larger num-

ber of balanced distributed SA values. We are curious how this
characteristic change would affect our claims. Figure 4 shows the
extent to which reconstruction privacy is violated. The default data
size is 300K when |D| is not specified. Compared to the ADULT
data set, the frequency f of a SA value is much smaller; conse-
quently, the value of sg is much larger (Figure 1). The larger sg
makes it easy to satisfy the condition of |g|  sg , therefore, it
is less likely that groups in CENSUS would violate reconstruction
privacy, which explains the much smaller vg and also confirms our
claim on Figure 1 that smaller f may lead to less reconstruction vi-
olations. Besides, the larger sg implies that violation groups must
have larger g because |g| > sg , which explains the small number
of violation groups covering the most records in the data set.

Cost. Figure 5 compares the relative error of UP and SPS. A big

difference from the ADULT data set is that there is less increase in
the relative error (e.g., less than 10% for most of settings) for SPS
compared to the relative error for UP across all settings of parame-
ters. This is a consequence of the smaller percentage rg of the vio-
lating groups discussed above. In this case, most of the groups do
not need sampling because they satisfy reconstruction privacy and
only the small number of violating groups will be sampled. Even
for such groups, a small reduction in the number of record pertur-
bation is sufficient to increase the error of personal reconstruction
to the level required by our privacy criterion.

Another interesting point is that even though a larger data size
|D| causes more violations of reconstruction privacy (Figure 4d),
it actually decreases the relative error for SPS (Figure 5d). As ex-
plained above, for this data set, eliminating violation incurs little
additional error beyond that of UP. Therefore, as the data size in-
creases, the relative error of UP gets smaller, so does the relative
error of SPS. This finding suggests that the proposed SPS algorith-
m could be more effective on a larger data set.

In summary, our empirical studies supported the claim that re-
construction attack could occur on real life data sets, whether they
are small or large and whether the number of sensitive attribute is
small or large. The studies also supported the claim that the pro-
posed privacy criterion and the sampling method are effective to
preserve the utility for data analysis while eliminating such attacks.
This effectiveness is more observed on larger data sets with a large
number of balanced distributed sensitive attributes.

7. CONCLUSION
Differential privacy has become a popular privacy definition for

sharing statistical information thanks to good utility. However,
this good utility comes with the cost of disclosures through non-
independent reasoning. In this work, we presented a data perturba-
tion approach to prevent sensitive non-independent reasoning while
enabling statistical learning. We achieved these goals through a
property implied by the law of large numbers, which allows us to
separate these two types of learning by their different responses
to reduction in random trials. Based on this idea, we use record
sampling to reduce the random trials in data perturbation, which
mostly affects non-independent reasoning specific to an individual
while having only a limited effect on statistical learning.
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Figure 4: CENSUS: Privacy Violation
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ABSTRACT
The problem of anomaly detection in time series has recently
received much attention. However, many existing techniques
require the user to provide the length of a potential ano-
maly, which is often unreasonable for real-world problems.
In addition, they are also often built upon computing costly
distance functions – a procedure that may account for up to
99% of an algorithm’s computation time.

Addressing these limitations, we propose two algorithms
that use grammar induction to aid anomaly detection with-
out any prior knowledge. Our algorithm discretizes contin-
uous time series values into symbolic form, infers a context-
free grammar, and exploits its hierarchical structure to effec-
tively and efficiently discover algorithmic irregularities that
we relate to anomalies. The approach taken is based on
the general principle of Kolmogorov complexity where the
randomness in a sequence is a function of its algorithmic
incompressibility. Since a grammar induction process natu-
rally compresses the input sequence by learning regularities
and encoding them compactly with grammar rules, the al-
gorithm’s inability to compress a subsequence indicates its
Kolmogorov (algorithmic) randomness and correspondence
to an anomaly.

We show that our approaches not only allow discovery
of multiple variable-length anomalous subsequences at once,
but also significantly outperform the current state-of-the-art
exact algorithms for time series anomaly detection.

1. INTRODUCTION
The ability to detect anomalies in time series efficiently

is important in a variety of application domains where ano-
malies convey critical and actionable information, such as
in health care, equipment safety, security surveillance, and

c©2̇015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0
.

fraud detection. Consequently, the anomaly detection prob-
lem has been studied in diverse research areas [10]. Despite
the problem’s simplicity at the abstract level, where an ano-
maly is defined as a pattern that does not conform to the
underlying generative processes, the problem is difficult to
solve in its most general form [3].

Anomalies in time series can be divided into two broad
categories: point anomalies and structural anomalies. Point
anomalies are statistical outliers, i.e., points which are sig-
nificantly different from others [11], and have been studied
the most [3]. In contrast, structural anomalies, whose disco-
very is our present focus, are defined as subsequences whose
shape do not conform to the rest of the observed, or expected
patterns [10, 3, 13].

Previously in [13], the notion of time series discord was in-
troduced. Discords are shown to capture in a sense the most
unusual subsequences within a time series that are likely to
correspond to many possible anomalies within the genera-
tive processes – a property which was confirmed in a recent
extensive empirical study by Chandola et al., where they
concluded ”..on 19 different publicly available data sets, com-
paring 9 different techniques time series discord is the best
overall technique among all techniques” [3]. However, to dis-
cover a discord, the user must specify its length. There are
two limitations with this requirement in real world problems.
First, the user may not know the exact discord length, or
even the best range of lengths in advance. Second, restrict-
ing the discovery to only fixed length discords limits the
algorithm’s exploratory capacity since multiple discords of
different lengths may co-exist in a time series. As a result,
determining all possible lengths to discover the best discords
would be extremely cost prohibitive.

In this work, we focus on the discovery of structural ano-
malies that can also be described as the most unusual sub-
sequences within a given time series, and we introduce a
framework that addresses the above limitation by enabling
efficient detection of variable-length anomalies. The pro-
posed algorithms relies on the grammar induction proce-
dure, which once applied to a string obtained by symbolic
time series discretization, learns algorithmically exploitable
symbol correlations and builds a hierarchical structure of
context-free grammar rules, each of which maps to variable-
length subsequences of the input time series. Through the
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analysis of the grammar’s hierarchical structure, the algo-
rithms efficiently identify substrings that are rarely used in
the grammar rules and whose corresponding subsequences
can be considered as candidate anomalies.

Our approach builds upon the general notion of Kolmogorov
complexity [15], which defines a string’s complexity as a size
of the smallest program that generates the string. While the
Kolmogorov complexity is an uncomputable function due to
the undecidability of the Turing machine halting problem,
its value is typically approximated by the size of the input
string in its algorithmically compressed form, and the tight-
ness of the approximation bound is related to the overall ef-
ficiency of the compressor [27, 17]. This practical notion of
algorithmic compressibility allows for the estimation, study,
and application of Kolmogorov complexity in a number of
generic solutions to common data mining tasks. For exam-
ple it underlies the Minimum Description Length (MDL) [9]
and Normalized Compression Distance (NCD) [5] principles,
and has been used for time series anomaly discovery [14].

Within the algorithmic compressibility framework, the al-
gorithmic (Kolmogorov) randomness of a string has been
defined through its incompressibility, i.e., the lack of algo-
rithmically exploitable redundancy [17, 9, 6, 20]. Since a
grammar induction algorithm can be used to provide ef-
fective and efficient compression [21], naturally, it can be
used for both the estimation of Kolmogorov complexity and
algorithmic randomness discovery. Hence our present goal
is to explore this property and to show that the algorith-
mic randomness discovered with the application of grammar
induction-based compression to discretized time series can
be correlated to the anomalousness within the time series.

In summary, our work has the following significant contri-
butions:

• To the best of our knowledge, we are the first to explore
the application of grammar-based compression to the
problem of time series anomaly discovery.

• We propose two novel techniques for time series ano-
maly discovery based on grammatical compression, in
which we define an anomaly as an incompressible, al-
gorithmically random subsequence.

• Our approaches offer the unique ability to discover
multiple variable-length anomalies at once (Figure 1).

The remainder of the paper is organized as follows. In Sec-
tion 2, we provide notation and define our research prob-
lem. In Section 3, we give a motivational example and de-
scribe algorithms used. We discuss our approach in detail
in Section 4, showing two algorithms enabling grammatical
compression-driven anomaly detection in time series. In Sec-
tion 5, we empirically evaluate our algorithms on datasets
as diverse as spatial trajectories, space shuttle telemetry,
medicine, surveillance, and industry. We also show the util-
ities of incorporating the algorithms into our visualization
tool, GrammarViz 2. Finally, we review related work and
conclude.

2. NOTATION AND THE PROBLEM
DEFINITION

To precisely state the problem at hand, and to relate our
work to previous research, we will define the key terms used
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Excerpt from the Video dataset

0 1000 2000 3000

Grammar rules density

Figure 1: An example of multiple anomalous events found in a
recorded video time series [14] shown at the top panel. The rule
density curve, which we propose in this paper, and which is built
in linear time and space, is shown in the bottom panel. Reflect-
ing the hierarchical grammar structure, the rule density curve
reaches its minima where no algorithmic redundancy is observed,
pinpointing anomalous locations precisely.

throughout this paper. We begin by defining our data type,
time series:

Time series T = t1, . . . , tm is a set of scalar observations
ordered by time.

Since we focus on the detection of anomalous patterns,
which are likely to be local features, we consider short sub-
sections of time series called subsequences:

Subsequence C of time series T is a contiguous sampling
tp, . . . , tp+n−1 of points of length n << m where p is an
arbitrary position, such that 1 ≤ p ≤ m− n+ 1.

Typically subsequences are extracted from a time series
with the use of a sliding window:

Sliding window subsequence extraction: for a time se-
ries T of length m, and a user-defined subsequence length
n, all possible subsequences of T can be found by sliding a
window of size n across T .

As it is well acknowledged in the literature, and as we have
shown before in [25], it is often meaningless to compare time
series unless they are z-normalized:

Z-normalization is a process that brings the mean of a
subsequence C to zero and its standard deviation to one.

Given two time series subsequences C and M , both of
length n, the distance between them is a real number that
accounts for how much these subsequences are different,
and the function which outputs this number when given
C and M is called the distance function and denoted
Dist(C,M). One of the most commonly used distance func-
tions is the Euclidean distance, which is the square root
of the sum of the squared differences between each pair of
the corresponding data points in C and M .

One of our proposed techniques is built upon determining
if a given subsequence C is similar to other subsequences M
under distance measure Dist. This notion is formalized in
the definition of a match:

Match: Given a positive real number t (i.e., threshold)
and subsequences C and M , if Dist(C,M) ≤ t then sub-
sequence M is a match to C.

When searching for potential anomalies using a distance
function, it is important to exclude self matches, which are
subsequences that overlap the subsequence currently being
considered. Such self-matches can yield degenerate and un-
intuitive solutions as discussed in [13]. For two subsequences
C and M we define a non-self match:
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Non-self match: Given a subsequence C of length n
starting at position p of time series T , the subsequenceM be-
ginning at q is a non-self match to C at distance Dist(C,M)
if |p− q| ≥ n.

As mentioned, one of the most effective methods for time
series anomaly detection is via discord discovery. Formally,
it is defined as:

Time Series Discord: Given a time series T , the time
series subsequence C ∈ T is called the discord if it has the
largest Euclidean distance to its nearest non-self match [13].
Thus, time series discord is a subsequence within a time se-
ries that is maximally different to all the rest of subsequences
in the time series, and therefore naturaly captures the most
unusual subsequence within the time series [13].

2.1 Problem definition
The task of finding a structural time series anomaly is

defined as
Given a time series T , find a subsequence C that is the

most (structurally) different from the rest of the observed
subsequences.

This task, however, is very difficult to solve in its gen-
eral form without a notion of the context [3]. The context
is information that can be induced from the structure of
the dataset or specified as a part of the problem. It places
constraints on both the search space and the results, mak-
ing it possible to find a meaningful solution. Based on this
rationale, we re-define the anomaly discovery problem as:

Given a time series T and some context, find a subsequence
C that is the most structurally different from others and
which can be related to the context.

In discords—the current state of the art in structural ano-
maly detection [3]—the context is provided by the user-
defined anomaly length, and the notion of the “most struc-
turally different” is defined as the largest Euclidean distance
to the nearest non-self match. Both constraints, while defin-
ing the problem and the solution exactly, place severe restric-
tions on the result by assuming unrealistic a priori knowl-
edge about the exact anomaly length.

In this work we address this issue by allowing the discord
length to vary in boundaries that are consistent with the
time series context. Toward this end, we represent the con-
text as a hierarchical grammar structure obtained through
the processes of time series symbolic discretization and context-
free grammar induction. In turn, by exploiting the use fre-
quencies of the induced grammar rules, our technique finds
the most unusual rules which we consider as discord candi-
dates to be evaluated and which, naturally, vary in length.

3. GRAMMAR-BASED TIME SERIES DE-
COMPOSITION

Before describing our approach in detail, consider the fol-
lowing example showing the context-free grammar proper-
ties used in our approach. Let

S = abc abc cba xxx abc abc cba

be the input string under analysis (e.g. derived from a time
series and reflecting its structure). For reason that will be-
come clearer later, the input string consists of a sequence
of words (in this example, 3-letter words or triplets). Each
triplet is considered an atomic unit, or a terminal in the
sequence. The task is to compress this input sequence by
grammar induction.

A careful look at the string shows that there are repeated
patterns abc abc cba separated by xxx. Ideally, we expect
the grammar induction or compression algorithm to reflect
this, as shown in the possible grammar for input S:

Grammar Rule Expanded Grammar Rule
R0 → R1 xxx R1 abc abc cba xxx abc abc cba
R1 → R2 cba abc abc cba
R2 → abc abc abc abc

As shown, the grammar induction algorithm has reduced
the length of the input string (i.e., compressed it) by creating
a grammar whose rules are encoded by non-terminals R1
and R2, which reveal repeated patterns in the input.

In previous work, we have shown that by the analysis of a
grammar built upon time series discretization it is possible
to identify recurrent patterns, i.e. time series motifs [16].
Since anomaly detection can be viewed as the inverse prob-
lem to motif discovery, in this work, we argue that symbols
that are rarely used in grammar rules (i.e. xxx) may aid in
anomaly detection as well. The intuition is that subsequen-
ces of any length that never or rarely occur in grammar rules
are non-repetitive and are thus most likely to be unusual or
anomalous.

To illustrate this, suppose we annotate each word of the
input string S with the number of rules that the word ap-
pears in excluding the top-level rule R0. The input string S
becomes the following:

S = abc2 abc2 cba1 xxx0 abc2 abc2 cba1

All occurrences of the word abc have a count of 2 be-
cause they appear in both R1 and R2; the word cba has
count of 1 since it appears only in R1; whereas the word
xxx has a count 0, because it is not a part of any rule. Since
the counts naturally reflect the algorithmic compressibility
of the sequence of terminal and non-terminal symbols, the
triplet xxx0 is algorithmically incompressible by the gram-
mar induction algorithm and thus algorithmically random.
In turn, if the input string S is derived by discretizing a time
series into a sequence of words, where each word corresponds
to a time series subsequence, then based on our hypothesis,
the subsequence in the time series that xxx represents is a
potential anomaly.

Note that when identifying a potential anomaly we have
not used any explicit distance computation between termi-
nal or non-terminal symbols, grammar rules, or their cor-
responding (i.e., raw) subsequences. Moreover, note that
the time series discretization technique SAX [25] and the
grammatical inference algorithm Sequitur [22] that we rely
upon, also do not compute any distance (i.e., they do not
explicitly measure how far apart objects are). Hence, unlike
most anomaly discovery algorithms, our approach does not
require any distance computation to discover and to rank
multiple potential anomalies.

Discovered in the above example potential anomaly is the
most unusual substring of a larger input string in terms of
the grammatical inference algorithm of choice. Specifically,
in contrast to other terminal symbols, the word xxx is not
included in any of grammatical rules – the property that
is discovered and accounted for by the grammatical infer-
ence algorithm. Thus, the discovered anomalous substring
is analogous in meaning to a time series discord. However,
our approach determines the anomalous subsequence length
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automatically in the course of grammar induction process,
whereas the discord discovery algorithm requires the length
of a potential anomaly to be known in advance.

Based on the intuition shown above, we shall present two
algorithms that enable the discovery of variable-length ano-
malies. Before that, we discuss time series discretization
and grammatical inference – the procedures upon which our
techniques are built.

3.1 Discretization
Since grammar induction algorithms are designed for dis-

crete data, we begin by discretizing a continuous time se-
ries with SAX (Symbolic Aggregate approXimation) [25].
In addition, since an anomaly is a local phenomenon, we
apply SAX to subsequences extracted via a sliding window.
SAX performs discretization by dividing z -normalized sub-
sequence into w equal-sized segments. For each segment, it
computes a mean value and maps it to symbols according
to a pre-defined set of breakpoints dividing the distribution
space into α equiprobable regions, where α is the alphabet
size specified by the user. This subsequence discretization
process [19] outputs an ordered set of SAX words, where
each word corresponds to the leftmost point of the sliding
window, and which we process with numerosity reduction at
the next step.

As an example, consider the sequence S1 where each word
(e.g. aac) represents a subsequence extracted from the orig-
inal time series via a sliding window and discretized with
SAX (the subscript following each word denotes the start-
ing position of the corresponding subsequence in the time
series):

S1 = aac1 aac2 abc3 abb4 acd5 aac6 aac7 aac8 abc9 . . .

In contrast to many SAX-based anomaly discovery tech-
niques that store SAX words in a trie or a hash table for
optimizing the search, and essentially throw away the or-
dering information, we argue that the sequential ordering of
SAX words provides valuable contextual information, and is
the key for allowing variable-length pattern discovery.

3.2 Numerosity reduction
As we have shown in [19], neighboring subsequences ex-

tracted via sliding window are often similar to each other.
When combined with the smoothing properties of SAX, this
phenomenon persists through the discretization, resulting in
a large number of consecutive SAX words that are identi-
cal. Later, these yield a large number of trivial matches
significantly affecting performance. To address this issue,
we employ a numerosity reduction strategy: if in the course
of discretization, the same SAX word occurs more than once
consecutively, instead of placing every instance into the re-
sulting string, we record only its first occurrence. Applied
to S1, this process yields:

S1 = aac1 abc3 abb4 acd5 aac6 abc9

In addition to speeding up the algorithm and reducing its
space requirements, the numerosity reduction procedure pro-
vides an important feature in this work – it naturally enables
the discovery of variable-length anomalies as we show next.

3.3 Grammar induction on SAX words
Next, the reduced (from repetitions) sequence of SAX

words is inputted into Sequitur [22], our grammar induction
algorithm of choice, to build a context-free grammar.

Sequitur is a linear time and space algorithm that derives
the context-free grammar from a string incrementally. Pro-
cessing the input string from left to right, Sequitur builds
the hierarchical structure of a context-free grammar by iden-
tifying and exploiting symbol correlations while maintaining
the two constraints of uniqueness and utility at all times. Al-
though simple in design, Sequitur has been shown to be com-
petitive with state of the art compression algorithms – the
property which allows us to use the notion of Kolmogorov
complexity. In addition, Sequitur performance tends to im-
prove with the growth of the input string size [21].

When applied to a sequence of SAX words, Sequitur treats
each word as an input string token and builds the context-
free grammar’s hierarchical structure. This structure re-
cursively reduces all digrams that are consecutive pairs of
tokens (terminal or non-terminal) occurring more than once
in the input string to a single new non-terminal symbol.

To reiterate the benefit of the numerosity reduction strat-
egy and how it lends itself to variable-length pattern dis-
covery with Sequitur, consider the single grammar rule R1
generated by Sequitur from the string S1 as shown here:

Grammar Rule Expanded Grammar Rule
R0 → R1 abb acd R1 aac1 abc3 abb4 acd5 aac6 abc9
R1 → aac abc aac abc

In this grammar, R1 concurrently maps to substrings of
different lengths: S1[1:3] of length 3 (i.e., aac1 aac2 abc3) and
S1[6:9] of length 4 (i.e., aac6 aac7 aac8 abc9), respectively.
The potential anomalous substring “abb4 acd5” has length
2. Since each SAX word corresponds to a single point of the
input time series (a subsequence starting point), R1 maps
to its subsequences of variable lengths.

3.4 Mapping rules to subsequences
As shown in the above example, by keeping SAX words’

offsets throughout the procedures of discretization and gram-
mar induction, our algorithm is able to map rules and SAX
words back to their original time series subsequences.

3.5 Pattern mining with Sequitur
Previously in [16], we proposed GrammarViz, an algo-

rithm for variable-length time series motif discovery that
makes full use of the hierarchy in Sequitur’s grammar. We
showed the ability of the proposed algorithm to discover re-
current patterns of variable lengths. This is due to several
properties of the algorithm, including: the data smoothing
capability of SAX, numerosity reduction which enables the
patterns’ variable length, and Sequitur’s utility constraint
which ensures that all of the grammar’s non-terminals cor-
respond to recurrent patterns. We later implemented visual-
ization software based on this concept [26] that also provides
a pilot module demonstrating the potential for a grammar-
based approach to identify anomalies.

In this work, we formally introduce the notion of the rule
density curve which is the key to our grammar-driven ano-
maly detection algorithm. Simply put, the rule density curve
reflects the number of Sequitur grammar rules that span a
time series point. We also provide theoretical background
for our empirical observations. For this, we emphasize the
role of the second Sequitur constraint, digram uniqueness,
which ensures that none of the digrams processed by the
algorithm (i.e., compressed into non-terminals) repeats it-
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self. This property guarantees the exhaustiveness of the
search for algorithmically exploitable redundancies in the
input string, and consequently asymptotically maximal com-
pression of the output string [21]. Both properties allow
us to put our approach within the Kolmogorov complex-
ity framework based on the algorithmic compressibility and
relate algorithmically incompressible subsequences to ano-
malies as we discuss in the next section.

4. GRAMMAR-DRIVEN ANOMALY
DISCOVERY

Within Kolmogorov complexity research, it has been pro-
ven that algorithmic incompressibility is a necessary and
sufficient condition for randomness [6, 17], thanks to the
elegant statistically-sound theory developed by Martin-Löf
[20]. This theoretically grounds our intuition and effectively
supports the claim that if a grammar induction algorithm is
incapable of encoding a subsequence by finding exploitable
correlations within the input string, such a subsequence is
random within the context of the input string and applied al-
gorithm. We call such subsequences algorithmically anoma-
lous and equate them to time series anomalies.

Let us explain the utility of “algorithmic anomalousness”.
When searching for an anomaly in a time series, we expect
that while the true generative process is unknown, it is likely
to be regular and that the time series reflects these regular-
ities. At the same time, we also assume that the time series
may contain some abnormal segments, whose identification
is our goal. Further, assuming that the discretization pro-
cess preserves these regularities and irregularities, the Se-
quitur algorithm should be able to learn the regularities and
effectively compress the input string. However, due to its in-
variants of utility and uniqueness, Sequitur will not be able
to form rules that contain symbolic subsequences occurring
just once in the input string, because it will not be able to
find any short- or long-term correlations between them and
the rest of the string – the property that reflects irregularity
and defines a variable-length anomaly in the most natural
way.

Based on the intuition behind algorithmic anomalousness
we propose two algorithms for grammatical compression-
driven variable-length anomaly discovery from time series.
Configured only by the discretization parameters, both algo-
rithms are capable of efficient discovery of putative anoma-
lous subsequences without any prior knowledge of their length,
shape, or minimal occurrence frequency. While the result
produced by the first algorithm is an approximate solution,
our second algorithm is based on explicit distance computa-
tions and outputs time series discords of variable length.

4.1 Efficient, rule density-based anomaly
discovery

To efficiently discover approximate anomalies, we propose
to compute the rule density curve for the input time series.
Toward that end, an empty array of length m (the length
of the time series), is first created. Each element in this ar-
ray corresponds to a time series point and is used to keep
count of the grammar rules that span (or “cover”) the point.
Second, since the locations of corresponding subsequences
for all grammar rules are known, by iterating over all gram-
mar rules the algorithm increments a counter for each of the
time series points that the rule spans. After this process
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Dataset ECG qtdb 0606, excerpt [701-3000]

Sequitur grammar rules density (discretization parameters W=100,P=9,A=5)

Non-self distance to the nearest neighbor among rule-corresponding subsequences

The true anomaly location at ST wave

Figure 2: Anomaly discovery in ECG dataset. Top panel shows
the anomalous heartbeat location. Middle panel shows that the
rule density curve clearly identifies the true anomaly by its global
minimum. Bottom panel confirms that the RRA-reported discord
has indeed the largest distance to its nearest non-self match.

each element of the array contains a value indicating the to-
tal number of grammar rules that covers the corresponding
time series point. The curve that corresponds to the array’s
values is the rule density curve. As an example, consider the
rule density curves shown in the middle panels of Figures 2
and 3.

Since each SAX string corresponds to a subsequence start-
ing at some position of the time series, the points whose rule
density counters are global minima correspond to the gram-
mar symbols (terminals or non-terminals) whose inclusion
in the grammar rules are minimal. These subsequences are
algorithmically anomalous by our definition and we argue
that the rule density curve intervals that contain minimal
values correspond to time series anomalies, and our algo-
rithm simply outputs these intervals.

Consider the example shown in Figure 2. The top panel
shows an excerpt of an ECG time series with a highlighted
instance of an anomalous heartbeat featuring a very subtle
premature ventricular contraction. The middle panel shows
a significant drop in the grammar rule density over the inter-
val 462-484, which is in perfect alignment with the ground
truth – an expert’s annotation of an anomaly occuring in the
ST interval of the ECG curve (as discussed in [13]). Similar
to that, the global minima of the rule density curve shown
in the middle panel of Figure 3 pinpoints the weekly interval
that has the most unusual power consumption pattern (the
dataset in the top panel of Figure 3 shows the power con-
sumption history of a Dutch research facility for the entire
year of 1997 [28]).

The rule density-based approach is capable of discovering
multiple anomalies of variable length. When given a fixed
threshold, it simply reports contiguous points of the input
time series whose density is less than the threshold value.
If needed, an additional ranking criterion can be defined,
such as a minimal anomaly length or a statistically sound
criterion based on probabilities.

Note that even though we need to specify the sliding win-
dow length, it is only the initial “seed” value. Unlike most
existing algorithms in which this subsequence length is the
exact length of the anomaly, anomalies reported by our tech-
nique are not bounded by the seed length and may range
from very short to very long time spans.

485



0 5000 10000 15000 20000 25000 30000 35000

0 5000 10000 15000 20000 25000 30000 35000

0 5000 10000 15000 20000 25000 30000 35000

Dataset Dutch Power Demand and 3 anomalies discovered by SAXSequitur

Non-self distance to the nearest neighbor among rule-corresponding subsequences

Sequitur grammar rules density (discretization parameters W=750,P=10,A=4) 
Best discordSecond discord Third discord

Figure 3: Multiple discord discovery in Dutch power demand
data [28]. Top panel shows 52 weeks of power demand by a re-
search facility. Middle panel shows that while the rule density-
based technique was able to discover the best discord, others are
difficult to discriminate. The bottom panel shows distances to
the nearest non-self match computed for each rule-corresponding
subsequence, which allows for the ranking of discords discovered
with RRA.
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Figure 4: A detailed view of RRA-ranked variable length dis-
cords discovered in the Dutch power demand dataset. All of them
highlight time intervals where typical weekly patterns are inter-
rupted by state holidays.

Another distinguishable and desirable characteristic of this
approach is its efficiency. It has linear time and space com-
plexity since the sequential processing of SAX, Sequitur, and
the global minima search take linear time and space. This
efficiency, when combined with effective rule density curve-
based visualization, enables the user to interactively explore
the dataset and to refine discretization parameters and the
anomaly selection threshold.

4.2 Exact, distance-based anomaly discovery
If the time series under analysis has low regularity (an is-

sue that impacts the grammar’s hierarchy) or the discretiza-
tion parameters are far from optimal and regularities are
not conveyed into the discretized space, the rule density-
based anomaly discovery technique may fail to output true
anomalies. In addition, some applications may require addi-
tional anomaly evidence or ranking. To address this, we pro-
pose a second variant of a grammar-driven variable-length
anomaly discovery algorithm based on an explicit distance
computation which outputs discords – the subsequences whose
distance to their nearest non-self match is the largest. Since
anomalous subsequences correspond to rare grammar rules,
we call the algorithm RRA (Rare Rule Anomaly).

Algorithm 1 RRA algorithm

1: function Find discord(T, Intervals,Outer, Inner)
2: best so far dist = 0
3: best so far loc = NaN
4: for each p in Intervals ordered by Outer do
5: nearest neighbor dist = Infinity
6: for each q in Intervals ordered by Inner do
7: if |p0 − q0| ≥ Length(p) 1 then
8: current dist = Dist(p, q)
9: if current dist < best so far dist then

10: break
11: if current dist < nearest neighbor dist then
12: nearest neighbor dist = current dist

13: if nearest neighbor dist > best so far dist then
14: best so far dist = nearest neighbor dist
15: best so far loc = p

16: return (best so far dist, best so far loc)

1p0 and q0 are the global indexes (in T ) of the first points
of subsequences p and q respectively. In this line we check
that currently analyzed subsequences do not overlap (i.e.,
q is non-self match of p).

The RRA algorithm is based on the HOTSAX framework
initially proposed in [13] for the discord discovery. The al-
gorithm’s input includes the original time series T , a list
of variable length subsequences corresponding to grammar
rules which we call Intervals, and two heuristics: Inner
and Outer, which can be applied to list of subsequences.

Similar to HOTSAX, our algorithm iterates over all can-
didate subsequences in the outer loop (line 4 of Algorithm 1)
while computing distances to all other non-self matches in
the inner loop (lines 6–8; p0 and q0 in line 7 are the indexes)
and selecting the closest non-self match (lines 9–15). The
candidate subsequence from the outer loop which yields the
largest distance to a non-self match is output as the result.
In HOTSAX, the candidates in the outer (Outer) and inner
(Inner) loops are ordered based on the SAX representations
of the candidate subsequences such that the order of consid-
eration is as close to the optimal ordering (i.e., the ordering
that would result in the most elimination of computations)
as possible. However, as mentioned earlier, HOTSAX can-
didates are restricted by their subsequence length. Our pro-
posed technique differs from HOTSAX in that subsequences
(i.e., Intervals in Algorithm 1) and their ordering for the
inner (Inner) and outer (Outer) loops are provided as the
input based on the information derived from grammar.

Specifically, Intervals subsequences are those that corre-
spond to the grammar rules plus all continuous subsequences
of the discretized time series that do not form any rule. The
Outer subsequence ordering utilizes the information derived
from a hierarchical grammar structure – we order subsequen-
ces in ascending order of their corresponding rule usage fre-
quency (note that continuous subsequences of the discretized
time series that do not form any rule have frequency 0 and
are thus considered first). The intuition behind this order-
ing is simple and is a reflection of the previously discussed
properties of algorithmically anomalous subsequences. That
is, the sooner we encounter the true anomaly, the larger the
best so far dist is, and the more computations we can po-
tentially eliminate later on (line 9).

The Inner candidate match ordering is also based on
grammar information. First, having a candidate subsequence
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Table 1: Performance comparison for brute-force, state-of-the-art, and the proposed exact discord discovery algorithms.

Dataset name and discretization Length Number of calls to the distance function Reduction in HOTSAX & RRA dis-
param. (window, PAA, alphabet) Brute-force HOTSAX RRA distance calls cords length and overlap

Daily commute (350,15,4) 17’175 271’442’101 879’067 112’405 87.2% 350 / 366 100.0%
Dutch power demand (750,6,3) 35’040 1.13× 109 6’196’356 327’950 95.7% 750 / 773 96.3%
ECG 0606 (120,4,4) 2’300 4’241’541 72’390 16’717 76.9% 120 / 127 79.2%
ECG 308 (300,4,4) 5’400 23’044’801 327’454 14’655 95.5% 300 / 317 97.7%
ECG 15 (300,4,4) 15’000 207’374’401 1’434’665 111’348 92.2% 300 / 306 65.0 %
ECG 108 (300,4,4) 21’600 441’021’001 6’041’145 150’184 97.5% 300 / 324 89.7%
ECG 300 (300,4,4)i 536’976 288× 109 101’427’254 17’712’845 82.6% 300 / 312 83.0%
ECG 318 (300,4,4) 586’086 343× 109 45’513’790 10’000’632 78.0% 300 / 312 80.7%
Respiration, NPRS 43 (128,5,4) 4’000 14’021’281 89’570 45’352 49.3% 128 / 135 96.0%
Respiration, NPRS 44 (128,5,4) 24’125 569’753’031 1’146’145 257’529 77.5% 128 / 141 61.7%
Video dataset (gun) (150,5,3) 11’251 119’935’353 758’456 69’910 90.8% 150 / 163 89.3%
Shuttle telemetry, TEK14 (128,4,4) 5’000 22’510’281 691’194 48’226 93.0% 128 / 161 72.7%
Shuttle telemetry, TEK16 (128,4,4) 5’000 22’491’306 61’682 15’573 74.8% 128 / 138 65.6%
Shuttle telemetry, TEK17 (128,4,4) 5’000 22’491’306 164’225 78’211 52.4% 128 / 148 100.0%

i RRA reported the best discord discovered with HOTSAX as the second discord (Figure 5).

from a grammar rule selected in the Outer loop, we consider
all other subsequences from the same rule as possible near-
est non-self matches. After this step, the rest of the subse-
quences are visited in random order. The intuition behind
this ordering is also simple – the subsequences correspond-
ing to the same Sequitur rule are very likely to be highly
similar. Thus, considering those in the beginning of Inner
loop allows us to potentially encounter a distance that is
smaller than best so far dist sooner and to benefit from
early abandoning (lines 9–10 of the Algorithm 1) while con-
sidering all other candidates in the Outer loop. Since RRA
operates with rule-corresponding subsequences of variable
lengths, when searching for nearest non-self match we em-
ploy the Euclidean distance normalized by the subsequence
length, which favors shorter subsequences for the same dis-
tance value:

Dist(p, q) =

√∑n
i=1(pi − qi)2
Length(p)

(1)

When run iteratively, excluding the current best discord
from Intervals list, RRA outputs a ranked list of multi-
ple co-existing discords of variable length, as shown in Fig-
ures 3 and 4. The bottom panels of Figures 2 and 3 in-
dicate locations and true distances from each time series
subsequence corresponding to a grammar rule to its nearest
non-self match by a vertical line placed at the rule beginning
and whose height equals the distance.

5. EXPERIMENTAL EVALUATION
We evaluated both proposed techniques on a number of

datasets previously studied in [13] that include Space Shuttle
Marotta Valve telemetry (TEK), surveillance (Video data-
set), health care (electrocardiogram and respiration change),
and industry (Dutch Power Demand). We also evaluated on
a new dataset of spatial trajectories. We compared the per-
formance of the proposed algorithms against brute force and
HOTSAX [13] discord discovery algorithms. Since RRA re-
turns discords of variable length that may differ significantly
from the specified sliding window length, we show the RRA
discord recall rate as the overlap between discords discov-
ered by HOTSAX and RRA algorithms in the last column
of Table 1.

54000 54500 55000 55500 56000

Best HOTSAX discord

236000 236500 237000 237500 238000

Best RRA discord

441000 441500 442000 442500 443000

Second HOTSAX discord

54000 54500 55000 55500 56000

Second RRA discord

236000 236500 237000 237500 238000

Third HOTSAX discord

441000 441500 442000 442500 443000

Third RRA discord

Figure 5: The comparison of discords ranking by HOTSAX
and RRA algorithms from ECG300 dataset of length 536’976.
RRA ranked the shorter discord first due to the larger value of
normalized by the subsequence length Euclidean distance (Eq.(1))
to its nearest non-self match: the best discord has length 302,
whereas the second and third discords have a length of 312 and
317 respectively.

We compared the algorithms performance in terms of calls
to the distance computation routine, which, as pointed out
in [13], typically accounts for up to 99% of these algorithms’
computation time. Table 1 compares the number of distance
function calls made by the competing techniques. Note that
in the ECG300 dataset (which is record 300 of the MIT-BIH
ST change database [8]), RRA failed to rank discords in the
same order as the HOTSAX algorithm.

Our rule density-based algorithm was also able to discover
anomalies in all data sets, though more careful parameter
selection was needed at times; nevertheless, we found that
this technique allows the discovery of very short anomalies
which other evaluated techniques missed. For example, in
the spatial trajectory dataset, the rule density-based tech-
nique was the only method capable of discovering a short,
true anomaly that was intentionally planted by taking a de-
tour.

To summarize, the rule density-based approach, when used
alone, is extremely fast, but it has difficulty discriminating
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Figure 6: Approximations of the Hilbert space filling curve (first
order at the left, second order at the right panel) and a trajec-
tory conversion example. The trajectory shown at the right panel
is converted into the sequence {0,3,2,2,2,7,7,8,11,13,13,2,1,1} by
converting each recorded spatial position into the enclosing
Hilbert cell id.

and ranking subtle discords. Incorporating the grammatical
context into the distance-based RRA algorithm, however,
enables the efficient discovery of discords in all data sets.
RRA is much faster than HOTSAX and brute force, and it
allows for the discovery of variable-length discords.

5.1 Spatial trajectory case study
To demonstrate the utility of our technique for discover-

ing anomalies of an unknown nature, we performed a case
study on spatial trajectory data. The trajectory data is in-
trinsically complex to explore for regularity since patterns
of movement are often driven by unperceived goals and con-
strained by unknown environmental settings.

The data used in this study was gathered from a GPS
device which recorded location coordinates and times while
commuting during a typical week by car and bicycle.

To apply RRA to the trajectory, the multi-dimensional
trajectory data (time, latitude, longitude) was transformed
into a sequence of scalars. To achieve this, the trajectory
points were mapped to the visit order of a Hilbert space
filling curve (SFC) [12] embedded in the trajectory mani-
fold space and indexed by the recorded times in the visit
order (Figure 6, right panel). The Hilbert SFC was chosen
to reduce the distortion on the data’s spatial locality. The
Hilbert SFC-transformed trajectory produces a time series,
which is then passed to the RRA algorithm for anomaly
discovery.

To visualize this data transformation approach, consider
Figure 6 showing a Hilbert SFC of first order in the left
panel and one of second order in the right panel. Note, that
the left panel is divided into 4 quadrants and the first-order
curve is drawn through their center points. The quadrants
are ordered such that any two which are adjacent in the or-
dering share a common edge. In the next step, shown in
the right panel, each of the quadrants of the left panel are
divided into 4 more quadrants and, in all, 4 “scaled-down”
first order curves are drawn and connected together. Note
that the adjacency property of consecutive squares is main-
tained. As shown, maintaining adjacency helps to preserve
spatial locality – points close in space are generally close in
their Hilbert values. For our trajectory experimentation, we
have used a Hilbert SFC of order eight.

In general, a trajectory anomaly is defined as a sub-trajec-
tory path that is atypical in the set of paths taken by an
individual. Specifically, an anomaly can either be a sub-

0 5000 10000 15000

0 5000 10000 15000

The global minimum of the rule coverage curve 
corresponds to the path travelled only once

The sequence of Hilbert space �lling curve visit order for GPS trail and best discords

Sequitur rules density for transformed trail (discretization param W=350,P=15,A=4)  

The best discord corresponds to the path with a partial GPS �x loss

0 5000 10000 15000

Non-self distance to the nearest neighbor among subsequences corresponding to Sequitur rules

Figure 7: An example of anomaly discovery in the Hilbert SFC
transformed GPS track. The true anomaly, corresponding to the
unique detour, was discovered by the rule density curve global
minima, which reaches 0 at the interval of length 9, the best RRA
discord of length 366 corresponds to the path traveled with a par-
tial GPS fix (abnormal path running across properties). Note that
RRA approach was not able to capture the anomalous detour.

trajectory that occurs in rarely visited spatial regions such
as a detour, or a novel path taken within a frequently visited
spatial region. The second type of trajectory anomaly is
important because it considers the order in which the various
locations are visited. For instance, if multiple points in a
space are visited frequently, the occurrence of a visit to these
points is not an anomaly by itself; however, the occurrence
of visiting these points in an unseen order is an anomaly. To
evaluate the proposed algorithm’s efficiency in these specific
settings, we also intentionally planted an anomaly by taking
an atypical route.

Figure 7 shows the results of the discovered anomalies in
the GPS track by both proposed algorithms. As shown,
the rule density curve pinpoints an unusual detour devi-
ating from a normal route significantly (red colored seg-
ment), the RRA algorithm highlighted a trajectory segment
which was travelled with a partial GPS signal fix, but close
to previously traveled routes (blue segment). This results
highlight the difference in the algorithms’ sensitivity due to
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Figure 8: The second discord discovered by the RRA algorithm
highlights a uniquely traveled segment.

Figure 9: The third discord discovered by the RRA algorithm
highlights an abnormal behavior that does not conform to the
usual pattern of exiting and entering the block’s parking lot.

their nature: the rule density curve-based approach finds al-
gorithmically anomalous, short subsequences (shorter than
the specified sliding window length) in the symbolic space of
discretized values, whereas RRA is capable to rank algorith-
mically similar symbolic subsequences by discordance using
their real representation.

While the second RRA-discovered discord shown in Fig-
ure 8 highlights a unique path, the third discord shown in
Figure 9 spotlights the algorithm’s sensitivity and ability to
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Figure 10: An illustration from our exploratory study concerned
with optimal parameters selection based on the constructed gram-
mar properties. Both plots show boundaries of optimal parame-
ter choices: left panel for the rule density curve-based algorithm,
right panel for RRA. Note that RRA algorithm-corresponding
area is much larger indicating its robustness.

capture subtle anomalies. The shown discord corresponds
to an abnormal behavior within frequently traveled spatial
regions – not visiting the block’s parking lot when traveling
through the area.

5.2 Discretization parameters selection
Similar to other discretization-based learning techniques,

it is difficult to pinpoint a solution that offers the best trade-
off between gain in tractability and loss in accuracy. Never-
theless, we found that within the grammar-based paradigm,
the sliding window length parameter is not as critical as it is
for most of the existing anomaly and motif detection algo-
rithms, since it is just the ”seed” size. Specifically, we found
that the rule density curve facilitates the discovery of pat-
terns that are much shorter than the window size, whereas
the RRA algorithm naturally enables the discovery of longer
patterns. Second, we observed that when the selection of dis-
cretization parameters is driven by the context, such as using
the length of a heartbeat in ECG data, a weekly duration in
power consumption data, or an observed phenomenon cycle
length in telemetry, sensible results are usually produced.

In addition, we found that the rule density approach alone
is more sensitive to parameter choices than it is when incor-
porated into the RRA distance-based algorithm. Consider
an example shown in Figure 10 where we used the ECG0606
dataset featuring a single true anomaly (the dataset overview
is shown in Figure 2). Since the discretization parameters
affect both the precision of raw signal approximation and
the size of the resulting grammar, by sampling this space
and recording both algorithms’ results we found that the
area where the RRA algorithm discovered the true anomaly
is twice as large as the same area for the rule density curve-
based algorithm. In particular, when we varied the window
size in the range [10, 500], PAA size in [3, 20], and the al-
phabet size in [3, 12]; the rule density curve-based algorithm
successfully discovered the anomaly for 1460 parameter com-
binations whereas RRA for 7100.

5.3 Visualization
As we pointed out before, to explore the properties of algo-

rithmically anomalous subsequences, we have incorporated
both algorithms proposed in this paper into our visualiza-
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The best discord of length 11

Third discord of
length 189

Figure 11: Incorporating the RRA algorithm in GrammarViz 2.0 [26]. The screenshot shows its application to the recorded video data
set [14]. As shown, when configured with a window length of 150, RRA was able to detect multiple discords whose lengths vary from 11
to 189.

tion tool called GrammarViz 2.0 [26]. Figure 11 shows the
screenshot of GrammarViz 2.0 using the RRA algorithm to
find anomalies in a recorded video dataset. The discovered
candidate anomalies are ranked by the distances to their
nearest non-self matches. As shown in the “Length” col-
umn, all candidate anomalies have different lengths. The
highlighted subsequences in the upper panel correspond to
the anomalies selected in the bottom panel.

Figure 12 shows the anomalies discovered in the same
dataset using the rule density curve-based approach. As
shown, we use the blue color intensity to express the gram-
mar rules density: the darker is the shade, the higher is the
corresponding value in rule density curve (i.e., the higher is
rule count). Thus, the white-shaded regions denote the best
potential anomalies since they correspond to global minima
intervals in the rule density curve.

Incorporating the proposed algorithms in our visualization
tool allows interactive and efficient user-driven parameter
tuning, as well as navigation and visualization of the results.

6. PREVIOUS WORK ON ANOMALY
DETECTION

The brute force solution for the problem of time series
anomaly detection or, more specifically, the discovery of a
discord of a given length n in time series T of lengthm, needs
to consider all possible distances between each subsequence
C of length n and all of its non-self matches M (C,M ∈ T ).
This method has O(m2) complexity and is simply untenable
for large data sets.

To mitigate this heavy computational requirement, previ-
ous work suggests that the subsequence comparisons should

be reordered for efficient pruning. For example HOTSAX
[13], which is the pioneering work on discord discovery, sug-
gests a fast heuristic technique that is capable of true discord
discovery by reordering subsequences by their potential de-
gree of discordance. Similarly in [29], the authors use local-
ity sensitive hashing to estimate similarity between shapes
with which they can efficiently reorder the search to dis-
cover unusual shapes. The authors of [7] and [2] use Haar
wavelets and augmented tries to achieve effective pruning of
the search space. While these approaches achieve a speed-
up of several orders of magnitude over the brute-force al-
gorithm, their common drawback is that they all need the
length of a potential anomaly to be specified as the input,
and they output discords of a fixed length. In addition, even
with pruning, they rely on the distance computation which,
as suggested by Keogh et al. [13], accounts for more than
99% of these algorithms run-time.

An interesting approach to find anomalies in a very large
database (terabyte-sized data set) was shown by Yankov et
al. [31]. The authors proposed an algorithm that requires
only two scans through the database. However, this method
needs an anomaly defining range r as the input. In addition,
when used to detect an unusual subsequence within a time
series, it also requires the length of the potential discord.

Some techniques introduced approximate solutions that
do not require distance computation on the raw time series.
VizTree [18] is a time series visualization tool that allows
for the discovery of both frequent and rare (anomalous) pat-
terns simultaneously. VizTree utilizes a trie (a tree-like data
structure that allows for a constant time look-up) to decode
the frequency of occurrences for all patterns in their dis-
cretized form. Similar to that defined in VizTree, Chen et

490



Figure 12: Incorporating the rule-density-curve approach in GrammarViz 2.0 [26]. The varying degrees of shades in the background
correspond to rule density curve values; the non-shaded (white) intervals pinpoint true anomalies.

al.[4] also consider anomalies to be the most infrequent time
series patterns. The authors use support count to compute
the anomaly score of each pattern. Although the definition
of anomalies by Chen et al. is similar to discords, their tech-
nique requires more input parameters such as the precision
of the slope e, the number of anomalous patterns k, or the
minimum threshold. In addition, the anomalies discussed in
their paper contain only two points. Wei et al. [30] suggest
another method that uses time series bitmaps to measure
similarity.

Finally, some previous work has examined the use of algo-
rithmic randomness for time series anomaly discovery. Arn-
ing et al. [1] proposed a linear time complexity algorithm for
the sequential data anomaly detection problem from data-
bases. Simulating a natural mechanism of memorizing pre-
viously seen data entities with regular-expression based ab-
stractions capturing observed redundancy, their technique
has been shown capable of detecting deviations in linear
time. The proposed method relies on the user-defined en-
tity size (the database record size). Alternatively, Keogh et
al. [14] have shown an algorithmic randomness-based para-
meter-free approach to approximate anomaly detection (the
WCAD algorithm). However, built upon use of an off-shelf
compressor, their technique requires its numerous execu-
tions, which renders it computationally expensive; in ad-
dition, it requires the sliding window (i.e., anomaly) size to
be specified.

7. CONCLUSION AND FUTURE WORK
In this work we hypothesized, that time series anomaly

maps to algorithmically anomalous (i.e., incompressible with
a grammatical inference algorithm) symbolic subsequence
within the string obtained via time series symbolic discretiza-

tion. The rationale behind this hypothesis is that if true, it
allows for an efficient variable-length time series anomaly
discovery approach.

Building upon subsequence discretization with SAX, which
preserves the data structural context, and grammar induc-
tion with Sequitur, which guarantees discovery of all existing
algorithmically-effective correlations by maintaining its in-
variants of uniqueness and utility at all times, we designed a
generic framework for learning algorithmic regularities and
detecting irregularities in time series in order to test our
hypothesis.

Using the framework, we constructed two time series ano-
maly discovery algorithms to empirically evaluate the hy-
pothesis. One of these algorithms operates in the space
of discretized data, whose dimensionality is typically much
smaller than the original time series, and therefore is highly
efficient. The output of this algorithm, namely the rule den-
sity curve, was found to behave according to our hypothe-
sis and provides an intuitive and efficient way for putative
anomaly detection. Our second algorithm is based on the
explicit distance computation and is capable to detect even
subtle variable-length discords.

Through an experimental evaluation, we have validated
our hypothesis and have shown, that the proposed tech-
niques are orders of magnitude more efficient than current
state of the art without a loss in accuracy (Table 1).

Since the grammar-based time series decomposition allows
us to quantitatively assess the time series context through
analysis of the grammar’s hierarchical structure, the pri-
mary direction of our future effort is to analyze the effect of
the discretization parameters on the algorithm’s ability to
discover contextually meaningful patterns. Since both tech-
niques underlying our approach, namely, SAX discretization
and grammatical inference with Sequitur, process the input
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time series from left to right, yet another research direction
that suggests itself is the possibility of early anomaly detec-
tion in real-time data streams.
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ABSTRACT

We study a new type of queries called the k-nearest neigh-

bor temporal aggregate (kNNTA) query. Given a query point
and a time interval, it returns the top-k locations that have
the smallest weighted sums of (i) the spatial distance to
the query point and (ii) a temporal aggregate on a cer-
tain attribute over the time interval. For example, find a

nearby club that has the largest number of people visiting in

the last hour. This type of queries has emerging applica-
tions in location-based social networks, location-based mo-
bile advertising and social event recommendation. It is a
great challenge to efficiently answer the query due to the
highly dynamic nature and the large volume of the data
and queries. To address this challenge, we propose an index
named TAR-tree, which organizes locations by integrating
the spatial and temporal aggregate information. We per-
form a detailed analysis on the cost of processing kNNTA
queries using the TAR-tree. The analysis shows that the
TAR-tree results in much fewer node accesses than alterna-
tives. Furthermore, we propose two enhancements for the
kNNTA query: (i) an algorithm suggesting the least amount
of weights to be adjusted to explore different query results
and (ii) a collective processing scheme to share index traver-
sal among a batch of queries. We conduct extensive exper-
iments using real-world data sets. The results validate the
accuracy of the cost analysis and show that the TAR-tree
outperforms alternatives by up to ten times in node accesses.
The results also show that the weight adjustment algorithm
and collective processing scheme outperform their baselines
by significant margins.

1. INTRODUCTION
Location-based services (LBSs) have a large market and

this market is growing rapidly. A well-known global market
research company MarketsandMarkets forecasts in a recent
report that the LBSs market will grow from $8.12 billion in
2014 to $39.87 billion in 2019. Location-based social net-
works (LBSNs) [31] have been a driving force for the growth

c© 2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

of LBSs. Many emerging applications enable users to ex-
plore their neighborhood with rich social information in a
highly customized fashion. For example, using the function-
ality Places Nearby (e.g., in Facebook or Foursquare), users
may want to find nearby attractions that have the most vis-
its recently or find a nearby club that is gathering the most
people in the last hour; using the functionality Explore (e.g.,
in Flickr or Instagram), users may want to browse photos
taken nearby and have the most likes lately.

These applications require ranking locations (or geotagged
media contents) based on two criteria: (i) the spatial dis-
tance and (ii) a temporal aggregate on a certain attribute
(e.g., the visits or likes). The spatial distance indicates the
degree of closeness while the temporal aggregate reflects the
social opinion in a certain period. These applications ex-
hibit three key characteristics, which create a highly dy-
namic environment: (i) The visits or likes happen contin-
uously, making the aggregate data grow rapidly. For in-
stance, there were 3 million check-ins per day in Foursquare
by May 2014. The number of the aforementioned requests
is also very large. (ii) The time interval a user interested in
is highly customized, which may vary from hours (e.g., for
retrieving current events) to years (e.g., for long term anal-
yses). (iii) The users may adjust their weighting on the two
criteria widely to explore results of different preferences.

The skyline operator [6] can support multi-criteria deci-
sion problems. However, the skyline operator is computa-
tionally expensive even for static data and queries. The
highly dynamic environment and the large volume of re-
quests and objects generated in LBSNs make it prohibitive
to use the skyline operator. Moreover, users are not given
the flexibility in determining their preference over the two
criteria. Following existing studies [9][15][22], we rank the
locations using a weighted sum of the spatial distance and
the temporal aggregate. We formulate the problem as the
k-nearest neighbor temporal aggregate (kNNTA) query (for-
mally defined in Section 3). Apart from the above applica-
tions in LBSNs, kNNTA queries are useful in many other
applications in urban computing [32] where the spatial dis-
tance and a temporal aggregate are considered simultane-
ously, such as location-based mobile advertising and social
event recommendation.

The kNNTA query requires quick response since users usu-
ally use the query to browse locations or geotagged media
contents in the neighborhood. Due to the dynamic nature
and the huge volume of the data and queries, having an effi-
cient solution to this type of queries is challenging. Existing
indexing structures cannot manage the locations effectively
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based on both spatial closeness and temporal aggregate in-
formation simultaneously (detailed discussion in the related
work, Section 2). To efficiently process the kNNTA query,
we propose a novel index named the TAR-tree, in which the
locations are organized by integrating the spatial and tem-
poral aggregate information. We perform a detailed analy-
sis on the cost of query processing using the TAR-tree. The
analysis shows that the TAR-tree results in much fewer node
accesses than alternatives that organize the locations based
on only the spatial or the temporal aggregate information.
The analysis can also be used as a cost model for query
optimization. Furthermore, we propose two enhancements
for the kNNTA query: (i) To help users explore results of
different preferences, we propose an efficient algorithm sug-
gesting the least amount of weights to be adjusted between
the two criteria so that the query results will change. (ii)
To handle large number of queries, we propose a collective
processing scheme to share index traversal among a batch of
queries. In summary, the main contributions of this paper
are as follows.

• We propose a query called the k-nearest neighbor tem-
poral aggregate (kNNTA) query to address emerging
applications that requires ranking locations on both (i)
the spatial distance and (ii) a temporal aggregate on
a certain attribute.

• We propose a novel index named the TAR-tree to ef-
ficiently process the kNNTA query. We perform a de-
tailed analysis on the cost of query processing using
the TAR-tree, which shows that the TAR-tree results
in much fewer node accesses than alternatives.

• We propose two enhancements for the kNNTA query:
(i) an algorithm suggesting the least amount of weights
to be adjusted to explore different query results and (ii)
a collective processing scheme to share index traversal
among a batch of queries.

• We conduct extensive experiments using real-world data
sets. The results validate the accuracy of the cost anal-
ysis, and show that the TAR-tree outperforms alterna-
tives by up to ten times in node accesses. The results
also show that the weight adjustment algorithm and
collective processing scheme outperform their baselines
by significant margins.

The rest of the paper is organized as follows. Section 2 re-
views related work. Section 3 formalizes the kNNTA query.
Section 4 presents the TAR-tree. Section 5 discusses group-
ing strategies. Section 6 provides the analysis. Section 7
gives two enhancements. Section 8 reports the experiment
results and Section 9 concludes the paper.

2. RELATED WORK
Queries. Previous spatial aggregate queries focus on the

range aggregate [25], which returns the summarized informa-
tion of POIs falling in a hyper rectangle (e.g., find the maxi-
mum or minimum weight among POIs intersecting the query
rectangle). Temporal range aggregate queries [26] have also
been studied, which add the temporal dimension to range
aggregate queries (e.g., return the number of cars in the
city center during the last hour). The kNNTA query dif-
fers from these queries in that (i) it returns the POIs rather
than the aggregate value (e.g., the number of cars) and (ii)
its aggregate is over the history of individual POIs (e.g., the

check-in history) rather than spatial regions. Spatial key-
word queries [9] retrieve the top-k objects such that their
locations are close to the query point and their textual de-
scriptions are relevant to the query keywords. The kNNTA
query differs from spatial keyword queries in that instead of
the keywords query time intervals are given, and a dynamic
aggregate attribute (e.g., the count of check-ins) rather than
the textual relevance is considered. Given two data sets
P and Q (queries), an aggregate nearest neighbor (aNN)
query [19] retrieves the points in P that have the small-
est aggregate distances to the points in Q. The aNN query
aggregates on the distances of a group of points, different
from the kNNTA query which aggregates in the time di-
mension. Therefore, the algorithms for aNN queries cannot
apply. Many other types of queries aggregating on different
objects such as moving objects [10][16], data streams [29] or
locations [13][20][21] are also studied. These queries are all
different from the kNNTA query, and hence the algorithms
for them cannot apply.

Indexes. Indexes such as aR-tree [17] and aP-tree [25]
were proposed to process range aggregate queries. They
cannot be adapted to process the kNNTA query because
only one aggregate is maintained. The kNNTA query re-
quires the temporal aggregate over various time intervals.
Papadias et al. [26] proposed the aRB-tree to process tem-
poral range aggregate queries. The aRB-tree combines the
R-tree and B-tree, making each entry of the R-tree point to
a B-tree which stores historical aggregates of the entry over
each timestamp. To address the distinct counting problem in
aRB-tree, i.e., an object will be counted multiple times if it
remains in the query rectangle for more than one timestamp,
Tao et al. [24] proposed the sketch index which is similar to
the aRB-tree but with the B-tree storing historical count-
ing sketches of the regions in its subtree. The aRB-tree
and sketch index cannot be adapted to process the kNNTA
query when the epochs are of varied lengths, since the B-
tree cannot index time intervals. Even if the epochs are of
equi-length, the aRB-tree and sketch index pay no attention
to entry grouping strategies and group the entries based on
only spatial extents, which, as will be shown in our analysis
and experiments, is not effective for processing the kNNTA
query. Sun et al. [23] divided the space into regular grid and
proposed an adaptive multi-dimensional histogram (AMH)
to answer temporal range aggregate queries. AMH cannot
be adapted to answer the kNNTA query either, since the
histogram buckets only maintain the aggregate and cannot
retrieve individual POIs. Even if we use extremely fine gran-
ularity such that each cell in the grid only contains one POI,
the buckets are grouped mainly by the aggregate dimension
which, as will be shown, is also an ineffective strategy. Cong
et al. [9] proposed the IR-tree for spatial keyword queries
by integrating the R-tree and inverted indexes. Variants of
the IR-tree, such as DIR-tree, group the R-tree entries by
minimizing a weighted sum of the spatial closeness and text
similarities, which is not optimal since it introduces another
parameter, precludes existing optimization techniques for R-
tree and makes it difficult to estimate the query processing
cost. When designing the TAR-tree, our main focus is to de-
velop a robust and effective grouping strategy. Many other
spatial indexes [14][30] for nearest neighbor queries are also
proposed. These indexes cannot be adapted to process the
kNNTA query as they only focus on the spatial dimensions
and are unable to tackle the temporal aggregate.
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3. PROBLEM FORMULATION

3.1 Query Definition
The locations, which may have spatial extents, are here-

after termed as points-of-interest (POIs). The visits, likes,
and so on are termed as checked-ins. A k-nearest neighbor

temporal aggregate (kNNTA) query returns the top-k POIs
based on a weighted sum of (i) the spatial distance to the
query point and (ii) a temporal aggregate on the check-ins
over a time interval. More precisely, we rank the POIs by a
function f that computes the ranking score of a POI p as

f(p) = α0d(p, q) + α1(1− g(p,Iq)), (1)

where αi > 0 (a constant) is the weight, 0 ≤ d(p, q) ≤ 1 is
the normalized Euclidean distance between p and the query
point q, and 0 ≤ g(p,Iq) ≤ 1 is the normalized temporal
aggregate of p over a query time interval Iq. We use the
weighted sum due to its simplicity and common usage in
the literature [9][15][22], although the same result can be
achieved by any monotonic function on the two criteria. We
normalize the spatial distance d(p, q) and temporal aggre-
gate g(p,Iq) by dividing each by its range (i.e., maximum
− minimum), so that the value is in the range [0, 1]. The
normalization prevents one criterion from overpowering the
other if it has a relatively large value. Without loss of gener-
ality, we let α0+α1 = 1, since the ranking does not change if
α0 and α1 is multiplied by a positive constant. The smaller
the ranking score is, the higher p ranks and the better it
suits the query.

The temporal aggregate can be count, min, max, sum or
average (i.e., sum

count
). In this paper, we focus on the aggre-

gate that counts the number of check-ins at a POI, but the
methods easily extend to other aggregates. In the rest of
this paper, we omit “temporal” when the context is clear
and simply use “aggregate” to refer to the “temporal aggre-
gate”. Let t0 be the starting of the application and tc be
the current time. We discretize the time axis in to epochs.
Each epoch may be a second, an hour or of varied lengths
(e.g., one hour, two hours, four hours, eight hours and so
on) depending on the application. The aggregate g(p,Iq) is
computed by adding up the number of check-ins at p whose
epoch intersects Iq . We summarize the definition of the
kNNTA query as follows.

Definition 1. K-Nearest Neighbor Temporal Aggre-
gate (kNNTA) Query. Given a query point and a time

interval, a k-nearest neighbor temporal aggregate query re-

turns a set R of k POIs with the minimum ranking scores

computed by the ranking function f given by Equation 1,

i.e., ∀p ∈ R and p′ ∈ P \ R, f(p) ≤ f(p′).

3.2 A Straightforward Approach
Figure 1 gives an example. The circles are the POIs. Ta-

ble 1 presents the number of check-ins that each POI has
in epochs [t0, t1), [t1, t2) and [t2, tc], respectively. A kN-
NTA query is issued with a query point q denoted by the
small square, a time interval [t0, tc], α0 = 0.3 (α1 = 0.7)
and k = 1. The ranking score of e is computed by f(e) =
0.3 · 2.24

15.6
+ (1 − 0.3) · (1 − 2

12
) = 0.626, where 2.24 is the

Euclidean distance between e and q, 15.6 is the maximum
distance between any two points in the space, 2 is the ag-
gregate at e over [t0, tc] and 12 is the maximum aggregate
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Figure 1: POIs and the
query point

POI t0→ t1→ t2→

a 1 1 0
b 1 0 1
c 2 2 2

d 2 0 0
e 1 1 0

f 3 5 4
g 2 3 1

h 1 1 0
i 2 2 2
j 2 0 0

k 1 0 1
l 1 0 1

Table 1: Aggregate
distribution

among all POIs. We obtain f as the query result, whose spa-
tial distance to q equals 3 and aggregate equals 3+5+4 = 12.
The ranking score of f is 0.3· 3

15.6
+(1−0.3)·(1− 12

12
) = 0.058.

To handle the kNNTA query, a straightforward approach
is sequential scan. Assume that the check-ins have already
been counted within each epoch (as shown in Table 1). We
first add up the number of check-ins in each epoch in the
query time interval and obtain the aggregate for each POI.
We then compute the ranking score of each POI, and return
the top-k POIs. The time complexity is O(m′N +N logm+
k logN ), where m′ is the number of epochs in the query
time interval, N is the number of POIs, m is the number of
epochs in [t0, tc] (e.g., 3 in the above example) and k is the
number of returned POIs. Both N and m′ are very large
in real social networks. For instance, N = 60, 000, 000 in
the LBSN Foursquare, and m′ = 8, 760 if the query time
interval is one year and each epoch is one hour. The high
cost makes this approach inapplicable in real applications.

4. INDEX DESIGN
We design an index called the temporal aggregate R-tree

(TAR-tree) to efficiently process the kNNTA query.

4.1 Index Structure
The TAR-tree is a variant of the R-tree.The algorithms for

indexing the spatial extents of the POIs remain the same. A
leaf entry is a minimum bounding rectangle (MBR) enclos-
ing a POI. A leaf node contains a number of leaf entries. An
entry in an internal node points to a child node (leaf node
or internal node), and has an MBR enclosing the MBRs
contained in the child node.

The difference between the TAR-tree and R-tree is that
each entry of the TAR-tree also points to a temporal index.
The temporal index stores the non-zero aggregate (at least
one check-in) over each epoch, and keeps each record as a
triple 〈ts, te, agg〉, where ts is the start time and te is the end
time of the epoch, and agg is the aggregate value during the
epoch. For brevity, we refer to the temporal index as the
TIA (temporal index on the aggregate). The TIA of a leaf
entry stores the aggregate of the POI it contains. The TIA
of an internal entry stores the largest aggregate value of the
TIAs in the child node for each epoch. For example, if two
TIAs are in the child node and they store records {〈t0, t1, 2〉,
〈t1, t2, 2〉, 〈t2, ∗, 2〉} and {〈t0, t1, 2〉, 〈t1, t2, 3〉, 〈t2, ∗, 1〉}, re-
spectively, then the TIA of the internal entry pointing to this
node stores the records {〈t0, t1,max{2, 2}〉, 〈t1, t2,max{2, 3}〉,
〈t2, ∗,max{2, 1}〉}. Any temporal index can be used to im-
plement the TIA. We have used the disk-based multi-version
B-tree [2] in our implementation as it has been proven to be
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(b)
Figure 2: TAR-tree example

asymptotically optimal.
In most applications, the aggregate update (i.e., inserting

check-ins) is much more frequent than the spatial update
(i.e., inserting POIs). We maintain the spatial and aggre-
gate information in different components to enable quick
digestion of new check-ins. Figure 2 presents an example of
TAR-tree indexing the POIs shown in Figure 1. Figure 2(a)
shows the MBRs of the entries. Figure 2(b) shows the index
structure. The temporal records indexed by TIAs are en-
closed by dashed lines. Empty lines in the TIAs mean that
no records are stored for the epoch due to a zero aggregate.
As we will see, the most important aspect for TAR-tree to
efficiently process the kNNTA query is the strategy to group
the entries. We will discuss the entry grouping strategy in
Section 5.

4.2 Index Maintance
We briefly discuss how to insert check-ins and POIs. Dele-

tion is the same as R-tree and hence omitted.
Inserting Check-ins. When an epoch ends, we compute

the aggregate of each POI by the check-ins (in this epoch),
and then insert the non-zero aggregates in a batch fashion.
Specifically, starting from the root node of TAR-tree, if an
entry contains a POI whose aggregate is non-zero, we tra-
verse the sub-tree rooted at the entry recursively. When
reaching a leaf node, we store the non-zero aggregate into
the POI’s TIA, and return the largest aggregate in this node
to the parent. Such an update procedure is efficient, since
we only traverse part of the R-tree (which can be kept in
main-memory) and insert only one record into the TIA.

Inserting POIs. When we insert a POI, the inserted
path in TAR-tree is determined by the entry grouping strat-
egy (which will be discussed in Section 5). For each entry in
the inserted path, we update its MBR to include the POI,
and update its TIA if in an epoch the aggregate of the POI
is larger. If the insertion causes some POIs to be reinserted,
we first remove these POIs from the TAR-tree, update the
MBRs and TIAs in the inserted path, and then insert these
POIs as described above. If the insertion causes some node
to split, we redistribute the entries in the node by the entry
grouping strategy.

4.3 Query Processing
We use the best-first search (BFS) [12] for query process-

ing, which works as follows: (i) the entries in the root node
are first inserted into a priority queue, in which the priority
is determined by the entry’s ranking score (detailed in the
next paragraph), and then (ii) the front entry of the queue
is ejected. If the entry is a leaf entry, the POI it contains is
added to the result list; otherwise, each of its child entries
is inserted into the queue. (iii) Step (ii) is repeated until k
POIs are obtained.

The ranking score of an entry e is the weighted sum of the
spatial distance from the query point to the MBR of e and
the aggregate computed by the TIA of e. Given a query
time interval Iq, the TIA returns the records whose time
interval [ts, te] is contained in Iq. We obtain the aggregate
over Iq by adding up the agg field of each returned record.

According to [12], the BFS produces correct query results
as long as the entry’s priority is computed by a consis-

tent function. For the TAR-tree, the consistence can be
expressed as: if ec is an entry in the node pointed by en-
try e, then f(e) ≤ f(ec). We prove the consistency of the
ranking function f as follows.

Property 1. Given any query point q and query time in-

terval Iq, we have f(e) ≤ f(ec), where ec is a child entry of

entry e in the TAR-tree.

Proof. We have f(e) = α0d(e, q)+α1(1− g(e,Iq)). Due
to the TAR-tree design, it follows that d(e, q) ≤ minec∈e d(ec, q)
and g(e,Iq) ≥ maxec∈e g(ec, Iq). Therefore,

f(e) ≤ α0 min
ec∈e

d(ec, q) + α1(1−max
ec∈e

g(ec, Iq))

≤ α0d(ec, q) + α1(1− g(ec, Iq)) = f(ec) ∀ec ∈ e,

i.e., f(e) ≤ f(ec).

5. ENTRY GROUPING STRATEGIES
We now discuss the strategies for grouping the TAR-tree

entries. As proved above, the BFS will provide the correct
query results on the TAR-tree no matter which grouping
strategy is used. The BFS has been proven to be optimal
per TAR-tree instance in that only the TAR-tree nodes that
intersect the search region will be accessed by the BFS [4].
However, different entry grouping strategies may result in
different TAR-tree instances and hence vastly different num-
ber of node accesses. The performance of the BFS on the
TAR-tree is roughly proportional to the number of accessed
nodes, since similar operations are performed on each ac-
cessed node and the TAR-tree is most likely disk resident
due to its large size as we discussed in Section 4.1. There-
fore, we aim at minimizing the node extents in the TAR-tree
so that fewer nodes are accessed by the BFS.

5.1 Two Straightforward Strategies
Since the TAR-tree is a variant of the R-tree, one straight-

forward strategy is to group the entries based on the spatial
extents as R-tree does. Here we briefly review the grouping
method of R*-tree [3]. When inserting a POI, we choose
the entry that has the least overlap with other entries after
containing the POI, if the entry points to a leaf node. If the
entry points to an internal node, we choose the one that has
the least area enlargement after including the POI. When a
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node incurs overflow and this is the first time overflow hap-
pens in this level, we reinsert several entries of the node.
When a node splits, we first choose a split axis, along which
the sum of all possible new MBR margins is minimized. We
then redistribute the entries (along the chosen split axis)
such that the two new nodes have the minimum overlap.

Another straightforward strategy is to group the entries
that have similar aggregate distributions. The similarity or
distance between two aggregate distributions can be mea-
sured by the Manhattan distance (or Earth mover’s distance
and the like). For example, in Table 1, the distance between
the TIA of c and TIA of g equals 0+1+1 = 2, while the dis-
tance between the TIA of c and TIA of l equals 1+2+1 = 4.
When a POI is added, we insert the POI into the node that
has the smallest distance to it. When a node splits, we re-
distribute the entries such that the distance between the two
new nodes is maximized.

5.2 Integral 3D Strategy
As our analysis and experiments will show, the above two

entry grouping strategies are not effective. We propose to
group the entries by integrating the spatial and aggregate
information to minimize the node extents. Specifically, we
group the entries as 3-dimensional bounding boxes, in which
two are the spatial dimensions and the third is a dimension
capturing the aggregate information. As the aggregate in-
formation is distributed as aggregate values in many epochs.
Here the trick lies in how to sufficiently represent the aggre-
gate information as a single value (i.e., the coordinate of the
third dimension). We have designed the third dimension as
the following value

λ̂p =
1

m

m∑

i=1

vi,

where m is the number of epochs in [t0, tc] and vi is the
aggregate value in the ith epoch (and as usual the bound-
ing box of an internal entry encloses the bounding boxes of
its child entries). This value is an estimate of the expected
number of check-ins at the POI p contained by the leaf entry
in an epoch (because we can model the number of check-ins
at a POI in an epoch using the Poisson distribution). If two
entries have similar such values, they may also have similar
aggregates over the query time interval. It can significantly
reduce the node extents if we group the entries having both
similar spatial distances to the query point and similar ag-
gregates over the query time interval.

Since the two types of information are of very different
nature and do not have a unified domain range, when us-
ing this strategy, we normalize the spatial and aggregate
dimensions by the ranges of their domains, respectively. In
particular, to align with the ranking function, the normal-
ized coordinate zp of the third dimension for a leaf entry

equals zp = 1− λ̂p

maxp λ̂p
. Note that only when we group the

entries they are treated as 3-dimensional bounding boxes.
When processing the kNNTA query, the spatial extents of
the entry are obtained from the MBR and the aggregate
from the TIA.

6. COST ANALYSIS AND COMPARISON OF

GROUPING STRATEGIES
In this section, we analyze the query processing cost using

Table 2: Powerlaw fitting

Data n β̂ x̂min p-value

NYC 72,273 3.20 31 0.68
LA 45,591 3.07 16 0.18
GW 1,280,969 2.82 85 0.29
GS 182,968 2.19 59 0.21

the TAR-tree (with our proposed integral 3D entry grouping
strategy). Through the cost analysis, we show that the TAR-
tree results in much fewer node accesses than alternatives
that use the other two grouping strategies. The analysis
can also be used as a cost model for query optimization
purposes. As mentioned before, we measure the cost by the
number of node accesses. In the BFS, the accessed nodes
are those intersecting the query search region, which is in
turn determined by the data distribution. Therefore, we first
analyze the distribution of the aggregate data in Section 6.1,
and then estimate the search region and the number of node
accesses in Sections 6.2 and 6.3, respectively. We compare
the three entry grouping strategies in Section 6.4.

6.1 Distribution of the Aggregate Data
Like many other types of data in real life [8], we observe

that the aggregate value (i.e., the number of POIs having a
certain aggregate value) follows the power-law distribution
very well. Let the discrete random variable X be the count
aggregate over a certain time interval, among the aggregates
of all POIs, the probability that X has an observed value x
is computed by

p(x) = Pr(X = x) = Cx−β,

where C is a normalization constant. The power-law indi-
cates that a small number of the POIs having a large pro-
portion of the check-ins (roughly 80% of the check-ins are at
20% of the POIs). We test the power-law hypothesis on four
real LBSN data sets (detailed at the beginning of Section 8)
with the method in [8]. We list in Table 2 the results from
the fitting of a power-law to each of the data sets, where n
is the number of the tested POIs, β̂ is the estimated scaling
parameter, x̂min is the estimated lower-bound to the power-
law behavior and p-value is the goodness-of-fit indicator. It
is suggested in [8] that the power-law hypothesis is ruled out
if p-value is less than or equal to 0.1. Since the p-values of
the four data sets are all clearly larger than 0.1, we argue
that they all follow the power-law very well.

6.2 Estimation of the Query Search Region
Similar to the k-nearest neighbor query, the search region

of the kNNTA query is determined by the ranking score of
the kth POI, which is denoted by f(pk). For ease of expo-
sition, we describe the ranking score and search region in
a normalized 3-dimensional unit cube, where two are the
spatial dimensions and the third is the aggregate dimension.
Figure 3 illustrates the ranking score with the query example
in Section 3.2. The line segment qg′ represents the normal-
ized spatial distance and gg′ represents the normalized ag-
gregate of g. The ranking score of g equals α0|qg′|+α1|gg′|.

In the 3-dimensional unit cube, the query search region is
of a cone shape. Its height and base radius, denoted by hl

and r0, are computed by

r0 =
f(pk)

α0
and hl =

f(pk)

α1
,
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Figure 3: Cost analysis example

respectively. For example, in Figure 3, the cone illustrates
the search region. Recall that in the query example we have
α0 = 0.3, α1 = 0.7 and f(pk) = 0.058, which implies that
r0 = 0.192 and hl = 0.082. By definition, k POIs are in the
search region. For instance, in the above example k = 1 and
only f is in the search region. If k = 2, the search region will
expand until it reaches a second POI. We use this property
to estimate the size of the search region.

We observe that in the 3-dimensional unit cube, the POIs
are only on a few layers at a specific height. Moreover,
the number of such layers is countable. This is because
the aggregate values (before normalization) are integers rep-
resenting the number of check-ins. For example, in Fig-
ure 3, the POIs are only on three layers: a, b, d and so
on have an aggregate value 2, and thus are on the layer at
height 1 − 2

12
= 0.83; c, g and i are on the layer at height

1− 6
12

= 0.5; and f and the query point q are on the layer at
height 0. For simplicity, we denote each layer by the aggre-
gate value x. By the power-law distribution, the probability
p(x) that a POI has an aggregate value x is computed by

p(x) =
x−β

ζ(β, xmin)
,

where

ζ(β, xmin) =
∞∑

i=0

(i+ xmin)
−β

is the Hurwitz zeta function [8]. The expected number of
POIs on layer x, which is denoted by N (x), is computed by

N (x) = N · p(x),
where N is the total number of POIs. Let the horizontal
cross-section of the search region cut by layer x be D(q, rx).
The radius rx of D(q, rx) is computed by

rx =
hl − hx

hl

· r0,

where hx is the height of layer x. Assume that the POIs are
uniformly distributed on each layer. We can estimate the
expected number of POIs in D(q, rx) byN (x)·πr2x. However,
the boundary effects cannot be neglected. Boundary effects
represent the problem that some parts of the search region lie
out of the 3-dimensional unit cube (e.g., when k = 2 in the
above example). Taking the boundary effects into account,
according to [4], the expected number of POIs bounded by
D(q, rx) is computed by

N (x) · E[SD(q,rx)∩Ux
],

where E[SD(q,rx)∩Ux
] is the expected area that D(q, rx) in-

tersects layer x. Assuming that the query point is uni-
formly distributed, according to [27], we can approximate
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Figure 4: Node accesses estimation example

E[SD(q,rx)∩Ux
] by






(√
π · rx − πr2x

4

)2

,
√
π · rx < 2

1, otherwise.

Adding up the number of POIs bounded by the cross-section
on each layer, f(pk) can be estimated by solving the follow-
ing equation:

k =

∞∑

x=Ω

N (x) ·E[SD(q,rx)∩Ux
],

where Ω is the minimum aggregate value.

6.3 Estimation of the Number of Node Accesses
We estimate the number of node accesses by computing

the number of nodes intersecting the search region. Without
loss of generality, we only estimate the number of leaf nodes
intersecting the search region since the number of internal
nodes is much smaller than the number of leaf nodes. Also,
the following analysis applies to internal nodes straightfor-
wardly. The main challenge in the estimation is that the
node extents are not uniform along the aggregate dimension
due to the power-law distribution. The unit cube is divided
into several bands along the aggregate dimension (computing
the range of each band is detailed below). For example, in
Figure 4, each square represents the extents of a node. The
squares are small among higher layers and large among lower
layers. The nodes of different extents form three bands. We
first estimate the node extents and then the number of node
accesses in each band.

Following existing cost analyses on the R-tree [12][5][27],
we assume that the leaf nodes are of a cubic shape. We
estimate the node extents by the extent along the aggre-
gate dimension and the extents along the spatial dimensions.
Starting from the top layer x, we proceed downward along
the aggregate dimension. When we reach layer y, the node
height equals ∆h = hx − hy . Meanwhile, according to [5]
the node extents along the spatial dimensions equal

Sy =

(
1− 1

f

)(
min

{
f∑y

i=x
N (i)

, 1

}) 1

2

,

where f is the fanout (the average number of entries in a
node which typically equals 69% of the node capacity [28]).
We obtain the node extents by solving the equation Sy = ∆h
(or Sy − ∆h < ǫ). We refer to the space from layer x to
layer y as a band (as shown in Figure 4). We then compute
the expected number of nodes accesses in this band. The
probability Py that a node in a band intersects the search
region is computed by the Minkowski sum [5] of the node
extents Sy and the cross-section D(q, ry) cut by the layer
y (as illustrated in Figure 4). Taking the boundary effects
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into account, according to [27], Py can be estimated by

Py =






(
4Ly − (Ly + Sy)

2

4(1− Sy)

)2

, Ly + Sy < 2,

1, otherwise,

where

Ly =

[
2∑

i=0

((
2

i

)

· S2−i
y ·

√
πi

Γ(i/2 + 1)
· riy
) ] 1

2

.

The expected number of node accesses NAy in this band is
thus computed by

NAy =

∑y

i=x
N (i)

f
· Py ,

where
∑y

i=x
N (i)

f
is the number of nodes in this band. We

then proceed with x = y + 1 and repeat the above steps
until all layers are processed. The expected number of leaf
node accesses, denoted by NA(α, k), equals the sum of the
number of node accesses computed in each band, i.e.,

NA(α, k) =
∑

y

NAy .

6.4 Comparison of Entry Grouping Strategies
Based on the above analysis (which is validated by our

experiments), we qualitatively compare the three grouping
strategies (discussed in Section 5).

If we use the spatial extents to group the entries, the nodes
have weak pruning power in the aggregate dimension. The
reason is that the nodes will be of a hyper-rectangle shape
due to the power-law distribution. For example, in Fig-
ure 5(a) the hyper-rectangles represent the nodes. The lower
part of such a node may intersect the search region with a
high probability. The entries at the top of the unit cube
are less likely to contain query results, however, they are
accessed if the lower part of the node intersects the search
region. The power-law indicates that 80% of the entries are
at the top of the unit cube, and hence many nodes will be
accessed unnecessarily.

If we use the aggregate distribution to group the entries,
the nodes have weak pruning power in the spatial dimen-
sions. This is because the nodes will cover a large space
in the spatial dimensions since the spatial proximity is not
considered. For example, Figure 5(b) shows the rectangles
on each layer representing the nodes. We can see that they
have large extents in the spatial dimensions and will be ac-
cessed with a high probability provided the height of the
search region is greater than the layer containing the node.

The above drawbacks can be avoided when we use the
integral 3D strategy. The node extents will follow a power-
law-like distribution as shown in Figure 4. The nodes hence
retain the pruning power of both spatial and aggregate di-
mensions. Therefore, the TAR-tree results in much fewer
node accesses than alternatives that organizes entries using
only the spatial proximity or the aggregate distribution.

7. ENHANCEMENTS FOR THE QUERY
In this section, we propose two enhancement techniques

for the kNNTA query. In Section 7.1, we present an algo-
rithm suggesting the least amount of weights to be adjusted
that can cause the query results to be changed. In Sec-
tion 7.2, we present a collective processing scheme to share
the index traversal among a batch of queries.

7.1 Suggesting the Minimum Weight Adjust-
ment

New users of the kNNTA query may have difficulty in set-
ting the weights between the spatial distance and aggregate
properly. They may adjust the weights to explore different
results. It is discouraging if the results remain the same after
the weights have been changed. We tackle this problem by
suggesting the users the minimum weight adjustment that
can change the current results (here, changing the results
refers to changing the POIs in the kNNTA answer set).

A few existing studies proposed algorithms retaining the
top-k results instead of changing the results. For example,
Mouratidis et al. [15] proposed an algorithm that computes
the immutable regions which is defined as the widest range
of αi that preserves the top-k results (assuming that the
other weight α1−i is kept constant). Soliman et al. [22] stud-
ied finding the maximal hypersphere centered at the weight
vector [α0, α1]

T such that each vector in the hypersphere
preserves (including the order) the top-k results. These al-
gorithms do not apply since they cannot compute the weight
adjustment to change the top-k results.

To solve this problem, we first rewrite the ranking function
f(p). Let the POIs be ranked in a list. We denote the ith

ranked POI by pi and rewrite the ranking function of pi
by f(pi) = α0si,0 + α1si,1, where si,0 = d(pi, q) and si,1 =
1 − g(pi, Iq). For simplicity, we focus on the adjustment of
α0 (since α1 = 1 − α0). Given a top-k POI pi (i ≤ k) and
a lower ranked POI pj (j > k), where f(pi) < f(pj), we
obtain a value range of α0 such that for any α′

0 in the range,
a ranking function f ′(p) defined by α′

0 satisfies f ′(pi) >
f ′(pj). For example, in the ranking list in Table 3, we have
α0 = α1 = 0.5 and k = 2. To let f ′(p1) > f ′(p3), we need
α′
0 > 5

6
. To let f ′(p1) > f ′(p6), we need α′

0 < 1
8
. We

refer to the boundary of the range as the weight adjustment,
denoted by γi,j . Let δi,j,t = si,t − sj,t for t = 0, 1. When
δi,j,0 · δi,j,1 < 0, γi,j is computed by

γi,j =
δi,j,1

δi,j,1 − δi,j,0
.

When δi,j,0 · δi,j,1 ≥ 0, we cannot achieve f ′(pi) > f ′(pj)
since pi dominates pj (i.e., si,t < sj,t for t = 0, 1). The min-
imum weight adjustment (MWA) is the weight adjustments
that are nearest to the current weight, i.e., the max{γi,j}
or min{γi,j} when γi,j is less or greater than the current
weight. For example, in the ranking list in Table 3, to let
f ′(p1) be greater than f ′(p3), f

′(p5), f
′(p6), we need α′

0 > 5
6
,

α′
0 > 20

29
, α′

0 < 1
8
, and to let f ′(p2) be greater than f ′(p4),
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Table 3: Ranking list

POI si,0 si,1 POI si,0 si,1

p1 0.25 0.10 p4 0.35 0.25
p2 0.10 0.30 p5 0.025 0.60
p3 0.20 0.35 p6 0.60 0.05

f ′(p5), f
′(p6), we need α′

0 < 1
6
, α′

0 > 4
5
, α′

0 < 1
3
, respec-

tively. The MWA of α0 is either α′
0 < 1

3
or α′

0 > 20
29
, since 1

3

and 20
29

and are nearest to the current weight 0.5 when the
weight adjustment is less and greater than 0.5, respectively.
More precisely, the MWA for α0 comprises two values Γl

and Γu that are computed by:
{

Γl = max{γi,j} for δi,j,0 < 0, i ≤ k, j > k,
Γu = min{γi,j} for δi,j,0 > 0, i ≤ k, j > k.

The MWA will change exactly one of the top-k POIs and
keeps the other top-k POIs (the order within top k may
change). For example, if we change α0 to 0.75 in the above
example, the new top-2 POIs will be the current p2 and p5.

A straightforward way to compute the MWA on the TAR-
tree is as follows: After finding the top-k POIs, for each of
the top-k POIs p, we continue the BFS until the queue is
empty. If the ejected entry e is dominated by p, we continue.
Otherwise, we compute and update the (tentative) MWA if
e is a leaf entry, or continue the BFS if e is an internal entry.
This approach may incur significant cost since it enumerates
each of the top-k POIs and has a very weak pruning power
on the lower ranked POIs (by checking the dominance).

To overcome this drawback, we propose an approach that
makes use of the skyline queries. We observe that: when
δi,j,0 > 0 and δi,j,0 < 0, the weight adjustment computed
from an entry gives an upper and lower bound on the weight
adjustments computed from the child entries, respectively.
The reason is, when δi,j,0 < 0 and δi,j,0 > 0,

γi,j =
δi,j,1

δi,j,1 − δi,j,0
=

1

1− δi,j,0
δi,j,1

=
1

1− si,0−sj,0
si,1−sj,1

increases and decreases with the decrease of sj,1 or sj,0, re-
spectively. Therefore, to compute the MWA, we only need
to consider the weight adjustments when interchange the
POIs on (i) the skyline of the lower ranked POIs and (ii)
the skyline of the top-k POIs with the dominating condition
reversed (i.e., pi dominates pj if si,t > sj,t for t = 0, 1).
Therefore, after finding the top-k POIs, we propose to (i)
first compute the skyline of the top-k POIs with the domi-
nating condition reversed, and then (ii) compute the skyline
of the lower ranked POIs and (iii) obtain the MWA by the
weight adjustments interchanging the POIs on the two sky-
lines. Note that although the proposed TAR-tree is designed
for the kNNTA query, it also enables efficient answering of
the skyline query, since many skyline algorithms are based
on the R-tree (e.g., [18]). It is not difficult to extend the
algorithm to compute the weight adjustment that leads to
multiple top-k POIs being changed.

7.2 Collective Query Processing
To achieve high scalability when processing multiple kN-

NTA queries simultaneously, we propose to process kNNTA
queries in a batch fashion.

Let c be the number of queries in a batch. We use c
priority queues for the BFS of the c queries. In the BFS, we
access a node when the front entry is an internal entry. Some

Table 4: Data Set
Name Time Locations Check-ins

NYC 05/2008-06/2011 72,626 237,784
LA 02/2009-07/2011 45,591 127,924
GW 02/2009-10/2010 1,280,969 6,442,803
GS 01/2011-07/2011 182,968 1,385,223

front entries in the c queues may be the same (pointing to
the same node). For example, if c = 5, after we insert a root
node containing two entries R1 and R2, the front entries of
the c queues may be R1, R1, R2, R2 and R1. To reduce the
number of node accesses, we process the c queues greedily,
i.e., the queues containing the most frequent front entry are
processed first, which makes the accessed node be shared by
the most queries. For instance, in the above example, the
node R1 will be retrieved and the three queues having R1 as
the front entry will be processed first. To further share the
aggregate computation on the TIAs in the accessed node, we
group the queries together if they have the same query time
interval (i.e., the same start time and length) and process
the queries as a batch. Such grouping method is effective
because in real applications users are usually given only a
few options for the query time interval (e.g., one day or one
week from now) by default.

8. EXPERIMENTS
In this section, we empirically evaluate the cost analysis,

the TAR-tree and two enhancements for the kNNTA query.
Experiments Setup. We use four real-world data sets:

NYC, LA, GW and GS. NYC and LA [1] are two LBSNs
for the New York City and Los Angeles, respectively (gen-
erated from Foursquare tips), GW [7] is the LBSN Gowalla
and GS [11] is the LBSN Foursquare (generated from check-
ins posted on Twitter). The details of the data sets are
listed in Table 4. We implement the R-tree with the R*-
tree [3] and the TIA with the Multi-version B-tree. Given
the vast memory capacity of modern computers, the R-tree
is kept in memory and each TIA is assigned a maximum of
10 buffer slots. To simulate real scenarios, unless otherwise
specified, the R-tree node size is set to 1024 bytes (and hence
the node capacities are 50 and 36 for 2- and 3-dimensional
entries respectively), the epoch length is set to 7 days, and
a location needs to have 15, 10, 100 and 50 check-ins for
the four data sets respectively to be treated as an effective
public POI and indexed. For each data set, we generate
1,000 queries with the query point uniformly sampled from
the data set and the query time interval uniformly sampled
from 20, 21, . . . , 29 days. By default k = 10 and α0 = 0.3.

The experiments are conducted on a 64-bit Windows desk-
top computer with a 3.40GHz Intel(R) Core(TM) i7-2600
CPU and 16GB RAM. All algorithms are implemented in
Java. For all sets of experiments (except the validation of
the cost analysis), we measure the CPU time and number
of node accesses. All presented results are averaged over the
1,000 queries. Due to the space limitation, we only present
the results of GW and GS. The results of NYC and LA are
consistent with those of GW and GS, and hence are omitted.

8.1 Validation of the Cost Analysis
In this set of experiments, we evaluate the cost analysis

by comparing the estimated f(pk) and number of leaf node
accesses with the measured ones.
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Figure 6: Cost analysis validation by varying k

Varying k. We first evaluate the analysis by varying k
from 1 to 100. The results are plotted in Figure 6. Fig-
ures 6(a) and 6(b) show the comparison of the estimated
and measured f(pk). We can see that f(pk) increases with
the increase of k as expected. The estimates are very close
to the actual values when k ≥ 5. The estimate is less accu-
rate when k < 5, especially on GS, which is due to the large
variance of f(pk) when k < 5 and only a few POIs have
large aggregate values. Figures 6(c) and 6(d) present the
comparison of the estimated and measured number of node
accesses. We can see that with the increase of k the number
of leaf node accesses increases and the estimates exhibit the
same growing trend as the actual values. When k ≤ 50, the
estimates approximate the measured values very well. When
k > 50, the estimation is slightly inaccurate due to that the
number of POIs computed by the power-law is less accu-
rate when x is close to x̂min and it happens more frequently
when k is larger. This problem can be addressed by col-
lecting more data or introducing a more complex piece-wise
fitting.

Varying α0. Next, we evaluate the analysis by varying
α0 from 0.1 to 0.9. The results are plotted in Figure 7. Fig-
ures 7(a) and 7(b) depict the comparison of the estimated
and measured f(pk). For all values of α0, the estimates are
almost identical to the actual values. Figures 7(c) and 7(d)
illustrate the comparison of the estimated and measured
number of node accesses. We can see that the number of
node accesses increases moderately with the increase of α0.
The estimates fluctuate closely around the actual values.
When α0 is close to 0.9, the estimates show an opposite
growing trend to the actual values. This is due to the same
problem caused by the error of the power-law fitting when
x is close to x̂min, and can also be addressed by the same
approaches. Overall, the cost analysis is accurate and can
strongly indicate the query processing cost.

8.2 Performance of the TAR-tree
In this set of experiments, we evaluate the performance of

the TAR-tree. We compare the TAR-tree with the two al-
ternatives (discussed in Section 5) using the spatial extents
and the aggregate distribution to group the entries, respec-
tively. We refer to the two alternatives as the IND-spa
and IND-agg, respectively. We also compare the TAR-tree
with the straightforward approach (scanning the aggregate
values and POIs) to measure the query processing speed up,
which is referred to as the baseline.

Effect of the LBSN Growing with Time. First, we
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Figure 7: Cost analysis validation by varying α0

evaluate the performance by simulating the growth of the
LBSN with time. We take a snapshot on each data set at
20%, 40%, . . . , 100% of the time. The results are plotted
in Figure 8. Figures 8(a) and 8(b) show the CPU time of
different approaches. We can see that the TAR-tree runs
several times faster than the IND-spa and IND-agg. The
TAR-tree also runs greatly faster than the baseline. With
the growth of the LBSN, the performance of the TAR-tree
may slightly fluctuate (as shown in Figure 8(b)). This is due
to that the TAR-tree does not adjust promptly to adapt to
the current LBSN. To address the problem, we can reinsert
part of the entries periodically or rebuild the TAR-tree when
the performance degrades below some threshold.

Figures 8(c) and 8(d) present the number of node accesses
against the growth of the LBSN. The TAR-tree consistently
has the smallest number of node accesses and outperforms
the IND-spa and IND-agg by a significant margin on both
data sets. On GW, the TAR-sap incurs the largest number
of node accesses, while on GS the IND-agg is the worst.
This indicates that unlike the TAR-tree, the performance
of IND-spa and IND-agg is unstable across different data
sets. On GW, the number of node accesses in the TAR-tree
marginally decreases with the growth of the LBSN. This
implies that the TAR-tree performs better when there are
sufficient aggregate information.
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Figure 8: TAR-tree evaluation by simulating the
growth of the LBSN

Effect of k. Next, we evaluate the performance the TAR-
tree by varying k from 1 to 100. The results are presented in
Figure 9. We can see that the TAR-tree constantly outper-
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Figure 9: TAR-tree evaluation by varying k
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Figure 10: TAR-tree evaluation by varying α0

forms all the other approaches. With the increase of k, the
CPU time and number of node accesses of all approaches
increase. This, as indicated by the cost analysis, is because
the search region expands with the increase of k and hence
accesses more nodes. When k ≥ 50, as Figure 9(b) shows,
the performance of the IND-agg deteriorates rapidly and its
CPU time is comparable to that of the baseline. Figures 9(c)
and 9(d) show the number of node accesses. We can see that
when k > 10, the IND-spa and IND-agg have a much larger
growth rate than that of the TAR-tree. This also confirms
the cost analysis (in Section 6.4) that the expanding of the
search region has a larger impact on IND-spa and IND-agg.

Effect of α0. Figure 10 plots the performance of dif-
ferent approaches when the value of α0 is varied from 0.1
to 0.9. When α0 approaches 1, the importance of the spa-
tial distance increases in the kNNTA query. Figures 10(a)
and 10(b) show the CPU time and we can see that when
α0 approaches 1, the performance of the IND-spa and IND-
agg decreases and increases, respectively. This is because
the IND-spa and IND-agg are optimized for the spatial and
aggregate dimensions, respectively. The performance of the
TAR-tree is almost unaffected by the changing of α0 and the
TAR-tree keeps running the fastest. Even when α0 = 0.1
and 0.9, for which the IND-agg and IND-spa are supposed to
have a good advantage, the TAR-tree still performs no worse
than the IND-agg and IND-spa, respectively. Figures 10(a)
and 10(b) present similar results on the number of node ac-
cesses. We can see that when α0 approaches 1, the number
of node accesses in the IND-agg increases radically. This is

1

10

100

1000

10000

1 3 7 14 28

C
P
U
 
t
i
m
e
 
(
m
s
)

epoch length (day)

baseline
IND-agg
IND-spa

TAR-tree

(a) GW

1

10

100

1000

1 3 7 14 28

C
P
U
 
t
i
m
e
 
(
m
s
)

epoch length (day)

baseline
IND-agg
IND-spa
TAR-tree

(b) GS

0

300

600

900

1200

1 3 7 14 28

n
o
d
e
 
a
c
c
e
s
s
e
s

epoch length (day)

IND-agg
IND-spa
TAR-tree

(c) GW

0

200

400

600

800

1000

1 3 7 14 28

n
o
d
e
 
a
c
c
e
s
s
e
s

epoch length (day)

IND-agg
IND-spa
TAR-tree

(d) GS

Figure 11: TAR-tree evaluation by varying the
epoch length
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Figure 12: TAR-tree evaluation by varying the R-
tree node size

because the height of the search region grows rapidly with
the increase of α0, and for the IND-agg, a node is accessed
(with a high probability) as long as the layer containing the
node is less than or equal to the height of the search region.

Effect of the Epoch Length. We now proceed to evalu-
ate the performance by varying the parameters of the TAR-
tree. First, we vary the epoch length from 1 to 28 days and
present the results in Figure 11. Figures 11(a) and 11(b)
show that the CPU time of all approaches (including the
baseline) decreases with the increase of the epoch length.
This is because fewer values are added up to obtain the ag-
gregate. Figures 11(c) and 11(d) show the number of node
accesses and we can see that the longer the epoch length is,
the fewer node accesses the TAR-tree needs to process the
query. The reason is that a longer epoch length strengthens
the pruning power of the TAR-tree because the aggregate of
a parent node is closer to the maximum aggregate computed
from its child nodes. For all epoch lengths, the TAR-tree
outperforms the other approaches both in the CPU time
and number of node accesses.

Effect of the R-tree Node Size. Next, we vary the
R-tree node size from 512 to 8192 bytes and present the re-
sults in Figure 12. As shown in Figures 12(a) and 12(b), the
CPU time of the TAR-tree increases almost linearly with
the increase of the node size. This is because the number
of entries in a node grows linearly as the node size grows
and similar operations are performed on each entry. Fig-
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Figure 13: Computing the MWA by varying k
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Figure 14: Computing the MWA by varying α0

ures 12(c) and 12(d) show that the number of node accesses
of all approaches increases with the growth of the node size.
The IND-spa has the largest growth rate and the TAR-tree
has the smallest growth rate. The reason is that with the
increase of the node size, the node represent a larger spatial
region, and thus has a relatively weak pruning power in spa-
tial extents. Under all settings, the TAR-tree consistently
outperforms all the other approaches.

8.3 Performance of the Weight Adjustment Al-
gorithm

In this set of experiments, we compare the performance of
the proposed weight adjustment algorithm with the straight-
forward approach. We refer to the proposed algorithm and
the straightforward approach as pruning and enumerat-
ing, respectively.

Varying k. We first evaluate the algorithm by varying
k from 10 to 1000. We plot the results in Figure 13. From
Figures 13(a) and 13(b), we can see that pruning runs orders
of magnitude faster than enumerating. The performance of
enumerating degrades rapidly as k grows. This is because
each top-k result is enumerated and computed against the
lower ranked POIs. The CPU time of the pruning algorithm
decreases marginally with the increase of k. This is because
computing the skyline of the lower ranked POIs takes much
less time and pays off the time spent on computing the sky-
line of the top-k POIs. Figures 13(c) and 13(d) show consis-
tent results on the number of node accesses except that the
number of node accesses decreases marginally faster than
the CPU time since it incurs no node accesses to compute
the skyline of the top-k POIs.

Varying α0. Next, we evaluate the algorithm by varying
α0 from 0.1 to 0.9. The results are presented in Figure 14.
As Figures 14(a) and 14(b) show, the CPU time of enumer-
ating first decreases and then increases as α0 grows. Since
checking the dominance is the only pruning technique used
by this approach, it indicates that the pruning power of the
technique is weakest when α0 is around 0.1 or 0.9. The
CPU time of the pruning algorithm has an opposite grow-
ing trend to enumerating. This indicates that it is more
efficient to compute the skyline when the weight is skewed.
Figures 14(c) and 14(d) present consistent results on the
number of node accesses. In all settings, the proposed algo-
rithm outperforms the baseline by a significant margin.

8.4 Performance of the Collective Processing
Scheme

In the last set of experiments, we evaluate the collective
processing scheme (collective) against the approach to pro-
cessing the query individually (individual). To investigate
the effect of memory buffering on processing the query indi-
vidually, we assign no buffer to the TIAs.

Varying the Number of Queries. Figure 15 presents
the CPU time and the node accesses as a function of the
number of queries. From Figures 15(a), 15(b) and Fig-
ures 15(c), 15(d), we can see that for the collective process-
ing scheme, the more queries are processed collectively, the
shorter the average processing time is and the smaller num-
ber of node accesses we need, respectively. This is because
more queries share the index traversal. We can also see that
when processing the query individually, changing the num-
ber of queries has little effect on either the CPU time or the
number of node accesses. The collective processing scheme
constantly outperforms processing the query individually by
a big margin.
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Figure 15: Collective processing by varying the
number of queries

Varying the Number of Query Types. Next, we eval-
uate the collective processing scheme by varying the number
of query time intervals (i.e., query types) from 1 to 100. Fig-
ure 16 presents the results. Since the queries are grouped by
the query time interval, the efficiency of the collective pro-
cessing scheme will decline when the number of query time
interval increases. As Figures 16(a) and 16(b) show, the effi-
ciency of the collective processing scheme does not degrade
too much when there are more than 10 types of queries.
The collective processing scheme keeps running several times
faster than processing the queries individually. Figures 16(c)
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and 16(d) present consistent results on the number of node
accesses. In all settings, the collective processing scheme
outperforms the baseline by a significant margin.
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Figure 16: Collective processing by varying the
number of query types

9. CONCLUSIONS
We proposed a new type of queries called the k-nearest

neighbor temporal aggregate query, which provides highly
customized POI retrieval by integrating the spatial distance
and a temporal aggregate on a certain attribute. We de-
signed a novel index called the TAR-tree by integrating
both types of information to effectively group the entries,
and therefore can support efficient processing of the kN-
NTA query. We performed a detailed analysis on the cost
of query processing using the TAR-tree. The analysis shows
that the TAR-tree has a stronger pruning power than alter-
natives. The accuracy of the cost analysis is validated by
empirical experiments. Furthermore, we proposed two en-
hancements for the kNNTA query: (i) To assist users explore
different results, we devised an efficient algorithm suggesting
the minimum weight adjustment that can change the query
results. (ii) To handle large number of queries, we proposed
an effective collective processing scheme to share the index
traversal among a batch of queries. We conducted extensive
experiments on real-world data sets. The results validate
the efficiency of the TAR-tree and the effectiveness of the
two enhancements for the query.
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[4] S. Berchtold, C. Böhm, D. A. Keim, and H.-P. Kriegel. A
cost model for nearest neighbor search in high-dimensional
data space. In PODS, pages 78–86, 1997.
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ABSTRACT
Graph databases are becoming pervasive in several applica-
tion scenarios such as the Semantic Web, social and biolog-
ical networks, and geographical databases, to name a few.
However, specifying a graph query is a cumbersome task for
non-expert users because graph databases (i) are usually of
large size hence difficult to visualize and (ii) do not carry
proper metadata as there is no clear distinction between
the instances and the schemas. We present GPS, a system
for interactive path query specification on graph databases,
which assists the user to specify path queries defined by reg-
ular expressions. The user is interactively asked to visualize
small fragments of the graph and to label nodes of interest
as positive or negative, depending on whether or not she
would like the nodes as part of the query result. After each
interaction, the system prunes the uninformative nodes i.e.,
those that do not add any information about the user’s goal
query. Thus, the system also guides the user to specify her
goal query with a minimal number of interactions.

1. INTRODUCTION
Graph databases [8] are becoming pervasive in several ap-

plication scenarios such as the Semantic Web, social and
biological networks, and geographical databases, to name
a few. Many mechanisms have been proposed to query a
graph database, which, although being very expressive, are
difficult to understand by non-expert users who are unable
to specify their queries with a formal syntax.

The problem of assisting non-expert users to specify their
queries has been recently raised by Jagadish et al. [6, 7].
More concretely, they have observed that “constructing a
database query is often challenging for the user, commonly
takes longer than the execution of the query itself, and
does not use any insights from the database”. While they
have mentioned these problems in the context of relational
databases, we argue that they become even more difficult
to tackle for graph databases. Indeed, graph databases usu-
ally do not carry proper metadata as there is no clear dis-

c© 2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

tinction between the instances and the schemas. The ab-
sence of metadata and the difficulty of visualizing possibly
large graphs make unfeasible traditional query specification
paradigms for non-expert users e.g., query by example [9].

In this paper, we address the problem of assisting non-
expert users to specify their graph queries and propose GPS,
“a system for interactive Graph Path query Specification”.
The user is interactively asked to visualize small fragments
of the graph and to label nodes of interest as positive or neg-
ative examples, depending on whether or not she would like
the nodes as part of the query result. After each interaction,
the system prunes the uninformative nodes i.e., those nodes
that do not provide any useful information about the user’s
goal query. Thus, the system also guides the user to specify
her goal query with a minimal number of interactions.

In [2], we have studied the theoretical challenges of such
a scenario and empirically shown the improvements of using
an interactive approach on biological and synthetic datasets.
As a natural extension, we are interested next in applying
our algorithms to scenarios where human users provide the
positive and negative examples. Both in [2] and in this demo,
we focus on the class of path queries defined by regular ex-
pressions, where a node is selected if it has a path in the
language of a given regular expression. The objective of this
demo is thus to let real users interact with GPS to specify
different path queries that they could have in mind, while
minimizing the number of interactions with the system.

The rest of the paper is organized as follows. In Sec-
tion 2 we present some key ingredients of our system via
a motivating example, while in Section 3 we describe our
demonstration scenario. Due to space restrictions, in this
paper we provide only a glimpse of the techniques employed
by GPS. However, we refer to our full research paper [2] for
algorithmic details and for more elements of related work.

2. SYSTEM OVERVIEW
In this section we present a brief overview of our system.

To this purpose, we first introduce a motivating example.
Then, we describe the interactive scenario for path query
specification on graph databases.

Motivating example
We depict in Figure 1 a graph representing a geographical
database having as nodes the neighborhoods of a city area
(N1 to N6), along with cinemas (C1 and C2), and restau-
rants (R1 and R2) in such neighborhoods. The edges rep-
resent public transportation facilities from a neighborhood
to another (using labels tram and bus), along with other
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N1 N2 N3

N4 N5 N6

C1 R1 R2 C2

bustram

bus bus

cinema

tram

restaurant

bus tram

restaurant

tram

bus

cinema

Figure 1: A geographical graph database.

kind of facilities (using labels cinema and restaurant). For
instance, the graph indicates that one can travel by bus be-
tween the neighborhoods N2 and N3, that in the neighbor-
hood N4 there is a cinema C1, and so on. Next, imagine
that a user wants to know from which neighborhoods in the
city she can reach cinemas via public transportation. These
neighborhoods can be retrieved using a path query defined
by the following regular expression:

q “ ptram` busq˚ ¨ cinema

The query q selects the nodes N1, N2, N4, and N6 as they
are entailed by the following paths in the graph:

N1 tram
ÝÝÑ

N4 cinema
ÝÝÝÝÑ

C1,

N2 bus
ÝÑ

N1 tram
ÝÝÑ

N4 cinema
ÝÝÝÝÑ

C1,

N4 cinema
ÝÝÝÝÑ

C1,

N6 cinema
ÝÝÝÝÑ

C2.

We assume that the user is not familiar with any formal syn-
tax of query languages, while she still wants to specify the
above query on the graph database in Figure 1 by provid-
ing examples of the query result. In particular, she would
positively or negatively label some graph nodes according
to whether or not they would be selected by the targeted
query. For instance, the user could label the nodes N2 and
N6 as positive examples, and the node N5 as a negative exam-
ple, thus willing to have all nodes but the last as part of the
query result. Indeed, there is no path starting in N5 through
which the user can reach a cinema, while there are paths for
the first two nodes. We also observe that the query q above
is consistent with the user’s examples because q selects all
positive examples and none of the negative ones.

To construct a query that is consistent with the examples
provided by the user, we have proposed in [2] a learning
algorithm that essentially consists of the following two steps:
(i) for each positive example, find a path that is not covered
by any negative, and (ii) construct an automaton recognizing
precisely the paths found at the previous step and generalize
it by state merges while no negative example is covered. By
continuing on our running example, take the graph database
from Figure 1, the positive examples N2 and N6, and the
negative example N5. Assuming that at step (i) we have
found the paths bus¨tram¨cinema and cinema for N2 and
N6, respectively, by generalizing the disjunction of these two
paths we are able to construct the aforementioned query q,
which corresponds to the user’s goal query. In the next
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Figure 2: Interactive scenario.

section, while describing the interactive scenario, we explain
in more details how our system is able to find path queries
via simple user interactions.

Interactive scenario
Even though our demonstration scenario consists of several
types of interactions with the user (cf. Section 3), in this
section we concentrate exclusively on the core of GPS, the
interactive scenario for path query specification. This sce-
nario is inspired by the well-known framework of learning
with membership queries [1]. Recently, we have formalized
it as a general paradigm for learning queries on big data [3]
and also employed it for learning join queries on relational
databases [4, 5]. In Figure 2, we depict the current instan-
tiation for path queries on graphs and we detail next its
different steps.

1 2 We consider as input a graph database G. Ini-
tially, we assume an empty set of examples that we enrich
via simple interactions with the user. The interactions con-
tinue until a halt condition is satisfied. A natural condition is
to stop the interactions when there is exactly one consistent
query with the current set of examples. However, we also
allow weaker conditions e.g., the user may stop the process
earlier if she is satisfied by some candidate query proposed
at some intermediary stage during the interactions.

3 We propose nodes of the graph to the user according
to a strategy Υ i.e., a function that takes as input a graph G
and a set of examples S, and returns a node from G. Since
our goal is to minimize the amount of effort needed to learn
the user’s goal query, a smart strategy should avoid propos-
ing to the user those nodes that do not bring any information
to the learning process. Intuitively, a node is uninformative
if all its paths are covered by negative nodes. A good prac-
tical strategy should have two essential properties: (i) be
time-efficient i.e., the user does not have to wait too much
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(a) (b) (c)

Figure 3: Interactions with the user for node labeling and path validation.
(a) Proposing node N2 to the user and showing the neighborhood of nodes at distance at most 2.
(b) Proposing node N2 to the user and showing the neighborhood of nodes at distance at most 3.
(c) Proposing a path of node N2 for user validation and showing all paths of N2 of length at most 3.

between two consecutive interactions, and (ii) attempt to
minimize the number of user interactions by asking the user
to only label the most informative nodes. In [2], we have
developed such strategies, which intuitively seek the nodes
having an important number of paths that are shorter than
a fixed bound and not covered by any negative node.

4 5 6 A node by itself does not carry enough in-
formation to allow the user understand whether it is part
of the query result or not. Therefore, we have to enhance
the information of a node by zooming out on its neighbor-
hood before actually showing it to the user. This step has
the goal of producing a small, easy to visualize fragment of
the initial graph, which possibly contains the nodes that the
user would label as positive or negative.

In our system, we initially compute the neighborhood of
a node ν as the graph consisting of all nodes and edges at
distance at most 2 from ν. For instance, given the graph
database from Figure 1, let us assume that we want to ask
the user to label the node N2. Thus, the user is first pre-
sented with the graph in Figure 3(a). Notice that we have
depicted by “. . .” the parts of the graph that are reachable
from the current node N2, but are not shown because they
are not in the current neighborhood. The user can label the
proposed node as a positive or negative example (i.e., an-
swer “Yes/No”) or she may ask for zooming out the neigh-
borhood to be able to decide whether or not the node is of
interest for her. For instance, if the user decides to zoom
out the neighborhood of N2, we show her the graph from
Figure 3(b), where we highlight (by drawing in blue) the
nodes and edges that have been added w.r.t. the previously
presented graph fragment. On our example, the user is able
now to see that she can reach a cinema from N2 and thus to
label this proposed node as a positive example.

Next, if the user has labeled a given node as a positive
example, we want to find out which of the paths of that
node is of interest for her. For this purpose, the system
builds all paths of the current node that are not yet cov-
ered by negative examples and of length at most the size of
the last neighborhood. We present these paths to the user
as a prefix tree and we highlight the path that the system
believes is the path of interest for her. The user can thus
validate this path or correct it further by choosing a differ-
ent path. In Figure 3(b) of our running example, we have
shown the neighborhood of size 3 of the node N2, which is
the node that the user has labeled as a positive example.
Consequently, the system shows to the user the paths of N2

of length at most 3 in the prefix tree of Figure 3(c). The sys-
tem highlights the path bus¨bus¨cinema as a candidate path
of interest for the user because (i) it has length equal to 3
and (ii) the system inferred that a path of this length better
fits the user’s will as the latter zoomed out the neighborhood
of length 2 in Figure 3(a).

After path validation by the user, the system seamlessly
propagates to the rest of the graph the labels provided by
the user at this stage, while at the same time pruning the
nodes that become uninformative. Our learning algorithm
outputs in polynomial time either a query q consistent with
all labels provided by the user, or instead the next node to
label if such a query cannot be constructed efficiently. We
have shown in [2] that constructing in polynomial time a
query consistent with the examples is not always possible,
but, after a certain number of examples (this number being
polynomial in the size of the query), the learning algorithm is
guaranteed to return in polynomial time a query equivalent
to the user’s goal query.

When the halt condition is satisfied, we return the latest
output of the learning algorithm to the user. In particular,
the halt condition may take into account an intermediary
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learned query q e.g., when the user is satisfied by the output
of q on the instance and wants to stop the interactions.

3. DEMONSTRATION SCENARIO
The demonstration scenario consists of three parts. First,

we would like that the attendee appreciates the difficulties
that one can encounter when labeling directly the graph
database instance. Next, we propose to the attendee an
interactive scenario where she is prompted with small frag-
ments of the graph that can be easily visualized. On these
fragments, the user can label nodes as positive or nega-
tive examples and the system infers her queries. Third, we
present the core of our system, where we additionally show
to the user the set of relevant paths entailed by the positive
examples for further validation. This extra step guarantees
that the system generalizes the interesting paths for the user
and thus the constructed query indeed corresponds to what
the user had in mind. In the demo, we plan to show our
algorithms on real geographical data. Such data combines
the information about networks of public transportation in
France (e.g., Transpole1) with other facilities in the spirit of
our motivating example.

Static labeling
To illustrate why it is important to use an interactive ap-
proach in proposing nodes of interest to the user, we pro-
gressively show to the attendees the different types of in-
teractions our system can handle. In this first part of the
demonstration, we let the attendee visualize the graph and
label nodes of interest in the order she prefers. Then, the
system proposes a query consistent with the provided ex-
amples or, alternatively, points out that the labeled nodes
are inconsistent. The attendee must observe that this kind
of approach is not user-friendly as the user is asked to (i)
possibly visualize a large graph database instance and (ii)
inspects interesting fragments by herself. This clearly re-
quires more effort than visualizing small fragments of the
graph and simply answering “Yes/No” to nodes proposed by
the system. However, we think that it is still important to
show this static labeling scenario to the user to appreciate
the differences with respect to the interactive scenario, which
we discuss next. Moreover, the static labeling scenario is the
only one where we let the user to make mistakes by labeling
nodes inconsistently because in the other scenarios we show
informative nodes only hence any labeling is consistent.

Interactive labeling (without path validation)
In this part of the demonstration, we present the interac-
tive scenario illustrated in the previous section, but without
including the step of path validation. For instance, at each
interaction the system computes the most informative node
and shows it to the user together with its neighborhood as
in Figure 3(a). Then, the user may label it as a positive or
negative example, or she can ask for zooming out the neigh-
borhood, which yields a graph as in Figure 3(b). When the
user labels a proposed node as a positive example, the sys-
tem computes for that node a path that is not covered by any
negative example, the latter path being used by the learning
algorithm afterwards. The goal of this scenario is to show
the importance of the step of path validation. Although
the interactive scenario without this step finally produces a

1http://www.transpole.fr/

query that is consistent with the examples provided by the
user, this query is not necessarily always the query that the
user expects. As an example, on the graph and the labeled
examples in Figure 1, notice that the query bus selects both
positive examples C2 and C6, and not the negative example
C5. This query is clearly not the user’s goal query. There-
fore, even though the user has to perform an additional click
to validate or to correct the path of interest for a positive
node, this step is necessary to make sure that the learned
query is constructed using for each positive node the paths
of interest for her.

Interactive labeling (with path validation)
In this last part of the demonstration, we illustrate the core
of our system i.e., the interactive scenario described in Sec-
tion 2. As a difference w.r.t. the second demonstration sce-
nario, the user can now additionally choose as in Figure 3(c)
the path of interest instead of letting the learning algorithm
choose such a path. The goal of this third scenario is to
show the actual difference between “learning” a query that
is consistent with the node examples provided by the user
and assisting the user to“specifying”her query, also via node
examples. When the user also validates the paths of inter-
est for each positive node, this guarantees that the system
generalizes the interesting paths for the user and the con-
structed query is indeed the user’s goal query. In conclusion,
by using GPS, a non-expert user desiring to query a graph
database has neither to visualize all the graph that can be
potentially large, nor to look by herself for interesting nodes,
as the system guides her throughout small, easy to visualize
fragments of the graph and prompt her with nodes to label
on these fragments.
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ABSTRACT
Analysis of genomes has a wide range of applications from
disease susceptibility studies to plant breeding research. For
example, di↵erent types of barley have di↵ering character-
istics regarding draught or salt tolerance. Thus, a typical
use case is comparing two plant genomes and try to deduce
which genes are responsible for a certain resistance. For
this, we need to find di↵erences in large volumes of aligned
genome data, which is already available in large genome
databases.

The challenge is to e�ciently retrieve the genotypes of a
certain range of the genome, and then, to determine variants
and their impact on the plant organism. State-of-the-art
tools are fixed pipelines with a fixed parametrization. How-
ever, in practice, users want to interactively analyse genome
data and need to customize the parametrization.

In this demonstration, we show how we can support flex-
ible ad-hoc analyses of arbitrary plant genomes using SQL
with a small set of user-defined aggregation functions and
dynamic parametrization. Furthermore, we demonstrate how
genome analysis workflows for variant calling can be applied
to our system and provide insights about the performance
of our system.

1. INTRODUCTION
The increasing world population also increases the de-

mand for food. Therefore, the harvest of food plants for hu-
mans as well as animals must be increased. Typically, plant
species are bred to increase harvest or resilience against
pests. Genome analysis allows us to determine di↵erences
in plant genomes and to determine which genes a↵ect cer-
tain traits. Using this knowledge, a more target-oriented
breeding is possible.

c� 2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

Genome analysis comprises sequencing of deoxyribonucleic
acid (DNA) molecules, alignment or assembly of sequenced
reads, and analysis of the reconstructed genomes. Typically,
a first analysis is variant calling, which determines di↵er-
ences between a sample genome and a reference genome.
Knowing the di↵erences of a sample genome provides the
starting points for further analyses. As plant genomes are
huge, e.g., the barley genome comprises 5 billion base pairs,
only a step by step analysis is feasible for scientists. Current
tools for variant calling allow to call variants on complete
genomes or only in specific regions. Thereby, scientists have
to know where to look for di↵erences such as the start and
end sites of a gene and use fixed tool pipelines that generate
the required results. The used tools are mostly command-
line driven and flat-file based and put together using scripts.
Such setups have the drawbacks that they miss flexibility
and are not interactive.
Missing Flexibility The exchange of analysis tools requires

knowledge about and adaptions to the scripts and also
requires that the tools are compatible regarding used
file formats and conventions.

Non-Interactivity When using a script that runs a de-
fined pipeline of tools, the scientist has to wait until
the analysis ends and has no opportunity to interrupt
the analysis to start another ad-hoc analysis based on
intermediate results.

In previous work, we suggested to use main-memory database
systems as future genome analysis platform [2]. Moreover,
we presented an approach to integrate variant calling into
a relational database system [3]. In this demonstration, we
present a system that allows users to interactively query and
analyse plant genomes using SQL extended with a small set
of genome-specfic aggregation functions.

The paper is structured as follows. In Section 2, we present
background information on variant calling and analysis meth-
ods on genome data. Then, in Section 3, we describe the ba-
sic building blocks of our system. The demonstration setup
is presented in Section 4. Finally, we conclude in Section 5.

2. BACKGROUND
In this section, we briefly present background information

about genome analysis and approaches to integrate genome
analysis steps into database management systems (DBMSs).
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Figure 1: General genome analysis process.

2.1 Genome Analysis
Genome analysis consists of at least four steps. We de-

pict these four steps in Figure 1. In the DNA sequenc-
ing step information encoded in DNA molecules is made
digitally readable by translating DNA macromolecules into
strings of A’s, C’s,’ G’s, and T’s that encode the nucleobases
Adenine, Cytosine, Guanine, and Thymine, respectively.
State-of-the-art DNA sequencers are capable to sequence bil-
lions of bases in short time, which increases the amount of
genome data to analyse dramatically. Unfortunately, DNA
sequencers are not capable to sequence complete DNA mole-
cules at once, but only in small, overlapping pieces. These
DNA pieces are called reads and have a short length of about
100 base pairs that is rather small compared to the size of
a complete genome such as the barley genome with 5 bil-
lion base pairs. In order to perform genome analyses, in a
second step, DNA molecules must be restored after DNA se-
quencing from the short reads. After alignment, analysis of
genomes starts. Because human or plant genomes are huge,
only interesting sites in the genome are analysed at first.
To identify such interesting sites, di↵erences between sam-
ple genomes and the used reference genome are determined
and a variant is called in case a di↵erence is reliable. Such
di↵erences can be base exchanges at single genome sites,
so called single nucleotide polymorphisms (SNPs), or inser-
tions and deletions (InDels) of bases regarding the reference
genome [6]. At variant sites, further downstream analysis
takes place that often requires further data sources to deter-
mine the e↵ect of a certain variant. For example, a mutation
in a certain barley gene influences the number of spikes of a
barley plant [4]. Often, downstream analysis is supported by
visualization tools such as IGV that allow scientists to visu-
ally inspect and navigate through the genome. In Figure 1,
a possible visualization of aligned and annotated genome
sequencing data is sketched below the single process steps.

2.2 Related Work
There are several approaches to support genome analysis

using database technology. Most of them concentrate on the
integration capabilities of DBMSs. For example, Atlas [9] or
BioWarehouse [5] integrate heterogeneous data sources using
relational database systems and provide specialized APIs to
load and access data.

Other approaches aim at integrating genome analysis steps
into the database system. Rheinländer et al. present a spe-
cial join operator that can be used to compute sequence
alignments [7]. Wandelt et al. present an approach to
perform similarity searches on thousands of genomes [11].
Therefore they use a special index structure that supports
fast similarity searches and further allows for impressive
compression ratios. In contrast, our approach aims at using

minimal-invasive extension mechanisms to provide genome
analysis functionality within a relational database system.
The approaches can complement each other.

An approach by Rhöm et al. also uses relational databases
to primarily store genome data [8]. Therefore, the authors
experiment with a special file wrapper functionality of SQL
Server 2008 to demonstrate how to access data stored in flat
files via a DBMS. Additionally, the authors introduce spe-
cial user-defined functions to manipulate tables and aggre-
gate data items that allow for genome analysis using SQL.
Thereby, the authors remark that the performance is prob-
lematic due to processing overhead and missing paralleliza-
tion of user-defined functions. In contrast, our approach is
based on main-memory database technology as platform to
provide high-performance genome data management. More-
over, we store data directly in the database and use a base-
centric database schema to e�ciently support genome analy-
sis tasks. Furthermore, we use only user-defined aggregation
functions to implement genome-specific analysis tasks.

3. SYSTEM OVERVIEW
In this section, we sketch the basic building blocks of our

demonstrator. First, we introduce the database schema used
to represent aligned genome data. Then, we present exten-
sions to support genome analysis tasks. Finally, we show
how to call SNPs using a custom-aggregation function and
how we support dynamic parametrization.

3.1 Database Schema for Aligned Genomes
We use an extended version of the database schema that

we presented in previous work for genomes where a reference
sequence consists of one contiguous region, such as a single
human chromosome or small bacteria genomes [3]. Nev-
ertheless, most animal and plant genomes consist of several
contiguous sequences (e.g., chromosomes). This significantly
complicates the schema, but is necessary to support variant
calling on genomes in general. In Figure 2, we depict the
extended entity-relationship schema. We introduced further
hierarchies to better represent reference_genomes. Not
for all genomes a complete reference sequence is known. For
example, the reference sequence of barley consists of thou-
sands of known contiguous sequences that have a known
order but unknown gaps between them. To represent these
contiguous sequences, we introduced the entity contig. More-
over, we integrated an entity to represent sample_genomes.

An aligned sample genome consists of millions of reads,
that are aligned to a certain site in a reference genome. In-
stead of storing the alignment information per read, we split
up every aligned read into its single bases and store each base
and its mapping to the reference genome separately. In our
base-centric database schema, these single bases are repre-
sented by the sample_base entity. The same idea is used
to store the reference_bases of a reference genome that
consists of contiguous regions instead of reads.

3.2 SQL Genome Extensions
To perform genome analysis tasks using SQL, we have

to extend our DBMSs with genome-specific functionality.
We use the concept of user-defined aggregation [12] to inte-
grate the required analysis extensions into the DBMS and
to make it available via SQL. In combination with our base-
centric database schema, we can perform read- or genome-
site-specific analyses by grouping and aggregating bases.
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Figure 2: Database schema for aligned genomes

showing the association between reference and sam-

ple genomes.

In order to call SNPs, we first need to call genotypes.
Therefore, we implemented an aggregation function geno-
type, which consumes all bases of a sample genome at a
certain position in the genome and determines which geno-
type is the likeliest at that position. For example, adenine,
thymine, cytosine, guanine, or a combination of these bases
in case of heterozygous genotypes. We use a frequency based
genotype calling algorithm, which is the quasi standard for
high coverage genome data [6].

For manual investigation or post processing, it is often
necessary that specific reads or the computed genotypes
in a certain region can be constructed from the database.
Therefore, we propose a user-defined aggregation function
concat bases, which concatenates the (computed) bases to
reconstruct the sequence, e.g., for the same read_id.

Especially, for the analysis of InDels, it is relevant to con-
sider the bases around potential InDels. DNA sequencers
have problems reading sequences of bases of the same kind.
InDels in such homopolymer regions are more likely to be
sequencing errors than real variations in the genome. To
detect such regions, we integrated a new aggregation func-
tion that identifies homopolymer regions.

3.3 SNP Calling
In this section, we explain how to use our database schema

and our genome extensions for SQL to call SNPs in a specific
genome region.

The goal of SNP calling is to find di↵erences in a sample
genome compared to a reference genome, often in coding
regions that contain genes. For this, the SNP caller needs to
compute the genotype on each position of the aligned sample
genome. Our database schema provides simple base-wise
access to sample and reference genomes. Therefore, we only
have to join the sample base table with the reference base
table on the reference id, contig id, and the position in the
reference genome. In order to avoid wrong SNP calls, we

exclude reads where the alignment algorithm detected an
insertion by filtering sample bases with an insert o↵set > 0.
Then, we group the sample bases by their position and their
respective reference base nd aggregate the sample bases with
our aggregation function genotype. Finally, we retrieve the
variants by comparing the reference base with the computed
sample genotype (the called genotype). We illustrate this
procedure in an example query in Listing 1.

1 SELECT r.position, r.base as reference_base,

2 genotype(s.base) as sample_genotype

3 FROM sample_base s JOIN reference_base r ON
4 r.reference_genome_id = s.reference_genome_id AND
5 r.contig_id = s.contig_id AND
6 r.position = s.alignment_position

7 WHERE s.insert_offset = 0

8 GROUP BY r.position, r.base

9 HAVING reference_base <> sample_genotype;

Listing 1: Query for SNP calling

Based on this query, further analysis queries can be de-
rived. For example, the analyst could reconstruct certain
reads in a region of interest, which was discovered by the
first query, using our concat bases function. In order to con-
cat bases in a sensible way, we have to guarantee the correct
order of bases within a group. Therefore, we use a sort-based
grouping approach with the knowledge that all bases within
one read reside in the correct order in main memory.

3.4 Dynamic Parametrization
Variant callers typically have many parameters, which

customize their behaviour. We support dynamic customiza-
tion in two ways. First, we can express some parameters
(e.g., the consideration of InDels) as simple filter conditions
in SQL. Second, the user can set environment variables (e.g.,
the frequency threshold for the genotype function). For re-
sult reproducibility, we include the parametrization as meta
data in the query result.

3.5 Putting it all together
With the previously introduced building blocks, users have

the ability to analyse genome data in a flexible and inter-
active way using SQL statements. For example, users can
call SNPs using the SQL query presented in Listing 1 and
apply additional filter criteria to limit the SNP calling to
a genome region of interest. Afterwards, users can check
the sequencing coverage in the considered genome region or
extract some genotype statistics to validate the variant call-
ing result. Additionally, users can extract the sequences of
reads in the genome region of interest. We depict an excerpt
of possible analysis tasks and their possible combinations in
Figure 3.

4. DEMONSTRATION SETUP
During the demonstration, we will remotely access a server,

which runs our system. The server has two Intel Xeon CPUs
(E5-2609 v2) @ 2.50GHz and 256GB of main memory @1333
MHz. We implemented our flexible variant calling on plant
genomes by integrating our database schema and our aggre-
gation functions in CoGaDB, a column-oriented, GPU ac-
celerated, main-memory DBMS [1]. As evaluation database,
we use Harrington barley genome data. We will demonstrate
the following aspects in our setup:

Minimal Invasive Extensions and Flexibility: We
show the audience how database technology can support
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Figure 3: Toolbox for flexible and interactive anal-

ysis of genomes.

genome analysis steps such as variant calling. Our intention
is to demonstrate that only small extensions of the SQL di-
alect are su�cient to allow exploration of genome data. We
show the flexibility of our system by preparing a list of anal-
ysis queries the user can choose from. We assist the user in
understanding the analysis queries by annotating each query
with information about purpose of the analysis and interpre-
tation of the query result. Additionally, we allow the user
to formulate own ad-hoc queries on our database schema.

Simulated Genome Analysis Workflow: The core of
the demonstration is to show a typical analysis workflow
such as variant calling (c.f. Section 2) that can be performed
using our demonstrator. Moreover, the user can experi-
ment with the system on their own to explore the barley
genome interactively via SQL. Thereby, our system presents
the query results on a SQL commandline interface, but can
also function as a backend for other analysis and visualiza-
tion tools (c.f. Section 2).

Performance of Query Processing: During the in-
teractive analysis, the user can view generated query plans
and run-times of single operators, including the specialized
genome operators to assess the performance of query pro-
cessing.

5. CONCLUSION
In this demo, we show how to store aligned genome data

in a relational database system and how we can apply real
world workflows to our system. Integrating analysis steps
into a DBMS and, thus, pushing code to data brings perfor-
mance advantages due to reduced transfer costs. Moreover,
extending SQL with bioinformatics operators combined with
improved query performance allows for interactive and ad-

hoc querying supporting scientists to prove or disprove hy-
potheses. This will be demonstrated in the sample workload
that we prepare for the demo.

In future work, we want to improve the storage capabilities
of our system by applying standard light-weight compression
techniques known from database systems such as run-length
encoding or dictionary encoding. Moreover, we investigate
compression schemes specific for genome data such as refer-
ential compression [10] and how to integrate them e�ciently
into a relational database system. Additionally, we allow the
integration of further information such as annotation infor-
mation.
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ABSTRACT
Maintaining random data samples under database updates
is a fundamental operation in modern database engines.
While multiple algorithms exist for this problem, none is
tailored to the special case of maintaining data samples on
graphics cards. Due to the limited interconnect bandwidth
to main memory, any GPU-resident algorithm must try to
avoid data transfers across the PCI Express bus where pos-
sible – a property that we call transfer-e�cient. In this
demonstration, we present an approximate, transfer-e�cient
sample maintenance algorithm that piggybacks on a GPU-
accelerated selectivity estimator and utilizes query feedback
to selectively identify and replace outdated points. We pro-
vide an implementation of the algorithm and interactively
demonstrate its quality and its transfer performance in com-
parison to traditional maintenance algorithms.

Categories and Subject Descriptors
H.2 [Database Management]: Systems

1. INTRODUCTION & MOTIVATION
Collecting and maintaining data samples is a fundamen-

tal operation in a modern database engine. One of the main
advantages of algorithms that can operate on samples lies
in their ability to trade-o↵ performance against result ac-
curacy by reducing – or increasing – the sample size. This
property allows us to e�ciently mask limited resources, as
long as our application can tolerate the loss of result accu-
racy. Examples of such “tolerant” applications include selec-
tivity estimation [14, 15], approximate query processing [3,
4], data mining algorithms [17], interactive data exploration,
and data visualization.

One area where sampling-based methods are of particu-
lar interest are GPU-accelerated databases. The usability
of graphics cards for data-intensive operations is severely
limited by two bottlenecks: The scarce availability of on-
card device memory and the slow data transfer speeds from
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main memory across the PCI Express bus [6]. We can avoid
both bottlenecks by keeping a fixed number of sampled data
points on the device to quickly compute approximate results
from. As long as the underlying database remains static, this
approach works very well and does not require any further
transfers across the PCI Express bus.

Sadly, in the real world, datasets seldomly remain static.
In order to stay representative, all changes that are applied
to the underlying database have to be mirrored to the sam-
ple as well. This so-called sample maintenance problem is
well-known, and multiple algorithms exist for it [8, 9, 16,
18]. However, while maintenance algorithms guarantee to
keep the sample representative, they usually require us to
replay database updates. In case of a GPU-resident data
sample, this means that we need to copy all updates across
the PCI Express bus. These additional transfers restrict the
available PCI Express bandwidth, leading to performance
penalties for “actual” data processing applications running
on the GPU. Ideally, we want a transfer-e�cient mainte-
nance algorithm that only transfers data if it is absolutely
necessary. In this paper, we are discussing a possible sam-
ple maintenance algorithm that aims for this property. Our
primary contributions are:

1. We introduce an approximate, but transfer-e�cient
maintenance algorithm for samples on graphics cards.
Our algorithm piggybacks on a GPU-accelerated se-
lectivity estimator and utilizes query feedback to track
outdated points. This approach allows us to selectively
replace outdated points in the sample without having
to mirror all updates to the graphics card.

2. We provide an implementation of our algorithm inte-
grated into the open-source relational database engine
PostgreSQL1.

3. We interactively demonstrate the performance of our
algorithm in comparison to other replacement strate-
gies with regard to both sample quality and the re-
quired data transfers across the PCI Express bus.

2. GPU-BASED SAMPLE MAINTENANCE
Assume a d-dimensional relation R with cardinality |R|

that is stored within a “regular” relational database system.
From R, we collect a fixed-size random sample S ✓ R and
push it to the graphics card. The sample size |S| is fixed and
chosen in advance to a) provide su�cient confidence for the

1The source code is available at: goo.gl/aQSQNd.
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approximated results, and to b) fit within the limited device
memory on the graphics card. Maintaining such a GPU-
resident sample when database updates occur on the host is
an interesting problem that, to the best of our knowledge,
has not been discussed in the literature so far.

The simplest maintenance scenario is an insertion-only
workload. In this case, Reservoir Sampling [18] is the ideal
choice: It pushes newly inserted points to the sample with
probability |S| / |R|, replacing a random sample point. From
a transfer-e�ciency perspective, Reservoir Sampling is opti-
mal: We only push exactly those data items to the graphics
card that end up in the sample.

The general case of mixed workloads containing insertions,
updates and deletions is more interesting: General mainte-
nance algorithms usually handle insertions similar to Reser-
voir Sampling, but have special rules to deal with updates
and deletions [8, 9, 16]. Take for example the Correlated Ac-
ceptance Rejection Sampling algorithm (CAR) [16]: When
a new point ~t is inserted into R, a random number n is
drawn from the binomial distribution BINOM(|S|, 1/|R|)
and n random sample points are replaced by an instance of
~t. When a deletion occurs, all instances of the deleted point
are removed from the sample and exchanged by points drawn
uniformly from R. Updates are handled by directly apply-
ing them on the sample. This means that, while insertions
incur maintenance costs of O(1), deletions and updates re-
quire additional costs of O(|S|).
A straightforward way to adjust algorithms like CAR for

GPU-resident samples would be to maintain a sample copy
on the host, apply the maintenance algorithm there, and
then mirror sample updates to the GPU memory. While
this approach would indeed be transfer-e�cient, we still had
to pay the O(|S|) maintenance costs for every update and
deletion. For large sample sizes, these additional costs can
become quite significant and slow down the system, which
is why we want to push as much of the maintenance work
as possible directly to the faster graphics card.
However, running existing sample maintenance algorithms

on the graphics card requires us to mirror every deletion and
update across the PCI Express bus, even if they do not ap-
ply to any points in the sample. For instance: Running
CAR on the graphics cards incurs a sequence of two manda-
tory transfers for each deletion: One to transfer the deleted
item, and one to reply with a list – or bitmap – identify-
ing all deleted tuples, so that the database can sample a
su�cient amount of tuples and transfer them to the correct
positions in the GPU memory. These additional transfers
across the limited PCI Express bus might easily become a
problem: Even if they do not fully block the bus, they will
take a significant chunk of the available bandwidth away
from other GPU-resident applications. This is especially
relevant when keeping in mind that transfers below a mini-
mum length (on the order of a few Kilobytes) do not achieve
maximum throughput [7].

3. BACKGROUND: CALCULATING KER-
NEL DENSITY ESTIMATORS ON GPUS

We investigated the sample maintenance problem in the
context of a GPU-accelerated selectivity estimator [11]. In
order to convey the necessary background knowledge, we
will now give a brief introduction into this topic.

Given a relation R with attributes (A1, ..., Ad) and an ar-
bitrary query region ⌦ ✓ D1⇥...⇥Dd, selectivity estimators

approximate the fraction
|�~x2⌦(R)|

|R| of tuples qualifying the
query. In our case, we assume that the attributes are from
the domain of real numbers.

Multiple authors have proposed using Kernel Density Es-
timators (KDEs) to approach this task [5, 10, 11]. The
principle idea behind KDEs is visualized in Figure 1: Based
on a sample (Figure 1b) drawn from R (Figure 1a), KDE
places local probability density functions – the so-called ker-
nels – around the sample points (Figure 1c). The probabil-
ity density function for the overall data is then estimated by
summing and averaging over those kernels (Figure 1d).

(a) Points in data set (b) Sampled points

(c) Kernels (d) Estimated distri-

bution

Figure 1: A Kernel Density Estimator approximates the
underlying distribution of a given dataset (a) by picking a
random sample (b), centering local probability distributions
(kernels) around them (c), and averaging the local distribu-
tions (d).

Formally, given a sample S = {~t (1),~t (2), ...,~t (s)} ✓ R, the
Kernel density Estimator p̂H(~x) : Rd ! R is defined as:

p̂H(~x) = 1
s

Ps
i=1 KH(~t (i) � ~x)

= 1
s·|H|

Ps
i=1 K(H�1[~t (i) � ~x])

(1)

Here, K : Rd ! R denotes the kernel function, which de-
fines the shape of the local probability density functions.
Typical choices are Gaussian – a multivariate standard nor-
mal distribution –, or Epanechnikov, which is a truncated
second-degree polynomial. H 2 Rd⇥d is the bandwidth ma-
trix, which controls the spread of the kernel function. Pick-
ing the optimal bandwidth is a di�cult problem that is out
of the scope of this demonstration. We assume that it is
selected by a data-driven bandwidth optimizer [1].

We can now predict the selectivity for a (rectangular)
query region ⌦ by integrating p̂H(~x) over all points in the
region:

p̂H(⌦) =

Z

⌦

p̂H(~x)d~x =
1
s

sX

i=1

Z

⌦

K(H�1[~t (i) � ~x])
|H|

| {z }
p̂
(i)
H

(⌦)

(2)
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This equation can be e�ciently evaluated in parallel: First,
each thread independently computes the individual proba-
bility contribution p̂(i)H (⌦) for a single sample point ~t (i). The
estimate is then computed as the averaged sum over all indi-
vidual contributions – which can be e�ciently computed via
a parallelized binary reduction scheme [13]. For further de-
tails on KDEs, and on how we designed a GPU-accelerated
selectivity estimator based on them, we kindly refer to our
publication [11].

4. INTRODUCING THE KARMA METRIC
We now introduce a novel approach for sample mainte-

nance in the context of a GPU-based Kernel Density Esti-
mator that is used for selectivity estimation. Our approach
is based on query feedback : After the execution of a query
covering region ⌦, the true selectivity p(⌦) of the region is
known. The principle idea behind query feedback methods
is to utilize this additional information to incrementally ad-
just the estimation model [2].

In particular, we can compute for each sample point ~t (i)

the impact of its probability contribution p̂(i)H (⌦) on the (ab-
solute) estimation error Labs (p (⌦) , p̂H (⌦)). For this, we

first calculate the adjusted estimate p̂�(i)
H (⌦) by removing

the point’s contribution from the estimate p̂H(⌦):

p̂�(i)
H (⌦) =

p̂H(⌦) · s� p̂(i)H (⌦)

s� 1
(3)

Now, p̂�(i)
H (⌦) is simply the selectivity that our estimator

would have predicted if point ~t (i) had not been part of
the sample. Based on this, we can compute the adjusted

estimation error Labs

⇣
p (⌦) , p̂�(i)

H (⌦)
⌘
, which is the esti-

mation error if ~t (i) had been removed. The principle idea
behind our maintenance algorithm is then simple: A sam-
ple point that significantly reduces the estimation error by
its absence is likely misrepresenting the distribution in the
data set and should be replaced. Accordingly, we define the
Karma K(i)(⌦) for sample point ~t (i) as its impact on the
estimation error:

K(i)(⌦) = s·
⇣
Labs(p (⌦) , p̂H(⌦))� Labs

⇣
p (⌦) , p̂�(i)

H (⌦)
⌘⌘

(4)
We multiply by the sample size s to normalize the values
to [�1, 1]: Karma values close to one correspond to sam-
ple points that significantly improved the estimation qual-
ity for query region ⌦, while negative values are associated
with points that had a negative impact. If the selectivity
is overestimated, points contributing to the overestimation
will be penalized, while points outside of the query region –
or those without significant contributions – will be rewarded,
vice-versa for underestimated selectivities.

By aggregating Karma values over a sequence of query
regions [⌦1, ...,⌦n], we obtain an indicator for the contribu-
tion of sample points over multiple queries. Accordingly, we
recursively define our notion of cumulative Karma via the
following recursion:

K(i)([⌦1, ...,⌦n]) =

8
><

>:

↵ ·K(i)(⌦n)+

(1� ↵) ·K(i)([⌦1, ...,⌦n�1]) n > 1

↵ ·K(i)(⌦n) n = 1
(5)

In this equation, ↵ 2 (0, 1] is a constant factor for apply-
ing exponential smoothing to limit the influence of historic
Karma values. This approach helps us to achieve faster reac-
tivity on changing data, as well as to improve the method’s
robustness with respect to outliers.

The cumulative Karma is used as the foundation for our
heuristic sample maintenance with focus on reestablishing
good estimation results. This is done by resampling points
with large negative Karma values as they are likely to mis-
represent the true data distribution. This approach relieves
us from mirroring all changes to the sample. K (i) can be
computed easily on top of our KDE-based estimator: The
calculation can be performed by executing one additional
embarrassingly parallel computation on the GPU and allo-
cating an additional field for the most recent values of K(i)

for all points in the sample.
Note that this algorithm does not provide true sample

uniformity, but instead aims at maintaining a sample that
fits the underlying distribution in the queried regions.

5. DEMONSTRATION
In our demonstration, we first introduce our implemen-

tation in PostgreSQL and give an overview of the modifi-
cations that were applied. Afterwards we provide an inter-
active graphical evaluation of several sample maintenance
algorithms under variable parameters and workload charac-
teristics.

5.1 System Overview
All presented algorithms were integrated into the open-

source database PostgreSQL 9.3.1. The GPU-accelerated
algorithms were implemented in a hardware-oblivious way
using OpenCL, which allows us to operate on all devices sup-
porting the standard – including graphics cards, and multi-
core CPUs [12]. We provide PostgreSQL control variables to
control the KDE-based selectivity estimation for selected ta-
bles and to select the sample maintenance method. Besides
integrating the use of KDEs in the estimator for qualifying
queries, we added hooks after query executions, insertions
and deletions, which are used to call the selected sample
maintenance algorithms.

5.2 Compared Methods
We compare the following sample maintenance algorithms

during our interactive presentation:

No maintenance (NONE) is our first baseline. In this
method, we do not perform any sample maintenance,
demonstrating the severity of estimation error degra-
dation as updates are applied to the database.

Correlated Acceptance Rejection Sampling (CAR)
is used as a baseline for existing maintenance algo-
rithms and is implemented as explained in Section 2.

Periodic Random Replacement (PRR) is our third base-
line. It replaces a random item from the sample with a
newly sampled item every n changes to the base data.

Triggered Karma Replacement (TKR) replaces sample
points when their cumulative Karma goes below a given
threshold �. A bitmap identifying points that will be
resampled has to be calculated after Karma calculation
and is transferred to the CPU to trigger resampling.
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Periodic Karma Replacement (PKR) periodically re-
places the sample point with the worst cumulative
Karma everym queries. The sample point ~t (i) with the
minimum Karma is e�ciently identified on the graph-
ics card via a parallel reduction scheme [13].

5.3 Demonstration Overview
At the beginning of the demonstration, the user can choose

from pre-selected dataset choices, each with di↵erent proper-
ties and sizes. We then collect and transfer a new sample for
the selected dataset to the graphics. Afterwards, the user is
prompted to select and configure a maintenance algorithm,
and to specify characteristics of the query workload (e.g. the
probability of insertions and deletions).

After starting the experiment, we continuously run ran-
dom selection queries, plotting the average selectivity esti-
mation error, as well as the number of transfered tuples that
were required for the maintenance algorithms. This allows
the user to inspect in real-time how the sample quality, and
the required data transfers develop. The presentation will
be delivered with an interface similar to Figure 2.

Figure 2: Overview of the demonstration interface: The
user can select the desired sample maintenance method
and specify algorithm and workload properties. When the
user starts the configured experiment, we plot the aver-
age estimation-error from the sample, the required transfers
across the PCI Express bus, and the cumulative updates to
the database.
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ABSTRACT
Flash SSDs are omnipresent as database storage. HDD re-
placement is seamless since Flash SSDs implement the same
legacy hardware and software interfaces to enable backward
compatibility. Yet, the price paid is high as backward com-
patibility masks the native behaviour, incurs significant com-
plexity and decreases I/O performance, making it non-robust
and unpredictable. Flash SSDs are black-boxes. Although
DBMS have ample mechanisms to control hardware directly
and utilize the performance potential of Flash memory, the
legacy interfaces and black-box architecture of Flash devices
prevent them from doing so.

In this paper we demonstrate NoFTL, an approach that
enables native Flash access and integrates parts of the Flash-
management functionality into the DBMS yielding signif-
icant performance increase and simplification of the I/O
stack. NoFTL is implemented on real hardware based on
the OpenSSD research platform. The contributions of this
paper include: (i) a description of the NoFTL native Flash
storage architecture; (ii) its integration in Shore-MT and
(iii) performance evaluation of NoFTL on a real Flash SSD
and on an on-line data-driven Flash emulator under TPC-
B,C,E and H workloads. The performance evaluation results
indicate an improvement of at least 2.4x on real hardware
over conventional Flash storage; as well as better utilisation
of native Flash parallelism.

1. INTRODUCTION
Many basic database architectural principles and algo-

rithms have been designed around the properties of HDD.
Flash memories provide a set of di↵erent I/O characteris-
tics and promise to speedup the critical I/O path. We ar-
gue that the design of the storage architecture is not well
suited for new kinds of memory in terms of both software
and hardware. Flash devices still support the same block
level interface as HDDs, which ensures backwards compat-
ibility and eases replacement, but is also a major source of
unpredictability and non-robustness.

2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0
.

The low-level block interface compatibility is realized by
the Flash Translation Layer (FTL) that is executed inside
the storage device on top of limited hardware. The FTL
creates a black-box around the Flash memory, masking its
performance characteristics and emulating a HDD-like be-
haviour [5, 3]. The FTL yields: (i) significant overhead;
(ii) unpredictable and state-dependent performance due to
background processes [5, 4]; (iii) inability to optimize the
DBMS I/O behaviour to new kinds of storage[4, 10]; and
last but not least, uncures (iv) high costs of Flash SSDs.
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Figure 1: DBMS storage alternatives

Historically, database systems assume direct control over
the hardware and the I/O stack to increase performance.
Traditionally a DBMS would use a file system based (”cooked”)
storage on traditional block devices (Figure 1.a). Database
systems on raw storage (Figure 1.b) eliminate file system
overhead, enable raw storage access and direct physical data
placement, achieving better performance [14]. Newer ap-
proaches propose a departure from block device interfaces,
achieving: atomic writes, computational e�ciency and par-
allelism [15], stripped down FTL and a native interface to
host [4, 10]. With NoFTL (Figure 1.c) we consider native
Flash access, and explore approaches to natural integration
of FTL functionality in the DBMS.

Contributions. NoFTL removes all intermediate ab-
straction layers along the critical I/O path (block device
interface, file system and FTL), and enables the DBMS to
control the Flash memory directly. This minimizes the over-
head of garbage collection (GC) and wear-leveling (WL), al-
lowing the DBMS to e�ciently utilize the Flash memory.
The contributions of this paper are: (i) we implemented
NoFTL on real hardware based on the OpenSSD research
platform as well as on a real-time data-driven Flash emula-
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tor; the latter was validated against OpenSSD and extended
to support parallelism; (ii) we incorporated di↵erent FTLs
(DFTL, Faster); (iii) live TPC-C, -B and -H tests under
Shore-MT indicate a NoFTL performance improvement of
1.5x to 2.4x. NoFTL has been initially demonstrated in [8].
In contrast to [8] the current demonstration has the following
improvements: (a) the real time emulator has been extended
to handle parallelism (Section 3.2); (b) NoFTL has been im-
plemented on the hardware research platform - OpenSSD
(Section 3.3); (c) the database integration is deepened.

2. RELATED WORK
Numerous designs of FTLs that can be classified as Page-

Block- or Hybrid-/Log-Block- Mapping FTLs have been pro-
posed ([16], [7], [11], [12] etc.). An evaluation and compar-
ison of di↵erent FTLs is provided in [5, 6, 13]. DFTL is
introduced in [7] as a page-mapping FTL. There are mul-
tiple Flash simulation frameworks such as FlashSim [9] or
DiskSim. There is ongoing research on omitting certain on-
device FTL functionalities: [15] is not using the block I/O
interface; [4] presents a hybrid approach which can bypass
the on-device FTL. Specialized Flash Server Storage moves
the FTL from a device into the driver, such as FusionIO [1].
NoFTL completely removes the on-device FTL, enabling the
DBMS to take full control over the Flash device. An earlier
demonstration of NoFTL is provided in [8], while here we:
i) extend the emulator with parallelism; ii) port and present
NoFTL on real hardware - the OpenSSD board; and iii)
further integrate NoFTL into the DBMS.

3. THE NOFTL CONCEPT
Due to the black-box design of modern SSDs neither (i)

the information about internal Flash architecture can be uti-
lized by data placement algorithms in the DBMS; nor (ii)
the DBMS status information about stored data and I/O
(runtime & history) can be used to optimize the FTL. Fur-
thermore, the DBMS can experience significant fluctuations
in I/O latency and throughput that are state-dependent and
result from expensive FTL operations (e.g., WL and GC).
For instance, the average 4KB random write latency on a
SLC SSD is 0.450ms, while frequent FTL-specific outliers
under heavy load can reach 80ms [5]. In the same time, the
e�ciency of the FTL maintenance functionality is strongly
coupled to limited on-device computational resources (e.g.,
single ASIC controller and up to 512MB of RAM).

NoFTL is in an attempt to overcome the aforementioned
disadvantages. Under NoFTL the DBMS operates directly
on native Flash memory, without intermediate layers such
as file system, block-device layer or on-device FTL (Figure
1). The Flash maintenance (address translation, GC, WL,
etc.) is integrated into the DBMS. Such an integration is
based on the following important observation: large parts
of the FTL naturally leverage the functionality of existing
DBMS modules such as the storage manager, the free space
manager or the transaction manager (Figure 2).

The general integration strategy is the optimization of
Flash maintenance and DBMS algorithms based on the:
(i) usage of more powerful computational and memory re-
sources of the host system (e.g., address mapping); (ii) us-
age of the DBMS run-time information and knowledge about
the stored data and I/O (e.g., WL & GC); (iii) elimination
of redundant functionality along the I/O path (e.g., bu↵er

management, free space management and address mapping
in file system and FTL); (iv) optimisation of DBMS data
placement and access algorithms based on the Flash layout
(e.g., assignment of DBMS background flushers to physical
address space regions).

Noteworthy is that under NoFTL the DBMS is not con-
fronted with the intricate low-level NAND control. The Flash
SSD is still assumed to have a thin hardware management
layer (Figure 2) providing low-level NAND chip manage-
ment, such as timing and synchronisation, low-level row and
column address translations, channel and bus management.
The functionality of the controller can optionally be imple-
mented as a kernel driver (cheap but slow).
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Figure 2: General Architecture of NoFTL

The minimal set of commands that the native Flash in-
terface provides is: PAGE READ and PAGE PROGRAM
with data transfer; COPYBACK PROGRAM and BLOCK ERASE
without transfer of user data. Meaningful are also the vari-
ants of those commands to support reading or writing the se-
ries of pages (not necessary logically adjacent), which would
be further translated into appropriate optimized commands
according to the Flash specification (like READ/PROGRAM
CACHE RANDOM/SEQUENTIAL in ONFI NAND). The
protocol must also include the identification command (sim-
ilar to HDIO GETGEO for HDDs), which allows the DBMS
to receive detailed information about the architecture of the
Flash SSD (e.g., channels, LUNs, Flash type, etc.).

3.1 Host Memory Resources
The logical-to-physical address translation is the core com-

ponent of an out-of-place update strategy, and is one of the
most memory consuming subsystems within modern Flash
SSDs. Since the amount of on-device memory is insu�cient
to hold a complete mapping table at page-level granular-
ity, multiple alternatives were proposed in the recent years.
Three of them, recognized as state-of-the-art, are page-level
FTLs DFTL (demand-based FTL) [7] and LazyFTL [12], as
well as the hybrid mapping scheme FASTer [11].

DFTL and LazyFTL keep mapping information at page-
level granularity, but only a small fraction of it is cached.
They introduce computational (maintenance and look-ups
of cached mappings) and I/O overheads (page-ins and -outs
to fetch from and store mappings on Flash). Our earlier
results [8] indicate a performance slowdown of DFTL over
pure page-level mapping (where the whole mapping table is
cached) of up to 3.7x under TPC-C and -B benchmarks. In
FASTer the larger part of Flash memory is mapped at block-
level granularity (data block area), while only a small part
(log block area) uses page-level mappings. All updates and
write requests are first performed in the log block area, and
as soon as free space in that region runs out those updates
are merged with the corresponding blocks in the data block
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area. Merges result in expensive additional background I/Os
(Figure 3). For TPC-B, -C and -E the garbage collection
overhead in FASTer is almost twice as high as in NoFTL
(Figure 3). This overhead negatively influences the fore-
ground performance. Solely the use of DBMS-integrated
page-level mapping in NoFTL results in 2.4x and 2.25x im-
provement in transactional throughput (TPS) for TPC-C
and -B, respectively. The high write amplification in FASTer
significantly reduces the longevity of the Flash SSD.

IO type

Absolute Relative Absolute Relative Absolute Relative

COPYBACK 16 465 930 1.98x 17 295 713 2.15x 1 805 540 1.97x

ERASE 129 317 1.73x 135 839 1.82x 14 231 1.68x

TPC-C
SF=30

TPC-B
SF=350

TPC-E
1K Customers

Off-line trace-driven testing. Traces were recorded on in-memory 
database running the benchmarks for 60 minutes.

Figure 3: Absolute and relative I/O overhead of
garbage collection under FASTer and NoFTL.

3.2 Utilization of Flash parallelism
Many DBMS algorithms can be optimized based on the

architecture of underlying Flash SSDs. Direct control over
physical data placement allows to e�ciently utilize native
Flash parallelism. For instance, SATA2 allows for at most
32 concurrent I/O commands; whereas a commodity Flash
SSD with 8 to 10 chips is able to execute up to 160 concur-
rent I/Os (8-16 commands/chip). To make better use of the
available Flash parallelism, we have incorporated the knowl-
edge about Flash architecture into the logic of database
writer processes (db-writers). The basic idea is to remove
the contention for physical resources among db-writers. In-
stead of having multiple db-writers, where each is responsi-
ble for a subset of dirty pages from the whole address space,
we have assigned each db-writer to a certain physical re-
gion (i.e., set of NAND chips). Therefore, each db-writer
receives a distinct subset of dirty pages that belongs to a cor-
responding physical address space, and does not compete for
physical storage with db-writers assigned to other regions.
Depending on the workload and the size of the regions it
is also possible to assign several db-writers to a single re-
gion. We have implemented this optimization in Shore-MT.
We can demonstrate an improvement of throughput over the
initial implementation with the same number of background
writer processes of up to 1.5x for TPC-C and 1.43x for TPC-
B benchmarks (see Figure 4). With an increasing amount of
Flash parallelism and more db-writers (leveraging the par-
allelism), the di↵erence in the transactional throughput in-
creases. In the standard approach with a global assignment
the response time for each single db-writer increases, due to
the higher contention for Flash chips.

3.3 NoFTL Testbed
We have implemented the NoFTL concept in Shore-MT

[2], which is a recognised open-source storage engine sup-
porting ACID transactions, ARIES-type logging, Indices,
Bu↵er management. Furthermore, Shore-MT supports raw
devices and standard TPC benchmark implementations. The
NoFTL-version of the storage engine was evaluated on the
real hardware OpenSSD board, as well as on our enhanced
version of the real-time Flash emulator.

OpenSSD board. The OpenSSD project aims to pro-
vide an open hardware Flash research platform (see Figure
5). It allows to program the firmware running on the on-
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Figure 4: Tx. throughput of TPC-C/-B with global
and Flash-aware assignment of db-writers.

device controller to a certain extent, and to test di↵erent
FTL schemes and algorithms. The board contains a set of
operational FTLs, among them the popular FASTer scheme
[11]. To make OpenSSD perform as a native Flash board we
have removed the FTLs and modified the I/O protocol to
support the native Flash (ATA Pass-Through, Section 3).

Real-time Flash emulator. We have enhanced our
real-time Flash emulator [8] to support complex highly par-
allel Flash architectures. The emulator is implemented as a
device driver in the Linux kernel. The usage of low-level ker-
nel primitives guarantees high precision (⇠1µs) in simulation
of I/O latencies. There is no loss of accuracy with increasing
capacity of the emulated drive, however, the latter is limited
by the available RAM resources of the host system. The em-
ulated Flash storage provides either a block-device interface,
emulating a SSD or a character device interface, emulating
native Flash. The emulator allows to investigate parallelism,
di↵erent Flash layouts or NAND types (SLC,MLC,TLC) as
well as characteristics such as wear, which is not possible
with OpenSSD. The emulator’s behavior and characteristics
have been validated against the OpenSSD platform.

4. DEMONSTRATION
The demonstration is performed based on two platforms:

the OpenSSD hardware research platform and a real time
Flash emulator. We compare NoFTL against the conven-
tional DBMS storage, based on black-box Flash SSDs (Fig-
ure 1.a, 1.b). For the latter scenario (Figure 6.a) we choose
two state-of-the-art FTL as counterparts: (i) DFTL [7] (page-
level mapping); and (ii) FASTer [11] (hybrid mapping). All
demonstration scenarios are performed live either on real
hardware (OpenSSD board), or on the Flash emulator.

Demo Scenario 1 - Validation of Flash emulator.

In this scenario we stress the emulator with the Linux
FIO tool to showcase: (1) Its accuracy and reconfigurabil-
ity, i.e., test di↵erent internal architectures of Flash memory
on synthetic benchmarks; and (2) Investigate the DBMS
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Figure 5: OpenSSD connected to the test-bed.

utilisation of richer parallelism under NoFTL to improve
transactional throughput. We also perform the live valida-
tion of the Flash emulator against the OpenSSD hardware
by configuring the former with the properties and architec-
ture of latter and comparing the performance results of live
TPC benchmarks. For each demonstration run the audi-
ence is presented the resulting diagrams for transactional
throughput and response time as well as statistics regarding
erasures, writes and garbage collection activity.

Demo Scenario 2 - DBMS performance under NoFTL.

The general architecture of the NoFTL demonstration
testbed is depicted in Figure 6. During the demonstra-
tion the audience can select any of the TPC benchmarks
(-H, -B, -C or -E) and a demonstration platform (OpenSSD
or Flash emulator). Furthermore, the audience can config-
ure the Flash layout as well as the number of DBMS flush-
ers to experience the influence of the di↵erent strategies.
With an increasing amount of Flash parallelism and more
db-writers (leveraging the parallelism), the di↵erence in the
transactional throughput increases. Test results comprise
Shore-MT’s output, intermediate and average transactional
throughput, as well as detailed statistics of I/O operations
and GC overhead. Furthermore, we demonstrate the influ-
ence of the improved (”Flash-aware”) allocation and assign-
ment strategy of background writers in Shore-MT (Sect. 3.2).

Flash Emulator
DFTL Kernel Space

Storage Hardware

Block device I/F
Read/Write

Native Flash I/F:
(Read/Program Page,
Erase Block, Copyback, 
handle Page Metadata)

Shore-MT

SATA2 

OpenSSD 
FASTer FTL

TPC-H
TPC-B
TPC-C
TPC-E

Flash Emulator
RAW Flash

Shore-MT

SATA2
ATA Pass Through

OpenSSD 
RAW Flash

NoFTL
(address translation, 
GC, WL, BBM, etc.)

a) Traditional architecture with 
FTL-based Flash SSD

b) NoFTL architecture

Figure 6: Demonstration scenarios.

5. CONCLUSIONS
We demonstrate NoFTL - an approach that yields a signif-

icant simplification of the I/O stack; integrates Flash man-
agement in the DBMS; allows direct access to storage and
exposure of a native Flash interface. NoFTL is implemented
in Shore-MT, on top of the OpenSSD hardware research
platform and a real-time data-driven Flash emulator. We

validate live the real-time Emulator, and are able to show-
case di↵erent Flash layouts throughout the demonstration.
Under NoFTL Flash management algorithms can benefit
from the richer resources of the host system. We demon-
strate stable and predictable performance and an improve-
ment of up to 2.4x under TPC-C. The speedup results from
a reduced garbage collection overhead (2x less erases and
copybacks) due to better database integration of FTL func-
tionality. Furthermore, the low erase count under NoFTL
e↵ectively doubles the lifetime of the Flash storage. In ad-
dition, we demonstrate the utilisation of native Flash par-
allelism under NoFTL. With its Flash-aware DBMS writer
assignment strategy NoFTL achieves 1.5x higher transaction
throughput due to reduced Flash chip contention.
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ABSTRACT
We present Gumbo, a system for the efficient evaluation of
guarded fragment queries on top of Hadoop and Spark. A
key asset of Gumbo is the reduced number of jobs in com-
parison with recent systems such as Pig, Hive or Shark. For
unnested guarded fragment queries, Gumbo even provides
a constant bound on the number of jobs independent of the
size of the query. In the demo, we will address the follow-
ing features of Gumbo: ease-of-use, query plan construction
and visualisation, and query execution.

Categories and Subject Descriptors
[Information systems]: MapReduce-based systems, rela-
tional parallel and distributed DBMSs, key-value stores, re-
lational database model

General Terms
DBMS

Keywords
MapReduce, Hadoop, Spark, Guarded-fragment Queries

1. INTRODUCTION
Recent years have seen a massive growth in parallel and

distributed computations based on the use of the key-value
paradigm. This proliferation was fostered by the emergence
of popular systems such as Hadoop [14] and Spark [1]. Re-
cent systems such as Hive [13], Pig [9], Shark [15], etc. pro-
vide an SQL-like query language on top of Hadoop and
Spark. In this demo we showcase a novel system, called
Gumbo,1 that also operates on top of Hadoop and Spark,
and is specifically tailored for the evaluation of so called
guarded fragment (GF) queries. We show that, in general,

1In case you are wondering about the name, Gumbo’s
brother is an elephant featuring in several animated movies
but not known to be interested in guarded fragment queries.

c©2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

Gumbo takes less jobs to evaluate GF queries than Pig, Hive
or Shark.

2. GUARDED-FRAGMENT QUERIES (GF)
We briefly review the definition of guarded fragment (GF)

queries. They are defined inductively as follows:

• Every atomic formula S(x̄) is a GF query.

• IfR(x̄, ȳ) is an atomic formula and ψ1(ȳ, z̄), . . . , ψl(ȳ, z̄)
are GF queries, then the following ϕ(x̄) is also a GF
query:

ϕ(x̄) := ∃ȳ ∃z̄1 · · · ∃z̄l

R(x̄, ȳ) ∧
(

Boolean combination of
ψ1(ȳ, z̄1), . . . , ψl(ȳ, z̄l)

)
The original definition of GF queries in [2] allows for ‘un-
garded negation’ by including that if ϕ(x̄) is a GF query,
then so is ¬ϕ(x̄). For pragmatic reason, the Gumbo system
does not consider such ungarded negation. Take, for exam-
ple, the negation of atomic relation ¬R(x̄). Under the closed
world assumption, its evaluation will involve collecting the
active domain and performing a Cartesian product on them
|x̄|−1 times, which, in general, is a very expensive operation
in distributed databases. We stress that Gumbo allows for
guarded negation as is allowed in the definition above and
is exemplified in the example in Section 5.

Originally GF queries were in [2] to investigate various
properties of modal logic. Since then, they have become
popular and found numerous applications in various fields.
One example is the description logic ALC, the basis of the
knowledge representation in artificial intelligence as well as
ontologies and web semantics. We refer the reader to [3,
11] and the references therein for more details. In fact,
ALC itself is a subclass of GF queries [10]. Recent studies
such as [6, 7] investigate the complexity of query answering
in description logic. GF queries and its natural extension,
guarded negation queries have also found applications in var-
ious database settings (for example, [4, 5, 12]).

To end this section, we sketch a scenario in which GF
queries can be used. Consider a library that records which
member borrows which books over a period of time. Specifi-
cally, there is a table R containing records with the following
fields: d, mem_id, b1, b2, b3, b4, b5. Here d stands for date,
mem_id for the member id, and each b represents a borrowed
book.2 Every night the new data that arose during the day

2In our imaginary library, each member can only borrow up
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is added. To provide better service to its members, the li-
brarian decided to find out more about the dynamics of the
book transactions and starts exploring the data. For exam-
ple, she may want to find out how (un)popular books about
technology compared to other books. So she compiles a list
S of the ISBNs of the books about technology, and uses the
following query:

R(d, mem_id, b1, . . . , b5)

∧ ¬S(b1) ∧ ¬S(b2) ∧ ¬S(b3) ∧ ¬S(b4) ∧ ¬S(b5)

This query computes for each member all days that only
non-technology books are borrowed..

3. GF QUERY EVALUATION IN GUMBO
We contrast GF query evaluation in Gumbo with that in

Pig and Hive by means of an example.

GF in Pig and Hive.
To implement a relational operation between two datasets,

Pig requires us to perform a cogroup. Consider for instance
the following query:

ϕ(x̄) := R(x̄) ∧
(
¬S(x1) ∧ · · · ∧ ¬S(xn)

)
,

where x̄ = (x1, . . . , xn). Here, R is an n-ary relation and S
is a unary database relation.

Implementing the query ϕ in Pig/Hive/Shark will yield
either one of the following execution plans:

R(x̄) ¬S(x1)

∧ ¬S(x2)

...

R(x̄)

∧

¬S(x1)

· · · · · ·

R(x̄)

∧

¬S(xn)

∧

The plan on the left requires n rounds of shuffling the
datasets. Here, the first round evaluates R(x̄)∧¬S(x1), and
the result is passed to the second round which in turn eval-
uates (R(x̄)∧¬S(x1))∧¬S(x2), and so on. In contrast, the
plan on the right requires reading the input n number
of times: once for the evaluation of each R(x̄) ∧ ¬S(xi).

In either plan, we are required to either read the same
input multiple times or shuffling the datasets multiple times.
This creates a bottleneck, since shuffling and reading the
input can be very expensive, especially when the datasets
are huge.

GF in Gumbo.
Gumbo operates on top of Hadoop as well as Spark and

is specifically tailored to efficiently evaluate queries of the

to 5 books. If one member borrows less than 5 books, only
the first few fields are assigned and the rest are assigned
with the null value.

form:

ϕ(x̄) := ∃ȳ ∃z̄1 · · · ∃z̄l

R(x̄, ȳ) ∧
(

Boolean combination of
S1(ȳ, z̄1), . . . , Sl(ȳ, z̄l)

)
(1)

where S1(ȳ, z̄1), . . . , Sl(ȳ, z̄l) are atomic formulas. Gumbo
can evaluate such queries in two MapReduce jobs inde-
pendent of l and the form of the Boolean combination of
S1(ȳ, z̄1), . . . , Sl(ȳ, z̄l). In particular, Gumbo reads the in-
put datasets only once. This should be contrasted with Pig
and Hive where the number of jobs grows in the size of the
number of Boolean combinations.

We call queries of the form (1) basic queries, i.e. when
all Si(ȳ, z̄i) are atomic formulas. Gumbo can also evaluate
multiple queries that depend on one another. For example,
we can define ϕ1(x) = ∃y E(x, y)∧F (y), where E(x, y) and
F (y) are atomic formulas, and ϕ2(z) = ∃yE(z, x)∧ϕ1(x). In
this case, ϕ1 is a basic query, whereas ϕ2 is a nested query,
since it depends on the outcome of the query ϕ1. In this
case, Gumbo first takes two rounds to evaluate ϕ1(x), and
then another two rounds to evaluate ϕ2(x). In general, to
evaluate a set of queries in which the depth of dependency
is m, Gumbo requires 2m dependent map-reduce jobs.

4. COMPONENTS OF GUMBO
Gumbo is written in Java and consists of the six compo-

nents shown in Figure 1. We will briefly describe each of
these components in the following paragraphs.

Parser. GF queries are provided together with the location
of input and output relations. The queries are broken up
into basic GF queries, i.e. queries of the form (1) and de-
pendencies among them are determined. Structural errors
such as cyclic dependencies are also checked here. The re-
sult of this component is a DAG, where the nodes are sets
of basic GF queries to be evaluated, and the edges indicate
the dependencies among the queries.

Partitioner. Given a DAG of basic GF queries as input,
the partitioner aims to group queries in an optimal fashion
in an effort to reduce the total number of parallel rounds.
To this end, each query is assigned a round number, and
all queries that have the same round number are grouped
together. The result of this phase is a list of consecutive
rounds each containing a set of basic GF queries.

The partitioner can greatly reduce the number of jobs as
well as “balance” the computation load among the rounds.
Gumbo approximates the computational load of a query by
calculating or estimating the size of its input relations. We
can show that, in general, obtaining the most optimal sched-
ule is NP-hard, even if we assume that the computational
load to evaluate each query is uniform. In our initial version
of Gumbo, we therefore use a greedy algorithm to approx-
imate the optimal schedule. This is a reasonable approach
assuming that the queries are “few,” or that the dependency
depth is quite shallow. In the later versions of Gumbo, we
plan to use an SMT solver (e.g. Microsoft’s Z3 system [8])
to obtain the optimal schedule.

Job Constructor. Given a list of rounds, each round is com-
piled into two high-level map-reduce job as described below.
Locations for intermediate files are also determined here.
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Figure 1: The Gumbo workflow.

The result of this phase is a Gumbo-plan.
For a query ψ(x̄) of the form (1) Gumbo’s job constructor

builds the following mappers and reducers:

Mapper 1: On each tuple R(ā, b̄) Mapper 1 emits following
the key-value pairs:〈

S1(c̄1) : R(ā, b̄)
〉
, . . .

〈
Sl(c̄l) : R(ā, b̄)

〉
where each c̄i is the projection of (ā, b̄) according to
the ȳ coordinates. The intuitive meaning of this part is
that a tuple R(ā, b̄) inquires whether the tuple Si(c̄i, d̄)
exists for some d̄.

On each tuple Si(c̄, d̄) Mapper 1 emits the key-value
pair

〈
Si(c̄) : #

〉
, where c̄ is the projection of (c̄, d̄) to

the ȳ coordinate The intuitive meaning of this part is
that the key Si(c̄) states that the tuple Si(c̄, d̄) exists
for some d̄.

Reducer 1: For a key Si(c̄), the reducer operates on its set
of values V as follows.

If # appears as value, for each value of the formR(ā, b̄),
it emits a key-value pair

〈
R(ā, b̄) : i

〉
, which means that

Si(c̄, d̄) exists for some d̄.

If # does not exist, for each value of the form R(ā, b̄),
it emits

〈
R(ā, b̄) : −i)

〉
, which means that there is no

d̄ such that Si(c̄, d̄) exists.

Mapper 2: This is an identity mapper that just reads and
emits the key-value pairs created by Reducer 1.

Reducer 2: The keys are all of the form R(ā, b̄), with the
associated values a subset of {−l, . . . ,−1, 1, . . . , l}. The
values determine the Boolean assignment ξ, where ξ as-
signs Sj(z̄j)) with true, if and only if j appears among
the values associated with R(ā). So, on key R(ā, b̄),
the reducer evaluates the formula according to the as-
signment ξ. If it evaluates to true, it writes the tuple
ā into the output file.

In our implementation of Gumbo, we further optimize the
algorithm above, such as by compressing the keys and values,
thus, decreasing the number of data bytes to be shuffled.

Hadoop Compiler & Executor. This component takes a
Gumbo-plan and compiles into a set of Hadoop map-reduce
jobs using the mappers and reducers constructed above. The
resulting plan can then be directly executed using Hadoop.

Spark Executor. This component takes a Gumbo-plan and
executes the rounds one by one. The input data is stored
in Spark’s RDD data structure and the execution plan is
translated into RDD’s transformations and actions such as
flatMap() and groupByKey() to execute the jobs described
in the Gumbo-plan.

Assuming that the relations R,S1, . . . , Sl are all dumped
in a single RDD A, a straightforward translation of the al-
gorithm above to one that uses Spark’s RDD is as follows.

B = A.flatMapToPair(<Mapper 1>);

C = B.groupByKey();

D = C.flatMap(<Reducer 1>);

E = D.flatMapToPair(<Mapper 2>);

F = E.groupByKey();

G = F.flatMap(<Reducer 2>); // G is the output

To make the Spark’s algorithm above more efficient, we in-
corporate a few optimization strategies. For example, Map-
per 2 in the algorithm above basically does nothing, so it
can be omitted.

5. DEMO OVERVIEW
The goal of the demo is to show how Gumbo can be used

to evaluate GF queries on top of Hadoop/Spark and to give
insight in how it compares to the existing systems Pig, Hive
and Hadoop. This comparison can be done on several lev-
els: the query design, the query plan (which gives insight in
the workings of the system) and the query execution where
performance really matters. In the demo, the users can do
the following.

Input the queries and the dataset. Queries are written in
standard logic notation, where &, |, ! denote the and, or
and negation operations, respectively. We use the standard
symbol = to define the query. For example, the user can
input the following queries, where E(x, y), F (y) and G(x, z)
are atomic formulas:

Out1(x) = E(x,y) & !F(y) & G(x,z);

Out2(x) = E(x,y) & Out1(y);

Out3(x) = E(x,y) & Out1(y) & !Out2(x);

Out4(x,y) = E(x,y) & !Out1(x);

E(x,y) - E.txt;

F(y) - F.txt;

G(x,z) - G.txt;

Out1(x) - Out1.txt;

Out2(x) - Out2.txt;

Out3(x) - Out3.txt;

Out4(x,y) - Out4.txt;

The query Out1(x) collects all the x’s where for some y,z,
the tuple (x,y) is in E and (x,z) is in G, but y is not in
F. Similarly, the query Out2(x) collects all the x’s where for
some y, the tuple (x,y) is in E and y is in Out1.

Users also indicate which relations should be read from
disk and where these reside in the file system. In our exam-
ple above, E(x, y) is an atomic formula, so E(x,y) - E.txt
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(file input)

round 1

round 2

round 3

Out1

Out2

Out3

Out4

E.txtF.txt G.txt

Figure 2: A DAG of jobs.

indicates that the relation E is to be read from the file E.txt
To indicate where to write the output, we use the same for-
mat. For example, Out1(x) - Out1.txt indicates that the
output of Out1(x) will be written in the file Out1.txt.

For the users to experiment, we provide a set of queries
and for each query a collection of datasets on which the
query behaves differently. For example, we provide some
datasets in which the query outputs a lot of tuples, as well
as some datasets in which the query outputs very few tuples.

Visualise the query plan. Similar to Pig, Gumbo also pro-
vides a “visualisation” of the dependencies among the jobs
to evaluate the input queries. In our demo we are going to
compare the map-reduce jobs constructed by Gumbo with
those constructed by Pig.

In our example of Out1, Out2, Out3 and Out4 above, in
Gumbo we obtain the DAG shown in Figure 2. Gumbo has
two choices: evaluating the query Out4 together with Out2 or
with Out3. If the computation load of Out2 is much smaller
than Out3, then the partitioner in Gumbo will merge Out2

with Out4. In this case, the partitioner assigned the same
round number to Out2 with Out4, which means that they
are to be evaluated simultaneously in the same map-reduce
job.

Such visualisation provides the users the following bene-
fits: (i) an insight in the plan construction; (ii) viewing the
round numbers assigned by the partitioner; (iii) the effect of
enabling/disabling certain optimizations (e.g. partitioners);
(iv) comparison in the number of jobs in the query plans of
Gumbo and those written in different systems such as Pig.

Execute the queries. In the final part of our demo, we will
allow the users to execute some queries on sample data. We
supply some sample-data of limited size, as “real” big data
would require too much execution time.

The progress of a query and the log messages produced by
the system can be viewed during execution. After the exe-
cution the user is able to inspect the output files to ensure
that the queries were executed correctly and also the inter-
mediate files to clarify the inner workings of the systems.

To further illustrate the inner working of Gumbo’s Hadoop
executor, we will show the content of the intermediate data
passed from one round to the next, as well as some metrics
such as the number of mappers and reducers used by Gumbo
as well as by Pig and Hive. For the case of Gumbo’s Spark

executor, we will show the content of the RDD in the inter-
mediate steps leading to the evaluation of the queries.

The key points that we want to highlight in this final part
of the demo are: the time Gumbo takes to evaluate a query,
and the performance gain obtained by combining multiple
queries.
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languages and bounded fragments of predicate logic.
Journal of Philosophical Logic, 1998.

[3] F. Baader, D. Calvanese, D. McGuiness, D. Nardi,
and P. Patel-Schneider, editors. The Description Logic
Handbook. Cambridge University Press, 2003.
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ABSTRACT
The extension of SPARQL 1.1 of property paths now o↵ers a
type of regular path query for RDF graph databases. While
eminently useful, these queries are di�cult to optimize to
evaluate e�ciently. We have embarked on a project we call
Waveguide to build a cost-based optimizer for SPARQL

queries with property paths. Waveguidemaps the property
path to a waveguide plan (WGP) composed of wavefront
automata (WFAs) modeled by (non-deterministic) finite au-
tomata. The waveguide plan guides the graph search during
evaluation. Our Waveguide prototype illustrates the types
of optimizations this approach a↵ords and the performance
gains that can be obtained.

1. INTRODUCTION
Graph data has quickly become prevalent with the rise

of the Semantic Web, social networks, and data-driven ex-
ploration in life sciences. Natural and e�cient ways are
needed to query over the structure of the graph. Regular
path queries (RPQs) o↵er a means to query for nodes con-
nected via matching paths. Support for RPQs has been
recently added in the SPARQL query language for RDF
data in its latest version, 1.1, via property paths.1

While eminently useful, property-path queries are chal-
lenging to evaluate e�ciently and to optimize well. We
have embarked on a project that we call Waveguide to
build a highly e↵ective, full-fledged cost-based optimizer for
SPARQL queries with property paths. Our approach uses
guided search through the graph using finite state automata
based upon the regular expression of the property path to
guide. We are able to gain orders of magnitude performance
improvement for many property-path queries, while main-
taining comparable performance for others, as the leading
SPARQL query engines.

Regular path queries have been considered ever since

1We consider SPARQL queries with distinct, so a pair of
nodes is considered an answer if there exists a path between
the pair in the graph that matches the regular expression.

c
�2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

semi-structured data models were first introduced [1, 13].
The complexity of RPQs for graph databases particularly
has been well studied [2, 3]. In [11], the idea of employ-
ing NFAs to guide search for RPQ evaluation is introduced.
(The introduction of product automata in [13] can well be
considered a precursor to this idea.) In [7], they investigate
fixpoint evaluation for property paths. In [18], we considered
a mapping of property paths to SQL queries with common
table expressions (with SQL recursion). In [19], we present
a precursor of Waveguide that explores fixpoint evaluation
for property paths using SQL recursion.

Waveguide’s strategy is based on an iterative search algo-
rithm guided by a query plan, which we call a waveguide plan
(WGP), composed of wavefront automata (WFAs) modeled
by non-deterministic finite state automata (NFAs).2 Within
this framework, we are able to express complex query evalu-
ation plans which involve multiple search wavefronts that it-
eratively explore the graph. The states (of the automata) of
the WGP represent path queries in their own right. States
of the plan are materialized selectively during evaluation
which allows for re-use of intermediate results. We call such
materialized states path views.

A SPARQL path query can be potentially evaluated by
any number of WGPs. A good plan is the one that achieves
a balance of minimizing

1. the search space that needs to be explored,
2. the recomputation of answers as much as possible

(through re-use with path views), and
3. the degree of caching needed by the plan.

These objectives cannot be optimized independently of one
another. To address this, we propose a cost-based method
that selects the best WGP based on estimated total cost.
Our ultimate goal is a cost-based optimizer for SPARQL

queries for RDF databases of the same caliber as cost-based
optimizers for SQL queries for relational databases.

The graph exploration for the query’s evaluation is driven
by an iterative search procedure that is e↵ectively a fixpoint
evaluation (semi-näıve and bottom-up [8, 12]). Three steps
are performed each iteration: crank, reduce and union.

1. Crank expands the search wavefronts in the graph to
produces a set of tuples (a delta).

2. Reduce eliminates the duplicates from a delta to
counter unbounded computation on cyclic graphs.

3. Union selectively materializes delta into cache.
The iteration stops when no new tuples are produced (i.e.,
we reach the fixpoint).

Each search wavefront is guided by a wavefront automa-

2We name these wavefronts following the convention in [8].
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ton (WFA), a finite state machine modeled on a non-
deterministic finite automaton (NFA). Unlike NFAs, which
are used as recognizers of regular expressions on strings,
WFAs a↵ord us a number of features related to evaluation
of regular expressions on graphs such as use of seeds, ap-
pend/prepend transitions, and path views.

We demonstrate our Waveguide prototype via a query
plan designer for designing and viewing the plans and a
runtime visualizer and profiler for tracing the guided search
evaluation. The interactive demonstration over social-
network and life-science datasets highlights the benefits—
and the interesting challenges—with our methodology.

In §2, we posit a cost model, discuss costs that arise in
property-path evaluation with respect to graph and query
characteristics, and present optimization strategies. In §3,
we overview the implementation of the Waveguide proto-
type. In §4, we present the demonstration scenario.

2. PLAN PERFORMANCE
For a given query, of course, there may be many ways to

guide the search. Our cost model, in abstract, is essentially
to predict the size of the graph walk—the number of triples
from the RDF store (that is, labeled edges from the graph)
that will be joined—during the search evaluation as guided
by the plan. We summarize search cost factors that can
a↵ect the cost (properties of the graph and of resulting pre-
paths computed during evaluation) and optimization meth-
ods that are enabled by waveguide plans which address the
search factors, in turn.

2.1 Search Cost Factors
Properties of the graph and of the WGP chosen—thus,

the guided search during evaluation in terms of the pre-paths
that are computed—will determine the evaluation cost.
Search Cardinalities. The wavefronts, that we chose for the
WGP determine during the search the intermediate results
(pairs of nodes labeled by state, thus connected by valid
pre-paths) that are collected each iteration. Just as with
di↵erent join orders in relational query evaluation, di↵erent
wavefronts will result in di↵erent intermediate delta sizes.
These intermediate cardinalities can vary greatly over plans.
To reduce overall search size, we need to choose wave-

fronts that result in fewer edge walks. WGPs can be costed
to estimate their search sizes based on statistics about the
graph, such as 1-gram and 2-gram label frequencies. (Such
graph statistics can be computed o✏ine for this purpose.)
Solution Redundancy. Each node pair appears at most once
in the answer, even if there are multiple paths between the
node pair satisfying the query’s regular expression. As such,
answer-path redundancy arises from two sources. First, in
dense graphs, solutions are re-discovered by following con-
forming, yet di↵erent paths. Second, nodes are revisited by
following cycles in the graph. Thus, the same answer pair
may be discovered repeatedly during evaluation. It is criti-
cal to detect such duplicate solutions early in order to keep
the search size and search cache small.
Sub-path Redundancy. The paths justifying multiple answer
pairs may share significant segments (sub-paths) in common.
This arises, for instance, in dense graphs and with hierarchi-
cal structures (e.g., isa and locatedIn edge labels). Consider
the query “?p :locatedIn+ Canada”. Every person located in
the Annex in Toronto qualifies, since the Annex is located

in Toronto located in Ontario located in Canada. The sub-
path “Annex :locatedIn+ Canada” is shared by the answer
path for each Annex resident.

Because we keep only node-pairs (plus state) in the search
deltas, and not explicitly the paths themselves,3 we may
walk these sub-paths many times, recomputing “Annex :lo-

catedIn+ Canada” for each Annex resident.

2.2 Optimization Methods
We consider WGP optimization methods in relation to

the search cost factors above.
Choice of Wavefronts. The direction in which we follow
edges, and where we start in the graph, with respect to the
regular expression will result in di↵erent search cardinalities.
Our choice of WFAs in the plan dictates the wavefront(s).
Reduce. Waveguide’s evaluation strategy is designed to
counter solution redundancy. Redundancy of candidate so-
lutions is addressed by removal of duplicates against both
cache (cache) and delta (delta) by the reduce operation. As
a further optimization, once a solution seed-target pair has
been discovered, first-path pruning (fpp) removes the seed
from further expansion by the search wavefronts.
Threading / Sub-queries. To counter sub-path redundancy
requires us to decompose a query into sub-queries. We call
this decomposition threading, and our waveguide plans ac-
commodate this. The portion of the regular expression that
will result in sub-paths that will be shared by many answer
paths can be computed independently by a separate wave-
front. Sub-path sharing can be predicted by graph statistics
to indicate when sub-queries should be considered.
Partial Caching. Delta results are cached during evaluation
as we need to check against the cache for redundantly com-
puted pairs. For large intermediate cardinalities, this can
be a significant cost. However, some of this cost can be
negated. In particular, not every state in the plan’s WFAs
needs to have its node-pairs cached. Caching is only needed
when redundancy is possible, due to cycles in a WFA or in
the graph. States without cycles need not be cached.

2.3 An Illustration
We illustrate the impact of di↵erent plans (WGPs) on

query evaluation over an example query

Q = ?p :marriedTo/:diedIn/:locatedIn+/:dealsWith+ USA

over the real-world dataset YAGO2s [17] with 229M triples.
P1: single prepending wavefront USA ! ?p.
P2: single appending wavefront ?p ! USA.
P3: two wavefronts and a join:

?p ! :locatedIn+ ?x

?x :dealsWith+  USA.
P4: P2 but with a threaded sub-path

:locatedIn+/:dealsWith+ USA.
Fig. 1a shows the e↵ects of wavefront choice on search car-
dinality. Note the order of magnitude di↵erence between
the best, P4, versus the worst, P1. The three types of re-
dundancy pruning—cache, delta, and fpp—are illustrated for
each plan. Fig. 1b plots search size across iterations for P2

with pruning; over 40% of tuples are pruned. Fig. 1c plots
delta sizes over iterations for P1 and P3. Note how the selec-
tive search of P3 is better behaved than the rapid expansion
of P1. In Fig. 1d, the total execution time for each plan is

3Note this design choice in our evaluation strategy is critical
for good performance, due to solution redundancy.
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Figure 1: E↵ect of plans on query evaluation.

presented.4 This demonstrates the significant improvement
in performance achievable by careful design of the WGP.

3. THE WAVEGUIDE PROTOTYPE
To demonstrate the e�cacy of the Waveguide evaluation

strategy, we focus on evaluation of SPARQL 1.1 property
paths over large RDF graphs. We illustrate how Wave-

guide can be implemented e↵ectively on a modern relational
database system. We use PostgreSQL due to that it is
open-source and has a high-performance procedural SQL

implementation. However, any RDBMS with good proce-
dural SQL support could be used.

Waveguide’s resource-intensive tasks can be delegated to
PostgreSQL via SQL and procedural SQL routines. This
implementation of our methodology gains us high perfor-
mance, scalability, and rapid deployment.

The architecture of our prototype is shown in Fig. 2. It
consists of two layers: application and RDBMS. The ap-
plication layer provides a user front-end, preprocessing the
graph data, parsing user queries, generating WGPs, and vi-
sualizing key steps during the search. The RDBMS layer
provides postprocessing of the graph data and performing
the iterative Waveguide graph search for the given WGP.

We implement the application layer of the Waveguide

prototype in Java. The layer consists of four main modules:
a data importer, a query parser, a plan generator, and a
data visualizer.
Data importer. This validates RDF data encoded in
common formats (e.g., N-triples and Turtle.). It converts
these to a tab-separated value format for bulk loading in
the RDBMS.
Query parser. We use the Apache ANTLR open-source
framework to parse SPARQL 1.1 property path query
strings into an internal tree representation.
Plan generator. Given the query parse tree, we produce a

4The queries were run on a 2xXeon E5-2640v2 CPU server
with 7200RPM HDD running Ubuntu Server 12.04 x64 and
PostgreSQL 9.3.

Figure 2: Overview of a prototype system

base WGP from an NFA that recognizes the regular expres-
sion of the query. We then employ a simple greedy WGP

generation algorithm using the label cardinality estimates
from the graph database. The produced WGP can be man-
ually tuned by the end user via a graphical evaluation plan
designer (shown on the left in Fig. 3).
Data visualizer. We employ the GraphStream open-
source library [5] to perform the graph visualization in our
system. This allows us to visualize dynamically the key steps
involved in the Waveguide search process. We interface
with the RDBMS to visualize the search cache at each itera-
tion of the crank, reduce, and union steps. To provide techni-
cal insight to the Waveguide process, we display a number
of relevant evaluation parameters and statistics (shown on
the right in Fig. 3).

The RDBMS acts both as the graph store and as the ex-
ecution platform for Waveguide’s iterative algorithms.
Graph database. We represent a graph database in a sin-
gle logical triples table, which is decomposed into two phys-
ical tables—strings and a surrogate serialTriples—to reduce
storage space and improve performance. The surrogate ta-
ble is indexed in all six ways—spo, sop, pos, pso, osp, and
ops—to accommodate the guided search.
Guided search. We implement the guided search process
via a procedural SQL program. The WGP that guides the
search process is encoded in the trans table. To improve the
performance, the cache is stored in an unlogged, ephemeral
searchCache table. This is indexed to cover the access paths
used by the iterative search. We implement profiling func-
tions here to feed evaluation statistics to the data visualizer.

4. DEMONSTRATION
We design scenarios for three demonstration objectives

for demonstrating our prototype system: 1. familiariza-
tion, 2. challenges, and 3. e�cacy. Due to the sizes of the
datasets, we deploy the database layer of the prototype in
the “cloud” in Amazon EC2.

To familiarize researchers with our methodology, we
demonstrate Waveguide evaluation of a number of simple
property path queries over well-known RDF datasets such
as FOAF [6] and DBPedia [4]. We construct the queries to
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Figure 3: Query plan designer and runtime visualizer and profiler.

be fairly selective such that the whole evaluation process is
comprehensible when visualized step-by-step.

To highlight the challenges of the proposed evaluation
process, we design a number of non-trivial queries for var-
ious domains such as social networks (e.g., the LDBC So-
cial Network Intelligence Benchmark [14]), life sciences (e.g.,
UNIPROT [16]), and encyclopedic (e.g., YAGO2s [17]). We
present the audience with the query at hand, various statis-
tics about the dataset, and show how to design an e�-
cient evaluation plan using the capabilities o↵ered by Wave-

guide’s WGP mechanism. We focus on the interesting chal-
lenges for WGP optimization: e�cient join order, cardinal-
ity estimation of simple and transitive paths, simplification
of the guiding automaton, and intermediate data re-use.

To demonstrate the e�cacy of Waveguide, we perform
an online, interactive benchmark on a number of datasets
and query loads against the native RDF-store Apache Jena

[10]. We show that in many situations Waveguide outper-
forms Jena by several orders of magnitude.
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ABSTRACT
A key role in OLAP analyses of textual user-generated con-
tent for social business intelligence (SBI) is played by topics,
i.e., concepts of interest within a subject area. Topic hier-
archies are irregular, heterogeneous, dynamic, and possibly
schemaless; besides, unlike in traditional OLAP, di↵erent
semantics for topic aggregation can be envisioned. In this
demonstration we present an architecture for SBI based on
meta-stars, a novel approach to topic modeling in ROLAP
systems. By coupling meta-modeling with navigation tables,
meta-stars can cope with changes in the schema of irregular
hierarchies and with schemaless ones; besides, they enable
a new class of OLAP queries based on semantically-aware
aggregation. The demonstration will focus both on the hier-
archy update process and on the querying expressiveness.

1. INTRODUCTION
In the last few years, the success of social networks has led

to the accumulation of a huge wealth of user-generated con-
tents (UGCs) about people’s tastes, thoughts, and actions
—especially, those coming in the form of textual clips. This
phenomenon is raising an increasing interest from decision
makers because it can give them a fresh and timely percep-
tion of the market mood [1]. Unfortunately, though some
commercial tools are available for analyzing textual clips
using a few ad-hoc indicators, they do not support flexible
and fully interactive analyses; besides, these tools are essen-
tially built as self-standing applications and are not seen as
a permanent part of the company information system.

To bridge this gap, social business intelligence (SBI) has
emerged as the discipline of e↵ectively and e�ciently com-
bining corporate data with UGC to let decision-makers an-
alyze and improve their business based on the trends and
moods perceived from the environment [2]. The goal of SBI
is to enable powerful and flexible analyses for users with
a limited expertise in databases and ICT; this is typically
achieved by storing information into a data warehouse, in
the form of multidimensional cubes to be accessed through
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OLAP techniques.
A key role in the analysis of textual clips is played by top-

ics, meant as specific concepts of interest within the subject
area [3]. Users are interested in knowing how many people
talk about a topic, which words are related to it, if it has a
good or bad reputation, etc. Thus, topics are obvious can-
didates to become a dimension of the cubes for SBI. Like for
any other dimension, users are interested in grouping top-
ics together in di↵erent ways to carry out more general and
e↵ective analyses —which requires the definition of a topic
hierarchy that specifies inter-topic roll-up relationships so
as to enable aggregations of topics at di↵erent levels. How-
ever, topic hierarchies are di↵erent from traditional hierar-
chies (like the temporal and the geographical one) in sev-
eral ways. First of all, trendy topics are heterogeneous (e.g.,
they could include names of people, places, etc.) and change
quickly over time (e.g., if at some time a group of politicians
were discovered to be corrupt, a new Scandal class of topics
would emerge during the following days), so a comprehen-
sive schema for topics cannot be anticipated at design time
and must be dynamically defined. For some topics a clas-
sification could even be hard due to their fuzzy nature, or
unnecessary due to their transitoriness. Even when a schema
is present, the expressiveness it requires is often beyond the
one of the standard multidimensional model, i.e., topic hi-
erarchies are non-onto, non-covering, and non-strict1.

While these structural irregularities are already managed
in some research models (e.g., [5]), handling hierarchies
with dynamic schemata —or even potentially schemaless
hierarchies— as required by topic hierarchies still consti-
tutes a big challenge for SBI. Ontologies come to the rescue
here, because the wide expressiveness they support enables
an e↵ective modeling of topic hierarchies with all their pe-
culiarities; however, the problem of how to move this on a
relational platform remains open.

To bridge the gap, in this demonstration we present a com-
plete architecture for SBI based on meta-stars [2], a novel
approach to topic modeling in relational OLAP systems.
By coupling meta-modeled dimension tables with naviga-
tion tables, meta-stars can e↵ectively cope with the pecu-
liar requirements of topics hierarchies: on the one hand,
meta-modeling enables hierarchy heterogeneity, schema dy-
namics, and schemaless hierarchies to be accommodated; on
the other, navigation tables easily support non-onto, non-

1In a non-onto, non-covering, and non-strict hierarchy, in-
stances can have di↵erent lengths, non-leaf topics can be
related to facts, some hierarchy levels may be missing, and
many-to-many relationship between topics may exist [5].
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Figure 1: An architecture for SBI

covering, and non-strict hierarchies and also allow di↵er-
ent roll-up semantics to be explicitly annotated, which in
turn enables a brand new class of OLAP queries based on
semantically-aware aggregation.

As already mentioned, topic hierarchies need be contin-
uously updated and refined in both their schemata and in-
stances to keep pace with the quickly-changing social envi-
ronment. To enable simple and fast editing of hierarchies,
we let users manage them in the form of ontologies. In this
way, we can take advantage of existing ontology editors,
which give good support to the design of irregular hierar-
chies. Besides, by creating a procedure that automatically
loads/updates a meta-star starting from a given ontology, we
relieve the user of the task of directly managing meta-stars
and enable faster iterations of ontology design and testing.

2. SYSTEM OVERVIEW
The architecture used for this demonstration is depicted in

Figure 1 and briefly commented in the following. The com-
ponents in blue are those actively involved in the demo; the
components running locally (on any Internet-enabled PC)
and remotely are separated by a dashed line.

The user builds and refines the topic hierarchy by means
of an ontology editor, then she launches an ETL process to
automatically feed the meta-star within the social data mart
(see Sections 2.1 and 2.2). The crawler component periodi-
cally runs a set of keyword-based queries over the web aimed
at retrieving the clips (and the related meta-data) that are
in the scope of the subject area. The textual content of
the clips is then loaded into a document database, while the
meta-data are loaded into an operational data store (ODS).
The semantic enricher works on the document database to
extract the semantic information hidden in the clip text and
writes it in the ODS. A hybrid approach between super-
vised machine-learning [4] and lexicon-based techniques [6])
is adopted to extract the topics occurring within the single
sentences of each clip, understand the syntactic relationships
between words, and evaluate the sentiment related to each
sentence and topic occurrence. An ETL process periodi-
cally extracts data about clips and topic occurrences and
co-occurrences from the ODS and loads them into multidi-
mensional cubes within the social data mart. Finally, the
user uses OLAP tools and dashboards for flexibly analyzing
clips and topics (Section 2.3). The total size of data involved
in the demo (ODS + data mart) is about 1TB.

In our prototypical implementation of this architecture
we use Brandwatch for keyword-based crawling, Talend for
ETL, SyN Semantic Center by SyNTHEMA for semantic
enrichment, Protégé for ontology editing, Oracle for storing
the ODS, the topic ontology, and the social data mart, and
MongoDB as the document database. For OLAP and dash-
boarding we developed an ad-hoc interface using JavaScript.

Of course, depending on the specific project context, lighter
architectures could be su�cient (for instance, semantic en-
richment may not be done if users are only interested in
analyzing raw data). On the other hand, the architecture
in Figure 1 can easily handle the data volumes normally
involved in analyses, that in practice are often limited by
either the di↵usion of the subject area on the web or by the
cost for buying clips from third parties.

2.1 Meta-Stars
Topics are first-class citizens for the large majority of rel-

evant analyses that decision-makers find interesting in the
field of SBI; thus, expressive and flexible solutions are re-
quired to model topics in multidimensional cubes. Meta-
stars, introduced in [2], extend star schemata by enabling
schemaless hierarchies to seamlessly coexist with hierarchies
characterized by an irregular and dynamic schema, while
supporting OLAP analyses. The basic idea is that it is al-
most impossible to devise a fixed schema for a subject area at
design time and force all newly-discovered topics to fit that
schema. However, a large part of topics can be e↵ectively
classified into levels, that mostly correspond to aggregation
levels in traditional business hierarchies.

A topic hierarchy is an acyclic directed graph H = (T,R),
where T is a set of topics and R is a set of inter-topic roll-up
relationships. A topic t 2 T can optionally be classified into
a level Lev(t), and a roll-up relationship (t1, t2) 2 R can be
associated to a semantics Sem((t1, t2)) 2 ⇢ (with ⇢ being a
list of user-defined roll-up semantics). The meta-star for a
topic hierarchy H includes two tables:

1. A topic table storing one tuple for each topic in T . The
schema of this table includes a primary surrogate key
IdT, a Topic column storing the topic name, and a Level
column storing the level, if any, in which the topic is
classified.

2. A roll-up table storing one tuple for each arc in H+.
The tuple for arc (t1, t2) has two foreign keys, Chil-
dId and FatherId, storing the surrogates of t1 and t2
respectively, and a column RollUpSignature that stores
the roll-up signature of (t1, t2), i.e., a binary string of ⇢
bits where each bit corresponds to one roll-up seman-
tics and is set to 1 if at least one roll-up relationship
with that semantics is part of any directed path from
t1 to t2, is set to 0 otherwise.

Remarkably, meta-stars defined as above directly support
non-onto, non-covering, and non-strict hierarchies (because
they pose no constraints on inter-level relationships), allow
di↵erent roll-up semantics to be explicitly annotated (by
storing roll-up signatures), and enable hierarchy heterogene-
ity and dynamics to be accommodated (by meta-modeling
levels in the topic table).

Figure 2 shows an excerpt of the topic hierarchy we will
use for the demonstration; the subject area is that of Eu-
ropean political elections. Levels are represented by grey
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Figure 2: An excerpt of the topic hierarchy for Eu-

ropean elections

TOPIC T ROLLUP T
IdT Topic Level ChildId FatherId RollUpSignature
1 Cameron Politician 1 1 0000

2 Conservative Party Party 2 2 0000

3 EU Socialists — . . . . . . 0000

4 Minimum wage Issue 1 2 1000

5 Social Policies Sector 1 8 1001

6 Economic Policies Sector 2 8 0001

7 Greenpeace — 4 5 0010

8 UK Nation 4 6 0010

. . . . . . . . . . . . . . . . . .

Figure 3: Meta-star for European elections

boxes; topic Greenpeace is unclassified. In this example, the
hierarchy is non-onto (also non-leaf topics such as UK can
occur in clip sentences) and non-strict (the relationship be-
tween issues and sectors is many-to-many). Figure 3 shows a
portion of the corresponding topic and roll-up tables where,
for instance, the (transitive) relationship between Cameron
and UK is expressed by the fourth tuple of the roll-up ta-
ble, with roll-up signature 1001 (the list of roll-up semantics
being ⇢ = (isMemberOf, isPartOf, pertains, inNation)).

2.2 Feeding Meta-Stars
Clearly, managing topic hierarchies by directly editing

topic and roll-up tables would be impractical. For this rea-
son, in our approach topic hierarchies are modeled by users
in the form of ontologies. Classes and instances are used to
represent levels and topics, respectively, while properties are
used to define roll-up relationships between topics. We pro-
vided a minimal framework for designing topic hierarchies
by defining this set of superclasses and superproperties:

<Topic> <rdf:type> <owl:Class> .
<rollsUpTo> <rdfs:range> <Topic> .
<rollsUpTo> <rdf:type> <owl:ObjectProperty> .
<rollsUpTo> <rdfs:domain> <Topic>

In this framework, a level is defined as a class that special-
izes class Topic and a topic is defined as an instance of a level
(unclassified topics are defined as instances of Topic). A roll-
up relationship is first defined as a specialization of the roll-
sUpTo superproperty, and its domain and range are properly
set considering the levels of its two end topics. Then, the
roll-up relationship is implemented as an instance by linking
the topics it involves.

The process of automatically generating a meta-star from
an ontology takes advantage of the Spatial and Graph com-
ponent in the Oracle DBMS, which allows to store and han-
dle ontologies, as well as to integrate traditional SQL queries
with SPARQL queries. Firstly, the ontology is exported
from Protégé and loaded into the Oracle database. Then, a
stored procedure is launched to read the ontology, determine
the hierarchy schema (the levels and their relationships), and
generate and execute the DML and the DDL SQL code that
updates the data mart.

2.3 Querying Meta-Stars
While the aggregation semantics for OLAP queries is com-

monly understood and shared, in presence of irregular hier-
archies —such as the topic one— some further possibilities
arise. In particular, since facts (topic occurrences in clip
sentences) can also be associated to non-leaf topics, multi-
ple semantics of aggregation can be made available to users.
To deal with these alternative semantics we extend the def-
inition of OLAP query as follows.

Given topic hierarchy H = (T,R), a schema-aware topic
query is a triple of (i) a group-by component, that is a topic
level l; (ii) an optional selection, that takes the form of a
conjunction of Boolean predicates on topic levels; and (iii) a
semantic filter � consisting of a subset of allowed roll-up se-
mantics, coded as a binary string of bits. The interpretation
of a schema-aware topic query is that of building, for each
topic ti that has level l and satisfies the selection, a group of
topics including all topics t such that the roll-up signature
of (t, ti) matches �. Then, the facts for all topics included
in each group are aggregated. Note that, while the group-by
component and the selection determine which groups will be
built, the semantic filter determines the composition of each
group. Queries with � = 00 . . . 0 are called queries with-
out topic aggregation, because the group for topic ti only
includes ti; queries with � = 11 . . . 1 are called queries with
full topic aggregation because all topics t from which ti can
be reached in H are included in the group for ti. In all the
other cases, we will talk of queries with semantic topic ag-
gregation as topics are selectively aggregated based on the
semantics of the roll-up relationships they are involved in.

Not all topics in T belong to a level, so there is a need
for a further class of queries that work independently of the
hierarchy schema. In a schema-free topic query, the topics of
interest are explicitly listed in the group-by component, that
takes the form of a set of topics T 0 ✓ T . A group is built for
each topic ti 2 T 0, the composition of groups is determined
like for schema-aware queries, so the same distinction based
on topic aggregation can be made.

An example of a schema-aware query is the one asking for
the number of occurrences of each Party topic for which Na-
tion=UK, which can be done either without topic aggrega-
tion (only clips for the Conservative and Labour Parties are
considered) or with topic aggregation (also clips for Cameron
and Osborne are counted). An example of a schema-free
query with semantic topic aggregation is the one asking for
the number of occurrences of topic EU Socialists also con-
sidering the UGC mentioning parties of that group such as
Labour Party but not the UGC mentioning politicians of
those parties (filter on roll-up signature isPartOf).

3. DEMO SCENARIOS
As a case study to demonstrate the power of meta-stars

we consider the incoming European elections. In particular,
we focused the crawler on social networks, newspapers’ web-
sites, and politician’s personal blogs from Italian, English,
and German sources. In this context, three di↵erent scenar-
ios will be demonstrated, yielding an overall demo duration
of about 20 minutes.

The first scenario aims at showing how meta-stars can
handle irregular and schemaless hierarchies. Non-strictness
is shown by creating many-to-many relationships between is-
sues and sectors, like in Figure 2 where Minimum wage per-

531



Figure 4: An excerpt of the topic hierarchy for European elections

tains to both Social Policies and Economic Policies. Meta-
stars cope with non-strict hierarchies by simply having mul-
tiple tuples with the same ChildId in the roll-up table. To
deal with non-coverage, a politician who supports the EPP
without being member of any national party will be created;
since the roll-up table contains every transitive relationship
between topics, the problem of missing levels is simply over-
came by directly coupling a child to its grandparent. Non-
onto hierarchies are transparently accommodated because
each topic (even non-leaf ones such as CDU) is represented
in the topic table, so it can be directly referred from the
fact table. Finally, a schemaless topic hierarchy is created
by adding topics (such as Greenpeace in Figure 2) that do
not belong to any level, i.e., have attribute Level set to null
in the topic table. Note that also unclassified topics can
be involved in roll-up relationships with other (classified or
not) topics, and that these relationships can be transpar-
ently used for topic aggregation.

The second scenario is related to hierarchy dynamics. A
recurrent situation in SBI is the discovery of new topics of
interest and new topic levels, which requires to start a de-
sign iteration that refines the topic hierarchy and updates
the meta-star accordingly. During the demo we will use the
ontology editor to add new levels and topics, then launch the
meta-star feeding procedure to let the new data be imme-
diately available for querying. For instance, with reference
to Figure 2, assume that the ontology initially does not in-
clude level Sector. Adding Sector and topics Social Policies
and Economic Policies leads to update the meta-star as fol-
lows: (i) two new tuples are added to the topic table, with
attribute Level set to Sector; (ii) the roll-up signature of each
existing tuple in the roll-up table is extended with one bit to
model the new pertainsTo semantic; and (iii) three tuples are
added to the roll-up table to model the roll-up relationships
between issues and sector. Note that, while the topic hi-
erarchy has been modified intensionally, i.e., in its schema,
the impact of this change on the meta-star level is purely
extensional, i.e., it only involves the instances of the tables
and not their schemata.

From the analyst point of view, meta-stars significantly
increase the expressiveness of OLAP queries. The key ele-

ment to this end is the roll-up signature, that allows top-
ics to be aggregated by filtering the relationships the user
wants to involve. So, the goal of the third scenario is to
evaluate meta-stars from the point of view of querying ef-
fectiveness and e�ciency. For instance, Figure 4 shows an
analysis dashboard featuring the results of three di↵erent
queries. In particular, the lower panel shows the volume
and average sentiment for the daily occurrences of topic UK
in Facebook clips written in April-May 2014. In the fore-
ground window, the analyst is selecting a semantic filter on
inNation to also include the clips mentioning the parties of
UK; the SQL code generated for the final query is

SELECT DT DATE.date, AVG(FT.avgSentiment), COUNT(FT.occurrences)
FROM TOPIC T AS T, ROLLUP T AS R, DT DATE, DT CLIP, FT
WHERE FT.IdT = R.ChildId AND R.FatherId = T.IdT AND T.Topic = ’UK’
AND BITAND(R.RollUpSignature,0001) = R.RollUpSignature
AND <star join and selection predicates>
GROUP BY DT DATE.Date;
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ABSTRACT 

In this paper, we showcase a privacy-preserving query personaliza-

tion system for experience items like movies, music, games, or 

books. Personalizing queries for such items is notoriously difficult 

as meaningful query attributes are either missing in the database or 

would require extensive domain knowledge not available to most 

users. For this reason, state-of-the-art content provision platforms 

as e.g., Netflix or Amazon usually rely on recommender systems to 

support their users, and are often working in parallel with tradi-

tional SQL-style queries. Unfortunately, recommender systems 

have several shortcomings as for example high barriers for new us-

ers joining the system, which first have to setup a preference profile 

in a lengthy process, the inability to pose meaningful queries be-

yond recommendations matching the personal profile, and severe 

privacy concerns due to storing personal rating data for all users 

long-term. In order to provide an alternative, we present in this 

demonstration paper a powerful and intuitive query-by-example 

(QBE) interaction system. Bayesian Navigation is used to person-

alize a user’s query on the fly. The central challenge when using 

QBE is the selection of features to represent the items in the data-

base. Here, we rely on a high-dimensional feature space which was 

mined from rating data of a large number of users, allowing us to 

measure perceived similarity between items to steer the query pro-

cess. This also addresses many issues of recommender systems as 

our query capabilities can be used by any user anonymously in a 

drive-by fashion. In our proposed demo, users can try our never 

before presented system hands-on, and can use it to discover inter-

esting movies tailored to their preferences with a pleasantly simple 

and enjoyable user experience.   

 

Categories and Subject Descriptors 

H.2.4 [Data Management]: Systems, Query Processing 

Keywords 

Personalization, Privacy, Perceptual Similarity, User Modeling, 

Query-By-Example, Bayesian Navigation. 

1. INTRODUCTION 
Effective personalization techniques have grown to be an integral 

and indispensable part of current information systems, and are es-

sential to support users when faced with a flood of different 

choices. Here, two major approaches are common: a) Using SQL-

style personalized queries on meta-data, which however require the 

users to have extensive domain knowledge in order to formulate 

precise and efficient queries. Additionally, SQL-style queries are 

difficult for the large domain of experience items like movies, 

books, music, or games, as the commonly available meta-data is 

often not describing the items in a suitable fashion (e.g. if they are 

funny, but with a dry humor, not slapstick). b) Adapting recom-

mender systems which proactively suggest items to users based on 

their user profile, and which became particularly popular in systems 

like Amazon or Netflix [1], [2]: While many recommender systems 

provide recommendations of high quality [3], they have several 

shortcomings. Especially, for each user an elaborate user model 

needs to be built and stored, requiring up to hundreds of ratings 

until a user can effectively get meaningful recommendations. This 

creates a high barrier for new users to join the system. But more 

severely, this user model contains exhaustive personal information 

on a user’s preferences, her reaction to different items, or her gen-

eral likes and dislikes. In order to query or use the system, this in-

formation must be clearly associated with the respective user and 

needs to be stored long-term for the system to work. Such profiles 

are highly valuable, and can be commercialized, abused, or even 

stolen. Obviously, this situation raises many privacy concerns and 

repels privacy-conscious users.  

In this proposed demonstration, we therefore present an alternative 

approach fusing advantages of both recommender systems and 

SQL-based database personalization techniques, while at the same 

time avoiding many of the associated privacy risks. We realize this 

with privacy-preserving query-by-example personalization, which 

allows users to query for items fitting their current preferences eas-

ily without providing explicit feedback on attributes or their values. 

To achieve this, we utilize the perceived similarity between given 

items, which is harvested from user-item ratings, and transformed 

into a perceptual space [4]. However, we avoid the drawbacks of 

recommender systems: no user profiles are necessary to query the 

system, allowing situative, personalized, and anonymous ad-hoc 

queries.  

2. SYSTEM DESIGN & FOUNDATIONS 
In this section, we briefly outline the general design of our system, 

and provide some high-level insights into the theoretical founda-

tions. This demonstration proposal is based on the work in [5] 
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where all theoretical foundations as well as the resulting perfor-

mance evaluations are discussed in detail. 

Basically, our approach allows users to easily explore a database 

with experience products by using personalized and privacy pre-

serving query-by-example (QBE) navigation. In this proposed de-

monstrator, the database will contain around 12,000 movies. Users 

start the system interaction by providing an example of what they 

are currently looking for, e.g. “I enjoyed ‘The Terminator’, and I 

am now looking for a similar movie.” Then, users are presented 

with a display of different items, and can provide a feedback action 

for some or all of them, resulting in a new display. This process 

continues until the user is satisfied with the results (a screenshot of 

our demo prototype is shown in Figure 1). 

While this workflow could be achieved by simple similarity search, 

we strive to personalize this query process. Therefore, we build a 

disposable user profile which is only valid during the query’s 

runtime, and the next display depends on the history of all feedback 

actions in the current query session instead of only the last feed-

back. Therefore, for two users, the same feedback action on one 

screen can result in different displays depending on their previous 

feedback within that query.  

Accordingly, three major challenges are discussed in this section:  

a) How can experience items as for example movies, books, music, 

games, software, or even hotels or restaurants be represented in 

a high-dimensional feature space such that meaningful similarity 

measurements and QBE navigation are possible? 

b) How can we personalize an example-based query in such a way 

that it respects the user’s feedback actions?  

c) Which implications does such a system have on the user experi-

ence, and how does our approach compare to SQL-style systems 

and recommender systems? 

Most popular QBE approaches in multi-media databases tried to 

operate on features generated from the actual multimedia file itself, 

which could either be low-features (e.g. color histograms or pat-

tern-based features), or so-called high-level features as for example 

in scene composition [6] or content-based semantic features [7] 

(e.g., presence of explosions, or a mountain, or a flag, etc.) Here, 

our approach takes a completely different route, as our feature 

space results from external user ratings instead of being extracted 

from the media. 

Information mined from user ratings has been shown to be very in-

formative, and semantically more meaningful to users than tradi-

tional meta data as, e.g. information about the director or actors (as 

shown in e.g. [8] for movies). In our prototype, we demonstrate 

how such semantically rich rating data can represent each item of 

an experience product database within a high-dimensional feature 

space. The idea is that the resulting space implicitly encodes how 

users perceived a movie, e.g., if it was funny, or if certain plot ele-

ments or tropes were present. For this task, we adapt perceptual 

spaces. Perceptual spaces have been introduced in [4], and are built 

on the basic assumption that each user who provides ratings on 

items has certain personal interests, likes, and dislikes, which steer 

and influence her rating behavior [9]. For example, with respect to 

movies, a given user might have a bias towards furious action; 

therefore, she will see movies featuring good action in a slightly 

more positive light than the average user who doesn’t care for ac-

tion. The sum of all these likes and dislikes will lead to the user’s 

overall perception of that movie, and will ultimately determine how 

much she enjoyed the movie, and how she rates it on a social movie 

site. Moreover, the rating will share this bias with other action mov-

ies in a systematic way. Therefore, one can claim that a perceptual 

space captures the “essence” of all user feedback, and represents 

the shared as well as individual views of all users. A similar rea-

soning is also successfully used by recommender systems, e.g. [3], 

[10]. Now, the challenge of perceptual spaces is to reverse a user’s 

rating process: For each item which was rated, commented, or dis-

cussed by a large number of users, we approximate the actual char-

acteristics (i.e., the systematic bias) which led to each user’s opin-

ion as numeric features.  

The general system design of our approach is shown in Figure 2: in 

an offline system initialization phase, a large number of user ratings 

(as e.g. obtained from a co-located recommender system, or from 

sites like e.g. IMDb or Netflix) is processed into a perceptual space. 

This process is described in detail in  [4] and [5], but for clearer 

illustration of our demonstrator, we will briefly summarize it in the 

following. Then, personalized QBE queries are used to query that 

space. 

Given is a large user-item-rating matrix, which usually is very 

sparse, containing only rating for around 1-2% of all user-item 

pairs. The goal is to find a matrix 𝐴 = (𝑎𝑚,𝑘) ∈ ℝ𝑛𝑀×𝑑 represent-

ing movies as 𝑑-dimensional coordinates. To achieve this, we also 

need a helper matrix 𝐵 = (𝑏𝑢,𝑘) ∈ ℝ𝑛𝑈×𝑑, representing user in the 

same space. Then, we use a factor model representing a rating func-

tion𝑓 ∶  ℝ𝑑 × ℝ𝑑 → ℝ. Basically, this function can predict missing 

ratings given user and item vectors. We approximate this function 

and the involved vectors/matrices, we use Euclidian Embedding (as 

in [11]), and we want the distance between a movie vector 𝑎𝑚 and 

user vector 𝑏𝑢 to be small if user 𝑢 likes movie 𝑚; otherwise, it 

should be large. To account for general effects independent of per-

sonal preferences, for each movie 𝑚 and user 𝑢, we introduce the 

model parameters 𝛿𝑚 and 𝛿𝑢, which represent a generic movie rat-

ing bias relative to the average rating 𝜇. Then, a rating of a movie 

𝑚 by a user 𝑢 can be predicted by �̂�𝑚,𝑢 = 𝜇 + 𝛿𝑚 + 𝛿𝑢 −

𝑑𝑖𝑠𝐸
2(𝑎𝑚, 𝑏𝑢), i.e. it is average rating of all movies (e.g., 𝜇=6.2 out 

of 1..10) plus the user bias (e.g., 𝛿𝑢=-1.6 representing a critical user 

always rating worse than others) and the movie bias (e.g., it’s a 

overall good movie with an average rating of 8.4,  so 𝛿𝑚=2.2). The 

last term, 𝑑𝑖𝑠𝐸(∙,∙), represents the distance of the movie vector and 

the user vector in a 𝑑-dimensional space. Finally, all movie vectors 

(and therefore the matrix 𝐴) can be approximated by solving a large 

least squares optimization problem with all instances of the above 

 

Figure 1. Screenshot of Prototype Implementation  
First display, using “The Terminator (1984)” as start example 
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equation for which a rating is known (with some correcting terms 

accounting for noise added). Now, this matrix 𝐴 represents our per-

ceptual space. 

Unfortunately, the resulting features in this space are implicit and 

have no direct real-world interpretation, therefore rendering SQL-

style queries useless (i.e. you could ask for a value >0.8 on feature 

5, but we don’t know what feature 5 is). However, they allow for 

measuring perceived similarity effectively (i.e. the distance be-

tween the feature vectors). This now allows using the query-by-ex-

ample paradigm, which provides simple query formulization with-

out the need to explicitly refer to any features.  

We adapt Bayesian Navigation [12] for this purpose. Here, for each 

query, a disposable user model is created during the interaction and 

discarded afterwards. Simplified, this model describes for each da-

tabase item the probability that this particular item is the target item 

the user is looking for. Please note that usually the user is not ex-

plicitly aware of his target; if a user knew exactly which movie he 

was searching, an SQL-based query would be more efficient. How-

ever, we assume that there is at least one implicit target movie 

which the user simply does not know yet, nor can she describe ex-

actly what her target looks like until she finds it. Our system is de-

signed to guide a user to this implicit target, which is represented 

by adjusting the respective probabilities in each step. More for-

mally, this is given by 𝑃(𝑀 = 𝑀𝑖| 𝐻𝑡), i.e. the probability of a spe-

cific movie 𝑀𝑖 being the intended implicit target 𝑀 given the users 

current query history 𝐻𝑡. This history contains all displays (i.e. se-

lection of movies a user has seen) and user actions on these displays 

(i.e. a binary selection of one or more of these movies). Together 

with a user prediction model, which predicts which movie a user 

will likely select out of a given display, (soft-min binary feedback 

in our case [12]), a selection strategy, which determines how the 

next display of the current interaction is selected, (most-probable 

strategy in our demo [5]), and a suitable start-up probability distri-

bution, all probabilities for each movie can be recursively recom-

puted after each user interaction. This results in a new display and 

a new user interaction until the user is satisfied. Finally, a person-

alized list of top-k database items ranked by their probability is re-

turned, and the temporary user model is disposed. The central chal-

lenge in computation is that Bayesian navigation requires an update 

of the modeled probabilities for each user interaction and each 

movie in the database, and each update of a single probability re-

quires considering all other probabilities. This, of course, poses se-

vere threats to the scalability of our system. Therefore, we pre-

sented an heuristic optimization technique in [5] which restricts 

these updates to the locality of the query. As a result, memory con-

sumption and speed could be improved significantly. 

The semantics of our approach are complemental to both SQL-style 

personalization as well as to recommender systems: recommender 

systems have precise knowledge of a user’s likes and dislikes (ba-

sically: they “know” each user), and they use this knowledge to 

proactively provide personalized recommendations. However, they 

do not support dynamic queries, and cannot easily cater to changing 

moods and requirements. SQL-style personalization in contrast of-

fers powerful queries on the “normal” available meta-data for users 

who know exactly what they are looking for. Our approach is in the 

middle-ground between both: for querying, a user just needs a 

vague idea / example of what she is looking for, and can navigate 

through items by simply pointing out good suggestions in the dis-

plays created using her feedback (which can be seen as situative 

recommendations). No direct interaction with attribute values is 

necessary. All three approaches serve their own purpose, and are 

useful in different situations.  

3. PERSONALIZATION AND PRIVACY  
Privacy concerns severely impact a user’s overall satisfaction with 

a Web-based system (as argued using the example of recommender 

system in [13]), and might even prevent them from using it alto-

gether, if the balance between privacy concerns and perceived sys-

tem utility becomes unfavorable.  

The central focus of our system in terms of privacy is to allow all 

users to use the personalized query capabilities as anonymously as 

possible, without requiring a user profile or pre-query preference 

elicitation. Especially in contrast to recommender systems, this 

means that for browsing or querying, no long term user profiles are 

required – only feedback (selection history) with regard to the cur-

rent query needs to be temporarily retained and does not have to be 

connected to a user id. This history of a query session is deleted 

after the query is completed, thus removing the need to store and 

protect this sensitive information. Even if a single query history was 

analyzed, you would need an extensive model of a user’s prefer-

ences to convincingly match it to her, in which case you would not 

gain any new information from this query, and her remaining que-

ries are not connected to this one. 

But still, our system will require a small group of enthusiast users 

to provide identifiable rating data in order to construct the percep-

tual space, not unlike a recommender system. However, this con-

struction process is completely decoupled from executing queries, 

and even the users which contributed ratings can later use the sys-

tem anonymously for querying. The perceptual space itself does not 

contain any user related information, not even in an anonymized or 

masked form or even just the number of users that participated in 

its creation. It is basically just a matrix of movie ids and their major 

perceptual dimensions (n=100 in our case). Therefore, approaches 

de-anonymizing ratings similar to the ones detailed in [14] cannot 

be applied. This could allow a “trusted platform” like IMDb or 

MovieLens to use its users’ ratings to construct a perceptual space, 

which then could be used by a 3rd party system like ours. In contrast 

to publishing anonymized rating data, publishing a perceptual 

space carries only minimal risks to the user’s privacy. But in any 

case, even if users did decide to contribute ratings to build the 

space, all users can use the query capabilities of our system without 

leaving trails of personal information in an ad-hoc fashion. 

4. EXPERIENCING THE DEMO SYSTEM 
Our proposed demonstrator allows users to directly interact with 

the prototype implementation of our system. Users may freely issue 

 

Figure 2. Basic System Design 
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their own queries, and may explore the system as they wish, using 

a pleasantly simple query interface. The prototype will include a 

wide selection of 11.976 movies from early 1900s up to 2005, and 

the underlying perceptual space was created by analyzing more 

than 103M user-movie ratings from over 480k users.  

The users can interact with the system using a web-based user in-

terface, which will resemble the screenshot in Figure 1. Addition-

ally, we will prepare some query scenarios which highlight some 

interesting semantic aspects of our system. We will provide the re-

quired hardware and software to allow users to test the system, in-

cluding at least two client devices. We also invite users to use their 

own mobile devices to access our web service. According to the 

user study we performed in [5], using our system was considered 

being an enjoyable and fun experience by most of the ~180 partic-

ipating users. 

Users can start a query by either providing a free example them-

selves, or by using one of twelve hand-picked examples provided 

by the system. In each display, 9 movies are displayed together with 

their respective poster, short synopsis, and general Meta data. From 

this display, users can select any number of movies as a positive 

example for the general “direction” in which they want to continue 

the query process. Then, after users are satisfied with the movies 

they encountered during the interaction, the query can be closed, 

and the final query result is presented in form of a list of movies 

ordered by their final Bayesian probability (see Figure 3). 

Of course, we will also provide posters which explain the system 

design in detail, and discuss our design decision with interested vis-

itors. This covers the general architecture, and also the theory be-

hind building perceptual spaces, the Bayesian navigation tech-

nique, and the applied optimization techniques. 

5. SUMMARY AND OUTLOOK 
In this demonstration proposal, we described a personalized and 

privacy preserving query-by-example system for experience prod-

ucts as for example movies, books, or music. Our innovative sys-

tem uses perceptual spaces built from a large number of user-item 

ratings to represent all database objects in a high dimensional fea-

ture space. We used Bayesian Navigation to allow users to issue 

queries in this space. The resulting system is thus very well suited 

to support users who only have a vague idea about what they are 

looking for, and helps them to explore the space in a personalized 

and guided fashion. Therefore, our system perfectly complements 

the features of SQL-based systems as well as those provided by 

recommender systems (which either support the case that the user 

knows exactly what she is looking for, or the case she does not 

know at all and therefore relies on a proactive recommendation). 

In our prototype implementation, users can freely issue queries to a 

database containing around 12,000 movies in order to discover new 

and interesting titles, while at the same time learning about the in-

ner working of our system. 
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ABSTRACT
Performances evaluation, reproducibility and benchmarking
represent crucial aspects for assessing the practical impact
of research results in the computer science field. In spite
of all the benefits (e.g., increasing impact, increasing visi-
bility, improving the research quality) that can be gained
from performing extensive experimental evaluation or pro-
viding reproducible software artifacts and detailed descrip-
tion of experimental setup, the required effort for achiev-
ing these goals remains prohibitive. In practice, conducting
an independent, consistent and comprehensive performance
evaluation and benchmarking is a very time and resource
consuming process. As a result, the quality of published
experimental results is usually limited and constrained by
several factors such as: limited human power, limited time,
or shortage of computing resources.

We demonstrate Liquid Benchmarking as an online and
cloud-based platform for democratizing the performance eval-
uation and benchmarking processes. In particular, the plat-
form facilitates the process of sharing the experimental ar-
tifacts (software implementations, datasets, computing re-
sources, benchmarking tasks) as services where the end user
can easily create, mashup, run the experiments and visualize
the experimental results with zero installation or configura-
tion efforts. In addition, the collaborative features of the
platform enables the user to share and comment on the re-
sults of the conducted experiments so that it can guarantee
a transparent scientific crediting process. Furthermore, we
demonstrate four benchmarking case studies that have been
implemented using the Liquid Benchmarking platform on
the following domains: XML compression techniques, graph
indexing and querying techniques and string similarity join
algorithms.

c©2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0
.

1. INTRODUCTION
The last two decades have seen significant growth in the

number of scientific research publications. One of the distin-
guishing characteristic of computer science research is that
it produces artifacts in addition to the scientific publica-
tions, in particular software implementations. In general,
reproducibility of experimental results represents a corner-
stone in the computer science research field [2]. In practice,
several benefits can be gained from providing reproducible
experimental results including the improvement of the re-
search quality, the gain of scientific credibility in addition
to increasing the research visibility and the impact [2]. In
particular, in an ideal world of computer science research,
researchers describe the core of their contributions in the pa-
per and then publicly provide the experimental datasets and
the source codes/binaries of their software implementation
for the community in order to facilitate the reproducibil-
ity of the published results in their publication. However,
the world is not always ideal. While most of the computer
science research literature usually present experimental re-
sults that evaluate/compare their proposed scientific contri-
butions, the quality of such experimental results are usually
limited due to several factors including: insufficient effort
or time, unavailability of suitable test cases or any other
resource constraints [8]. Furthermore, researchers used to
focus on reporting about the sweet spots of their work in a
way that is usually do not cover the ultimate picture or the
practical insights of the real-world scenarios or the different
application domains.

In principle, conducting an independent and comprehen-
sive benchmarking study for the-state-of-the-art in a certain
research topic is usually a very useful but a very challenging
task as well. In particular, it usually consumes a lot of time
and efforts due to multiple factors such as: unavailability
of standard benchmarking tasks, lack of access to the im-
plementations (source code or binaries) for some techniques
which are proposed in the research literature in addition to
the constraints of getting an access to different configura-
tion of computing resources/environments that reflect the
wide spectrum of different real-world scenarios [8]. There-
fore, it is, unfortunately, quite common in several research
domains to have no or little objective knowledge regarding
the pros and cons of any set of different proposed research
approaches/techniques which are sharing the goal of tackling
a specific research challenge.
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Recently, the challenge of defining and conducting com-
prehensive performance evaluations and benchmarking stud-
ies has been recognized by different research communities.
In addition, several conferences, publishers and funding agen-
cies have started to encourage their authors to provide the
descriptions and the software artifacts that can facilitate the
reproducibility of the experimental results of their publica-
tions. For example, in the database research community,
ACM SIGMOD 2008 was the first conference that offered to
verify the repeatability of the published experiments by al-
lowing the authors to submit their programs and experimen-
tal datasets [6]. In addition, since 2008, the VLDB confer-
ence has created a new experimental and analysis track that
encourages the research community to publish manuscripts
that report and document thorough experimental evalua-
tion and benchmarking studies1. Furthermore, several pro-
posals [1] and tutorials have been presented in the major
database venues to promote the crucial importance of per-
formance evaluation, reproducibility and benchmarking in
database research [2, 5]. Other research communities have
been following the same approach such as the Semantic
Web2,3,4, Semantic Web Service5, Business Process6, In-
formation Retrieval7 in addition to the general Executable
Paper Grand Challenge8. Although such types of research
publications and benchmarking efforts are useful and impor-
tant, however, they suffer from a main limitation which is
that they present particular snapshots for the state-of-the-
art that reflect the status at the time of their execution. In
practice, the state-of-the-art in any research domain is al-
ways dynamic and evolving by default. For instance, new
techniques that address the same research challenge of a
previously published snapshot paper can be introduced or
the performance characteristics of previously evaluated tech-
niques can differ. Thus, such papers can be outdated shortly
after they have been published.

In this paper, we demonstrate Liquid Benchmarking [8] as
an online, collaborative and cloud-based platform that seeks
to remedy the above mentioned challenges and problems by
facilitating the democratization and improving the quality
of the performance evaluation and benchmarking processes
in the computer science research domain. In particular, we
summarize the main strengths of our platform as follows:

• The platform dramatically reduces the time and effort
for conducting performance evaluation process by fa-
cilitating the process of sharing the experimental arti-
facts (software implementations, datasets, computing
resources, benchmarking tasks) and enabling the users
to easily create, mashup and run the experiments with
zero installation or configuration efforts.

• The platform supports for searching, comparing, ana-

1http://www.vldb.org/pvldb/vol1.html
2http://challenge.semanticweb.org/
3http://2014.eswc-conferences.org/important-dates/
call-challenges
4http://iswc2014.semanticweb.org/
call-replication-benchmark-data-software-papers
5http://sws-challenge.org/wiki/index.php/Main\
textunderscorePage
6http://processcollections.org/past/2013-2/
matching-contest
7http://www2.informatik.hu-berlin.de/~wandelt/
searchjoincompetition2013/
8http://www.executablepapers.com/

lyzing and visualizing (using different built-in visual-
ization tools) the results of previous experiments.

• The users of the platform can subscribe to get notifica-
tions about the results of any new running experiments
for the domains/benchmarks of their own interests.

• The social and collaborative features of the platform
enables turning the performance evaluation and bench-
marking process into a living process where different
users can run different experiments, share the results of
their experiments with other users in addition to com-
menting on the results of the conducted experiments
by themselves or by other users of the platform. Such
features guarantee the utilization of the wisdom of the
crowd, the freshness of the results, the establishment
of a transparent process for scientific crediting and the
development of scientific advances that trust and build
on previous research contributions.

2. PLATFORM DESIGN

2.1 Underlying Technologies
The features and design decisions of the Liquid Bench-

marking platform combine the facilities provided by different
technologies as follows:

• Software-as-a-Service: The platform relies on the REST-
ful architectural style as an effective software distri-
bution mechanism in which software implementations
get hosted on the computing environments and made
available as web services to the end-users over the In-
ternet. Such mechanism requires zero downloading,
installation or configuration effort at the side of the
end user where all communication with software can
be achieved using HTTP methods.

• Cloud Computing : The platform utilizes cloud com-
puting as an effective technology for broad sharing of
hardware resources and computing environments via
the Internet. In particular, virtualization is a key tech-
nology of the cloud computing paradigm that improves
the manageability of hardware resources by flexibly al-
lowing computing resources to be provisioned on de-
mand (in the form of virtual machines) and hiding
the complexity of resource sharing details from cloud
users. In practice, conducting a fair and apples-to-
apples comparison between any competing software
implementations requires performing their experiments
using exactly the same computing environment [8]. In
addition, performing a comprehensive and insightful
evaluation process that assess different performance
characteristics of the evaluated software implementa-
tions may require using several virtual machines with
variant and scaling (in terms of computing resources)
configuration settings (e.g. main memory, disk stor-
age, CPU speed) that reflect different real-world sce-
narios [8]. The Liquid Benchmarking platform utilizes
the virtualization technology for maintaining the test-
ing computing environments in cloud platforms in the
form of pre-configured virtual machines (with different
configurations) which are hosting the competing soft-
ware implementations (in the form of web services) and
are shared by the end-users of the benchmark.

• Collaborative and Social Software: The platform is en-
abled with different Web 2.0 capabilities (e.g. user
comments, tagging, forums) that support human inter-
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action and facilitates the building of online communi-
ties between groups of researchers who share the same
interests (peers) where they can interact and work to-
gether in an effective and productive way. Most impor-
tant, the platform supports sharing the performance
evaluation and benchmarking artifacts (e.g., software
implementations, datasets, virtual machines) in a work-
able environment.

2.2 Benchmark Specifications
In Liquid Benchmarking, each benchmark is configured by

defining the following main components:
• Evaluated Solutions: Represent the set of competing

software implementations (e.g. algorithms, techniques,
systems) which are sharing the goal of tackling the
subject research challenge of the benchmark. The im-
plementation of each evaluated solution needs to be
wrapped with a web service interface before being in-
tegrated on the benchmark.

• Service Schema: Defines the set of parameters (inputs
and outputs) that need to be defined for interfacing
with the services of the evaluated solutions.

• Task(s): Describes an operation which is specified for
evaluating the competing implementations (e.g. queries,
update operations, compression operations). In partic-
ular, each task represent an instantiation for the pa-
rameters of the service schema with a set of value that
describes the specification of the task.

• Metric(s): Represents a measure (e.g. execution time,
response time, throughput) for evaluating the compet-
ing software implementations in performing the bench-
marking tasks. In particular, it provides the basis for
comparing the competing software implementations.

• Testing Environment(s): Represents a set of resources
configuration (e.g., CPU, disk, memory) for a com-
puting environment (virtual machine) that hosts the
services of competing software implementations.

2.3 Platform Components and Architecture
Figure 1 illustrates the architecture of the Liquid Bench-

marks platform which are equipped with several components
that are described as follows:

• Web-based User Interface: This component pro-
vides the end user with a user-friendly interface where
he/she can mash up the components (e.g., services,
tasks, metrics, computing environments) of the exper-
iment in a drag and drop style. It also provides the end-
user with other features such as: managing user ac-
count, maintaining the metadata store, searching and
commenting on the results of previous experiments,
subscribing to the results of a benchmark in addition
to analyzing and visualizing the experimental results.

• Metadata Store: This component stores the infor-
mation about the components (e.g., services, service
schema, tasks, virtual machines) of the benchmark.

• Experiment Manager: The experiment manager re-
ceives the specification of the user-defined experiment,
configured by the Liquid Benchmark UI, which is then
registered for execution on the Experiment Queue.
In principle, the experiment queue is used by the Ex-
periment Execution Engine to ensure that the ex-
ecution of one experiment in a testing environment is
not going to influence the execution of another experi-

Figure 1: Platfrom Architecture

ment in the same environment (an experiment can only
start after the end of the current experiment, if exist,
on the computing environment). Through the experi-
ment life cycle, the Experiment Execution Engine
sends a set of notification events to the Notification
Center with the status of the experiment till its com-
pletion and storing its results in the Repository of
Experimental Results for further analysis and vi-
sualization purposes. It should be noted that the Ex-
periment Execution Engine is the component that
is responsible for managing the life cycle of testing en-
vironments. In particular, it starts the virtual machine
of a testing environment for running an experiment if
it has been in a stopped mode or it stops the virtual
machine if it has been idle for a while and has no pend-
ing experiments in the queue.

• Repository of Experiment Results: This repos-
itory stores the results of all experiments associated
with their configuration parameters, provenance infor-
mation (e.g. timestamp, user) and social information
(e.g. comments, discussions). Clearly, end-users can
search and view the contents of this repository to an-
alyze, compare, visualize and comment on the results
of the previously running experiments without taking
the time of re-running or creating them from scratch.

• Visualization Manager: This component is equipped
with a set of visualization styles (e.g. column charts,
line charts) for presenting and comparing the results
(metrics) of the selected experiments by the end-user.
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Figure 2: Screenshot: Mashing Up an Experiment

3. DEMONSTRATION SCENARIOS
In this demonstration, we will start by presenting the dif-

ferent features of the Liquid Benchmarking platform9 such
as the process of mashing up a new experiment (Figure 2)
or visualizing the experimental results (Figure 3). Then, the
demonstration will present four benchmarking case studies
that have been implemented using the Liquid Benchmarking
platform on the following domains:

• XML compression10: This case study is based on the
benchmark of XML compressors that has been pre-
sented in [7]. In particular, this case study provides
services for the implementation of nine XML compres-
sion tools with benchmarking tasks over an XML cor-
pus that contains 57 documents which are covering the
different types and scales of XML documents. This
case study evaluates the XML compressors by three
different metrics: compression ratio, compression time
and decompression time.

• Graph indexing and querying11: This case study im-
plements the iGraph framework [3] for evaluating the
graph indexing and querying techniques. In particular,
the case study provides the services of seven techniques
and evaluates them on the basis of their indexing time,
index size and query processing time using a real AIDS
antiviral screen dataset (NCI/NIH) and synthetically
generated datasets.

• String Similarity Join12: An implementation for the
recent evaluation and comparison study which is pre-
sented by Jiang et al. [4]. The case study provides the
implementation of twelve algorithms and provides six
different experimental datasets. The evaluation of the
benchmarked algorithms is based on two metrics: the
running time and the size of candidate results.

The case studies of our demonstration will be deployed in
two cloud environments: the Amazon public cloud environ-
ment13 in addition to our own private cloud environment

9The platform can be accessed online on http://
liquidbenchmark.net:8080/Liquid/. The full documen-
tation for using the platform is available on http://wiki.
liquidbenchmark.net/

10http://wiki.liquidbenchmark.net/doku.php/
casestudy-xmlcompression

11http://wiki.liquidbenchmark.net/doku.php/
casestudy-graph-indexing-querying

12http://wiki.liquidbenchmark.net/doku.php/
casestudy-string-similarity-join

13http://aws.amazon.com/

Figure 3: Screenshot: Comparing and Visualizing
Experimental Results

which is managed by the OpenStack platform14. In addi-
tion, each case study will be demonstrated using two differ-
ent testing environments (virtual machines): The first envi-
ronment will be configured with high computing resources
while the other environment will be conifgured with limited
computing resources. Furthermore, we will present how the
authenticated users can access different services of the plat-
form (e.g., creating and running experiments, searching the
repository of results) using its supported RESTful interfaces
and API-based SDK15.
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ABSTRACT

This paper presents our work on adapting and extending
natural language interface (NLI) to database technology to
support the specification and violation reporting of business
rules. The resulting system allows non-technical users to au-
thor and manage a rulebook in controlled natural language
– serving as a single point of definition that can be compiled
into SQL to generate violation reports. To achieve this we
represent business rules in tuple calculus, handle negation
in our query re-writing algorithms and add support for nat-
ural language reflexives (e.g. ‘its’, ‘themselves’, etc.). Our
results show a large class of business rules can be captured
with these extensions. Although our approach is general,
we present it applied to compliance checking of regulations
over a materiel capability development information system
at the Swedish Defence Materiel Administration. At EDBT
we will also demonstrate this work over a more generic pack-
age delivery domain. While there has been recent effort in
pursuing Semantics for Business Vocabulary and Business
Rules (SBVR) in the semantic web and description logic
communities, to our knowledge ours is the first attempt to
provide this capability for ER-modeled relational databases.

Keywords

SBVR, Business Rules, NLIs to databases

1. INTRODUCTION
Large organizations typically maintain a wide range of

information systems each with their own interfaces and
schemas. Much effort in recent years has been expended
to aggregate overall information systems into federated
databases (or enterprise information systems) so that over-
all activities can be monitored, analyzed and, if required,
remedied. While an individual department can often ensure
that its data sources conform to its own rules, violations

c⃝ 2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0
.

of organization wide rules often occur when all the sources
are federated. For example while it is not be permitted for
a clerk to enter an order with no purchase item specified,
other compliance level ’constraints’, such as ensuring that
those who ordered an item have authority to use it, are dif-
ficult to enforce in legacy systems. Even at the local level,
there may be reasons not to enforce constraints too strictly,
such as to monitor states that are not outright errors but
nonetheless deviate from expectations in noteworthy ways.

An approach to relaxing constraint enforcement to accom-
modate these cases is to check for compliance retroactively.
Operational staff are given the rights to enter data, and
then, during compliance checking, rules are checked against
the federated database, looking for violations of regulations,
incompleteness in data sources, breakdowns in operations,
etc. With such violation reports, errors may either be cor-
rected, or, based on discretion, tolerated. This temporal
decoupling of compliance checking from data entry also al-
lows for a wider spectrum of rule specificity, enabling vaguer,
high-level business rules in addition to specific data-level
constraints. Rules will then originate from stakeholders at
various levels across the organization who build up rulebooks
in natural language, which are subsequently mapped to low-
level, machine-executable implementations, such as SQL.

The translation of natural language rules to executable
form can be tedious and costly, and since it is typically done
by technical staff that are separate from the rule authors
(both organizationally and in terms of skills), the transla-
tion involves interpretation – a source of possible errors, es-
pecially in light of the ambiguity of natural language. Also,
keeping parallel representations (natural language and exe-
cutable code) of the rulebook introduces a burden of man-
agement to maintain consistency over time. Finally, if the
natural language formulations are overly verbose, stakehold-
ers in more remote parts of the organization will find it dif-
ficult and burdensome to understand the rules.

Based on these shortcomings, recent efforts have focused
on Semantics for Business Vocabulary and Business Rules
(SBVR) [8]. SBVR argues that the specification of busi-
ness rules should be based on a clear conceptual model of
the domain. Moreover the business rules and the concep-
tual domain must be based on a controlled natural language
syntax, so as to reduce or eliminate ambiguity, increasing
the probability that all the stakeholders will understand the
rules. Finally there is the potential that natural language
rules may be automatically mapped to executable form.
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While SBVR is now an OMG standard, implementation
work is still in its infancy (see [1] for references to current
efforts). Most, if not all, of the tools are focused on real-
izing SBVR over description logics and semantic web tech-
nology (for example [9, 3]). Approaches mapping all the
way to SQL are promising, but still quite preliminary[7].
Our work seeks to seat SBVR1 in classical ER-modeled re-
lational databases. Given the dearth of existing tools, to
achieve this, we decided to adapt and extend an existing nat-
ural language interfaces to database system, C-Phrase[6]
https://code.google.com/p/c-phrase/.

In section 2 we introduce the domain in which we are ap-
plying our work work – The SKTS at FMV, the Swedish
Defence Materiel Administration. Section 2 gives an ER
model and several prototypical business rules drawn from
our corpus, which we can interpret, paraphrase and report
the violations of. Section 3 discusses the extensions of C-

Phrase that were required to achieve this. Beyond repre-
senting rules, we were required to extend our treatment of
negation in paraphrases and were forced to extend the sys-
tem to support reflexives. Section 4 gives our demonstration
plan for EDBT. Finally section 5 discusses the broader rel-
evance and future directions of our work.

2. THE SKTS AT FMV
Let us consider the simple real-world example, the SKTS2,

which is a description of the organization of technical sys-
tems (i.e. equipment of non-trivial technical complex-
ity) by the Swedish Armed Forces and managed by the
Swedish Defence Materiel Administration FMV (Försvarets
materielverk). SKTS describes the relations between sys-
tems as well as their deployment, their life-cycle phases and
the associated decision making processes. Our non-classified
extract of SKTS has the same schema as the full version. See
Figure 1 for a simplified ER model of the SKTS.

Figure 1: Simplified ER model of SKTS

The central entity in SKTS is the system, representing
about 1,600 types of technical systems, ranging from am-
munition and tools to vehicles and buildings. In our simpli-

1Technically it is SBVR-SE (SBVR Structured English), a
subset of SBVR, that we seek to support.
2Systemkarta tekniska system, Swedish for “system map (of)
technical systems”

fied schema a system type is identified by a single attribute
name. Two special relationships between systems are:

• system type S1 integrates system type S2: S2 is a com-
ponent of S1, like a tank integrating an engine;

• system type S1 interacts with system type S2: S1 co-
operates with S2 (without integration), like artillery
interacting with a forward observer vehicle to obtain
target data;

The unit and project entities represent the actors employ-
ing technical systems, i.e. military units during active use
and research projects during the earlier life-cycle phases.
Systems are assigned to such users via the respective rela-
tionships uses and develops.

The usage of systems is constrained by weak entity sets
life-cycle phases and milestones. A life-cycle phase repre-
sents an interval, and thus it has attributes specifying its
start date and end date, and its type attribute is one of
concept, development, production, use, maintenance or re-
tirement. A system can have multiple life-cycle phases as-
sociated with it – ideally one of each type. A milestone
represents an event like a deadline, so it has only a single
date attribute. Numerous values are possible for its type at-
tribute, since up to three different milestones govern each
life-cycle phase of a system: a deadline by which the FMV
must have decided on the start and end dates of the phase,
a planned decision date when the FMV intends to make this
decision, and a decision date when the decision is actually
made.

The FMV wants to apply SBVR-formulated business rules
to an SKTS-database to ensure that its regulations are not
violated within the organization. Five prototypical rules
drawn from our initial corpus of hundreds of rules are:

1 “It is forbidden that a system has a use phase that
begins before its use decision.”

2 “It is obligatory that a system that is in a use phase
be used by some unit.”

3 “It is obligatory that a system that interacts with an-
other system with a use phase must also have a use
phase.”

4 “Every system that is assigned to some unit must be
currently operational.”

5 “It is obligatory that a life-cycle phase which is not a
concept phase and which has a start date no later than
the current date be subsequent to some other life-cycle
phase.”

Applying such rules to SKTS should produce a detailed
list of violations, allowing an analyst to identify the best
method to handle each problem – be it a simple database
flaw or an actual breach within the organization, like a unit
employing a system not cleared for use.

3. EXTENDING C-PHRASE TO SBVR
We have extended the C-Phrase NLI to database system

to enable users to state business rules of the form above (as
well as many other rules and alternative phrasings), receive
paraphrases of such business rules (in case of ambiguity),
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and receive reports of the violations of such rules that give an
indication of how an instance violated the rule. C-Phrase

is discussed elsewhere [6], but in short it uses a semantic
grammar to map user utterances to (an extended) tuple cal-
culus. From this representation either a natural language
paraphrase or SQL may be generated. C-Phrase uses a the-
orem prover to evaluate when a natural language utterance
has mapped to more than one semantically distinct query.
In such a case of ambiguity, the system paraphrases all se-
mantically distinct interpretations back to the user so that
they may select the proper interpretation. The paraphras-
ing technique also heavily uses a theorem prover in finding
an equivalent re-writing of the paraphrased query using a
lexicon of elementary query expressions paired with associ-
ated words and phrases. Once a single interpretation of the
user’s utterance is determined, the tuple calculus expression
is evaluated over the database and answers are reported back
to the user.

For C-Phrase to handle business rules, several exten-
sions were required. First, it was necessary to extend
the tuple calculus representation to represent rules.
This was only necessary in the case of positive rules.
Negative rules expressed as “it is prohibited that A”,
may simply be represented as the tuple expressions
for A, leveraging C-Phrase’s existing semantic anal-
ysis mechanism. For example, the first example rule
above is represented in the tuple query expression3:
{x|System(x) ∧ (∃y1)(Life-Cycle-Phase(y1) ∧ x.name =
y1.system ∧ y1.type = ’use phase’ ∧ (∃y2)(milestone(y2) ∧
y1.start-date < y2.date∧ (∃y3) (System(y3) ∧ y2.system =
y3.name ∧ x = y3 ∧y3.type = ’use start decision’)))}. For
positive rules, expressed as “it is necessary that A are B”, we
introduced a :consequent marker, which specifies which
part of a tuple calculus expression is the right hand side of
a rule. For example the third rule above is represented as:
{x|System(x)(∃y1)(∃y2)(Interacts-With(y1)∧System(y2)∧
x.name = y1.interacts-with ∧ y1.system = y2.name ∧
(∃y3)(Life-Cycle-Phase(y3) ∧ y2.name = y3.system ∧
y3.type = ’use phase’))⟨: consequent System(x) ∧
(∃y4)(Life-Cycle-Phase(y4) ∧ x.name = y4.system ∧
y4.type = ’use phase’)⟩}. Finally, C-Phrase’s grammar
was extended to recognize a large set of variations of “it
is prohibited that” (or “it is obligatory that”), to insert
the :consequent marker in the positive case, and then to
branch to the proper rule handler with the resulting tuple
calculus expression.

Although our semantic grammar avoids the pathological
ambiguity of more linguistically-oriented approaches (e.g.
“time flies like an arrow”), we do still confront ambiguity.
For example in rule specification 5 above, there is a hidden
ambiguity in ‘subsequent’. ‘Subsequent’ in this domain may
mean immediately subsequent. Or subsequent with a possi-
ble time gap. There are thus two semantically distinct rules
that rule 5 above maps to. Thus the user must pick between
them. And to pick, the user must understand the nuances in
these formulas. And for that, among other reasons, we para-
phrase rules back to the user in natural language. At the
end of this interaction, we will have one single semantically
meaningful rule to pass to the rule handler.

The rule handler converts the rule into one or more viola-
tion queries which identify violation cases for the rule. This

3Queries are defined over the schema that is the standard
translation of the ER model in figure 1.

occurs in a two step process. First, a core violation query
is calculated. Then this core violation query is extended to
the (full)violation query, which includes supporting informa-
tion indicating why matching answers to the core violation
query are rule violators. In the negative case, the core vi-
olation query is simply the query representing the rule. In
the positive case, the core violation query is the query with
the consequent negated. In cases where the consequent is
a conjunction, we apply De Morgan’s law, followed by a
simple rewriting to generate a set of core violation queries.
Extending core violation queries to full violation queries is a
capability inherited from C-Phrase’s answer strategy mech-
anism. In short, the theorem prover finds the most specific
answer strategy that subsumes the core violation query and
then augments the core violation query with the associated
answer value bindings. For example, assume that the lexi-
con contains the answer strategy ⟨{x|System(x)∧x.name =
c1 ∧ (∃y1)(Life-Cycle-Phase(y1) ∧ y1.system = x.name ∧
y1.type = ’use phase’ ∧ y1.start-date = c2 ∧ y1.start-date =
c3)} :“The system c1 has a use phase starting c2 and end-
ing c3”⟩. Then a core violation query that is subsumed by
this answer strategy, and by no more specific answer strat-
egy, will be augmented with the additional bindings, and
an answer fitting the template will be generated (The re-
ported answers in Figure 2 apply this answer template).
The translation of the full violation query to SQL is trivial.
The report presented to the user consists of a paraphrase
of the rule, followed by a paraphrase of the core violation
query, followed by the answers to the full violation query.
The report for rule 2 above is shown in Figure 2.

Figure 2: Report for rule 2.

Given that paraphrases of rules or violation queries nec-
essarily contain negation of existential quantification, and
given that our techniques of generating paraphrases in-
volves finding equivalent re-writings of queries using elemen-
tary logical expressions, we were forced to confront a diffi-
cult non-conjunctive query rewriting problem. As a sim-
ple example, consider that the expression {x|System(x) ∧
¬(∃y1)(∃y2)(Interacts-with(y1) ∧ Sytem(y2) ∧ y1.system =
x.name ∧ y1.interacts-with = y2.name ∧ y2.name =
“HMS Gavle”)} should be rewritten using the three lexi-
con entries ⟨{x|System(x)} :“systems”⟩, ⟨{x|System(x) ∧
¬(∃y1)(∃y2)(Interacts-with(y1) ∧ Sytem(y2) ∧ y1.system =
x.name ∧ y1.interacts-with = y2.name ∧ ϕ(y2))} :“does not
interact with ref(ϕ(y2)”⟩ and ⟨{x|System(x) ∧ x.name =
c1} :“c1”⟩ to yield an equivalent rewrite, and in turn the
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templates may be used to generate the paraphrase “systems
not interacting with HMS Gavle”. Although we have not yet
formalized our approach to the point where we can prove
its completeness, we have considerably extended our query
rewriting algorithms to handle negation.

A final extension to C-Phrase that should be noted is
support for reflexives. Normally in NLIs to databases one
does not confront reflexives. A contrived example could be,
“give the systems interacting with themselves”. In business
rules however, we have witnessed a fair number of cases in
our corpus that require this. For example the ’its’ in the first
rule above is a reflexive. Our approach to reflexives is similar
to that for :consequent. We insert a marker :reflexive in
at parse time when reflexives are recognized. This leads to
a tuple calculus expression which is later resolved, finding
bindings of the reflexive variables with the same entity type.
The semantic representation of rule 1 presented above shows
the results of this with the tuple equality condition x = y3.
In cases of multiple possibilities, all possibilities are passed
on for interactive ambiguity resolution. The paraphrasing
mechanism was trivially extended to generate reflexives.

4. DEMONSTRATION
Our demonstration plan at EDBT is to first show the live

operation of the system in interactive mode, where a user
states business rules over the SKTS schema above, receives
paraphrases of rules, and then receives a detailed report on
the violations of the rules over our declassified database in-
stance. We will demonstrate all the rules in section 3 as well
as additional rules in our corpus. We will also present rules
that still give us problems due to either linguistic or con-
ceptual complexity. In addition to the live demonstration,
we will generate a series of videos that illustrates how we
configured C-Phrase to handle this task. Moreover we will
demonstrate the same technology over a prototypical use
case in the package delivery domain. All configuration files
and source code for our demonstration will be open sourced
to let others verify, replicate and build on our results.

5. RELEVANCE AND CONCLUSIONS
It has been noted many times [2, 6, 4, 5] that natural

language interfaces to critical systems must include a para-
phrasing mechanism which communicates back to the user
how their utterance is interpreted. Without such a mecha-
nism how could anyone ever rely upon such a system? With-
out such a capability how would one let users resolve am-
biguity? This is particularly true with the interpretation
and reporting of business rules which, arguably, are more
complex than information seeking queries. Given that para-
phrasing is critical, and that even very simple business rules
may be reported in either positive or negative forms, inter-
pretation and paraphrasing mechanism must be extended
to handle negation over existential quantifiers; NLI systems
restricted to conjunctive query representations, will simply
not suffice. Our first contribution in this work is to demon-
strate that such negation may be built into NLI systems
to adequately handle this requirement. In addition we ob-
served in our work the importance of supporting reflexives
in the specification of business rules; others attempting to
achieve the same will likewise need to cover reflexives. Fi-
nally we argue that the use of a theorem prover is critical to
determining semantic equivalence and greatly simplifies the

proper reporting of violations of business rules.
There are still types of business rules in our corpus that we

do not cover. For example cardinality type queries are not
yet covered. Nor do we yet support offsets in time expres-
sions. So the rule, “It is prohibited that a project develops a
system that interacts with at least three other systems whose
retirement phases begin less than two years after the start
date of its use phase.” is currently beyond our grasp and
will require both syntactic and semantic extensions. These
extensions are currently being explored. Moreover, we are
investigating the building up of complex rules, and rules with
exceptions, as multiple step interactions. In some domains,
sufficiently detailed rules can probably not be specified as
single shot sentences.

While it is necessary to configure C-Phrase over the ER
modeled database, one side benefit is that one gets an NLI
access interface as an added bonus, justifying in part the ad-
ditional cost. Moreover, because a C-Phrase configuration
can be tailored by database administrators with limited lin-
guistic training, the configuration may be extended to cap-
ture domain dependent idiosyncratic phrasings. As database
administration staff build out the natural language interface
over the ER modeled database, we envision stakeholders en-
gaging in the process of proposing and organizing business
rules that may be shared, understood and most importantly
executed across the organization. Our work takes a step
toward realizing this vision.
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ABSTRACT
We present a tool, called POIESIS, for automatic ETL pro-
cess enhancement. ETL processes are essential data-centric
activities in modern business intelligence environments and
they need to be examined through a viewpoint that concerns
their quality characteristics (e.g., data quality, performance,
manageability) in the era of Big Data. POIESIS responds
to this need by providing a user-centered environment for
quality-aware analysis and redesign of ETL flows. It gener-
ates thousands of alternative flows by adding flow patterns
to the initial flow, in varying positions and combinations,
thus creating alternative design options in a multidimen-
sional space of di↵erent quality attributes. Through the
demonstration of POIESIS we introduce the tool’s capabil-
ities and highlight its e�ciency, usability and modifiability,
thanks to its polymorphic design.

1. INTRODUCTION
The increasing volume of available data, as well as the re-

quirement for recording and responding to multiple events
coming from participants within Big Data ecosystems that
are characterized by the 3Vs (volume, variety, velocity) [3],
pose a serious challenge for modern data-centric processes.
As such, Extract-Transform-Load (ETL) processes are be-
coming more and more complex, while there is a growing de-
mand for their real time responsiveness and user-centricity.

It has recently been proposed that to tackle complexity,
the level of abstraction for ETL processes can be raised.
ETL processes have been decomposed to ETL activities [6]
and recurring patterns [1] as the main elements of their work-
flow representation, making them susceptible to analysis for
process evaluation and redesign.

Manual modification of ETL processes in order to improve
their quality characteristics is error-prone, non-trivial, time-
consuming and it su↵ers from incompleteness, ine�ciency,
and ine↵ectiveness. According to our experience with in-
dividuals with computer science expertise, most common

c�2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

mistakes during this manual process are wrong configura-
tion of ETL operations, incomplete exploitation of quality
enhancement options and wrong placement of optimization
patterns.

It is apparent that there is a need for an automatized pro-
cess of ETL quality enhancement, as it would solve many of
the above-mentioned issues. Analysts should be in the cen-
ter of this process, where the large problem space is auto-
matically generated, simulated and displayed in an intuitive
representation, allowing for the selection among alternative
design choices.

In this paper we present our tool POIESIS, which stands
forProcessOptimization and Improvement forETL Systems
and Integration Services. Using a process perspective of an
ETL activity, our tool can improve the quality of an ETL
Process by automatically generating optimization patterns
integrated in the ETL flow, resulting to thousands of al-
ternative ETL flows. We apply an iterative model where
users are the key participants through well-defined collabo-
rative interfaces and based on estimated measures for di↵er-
ent quality characteristics. POIESIS implements a modular
architecture that employs reuse of components and patterns
to streamline the design. Our tool can be used for incre-
mental, quantitative improvement of ETL process models,
promoting automation and reducing complexity. Through
the automatic generation of alternative ETL flows, it sim-
plifies the exploration of the problem space and it enables
further analysis and identification of correlations among de-
sign choices and quality characteristics of the ETL models.

The remainder of this paper is organized as follows: In
Section 2 we provide some background for ETL quality anal-
ysis and redesign; in Section 3 we provide an overview of the
system and finally, in Section 4 we showcase an outline of a
demonstration of our tool.

2. QUALITY-AWARE REDESIGN OF ETL

2.1 ETL Quality Characteristics
ETL processes need to be evaluated in a scope that brings

them closer to fitness to use for data scientists. Therefore,
apart from performance and cost, other quality characteris-
tics, as well as the trade-o↵s among them should be taken
under consideration during ETL analysis. In Fig. 6 we show
a subset of ETL process quality characteristics and measures
that we have extracted from existing literature, in our pre-
vious work [4]. There are two types of measures: ones that
derive directly from the static structure of the process model
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and those that are obtained from analysis of historical traces
capturing the runtime behaviour of ETL components.

Characteristic Measure
performance • Process cycle time

• Average latency per tuple

data quality • Request time - Time of last update

• 1 / (1 - age * Frequency of updates)

manageability • Length of process workflow’s longest path

• Coupling of process workflow

• # of merge elements in the process model

Figure 1: Example quality measures for ETL processes

Based on such measures, it is possible to conduct a multi-
objective analysis and make design decisions according to
user preferences on di↵erent quality characteristics, which
can often be conflicting.
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Figure 2: Generation of FCP on the ETL flow

2.2 Addition of Flow Component Patterns
An initial ETL flow can be modified with the addition of

predefined constructs that improve certain quality charac-
teristics, but do not alter its main functionality. We refer
to these constructs as Flow Component Patterns (FCP) and
their integration can take place on di↵erent parts of the ini-
tial flow, depending on the flow topology. For example, in
Fig. 2, we illustrate how di↵erent quality goals can cause
the generation of di↵erent FCP on the ETL flow. In the
first case, the goal of improving time performance of the
process, results in the generation of horizontal partitioning
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Figure 3: POIESIS architecture

and parallelism within a computational-intensive task and
in the second, the goal of improving reliability brings about
the addition of a recovery point to the sub-process. Another
example would be the goal of improved data quality that
would result in crosschecking with alternative data sources.

Central to our implementation is the notion of application
point of a FCP, which can be either a node (i.e., an ETL
flow operation), or an edge or the entire ETL flow graph. As
examples, a valid application point for the ParallelizeTask

pattern is a node that can be replaced by multiple copies of
itself and a valid application point for the FilterNullValues

pattern is an edge on which a filter operation can be added.
The entire ETL flow graph as application point serves for
the case of process-wide configuration and management op-
erations that are not directly related to the functionality
of specific flow components. Examples of the latter include
the application of security configurations (encryption, role-
based access etc.), management of the quality of Hw/Sw
resources, adjusting the frequency of process recurrence etc.

We model the ETL process as one graph G with graph
components (V,E), where each node (V ) represents an ETL
flow operation, and each edge (E) represents a transition
from one operation to a successor one. We also assume that
there is a set P of available FCP, P = PE [ PV [ PG, each
of which can either be applied on a node, an edge of G, or
the entire graph, in order to improve one or more quality
characteristics of the ETL flow.

After the application of all the FCP, a number of nodes
and edges is added to the initial graph. This process can be
repeated an arbitrary number of times and a new Graph is
created every time.

It is apparent that the complexity of this analysis is fac-
torial to the size of the graph. Thus, manual configuration
of the ETL flow appears ine�cient and error-prone, being
dependent not only on the users’ cognitive abilities but also
on characteristics and dynamics of the flow that are hard
to predict. Therefore, the need for defining adequate au-
tomated mechanisms and heuristics to produce and explore
alternative designs and to optimize the ETL flow is evident.

3. SYSTEM OVERVIEW
In [5] we have presented an architecture for user-centered,

declarative ETL (re-)design. POIESIS is an implementa-
tion of the Planner component of that architecture. The
main functionality of this component is the automatic ap-
plication of Flow Component Patterns (FCP) on an existing
ETL process flow and the architecture of our approach can
be seen in Fig. 3. POIESIS takes as input an initial ETL
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flow and user-defined configurations. Utilizing an existing
repository of FCP models, it generates patterns that are
specific to the ETL flow on which they are applied. Thus, it
produces alternative ETL designs with di↵erent FCPs and
varying distribution of them on the ETL flow, while keeping
the data sources schemata constant. It also estimates de-
fined measures for various quality attributes and illustrates
the alternative flows, as well as the corresponding measures
to the user through an intuitive visualization.

The internal representation of the FCPs is in the same for-
mat as the process flow on which they are deployed. Thus,
they can be considered as additional flow components which
are positioned at valid application points of the process flow.
For example, the FilterNullValues pattern is itself an ETL
flow consisting of only one operation — a filter that deletes
entries with null values from its input. When the Filter-

NullValues pattern is deployed on the initial ETL flow, it
is interposed between two consecutive operations. The Fil-

terNullValues ETL flow is then configured according to the
properties and characteristics of the initial ETL flow as well
as the exact application point, ensuring the consistency be-
tween data schemata, run-time parameters etc. The same
idea is generalized for more complex FCPs or for their more
elaborate implementations (e.g., data enrichment addition-
ally to data removal in the described example). In those
cases, more detailed configurations might be required to be
predefined, such as the access points and data models of
additional data sources and processing algorithms of opera-
tions.

Our main drivers throughout the development of this com-
ponent have been the objectives of extensibility and e�-
ciency. In this direction, we followed a modular design with
clear-cut interfaces and we employed well-known object-ori-
ented design patterns. The model that was used internally
to represent the ETL process flow and allow for its modifi-
cations was the ETL flow graph. Each node of this graph
represents an ETL flow operation and each directed edge
represents a transition from one operation to a successor
one.

As a consequence, one strong point of our implementa-
tion is that it allows for the definition of custom, additional
FCPs, tailored to specific use cases. The applicability of a
FCP on the complete ETL flow or some part of it, is decided
based upon specific conditions that form the applicability
prerequisites, such as the presence or not of specific data
types in the operation schemata (e.g., numeric fields in the
output schema of preceding operator). Each FCP is related
to a particular set of prerequisites that have to be satisfied
conjunctively to determine a valid application point. Apart
from these strict conditions, there are also heuristics to de-
termine the fitness of FCPs for di↵erent parts of the ETL
flow. For example, according to such heuristics, the addi-
tion of a checkpoint is encouraged after the execution of the
most complex operations of the ETL fow, in order to avoid
the repetition of process-intensive tasks in case of a recovery.
Similarly, the application of FCPs related to data cleaning is
encouraged as close as possible to the operations for inputing
data sources, to prevent cumulative side-e↵ects of reduced
data quality. Thus, as opposed to manual deployment, our
tool guarantees that all of the potential application points
on the ETL flow are checked for each FCP and it can be
customized to select the deployment of patterns based on
custom policies based on di↵erent heuristics.

Reliability
 (%)

Figure 4: Multidimensional scatter-plot of alternative ETL
flows

What is unique about POIESIS is that the redesign pro-
cess takes place in an iterative, incremental and intuitive
fashion. A large number of alternative process designs is
automatically generated and these can be instantly evalu-
ated based on quality criteria. Moreover, through a highly
interactive UI, the user at any point can interact with a vi-
sualization of the ETL process and the estimated measures
for each of the alternative designs.

Figure 5: Relative change of measures for an ETL flow,
compared with the initial flow as a baseline

The first step is to import an initial ETL model to the
system. This model can be a logical representation of the
ETL process and we currently support the loading of xLM
[7] and PDI1, but more options will be available in a fu-
ture version. Subsequently, the user can select the preferred
processing parameters, i.e., choose which FCP can be con-
sidered in the palette of patterns to be added to the flow,
and select the deployment policy for the patterns. It is im-
portant to notice at this point that the user can configure
the various patterns and even extend them to create cus-
tom patterns for future use. The same also stands for the
deployment policies, which can be configured according to
the user-defined prioritization of goals, as well as the set of
constraints based on estimated measures.

Next, after generating and applying relevant FCPs on the
ETL flow, the Planner presents to the user a set of potential
1
http://community.pentaho.com/projects/data-

integration/
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designs in a multidimensional scatter-plot visualization (see
Fig. 4), together with quality measures (by clicking on any
point on the scatter-plot). The scatter-plot points presented
to the user are only the Pareto frontier (skyline) of the com-
plete set of alternative designs, based on their evaluation
according to the examined quality dimensions, where larger
values are preferred to smaller ones. For example, consider-
ing the quality dimensions shown in Fig. 4, for one design
ETL1, if there exists at least one alternative design ETL2

o↵ering the same or better performance and data quality,
and at the same time better reliability, then ETL1 will not
be presented to the user.

The presented measures (see Fig. 5) show on a bar-graph
the relative change on the metrics for each quality charac-
teristic, denoting the estimated e↵ect of selecting each of
the available flows, compared with the initial flow. Appar-
ently, the processing and analysis of the alternative process
designs is a process intensive task, mainly due to the large
number of alternative flows that have to be concurrently
evaluated. Therefore, we employ Amazon Cloud2 elastic in-
frastructures, by launching processing nodes that run in the
background and enable system responsiveness.

When the user selects (clicks on) any of the bars on the
measures graph, the corresponding composite measure ”ex-
pands” to more detailed measures, providing the user with
a more in-depth monitoring view. Based on measures and
design, the user makes a selection decision and the tool im-
plements this decision by integrating the corresponding pat-
terns to the existing process flow. These patterns are in
the form of process components and the Planner carefully
merges them to the existing process [2]. Subsequently, new
iteration cycles commence, until the user considers that the
flow adequately satisfies quality goals [4].

4. DEMO WALKTHROUGH
In the demonstration of POIESIS we will use two initial

ETL processes based on the TPC-DS3 and TPC-H4 bench-
marks. These processes contain tens of operators, extract-
ing data from multiple sources. Their logical representation
in xLM format will be loaded in the system and the au-
tomatic addition of Flow Component Patterns in di↵erent
positions and combinations on the initial flows, will result
in thousands of alternative ETL flows, with di↵erent quality
characteristics.

Using these processes as input data to our system, we
will show the capabilities of our tool in an interactive demo,
consisting of the following parts:

P1. In the first part of the demo, users will interact with
the visualizations of our tool’s GUI. In particular, they
will be able to scroll over/click on any point on the
scatterplot that depicts alternative ETL flows on a
multidimensional space of di↵erent quality character-
istics. By selecting one point — corresponding to one
ETL flow — the process representation and the mea-
sures for this flow will appear on the screen. Users
will then be able to view details about the ETL flow,
as well as click on any measure so that it expands to
more detailed composing metrics.

2
http://aws.amazon.com/ec2/

3
http://www.tpc.org/tpcds/

4
http://www.tpc.org/tpch/

P2. The second part aims at illustrating how the process-
ing parameters can be configured in order to produce
di↵erent collections of alternative flows. Thus, users
will be allowed to choose which of the available Flow
Component Patterns will be used and which policy will
be followed for their deployment.

P3. Finally, users will be guided through defining their own
Flow Component Patterns, quality metrics and deploy-
ment policies, by extending and pre-configuring the ex-
isting ones. They will be able to save their custom pro-
cessing preferences, adding them to the palette of avail-
able patterns for future execution. Examples of the
FCPs, which our palette currently includes, together
with the quality attribute that they are intended to
improve, are as follows:

FCP Related quality attribute
RemoveDuplicateEntries Data Quality
FilterNullValues Data Quality
CrosscheckSources Data Quality
ParallelizeTask Performance
AddCheckpoint Reliability

Figure 6: Available FCPs
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ABSTRACT
The design lifecycle of a data warehousing (DW) system is
primarily led by requirements of its end-users and the com-
plexity of underlying data sources. The process of design-
ing a multidimensional (MD) schema and back-end extract-
transform-load (ETL) processes, is a long-term and mostly
manual task. As enterprises shift to more real-time and ’on-
the-fly’ decision making, business intelligence (BI) systems
require automated means for e�ciently adapting a physical
DW design to frequent changes of business needs. To ad-
dress this problem, we present Quarry, an end-to-end sys-
tem for assisting users of various technical skills in manag-
ing the incremental design and deployment of MD schemata
and ETL processes. Quarry automates the physical design
of a DW system from high-level information requirements.
Moreover, Quarry provides tools for e�ciently accommodat-
ing MD schema and ETL process designs to new or changed
information needs of its end-users. Finally, Quarry facili-
tates the deployment of the generated DW design over an
extensible list of execution engines. On-site, we will use a
variety of examples to show how Quarry facilitates the com-
plexity of the DW design lifecycle.

1. INTRODUCTION
Traditionally, the process of designing a multidimensional

(MD) schema and back-end extract-transform-load (ETL)
flows, is a long-term and mostly manual task. It usually
includes several rounds of collecting requirements from end-
users, reconciliation, and redesigning until the business needs
are finally satisfied. Moreover, in today’s BI systems, de-
ployed DW systems, satisfying the current set of require-
ments is subject to frequent changes as the business evolves.
MD schema and ETL process, as other software artifacts, do
not lend themselves nicely to evolution events and in general,

c�2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

maintaining them manually is hard. First, for each new,
changed, or removed requirement, an updated DW design
must go through a series of validation processes to guaran-
tee the satisfaction of the current set of requirements, and
the soundness of the updated design solutions (i.e., meeting
MD integrity constraints [9]). Moreover, the proposed de-
sign solutions should be further optimized to meet di↵erent
quality objectives (e.g., performance, fault tolerance, struc-
tural complexity). Lastly, complex BI systems may usually
involve a plethora of execution platforms, each one special-
ized for e�ciently performing a specific analytical process-
ing. Thus the e�cient deployment over di↵erent execution
systems is an additional challenge.

Translating information requirements into MD schema and
ETL process designs has been already studied, and various
works propose either manual (e.g., [8]), guided (e.g., [1]) or
automated [2, 10, 11] approaches for the design of a DW
system. In addition, in [4] a tool (a.k.a. Clio) is proposed to
automatically generate correspondences (i.e., schema map-
pings) among di↵erent existing schemas, while another tool
(a.k.a. Orchid) [3] further provides interoperability between
Clio and procedural ETL tools. However, Clio and Orchid
do not tackle the problem of creating a target schema. More-
over, none of these approaches have dealt with automating
the adaptation of a DW design to new information needs of
its end-users, or the complete lifecyle of a DW design.

To address these problems, we built Quarry, an end-to-
end system for assisting users in managing the complexity
of the DW design lifecycle.

Quarry starts from high-level information requirements
expressed in terms of analytical queries that follow the well-
known MD model. That is, having a subject of analysis and
its analysis dimensions (e.g., Analyze the revenue from the
last year’s sales, per products that are ordered from Spain.).
Quarry provides a graphical assistance tool for guiding non-
expert users in defining such requirements using a domain-
specific vocabulary. Moreover, Quarry automates the pro-
cess of validating each requirement with regard to the MD
integrity constraints and its translation into MD schema and
ETL process designs (i.e., partial designs).

Independently of the way end-users translate their infor-
mation requirements into the corresponding partial designs,
Quarry provides automated means for integrating these MD
schema and ETL process designs into a unified DW design
satisfying all requirements met so far.
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Figure 1: Quarry: system overview

Quarry automates the complex and time-consuming task
of the incremental DW design. Moreover, while integrat-
ing partial designs, Quarry provides an automatic valida-
tion, both regarding the soundness (e.g., meeting MD in-
tegrity constraints) and the satisfiability of the current busi-
ness needs. Finally, for leading the automatic integration of
MD schema and ETL process designs, and creating an opti-
mal DW design solution, Quarry accounts for user-specified
quality factors (e.g., structural design complexity of an MD
schema, overall execution time of an ETL process).

Since Quarry assists both MD schema and ETL process
designs, it also e�ciently supports the additional iterative
optimization steps of the complete DW design. For example,
more complex ETL flows may be required to reduce the
complexity of an MD schema and improve the performance
of OLAP queries by pre-aggregating and joining source data.

Besides e�ciently supporting the traditional DW design,
the automation that Quarry provides, largely suits the needs
of modern BI systems requiring rapid accommodation of a
design to satisfy frequent changes.

Outline. We first provide an overview of Quarry and
then, we present its core features to be demonstrated. Lastly,
we outline our on-site presentation.

2. DEMONSTRABLE FEATURES
Quarry presents an end-to-end system for managing the

DW design lifecycle. Thus, it comprises four main compo-
nents (see Figure 1): Requirements Elicitor, Requirements
Interpreter, Design Integrator, and Design Deployer.

For supporting non-expert users in providing their infor-
mation requirements at input, Quarry provides a graphical
component, namely Requirements Elicitor (see Figure 2).
Requirements Elicitor then connects to a component (i.e.,
Requirements Interpreter), which for each information re-
quirement at input semi-automatically generates validated
MD schema and ETL process designs (i.e., partial designs).
Quarry further o↵ers a component (i.e., Design Integra-
tor) comprising two modules for integrating partial MD sch-
ema and ETL process designs processed so far, and gener-
ating unified design solutions satisfying a complete set of
requirements. At each step, after integrating partial designs
of a new requirement, Quarry guarantees the soundness of
the unified design solutions and the satisfiability of all re-

Figure 2: Requirements Elicitor

quirements processed so far. The produced DW design solu-
tions are further sent to the Design Deployer component for
the initial deployment of a DW schema and an ETL process
that populates it. The deployed design solutions are then
available for further user-preferred tunings and use.

To support intra and cross-platform communication, Qua-
rry uses the communication & metadata layer (see Figure 1).

2.1 Requirements Elicitor
Requirements Elicitor uses a graphical representation of a

domain ontology capturing the underlying data sources. A
domain ontology can be additionally enriched with the busi-
ness level vocabulary, to enable non-expert users to express
their analytical needs. Notice for example a graphical repre-
sentation of an ontology capturing the TPC-H1 data sources
in top-left part of Figure 2. Apart from manually defining
requirements from scratch, Requirements Elicitor also o↵ers
assistance to end-users’ data exploration tasks by analyz-
ing the relationships in the domain ontology, and automat-
ically suggesting potentially interesting analytical perspec-
tives. For example, a user may choose the focus of an anal-

1
http://www.tpc.org/tpch/
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Deployable design solutions

<MDschema>
  <facts>
     <fact>
        <name>fact_table_revenue</name>
 ...

<MDschema>
  <facts>
     <fact>
        <name>fact_table_revenue</name>
 ...

<MDschema>
  <facts>
     <fact>
        <name>fact_table_revenue</name>
 ...

<design>
  <metadata>...</metadata>
  <edges>   <edge>
      <from>DATASTORE_Partsupp</from>

<design>
  <metadata>...</metadata>
  <edges>   <edge>
      <from>DATASTORE_Partsupp</from>

<design>
  <metadata>...</metadata>
  <edges>   <edge>
      <from>DATASTORE_Partsupp</from>
...
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     <fact>
        <name>fact_table_netprofit</name>
 ...

<design>
  <metadata>...</metadata>
  <edges>   <edge>
      <from>DATASTORE_Partsupp</from>

<design>
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CREATE DATABASE demo; 
CREATE TABLE fact_table_revenue (

Partsupp_PartsuppID BIGINT… ,
Orders_OrdersID BIGINT …,
revenue double precision ,

PRIMARY KEY( Partsupp_PartsuppID,  
                          Orders_OrdersID )

); …
CREATE TABLE fact_table_netprofit (

...
); ...

<transformation>
   <connection>
      … <database>demo</database>...
<order>
 <hop>
  <from>DATASTORE_Partsupp</from>
  <to>EXTRACTION_Partsupp</to>
  <enabled>Y</enabled>
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<step>
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Figure 3: Design integration & deployment example

ysis (e.g., Lineitem), while the system then automatically
suggests useful dimensions (e.g., Supplier, Nation, Part).
The user can further accept or discard the suggestions and
supply her information requirement.

2.2 Requirements Interpreter
Each information requirement defined by a user, is then

translated by the Requirements Interpreter to a partial DW
design. In particular, Requirements Interpreter maps an in-
put information requirement to underlying data sources (i.e.,
by means of a domain ontology that captures them and cor-
responding source schema mappings; see Section 2.5), and
semi-automatically generates MD schema and ETL process
designs that satisfy such requirement. For more details and
a discussion on correctness we refer the reader to [11].

In addition, Quarry allows plugging in other external de-
sign tools, with the assumption that the provided partial
designs are sound (i.e., meet MD integrity constraints) and
that they satisfy an end-user requirement. To enable such
cross-platform interoperability, Quarry provides logical, pla-
tform-independent representations (see Section 2.5). Gener-
ated designs are stored to the Communication & Metadata
layer using corresponding formats and related to the infor-
mation requirements they satisfy.

2.3 Design Integrator
Starting from each information requirement, translated to

corresponding partial MD schema and ETL process designs,
Quarry takes care of incrementally consolidating these de-
signs and generating unified design solutions satisfying all
current requirements (see Figure 3).
MD Schema Integrator. This module semi-automatica-

lly integrates partial MD schemas. MD Schema Integrator,
comprises four stages, namely matching facts, matching di-
mensions, complementing the MD schema design, and in-
tegration. The first three stages gradually match di↵erent
MD concepts and explore new DW design alternatives. The
last stage considers these matchings and end-user’s feedback
to generate the final MD schema that accommodates new
information requirements. To boost the integration of new
information requirements spanning diverse data sources into
the final MD schema design, we capture the semantics (e.g.,
concepts, properties) of the available data sources in terms of
a domain ontology and corresponding source schema map-
pings (see Section 2.5). MD Schema Integrator automat-
ically guarantees MD-compliant results and produces the
optimal solution by applying cost models that capture dif-
ferent quality factors (e.g., structural design complexity).

<MDschema>
  <facts>
     <fact>
        <name>fact_table_revenue</name>
 ...
 </facts>
 <dimensions>
    <dimension>
      <name>Part</name>
   ...
   </dimensions>
</MDschema>

<MDschema>
  <facts>
     <fact>
        <name>fact_table_revenue</name>
 ...
 </facts>
 <dimensions>
    <dimension>
      <name>Part</name>
   ...
   </dimensions>
</MDschema>

<MDschema>
  <facts>
     <fact>
        <name>fact_table_revenue</name>
 ...
 </facts>
 <dimensions>
    <dimension>
      <name>Part</name>
   ...
   </dimensions>
</MDschema>

<cube>
  <dimensions>
    <concept id="Part_p_nameATRIBUT"/>
    <concept id="Supplier_s_nameATRIBUT"/>
  </dimensions>
  <measures>
    <concept id="revenue">
   <function> Lineitem_l_extendedpriceATRIBUT 
          * Lineitem_l_discountATRIBUT</function>
    </concept>
  </measures>
  <slicers>
    <comparison>
      <concept id="Nation_n_nameATRIBUT"/>
      <operator>=</operator>
      <value>Spain</value>
    </comparison>
  </slicers>
…

...  
<aggregations>
    <aggregation order="1">
      <dimension refID="Part_p_nameATRIBUT"/>
      <measure refID="revenue"/>
      <function>AVERAGE</function>
    </aggregation>
    <aggregation order="1">
      <dimension 
                refID="Supplier_s_nameATRIBUT"/>
      <measure refID="revenue"/>
      <function>AVERAGE</function>
    </aggregation>
  </aggregations>
</cube>

 to xRQ
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  <edges>   <edge>
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      <to>EXTRACTION_Partsupp</to>
      <enabled>Y</enabled>
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  <nodes>    <node>
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      <type>Datastore</type>
      <optype>TableInput</optype>      
        ...  </nodes> … </design>

<design>
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  <edges>   <edge>
      <from>DATASTORE_Partsupp</from>
      <to>EXTRACTION_Partsupp</to>
      <enabled>Y</enabled>
    </edge> …   </edges>
  <nodes>    <node>
      <name>DATASTORE_Partsupp</name>
      <type>Datastore</type>
      <optype>TableInput</optype>      
        ...  </nodes> … </design>

<design>
  <metadata>...</metadata>
  <edges>   <edge>
      <from>DATASTORE_Partsupp</from>
      <to>EXTRACTION_Partsupp</to>
      <enabled>Y</enabled>
    </edge> …   </edges>
  <nodes>    <node>
      <name>DATASTORE_Partsupp</
name>
      <type>Datastore</type>
      <optype>TableInput</optype>      
        ...  </nodes> … </design>

to xMD

to xLM

Partial designs

Figure 4: Example design process

ETL Process Integrator. This module processes par-
tial ETL designs and incrementally consolidates them into
a unified ETL design. ETL Process Integrator, for each new
requirement maximizes the reuse by looking for the largest
overlapping of data and operations in the existing ETL pro-
cess. To boost the reuse of the existing data flow elements
when answering new information requirements, ETL Pro-
cess Integrator aligns the order of ETL operations by apply-
ing generic equivalence rules. ETL Process Integrator also
accounts for the cost of produced ETL flows when integrat-
ing information requirements, by applying configurable cost
models that may consider di↵erent quality factors of an ETL
process (e.g., overall execution time).

More details, as well as the underlying algorithms of MD
Schema Integrator can be found in [6] and of ETL Process
Integrator in [5].

2.4 Design Deployer
Finally, Quarry supports the deployment of the unified

design solutions over the supported storage repositories and
execution platforms (see example in Figure 3). By using
platform-independent representations of a DW design (see
Section 2.5), Quarry is extensible in that it can link to a
variety of execution platforms. At the same time, the vali-
dated DW designs are available for additional tunings by an
expert user (e.g., indexes, materialization level).

2.5 Communication & Metadata Layer
To enable communication inside Quarry, the Communica-

tion & Metadata layer uses logical (XML-based) formats for
representing elements that are exchanged among the com-
ponents. Information requirements are represented in the
form of analytical queries using a format called xRQ2 (see
bottom-left snippet in Figure 4). An MD schema is repre-
sented using the xMD format3 (see top-right snippet in Fig-
ure 4), and an ETL process design using the xLM format
[12] (see bottom-right snippet in Figure 4). Moreover, the
Communication & Metadata layer o↵ers plug-in capabilities
for adding import and export parsers, for supporting var-
ious external notations (e.g., SQL, Apache PigLatin, ETL
Metadata; see more details in [7]).

Besides providing the communication among di↵erent com-
ponents of the system, the Communication & Metadata layer

2xRQ ’s DTD at: www.essi.upc.edu/~petar/xrq.html
3xMD ’s DTD at: www.essi.upc.edu/~petar/xmd.html
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also serves as a repository for the metadata that are pro-
duced and used during the DW design lifecycle. The meta-
data used to boost the semantic-aware integration of DW de-
signs inside the Quarry platform, are domain ontologies cap-
turing the semantics of underlying data sources, and source
schema mappings that define the mappings of the ontologi-
cal concepts in terms of underlying data sources.

2.6 Implementation details
Quarry has been developed at UPC, BarcelonaTech in the

last three years, using a service-oriented architecture.
On the client side, Quarry provides a web-based compo-

nent for assisting end-users during the DW lifecycle (i.e.,
Requirements Elicitor). This component is implemented in
JavaScript, using the specialized D3 library for visualizing
domain ontologies in form of graphs. The rest of modules
(i.e., Requirements Interpreter, MD Schema Integrator, and
ETL Process Integrator) are deployed on Apache Tomcat
7.0.34, with their functionalities o↵ered via HTTP-based
RESTful APIs. Such architecture provides the extensibility
to Quarry for easily plugging and o↵ering new components
in the future (e.g., design self-tuning). Currently, all mod-
ule components are implemented in Java 1.7, whilst new
modules can internally use di↵erent technologies. For gen-
erating internal XML formats (i.e., xRQ, xMD, xLM ) we
created a set of Apache Velocity 1.7 templates, while for
their parsing we rely on the Java SAX parser. For repre-
senting domain ontology inside Quarry, we used Web Ontol-
ogy Language (OWL), and for internally handling the ontol-
ogy objects inside Java, we used the Apache Jena libraries.
Lastly, the Communication & Metadata layer, which im-
plements communication protocols among di↵erent compo-
nents in Quarry, uses a MongoDB instance as a storage
repository, and a generic XML-JSON-XML parser for read-
ing from and writing to the repository.

3. DEMONSTRATION
In the on-site demonstration, we will present the function-

ality of Quarry, using our end-to-end system for assisting
users in managing the DW design lifecycle (see Figure 1).
We will use di↵erent examples of synthetic and real-world
domains, covering a variety of underlying data sources, and
a set of representative information requirements from these
domains depicting typical scenarios of the DW design life-
cycle. Demo participants will be especially encouraged to
provide example analytical needs using Requirements Elici-
tor, and play the role of Quarry ’s end-users. The following
scenarios will be covered by our on-site demonstration.
DW design. Business users are not expected to have deep

knowledge of the underlying data sources, thus they may
choose to pose their information requirements using the do-
main vocabulary. To this end, business users may use the
graphical component of Quarry (i.e., Requirements Elici-
tor), and its graphical representation of a domain ontol-
ogy. This scenario shows how Quarry supports non-expert
users in the early phases of the DW design lifecycle, to ex-
press their analytical needs (i.e., through assisted data ex-
ploration of Requirements Elicitor), and to easily obtain the
initial DW design solutions.
Accommodating a DW design to changes. Due to possi-

ble changes in a business environment, a new information
requirement could be posed or existing requirements might
be changed or even removed from the analysis. Designers

thus must reconsider the complete DW design to take into
account the incurred changes. This scenario demonstrates
how Quarry e�ciently accommodates these changes and in-
tegrate them by producing an optimal DW design solution.
We will consider structural design complexity as an example
quality factor for output MD schemata, and overall execu-
tion time for ETL processes. The participants will see the
benefits of integrated DW design solutions (e.g., reduced
overall execution time for integrated ETL processes, exe-
cuted in Pentaho PDI).

Design deployment. Finally, after the involved parties
agree upon the provided solution, the chosen design is de-
ployed on the available execution platforms. In this sce-
nario, we will show how Quarry facilitates this part of the
design lifecycle and generates corresponding executables for
the chosen platforms. We use PostgreSQL for deploying our
MD schema solutions, while for running the corresponding
ETL flows, we use Pentaho PDI.
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ABSTRACT
This paper presents a Query-and-Relax System (QaRS)

designed to facilitate the exploitation of large knowledge
bases. QaRS proposes a graphical interface to construct a
SPARQL query and use different cooperative answering tech-
niques. The proposed cooperative techniques help users in
finding alternative answers when their queries fail or do not
return the expected number of answers. The present demon-
stration includes three main relaxation strategies: (1)- au-
tomatic where the system automatically relaxes the query
based on similarity measures, (2)- manual where the user
can specify the conditions that can or cannot be relaxed as
well as the tolerance values and (3)- interactive where QaRS

computes the causes of the query failure as a set of Mini-
mal Failing Subqueries (MFSs) and then the user chooses the
relaxation operators according to these MFSs.

General Terms
Algorithms, Design, Experimentation

Keywords
SPARQL, Relaxation, Minimal Failing Subquery, Similarity

1. INTRODUCTION
In recent years, several large Knowledge Bases (KBs)

have been created such as YAGO [5] or Knowledge Vault
[1] which contain millions of entities and facts about them.
Such information is usually stored in RDF format and queried
with the SPARQL language. Large KBs are difficult to use as
(1)- their schema (often called ontology) and its underlying
semantics are rarely understood by end users and (2)- RDF

c⃝2015,Copyright is with the authors. Published in Proc. 18th Interna-
tional Conference on Extending Database Technology (EDBT), March 23-
27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0.

can be used to represent data ranging from unstructured to
structured data leading to more or less sparse data [2]. A
common issue encountered by users is the problem of failing
queries, i.e., query results are empty or do not contain the
number of expected answers.

As an example, let us consider the ontology inspired by
the LUBM Benchmark depicted in Figure 1. If a user wants
to find the professors who are assisted by one of her/his
phD student in an UnderGraduateCourse, (s)he may write
the query:

SELECT ?X ?Y ?Z

WHERE { ?Z ub:teacherOf ?Y.

?Y rdf:type ub:UnderGraduateCourse.

?X ub:teachingAssistantOf ?Y.

?Z ub:advisorOf ?X.

?X rdf:type ub:AssistantProfessor. }

Student

GraduateStudent UnderGraduate 
Studentt

Professor

Assistant 
Professor

Full Professor

GraduateCourse

Course

teacherOf

teachingAssistantOf

takesCourse

PersonadvisorOf

SubClassOf name Property Name Class 

UnderGraduate 
Course

Figure 1: Ontology Example

In this query, the user makes the false assumption that a
teaching assistant of a course is an AssistantProfessor (in-
stead of a GraduateStudent). With a deeper knowledge of
the ontology, the user could have known that the teachingAs-
sistantOf property has the GraduateStudent class as domain
and thus his/her query can not return any result.

Moreover, even if the query was written without any mis-
conception, the query could still have failed if it is too re-
strictive or if the target KB is incomplete. To solve these
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problems, several works have proposed relaxation techniques
for SPARQL queries (e.g., [3, 7]). But none of them proposes
a simple and intuitive graphical system to build a SPARQL

query and relax it with or without the help of the user.
Conversely, several works have proposed graphical systems
to query large knowledge bases (e.g., [8, 9]). But they do not
support any cooperative query answering technique needed
to return alternative answers to failing queries. The QaRS

system described in this paper aims at filling this gap. First,
the functionalities of this system and its architecture are dis-
cussed. Then, the demonstration scenarios that we intend
to show the audience are presented.

2. QARS’S FUNCTIONALITIES
The system we propose has three main functionalities,

(i) a visual assistant for designing consistent queries, (ii) a
visual help for queries relaxation and (iii) an explanation of
both queries’s failure and relaxation process.

2.1 Graphical query design
The ontology browser panel displays the ontology as a

graph (see Figure 2). As an ontology can be large, a search
box with auto completion feature is available for finding
classes and properties that will be used in the query. When
a class or property is selected, the graph is centered around
this concept to see all the related concepts.

Relaxation OptionsDesign OptionsLoading Option

Query’s execution explanationSemantic Querying with RelaxationVisual Query Design

Professor

Visual Semantic Querying and Relaxation : LUBM Ontology

Z YteacherOf GraduateCoursetype

X

teachingAssistantOf

advisor AssistantProfessortype

Search

 X
 Y
 Z

Person

Student

Employee

Administrative 
Staff

Faculty 
Memeber

Post 
Doctorale

Professor

Assistant 
Professor

Associate 
Professor

Visiting 
Professor

Full 
Professor

Work

Research 
Work

Course

Graduate
Student

UnderGraduate
Course

Graduate
Course

subClassOf

teacherOf

takingCourse

advisorOf
Teaching  

AsssistantOf

Lecturer

Figure 2: QaRS Query Design Panel

The visual construction of a query is composed of three
main steps:
1) dragging and dropping classes and/or properties from the
ontology browser into the query panel. Dropping a class C
in this panel creates a graph corresponding to the triple
(?vi rdf :type C) where vi is a variable which has not been
previously used in the query. In the same way, dropping a
property P creates a graph showing the triple (?vi P ?vj).
2) Linking the triple patterns defined in the previous step by
identifying the variables that they share. This action is done
by dragging a variable and dropping it into an other variable.

It indicates that the two variables are the same. In this step,
QaRS checks whether the query can return a result by testing
its consistency w.r.t. the domain and range of the properties.
In our running example, since we know that X is a teaching
assistant of the course Y , according to the ontology, one
can deduce that X can not be an AssistantProfessor. So
the last triple of this query leads to an inconsistency. As
another example, the query Q:

SELECT ?X ?Y WHERE {

?X rdf:type ub:GraduateStudent.

?X ub:teachingAssistantOf ?Y.

?Y rdf:type ub:GraduateCourse. }

is consistent when it has only the first two triple patterns
as depicted in Figure 3-(a) (there are graduate students who
are teaching assistants). But when the last triple pattern is
added, the query becomes inconsistent, i.e. it can not return
any answer (graduate students can not be teaching assistants
of a graduate course). In this case, QaRS alerts the users.

3) adding FILTER, OPTIONAL and/or UNION operators by
selecting the components of the query on which they must
be applied (a variable, a triple or a set of triples), right
clicking on them and choosing the corresponding operators.
Each one of these operators is graphically identified in the
query by a specific color or component. The SPARQL query
corresponding to the graphical query can also be displayed
and the user can interact both with the textual or graphical
query to edit it. Modifying the graphical query automati-
cally changes the textual query and vis-versa.

2.2 Query relaxation strategies
Automatic relaxation . When executing the query de-

signed in the previous step, the user can specify the mini-
mum number, say k, of expected answers. If the query result
does not have k answers, QaRS considers it as a failing query
and automatically relaxes it. Basically, this automatic re-
laxation process consists in computing a set of possible re-
laxed queries (see further) from the initial query, ordering
them according to their similarities with the initial query
and executing them following this order until the number of
expected results is reached. If the result of a relaxed query is
large, the answers are ordered according to their satisfaction
degrees w.r.t. the initial query and then the user is provided
with the top− k answers.

Manual relaxation . Users may have some constraints
on the parts of the query that can be relaxed as well as on
the tolerance values that are acceptable. They can manually
specify these constraints in the design query panel. Three
kind of constraints can be graphically defined by users. (i)
Triple patterns that must not be relaxed. The user simply
selects a subset of the query graph that must not be relaxed,
right clicks on it and selects the corresponding option. (ii)
Allowed classes (resp. properties) in the hierarchy of a class
(resp. property) that can be used to relax the query. The
user selects a class or property, right clicks on it and selects
the relaxation option. The hierarchy of the class or property
is then displayed and the user can select the classes or prop-
erties that can be used in the relaxation process (see Figure
3-(b)). In this step, QaRS checks that the selected classes or
properties lead to a consistent relaxed query. (iii) Allowed
values to relax filters. In a similar way as above, the user
selects a filter that can be relaxed, right clicks on it and
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Figure 3: User interface of the System

selects the relaxation option. According to the datatype of
the filter, a panel allows the user to define the tolerance val-
ues. Thanks to methods borrowed from fuzzy logic theory,
one can obtain satisfaction degrees of the relaxed value of
the filter. Finally, the user specifies the minimum number of
expected results and executes the query. If the query fails,
QaRS triggers the relaxation process while respecting his/her
constraints (see Figure 3-(c)).

Interactive relaxation . In the previous scenario, the
user does not know the causes of the failure of his/her query.
QaRS can provide him/here with explanation. This expla-
nation consists in displaying a set of Minimal Failing Sub-
queries (MFSs) [4] of the query. For the query Q (section
2.1), the cause of its failure is the subquery below.

SELECT ?X ?Y

WHERE { ?X ub:teachingAssistantOf ?Y.

?Y rdf:type ub:GraduateCourse. }

Each MFS (i) is a failing subquery of the initial query and
(ii) does not include a failing subquery. Thus, if the MFSs of
a query are not relaxed, the initial query will never return
non-empty answers. In this scenario, the relaxation process
is a two-step procedure: (i) QaRS displays the set of MFSs of
the query; (ii) the user can automatically or manually relax
each MFS like in the previous scenarios. By default, QaRS
proposes to make optional the triple patterns of the MFSs.

2.3 Explanation and customization
Similarity is a key notion in QaRS. It is leveraged by

the system, on the one hand, for measuring the similarity
between the initial query and the relaxed ones and, on the
other hand, for computing the satisfaction degrees of alter-
native answers returned w.r.t the initial query. The latter
point allows to provide user with discriminated set of an-
swers and then (s)he can select the top-k answers (where k
is the minimum number of expected answers). As for query
similarity, it helps users to rank-order the relaxed queries
and choose an appropriate set of queries to be executed to
obtain k answers. These executed queries can be seen as an
explanation for the user to (progressively) reach the desired
answers. As different similarity measures can be used to
compute the similarity between two classes (or properties)
of an ontology, relaxation performed by QaRS can be cus-
tomized by selecting measures that fit best the user’s needs.

3. SYSTEM ARCHITECTURE
The architecture of QaRS is illustrated in Figure 4. It

comprises two main parts. The first part includes two com-
ponents: Graphical Design Of SPARQL Query (GDSQ) and

SPARQL Query Analyzer (SQLA). While the second part,
which is related to the core of query relaxation, is composed
of four modules: Relaxation Operator Interpretor, Auto-
matic Query Relaxation, MFS Engine for SPARQL Query and
Ranking Alternative Answers Engine. The module Extended
SPARQL Query Engine is an extension of standard SPARQL

query engine which allows us to launch the relaxation pro-
cess when the query at hand fails. This module also makes
easy the integration of QaRS in any triplestore environment.
Now, we provide details about each component of QaRS.
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Query

Query Relaxation

Alternative 
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Figure 4: Architecture of QaRS

GDSQ and SQA modules
GDSQ offers a user-friendly interface to assist users in the
design and building of their SPARQL queries in a graphical
and intuitive way. As for SQA module, which is an online
analyzer, it checks on-the-fly the syntax and the consistency
of the designed query. It also proposes auto completion and
suggests concepts for designing the query.

Relaxation interpretor
This module interprets each of the three relaxation operators
studied in [3] and generates the corresponding set of relaxed
SPARQL queries. GEN operator takes as input a concept
Ci and a super concept Cf . The system generates SPARQL

queries with Ci replaced by the classes in the path from Ci
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to Cf in the ontology. As for SIB operator, the system
generates SPARQL queries where a concept C0 is replaced by
its sibling classes C1, C2, ..., Cm. In the case of PRED op-
erator, it incrementally relaxes filters involving simple data
types (numeric, string, etc). This module is launched when
the clause RELAX is used in the designed SPARQL query.

Automatic query relaxation
This module is called when users want to have the top-k an-
swers without setting the relaxation operators to use. QaRS
generates all the relaxed queries using the three previous op-
erators and their combinations, in the spirit of the approach
proposed by [6]. A rank-ordering of these queries is estab-
lished according to their similarity w.r.t. the failing query.
The following similarity measure between classes is used [3]:

Sim(Ci, Cf ) =
IC(msca(Ci, Cf ))

IC(Ci) + IC(Cf )− IC(msca(Ci, Cf ))
Then, the relaxed queries are executed from the most simi-
lar to the least similar and the answers obtained are sent to
the Ranking alternative answers engine.

Ranking alternative answers engine
QaRS provides the user with a set of alternative answers in
a discriminated way. Each answer hi is associated with a
satisfaction score computed as follows [3]:
SatQ(hi) = min(Sim(Q′, Q), SatQ′(hi))
where Sim(Q,Q′) stands for the similarity measure between
the initial query Q and its relaxed form Q′ and SatQ′(hi)
for a satisfaction degree of hi w.r.t. Q′. This latter degree
is obtained thanks to the formula [3]:
SatQ′(hi) = min( max

t∈type(hi)
Sim(t, c′), µp(hi.propRelax))

where c′ is the relaxed class which gives the answer hi and µp

is the membership function of the (fuzzy) property propRelax.

MFS search engine
The MFS search engine is a module which identifies the causes
of query failure. To do so, a set of MFSs of the failing query
are computed. MFSs provide user with a clear explanation on
the empty answer problem. First, we transform the target
SPARQL query into a set of triple patterns to form a con-
junctive query. Next, an MFS of the conjunctive query is
computed. To find the other MFSs, a set of significant sub-
queries (SSQs) is calculated. Each SSQ is characterized by
three properties: (i) it does not contain the MFSs found; (ii)
it is not included in those MFSs and, (iii) it does not include
any other SSQ. The above two step-procedure is executed
recursively on each element of the set of SSQs. All MFSs
produced by this procedure are shown to the user as an ex-
planation about his/her query failure.

4. DEMO SCENARIOS
We run two scenarios on LUBM ontology data. The first

scenario aims at relaxing a failing query Q manually. The
second one shows the interest of the MFSs as explanation of
the query failure and their use for an efficient relaxation. To
run the above scenarios, we use Jena triplestore to load the
generated LUBM

′
s data.

Scenario 1
The user wants to find all ”the graduate students who are
teaching assistants of a graduate course”. The SPARQL query
for this request is given in section 2.1. To obtain non empty

answers, the user can ask a generalization (resp. substitu-
tion) of GraduateStudent (resp. GraduateCourse) concept
to Person (resp. with UnderGraduateCourse) concept. This
can be done graphically as shown in figure 3-(b). The re-
laxation operators proposed by QaRS depend of the query’s
concept to relax and ontology. As it can be seen in the
ontology of Figure 1, the relaxed query may result in non
empty answers since GraduateStudent may be teaching as-
sistants of UnderGraduateCourse which is a sibling Class
of GraduateCourse. It is worthing to note that this kind
of relaxation does not always guarantee the success of the
relaxation process. It is the case for the generalization of
GraduateStudent to Person (where there is none subclass
of Person with teachingAssistantOf as property, except the
subclass GraduateStudent).

Scenario 2
To avoid the main flaw of the above scenario, we first iden-
tify the causes (i.e., MFSs) of query failure, then we apply
appropriate relaxations on the triple patterns involved in the
MFSs of the query. For our running example of section 2.1,
which contains one MFS (see section 2.2), QaRS identifies it
and shows this MFS graphically to the user. Then, the sys-
tem suggests appropriate operators for relaxing the MFS. In
our case, GEN or SIB operator will be proposed to relax
the triple (?Y rdf :type ub:GraduateCourse) included in the
MFS. By this way, alternative answers that fit best the user’s
needs are returned by the system.
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ABSTRACT
The introduction of columnar in-memory databases, along
with hardware evolution, has made the execution of transac-
tional and analytical workloads on a single system both fea-
sible and viable. Yet, doing analytics directly on the trans-
actional data introduces an increasing amount of resource-
intensive aggregate queries which can slow down the overall
system performance in a multi-user environment. To in-
crease the scalability of a system in the presence of mul-
tiple such queries, we propose an aggregate cache in the
general delta-main architecture that provides an e�cient
means to handle costly aggregate queries by applying in-
cremental materialized view maintenance and query com-
pensation techniques. Handling aggregate queries based on
joins of multiple tables however is still a challenge as query
compensation can be very expensive in the delta-main ar-
chitecture of columnar in-memory databases. Our analysis
of enterprise applications has revealed several data schema
and workload patterns that can be leveraged for addressing
performance of query processing using the aggregate cache.
We contribute by presenting an approach to transport the
application object semantics into the database system, be-
coming object-aware, and optimize the query processing us-
ing the aggregate cache by applying partition pruning and
predicate pushdown in such general delta-main architecture.
Our experimental validation using customer data and work-
loads confirms that this type of optimizations enables e�-
cient usage of the aggregate cache for an even higher share
of aggregate queries as one mean to scale the system.

1. INTRODUCTION
The separation of enterprise applications into online trans-

actional processing (OLTP) and online analytical process-
ing (OLAP) induces drawbacks including stale and redun-

c�2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

dant data, and inflexible analytics due to pre-calculated data
cubes. A closer look reveals that this separation is mostly
artificial as both systems have the same number of inserts
– unless the OLAP system already abstracts from the base
data – and a high share of analytical queries with costly
aggregations. To deal with aggregate queries, both systems
employ di↵erent approaches. While OLAP systems make
extensive use of materialized views [29, 33], we see that the
handling of aggregates in OLTP systems is often done within
the application by maintaining predefined summary tables.
This leads to an increased application complexity with risks
for violating data consistency and to a limited throughput
of insert and update queries as the related summary tables
must be updated in the same transaction [14, 25].

With the ongoing trend of columnar in-memory databases
(IMDBs) such as Hyrise [11], SAP HANA [9], and Hyper [16],
this artificial separation is no longer necessary as they are
capable of handling mixed workloads, with transactional
and analytical queries, in a single system [24]. In columnar
IMDBs, the storage is separated into a highly compressed,
read-optimized main storage and a write-optimized delta
storage, both implemented as columnar data stores. New
records are inserted to the delta storage and periodically
merged to the main storage [17]. Having a single IMDB for
transactional and analytical workloads however imposes one
central challenge: While modern hardware enables the ex-
ecution of arbitrary complex computations in a short time
by parallelization, this means that one query can saturate
an arbitrary large machine [30]. Especially the execution of
expensive aggregations that may be done by many hundreds
of users in parallel is problematic and requires means to keep
the system scalable.

Despite the aggregation capabilities of columnar
IMDBs [24], access to tuples of a materialized aggre-
gate – which we define as a materialization of a query
which contains aggregate functions – is always faster
than aggregating on the fly. However, the overhead of
materialized view maintenance to ensure consistency for
modified base data has to be considered and involves
several challenges [12]. It turns out that the main-delta
architecture is well-suited for the aggregate cache, a novel
strategy of dynamically caching aggregate queries and
applying incremental view maintenance techniques [21] for
maintaining the cache and answering queries using the
aggregate cache. In the general main-delta architecture,
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only the delta storage is updated when data is modified,
for example, when new records are inserted. In our design
of the aggregate cache, the materialized aggregates are
only defined on records from the main storage. Hence,
the materialized aggregates do not have to be invalidated
when new records are inserted, updated, or deleted in the
delta storage. When a query result is computed using
the aggregate cache, the final, consistent query result is
delta-compensated, on the fly, by aggregating the newly
inserted records of the delta storage and combining them
with the previously cached aggregate of the main storage.

One challenge of the aggregate cache in the main-delta ar-
chitecture is to achieve high performance for relevant classes
of application queries which include aggregates based on
joins of multiple tables. These queries require expensive
delta-compensations based on subjoins of all permutations
of delta and main partitions of the involved tables, exclud-
ing the already cached join of the main partitions. For a
query joining two tables, three extra subjoins are required
for delta-compensation, and a query joining three tables al-
ready requires seven extra subjoins. This may result in very
little performance gains over not using the aggregate cache.
However, after analyzing the characteristics of several enter-
prise applications, we identified schema design and workload
patterns that can be leveraged to allow pruning certain sub-
joins and therefore optimize the overall performance of join
queries using the aggregate cache.

In this paper, we make the following contributions:

• We introduce the aggregate cache, a materialized ag-
gregate engine implemented in SAP HANA, leveraging
the main-delta architecture of columnar IMDBs, and
describe its current architecture (see Section 2.1).

• We discuss the query processing using the aggregate
cache and performance challenges related to main and
delta compensations which are metrics for admittance
in the aggregate cache (see Sections 2.2 and 2.3).

• We identify a class of join queries which normally do
not qualify to be admitted in the aggregate cache and
analyze their performance issues when using the aggre-
gate cache. We propose a novel solution for increas-
ing the performance for this class of queries exploit-
ing the main-delta architecture and the application ob-
ject semantics. These techniques are implemented as
a prototype which extends the aggregate cache for join
queries. The main contributions here are:

– We analyze enterprise applications which benefit
the most from the dynamic aggregate cache and
identify several schema design and workload pat-
terns imposed by the object semantics of these
applications (see Section 3).

– We give a formal definition of the join prun-
ing problem in the aggregate cache and define
matching dependencies among relations based on
join attributes and temporal relationships as one
possible design for e�ciently using the aggregate
cache for join queries (see Section 4).

– We discuss our implementation for transporting
application object semantics into the database to
become object-aware which allows join pruning
techniques to be applied for queries using the ag-
gregate cache (see Section 5).

• We use the CH-benCHmark [10], a benchmark based
on TPC-H and TPC-C, and a benchmark using real
customer workloads from a production Enterprise Re-
source Planning (ERP) system to show performance
results for (1) aggregate cache maintenance strategies;
(2) data update overhead for tables referenced in the
aggregate cache; (3) query processing using aggregate
cache with and without join pruning (see Section 6).

2. AGGREGATE CACHE
The aggregate cache leverages the concept of the main-

delta architecture in SAP HANA [9]. Separating a table into
a main and delta storage has one main benefit: it allows
to have a read-optimized main storage for faster scans and
a write-optimized delta storage for high insert throughput.
All records in the delta storage are periodically propagated
into the main storage in an operation called delta-merge [17].
The fact that new records are added to the main storage only
during a merge operation is leveraged by the aggregate cache
which is designed to cache only the results computed on the
main storage. For a current query using the aggregate cache,
the records from the delta storage are aggregated on-the-fly
which compensates the corresponding cache entry to build
the result set of the query, a process we refer to as delta com-
pensation. In the general main-delta architecture, records
are not updated in place. Instead, the updated record is
inserted in the delta partition whereas the old record in the
main (or delta) partition is invalidated. Other database im-
plementations with a delta storage or di↵erential bu↵er such
as C-Store, Sybase IQ, MonetDB/X100, Hyrise, or memory-
optimized tables in SQL Server handle updates very similarly
to the mechanism implemented in SAP HANA. During the

SAP HANA
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SQL Processor
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Aggregate Cache Manager

SQL

Consistent View Manager

Aggregate Cache Entries

● ● ●

 

Table 1 ● ● ●

Visibility Vectors

Aggregate Cache Entry 1
Aggregate Cache Key

Aggregate Cache Value
Aggregate Cache Metrics

Aggregate Cache Entry n
Aggregate Cache Key

Aggregate Cache Value
Aggregate Cache Metrics

Table n

Main

Table 1

● ● ●

Table n

Figure 1: The architecture of the aggregate cache in SAP HANA.

next merge, all invalidated records can either be removed
from the main storage or kept so that temporal query pro-
cessing on historical data can be supported [15]. To handle
invalidations in the main partition, we apply a main com-
pensation process as described in Section 2.2.
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Figure 2: The structure of an aggregate cache entry, consisting of
an aggregate cache key, an aggregate cache value, and aggregate
cache metrics.

2.1 Architecture
As illustrated in Fig. 1, the aggregate cache is imple-

mented inside the column store engine of SAP HANA [9].
The aggregate cache manager is the core component of the
aggregate cache, managing aggregate cache entries.

An aggregate cache entry, depicted in Fig. 2, consists of
a key, a value, visibility vectors, and profit metrics. The
aggregate cache key is a unique identifier based on the query
definition including the table name, table id, the grouping
attributes, the aggregate functions, and the filter predicates
of the related aggregate query. The aggregate cache value,
the extent of the aggregate query, is a structure consisting of
the grouping combinations and the corresponding aggregate
functions: it contains the result set of the aggregate com-
puted only on the main storage. The aggregate cache entry
further contains dirty counters that indicates if records have
been invalidated in the main partitions, and the visibility
vectors of the main partitions at the time of last computa-
tion. The aggregate cache entry is first created during query
processing (Fig. 3) and it is maintained during the delta-
merge operations. Aggregate cache metrics are maintained
for each entry including the aggregate’s size, the number
of aggregated records, execution times for delta and main
compensations, maintenance times, and usage information.
The metrics are required to calculate the profit of an aggre-
gate cache entry to be used for dynamic cache admission,
eviction, and maintenance decisions [20].

Query execution using the aggregate cache is shown
in Fig. 3: the query executor delegates aggregate query
blocks that qualify for the aggregate cache to the aggregate
cache manager. The aggregate cache supports queries with
self-maintainable aggregate functions [22] including SUM,
COUNT, and AVG. When the aggregate cache matching pro-
cess is not successful, the aggregate cache manager attempts
to create a cache entry by executing the aggregate query on
the main partitions with the global record visibility which
is retrieved through the consistent view manager. If the ag-
gregate is profitable enough for cache admission, the result
is used to create an aggregate cache entry. In both cases,
when aggregate entry is retrieved from the cache or it is just
cached by the current transaction, the main compensation
and the delta compensation must be applied.
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for Main Partition

Get Current 
Transaction 
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Get Current 
Transaction 
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Figure 3: Query processing with the aggregate cache: creation
and usage of aggregate cache entries including main and delta
compensation during query execution.

2.2 Main Compensation
While updates and deletes of records in the delta storage

are handled transparently and do not a↵ect our caching al-
gorithm, an aggregate cache entry can become inconsistent
with respect to a record invalidation in the main storage,
including deletes and updates of the current transaction.
Instead of recalculating an aggregate cache entry with every
record invalidation in the main storage, we employ an ap-
proach that uses bit vector comparison to e�ciently detect
invalidated records and apply them to aggregate cache en-
tries in a process called main compensation. As illustrated
in Fig. 3, we use the consistent view manager to retrieve cur-
rent record visibilities during aggregate cache entry usage.

The record invalidation is handled through the consistent
view manager (see Fig. 1) that creates a bit vector repre-
senting the visibility of records of a table for an incoming
query based on its transaction token. When an aggregate
query is cached, the current snapshot is captured using this
visibility vector. When a query is executed using an aggre-
gate cache entry, an e�cient bit vector comparison of the
current snapshot with the snapshot at the cache creation
time is used, thereby detect invalidated records, and apply
them for main compensation. The details of aggregate cache
main compensation can be found in [19] and are omitted in
this paper for simplification reasons.

2.3 Delta Compensation
As the last step in query execution (Fig. 3), any query

using the aggregate cache must apply delta compensation
operation which accounts for records in the delta storage
visible to the current transaction. When the aggregate cache
is based on multiple tables joins, the complexity of answering
a query using the aggregate cache increases as the aggregate
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cache is computed on the main partitions only, and the query
must be compensated with all subjoins on deltas and mains.
As a result, the profit of caching an aggregate query based
on many tables may be very low because their performance
using the aggregate cache is not superior to not using it.
The techniques proposed in this paper have the main goal
of extending the class of aggregate queries which qualify to
be admitted into the SAP HANA aggregate cache.

The classical aggregate query joining a header table H,
an item table I, and a dimension table D (see Section 3)
on the join conditions H[A] = I[A] and I[B] = D[B] is
Q(H, I,D) = H ./H[A]=I[A] I ./I[B]=D[B] D. In main-delta
architecture, each table X consists of at least two partitions
P(X) = {Xmain, Xdelta} which adds complexity when the
result of the query Q(H, I,D) is computed as the join pro-
cessing must consider all subjoin combinations among these
partitions. Theoretically, the subjoins on delta and main
partitions of the tables referenced in Q(H, I,D) are as de-
picted in Equation 1 and Fig. 4. The subscript numbers in
Equation 1 of the subjoins match the subjoin numbers in
Fig. 4. Based on the size of the involved table components,
the time to execute the subjoins varies. Typically, the ra-
tio between the sizes of main and delta partitions is 100:1.
In our example the subjoins #5 and #8 require the longest
time, since they involve matching the join condition of the
mains of two large tables.

Q(H, I,D) =
(Hdelta ./H[A]=I[A] Idelta ./I[B]=D[B] Dmain)1
. . . [ (Hmain ./H[A]=I[A] Imain ./I[B]=D[B] Ddelta)5
. . . [ (Hmain ./H[A]=I[A] Imain ./I[B]=D[B] Dmain)8

(1)

Figure 4: Caching strategies for a three table join query.

2.3.1 Join without Aggregate Cache

Join queries referencing partitioned tables are of the form
Q(R1, . . . , Rt) = R1 ./c1(R1,R2) · · · ./ct�1(Rt�1,Rt) Rt, where
each table Ri has the partitioning P(Ri) = {Ri,1, . . . , Ri,ki},
for all i 2 {1, . . . , t}. Without caching some of the subjoins,
the database engine needs to compute all possible join com-
binations of the involved number of tables t and partitions
P(Ri) to build a complete result set. The result of Q is
a union of all k1 ⇥ . . . ⇥ kt subjoins i.e., Q(R1, . . . , Rt) =S

(j1,j2,...,jt)2JnoCache(Q)
R1,j1 ./c1(R1,R2) · · · ./ct�1(Rt�1,Rt)

Rt,jt , with JnoCache(Q) = {1, . . . , k1}⇥ · · ·⇥ {1, . . . , kt}.
To evaluate Q(H, I,D) from Equation 1, joining three

tables with two partitions each, that adds up to a to-
tal of 23 = 8 subjoins to be unified: Q(H, I,D) =S

(j1,j2,j3)2JnoCache(3)
(Hj1 ./H[A]=I[A] Ij2 ./I[B]=D[B] Dj3),

where JnoCache(3) = {delta,main} ⇥ {delta,main} ⇥
{delta,main}.

2.3.2 Join with Aggregate Cache

When using the aggregate cache, the result set from join-
ing all main partitions is already cached (i.e., R1,main ./
· · · ./ Rt,main) and the total number of subjoins computed
for delta compensation is reduced to 2t � 1: JwithCache(t) =
JnoCache(t) \ {main}t. For our example from Fig. 4, the
subjoin #8 does not need to be recomputed as it is cached.
However, all other subjoins in Equation 1 are evaluated dur-
ing delta compensation.

3. ENTERPRISE APPLICATION
CHARACTERISTICS

In this section, we give an overview of enterprise applica-
tion characteristics, that can be utilized to speedup process-
ing of join queries in the aggregate cache. We have analyzed
several enterprise applications including financial and man-
agerial accounting, materials management, and customer re-
lationship management and found out that they all share
schema design and workload patterns.

3.1 Schema Design Patterns
In all analyzed application domains, we identified tables

with similar design patterns, namely header, item, dimen-
sion, text, and configuration tables.

A header table describes common attributes of a single
business object. In a financial accounting application, for
example, this includes attributes such as the fiscal year and
the type of the particular business transaction. In materials
management the header tuple stores attributes such as the
warehouse origin and destination, and the date and time of
a goods movement.

To each header tuple, there are a number of correspond-
ing tuples in an item table. Item tuples represent entities
that are involved in a business transaction. For instance, all
products and the corresponding amount for a sale or mate-
rials and their amount for a goods movement are stored in
the items table. A header tuple and all corresponding item
tuples are also referred to as a business object since they are
modeled as part of a business transaction.

Additionally, attributes of the header and item tables re-
fer to keys of a number of smaller tables. Based on their
use case we categorize them into dimension, text, and con-
figuration tables. Dimension tables manage the existence
of entities, such as accounts and materials. Especially com-
panies based in multiple countries have text tables to store
strings for dimension table entities in di↵erent languages
(e.g., product names). Configuration tables enable system
adoption to customer specific needs and business processes.

3.2 Application Workload Patterns
According to the table classifications, di↵erent workload

patterns occur. Not surprisingly, there is a high insert load
on tables that contain transactional data (i.e., header and
item) compared to dimension, text, and configuration tables.

In many domains, entire static business objects are per-
sisted in the context of a single transaction. Therefore, the
header and corresponding item tuples are inserted within the
same transaction and never changed thereafter. In financial
applications, it is even required from a legal perspective that
booked transaction cannot be deleted, but only changed with
the insertion of a counter booking transaction.

In some domains such as customer relationship manage-
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ment and sales, items may be added to a header at a later
point in time. This could be the case when a customer adds
products to an order. As [24] analyzed a number of enter-
prise systems, there is only a small amount of updates and
deletes compared to inserts and selects on the header and
item tables.

Analyzing aggregate queries of the examined applications,
a join between header and their corresponding item tuples
is very common. Additionally, the analytical queries extract
item properties, text strings, and calculation rules from di-
mension, text, and configuration tables. Those three table
categories do have a number of properties in common: There
are rarely inserts, updates, or deletes and they contain only
a few entries compared to header and item tables.

In the next section, we briefly discuss partition pruning
techniques and introduce matching dependencies, and then,
in Section 5, we describe how each mentioned enterprise ap-
plication characteristic can be captured in the application
design to allow very e�cient query processing with aggregate
cache by leveraging the join partition pruning techniques.

4. PARTITION PRUNING AND
MATCHING DEPENDENCIES

In this section, we first formally define join pruning for
partitioned tables, discuss how these techniques can be ap-
plied to columnar tables, and then introduce the concept of
matching dependencies which can be leveraged to model and
enforce object-aware, temporal relationships.

Each column of a table in SAP HANA is dynamically par-
titioned into main and delta storages, both columnar stores,
hence the columnar tables have a natural mix of vertical
partitioning (i.e., columns) and horizontal partitioning (i.e.,
delta and main). Traditional techniques for partition prun-
ing could be applied to this type of tables during query
processing [13, 26]. Formally, horizontal partitioning of a
table R is a set of disjoint subsets {R1, ..., Rn} of R such
that R = R1

S
R2

S
...

S
Rn. A table partitioned based on

a specified partitioning scheme, must be processed during
query execution by accessing each of its partitions based on
the query semantics [23]. As some of the partitions may
not be relevant to the query, partition pruning methods can
be applied to avoid accessing irrelevant data. Logical parti-
tion pruning refers to methods of pruning based on the def-
initions of the partitioning scheme (usually applied during
query optimization), while dynamic partition pruning is a
method of pruning based on runtime properties of the data
not on the static partitioning scheme (usually applied at
query execution time). For dynamic partition pruning, the
execution plan can be built with extra physical operators
which will allow partition pruning during query execution
based on properties which hold for the current instance of
the database.

Definition 1. Join Pair-Wise Partition Pruning by a
join operator ./q. Let {R1, ..., Rn} be a horizontal parti-
tioning for a table R. Let {S1, ..., Sm} be a horizontal par-
titioning for a table S. We say that the pair (Rj , Sk) is
logically pruned by the join operator ./q(R,S) if and only if
Rj ./q(R,S) Sk = ; for any instances of the tables R and S.
Let {Ri

1, ..., R
i
n} be an instance of the table R, Ri, and

{Si
1, ..., S

i
m} be an instance of the table S, Si. We say that

the pair of instances (Ri
j , S

i
k) is dynamically pruned by the

join operator ./q(R,S) if and only if Ri
j ./q(R,S) S

i
k = ;.

A simple example of dynamic partition pruning for a join
R ./ S is pruning all subjoins of the form Rj ./ Sk if the
partition Rj is empty at the query execution time.

One type of dynamic join partition pruning is based on
the range values of the join attributes in each partition (see
Example 1). This type of partition pruning is relevant to our
solution for addressing performance problems of join queries
using the aggregate cache. Note that successful pruning is
achieved when the value ranges of the join attributes do not
overlap among partitions.

Example 1. Dynamic join partition pruning based on

range values. Let {R1, R2} be a horizontal partitioning of
R(A). Let {S1, S2} be a horizontal partitioning of S(A). A
pair (R1, S2) is pruned by the join operator ./R[A]=S[A] if it
can be determined that the instances Si and Ri are such that
Ri

1 ./R[A]=S[A] S
i
2 = ;.

One runtime criteria for determining that the pair (Ri
1, S

i
2)

is pruned by ./R[A]=S[A] could be based on the current range
values of the attribute A in the relations R and S. Note that
the tuples with NULL value on A will not participate in the
join.
Let max(Ri

1[A]) = max{t[A]|t 2 Ri
1},

min(Ri
1[A]) = min{t[A]|t 2 Ri

1},
max(Si

2[A]) = max{t[A]|t 2 Si
2},

min(Si
2[A]) = min{t[A]|t 2 Si

2}.
If max(Ri

1[A]) < min(Si
2[A]) or

max(Si
2[A]) < min(Ri

1[A]) then Ri
1 ./R[A]=S[A] S

i
2 = ;.

Proof: If max(Ri
1[A]) and min(Ri

1[A]) are defined as above,
then Ri

1 = �min(Ri
1[A])R[A]max(Ri

1[A])(R).

Similarly, Si
2 = �min(Si

2[A])S[A]max(Si
2[A])(S).

Then Ri
1 ./R[A]=S[A] S

i
2 =

Ri
1 ./q(R,S) S

i
2 = ; with q(R,S) = (R[A] = S[A]^

min(Ri
1[A])  R[A]  max(Ri

1[A])^
min(Si

2[A])  S[A]  max(Si
2[A]))

because the join predicate q(R,S) is a contradiction if
max(Ri

1[A]) < min(Si
2[A]) or max(Si

2[A]) < min(Ri
1[A]).

4.1 Matching Dependencies
Matching dependencies are well studied in the litera-

ture, for example in [8], and can be used for defining ex-
tra relationships between matching tuples of two relations.
The matching dependencies extend functional dependencies
and were originally introduced with the purpose of specify-
ing matching rules for object identifications [7]. However,
matching dependencies can be defined as well in a database
system, and can be used to extend functional or inclusion
dependencies supported in RDBMSs. They can be used to
impose certain constraints on the data, or they can be dy-
namically determine for a query; they can be used for se-
mantic transformations (i.e, query rewrite), and optimiza-
tion of the query execution. We adopt here a variant of the
definition for matching dependencies introduced in [8].

Definition 2. A matching dependency MD on two re-
lations (R,S) is defined as follows: The matching depen-
dency MD = (R,S, (q1(R,S), q2(R,S)), where q1 and q2
are two predicates, is defined as a constraint of the form:

8r 2 R ^ 8s 2 S : q1(r[A], s[A]) =) q2(r[B], s[B]) (2)

Note that if a matching dependency MD =
(R,S, (q1(R,S), q2(R,S)) holds, it can be used for query

561



optimization, e.g., join pruning, semantic transformations,
as the following equality holds for any instance of R and S.

R ./q1(R,S) S = R ./q1(R,S)^q2(R,S) S

Section 5 details specific matching dependencies defined
to model object-aware semantic constraints among tables,
and how they can be used for dynamic join pruning for par-
titioned tables in this context.

5. OBJECT-AWARE JOINS
We discuss in this section some practical design problems

of how matching dependencies can be defined, enforced, and
used for dynamic join partition pruning as well as join pred-
icate push downs in a RDBMSs. We also discuss how specific
semantic constraints among relations can be defined using
MDs. While object-awareness can refer to various semantic
constraints, we focus on temporal locality with regards to
record insertion in this paper.

Matching dependencies can be used to impose constraints
on two relations which are usually joined together in queries:
if two tuples agree on some attributes, then they must agree
on some other attributes as well [8]. An example: if two
tuples agree on the product attribute, then they must agree
on the product category attribute as well. By adding a tem-
poral attribute such as an auto-incremented transaction id,
we can use this type of constraint to model temporal locality
semantics among relations.

As discussed in Section 3, specific application scenarios
have naturally the following semantic constraints among
pairs of tables: if a tuple r is inserted in the table R, then
a matching tuple s (where r[A] = s[A], A ✓ attr(R) and
A ✓ attr(S)) is inserted in the table S in the same transac-
tion as r is inserted, or within a small range of transactions
from r. To model this type of semantic constraints, MDs
can be used. The MDs themselves, as defined here, are
strong constraints which are enforced in the database. The
constraint that records in related tables are inserted in trans-
actions close to each other, is a temporal soft-constraint.
When this temporal constraint holds, using the proposed
MDs will guarantee dynamic pruning as matching tuples
reside all in delta store or all in main store. If the temporal
soft-constraint doesn’t hold, the dynamic pruning will not
be possible. In both cases, the join pruning using theseMDs
will be correct. An interesting future work is to model (and
dynamically discover) this type of soft-constraints without
using strong MDs which require extra storage.

The following design can be imposed to define the MDs
between two tables R and S which will allow dynamic par-
tition pruning for join queries using the aggregate cache.

A new column R[tidR] is added which records the tempo-
ral property of the tuples in R as they are inserted into R.
We set r[tidR] to the auto-incremented transaction identifier
(generally available in an IMDB) during which the new tuple
r is inserted, a value larger than any existing value already
in the column R[tidR]. For the table S, which is joined with
the table R on the matching predicate R[A] = S[A], a new
column S[tidR] is added which is set, at the insert time, to
the value of R[tidR] of the unique matching tuple in R, if
at most one matching tuple exists, e.g. R[A] is the primary
key of R. While this does not constrain s to be inserted
at a later time than r, the MD captures the temporal re-
lation between matching tuples in r and s. This scenario is
used for our benchmarks described in Section 6 for which

the corresponding MD defined in Equation 3 holds.

MDR,S = (R[A, tidR], S[A, tidR], (R[A] = S[A]),
(R[tidR] = S[tidR]))

(3)

In the current prototypical implementation which extends
the class of aggregate queries supported by the SAP HANA
aggregate cache with join aggregates, MDs are enforced on
the application level during record insertion. Theoretically,
MDs can be implemented in the database if the database
supports general MDs as new type of constraints as pro-
posed in [8]. Then, our specific MDs can be defined as part
of the meta data and can be enforced similarly to other con-
straints such as checking for referential integrity.

5.1 Join Pruning
The matching dependency MDR,S from Equation 3

can be used to perform dynamic pruning for the joins
R ./R[A]=S[A] S. Let’s assume that the tables R and S
are partitioned as described in Example 1: R = (R1, R2)
and S = (S1, S2), with S1 and R1 containing the most re-
cent tuples of R and S, respectively. Also, the matching
dependency from Equation 3 holds. The dynamic pruning
described in Example 1 can be attempted. Equation 4 shows
the derived join predicate which must evaluate to false for
pruning a subjoin.

R1 ./R[A]=S[A] S2

using MDR,S from Eq. 3
= R1 ./R1[A]=S2[A]^R1[tidR]=S2[tidR] S2

= R1 ./q(R1,S2) S2

where q(R1, S2) uses min()/max() as in Example 1
q(R1, S2) =
R1[A] = S2[A] ^R1[tidR] = S2[tidR]^
min(R1[tidR])  R1[tidR]  max(R1[tidR])^
min(S2[tidR])  S2[tidR]  max(S2[tidR])

(4)

If q(R1, S2) can be proven to be a contradiction then
R1 ./R[A]=S[A] S2 = ;. The above technique for dynamic
pruning must be done during runtime and it will be al-
ways correct as long as MDR,S holds. For example, a
prefilter condition defined as in Equation 5, if true, as-
sures that q(R1, S2) is a contradiction hence the subjoin
R1 ./R[A]=S[A] S2 = ; can be dynamically pruned.

max(R1[tidR]) < min(S2[tidR])_
min(R1[tidR]) > max(S2[tidR])

(5)

In the case of tables in a columnar IMDB, min() and max()
can be obtained from current dictionaries of the respective
partitions. The pruning will succeed if the prefilter from
Equation 5 is true. Otherwise, the pruning will correctly
fail if, for example, MDR,S holds but S2 contains matching
tuples from R1 i.e., the prefilter is false in his case. For an
empty partition Rj , we define min() and max() such that
the prefilter is true for all join pairs (Rj , Sk).

When the database is aware of the enterprise application
characteristics (Section 3) based on their object semantics,
join partition pruning can be used to e�ciently execute join
queries with or without the aggregate cache. We refer to
this type of joins as semantic or object-aware joins.

Let us consider the join query as discussed in Section 2.3
Q(H, I) = H ./H[PK]=I[FK] I joining a header table H
and item table I on the join condition, that the primary
key H[PK] matches the foreign key I[FK]. The match-
ing dependency defined in Equation 6 captures this object-
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Figure 5: Join pruning example between a header and item table
with main and delta partitions.

aware semantic constraint, where the attributes H[tidH ] and
I[tidH ] are new attributes especially added for the MD:

MDH,I = (H, I, (H[PK] = I[FK]), (H[tidH ] = I[tidH ]))
(6)

The MD is enforced during record insertion in the item
table I by setting the attribute I[tidH ] to H[tidH ] of the
matching tuple in the header table H. As illustrated in
Fig. 5, the item table I has two temporal attributes: I[tidH ]
is used to capture the MD with the header table H and
I[tidI ] can be used for MDs with other tables that join on
the primary key of I.

After an insert into H and I, if there was no merge op-
eration yet, all new matching tuples are in the delta par-
titions. Therefore, for a delta compensation, we only need
to compute the subjoin Hdelta ./ Idelta and unify the re-
sults with the cached aggregate (Hmain ./ Imain). Dy-
namic pruning for the remaining subjoins Hmain ./ Idelta
and Hdelta ./ Imain can be performed if the prefilter condi-
tion as defined in Equation 5 holds:

max(Hmain[tidH ]) < min(Idelta[tidH ]) �! Hmain ./ Idelta = ;
max(Imain[tidH ]) < min(Hdelta[tidH ]) �! Hdelta ./ Imain = ;

Fig. 5 depicts an example of join dynamic pruning for
the subjoin Hmain ./H[PK]=I[FK] Idelta = ; as the prefilter
min(Idelta[tidH ]) > max(Hmain[tidH) (i.e., 8 > 4) is true.
However, the subjoin Hdelta ./H[PK]=I[FK] Imain cannot be
pruned: the prefilter max(Imain[tidH ]) < min(Hdelta[tidH ])
(i.e., 5 < 5) is false. Fig. 5 highlights the matching tu-
ples in Hdelta and Imain which prevent the join pruning for
Hdelta ./H[PK]=I[FK] Imain.

5.2 Delta Merge Operation
The incremental maintenance of the aggregate cache takes

place during the online merge process which propagates the
changes of the delta storage to the main storage [17]. When
employing an object-aware join between a header and an
item table, if the timing of the delta merge processes could
be adjusted for the two tables then the join pruning suc-
cess rate for delta-compensation and maintenance opera-
tions could be maximized. While the dynamic join pruning
will always be correct, join pruning is more likely to succeed
when the merge processes of related transactional tables are
synchronized, rather than when the tables are merged in-
dependently, because there is little overlap between delta

and main partitions. The example from Fig. 5 shows the
case when one of joins Hdelta ./H[PK]=I[FK] Imain cannot
be pruned because table I has been merged before H while
the join Hmain ./H[PK]=I[FK] Idelta is pruned successfully.

5.3 Join Predicate Pushdown
In case the join pruning does not succeed, we can still

leverage the temporal information through the enforced
matching dependencies to optimize join processing. Con-
sider the example depicted in Fig. 5, with an overlap of
matching tuples in the Hdelta and Imain partitions, which
in turn implies that join pruning between Hdelta and Imain

cannot succeed.
Based on the matching dependencies, a query optimizer

should be able to infer new predicates that can then be
pushed down as local filter predicates to the respective par-
titions, Hdelta and Imain, before evaluating the subjoin. In
our example, the subjoin Hdelta ./H[PK]=I[FK] Imain can
be rewritten using MDH,I from Eq. 6 and using the run-
time domain properties of the attributes H[PK, tidH ] and
I[FK, tidH ] follows:
(�f(H)Hdelta) ./H[PK]=I[FK]^H[tidH ]=I[tidH ]) (�f(I)Imain)
with local predicates defined as:
f(I) = (I[tidH ] >= min(Hdelta[tidH ])) and
f(H) = (H[tidH ] <= max(Imain[tidH ])).

Especially the evaluation of f(I) on the Imain partition
seems to be promising since we do not have to do a full
table scan for every potential join partner of Hdelta but can
limit the partition to only consider the relevant records. In
the example from Fig. 5, we would only need to check all
records for which f(I) = (tidH >= 5) is true, since 5 =
min(Hdelta)[tidH ]. Similarly, f(H) = (tidH <= 5), as 5 =
max(Imain[tidH ].

5.4 Applying Join Pruning to Multi Partitions
Up to this point, we have only considered a table to be

partitioned into delta and main storage as it is the case in
the general main-delta architecture. However, tables can be
further partitioned using specific partitioning schemes, for
example, as proposed in [25], for data aging or archiving.
We consider a scenario where the columnar tables H and
I are partitioned based on the age of the tuples into one
hot and one cold partition. Given the case, that the hot and
cold partitioning is static, we can employ a mix of logical and
dynamic partition pruning. Thus, the tables H and I each
have four partitions Xc

main, X
c
delta, X

h
main, X

h
delta, where X

is any of the tables H or I. There are several interesting
properties in this scenario:

• The cold partition Xc
delta contains only the updated

tuples from Xc
main if any. Xc

delta is empty in general.

• New tuples are inserted in the hot delta partition
Xh

delta only.

• The delta-merge operation a↵ects only the hot parti-
tionXh

main which is much smaller thanXh
main[Xc

main.

• The subjoins on cold and hot partitions of the form
Icv ./ Hh

w with v, w 2 {main, delta}, are always empty,
given a consistent aging definition on related tables.
These subjoins can be logically pruned. Dynamic
pruning can also be applied, almost always, for sub-
joins between any cold and hot partitions Xc

v ./ Y h
w

with v, w 2 {main, delta}.
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• There are two aggregate caches defined for subjoins on
cold and hot partitions, respectively: Hc

main ./ Icmain,
and Hh

main ./ Ihmain. The delta-merge operation exe-
cuted most often a↵ects only the aggregate cache built
on hot partitions Hh

main ./ Ihmain, hence this is the one
which needs to be rebuilt after each merge. The aggre-
gate cache built on cold partitions will be rebuilt very
rarely, when tuples are aged into the cold partitions.

To evaluate a query using these aggregate caches, many
of the subjoins used for the main-main and delta-main com-
pensation can be pruned. In particular, the subjoins refer-
encing both cold and hot partitions can be partially pruned
logically, given a consistent aging definition.

6. EXPERIMENTAL EVALUATION
We first present experimental results for aggregate cache

maintenance (in Section 6.1) on the current SAP HANA im-
plementation, performed in a mixed workload of updates
and aggregate queries.

Secondly, we assess the performance of query execution
without and with aggregate cache for the class of join aggre-
gate queries for which dynamic pruning is performed during
delta-compensation. The experimental results are obtained
on a prototype implementation which extends the aggregate
cache for join queries. For these experiments, we use two
benchmarks, the CH-benCHmark [10] based on TPC-H1 and
TPC-C2, and a benchmark built based on data and work-
loads from a financial and managerial accounting applica-
tion of a production ERP system. Opposed to standardized
benchmarks such as TPC-C or TPC-H, the second benchmark
especially reflects the characteristics of enterprise applica-
tions, generating mixed workloads. For this benchmark, the
schema contains three tables: a header table Header with
35 million tuples, an item table Item with 330 million tu-
ples, and a dimension table ProductCategory with less than
2000 tuples.

SELECT D.Name AS Category , SUM( I . Pr i ce ) AS
Pro f i t

FROM Header AS H,
Item AS I ,
ProductCategory AS D

WHERE I . HeaderID = H. HeaderID
AND I . CategoryID = D. CategoryID
AND D. Language = ’ENG’
AND H. Fi sca lYear = 2013

GROUPBY I . CategoryID

Listing 1: Benchmark sample query

We modeled a mixed OLTP/OLAP workload, based on in-
put from interviews and workload traces with an industry
customer. The analytical queries simulate multiple users, us-
ing a profit and loss statement analysis tool. The SQL state-
ments calculate the profitability for di↵erent dimensions in-
cluding the product category (as mentioned in Section 3)
by aggregating debit and credit entries. Listing 1 shows a
simplified sample query that calculates how much profit the
company made with each of its product categories. The
inserts were replayed by using the timestamps in the base
data. Deletes and updates were not part of our evaluation
workload because they only had a relative low presence in

1http://www.tpc.org/tpch/
2http://www.tpc.org/tpcc/

the analyzed ERP production system workloads. All bench-
marks were run on a server with 64 Intel Xeon X7560 pro-
cessor cores and 1 TB of main memory.

6.1 Maintenance Strategies
We first discuss how our aggregate cache (defined on the

main partitions) performs in a mixed workload of inserts
and aggregate queries compared to using materialized views
with classical maintenance strategies. The statements in
this workload reference a single table. Materialized views
are defined on main and delta partitions and must be main-
tained for any delta store changes. Traditional maintenance
strategies ensure that a materialized view is always up-to-
date when used during query execution: eager incremental
strategy maintains the materialized views with every insert
operation [2], while lazy incremental strategy keeps a log of
insert operations and maintains the materialized views be-
fore it is used [32]. The aggregate cache is defined on the
main partition only as presented in this work - and delta-
compensation is done at the query time (as shown in Fig. 3).
In this experiment, the delta-merge operation is not per-
formed. The insert rates in this experiment bear upon an
individual materialized aggregate. In other words, they re-
flect the number of base data inserts a↵ecting this particular
materialized aggregate in relation to the number of times
this aggregate is used by read-only queries.
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Figure 6: Mixed workload performance using the SAP HANA ag-
gregate cache compared to using materialized views with classical
maintenance strategies with varying insert ratios.

The results are depicted in Fig. 6 and reveal that in write-
heavy scenarios, the materialized view maintenance over-
head is very high because materialized views are maintained
for any delta changes, either by maintaining the materialized
view with every base data modification (eager), or before a
read-only query (lazy). Read-only queries using the aggre-
gate cache have an overhead for delta-compensation which
is much smaller, in this scenario, compared to the main-
tenance overhead of materialized views. In a read-mostly
workload, the materialized view maintenance overhead is
marginal as changes do occur very infrequent and the ma-
terialized view can directly be used without maintenance
by the read-only queries. With an increasing insert ratio
however, their maintenance costs increase while our aggre-
gate cache delivers nearly constant execution times due to
the fact that the aggregate cache is defined on main stores.
Yet, read-only queries using the aggregate cache have an
overhead for delta-compensation even if delta store is very
small. For insert ratios above 15 percent, this compensation
overhead is outweighed by the maintenance overhead by the
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classical strategies, with the aggregate cache being superior.
The shift to a read-mostly overall workload, as described
in [25], is not based on number of statements, but on the
high percentage of the read-only statements’ execution time
out of the total workload execution time, which does not
necessarily contradict with this experiment.

6.2 Memory Consumption Overhead
In our scenario, we have three tables (header, item, and

one dimension table) that need to be extended with the tem-
poral information in order to prune the subjoins. In total,
this adds up to the following five additional attributes:

• Header table: Header[tidHeader]

• Item table: Item[tidItem, tidHeader, tidProductCategory]

• Dimension table: ProductCategory[tidProductCategory]

The measured memory consumption, for delta stores, with
2.7 thousand header tuples, 270 thousand item tuples was
78,553 KB compared to 69,507 KB without the temporal in-
formation. This is an overhead of 13 percent only for the
delta partitions. In main partitions, based on our dataset
with 35 million header and 330 million item records, this
results in an overhead of 10 percent because of better com-
pression applied to main stores only.

6.3 Insert Overhead
To ensure the matching dependencies of records with for-

eign keys, every insert operation involving a foreign key at-
tribute needs to find the related temporal attribute of the
matching tuple. To quantify this overhead, we have mea-
sured the time for the look-up of the Header[tidHeader] at-
tribute for every insert of a record in the Item table.

The results show that the record insertion in the Item
table without the tidHeader lookup, and without any refer-
ential integrity checks takes about 50 percent of the record
insertion time with referential integrity checks. The lookup-
up of the matching tidHeader value in theHeader table takes
20 percent of the time of referential integrity checks. When
the number of records in the Header table increase, the
look-up slightly increases up to 30 percent. However, this
look-up can be combined with the required integrity check
for newly inserted records with foreign keys that must find
the existing primary key record. Also, we argue that with
a shift to a read-mostly workload in enterprise systems [25],
the impact of the insert overhead can be regarded as negli-
gible compared to resource-intensive aggregate queries.

6.4 Join Pruning Benefit
To measure the benefit of our proposed join pruning ap-

proach, we have created three experiments in which we com-
pare the following four di↵erent join query execution strate-
gies:

• Uncached aggregate query : this executes an aggregate
query without using the aggregate cache as described
in Section 2.3.1,

• Cached aggregate query without pruning: while the
main partition is cached, all remaining subjoins in-
cluding any delta partitions must be computed for the
delta-compensation as described in Section 2.3.2,

• Cached aggregate query with empty delta pruning: as
an optimization to the previous strategy, we omit sub-
joins with empty delta partitions as it is the case with
the ProductCategory dimension table, and

• Cached aggregate query with full pruning : this strat-
egy uses the dynamic pruning concept as described in
Section 5.

 1

 10

 100

3K 30K 300K 3M
N

or
m

al
iz

ed
 E

xe
cu

tio
n 

Ti
m

e
Number of Records in Itemdelta Partition

Uncached Aggregate Query
Cached Aggregate Query without Pruning

Cached Aggregate Query with Empty Delta Pruning
Cached Aggregate Query with Full Pruning

Figure 7: Join performance with di↵erent join query execu-
tion strategies based on di↵erent delta sizes of Itemdelta and
Headerdelta.

The first experiment as illustrated in Fig. 7 measures the
execution times of the four di↵erent join approaches based
on five di↵erent delta sizes of the Item table ranging from
300 thousand to 3 million records. The delta partition
of the Header table contains approximately one tenth of
the Itemdelta table records and the delta partition of the
ProductCategory table is empty. The workload for this
benchmark contains 100 aggregate join queries similar to
the query in Listing 1. Fig. 7 shows the average normal-
ized execution times of these queries. We see that for small
delta sizes, a query using the cached aggregate can be an-
swered by an order of magnitude faster than when not using
the aggregate cache. With an increasing number of records
in Itemdelta and Headerdelta the query execution time in-
creases regardless of the applied join pruning strategy be-
cause the newly inserted records in the delta partitions have
to be aggregated during the delta-compensation to compute
the query results. While the empty delta pruning delivers
performance improvements of around 10 percent, the exe-
cution times using the full pruning approach is, on average,
four times faster than using the cached aggregates without
any dynamic join pruning.

In the second experiment, whose results are illustrated
in Fig. 8, we have created a mixed workload consisting of
insertions of records into Header and Item tables and the
execution of aggregate join queries. The starting point is an
empty delta partition of both the Header and Item tables.
The benchmark then starts the insertion of records in both
tables including the look-ups of tid attributes. At the same
time, we monitor the execution times for aggregate queries
executed with the four di↵erent strategies. The benchmark
has varying frequencies of aggregate queries with respect
to the number of inserts which is realistic in an enterprise
application context. For example, we can see that there are
many aggregate queries at the point of time when Itemdelta

contains around 1 million records.
The results in Fig. 8 show that while the empty delta

pruning has minor performance advantages over not pruning
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Figure 8: Join performance with di↵erent join query execution strategies based on growing delta sizes.

at all, our proposed join pruning approach outperforms both
when the delta partitions have non-trivial sizes. We also see
that the runtime variance of queries with or without the
aggregate cache but without any pruning is very high. This
can be explained by a high concurrent system load which,
due to the complexity of the monitored aggregate queries,
results in variable execution times.
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Figure 9: Join performance with di↵erent join query execution
strategies of TPC-H queries based on CH-benCHmark [10].

As a third experiment for the join pruning benefit,
we have taken four analytical TPC-H queries of the CH-
benCHmark [10] and analyzed their performance with the
four join approaches. The four queries (Q3, Q5, Q9, and
Q10) were selected because they are fully supported by the
aggregate cache and join more than three tables as in our
previous benchmarks. We chose the scale factor 200 for this
experiment, which yields 60 million records in the orderline,
20 million records in the orders table and less records in the
remaining tables according to Funke et al. [10]. As proposed
in the CH-benCHmark setup, we have populated the delta
partitions of the orders, neworder, orderline, and stock ta-
bles with five percent of total records per table (i.e., the
orderline table contains 3 million records in the delta and
57 million records in the main), reflecting a mixed workload.

The results are illustrated in Fig. 9 and reveal that for ag-
gregate queries joining more than three tables, the benefit of
the aggregate cache is only marginal if delta-compensation
during the query execution doesn’t use dynamic join prun-
ing. Pruning empty delta partitions yields a minor improve-
ment while the full join pruning approach can accelerate

query execution by up to an order of magnitude compared
to an uncached aggregate query.

6.5 Join Predicate Pushdown Benefit
In cases when the join pruning is not successful, we can

still leverage the temporal relation between the partitions
modeled using the MD constraints. In this experiment,
we measure the execution time of the subjoins between
Headerdelta and Itemmain partitions by using the predicate
pushdown explained in Section 5.3. We have three di↵erent
setups with a varying total number of records in Itemmain,
while Headerdelta has a constant number of 100 thousand
records. The results as illustrated in Fig. 10 show that with
an increasing number of records participating in the join
(i.e., matching the join conditions), the performance of the
delta-compensation decreases. By using our predicate push-
down concept, we can see that it can accelerate the join
query execution up to a factor of four, especially if the num-
ber of matching records is low compared to the overall table
size.

6.6 Applying Join Pruning to Multi Partitions
To benchmark the performance of the join pruning ap-

proach in the presence of multiple partitioned tables as out-
lined in Section 5.4, we have created an experiment with the
Header and Item tables, partitioned in a hot-cold ratio of
1:3 as proposed in [25]. We execute five di↵erent aggregate
queries with di↵erent selectivities, aggregating 100 thousand
to 25 million records in the hot partition and measure their
performance with di↵erent join strategies.

The results are illustrated in Fig. 11 and reveal several in-
sights. First of all, we see that an uncached aggregate query
is slightly faster in a partitioned environment, because the
scan e↵ort can be reduced. Second, we see that the perfor-
mance of using a cached aggregate query without pruning is
worse in a partitioned environment because of the additional
subjoins that are required for delta-compensation. The per-
formance of the full join pruning approach is superior in
both partitioning scenarios, speeding up query execution by
an order of magnitude.

7. RELATED WORK
Materialized views have received significant attention in

academia [1, 2, 12, 32], especially in data warehousing envi-
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The underlying aggregate queries vary in the number of aggre-
gated records.

ronments [33, 1, 22]. Our techniques for using materialized
views are di↵erent along multiple dimensions.

First of all, the maintenance timing is not bound to an
update of the base data [2], nor it is deferred no later than
querying the materialized view [32, 28, 27, 5]. Instead, we
maintain the materialized view during the online merge pro-
cess [17] as our aggregate cache is defined on main partitions.
This enables high insert rates and does not imply a main-
tenance downtime which is not tolerable in mixed workload
environments as opposed to data warehouses [4]. Secondly,
we do not rely on redundant storage of base data changes,
as others do with auxiliary tables or summary tables [18,
31, 22, 32]. Our delta storage is the primary storage for
all inserts and updates performed between two delta merge
processes. Our algorithm to calculate the consistent query
result of queries using the aggregate cache is similar to the
summary-delta tables method introduced in [22], but we do
not distinguish between a refresh and propagate phase.

For partitioned tables, several join optimization tech-
niques have been proposed. One of them is to dynamically
partition the relations based on workload [26] for improved
performance. Another approach is to do logical pruning
for horizontally partitioned tables [13]. However, the lat-
ter approach is limited to the scenario when the horizontal
partitioning attribute matches the join attributes used in
the query whereas our implementation supports, by leverag-
ing matching dependency methods, arbitrary join attributes.
Also, this approach does not apply to the dynamic partition-
ing in the general main-delta architecture which we address

through dynamic join partition pruning.
While there is an emergence of application-specific

databases such as Amazon Dynamo [6] or Google
Bigtable [3], we are not aware of a materialized view mainte-
nance and query compensation approach for a general pur-
pose DBMS that leverages the semantics of an enterprise
application to increase the performance of aggregate queries
using materialized views.

8. CONCLUSIONS AND FUTURE WORK
With the growing requirements of enterprise applications,

combining transactional and analytical workloads on a sin-
gle system, the aggregate cache, a dynamic materialized ag-
gregate engine implemented in SAP HANA, enables the han-
dling of an even higher throughput of aggregate queries gen-
erated by multiple parallel users as one mean to scale the
system. As admittance in the aggregate cache is directly
dependent on the performance of the query execution us-
ing the cache, we analyze a special class of aggregate join
queries which can be very expensive to compensate. Joins of
partitioned tables are challenging in general, but slow down
the incremental materialized view maintenance and query
compensation of the aggregate cache in particular.

Our analysis of enterprise applications revealed several
patterns for their schema design and usage. Most impor-
tantly among them, business objects are persisted using a
header and item table with additional rather static dimen-
sion tables. Moreover, our application workload analysis
showed that related header and item records are often in-
serted within a single transaction or at least within a small
time window.

To transport these enterprise application object semantics
characteristics into the database, becoming object-aware,
and optimize the join processing in the aggregate cache,
we exploit the concepts of matching dependencies and join
pruning that potentially eliminate expensive joins of par-
titioned tables. This is achieved by adding temporal at-
tributes at insertion time and use them during run time to
dynamically prune subjoins with an empty result set. In ad-
dition, we use techniques for join predicate pushdown, also
based on matching dependencies, that can further optimize
join processing with aggregate cache when join pruning does
not succeed.

The experimental results show that while our approach
induces a small overhead for record insertion, the query pro-
cessing with the aggregate cache using the pruning approach
outperforms the non-pruning approach by an average factor
of four in the case of three joined tables, and up to an order
of magnitude when joining more than three tables or us-
ing additional hot and cold partitioning. The join predicate
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pushdown can optimize a join, in case the pruning does not
succeed, up to a factor of four.

One direction of future work includes improving the per-
formance of delta-compensation process for join queries
when invalidations are detected in the main storage in case
of updates. While the presented join pruning techniques will
always deliver correct results, and deletes do not negatively
impact the performance of our solution, we are investigating
ways to improve the pruning success rate for data updates
by keeping track of updates in the delta storage in a sep-
arate negative-delta partition. To this end, another inter-
esting future work is to model (and dynamically discover)
the temporal soft-constraints among relations without using
strong matching dependencies which require extra storage.
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ABSTRACT
We present a transactional and concurrent replication scheme
that is designed for hybrid data store architectures. The sys-
tem design and the requirements are motivated by the real
business cases we encountered during the development of our
commercial database product. We consider two databases
where the original database handles read/write transactional
application workloads while the second database handles
read-only workloads from the same applications over the
data periodically replicated from the original database. The
main requirement is ensuring the application of the updates
on the replica database in the exact same order they were
executed in the original database, which is called execution-
defined order. Although this requirement could easily be
satisfied by the serial execution of the updates in the commit
order, doing so in an e�cient manner by exploiting concur-
rency is a challenging problem. We present a novel concur-
rency control algorithm to addresses that problem by also
allowing the read-only workloads on the replica database to
interleave with the concurrent replication. The extensive
experiments show the e�cacy of the proposed solution.

1. INTRODUCTION
Increasingly more organizations are using multiple database

types side-by-side instead of trying to fit one database to all
data management needs. The reason is each database prod-
uct could be better fit for di↵erent business requirements.
We call the use of multiple database types in the same com-
puting environment hybrid data store architecture.

It is natural that data need to be replicated among those
data stores, as the upstream applications ideally would like
to use the underlying databases in a seamless fashion with-
out worrying about and the availability of the data sets at
a certain location.

An interesting hybrid architecture we are observing is us-
ing key-value stores along with relational databases. The re-
lational databases have well known strengths and long, suc-
cessful history in transactional data processing. Key-value

c�2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
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Figure 1: Caching for web applications.

stores have gained popularity for their seamless scalability
and elasticity and also their lower-cost profile.

In this work, we specifically focus on the replication, where
data need to be replicated from a relational database to a
key-value store. The system design and the requirements are
motivated by the real business cases we encountered during
the development of our commercial database product, Par-
tiqle [20], which is commercialized under the name of IERS1.
Partiqle is an elastic transactional SQL engine that is imple-
mented on top of a key-value store. In a typical scenario the
users already have a traditional relational databases prod-
uct in use. They want to increase the scalability of the
database with the increasing demand from the applications.
However, the users don’t prefer to scale-up the traditional
relational database, instead they consider the scale-out ap-
proach through a key-value store, which is the replica of the
relational database and serves a specific and demanding part
of the workload. Naturally, the main requirement is ensur-
ing the application of the updates on the replica database
in the exact same order they were executed in the original
database, which is called execution-defined order.

Another prominent example of such setting is caching,
where data from relational database are cached in a large-
scale cache cluster implemented as a key-value store, such
as memcached [3]. Memcached is used to significantly re-
duce the read load on the database system by caching fre-
quently read application generated data in a scale-out in-
memory key-value cache. Figure 1 depicts the architecture
of a web application that uses memcached. Indeed, most of
the largest web applications including Facebook, YouTube,
Twitter and Wikipedia are already using memcached as the
key scale-out technology in their architecture.

An extreme case of application layer caching approach is

1http://www.nec.com/iers
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to cache all the working set data instead of only parts of it.
In fact, in this case all the working set data in database is
replicated in the cache system that can either be a memory
based system like memcached or disk based key-value store
system like memcachedb [4] or membase [2] to provide data
persistence and recovery. In addition to having the all ad-
vantages of normal caching system, such a replication-based
system eliminates the cache miss possibility for applications.
This is very beneficial when the access pattern to the data
is such that reduces the probability of cache hit. Uniform
distribution of data access is one of such patterns that may
reduce usability of caching. The replication approach also
simplifies the application developers’ job by not requiring
explicit cache value update or invalidation since all the up-
dates are propagated to the replicated data automatically.

With all the benefits of such caching, a major issue that
may arise is the exposition of stale data to application, which
happens because the replica always lags behind the original
data. If there is a high transactional update load on the
original data, the replica may significantly be out of sync.
Therefore, shortening the lag for the replica would signifi-
cantly reduce the probability of exposing stale data to the
application.

As shown in Figure 1, the relational database handles
transactional read/write workload and the key-value store
is responsible for handling a read-only workload. The trans-
actional updates in the original database are shipped to the
key-value store and applied in the same order to guaran-
tee the correct state for the replica. We call this order as
execution-defined order. Transactions may interleave dur-
ing their execution against the original database. However
their correct order is defined by their original execution and
that order should be respected when doing the log replay
for replication. Consequently we have the following require-
ments:

• The replication process should respect the execution-
order of the transactions in the original database.

• The replication process should be e�cient to increase
replication speed and reduce replica lag.

• The read-only access should be allowed to interleave
with an on-going replication process.

The first requirement states that the replication algorithm
should guarantee that the resulting serialization order for
transactions in the replica is exactly the same as the serial-
ization order in the original database and no other serializa-
tion order is acceptable. To illustrate the problem, consider
two transactions in Figure 2. If Ti is executed before Ti+1

then the data item with key Keyk will not exist in the data
store. On the other hand, if Ti+1 is executed before Ti the
data item with key Keyk with value Object will exist in the
data store. Therefore, although both executions are correct
from serialization point of view, the second execution is not
acceptable since it does not result in the correct state con-
sidering the predefined execution order.

The above requirement could be trivially implemented by
replaying the update values in commit order serially. How-
ever this kind of serial execution would be prohibitively in
e�cient – the second requirement. Therefore the replication
algorithm should improve the e�ciency by exploiting con-
currency while still respecting the execution-defined order

and allowing the read-only workload on the replica to see
consistent database state concurrently.

As we discuss in the related work section, although there
are related methods in the literature, none of them directly
meets the requirements in the given system settings.

Figure 2: Impact of serialization order on system

state.

The contributions of this paper can be summarized as
follows:

• We present a replication algorithm that exploits con-
current execution for e�ciency while guaranteeing the
execution-defined order in the replica database and al-
lowing read-only application workloads to interleave
on the replica database.

• We present the architecture of the system, TxRep,
we implemented based on the replication method pre-
sented in the paper and hybrid data store architecture.
The actual system is used to generate our experimental
results presented in the paper.

• Through extensive experiments we evaluate the per-
formance of the proposed transactional replication al-
gorithm under variety of parameters.

The rest of the paper is organized as follows. We review
the related work in Section 2 and then present the system
architecture and the consistency model in Section 3. Section
4 describes query translator followed by the details of our
transaction manager and concurrency control algorithm in
Section 5. We present our experimental results in Section 6.
Section 7 concludes the paper.

2. RELATED WORK
Application level caching systems such as memcached [3],

memcachedb [4] and membase [2] have been used as scale
out solution in many web applications. However, such sys-
tems do not provide any transactional consistency guaran-
tees for data access and updates with the rest of the sys-
tem. Transactional cache (TxCache) provides transactional
access to application level caching systems such as mem-
cached [19]. TxCache guarantees that any data accessed
regardless of being in cache or database is consistent based
on a valid snapshot of the database. It may result in stale
snapshots which is acceptable for web applications. Unlike
TxCache and other application level caching approaches, our
proposed scale out approach replicate whole data base in the
key/value store and prevents all read transactions from hit-
ting the relational database.

In the relational database context, a common approach
for scale-out is replication [13]. In [17] Manassiev et. al.,
present a replication technique for scaling and continuous
availability of relational databases. The approach assigns a
master for each conflict class where all update transactions
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for the class are sent to the corresponding master. Each mas-
ter node has a set of slaves that are its replicas and serve the
read-only transactions in the system. Updates are dissem-
inated from master to its slave nodes either eagerly upon
their arrival or lazily by packing several updates and apply-
ing them together. This approach can be further improved
by using a modified version of our algorithm in applying the
updates on slave nodes.

Providing equivalence to a predefined serialization order
has been explored in the context of relational databases.
Conservative timestamp ordering guarantees the execution
order based on the assigned timestamps to the transactions
[10]. By delaying the execution of operations until com-
pletion of execution of conflicting operations with smaller
timestamp, conservative T/O guarantees there will be no
conflicts in execution of each operation. In practice, this ap-
proach serializes all write operations in the database. The
improved version of this protocol, SDD-1, tries to provide
more concurrency by using transaction classes [11]. Trans-
actions are places in transaction classes and only potentially
conflicting transaction classes should be dealt with conser-
vatively.

Our concurrency control algorithm is very similar to con-
currency control by validation [16]. This approach also as-
signs three states to transactions, START, VAL and FIN
which are equivalent to START, COMITTED and COM-
PLETTED states in our algorithm. However, in our algo-
rithm we have a predefined order that we should follow while
in the validation-based case the order is decided in the val-
idation phase. In the validation-based case if a transaction
cannot be validated it is simply rolled back which will result
in a di↵erent serialization order compared to the case where
the transaction could be validated. But in our case this is
not acceptable and we strictly should follow the predefined
order.

Jiménez-Peris et. al., proposed a deterministic thread
scheduling to enable replicas to execute transactions in the
same order [14]. This approach requires careful considera-
tion of the impact of interleaving of local threads and sched-
uled threads.

In [21] Thomson and Abadi propose a distributed database
system that guarantees equivalence to a predetermined se-
rial ordering of transactions by combining a deadlock avoid-
ance technique with concurrency control schemes. All the
transactions in the system go through a preprosessor com-
ponent that determines the execution order and then are
propagated to replicas using a reliable, totally ordered com-
munication layer. The conflicting transactions are aborted
and retried, however, all abort and retry actions are deter-
ministic although the order may change by preprosessor. In
our proposed approach, on the other hand, we do not have
the possibility of changing serialization order and we should
follow the predefined order strictly all the times.

Polyzois and Garcia-Molena proposed a similar algorithm
for remote backup in transaction processing systems [18].
To execute transactions in the backup they use tickets to
order transactions and two phase locking protocol for con-
currency. Each transaction requests lock on the items that it
needs, however, the locks are granted according to the trans-
action ticket number and the protocol ensures that no lock
is granted to a transaction unless all the transactions with
the smaller ticket that requested the same lock have been
granted. Unlike this approach our concurrency control algo-

rithm follows a technique similar to optimistic concurrency
control.

3. SYSTEM ARCHITECTURE
Figure 3 illustrates the architecture our implemented sys-

tem. We assume a standard relational database as the database
that stores all the persistent application data. The database
system provides a SQL interface for the applications and is
responsible for handling read/write transactional workload.
It is important to note that, we do not change the standard
relational database’s API’s, query execution mechanisms, or
optimizations.

To improve the performance of the database system for
certain application workloads, the database is replicated into
a distributed key-value store. The key-value store can be
memory-based or disk-based store. The replicated key-value
store plays similar role to cache for the database and is used
to handle the read only workload while the read/write work-
load bypasses the key-value store and is run directly on the
database. The system does not have any specific assumption
about the key-value store and as long as the store provides
standard PUT/ GET/ DELETE interface to access data, it
can be used in our system. For instance, we can use mem-
cached[3], memcachedb[4] or Dynamo [12] as the key-value
store in our system. In our system we provide both key-
value store API (PUT/ GET/ DELETE operations) and
also SQL API to the key-value store. The key-value store
API is the native API and it does not require any additional
component. To enable SQL API to the key-value store we
used our Partiqle system [20]. There are other examples of
providing SQL-like APIs to key-value stores, such as UnQL2

and CQL3, which could also be used for this purpose.

Figure 3: Scale out architecture of TxRep using key-

value store.

Between the relational database and the key-value store
we have three main components of our system that are re-
sponsible for synchronizing the key-value store with the re-
lational database.

The Replication Middleware component is responsible for
shipping the transaction log from the relational database
to the replica in the key-value store. It periodically reads
the transaction log in the database, packs the new transac-
tions into a relocation message and ships the messages to the
key-value store. Note that the transaction log only includes
write statements and there is no need to apply read state-
ments from the relational database in the replica. We used
an MQ-based system (Apache ActiveMQ) as the replication
middleware. Although it is an important part of the system

2http://www.unqlspec.org
3Cassandra Query Language: http://www.datastax.com
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architecture, the replication middleware details are not di-
rectly relevant for the concurrent replication method, which
is the main focus of the paper. Therefore, we give some
details of the component in the appendix for the interested
readers.

The Query Translator (QT) component is responsible for
translating the update only SQL statements into native key-
value store API operations that can be directly executed on
the key-value store. Note that the replication workload only
contains the write operations to key-value store. We will
discuss details of the QT component shortly.

The Transaction Manager (TM) component is used to ap-
ply the transactions to the key-value store concurrently. The
TM component essentially implements the proposed concur-
rent replication method in the paper. Note that when the
transactions reach the TM they are in the form of native
key-value store API as they have been translated by QT
component. The result of applying the transactions should
be exactly the same as applying them in serial manner with
execution-defined order. We will provide more details on the
TM in Section 5.

3.1 Consistency model
Our system provides both transactional and non-transactional

access to the stored data. The read/write transactions by-
pass the key-value store and are run directly on the database.
Non-transactional read only workload can be directly exe-
cuted on the key-value store. This is the same access method
that is provided in systems like memcached and memcachedb.
For such workload the only consistency guarantee is the
one that is provided by the key-value store and the read
data may also be stale. Most of the existing key-value
store systems can provide key level consistency guarantees
where access to single key-value item (a single PUT, GET
or DELETE operation) can be atomic.

4. QT: RELATIONAL DATA IN K/V STORE
In this section we present the details of the Query Trans-

lator component. We first present the data layout on a key-
value store and then describe how transaction logs in SQL
format are translated into key-value store API operations.
In order to facilitate the discussion, we use a modified ver-
sion of TPC-W benchmark [8] schema as a running example.
Figure 4 depicts the modified relational schema. When a
customer orders an item, a new tuple corresponding to the
order is added into the order relation.

Figure 4: A relational schema for a web based store.

4.1 Relational data over key-value store
Since we replicate the relational data in RDBMS into a

key-value store and the data layout on these two stores are
di↵erent, we need to provide a mapping scheme to map the
relational data layout into the key-value data layout.

The first step in storing relational data in the key-value
store is to store data in relations. To store the tuples of a
relation in the key-value store we represent each tuple as a
key-value object. We construct the key for each tuple by
combining the name of the relation and the primary key.
This generates a unique key for each tuple in each relation.
The value for the generated key is the set of all fields for
tuple. For instance, consider the ITEM table in our example.
Figure 5 depicts three tuples in this table. To represent
each tuple as a key-value object, we first create a unique
key for each tuple by concatenating the name of the relation
with the primary key. For the first tuple the key will be
”ITEM 1”. The corresponding value for the first tuple will
be the set of fields in the tuple, {1, ’Item1’, ’Item1 Desc’,
100}.

Figure 5: Tuples in item table.

The above mapping of relational data into key-value ob-
jects provides primary key access to tuples where the appli-
cation can query, read and write each tuple by its primary
key. However, tuples cannot be accessed using any other at-
tribute. For instance, a query cannot access an item based
on its cost which is the value of ”I COST” column in ITEM
table. This is because there is no key in the key-value store
that provides access to item tuples using their cost value.
Note that, usually, we are not allowed to scan the entire
table: such an operation, which spans over the entire key-
value nodes is very ine�cient and is not a↵ordable for web
applications where the response time is limited. In order
to provide access to the tuples through an attribute other
than primary key, we create a hash index for the attribute
in the key-value store. A hash index structure is composed
of set of key-value objects. For each distinguished value for
the indexed attribute, we create a key-value object. The
key is constructed using the value of the indexed attribute
and the value for the object is the set of keys for the tuples
that the value of their corresponding attribute is the same
as the value that was used to construct the key. As an ex-
ample consider we want to provide access to items through
the item cost. For each cost value in the ITEM table we
should create a key-value object. The key for such an object
is constructed using the relation name, which is ”ITEM”, the
attribute name which is ”COST” and the value of the cost
column. The value of the object is the keys for the tuples
that have the same cost. Figure 7 shows a hash index for
the cost attribute in the ITEM relation. Assuming the cost
of items with id 1 and 7 is 100, the value for the hash in-
dex object with key ”ITEM COST 100” will be ”ITEM 1”
and ”ITEM 7” which are the keys to access the tuples cor-
responding to these items.

4.2 Range index using B-link tree
Although we can use a hash index to access tuples through

any of their attributes, we cannot use it to answer range
queries and queries that need to scan a whole table. To pro-
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Figure 6: Key/value objects for the tuples in ITEM

table.

Figure 7: A hash index to access items with their

cost value.

vide this capability over key-value store we propose another
index structure that is based on B-link tree [15]. B-link tree
is a concurrent B-tree that reduces the lock usage for e�-
ciency. A B-link tree is a B+-tree with an extra pointer in
each node. This extra pointer in a node points to the right
sibling of the node in the tree. Using this extra pointer,
look up operation in B-link tree do not need to acquire any
locks and insert and delete operations need to acquire locks
on a small number of nodes. We create a key-value object
for each B-link tree node. Hence, (1) conflicts among write
operations are translated to conflicts on key-value store API
operations, which are managed by the TM component (in-
stead of locking), and (2) read-only transactions can access
the B-link tree mapped on a key-value store without being
blocked by updates.

4.3 SQL statement translation
The replication is done by shipping the transaction log

from the relational database and applying the database up-
date operations on the key-value store. Therefore the trans-
lation between the relational transactional log to key-value
store API operations (such as PUT) involves translating IN-
SERT / UPDATE / DELETE statements from the database
log. This operation is not particularly di�cult and we used
our existing system components from Partiqle system [20]
for this purpose.

5. TM: CONCURRENCY CONTROL FOR
REPLICATION

The transaction manager (TM) component is responsi-
ble for concurrently executing transactions on the key-value
store. A transaction starts with start statement and ends
with commit statement. We consider the transactions that
are executed by TM are the ones in transaction log of the
relational database that were shipped by the replication mid-
dleware. However, read-only transactions from application
can also be interleaved with the shipped update transac-
tions if they need transactional access to the replicated data
in the key-value store. To maintain the correctness of the
replicated data in the key-value store the transaction man-
ager should guarantee that the result of concurrent execu-

tion of the update transactions shipped from the database
is exactly the same as serial execution of them in the same
order as they were executed in the database. The simple
way to provide such guarantee is to execute all the trans-
actions in the key-value store side serially. However, if the
update rate in the database is high, the replica could signifi-
cantly lag behind the database and increase staleness of the
data in the key-value store. It may also significantly reduce
the throughput of the read only transactions that are being
executed on the key-value store side.

To address this issue we can execute transactions concur-
rently, however, we need to provide concurrency control to
guarantee correctness of the transaction executions. Such
concurrency control mechanism is di↵erent from the ordi-
nary concurrency control systems because of the execution-
defined order of transactions. In an ordinary concurrency
control algorithm when a set of transactions are executed,
as long as the result of the execution is equal to some serial
order of transaction execution the result is acceptable. How-
ever, in our case the concurrency control algorithm has to
guarantee that the result of concurrent execution of trans-
actions is exactly the same as the result of serial execution
of them in the same order that they were already executed
in the database. Therefore, the existing concurrency control
algorithms cannot be used in our TM component.

We propose a new concurrency control algorithm that pro-
vides such a guarantee while executes transactions concur-
rently.

The algorithm receives a set of transactions as input and
uses a set of threads in a threadpool to execute the transac-
tions concurrently. Similar to the ordinary concurrency con-
trol algorithms we consider two types of conflicts, read/write
conflict and write/write conflict. In read/write conflict two
operations conflict if one of them is GET and the other is
PUT or DELETE and both access the item with the same
key. For instance, the following operations have read/write
conflict: GET (“key100), PUT (“key100, object1). In write/write
conflict two operations conflict if they are PUT or DELETE
and both of them access the item with the same key. For in-
stance, the following PUT operations have write/write con-
flict: PUT (“key200 , object2) , PUT (“key200 , object3).

Two concurrent transactions conflict if and only if there is
at least one read/write or write/write conflict between their
corresponding PUT/ GET/ DELETE operations. Note that
if two transactions are not concurrent, i.e., one starts after
the other completes, they do not conflict even if there are
conflicting operations. In order to define concurrency on the
key-value store, we assume that the underlying key-value
store provides consistent read-write, meaning that a write
operation (PUT / DELETE) is atomic and its e↵ect is im-
mediately available for read (GET) operations (no stale data
is read). This feature either is supported or can be added
easily in most of key-value stores including Dynamo and
HBase [12, 1].

Another important assumption that we have is that each
transaction is assigned with a sequence number that indi-
cates the place of the transaction in the ordered list of trans-
actions. The sequence number for the update transactions
can be easily assigned when the ordered list of transactions
are generated by the publisher agent in the database side
or when the list is received by the subscriber agent in the
key-value store side. However, since we may also want to ex-
ecute some read only transactions in the key-value store side
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in a transactional manner we assign the sequence numbers
for transactions in the subscriber agent along with assigning
sequence numbers to the read only transactions. This guar-
antees that each transaction has a unique sequence number
and the order of sequences for update transactions in the
key-value store side is the same as database side while they
may be interleaved with read only transactions in the key-
value store side.

Figure 8: Transaction manager component.

Figure 8 depicts the transaction manager (TM) compo-
nent in our system. There are two threadpools in the sys-
tem that provide concurrent execution. The first threadpool
which is shown on top of the concurrency controller is used
for concurrent conversion of transactions into PUT / GET
/ DELETE operations with their corresponding data items.
We refer to this threadpool as top threadpool. Each trans-
action is run over the key-value store using one thread from
this threadpool and is represented as a set of PUT / GET
/ DELETE operations that is going to be evaluated by the
concurrency controller. After evaluation of a transaction by
the concurrency controller, if there is no conflict, the trans-
action is passed to the next threadpool that is shown in the
bottom of the concurrency controller where another thread is
used to apply the results of the transaction to the key-value
store. We refer to this threadpool as bottom threadpool.

Figure 9: Internal architecture of concurrency con-

troller.

We now present the details of transaction execution in the
transaction manager component. The first step in execution
of a transaction in the transaction manager is to detect the
set of keys that the PUT / GET / DELETE operations in
the transaction access. This is done in one thread that is
acquired from the top threadpool shown in Figure 8. For
each transaction, we find this set of keys using the query
translator and a dedicated bu↵er. After a transaction starts

we create an exclusive bu↵er for the transaction. For every
GET operation in the transaction, if the value for the key
does not exist in the bu↵er the value is retrieved from the
key-value store. The value is also stored in the transaction
bu↵er for future accesses. On the other hand, if the value
for the key exists in the bu↵er, the GET operation uses
the value in the bu↵er and does not access the key-value
store. For every PUT operation in the transaction the cor-
responding key-value pair is added to the transaction bu↵er
without accessing the key-value store. Therefore, until the
commit statement in the transaction all the changes that
are being done by a transaction are stored in the transac-
tion bu↵er and the transaction does not a↵ect data in the
key-value store. In this step multiple transactions execute
concurrently using the threads in the top threadpool in Fig-
ure 8. When a transaction reaches to its commit statement
it is passed to the concurrency controller in the transac-
tion manager. The concurrency controller uses our proposed
concurrency control algorithm to detect the conflicts among
transactions. If there is no conflict between a transaction
and the transactions with lower sequence numbers, the up-
dates of the transaction can be executed concurrently and
the key-value store can be updated based on the new values
in the transaction bu↵er. Note that a transaction is only
checked for conflicts with its predecessors and there is no
need to check for conflict with the transactions that have
higher sequence number. If a transaction does not conflict
with its predecessors, it can commit by applying its oper-
ations to the key-value store using one of the threads in
the bottom threadpool as shown in Figure 8. Otherwise, if
there is a conflict, because of predefined serialization order
the transaction with higher sequence number should restart.

Algorithm 1 depicts our concurrency control algorithm in
the transaction manager. Figure 9 also illustrates the in-
ternal architecture of the concurrency controller and di↵er-
ent data structures that are used by concurrency controller.
The algorithm receives the transactions in the form of PUT/
GET/ DELETE operations with the corresponding keys for
each operation. These transactions are inserted into a prior-
ity queue that is used to sort transactions based on their se-
quence numbers. After generation of set of PUT/GET/DELETE
operations for its corresponding transaction, each thread in
the top threadpool puts its transaction in the priority queue.
The priority queue, which is referred to as CommitReqPQ in
the algorithm, is responsible for keeping the order of trans-
actions based on ascending order of their sequence numbers.
Each transaction can be in one of the following states:

• ACTIVE: An active transaction has started its execu-
tion but has not committed yet.

• COMMITTED: A committed transaction is the one
that does not have any conflict with its predecessors.
However, the updates in its bu↵er has not been applied
to the key-value store.

• COMPLETED: A completed transaction is a commit-
ted transaction that the updates in its bu↵er have been
applied to the key-value store.

In addition, each transaction is assigned with the following
values:

• startT ime: The time that the transaction starts its
execution. This is the time when the transaction is as-
signed to a thread from the top threadpool in Figure 8.
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Algorithm 1 Concurrency control in Transaction Manager

1: CommitReqPQ: Priority queue for commit request.
2: CommittedTransactionList: List of committed trans-

actions.
3: CompletedTransactionList: List of completed transac-

tions.
4: Transaction Ti is the first transaction in CommitReqPQ
5: if Ti’s sequence number is NOT the next sequence num-

ber. then
6: goto line 4 (wait for the right transaction).
7: end if

8: Remove transaction Ti from CommitReqPQ.
9: for all Tj 2 CommittedTransactionList do

10: if Ti conflicts with Tj then

11: Add Ti to restart list of Tj (Ti will restarts when
Tj is completed.)

12: return

13: end if

14: end for

15: for all Tj 2 CompletedTransactionList do
16: if Ti.startTime < Tj .completeTime then

17: if Ti conflicts with Tj then

18: Restart Ti.
19: return

20: end if

21: end if

22: end for

23: Add Ti to CommittedTransactionList.
24: Change the expected sequence number to i+ 1.
25: In a new thread from bottom threadpool:

Execute Ti’s statements.
Move Ti to CompletedTransactionList when

the execution is complete.
Restart the transactions in Ti’s restart list.

• commitT ime: The time that the concurrency control
algorithm detects that the transaction does not have
any conflict with its predecessors.

• completeT ime: The time that the updates in the trans-
action bu↵er for a committed transaction are applied
to the key-value store.

The algorithm also uses two lists, one for the committed
transactions and one for the completed transactions. The
committed transaction list holds the transactions that are
in COMMITTED state and have committed successfully.
Note that, although these transactions are considered com-
mitted, the e↵ect of their execution which is stored in their
corresponding bu↵ers have not been applied to the key-value
store. The completed transaction list contains the transac-
tions that are in COMPLETED state which are the commit-
ted transactions that have also been applied to the key-value
store.

The concurrency control algorithm starts by checking the
first transaction in the CommitReqPQ. If this transaction’s
sequence number is not the expected sequence number the
algorithm does nothing and waits until the transaction with
the expected sequence number is put into the CommitRe-
qPQ. If the transaction in the head of queue has the expected
sequence number it is removed from the queue and is exam-

ined for conflict. Note that when the expected transaction
is on top of the CommitReqPQ it means that all the preced-
ing transactions have been evaluated by the algorithm and
are in COMMITTED or COMPLETED state. Assuming
that the removed transaction is Ti, the algorithm checks the
conflicts with the transactions in both CommittedTransac-
tionList and CompletedTransactionList. The conflict evalu-
ation between Ti and the committed transactions is done in
the for loop depicted in lines 9 to 14. If Ti conflicts with
a committed transaction Tj , since the changes in Tj have
not been applied to the key-value store, Ti may have not
seen these changes and therefore, it needs to wait for Tj to
apply the changes into the key-value store and restart its
execution. In this case, the algorithm adds Ti to the restart
list of Tj . The restart list for a transaction is the list of
transactions that should be restarted after the transaction
is completed and its e↵ect is applied to the key-value store.
In case of such conflict since Ti should restart after comple-
tion of Tj , the algorithm stops processing other transactions
until completion of the conflicting committed transaction.
All other transactions after Ti also are not processed since
the expected transaction on top of the CommitReqPQ is
Ti. After Tj completes, it then notifies all of its conflicting
transactions to restart since now they can see the updates
from Tj .

If Ti does not have any conflict with the committed trans-
actions, the algorithm checks for conflicts with the com-
pleted transactions. This is done in the for loop depicted
in lines 15 to 22 in the algorithm. However, as shown in
line 16 the algorithm ignores the conflict test between Ti

and the transactions that have completed before Ti started.
Since we assume writes on the key-value store are immedi-
ately available for the readers, there is no concurrency be-
tween these transactions: This means that even if there is a
conflict between Ti and such transactions, Ti used the up-
dated data from these transactions. On the other hand, if Ti

starts before completion of a completed transaction like Tj

and Ti conflicts with Tj , then it is possible that Ti may have
used out of date data. Therefore, the algorithm restarts Ti

in order to make sure that Ti uses the correct data for its
execution.

Finally, if Ti does not have any conflict with its predeces-
sors, it can commit and be executed concurrently with them.
The algorithm first changes the state of Ti into COMMITTED
and adds Ti to the list of committed transactions and up-
dates the expected sequence number. Then, using a thread
from the bottom threadpool, it applies the corresponding
changes that should be made to data in the key-value store.
When the thread finished updating the key-value store, the
transaction is completed. At this point, the algorithm changes
the state of the transaction to COMPLETED and removes
Ti from the CommittedTransactionList and adds it to the
CompletedTransactionList. It also restarts all the transac-
tions that have been waiting for completion of Ti. As men-
tioned, these transactions are stored in Ti’s restart list.

5.1 Discarding completed transactions
In our concurrency control algorithm the CompletedTrans-

actionList is the last list that stores transactions. However,
by processing more and more transactions this list will grow
larger. Therefore, we need to limit the size if this list and
remove the completed transactions from the list if there is no
need for them. The main reason to keep a completed trans-
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action Ti in the CompletedTransactionList is that if another
transaction Tj , starts before the completion of Ti and Tj has
conflict with Ti, there is a possibility that Tj did not use the
updated data resulted from Tj . Thus, in order to make sure
that Tj observes the results of Ti, we need to make sure that
Tj starts after completion of Ti. Based on this assumption,
if there is no active transaction that has started before com-
pletion of a transaction Ti, there is no need to keep Ti and
we can safely remove it from the CompletedTransactionList
without jeopardizing the correctness of the algorithm.

Algorithm 2 Asynchronous removal of transactions from
CompletedTransactionList.

1: ActiveTransactionList: List of active transactions.
2: CompletedTransactionList: List of completed transac-

tions.
3: for all Ti 2 CompletedTransactionList do
4: boolean shouldBeRemoved = true;
5: for all Tj 2 ActiveTransactionList do
6: if Tj .startTime < Ti.completeTime then

7: shouldBeRemoved = false;
8: end if

9: end for

10: if shouldBeRemoved then

11: CompletedTransactionList = CompletedTransac-
tionList - {Ti}

12: end if

13: end for

We use an asynchronous algorithm to remove the com-
pleted transactions from the CompletedTransactionList. We
consider a threshold for the CompletedTransactionList size
and whenever the size of the list passes the threshold the
transaction removal algorithm is called asynchronously. Al-
gorithm 2 shows the process of detecting and removing com-
pleted transactions that are not required from the Complet-
edTransactionList. For each transaction in the Completed-
TransactionList, the algorithm checks if there is any active
transaction in the ActiveTransactionList. The ActiveTrans-
actionList is the list that transactions are added when they
start execution in the system. If there is at least one transac-
tion that has started before completion of completed trans-
action Ti, the transaction Ti should not be removed from
the CompletedTransactionList. Otherwise, the algorithm
removes transaction from the CompletedTransactionList.

6. EXPERIMENTAL EVALUATION
The main goal of our experiments is to validate the ad-

vantage of using our proposed concurrency control algorithm
and to analyze the e↵ect of di↵erent tuning parameters in
the performance of the algorithm. In particular we present
the following results:

• The comparison of serial execution of transactions with
concurrent execution based on our concurrency con-
trol.

• The e↵ect of workload characteristics such as conflict
ratio, read/write ratio and number of concurrent clients
on our proposed concurrency control algorithm.

• The e↵ect of system parameters such as degree of par-
allelism (number of threads) and key-value cluster size
on our concurrency control algorithm.

6.1 Benchmark Description
Since we used web applications as one of the motivating

applications for our proposed system, we use TPC-W bench-
mark [8], which is a transactional web e-commerce bench-
mark. The benchmark emulates an on-line book store with
multiple on line browser sessions. The benchmark provides
three di↵erent interaction types: browsing (5% of transac-
tions are writes), shopping (20% of transactions are writes)
and ordering (50% of transactions are writes). We modified
an open source Java implementation of TPC-W benchmark
to only emulate database transactions part of the bench-
mark [9]. The database contains eight tables: customer,
address, orders, order line, credit info, item, author, and
country. In our implementation we also have two auxil-
iary tables, shoppingcart and shoppingcartline. These ta-
bles are used to store the persistent state of the shopping-
cart for each client. We used 2,000,000 items and 2880*1400
(4032000) customers, which results in a database with the
size of 7.2GB.

To be able to test the specific parts of the system, we also
create a synthetic workload on top of TPC-W database in
such a way that we can create transaction conflicts at de-
sired levels. In our synthetic workload each transaction has
only one update statement where we update the quantity of
an item in the database given the item id. We control the
probability of conflict with selecting the item id value from
a predefined range. The smaller the selection range, the
higher the probability of selecting the same item id for dif-
ferent transactions and therefore, the higher the probability
of conflict. Only accessing the same data item is not enough
to generate a conflict for two transactions and the other nec-
essary condition is the concurrent access to the item by both
transactions.

6.2 Experiments Setup
We set up our experimental environment based on our

scale out architecture shown in Figure 3. For relational
database in the architecture we use MySQL [5] and for the
key-value store we use Project Voldemort [6] which is an
open source of Amazon Dynamo [12]. We implemented
Replication Middleware, Query Translator and Transaction
Manager components all in Java. We used Apache Ac-
tiveMQ for the messaging middleware in our replication mid-
dleware component. The publisher agent reads the transac-
tion log from MySQL and constructs a replication message
that is delivered to the replication agent through the Ac-
tiveMQ framework. We run the experiments on a set of up
to 18 machines. We assign one machine to MySQL database
where the publisher agent from the replication middleware
also resides on it. Another machine is used as ActiveMQ
broker. The Query Translator (QT) and Transaction Man-
ager (TM) along with Subscriber Agent all reside in one ma-
chine. The rest of the machines in the experiment are used
for key-value store. All the machines except the one that
runs the Query Translator (QT) and Transaction Manager
(TM) along with Subscriber Agent are Intel Xeon machines
with 2.4GHz CPU and 16GB memory running CentOS 5.4.
The machine that we used for Query Translator (QT) and
Transaction Manager (TM) along with Subscriber Agent has
an Intel Core(TM)2 Duo CPU with 3.16GHz speed and 4GB
of memory running Ubuntu Linux kernel 2.6.32 and Sun’s
JDK 1.6.3. In all of the experiments, except the one for
evaluating the e↵ect of key-value cluster size, we use five
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machines for Voldemort key-value cluster.
The metrics that we used in our evaluations are as follows:
Throughput: The throughput is the number of transac-

tions that are executed in one time unit (second).
Execution time: The total execution time is the time it

takes to execute all of the given transactions.
Number of Conflicts: As mentioned two transactions

conflict when they access the same item concurrently during
their execution. For a set of transactions, the number of con-
flicts is the total number of times that any two transactions
conflict during the execution of the transaction set.

We run the workload on MySQL and then use the trans-
action log to construct the set of transactions with the pre-
defined order that should be applied to the replica in the
key-value store. Unless we specify explicitly, in all of the
experiments we used 20 threads in top threadpool and 20
threads for bottom threadpool (as shown in Figure 8). The
default key-value cluster size for the experiments also is five
except for the last experiment.

Figure 10: Throughput for Serial and Concurrent

execution of transactions.

6.3 Experimental Results
Concurrent vs. Serial execution: The first set of

experiments that we present is the comparison of serial ex-
ecution of transactions with concurrent execution that uses
the proposed algorithm. Most of the existing replication ap-
proaches use single threaded serial execution of updates in
the replica so we use the serial execution as the base line in
our experiment [7]. We measured throughput, total execu-
tion time and number of conflicts for serial execution and
concurrent execution with 10 and 20 threads in our concur-
rency control algorithm. Figure 10 depicts the throughput
for di↵erent number of transactions in the replication mes-
sage that are applied to the key-value store. As it is seen
our proposed concurrency control algorithm significantly in-
creases throughput in all cases. Similarly, the total transac-
tion execution time that is plotted in Figure 11 shows that
the proposed concurrency control algorithm is at least twice
as fast as executing the transactions in serial execution. This
will obviously reduce the replica lag behind the original data
and consequently the staleness of data in the replica.

As it is seen in both graphs, the benefit of using our con-
currency control algorithm is more significant when there are
fewer transactions in the replication message. In fact as it is
seen, the throughput decrease and execution time increase

Figure 11: Total execution time for Serial and Con-

current execution of transactions.

Figure 12: Conflict count for concurrent execution

of transactions.

are not linear with respect to the number of transactions
that are executed and by increasing the number of trans-
actions in the replication message the throughput reduces
faster and execution time increases faster too. This can be
described by considering the number of conflicts in the ex-
ecution process. Figure 12 depicts the number of conflicts
occurred in the execution of di↵erent number of transac-
tions in the replication message for 10 and 20 threads in the
concurrency controller. The number of conflicts increases
by increasing the number of transactions. This is expected
since the more transactions results in higher probability of
accessing same item by multiple transactions concurrently.
As described in Section 5, when two transactions Ti and
Tj conflict, the concurrency controller aborts the one which
is behind in the execution-defined order. Assuming i < j,
Transaction Tj should be aborted and restarted when the ef-
fects of Ti are applied to the key-value store. Note that, this
would a↵ect commit time for other transactions by delay-
ing their commit time too. Therefore, as it is seen a conflict
will not only slow down the conflicting transactions, but also
the ones that are behind them too. Thus, a high number of
conflicts reduces throughput more significantly.

Workload Read/Write ratio: We now represent the ef-
fect of read/write ratio in the workload on the performance
of our concurrency control algorithm. Here read/write ratio
is defined as the percentage of write transactions TPC-W
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interactions. We performed our experiments for all three
interaction types in TPC-W and present the results in Ta-
ble 1. The three interaction types are Browsing where 5%
of transactions are write transactions, Shopping where 20%
of transactions are write transactions, and Ordering where
50% of transactions are write transactions. The algorithm
has better throughput and execution time for browsing and
shopping workloads compared to the ordering workload. As
we discussed above, the larger number of write transactions
increases the probability of conflicts that results in restarting
transactions. This indeed increases the number of transac-
tions that are being executed and therefore reduces through-
put.

E↵ect of conflicts: Two transactions conflict if they
both access the same data item concurrently and at least
one of them updates the data item. To evaluate the ef-
fect of conflicts in our concurrency control algorithm we use
our synthetic workload on TPC-W benchmark where we can
control the number of conflicting transactions.

Figure 13 depicts the e↵ect of conflicts on the algorithm
throughput. In this figure we plot the improvement percent-
age over serial execution for 4500 transactions with di↵er-
ent number of conflicts. The percentage of improvement in
throughput is computed by dividing the di↵erence between
the measured throughput for the concurrency control algo-
rithm and the serial execution to the throughput of serial ex-
ecution and multiplying it by 100. When there is no conflict
in the workload we have a steady value for the throughput
improvement and the concurrent execution performs twice
better than the serial execution (approximately 100% im-
provement). On the other hand, when we introduce conflicts
in the workload the throughput declines as expected. This
is caused by restarting the conflicting transactions that slow
down the execution of other transactions.

Figure 13: Impact of conflicts in workload on

throughput.

The increase of conflicts can have more significant im-
pact on the concurrency control algorithm as it is depicted
for the case with 6179 conflicts (transaction restarts) in the
graph. In this case, the throughput of concurrent execution
is even less than serial execution which does not justify use
of concurrent execution for workloads with high conflict ra-
tio. Indeed, we evaluated this in Figure 14 where we show
the throughput improvement for di↵erent number of con-
flicts. Similarly, we conclude that the concurrency control
algorithm for concurrent execution of transactions is e↵ec-

tive only when the number of conflicts in the workload is
not too high. In case where the conflict ratio is too high
it is better to use the serial execution instead of concurrent
execution.

Figure 14: When to use concurrency.

Impact of number of threads in concurrency con-

troller: One of the main tuning parameters in our proposed
concurrency control algorithm is the number of threads that
are used by the algorithm in initial execution of transactions
to construct the set of PUT / GET / DELETE operations
and the number of threads to apply non conflicting trans-
actions to the key-value store. The more number of avail-
able threads for the transaction conversion to PUT / GET /
DELETE operation will result in greater number of transac-
tions requesting to be evaluated by concurrency controller.
The larger number of threads for applying non conflicting
transactions also should speed up concurrency controller by
preventing it from waiting for a non conflicting transaction
to be applied to the key-value store. We now present our
experimental results on the impact of the number of threads
on throughput and the number of conflicts.

Figure 15 plots the throughput of the serial execution
along with the concurrency control algorithm for di↵erent
number of transactions where we use 2, 5, 10 and 15 threads
for each threadpool. The overall trend in this graph in-
dicates that by increasing the number of threads we gain
higher throughput in our concurrency control algorithm,
however, this gain does not increase significantly by adding

Figure 15: Thread count e↵ect on throughput.
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Browsing (5% write ) Shopping (20% write) Ordering (50% write)

Write Transactions 200 800 2000
Throughput (Tx/S) 247 256 129
Execution Time (ms) 808 3117 15503

Conflict Count 99 402 1033

Table 1: Results for di↵erent TPC-W workloads (4000 Transactions)

Figure 16: Thread count e↵ect on conflicts.

more threads to the system. As it is depicted the through-
put gain for 10 and 15 threads is almost the same. The
main reason is that the serial evaluation of transactions for
conflicts in concurrency controller. Although we use con-
currency in conversion of transactions to PUT / GET /
DELETE operations and also in applying the transactions to
the store, all the transactions should be evaluated according
to their execution-defined order. Therefore, increasing the
number of threads can improve throughput initially but at
some point the serial evaluation of conflicts in concurrency
controller will dictate the execution speed and therefore fur-
ther increase of the number of threads will have negligible
e↵ect on the throughput.

The other factor in reducing the e↵ect of more threads is
the increased number of conflicts because of more threads
in the system. To have two conflicting transactions not only
they should access the same data item where at least one
of them writes the data item, but also these accesses should
be concurrent. Therefore, increased number of threads ele-
vates the probability of conflict among transactions, which
negatively a↵ects the throughput. Figure 16 validates the
impact of more threads on the number of conflicts encoun-
tered by the algorithm. As shown, by increasing the number
of threads in the system, we will have more number of con-
flicts for the same number of transactions.

Impact of key-value cluster size: In order to analyze
the impact of the key-value cluster size on our concurrency
control algorithm we used Voldemort key-value store with
three di↵erent setting, 5, 10 and 15 nodes. Figure 17 de-
picts the throughput for di↵erent number of transactions
and di↵erent key-value cluster size. The overall trend in
the figure is that the throughput is higher when there are
more key-value nodes in the system. The larger number of
nodes in key-value cluster results in smaller portion of load
on each key-value node which in turn speeds up execution
of PUT / GET / DELETE operations on each node. There-
fore, by increasing the number of nodes in key-value system
we can increase the throughput of our concurrency control

Figure 17: Key-value cluster size.

algorithm.

7. CONCLUSIONS AND FUTURE WORK
We presented a scale out architecture based on fully repli-

cation of relational database on key-value store system where
the key-value store is used for read-only transactions. Our
proposed architecture ships transaction logs from relational
database to the key-value store and applies them in such a
way that the state of key-value store is exactly the same as
the relational database. To reduce the replica lag in the key-
value store side we proposed a novel concurrency control al-
gorithm that guarantees a predefined serialization order (the
one same as the order in transaction log). We empirically
showed that the proposed algorithm significantly improves
throughput compared to serial execution of transactions.

An interesting optimization to our concurrency control al-
gorithm is to exploit transaction classes to speed up conflict
detection and increase parallelism. By classifying transac-
tions into transaction classes our algorithm would only eval-
uate conflicts for potentially conflicting transactions. This
would eliminate many unnecessary operations and speeds up
our concurrency controller.
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APPENDIX
A. REPLICATION MIDDLEWARE
The data in the key-value store is the replication of the

data in the original database. To maintain the replicated

data in the key-value store synchronized with the original
data in the relational database we use our replication mid-
deware. Details of the replication middleware are depicted
in Figure 18. Our replication middeware is implemented on
top of a publish/subscribe system. It includes a publisher
agent that resides in the database system, a subscriber agent
that resides in the key-value store side and a messaging mid-
dleware that provides communication framework between
publishers and subscribers.The publisher agent periodically
reads the transaction log from the database and packages the
transactions in a message. The transaction log only includes
write statements and does not contain the read statements
in the transactions. The frequency of reading the log is a
tunable parameter and can be adjusted based on di↵erent
factors such as staleness limit for read only transactions in
the key-value store.

The subscriber agent resides in the key-value store side.
This agent receives the messages containing transactions
from the publisher agent and applies them to the key-value
store through the query translator and transaction manager.
Since these transactions have already been executed in the
database, the serialization order for the transactions is de-
termined. The easiest way to guarantee such order is to
execute these transactions serially over the key-value store.
In this case, the subscriber agent issues the transactions to
the key-value store through the query translator component
using a single thread and each transaction starts after com-
mit of its predecessor. However, as we describe in Section 5
our proposed concurrency control algorithm can guarantee
such predefined serialization order while executing transac-
tions concurrently. In this case, the subscriber agent uses
a set of threads in a threadpool to concurrently issue the
transactions to the key-value store through the query trans-
lator and transaction manager components.

Figure 18: Replication middleware from RDBMS to

Key-Value store.

We use a publish/subscribe system to route the transac-
tion log from the publisher agent to the subscriber agent.
This functionality is provided by the message broker com-
ponent as shown in the Figure 18. We consider a single
node as message broker, however, a federated set of message
brokers can also be used to provide better scalability.

One of the main advantages of using a publish/subscribe
system as communication framework for the replication mid-
dleware is the decoupling of the publisher agent and the
subscriber agent. This eliminates the need for the pub-
lisher agent to know the subscriber agent and we can add
more subscriber agents to provide multiple replicas with-
out putting any extra load on the publisher agent. All the
complexity and load of delivering transaction logs to the
corresponding subscriber agents is handled by the message
broker and the underlying publish/subscribe system.
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ABSTRACT
SAP HANA started as one of the best-performing database engines
for OLAP workloads strictly pursuing a main-memory centric ar-
chitecture and exploiting hardware developments like large number
of cores and main memories in the TByte range. Within this pa-
per, we outline the steps from a traditional relational database en-
gine to a Big Data infrastructure comprising different methods to
handle data of different volume, coming in with different velocity,
and showing a fairly large degree of variety. In order to make the
presentation of this transformation process more tangible, we dis-
cuss two major technical topics–HANA native integration points
as well as extension points for collaboration with Hadoop-based
data management infrastructures. The overall of goal of this paper
is to (a) review current application patterns and resulting technical
challenges as well as to (b) paint the big picture for upcoming ar-
chitectural designs with SAP HANA database as the core of a SAP
Big Data infrastructure.

Categories and Subject Descriptors
H.2.4 [Database Management]: Query Processing

General Terms
Big Data, Streaming, Map-Reduce

1. INTRODUCTION
The event of the “Big Data” hype has triggered a significant push

within the data management community. On the one hand, new sys-
tems following unconventional system architectural principles have
been developed. On the other hand, traditional data management
systems have incorporated requirements usually voiced within the
context of a “Big Data” discussion. For SAP, the Big Data strategy
is of tremendous relevance because of the opportunity to extend
traditional as well as reach out to novel application scenarios. A
premium example for extending existing applications can be seen
with respect to traditional data-warehouse solutions. Many stud-
ies show a significant growth in terms of numbers of installations
as well as the requirement to embrace non-traditional data sources

c�Copyright is with the authors. Published in Proc. 18th International Con-
ference on Extending Database Technology (EDBT), March 23-27, 2015,
Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Com-
mons license CC-by-nc-nd 4.0

and data formats [5]. Novel application scenarios address primar-
ily a mixture of traditional business applications and deep analytics
of gathered data sets to drive business processes not only from a
strategic perspective but also to optimize the operational behavior.

With the SAP HANA data platform, SAP has delivered a well-
orchestrated, highly tuned, and low-TCO software package for push-
ing the envelope in Big Data environments. As shown in figure 1,
the SAP HANA data platform is based in its very core on the SAP
HANA in-memory database system accompanied with many func-
tional and non-functional components to take the next step towards
mature and enterprise ready data management infrastructures. In
order to be aligned with the general “definition” of Big Data, we
outline the SAP HANA data platform capabilities according to the
criteria volume, velocity, and variety.

Figure 1: SAP HANA Data Platform Overview

Variety
Since the SAP HANA database system has its origins partially in
document processing, support for semi- and unstructured text is
part of SAP HANA’s DNA [8]. Recent extensions to cope with
the aspect of variety additionally consists in comprehensive support
for geo-spatial data and time series data as seamless extensions of
the traditional table concept. Moreover the pure relational concept
is relaxed and extended within SAP HANA within two directions.
First, SAP HANA offers so-called “flexible tables” to extend the
schema during insert operations allowing applications to extend
the schema on the fly without the need to explicitly trigger DDL
operations. Second, SAP HANA provides a native graph engine
next to the traditional relational table engine to support schema-
rich and agile data settings within one single sphere of control and
based on the same internal storage structures [22]. Such an ar-
chitecture reduces TCO by operating only one single system and–
at the same time–allows for cross-querying between different data
models within a single query statement.

Figure 2 shows an example of time series support for a rich set of
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series data style application scenarios e.g. within monitoring man-
ufacturing equipment or analyzing energy meter data in the large.
As can be seen, the system does not only provide the opportunity
to explicitly model the semantics of the data set (e.g. certain char-
acteristics or missing value compensation strategies) but also pro-
vides an optimized internal representation to increase query perfor-
mance and reduce the memory footprint. As indicated in figure 2
it is quite common to compress the data by more than a factor of
10 compared to row-oriented storage and more than a factor of 3
compared to columnar storage.

Figure 2: SAP HANA timeseries support

Velocity
In order to cope with the requirements coming from the “veloc-
ity” dimension of the Big Data definition, the SAP HANA data
platform addresses velocity from an end-to-end perspective. With
SQL Anywhere, the platform provides a mature instrument for dis-
tributed data capturing, local processing, and efficient propagation
into central database installations. As can be seen in figure 1, exter-
nal data can be imported using Data Services instruments [2] and
replicated using SAP Replication Server [3]. In order to cope with
extreme low-latency requirements, the mature event stream proces-
sor (ESP) solution is integrated and coupled with the in-memory
database system. Section 3 will provide a deeper look into this
technical solution.

Volume
While volume is fundamental to “Big Data”, the SAP platform im-
plements the full spectrum ranging from being able to work with
large main-memory installations as well as providing a disk-based
extension based on Sybase IQ technology. While the core in-memory
HANA engine has successfully proven to work on systems with 12
TByte in a single appliance configuration (e.g. HANA-Hawk [18]),
Sybase IQ still holds the world record for the largest DW installa-
tion with 12.1 PByte [21]. The transparent integration of IQ tech-
nology into the HANA core database system yields an unprece-
dented combination of high performance as well as the ability to
handle large volumes, well beyond of any of today’s enterprise-
scale requirement.

Application Patterns
Looking at the different requirements, the SAP HANA infrastruc-
ture is designed to cope with different application patterns rang-
ing from traditional decision support systems to web-scale oper-
ational recommendation applications as shown in figure 3. Typi-
cally, data from online sources is captured and pre-filtered using the
SAP HANA ESP component and then forwarded to the central SAP
HANA system. In addition, low-level log data stored in Hadoop
infrastructures are tapped and used for statistical algorithms (e.g.
recommendation algorithms). Staying within the single system, the

outcome is directly forwarded to the operational system (e.g. SAP
ERP) to trigger a subsequent business request.

Figure 3: SAP HANA Big Data Infrastructure Core Compo-
nents

In order to cope with such very typical application patterns, a
comprehensive solution acting as an umbrella for individual sys-
tems and algorithmic tasks is required, which may consist of dif-
ferent components but presenting itself as a single point of control
for the application as well as administration.

2. BEYOND THE TRADITIONAL Vs
While the SAP HANA data platform is well setup to cope with

the traditional V-requirements, SAP especially focuses on deliver-
ing additional Value to customers and therefore goes beyond the
traditional Vs.

Value
The SAP HANA platform provides added Value scenarios for cus-
tomers by representing not only a core database system but an
enterprise-scale data platform with additional services like:

• integrated repository of application artifacts for holistic life
cycle management; for example application code in com-
bination with database schema and pre-loaded content can
be atomically deployed or transported from development via
test to a production system.

• single administration interface and consistent coordination
of administrative tasks of all participating platform compo-
nents; for example, backup and recovery between the main-
memory based SAP HANA core database and the extended
IQ store is synchronized providing a consistent recovery mech-
anism.

• single control of access rights based on credentials within
the platform; for example, a query in the SAP HANA event
stream processor (ESP) may run with the same credentials
as a corresponding query in the SAP HANA core database
system.

More technically, SAP HANA defines Value of data with respect
to relevance distinguishing the low and high density data being han-
dled with different technologies embedded into the SAP HANA
platform. Figure 4 outlines the interplay between age (on the x-
axis) and Value (on the y-axis). Very recent data may come into the
system at a high speed and high volume and is directly digested by
the HANA Streaming component (ESP); from there, enriched and
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Figure 4: SAP HANA Big Data Infrastructure Core Compo-
nents

potentially aggregated data can be propagated into the core SAP
HANA database engine. In low-velocity scenarios raw data may
directly be loaded into the SAP HANA database or handed over
to a Hadoop installation as cheap background store for low-density
data. High Value is defined as enriched data after usually com-
plicated transformation and cleansing steps. For example “golden
records” within a master data management system or statistically
corrected and improved fact data within a typical data warehouse
scenario represent data sets with high relevance and customer data.
As this intensively used data usually fits into the main-memory of a
smaller cluster of machines, this data can be managed by the SAP
HANA core database engine. HANA low-density data or data with
low business value reflect fine-grained log or sensor data, (frozen)
archives for legal reasons or extracted images of source systems
required to feed complex data transformation processes. For eco-
nomical reasons but also because of its high volume archival data is
stored on disk. Value therefore does not directly correlate with vol-
ume, i.e. even cleansed business data may show–especially consid-
ering historic data–significant volume but require extremely high
performance. Hence, depending on its value we store high-volume
data with high-value data in the extended storage and low-value
data in Hadoop.

SAP Big Data = Data Platform + Applications
As mentioned before, the SAP HANA platform provides a single
point of entry for the application as well as reflects a single point of
control with respect to central administration for backup/recovery
or life cycle management. Therefore, SAP defines Big Data infras-
tructures not only via core technology components but as a compre-
hensive application suite with support for data capturing, cleansing,
transformation, and finally consumption using a large variety of
transactional and analytical applications. From that perspective, the
SAP business warehouse (SAP BW) solution may be considered a
foundation and starting point for Big Data Analytics using the SAP
HANA platform. The SAP BW solution comprises a complete tool
chain for data provisioning and consumption in the traditional data
warehouse sense and is based (in addition to other database sys-
tems) on the SAP HANA core database engine. Sybase IQ may
be used (alternatively to other approaches) as nearline archive con-
trolled by the SAP BW suite. Also, as shown in figure 5, SAP BW
(starting with version SPS08) may exploit the extended storage to
transparently move cold data to the SAP HANA extended storage.
The SAP Big Data Strategy is now pushing the envelope in an evo-

lutionary way with respect to streaming and extended storage as
well as supporting Hadoop installations and without compromising
the industry-strength tool chain of data provisioning as well as data
consumption.

Figure 5: Extension of SAP HANA Business Warehouse

SAP Big Data–The Native and Open Strategy
Figure 5 sketches the positioning of the SAP data platform from
a specific perspective of the overall Big Data design space. Ob-
viously, the data platform is designed to deploy the components
required to solve a specific Big Data problem using SAP propri-
etary as well as embracing open systems. In general, this leads to
the following SAP Big Data strategy:

• HANA Native Strategy: For any Big Data installation, a
data platform with only native SAP HANA components is
able to cope with any number of volume, velocity, and vari-
ety requirements ([8]).

• HANA Open Strategy: Any existing Hadoop installation1

can be embedded into a SAP HANA ecosystem leveraging
SAP HANA added value capabilities like life cycle manage-
ment and integrated application development.

Following these statements, we will detail the technical impli-
cations in the remainder of this paper. Section 3 sketches the in-
tegration of SAP Sybase IQ as extended storage (HANA IQ) na-
tively into the SAP HANA core database engine and outlines the
native support of SAP Sybase ESP as streaming component with
SAP HANA (HANA Streaming). Following this native integra-
tion concepts, we will outline challenges and opportunities of the
HANA open strategy and show the integration of data residing in
the Hadoop Distributed File System (HDFS) and pushing process-
ing logic to Hadoop (code to data).

3. HANA NATIVE INTEGRATION POINTS
As outlined, the native Big Data strategy of SAP addresses the

full spectrum of Big Data use cases using the native SAP HANA
in-memory storage together with a native integration of the IQ stor-
age and ESP event streaming systems. The SAP HANA core in-
memory engine is optimized for processing large volumes of data
in an OLTP and OLAP-style allowing to serve as a consolidation
vehicle for transactional as well as decision support systems [19].
1Currently, distributions of Hortonworks are preferred.
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Within a Big Data installation, the SAP HANA core database sys-
tem is usually positioned to keep high value data, i.e. hot and
warm data for high-performance access. Although main memory
prices went down dramatically in the recent past, it is still not cost-
effective to keep bulks of cold data or archival data in main mem-
ory [9]. The SAP HANA data platform addresses this economical
aspect through native integration points with the extended storage
concept which is based on the IQ storage engine. However, in or-
der to provide an end-to-end solution for Big Data scenarios, the
SAP HANA data platform integrates tightly with the HANA event
stream processor (ESP) of SAP for high-velocity data of (yet) low
value.

Other database vendors also attempt to optimize the storage tech-
nology for the access patterns of the data. For example, the DB2
multi-temperature feature [1] allows to assign hard disks or SSDs
as storage technology on the level of table spaces. Also, DB2 BLU
can be used to opt either for conventional row-based and disk-based
processing or column-oriented (and mainly) in-memory processing
on the table level [20]. In a similar fashion, Microsoft SQL Server
also features the in-memory engines Hekaton [7] and Apollo [13]
for in-memory processing of data. In [23] the authors discuss a pro-
totype for the in-memory row store, Hekaton, for identifying tuples
that can be stored in cold storage. Overall, for both DB2 and SQL
Server the decision for in-memory processing currently seems to
be done on the table level while SAP HANA supports hot and cold
partitions within the same logical table.

As we discuss in this section, both extended storage and ESP are
integrated into the SAP HANA query processing. On the applica-
tion level, a common repository is used to manage the life cycle of
development artifacts. Administrators and developers use the SAP
HANA Studio as the main interface for development and adminis-
tration tasks. Meta data is centrally managed by SAP HANA and
exploited during query optimization and query execution. Finally,
aspects like backup and recovery are tightly integrated. In the fol-
lowing, we will outline technical details of this integration.

3.1 HANA IQ extended storage
SAP HANA offers a variety of options to store data: row-oriented

storage in main memory is used for extremely high update fre-
quencies on smaller data sets and the execution of point queries.
Column-oriented storage is the basic option for both read- and update-
intensive workload, especially for scan-intensive OLAP workloads.
In this section we discuss a new storage option, the extended stor-
age, which addresses use cases where massive data sets are mainly
inserted and infrequently used for reporting. According to [9], it
is still the case that rarely accessed data shall primarily reside on
(cheaper) disk storage. In order to address this requirement, the
extended storage option in SAP HANA offers a tightly integrated
disk-based storage based on the Sybase IQ storage manager [15].

For example a concrete scenario for using the extended storage
related to the SAP BW application includes the management of the
persistent staging area (PSA) where massive amounts of data from
a source system are directly mirrored into the BW infrastructure.
The main purpose of a PSA is to keep the extracted data sets as
sources for refinement processes within BW as well as for prove-
nance and archiving reasons. Since objects of a PSA are (after be-
ing used to derive higher value data sets by different BW processes)
only rarely used, a disk-based storage reflects an economically rea-
sonable solution without compromising the overall in-memory ap-
proach of SAP HANA.

A similar use case with respect to the management of a PSA are
so-called write-optimized DataStore objects (DSO) which serve as
a corporate memory, i.e. data must be kept for very long durations

for legal reasons. Similar to PSA objects, DSOs are rarely accessed
and performance is not of paramount concern. Overall, using the
extended storage SAP HANA customers transparently enjoy the
benefit of low-cost storage on disk, but they can still expect reason-
ably short response times for infrequently accessing data stored on
disk.

As a natural extension for hot and cold data stored in a single
table, hybrid tables allow one or more partitions of a table to be
represented like a SAP HANA in-memory column table and other
partitions as extended storage. Figure 6 outlines the architectural
setup. The IQ engine is completely shielded by the SAP HANA en-
vironment and therefore not accessible to other applications. This
restriction allows for a tight integration with SAP HANA as the
only “application” for IQ. In addition to query shipping to exter-
nal partitions, SAP HANA provides an integrated installation and
administration using SAP HANA Studio. Additionally, the tight
integration allows to provide a consistent backup and recovery of
both engines. Furthermore, the system allows to directly load mass
data into the extended storage and register the data at the orches-
trating SAP HANA instance. This direct load mechanism allows
therefore to support Big Data scenarios with high ingestion rate re-
quirements.

Figure 6: SAP HANA IQ Extension Overview

In summary, the concept of hybrid tables spanning SAP HANA
and the Sybase IQ storage manager has the following benefits:

1. It provides a simplified system landscape as SAP HANA is
the only interface to both hot and cold data including simpli-
fied setup or upgrade as well as integrated backup and recov-
ery.

2. Seamless growth of the data can be managed in the data
warehouse far beyond available main memory.

3. Integrated query processing with the extended storage in-
cluding function shipping to the extended storage exposes
the native query performance of the IQ storage engine even
when using as extended storage orchestrated by SAP HANA.

In addition to extending SAP HANA for dealing with cold data,
the extended storage deployment scenario also provides a seamless
migration path from standalone IQ installations to the SAP HANA
data platform. Without moving data out of an IQ system, an IQ in-
stance can be registered at a SAP HANA system, and the customer
may take advantage of the overall SAP data platform properties.
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Extension on Table and Partition level
In using the extended storage, two different levels of working with
the extended storage option can be differentiated: In the first sce-
nario, an existing Sybase IQ table is directly exposed and therefore
accessible in SAP HANA using the following syntax:

CREATE TABLE table_name table_definition
USING HYBRID EXTENDED STORAGE

In this syntax the HYBRID clause is optional, because the ex-
tension is based on a table level and no mixture of IQ and SAP
HANA tables is configured [4]. The extended storage technology
performs data type mappings between the engines as well as pro-
vides full transactional support. Additionally, a data load issued
against such an external table directly moves the data into the ex-
ternal store without taking a detour via the in-memory store fol-
lowed by a subsequent push into the extended store. Moreover, the
extended storage technique supports schema modifications like any
other table in SAP HANA to complete the hybrid table concept.

In the second scenario of partition level extension, an SAP HANA
table may be partitioned into one or multiple hot partitions, which
are realized by regular in-memory column-oriented storage and one
or multiple cold partitions which live in a table of the IQ storage.
Such a resulting table is considered a SAP HANA hybrid table. The
residence of hot and cold data is decided on the partitioning crite-
ria and can be controlled by the application. Additionally, the SAP
HANA data platform provides a built-in aging mechanism, which
periodically moves data from the hot storage of the in-memory par-
titions into the cold storage. The decision is based on a flag in a
dedicated column of the hybrid table.

Configuration Scenarios
In order not to interfere with the memory management of the in-
memory engine, the IQ engine is usually deployed at a separate
host/cluster. This allows for a more specific sizing of the involved
nodes in the SAP HANA distributed landscape. For example, the
extended storage may rely on a more powerful I/O subsystem than
the server where the SAP HANA database is running and usually
requires less main memory. The notion of a data platform ensures
that the overall system landscape is kept manageable because of a
unified installer and integrated administration tool chain.

Transactions
From an application perspective, both extended tables and hybrid
tables appear like regular row or column tables in SAP HANA.
This implies that they can participate in update transactions that in-
sert, update or delete data in the extended or hybrid table. As a
consequence, database operations on SAP HANA extended tables
participate in (normal) distributed HANA transactions. In such a
scenario, SAP HANA coordinates the transaction, e.g. generating
the transaction IDs and commit IDs to integrate extended storage.
As a seamless integration, we use the improved two-phase commit
protocol described in [14] also for the extended storage. Conse-
quently, SAP HANA will be able to recover the data in case of
failures as any other SAP HANA table, including point-in-time re-
covery. In case of an error of the extended system, every access to
a SAP HANA table may throw a runtime error. In particular, any
query that touches objects located on the extended storage will be
aborted. Additionally, if that access is part of a transaction that also
touches in-memory column tables in SAP HANA, the entire trans-
action will be aborted. Finally, the recovery of an extended storage
instance is recovered jointly with SAP HANA. Without this inte-
grated recovery any transaction that had touched the extended store

Figure 7: Federated query processing

but not committed will be marked as “in-doubt”. Clients will have
the ability to manually abort these “in-doubt” transactions.

Query Processing
Due to the tight integration of the IQ engine into the SAP HANA
distributed query processing framework, the SAP HANA engine is
able to exploit a huge variety of query processing tweaks, espe-
cially push-downs to the IQ storage manager. Capabilities include
the ability to perform inserts, updates or deletes, order by, group
by, different kinds of joins, or execution of nested queries. The
cost-based query optimizer of SAP HANA either uses q-optimal
histograms based on values for cardinality estimates on the ex-
tended storage [16]. The query optimizer considers communica-
tion costs for the data access to the extended storage. The dis-
tributed exchange operator is used to mark the boundary between
HANA-local processing and remote execution in the IQ query pro-
cessor. Sub plans below this operator are executed on the remote
data source. During query optimization different alternatives exists
to evaluate subplans in the extended storage:

• Remote Scan: Process a complete sub query independent
from SAP HANA in the extended storage. The optimizer
decides if the result should be returned in columnar or row-
oriented format for further processing in SAP HANA.

• Semijoin: In this alternative data is passed from SAP HANA
to the extended storage where it is used for filtering either in
an IN-clause or a join using a temporary table. The optimizer
picks such a strategy for example if parts of the fact table
are sitting in IQ and require a join with smaller (and usually
frequently updated) dimension tables.
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• Table Relocation: This alternative considers SAP HANA
tables as remote tables for IQ and pulls data on demand from
SAP HANA.

• Union Plan: Do local processing in SAP HANA and the IQ
storage engine, and use a union to integrate the partial results.
Such a strategy is usually picked, if the dedicated aging flag
allows for partition-local joins and partial group-bys.

Figure 7 shows the plan for a query that joins a columnar SAP
HANA table with a selective local predicate with a table in the ex-
tended storage. In this scenario, the semijoin strategy is the most
effective alternative because only a single row is passed from SAP
HANA to the extended storage where it can be used to filter the
large remote table. In this example it is even possible to push the
group-by operation to the remote data source.

3.2 HANA Stream Extension
The HANA stream extension is based on the SAP Sybase Event

Stream Processor (SAP Sybase ESP) and addresses the specific
needs of data acquisition and responding with actions in realtime
in a Big Data scenario. The data acquisition part deals, for exam-
ple, with filtering out irrelevant events or immediate aggregation of
the captured data for further processing in the SAP HANA core en-
gine or Hadoop. The SAP Sybase ESP may also detect predefined
patterns in the event stream and trigger corresponding actions on
the application side.

To illustrate these use cases consider a telecom company that
captures live data from its mobile network, for example information
on the health status of its network or unexpected drops of customer
calls (figure 8). In this figure, multiple components of the SAP
HANA platform interact; each component is shown in a separate
box with distinct color. In this telecom scenario, data is generated
in high volume in the telecom network, but not all data has high
value. Sensors in the telecom network capture various events, e.g.
information about started or terminated phone calls. As long as the
network is in a healthy state, no specific action has to be taken,
and it is sufficient to store aggregated information on the status
of the network. Hence, the SAP Sybase event stream processor
uses the Continuous Computation Language (CCL)2 to analyze the
raw event data, instantly analyze it, and aggregate events over a
predefined time window for further processing.

Furthermore, the raw data may be pushed into an existing HDFS
using a dedicated adapter such that it is possible to perform a de-
tailed offline analysis of the raw data. The resulting network data
archive is then analyzed using map-reduce jobs in the Hadoop clus-
ter. Such an advanced analysis might attempt to optimize the net-
work utilization or to improve the energy efficiency of the network.
In this scenario we use Hadoop for archiving purposes as the in-
coming data has highly variable structure. For more strictly struc-
tured data using the extended storage would be more appropriate.

In a development system the raw events collected in the network
data archive may be replayed to the event stream processor to verify
the effectiveness of improved event patterns. If the patterns derived
through the map-reduce jobs in the Hadoop cluster prove useful,
they are deployed in the productive ESP system.

However, if an outage of the network is detected, immediate
action is required, which could be directly triggered by the SAP
Sybase ESP and forwarded to the SAP HANA database using the
SAP Data Services [2]. While an alert is immediately sent to the
operations staff, a detailed analysis of the imported event data of
2CCL is a SQL-like declarative language to process events over
windows of data, see [12] for details

Figure 9: Example Scenario for Complex Event Processing in
SQL HANA data platform

the exceptional event may also trigger reports to be prepared for
service engineers. In a similar way, business data, e.g. informa-
tion about the amount of transferred data but also standard business
processes like billing or marketing are processed in the SAP HANA
database.

Moreover, pre-aggregated and cleansed data may be loaded into
the SAP HANA database for online processing. For example, the
sensor data of antennas may be normalized into equi-distant mea-
sures of the network state and loaded into a time series table of
SAP HANA. This allows advanced analysis on that data, e.g. per-
form correlation analysis between different sensors. Furthermore,
the sensor data may trigger business actions because information
about established connections collected from the sensor data must
be matched with customer data for accounting purposes. This calls
for an integrated processing runtime of sensor data and relational
data stored in the SAP HANA database.

Use Cases
In general, the integrated ESP engine tackles the following three
main use cases, also depicted in figure 9:

1. Prefilter/pre-aggregate and forward: In this use case, in-
coming data streams are filtered and/or aggregated. The re-
sult is then forwarded and directly stored within native SAP
HANA tables. Although the ESP provides some temporary
storage capability to reconstruct the content of a stream win-
dow, the forward use case allows to permanently store the
window content under the control of the database system.

2. ESP join: In this case, slowly changing data is pushed dur-
ing CCL query execution from the SAP HANA store into the
ESP and there joined with raw data elements. For example,
city names are attached to raw geo-spatial information com-
ing from GPS sensors.

3. HANA join: In the opposite of a HANA join, a native HANA
query may refer to the current state of an ESP window and
use the content of this window as join partner within a rela-
tional query. Such a setup is particularly interesting, when
dynamic content, e.g. the current state of a machine or envi-
ronmental sensors, is required to be merged with traditional
database content.

As common in stream environments, no transactional guarantees
are provided; This however is usually accepted in high-velocity
scenarios.
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Figure 8: Example Scenario for Complex Event Processing in SQL HANA data platform

3.3 Summary
The overall strategy of SAP to rely on a native SAP HANA Big

Data story as well as embracing (usually existing) open source in-
frastructure components requires to provide the concept of a data
platform with an integrated set of different components. In this
section we outlined the native extension points of SAP HANA with
respect to IQ as the extended storage as well as ESP as the inte-
grated stream engine allowing cross querying between the table-
based database and the stream-based event processing world.

4. HANA INTEGRATION POINTS
WITH HADOOP

Huge amounts of data are already stored in HDFS, and signifi-
cant investments were made to analyze the data stored in the HDFS
using either custom-made map-reduce jobs or using more declara-
tive languages like HiveQL [25]. Clearly, for SAP customers want
to tap into this ocean of data and generate higher-value information
from it using these map-reduce jobs or Hive. In many cases, the
resulting information must be integrated with the enterprise data
warehouse or operational applications, e.g. for a detailed customer
analysis.

In this section, we explain the goals we want to achieve with
the Hadoop integration based on some customer scenarios. After
that we survey technical details of the Smart Data Access (SDA)
framework which is used to integrate SAP HANA with Hadoop.
We focus on the Hadoop-side caching which results in significantly
lower response times of map-reduce jobs and more effective use of
the Hadoop cluster.

The integration of SAP HANA with any Hadoop distribution il-
lustrates how easy and powerful it is possible to link almost any
external data source with SAP HANA in a loosely coupled way.
This open platform strategy is mainly realized with the Smart Data
Access (SDA) technology, SAP HANA’s capability-based adapter
framework.

4.1 Goals and scenarios
Within the previous section we already pointed out that SAP ESP

may push raw events immediately into the Hadoop Distributed File
System (HDFS) so that it can be analyzed further in a rather offline
fashion. In addition, significant amounts of data today are already
stored into the HDFS. Usually, the shear amount of data (volume)

but also its loose structure (high variety) makes it unattractive to
load this data immediately into a relational database. Since raw
data is of low value, freshness is not critical, and it is often sufficient
to thoroughly analyze this data in batch jobs and then exposing the
results to the SAP HANA database for reporting, planning etc.

In general, such a setup implies a co-existence of a conventional
database side by side with data stored in HDFS which is analyzed in
Hadoop [26, 17, 24, 6]. Map-reduce jobs are periodically executed
to derive higher-level information in a more structured form which
may be stored in a data warehouse but also to correlate the content
stored in a HDFS with data already available in a database.

In this loosely coupled setup two main scenarios exist to link the
database with Hadoop:

• Delegation of ad-hoc queries to Hadoop using an ODBC adap-
ter and Hive [25].

• Exposing the content in the HDFS by calling existing map-
reduce programs.

Having SAP HANA as the federation platform with Hadoop then
leads to a setup with two separate systems. Standard tools for
HANA, e.g. the eclipse-based administration and development tool
SAP HANA Studio, can be used to develop Big Data applications.
With these development tools at hand, SAP HANA can also han-
dle life cycle tasks, e.g. transporting map-reduce programs from a
development system to the productive system. As data now resides
both in SAP HANA row/column in-memory tables and HDFS, query
processing is distributed over both SAP HANA and Hadoop. In
such a setup, SAP HANA serves as the main interface for ad-hoc
queries and orchestrates federated query processing between these
stores. If Hive is used, parts of a query may even be shipped to Hive
based on the capabilities registered for Hive and Hadoop. Hadoop
returns its result in a structured form that is ready to be consumed
by HANA for further processing.

Having an interface from SAP HANA to Hadoop exposes several
features of Hadoop which are typically not available in a relational
database. For example, one can reuse libraries implemented on top
of Hadoop like Mahout for machine learning, or custom social me-
dia analysis [11]. These kinds of tasks are typically a weak side of
relational databases and can be softened using a Hadoop infrastruc-
ture. Moreover, one can use Hadoop as a scalable and very flexible
way to implement user-defined functions which are capable to ac-
cess schema-flexible data without the need to transform them into
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the relational model beforehand. Having SAP HANA as federation
layer also allows us to combine relational query processing and
Hadoop with the capabilities of statistical analysis with R [10].

To illustrate these use cases consider a project with a large SAP
customer in the automotive industry with the objective to predict
warranty claims. The data sources stored in SAP HANA on the
one side included condensed information on the production, as-
sembly and sales of automobiles but also facts about customers
and past marketing campaigns. The raw data stored in HDFS on
the other side included diagnosis read-outs on cars, support escala-
tions, warranty claims and customer satisfaction surveys. Overall,
the Hadoop cluster used twenty servers with 250 CPU cores, 1500
GB RAM and 400 TB Storage as aggregated compute power avail-
able in the Hadoop cluster. The HANA server was equipped with
40 cores, 512 GB RAM and 2 TB disk storage. Using Hive, we
extracted data from twelve months data for a specific car series and
made it available to the SAP HANA database server. With the SAP
predictive analysis library using the apriory algorithm thousands
of association rules were discovered with confidence between 80%
and 100%. The derived models then were used to classify new
readouts as warranty candidates in real-time in the SAP HANA
database.

4.2 SDA-based integration - Query shipping
An important building block for the integration of Hadoop with

SAP HANA is the Smart Data Access (SDA) framework imple-
menting an access layer for a wide variety of different remote data
sources like Hadoop, Teradata or other relational and non-relational
systems. Thereby, SAP HANA realizes an open strategy to inte-
grate and federate remote data sources.

Figure 10: SAP HANA SDA Overview

Figure 10 gives a high-level overview of the generic SDA frame-
work. In the SDA framework, remote resources are exposed as a
virtual table to SAP HANA. Consequently, these resources can be
referenced like tables or views in SAP HANA queries or views.
The communication to remote resources is realized by adapters
which are usually specific to the data source. There are various
SDA adapters already available, e.g. Hadoop3, any SAP database,
IBM DB2, Oracle, or Teradata. This means that by providing an
SDA adapter for a specific type data source makes this data source
3With HANA SPS09 we support the Hadoop distributions Intel
IDH, Hortonworks, and Apache Spark.

accessible for SAP HANA. As each SDA-adapter exposes capabil-
ities specific to this data source, the SAP HANA query optimizers
is able to forward parts of a query execution plan to the remote data
source. In the remainder of this section we focus on the integra-
tion of Hadoop using SDA adapters as one prominent example, but
most concepts also apply to other data sources.

Figure 11: SAP HANA / Hadoop side-by-side

Registering a Remote Data Source
We use SDA to communicate with Hadoop via Hive, especially
to address ad-hoc data analysis on data stored in HDFS. As indi-
cated in figure 10, we use ODBC to establish the connection to
the Hadoop system. In this setup SDA passes partial or complete
queries or DDL statements to Hive for execution in Hadoop. The
SDA framework and its integration into the HANA query compiler
takes care that only queries are passed to Hadoop that are also sup-
ported by Hive and Hadoop. SDA also applies the required data
type conversions with Hadoop. Below we show a typical workflow
to first create the remote access to a Hive-based Hadoop distribu-
tion, wrap the remote source as a virtual table, and finally query the
content of the data:

CREATE REMOTE SOURCE HIVE1 ADAPTER "hiveodbc"
CONFIGURATION ’DSN=hive1’

WITH CREDENTIAL TYPE ’PASSWORD’ USING
’user=dfuser;password=dfpass’;

CREATE VIRTUAL TABLE "VIRTUAL_PRODUCT"
AT "HIVE1"."dflo"."dflo"."product";

SELECT product_name, brand_name
FROM "VIRTUAL_PRODUCT";

Query Processing
As mentioned above, SDA relies on a description of the capabili-
ties of a remote server. For example, transactions for some database
servers e.g. updates and transactions, are supported. However, for
Hive and Hadoop only select statements without transactional guar-
antees are supported. For Hive on Hadoop it is possible, e.g. to
push predicates or joins to Hadoop, but also to use semi-join reduc-
tion for faster distributed joins between Hadoop data and HANA
tables. In the capability property file one finds, e.g. CAP_JOINS
: true and CAP_JOINS_OUTER : true, to denote that in-
ner joins and outer joins are supported. It is even possible that
complete queries are processed via Hive and Hadoop. When only
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parts of a query can be executed in Hive and Hadoop, the query
compiler generates a transient virtual table that represents the re-
sult of the subquery which will be processed by Hive and Hadoop.
It also adds the needed operations to integrate this subquery into the
plan executed in SAP HANA. In the simple-most case the results
are only integrated via joins or union, but in more complex cases
compensating operations might be required, e.g. mapping of data
formats and data types.

To estimate the costs for accessing the Hadoop data, we rely on
the statistics available in the Hive MetaStore, e.g. the row count
and number of files used for a table. These statistics and also esti-
mated communication costs are considered for generating the opti-
mal federated execution plan. The plan generator attempts to min-
imize both the amount of transferred data and the response time of
the query.

4.3 HANA Direct Access to HDFS
Besides the ad-hoc query capabilities via Hive discussed above,

SAP HANA can also invoke custom map-reduce in Hadoop, see
figure 11. This allows customers to reuse their existing map-reduce
codebase and to access the HDFS files directly, i.e. without the ad-
ditional Hive layer. The basic workflow is shown below: The first
statement registers an Hadoop cluster with SAP HANA. The subse-
quent statement declares a virtual remote function that exposes an
existing map-reduce job as a regular table function in SAP HANA.
Finally, this virtual table function can be used in SQL statements
like any other table function in SAP HANA.

CREATE REMOTE SOURCE MRSERVER
ADAPTER hadoop CONFIGURATION
’webhdfs=http://mrserver1:50070;
webhcatalog=http://mrserver1:50111’
WITH CREDENTIAL TYPE ’password’
USING ’user=hadoop;password=hadooppw’;

CREATE VIRTUAL FUNCTION
PLANT100_SENSOR_RECORDS( )

RETURNS TABLE (EQUIP_ID VARCHAR(30),
PRESSURE DOUBLE)

CONFIGURATION
’hana.mapred.driver.class =

com.customer.hadoop.SensorMRDriver;
hana.mapred.jobFiles =

job.jar, library.jar;
mapred.reducer.count = 1’
AT MRSERVER;

SELECT A.EQUIP_ID, A.LAST_SERVICE_DATE,
B.PRESSURE

FROM EQUIPEMENTS A JOIN
PLANT100_SENSOR_RECORDS() B
ON A.EQUIP_ID = B.EQUIP_ID

WHERE B.PRESSURE > 90;

It is worth noting that this workflow is also embedded into SAP
HANA’s development environment and landscape management. For
example, views accessing the map-reduce job as a table function
keep their connection when the models are transported from test to
productive system.

4.4 Remote Materialization
The map-reduce jobs in Hadoop are typically used to turn large

volumes of rather low-value data into smaller data sets of higher
value data. As the runtime of these map-reduce jobs tends to be

significant, SAP HANA offers to cache the result of map-reduce
jobs on Hive side. As customers have a sound understanding of
their business data they will know where absolute data freshness is
not needed, e.g. for low velocity data. The freshness of the cached
results of map-reduce jobs is configurable.

Extended Query Processing
When an application submits a query that includes a Hive table
as a data source, it can request the use of the caching mechanism.
More precisely, the application appends WITH HINT (USE_RE-
MOTE_CACHE) to the query string to enable the cache usage. Dur-
ing query processing it is checked if caching is requested for the
query. If this is the case, a hash key is computed from the HiveQL
statement, parameters, and the host information. With this hash key
we can can ensure that the same query is cached at most once. If
a value is cached for this hash-key the corresponding query result
is returned immediately. If either no caching is requested, no cache
key was found or the cached value is older than a configurable pa-
rameter, the query is evaluated from scratch. Evidently, the cached
data is not related to specific transactional snapshots, but we expect
this to be of little concern in a Hive setup. The cached data is stored
in temporary tables in HDFS. Large caches are possible because the
HDFS often has enough space to keep materialized query results in
addition to the raw data. Overall, caching leads to a more effective
use of the compute resources in the Hadoop cluster.

To illustrate these concepts, consider the following query on the
TPC-H schema which references two virtual tables CUSTOMER and
ORDERS from Hive:

SELECT c_custkey, c_name,
o_orderkey, o_orderstatus

FROM customer JOIN orders
ON c_custkey = o_custkey

WHERE c_mktsegment = ’HOUSEHOLD’

Under normal execution, i.e. without any caching in Hive, when
the federated query is executed at the remote source, the Hive com-
piler generates a DAG of map-reduce jobs corresponding to the
federated query. Map-reduce jobs from this DAG are triggered
thereafter, upon completion of which the results are fetched back
into HANA for further operations. The query execution plan for
the normal execution mode of the example query is shown in fig-
ure 12. It shows two Virtual Table nodes corresponding to the ta-
bles CUSTOMER and ORDERS with their corresponding predicates,
and a Nested Loop Join node which is also computed at the
remote source. Since, there are no other tables accessed locally
inside SAP HANA, the data received in the Remote Row Scan
node is projected out. If the query has references to other local
HANA tables, the data received in the Remote Row Scan node
will be used for further processing along with data from the local
tables.

Under the enhanced mode with remote caching enabled, the op-
timizer identifies the hint to use remote materialization and materi-
alizes the results, after executing the DAG of map-reduce jobs gen-
erated by the Hive compiler, to a temporary table at the remote site.
It then modifies the query tree to read everything from this tempo-
rary table. It should be noted that this materialization process is a
single-time activity and every subsequent execution of this feder-
ated query will fetch the results from the materialized copy stored
in the temporary table instead of executing the corresponding DAG
of map-reduce jobs. The modified query execution plan for our ex-
ample query under the enhanced mode is shown in figure 13. It
shows one Virtual Table node from which all the interesting

589



Figure 12: Query plan without remote materialization

data required to answer the query can be retrieved. For the cur-
rent example, this virtual table node corresponds to the joined data
from the tables CUSTOMER and ORDERS with all the necessary
predicates already applied. We can see from the execution plan
in figure 13 that the Remote Row Scan node is directly fetch-
ing the necessary data from the temporary table, with no additional
predicates being applied on the temporary able.

Figure 13: Query plan with remote materialization

In addition to these basic caching techniques the remote materi-
alization implements further improvements: First, we only materi-
alize queries with predicates. This ensures that we do not replicate
the entire Hive table as a materialized result set as this will not
add any value to the performance of the system. Second, the du-
ration for which a materialized result set is valid and is persisted
in the remote source is controlled via a configuration parameter,
called remote_cache_validity. When the query optimizer
identifies the hint USE_REMOTE_CACHE, it checks if the mate-
rialized data set on the remote source is valid based on this pa-
rameter setting before actually using it. If it discovers that the
data set is outdated, it discards the old data set and materializes
the result set to a new copy at the remote source. Finally, the re-
mote materialization enhancement in SAP HANA is disabled by
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Figure 14: Runtime benefit of remote materialization

default and can be controlled using the configuration parameter
enable_remote_cache. This parameter is useful in scenar-
ios when the customer needs to completely disable the feature, for
example, low storage availability in HDFS or when the tables in
Hive are being frequently updated.

Performance Analysis
We demonstrate the difference between using Hive and SAP HANA
with and without remote materialization. This small experiment
uses the TPC-H dataset with scale factor 1. The experiments were
performed using SAP HANA SPS07 as the primary database run-
ning SUSE SLES 11.2 on a server with 16 physical cores and
256GB RAM. The 7-node Hadoop cluster was accessed from SAP
HANA via Hive’s ODBC driver as remote source. We used a Hadoop
cluster configuration with Apache Hadoop 1.0.3, Hive 0.9.0 on an
HDFS with 21.5TB capacity, 240 map tasks, 120 reduce tasks, and
6 worker nodes. The following tables from the TPC-H schema were
federated remotely at Hive: LINEITEM, CUSTOMER, ORDERS,
PARTSUPP, and PART. The tables present locally in SAP HANA
were: SUPPLIER, NATION, REGION (, and PART only for Q14
and Q19). Such a small scale-factor is ridiculously small for a typ-
ical Hive and Hadoop setup, but for large data sets the positive
impact of remote materialization would be even more pronounced.
In that sense, this somewhat unrealistic setup is a very conserva-
tive analysis of the expected performance improvements of remote
materialization with SAP HANA and Hive.

We used slightly modified versions of the benchmark queries. In
particular, we removed the TOP and ORDER BY clauses from the
TPC-H queries, with the exceptions being those queries for which
the sorting was done inside SAP HANA. This is desirable as we
cannot make any assumptions about the ordering property of the
datasets fetched from Hive which were materialized earlier.

In figure 14 we present the runtime benefit achieved when using
SDA with remote materialization enhancement using the normal
execution mode with SDA as the baseline. We also demonstrate
the materialization overhead incurred in materializing the results
on the remote system; this is shown in figure 15. We have marked
the modified queries discussed above with an asterisk (*).

We can see from figure 14 that using remote materialization,
some queries can benefit as high as 95% with respect to query re-
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Figure 15: Materialization overhead of remote materialization

sponse time. There are two aspects to the overall query execution
time when we have a remote system in tandem with SAP HANA:
time taken to fetch the data required from the remote source, and
time taken to join the fetched data with local data in SAP HANA.
We can infer from the results that the queries can be divided into
two segments based on their respective performance gains.

The data displayed in figure 14 has been sorted based on the
maximum runtime benefit. The top seven queries for scale factor
1 demonstrate high gain of more than 75%. This is expected be-
cause all the tables accessed in these queries are federated tables,
and there are no local tables with which the results fetched from
the remote source are joined. For the remaining queries, the perfor-
mance gain is on the lower side because the results fetched from the
remote source are joined with local tables in HANA. This is also
expected since we demonstrate the percentage improvement in the
overall query execution time, and not just the time taken to fetch
the data required from the remote source. We can conclude from
the results of our experiment that our enhancement provides max-
imum benefits for the cases when the majority of the computation
is performed on the remote system and minimum data is read back
into HANA. In an analytical workload, several queries are executed
multiple times and with remote materialization enhancement, every
execution of the query can benefit by skipping this computation and
directly fetching the already materialized data. This enhancement
is specifically useful in case of Hive, because a user may not have
exclusive access to the Hadoop cluster and may only get a limited
share of the Hadoop cluster’s overall capacity.

The materialization process at the remote source has an associ-
ated overhead with it, which is also demonstrated in figure 14. This
overhead is the additional time required to materialize the results in
Hive and is a single-time cost, which is incurred when the query is
first executed with the optimizer hint USE_REMOTE_CACHE. As
long as the data in the Hive tables is not modified, SAP HANA
can be configured to continue reusing the materialized results from
Hive. This can have huge benefits with low velocity data stored in
Hive, depending on the frequency of queries that use these mate-
rialized results. This overhead in materialization process is partly
because CREATE TABLE AS SELECT (or CTAS) in Hive is cur-
rently a two-phase implementation: first the schema resulting from
the SELECT part is created, and then the target table is created. We

make use of this CTAS infrastructure provided by Hive to create
the temporary tables. The materialization overhead demonstrated
in our experiments is set to go down when the CTAS implementa-
tion in Hive gets optimized.

5. SUMMARY
The SAP HANA data platform reflects SAP’s answer to the ever-

increasing requirements and opportunities in management of data.
It was specifically designed as a single point of access for appli-
cation logic by providing a HANA native as well as HANA open
strategy:

• SAP HANA core database can serve real time, complex queries
and multi-structured data needs.

• SAP Sybase IQ (HANA IQ) can provide highly concurrent
OLAP workload in combination with large scale, disk-based
storage

• SAP Sybase ESP (HANA ESP) can provide high velocity on-
the-fly analysis with native hand-over to other SAP HANA
components.

• Hadoop can provide cheap data storage and pre-processing
for large scale unstructured/unformatted data and compiled
into the HANA data platform by allowing query/code push-
down and part of HANA’s life cycle management capabili-
ties.

• SAP BW and SAP EIM [2] – as some examples on an appli-
cation level – can provide consumption, modeling, and inte-
gration capabilities (including Hadoop)

This paper gives some insight into the overall picture of Big Data
applications in SAP’s perception as well as diving into technical
details of the HANA native and HANA open integration strategy.
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ABSTRACT
Taxi waiting queues or passenger waiting queues usually re-
flect the imbalance between taxi supply and demand, which
consequently decrease a city’s tra�c system productivity
and commuters’ satisfaction. In this paper, we present a
queue detection and analysis system to conduct analytic-
s on both taxi and passenger queues. The system utilizes
the event-driven taxi traces and the taxi state transition
knowledge to detect queue locations at a coordinate level
and subsequently identify 4 di↵erent types of queue context
(e.g., only passengers queuing or only taxis queuing). More
specifically, it adopts the novel and easy-to-implement al-
gorithms to selectively extract taxi pickup events and their
critical features. The extracted taxi pickup locations are
then used to detect queue locations, and the extracted crit-
ical features are used to infer queue context. The extensive
empirical evaluations, which run on daily 12.4 million taxi
trace records from nearly 15000 taxis in Singapore, demon-
strate the high accuracy and stability of the queue analytics
results. Finally, we discuss the real world deployment issues
and the gained insights from the queue analysis results.

1. INTRODUCTION
In the densely populated Asian cities (e.g., Singapore, Bei-
jing and Taipei), relatively cheap taxi fares and large num-
ber of taxis greatly facilitate the pervasive usage of taxis
by urban citizens for various purposes, such as traveling be-
tween o�ce and home, purchasing groceries at supermarkets
and visiting friends. It is relatively di↵erent from the tax-
i usage at many cities in US or Europe, where taxis more
frequently serve airport routes and do not cover all urban
districts. The taxi usage characteristics in the Asian cities
easily cause that the temporal and spatial imbalance of taxi
supply and demand occurs frequently: taxis would queue up
for passengers due to temporarily low taxi demand but high
supply nearby; passengers would queue up for taxis due to
temporarily high taxi demand but low supply; in many time
periods, taxis and passengers would concurrently queue up
as both taxi demand and supply are high. Such queuing

c� 2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
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Creative Commons license CC-by-nc-nd 4.0

(a) Taxi Queue (b) Passenger Queue

Figure 1: Di↵erent Types of Queue in Singapore

events usually not only reduce the productivity of an urban
tra�c system, but also greatly decrease the satisfaction of
public commuters as well as taxi drivers. Fig. 1 illustrates a
taxi queue and a passenger queue that both frequently occur
in Singapore.

Properly and accurately detection of queue locations and
queue context would benefit many parties and stakeholders.
The real time queuing events information and their long-
term patterns can be used in the recommendation systems
for taxi drivers and commuters (e.g., suggest commuters to
the nearby taxi queue locations). The information can al-
so be used in the taxi operators’ booking and dispatching
systems (e.g., guide available taxis to passenger queue lo-
cations). Moreover, the government agencies need such in-
formation to understand the imbalance between taxi supply
and demand, and accordingly take necessary actions (e.g.,
increase operating taxis or adjust taxi fares).

Motivated by the availability of abundant information in
taxi traces, e.g., GPS locations and taxi states, using taxi
traces to design and build a city scale queue detection and
analysis system is a promising solution. However, it is an
open and non-trivial problem. Firstly, taxi queuing for pas-
sengers is not simply a passenger pickup, dropo↵ or vehicle
parking event, only the GPS coordinates and the binary taxi
states (occupied or non-occupied) are not enough to capture
it. Secondly, passenger queuing for taxis is even more di�-
cult to detect, as no any direct information from the passen-
ger side and no apparent clue in taxi traces. Thirdly, both
taxi queuing and passenger queuing are highly dynamic in
terms of time and locations, which not only repeatedly occur
at fixed taxi stands or during peak hours.

In this paper, we present a practical system that captures
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taxis and passengers queuing activities at a fine-grained s-
cale, i.e., at the individual coordinate level rather than a
region or zone, and subsequently analyzes di↵erent types of
queue context. We summarize the key contributions of this
work as follows:

• We propose a novel approach, using multiple taxi s-
tates and their transition information, to conduct the
city scale queue analytics for both taxis and passen-
gers.

• We design and implement a two-tier queue analytics
engine, where the lower tier module detects queuing
locations and the upper tier module identifies queue
context based on the selected taxi pickup events and
features.

• We conduct the extensive empirical evaluation of our
queue analytics results before we deploy the system
in the real world. We demonstrate its stability using
large scale taxi traces, and its accuracy using various
other data sources (e.g., landmark information, failed
taxi booking data).

The rest of the paper is organized as follows: section 2 in-
troduces the background of the dataset, and then section 3
depicts our overall system architecture and define the queue
types. In sections 4 and 5, we describe our queue spot de-
tection and queue context disambiguation modules in detail
respectively. Extensive empirical evaluations are conducted
in section 6, which is followed by a discussion on deployment
and other issues in section 6. The related work is present-
ed in section 8. At last, we conclude with future work in
section 9.

2. TAXI STATE AND EVENT-DRIVEN LOG
2.1 Mobile Data Terminal
As part of the taxi operators’ e↵orts on improving their
quality of service, each taxi in Singapore is equipped with
a specifically designed device, called mobile data terminal
(MDT), which is mainly used to handle taxi bookings and
monitor a taxi’s real time status. More specifically, it re-
ceives taxi booking tasks from the backend service (taxi cal-
l center), and sends back taxi driver’s decision (accept or
reject the task) via general packet radio service (GPRS).
Moreover, MDT keeps logging and updating a taxi’s real
time state by collecting the information from taxi meter,
roof-top signs and its frontend touch screen. Fig. 2 simply
depicts an MDT system on a Singapore taxi, where MDT
is hardwired directly to di↵erent on-vehicle devices and pro-
vides taxi drivers a multifunctional touch screen.

2.2 Taxi State
Based on the collected real time information, the MDT de-
vice is able to precisely identify 11 di↵erent taxi states. Ta-
ble 1 lists all the taxi states with their descriptions. The taxi
state transitions mainly depend on the type of a taxi job. In
principle, all taxi jobs can be classified into two categories:
street job and booking job.

A street job means a taxi picks up new passengers by street
hail, and the following is the typical taxi state transitions
on a street job:

 

Figure 2: A simplified telematics system on a Sin-
gapore Taxi

a) a passenger hails down a taxi with FREE state along a
road or a taxi stand.

b) the taxi driver starts the taximeter for a new trip, and
meanwhile the MDT updates the taxi state to POB.

c) during the trip, the taxi state keeps POB while the MDT
periodically updates the taxi GPS location.

d) the taxi is approaching the destination and the driver
presses the STC button on the MDT touch screen to
update the taxi state to STC.

e) upon arrival of the destination, the driver presses the but-
ton on the taximeter for printing the receipt, and mean-
while the MDT updates the taxi state to PAYMENT.

f) once the driver resets the taximeter after the passenger
alights, the MDT automatically updates the taxi state to
FREE again.

A booking job means a taxi picks up new passengers, who
have made a booking via telephone, short message service
(SMS) or mobile phone applications (apps). The typical taxi
state transitions on a booking job can be described as below:

a) a passenger makes a taxi booking, and the backend ser-
vice dispatches the booking information to the nearby
taxis with FREE or STC state.

b) a taxi driver successfully bids the booking job by pressing
the button on the MDT touch screen, and meanwhile the
MDT updates the taxi state to ONCALL.

c) upon arrival of the booking pickup location, the MDT
updates the taxi state to ARRIVED.

d) if the passengers do not show up within a specific time
period (e.g., 15 minutes), the MDT updates the taxi state
to NOSHOW first and then to FREE within 10 seconds.

e) if the passenger gets on the taxi in time, the MDT up-
dates the taxi state to POB once the driver starts the
taximeter.

f) the subsequent taxi state transitions are the same as
street job’s procedure, i.e., from street job’s step c) to
step f).

Fig. 3 illustrates a complete taxi state transition diagram,
which includes the procedures of both street jobs and book-
ing jobs.
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Table 1: Taxi State and Description

Taxi State Description 
FREE Taxi unoccupied and ready for taking new passengers or bookings 

POB Passenger on board and taximeter running 

STC Taxi soon to clear the current job and ready for new bookings 

PAYMENT Passenger making payment and taximeter paused 

ONCALL Taxi unoccupied, but accepted a new booking job 

ARRIVED Taxi arrived at the booking pickup location and waiting for the passenger 

NOSHOW No passenger showing up and the booking canceled soon 

BUSY Taxi driver temporarily unavailable due to a personal reason 

BREAK Taxi on a break and driver logged on MDT 

OFFLINE Taxi on a break and driver logged off from MDT  

POWEROFF MDT shut down and not working 

PAYMENT

ARRIVED

POWEROFF

STC

POB

FREE

BREAK OFFLINE

ONCALL

BUSY
NO 

SHOW

Figure 3: Taxi State Transition Diagram

2.3 MDT Log
As the central processing device on a taxi, MDT keeps up-
dating and tracking any changes of taxi state and other crit-
ical information, e.g., GPS location, vehicle speed and taxi
fares. The MDT logging module writes all such informa-
tion to its local storage, and meanwhile selectively and peri-
odically sends them to the backend service via GPRS. The
MDT logging frequency is not fixed by default, and a logging
action is triggered by the taxi state changes, GPS location
updates and a few other critical vehicle events. Di↵eren-
t from the traditional GPS localizer traces, the MDT log
module adopts the event-driven logging mechanism, which
are explicitly driven by the 11 taxi state transition events.
Therefore, the MDT log captures much more accurate and
abundant information than the traditional GPS traces, and
accordingly provides more opportunities to discover and un-
derstand activities of both taxis and passengers.

We use the MDT log from a large local taxi operator, and
select its 6 fields: timestamp, taxi ID, GPS location, instan-
taneous taxi speed and taxi state. Table 2 gives the selected
fields in the MDT log and a sample record.

Table 2: Selected Fields of MDT Log with a Sample

Timestamp Taxi ID Longitude Latitude Speed Taxi State 

01/08/2008 19:04:51 SH0001A 103.7999 1.33795 54 POB 
 

3. SYSTEM OVERVIEW
The system block diagram with the proposed Queue Ana-
lytic Engine is illustrated in Fig 4, and it mainly consists of
two core modules:

• Queue Spot Detection Module: this module is the com-
ponent for detecting queue locations (spots) based on
the selected taxi pickup events. An algorithm is specif-
ically designed for this module to extract pickup event
sub-trajectories, which uses both the taxi state tran-
sition knowledge and the taxi instantaneous speed. In
order to detect stable queue spots, it requires a rel-
atively long-term historical dataset, e.g., a full day’s
MDT logs, from a large number of taxis.

• Queue Context Disambiguation Module: this module
is the component for identifying di↵erent queuing situ-
ations, as defined in Table 3, at a queue spot. Based on
the two newly proposed algorithms, the module firstly
fetches the required features from the input of pick-
up event sub-trajectories, and then uses the features
to resolve distinct queue types. The taxi state transi-
tion knowledge are used to accurately capture di↵erent
time points in pickup events. This module mainly runs
on a relatively short-term historical dataset for analyz-
ing queue context transition patterns and queue types.

As mentioned earlier, Table 3 defines the four queue types,
i.e., C1 to C4. The queue type C1 is both taxi queue and
passenger queue concurrently occur at the given queue spot,
which indicates taxi demand and supply are presently both
high. The queue type C2 is only passenger queue, C3 is only
taxi queue, and C4 is neither taxi queue nor passenger queue
at the given queue spot.

In this paper, “queue” refers to a stable number of waiting
entities during a specific time period, which indicates that
the average arrival rate exceeds the average service rate. To
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Figure 4: System Block Diagram of Queue Analytic
Engine

Table 3: Four Types of Queue Context

Queue Type Passenger Queue No Passenger Queue 

Taxi Queue       
No Taxi Queue       

 

clarify the above described queue types, we define taxi queue
and passenger queue as below:

• Taxi Queue: One available taxi or more steadily await-
ing for taking new passengers at a queue spot during
a given time period.

• Passenger Queue: One passenger or more steadily await-
ing for taxis at a queue spot during a given time period.

Note that no taxi queue or no passenger queue only means no
stable waiting taxis or passengers, and it does not necessarily
mean no any taxis waiting for a short time or passengers
quickly getting taxis. Moreover, for both the taxi queue and
the passenger queue, we do not impose any assumptions on
the queue shapes and service modes, but only the first-come
first-served (FIFO) discipline.

4. QUEUE SPOT DETECTION
It seems that queue spots can be easily detected by clus-
tering the most frequent taxi pickup/dropo↵ locations and
taxi parking locations. However, such a straightforward ap-
proach has di�culties due to two reasons. Firstly, a high
proportion of quick pickup and dropo↵ events occur at any
non-restricted locations in the city, and it would easily re-
sult the entire road rather than a small queuing area be-
ing a cluster. Secondly, a frequent taxi parking location is
not necessarily a taxi queue spot for passengers, and thus
the specific taxi state transitions need to be considered and
checked.

We therefore only consider such pickup events: a taxi with

an unoccupied state parks for a time of period and then
departs with an occupied state. We propose a new algorithm
to extract such slow pickup events, and we then determine
taxi queue spots by clustering the most frequent locations
of the extracted pickup events.

4.1 Preliminary
We firstly define and clarify several important terms which
are used in the following sections.

Definition 1. Individual taxi’s trajectory <: A temporal-
ly ordered sequence of the trimmed MDT log records from
one taxi, i.e., p1 ! p2 ! · · ·! p

n

, where p
i

(1  i  n)
is the tuple containing the taxi state p

i.state

, instantaneous
speed p

i.speed

, latitude coordinate p
i.lat

, longitude coordi-
nate p

i.lon

and timestamp p
i.ts

.

Definition 2. Individual taxi’s sub-trajectory R(s, e): A seg-
ment of an individual taxi’s trajectory, i.e., p

s

! p
s+1 !

· · ·! p
e

, where 1  s < e  n.

Definition 3. Individual taxi’s sub-trajectory set !: A col-
lection of an individual taxi’s sub-trajectories, i.e., {Rk|k =
1, 2, · · · }, where Rk = R(s

k

, e
k

).

Definition 4. Multiple taxis’ sub-trajectory set W : A col-
lection of multiple taxi’s sub-trajectory sets, i.e., {!j |j =
1, 2, · · · }, where !j is the jth taxi’s individual sub-trajectory
set.

Based on the taxi state descriptions in Table 1, we classify
the taxi states into three state sets:

Definition 5.1 Taxi occupied state set ⇥: { POB, STC, PAY-
MENT }.

Definition 5.2 Taxi unoccupied state set  : { FREE, ON-
CALL, ARRIVED, NOSHOW }.

Definition 5.3 Taxi non-operational state set ⇤: { BREAK,
OFFLINE, POWEROFF }.

The BUSY state is a special state, and we do not assign it
into the above defined three taxi state sets. We will discuss
it separately in the subsequent sections.

4.2 Pickup Event Extraction

In order to detect each individual taxi’s slow pickup events,
we propose a simple and practical algorithm, called pickup
extraction algorithm (PEA): its input is an individual tax-
i’s trajectory < and output is the sub-trajectory set ! of
the required taxi pickup events. The basic idea behind the
PEA algorithm is that a slow taxi pickup event normally
has at least two consecutive low speed records (e.g., below
10 km per hour) during the period of moving forward in the
waiting line. Meanwhile, a pickup event shows certain taxi
state transitions in the corresponding sub-trajectories, e.g.,
from FREE to POB. The complete algorithm is shown in
Algorithm 1.
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Algorithm 1 Pickup Extraction Algorithm

Input: A taxi’s trajectory < and speed threshold ⌘
sp

.
Output: The sub-trajectory set !.
1: �1  false; �2  false; k  1;
2: for i = 1! n do
3: if p

i.state

/2 ⇤ then
4: if p

i.speed

 ⌘
sp

and �1=false and �2=false then
5: �1  true;
6: else if p

i.speed

 ⌘
sp

and �1=true and �2=false
then

7: Rk.Add(p
i�1); R

k.Add(p
i

); �2 = true;
8: else if p

i.speed

 ⌘
sp

and �1=true and �2=true
then

9: Rk.Add(p
i

);
10: else if p

i.speed

>⌘
sp

and �1=true and �2=false then
11: �1  false;
12: else if p

i.speed

>⌘
sp

and �1=true and �2=true then
13: if p

sk.state 2 ⇥ and p
ek.state 2  then

14: goto TAG1 ;
15: else if p

sk.state=FREE and p
ek.state=ONCALL

then
16: goto TAG1 ;
17: else if the taxi states in Rk never change then
18: goto TAG1 ;
19: else
20: !.Add(Rk); k  k + 1;
21: end if
22: else
23: goto TAG1 ;
24: end if
25: else
26: TAG1 : Rk  ;; �1  false; �2  false;
27: end if
28: end for

The proposed PEA algorithm firstly filters out the sub-
trajectories with any of the non-operational taxi state, i.e.,
p
i.state

/2 ⇤. After that, it sets the low speed flag �1 to true
when the first low speed is detected, i.e., the taxi speed falls
below (or equal to) the speed threshold ⌘

sp

. Only when the
subsequent taxi speed also falls below the speed threshold,
it starts to add the tuple p

i

into an empty sub-trajectory Rk

and repeats such an adding action until the speed becomes
bigger than the threshold again. Thus, all the extracted sub-
trajectories have at least two tuples with the speeds below
the given threshold.

Finally, PEA adds the new Rk into the sub-trajectory set !,
given Rk satisfies the following state transition constraints:
1) Rk does not start with an occupied state and end with
an unoccupied state, i.e., p

sk.state /2 ⇥ and p
ek.state /2  , as

it is simply a “passenger alight” event; 2) Rk does not start
with FREE and end with ONCALL, as it means the taxi
leaves for a new booking job at another location; 3) Rk has
at least one-time state transition, as we need to filter out
Rk caused by tra�c jams or red tra�c lights.

4.3 Pickup Location Clustering
Given an individual taxi’s trajectory < having multiple slow
pickup events, the output of the PEA algorithm, i.e., the

sub-trajectory set !, contains a number of sub-trajectories,
i.e., {Rk|k = 1, 2, · · · }. For each sub-trajectory Rk, i.e.,
p
sk ! · · ·! p

ek , we compute a central GPS location (c̄
lat

, c̄
lon

)
by averaging their latitude coordinates and the longitude
coordinates. Accordingly, we have a GPS location set c =
{(c̄k

lat

, c̄k
lon

)|k = 1, 2, · · · } derived from the sub-trajectory
set !.

After running the PEA algorithm on all taxis’ trajectories
respectively, we have a sub-trajectory set W = {!j |j =
1, 2, · · · }, where !j is the jth taxi’s sub-trajectory set !.
Accordingly, we have the GPS location set C = {cj |j =
1, 2, · · · }, where cj is the jth taxi’s GPS location set c.

Given all taxis’ GPS location set C, we run it with the
density-based clustering method DBSCAN [5], which is an
e↵ective way to discover high density clusters and remove
noises. We then compute the centroid of all the found clus-
ters, and each centroid is the detected taxi queue spot. Giv-
en the fact that people always queue for taxis at the places
where taxis usually take passengers, it is reasonable to as-
sume the detected taxi queue spots are also the possible
spots where taxi passengers queue up. We thus call an
obtained centroid queue spot rather than taxi or passenger
queue spot.

The GPS location set C is normally a large dataset. When
running the DBSCAN algorithm on it, we need to careful-
ly select its parameters and strive to reduce the runtime
complexity (e.g., using the R-Tree based or grid based s-
patial index). We will address all of these implementation
issues in section 6. On the other hand, many other advanced
density-based clustering methods can also be considered and
introduced [13].

5. QUEUE CONTEXT DISAMBIGUATION
5.1 Wait Time Extraction
Given W (r) is the extracted pickup event sub-trajectory
set W for queue spot r, it consists of a large number of sub-
trajectories from di↵erent taxis. For each sub-trajectory in
W (r), the corresponding wait time is the time interval be-
tween the wait start time and the wait end time. We there-
fore present a simple algorithm, called wait time extraction
(WTE) algorithm: its input is W (r) for a queue spot r and
output is the taxi wait time set Y (r) = {tm

end

� tm
start

|m =
1, 2, · · · }, where tm

end

and tm
start

are the wait start time and
wait end time of the mth taxi. The complete algorithm is
shown in Algorithm 2.

For each sub-trajectory R(s, e) in W (r), the WTE set the
wait start time t

start

to the timestamp when the first FREE,
ONCALL or ARRIVED state appears. However, if any
PAYMENT is detected thereafter, it resets t

start

to the
timestamp when the subsequent FREE state appears. After
the wait start time t

start

is determined, the wait end time
t
end

is set to the timestamp when the first POB state ap-
pears. Finally, the time interval between the wait start time
and the end time is added into the taxi wait time set Y (r),
i.e., {tm

wait

|m = 1, 2, · · · }.

5.2 Time Slot with Pickup Event Feature
We divide the time domain into L continuous time slots,
where time slot T j (1  j  L) starts at tj�1 and ends at
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Algorithm 2 Wait Time Extraction Algorithm

Input: W (r) for queue spot r.
Output: Taxi Wait time set Y (r).
1: t

start

 null; t
end

 null;
2: for each sub-trajectory R(s, e) in W (r) do
3: for i = s

m

! e
m

do
4: if p

i.state

= {FREE or ONCALL or ARRIV ED}
and t

start

= null then
5: t

start

 p
i.ts

;
6: else if p

i.state

= PAYMENT and t
start

6= null
then

7: t
start

 null; t
end

 null;
8: else if p

i.state

= POB and t
start

6= null and t
end

=
null then

9: t
end

 p
i.ts

;
10: end if
11: end for
12: if t

start

6= null and t
end

6= null then
13: Y (r).Add(t

end

� t
start

)
14: end if
15: t

start

 null; t
end

 null;
16: end for

tj . The time t0 and tj are the start time and end time of
the time domain. Accordingly, set Y (r) can be divided into
L partitions, where Y (r)j = {tm

wait

|tj�1  tm
start

< tj} and
1  j  L.

Given Y (r)j consists of multiple tm
wait

, we have their arith-
metic mean, denoted by t̄

wait

(r)j , as the average taxi wait
time over time slot T j . When computing t̄

wait

(r)j , we on-
ly consider all street jobs’ wait time, i.e., tm

start

set by the
timestamp of FREE, as a booking job’s wait time mainly
depends on a specific booking passenger’s individual arrival
time.

Given the arrival number of FREE taxi over time slot T j , de-
noted by N

arr

(r)j , and time slot length tj � tj�1, we have
the average arrival rate of FREE taxis over time slot T j :

�̄(r)j = Narr(r)
j

t

j+1�t

j . According to Little’s Law [7], which re-

lates average arrival rate, average wait time and average
queue length, we have the average FREE taxi queue length
over time slot T j : L̄(r)j = t̄

wait

(r)j ⇤ �̄(r)j .

Meanwhile, the taxi departure interval can be computed
by tm+1

end

� tm
end

, where tm
end

and tm+1
end

are the consecutive
wait end time in Y (r)j . Accordingly, we have the arithmetic
mean of all the departure intervals, denoted by t̄

dep

(r)j over
time slot T j . When computing t̄

dep

(r)j , we consider the
departure time intervals of all the departed taxis, i.e., both
street job ones and booking job ones. Thus t̄

dep

(r)j depicts
the departure rate of all departed taxis over time slot T j .

Finally, we have a 5-tuple to depict time slot T j of spot r:

'(r)j =
D
t̄
wait

(r)j , N
arr

(r)j , L̄(r)j , t̄
dep

(r)j , N
dep

(r)j
E
, where

t̄
wait

(r)j and N
arr

(r)j depict the FREE taxi arrival activi-
ties, L̄(r)j gives the FREE taxi queue length, t̄

dep

(r)j and
N

dep

(r)j depict all taxis’ departure activities. All the 5 vari-
ables are pickup event features.

As described earlier, the MDT logging is an event-driven ac-
tion, where it records the exact moment that the taxi state
switch to FREE, ARRIVED, PAYMENT or POB. There-
fore, the values in the 5-tuple are highly accurate and valid.

5.3 Queue Context Disambiguation
Given the 5-tuple for each time slot at a queue spot, we
propose a conceptually simple and easily implemented algo-
rithm, called queue context disambiguation (QCD) algorith-
m, to identify the di↵erent queue types defined in Table 3.
The basic idea behind the QCD algorithm is that: a pas-
senger queue may exist when taxi pickup events frequently
and continuously occur; besides, a passenger queue may also
exist when a considerably high proportion of booked taxis
appear, even though the frequency of taxi pickup events is
not high.

The main input of QCD is the derived 5-tuple feature set
for all time slots ⌦(r) = {'(r)j |j = 1, 2, · · · , L}, and the
output is the labeled time slots, i.e., C1, C2, C3 and C4.
The complete algorithm is shown in Algorithm 3.

Algorithm 3 Queue Context Disambiguation Algorithm

Input: ⌦(r), thresholds ⌘
wait

,⌘
dep

,⌧
arr

,⌧
dep

,⌘
dur

,⌧
ratio

.
Output: Labeled T j , where 1  j  L.
1: Routine 1 :
2: for j = 1! L do
3: if L̄(r)j < 1 then
4: if N

arr

(r)j � ⌧
arr

and t̄
wait

(r)j < ⌘
wait

then
5: Label T j to C2;
6: else if N

arr

(r)j < ⌧
arr

and t̄
wait

(r)j � ⌘
wait

then
7: Label T j to C4;
8: end if
9: end if
10: if L̄(r)j � 1 then
11: if N

dep

(r)j � ⌧
dep

and t̄
dep

(r)j < ⌘
dep

then
12: Label T j to C1;
13: else if N

dep

(r)j < ⌧
dep

and t̄
dep

(r)j � ⌘
dep

then
14: Label T j to C3;
15: end if
16: end if
17: end for
18: Routine 2 :
19: for j = 1! L do
20: if T j not labeled and N

dep

(r)j ⇤ t̄
dep

(r)j > ⌘
dur

and
Narr(r)

j

Ndep(r)
j < ⌧

ratio

and L̄(r)j � 1 then

21: Label T j to C1;
22: else if T j not labeled and N

dep

(r)j ⇤ t̄
dep

(r)j > ⌘
dur

and Narr(r)
j

Ndep(r)
j < ⌧

ratio

and L̄(r)j < 1 then

23: Label T j to C2;
24: end if
25: end for

In general, the proposed QCD algorithm consists of 2 rou-
tines to identify the queue type, which use di↵erent criteria
to label the time slots. In Routine 1, it firstly examines
whether a taxi queue exists during the given time slot by
checking the queue length value L̄(r)j . When a taxi queue
does not exist, i.e., L̄(r)j < 1, it further analyzes the average
taxi wait time t̄

wait

(r)j and arrival taxi number N
arr

(r)j : a
considerably large taxi arrival number with a small average
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taxi wait time value indicates a passenger queue exist, and
thus it labels the time slot as C2; On the other hand, a small
taxi arrival number with a considerably large average taxi
wait time value indicates no passenger queue exist, and thus
it labels the time slot as C4. In other words, the taxi arrival
number together with the average taxi wait time value serves
as the indicator of a passenger queue. When a taxi queue
exists, i.e., L̄(r)j >= 1, it analyzes the average taxi depar-
ture interval N

dep

(r)j and departure taxi numberN
dep

(r)j :
a large taxi departure number with a notably small average
taxi departure interval value indicates a passenger queue ex-
ist, and thus it labels the time slot as C1; On the other hand,
a small taxi departure number with a notably large average
taxi leave interval value indicates no passenger queue exist,
and thus it labels the time slot as C3. Note that the aver-
age taxi wait time value is no longer a good indicator of a
passenger queue when a taxi queue exist, i.e., L̄(r)j >= 1,
as the queuing delay becomes significant and even a domi-
nant factor; on the other hand, the average taxi departure
interval value is not a good indicator of a passenger queue
when a taxi queue does not exist, i.e., L̄(r)j < 1, as some
taxis may depart with booking passengers, and the corre-
sponding leave intervals are only determined by the booking
passengers’ arrival time.

In Routine 2, the QCD algorithm continues to label the time
slots that can not be identified in Routine 1: it mainly uses

the ratio Narr(r)
j

Ndep(r)
j , i.e., the ratio of the arrival FREE taxi

number to the total departure taxi number (street jobs +
booking jobs) over the given time slot, to infer whether a
passenger queue exist. More specifically, a small value of
Narr(r)

j

Ndep(r)
j essentially means a large portion of ONCALL taxis

depart from this queue spot, which strongly indicates the
di�culty to get a FREE taxi at the current spot and time
slot. Meanwhile, if the departure events occur over a long
time period, i.e., N

dep

(r)j ⇤ t̄
dep

(r)j > ⌘
dur

, the QCD algo-
rithm would infer the existence of a passenger queue, and
accordingly labels the given time slot to C1 or C2 according
to the taxi queue length value L̄(r)j . Note that in Singa-
pore, people usually prefer hailing down a FREE taxi rather
than booking a taxi, as they have to pay a compulsory 3 to
4 Singapore dollars’ taxi booking fee, which easily takes up
more than 30% of a single-trip taxi fare.

The threshold values used in the proposed QCD algorithm
need to be properly set, and di↵erent queue spots may have
di↵erent threshold values: for example, a queue spot located
at a hospital might have distinct threshold values from the
one in the airport. We will illustrate how to determine these
values in section 6.

6. EMPIRICAL EVALUATION
6.1 Queue Spot Detection Experiment
6.1.1 Data Preprocessing

Our entire dataset contains about 15000 taxis’ MDT logs,
which occupy around 60% of the total taxis in Singapore.
In general, the 15000 taxis generate around 12.38 million
daily MDT log records, and each MDT generate 848 daily
MDT log records. It is natural that such a large MDT log
dataset contains some errors, and the main error types are:
(1) improper/missing taxi states; (2) record duplication; (3)

GPS coordinates outside Singapore or in inaccessible zones.

Firstly, the standard taxi state transition diagram is given
in Fig. 3, but the taxi states in some MDT logs appear at
improper places. For example, a FREE state is found be-
tween the two PAYMENT states in many MDT logs. We
found that it is a software bug caused by the clock syn-
chronization between the old version MDT device and the
taximeter. Another common issue is some intermediate tax-
i states, e.g., ARRIVED, NOSHOW or STC, are missing
and lost. Two possible reasons are identified: 1) these in-
termediate states sometimes last only several seconds and
then switch to another state before the MDT logging thread
tracks them down. 2) logging some intermediate states re-
quires taxi driver manually press some specific buttons on
the MDT touch screen, but some drivers omit this step either
purposely or accidentally. Secondly, the duplicate records in
the MDT logs are mainly caused by the re-transmission of
the GPRS messages between MDT and the backend service.
Thirdly, the GPS coordinates errors are normally caused by
the urban canyon e↵ect [3].

In short, we remove the above described erroneous records
from the raw MDT log dataset, which occupy around 2.8%
of the total MDT log records.

6.1.2 Experiment Setup and Parameter Selection

We use the daily MDT logs from all 15000 taxis for the queue
spot detection. Firstly, we run the proposed PEA algorithm
on the 15000 taxis’ daily individual trajectories, where 10
km per hour is as the speed threshold ⌘

sp

, and successfully
extract more than 264000 pickup event sub-trajectories for
each single day. Each extracted sub-trajectory provides us
one central GPS location, and accordingly we have around
264000 GPS locations, i.e., the GPS location set C, for the
DBSCAN clustering. Running the DBSCAN clustering al-
gorithm on such a large-size point set is significantly slow
due to its O(n2) complexity. Therefore, we simply divide
Singapore into 4 rectangular zones based on their di↵erent
characteristics, i.e., Central, North, West and East, as illus-
trated in Fig. 5. The central zone covers Singapore’s central
business district(CBD) and most of tourist attractions. The
other 3 zones are typically residential and industrial areas
with a few tourist attractions. Therefore, the GPS loca-
tion set C is further divided into 4 subsets, and we run the
DBSCAN clustering algorithm on each subset respectively.

Moreover, properly choosing the two parameters of DB-
SCAN, i.e., eps "

d

and min-points p
d

, is not a trivial issue:
"
d

specifies the maximum radius of the neighborhood and p
d

sets the minimum number of points in an eps-neighborhood
of the point. An unduly small "

d

or an overly large p
d

may
lead a large part of the data points cannot be clustered,
while an overly large "

d

or an unduly small p
d

would merge
di↵erent clusters into one. Fig. 6 shows the number of the
detected queue spot with respect to di↵erent "

d

and p
d

. We
see that small "

d

values (e.g., 10 meters) or large p
d

values
(e.g., 100 points) result that only a few number of queue
spots are detected and many actual ones are neglected. On
the other hand, large "

d

values (e.g., 20 meters) or small p
d

values (e.g., 25 points) would easily merge adjacent queue
spots and meanwhile bring many insignificant queue spots.
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Figure 5: Four Rectangular Zones

 

0

50

100

150

200

250

300

350

400

5 10 15 20

D
et

e
ct

e
d

 Q
u

e
u

e
 S

p
o

t 
N

u
m

b
e

r 
 

Eps Value (meter) 

MinPts=25

MinPts=50

MinPts=100

MinPts=150

Figure 6: DBSCAN Performance with Di↵erent Pa-
rameter Pairs

By carefully comparing the DBSCAN clustering results, we
finally set its parameter "

d

and p
d

to 15 meters and 50 points
respectively when processing the daily Singapore taxis’ MDT
log dataset. Roughly speaking, the selected two parameter-
s allow detect the queue spot that has more than 50 taxi
pickup events within its proximity of 15 meters. Note that
the selected parameters are used to process the MDT log
dataset on the daily basis, and for di↵erent time durations,
e.g., one week’s MDT log dataset, we may have to change
and reset the DBSCAN parameters.

6.1.3 Queue Spot Detection Results and Analysis

With the selected DBSCAN parameters, totally around 180
queue spots are detected in the four zones of Singapore, as
illustrated in Fig. 7. We analyze and manually label the
detected queue spots by locating their GPS coordinates on
Google Maps with its Street View feature. It shows that
most of the detected queue spots are located nearby the pub-
lic facilities or landmarks. Table 4 summarizes the result:
almost half of the queue spots are nearby Singapore Mass
Rapid Transit (MRT) stations or bus stations, around 20%
of them are located nearby the shopping malls, hotels or of-
fice buildings. Only around 5% of the detected queue spots
do not have any significant nearby facility or landmark.

We compare the queue spot detection results with the taxi
stand locations, which are sets up by Singapore Land Au-
thority (LTA): there are 31 taxi stands with more than 3 taxi

 

Figure 7: Detected Queue Spots in Singapore

Table 4: Landmark Nearby the Detected Queue
Spots

Nearby Facility or Landmark Detected Spots Percentage 

MRT & BUS station 48.3% 

Shopping Mall & Hotel 11.8% 

Office Building 9.6% 

Hospital & School 8.4% 

Tourist Attraction 6.2% 

Airport & Ferry Terminal 5.6% 

Industrial and Residential Area 4.5% 

Unidentified 5.6% 
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Figure 8: Queue Spot Number in Di↵erent Zones
and Days

parking lots in the CBD area, and 30 of them are correct-
ly detected with the average location error only 7.6 meters
(possibly caused by the GPS error). More importantly, more
than 15 queue spots in this area, which are not labeled by
LTA, are busy enough and even have more daily pickups
than many taxi stands.

We further compare the detected queue spot number in d-
i↵erent zones and days of week. Fig. 8 shows that central
zone has the largest number of queue spots, although it only
occupies around 6% of the total area. The main reason is
that most of the high-rise o�ce buildings, shopping mall-
s and tourist attractions in Singapore are located in this
zone. More importantly, Fig. 8 shows that queue spot num-
bers in all zones do not have a high fluctuation on di↵erent
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Table 5: Hausdor↵ Distance between Queue Spot Sets on Di↵erent Days of Week (Meter)

Hausdorff distance Mon Tue Wed Thurs Fri Sat Sun 
Mon 0 57.076 42.958 59.475 45.531 104.61 143.27 
Tue 57.076 0 44.768 34.649 54.293 117.41 141.07 

Wed 42.958 44.768 0 41.429 54.311 106.71 139.87 
Thurs 59.475 34.649 41.429 0 57.721 111.58 133.21 

Fri 45.531 54.293 54.311 57.721 0 81.125 119.41 
Sat 104.61 117.41 106.71 111.58 81.125 0 67.111 
Sun 143.27 141.07 139.87 133.21 119.41 67.111 0 

 

week days (from Monday to Friday), while the queue spot
number slightly drops down on Saturday and Sunday in the
central zone. It is probably caused by fewer local working
people traveling in the CBD area during the weekend. The
queue spot number during weekend does not drop signifi-
cantly, as still many people go to the shopping malls and
tourist attractions in the central zone.

To gain further insight into the queue spot detection results
on di↵erent days of week, we adopt the modified Hausdor↵
distance [4] to evaluate their similarity and stability. Haus-
dor↵ distance (or called Pompeiu-Hausdor↵ distance) has
been widely used to measure the similarity of two point sets
in object matching. Briefly speaking, it is the maximum dis-
tance of a point set to the nearest point in the other point
set. Therefore, the Hausdor↵ distance between the detect-
ed queue spot sets illustrates whether the queue spot sets
on di↵erent days of week are stable and how far they are
from each other. Table 5 shows the Hausdor↵ distance be-
tween the detected queue spot sets in meter, where each set
consists of all the four zones’ detected queue spots.

Based on the definition of the Hausdor↵ distance, the value
“0” means the two spot sets are overlapped exactly, and a
large distance value means big mismatch between the two
queue spot sets. From Table 5, we see that the Hausdor↵
distances between any two queue spot sets are only around
50 meters on the week days and around 67 meters on the
weekend days: it indicates that the detected queue spots
match quite well and thus the queue locations are normally
stable. When we compare a week day queue spot set with a
weekend queue spot set, e.g., Monday and Sunday, the cor-
responding Hausdor↵ distance easily increases to around 130
meters, but it is still a relatively low value given Singapore
an area with 50 kilometers long and 26 kilometers wide.

In short, the proposed queue spot detection method with
the properly selected parameters e↵ectively detects the Sin-
gapore island-wide queue spots with a high accuracy and
stability.

6.2 Context Disambiguation Experiment
6.2.1 Feature Preparation and Threshold Selection

For each detected queue spot, say r, we have its correspond-
ing pickup event sub-trajectory set W (r), which usually con-
sists of a number of sub-trajectories ranging from 100 to

Table 6: Average Pickup Event Number

Avg. Sub-trajectory Number Central North West East 

Working Day 217.5 
 

165.5 223.3 267.2 

Weekend Day 251.6 172.3 198.1 305.8 

 

500 daily. Table 6 illustrates the daily average number at
a queue spot in di↵erent zones and days. We see that a
queue spot has around 200 sub-trajectories on average on
a week day, and the number slightly goes up on a weekend
day. Meanwhile, the average number in the east zone is al-
ways higher than the other 3 zones: it is probably caused
by a large number of pickup events at Singapore’s Changi
international airport, which is located at the east zone.

We conduct the experiment on a daily basis and divide one
day into 48 fixed-size time slot. Each time slot thus takes
1800 seconds, e.g., 00:00 to 00:30 or 18:30 to 19:00. For
each detected queue spot, say r, we run the WTE algorithm
on its pickup event sub-trajectory set W (r), and accordingly
derive the 5-tuple feature set for all 48 time slots, i.e., ⌦(r) =
{'(r)j |j = 1, 2, · · · , 48}.

Before running the QCD algorithm on ⌦(r), we need to de-
termine the 6 threshold values used in the algorithm. For
each queue spot, we select its top 20% shortest wait time
values and top 20% shortest departure intervals, which can
commonly depict taxi wait and departure events when the
passenger queue exists. We thus use their average values as
the threshold ⌘

wait

and ⌘
dep

respectively. Accordingly, we
set the threshold ⌧

arr

and ⌧
dep

to 1800
⌘wait

and 1800
⌘dep

respec-

tively, where 1800 is the predetermined time slot length in
seconds. Meanwhile, the threshold ⌘

dur

is set to 90% of the
current time slot length, namely 1620 seconds. To deter-
mine the threshold ⌧

ratio

, we calculate the daily ratio of the
total street job number to the total job number (street jobs
+ booking jobs) in di↵erent zones and days of week, and
then set the threshold ⌧

ratio

to the corresponding ratio val-
ue, e.g., 0.84 is the average ratio value in the central zone on
Sunday. The taxi state transition knowledge, as illustrated
in Fig. 3, is directly used to derive and separate booking
jobs and street jobs from the MDT logs.

Lastly, given the fact that our dataset, i.e., around 15000
taxis’ MDT logs, only occupies 60% of the total operating
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Table 7: Proportion of Di↵erent Queue Types

Queue Type Percentage in All Time Slots 

   30.1% 
   11.7% 
   8.6% 
   33.1% 

Unidentified 16.5% 
 

taxis in Singapore, we increase the feature values N
arr

(r)j ,
L̄(r)j and N

dep

(r)j by multiplying an amplification factor
1.667 and decrease the feature value t̄

dep

(r)j by multiplying
0.6 for all time slots.

6.2.2 Experiment Results and Analysis

Based on the extracted 5-tuple feature set and the deter-
mined threshold values, we run the QCD algorithm on 25
randomly selected queue spots respectively. Table 7 summa-
rizes the queue type identification results: nearly 84% time
slots in total are successfully labeled as C1 to C4 respective-
ly, among which 30% time slots are labeled as C1, namely
taxi queue and passenger queue concurrently exist, while
33% time slots are labeled as C4, namely no any taxi queue
or passenger queue during these time slots. Meanwhile, only
11.7% time slots are labeled as C2, namely only passenger
queue exists, and 8.6% time slots are labeled as C3, namely
only taxi queue exists. It shows that such two situations do
not occur as frequently as C1 or C4. Besides, around 16%
time slots cannot be identified by the QCD algorithm due
to their insignificant features. For example, during a time s-
lot T j that no taxi queue exist, i.e., queue length L̄(r)j < 1,
only several taxis, e.g., 7 or 8, arrive and depart with a
moderate average wait time value; meanwhile, there is no
significant number of ONCALL taxis arrive and leave. In
such cases, the QCD algorithm does not label the time slot
to any predefined type, but simply label it as unidentified
or insignificant type.

We further compare the queue type identification results on
di↵erent days of week. Fig. 9 shows that during the five
week days, all queue types’ proportion do not have a high
fluctuation. However, during the two weekend days, espe-
cially on Sunday, the proportion of C4 significantly goes up
from 30% to around 40%, and meanwhile the proportions of
C2 and the unidentified time slots drop down. One possible
explanation is that during weekend days fewer business and
working people traveling leads to more C4 time slots and
accordingly fewer C2 and unidentified time slots. Fig. 9 also
shows that the proportion of C3 slightly goes down and C1

generally maintains its proportion over a whole week.

To further validate the queue type identification results, we
collect the waiting taxi number from an independent vehicle
monitor system [14], which is set up for continuously observ-
ing the vehicle number inside a taxi stand area (normally a
predefined polygon). The monitor system updates the ve-
hicle number every 60 seconds via its RESTful web service,
which can be used as a good indicator for the existence of
a taxi queue. On the other hand, we take the failed taxi
booking records from the taxi operator’s backend database.
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Figure 9: Proportion of Queue Type in Di↵erent
Days of Week

Table 8: Average Number of Taxis and Failed Book-
ings

Queue Type Avg. Taxi Number Avg. Failed Booking Number 

   6.13 0.35 
   1.35 4.29 
   3.26 0.13 
   0.32 0.73 

Unidentified 1.56 0.24 
 

A failed taxi booking means the booking request has been
successfully dispatched to all the nearby taxis, but the pas-
senger finally fails to get a taxi due to no taxi available inside
the dispatching circle centered at the pickup location with
radius 1 kilometer. Frequently failed bookings over a short
period at the same pickup location indicate that the passen-
ger’s current demand is much higher than the taxi’s current
supply, and thus can be used to imply the existence of a
passenger queue.

Table 8 shows the average taxi number obtained from the
vehicle monitor system and the average failed bookings num-
ber obtained from the taxi operator during the labeled time
slots. We see that the average taxi numbers of C1 and C3 are
notably higher than the corresponding values of C2 and C4:
it suggests a high chance of a taxi queue occurring during
the time slots labeled as C1 and C3. Meanwhile, the aver-
age failed booking numbers of C2 is significantly higher than
the others: it strongly indicates a high chance of a passenger
queue occurring during the time slots labeled as C2. Note
that the time slots labeled as C1 do not have many failed
bookings: it is probably because many available taxis queu-
ing at or nearby the queue spot. In short, the failed booking
data combined with the information from an independent
vehicle monitor system, at least to some extend, validates
the queue type identification results.

6.2.3 A Sample Case: Lucky Plaza Queue Spot

To demonstrate the queue type identification results from
the individual perspective, we take one queue spot, which
is detected nearby the main entrance of Singapore Lucky
Plaza, as an illustrative example. Lucky Plaza is a shopping
center located at Orchard Road, which is a famous retail
and entertainment hub in Singapore. We simply pick up
a Sunday’s queue type identification results at the Lucky
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Table 9: A Sample Queue Type Identification Result

Queue Type C1 C2 C3 C4 Unidentified 

Time Slot 

00:00 --- 00:30 
09:30 --- 10:00 
11:00 --- 15:30 
17:30 ---19:30 

15:30 --- 17:30 
19:30 --- 20:00 

00:30 --- 1:30 
10:00 --- 11:00 
20:00 --- 21:30 

1:30 --- 08:30 
21:30 --- 23:30 

8:30 --- 9:30 
23:30 --- 24:00 

 

Plaza queue spot, and summarize them in Table 9.

From Table 9, we see that during the early midnight the
queue type C1 (from 00:00 to 00:30) and C3 (from 00:30
to 01:30) are identified, which means the concurrent pas-
senger queue and taxi queue occur first and then only the
taxi queue left. After that, the queue type C4 lasts 7 hours
(from 01:30 to 8:30), meaning no taxi queue or passenger
queue until the early morning. During the peak shopping
hours (from 11:00 to 20:00), the queue type shifts between
C1 and C2, meaning either the concurrent passenger queue
and taxi queue or only the passenger queue at Lucky Plaza.
After the peak shopping hours, the queue type switches back
to C4 (from 21:30 to 23:30), i.e., no taxi queue or passenger
queue. We conducted a short term study at the Lucky Plaza
queue spot: the actual queue variance pattern fits well with
the above described queue type identification result. For ex-
ample, during the early midnight, most of people, who just
leave the nearby night clubs, usually wait taxis at this queue
spot, which explains why the queue type changes to C1 or
C3 during such time slots.

7. DISCUSSION
7.1 A Real World Deployment
To better serve the stakeholders of our solution (the gov-
ernment agencies, public commuters and taxi operator), we
implemented a practical taxi queue detection and analysis
system, which consists of a backend queue analytic engine
and a web-based frontend user interface.

Within the queue analytic engine, the queue spot detection
module uses the relatively long-term historical dataset to
extract queue spots. Based on the evaluation results, the
queue spot sets in Singapore show some di↵erences between
week days and weekend days. Thus, we simply use historical
week days’ dataset to extract queue spots for a week day,
and use historical weekend days’ dataset to extract queue
spots for a weekend day. In the current implementation, the
queue spot detection module collects the most recent 5 week
days’ dataset and 2 weekend days’ dataset to extract and up-
date the corresponding queue locations. The queue context
disambiguation module currently mainly runs on the short-
term historical dataset to generate the queue type transition
reports for week day and weekend day respectively. The
historical dataset size and the update frequency for both
modules can be configured by system users.

The web-based user interface provide users a simple way to
understand and access the queue detection and analysis re-
sults. When a user opens the query page, it firstly shows all
the latest detected queue spots in Singapore on the Google
Map. By zooming into a region and placing the mouse on
a specific queue spot, the user can see the identified queue
type at the selected time slot together with the nearby fa-
cility name as shown in Fig. 10. If necessary, the user can

 

Figure 10: User Interface of the Deployed System

further query the long-term queue type transition reports
and save it into the database or a text file.

The backend queue analytic engine is mainly implemented in
Java and uses Java database connectivity (JDBC) to retrieve
the readily available MDT logs in a PostgreSQL database
system. The frontend user interface is developed based on
Google Map Javascript API.

7.2 Interesting Findings
Driver Behavior : the taxi BUSY state, as describe in Ta-
ble 1, is designed for taxi drivers when they temporarily
unavailable due to personal reasons. However, we find that
during the time slots of C1 and C2, especially C2 (name-
ly only passenger queue), a number of taxis enter the queue
spots with a BUSY state and then quickly leave with a POB
state. Such a phenomenon indicates that some taxi drivers
only pick up their favorite passengers and deny the other-
s by using the BUSY state as an excuse. We are currently
further investigating on this issue and the possible solutions.

Sporadic Queue Spot : although the detected queue spot-
s in Singapore show an overall high stability, there are a
few exceptions. For example, a queue spot inside the west
zone periodically appears only on every Sunday (occasion-
ally on Saturday) but never shows during week days. By
manually labeling this queue spot, we locate it at a local
leisure park, which is not a quite famous tourist attraction
in Singapore but only a popular place for the local family
during the weekend. Another example is that an individual
queue spot is detected only on a specific Sunday at Sentosa
island, and through the local newspaper we find that it is
caused by a company’s anniversary celebration event. These
examples not only show that the sporadic queue spots can
be precisely captured by our solution, but also demonstrate
that meaningful semantics behind both regular and sporadic
queue spots can be further explored.

8. RELATED WORK
8.1 Queue Sensing and Detection
Queuing theory [6] has been extensively studied and widely
applied (e.g., in the wireless communications), while there is
limited research work on detection and analysis of the real
world queuing behaviors. The early studies [10] conduc-
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t video analytics to detect human queuing activity based
on stationary cameras. Recently, people start using smart-
phones [12] and sensor networks [11] to sense and detect
human and vehicle queues. All the existing solutions re-
quire fixed infrastructures with maintenance overheads and
additional costs.

8.2 Taxi Trace Analytics
Driven by the availability of abundant information in taxi
traces, especially the GPS location information, mining taxi
traces has received massive attentions from both academia
and industry in recent years. The existing work can be gen-
erally classified into three categories: 1) mining taxi traces
to study the city population movement patterns and behav-
iors [9, 15]; 2) using taxi traces as a probe to infer or predict
tra�c conditions for city road networks [1, 8]; 3) mining taxi
traces to discover and sense human or vehicle’s special events
and behaviors [16, 17]. For example, the authors in [16] use
taxi traces to sense refueling behavior and citywide petrol
consumption. Our work can be classified into the third cate-
gory, and we refer the interested readers to a good survey [2]
for taxi traces analytics.

To the best of our knowledge, there is no previous work
using taxi traces to conduct the real world queue analytics
for both taxis and their passengers.

9. CONCLUSION AND FUTURE WORK
By leveraging on the event-driven MDT logs and the taxi
state transitions, we design and implement a practical sys-
tem to e↵ectively detect the queue spots and identify the
queue context in Singapore. The extensive evaluation re-
sults show the feasibility and the accuracy of the deployed
queue analytic engine.

The deployed system and the queue context analysis results
lay a solid foundation for future work:

• Integrate the queue analytic information into the ex-
isting MDT system to conduct recommendations for
taxi drivers, e.g., suggesting recent emerging passen-
ger queue spots.

• Periodically publish both taxi queue and passenger
queue information to the public and help to reduce
queuing events in the city.

• Work with LTA to set up new taxi stands at the busy
queuing spots and improving the existing facilities.

Lastly, we would like to highlight that the nature of this work
is applicable to not only Singapore but also other densely
populated cities, given their taxis equipped with the MDT-
like telematics devices.
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ABSTRACT
In this paper we describe the support for data ingestion in Aster-
ixDB, an open-source Big Data Management System (BDMS) that
provides a platform for storage and analysis of large volumes of
semi-structured data. Data feeds are a new mechanism for hav-
ing continuous data arrive into a BDMS from external sources and
incrementally populate a persisted dataset and associated indexes.
We add a new BDMS architectural component, called a data feed,
that makes a Big Data system the caretaker for functionality that
used to live outside, and we show how it improves users’ lives and
system performance.

We show how to build the data feed component, architecturally,
and how an enhanced user model can enable sharing of ingested
data. We describe how to make this component fault-tolerant so
the system manages input in the presence of failures. We also show
how to make this component elastic so that variances in incom-
ing data rates can be handled gracefully without data loss if/when
desired. Results from initial experiments that evaluate scalability
and fault-tolerance of AsterixDB data feeds facility are reported.
We include an evaluation of built-in ingestion policies and study
their effect as well on throughput and latency. An evaluation and
comparison with a ‘glued’ together system formed from popular
engines — Storm (for streaming) and MongoDB (for persistence)
— is also included.

1. INTRODUCTION
A large volume of data is being generated on a “continuous” ba-

sis, be it in the form of click-streams, output from sensors or via
sharing on popular social websites [3]. Encouraged by low stor-
age costs, enterprises today are aiming to collect and persist the
available data and analyze it over time to extract useful informa-
tion. Marketing departments use Twitter feeds to conduct senti-
ment analysis to get end user feedback on their company’s prod-
ucts. As another example, utility companies have rolled out me-
ters that measure the consumption of water, gas, and electricity and
generate huge volumes of interval data that is analyzed over time.
Traditional data management systems require data to be loaded and
indexes to be created before data can be subjected to ad hoc ana-

c� 2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0
.

lytical queries. To keep pace with “fast-moving” data, a Big Data
Management System (BDMS) must be able to ingest and persist
data on a continuous basis. A flow of data from an external source
into persistent (indexed) storage inside a BDMS will be referred to
here as a data feed. The task of maintaining the continuous flow of
data is hereafter referred to as data feed management.

A simple way of having data being put into a Big Data man-
agement system on a continuous basis is to have a single program
(process) fetch data from an external data source, parse the data,
and then invoke an insert statement per record or batch of records.
This solution is limited to a single machine’s computing capacity.
Ingesting multiple data feeds would potentially require running and
managing many individual programs/processes. The task of con-
tinuously retrieving data from external source(s), applying some
pre-processing for cleansing, filtering data, and indexing the pro-
cessed data today amounts to ‘gluing’ together different systems
(e.g. [19]). It becomes hard to reason about the data consistency,
scalability and fault-tolerance offered by such an assembly. Tradi-
tional data management systems have evolved over time to provide
native support for services if the service offered by an external sys-
tem is inappropriate or may cause substantial overheads [18, 10].
Responding to the new need then, it is natural for a BDMS to pro-
vide “native” support for data feed management.

1.1 Challenges in Data Feed Management
Let us begin by enumerating the key challenges involved in build-

ing a data feed facility.
C1) Genericity and Extensibility: A feed ingestion facility must

be generic enough to work with a variety of data sources and high-
level applications. A plug-and-play model is desired to allow ex-
tension of the offered functionality.

C2) Fetch-Once, Compute-Many: Multiple applications may wish
to consume the ingested data and may wish the arriving data to be
processed/persisted differently. It is desirable to receive a single
flow of data from an external source and yet transform it in multi-
ple ways to drive different applications concurrently.

C3) Scalability and Elasticity: Multiple feeds with fluctuating
data arrival rates, coupled with ad hoc queries over the persisted
data, imply a varying demand for resources. The system should of-
fer scalability by being able to ingest increasingly large volumes of
data (possibly from multiple sources) via the addition of resources.
The system should demonstrate elasticity by auto-scaling in/out to
meet the demand for resources.

C4) Fault Tolerance: Data ingestion is expected to run on a large
cluster of commodity hardware that may be prone to hardware fail-
ures. It is desirable to offer the desired degree of robustness in
handling failures while minimizing data loss.
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1.2 Contributions
In this paper, we describe the support for data feed management

in AsterixDB. AsterixDB provides a platform for the scalable stor-
age and analysis of very large volumes of semi-structured data.
The paper describes the approach adopted to address the afore-
mentioned challenges. This paper also demonstrates the efficien-
cy/flexibility achieved in having native support for feed ingestion
in AsterixDB in comparison to the popular approach of ‘gluing’ to-
gether popular systems (e.g. Storm[6] and MongoDB[5]), which is
the state of the art today. The paper offers the following contribu-
tions.

(1) Concepts involved in Data Feed Management: The paper in-
troduces the concepts involved in defining a data feed and manag-
ing the flow of data into a target dataset and/or to other dependent
feeds to form a cascade network. It details the design and imple-
mentation of the involved concepts in a complete system.

(2) Policies for Data Feed Management: We describe how a data
feed is managed by associating an ingestion policy that controls
the system’s runtime behavior in response to failures and resource
bottlenecks. Users may also opt to provide a custom policy to suit
special application requirements.

(3) Scalable/Elastic Data Feed Management: We describe a dataflow
approach that exploits partitioned-parallelism to scale and ingest
increasingly large amounts of data. The dataflow exhibits elastic-
ity by being able to monitor and dynamically re-structure itself to
adapt to the rate of arrival of data. The system is fault-tolerant and
provides at least once semantics as the strongest guarantee, if re-
quired.

(4) Contribution to Open-Source: AsterixDB is available as open
source software [2, 1]. The support for data ingestion in AsterixDB
is extensible to enable future contributors to provide custom imple-
mentations of different modules.

(5) Experimental Evaluation: We describe an experimental eval-
uation that studies the role of different ingestion policies in deter-
mining the behavioral aspects of the system including the achieved
throughput and latency. We also report on experiments to evaluate
scalability and our approach to fault-tolerance.

(6) Improvement over State-of-the-Art: We include an evaluation
of a system created by coupling Storm (a popular streaming engine)
and MongoDB (a popular persistence store) to draw a comparison
with AsterixDB in terms of flexibility and scalability achieved in
data feed management. We demonstrate and describe the inefficien-
cies involved in ‘gluing’ together such otherwise efficient systems;
doing so is a current common practice in open-source community.

The rest of the paper is organized as follows. We discuss related
work in Section 2 and provide an overview of AsterixDB in Sec-
tion 3. Section 4 describes how a feed is modeled and defined at
the language level in AsterixDB. The implementation details are
described in Section 5. Section 6 describes the support for han-
dling failures. Section 7 provides an experimental evaluation, and
we conclude in Section 8.

2. RELATED WORK
Data feeds may seem similar to streams from the data streams

literature (e.g. [7, 13]). There are important differences, however.
Data feeds are a “plumbing” concept; they are a mechanism for
having data flow from external sources that produce data continu-
ously to incrementally populate and persist the data in a data store.
Stream Processing Engines (SPEs) do not persist data; instead they
operate with a sliding window on data (e.g. a 5 minute view of
data), but the amount, or the time window, is usually limited by the
velocity of the data and the available memory. In a similar spirit,

Complex Event Processing (CEP) systems (Storm [6] and S4 [15])
can route, transform and analyze a stream of data. However, these
systems do not persist the data or provide support for ad hoc an-
alytical queries. These engines can be used in conjunction with a
database (e.g MySql or MongoDB), making it possible to persist
and run ad hoc queries.

In the past, ETL (Extract Transform Load) systems (e.g. [4])
have supported populating a Data Warehouse with data collected
from multiple data sources. However, such systems operate in a
“batchy” mode, with a “finite” amount of data transferred at pe-
riodic intervals coinciding with off-peak hours. Xu et al. in [19]
described a Map-Reduce based approach for populating a parallel
database system with an external feed. However, the system was
tightly-coupled with Map-Reduce and required data to be put into
HDFS, thus involving an additional copy.

With respect to providing fault-tolerance, stream processing sys-
tems also faced the challenge of providing highly available paral-
lel data-flows and have proposed several techniques [17, 8]. The
process-pairs approach, used in Flux and StreamBase, involves a
high overhead when the system needs to scale. These techniques
rely on replication; the state of an operator is replicated on multiple
servers or have multiple servers simultaneously process identical
input streams. Fault-tolerance is provided at a high cost, as the
number of nodes is thus at least doubled due to replication. It was
thus not considered for use in AsterixDB. Moreover, offering a sin-
gle strong strategy for fault-tolerance can be wasteful of resources
in scenarios where the offered degree of robustness exceeds the ap-
plication’s requirements.

Data ingestion and stream-processing data-flows are typically as-
sociated with fluctuating data arrival rates that cause a varying de-
mand for resources. An elastic behavior with the ability to scale
in/out in adaptation to the demand for resources is desirable. Such
mechanisms have been studied and evaluated before. Elastic re-
configuration in [16] is triggered when the data arrival rate exceeds
a pre-calculated saturation rate by some fraction (e.g., 5% in their
papers). It is not clear how an appropriate saturation rate would
be statically calculated in a dynamic environment with concurrent
feeds and queries over the ingested data. AsterixDB follows a dif-
ferent approach by dynamically monitoring the rate of flow of data
and the availability of resources across the participant nodes. This
allows detecting resource bottlenecks and triggering corrective ac-
tions in accordance with measured values.

We have explored the challenges involved in building a data in-
gestion facility. In doing so, we added a new BDMS architectural
component, called a data feed, that makes a Big Data system the
caretaker for functionality that used to live outside, and we show
how it improves users’ lives and system performance. In this paper,
we describe how to build this component, architecturally, so that it
provides continuous load-like performance (i.e., low overhead) -
and how an enhanced user model can enable sharing of ingested
data. We identify a number of different QoS options that users
might want, depending on the nature of their application, and we
show how to deliver them via dynamic monitoring of the system
state. We also show how to make this new data feed component
fault-tolerant so the system manages input (and the user doesn’t
have to) in the presence of failures. We show how to make this
component elastic so that variances in incoming data rates can be
handled gracefully without data loss if/when desired. We added
that functionality to AsterixDB, and we demonstrate that it works
(and how well).

3. BACKGROUND: ASTERIXDB
Initiated in 2009, the AsterixDB project has been developing
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new technologies for ingesting, storing, indexing, querying, and
analyzing vast quantities of semi-structured data. It combines the
ideas from three distinct areas—semi-structured data, parallel databases,
and data-intensive computing—in order to create an open-source
software platform that scales by running on large, shared-nothing
commodity computing clusters.

3.1 AsterixDB Architecture

Figure 1: AsterixDB Architecture

Figure 1 provides an overview of how the various software com-
ponents of AsterixDB map to nodes in a shared-nothing cluster.
The topmost layer of AsterixDB is a parallel DBMS, with a full,
flexible AsterixDB Data Model (ADM) and AsterixDB Query Lan-
guage (AQL) for describing, querying, and analyzing data. ADM
and AQL support both native storage and indexing of data as well
as analysis of external data (e.g., data in HDFS). The bottom-most
layers from Figure 1 provide storage facilities for datasets, which
can be targets of ingestion. These datasets are stored and man-
aged by AsterixDB as partitioned LSM-based B+-trees with op-
tional LSM-based secondary indexes. A detailed description of As-
terixDB and results from experimental evaluation can be found in
[12].

AsterixDB uses Hyracks [11] as its execution layer. Hyracks
allows AsterixDB to express a computation as a DAG of data oper-
ators and connectors. Operators operate on partitions of input data
and produce partitions of output data, while connectors repartition
operators’ outputs to make the newly produced partitions available
at the consuming operators.

3.2 AsterixDB Data Model
AsterixDB defines its own data model (ADM) [9] designed to

support semi-structured data with support for bags/lists and nested
types. Figure 2 shows how ADM can be used to define a record
type for modeling a raw tweet. RawTweet type is an open type,
meaning that its instances will conform to its specification but can
contain extra fields that vary per instance. Figure 2 also defines a
ProcessedTweet type. A processed tweet replaces the nested user
field inside a raw tweet with a primitive userId value and adds a
nested collection of strings (referred topics) to each tweet. Derived
attributes about the tweet (e.g. sentiment and language) are also
included. The primitive location field types (location-lat, location-
long) and send-time are expressed as their respective spatial (point)
and temporal (datetime) datatypes. ADM also allows specifying
optional fields with known types (e.g. location).

Data in AsterixDB is stored in datasets. Each record in a dataset
conforms to the datatype associated with the dataset. Data is hash-
partitioned (primary key) across a set of nodes that form the node-
group for a dataset, which defaults to all nodes in an AsterixDB

create type RawTweet create type TwitterUser
as open { as open {

tweetId: string , screen�name: string ,
user: TwitterUser , lang: string ,
location� lat: double? , friends_count: int32 ,
location�long: double? , statuses_count: int32 ,
send�time: string , name: string ,
message�text: string followers_count: int32

}; };

create type ProcessedTweet as open {
tweetId: string ,
userId: string ,
locat ion: point? ,
send�time: datetime ,
message�text: string ,
referred�topics: {{string }} ,
sentiment: double ,
language: string

};

Figure 2: Defining datatypes

create dataset RawTweets(RawTweet) primary key tweetId ;

create dataset ProcessedTweets(ProcessedTweet )
primary key tweetId ;

create index locationIndex on
ProcessedTweets(location ) type rtree ;

Figure 3: Creating datasets and associated indexes

cluster. Figure 3 shows the AQL statements for creating a pair of
datasets—RawTweets and ProcessedTweets. We create a secondary
index on the location attribute of a processed tweet for more effi-
cient retrieval of tweets on the basis of spatial location.

4. DATA FEED BASICS
AQL has built-in support for data feeds. In this section, we de-

scribe how an end-user may model a data feed and have its data be
persisted/indexed into an AsterixDB dataset.

4.1 Collecting Data: Feed Adaptors
The functionality of establishing a connection with a data source

and receiving, parsing and translating its data into ADM records
(for storage inside AsterixDB) is contained in a feed adaptor. A
feed adaptor is an implementation of an interface and its details are
specific to a given data source. An adaptor may optionally be given
parameters to configure its runtime behavior. Depending upon the
data transfer protocol/APIs offered by the data source, a feed adap-
tor may operate in a push or a pull mode. Push mode involves just
one initial request by the adaptor to the data source for setting up
the connection. Once a connection is authorized, the data source
“pushes” data to the adaptor without any subsequent requests by
the adaptor. In contrast, when operating in a pull mode, the adaptor
makes a separate request each time to receive data.

AsterixDB currently provides built-in adaptors for several pop-
ular data sources—Twitter, CNN, and RSS feeds. AsterixDB ad-
ditionally provides a generic socket-based adaptor that can be used
to ingest data that is directed at a prescribed socket. Figure 4 il-
lustrates the use of built-in adaptors in AsterixDB to define a pair
of feeds. The TwitterFeed contains tweets that contain the word
“Obama”. As configured, the adaptor will make a request for data
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every minute. The CNNFeed will consist of news articles that are
related to any of the topics that are specified as part of the indicated
configuration.

create feed TwitterFeed using TwitterAdaptor
("api"="pull" , "query"="Obama", " interval" =60);

create feed CNNFeed using CNNAdaptor
("topics"="pol i t ics , sports" ) ;

Figure 4: Defining a feed using some of the built-in adaptors in
AsterixDB

The degree of parallelism in receiving data from an external
source is determined by the feed adaptor in accordance with the
data exchange protocol offered by the data source. The external
source may allow transfer of data in parallel across multiple chan-
nels. For example, CNN as a data source offers an RSS feed cor-
responding to each topic (politics, sports, etc). The CNNFeed can
thus employ a degree of parallelism as determined by the number of
topics that are passed as configuration. Multiple instances will then
run as parallel threads on a single machine or on multiple machines.
In contrast, the TwitterAdaptor uses a single degree of parallelism.

4.2 Pre-Processing Collected Data
A feed definition may optionally include the specification of a

user-defined function that is to be applied to each feed record prior
to persistence. Examples of pre-processing might include adding
attributes, filtering out records, sampling, sentiment analysis, fea-
ture extraction, etc. The pre-processing is expressed as a user-
defined function (UDF) that can be defined in AQL or in a pro-
gramming language like Java. An AQL UDF is a good fit when
pre-processing a record requires the result of a query (join or ag-
gregate) over data contained in AsterixDB datasets. More sophisti-
cated processing such as sentiment analysis of text is better handled
by providing a Java UDF. A Java UDF has an initialization phase
that allows the UDF to access any resources it may need to initial-
ize itself prior to being used in a data flow. It is assumed by the
AsterixDB compiler to be stateless and thus usable as an embarass-
ingly parallel black box. In constrast, the AsterixDB compiler can
reason about an AQL UDF and involve the use of indexes during
its invocation.

The tweets collected by the TwitterAdaptor (Figure 4) conform
to the RawTweet datatype (Figure 2). The processing required in
transforming a collected tweet to its lighter version (of type Pro-
cessedTweet) involves extracting the hash tags (if any) in a tweet
and collecting them in the referred-topics attribute for the tweet.
Attributes associated with a tweet (sentiment, language) are de-
rived from analyzing the text. In the case of the CNNFeed, the
CNNAdaptor (Figure 4) outputs records that each contain the fields
item, link and description. The link field provides the URL of
the news article on the CNN website. Parsing the HTML source
provides additional information such as tags, images and outgoing
links to other related articles. This information can then be added
to each record as additional fields prior to persistence. The pre-
processing function for a feed is specified using the apply function
clause at the time of creating the feed (Figure 5).

A feed adaptor and a UDF act as pluggable components. These
contribute towards providing a generic ‘plug-and-play‘ model where
custom implementations can be provided to cater to specific re-
quirements. This helps address challenge C1 from Section 1.1. By
providing implementation of the prescribed interfaces, the internal

create feed ProcessedTwitterFeed using TwitterAdaptor
("api"="pull" , "query"="Obama", " interval"=60)
apply function addFeatures ;

create feed ProcessedCNNFeed using CNNAdaptor
("topics"="pol i t ics , sports" )
apply function addInfoFromCNNWebsite ;

Figure 5: Defining a feed that involves pre-processing of col-
lected data

details of data feed management are abstracted from end users. A
feed adaptor or a Java UDF can be packaged and installed as part
of an AsterixDB library and subsequently be used in AQL state-
ments. A tutorial on building a custom feed adaptor or a UDF with
a description of the interfaces to be implement can be found at [1].

4.3 Building a Cascade Network of Feeds
Multiple high-level applications may wish to consume the data

ingested from a data feed. Each such application might perceive the
feed in a different way and require the arriving data to be processed
and/or persisted differently. Building a separate flow of data from
the external source for each application is wasteful of resources as
the pre-processing or transformations required by each application
might overlap and could be done together in an incremental fashion
to avoid redundancy. A single flow of data from the external source
could provide data for multiple applications. To achieve this, we
introduce the notion of primary and secondary feeds in AsterixDB
to address challenge C2 from Section 1.1.

A feed in AsterixDB is considered to be a primary feed if it gets
its data from an external data source. The records contained in a
feed (subsequent to any pre-processing) are directed to a designated
AsterixDB dataset. Alternatively or additionally, these records can
be used to derive other feeds known as secondary feeds. A sec-
ondary feed is similar to its parent feed in every other aspect; it can
have an associated UDF to allow for any subsequent processing,
can be persisted into a dataset, and/or can be made to derive other
secondary feeds to form a cascade network. A primary feed and a
dependent secondary feed form a hierarchy. As an example, Fig-
ure 6 shows the AQL statements that redefine the previous feeds—
ProcessedTwitterFeed and ProcessedCNNFeed—in terms of their
respective parent feeds from Figure 4.

create secondary feed ProcessedTwitterFeed from
feed TwitterFeed apply function addFeatures ;

create secondary feed ProcessedCNNFeed from
feed CNNFeed apply function addInfoFromCNNWebsite ;

Figure 6: Defining a secondary feed

4.4 Lifecycle of a Feed
A feed is a logical artifact that is brought to life (i.e. its data flow

is initiated) only when it is connected to a dataset using the con-
nect feed AQL statement (Figure 7). Subsequent to a connect feed
statement, the feed is said to be in the connected state. Multiple
feeds can simultaneously be connected to a dataset such that the
contents of the dataset represent the union of the connected feeds.
In a supported but unlikely scenario, one feed may also be simulta-
neously connected to different target datasets. Note that connecting
a secondary feed does not require the parent feed (or any ancestor
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feed) to be in the connected state; the order in which feeds are con-
nected to their respective datasets is not important. Furthermore,
additional (secondary) feeds can be added to an existing hierarchy
and connected to a dataset at any time without impeding/interrupt-
ing the flow of data along a connected ancestor feed.

connect feed ProcessedTwitterFeed to
dataset ProcessedTweets ;

disconnect feed ProcessedTwitterFeed from
dataset ProcessedTweets ;

Figure 7: Managing the lifecycle of a feed

The connect feed statement in Figure 7 directs AsterixDB to per-
sist the ProcessedTwitterFeed feed in the ProcessedTweets dataset.
If it is required (by the high-level application) to also retain the raw
tweets obtained from Twitter, the end user may additionally choose
to connect TwitterFeed to a (different) dataset. Having a set of pri-
mary and secondary feeds offers the flexibility to do so. Let us
assume that the application needs to persist TwitterFeed and that,
to do so, the end user makes another use of the connect feed state-
ment. A logical view of the continuous flow of data established by
connecting the feeds to their respective target datasets is shown in
Figure 8. The flow of data from a feed into a dataset can be termi-
nated explicitly by use of the disconnect feed statement (Figure 7).
Disconnecting a feed from a particular dataset does not interrupt
the flow of data from the feed to any other dataset(s), nor does it
impact other connected feeds in the lineage.

Figure 8: Logical view of the flow of data from external data
source into AsterixDB datasets

4.5 Policies for Feed Ingestion
Multiple feeds may be concurrently operational on an AsterixDB

cluster, each competing for resources (CPU cycles, network band-
width, disk IO) to maintain pace with their respective data sources.
A data management system must be able to manage a set of concur-
rent feeds and make dynamic decisions related to the allocation of
resources, resolving resource bottlenecks and the handling of fail-
ures. Each feed has its own set of constraints, influenced largely
by the nature of its data source and the application(s) that intend
to consume and process the ingested data. Consider an application
that intends to discover the trending topics on Twitter by analyz-
ing the ProcessedTwitterFeed feed. Losing a few tweets may be
acceptable. In contrast, when ingesting from a data source that
provides a click-stream of ad clicks, losing data would translate to
a loss of revenue for an application that tracks revenue by charging
advertisers per click.

AsterixDB allows a data feed to have an associated ingestion

policy that is expressed as a collection of parameters and associ-
ated values. An ingestion policy dictates the runtime behavior of
the feed in response to resource bottlenecks and failures. Note that
during push-based feed ingestion, data continues to arrive from the
data source at its regular rate. In a resource-constrained environ-
ment, a feed ingestion framework may not be able to process and
persist the arriving data at the rate of its arrival. AsterixDB pro-
vides a list of policy parameters (Table 1) that help customize the
system’s runtime behavior when handling excess records. Aster-
ixDB provides a set of built-in policies, each constructed by setting
appropriate value(s) for the policy parameter(s) from Table 1.

The handling of excess records by the built-in ingestion poli-
cies of AsterixDB is summarized in Table 2. Buffering of excess
records in memory under the ‘Basic’ policy has clear limitations
given that memory is bounded and may result in a termination
of the feed if the available memory or the allocated budget is ex-
hausted. The ‘Spill’ policy resorts to spilling the excess records to
the local disk for deferred processing until resources become avail-
able again. Spilling is done intermittently during ingestion when
required, and the spillage is processed as soon as resources (mem-
ory) are available. In contrast, the ‘Discard’ policy causes the ex-
cess records to be discarded altogether until the existing backlog is
cleared. However, this results in periods of discontinuity when no
records received from the data source are persisted. This behavior
may not be acceptable to an application wishing to consume the in-
gested data. A best-effort alternative is provided by the ‘Throttling’
policy, wherein records are randomly filtered out (sampled) to ef-
fectively reduce their rate of arrival. In addition, AsterixDB also
provides the ‘Elastic’ policy, which attempts to scale-out/in by in-
creasing/decreasing the degree of parallelism involved in process-
ing of records. We will discuss the built-in policies to Section 5.3,
where we cover the physical aspects and their implementation de-
tails.

Note that the end user may choose to form a custom policy. E.g.
it is possible in AsterixDB to create a custom policy that spills ex-
cess records to disk and subsequently resorts to throttling if the
spillage crosses a configured threshold. In all cases, the desired
ingestion policy is specified as part of the connect feed statement
(Figure 9) or else the ‘Basic’ policy will be chosen as the default.
It is worth noting that a feed can be connected to a dataset at any
time, which is independent from other related feeds in the hierar-
chy. As such the connect feed statements shown in Figure 9 are not
required to be executed together.

The ability to form a custom policy allows the runtime behavior
to customized as per the specific needs of the high-level applica-
tion(s) and helps address challenge C1 from Section 1.1.

connect feed TwitterFeed to dataset RawTweets
using policy Basic ;

connect feed ProcessedTwitterFeed to
dataset ProcessedTweets using policy Basic ;

Figure 9: Specifying the ingestion policy for a feed

5. RUNTIME FOR FEED INGESTION
So far we have described, at a logical level, the user model and

built-in support in AQL that enables the end user to define a feed,
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Table 1: A Few Important Policy Parameters
Policy Parameter Description Default
excess.records.spill Set to true if records that

cannot be processed by
an operator for lack of
resources (referred to as
excess records hereafter)
should be persisted to the
local disk for deferred pro-
cessing.

false

excess.records.discard Set to true if excess records
should be discarded.

false

excess.records.throttle Set to true if rate of arrival
of records is required to be
reduced in an adaptive man-
ner to prevent having any
excess records.

false

excess.records.elastic Set to true if the system
should attempt to re-
solve resource bottlenecks
by re-structuring and/or
rescheduling the feed
ingestion pipeline.

false

recover.soft.failure Set to true if the feed must
attempt to survive any run-
time exception. A false
value permits an early ter-
mination of a feed in such
an event.

true

recover.hard.failure Set to true if the feed must
attempt to survive a hard-
ware failures (loss of As-
terixDB node(s)). A false
value permits the early ter-
mination of a feed in the
event of a hardware failure.

true

manage its lifecycle, and dictate its runtime behavior by selecting
a policy. Next, we discuss the physical aspects and implementation
details involved in building and managing the flow of data when a
feed is connected to a dataset.

5.1 Runtime Components
In processing a connect feed statement, the AQL compiler re-

trieves the definitions of the involved components—feed, adap-
tor, function, policy, and the target dataset from the AsterixDB
Metadata. The compiler translates a connect feed statement into a
Hyracks job that is subsequently scheduled to run on an AsterixDB
cluster. The resulting dataflow is referred to as a feed ingestion
pipeline. A Hyracks data operator forms a major building block
of an ingestion pipeline and is useful in executing custom logic
on partitions of input data to produce partitions of output data. It
may employ parallelism in consuming input by having multiple in-
stances that run in parallel across a set of nodes in an AsterixDB
cluster. Data connectors repartition operators’ outputs to make the
newly produced partitions available at the consuming operator in-
stances. In addition, an ingestion pipeline provides feed joints at
specific locations. A feed joint is like a network tap and provides
access to the data flowing along an ingestion pipeline. It helps in
building a cascade network of feeds by allowing data from an in-
gestion pipeline to be simultaneously routed along multiple paths.

A feed ingestion pipeline involves 3 stages—intake, compute and
store. The intake stage involves creating an instance of the associ-
ated feed adaptor, using it to initiate the transfer of data and trans-
forming it into ADM records. If the feed has an associated pre-
processing function, it is applied to each feed record as part of the

Table 2: Policies for handling of excess records
Policy Approach to handling of excess records
Basic Buffer excess records in memory
Spill Spill excess records to disk for deferred pro-

cessing
Discard Discard excess records altogether
Throttle Randomly filter out records to regulate the rate

of arrival
Elastic Scale out/in to adapt to the rate of arrival

compute stage. Subsequently, as part of the store stage, the output
records from the preceding intake or a compute stage are put into
the target dataset and its secondary indexes1 (if any) are updated ac-
cordingly. Each stage is handled by a specific data-operator, here-
after referred to as an intake, compute, and store operator respec-
tively. Next, we describe how operators, connectors and joints are
assembled together to construct a feed ingestion pipeline.

Figure 10 contains some example AQL statements that define
and connect a pair of feeds to respective target datasets. The sec-
ond statement in Figure 10 connects the primary feed, CNNFeed.
As determined by the number of topics specified in its configura-
tion, the feed involves the use of a pair of instances of the CN-
NFeedAdaptor. Each adaptor instance is managed by an instance
of the intake data operator. As CNNFeed does not involve any pre-
processing, the output records from each adaptor instance thus con-
stitute the feed. These are then partitioned across a set of store op-
erator instances using the hash-partitioning data-connector. In the
constructed pipeline, a feed joint is located at the output of each
intake operator instance. In general, a feed joint is placed at the
output side of an operator instance that produces records that form
a feed. In the case where a feed involves pre-processing, a feed
joint is placed at the output of its compute operator instances.

The last statement in Figure 10 connects the secondary feed,
ProcessedCNNFeed. By definition, this feed can be obtained by
subjecting each record from the CNNFeed to the associated UDF
(addInfoFromCNNWebsite). In general, if feed

m+1 denotes the
immediate child of feed

m

, a child feed feed

i

can be obtained
from an ancestor feed feed

k

(k < i) by subjecting each record
from feed

k

to the sequence of UDFs associated with each child
feed feed

j

(j = k + 1, ..., i). i � k denotes the ‘distance’ from
feed

k

to feed

i

and is indicative of the additional processing steps
(UDFs) required to produce feed

i

from feed

k

. To minimize the
processing involved in forming a feed, it is desired to source the
feed from its nearest ancestor feed that is in the connected state.
The feed joint(s) available along the ingestion pipeline of an an-
cestor feed are then used to access the flowing data and subject it
to the additional processing to form the desired feed. AsterixDB
keeps track of the available feed joints and uses them in preference
over creating a new feed adaptor instance in sourcing a feed.

The cascade network for ingestion of CNNFeed and ProcessedC-
NNFeed is shown in Figure 11. Note that disconnecting a feed from
a dataset does not necessarily remove the set of feed joints located
along the ingestion pipeline. Referring to Figure 11, disconnecting
CNNFeed at this stage removes the tail of the pipeline that includes
the compute and store operator instances but will retain the intake
operator instances. This is because the feed joints (labeled as ‘A’)
at the output of the intake operator instances each have an existing
1Secondary indexes in AsterixDB are partitioned and co-located
with the corresponding primary index partition. Inserting a record
into the primary and any secondary indexes uses write-ahead log-
ging and offers ACID semantics.
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path (ingestion pipeline for ProcessedCNNFeed) that requires the
output records to keep flowing in an uninterrupted manner.

create feed CNNFeed using CNNAdaptor
("topics"="pol i t ics , sports" ) ;

connect feed CNNFeed to dataset RawArticles ;

create secondary feed ProcessedCNNFeed from
feed CNNFeed apply function addInfoFromCNNWebsite ;

connect feed ProcessedCNNFeed to
dataset ProcessedArticles ;

Figure 10: Example AQL statements

Figure 11: An example of a feed cascade network. The cascade
network provides two sets of feed joints - labeled as ‘A’ & ‘B’
- that provide access to CNNFeed and CNNProcessedFeed re-
spectively. If at this stage, the end-user creates (and connects)
a secondary feed that derives from ProcessedCNNFeed, then its
intake stage would involve receiving records from each of the 4
feed joints (kind B) provided by the ingestion pipeline for Pro-

cessedCNNFeed.

5.2 Scheduling a Feed Ingestion Pipeline
Scheduling a feed ingestion pipeline on a cluster requires de-

termining the desired degree of parallelism of each operator and
mapping each instance of an operator to an AsterixDB node. An
AsterixDB cluster consists of a manager node and a set of worker
nodes. Scheduling decisions for a feed ingestion pipeline are taken
by the Central Feed Manager (CFM) that is hosted by the man-
ager node. Each worker node hosts a Feed Manager (FM). The
CFM keeps track of the load distribution across the cluster from
the periodic reports sent by each FM. These reports contain vital
statistics including CPU usage. Each feed pipeline operator may
define a cardinality constraint (degree of parallelism) and/or a lo-
cation constraint at the Hyracks job level. The location and cardi-
nality constraints for the intake operator are determined by the feed
adaptor. If no constraints are specified, the Central Feed Manager
will choose to run a single instance of the operator on a node of its
choice. The constraints for the store operator are pre-determined
and derived from the nodegroup associated with the target dataset.
Recall that the nodegroup of a dataset refers to the set of nodes that
hold the partitions of the dataset.

The compute operator in a feed pipeline doesn’t offer any con-
straints. Instead, the level of parallelism for a compute operator
is determined as described below. The partitioned parallelism em-
ployed at the compute and store stages helps the system ingest in-
creasingly large volumes of data. Additional resources (physical

machines) can be added at the compute and/or store stage to scale
out the system. This helps address challenge C5 from Section 1.1.
The appropriate degree of parallelism is therefore dependent on the
rate of arrival of data and on the complexity associated with the
UDF. To begin with, the cardinality at the compute stage is matched
with that of the store stage to offer the same degree of parallelism.
However, as we describe in the following section, a feed ingestion
pipeline, as dictated by the ingestion policy, may be re-structured
in accordance with the demand for resources.

5.3 Managing Congestion
An expensive UDF and/or an increased rate of arrival of data

may lead to an excessive demand for resources leading to delays
in the processing of records. Left unchecked, the created back-
pressure at an operator can cascade upstream to completely ‘lock’
the flow of data along the pipeline. A ‘locked’ state creates exces-
sive demand for resources to buffer the data that is arriving at its
regular rate from the data source(s). At a feed joint located on a
‘locked’ pipeline, insufficient resources can also impede the flow
of data along other pipelines originating from the joint. To avoid
such an undesirable situation, AsterixDB takes a different approach
by resolving back-pressure at its originating operator and prevent-
ing it from escalating upstream. This isolates other operators in
the pipeline/cascade network from the created congestion. In this
sub-section, we describe the methodology adopted for detecting re-
source bottlenecks and taking corrective action (challenge C3 from
Section 1.1).

The records arriving at an operator are buffered in memory; this
functionality is provided by a MetaFeed operator that wraps around
the actual operator (referred to as the core operator hereafter). Hav-
ing a MetaFeed operator as a wrapper ensures that the core opera-
tors remain simple, generic and reusable elsewhere as part of other
(non-feed) jobs. In addition to buffering, the MetaFeed operator
periodically measures the size of the input buffer, the rate of arrival
of records R

A

(records/sec), and the rate of processing of records
R

P

(records/sec) by the core operator. Note that R
P

varies with the
availability of resources at the operator location and the size of the
records that need to be processed. If R

A

exceeds R
P

, the buffer is
expanded to accommodate for the deficit. The total available mem-
ory (JVM heap size) is bounded and is shared by operators serving
multiple concurrent feeds or queries. To ensure sufficient resources
for concurrent queries, a fixed (configurable) limit is imposed on
the total memory allocated for feed input buffers at each worker
node.

Table 1 from Section 4.5 described buffering, spilling, discard-
ing or throttling as mechanisms for dealing with congestion. These
mechanisms constitute ‘local’ resolution and remain hidden from
the upstream operators that continue to send data seamlessly. The
mechanisms’ downside is delayed processing of records (buffer-
ing/spilling) or losing some of them altogether (discarding/throt-
tling).

Congestion that occurs due to a compute operator (i.e., due to
use of an expensive UDF) can be cleared in yet another way –
via ‘global’ resolution. Global resolution exploits the stateless and
therefore embarrassingly parallel nature of the UDF. The MetaFeed
operator reports a congested state of a compute operator to the lo-
cal Feed Manager (FM) together with the last measured values for
R

A

and R

P

. Congested states occurring across the cluster are re-
ported to the Central Feed Manager (CFM) by each FM. Using
mechanisms similar to those detailed later for handling failures dur-
ing ingestion, the CFM re-structures the pipeline to have increased
parallelism at the compute tier. In doing so, the additional com-
pute operator instances may run on idle nodes from the cluster or
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be scheduled on the current set of nodes to utilize additional cores.
Contrary to dynamically scaling out an operator, AsterixDB also
provides for auto-scaling-in if the current degree of parallelism is
greater than that required to handle the flow of data. The required
increase/decrease is derived from the reported values of R

A

and
R

P

from the compute operator instances running across the clus-
ter.

5.4 At Least Once Semantics
An application may demand stronger guarantees on the process-

ing of records by requiring each arriving record to be processed
at least once through the ingestion pipeline, despite any failures.
Such a requirement is expressed through the at.least.once.enabled
policy parameter. To provide at least once semantics, each record
arriving from the data source is augmented with a tracking id at
the intake stage. Once the record has been persisted (log record
on disk), an ack message with the tracking id is constructed. Over
a fixed-width time-window, the ack messages for all records that
were sourced from a given feed adaptor instance (identified from
the tracking id) are grouped and encoded together as a single mes-
sage. A record that has been output by the intake stage is held at
its intake node until an ack message for the record is received from
the store stage. When an ack is received, the record is dropped and
memory is reclaimed. On a timeout, the records without an ack are
replayed. At least once semantics are not guaranteed if throttling or
discarding of records is enabled by the policy.

6. FAULT TOLERANT FEED INGESTION
Feed ingestion is a long running task running on a commodity

cluster, so it is eventually bound to encounter hardware failure(s).
Also, portions of a feed ingestion pipeline include pluggable user-
provided modules (feed adaptor and a pre-processing function) that
may cause soft failures (runtime exceptions). Sources of such an
exception may include unexpected data format/values or simply in-
herent bugs in the user-provided source code. Next, we describe
how a feed may recover from software and hardware failures and
thereby address the challenge C4 from Section 1.1.

6.1 Handling Software Failures
A runtime exception encountered by an operator in processing

an input record in a normal AsterixDB insert setting carries non-
resumable semantics and causes the insert operation’s dataflow to
cease. It is essential to guard feed pipelines from such exceptions
by executing each of their operators in a sandbox-like environment.
The MetaFeed operator (introduced in Section 5.3) acts as a shell
around each operator to provide such an environment. Recall that
the operator that is wrapped is referred to as the core operator.
The runtime of a core operator receives input data as a sequence
of frames containing one ore more records. An exception thrown
by the core operator in processing an input record is caught by the
wrapping MetaFeed operator. The MetaFeed operator slices the
original input frame to form a subset frame that includes the un-
processed records minus the exception generating record. The sub-
set frame is then passed to the core-operator which continues to
process input frames and has, in effect, skipped past the exception-
generating record.

6.2 Handling Hardware Failures
We next describe the mechanism that handles the loss of one or

more of the AsterixDB nodes involved in a feed ingestion pipeline.
Corresponding to the operation being performed, a node is referred
to as an Intake, Compute or a Store node. An AsterixDB clus-

ter node may simultaneously act as an intake, compute or a store
node for one or more feeds. To illustrate a failure scenario, we use
an example ingestion pipeline (Figure 12(a)) that executes on a 10
member AsterixDB cluster (nodes A-I). In this particular data flow,
node I is not used initially. To be considered alive, each node is re-
quired to send periodic heartbeats to the master node (not shown in
the figure). We assume a concurrent failure of an intake node (node
A) and a compute node (node D). A node failure is detected by the
master node through the heartbeat mechanism. Each operator in-
stance in the ingestion pipeline is notified of the pipeline failure.
On being notified, the operator instance saves the contents of its in-
put buffer with the local Feed Manager. The operator instance also
has an option to save state information that may help in resuming
operation once the pipeline is rescheduled. The operator instance
then notifies the Central Feed Manager (CFM) and terminates it-
self. An intake operator instance behaves differently; it begins to
buffer/spill the arriving records and not forward them downstream.

A revised feed ingestion pipeline is constructed with identical
operators and feed joints. An operator instance is co-located with
its respective instance from the previous failed execution if the node
is still available. An intake operator instance is co-located with the
corresponding live instance from the previous execution. Each op-
erator then enters a ‘hand-off’ stage where it retrieves the input
buffer and any state saved with the local Feed Manager by the cor-
responding instance from the failed pipeline. The functionality of
registering with the Feed Manager and saving/retrieving any state
across failures is provided by the MetaFeed operator that wraps
around each core operator. An operator instance that has a dead
instance from the previous execution can be scheduled to run at an
AsterixDB node chosen by the CFM.

(a) An example dataflow for describing the fault tolerance proto-
col: Node A and Node D fail

(b) Restructured pipeline post recovery: Node I takes over Node
A operations; Node F takes over Node D operations

Figure 12: Recovering from compute node failure.

When substituting a failed node, the CFM considers the load dis-
tribution across the cluster. Recall that the FMs periodically report
vital statistics (including CPU usage) about a worker node to the
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CFM. Figure 12(b) shows the revised pipeline with node I (which
was idle) substituted for node A while Node F substituted for node
D and thereafter acted as a compute and a store node. A more
detailed description of the handling of different failure scenarios
during feed ingestion can be found in [14]. Essentially the same
machinery is used to handle the scaling-in or out of a feed pipeline
when an elastic policy is chosen for handling data congestion (or
decongestion) and that CFM determines that a scaling action is re-
quired.

A store node failure translates to the loss of a partition of the
dataset that is receiving the feed. AsterixDB does not (yet!) support
data replication. In the absence of replica(s), a store node failure
will result in an early termination of an associated feed. When the
failed store node later re-joins the cluster, it will undergo a log-
based recovery to ensure that all of its hosted dataset partitions are
in a consistent state. Subsequently, the feed ingestion pipeline will
be rescheduled to involve the joined node.

7. EXPERIMENTAL EVALUATION
In this section, we provide an initial experimental evaluation of

the scalability and fault-tolerance offered by the AsterixDB feed
ingestion facility. We include a study of the impact of the inges-
tion policy (parameters) on the runtime behavior (throughput and
latency) under different workload conditions. We also include a
comparison with a custom built ‘glued’ system using Storm (as a
processing engine) and MongoDB (as a persistence engine) and
discuss the tradeoffs.

Experimental Setup: We ran experiments on a 10-node IBM
x3650 cluster. Each node had one Intel 2.26GHz processor with
four cores, 8GB of RAM, and a 300GB hard disk. We wrote a cus-
tom stand-alone tweet generator (TweetGen) that can output syn-
thetic (JSON) tweets at a rate (tweets per second - twps) that fol-
lows a configurable pattern. The RawTweet datatype created in Fig-
ure 2 showed the equivalent ADM representation for a tweet output
by TweetGen. Next, we wrote a custom socket-based adaptor—
TweetGenAdaptor. The adaptor is configured with the location(s)
(socket address) where instance(s) of TweetGen is/are running. Each
instance of TweetGen receives a request for data from a correspond-
ing instance of TweetGenAdaptor, thus enabling ingestion of data
in parallel. We used the AQL statements shown in Figure 3 (from
Section 3.2) to create the target datasets (and indexes) for persisting
the feed. The definition for the set of two feeds used in our exper-
iment is shown in Figure 13. In this example, a pair of instances
of TweetGen are running and listening on a specific for request to
initiate (push-based) transfer of data.
create feed TweetGenFeed using TweetGenAdaptor
("datasource"="10 .1 .0 .1 :9000 , 10.1.0.2 :9000" ) ) ;

create secondary feed ProcessedTweetGenFeed from
feed TweetGenFeed apply function addFeatures ;

Figure 13: Feed definitions for experimental evaluation

7.1 Scalability
We evaluated the ability of the AsterixDB feed ingestion support

to scale and ingest an increasingly large volume of data when addi-
tional resources are added. If the data arrival rate exceeds the rate
at which it can be ingested in AsterixDB, the excess records are
either buffered in memory, spilled to disk or discarded altogether.
The precise behavior is chosen by the associated ingestion policy.
By design, we chose to discard data here and not defer its process-
ing (via spilling/buffering). This helped in evaluating the ability to
successfully ingest data as a function of available resources.

In this experiment, we chose the amount of data loss as our per-
formance metric. A total of 6 instances of TweetGen were run on
machines outside the test cluster and were configured to generate
tweets at a constant rate (20k twps) for a duration of 20 minutes.
We measured the total number of ingested (persisted and indexed)
tweets and repeated the experiment by varying the size of our test
cluster. We increased the hardware till there is no data loss (the
ideal behavior). The experimental results are shown in Figure 14.
A significant proportion of records were discarded for lack of re-
sources on a small size cluster of 1–4 nodes. On a bigger cluster, the
proportion of discarded tweets declines, indicating that the system
that can indeed ingest an increasingly high volume of data when
additional resources (nodes) are added.

Figure 14: Scalability: Number of records (tweets) successfully
ingested (persisted and indexed) as the cluster size is increased.

7.2 Fault Tolerance
We next evaluated the ability of the system to recover from sin-

gle/multiple hardware failures while continuing to ingest data. This
experiment involved a pair of TweetGen instances (twps=5000),
each running on a separate machine outside the AsterixDB cluster.
We connected the feeds—TweetGenFeed and ProcessedTweetGen-
Feed–to their respective target dataset and used the built-in policy
Fault-Tolerant (Figure 15). The nodegroup associated with each
dataset included a pair of nodes each. To make things interest-
ing and show that the order of connecting related feeds is not im-
portant, we connected ProcessedTweetGenFeed prior to connect-
ing its parent feed TweetGenFeed. In the absence of an available
feed joint, the ingestion pipeline for ProcessedTweetGenFeed is
constructed using the feed adaptor (Figure 16). The physical lay-
out of the dataflow as scheduled on our AsterixDB cluster during
this experiment is shown in Figure 16. The ingestion pipeline for
TweetGenFeed is sourced from the feed joints (kind A) provided by
ProcessedTweetGenFeed.

connect feed ProcessedTweetGenFeed to
dataset ProcessedTweets using policy FaultTolerant ;

connect feed TweetGenFeed to
dataset RawTweets using policy FaultTolerant ;

Figure 15: Connected feeds to respective dataset

We measured the number of records inserted into each target
dataset during consecutive 2 second intervals to obtain the instan-
taneous ingestion throughput for the associated feed. We caused a
compute node failure (node C in Figure 16) at t=70 seconds. This
was followed by a concurrent failure of both an intake node (node
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Figure 16: Feed cascade network for fault tolerance experi-
ment: Node C fails at t=70 seconds; Node A and Node D fail
at t=140 seconds

(a) TweetGenFeed (b) ProcessedTweetGenFeed

Figure 17: Instantaneous ingestion throughput with interim
hardware failures: in Figure 16 Node C fails at t=70 seconds;
Node A and Node D fail at t=140 seconds

A) and a compute node (node D) at t=140 seconds. The instanta-
neous ingestion throughput for each feed as plotted on a timeline is
shown in Figure 17. Following are the noteworthy observations.
(i) Recovery Time: The failures are reflected as a drop in the in-
stantaneous ingestion throughput at the respective times. Each fail-
ure was followed by a recovery phase that reconstructed the inges-
tion pipeline and resumed the flow of data into the target dataset
(within 2-4 seconds).
(i) Fault Isolation: Data continues to arrive from the external source
at the regular rate, irrespective of any failures in an AsterixDB clus-
ter. During the recovery phase for ProcessedTweetGenFeed, the
feed joint(s) buffer the records until the pipeline is resurrected but
allow the records to flow (at their regular rate) into any other in-
gestion pipeline that does not involve a failed node. This helps in
“localizing" the impact of a pipeline failure and is a desirable fea-
ture of the system. As shown in Figure 17(a), TweetGenFeed is not
impacted by the failure of node C at t = 70 seconds.

7.3 Throughput and Latency: Impact of
Ingestion Policy

We evaluated the impact of the ingestion policy on the runtime
behavior and performance characteristics of interest — throughput
and ingestion latency — under different conditions of rate of ar-
rival of data. We configured two instances of TweetGen to generate
tweets at a rate that followed the pattern shown in Figure 18(a).
The pattern involves equi-width workload-phases with mid, high
and low activity in terms of the rate of arrival of tweets. These
workload-phases are referred to as WMID, WHIGH and WLOW re-
spectively and the corresponding rate (tweets/second or twps) is
denoted by RMID, RHIGH and RLOW. The pre-processing of tweets
involved a UDF that simply executed a busy spin loop to consume
CPU cycles and cause a compute delay of about 3ms per tweet.

We used our 10 node AsterixDB cluster. Table 3 lists the sym-
bols and metrics we use when describing this experiment and its
results. The intake stage involved a pair of feed adaptor instances
each receiving records from a separate TweetGen instance located
outside the AsterixDB cluster. Each TweetGen instance pushed
data for a continuous duration of 1200 seconds (T

start

� T

stop

).
We measured the instantaneous throughput as the number of tweets
persisted in each 2 second interval over the duration of the experi-
ment. We also measured the ingestion latency (Table 3(b)) for each
tweet received by the feed adaptor during each workload-phase
(WMID, WHIGH and WLOW). The target dataset had a partition on
a disk at each node. The store stage thus involved a store operator
instance on each node. The compute stage (as constructed by the
AsterixDB compiler) offered a similar degree of parallelism and
involved a compute operator instance on each node. Application
of the UDF (with its ⇠3ms execution time ) by a compute operator
instance gave each one a maximum processing capacity of ⇠300
tweets/sec. The aggregate capacity from 10 parallel instances was
thus limited to 3000 twps (referred to as ComputeLIMIT). In the
workload (Figure 18(a)), we have RHIGH > ComputeLIMIT during
WHIGH. This leads to congestion, a situation where records cannot
be processed at their rate of their arrival. We repeated the exper-
iment using each of the built-in ingestion policies (Table 2, Sec-
tion 4.5).

Figure 18 shows the instantaneous throughput plotted on a time-
line for each policy. Each figure also cites the average ingestion
latency (LAvg) during each workload-phase. It is desirable to maxi-
mize the ingestion coverage (Table 3(b)), minimize the average in-
gestion latency for each workload-phase and have TDONE ⇠ TSTOP.
The Basic and Spill policies were able to ingest all records (inges-
tion coverage = 1.0). However, TDONE exceeded TSTOP due to the
excess records created during WHIGH. The Discard and Throttle
policies had TDONE ⇠ TSTOP, provided low ingestion latency but at
the cost of reduced ingestion coverage (⇠0.66). During WHIGH,
Throttle policy reduced the effective tweet arrival rate at each com-
pute node from ⇠600 tweets/second to ⇠300 tweets/second (50%
sampling rate)2. The Elastic policy acted differently by restructur-
ing the pipeline to involve 20 compute operator instances during
WHIGH as the tweet arrival rate doubled. Each node then had two
compute operator instances that provided a better utilization of the
cores (4) on each node, effectively increasing the ComputeLIMIT
of the cluster. This helped provide a complete ingestion cover-
age (1.0), a minimum average ingestion latency for each workload-
phase and had TDONE ⇠ TSTOP. Recall that the MetaFeed opera-
tor dynamically evaluates the record arrival and processing rate at
each core operator. Throttle and Elastic policies make use this peri-
odic evaluation to derive the ComputeLIMIT and adapt the sampling
rate/degree of parallelism respectively.

7.4 Comparison with Storm + MongoDB
An alternative way of supporting data ingestion today is to ‘glue’

together a streaming engine (e.g., Storm) with a persistent store
(e.g., MongoDB) that supports queries over indexed semi-structured
data. We used our 10 node cluster to host Storm and MongoDB. A
Storm dataflow offers spouts (that act as sources of data) and bolts
(that act as operators) that can be connected to form a dataflow. A
spout implements a method, nextTuple() that is invoked by Storm
in a ‘pull-based’ manner for obtaining the next record from a data
2Records arrive in fixed-size frames that contain varying number
of records. Each frame is sampled to randomly select a subset of
records for processing.
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(a) Rate of Arrival of Data (b) Basic Policy (c) Spill Policy

(d) Discard Policy (e) Throttle Policy (f) Elastic Policy

Figure 18: Impact of Ingestion Policy on Runtime Behavior

Table 3: Symbols and Metrics
(a) Symbol Definitions

Symbol Definition
T

start

, T

stop

Time when data source starts/stops pushing data
T

intake

(i) Time when Tweet(i) is received by the feed adaptor
T

indexed(i) Time when Tweet(i) is indexed in storage
N

total

Total number of tweets received by feed adaptor
N

indexed

Total number of tweets indexed
T

done

Time when ingestion activity completes.

(b) Metric Definitions
Metric Definition
Instantaneous Throughput
(t)

(N
indexed

(t)�N

indexed

(t�w))/w,
w = 2 seconds

Ingestion Latency (i) T

indexed

(i)� T

intake

(i)
Ingestion Coverage N

indexed

/N

total

source. This method is not compatible with the common scenario
of a ‘push-based’ ingestion where data continues to arrive from the
data source at its natural rate. To support push-based ingestion, it
is necessary to buffer the arriving records from the data source and
then forward them to Storm on each invocation of the nextTuple()
method. Another strategy commonly used by the community is to
use yet another system — Redis, Thrift, or Kafka — as services
(more ‘gluing’!) so that records can be pushed to them and then a
spout can pull them.

In contrast to our declarative support for defining/managing feeds,
where the AsterixDB compiler constructs the dataflow, a Storm +
MongoDB user must programmatically connect together spouts and
bolts and statically specify the degree of parallelism for each. Storm
does not offer elasticity, nor does it allow associating ingestion poli-
cies to customize the handling of congestion and failures. Interfac-

ing with MongoDB requires the bolts to be parameterized with the
locations of MongoDB Query Routers, which are processes run-
ning on specific nodes in a MongoDB cluster that accept insert
statements/queries. The end user is thus required to understand
the layout of the cluster and include specific information in the
source code. Our ‘glued’ solution emulates the stages from an As-
terixDB ingestion pipeline. The constructed dataflow involves a
pair of spouts, each receiving records from a separate TweetGen
instance. Each spout’s output is randomly partitioned across a set
of 10 bolts, one on each node. Each node also hosted a MongoDB
Query Router to allow the co-located bolt to submit an insert state-
ment to the local Query Router. Each node also hosted a MongoDB
partition server. The MongoDB collection (dataset) was sharded
(hashed by primary key) across the partition servers.

MongoDB provides a varying level of durability for writes. The
lowest level (non-durable) allow submitting records for insertion
asynchronously with no guarantees or notification of success. The
Storm+MongoDB coupling then acts as a pure streaming engine
with minimal overhead from (de)serialization of records. However,
it becomes hard to reason about the consistency and durability of-
fered by the system. The durable-write mode in MongoDB is a
fair comparison with AsterixDB, as it provides ACID semantics for
data ingestion. However, to provide a complete picture, we ran the
workload of Figure 18(a) using both kinds of writes for MongoDB.
The durable-write mode (Figure 19(a)) in the Storm+MongoDB
coupling provides complete ingestion coverage. However, when
compared to Basic, Spill and Elastic policies from AsterixDB (with
similar ingestion coverage), the time taken for the ingestion activ-
ity to complete (TDONE - TSTART) increased by a factor of ten —
meaning that Storm+MongoDB coupling was unable to keep up
with the workload. The average ingestion latency observed in each
workload-phase for Storm+MongoDB compared with the Elastic
policy was worse by two orders of magnitude. To isolate the cause,
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(a) Durable Write

(b) Non-Durable Write

Figure 19: Instantaneous Throughput for Storm+MongoDB.

we switched to using non-durable writes (Figure 19(b)) wherein the
system behaves like a pure streaming engine with a de-coupled un-
reliable persistent store (asynchronous writes). We then obtained
TDONE ⇠ TSTOP. This ruled out inefficient streaming of records
within Storm as a possible reason for the low throughput.

To better understand the results, we must consider the process-
ing strategy used by MongoDB. MongoDB optimized for max-
imum single-record throughput and write-concurrency but at the
cost of an increased wait time (⇠50ms) per write when full durabil-
ity is requested. This created congestion at the output of the com-
pute stage of our Storm+MongoDB combination and contributed
to the high latency and low ingestion throughput. The situation is
expected to worsen when ‘at least once semantics’ are required.
Storm achieves such semantics by replaying a record if it does not
traverse the dataflow within a specified time threshold. Owing to an
increased wait time per write, additional failures would be assumed
and records would begin to be replayed; this cycle can repeat end-
lessly, leading to system instability.

8. CONCLUSION
We have described the support for data feed management in As-

terixDB (an open-source BDMS) and how it addresses the chal-
lenges involved in building a fault-tolerant data ingestion facil-
ity that scales through partitioned parallelism. We described how
a feed may be defined and managed using a high-level language
(AQL). A generic plug-and-play model helps AsterixDB cater to
a wide variety of data sources and applications. We described the
system’s internal architecture and also provided a preliminary eval-
uation of the system, emphasizing its ability to scale to ingest in-
creasingly large volumes of data and to handle failures during in-
gestion. A custom-built solution formed by ‘gluing’ together Storm
and MongoDB was evaluated but did not compare well with the

ingestion support provided by AsterixDB, neither in terms of user-
experience nor its performance characteristics.
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ABSTRACT
In the last decades we moved from a world in which an enterprise
had one central database—rather small for todays’ standards—to a
world in which many different—and big—databases must interact
and operate, providing the user an integrated and understandable
view of the data. Ontology-Based Data Access (OBDA) is becom-
ing a popular approach to cope with this new scenario. OBDA sep-
arates the user from the data sources by means of a conceptual view
of the data (ontology) that provides clients with a convenient query
vocabulary. The ontology is connected to the data sources through
a declarative specification given in terms of mappings. Although
prototype OBDA systems providing the ability to answer SPARQL
queries over the ontology are available, a significant challenge re-
mains when it comes to use these systems in industrial environ-
ments: performance. To properly evaluate OBDA systems, bench-
marks tailored towards the requirements in this setting are needed.
In this work, we propose a novel benchmark for OBDA systems
based on real data coming from the oil industry: the Norwegian
Petroleum Directorate (NPD) FactPages. Our benchmark comes
with novel techniques to generate, from the NPD data, datasets
of increasing size, taking into account the requirements dictated
by the OBDA setting. We validate our benchmark on significant
OBDA systems, showing that it is more adequate than previous
benchmarks not tailored for OBDA.

1. INTRODUCTION
In the last decades we moved from a world in which an enter-

prise had one central database, to a world in which many differ-
ent databases must interact and operate, providing the user an inte-
grated view of the data. In this new setting five research areas in the
database community became critical [1]: (i) scalable big/fast data
infrastructures; (ii) ability to cope with diversity in the data man-
agement landscape; (iii) end-to-end processing and understanding
of data; (iv) cloud services; and (v) managing the diverse roles of
people in the data life cycle. Since the mid 2000s, Ontology-Based
Data Access (OBDA) has become a popular approach used in three
of these five areas— namely (ii), (iii), and (v).

In OBDA, queries are posed over a high-level conceptual view,

c�2015, Copyright is with the authors. Published in Proc. 18th Interna-
tional Conference on Extending Database Technology (EDBT), March 23-
27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0.

and then translated into queries over a potentially very large (usu-
ally relational and federated) data source. The conceptual layer is
given in the form of an ontology that defines a shared vocabulary,
hides the structure of the data sources, and can enrich incomplete
data with background knowledge. The ontology is connected to
the data sources through a declarative specification given in terms
of mappings that relate each (class and property) symbol in the on-
tology to a (SQL) view over (possibly federated) data. The W3C
standard R2RML [8] was created with the goal of providing a stan-
dardized language for the specification of mappings in the OBDA
setting. The ontology together with the mappings exposes a vir-
tual instance (RDF graph) that can be queried using SPARQL, the
standard query language in the Semantic Web community.

To make OBDA useful in an industrial setting, OBDA systems
must provide answers in a reasonable amount of time, especially in
the context of Big Data. However, most research in academia has
focused on correct SPARQL-to-SQL translations, and expressivity
of the ontology/mapping languages. Little effort (to the best of our
knowledge) has been spent in systematically evaluating the perfor-
mance of OBDA systems. To properly evaluate such performance,
benchmarks tailored towards the requirements in this setting are
needed. In particular, the benchmark should resemble a typical
real-world industrial scenario in terms of the size of the data set,
the complexity of the ontology, and the complexity of the queries.
In this work, we propose a novel benchmark for OBDA systems
based on the Norwegian Petroleum Directorate (NPD) FactPages1.
The NPD FactPages contains information regarding the petroleum
activities on the Norwegian continental shelf. Such information is
actively used by oil companies, such as Statoil. The Factpages are
synchronized with the NPD’s databases on a daily basis. The NPD
Ontology [26] has been mapped to the NPD FactPages and stored
in a relational database2. The queries over such an ontology have
been formulated by domain experts starting from an informal set of
questions provided by regular users of the FactPages.

The contributions of this paper are as follows: (1) We identify
requirements for benchmarking of OBDA systems in a real world
scenario. (2) We identify requirements for data generation in the
setting of OBDA. (3) We propose a benchmark that is compliant
with the requirements identified. (4) We provide a data generator
for OBDA together with an automatized testing platform. (5) We
carry out an extensive evaluation using state-of-the-art OBDA sys-
tems and triple stores, revealing strength and weaknesses of OBDA.

This work extends the previous workshop publications [6, 17]
with an automatized testing platform, with new experiments, and
with a larger and more challenging query set, including also ag-
gregate queries. This new query set highlights the importance of

1http://factpages.npd.no/factpages/
2http://sws.ifi.uio.no/project/npd-v2/
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semantic query optimisation in the SPARQL-to-SQL translation
phase.

The rest of the paper is structured as follows. In Section 2, we
briefly survey other works related to benchmarking. In Section 3,
we present the necessary requirements for an OBDA benchmark.
In Section 4, we discuss the requirements for an OBDA instance
generator. In Section 5, we present the NPD benchmark3 and an
associated relational database generator that gives rise to a virtual
instance through the mapping; we call our generator Virtual In-
stance Generator (VIG). In Section 6, we describe a set of exper-
iments performed using our benchmark over OBDA systems and
triple stores. We conclude in Section 7.

2. RELATED WORK
Benchmarks are used to assess the quality of a system against a

number of measures related to its design goals. Although OBDA
systems have recently gained popularity, and the interest of a num-
ber of important enterprises like Siemens or Statoil (c.f. Optique
Project4), no benchmark has yet been proposed in this setting. Al-
though there are no guidelines nor benchmarks specific for OBDA,
one must observe that these systems integrate both well-established
database technologies and Semantic Web features. Driven by this
observation, and given that both databases and knowledge-based
systems have a vast literature on benchmarking, a natural starting
point for deriving requirements for an OBDA benchmark is a syn-
thesis of the requirements coming from both of these worlds.

For the databases world, two of the most popular benchmarks
are the Wisconsin Benchmark [9] and the TPC Benchmark5 The
Wisconsin Benchmark specifies a single relation, and columns with
different duplicates ratios allow one to easily manipulate the selec-
tivity of the test queries. The TPC Benchmark comes in different
flavors so as to test database systems in several popular scenar-
ios, like transactions in an order-entry environment (TPC-C), or a
brokerage firm with related customers (TPC-E). These benchmarks
gained popularity for a number of reasons, prominently because
they capture concrete use-cases coming from industry, they are sim-
ple to understand and run, and they provide metrics that allow one
to clearly identify winners and losers (e.g., cost per transaction or
query mixes per hour).

For the Semantic Web world, the situation is much less standard-
ized, and a high number of benchmarks have been proposed. The
most popular ones are LUBM [12], and BSBM [3], which are rather
simple in the sense that they come either with a simple ontology,
or with no ontology at all. These benchmarks do not allow one
to properly test the performance of the reasoners in the context of
complex and expressive ontologies—which are the vast majority
when it comes to real-world applications. This aspect was pointed
out in [31], where the authors proposed an extension of the LUBM
benchmark (called UOBM) in order to overcome these limitations.
Rather than proposing a new benchmark, [13] identifies a number
of requirements for benchmarking knowledge base systems. In this
work we follow a similar scheme, as we first identify a number of
key requirements for OBDA benchmarking and then we validate
our benchmark against those requirements.

A recent and relevant effort concerning benchmarks in the Se-
mantic Web context comes from the DBPedia Benchmark [20].
In this benchmark, the authors propose a number of key features,
like a data generator to produce “realistic” instances of increasing
sizes, a number of real-world queries gathered from the DBPedia

3https://github.com/ontop/npd-benchmark/
4http://www.optique-project.eu/
5http://www.tpc.org/

SPARQL endpoint, and the DBPedia ontology. Although this is an
extremely valuable effort in the context of knowledge base systems,
there are still a number of characteristics that make the DBPedia
Benchmark unsuitable for OBDA benchmarking (see Section 3).

The last effort in order of time comes from the attempt to create
a council like TPC in the context of graph-like data management
technologies, like Graph Data Base Management Systems or sys-
tems based on RDF graphs. The council is called LDBC6, and it has
so far produced two benchmarks related to data publishing and so-
cial use-cases. This is a remarkable effort, however the ontologies
used in these benchmarks are in RDFS, rather than full OWL 2 QL;
therefore, they might miss to test important OBDA-specific pitfalls,
such as reasoning w.r.t. existentials [23].

3. REQUIREMENTS FOR BENCHMARK-
ING OBDA

In this section, we study the requirements that benchmark to
evaluate OBDA systems has to satisfy. In order to define these re-
quirements, we first recall that the three fundamental components
of such systems are: (i) the conceptual layer constituted by the on-
tology; (ii) the data layer provided by the data sources; and (iii) the
mapping layer containing the declarative specification relating each
(class and property) symbol in the ontology to an (SQL) view over
(possibly federated) data. It is this mapping layer that decouples
the virtual instance being queried, from the physical data stored
in the data sources. Observe that triple stores cannot be consid-
ered as full-fledged OBDA systems, since they do not make a dis-
tinction between physical and virtual layer. However, given that
both OBDA systems and triple stores are considered as (usually
SPARQL) query answering systems, we consider it important that
a benchmark for OBDA can also be used to evaluate triple stores.
Also, since one of the components of an OBDA system is an ontol-
ogy, the requirements we identify include those to evaluate general
knowledge based systems [19, 13, 30]. However, due to the addi-
tional components, there are also notable differences.

Typically OBDA systems follow the workflow below for query
answering:

1. Starting phase. The system loads the ontology and the map-
pings, and performs some auxiliary tasks needed to pro-
cess/answer queries in a later stage. Depending on the sys-
tem, this phase might be critical, since it might include
some reasoning tasks, for example inference materialization
or the embedding of the inferences into the mappings (T-
mappings [22]).

2. Query rewriting phase. The input query is rewritten to a (typ-
ically more complex) query that takes into account the infer-
ences induced by the intensional level of the ontology (we
forward the interested reader to [4, 15]).

3. Query translation (or unfolding) phase. The rewritten query
is translated into a query over the data sources. This is the
phase where the mapping layer comes into play [21].

4. Query execution phase. The data query is executed over the
original data source, answers are produced according to the
data source schema, and are translated into answers in terms
of the ontology vocabulary and RDF data types, thus obtain-
ing an answer to the original input query.

Note that a variation of the above workflow has actually been pro-
posed in [19], but without identifying a distinct starting phase, and
6http://www.ldbcouncil.org/
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Table 1: Measures for OBDA
Performance Metrics

name triple store related to phase

Loading Time (T) 1
Rewriting Time (T⇤) 2
Unfolding Time — 3
Query execution time (T) 4
Overall response time (T) 2, 3, 4

Quality Metrics
Simplicity R Query (T⇤) 2
Simplicity U Query — 3
Weight of R+U (T⇤) 2, 3, 4

instead singling out from query execution a result translation phase.
It is critical to notice that although optimisation is not mentioned in
this workflow, it is the most challenging part in the query answer-
ing process, and definitely essential to make OBDA applicable in
production environments.

There are several approaches to deal with Phase 2 [15, 29]. The
most challenging task in this phase is to deal with existentials in the
right-hand side of ontology axioms. These axioms infer unnamed
individuals in the virtual instance that cannot be retrieved as part
of the answer, but can affect the evaluation of the query. An ap-
proach that has proved to produce good results in practice is the
tree-witness rewriting technique, for which we refer to [15]. For
us, it is only important to observe that tree-witnesses lead to an
extension of the original query to account for matching in the ex-
istentially implied part of the virtual instance. Below, we take the
number of tree-witnesses identified in Phase 2 as one of the param-
eters to measure the complexity of the combination ontology/query.
Since existentials do not occur very often in practice [15], and can
produce an exponential blow-up in the query size, some systems
allow one to turn off the part of Phase 2 that deals with reasoning
with respect to existentials.

Ideally, an OBDA benchmark should provide meaningful mea-
sures for each of these phases. Unfortunately, such a fine-grained
analysis is not always possible, for instance because the system
comes as a black-box with proprietary code with no APIs providing
the necessary information, e.g., the access to the rewritten query;
or because the system combines more phases into one, e.g., query
rewriting and query translation. Based on the above phases, we
identify in Table 1 the measures important for evaluating OBDA
systems. The meaning of the Performance Metrics should be clear
from their names; instead, we will give a brief explanation of the
meaning of the Quality Metrics:

• Simplicity R Query. Simplicity of the rewritten query in
terms of language dependent measures, like the number of
rules in case the rewritten query is a Datalog program. In ad-
dition, one can include system-dependent features, e.g., the
number of tree-witnesses in Ontop .

• Simplicity U Query. This measures the simplicity of the
query over the data source, including relevant SQL-specific
metrics like the number of joins/left-join, the number of in-
ner queries, etc.

• Weight of R+U. It is the cost of the construction of the SQL
query divided by the overall cost.

We label with (T) those measures that are also valid for triple stores,
and with (T⇤) those that are valid only if the triple store is based on
query rewriting (e.g., Stardog). Notice that the two Simplicity mea-
sures, even when retrievable, are not always suitable for comparing

different OBDA systems. For example, it might not be possible to
compare the simplicity of queries in the various phases, e.g., when
such queries are expressed in different languages.

With these measures in mind, the different components of the
benchmark should be designed so as to reveal strengths and weak-
nesses of a system in each phase. The conclusions drawn from the
benchmark are more significant if the benchmark resembles a typ-
ical real-world scenario in terms of the complexity of the ontology
and queries, and the size of the data set. Therefore, we consider the
benchmark requirements in Table 2.

The current benchmarks available for OBDA do not meet several
of the requirements above. Next we list some of the best known
benchmarks and their shortcomings when it comes to evaluating
OBDA systems. We show general statistics in Table 3.

Adolena: Designed in order to extend the South African National
Accessibility Portal [14] with OBDA capabilities. It provides
a rich class hierarchy, but a quite poor structure for proper-
ties. This means that queries over this ontology will usually
be devoid of tree-witnesses. No data-generator is included,
nor mappings.
Requirements Missing: O1, Q2, D2, S1

LUBM: The Lehigh University Benchmark (LUBM) [12] consists
of a university domain ontology, data, and queries. For data
generation, the UBA (Univ-Bench Artificial) data generator
is available. However, the ontology is rather small, and the
benchmark is not tailored towards OBDA, since no mappings
to a (relational) data source are provided.
Requirements Missing: O1, Q2, M1, M2, D1

DBpedia: The DBpedia Benchmark consists of a relatively
large—yet, simple7—ontology, a set of user queries chosen
among the most popular queries posed against the DBpedia8

SPARQL endpoint, and a synthetic RDF data generator able
to generate data having properties similar to the real-world
data. This benchmark is specifically tailored to triple stores,
and as such it does not provide any OBDA specific compo-
nents like R2RML mappings, or a data set in the form of a
relational database.
Requirements Missing: O1, O2, Q2, M1, M2

BSBM: The Berlin SPARQL Benchmark [3] is built around an e-
commerce use case. It has a data generator that allows one to
configure the data size (in triples), but there is no ontology to
measure reasoning tasks, and the queries are rather simple.
Moreover, the data is fully artificial.
Requirements Missing: O1, O2, Q2, M1, M2, D1,

FishMark: FishMark [2] collects comprehensive information
about finned fish species. This benchmark is based on the
FishBase real world dataset, and the queries are extracted
from popular user SQL queries over FishBase; they are more
complex than those from BSBM. However, the benchmark
comes neither with mappings nor with a data generator. The
data size is rather small (⇡20M triples).
Requirements Missing: O1, D2, S1

A specific challenge comes from requirements D1 and D2, i.e.,
given an initial real-world dataset, together with a rich ontology
and mappings, expand the dataset in such a way that it populates the
7In particular, it is not suitable for reasoning w.r.t. existentials.
8http://dbpedia.org/sparql/
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Table 2: Benchmark Requirements
O1 Q1 M1

The ontology should include rich hierar-
chies of classes and properties.

The query set should be based on actual
user queries.

The mappings should be defined for ele-
ments of most hierarchies.

O2 Q2 M2
The ontology should contain a rich set of
axioms that infer new objects and could
lead to inconsistency, in order to test the
reasoner capabilities.

The query set should be complex enough
to challenge the query rewriter.

The mappings should contain redundan-
cies, and suboptimal SQL queries to test
optimizations.

D1 D2 S1
The virtual instance should be based on
real world data.

The size of the virtual instance should be
tunable.

The languages of the ontology, mapping,
and query should be standard, i.e., based
on R2RML, SPARQL, and OWL respec-
tively.

Table 3: Popular Benchmark Ontologies: Statistics
Ontology Stats. (Total) Queries Stats. (Max)

name #classes #obj/data_prop #i-axioms #joins #opt #tw

adolena 141 16 189 5 0 0
lubm 43 32 91 7 0 0
dbpedia 530 2148 3836 7 8 0
bsbm 8 40 0 14 4 0
fishmark 11 94 174 24 12 0

virtual instance in a sensible way (i.e., coherently with the ontology
constraints and relevant statistical properties of the initial dataset).
We address this problem in the next section.

4. REQUIREMENTS FOR DATA GENERA-
TION

In this section, we present the requirements for an OBDA data
generator, under the assumption that we have an initial database
that can be used as a seed to understand the distribution of the data
that needs to be increased. To ease the presentation, we illustrate
the main issues that arise in this context with an example.

EXAMPLE 4.1. Consider a database D made of four tables,
namely TEmployee, TAssignment, TSellsProduct, and
TProduct. Table 4 shows a fragment of the content of the tables
and their schemas, where bold font denotes primary keys and the
foreign keys are in italics. We assume that every employee sells
the majority of the products, hence the table TSellsProduct
contains roughly the cross product of the tables TEmployee and
TProduct. Next we present only a fragment of the data.

Table 4: Database D

TEmployee

id name branch

1 John B1
2 Lisa B1

TAssignment

branch task

B1 task1
B1 task2
B2 task1
B2 task2

TSellsProduct

id product

1 p1
2 p2
1 p2
2 p3

TProduct

product size

p1 big
p2 big
p3 small
p4 big

Table 5 defines the set M of mapping assertions used to
populate the ontology concepts :Employee, :Branch, and
:ProductSize, plus the object properties :SellsProduct
and :AssignedTo.

The virtual instance corresponding to the database D and map-
pings M includes the following RDF triples:

:1 rdf:type :Employee.
:2 rdf:type :Employee.
:1 :SellsProduct :p1.
:1 :SellsProduct :p2.
:2 :AssignedTo :t1.

Suppose now we want to increase the virtual RDF graph by a
growth-factor of 2. Observe that this is not as simple as doubling
the number of triples in every concept and property, or the number
of tuples in every database relation. Let us first analyze the behavior
of some of the ontology elements w.r.t. this aspect, and then how
the mappings to the database come into play.

• :ProductSize: This concept will contain two individ-
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Table 5: Mappings M
M1 :{id} rdf:type :Employee  SELECT id from TEmployee
M2 :{branch} rdf:type :Branch  SELECT branch FROM TAssignments
M3 :{branch} rdf:type :Branch  SELECT branch FROM TEmployee
M4 :{id} :SellsProduct :{product}  SELECT id, product FROM TSellsProduct
M5 :{size} rdf:type :ProductSize  SELECT size FROM TProduct
M6 :{id} :AssignedTo :{task}  SELECT id, task FROM TEmployee

NATURAL JOIN TAssignments

uals, namely :small and :big, independently of the
growth-factor. Therefore, the virtual instances of the concept
should not be increased when the RDF graph is extended.

• :Employee and :Branch: Since these classes do not de-
pend on other properties, and since they are not intrinsi-
cally constant, we expect their size to grow linearly with the
growth-factor.

• :AssignedTo: Since this property represents a cartesian
product, we expect its size to grow roughly quadratically
with the growth-factor.

• :SellsProduct: The size of this property grows with the
product of the numbers of :Employees and :Products.
Therefore, when we double these numbers, the size of
:SellsProduct will roughly quadruplicate.

In fact, the above considerations show that we do not have one
uniform growth-factor for the ontology elements. Our choice is to
characterize the growth in terms of the increase in size of those
concepts in the ontology that are not intrinsically constant (e.g.,
:ProductSize), and that do not “depend” on any other con-
cept, considering the semantics of the domain of interest (e.g.,
:Employee). We take this as measure for the growth-factor.

The problem of understanding how to generate from a given RDF
graph new additional triples coherently with the domain semantics
is addressed in [30, 20]. The algorithm in [30] starts from an ini-
tial RDF graph and produces a new RDF graph, considering key
features of the original graph (e.g., the distribution of connections
among individuals). However, this approach, and all approaches
producing RDF graphs in general, cannot be directly applied to the
context of OBDA, where the RDF graph is virtual and generated
from a relational database. Trying to apply these approaches indi-
rectly, by first producing a “realistic” virtual RDF graph and then
trying to reflect the virtual data into the physical (relational) data-
source, is far from trivial due to the correlations in the underlying
data. This problem, indeed, is closely related to the view update
problem [7], where each class (resp., role or data property) can be
seen as a view on the underlying physical data. The view update
problem is known to be challenging and actually decidable only
for a very restricted class of queries used in the mappings [10].
Note, however, that our setting does not necessarily require to fully
solve the view update problem, since we are interested in obtaining
a physical instance that gives rise to a virtual instance with certain
statistics, but not necessarily to a specific given virtual instance.
The problem we are facing nevertheless remains challenging, and
requires further research. We illustrate the difficulties that one en-
counters again on our example.

• The property :SellsProduct grows linearly w.r.t. the
size of the table TSellsProduct, hence also this ta-
ble has to grow quadratically with the growth-factor.
Since TSellsProduct has foreign keys from the tables
TEmployee and TProduct, to preserve the fact that every

employee must be connected to every product, the two tables
TEmployee and TProduct have both to grow linearly.
It is worth noting that, to produce one :SellsProduct
triple in the virtual instance, we have to insert three tuples in
the database.

• Since the :Branch concept should grow linearly with
the growth-factor, in order to preserve the duplicates ra-
tio in the TAssignment.branch column then also the
TAssignment table should grow linearly, and there should
always be less branches than employees in TEmployee.

• Since :ProductSize does not grow, the attribute Size
must contain only two values, despite the linear growth of
TProduct.

The previous example illustrated several challenges that need to
be addressed by the generator regarding the analysis of the vir-
tual and physical data, and the insertion of values in the database.
Our goal is to generate a synthetic virtual graph where the cost
of the queries is as similar as possible to the cost that the same
query would have in a real-world virtual graph of comparable size.
Observe that the same virtual graph can correspond to different
database instances, that could behave very differently w.r.t. the cost
of SQL query evaluation. Therefore, in order to keep the cost of the
SPARQL query “realistic”, we need to keep the cost of the trans-
lated SQL “realistic” as well.

We are interested in data generators that perform an analysis
phase on real-world data, and that use the statistical information
learned in the analysis phase for their task. We present first in Ta-
ble 6 the measures that are relevant in the analysis phase. We then
derive the requirements for the data generator by organizing them
in two categories: one for the analysis phase, and one for the gen-
eration phase.

Measures for the Analysis Phase.
The measures are summarized in Table 6. The table is divided in

three parts:

The top part refers to measures relevant at virtual instance level,
i.e., those capturing the shape of the virtual instance. Virtual Multi-
plicity Distribution (VMD) describes the multiplicity of the proper-
ties, i.e., given a property p, and a number k, the VMD is the prob-
ability that a node n in the domain of p is connected to k elements
through p. For instance, the VMD of :AssignedTo assigns prob-
ability 1 to the number 2. Observe that VMD is affected by the
growth of the database (e.g., if the growth factor is 2, and the num-
ber of “tasks” grows linearly then the VMD of :AssignedTo
assigns probability 1 to the number 4). Virtual Growth (VG) is the
expected growth for each ontology term w.r.t. the growth-factor.
For instance, the virtual growth of :AssignedTo is quadratic.

The middle part refers to measures at the physical level that af-
fect the VMD of the properties through the mappings. They are
based on the sets of attributes of a table used in the mappings to
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Table 6: Relevant measures at the virtual and physical instance level
Measures affecting the virtual instance level

Virtual Multiplicity Distribution (VMD) Virtual Growth (VG)
Multiplicity distribution of the properties in the virtual graph. Function describing how fast concepts (resp., role/data properties)

grow w.r.t. the growth-factor.
Measures affecting virtual multiplicity distribution

Intra-table IGA Multiplicity Distribution (Intra-MD) Inter-table IGA Multiplicity Distribution (Inter-MD)
Multiplicity distribution between IGAs belonging to the same ta-
ble and generating objects connected through a virtual property.

Multiplicity distribution between IGAs belonging to different ta-
bles and connected through a virtual property.

Measures affecting RDBMS performance and virtual growth
IGA Duplication (D)

Repeated IGAs
Intra-table IGA-pair Duplication (Intra-D) Inter-table IGA-pair Duplication (Inter-D)

Repeated pairs of intra-table correlated IGAs. Repeated pairs of inter-table correlated IGAs.

define individuals and values in the ontology. We call such a set
of attributes an IGA (individual-generating attributes). We say that
two IGAs are related if and only if they occur in the same mapping
defining the subject and the object of a property. Establishing the
relevant statistics requires to identify pairs of IGAs through map-
ping analysis. Intra-table Multiplicity Distribution (Intra-MD) is
defined for two related IGAs of the same table, both mapped to
individuals/values at the virtual level. It is defined for tuples over
the IGAs in the same way as the VMD is defined for individuals.
For instance, the Intra-MD for the IGAs {id} and {product} with
respect to the property :SellsProduct assigns probability 1 to
the number 2. Inter-table Multiplicity Distribution (Inter-MD) is
defined for related IGAs belonging to two different tables. It is cal-
culated like the Intra-MD but over the joins specified in the map-
pings, e.g., the join of TEmployee and TAssignment.

The bottom part refers to measures at the physical level that
do not affect VMD, but that influence growth at the virtual level
and the overall performance of the system. Specifically, IGA
Duplication (D) measures the ratio of identical copies of tuples
over an IGA not occurring in a property definition, while (Intra-
table and Inter-table) IGA-pair Duplication (Intra-D and Inter-
D) are measured as the ratio of identical copies of a tuple over
two related IGAs. For instance, the IGA Duplication for the IGA
TAssignment.branch is 1/2 (half of the tuples are dupli-
cated).

Now we are ready to list the requirements for a data generator
for OBDA systems.

Requirements for the Analysis Phase.
The generator should be able to analyze the physical instance and

the mappings, in order to acquire statistics to assess the measures
identified in Table 6.

Requirements for the Generation Phase.
We list now important requirements for the generation of physi-

cal data that gives rise through the mappings to the desired virtual
data instance.

Tunable. The user must be able to specify a growth factor accord-
ing to which the virtual instance should be populated.

Virtually Sound. The virtual instance corresponding to the gener-
ated physical data must meet the statistics discovered during
the analysis phase and that are relevant at the virtual instance
level.

Physically Sound. The generated physical instance must meet the

statistics discovered during the analysis phase and that are
relevant at the physical instance level.

Database Compliant. The generator must generate data that does
not violate the constraints of the RDBMS engine—e.g., pri-
mary keys, foreign keys, constraints on datatypes, etc.

Fast. The generator must be able to produce a vast amount of
data in a reasonable amount of time (e.g., 1 day for gener-
ating an amount of data sufficient to push the limits of the
considered RDBMS system). This requirement is important
because OBDA systems are expected to operate in the con-
text of “Big-Data” [11].

5. NPD BENCHMARK
The Norwegian Petroleum Directorate9 (NPD) is a governmen-

tal organisation whose main objective is to contribute to maximize
the value that society can obtain from the oil and gas activities.
The initial dataset that we use is the NPD FactPages (see Foot-
note 1), containing information regarding the petroleum activities
on the Norwegian Continental Shelf (NCS).

The NPD benchmark consists of an an initial dataset reflecting
the content of the FactPages, an ontology, a query set, a set of map-
pings, a data generator able to meaningfully increase the size of
the initial dataset, and an automated testing platform.10 The ontol-
ogy, the query set, and the mappings to the dataset have all been
developed at the University of Oslo [26], and are freely available
online (see Footnote 2). We adapted each of these, fixing some mi-
nor inconsistencies, adding missing mappings, and slightly modi-
fying the query set to make the queries more suitable for an OBDA
benchmark. Next we provide more details on each of these items.

The Dataset.
The data from FactPages has been translated from CSV files into

a structured database [26]. The obtained schema consists of 70
tables with 276 distinct columns (⇡1000 columns in total), and 94
foreign keys. The schemas of the tables overlap in the sense that
several attributes are replicated in several tables. In fact, there are
tables with more than 100 columns. The total size of the initial
dataset is ⇡50Mb.

The Ontology.
The ontology contains OWL axioms specifying comprehensive

information about the underlying concepts in the dataset; in par-
9http://www.npd.no/en/

10https://github.com/ontop/npd-benchmark/
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Table 7: Statistics for the queries considered in the benchmark
query #join #tw max(#subcls) # opts Agg Filt. Mod.
Q1 4 0 0 0 N Y N
Q2 5 0 0 0 N Y N
Q3 3 0 0 0 N Y Y
Q4 5 0 0 0 N Y Y
Q5 5 0 0 0 N Y Y
Q6 6 2 23 0 N Y Y
Q7 7 0 0 0 N Y N
Q8 3 0 0 0 N Y N
Q9 3 0 38 0 N Y Y
Q10 2 0 0 0 N Y Y
Q11 7 2 23 0 N Y Y
Q12 8 4 23 0 N Y Y
Q13 2 0 0 2 N Y N
Q14 2 0 0 2 N Y N
Q15 4 - 0 0 Y Y N
Q16 3 - 0 0 Y Y N
Q17 8 - 0 0 Y N Y
Q18 4 - 0 0 Y N N
Q19 8 - 0 0 Y N N
Q20 3 - 0 0 Y N N
Q21 3 - 0 0 Y N N

ticular, the NPD ontology presents rich hierarchies of classes and
properties, axioms that infer new objects, and disjointness asser-
tions. We took the OWL 2 QL fragment of this ontology, and we
obtained 343 classes, 142 object properties, 238 data properties,
1451 axioms, and a maximum hierarchy depth of 10. Since we are
interested in benchmarking OBDA systems that are able to rewrite
queries over the ontology into SQL-queries that can be evaluated by
a relational DBMS, we concentrate here on the OWL 2 QL profile11

of OWL, which guarantees rewritability of unions of conjunctive
queries (see, e.g., [4]). This ontology is suitable for benchmarking
reasoning tasks, given that (i) it is a representative [18] and com-
plex real-world ontology in terms of number of classes and max-
imum depth of the class hierarchy (hence, it allows for reasoning
w.r.t. class hierarchies); (ii) it is complex w.r.t. properties, therefore
it allows for reasoning w.r.t. existentials.
From the previous facts, it follows that the ontology satisfies re-
quirements O1, O2, S1.

The Query Set.
The original NPD SPARQL query set contains 20 queries ob-

tained by interviewing users of the NPD dataset. Starting from the
original NPD query set, we devised 21 queries having different de-
grees of complexity (see Table 7). We also fixed some minor issues
in the queries/ontology, e.g., the absence in the ontology of certain
concepts present in the queries, fixing type inconsistencies, and
flattening of nested sub-queries. In particular, observe that most
complex queries involve both classes with a rich hierarchy and tree
witnesses, which means that they are particularly suitable for test-
ing the reasoner capabilities. Aggregates are also a source of com-
plexity in the context of OBDA, since they increase the complexity
of the semantic query optimisation tasks. These aggregate queries
were not part of the first draft of this benchmark [6, 17], and they
either add aggregates to queries without them—for instance, q15 is
obtained from q1—or they are a fragment of aggregate queries in
the original NPD query set—for instance, q17 and q19. Next, we
provide some example queries from the benchmark.

The following query (q6) is a query with tree-witnesses that asks
for the wellbores, their length, and the companies that completed
the drilling of the wellbore after 2008, and sampled more than 50m

11http://www.w3.org/TR/owl2-profiles/

of cores.
SELECT DISTINCT ?wellbore (?length AS ?lenghtM)

?company ?year
WHERE {

?wc npdv:coreForWellbore
[ rdf:type npdv:Wellbore ;
npdv:name ?wellbore ;
npdv:wellboreCompletionYear ?year ;
npdv:drillingOperatorCompany
[npdv:name ?company ]] .

{ ?wc npdv:coresTotalLength ?length }
FILTER(?year >= "2008"^^xsd:integer &&

?length > 50
)}

When existential reasoning is enabled, query q6 produces 2
tree-witnesses, and gets rewritten into a union of 73 inter-
mediate queries (query rewriting phase). The tree-witnesses
arise due to existential axioms containing npdv:Wellbore and
npdv:coreForWellbore.

The following query (q16) is a simple aggregate query that asks
for the number of production licenses granted after year 2000.

SELECT (COUNT(?licence ) AS ?licnumber)
WHERE { [ ] a npdv:ProductionLicence ;

npdv:name ?licence ;
npdv:dateLicenceGranted ?dateGranted ;
FILTER(?dateGranted > 2000) }

From the previous facts, it follows that the queries satisfy re-
quirements Q1, Q2, S1.

The Mappings.
The R2RML mapping consists of 1190 assertions mapping a to-

tal of 464 among classes, objects properties, and data properties.
The SQL queries in the mappings count an average of 2.6 unions
of select-project-join queries (SPJ), with 1.7 joins per SPJ. We ob-
serve that the mappings have not been optimized to take full advan-
tage of an OBDA framework, e.g., by trying to minimize the num-
ber of mappings that refer to the same ontology class or property,
so as to reduce the size of the SQL query generated by unfolding
the mapping. This gives the opportunity to the OBDA system to
apply different optimization on the mappings at loading time.
From the previous facts, it follows that the mappings satisfies re-
quirements M1, M2, S1.

Automatized Testing Platform.
The benchmark comes with a testing platform (called OBDA

Mixer12) that allows one to automatize the runs of the tests and
the collection of results. Mixer comes in the form of an easily ex-
tensible Java project, which can be extended to work with other
OBDA systems as long as they provide a Java API and public inter-
faces able to return interesting statistics (e.g., unfolding or rewriting
times).

5.1 VIG: The Data Generator
Next we present the Virtual Instances Generator (VIG) that we

implemented in the NPD Benchmark. VIG produces a virtual in-
stance by inserting data into the original database. The generator is
general in the sense that, although it currently works with the NPD
database, it can produce data also starting from instances different
from NPD. The algorithm can be divided into two main phases,
namely (i) an analysis phase, where statistics for relevant mea-
sures on the real-world data are identified, and (ii) a generation
phase, where data is produced according to the identified statistics.

12https://github.com/ontop/obda-mixer
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VIG starts from a non-empty database D. Given a growth factor
g, VIG generates a new database D0 such that |T 0| ⇡ |T | · (1+ g),
for each table T of D (where |T | denotes the number of tuples of
T ). The size is approximated since, due to foreign key constraints,
some tables might require the addition of extra tuples. In other
words, the current implementation of the data generator assumes
that the size of each table T grows accordingly to the growth fac-
tor. This rules out for example the case when the size of a table
T depends on the cartesian product of two foreign keys (as in Ex-
ample 4.1), since in this case the size of T depends quadratically
on the sizes of the referred tables. In the case of NPD, however,
there are no such tables and therefore the growth for each table is at
most linear. Observe that the chosen generation strategy does not
imply that every concept or property at the virtual level grows as
the growth factor, since the growth depends not only on the content
of the tables but also on the shape of the SQL queries defined in
the mappings (c.f. Example 4.1).

We now describe how VIG approximates the measures described
in Table 6.

Measures (D), (Intra-D).
We compute (an approximation for) these measures by Duplicate

Values Discovery. For each column T.C of a table T 2 D, VIG
discovers the duplicate ratio for values contained in that column.
The duplicate ratio is the ratio (||T.C|| � |T.C|)/||T.C||, where
||T.C|| denotes the number of values in the column T.C, and |T.C|
denotes the number of distinct values in T.C. A duplicate ratio
“close to 1” indicates that the content of the column is essentially
independent from the size of the database, and it should not be
increased by the data generator.

Measures (Intra-MD), (Inter-MD), (Inter-D).
Instead of computing (an approximation for) these measures,

VIG identifies the domain of each attribute. That is, for each col-
umn T.C in a table T , VIG analyzes the content of T.C in or-
der to decide the range of values from which fresh non-duplicate
values can be chosen. More specifically, if the domain of T.C is
String or simply unordered (e.g., polygons), then a random fresh
value is generated. Instead, if the domain is a total order, then fresh
values can be chosen from the non-duplicate values in the inter-
val [min(T.C),max(T.C)] or in the range of values adjacent to
it. Observe that this helps in maintaining the domain of a column
similar to the original one, and this in turn helps in maintaining
Intra- and Inter-table Multiplicity Distribution. VIG also preserves
standard database constraints, like primary keys, foreign keys, and
datatypes, that during the generation phase will help in preserving
the IGA Multiplicity Distribution. For instance, VIG analyses the
loops in foreign key dependencies in the database. Let T1 ! T2

denote the presence of a foreign key from table T1 to table T2. In
case of a cycle T1 ! T2 ! · · · ! Tk ! T1, inserting a tu-
ple in T1 could potentially trigger an infinite number of insertions.
VIG performs an analysis on the values contained in the columns
involved by the dependencies and discovers the maximum number
of insertions that can be performed in the generation phase.
Next we describe the generation phase, and how it meets some of
the requirements given in Section 6.

Duplicate Values Generation.
VIG inserts duplicates in each column according to the dupli-

cate ratio discovered in the analysis phase. Each duplicate is cho-
sen with a uniform probability distribution. This ensures, for those
concepts that are not dependent from other concepts and whose in-
dividual are “constructed” from a single database column, a growth

that is equal to the growth factor. In addition, it prevents intrinsi-
cally constant concepts from being increased (by never picking a
fresh value in those columns where the duplicates ratio is close
to 1). Finally, it helps keeping the sizes for join result sets “real-
istic” [28]. This is true in particular for the NPD database, where
almost every join is realized by a single equality on two columns.
Requirement: Physically/Virtually Sound.

Fresh Values Generation.
For each column, VIG picks fresh non-duplicate values from

the interval I discovered during the analysis phase. If the num-
ber of values to insert exceeds the number of different fresh values
that can be chosen from the interval I, then values outside I are
allowed. The choices for the generation of new values guarantees
that columns always contain values “close” to those already present
in the column. This ensures that the number of individuals for con-
cepts based on comparisons grows accordingly to the growth factor.
Requirement: Physically/Virtually Sound.

Metadata Constraints.
VIG generates values that do not violate the constraints of the

underlying database, like primary keys, foreign keys, or type con-
straints. The NPD database makes use of geometric datatypes avail-
able in MYSQL. Some of them come with constraints, e.g., a poly-
gon is a closed non-intersecting line composed of a finite number
of straight lines. For each geometric column in the database, VIG
first identifies the minimal rectangular region of space enclosing all
the values in the column, and then it generates values in that region.
This ensures that artificially generated geometric values will fall in
the result sets of selection queries.
Requirement: Database Compliant/Virtually Sound.

Length of Chase Cycles.
In case a cycle of foreign key dependencies was identified during

the analysis phase, then VIG stops the chain of insertions according
to the boundaries identified in the analysis phase, while ensuring
that no foreign key constraint is violated. This is done by inserting
either a duplicate or a null in those columns that have a foreign key
dependency.
Requirement: Database Compliant.

Furthermore, VIG allows the user to tune the growth factor, and
the generation process is considerably fast, for instance, it takes
⇡10hrs to generate 130 Gb of data.

5.2 Validation of the Data Generator
In this section we perform a qualitative analysis of the virtual

instances obtained using VIG. We focus our analysis on those con-
cepts and properties that either are supposed to grow linearly w.r.t.
the growth factor or are supposed not to grow at all. These are 138

concepts, 28 object properties, and 226 data properties.
We report in Table 8 the growth of the ontology elements w.r.t.

the growth of databases produced by VIG and by a purely random
generator. The first column indicates the type of ontology elements
being analyzed, and the growth factor g (e.g., “class_npd2” refers
to the population of classes for the database incremented with a
growth factor g = 2). The columns under “avg dev” show the
average deviation of the actual growth from the expected growth,
in terms of percentage of the expected growth. The remaining
columns report the number and percentage of concepts (resp., ob-
ject/data properties) for which the deviation was greater than 50%.

Concerning concepts, VIG behaves close to optimally. For prop-
erties, the difference between the expected virtual growth and the
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Table 8: Comparison between VIG and a random data generator
avg dev err �50% (absolute) err �50% (relative)

type_db heuristic random heuristic random heuristic random

class_npd2 3.24% 370.08% 2 67 1.45% 48.55%
class_npd10 6.19% 505.02% 3 67 2.17% 48.55%
obj_npd2 87.48% 648.22% 8 12 28.57% 42.86%
obj_npd10 90.19% 883.92% 8 12 28.57% 42.86%
data_npd2 39.38% 96.30% 20 46 8.85% 20.35%
data_npd10 53.49% 131.17% 28 50 12.39% 22.12%

Table 9: Tractable queries (MySQL)
db avg(ex_time) avg(out_time) avg(res_size) qmpH #(triples)

msec. msec. msec.

NPD 44 102 15960 2167.37 ⇡2M
NPD2 70 182 30701 1528.01 ⇡6M
NPD10 148 463 81770 803.86 ⇡25M
NPD50 338 1001 186047 346.87 ⇡116M
NPD100 547 1361 249902 217.36 ⇡220M
NPD500 2415 5746 943676 57.80 ⇡1.4B
NPD1500 6740 18582 2575679 17.66 ⇡4B

actual virtual growth is more evident. Nevertheless, VIG performs
significantly better than a purely random approach (one order of
magnitude for object properties, 2-3 times for data properties).
We shall see how this difference strongly affects the results of the
benchmark (Section 6).

5.3 Related Work on Data Generation
There are several data generators that come with database and

semantic web benchmarks [3, 20, 12] (see also Footnote 5). As ex-
plained before, it is not trivial to re-use a semantic web triple gener-
ator (e.g., [30]) since in OBDA this implies solving the view update
problem. Therefore, we focus on DB data generators. To the best of
our knowledge, most of them (such as the ones for TPC or Wiscon-
sin) are tailored to a given DB schema, and moreover such schemas
are rather simple (often around 20 tables). A notable example is the
TPC-DS data generator. TPC-DS is the latest TPC benchmark with
a scaling, correlation, and skew methodology in the data generator
(MUDD) [27]. MUDD takes the distribution of each pair colum-
n/table as a manually predefined input, and generates data accord-
ing to the defined distribution. On the other hand, VIG, collects
different statistics about each table, and generates data to keep the
statistics constant. MUDD allows a more sophisticate and precise
data generation, but it requires a deep understanding of the dataset,
and manual settings that can be challenging as the complexity of the
schema increases (the TPC-DS schema contains 20 tables, whereas
the NPD schema contains 70 tables). We plan to extend our work
with distribution analysis so as to replicate the skew that is usu-
ally present in real-world data. However, observe that in general
skew might not be a crucial factor in determining the shape of vir-
tual instances since repeated triples are removed in the virtual RDF
graphs.

6. BENCHMARK RESULTS
We ran the benchmark on the Ontop system13 [23, 16], which,

to the best of our knowledge, is the only fully implemented OBDA
system that is freely available. In addition, we tried a closed OBDA
system, Mastro [5], that is used in large industrial projects, and
two systems that use mappings but that do not provide reasoning,
namely OpenLink Virtuoso Views14 and Morph15. Unfortunately,

13http://ontop.inf.unibz.it/
14http://virtuoso.openlinksw.com/
15https://github.com/oeg-upm/morph-rdb/

Table 10: Tractable Queries (PostgreSQL)
db avg(ex_time) avg(out_time) avg(res_size) qmpH #(triples)

msec. msec. msec.

NPD 61 36 2.3 ⇤ 104 5278 ⇡2M
NPD2 121 71 4.2 ⇤ 104 2684 ⇡6M
NPD5 173 99 7.1 ⇤ 104 1893 ⇡12M
NPD10 222 138 1.1 ⇤ 105 1429 ⇡25M
NPD50 592 355 2.7 ⇤ 105 542 ⇡116M
NPD100 1066 516 4.1 ⇤ 105 325 ⇡220M
NPD500 4.1 ⇤ 104 467 3.3 ⇤ 105 12 ⇡1.3B
NPD1500 2.6 ⇤ 105 3470 1.15 ⇤ 106 1.9 ⇡4B

N N2 N5 N10 N50 N100 N500N1500

10

0

10

2

10

4

Query Mixes per Hours (Log Scale)

MySQL PostgreSQL
Figure 1: Full summary of Ontop-MySQL vs Ontop-PostgreSQL

Mastro and Virtuoso do not fully support R2RML mappings and
Morph is not able to load the mappings for NPD. Ultrawrap [25]
is another commercial OBDA system but we were not granted the
right to test it.

In order to provide a meaningful comparison, we looked for a
triple store that allows for OWL 2 QL reasoning through query
rewriting—Virtuoso does not provide this feature. Thus, we com-
pared Ontop with Stardog 2.1.3. Stardog16 is a commercial RDF
database developed by Clark&Parsia that supports SPARQL 1.1
queries and OWL 2 for reasoning.

Since Stardog is a triple store, we needed to materialize the vir-
tual RDF graph exposed by the mappings and the database using
Ontop . For the aggregate queries we used an experimental unre-
leased version of Ontop (V2.0) that does not support existential
reasoning in conjunction with aggregates.

MySQL and PostgreSQL were used as underlying relational
database systems. The hardware consisted of an HP Proliant server
with 24 Intel Xeon X5690 CPUs (144 cores @3.47GHz), 106 GB
of RAM and a 1 TB 15K RPM HD. The OS is Ubuntu 12.04 LTS.
Due to space constraints, we present the results for only one run-
ning client. We obtained results with existential reasoning turned
on (for non-aggregate queries) and off.

In order to test the scalability of the systems w.r.t. the growth of
the database, we used the data generator described in Section 5.1
and produced several databases, the largest being approximately
1500 times bigger than the original one (“NPD1500” in Table 9,
⇡117 GB of size on disk).

16http://stardog.com/
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Table 12: Hard queries-Ontop/MySQL
query NPD NPD2 NPD5 NPD10 NPD10 RAND

rp_t/weight R+U rp_t/weight R+U rp_t/weight R+U rp_t/weight R+U rp_t/weight R+U
(sec./ratio) (sec./ratio) (sec./ratio) (sec./ratio) (sec./ratio)

No Existential Reasoning
q6 1.5/0.07 8.2/0.02 23/<0.01 51/<0.01 54/<0.01
q9 0.6/0.17 2.3/0.03 4/0.03 50/<0.01 51/<0.01
q10 0.07/0.14 0.1/0.1 0.16/0.06 0.2/0.05 0.3/0.03
q11 0.9/0.1 36/<0.01 198/<0.01 1670/<0.01 70/<0.01
q12 0.8/0.16 41/<0.01 275/<0.01 1998/<0.01 598/<0.01
q13 0.1/0.01 0.2/<0.01 0.2/0.01 0.4/<0.01 1.1/<0.01
q14 0.3/<0.01 1.0/<0.01 1.4/<0.01 0.6/<0.01 5.3/<0.01
q15 1015.7/<0.01 — — — —
q16 1.4/<0.01 13.2/<0.01 32.7/<0.01 171.9/<0.01 406.1/<0.01
q17 — — — — —
q18 — — — — —
q19 — — — — —
q20 211.1/<0.01 1913.4/<0.01 — — —
q21 210.9/<0.01 1905.6/<0.01 — — —
Existential Reasoning
q6 8.5/0.35 18/0.19 36/0.09 85/0.04 88/0.03
q9 0.2/0.2 0.2/0.2 0.2/0.2 0.2/0.2 0.2/0.2
q10 0.1/0.2 0.1/0.2 0.3/0.07 0.7/0.03 1.8/0.01
q11 3/0.2 25/0.03 980/<0.01 980/<0.01 41/0.02
q12 686/0.97 733/0.91 868/0.74 2650/0.24 880/0.74

Table 11: Hard Queries Rewriting And Unfolding
Ext. Reasoning OFF

query #rw #un rw time un time
sec. sec.

q6 1 48 0 0.1
q9 1 570 0 0.1
q10 1 24 0 0.9
q11 1 24 0 0.1
q12 1 48 0 0.2
q13 1 4 0 0.005
q14 1 2 0 0.01
q15 1 4 0 0.03
q16 1 26 0 0.05
q17 1 40 0 0.1
q18 1 38 0 0.2
q19 1 40 0 0.1
q20 1 13 0 0.04
q21 1 13 0 0.06

Ext. Reasoning ON
q6 73 1740 1.8 1.3
q9 1 150 0 0.03
q10 1 24 0 0.01
q11 73 870 0.03 0.7
q12 10658 5220 525 139

Tables 9, 10, and Figure 1 show 7 queries from the initial query
set, for which the unfolding produces a single select-project-join
(SPJ) SQL query after being optimised by Ontop . Such optimi-
sations remove redundant self-joins, redundant unions, push joins
into unions, etc. (see [24] for a complete description). These results
show the scalability of this approach. The query mix of 7 queries
was executed 10 times (in each dataset, NPD1–NPD1500), each
time with different filter conditions so that the effect of caching
is minimized, and statistics were collected in each execution. We
measured the sum of the query execution time (avg(ex_time)),
the time spent by the system to display the results to the user
(avg(out_time)), the number of results (avg(res_size)), and the
query mixes per hour (qmpH), that is, the number of times that
these 7 queries can be answered in one hour. In this experiment
we can see that Ontop-PostgreSQL runs orders of magnitude faster
than Ontop-MySQL whenever the query does not contain Option-
als. However, for queries that contain optionals, MySQL performs

much better. By looking at the query plans17 in both DB engines,
we found out that MySQL can better optimise the query by elimi-
nating left joins over the same table.

For instance, the SQL translation of query 14 requires 2 left joins
over the same table. PostgreSQL materialises the subqueries and
then performs both left joins. MySQL, on the other hand, can avoid
such redundant left joins over the same table.

Table 11 contains results showing the number of unions of SPJ
queries generated after rewriting (#rw) and after unfolding (#un)
for the 5 hardest queries. In addition, it shows the time spent by
Ontop on rewriting and unfolding. Here we can observe how exis-
tential reasoning can produce a noticeable performance overhead,
by producing queries consisting of unions of more than 5000 sub-
queries (c.f., q12). This blow-up is due to the combination of rich
hierarchies, existentials, and mappings. These queries are meant to
be used in future research on query optimization in OBDA.

Tables 12 and 13 contain results for the 13 hardest queries in
Ontop . Some of these queries take hours to be executed, therefore
qmpH is not so informative in this case. Thus, we run each query
twice with a timeout of 2 hours on the response time. The dashes in
the tables represent timeouts. Observe that the response time tends
to grow faster than the growth of the underlying database. This fol-
lows from the complexity of the queries produced by the unfolding
step, which usually contain several joins (remember that the worst
case cardinality of a result set produced by a join is quadratic in
the size of the original tables). Column NPD10 RAND witnesses
how using a purely random data generator gives rise to datasets for
which the queries are much simpler to evaluate. This is mainly due
to the fact that a random generation of values tends to decrease the
ratio of duplicates inside columns, resulting in smaller join results
over the tables [28]. Hence, purely randomly generated datasets are
not appropriate for benchmarking.

In Figure 2, we compare the response times in Ontop and Star-
dog. As expected, the queries with worst performance in OBDA
(q6, q9, q10,. . . etc.) are those that were affected by the blow-up
shown in Table 11. In this case, Stardog performs orders of mag-

17Available in http://www.inf.unibz.it/~dlanti/
techreportNPD-EDBT.pdf
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Table 13: Hard queries-Ontop/PostgreSQL
query NPD NPD2 NPD5 NPD10 NPD10 RAND

rp_t/weight R+U rp_t/weight R+U rp_t/weight R+U rp_t/weight R+U rp_t/weight R+U
(sec./ratio) (sec./ratio) (sec./ratio) (sec./ratio) (sec./ratio)

No Existential Reasoning
q06 1.2/0.15 1.3/0.11 3.9/0.04 4.3/0.03 3.6/0.03
q09 6.4/0.28 6.0/0.21 7.5/0.32 8.6/0.19 1.5/0.1
q10 0.2/0.16 0.6/0.03 0.7/0.03 0.9/0.03 1.4/0.01
q11 1.1/0.12 22.1/<0.01 66.1/<0.01 160.3/<0.01 110.9/<0.01
q12 1.9/0.16 20.9/0.01 101.6/<0.01 195.6/<0.01 121.5/<0.01
q13 0.9/0.06 0.2/0.02 0.5/<0.01 0.4/<0.01 0.7/<0.01
q14 453.2/<0.01 — — — —
q15 122.9/<0.01 366.3/<0.01 771.3/<0.01 1491.2/<0.01 1296.9/<0.01
q16 1.5/0.01 17.0/<0.01 64.6/<0.01 237.8/<0.01 588.6/<0.01
q17 — — — — —
q18 — — — — —
q19 — — — — —
q20 1.8/<0.01 5.2/<0.01 10.5/<0.01 20.0/<0.01 19.2/<0.01
q21 1.8/<0.01 5.2/<0.01 10.5/<0.01 19.7/<0.01 12.2/<0.01
Existential Reasoning
q06 14.9/0.14 48.6/0.04 52.0/0.07 55.0/0.02 58.0/0.01
q09 0.4/0.16 0.3/0.15 0.7/0.1 1.0/0.1 0.5/0.1
q10 0.2/0.14 0.5/0.07 0.6/0.04 0.8/0.06 1.4/0.02
q11 17.5/0.08 117.3/<0.01 — — —
q12 1395.6/0.5 4090.8/0.47 — — —

nitude faster than Ontop . These queries should guide the future
research in query optimisation in OBDA. On the other hand, the
queries that perform well (q1, q2, q3,. . . etc.) are those where the
different optimizations lead to a simple SPJ SQL query. Note that
the times required to materialize (by Ontop) and load the dataset in
Stardog go from 1 min. (NPD1) to 1 hour (NPD10).

7. CONCLUSIONS AND FUTURE WORK
The benchmark proposed in this work is the first one that thor-

oughly analyzes a complete OBDA system implementation in all
significant components, including query rewriting, query unfold-
ing, and query execution. So far, little or no work has been done in
this direction, as pointed out in [19]. This benchmark reveals the
strengths and pitfalls of OBDA. We confirmed that this approach
can be orders of magnitude faster than standard triple stores, fully
exploiting the highly optimized DB engines. To achieve such per-
formance, structural and semantic optimizations of the SQL trans-
lation are required. However, the results also show that the expo-
nential blowup in the unfolding phase is a major source of perfor-
mance loss of modern OBDA systems. If this issue is not handled
properly, it can prevent OBDA systems from being deployed in pro-
duction environments. This explosion, however, can be strongly
reduced using tuning and optimisation techniques that exploit the
information hidden in the data, such as functional dependencies,
redundant mappings, etc. We are currently working on this topic.

For a better analysis it is crucial to refine the generator in such a
way that domain-specific information is taken into account, and a
better approximation of real-world data is produced.
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ABSTRACT
We present a system that combines intelligent online tracking with
complex event recognition against streaming positions relayed from
numerous vessels. Given the vital importance of maritime safety to
the environment, the economy, and in national security, our sys-
tem leverages the real-time acquisition of vessel activity with ge-
ographical and other static information. Thus, it can offer timely
notification in emergency situations, such as intrusion into marine
preservation areas, loitering, and unsafe sailing. Thanks to a mobil-
ity tracking module, evolving trajectories generated by massive po-
sitional updates can be compressed online into concise, but reliable
synopses per ship, retaining only salient motion features within a
sliding window. These features are exploited by a complex event
recognition module that detects suspicious situations of interest to
maritime authorities. We conducted a comprehensive empirical
validation against a real dataset of traces collected from thousands
of vessels. Our results confirm the scalability and approximation
accuracy of the proposed system, and thus demonstrate its poten-
tial for effective, real-time maritime monitoring.

1. INTRODUCTION
Maritime surveillance systems have been attracting attention both

for economic and environmental reasons [1, 3, 16]. For instance,
preventing ship accidents by monitoring vessel activity represents
substantial savings in financial cost for shipping companies (e.g.,
oil spill cleanup) and averts irrevocable damages to maritime ecosys-
tems (e.g., fishery closure). Nowadays, maritime navigation tech-
nology can automatically provide real-time information from sail-
ing vessels. The Automatic Identification System (AIS) [24] is a
tracking system for identifying and locating vessels at sea through
data exchange: either with other ships nearby, or AIS base stations
along coastlines, or even satellites when out of range of terrestrial
networks. AIS is intended to assist vessel crews in collision avoid-
ance and allows maritime authorities to monitor vessel movements.
This technology integrates a VHF transceiver with a positioning
device (e.g., GPS), and other electronic navigation sensors, such as
a gyrocompass or rate of turn indicator.

c�2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0.

AIS raw tracking data offers a wealth of information including
unique identification of vessels, their position, course, and speed.
Such information can be displayed on screen aboard of the ship
or in maritime control centers. AIS-equipped vessels may be of
diverse type, size, or tonnage. Not all of them relay their posi-
tion simultaneously or at a fixed frequency, but depending on the
transponder configuration aboard the ship, proximity to base sta-
tions, and the type of their motion. Vessels anchored or slowly
moving transmit less frequently than those cruising fast in the open
sea or manoeuvering near the docks. Note that this data is not noise-
free; AIS messages may be delayed, intermittent, or conflicting.

Considering that AIS information is continuously emitted from
over 400 thousand ships worldwide [2], it evidently fulfills all four
‘V’ challenges (Volume, Velocity, Variety, lack of Veracity), as well
as the ‘D’ challenge (Distribution of data sources) in big data man-
agement. Therefore, for effective vessel identification and tracking,
maritime surveillance systems need to scale to the increasing traf-
fic activity witnessed in the past few years1. Such systems should
detect threats and abnormal activity over voluminous, fluctuating,
and noisy data streams from thousands of vessels, and also corre-
late them with static data expressing vessel characteristics (type,
tonnage, cargo, etc.) and geographical information (such as bathy-
metric data and protected areas).

To address these requirements, we introduce a maritime surveil-
lance system that consists of two main components. A trajectory
detection component consumes a positional stream of AIS mes-
sages from a large fleet and tracks major changes along each ves-
sel’s movement. Thus, it can instantly identify “critical points” en
route, indicating important changes like a stop, a sudden turn, or
slow motion of a ship. Except for harsh weather conditions, traffic
regulations, local manoeuvres in ports, etc., ships are expected to
move along almost straight, predictable paths. Therefore, most of
the frequently relayed positional messages are not really required
for representing the actual trace of a vessel. Instead, by discarding
superfluous locations along a “normal” course with a known veloc-
ity, we can approximately reconstruct each vessel’s trajectory from
the sequence of its critical points only. This online summarization
achieves data compression close to 95%, incurring negligible loss
in approximation accuracy. With such dramatic reduction in system
load, execution of continuous and historical queries can be greatly
improved, e.g., reducing latency of online collision detection or
similarity search among recent vessel paths.

The detected critical points may be used for map display, but
they are mostly valuable for recognition of complex phenomena
and thus issuing alert notifications to marine authorities. To this
end, a complex event recognition component combines the derived

1
http://www.bbc.com/news/science-environment-28372461
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Figure 1: Processing scheme of the maritime surveillance system.

stream of critical points expressing vessel activity, with static geo-
graphical and vessel data, and can detect suspicious or potentially
dangerous situations, such as loitering, vessels passing through pro-
tected areas, and unsafe shipping. In contrast to map display of cur-
rent locations or information about specific vessels of interest [2],
this module can be used to spot emergency situations in real-time.

The recognized complex events and lightweight trajectory syn-
opses may be physically archived in a database for extracting off-
line analytics, including travel statistics, motion trends, origin–
destination matrices, frequent routes, area and vessel classification
(suspicious areas, illegal or dangerous shipping), and much more.

In this paper, we emphasize the real-time features of our mar-
itime surveillance system, developed in the context of the AMI-
NESS project [1]. This interdisciplinary project aims to reinforce
safety and assist in the management of sea environments, partic-
ularly in the Aegean Sea. We conducted an extensive empirical
validation of the proposed system on a large dataset of real ves-
sel traces collected in the summer of 2009 from AIS base stations
along the coastline of Greece. Our study confirms that the high
compression ratio achieved by the trajectory detection component,
along with the efficient pattern matching algorithms of the complex
event recognition component, allow this system to scale to high ve-
locity data streams expressing the current activity of large fleets.

The remainder of the paper is organized as follows. In Section 2,
we present the architecture of the proposed maritime surveillance
system. Sections 3 and 4 respectively present the two main compo-
nents: the trajectory detection and complex event recognition mod-
ules. Section 5 reports performance results from a comprehensive
evaluation of the implemented system. In Section 6, we compare
our approach against related systems and methodologies. Finally,
in Section 7 we summarize our work and outline directions for fur-
ther research and implementation.

2. SYSTEM ARCHITECTURE
In this Section, we outline the processing flow of the proposed

maritime surveillance system. As illustrated in Figure 1, the system

consumes a stream of AIS tracking messages from vessels, detects
important features that characterize their movement and recognizes
complex events such as suspicious vessel activity. These results
can be used to evaluate continuous location-aware queries, e.g., to
detect whether a ship is approaching a port or if a vessel has just
entered into an environmentally protected area.

In order to meet the real-time requirements of data stream pro-
cessing, this online process necessitates the use of a sliding window
[18, 29], which abstracts the time period of interest and keeps up
with the evolving movement. Typically, a window looks for phe-
nomena that occurred in a recent range ! (e.g., positions received
during past 60 minutes). This window moves forward to keep in
pace with newly arrived stream tuples, so it gets refreshed at a spe-
cific slide step every � units (e.g., each minute). For instance, an
aggregate query could report at every minute (�) the distance trav-
eled by a ship over the past hour (!). Typically, it holds that � < !;
so, as time goes by, successive window instantiations may share po-
sitional tuples over their partially overlapping ranges.

As input, we consider AIS messages of certain types (1, 2, 3, 18,
19) and extract position reports. Each message specifies the MMSI

(Maritime Mobile Service Identity) of the reporting vessel. For a
given MMSI , each of its successive positional samples p consists
of longitude/latitude coordinates (Lon,Lat) measured at discrete,
totally ordered timestamps ⌧ (e.g., at the granularity of seconds).
Without loss of generality, we abstract vessels as 2-dimensional
point entities moving across time, because our primary concern is
to capture their motion features. By monitoring the timestamped
locations from a large fleet of N vessels, the system must deal with
a positional stream of tuples hMMSI , Lon, Lat, ⌧i. A Data Scan-
ner decodes each AIS message, identifies those four attributes (the
rest are ignored in our analysis), and cleans them from distortions
caused during transmission (e.g., discard messages with bad check-
sum). This constitutes an append-only data stream, as no deletions
or updates are allowed to already received locations.

But it is the sequential nature of each vessel’s trace that mostly
matters for capturing movement patterns en route (e.g., a slow turn),
as well as spatiotemporal interactions (e.g., ships traveling together).
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Such a trajectory is approximated as an evolving sequence of suc-
cessive point samples that locate this vessel at distinct timestamps
(e.g., every few seconds). In order to detect motion changes, the
Mobility Tracker module maintains one velocity vector per ves-
sel based on its two most recent positions2. Working entirely in
main memory and without any index support, the Mobility Tracker
checks when and how velocity changes with time. Thus, it can
detect trajectory events, either instantaneous (e.g., a sudden turn)
or of longer duration (e.g., a smooth turn). At each window slide,
those events are properly filtered (e.g., from possible outliers) via a
Compressor. Then, a sequence of “critical” points (such as a stop)
is emitted, which are much fewer compared to the originally re-
layed positions. So, the current vessel motion can be characterized
in real time with particular annotations (e.g., stop, turn). Once new
trajectory events are detected per vessel upon each window slide,
the annotated critical points can be readily emitted and visualized
on maps through a Trajectory Exporter, e.g., as KML polylines (for
trajectories) and placemarks (for vessel locations).

Moreover, the derived critical points are transmitted to the Com-
plex Event Recognition module, which combines this event stream
with static geographical and vessel data, such as bathymetric data
and protected areas. The objective of this process is to detect poten-
tially suspicious or dangerous situations, such as loitering, vessels
passing through protected areas, and unsafe shipping. The recog-
nized complex events are pushed in real-time to the end user (ma-
rine authorities) for real-time decision-making.

Finally, historical information can be progressively compiled from
these detected features. “Delta” critical points (issued once the win-
dow slides forward) are periodically sent from main memory into a
staging area on disk. An offline module accepts these lightweight,
digested traces and reconstructs trajectory segments for archiving
in Hermes Moving Objects Database (MOD) [30], instead of naïvely
storing enormous quantities of raw AIS positions. This reconstruc-
tion process also identifies ships docked at ports, so that trajec-
tory semantics can be enriched accordingly so as to extract further
knowledge through motion mining or computation of statistics.

3. DETECTING TRAJECTORY EVENTS
With the possible exception of local manoeuvres near ports, ma-

rine regulations, or harsh weather conditions, vessels are normally
expected to follow almost straight, predictable routes. In terms of
vessel mobility, what matters most is to detect when and how the
general course has changed, e.g., identify a stop, a turning point, or
slow motion. Such trajectory movement events (ME) suffice to in-
dicate “critical points” along the trace of each vessel and thus offer
a concise, yet quite reliable representation of its course. It turns out
that a large portion of the raw positional reports can be suppressed
with minimal loss in accuracy, as they hardly contribute any addi-
tional knowledge. We distinguish two kinds of trajectory events:

• Instantaneous trajectory events involve individual time points
per route, by simply checking potentially important changes
with respect to the previously reported location (e.g., a sharp
change in heading).

• Long-lasting trajectory events are deduced after examining a
sequence of instantaneous events over a longer time period
in order to identify evolving motion changes. For example,
a few consecutive changes in heading may be very small if

2Typically for trajectories [8], linear interpolation is applied between each pair of
successive measurements (p

i

, ⌧
i

) and (p
i+1, ⌧i+1). For simplicity, we assume that

this also holds in the case of vessels. With the exception of intermittent signals, their
course between any two consecutive positions practically evolves in a very small area,
which can be locally approximated with a Euclidean plane using Haversine distances.

(a) Pause (b) Change in speed

(c) Turn (d) Off-course position

Figure 2: Instantaneous events and outliers in a vessel’s course.

each is examined in isolation from the rest, but cumulatively
they could signify a notable change in the overall direction.

In this Section, we first describe how the sequence of vessel po-
sitions can be processed online in order to detect such trajectory
events. An early version of the online tracking module was intro-
duced in [28]. This has been substantially enhanced to identify
additional events and much more robust in coping with increased
data volumes. We also explain how the resulting critical points per
vessel can provide a lightweight summary of its trajectory, which
then offers many opportunities for affordable offline analysis.

3.1 Online Tracking of Moving Vessels
As illustrated in Figure 1, the system accepts fresh AIS messages

from ships and extracts positional tuples hMMSI , Lon, Lat, ⌧i.
In order to identify significant changes in movement, it first com-
putes the instantaneous velocity vector �!v

now

from the two most
recent positions reported by each vessel MMSI . Then, the mobil-
ity tracker can instantly deduce a variety of instantaneous events
by examining the trace of each vessel alone:

• Pause indicates whether a vessel is currently halted, once
its instantaneous speed �!v

now

does not exceed a suitable
threshold v

min

. For example, if �!v
now

is currently less than
v
min

= 1 knot, then the ship rests practically immobile. For
the vessel shown in Figure 2(a), the red bullets indicate sev-
eral pause events; apparently, the ship is anchored at the port
and such small displacements may be caused by GPS errors
or sea drift.

• Speed change is issued once current v
now

deviates by more
than ↵% from the previously observed speed v

prev

. For a
given threshold ↵, the formula | vnow

�v

prev

v

now

| > ↵

100 indi-
cates whether the vessel has just decelerated or accelerated.
This is normally the case when a ship is approaching to or
departing from a port, as depicted in Figure 2(b).

631



(a) Gap in reporting (b) Smooth turn

(c) Long-term stop (d) Slow motion

Figure 3: Long-lasting trajectory events.

• Turn: It occurs when the direction has changed by more than
a given angle �✓, e.g., there is a difference of more than
15o from its previous heading. Red bullets in Figure 2(c)
illustrate two such sudden turns.

• Off-course positions incur a very abrupt change in vessel’s
velocity �!v

now

(both in speed and heading). Yet, such an
outlier can be easily detected as it signifies an abnormal,
yet only temporary, deviation from the known course as ab-
stracted by mean velocity �!v

m

of the ship over its previous m
positions. Figure 2(d) illustrates such a case.

No critical point gets immediately issued upon detection of any
such simple events. An instantaneous pause or turn may be coinci-
dental and is not meaningful out of context, because a series of such
events may signify that the ship is stopped for some time, as we will
explain shortly. Besides, accepting an outlier would drastically dis-
tort the resulting trajectory representation, as the red dashed line in
Figure 2(d) illustrates. Even worse, such noisy positions may af-
fect detection of important events. For instance, an outlier breaking
the subsequence of instantaneous pause events could prevent char-
acterization of a long-term stop, and instead yield two successive
such stops very close to each other. Thus, any off-course positions
should be discarded as noise.

Those instantaneous events are used to detect spatiotemporal phe-
nomena of some duration, i.e., long-lasting trajectory events like:

• Gap in reporting is issued when a vessel has not emitted a
message for a time period �T , e.g., over the past 10 minutes.
Therefore, its course is unknown during this period, as it oc-
curs between the two red bullets in Figure 3(a). Reporting
such a critical point (i.e., when the gap started) is important,
not only for properly monitoring vessels, but also for safety
reasons, e.g., a suspicious move near maritime boundaries,
or a potential intrusion of a tanker into a marine park.

Figure 4: Critical points identified along a vessel trajectory.

• Smooth turn can be identified by checking whether the cumu-
lative change in heading across a series of previous positions
exceeds a given angle �✓, as illustrated with the red points
in Figure 3(b). Then, the latest of them is emitted as a critical
(turning) point.

• Long-term stop occurs when at least m consecutive instan-
taneous pause or turn events are found within a predefined
radius r (e.g., 200 meters). In Figure 3(c), the red points in-
side the circle succeed one another and indicate such immo-
bility, so they could be collectively approximated by a single
critical point (their centroid) with their total duration.

• Slow motion means that the vessel consistently moves at low
speed ( v

min

) over its m last messages, as in Figure 3(d).
In contrast to a stop event, these successive locations usually
occur along a path and not all of them fall in a small circle.
The median of these m positions is reported as a representa-
tive critical point.

Thus, critical points are emitted from each long-lasting event.
Provided that they do not qualify for outliers, instantaneous events
for speed change (Figure 2(b)) or isolated turns (Figure 2(c)) also
contribute to critical points. The example trajectory in Figure 4 il-
lustrates the data compression gains achieved when retaining criti-
cal points only. Obviously, such filtering greatly depends on proper
choice of parameter values, which is a trade-off between reduction
efficiency and approximation accuracy. For a suitable calibration
of these parameters, apart from consulting maritime domain ex-
perts (our partners in the AMINESS project [1]), we have also con-
ducted several exploratory tests on randomly chosen vessels from
AIS data in the Aegean Sea. For instance, setting �✓ = 5o in-
stead of �✓ = 15o incurs a 10% increase in the amount of critical
points, because more original AIS locations would qualify as turn-
ing points due to sea drift and discrepancies in GPS signals. Since
our analysis is mostly geared towards data reduction, for our empir-
ical study (Section 5.1) we have chosen the aggressive parametriza-
tion listed in Table 3, which yields quite tolerable accuracy. With
relaxed parameter values, additional events can be detected, captur-
ing slighter changes in each trajectory.

The complexity for detecting instantaneous events and commu-
nication gaps is O(1) per incoming positional tuple, since only the
two latest locations are examined per vessel. The cost for the re-
maining long-lasting events is O(m), where m is the number of
latest positions that need inspection. As m is usually a small inte-
ger (we set m = 10 in our experiments), this cost is affordable.

Rules for such trajectory events are suitably defined in the mo-
bility tracker, which is equipped with robust data structures for in-
memory maintenance of movement features. Note that more events
can be detected by simply enhancing the mobility tracker with extra
conditions. In future work, we plan to complement this methodol-
ogy so as to capture additional features, such as traveled distance
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from a given origin (e.g., a port). Better coping with noisy sit-
uations is also a challenge, e.g., ignoring delayed positions that
erroneously mark a ship moving back and forth along its course.
Nonetheless, even with this set of events, we can figure out the
mutability in each trajectory and distinctly characterize its course
across time. Most importantly, these spatiotemporal features can
serve as a basis to recognize more complex maritime events, as we
discuss later in Section 4.

3.2 Trajectory Reconstruction
By taking advantage of those online annotations at critical points

along trajectories, lightweight, succinct synopses can be retained
per vessel over the recent past. Then, the compressor evicts point
locations that have not been detected as critical. Instead of resort-
ing to a costly simplification algorithm, we opt to reconstruct vessel
traces approximately from already available critical points. This
summarization depends on the type of detected movement events
(i.e., stop, low speed, turn, gap, speed change), so as to refresh
each trajectory accordingly. This main-memory process affects tra-
jectory portions currently within the sliding window.

But we also incrementally update trajectories in the underlying
database with “delta” points. Once the window slides forward,
expiring critical points are transferred in an intermediate staging
table on disk. So, this table temporarily records all recent “delta”
changes, i.e., critical points evicted from the window, but not yet
admitted in disk-based trajectories. Obviously, information archived
in the database is always lagged behind the current vessel reports
by !. This is a deliberate decision dictated for data consistency
reasons, so as to avoid having any trajectory portions duplicated in
memory (online) and on disk (offline).

Offline trajectory reconstruction in Hermes MOD [30] period-
ically converts a sequence of critical points per ship into disjoint,
consecutive trajectory segments. In particular, a long journey breaks
up into smaller trips between ports. This segmentation reduces the
latency for offline queries in the database, and also decreases the
cost of trajectory updates on every batch of critical points. Eventu-
ally, instead of representing the entire motion of a vessel with one
long trajectory that gets repetitively updated, Hermes MOD deals
with multiple, but much smaller segments; only the last segment
per vessel may receive any updates.

AIS messages sometimes include information regarding the des-
tination of sailing vessels. Unfortunately, after scrutinizing AIS
data samples, we concluded that this voyage-related information is
often missing or error-prone, mainly because it is updated manually
by the crew. So, we employ an automated procedure for performing
semantic enrichment of trajectories with added value information
about trips between ports. This method takes as input the critical
points identified as long-term stops and a set of known port areas
(polygons). Once a stop is located inside such a polygon, the name
of the respective port becomes an attribute of that point. It is rea-
sonable to assume that between two such distinct stops O and D,
the ship sailed from origin port O and reached destination port D.
Then, this is identified as a new trip with a known destination D.
Note that origin port O may remain unknown, because the ship
might have been on the move when the AIS base stations started
receiving its signals. Of course, as each vessel continues sailing,
more and more critical points will be detected. However, as long as
a specific destination port is not yet identified, these points will be
piling up in the staging table awaiting assignment to a trajectory.

3.3 Offline Trajectory Analysis
Once reconstructed trajectories get stored in Hermes MOD, use-

ful statistics and patterns can be extracted from them in an offline

fashion. Since the focus of this paper is on online processing, we
only give a brief overview of such analytics. First, a series of
derived tables can offer historical information about traveled dis-
tances and travel times per ship, idle periods at dock, visited ports,
etc. Such aggregates may be obtained at various time granularities
(e.g., per week, month, or year) and may be computed by other
dimensions as well (e.g., flag, cargo, vessel type, etc.). By main-
taining Origin-Destination matrices, we may identify connections
between ports and compute aggregated statistics (duration, speed,
frequency, etc.) for such itineraries, often varying by ship type, pe-
riod of the year, etc. In addition, motion patterns can be identified,
such as frequently traveled paths (“corridors”), periodicity in move-
ment (e.g., ferries between two specific ports), etc. Hermes MOD
incorporates an algorithm for spatiotemporal clustering, which can
help exploring periodicity of trips. Indeed, two (or more) trajec-
tory clusters may be almost identical spatially, but they are distinct
because the temporal dimension is taken into consideration when
calculating distances between pairs of trajectory segments.

4. COMPLEX EVENT RECOGNITION
The critical Movement Events (ME) computed by the trajectory

detection component are transmitted to the Complex Event Recog-
nition module. This module correlates the derived stream of MEs
with static geographical and vessel information, such as bathymet-
ric data and locations of protected areas, to detect potentially suspi-
cious and dangerous situations, such as forbidden fishing or unsafe
shipping. When recognized, such Complex Events (CE) are for-
warded to the marine authorities for real-time decision making.

Our CE recognition component is based on the Event Calculus
for Run-Time reasoning (RTEC) [5, 6]. The Event Calculus [17]
is a logic programming language for representing and reasoning
about events and their effects. The benefits of a logic program-
ming approach to CE recognition are well-documented [26]: such
an approach has a formal, declarative semantics, and direct routes
to machine learning for constructing CE definitions in an automated
way. The use of the Event Calculus has additional advantages: the
process of CE definition development is considerably facilitated,
as the Event Calculus includes built-in rules for complex temporal
representation and reasoning, including the formalization of iner-
tia. With the use of the Event Calculus, one may develop intuitive,
succinct CE definitions, facilitating the interaction between CE def-
inition developer and domain expert (marine authorities), and al-
lowing for code maintenance. In this Section, we present RTEC
following [5, 6], and illustrate its use for maritime surveillance.

4.1 Representing Maritime Activities
The time model of RTEC is linear and includes integer time-

points (such as the timestamps of the MEs computed by the tra-
jectory event detection component). Variables start with an upper-
case letter, while predicates and constants start with a lower-case
letter. Where F is a fluent—a property that is allowed to have
different values at different points in time—the term F =V de-
notes that fluent F has value V . Boolean fluents are a special case
in which the possible values are true and false. holdsAt(F =V, T )
represents that fluent F has value V at a particular time-point T .
holdsFor(F =V, I) represents that I is the list of the maximal in-
tervals for which F =V holds continuously. holdsAt and holdsFor

are defined in such a way that, for any fluent F , holdsAt(F =V, T )
if and only if T belongs to one of the maximal intervals of I for
which holdsFor(F =V, I).

The happensAt predicate represents an instance of an event type.
E.g., happensAt(turn(vessel1 ), 5 ) represents the occurrence of
event type turn(vessel1 ) at time 5 . When it is clear from the con-
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text, we do not distinguish between an event and its type. An event
description in RTEC includes rules that define the event instances
with the use of the happensAt predicate, the effects of events with
the use of the initiatedAt and terminatedAt predicates, and the values
of the fluents with the use of the holdsAt and holdsFor predicates, as
well as other, possibly atemporal, constraints. Table 1 presents the
predicates available to the event description developer.

We represent instantaneous MEs and CEs by means of happensAt,
while durative MEs and CEs are represented as fluents. In the mar-
itime surveillance setting, the stream of critical MEs, which consti-
tutes the input of RTEC, consists of both instantaneous MEs, such
as speedChange(Vessel), and durative ones, such as
stopped(Vessel)= true indicating the maximal intervals during
which a Vessel is considered stopped. The majority of CEs are
durative and, therefore, in CE recognition the task generally is to
compute the maximal intervals for which a fluent representing a CE
has a particular value continuously.

For a fluent F , F =V holds at a particular time-point T if F =V
has been initiated by an event that has occurred at some time-
point earlier than T , and has not been terminated at some other
time-point in the meantime. This is an implementation of the law
of inertia. To compute the intervals I for which F =V , that is,
holdsFor(F =V, I), we find all time-points T

s

at which F =V is
initiated, and then, for each T

s

, we compute the first time-point
T
f

after T
s

at which F =V is ‘broken’. The time-points at which
F =V is initiated are computed by means of domain-specific
initiatedAt rules. The time-points at which F =V is ‘broken’ are
computed as follows:

broken(F =V , Ts , T ) 
terminatedAt(F =V , Tf ), Ts < Tf  T

(1)

broken(F =V1 , Ts , T ) 
initiatedAt(F =V2 , Tf ), Ts < Tf  T , V1 6= V2

(2)

broken(F =V ,Ts ,T ) represents that F =V is terminated at some
time Tf such that Ts<TfT . Similar to initiatedAt, terminatedAt

rules are domain-specific (examples are presented below). Accord-
ing to rule (2), if F =V2 is initiated at Tf then effectively F =V1 is
terminated at time Tf , for all other possible values V1 of F . Thus,
rule (2) ensures that a fluent cannot have more than one value at
any time. We do not insist that a fluent must have a value at every
time-point. There is a difference between initiating a Boolean flu-
ent F = false and terminating F = true: the former implies, but is
not implied by, the latter.

In what follows, we illustrate the use of RTEC for CE represen-
tation in the maritime domain.

Scenario 1. In maritime surveillance, it is necessary to detect
areas in which vessel activity is suspicious. Below is the formal-
ization of one type of suspicious activity:

initiatedAt(suspicious(Area)= true, T ) 
happensAt(start(stopped(Vessel)= true), T ),
holdsAt(coord(Vessel)=(Lon,Lat), T ),
close(Lon,Lat ,Area),
holdsAt(vesselsStoppedIn(Area)=N , T ), N > 3

terminatedAt(suspicious(Area)= true, T ) 
happensAt(end(stopped(Vessel)= true), T ),
holdsAt(coord(Vessel)=(Lon,Lat), T ),
close(Lon,Lat ,Area),
holdsAt(vesselsStoppedIn(Area)=N , T ), N  3

(3)

stopped(Vessel)= true is a durative ME stating that Vessel has
stopped. start(F =V ) (respectively end(F =V )) is a built-in RTEC
event taking place at each starting (ending) point of each maxi-
mal interval for which F =V holds continuously. Along with each

Table 1: Main predicates of RTEC.
Predicate Meaning

happensAt(E, T ) Event E occurs at time T

holdsAt(F =V, T ) The value of fluent F is V
at time T

holdsFor(F =V, I) I is the list of the maximal
intervals for which F =V
holds continuously

initiatedAt(F =V, T ) At time T a period of time
for which F =V is initiated

terminatedAt(F =V, T ) At time T a period of time
for which F =V is terminated

vessel critical ME, the trajectory event detection system provides
the coordinates (Lon,Lat) of the vessel. These are represented in
RTEC by the coord fluent. close(Lon,Lat ,Area) is an atempo-
ral predicate calculating whether the Haversine distance between a
point (Lon,Lat) and an Area is less than some predefined thresh-
old. Fluent vesselsStoppedIn(Area) records the number of ves-
sels that have stopped in this Area at some point in time.

According to rule-set (3), an Area is said to be suspicious as long
as at least four vessels have stopped close to, or in it. The value of
four vessels was set by domain experts. Usually, officials moni-
toring vessel activity are familiar with potentially suspicious areas,
such as areas where loitering takes place, and thus restrict3 compu-
tation of the maximal intervals of the suspicious fluent to these ar-
eas. The maximal intervals during which suspicious(Area)= true

holds continuously are computed using the built-in RTEC predicate
holdsFor from rule-set (3).

initiatedAt(F =V, T ) does not necessarily imply that F 6=V at T .
Similarly, terminatedAt(F =V, T ) does not necessarily imply that
F =V at T . Suppose that F =V is initiated at time-points 10 and
20 and terminated at time-points 25 and 30 (and at no other time-
points). In that case F =V holds at all T such that 10<T25.
Note that, in this case, the event start(F =V ) takes place at 10 and
at no other time-point, while the event end(F =V ) takes place at
25 and at no other time-point.

CE recognition for maritime surveillance requires reasoning over
streaming data, such as the MEs reported by the trajectory event de-
tection system, as well as atemporal reasoning [14]. In rule-set (3),
for instance, we had to compute the Haversine distance between a
point and an area. Unlike various other CE recognition approaches,
such as [12, 18, 9], which lack the ability of (complex) reason-
ing over static/domain knowledge, RTEC combines event pattern
matching over event streams with atemporal reasoning.

Scenario 2. Marine authorities are often interested in detecting
illegal fishing. Below is a formalization of two of the conditions in
which illegal fishing starts being recognized:

initiatedAt(illegalFishing(Area)= true, T ) 
happensAt(start(stopped(Vessel)= true), T ),
fishing(Vessel),
holdsAt(coord(Vessel)=(Lon,Lat), T ),
close(Lon,Lat ,Area)

initiatedAt(illegalFishing(Area)= true, T ) 
happensAt(slowMotion(Vessel), T ),
fishing(Vessel),
holdsAt(coord(Vessel)=(Lon,Lat), T ),
close(Lon,Lat ,Area)

(4)

3Such a restriction is achieved through the ‘declarations’ facility of RTEC.
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fishing is an atemporal predicate indicating fishing vessels. In ad-
dition to having a database of fishing facts, this predicate may com-
pute whether a vessel (not recorded in the database) is a fishing one
given its characteristics. slowMotion(Vessel) is an ME indicat-
ing that Vessel was moving ‘too’ slowly at some point in time (see
Section 3). The computation of the maximal intervals during which
illegalFishing(Area)= true holds continuously is restricted to ar-
eas in which fishing is forbidden. According to rule-set (4), illegal
fishing starts being recognized when a fishing vessel stops or moves
‘too’ slowly close to, or in an area in which fishing is forbidden.

Illegal fishing stops being recognized when there are no fishing
vessels in the forbidden fishing area, or when their movement does
not allow for fishing. The termination rules are formalized similar
to the rules already shown and are therefore omitted to save space.

Scenario 3. A common feature of illegal shipping is commu-
nication gap; vessels with illegal activity, such as those passing
through protected areas in order to minimize the length of a trip
and therefore fuel consumption, switch off their transmitters and
stop sending position signals. In such cases, it is often claimed that
the transmitter temporarily broke down. To capture this type of
activity, we defined the rule below:

happensAt(illegalShipping(Area), T ) 
happensAt(gap(Vessel), T ),
holdsAt(coord(Vessel)=(Lon,Lat), T ),
close(Lon,Lat ,Area)

(5)

gap(Vessel) is an ME—the trajectory detection component reports
such an ME when the Vessel stops sending signals, i.e. when the
communication gap starts. The computation of the time-points of
the illegalShipping(Area) events is restricted to protected areas,
such as the National Marine Park of Alonnisos in the Aegean sea.
According to rule (5), illegalShipping(Area) is recognized when
a vessel stops reporting position signals close to a protected Area .

Scenario 4. Ships sometimes approach inadvertently or inten-
tionally (to reduce the length of a trip and fuel consumption) ‘too’
shallow waters. To alert marine authorities and prevent accidents
resulting from such type of shipping, we formalized the rule below:

happensAt(dangerousShipping(Area), T ) 
happensAt(slowMotion(Vessel), T ),
shallow(Area,Vessel),
holdsAt(coord(Vessel)=(Lon,Lat), T ),
close(Lon,Lat ,Area)

(6)

shallow is an atemporal predicate indicating whether some waters
are ‘too’ shallow for a vessel. Similar to the fishing predicate, in
addition to having a database of shallow facts, we may compute
whether an area is ‘too’ shallow for a vessel (not recorded in the
database) given the vessel’s characteristics. In rule (6), we chose
the slowMotion ME as a condition for the recognition of danger-
ous shipping. Similarly, we may add rules with other types of ves-
sel movement for recognizing this CE.

4.2 Recognizing Maritime Activities
CE recognition may be performed retrospectively—e.g., at the

end of each day in order to evaluate the activity of a particular
fleet of vessels. Typically, though, CE recognition has to be ef-
ficient enough to support real-time decision-making, and scale to
very large numbers of MEs and CEs. MEs may not necessarily ar-
rive at the CE recognition system in a timely manner, i.e. there may
be a (variable) delay between the time at which MEs take place and
the time at which they arrive at the CE recognition system.

RTEC performs CE recognition by computing and storing the
maximal intervals of fluents and the time-points in which events oc-

time
Q136 Q138Q137

Window ω 

Q139

Figure 5: Complex event recognition in RTEC.

cur. CE recognition takes place at specified query times Q1, Q2, . . . .
At each Q

i

the MEs that fall within a specified sliding window !
(“working memory” in the terminology of RTEC) are taken into
consideration. All MEs that took place before or at Q

i

�! are dis-
carded. This is to make the cost of CE recognition dependent only
on range ! and not on the complete ME history.

Window parameters for range ! and slide step � are specified
by the users along with the definition of events, since they actually
reflect the time horizon over which interesting phenomena shall be
detected. Usually, range ! could span many minutes or even sev-
eral hours for capturing meaningful events across a vessel’s route.

At Q
i

, the maximal intervals computed by RTEC are those that
can be derived from MEs that occurred in the interval (Q

i

�!, Q
i

],
as recorded at time Q

i

. When the range ! is longer than the slide
step �, it is possible that an ME occurs in the interval (Q

i

�!, Q
i�1]

but arrives at RTEC only after Q
i�1; its effects are taken into ac-

count at query time Q
i

. This is illustrated in Figure 5. Occurrences
of MEs are displayed as dots and a Boolean fluent as line segments.
For CE recognition at Q138, only the events marked in black are
considered, whereas the greyed out events are neglected. Assume
that all events marked in bold arrived only after Q137. Then, we ob-
serve that two MEs were delayed, i.e., they occurred before Q137,
but arrived only after Q137. In our setting, the window range !
is larger than the slide step. Hence, these events are not lost but
considered as part of the recognition process at Q138.

In the common case that MEs arrive at RTEC with delays, it is
thus preferable to make the range of ! longer than the slide step.
Note that information may still be lost. Any MEs arriving between
Q

i�1 and Q
i

are discarded at Q
i

if they took place before or at
Q

i

�!. To reduce the possibility of losing information, one may
increase the window range !. But doing so, decreases recognition
efficiency. This issue is illustrated in the following section.

5. EMPIRICAL EVALUATION
Our maritime surveillance system has a modular design with

loosely coupled components. The online component for trajec-
tory detection is developed in GNU C++ and runs entirely on main
memory for efficiently coping with massive, volatile, streaming lo-
cations. RTEC, the CE recognition component, is implemented in
YAP Prolog4. Built on top of PostgreSQL, Hermes MOD5 accepts
feeds of critical points from a Java wrapper and performs offline
processing through SQL queries and stored procedures.

We conducted experiments against a real AIS dataset obtained
from IMIS Hellas6, our partner in the AMINESS project. Raw data
is 23GB in size and spans from 1 June 2009 to 31 August 2009
for N = 6425 vessels in the Aegean, the Ionian, and part of the
Mediterranean Sea. Not all vessels were actually on the move at all
times, since a considerable part (chiefly cargo ships) were just pass-
ing by, and thus tracked for a limited period (days or even hours).

4The source code of RTEC, along with several sample CE definitions, is available at
http://users.iit.demokritos.gr/~a.artikis/EC.html.
5Available at https://hermes-mod.java.net/
6
http://www.imishellas.gr/
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Figure 6: Online mobility tracking cost per window.
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Figure 7: Varying arrival rates.

Table 2: Experimental settings.
Parameter Value
Vessel count N 6425
Window range ! 10min, 1h, 2h, 6h, 9h, 24h

Window slide �
1min, 5min, 10min, 15min,
20min, 30min, 1h, 90min, 2h, 4h

Stream arrival rate ⇢ (positions/sec) original, 1K, 2K, 5K, 10K

Table 3: Mobility tracking parameters.
Parameter Value
Minimum speed v

min

for asserting movement 1 knot (⇠=1.852 km/h)
Rate of speed change ↵ 25%
Minimum gap period �T 10 minutes
Turn threshold �✓ 5o, 10o, 15o, 20o

Radius r for long-term stops 200 meters
Minimal number m of inspected positions 10

But most vessels were frequently sailing, e.g., passenger ships or
ferries to the islands. When decoded and cleaned from corrupt mes-
sages, the dataset yielded 168,240,595 timestamped positions7.

We simulated a streaming behavior by consuming this positional
data little by little, i.e., reading small chunks periodically accord-
ing to window specifications. We examine sliding windows with
varying ranges ! and slide steps � based on timestamps from the
original AIS messages. Thus, we replay this stream and the win-
dow keeps in pace with the reported timestamps and not the actual
time of each simulation. The arrival rate of positions is fluctuating
throughout this 3-month period and varies widely among vessels;
none of them reports at a fixed frequency, whereas there are ships
inactive for large intervals. On average, each vessel reports its po-
sition once every 2 minutes, by considering only its activity period
(i.e., when it actually relays positions, either moving or not). This
translates into a mean arrival rate ⇢ of about 50 positions/sec. For
consistency with the real-world scenario, we consume the origi-
nal stream “as is” in all our simulations, with the exception of one
test conducted at artificially increased rates. Simulation settings
are listed in Table 2, whereas calibrated settings for online mobility
tracking are given in Table 3; default values are shown in bold.

Next, we report indicative results from these experiments. The
trajectory event detection component operated on a server running
Debian Linux “Wheezy” 7.5 amd64 with two Intel Xeon X5675
processors at 3.07GHz. This machine has 48GB of RAM, and five
hard disks at 15K RPM with RAID 0 and a total capacity of 3TB.

7This anonymized data (with MMSIs replaced by sequence numbers) is publicly avail-
able at http://www.chorochronos.org/?q=content/imis-3months

The complex event recognition component operated on a computer
with Intel i7-4770@3.40GHz⇥8 processors and 16GiB RAM, run-
ning Ubuntu Linux 14.04 and YAP Prolog 6.2.2.

5.1 Assessment of Trajectory Detection
Performance of online tracking. The first set of experiments

examines performance of online mobility tracking for window spec-
ifications with varying ranges ! and slide steps �. Figure 6 illus-
trates the execution cost for the entire fleet per window, i.e., how
much time it takes to update the window with fresh locations, evict
expired ones, detect trajectory events, and report critical points. All
values are averages over the total count of window instantiations,
so they represent the per slide cost for window maintenance and
identification of any trajectory events therein. Simulations with the
original arrival rate reveal that critical points are issued almost in-
stantly for small ranges up to two hours (Figure 6(a)). Not surpris-
ingly, this cost escalates linearly when the window slides forward
less often (larger �), because the mobility tracker must check many
more fresh positions spanning a wider period �. Yet, processing
positional batches arrived over the past � = 30 minutes never takes
more than 500ms for small window ranges. The same linear pattern
in online tracking cost repeats with wider ranges (Figure 6(b)), but
it takes more time to complete upon each slide. In the worst case
of a window spanning 24 hours, critical points are reported in only
72 seconds based on the bulk of data accumulated over each 4-hour
period, which clearly demonstrates the robustness of this method.

One might argue that such performance results should be ex-
pected, given the low rate of the original stream. For a more strin-
gent assessment of the online mobility tracking module, we per-
formed an extra simulation, by admitting bigger chunks of data for
processing at considerably increased arrival rates up to ⇢ =10,000
positions/sec. Given the fleet size N , every ship appears as report-
ing almost twice per second. This is quite improbable in practice,
but makes sense as a stress test. As our objective is timeliness, the
window was set to span ! = 10 minutes and to slide each minute.
In Figure 7, observe that critical points are still issued promptly
for ⇢ = 1, 000 positions/sec, but the latency grows with increasing
rates. Reporting cost for critical points (i.e., cost after detection)
is included in these times, and this becomes a significant overhead
when massive AIS updates inevitably generate more critical points.
For ⇢ = 10, 000 positions/sec, the online tracker has to deal with
600,000 fresh positions every � = 1 minute, which is undoubtedly
a demanding task. Nonetheless, it never takes more than a few sec-
onds to respond, well before the next window slide. This behavior
confirms that the trajectory detection process is capable of handling
scalable volumes of streaming vessel positions.
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Figure 10: Trajectory maintenance cost.

Approximation error. Apart from performance, we also as-
sessed the quality of trajectories approximately reconstructed from
critical points only. For the entire motion history of each vessel, we
estimated deviation between the original trajectory and its approx-
imate representation (i.e., after compression). Deviation between
two polylines can be computed from the pairwise distance of their
corresponding points; in our case, between each pair of synchro-
nized locations. Suppose that an original AIS point p

i

did not qual-
ify as critical and was discarded at timestamp ⌧

i

. To estimate the
resulting deviation for a particular vessel, we interpolated between
the pair of adjacent critical points retained immediately before and
after each such p

i

. Assuming a constant velocity between these two
critical points, we obtained its time-aligned point trace p0

i

along the
approximate path at timestamp ⌧

i

. Thus, the compressed trajec-
tory retained its approximate shape, but with additional (synchro-
nized) vertices that account for the evicted positions. Assuming
that a vessel originally reported M positions, we estimated the root
mean square error (RMSE ) between original and synchronized se-
quences of its locations using this formula:

RMSE =

vuut 1
M

·
MX

i=1

(H(p
i

, p0
i

))2

where H denotes the Haversine distance between geographic coor-
dinates, and returns RMSE estimates in meters. One error value
was computed per vessel trajectory; Figure 8 plots the average
and maximum RMSE of them for several values of turn thresh-
old �✓, which is used to recognize significant changes in heading.
As discussed in Section 3.1, the degree of trajectory approximation
is sensitive mostly to angle �✓ compared to other parameters in
Table 3. In our tests, average error along complete trajectories (i.e.,
the entire motion history of each vessel) never exceeds 16 meters.
This is negligible compared to the much larger size of most ships,
and also considering the discrepancies inherent in GPS position-
ing. The maximum RMSE ever observed is 182 meters, under a
relaxed sensitivity of �✓ = 20o for capturing important turns only.
Although such a threshold is rather wide for actual monitoring of
maritime activity, the worst error among all trajectories is compara-
ble to the length of large ships. So, it turns out that the online track-
ing component provides quite acceptable accuracy and can capture
most, if not all, critical changes along each vessel’s course.

Compression efficiency. In this experiment, we examine the ef-
ficiency of our prototype in keeping only major trajectory charac-
teristics as critical points and discard the rest. In order to measure
the compression ratio accomplished by online trajectory tracking,
we compared the amount of discarded points against the originally
relayed locations per vessel. A compression ratio close to 1 signi-

Table 4: Statistics from compressed trajectories.
Critical points in reconstructed trajectories 7,776,947
Critical points remaining in staging area 2,524,925
Number of trips between ports 68,501
Average trips per vessel 30
Average number of critical points per trip 113
Average travel time per trip 1 day 07:20:58
Average traveled distance per trip 221.976km

fies stronger data reduction, as the vast majority of original loca-
tions are dropped. The line plot in Figure 9 depicts measurements
of this ratio with varying tolerance angles for detecting heading
changes. With a lower �✓, even slight deviations in vessel di-
rection can be spotted, and thus extra critical points get reported.
From the bar plot in Figure 9, we notice that every further increase
by 5o in turn threshold �✓ results in about 5% drop in the total
amount of critical points. So, relaxing the parameter values leads
to a slightly less intense compression. However, compression ratio
remains close to 94%, which means that about 6% of the original
locations only survive as critical. In a streaming context, such high
compression may lead to reduced system load in subsequent stages
of the analysis, and we stress that it comes without significant loss
in quality, as discussed earlier.

Trajectory maintenance. Since the system accepts streaming
positions from vessels and manages to maintain their historical tra-
jectories, we now provide some evidence of its overhead. Figure 10
plots the average processing cost per window slide for all four
phases. Evidently, online mobility tracking undertakes the hard-
est task by filtering the huge volume of incoming positions, hence
it dominates the trajectory maintenance cost especially for greater
window sizes. As argued before, tracking time escalates with the
window range, and also increases linearly when the window slides
less often. A batch of “delta” critical points evicted from the slid-
ing window is transferred into the staging area (on disk) in less than
260ms. This cost does not fluctuate a lot, as it mainly depends on
database connection tunnelling via the Java wrapper. Trajectory re-
construction into trips between ports is also quite efficient and takes
at most 163ms per batch of critical points. This offline module has
to consider a drastically reduced amount of critical points per vessel
instead of the voluminous dataset of raw positions, hence it incurs
little overhead. In the last stage of loading, trajectory segments are
inserted or updated in Hermes MOD, and this is also fast (390ms
in the worst case), thanks to the reduced data volumes involved.

In Table 4, we list representative statistics from trajectories re-
constructed and archived in the database. This computation took
place after the input stream was exhausted and all critical points
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Figure 11: Complex event recognition for 6,425 vessels and 35 areas.

were detected for the entire 3-month period. An outstanding bene-
fit is that, with only a moderate amount of points, we can approxi-
mately describe trips spanning more than a day and covering long
distances. Note that about 25% of critical points have not been as-
signed into any trajectory. These come from vessels still sailing and
having not yet reached their destination port (“open-ended” trips).
Besides, the number of trips is an order of magnitude greater than
fleet size N . This certainly increases the amount of records that
must be stored in the trajectory database, but thanks to their se-
mantic enrichment with port information, such shorter geometry
representations are more preferable at query time than protracted
sequences of featureless locations.

5.2 Complex Event Recognition Performance
The task of the complex event (CE) recognition module is to

detect activities of special significance for maritime surveillance,
given the critical movement events (ME) produced by the trajectory
event detection component. The input of RTEC—our CE recogni-
tion module—consists of the MEs (communication) gap, lowSpeed ,
stopped , speedChange and turn , as well as the coordinates of
each vessel at the time of ME detection. Given such an event
stream, RTEC recognizes suspicious vessel activity (several ves-
sels stopped in some area), illegal fishing, illegal shipping (passing
through protected areas) and dangerous shipping (sailing through
shallow waters). The choice of CEs and their definitions (see Sec-
tion 4) were specified in collaboration with the domain experts of
the AMINESS project. To allow for the recognition of the afore-
mentioned CEs, we enhanced the input of RTEC with static syn-
thetic data. For each vessel we added information about its draft,
while a number of vessels were designated as fishing vessels. More-
over, we generated 35 polygons representing protected areas, for-
bidden fishing areas, and areas with shallow waters.

Figure 11(a) shows the results of two sets of experiments. First,
we used a single processor to perform CE recognition for all 6,425
vessels and 35 areas. Second, we used two processors of the com-
puter on which RTEC operated in parallel. One processor per-
formed CE recognition for the areas located in, and the vessels
passing through the west part of the area under surveillance. Sim-
ilarly, the other processor performed CE recognition for the areas
located in, and the vessels passing through the east part of the mon-
itored area. Figure 11(a) shows average CE recognition times in
CPU seconds. The slide � is 1 hour, including approximately 7,000
MEs. The window range ! varies from 1 hour (⇡ 7,000 MEs) to 9
hours (⇡ 70,000 MEs). In the distributed setting—two processors
for CE recognition—the input MEs are forwarded to the appropri-

ate processor (according to vessel location). The number of CEs
also depends on the window range. For != 1 hour, approximately
200 CEs are recognized, while for != 9 hours RTEC recognizes
approximately 2,000 CEs.

Figure 11(a) shows that we can achieve a significant performance
gain by running RTEC in parallel. The input to each processor
is restricted to the MEs of the vessels for which it performs CE
recognition. Furthermore, each processor has to compute and store
the maximal intervals of a smaller number of CEs. One may further
distribute CE recognition by dividing further the monitored area,
thus reducing CE recognition times. Figure 11(a) also shows that
RTEC is capable of supporting real-time CE recognition. E.g., for
a window ! of 6 hours, RTEC recognizes all CEs requested by end
users in 8 sec when a single processor is used, and in 5 sec when
two processors are used in parallel.

Note that, since the input stream consists of critical MEs, most
of them fire the CE definition rules. This is in contrast to other ex-
periments [5, 6] where the input stream includes several events that
do not affect CE recognition. CE recognition performance does not
depend entirely on the size of the input data streams. The complex-
ity of the CE definitions affects recognition times significantly. In
this work, we make use of quite complex CE definitions including
various constraints on vessels and areas. This is in contrast to the
majority of the event processing literature where quite simple CE
definitions are used for empirical analysis.

Figure 11(b) shows average CE recognition times without spatial
reasoning. More precisely, the ME stream is augmented by times-
tamped facts indicating the spatial relations between vessels and
(protected, forbidden fishing, shallow) areas. Each ME expressing
the movement of a vessel is accompanied by facts stating whether
the vessel is ‘close’ to some area of interest—the timestamp of
these facts is the same as the timestamp of the ME. For these ex-
periments, the CE definitions were updated in order to make use
of spatial facts (as opposed to RTEC computing on-demand spa-
tial relations in the CE recognition process). Figure 11(b) shows
results concerning CE recognition by single processor, as well as
CE recognition performed by two processors in parallel. The slide
� is 1 hour. In this setting, however, 1 hour of data includes ap-
proximately 15,000 input facts: 7,000 MEs and 8,000 spatial facts.
Moreover, the window range ! varies from 15,000 MEs and spatial
facts (1 hour) to 125,000 MEs and spatial facts (9 hours). As ex-
pected, the number of recognized CEs does not change with respect
to the experiments including spatial reasoning.

Figure 11(b) shows that even though the stream used as input for
CE recognition increases significantly when RTEC does not per-
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form spatial reasoning, the average CE recognition times decrease
substantially. Moreover, this figure shows that RTEC scales to large
data streams—e.g. CE recognition for all 6,425 vessels and 35 ar-
eas using a window of 125,000 input facts takes on average 1.5 sec
when two processors are used in parallel.

5.3 Discussion
Empirical results confirm that the proposed system is capable of

recognizing, in real-time, suspicious and potentially dangerous sit-
uations that require immediate attention from marine authorities.
Even when it must cope with an increased amount of incoming po-
sitions (expressed with larger window ranges sliding less often),
it can recognize complex events in a few seconds at most. Such
performance is noteworthy, given the large number of monitored
vessels in the simulated scenario. This comes thanks to the scala-
bility and robustness of the trajectory event detection mechanism,
which offers reliable incremental response (often in less than a sec-
ond) and can filter out noisy or intermittent input signals. In ad-
dition, the complex event recognition module can take advantage
of the evolving trajectory features in order to recognize complex
spatiotemporal relationships between vessels and areas of interest.

6. RELATED WORK
Detecting events from massive, streaming data has attracted a lot

of research interest, but also opens up great perspectives for build-
ing powerful monitoring applications in several domains. Event
detection from both live and archived streams has been proposed
in [10], introducing optimizations specifically for recency-probing
pattern queries. The goal of UpStream platform [23] is to answer
continuous queries with the lowest staleness possible, when each
data item represents an update to a previous one; this certainly ap-
plies to GPS positions from moving vessels, but UpStream lacks
support for the specific demands of trajectory monitoring. Au-
tomating ingestion of streaming data feeds from various sources
into data warehouses is also a challenging issue, as outlined in a
recent tutorial [15]. To the best of our knowledge, no streaming
framework is specifically tailored for maritime surveillance over
fluctuating, noisy, intermittent AIS messages from large fleets.

Detecting trajectory events from positional streams essentially
performs path simplification, a topic explored in several previous
works. Some strategies opt for acceptable approximations in terms
of a given error margin, such as those in [8, 19, 22]. Besides, the
memory space available for retaining a compressed sequence may
also be crucial in a single-pass evaluation [31]. Dead-reckoning
policies like [33] are employed in moving sources to relay posi-
tional updates upon significant deviation from the course already
known to a centralized server, so they aim to reduce communication
cost. This is not the case with AIS data, as maritime control centers
wish to locate ships as frequently as possible. The advantage of
our proposed scheme is that it accounts for stream imperfections,
i.e., the noise inherent in vessel positions due to sea drift, delayed
arrival of messages, or discrepancies in GPS signals. Most impor-
tantly, we annotate reduced representations according to particular
movement events along each vessel trace.

For archiving trajectories, we make use of Hermes [30], a pro-
totype Moving Object Database (MOD) equipped with a powerful
query language. Hermes MOD supports modeling and querying
of moving objects, and enables support of aggregative Location-
Based Services. It defines a trajectory data type as well as a col-
lection of spatiotemporal operations (range, nearest neighbor, simi-
larity, etc.), which take advantage of a robust indexing mechanism.
Semantic-aware trajectory construction [34] applies cleaning, com-
pression and segmentation over positional data, in order to define

“stop” and “move” episodes along each trace in online fashion. Be-
sides, a formal model for OLAP operations at different granulari-
ties was recently proposed in [20], but it is mostly geared towards
visual analytics over offline trajectory data.

In terms of Complex Event Recognition, RTEC has a formal,
declarative semantics in contrast to other related systems that usu-
ally rely on an informal and/or procedural semantics. Cugola and
Margara [9] point out that almost all “complex event processing
languages”, including [4], and several “data stream processing lan-
guages”, such as ESL [7], lack a rigorous, formal semantics. Eck-
ert and Bry [13] note that the semantics of “event query languages”
often are somewhat ad hoc, unintuitive and generally have an alge-
braic and less declarative flavor. Paschke and Kozlenkov [27] state
that commercial “production rule languages” lack a declarative se-
mantics. Unlike [12, 18, 9], RTEC supports complex atemporal
reasoning and reasoning over background knowledge (e.g., iden-
tifying the type of a vessel given its characteristics), which are
quintessential for maritime surveillance [14]. This way, it is possi-
ble to express the complex phenomena required by the maritime ex-
perts [32]. Furthermore, RTEC explicitly represents complex event
intervals and thus avoids the related logical problems (see [25] for
a discussion of these problems), and supports out-of-order event
streams (in contrast to e.g. [11, 9, 10, 21]). Concerning the Event
Calculus literature, a key feature of RTEC is that it includes a win-
dowing semantics. In contrast, no Event Calculus system “forgets”
or represents concisely the event history.

7. SUMMARY & FUTURE WORK
In this paper, we introduced a system that monitors the activity of

thousands of vessels and can instantly detect and recognize events
with a potentially serious impact on the environment and on safe
navigation at sea. The system can sustain large amounts of stream-
ing messages from vessels and can filter out noise and redundant
positions along their course. Hence, it can retain only succinct syn-
opses of vessel trajectories, drastically reducing the original path
into few critical points that convey major motion characteristics.
Furthermore, this reduced information may be readily analyzed on-
line for complex event recognition. Equipped with efficient pattern
matching algorithms, this module correlates critical trajectory po-
sitions with static geographical and vessel data, and detects sus-
picious or dangerous situations, such as loitering, vessels passing
through protected areas, and unsafe shipping. Our platform has
been empirically validated against a large real dataset and met ex-
pectations for timeliness, scalability, and robustness.

We plan further extensions and improvements in the existing im-
plementation. First, we soon expect to be given access to live AIS
feeds from all vessels across the Aegean Sea. This will integrate
our system with a precious source of online data, offering to ma-
rine experts and authorities the means to instantly locate, recognize,
and correlate events from real-time vessel traces.

Existing definitions of complex events were manually developed
in collaboration with vessel traffic service staff. However, creating
CE definitions manually is painstaking and error-prone. We have
begun exploring techniques based on abductive-inductive logic pro-
gramming, for automated generation and refinement of definitions
from very large datasets.

Besides, maritime surveillance exhibits various types of uncer-
tainty, exactly like most event processing applications. So, we are
porting RTEC into probabilistic logic programming frameworks, in
order to deal with imperfect complex event definitions, incomplete
and erroneous data streams. A probabilistic treatment would be
also challenging for addressing the gradual ageing and transmis-
sion delays in AIS data. Traffic forecasts at short-term horizons
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(e.g., 5, 15, or 30 minutes ahead) could also be issued, gracefully
weighing online events with offline trajectory analytics.

Last, but not least, maritime surveillance may benefit from com-
bining multiple data sources. As RTEC readily supports heteroge-
neous stream processing [6], we aim to experiment with additional
data, such as weather forecasts, for improved monitoring.
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ABSTRACT
Many scientific databases nowadays are publicly available for
querying and advanced data analytics. One prominent example
is the Sloan Digital Sky Survey (SDSS)—SkyServer, which offers
data to astronomers, scientists, and the general public. For such
data it is important to understand the public focus, and trending
research directions on the subject described by the database, i.e.,
astronomy in the case of SkyServer. With a large user base, it is
worthwhile to identify the areas of the data space that are of inter-
est to users.

In this paper, we study the problem of extracting and analyz-
ing access areas of user queries, by analyzing the query logs of
the database. To our knowledge, both the concept of access areas
and how to extract them have not been studied before. We address
this by first proposing a novel notion of access area, which is in-
dependent of any specific database state. It allows the detection of
interesting areas within the data space, regardless if they already
exist in the database content. Second, we present a detailed map-
ping of our notion to different query types. Using our mapping on
the SkyServer query log, we obtain a transformed data set. Third,
we aggregate similar overlapping queries by DBSCAN and gain
an abstraction from the raw query log. Finally, we arrive at clus-
ters of access areas that are interesting from the perspective of an
astronomer. These clusters occupy only a small fraction (in some
cases less than 1%) of the data space and contain queries issued by
many users. Some frequently accessed areas even do not exist in
the space spanned by available objects.

1. INTRODUCTION
Nowadays, many scientific databases are made publicly avail-

able to reach a large community of users. Popular examples are
SkyServer from astronomy and GBIF from biosystematics. With a
large user base, it is of great benefit to identify the parts of the data
space that many users are interested in. This data space is formed

c© 2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

by the database schema, which defines the domain of each column
and their relationships. Note that the data space is not constrained
to the actual database content. For instance, Figure 1(a) plots the
subspace formed by two columns plate and mjd of relation SpecOb-
jAll of SkyServer. One can see that the database content does not
span the whole data space, leaving an empty area, i.e., part of the
data space containing no data object.

A good indicator of the interestingness of a (sub)area of the data
space is the frequency it is referred to in user queries. Identifying
common interests of many users is useful for traditional applica-
tions such as performance tuning and query personalization [4, 17,
22]. However, it also is important for learning the database usage,
which tends to represent the focus of the respective scientific com-
munity. In fact, our study of the SkyServer query log reveals that
the interests of users in the data space often correspond to a small
part of the database content. Furthermore, users even are interested
in empty areas of the data space. Inspecting data objects queries
actually have retrieved does not give rise to such insights. The fol-
lowing example is an excerpt of our results.

EXAMPLE 1. As shown in Figure 1(a), the content of relation
SpecObjAll is within the area

(266 ≤ SpecObjAll .mjd ≤ 5141)

∧ (51578 ≤ SpecObjAll .plate ≤ 55752)

of the subspace (SpecObjAll.plate, SpecObjAll.mjd) of the data
space. An area returned by our algorithm that is accessed by
18, 904 queries is

(296 ≤ SpecObjAll .plate ≤ 3200)

∧ (51578 ≤ SpecObjAll .mjd ≤ 52178) ,

i.e., a small part of the content of SpecObjAll.
In Figure 1(b), the area of the subspace (PhotoObjAll.ra, Pho-

toObjAll.dec) that queries refer to spans not only its database con-
tent, but also its empty area. The number of such ‘empty area’
queries is significant, see Table 1 in the evaluation.

Figure 1(c) depicts a scenario similar to that of Figure 1(b).
However, here the empty areas of the subspace accessed by queries
are not contiguous and are larger than the part occupied by the
database content.

The access areas found can be used in various ways: They could
help funding agencies to align the spending of their resources with
community interests. In the context of SkyServer, priority could be
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given to projects exploring the area of the sky many astronomers/
scientists/students/the public are interested in. Further, they could
help researchers to identify ‘gaps’ in the current scientific knowl-
edge systematically and to select new, good research topics that are
up to what many people are targeting.

The problem studied in this paper is to identify areas of interest
to many users within the data space, at the right level of abstraction,
from the query log. Our approach rests on the following pillars:

• The database offers a flexible query interface such as SQL.
Such databases and means to query it flexibly are fundamen-
tally important in many scientific domains.

• The database serves a large number of users, i.e., a large com-
munity. This ensures the value of the common interests ex-
tracted.

• Most users do not have personal contact with the database
owner. Hence, he/she does not have an objective picture of
what users really are after. In other words, the anecdotical
evidence that he/she may have is not necessarily representa-
tive of the interests of the user group as a whole.

• Most users of a scientific database are knowledgeable on its
domain, e.g., by working with domain experts with whom
they have collaboration. This implies that most queries is-
sued by users are meaningful. Furthermore, such databases
limit the number of queries each user is allowed to issue
within a window of time. This makes queries well-designed,
but also hinders us to re-issue a large number of queries to
collect statistics.

In such a setting, the problem we study can be more precisely
phrased as: Given the query log containing SQL statements is-
sued by users, how to extract their intents, i.e., the areas of the
data space many users wanted to access, without accessing (re-
querying) the database?

We see three main challenges in the way of solving this problem.
First, we need to come up with a formal definition of access area,
i.e., the area of the data space that a query refers to. The definition
needs to be sufficiently abstract, so that it is not confined to a spe-
cific data model or even a certain database schema. Further, it must
not be confined to the database content and enable the discovery
of empty areas of the data space many users care about. Second,
given an abstract definition of access area, we need to come up with
a mapping of queries to their access areas, or, in other words, a real-
ization of the definition on all query types actually occurring. This
is far from obvious, due to the expressiveness of modern query lan-
guages. In fact, it turns out that in some cases the mapping is overly
complex and sophisticated analysis is required. Third, we need a
procedure to aggregate the access areas of a large set of queries.
Clustering seems promising, but to do so, we need a distance mea-
sure. Such a distance measure needs to be defined, since existing
ones for queries focus on their structure [4]. Here in turn, the focus
has to be on the content (i.e., access areas) and the similarity of
overlapping areas for a meaningful abstraction of a set of queries.

This paper represents our solution to each of these challenges. In
particular, we introduce the novel concept of access area, which is
independent of any specific data model and any database state. Be-
ing independent of the database content brings a performance gain
compared to actually rerunning the queries. In addition, our notion
of access area lets us achieve our important goal: We discover ar-
eas of the data space that are of interest to users, irrespective of the
number of data objects falling into these areas. Second, we provide

a mapping of our notion to all query types occurring in the Sky-
Server query log, i.e., we enable extraction of access areas in prac-
tice. We also show that extracting access areas is not straightfor-
ward for queries with joins, aggregate queries, and nested queries.
Third, we exploit query overlap for the aggregation of access areas
of a large set of queries.

At this point, our main interest is on the application side, i.e., to
find out whether our approach makes sense for domain experts (it
does), whether the results obtained so far are plausible (mostly yes),
and whether they allow for new insights regarding user interests
(not so much at this point, but there are promising starting points for
refinements). We have learned this from a case study on SkyServer
and interviewing both a person responsible for SkyServer and an
‘independent’ astronomer. In the study, we extract access areas
from the SkyServer query log and cluster the transformed data with
DBSCAN. The clustered access areas found occupy only a small
fraction (in some cases less than 1%) of the data space and are
accessed by many users. We also detect access areas which do
not even contain any data objects. Such areas can be rather large
(see Figure 1(c)). Finally, our astronomer does not only deem our
approach helpful for the owner of the data, but also for users.

While our focus so far has been on SkyServer, our concepts are
applicable to any database, i.e., no confinement to RDBMSs. Fur-
ther, since no SkyServer-specific features have been hard-coded in
our implementation, it is applicable to any SQL database and fa-
cilitates any future extension to cope with databases in other do-
mains. We repeat that our concern with this paper is to propose
an approach that leads to interesting results. Tuning the approach,
e.g., by experimenting with other distance functions or clustering
algorithms systematically, is beyond our current scope.

Paper outline: In Section 2, we provide our definition of acess
area. In Section 3, we review related work. In Section 4, we de-
scribe our implementation. In Section 5, we present our distance
function. Section 6 features our case study; Section 7 concludes.

2. ACCESS AREA
The access area of a query captures the area of the data space

that the user is interested in. We now formalize this concept. To
ease our presentation, we first introduce some notation. Then we
discuss two straightforward ways to define access areas and point
out their drawbacks. Finally, we propose our notion of access area.

2.1 Preliminaries
We consider a relational database DB which consists of multiple

relations; each relation has several columns.

Data spaces.
The data space of a relationR ∈ DB which consists of columns

a1, . . . , at is defined as

space(R) = dom(a1)× . . .× dom(at)

where dom(ai) is the domain of column ai. In other words, the
data space of R is the Cartesian product of the domains of its
columns. Note that the data space of R is not confined to the
database content. Further, when t = 1, i.e., R contains one col-
umn only, space(R) = space(a1) = dom(a1). In the rest of
this paper, unless specified otherwise, we use R to denote both the
relation R and space(R).

The data space of DB is defined to be the Cartesian product of
all of its relations. The data space of each relation is a subspace of
the data space of DB.
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Figure 1: Some access areas extracted from SkyServer query log.

Area of data content and empty area of a data space.
Consider again relation R with columns a1, . . . , at. For each

column ai, if ai is numerical, we let content(ai) be the minimum
bounding box of its data values. If ai is instead categorical, we let
content(ai) be the set of values of ai.

The area of data content of R is defined as

content(R) = content(a1)× . . .× content(at) ,

i.e., the minimum bounding hyper-rectangle of the data content.
The empty area of space(R) is empty(R) = space(R) \

content(R). Roughly speaking, empty(R) is the part of space(R)
which is not occupied by any database object. Note that this is a
conservative way of estimating empty(R). A more stringent no-
tion could help to identify larger empty areas accessed by users.

Atomic predicates.
Atomic predicates are those without deeper propositional struc-

ture. Though having many forms, we focus on atomic predicates
having the form of “a θ c” where a is a database column, c is a
constant, and θ is either <,≤, =, >,≥, or <>. We name this type
of predicate as column-constant atomic predicate.

Queries.
Consider a query q in the log, which is issued against a state T

of database DB. Typically, q consists of SELECT, FROM, and
possibly WHERE, GROUP BY, HAVING and ORDER BY
clauses. The ORDER BY clause is not relevant for our purpose
since it does not influence which parts of the data space actually are
accessed. Thus, from now on, we exclude the ORDER BY clause.

Assume that q accesses relations R = {R1, . . . , RN} where
Ri 6= Rj if i 6= j. Note that this excludes self-joins, which do
not occur in the SkyServer query log that we considered. This
type of join typically results in different aliases of the same relation
and causes unreliable comparison of similarity between queries [4].

Each relation Ri ∈ R can appear either in the FROM clause or in
any other clause, possibly in embedded subqueries. The area of
DB accessed by q is a subset of R1 × · · · × RN , which is called
the universal relation of q:

DEFINITION 1. The universal relation of q is defined as:

U = R1 × · · · ×RN .

The set of tuples of U at state T of DB is denoted as (U , T ).

Each output column of q may or may not belong to the relations
accessed, since new output columns may be created, e.g., columns
holding constant values. We denote the set of columns appearing
in the WHERE clause of q as AW , the ones in the GROUP BY
clause asAG, the ones in the HAVING clause asAH , and the ones
in any (nested query of) other clauses as AS . We note that AW ,
AG, andAH may be empty. We defineA = AW ∪AG∪AH∪AS .

The WHERE clause can contain one or more atomic predicates
on the columns of some relation(s) in R. Likewise, the HAVING
clause can contain one or more atomic predicates on the columns
of some relation(s) in R, typically in combination with aggregate
functions like SUM, AVG, etc. Additional predicates can appear
in (nested queries of) any other clause. Together, all these pred-
icates and their connections form a constraint on U , in the form
of a Boolean expression. We refer to this Boolean expression as
P . Note that P is independent of any database state. As shown in
Section 4, it is not always easy to extract P from q. Instead, this
depends on the type of q as well as on the definition of access area.
For now, we simply use P for the sake of exposition. We have:

DEFINITION 2. The result set of q at state T is the tuples of
(U , T ) which satisfy P . We denote it as (U , T )P .

Following Definition 2, we have (U , T )TRUE = (U , T ).
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2.2 Naïve Definitions of Access Area
At first sight, one can define the access area of a query q to be

either (a) the area of the data space covered by its result set, or (b)
the part of DB accessed during the execution of q, as follows.

Option (a).
The access area of q is its result set at state T , i.e., (U , T )P .

Under this scheme, an access area can be empty when the user is
interested in an area where no object exists. Using this definition,
we could define the access area of q as the minimum bounding box
of (U , T )P . Typically, (U , T )P is not available in the query log.
This means that we have to re-issue q against the database, most
likely at a different state T ′. So this definition suffers from two
drawbacks. First, we may lose important information on the con-
straint P that the user had defined, as two very different queries
can share the same result set (or minimum bounding box) indepen-
dently of their constraints, i.e., their original intents. Second, if
T ′ 6= T , it may be the case that (U , T ′)P 6= (U , T )P . Thus, this
definition is not meaningful for our purpose.

Option (b).
The access area of q is the part of DB at state T which has been

accessed during the execution of q. In general, the query engine
determines the part of the database to be accessed. To accomplish
this, it relies on different statistics, e.g., query workload, network
statistics, to decide on an execution plan for the query. In conse-
quence, this definition of access areas leaves them dependent on
factors that do not pertain to queries themselves. This is undesir-
able for capturing intents of users. Further, it is also difficult to
impossible to compute access areas with an off-the-shelf commer-
cial DBMS.

2.3 Our Definition of Access Area

DEFINITION 3. Let a database state T of DB allowed by the
database schema be given. A tuple t ∈ U is said to influence the
result set (U , T )P of q iff:

(U \ {t}, T )P 6= (U , T )P .

That is, if t is removed from U , the result set of q at state T will
change. Our definition of access area now is as follows:

DEFINITION 4. The access area of q is:

{t ∈ U : ∃T allowed by DB s.t. t influences (U , T )P} .

That is, the access area of q is given by the set of all tuples con-
tained in the universal relation U that influence the result set of q
in some state allowed by the database schema. Following Defini-
tion 4, the access area of a query q represents the part of the data
space the user is interested in, without limiting it to a certain state.
For instance, let us consider the following example query:

SELECT ∗
FROM T
WHERE u BETWEEN 1 AND 8

According to Definition 4, the access area of this query is
σu≥1∧u≤8(T ), even if u /∈ [1, 8] for all tuples of relation T in its
current state. This is because, for any tuple that satisfies 1 ≤ u ≤ 8,
a database state can exist, allowed by the schema, such that the tu-
ple influences the result.

Therefore, our definition of access area copes with queries that
do not return any row as well as with those that resulted in exe-
cution errors, e.g., “Maximum 60 queries allowed per minute” or

“limit is top 500000” in the SkyServer scenario. This is crucial as
it makes sense to capture what the users intended to access, inde-
pendent of the actual database content and load constraints.

2.4 Extraction of Access Areas
To extract the access area of q, we have to obtain U andP . While

extracting U is rather simple, extractingP is more intricate. In fact,
it is not always possible to extract P exactly. When this is the case,
we derive a Boolean expression in conjunctive normal form which
approximates P . With the derivation of P or its approximation,
we typically transform q to an intermediate format. In particular,
concurrently with identifying the access area of q, we transform q
to a query q’ as follows:

SELECT ∗
FROM R1, R2, . . . , RN
WHERE
F (p1(a1,1, a2,1, . . . , aT1,1), . . . , pK(a1,K , a2,K , . . . , aTK ,K))

where

• {a1,1, . . . , aTK ,K} ⊂ A,

• pi for every i ∈ [1,K] being an atomic predicate defined on
columns {a1,i, a2,i, . . . , aTi,i}, and derived from P ,

• F being a conjunctive normal form of the atomic predi-
cates {p1, . . . , pK}, i.e., a conjunction of disjunctions. For
instance, assume that K = 4, F (p1, p2, p3, p4) could be
(p1 ∨ p2) ∧ (p3 ∨ p4).

We note that the WHERE clause is optional and can be empty.
With the above transformation, the access area of query q’ is

the one of q, which is σF (p1,...,pK)(R1 × R2 × · · · × RN ), or
σF (p1,...,pK)(U).

For illustration, the following query is already in intermediate
format:

SELECT ∗
FROM T
WHERE ( T . u <= 5 OR T . u >= 10) AND T . v <= 5

So no transformation is required and we can obtain its exact ac-
cess area easily.

However, in practice, an exact transformation is not always
straightforward for most query types, especially nested queries in
combination with (NOT) IN, (NOT) EXISTS, (NOT) ALL and
(NOT) ANY. Instead, sophisticated analysis is required. More
details are in Section 4. Having introduced our notion of access
area, we discuss related work in the next section and point out why
it is not suited to address the problem.

3. RELATED WORK
Processing and extracting useful information from SQL queries

has been studied for some time. In this paper, we divide related
work into the following categories: extracting information from
queries, processing query logs, and distance measures for queries.

3.1 Extracting Information from Queries
Ceri and Gottlob [6] studied transforming SQL queries into rela-

tional algebra. Their goal is to preserve the constraints defined by
typical SQL structures such as EXISTS, IN, and aggregate func-
tions. However, since they did not focus on extracting access areas,
they have not introduced methods to convert complex Boolean ex-
pressions, such as those involved in set operations (with IN, ANY,
etc.), to simple ones with atomic predicates. Such simple Boolean
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expressions in turn are required to constrain the data space, and
hence, for the extraction of access areas.

Parsing, relaxing and rewriting of queries are investigated in [9,
14, 18, 21]. Their primary goal is to either point out logical flaws
in query sub-expressions, rewrite queries into an optimized, more
declarative form that avoids empty results and improves query per-
formance. Thus, they do not address the problem studied here.

A more intuitive way of representing queries is reported in [11].
The meaning (or intent) of queries is captured by an UML-like no-
tation. This notation breaks down the query structure to show re-
lationships between different fragments. Yet, the proposed method
does not have a mechanism to further reduce complex fragments,
such as EXISTS, to simple ones.

There also is related work to information extraction of queries
from fields such as Natural Language Processing (NLP), Informa-
tion Retrieval (IR), and Machine Learning (ML). For example, [15]
and [19] propose to transform SQL queries to a different format—
the one of natural language. In particular, queries are represented
by graphs using a query template mechanism. The critical elements
of SQL queries are extracted, and different strategies are presented
to construct textual query descriptions from these elements. How-
ever, these studies also do not target at simplifying Boolean expres-
sions to facilitate the extraction of access areas.

3.2 Processing Query Logs
Due to the vast amount of data produced by search engines and

the pervasive tracking of user click-streams, researchers have stud-
ied query log processing to some extent. For instance, [17] and [22]
aim at furthering our understanding of the behavior of users through
their information-seeking activities. These articles demonstrate
why query log processing is useful for data analytics. In more de-
tails, [17] transforms web logs into a format suitable for importing
into databases. In addition, it builds a data warehouse from these
cleaned and structured log files and provides an ad-hoc tool for an-
alytic queries on this warehouse. [22] explores different statistics,
which can be drawn from query logs such as query popularity, term
popularity, average query length, and distance between repetitions
of queries. [3, 4] on the other hand target OLAP logs with the
objective to compare different users sessions.

Singh et al. [23] give a detailed analysis of the first five years
since SDSS SkyServer went on-line. They clean and normalize
web and SQL log files over several months, resulting in data struc-
tures including IP Name, Sessions, and Templates (skeleton SQL
templates). They further compare SQL queries using fragments,
N-grams, and the Jaccard Coefficient, and categorized the queries
into those issued by bots or by mortals.

QueRIE, a query recommendation system [2, 8, 7, 20], is de-
signed to work directly with SkyServer query logs. It uses two dif-
ferent approaches to achieve high accuracy in recommending new
and interesting queries to users. The first approach extracts the
most important SQL query fragments, while the second one uses
the tuples a query retrieves.

SDSS Log Viewer [26] visualizes the SQL queries from the log
files. To achieve the visualization, the author develops a process
to transform the SkyServer SQL log files into a tabular format that
can be stored in a database. Each query is tokenized in order to ap-
ply a visual encoding scheme and to extract the critical fragments.
Depending on these fragments, queries are classified into four cate-
gories representing the type of “sky area” a query accesses: Rectan-
gular Sky Area, Circular Sky Area, Single Point/Object, and others.
Besides this, depending on the intention of the user, the author cre-
ates three categories for the major sets of queries: Scan Queries,
Search Queries, and Retrieve Queries.

All of the above approaches do not solve the problem we study
as they (a) neglect the notion of access area in each query, and (b)
lack mechanisms to map queries to access areas.

3.3 Distance Measures for Queries
Existing distance measures for queries model them as either

strings [25], feature vectors [1, 2, 12], sets of fragments [13], or
graphs [24]. With all these representations, clustering is expected
to be feasible. But these clusters either do not represent specific
parts of the data space, or the mapping would need to be specified
in the first place. In contrast to these, we focus on a similarity no-
tion that allows us to aggregate a set of overlapping access areas.

4. REALIZATION
Different types of queries need different types of predicate ex-

traction, i.e., different mappings to their access areas. Further, as
we will explain in this section, for some types, non-trivial analysis
is required to extract their access areas. As the SQL grammar has
a high complexity, and as many variations exist between different
database management systems, it lies beyond the scope of this pa-
per to cover every possible valid SQL statement. Instead, we focus
on the log file of one large database and extract the access areas
from the statements in this log file. We consider 12, 375, 426 Sky-
Server queries issued by users from 127 countries, starting from
April 2012. We note that since the number of queries considered
is large and their origins are diverse, we do not expect any ma-
jor gaps when working with another public database or returning
to SkyServer in the future. Further, our model can always be ex-
tended later to include yet unhandled types of queries or types of
predicates, schema specific functions, as well as different SQL di-
alects. It is also possible to extract the information from an incom-
ing stream of logged queries, to detect changes in this data stream
and to notify the system operator about the occurrence of new pred-
icates and query types.

For our system implementation, we use the log file from the 9th

data release of SDSS, which has been the latest release when we
started this project. Currently, we classify the queries logged into
several categories to facilitate processing. Nevertheless, we apply
the same procedure for any query type. That is, following Sec-
tion 2.4, before extracting the access area of a query, we transform
it into a query of the intermediate format, if necessary. Then we
process the transformed query to obtain the access area. The de-
tails are as follows.

4.1 Simple Queries
Queries belonging to this category are those without (a) joins, (b)

GROUP BY and HAVING clauses, and (c) nested subqueries.
In other words, each query q of this type either already is of the
intermediate format or can be straightforwardly converted to the
intermediate format (which involves in converting its constraint P
to a conjunctive normal form). For each simple query, since its
predicates can be extracted exactly, we can easily obtain its exact
access area. For example, the following query

SELECT u
FROM T
WHERE u >= 1 AND u <= 8 AND s > 5

is a simple query with access area σu≥1∧u≤8∧s>5(T ).
From an implementation point of view, we need special han-

dling of queries containing specific operators, namely BETWEEN
and NOT. In particular, for each predicate with a BETWEEN op-
erator, we need to derive two new predicates to replace the orig-
inal one. For example, T.u BETWEEN 5 AND 10 is converted to
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T.u ≥ 5∧T.u ≤ 10. For predicates containing the NOT operator,
we transform them by inverting the respective predicate. For exam-
ple, NOT (T.u > 5 ∧ T.v ≤ 10) becomes T.u ≤ 5 ∨ T.v > 10.

4.2 Join Queries
Most types of JOINs can be converted simply by keeping the

relation and pushing any join condition to the WHERE clause
(CROSS JOIN, INNER JOIN, EQUI JOIN, NATURAL JOIN).
Other types need further consideration, as follows.

EXAMPLE 2. Consider a query q with FULL OUTER JOIN:

SELECT ∗
FROM T FULL OUTER JOIN S ON ( T . u = S . u )

Here, the relations involved are T and S, i.e., U = T ×S. Regard-
ing the constraint on U , we observe that FULL OUTER JOIN keeps
all tuples of both relations, even if there is no match for T.u = S.u.
Thus, any tuple in T ×S can influence the result set of the original
query. That is, there is no constraint on U . Hence, we convert the
query to:

SELECT ∗
FROM T , S

The access area then is σ(T × S).

From Example 2, we see that identifying P goes beyond simply
extracting the predicates as-is.

EXAMPLE 3. Consider a query q with RIGHT OUTER JOIN:

SELECT ∗
FROM T RIGHT OUTER JOIN S ON ( T . u = S . u )

Again, we have U = T × S. However, identifying P is more com-
plex. We observe that this query returns all tuples in S, together
with those tuples from T which match at least one tuple in S. That
is, it is equivalent to:

SELECT ∗
FROM T , S
WHERE T . u IN (SELECT S . u FROM S )

The above query is nested, and we have a special procedure to
handle it, which comes in Section 4.4. Queries with LEFT OUTER
JOIN are handled analogously.

4.3 Aggregate Queries
There is a variety of aggregate queries in practice, too many to

be covered fully. Thus, we confine our study to aggregate queries
that can be found in the SkyServer query log. Such queries have
the following form:

SELECT ∗
FROM [ . . . ]
WHERE [ . . . ]
GROUP BY [ . . . ]
HAVING AGG( a ) [< | ≤ | = | > | ≥ | <>] c

That is, the HAVING clause is of the form AGG(a) θ cwhere a is
a column and θ is either<,≤, =,>,≥, or<>. Further, c is a con-
stant. The FROM clause can consist of any number of relations.
In addition, the WHERE clause is a conjunctive normal form of
atomic predicates. The GROUP BY clause in turn can consist of
any combination of columns. Here, GROUP BY and WHERE
clauses are optional. We consider the aggregate functions SUM(),
COUNT(), MIN(), MAX(), and AVG() in our implementation,
though we note that MAX() does not appear in the log.

Overall, we find an exact transformation that preserves access
areas for queries of the above format. As a representative, we illus-
trate our handling of such queries for the SUM function. To this
end, we observe that there are several scenarios; some of which are
shown below. The others are in [5].

LEMMA 1. Consider the following query:

SELECT T . u , SUM( T . v )
FROM T
GROUP BY T . u
HAVING SUM( T . v ) > c

where c is a constant. Assume that dom(T.v) = [inf , supp] where
supp could be +∞, and inf could be −∞. We have:

• If supp > 0, the access area is T .

• If supp ≤ 0 ∧ c > supp, the access area is ∅.

• If supp ≤ 0∧ c ∈ dom(T.v), the access area is σT.v>c(T ).

• If supp ≤ 0 ∧ c < inf , the access area is T .

PROOF. Consider an arbitrary tuple t ∈ T (i.e., t is a tuple in
the data space of T ).

Case 1: supp > 0. Let k be an integer such that

k >

⌈
2(c− t.v)

supp +max{inf , 0}

⌉
.

Consider a database state in which T contains t and k other tuples
{t′1, . . . , t′k}; each tuple t′i satisfies that t′i.u = t.u and t′i.v =
supp+max{inf ,0}

2
. Since t′i.v ∈ dom(T.v), this state is allowed

by the database schema. We have: t.v +
k∑
i=1

t′i.v > c. Thus, t

influences the result set, i.e., the access area is T .
Case 2: supp ≤ 0. We have the following cases:

• c > supp: For every x′ ∈ dom(T.v), it holds that: t.v +
x′ ≤ t.v < c. This implies that t can never be part of the
access area. Thus, the access area is ∅.

• c ∈ dom(T.v): If t.v > c, we construct a database state
in which T contains t only, which conforms to the database
schema. Further, t influences the result set. In contrast, if
t.v ≤ c, we can deduce that t cannot influence the result set.
Therefore, the access area is σT.v>c(T ).

• c < inf : The access area is T .

This concludes our proof.

In the following lemmas, for simplicity, we assume that the do-
main of each column involved is large enough such that with re-
spect to its data type, it can be considered as (−∞,+∞). This
holds in general since queries tend to not have predicates contain-
ing values near the bounds of domains.

LEMMA 2. Consider the following query:

SELECT T . u , SUM( T . v )
FROM T
WHERE T . v < c1
GROUP BY T . u
HAVING SUM( T . v ) > c2

where c1 and c2 are constants. We have:
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• If c1 > 0, the access area is σT.u<c1(T ).

• If c1 ≤ 0 and c2 ≥ 0, the access area is ∅.

• If c1 ≤ 0 and c2 < 0: If c2 < c1, the access area is
σT.u<c1∧T.u>c2(T ). Otherwise, it is ∅.

PROOF. Consider an arbitrary tuple t ∈ T (i.e., t is a tuple in
the data space of T ). If t.v ≥ c1, t.v is not part of the access area.
Hence, we will only consider the case where t.v < c1.
c1 > 0: Let k be an integer such that k >

⌈
2(c2−t.v)

c1

⌉
. Con-

sider a database state in which T contains t and k other tuples
{t′1, . . . , t′k} where t′i.u = t.u and t′i.v = c1

2
. Since c1

2
is a valid

value of T.v, this state is allowed by the database schema. We have:

t.v +
k∑
i=1

t′i.v > c2. Thus, the access area is: σT.v<c1(T ).

c1 ≤ 0 and c2 ≥ 0: For every x′ < c1, it holds that: t.v + x′ ≤
t.v < c1 ≤ c2. This implies that t can never be part of the access
area. Thus, the access area is ∅.
c1 ≤ 0 and c2 < 0: Consider an arbitrary x′ < c1. If t.v ≤ c2,

we have: t.v + x′ < t.v ≤ c2, i.e., t is not part of the access area.
As a result, if c2 < c1, the access area is: σT.u<c1∧T.u>c2(T ).
Otherwise, it is ∅.

LEMMA 3. Consider the following query:

SELECT T . u , SUM( T . v )
FROM T
WHERE T . v > c1
GROUP BY T . u
HAVING SUM( T . v ) > c2

where c1 and c2 are constants. The access area of this query is
σT.u>c1(T ).

PROOF. Consider an arbitrary tuple t ∈ T (i.e., t is a tuple in
the data space of T ) where t.v > c1.
c1 > 0: Let k >

⌈
c2−t.v
c1

⌉
. We have: k · c1 > c2. Analogously

to Lemma 2, the access area is: σT.u>c1(T ).
c1 ≤ 0: Let k > dc2 − t.ve. Consider a database state in which

T contains t and k other tuples {t′1, . . . , t′k} where t′.u = t.u and
t′.v = 1. This state is allowed by a database schema. In addition,

t.v+
k∑
i=1

t′i.v > c2. Thus, the access area still is: σT.u>c1(T ).

In our implementation, we have covered all cases for the SUM
function. For each query with SUM(a) θ c in the HAVING clause,
we check if a belongs to some relation in the FROM clause. If it
does not, we ignore it. Otherwise, we apply special mappings. The
above cases are examples of such mappings. The detailed handling
of other cases as well as other aggregate functions is in [5]. There
we also confine things to one aggregate function per HAVING
clause. This is not a problem in reality, as the more general case
does not occur in the SkyServer query log at all.

4.4 Nested Queries
Queries of this type manifest themselves either explicitly with

operators such as EXISTS, IN, ANY, ALL, or implicitly in some
nested predicate, e.g., T.u = (SELECT S.u FROM S WHERE S.v =
12). As with aggregate queries, we do not discuss every possible
aspect of nested queries and refer to [5] for further information. In-
stead, we focus on several issues, and confine the presentation here
to the EXISTS operator. To keep the exposition simple, we dis-
cuss nested queries of the following form, which covers all nested
queries appearing in the log:

SELECT ∗
FROM [ . . . ]
WHERE [ . . . ]
OPT EXISTS ( q1 )
. . .

OPT EXISTS ( qm )

where OPT is either AND or OR, and qi is a query of the interme-
diate format. Further, each qi refers to one single relation, and this
relation does not appear in the FROM clause of the parent query.
This also avoids any implicit self-join.

Given a nested query q of the above format, we transform it into
the intermediate format as follows:

• Group m subqueries in the EXISTS clauses based on the
relations they refer to. W.l.o.g., let the groups be G1 =
{q1

1, . . . , q
1
m1
}, . . . , Gl = {ql1, . . . , q

l
ml
}, where l ≤ m,

quv ∈ {q1, . . . , qm}, and
l∑

u=1

mu = m.

• Let qi.FROM be the relation in the FROM clause of qi.
Further, we write qi.WHERE for all predicates together
with their connections in the WHERE clause of qi. We
transform q to the following query:

SELECT ∗
FROM [ . . . ] , q1.FROM, . . . , qm.FROM
WHERE [ . . . ]
OPT (q1

1.WHERE OR . . . OR q1
m1
.WHERE)

. . .
OPT (ql1.WHERE OR . . . OR q1

ml
.WHERE)

• Subsequent simple transformations may be required to con-
vert the constraint in the WHERE clause of the above query
to a conjunctive normal form.

We present three categories of nested queries having the above
format to show why our transformation preserves the access area
of q exactly. In fact, all nested queries with the EXISTS operator
occurring in the SkyServer query log fall into these three categories.

LEMMA 4. Consider the following query:

SELECT ∗
FROM T
WHERE T . u > α
AND EXISTS
(SELECT ∗ FROM S
WHERE S . u = T . u AND S . v < β )

where α and β are constants. The access area of this query is:
σT.u>α∧S.u=T.u∧S.v<β(T × S).

PROOF. The access area of this query is a subset of T × S. We
prove that an arbitrary element (t, s) ∈ T ×S influences the result
of the query if and only if t.u > α, s.u = t.u, and s.v < β.

(⇒): Consider (t, s) ∈ T × S that influences the result. Then
we have that t.u > α. Next, if s.v ≥ β, we can always remove
(t, s) without influencing the result. So it must hold that s.v < β.
Further, if there does not exist any t′ ∈ T such that t′.u > α and
s.u = t′.u, then again we can safely remove (t, s). Thus, such a t′

must exist. If s.u 6= t.u, as long as we keep (t′, s), we can safely
remove (t, s) while the result is not impacted. Hence, it holds that
s.u = t.u. Thus, we have t.u > α, s.u = t.u, and s.v < β.

(⇐): Let (t, s) be such that t.u > α, s.u = t.u, and s.v <
β. We construct a database state where T contains only t, and S
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contains only s. Clearly, if we remove (t, s), the result of the query
in this database state is changed.

Combining (⇒) and (⇐), we conclude our proof. Using our
procedure, we have m = 1, q1.FROM is S, and q1.WHERE is
S.u = T.u AND S.v < β. Thus, the transformed query is:

SELECT ∗
FROM T , S
WHERE T . u > α AND S . u = T . u AND S . v < β

which is as expected.

LEMMA 5. Consider the following query:

SELECT ∗
FROM T
WHERE T . u > α
AND EXISTS
(SELECT ∗ FROM S
WHERE S . v < β AND S . u = T . u )
AND EXISTS
(SELECT ∗ FROM S
WHERE S . v >= γ AND S . u = T . u )

where α, β, and γ are constants, and γ ≥ β. The access area of
this query is: σT.u>α∧S.u=T.u∧(S.v<β∨S.v≥γ)(T × S).

PROOF. We prove that (t, s) ∈ T×S influences the result of the
query if and only if: t.u > α ∧ s.u = t.u ∧ (s.v < β ∨ s.v ≥ γ).

(⇒): If (t, s) influences the result, we have t.u > α. If β ≤
s.v < γ, we can safely discard (t, s) without influencing the result.
Hence, it must hold that s.v < β∨s.v ≥ γ. By reasoning similarly
to the proof of Lemma 4, we have s.u = t.u. Thus, if (t, s) influ-
ences the result, then: t.u > α∧s.u = t.u∧ (s.v < β∨s.v ≥ γ).

(⇐): Let (t, s) be such that t.u > α, s.u = t.u, and s.v <
β ∨ s.v ≥ γ. W.l.o.g., we assume that s.v < β. We construct
a database state where T contains t only, and S contains s, and
another s′, where s′.u = t.u and s′.u ≥ γ. Then, if we remove
(t, s), the query result in this database state is changed.

Using our procedure, we transform the original query to:

SELECT ∗
FROM T , S
WHERE T . u > α AND S . u = T . u
AND ( S . v < β OR S . v >= γ )

which preserves the access area exactly.

LEMMA 6. Consider the following query:

SELECT ∗
FROM T
WHERE T . u > α
OR EXISTS
(SELECT ∗ FROM S
WHERE S . v < β AND S . u = T . u )
OR EXISTS
(SELECT ∗ FROM S
WHERE S . v >= γ AND S . u = T . u )

where α, β, and γ are constants, and γ ≥ β. The access area of
this query is: σ(T.u>α∨S.u=T.u)∧(T.u>α∨S.v<β∨S.v≥γ)(T × S).

PROOF. Following a proof similar to the one of Lemma 6, we
derive that (t, s) ∈ T × S influences the result of the query if and
only if t.u > α, or s.u = t.u ∧ (s.v < β ∨ s.v ≥ γ). Converting
this Boolean expression to a conjunctive normal form, we arrive at
the result.

We can also use the three categories of nested queries discussed
so far to extract access areas of nested queries that have more than
one nested level, i.e., we are able to generalize beyond the query
log of SkyServer. The following example illustrates our point.

EXAMPLE 4. Consider the following query:

SELECT ∗
FROM T
WHERE T . u > α
AND EXISTS
(SELECT ∗ FROM S
WHERE S . u = T . u AND S . v < β
AND EXISTS
(SELECT ∗ FROM R
WHERE R . v = S . v AND R . x < γ ) )

where α, β, and γ are constants. From Lemma 4, we know that in
term of access area, the subquery of the outer EXISTS operator is
equivalent to:

SELECT ∗
FROM S , R
WHERE S . u = T . u AND S . v < β
AND R . v = S . v AND R . x < γ

Here, we temporarily consider T.u as a constant. With this trans-
formation, the original query now has only one nested level. Con-
tinuing to apply Lemma 4, we transform the original query to:

SELECT ∗
FROM T , S , R
WHERE T . u > α AND S . u = T . u AND S . v < β
AND R . v = S . v AND R . x < γ

In addition, we can also process nested queries with aggregate
subqueries by combining the theories of this section and of Sec-
tion 4.3. Furthermore, we have an approximation scheme to pro-
cess complex nested queries in general, i.e., the ones that do not
conform to any format already discussed. The details of this ap-
proximation scheme and our handling of nested queries with other
operators are in [5].

4.5 System Implementation
We now briefly describe our actual implementation. For a given

query, we first parse it to identify its single fragments. We use
JSqlParser1, as it is an open source project under the LGPL license
and has a powerful, extensible grammar that supports most of the
SQL structure occurring in the SkyServer logs. Second, we trans-
form these fragments into a form that conforms to our intermediate
format (see Section 2.4). In particular, we extract the relations the
query addresses, including any relation in any nested query, and the
constraints on these relations and related columns. Third, we con-
vert the constraints derived into conjunctive normal form. Finally,
as a cleanup step, we replace any remaining alias with the real name
of the relation and order the list of relations alphabetically. Besides
this, we perform some consolidation on the remaining predicates:
We remove redundant constraints, merge overlapping constraints,
and check the set of constraints for contradictions.

5. OUR DISTANCE FUNCTION
Our end goal is to discover interesting access areas in the data

space that may represent the user interests. To accomplish this, we
1
http://jsqlparser.sourceforge.net/home.php
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need to extract a bigger picture out of the access areas of similar
queries. In other words, we need a procedure to aggregate the ac-
cess areas of a large set of queries. We aim at achieving this by
clustering queries based on overlap as our main objective of simi-
larity. The distance measure that we use for clustering simply quan-
tifies the overlap (i.e., the similarity of access areas). Please note
that other distance measures could be used for this purpose. The
distance does not even have to be a metric [16]. However, it should
have its main focus on the content of queries and not their structure
like in other cases [4]. As part of our aggregation, we define such a
distance function as follows.

Consider two queries q1 and q2 of intermediate form (see Sec-
tion 2.4). We define their distance as follows:

d(q1, q2) = dtables(q1.FROM, q2.FROM)

+ dconj(q1.WHERE, q2.WHERE) (1)

where q.FROM denotes the tables in the access area of query q,
and q.WHERE denotes its WHERE part, which is its access
area (in a conjunctive normal form). Note that with proper instanti-
ation of dtables and dconj , one could actually compute this distance
function on the raw queries as in [4]. However, we have shown that
properly extracting access areas of queries is far from simply using
as-is all predicates appearing in the queries. Instead, one needs to
resort to our transformation of queries to intermediate format. In
the followings, we provide our instantiation of dtables and dconj .

5.1 Distance of Access Tables dtables
We use the Jaccard coefficient to measure the distance between

the two sets of table names q1.FROM and q2.FROM :

dtables(q1.FROM, q2.FROM)

= 1− |q1.FROM ∩ q2.FROM |
|q1.FROM ∪ q2.FROM |

.

The Jaccard coefficient has the disadvantage that corner cases have
to be defined if both queries do not access any table. This may
occur if a query only queries database constants. In this case, we
set dtables to 0.

5.2 Distance of Conjunctions dconj
Consider two Boolean expressions b1 and b2 which are both in

conjunctive normal form. We define their distance to be:

dconj(b1, b2)

=

∑
o1∈b1

min
o2∈b2

ddisj(o1, o2) +
∑

o2∈b2
min
o1∈b1

ddisj(o1, o2)

|b1|+ |b2|

where each o1 ∈ b1 is a disjunction of Boolean expression(s), and
|b1| is the number of disjunctions of b1. We define each o2 ∈ b2
and |b2| similarly. In addition, ddisj(o1, o2) is the distance between
o1 and o2, which is given by:

ddisj(o1, o2)

=

∑
p1∈o1

min
p2∈o2

dpred(p1, p2) +
∑

p2∈o2
min
p1∈o1

dpred(p1, p2)

|o1|+ |o2|

where p1 ∈ o1 is an atomic predicate, and |o1| is the number of
atomic predicates of o1. We define each p2 ∈ o2 and |o2| similarly.
The distance between two atomic predicates p1 and p2, given by
dpred(p1, p2), is as follows:
p1 and p2 refer to the same single column. This means that they

are column-constant atomic predicates (see Section 2.1). We refer
to the column as a.

First, we assume that a is numerical. Let MBR(a) be the
minimum bounding box of the area of dom(a) that are accessed
by all queries in the log, including those having accessed the
empty area of dom(a). Further, let access(a) = content(a) ∪
MBR(a). Since a typically has a data type, dom(a) and hence
access(a) are intervals with finite bounds. We set dpred(p1, p2) =
overlap of intervals
width of access(a) , i.e., the normalized overlap of two respective in-
tervals. For instance, assume that p1 is a < 3, p2 is a > 2, and
access(a1) = [0, 5]. We have dpred(p1, p2) = 1/5 = 0.2. Here
we use access(a) instead of content(a) for normalization to cope
with queries accessing the empty area.

On the other hand, if a is categorical, we denote access(a) as
the union between content(a) and the set of values of dom(a)
accessed by all queries in the log. Further, we replace the overlap
of intervals by the number of items p1 and p2 have in common, and
the width of access(a) by its cardinality. Note again that since a
typically has a data type, dom(a) and hence access(a) have finite
numbers of values.
p1 and p2 refer to different columns. We set dpred(p1, p2) to the

proportion of the joint space of the involved columns occupied by
p1 and p2. For instance, assume that p1 is a1 < 3, p2 is a2 > 2,
and access(a1) = access(a2) = [0, 5]. We have dpred(p1, p2) =
(3× 3)/(5× 5) = 0.36.

5.3 Implementation Issues
To use our distance function, for each column a, we need to

know access(a). Since content(a) ⊂ access(a), we need to first
identify content(a). Normally, this can be done by simply query-
ing the database. However, when doing this, we got the timeout
error for many columns, especially those belonging to large rela-
tions. The issue can be resolved in two ways: (1) interact with the
domain experts, or (2) estimate content(a) and hence access(a)
from the database content. The advantage of (2) is that the system
implementation does not need to be configured by hand/modified
when turning to another database. On the other hand, the results
with (1) might be better. However, our concern with this study is to
find out whether our approach as a whole is practical, and whether
results already are useful with relatively simple technical means.
Optimizing output quality further is future work. This is why we
have resorted to (2) in this current evaluation, as follows.

For each numerical column, we derive its statistics by querying
a sample of its data, e.g., 100 rows, from SkyServer. Assume that
[m,M ] is its value range obtained from the sample. Then, we set
access(a) = content(a) =

[
m− M−m

2
,M + M−m

2

]
, i.e., we

double the size of the sampled range. When processing each query
in the log containing a column-constant predicate of the form “a
θ c”, if it accesses data not falling into access(a), we update this
range accordingly.

For each categorical column, we do similarly. However, instead
of the range, we maintain its set of values. If a query accesses a
value that does not appear in this set, we update the set accordingly.

We stress again that our access to the SkyServer database at this
point is only for this specific clustering purpose, and our extraction
of access areas is not involved in any physical database access.

6. CASE STUDY: CLUSTERING
TRANSFORMED DATA WITH DBSCAN

In this section, we present a case study where we cluster the
transformed data using our distance function. Our objective is to
find out if we can discover interesting aggregate access areas. Re-
garding clustering, there is a variety of existing algorithms in the
literature. On the other hand, we want to find out whether results
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generated with relatively simple means are helpful from the per-
spective of a domain expert. Hence, we use a well-known, rela-
tively simple, noise-aware algorithm, that does not need us to spec-
ify the number of clusters, namely DBSCAN [10].

6.1 The Data
The log originally contains 12, 442, 989 queries. We were able

to extract the access area of 12, 375, 426 queries, which is more
than 99.4%, leaving 67, 563 queries without extraction. The left-
over queries are in fact not accepted by the grammar of the JSql-
Parser. This is because they (a) contain errors, (b) use user-defined
SkyServer-specific functions, or (c) are not SELECT queries but
statements with CREATE TABLE or DECLARE (issued by Sky-
Server administrators). So except for the pathological queries, our
method performs well in extracting access areas.

6.2 Access Areas
In preliminary experiments, we have observed that DBSCAN

(or, at least, its implementation used here) has severe performance
problems when applied to the entire set of transformed queries.
Thus, the following results are obtained on a (not necessarily repre-
sentative) sample consisting of 5, 611, 087 access areas of queries.
Each access area in this sample is constrained to contain only pred-
icates of the form either “a θ c” (column-constant) or “a1 θ a2”
(column-column). This is to increase interpretability of the results.
Of course, while taking all queries into account might be more in-
formative, using that subset does not contradict our objectives: We
want to find hotspots of user interest, and we want to see how much
overlap there is with the actual database content. We also want to
learn how effective standard tools (e.g., an off-the-shelf clustering
algorithm) in this context actually are.

In general, access areas of individual queries do not convey much
information to the database owner, but a summary of this data for
all queries is definitely interesting. To this end, using DBSCAN,
we cluster the access areas in the sample described above. For each
output cluster, we derive its minimum bounding hyper-rectangle,
which we interpret as the aggregated access area of the queries in-
volved. During this process, we leave out extreme range bounds
by applying the 3-standard deviation rule. This is to ensure the ro-
bustness of the results. Overall, we obtain 403 clusters. We list 24
representative clusters in Table 1. We choose these clusters since
we find them to contain few columns and hence, easy to interpret.
For each cluster, we present the following information:

• Cluster ID.

• Cardinality: The number of access areas (queries) falling into
the cluster.

• Area coverage: vaccess
vcontent

where vaccess is the volume of the
aggregated access area, and vcontent is the volume of the
database content.

• Object coverage: naccess
ncontent

where naccess is the number of ob-
jects falling into the aggregated access area, and ncontent is
the number of objects of the database content.

• Access area: A Boolean expression describing the aggre-
gated access area.

Going over the result, we find that most queries in each cluster
are issued by different users, i.e., the cardinality of each cluster
is approximately equal to the number of users. For each of the
Clusters 1–17, its aggregated access area overlaps with a relatively
small part of the database content. In particular, both of its area

coverage and object coverage are fairly small (both less than 1%
for Cluster 17). This shows that some users are interested in only a
small part of the database content when issuing a query. We also see
that while the area coverage is close to the object coverage in many
clusters, this is not the case for Clusters 7, 8, 14, and 15. This is an
indication that queries do not really follow the data distribution.

On the other hand, each of the Clusters 18–24 has its aggregated
access area occupy empty area of the data space. Each such cluster
contains from 17% (Cluster 20) up to 50% (Cluster 22) of the total
number of queries accessing the same data space. This means that
a significant number of queries refer to empty areas where no data
objects are present.

6.3 Feedback from Domain Experts
This subsection describes qualitatitve feedback from our domain

experts. This feedback is confined to the 24 representative clusters
just described. Some important points are as follows:

The approach is promising. Both the SkyServer person and the
independent astronomer have confirmed this. The results might not
only be useful for the data owner, but for users as well: They help
to explore the database, i.e., which combinations of attributes/at-
tribute ranges obviously are important (e.g., Cluster 5). They also
offer orientation in the sense ‘Which parts of the data do others
deem important?’.

Most results are plausible. Cluster boundaries tend to map to
meaningful concepts of astronomy. For instance, the closer a dec-
value is to the equator (dec-value 0), the more interesting the object
is for an astronomer. The cluster in Figure 1(b) reflects this. How-
ever, not all cluster-boundary values are fully clear. Again in Fig-
ure 1(b), we do not know yet why the cluster boundary is dec = 10
(and not, say, 8 or 15, which would be just as conceivable). Simi-
larly, we do not have an explanation for the specific boundary val-
ues along id-type attributes (Clusters 1–4 for instance). These clus-
ters are numerous and require further investigation. On the other
hand, our table does not contain clusters on attributes that the as-
tronomer expects to be queried frequently, such as magnitude.

Result presentation should be improved/refined. Both our experts
have interpreted the top row as the ‘most frequent access area’ (and
were puzzled that most queries explicitly refer to Photoz.objid), but
this is not correct in general. Other attributes may be queried more
frequently, but the values in queries are spread more evenly over the
range, i.e., there is no cluster. This is even likely, since the number
of queries per cluster is relatively small (179, 072 at best, compared
to several million queries). What one can infer from the first row
is that the values in that range are more likely to be referred to in
queries than just outside of the range. A follow-up is that it would
be interesting to know how much denser each cluster is, in contrast
to its immediate surroundings. We conclude that we should have
explained our results more extensively right away, and that there is
further information of interest, such as that density drop.

Our results contain useful hints on how the database could be im-
proved. To illustrate, zooSpec.dec is queried rather frequently with
value −100, even though it is an angle and can only have −90 as
its minimal value. Different steps are conceivable, e.g., a tighter
definition of value ranges, or a better documentation.

There still are open questions which might be relevant for fu-
ture research. For example, the astronomer has pointed out that
there might be ‘test queries’ (i.e., queries that are exploratory in
nature) which are numerous and influence the clustering result by
much and ‘final queries’, as he calls it. While there might be only
relatively few of them, they are important. Finding ways to differ-
entiate between these categories, possibly based on the metadata
available, is future work. There also are points that are minor in
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Cluster Cardinality Area
Coverage

Object
Coverage Access area

1 179, 072 0.24 0.36 1, 237, 657, 855, 534, 432, 934 ≤ Photoz .objid ≤ 1, 237, 666, 210, 342, 830, 434
2 121, 311 0.19 0.22 1, 115, 887, 524, 498, 139, 136 ≤ SpecObjAll .specobjid ≤ 2, 183, 177, 975, 464, 224, 768
3 92, 177 0.22 0.21 1, 345, 591, 721, 622, 267, 904 ≤ galSpecLine.specobjid ≤ 2, 007, 633, 797, 213, 874, 176
4 90, 047 0.25 0.25 1, 416, 192, 325, 597, 030, 400 ≤ galSpecInfo.specobjid ≤ 2, 183, 213, 984, 470, 034, 432
5 90, 015 0.19 0.25 PhotoObjAll .ra ≤ 210 ∧ PhotoObjAll .dec ≤ 10
6 82, 196 0.23 0.24 1, 228, 357, 946, 564, 438, 016 ≤ sppLines.specobjid ≤ 2, 069, 493, 422, 263, 134, 208
7 23, 021 0.17 0.04 54 ≤ SpecObjAll .ra ≤ 115
8 23, 021 0.23 0.09 60 ≤ SpecPhotoAll .ra ≤ 124

9 18, 904 0.03 0.01
(SpecObjAll .class = ’star’)
∧(51, 578 ≤ SpecObjAll.mjd ≤ 52, 178) ∧ (296 ≤ SpecObjAll.plate ≤ 3, 200)

10 10, 141 0.26 0.27 (DBObjects.access = ’U’) ∧ ((DBObjects.type = ’V’) ∨ (DBObjects.type = ’U’))
11 4, 006 0.24 0.18 55 ≤ emissionLinesPort .ra ≤ 141
12 3, 785 0.21 0.17 62 ≤ stellarMassPCAWisc.ra ≤ 138
13 1, 622 0.12 0.11 AtlasOutline.objid > 1, 237, 676, 243, 900, 255, 188
14 1, 371 0.16 0.01 (2 ≤ zooSpec.ra ≤ 120) ∧ (30 ≤ zooSpec.dec ≤ 70)
15 1, 141 0.10 0.05 0 ≤ Photoz .z ≤ 0.1

16 1, 102 0.25 0.17
(0 ≤ galSpecExtra.bptclass ≤ 3)
∧(galSpecExtra.specobjid = galSpecIndx .specObjID)

17 1, 035 < 0.001 < 0.001
(sppLines.gwholemask = 0) ∧ (0 ≤ sppLines.gwholeside ≤ 50)
∧(sppLines.specobjid = sppParams.specobjid)
∧(−0.3 ≤ sppParams.fehadop ≤ 0.5) ∧ (2 ≤ sppParams.loggadop ≤ 3)

18 48, 470 0.0 0.0 (10 ≤ PhotoObjAll .ra ≤ 120) ∧ (−90 ≤ PhotoObjAll .dec ≤ −50)
19 41, 599 0.0 0.0 3, 519, 644, 828, 126, 257, 152 ≤ galSpecLine.specobjid ≤ 5, 788, 299, 621, 113, 984, 000
20 18, 444 0.0 0.0 3, 519, 644, 828, 126, 257, 152 ≤ galSpecInfo.specobjid ≤ 5, 788, 299, 621, 113, 984, 000
21 18, 043 0.0 0.0 4, 037, 480, 726, 273, 651, 712 ≤ spplines.specobjid ≤ 5, 788, 299, 621, 113, 984, 000
22 1, 358 0.0 0.0 (6 ≤ zooSpec.ra ≤ 115) ∧ (−100 ≤ zooSpec.dec ≤ −15)
23 422 0.0 0.0 −0.98 ≤ Photoz .z ≤ −0.1
24 217 0.0 0.0 3.0 ≤ Photoz .z ≤ 6.5

Table 1: Some aggregated access areas (clusters of queries), extracted from SkyServer query log.

nature, e.g., suggestions for further figures describing the clusters.

6.4 Comparison to [4]
We want to learn whether our distance measure affects the re-

sult by much. To do so, we compare our method to OLAPClus [4],
which has a proprietary distance function (i.e., based on structure)
for measuring the (dis-)similarity of (OLAP) queries. The distance
function is also applicable to access areas. However, it requires ex-
act matching of two atomic predicates and not their overlapping in
access areas. Thus, when queries accessing the same data space
have very different predicates, e.g., accessing different sets of ob-
jects, it is expected that OLAPClus does not group them into the
same cluster, i.e., aggregated access areas are lost.

The result of OLAPClus on our data set of SkyServer access ar-
eas actually reflects this hypothesis. In particular, OLAPClus pro-
duces approximately 100, 000 clusters for Cluster 1 of our method.
This is because almost every query in Cluster 1 has its predicate in
the form Photoz .objid = c where c is a constant. Similarly, for
each of the Clusters 2–4 of our method, OLAPClus outputs about
50, 000 clusters. This does not only cause high redundancy but also
loss of knowledge on the interests of users.

The benefits of our method on the other hand are two-fold: (a)
succinct output that facilitates post-analysis, and (b) meaningful
capture of the access patterns of users.

6.5 Comparison to OLAPClus on Raw
Queries

Equation (1) suggests that one could actually obtain aggre-
gated access areas by computing our distance function on the raw

queries and clustering them accordingly, without using our extrac-
tion method. Essentially this can be done by applying OLAPClus.
However, for fair comparison, we replace the exact matching of
atomic predicates in OLAPClus by our dconj (see Section 5).

The results show that this version of OLAPClus breaks Clus-
ters 2, 5, 8, 9, 11, 12, 18, 19, 20, and 22 in Table 1. This is because
these clusters contain queries of the forms in Section 4.3 and we
have proved that directly using predicates as-is may lead to mis-
leading access areas. In addition, the modified OLAPClus yields
clusters that do not permit an easy construction of aggregated ac-
cess areas, as heterogeneous Boolean expressions, resulted from
keeping predicates as-is, are put in the same cluster.

6.6 Comparison to Re-querying
Next, we compare our method against the approach that re-issues

queries for collecting statistics. Here, we use two performance met-
rics: efficiency (runtime) and quality of access areas.

Efficiency. Our method processes 100, 000 queries in about 45
seconds on our test machine (Intel R© i5-750 CPU with 8GB RAM).
There are however queries where the extraction takes rather long
time, and in very rare cases, the extraction could not be done within
reasonable time (in the range of hours). Looking closer, we find
that query execution times of each single step (Parsing, Extraction,
CNF, Consolidation) varies between: (a) Parsing: <1 millisecond
and 94 milliseconds, (b) Extraction: <1 millisecond and 1333 mil-
liseconds, (c) CNF: <1 millisecond and undefined, and (d) Consol-
idation: <1 millisecond and 95 milliseconds.

The CNF converter, which we took from an open source project,
is definitely the weakest point with respect to efficiency. In partic-
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ular, we discover that the necessary system resources (CPU time,
RAM) grow exponentially with the number of predicates the access
area currently processed includes. Fortunately, in our total of more
than 12 million queries, there are only 471 queries with more than
35 predicates. Such a query often poses a performance bottleneck.
To alleviate the issue, we provide a method within our implemen-
tation that only considers the first 35 predicates of any query. With
this workaround, CNF conversion never lasts longer than 1 hour.
More sophisticated processing is left for future work.

Re-issuing queries is far more expensive than our method. In
particular, our method is orders of magnitude faster than this naïve
approach. Since re-issuing a large number of queries against the
SkyServer database does not terminate within a reasonable amount
of time, we re-run the queries instead on a sample of the database.
The result of this variant is discussed next.

Quality. Compared to re-issuing queries, our method of extract-
ing access areas from the query log provides two advantages. First,
we discover empty spaces that are accessed by many queries. As
expected, extracting access areas from actual results of queries only
yields the areas covered by the database content, i.e., Clusters 18–
24 discovered by our method are missed by this approach. Second,
our method is able to extract access areas from 1, 220, 358 queries
that cause errors when being issued to the SkyServer database. Fur-
ther, our method even extracts access areas of queries that are not
written in correct MSSQL code (which is necessary for SkyServer).
Such queries often are written in a MySQL dialect such as SELECT
Galaxies.objid FROM Galaxies LIMIT 10.

The approach that re-issues queries in turn neither yields empty
spaces nor is able to process queries with execution errors. All in
all, our method offers a more flexible solution towards extracting
the access patterns of users from query logs.

7. CONCLUSIONS
Extracting access patterns of database users, i.e., access areas of

queries, from query logs is crucial to learn the database usage. This
has many applications; one is that it allows to make explicit the
research focus of the respective scientific community. However,
the task is challenging due to the lack of (a) a formal definition of
access area, (b) a mapping of queries to their access areas, and (c)
a procedure, including a distance function, to aggregate the access
areas of a large set of queries.

In this paper, we have a proposed a solution to each of these
challenges. First, we have introduced the novel concept of query
access area. It allows the extraction of access areas independent of
the database content. Second, we provide a mapping of our notion
to all query types occurring in the log, i.e., we enable extraction of
access areas in practice. Third, we exploit query overlap for the de-
tection of aggregated access areas that abstract from the individual
queries. Domain experts deem our approach interesting. Our case
study on the SkyServer query log further shows that our method
discovers clusters of access areas that occupy a small fraction of
the database content. Some access areas even span empty parts of
the data space. Empirical results also show that our method outper-
forms both a state of the art technique on measuring similarities of
queries and an approach that re-issues queries.

In furture work, we plan to experiment with different clustering
techniques on our data sets of extracted access areas. Further, we
intend to test our method with different distance functions to unveil
other interesting access patterns of SkyServer users.

Acknowledgment
We thank Jordan Raddick from Johns Hopkins University for help-

ful discussion and comments.

8. REFERENCES
[1] R. Agrawal et al. Context-sensitive ranking. In SIGMOD

Conference, 2006.
[2] J. Akbarnejad et al. Sql QueRIE recommendations. PVLDB,

3(2), 2010.
[3] J. Aligon et al. Mining preferences from OLAP query logs

for proactive personalization. In ADBIS, 2011.
[4] J. Aligon et al. Similarity measures for OLAP sessions.

Knowl. Inf. Syst., 37(2), 2014.
[5] F. Becker. Transforming the SDSS SkyServer SQL query

log. Master’s thesis, Karlsruhe Institute of Technology
(KIT), Karlsruhe, Germany, 2013.

[6] S. Ceri and G. Gottlob. Translating SQL into relational
algebra: Optimization, semantics, and equivalence of sql
queries. IEEE Trans. Softw. Eng., 11(4), 1985.

[7] G. Chatzopoulou et al. Query recommendations for
interactive database exploration. In SSDBM, 2009.

[8] G. Chatzopoulou et al. The QueRIE system for personalized
query recommendations. IEEE Data Eng. Bull., 34(2), 2011.

[9] A. Cleve and J.-L. Hainaut. Dynamic analysis of SQL
statements for data-intensive applications reverse
engineering. In WCRE, 2008.

[10] M. Ester et al. A density-based algorithm for discovering
clusters in large spatial databases with noise. In KDD, 1996.

[11] W. Gatterbauer. Databases will visualize queries too.
PVLDB, 4(12), 2011.

[12] A. Ghosh et al. Plan selection based on query clustering. In
VLDB, 2002.

[13] A. Giacometti et al. Recommending multidimensional
queries. In DaWaK, 2009.

[14] T. Grust et al. True language-level SQL debugging. In EDBT,
2011.

[15] Y. Ioannidis. From databases to natural language: The
unusual direction. In NLDB, 2008.

[16] A. K. Jain et al. Data clustering: A review. ACM Comput.
Surv., 31(3), 1999.

[17] K. P. Joshi et al. Warehousing and mining web logs. In
WIDM, 1999.

[18] N. Koudas et al. Relaxing join and selection queries. In
VLDB, 2006.

[19] G. Koutrika et al. Explaining structured queries in natural
language. In ICDE, 2010.

[20] S. Mittal et al. QueRIE: A query recommender system
supporting interactive database exploration. In ICDMW,
2010.

[21] H. Pirahesh et al. Extensible/rule based query rewrite
optimization in starburst. In SIGMOD Conference, 1992.

[22] F. Silvestri. Mining query logs: Turning search usage data
into knowledge. Found. Trends Inf. Retr., 4(1-2), 2010.

[23] V. Singh et al. SkyServer traffic report - the first five years.
CoRR, abs/cs/0701173:190–204, 2007.

[24] X. Yang et al. Recommending join queries via query log
analysis. In ICDE, 2009.

[25] Q. Yao et al. Finding and analyzing database user sessions.
In DASFAA, 2005.

[26] J. Zhang. Data use and access behavior in
escience—exploring data practices in the new data-intensive
science paradigm. PhD thesis, Drexel University,
Philadelphia, PA, USA, 2011.

652



Insights on a Scalable and Dynamic Traffic Management

System

Nikolas Zygouras

Department of Informatics and

Telecommunications

University of Athens

Greece

nzygouras@di.uoa.gr

Nikos Zacheilas

Department Informatics

Athens University of

Economics and Business

Greece

zacheilas@aueb.gr

Vana Kalogeraki

Department Informatics

Athens University of

Economics and Business

Greece

vana@aueb.gr

Dermot Kinane

Dublin City Council

Ireland

dermot.kinane@dublincity.ie

Dimitrios Gunopulos

Department of Informatics and

Telecommunications

University of Athens

Greece

dg@di.uoa.gr

ABSTRACT
Complex Event Processing (CEP) systems process large streams of
data trying to detect events of interest. Traditional CEP systems,
such as Esper, lack the required scalability and processing capa-
bility to cope with the constantly increasing amount of data that
needs to be processed. Furthermore, user defined rules are static so
changes in the monitored environment cannot be easily detected.
In this paper we investigate the development of a scalable and dy-
namic traffic management system. Our work makes several con-
tributions: We propose a novel system that combines Esper with
a stream processing framework, Storm, in order to parallelize the
processing of larger amounts of data. We propose a novel rules’ as-
signment algorithm for distributing Esper rules to the available CEP
engines, in a way that maximizes the overall system’s throughput.
Finally, our system adapts to changes of the environment by pro-
cessing historical data via Hadoop and dynamically updating the
Esper rules based on the generated results. Our work has been eval-
uated using real data, in several traffic monitoring scenarios for the
city of Dublin. Our detailed experimental results indicate the ben-
efits in the working of our approach and the significant increase in
the system’s throughput when a large number of Esper rules were
examined concurrently.

Categories and Subject Descriptors
H.2.4 [Information Systems]: Systems—complex event process-
ing, stream processing

1. INTRODUCTION
Today there is a large increase in the amount of data that needs
to be analysed and processed in real-time in a wide variety of do-
mains, ranging from financial processing [13] to traffic monitoring

c�2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

[8] to healthcare infrastructures [23]. Complex Event Processing
systems (CEP) have emerged as a valid solution for analyzing this
huge stream of information and detecting events of interest. In a
CEP system, user-defined rules process primitive events received
from a monitored environment in order to detect composite phe-
nomena by composing primitive or other composite events using a
set of event composition operators. Complex event processing for
such Big Data applications is challenging as they need to be able to
process high volumes of stream data at low processing latencies.

Traditional CEP systems such as Esper [14] are unable to cope with
the current data deluge, mainly because they are based on central-
ized architectures where the CEP engine receives and processes all
incoming events in a single host. Due to this reason, there is a
shift in performing the CEP processing in Distributed Stream Pro-
cessing Systems (DSPS) such as Storm [27], Streams [9] or Spark
[3] which are now considered major platforms for data analysis.
While such systems provide scalability and fast processing, they
lack expressiveness, as the user must provide the actual implemen-
tation of the rules that the system has to execute, often needing to
express complex tasks and requiring a large amount of code. In
contrast, systems like Esper, provide an SQL-like language, EPL
(Event Processing Language) for expressing the rules, making it
much easier to use and learn. Given the popularity of frameworks
such as Storm, Streams and Spark, optimizing the performance of
CEP processing in DSPS systems is important, as they do not only
provide robust, scalable and reliable solutions to processing fast
larger amounts of data, but can also be cost-effective solutions as
they can reduce the money paid by users to hosting environments
such as clouds. Our architecture uses these frameworks in order to
meliorate the value offered from the Big Data systems, scaling the
system’s velocity and volume. The system’s value is optimized as
our system is able to support and execute more rules and process
larger volume of tuples.

One challenge with rules running in current CEP systems is that
they tend to be rather static; this means that their behaviour does not
change radically over time. For example, in a traffic management
system we may want to be able to detect when a bus is delayed. In
most cases this is accomplished with a rule that compares the com-
puted delay for a newly arrived bus trace with a static threshold;
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when this threshold is exceeded an event is triggered [5], [6]. How-
ever, using a pre-defined threshold at all times is not beneficial, as
the behaviour of the traffic conditions typically change during the
course of the day. So, it is of great interest to automatically de-
cide these rules’ thresholds. Towards this goal was the work of
[25], however it requires a time consuming training phase before it
generates the rules that will be used by their CEP system. In con-
trast, our aim is to dynamically compute the rules’ thresholds and
change the rules accordingly, in real-time. In our previous work [6]
we have illustrated that the Lambda architecture, operating in both
batch and stream processing modes, is a promising approach for
processing heterogeneous data streams for intelligent urban traffic
management. In this work we focus on the scalability aspect of our
system and illustrate that our system can effectively support multi-
ple concurrently running Esper engines and can dynamically adapt
to rules’ thresholds changes in real-time.

In this work we investigate the development of a CEP system for
scalable and dynamic traffic management, that is both powerful and
easy-to-use. We provide a system that offers: (i) scalability, (ii)
low-latency processing, (iii) ease of use, and (iv) dynamic rule up-
dating to changing system conditions. We focus on the ease of
usage because we want the rules running in our system to be easily
understood even by non-expert users. Our proposal combines the
two approaches (CEP systems and DSPS), exploiting the expres-
siveness and ease of use of a traditional centralized CEP system
such as Esper, and the scalability and fast processing offered by
Storm. Supporting dynamic rules is important because it offloads
effort from the user as she no longer needs to manually tune the
rules’ thresholds. Our approach makes the following contributions:

1. We present a novel system architecture that combines Storm,
Esper and Hadoop [17], offering a truly scalable and easy-to-
use framework for efficient complex event processing. Storm
enables us to use a number of Esper engines in parallel, in-
creasing the overall system throughput. Furthermore, by us-
ing more engines we are able to concurrently execute multi-
ple Esper rules, further improving the system’s performance.

2. We provide algorithms for distributing the Esper rules to the
available engines, examining the impact of the assignment
on the system’s throughput. Our proposed solution aims to
balance the load across the engines, so that rules are allocated
in a way that all engines process rules with approximately the
same amount of input data.

3. We use the Hadoop MapReduce system that is ideally suited
for processing historical data. This allows us to compute new
thresholds for the running rules and adapt the Esper engines’
in real-time for accurate detection of complex events. By
using dynamic rules we are able to capture the changing con-
ditions of the environment and detect only events of interest.

4. We have implemented our approach and evaluated it using a
real traffic monitoring application in the city of Dublin1. Our
experimental results indicate that our approach is truly scal-
able, achieves a significant increase in the system’s through-
put, and can support several concurrently running Esper rules.

2. BASIC COMPONENTS - BACKGROUND
In this section we give an overview of the basic components of
our complex event processing framework and discuss some back-
ground information and related work.
1http://dublinked.com/datastore/datasets/dataset-304.php
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Figure 1: Storm Topology Example

2.1 Basic Framework Components
2.1.1 Storm

Storm [27] has emerged as one of the most commonly used Dis-
tributed Stream Processing Engines utilized by major companies
such as Twitter [32] and Groupon [16]. It has been successfully
employed for processing high volume and intensive workloads in
various application domains, where high levels of data throughput
and low response latencies are a necessity [26]. Processing massive
amounts of data in real-time is achieved by distributing the work-
load across multiple computers. Applications in Storm are imple-
mented as user-defined topologies. Topologies can be viewed as
processing graphs, consisting of nodes that represent user-defined
processing operations or primitive event nodes, and edges that rep-
resent the streaming of the data. The nodes of a topology graph
in Storm can be either spouts or bolts. Spouts represent the input
sources which feed the topology with data, while bolts encapsulate
the processing logic. For example, in a CEP application, spouts can
be seen as the input sources of primitive or complex events, while
bolts are the components that process these events and detect more
complex ones.

Users implement the code that will be executed by the Storm com-
ponents and decide the communication patterns. This essentially
represents the subscription of bolts to their input sources. Storm
gives the users the capability of deciding how many instances of
the implemented bolts’ and spouts’ code to run in the framework
by setting two basic parameters: the number of tasks and executors
to utilize. By choosing these parameters, we can increase the paral-
lelism of the topology, making it more scalable. The executors pa-
rameter (as can be seen in Figure 1) can be used to adjust the num-
ber of threads that will execute the processing implemented on the
spouts and bolts. The actual processing is performed by the com-
ponents’ tasks. Tasks are Java objects containing the user-defined
code for the components. Ideally there should be one executor for
each task. If the number of tasks is greater than the number of
executors, tasks assigned to the same executor are executed in a
pseudo-parallel way. In Figure 1, we give an example of a possible
assignment of tasks to the corresponding executors in a snapshot
of the Storm topology we use for monitoring the traffic conditions
in the city of Dublin. Because the SpeedCalculatorBolt has two
tasks but only one executor, its tasks are assigned to this single ex-
ecutor. All other components exploit fully the parallelism they can
use, thus their tasks are assigned to separate executors.

From an architectural perspective, a Storm cluster consists of a set
of physical machines, called Worker nodes that are responsible for
executing the user topologies, and a Master node called Nimbus
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that coordinates the execution of the topologies. Once a topology
has been allocated to the Storm cluster, its executors are assigned
to a set of Java processes (worker processes) running on the avail-
able nodes. Each node is configured with a fixed number of slots
that will represent the maximum number of worker processes that
can execute in it. The assignment of the executors to the available
worker processes follows a simple round-robin approach.

2.1.2 Esper
Esper [14] is a Complex Event Processing (CEP) system, applied to
streaming data, that triggers actions when the incoming data satisfy
some predefined rules. Esper libraries are available for the Java lan-
guage such as Esper, and for .NET such as NEsper. Esper keeps all
the required data structured in memory making the processing fast.
The core of the Esper system is the Esper engine which consists of
a set of standing queries (or rules). The plethora of technologies
that have been developed in Big Data community require the data
first to be saved and then to be processed. Esper, on the other hand,
provides real time Big Data analytics as it is a ’NoDatabase’ tech-
nology meaning that no data has to be saved. Esper stores rules in
the Esper engine and when new data arrive checks whether or not
these rules are fired. This procedure is continuous, as new arriving
data are processed serially and the Esper engine responds in real
time if any of the stored events meets the constraints. The triggered
events can be pushed further into the Esper engine feeding other
rules or sent to their listeners. Listeners are associated with rules
and define the actions to be taken when the rule is activated. The
user can create queries and add them into the Esper engine. These
queries are written in Event Processing Language (EPL) and their
syntax is similar to SQL queries, with SELECT, FROM, WHERE,
GROUP BY, HAVING and ORDER BY clauses. EPL was designed
aiming to be similar to the SQL query language. The main dif-
ference between EPL and SQL is that EPL uses views instead of
tables. Views are the different operations applied to the incom-
ing data to structure data in an event stream. An example of such
operation is the expiry policy for events that specify for how long
an event will remain in the event stream. Finally, each EPL query
defines a sliding or batch window of the incoming stream that it
monitors.

2.1.3 Hadoop
The MapReduce programming and execution model [12], along
with its open-source implementation Hadoop [17], has emerged as
one of the most widely adopted programming models for process-
ing massive-scale datasets. Hadoop has been utilized in a wide
variety of application domains including traffic monitoring, stock-
market data analysis and financial trading applications. For traffic
monitoring applications, such as the one we study, Hadoop can be
used to process and analyze historical data in order to compute and
store statistics on the stream data, such as to identify normal traffic
conditions in different city areas during the course of the day. In
the MapReduce model, each computation, or job, is modelled as a
sequence of two basic operators: map and reduce. Jobs are auto-
matically parallelized and executed on the available cluster nodes,
these are executed as multiple map and reduce tasks. The map and
reduce tasks have the following specifications:

map(k1, v1) ) [k2, v2]

reduce(k2, [v2]) ) [k3, v3]

In Hadoop, each map task is responsible for processing a distinct
chunk of the data stored in its distributed filesystem (HDFS [18]).

The output of the map phase is partitioned using a hash function
into a user-defined number of reduce tasks. Reduce tasks receive
their corresponding input data and invoke the reduce method on
them. All intermediate data generated by the map tasks as well as
the final results are stored in HDFS for fault-tolerance, but at the
cost of extra processing [29], [33].

2.2 Related Work
Stream processing frameworks such as IBM’s Infosphere streams
[8], Storm [27] and TUD-Streams [9] have been successfully ap-
plied for complex event processing. However they lack an expres-
sive language such the one offered by Esper. So the user is re-
sponsible to implement all the components required for detecting
complex events. Another recently proposed stream processing en-
gine is Spark [36]. Spark aims to unite the worlds of batch and
stream processing offering a common framework for both types of
computation. Despite its rise in popularity, it is still limited with re-
spect to the expressiveness of the computations, requiring the user
to manually implement multiple processing components.

Authors in [2] have focused on the placement of worker processors
and executors of a Storm topology on the available cluster nodes,
with the main goal being the minimization of the inter-node com-
munication. Similar scheduling techniques have been proposed in
[21], and [34]. These works are orthogonal to ours and can fur-
ther enhance the working of Storm, increasing the overall system’s
performance. In [35], the impact of intra-node communication was
examined, and it was illustrated that in order to minimize the intra-
process communication overhead the number of worker processors
should be equal to the number of cluster nodes. We adopted this
scheduling policy in our framework to minimize the impact of the
intra-node communication in the system’s performance.

Traffic monitoring has been a field of great interest in the complex
event and stream processing community [8], [28]. However, these
works detect events based on statically defined rules so any updates
to the traffic conditions overtime are not taken into account. In
contrast, our proposal computes new thresholds for the rules and
dynamically updates them. Linear Road benchmark [4] is one of
the most commonly used platforms for the evaluation of complex
event processing frameworks. Many works such as [10] use this
framework for their evaluation. However a real dataset such the one
we use, can offer a wider variety of events to detect. A recent city
transportation application was proposed in [24]. They implemented
an application that enables the sharing of taxi rides in a large city,
in a way that is beneficial for both citizens and taxi drivers.

With respect to parallelizing the execution of complex event pro-
cessing systems, work was mainly done by [7]. They increase the
parallelism of a complex event procedure by executing multiple in-
stances of the corresponding Finite State Machine, but each with
different proportion of the input data. Their approach differs from
ours in the fact that their proposal is limited to sequential rules
while ours can be applied to all types of Esper rules. Our system,
from an architectural perspective, is similar to the work proposed
in [15]. In their proposal they combine Streams [9] with Esper try-
ing to detect events in a football match. However they use only one
Esper engine so they do not exploit the parallelism of the DSPS to
improve their system’s performance.

Authors in [20] propose a system that supports scalable CEP by
using more engines and a rules allocation schema that tries to as-
sign rules to engines based on the similarity of their attributes. Our
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approach differs in two aspects: (1) our framework can scale-up
automatically via the features provided by Storm, while (2) our
proposed rules allocation algorithm takes into account both the at-
tributes’ similarity as well as the expected input rate. In [1], they
tackle the problem of distributing the processing of primitive events
on the event sources by generating multi-step event acquisition and
processing plans with the goal to minimize the event transmissions
cost. Also in [31], they propose Next CEP, a distributed complex
event processing system that optimizes the usage of the available
system resources. This work was evaluated on a fraud detection
application, applying their rules in streams with credit card trans-
actions. Finally, in [30], a scalable CEP system was proposed that
targets industrial infrastructures, specifically, e-energy applications
in the cloud. However, they do not provide any rules allocation
algorithm for the distribution of the rules to the nodes.

3. TRAFFIC MONITORING
3.1 Setting Up the Problem
This work is focused on developing a novel architecture and tech-
niques for a scalable and dynamic traffic management system. Our
objective is to recognize in real time abnormal traffic events, like
accidents and traffic congestions in the Dublin City2. The Dublin
City traffic control receives data from various voluminous sources,
including cameras CCTV, static sensors that measure the traffic
flow on several junctions and buses that move in Dublin city. It
is not possible for humans to monitor this large amount of data,
so the development of a system that receives raw data, processes
them and alerts automatically in case of an emergency, is required.
An example of an emergency situation in Dublin is presented in
Figure 2.

Dublin City Council (DCC) Intelligent Transportation Systems de-
partment provided us with the main requirements of a traffic moni-
toring system applied in Dublin city. These requirements are sum-
marized bellow:

• Their main aim is to be able to identify the spatial locations
where the traffic behavior from the buses, obtained through
streaming, exceeds the expected normal behaviour for that
particular location. An example of this is a rule that checks
if in three consecutive bus stops, buses traversing them, re-
ported simultaneously delays greater than the expected.

• Another requirement of DCC is to determine the normal be-
haviour for different spatial locations. In traffic monitoring
systems the traffic behaviour varies for different areas of the
city. This behaviour also varies for different hours of day and
between weekdays and weekends. It is usual to have greater
delays and lower speed in the city centre than the suburbs and
greater delays in working hours than the weekends. So it is
essential to set up different thresholds which will enable us to
model normal traffic behaviour for different spatial locations,
hours and days.

• Also it is possible these thresholds to change over time; for
example if a new road is constructed the thresholds may be
relaxed and the system should adapt to these changes.

• Finally the traffic monitoring system should work in real time,
be able to process large amounts of streaming data and re-
spond quickly in unusual conditions.

2This work was done in the context of an EU-funded project Insight
http://www.insight-ict.eu/

Attribute Description
Timestamp the time of the measurement
LineId the line of the bus
Direction true or false
GPS position Longitude and Latitude of the bus
Delay the seconds that the bus is ahead of schedule
Congestion true or false
Bus Stop the id of the closest bus stop
Vehicle Id The value that is used to distinguish different buses

Table 1: Description of the Dataset

Property Value
Number of buses 911
Size of data 160 MB per day
Number of lines 67
Data frequency 3 tuples/min per bus
Time interval 6am till 3am

Table 2: Dataset Properties

Figure 2: Traffic accident in Dublin city

The traffic monitoring system that we built has been tested on bus
data across Dublin city, provided from DCC. Each bus transmits
every 20 seconds information about its position and congestions.
The description of the data provided by the buses is given in Ta-
ble 1. The dataset’s properties are described in Table 2. In order
to get more meaningful information about the traffic conditions we
decided to process further the raw data, enhancing them with new
features. For each tuple that the buses transmit, we compute the
speed of the bus movement and the change in the delay value from
its previously received measurement, labelled as actual delay.

3.2 Our System Architecture
The main goals of our work is to provide a scalable and easy-to-
use traffic monitoring system. We propose a system architecture
(shown in Figure 3) that consists of: (i) a Distributed Stream Pro-
cessing System (Storm), (ii) a batch processing framework (Hadoop),
(iii) a distributed filesystem (HDFS), (iv) a storage medium (MySQL
Server) and (v) multiple Complex Event Processing (Esper) en-
gines used for detecting events of interest. Our architecture bares
a lot of similarities with the Lambda-Architecture [22], however
we differ in that we exploit the expressiveness of CEP engines to
support complex rules. In our framework the queries we execute
are user-defined Esper rules, and the merging of the real-time and
batch views is done by exploiting the capabilities of Esper (we will
discuss this in more detail in Section 4.2).
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Users in our framework complete an XML file that includes the de-
scription of the submitted topology (e.g., spouts, bolts) along with
the Esper rules they want to apply to the incoming raw data. We
enhanced Storm’s library by supporting the creation of topologies
via XML. The advantage of this, is that we avoid Storm’s standard
topology creation procedure, where the user must manually (with
Java code) specify how the components should interact with each
other. In the simplest case, the user must submit only a spout for
specifying the input source along with the rules she wishes to ex-
ecute. However, for more complex scenarios she can also define
extra bolts for pre-processing the raw data before the actual sub-
mission to the Esper engines. The pre-processed data before being
forwarded to the Esper engines, are stored to a distributed filesys-
tem, HDFS in our case.

Data stored in HDFS are used for computing the threshold val-
ues that will be utilized by the Esper rules for detecting complex
events. This computation is done by the batch processing layer,
in our case Hadoop. We chose Hadoop, since the stored data may
increase significantly in size, as new data constantly arrive in our
framework. We apply simple MapReduce computations in these
historical data and the calculated threshold values are stored to the
storage medium in order to be accessible from the Esper engines. In
our current implementation the storage medium is a MySQL server
but it can easily be substituted by a distributed solution, such as
Cassandra [11].

Storm via its scalability features (specifically the usage of more
tasks per bolt) enables us to increase the number of Esper engines
used for the event detection. This is achieved by increasing the
parallelism of the bolt that will be responsible for running the Esper
engine. So, if we increase the number of tasks for a bolt, we end up
having multiple concurrently running engines. To make full usage
of the parallelism, when we increase the number of tasks of the
corresponding bolt, we also increase the number of executors in
order to run each engine in a separate thread. Furthermore, we
allocate the executors into different worker processors to make sure
that each cluster node will be assigned with the same number of
Esper engines.

Using more engines increases the system’s throughput and the num-
ber of rules that can execute concurrently. Special care must be
given on how to allocate the user-defined rules to the available en-
gines (Section 4.2), as we want to fairly distribute the rules, avoid-
ing overloaded situations. Furthermore, rules in our framework
should dynamically adapt to new thresholds as threshold values
change overtime by the computations performed from the batch
processing layer. We examined several techniques (Section 4.3.1)

for collecting this information from the storage medium and join
them with the streaming data.

3.3 Rules Description
We define rules that allow us to detect events of interest in the traffic
data. Finding out where there may be traffic incidents or identifying
anomalies in traffic patterns, are examples of events of interest for
the Dublin City traffic management system. All events signify cer-
tain activities like low speed or increased delays at a particular area.
In general the complexity of the rules can vary significantly, as each
rule has different characteristics. For example, identifying if a bus
is delayed might be simple to detect, while detecting anomalies in
traffic patterns might involve computations over multiple simpler
events.

We created a generic rule template that checks if the reported at-
tributes from the buses aggregated in different locations, exceed
the thresholds. This generic template was selected after discus-
sion with the traffic experts in the Dublin City Council. The rule
template has the following parameters: bus data attribute, spatial
location and window length. The bus data attribute corresponds to
the bus data field or fields that the rule checks if they exceed the
predefined threshold. Example of these fields are the buses’ de-
lay or speed. We monitor different attributes in order to improve
our knowledge of the traffic conditions. The spatial location is the
spatial area that the rule checks for abnormalities. The reason why
we selected to create rules for different areas is that traffic jams
have spatial extent and in order to identify them we have to search
for abnormalities in these areas. The window length is the window
size of the stream that the rule keeps in memory for processing. In
our scenario we compute the average value of all the values in the
streaming window in order to compare it with the corresponding
thresholds. We used window-based streams because traffic data are
very noisy and taking the average value makes them smoother. The
generic rule described above has the following format and is fired
when the incoming data satisfy the following condition:

^f(attributei, l, s) > threshold(attributei, s)

threshold(attributei, s) = mean(attributei, s)+stdv(attributei, s)

where attributei is the data attribute that we check, f is the oper-
ator that is applied in the stream of data, l is window length of the
stream that we monitor and s is the spatial location in the city map
that we monitor. This generic rule’s complexity changes overtime
as the different spatial locations do not have fixed mean and stdv.

The EPL code that implements the generic rule template, described
above, is presented in Listing 1. The EPL rule contains three streams
as it is defined in the FROM clause. The first stream consists of
the last event that arrived in the system. The second stream con-
tains the last l values that arrived in the system and have the same
location as the last event. The last stream named thresholdLoca-
tion contains all the thresholds for all the possible locations for dif-
ferent hours of day and for weekdays and weekends. In addition,
the streaming data join with this stream in order to retrieve their
thresholds. The rule is fired when the average value of a specific
attribute is greater than the corresponding threshold, for a specific
location, hour and day.

Listing 1: Esper EPL Rule template

SELECT ⇤

657



Area 

of Interest

Figure 4: Bus trajectories in a specific area of interest

0 50 100 150
−600

−400

−200

0

200

400

600

time

de
la

y

 

 

Threshold
Bus 1
Bus 2
Bus 3
Average

Figure 5: Evolution of delay value for 3 different buses

FROM
bus . s t d : l a s t e v e n t ( ) as bd ,
bus . s t d : groupwin ( location ) . win : l e n g t h ( l ) as bd2 ,
thresholdLocation . win : k e e p a l l ( ) as t h r e s h o l d s

WHERE
bd . hour= t h r e s h o l d s . hour and
bd . day= t h r e s h o l d s . day and
bd . l o c a t i o n = t h r e s h o l d s . l o c a t i o n and
bd . location=bd2 . location

GROUP BY
bd2 . location

HAVING
avg ( bd2 . attribute ) > avg ( t h r e s h o l d s . attribute )

An example of a rule is presented in Figures 4 and 5. Figure 4
shows the trajectories of 3 buses moving in the Dublin city and the
corresponding area of interest. The rule checks for abnormalities
in this area. The rule is fired when the average delay’s value from
all the buses that move in the area of interest is greater than the
threshold for the particular area. Figure 5 shows the evolution of
the 3 buses that are in the bounding box, the average value of delay
for the 3 buses and the threshold for this area. The rule is fired
when the delay’s moving average exceeds the threshold value.

4. DESCRIBING THE COMPUTATION
In order to tackle the traffic monitoring problem we decompose it
into three main components:

1. Off-line Computation. The computations performed by this
component enable us to support dynamic rules.

2. Start-Up Optimization. This component optimizes the sys-
tem’s parameters according to the user’s requirements.

3. On-line Processing. The component that is responsible for
the actual processing of newly arriving data as well as to de-
tect events of interest.

Our objective in this work is to improve throughput and be able
to process as big datasets as possible. We provide algorithms for
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Figure 6: Region Quadtree with bus stops

all three components but we focus on the Start-Up Optimization
component because this defines the instance of the architecture we
run. The first two components are used in order to optimize the
performance of the third component.

4.1 Off-line Computation
This component is responsible to prepare the system in order to
be initialized and support it in possible future changes. Also it
makes our system dynamic as it could change the system’s param-
eters over time and make it to adjust to new, dynamically posed,
requirements.

4.1.1 Spatial Indexing
The Dublin City Council requested to be able to monitor city’s traf-
fic conditions at different spatial extent, e.g. from small city blocks
to whole road lines. For this reason the rules were defined with
a hierarchical decomposition regarding the spatial locations. This
hierarchical decomposition was not given to us, so we partitioned
the map in sub-areas. In order to partition a map there are differ-
ent approaches that we could apply, including the Region quadtree
data-structure, Grids, Voronoi diagrams or even arbitrary shapes
that include areas of the city. In our application we utilized the
Region quadtree.

The quadtree represents a partition of the space in two dimensions
by decomposing each region into four equal sub-regions, and so
forth. The region quadtree is created by adding some initial data
points to it and then splitting until each region keeps a maximum
number of data points. So the resulting tree is not always balanced.
In our case the quadtree was created by adding important coordi-
nates of the Dublin city, e.g. main road segments. Because these
points are not equally distributed in the city, as can be seen in Fig-
ure 6, the regions created by the quadtree are unbalanced. The user
decides the spatial extent of the monitoring by specifying in Esper
rules, either the layer of the Quadtree she wants to examine or some
explicit area of interest.

4.1.2 Bus Stops
Furthermore, we decided to monitor the traffic condition at areas
near bus stops in Dublin city. Bus data are noisy, especially when
buses report their stops. More particularly, we observed that a spe-
cific bus stop is reported at different locations. Also buses reported
that they were stopped while they were actually moving. Also
nearby bus stops seem to have different ids. We decided to cal-
culate new bus stops and create a tool, that for each line, direction
and GPS position, will identify the closest bus stop.

In order to deal with the problem of identifying the bus stops we
applied the DENCLUE [19] clustering algorithm in the GPS loca-
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Parameters Values

Output Rule’s Latency
Input 1 length window of a rule, l
Input 2 number of thresholds in the Engine that rule joins

with, t

Table 3: Parameters of Single Rule Latency Function

tions, where the buses reported that they just reached the bus stop.
Initially DENCLUE added a 2-dimensional Gaussian distribution
with � = 20m at each data point and then added all the Gaussians
in order to calculate the global density. Then for each data point
we identified its local maxima named as density attractor and we
kept together all the points that their density attractors were close.
These clusters do not consider the bus direction (i.e. a cluster may
have bus stops, where buses move in one and the opposite direc-
tion). In order to keep the different directions we decided to split
the clusters further. Our approach works as follows: We found the
average angle that the bus had when it entered in the cluster per
line and direction, and then we placed in the same subcluster the
bus lines and directions that had similar average angle. Then for
each new set of GPS position, line and direction it is possible to
find the closest subcluster. For the rest of this paper we will call
these subclusters as bus stops.

4.1.3 Supporting Dynamic Rules
Given that we look for abnormalities during the course of the day
for different spatial locations, we compute statistics continuously
and update the rules accordingly. These statistics are calculated us-
ing Hadoop jobs. The jobs are invoked periodically, e.g., every one
hour, to compute statistics for the different spatial locations in the
upcoming time window, e.g. for the next hour. Specifically, the
job calculates the mean and standard deviation of the parameters
defined in Table 6 (see Section 5) for the different locations (e.g.
quadtree areas or bus stops). In the map phase we retrieve the his-
torical data from HDFS and then emit them to the reduce tasks. The
reducers aggregate the parameters’ values for the different spatial
locations and then compute the mean and the standard deviation.
The results are stored in our MySQL server and are retrieved dur-
ing the online processing to be used as thresholds for the running
rules.

4.1.4 Estimate Engine’s Latency
A key factor of our analysis is the estimation of each Esper engine’s
latency. We build a model that takes as parameters the set of rules
to run, their characteristics, the number of available cluster nodes
and Esper engines, and estimates the latency of each engine. The
model’s architecture is presented in Figure 7. In order to do this
estimation we created three regression functions that are presented
bellow:

• Single Rule Latency Function (Function 1) This function
estimates the latency of a rule that has window l and t thresh-
olds. As we observed that these are the two main components
that affect the latency of a rule. The input and the output of
this function are presented in Table 3.

• Multiple Rules Latency Function (Function 2) The second
function estimates the total latency of an Esper engine to pro-
cess a tuple when we place multiple rules in the same engine.
This function takes as input the latency calculated from the
first function. If the user inserts rules with different format as

Parameters Values

Output Engine’s Latency
Input 1 Latency of rule 1
Input 2 Latency of rule 2

Table 4: Parameters of Multiple Rules Latency Function

Parameters Values

Output Latency Enginei
Input 1 Latency Enginei
Input 2 Latency Enginej
Input 3 Latency Enginek

Table 5: Engine’s Latency Function
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Figure 7: Estimation Model

ours, Single Rules Latency Function is not reliable, thus we
calculate the latency of the rule running in a single engine
and then insert in the second function this information. If
we place more than 2 rules we will call this function sequen-
tially, e.g. the output of this function will be fed again as its
input. The input and the output of this function are presented
in Table 4.

• Engine’s Latency Function (Function 3) Finally the last
function is used for estimating the latency of an engine’s
rules if it is placed in the same cluster node with other en-
gines. The latency of processing incoming events increases
if a cluster node is overloaded with many engines. The in-
put and the output of this function are presented in Table 5,
where three Esper engines run in the same cluster node.

4.2 Start-Up Optimization
This component is responsible for setting up the system, thus, is ex-
ecuted before the actual Storm topology starts processing incoming
data. Initially it collects all the rules that the user chose to run and
analyses their requirements. In the next step, the component de-
cides how to allocate these rules to different Esper engines. The
allocation is done based on the regression model explained in the
Section 4.1.4. Furthermore, the component’s optimizations can be
invoked periodically (or when new rules are submitted to the frame-
work) to adjust the rules allocation to the current system’s condi-
tions.

4.2.1 Rules Partitioning
Balancing the data processed by the Esper engines is one of the key
components to improving the overall system throughput. The rules
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Rule’s Partitioning Component

Input: Engines the set of Esper engines to use, rule the rule that
needs to be partitioned
Region_Rates Retrieve regions’ input rates for layer
rule.quadtree_layer
Sort Region_Rates in descending order
for all enginei in Engines do

rate[enginei] = 0
end for
for all region in Region_Rates do

less_loaded = engine1
min_rate = rate[engine1]
for all enginei in Engines do

if min_rate > rate[enginei] then
min_rate = rate[enginei]
less_loaded = enginei

end if
end for
Assign region to less_loaded engine
rate[less_loaded] = rate[less_loaded] + region.rate

end for
Algorithm 1: Rule’s Partitioning Algorithm

Rules Allocation Component

Input: N number of Esper engines, Groupings_Set set of the
groupings with their corresponding rules
for all groupingi in Groupings_Set do

scores[groupingi] Estimate groupingi’s rules score with 1
engine
engines[groupingi] = 1

end for
N = N � |Groupings_Set|
for j = 1 to N do

max_score = 0
chosen_group = grouping1
for all groupingi in Groupings_Set do

estimated_score Estimate groupingi’s rules score for
engines[groupingi] + 1
if max_score < estimated_score then

max_score = estimated_score
chosen_group = groupingi

end if
end for
scores[chosen_group] = max_score
engines[chosen_group] = engines[chosen_group] + 1

end for
Algorithm 2: Rules Allocation Algorithm

that our system examines detect abnormalities in buses’ reported
values at different spatial locations. Thus, we partition the rules by
sending the data that correspond to different spatial locations into
different Esper engines. We follow a partitioning schema that par-
titions a rule’s spatial locations to different engines based on their
input rates. The tuples are sent to the appropriate engine according
to this schema. We consider as the input rate of a spatial location,
the amount of bus traces expected to be processed by the engine
in that location. We have some initial knowledge about these rates
(e.g. from historical data) and incrementally update them while the
application runs. As you can see in Algorithm 1, the rule’s exam-
ining locations are partitioned in a way that all engines will receive
approximately the same aggregated input rate.

4.2.2 Rules Allocation
One of the key components for achieving fast processing of the con-
stantly arriving new primitive events is the allocation of the rules to
the available Esper engines. We exploit the hierarchical structure
of our rules and provide an efficient assignment of the rules to the

engines. Recall that the running rules examine spatial locations.
These locations may overlap as one rule may monitor the hole city
and other rules some specific roads or neighbourhoods.

Because we have multiple rules per spatial layer and a limited num-
ber of engines, we might need to group together rules that belong to
different layers. This approach can be beneficial because we avoid
data re-transmissions. If we assign each layer in a different engine,
newly arriving primitive events must be transmitted to all the en-
gines, limiting the benefits of the Storm’s parallelism and adding
extra traffic between the cluster nodes. Conversely, if we put all
rules examining the second and third quadtree layers in the same
grouping, we would not have to sent new events twice as areas of
the third layer will be assigned to the same engine with their par-
ents from the second layer. We achieve this by partitioning rules’
locations (see 4.2.1) based on the higher possible layer. So in the
previous case, we would partition the rules based on the spatial lo-
cations belonging to the second layer of our quadtree.

We propose a greedy algorithm (Algorithm 2) that receives as input
a possible set of groupings of the different layers examined by the
rules, and provides an allocation to the available engines in a way
that maximizes a score function. The time required to process the
input data for the rules of groupingi in Enginej is given by the
following formula:

timei,j = inputRatei ⇥ latencyj (1)

The score for each grouping will be related to the minimum time
required to process its set of tuples in the engines it has been as-
signed.

scorei =
WiX

i=1

wi ⇥ min
j2Engines

(timei,j) (2)

where Wi is the number of rules in groupingi. Also wi is the
weight of a particular rule. The traffic management operator may
select that some rules are more important than others. For example,
an appropriate policy may be to place higher weights in the rules
that take much time to execute.

Our algorithm is not a simple variation of the Bin-Packing problem
but the process we follow is a bit more complex. If we place more
than one rule in the same engine, the estimation of the engine’s la-
tency is not trivial, as it varies for different combinations of rules.
For this reason we propose an algorithm that utilizes the regres-
sion model for estimating the observed latency when we allocate
the rules to multiple engines and then computes the corresponding
score via Equation 2. The algorithm first gives in each grouping a
separate engine to execute. So if the initial grouping considers the
root layer with the second layer together, while the third layer sep-
arately, then the algorithm would allocate one engine for the first
pair of layers and a second engine for the third layer’s rules. Fur-
thermore for each grouping we estimate its achieved score for this
initial assignment.

In the next step of the algorithm, we estimate for each grouping its
score if we had added an extra engine for that particular grouping.
The grouping that leads to the greater score increase is the one that
will use the extra engine. This approach enables us to maximize the
achievable score without examining all the combinations of layers
and engines. In each step we keep the new score estimation for the
chosen grouping and increase the number of engines appropriately.
We repeat this procedure until all engines have been utilized.
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4.3 On-line Processing
This component consists of the Storm topology and the Esper en-
gines. The rules are allocated to these engines via the techniques
proposed in the Start-Up Optimization component.

4.3.1 Retrieve Batch Generated Data
Esper rules do not have a unique threshold but have different thresh-
olds for different input data (i.e. different bus stop, areas etc). Re-
call that these values are computed by Hadoop and stored in an
SQL server. These thresholds are retrieved using the SQL query
that is presented in Listing 2. This query takes as parameter the
value s which tunes the value of the threshold as s times the stan-
dard deviation away from the mean.

Listing 2: SQL Query that retrieves the thresholds

SELECT DISTINCT
a t t r _ m e a n +s⇤ a t t r _ s t d v as thresholdLocation ,
c u r r e n t H o u r ,
da teType ,
a r e a I d 1

FROM
s t a t i s t i c s _ a t t r i b u t e

In order to feed the rules with these thresholds we tested the fol-
lowing three methods:

• Join with Database Each new tuple that arrives in an Esper
engine will do a join with the database in order to retrieve the
corresponding threshold.

• Create Multiple Rules Retrieve all the thresholds from the
database in advance and for each possible combination create
the relevant rule.

• Add the Thresholds in an Esper stream Retrieve all the
thresholds from the database and add them in a new Esper
stream. Each new tuple will join with this thresholds’ stream.

4.3.2 Storm Topology
In Figure 8, we saw the Storm topology that we created for the
described traffic monitoring application. The application consists
of seven components. Newly arrived bus traces are emitted to the
topology from the BusReader spout. In our current implementation
the traces are stored in csv files so we use this spout for reading the
stored data. The PreProcess Bolt is responsible for adding extra in-
formation such as the vehicle’s speed and direction. These data are
forwarded to the Area Tracker bolt which detects the areas in the
different quadtree layers where the vehicle currently resides. Each
task of this bolt has an instance of the Region Quadtree and queries
it to find the areas that the new trace belongs. The BusStops Tracker
bolt also adds a new attribute in the examined trace, specifically it
adds the bus stop id. Then the data are emmitted to the Splitter Bolt
that is responsible to send each tuple to the appropriate Esper Bolt
task. As we mentioned above our system consists of many Esper
engines located in different tasks of the Bolt. It is crucial to route
each bus data tuple to the appropriate Esper engine as each engine
examines different spatial locations (Section 4.2.1). Finally the Es-
per Bolt executes the user-defined rules that are used for detecting
unusual traffic conditions in the city. We have multiple tasks of this
bolt to exploit the inherent parallelism of Storm. Detected events by
the EsperBolt are forwarded to the EventsStorer bolt which stores
them to a pre-decided storage medium, in our case a MySQL server.

BusReader 
Spout 

PreProcess 
Bolt 

Area 
Tracker 

Bus Stops 
Tracker 

Esper 
Bolt 

Events 
Storer 

MySQL  
Server 

Splitter 
Bolt 

Figure 8: Traffic Monitoring Topology

Parameters Values

Attribute: Delay, Actual Delay, Speed, Delay and Congestion,
All

Location: Bus Stops and Quadtree Areas
Window Length: 1, 10, 100, 1000

Table 6: Parameters of the generic rule template and the cor-
responding values

5. EVALUATION
We have performed an extensive experimental study of our ap-
proach on our local cluster consisting of 7 VMs, running on three
actual nodes. Each VM had attached one CPU processor and 2 GB
RAM. All VMs were connected to the same LAN and their clocks
were synchronized with the NTP protocol. We used Storm 0.8.2,
Hadoop 1.2.1 and Esper 5.1. We used a separate node in our cluster
where the Storm Master process (Nimbus) executed to avoid over-
loading one of the VMs. In this work, we use the values in Table 6
as parameters of the generic rule template described in Section 3.3.
For our evaluation we fed our system with bus traces from the pe-
riod of 1st to 31st January (4 GB in total) at full speed, so without
any delay between the tuples inter-arrivals. We followed this policy
to stretch our system’s performance, specifically every second our
application received 60, 000 bus traces.

We focused on the performance of the bolt that runs the Esper en-
gines, as it is responsible for the more heavy-weight processing and
also because it is the part of the topology where our optimizations
were applied. Two main metrics were considered:

1. The achieved throughput in regards to the number of input
data that are processed in a fragment of 40 seconds

2. The average latency to process a single input tuple. Again
we considered a time period of 40 seconds.

To collect these data we enhanced Storm with an extra monitor
thread per worker processor, that periodically (every 40 seconds
in our case) reports these metrics for each bolt’s task to the Nim-
bus node. The Nimbus aggregates these data to compute the final
monitor metrics per bolt.

5.1 Regression Evaluation
In order to build the regression model, described in Section 4.1.4,
that estimates the latency for an engine if we add in it two sets of
rules, we used polynomial regression. Initially we ran several ex-
periments in order to build the appropriate dataset and we splitted
it in training and test set. Then we feeded a first and a second order
polynomial regression model in this dataset. From the experiments
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Figure 10: Performance of retrieving location thresholds methods

we identified that the first order polynomial regression has less av-
erage absolute error (around 60%) than the second order. This is
the reason why we selected to use this model in order to model
this function. The identified function is: 0.0077598⇥ latency1 +
2.3016⇥ e�05 ⇥ latency2 +2.4717. The generated model is pre-
sented in Figure 9. We followed a similar approach for creating the
other two regression functions.

5.2 Retrieving Results From Storage Medium
We evaluated our three proposed techniques for dynamically re-
trieving the rules’ thresholds from the storage medium, depicting
their impact on the observed latency. We also provide results when
a static threshold is used. In this case no data needs to be retrieved
from the storage medium. This depicts the optimal scenario where
we do not have the retrieval overhead. As you can see in Figures
10(a), 10(b), using an inner SQL query for each rule deteriorates
the performance of the framework because for each incoming tu-
ple we have to join the tuples’ attributes with the ones stored in the
storage medium, leading to a significant increase in the latency.
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Figure 11: Rules Allocation Throughput Performance

In regards to the two other methods you can see that using a new
stream for the thresholds (blue line in the Figures) has latency com-
parable to the one observed in the no threshold scenario. The multi-
ple rules approach leads to an increased latency because the engines
are overloaded with multiple rules, so there is a significant differ-
ence compared to the new stream approach as you can see more
clearly in Figure 10(b). For the remaining experimental evaluation
we used the new stream approach.

5.3 Rules Partitioning
In regards to partitioning the rules to their allocated engines, we
compared our proposal with two other approaches:

1. All Grouping: Rules’ spatial locations are partitioned to the
engines similarly to our approach, but newly arrived tuples
are emitted to every engine.

2. All Rules: All engines have all the rules’ locations allocated
to them and each incoming tuple is forwarded to the engine
that was decided by our partitioning schema.

We compared them with our algorithm when 10 rules are running.
Five of the rules examined each of the different attributes (see Table
6) for the bus stops, while the other five monitored the leaves of
the quadtree. All rules had 100 tuples in their window length. As
you can see in Figures 12, 13, our partitioning proposal achieves
a larger increase in the system’s throughput, because the system is
not overloaded with extra tuples (as the All Grouping technique
does) and also the engines are not overloaded with rules as in the
All Rules scenario.

5.4 Rules Allocation
We evaluated the performance of our proposed allocation algo-
rithm, when rules belonging to different quadtree layers must be
allocated to the available engines. We used two Workloads based
on the attributes and locations described in Table 6. Workload 1
used 1, 10 and 100 window lengths while in Workload 2, rules
had 100 and 1000 as window lengths. We compared our algorithm
with a simple round-robin approach that considers the rules based
on the layer of the quadtree they belong. The algorithm assigns
the engines to these layers via a round-robin fashion. As you can
see in Figure 11 our algorithm achieves better results because it al-
locates rules from different layers together avoiding the overhead
of retransmissions that occur when the round-robin algorithm is
applied. Specifically our algorithm allocated for both workloads
all rules together, until fourteen engines were considered. When
fourteen engines were used, rules concerning the bus stops were
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Figure 12: Observed latency for differ-
ent partitioning approaches
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Figure 13: Achieved throughput for dif-
ferent partitioning approaches
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Figure 14: Observed latency for differ-
ent workloads
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Figure 15: Achieved throughput for dif-
ferent workloads
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Figure 16: Observed latency for differ-
ent number of VMs

0 5 10 15
2

4

6

8

10

12

14 x 104

Number of Engines

Th
ro

ug
hp

ut
 (t

up
le

s/
tim

e)

 

 
VMS3
VMS5
VMS7

Figure 17: Achieved throughput for dif-
ferent number of VMs

examined in their own dedicated set of engines, and all the other
rules were put together to the remaining engines. So our approach
maximizes the overlapping between the layers and thus minimizes
the required data re-transmissions.

5.5 Different Workloads
We also examined the performance of our system when different
workloads are assigned to the available Esper engines. In these
experiments we used our proposed allocation algorithm, and ex-
amined how our system scales with different workloads. We con-
sidered three different workloads based on the rules running in our
application. In our evaluation we also examined cases where these
workloads were issued concurrently.

• Last Event. Consisted of ten rules that kept only one pre-
vious tuple in their time window. Five rules examined the
attributes values at the bus stops, while the other five moni-
tored the attributes in the leaves layer of the quadtree.

• Last Ten Values. Consisted of ten rules that kept ten pre-
vious tuples in their time window. Rules had the same at-
tributes and locations as the Last Event workload.

• Last One Hundred Values. Similarly, this workload con-
sisted of ten rules with the same structure as the other two
workloads, only this time we kept one hundred previous tu-
ples in the rules’ time windows.

As you can see in Figure 15, our system is able to achieve a steady
increase in the overall system’s throughput even when we apply all
the workloads at the same time.

5.6 Scalability
Finally we evaluated the scalability of our framework when we vary
the number of VMs that were used. We examined the framework’s
performance for 3, 5 and 7 VMs. We used the last workload from
the previous section for these experiments. In Figures 16, 17, you
can see that when more VMs are available we achieve a steady
throughput increase. In regards to latency we can see how over-
loading the system can lead to its significant increase. For example
in the 3 VMs case, using more than four Esper engines leads to a
huge increase in the observed latency. Also you can observe that
the best results in regards to latency occur when we do not exceed
the available processing resources (CPU cores).

6. CONCLUSION
In this paper we presented a novel traffic management system for
detecting complex events in the city of Dublin. We proposed a
new system architecture that combines Storm, Esper and Hadoop,
offering a truly scalable and easy-to-use framework for efficient
complex event processing. We provided algorithms for allocating
the rules to the available Esper engines and processing historical
data in order to be able to support dynamic rules. Our experimen-
tal results in our local cluster indicate a clear improvement in the
system’s performance.
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ABSTRACT
For decades forgetting has been treated as an abnormality,
a malfunction of the brain that leads humans to lose stored
information. Recent results, however, suggest that forget-
ting is not only a malfunction of the human storage system,
but also a useful feature. In order to guarantee a quick re-
sponse in the face of the limited processing power of the
brain, acting quickly on less or reduced information is key.

With storage becoming ever cheaper and continually grow-
ing it has become standard practice today to store each and
every single data item. However, even increasingly powerful
processors cannot deal with this data deluge. In this paper
we consequently argue that forgetting and its mechanisms
should be a part of today’s data management, particularly
for techniques requiring fast and/or approximate query an-
swers. While forgetting or shedding information may have
far-reaching implications for current methods in data man-
agement, in this paper we focus on discussing forgetting (and
learning) in the context of data synopses.

1. INTRODUCTION
Experimental evidence in neuroscience research recently

revealed that human forgetting [25] is not only a side e↵ect
of disease or of age, nor do we forget because the capac-
ity of the brain is limited. Rather, we forget because the
brain has limited computational power, yet we live in an
environment where we need to make rapid judgments [1, 3].
The brain has consequently evolved to forget so that we can
react quickly. In a world where we constantly absorb and
learn information, we need to forget in order to enable split
second decisions: we would rather react quickly based on
imprecise or approximate information rather than too late.
In an approximate world, who needs precision anyway?

One might argue, that forgetting is important in an en-
vironment with limited computational power and where ap-
proximate answers are su�cient, but that it has no place in
a world with almost unlimited computational power. There
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are, however, many scenarios where computational power is
limited or where response time is restricted. Forgetting can
therefore also work to our advantage and in this paper we
argue that forgetting or shedding information can also be
beneficial in data management.

Forgetting may have broad implications and may trigger
interesting discussions. Recent work, for example, intro-
duces the notion of data rotting [18], i.e., a mechanism to
periodically reduce data in a database to avoid it growing
boundless (while ideally also adding the removed data in
condensed and curated form back to the database). In this
paper, however, we focus on the exact mechanisms of for-
getting or, put in simple terms, fading memories (as well
as learning) and use them to develop reconsolidating data
structures, i.e., data structures that manage information
through ”forgetting” but also ”learning”. While we initially
discuss the idea of reconsolidation structures broadly, we
also elaborate on its application to data synopses in more
detail. Surely, the case for data synopses [10] for quick and
approximated answers has long been made, but what we
discuss here is how to use some of the brains mechanisms
to e�ciently manage data synopses along with the resulting
data management research challenges.

The remainder of this paper is structured as follows. We
first discuss the neuroscience background of forgetting and
learning in Section 2 and discuss where these mechanisms
can fit into data management in Section 3. In Section 4 we
elaborate on how the mechanisms of forgetting, i.e., recon-
solidation, can be a powerful design principle when manag-
ing data synopses and discuss the resulting research chal-
lenges in Section 5. We discuss other potential applications
in Section 6 and conclude in Section 7.

2. NEUROSCIENCE BACKGROUND
Several theories have been developed in recent decades to

explain forgetting (as well as learning). For decades, the cog-
nitive neuroscience theories of memory decay [4] (memory
traces fade over time) and memory interference [16] (mem-
ory traces encoded with similar stimulus replace each other
- similar to collisions in a hash map) were popular expla-
nations for forgetting. More recent theories of consolida-
tion [19] and reconsolidation [2], however, have gained much
support lately, primarily due to their sound explanation of
underlying cellular and molecular mechanisms [24]. They
are today the most widely accepted explanations for forget-
ting (and learning).

In the following we discuss and summarise the consolida-
tion/reconsolidation theories and discuss their implications.

 

 

665 10.5441/002/edbt.2015.66

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2015.66


2.1 Learning
The basic premise of learning is that memory traces [23]

are not immediately stable or permanently stored when they
are learned (encoded). Instead, memory traces are made
permanent in the consolidation phase through strengthening
(or weakening) the connections (synapses) between the neu-
rons involved in a memory trace. By strengthening connec-
tions (or a synapses) between them, signals can be relayed
quicker between two neurons and the firing patterns corre-
sponding to memory traces can consequently be adapted.

The underlying biochemical process to strengthen synapses
is very slow and can take several hours, during which mem-
ories are not stable. During this consolidation phase, the
synapses need to be repeatedly stimulated. The hippocam-
pus therefore repeatedly replays the firing patterns corre-
sponding to the traces.

Any stress on the brain in general can interrupt the con-
solidation phase and memory traces may never become per-
manent in the brain or may only become weak. Anecdotal
evidence for this interruption, for example, is that learned
facts cannot easily be recalled after an all-nighter of learning
(and implied lack of sleep). Similarly, interrupting consol-
idation with heavy drinking tends to erase whatever was
recently experienced leading to a mental blackout.

2.2 Forgetting & Updating Memory
Although for a considerable time forgetting was assumed

to be governed by completely di↵erent mechanisms, it is
surprisingly similar to learning [2]. When retrieving mem-
ory traces (remembering), the traces become unstable or
labile. The same synapses that were strengthened during
the consolidation phase are rendered unstable and need to
be reconsolidated in a process lasting for several hours sim-
ilar to consolidation (despite built on di↵erent biochemical
mechanisms).

Whilst retrieving information as a memory, the associ-
ated trace is therefore temporarily unstable and can be al-
tered. Similar to interference during the consolidation pro-
cess, also interference during reconsolidation alters the trace.
Depending on the interference, whether it is positive or neg-
ative, memory can become stronger or weaker than it ini-
tially was. Reconsolidation has been extensively studied in
fear memory, for example, in the experimental treatment
of post-traumatic stress disorder, memories are recalled to
make them unstable and interference in the form of electric
stimulation is used to erase them. Similarly, positive feed-
back can be used to reinforce memory or to alter it [11].
Using positive feedback repeatedly can make memory traces
more precise or can alter them substantially.

Experiments further show that the temporal dynamics of
memory reconsolidation depend on the strength and age of
the memory [20], such that younger and weaker memories
are more easily reconsolidated than older and stronger mem-
ories. Similarly, the question whether old memory traces are
updated or stored as new primarily depends on the age of the
memory and also on the similarity of the event when recall-
ing the trace: the similarity needs to be greater for updating
an old memory, whereas for only recently encoded memory,
the similarity threshold can be considerably smaller [9].

2.3 Reconsolidation in the Context of Data Man-
agement

To summarise from a computer science (or data manage-
ment) perspective, forgetting is not simply a linear function

of time. Instead, it is either a consequence of stress/disease
or, surprisingly and crucially, from remembering it. Recall-
ing memory makes the information unstable and requires re-
consolidation. The reconsolidation process can lead to both,
improvement (through updating) or to degradation (wither-
ing) if the reconsolidation process is interrupted. If and how
much the memory is improved or degraded also depends on
cognitive cues, i.e., feedback, during reconsolidation: posi-
tive feedback leads to improved memory whereas negative
feedback generally leads to forgetting [11].

A key aspect of forgetting or learning memory is that
traces are not completely erased (or completely accurately
stored), i.e., they are not erased or learned as one, but are
instead gradually degraded or improved. Thus, the mech-
anism of reconsolidation is a powerful means to reduce the
amount of information that needs to be taken into account
to answer a question (compute a query result) while still
ensuring that relevant information is retained.

Today’s ever-cheaper storage hardware allows storing nearly
everything and eliminates the need of deleting old data. Sim-
ilar to the brain, however, our ability to store data far ex-
ceeds today’s data processing capacity and so, to keep an-
swering queries quickly, we need to radically reduce the data
taken into consideration. Using a mechanism similar to for-
getting (and reconsolidation) in today’s data management
could be very powerful to gradually delete data permanently.

A more cautious approach to use the powerful mechanism
of forgetting (and learning) in data management, however,
does not permanently delete information/data. Instead it
can be used to manage summaries of data by removing (for-
getting) from summaries and adding data (from the full
dataset) to them. The key aspect of forgetting (and learn-
ing) is how memory fades away (or is strengthened) gradu-
ally. This mechanism enables reducing the space needed to
store a data structure by reducing its precision or expand-
ing its size by increasing the precision. Consequently, its
size and therewith query time cannot only be controlled by
dropping or adding single items as a whole, but by reducing
their size individually; similar to fading memories.

Using reconsolidation on proxy data structures has simi-
larities to using caches in data management (and computer
science in general) but also di↵ers substantially.

First, caches are primarily small because they are expen-
sive as opposed to the brain where the size is limited to
guarantee response time. In the brain, forgetting is pri-
marily driven by the need to reduce the time to process
information. In the cache, however, the idea is rather to
reduce communication time and the data is therefore moved
to faster storage hardware (and also closer to processing).
Essentially, it is not the processing time that is reduced,
but rather the communication time, which helps in turn to
reduce the overall processing time.

Second, in the case of reconsolidation, recently used data
items are labile or prone to change whereas in caches, items
that have not been accessed in a while are evicted and re-
placed by frequently and recently accessed data items (de-
pending on the caching policy).

Third and crucially, items in a cache are typically either
completely loaded or completely evicted (if room is needed
for more items) and cache management is completely obliv-
ious of the content of the items cached. Reconsolidation, on
the other hand, is aware of the items’ contents and reduces
or improves their precision or resolution gradually.

With its ability to fade and strengthen data/information,
reconsolidation is consequently particularly relevant for ap-
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plications (or data structures) that allow for imprecision.
This process is similar to data synopses [7], which can give
quick approximate answers instead of accessing all data to
give an excruciatingly slow (but precise) answer. Data syn-
opses are pivotal today because the same technological ad-
vances that enable large-scale analysis of data also enable
the generation of data on a similar scale. Yet the growing
data generation capacity combined with cheap storage tech-
nology is likely to keep on outpacing the analysis capacity.

3. RECONSOLIDATING DATA STRUCTURES
What we contemplate here are reconsolidation data struc-

tures that, similar to caches or data synopses, act as a sur-
rogate for the full dataset. Similar to the brain, they are
limited by a time constraint to answer a query (and by giv-
ing a time constraint, they are also constrained by the space
that they can use because of limited processing power avail-
able) and manage the precision of the data summary. The
reconsolidation data structure, an approximated data sum-
mary, is used to quickly answer the query approximately.

At the core of reconsolidating data structure is the idea
of treating data items as not oblivious to their content,
but rather as aware of it. The major di↵erence to existing
caching strategies (and data synopses) is that data items are
not dropped based on a binary decision, but their precision
is decreased or increased, depending on how much the user
is interested in them. Gradually improving or degrading the
precision of data can of course only be tolerated in applica-
tions where precision is not crucial but where time matters.
This is mostly true for applications where, similar to the
brain, an approximate but quick answer is more important
than an exact and slow one like, for example, in applications
where humans consume the result.

To design reconsolidating data structures, we map the
neuroscience mechanisms of forgetting and learning on the
idea of data synopses and caches. This essentially means
that we focus on a reconsolidating data structure (RDS)
that acts as a surrogate for a complete (and potentially mas-
sive) dataset and is used to answer user queries. We further
interpret queries to an RDS as a memory retrieval, i.e., re-
call of a memory trace. We then define accurate and com-
plete queries to the underlying data structure dataset as new
learning (or as interference with existing memory traces),
i.e., improving precision of the information. Absence of a
query to a dataset, on the other hand, is interpreted as if
the answer from an RDS (and with it the RDS) is precise
enough or, more precisely, too accurate and therefore uses
more space than needed and its accuracy can thus be de-
graded. The age of memories in RDS is used to decide how
fast the information is degraded: similar to the brain, old
memories are degraded slower than new memories.

Put more simply: a query to the reconsolidation data
structure answers the query and makes the data items touched
labile/unstable. A subsequent query to the full data set
means that the approximate query result was not precise
enough and consequently learning starts, i.e., the precision
of the data items touched is increased. Absence of a query
to the data means that the approximate result was precise
enough or, more importantly, too precise and the precision
of the data items touched is reduced.

Of course application specific cues on the quality of the
result can also be used to decide whether to improve or de-
grade precision, similar to Google’s result ranking applica-
tion where a click on a result is fed back to Google and is

used to rank the results for the same keywords in future
searches. Any such cue, however, is particular to an appli-
cation and cannot be used in general.

Using a reconsolidation strategy for managing data syn-
opses or caches, however, bears the risk that items are loaded
into the surrogate dataset that are retrieved once but never
again. Their precision may therefore never degrade and they
may never be entirely dropped from the dataset. They will
remain in the dataset indefinitely taking up space. However,
we primarily propose reconsolidation data structures so that
the response time in which approximate query answers are
given is limited (and not to strictly adhere to a space bud-
get). Still, if space is also a key concern, then additional
mechanisms (like memory decay [4] where memory degrades
as a function of time) can be used.

Clearly, for this idea to work in practice, the di�culty is
to define the process of reducing or improving precision and
to define how to query the resulting data structures. The
latter, however, will in most cases remain the same. We will
discuss this in the following for a number of applications
where reconsolidation can prove useful.

4. EXAMPLE APPLICATION: DATA SYN-
OPSIS

The reconsolidation data structures we propose and dis-
cuss here are a rather abstract concept/mechanism that can
be applied to di↵erent types of data structures. In the fol-
lowing we discuss how they can be used in the context of
data synopses to make them a powerful tool in the face of
a mass of ever growing data. We first provide background
information on data synopses and then discuss the potential
of reconsolidation for synopses.

4.1 Synopses Background
Research in data synopses has in the past primarily been

driven by applications like data streams and cardinality es-
timation for query processing [7]. Their very nature, how-
ever, presents a great opportunity to accelerate approximate
query execution in the context of big data.

4.1.1 Overview
The basic idea of data synopses is that the full data set is

summarised, typically by using compression [7]. The synop-
sis acts as a surrogate of the data and is queried instead of
the full dataset. Through compression or summarisation the
synopsis is usually considerably smaller than the full dataset
itself and, consequently, queries are executed substantially
faster on the synopsis. The execution time of a query on
the synopsis depends primarily on the size of the synopsis
(unless additional auxiliary data structures like indexes are
used). The size of the synopsis in turn depends on dataset
characteristics, i.e., how easily compressible the data is, and
is further controlled by the compression used.

Because of its substantial compression ratio, lossy com-
pression is often used but doing so also leads to imprecise
representations of the data. Data synopses based on lossy
compression can consequently only approximately answer
queries. Clearly there is a trade-o↵ between size of the data
synopsis (and thus query execution time) as well as the qual-
ity of the approximation, i.e., the smaller the approximation,
the less accurate it is and thus the bigger the error becomes.
Irregardless of the quality of approximation used, the key
of data synopses is that they provide a user with tight error
bounds expressing how accurate the received query result is.
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Data synopses have in the past primarily been studied
and used in the context of data streams and to estimate
the cardinality of database tables (for query planning) [7].
With data growing beyond what can be today handled e�-
ciently and reasonably, data synopses are again being con-
sidered as an interesting and competitive approach: instead
of analysing the potential terabytes and petabytes of data
in big data applications in a time consuming process, sub-
stantially smaller synopses can be queried almost instantly.

4.1.2 Types of Synopses
Considerable e↵ort in the past has primarily developed

four types of synopses. First, random sampling [21] takes
samples at random out of the dataset (or the relation) and
is very well suited for aggregate queries. Samples can be
taken online, at query time from the full dataset, or o✏ine,
i.e., prior to querying to store them in a synopsis data struc-
ture. Online sampling is particularly interesting to improve
the quality of the query result continuously: as long as the
user is willing to wait, samples can be taken to improve
the accuracy of the approximate query answer. For massive
data that are primarily stored on disk, however, taking the
samples online from the full dataset, as the query is being
executed, is unlikely to be feasible due to the high cost of
random access to the disk. Instead, big data sampling has
to take samples o✏ine, i.e., once from the full dataset and
store the samples separately. Clearly, in the case of o✏ine
sampling, the more samples that are taken, the more precise
the approximation, but the bigger the synopsis will also be.

A second well-researched type of synopsis is histograms [14].
In the context of databases, histograms play a crucial role in
query optimisers and are often used for the purpose of data
visualisation. Histograms summarise the data into bins each
with its own value range, e.g., each bin stores the count of
values/tuples in its range. Doing so makes them particu-
larly useful for range-count queries, but they also have the
potential to be used for general analysis queries [7].

Synopses based on wavelets summarise and approximate
the data through wavelets [5]. Essentially, wavelet trans-
formation is applied to relations or to time series resulting
in a collection of wavelet coe�cients. The size of the syn-
opsis depends on how many coe�cients are stored, which
in turn defines the accuracy with which queries can be an-
swered. The size of the synopsis alone, however, does not
define the query execution time: at runtime, query execu-
tion can choose to ignore coe�cients, thereby reducing query
execution time, but also the degree of precision.

Relatively new are synopses based on sketches [6]. The
basic rationale is to summarise the data per query type.
As opposed to sampling, all data is considered, but only a
small summary is retained (e.g., for a sum query all values
are added up and only the sum is stored). As each query
can be supported by a sketch, this approach is very powerful
and applicable to all types of queries. Defining a new sketch
per query type, however, requires considerable e↵ort.

Artificial neural networks are also used to learn or approx-
imate datasets [22] (for example time series [8]). Inspired by
neuroscience, they use a graph with neurons as vertices and
synapses as edges to answer queries approximately. Origi-
nating from machine learning neural networks are, however,
rarely used as synopses in the management of data.

4.2 Reconsolidating Data Synopses
The basic idea of using reconsolidation data structures

as a data synopsis [7] (or put more simply, using a synopsis

featuring reconsolidation) is to improve or degrade the preci-
sion of the synopsis depending on the queries. The precision
of regions frequently queried (in both, the synopsis and the
dataset) is increased and the precision of those regions that
are only queried in the synopsis is reduced.

A straightforward target to apply the idea of forgetting
(or reconsolidation in general in order to support improv-
ing memory) is to use it on data synopses based on neural
networks. They are modelled very similarly to the brain by
using a graph with neurons as vertices and the connections
(edges) between vertices represent the synapses. Synapse
strength (and thus ultimately the encoding of information)
can be modelled as weight of the edges. Degrading the syn-
opsis is accomplished by reducing the weight of the edges
(or by removing them altogether) and increasing the preci-
sion by increasing the weights. Changing the weight of the
edges, however, will not e↵ectively reduce the size of the
synopsis. Hence, although neural networks lend themselves
perfectly to the idea of forgetting, forgetting does not have
a significant impact on the size of synopses based on neural
networks or the time to execute queries.

There is, however, no need to restrict the idea of data syn-
opsis or models based on neural networks. Much more inter-
esting to apply reconsolidation to are data synopses based
on, for example, wavelets [5]. Wavelets are used to approx-
imately interpolate and therefore compress the underlying
data set. Clearly the data synopsis is only an approxima-
tion of the real data set, but by using reconsolidation, areas
or ranges of interest, i.e., queried over in the synopsis and
in the complete dataset, can be stored with more precision.
Others, retrieved only from the synopsis, can gradually be
degraded by using less precise wavelets for interpolation.

Similarly, in data synopses based on histograms [10], pre-
cision can also be increased locally for interesting regions
and can be decreased for uninteresting ones. In either case,
the queries can be executed as usual on the reconsolidating
synopsis. In any scenario where data synopses provide ap-
proximate answers, error bounds or guarantees are crucial.

5. DATA MANAGEMENT RESEARCH CHAL-
LENGES

Applying the idea of reconsolidation to data synopses in-
troduces several interesting data management challenges and
thus research opportunities.

5.1 Adapting Data Synopsis Resolution
Key to the idea of reconsolidation data structures is to

change the precision in given areas of it. Queries to the
synopsis and the full datasets are used to infer what ranges
(e.g., areas in a spatial model) the user is interested in ex-
ploring and analysing. The precision is increased in areas
where the scientist is interested in and decreased elsewhere
as a result of users’ queries.

For sampling, assuming the samples are stored in a syn-
opsis and are not taken online (in which case there is no
data structure other than the full dataset needed), this can
be achieved by taking and storing more samples from areas
that users are interested in and deleting samples from areas
where the interest is low.

In the case of histograms, improving precision is accom-
plished by adding bins and, thus, making the intervals (or
value range of the bins) smaller and consequently more pre-
cise. Conversely, reducing the precision is similarly straight-
forward: neighbouring bins can be combined e�ciently to
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make the resolution coarser (by increasing the value range)
in areas with little interest. Figure 1 illustrates with the ini-
tial histogram (top) and the reconsolidated histogram (bot-
tom) where in ranges of little interest (e.g., 1-30 & 70-100)
bins are collapsed and in areas of a lot of interest bins are
split.
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Figure 1: Initial histogram (top) and reconsolidated

hisogram with adjusted precision (bottom).

For both, histograms as well as sampling, improving or
reducing the precision is not very challenging. For wavelets
and sketches, the two types of synopses that enable answers
to more general classes of queries, however, changing the
precision is not straightforward.

Wavelets are an interesting type of synopsis for reconsoli-
dation. By definition, querying a wavelet based synopsis can
be accelerated by ignoring coe�cients that provide more pre-
cise query answers, thereby reducing the precision on the fly.
Doing so, however, does not reduce the size of the synopsis
itself and to apply the principle of reconsolidation, we can
drop coe�cients, in case there is little or no interest in an
area, or learn and add coe�cients (albeit in a computation-
ally intense process from the full dataset) to the synopsis.

In the case of sketches, the precision is di�cult to adjust.
The challenge for sketches is that they are very application
specific and it is thus di�cult to find a generic way to de-
fine/implement their reconsolidation.

Adapting the resolution is consequently particularly chal-
lenging for wavelets and sketches where research has yet
to develop e�cient (for wavelets) and generic (for sketches)
means to adapt to the precision. Research not only has to
develop mechanisms to adapt the precision but also deter-
mine the methods to decide the exact area as well as the
new level of precision.

5.2 Error Bounds for Variable Resolution
A key aspect of synopses is the idea to answer queries only

approximately, but with tight error bounds. Providing the
error bounds for query answers that only touch areas with
the same precision is straightforward.

Given a synopsis with variable resolution, however, makes
it challenging to compute the error bounds. Assume, for ex-
ample, a synopsis based on histograms where the intervals
in certain value ranges are smaller than in others, i.e., the

interval length is variable. Clearly, ranges with smaller inter-
vals have higher precision and thus smaller errors (and vice
versa). The question, however, is how do we combine the
di↵erent errors into a meaningful and intuitive error bound
for a query that touches intervals of variable length?

A crucial research question, thus, is how to compute the
error bounds based on a synopsis with variable precision,
i.e., how to make the variable precision quantifiable or how
to turn it into error bounds. Novel methods have to be
developed to quantify the error bounds in case the ranges
with varying precision are used.

5.3 Feedback Mechanisms
The feedback mechanisms described for data synopsis so

far work by monitoring access to the full dataset. If the full
dataset needs to be accessed, then the result (or the error
bound) provided was not precise enough and consequently
we have to learn, i.e., increase the resolution of the synop-
sis by taking more samples from the full dataset. If we do
not have to access the full dataset, we can forget, i.e., the
precision is decreased.

One research challenge consequently is whether better feed-
back mechanisms can be found. Clearly, for many applica-
tions better solutions can be used, e.g., using user input.
Any such approach, however, is application specific and the
research question is if generic mechanisms can be found to
decide whether to learn or forget.

5.4 Answering Queries
The basic idea is for the user to gain as precise an answer

as required from the data synopsis. If the answer, how-
ever, is not precise enough, then the full dataset is queried
to provide a su�ciently precise answer (and also the data
synopsis is improved through learning). The challenge to
be addressed thus is how we can manage to only read the
information additionally needed from the full dataset. This
may be rather straightforward for wavelets, since in their
case only additional coe�cients can be read from disk (if
they are stored on disk along with the full data) to make
the result more precise.

For all other types of synopses the question of how to ef-
ficiently complement synopsis data with results, i.e., how
to retrieve the minimal amount of information needed from
disk and combine the results e�ciently, is a challenging re-
search question.

5.5 Data Organization
Changing the precision of the synopsis means either adding

or removing data from it. A crucial research question di-
rectly a↵ecting the performance of querying the synopsis
is how to organise the data (presumably, given its size) on
disk. Simply appending data when learning will lead to a
data structure that requires excessive random disk access
while only removing information (without reorganising the
structure) means that considerable unnecessary data will be
read and so the question becomes how can we design an
updated e�cient data structure for synopses?

6. OTHER APPLICATIONS
Reconsolidation has applications beyond data synopses

and can be used in applications where imprecision can be
tolerated or where data is imprecise/uncertain by nature.

6.1 Reconsolidating Caches
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Clearly reconsolidation makes little sense if the data items
in a cache are very small. In the case of hardware caches [13]
(e.g., CPU caches) it is therefore unlikely to be used. Still
for other types of caches in applications that can tolerate
imprecision, reconsolidating can be used.

6.2 Content Distribution Networks
An interesting application for reconsolidation is caches in

the context of content distribution networks [15, 17]. Ob-
jects in these caches are typically big and are consumed by
users. A straightforward application is the degradation or
improvement of image quality (or other multimedia content
like videos or music) whether it is to return the image di-
rectly to the user or to query over it.

Degrading the image quality can be achieved by reducing
the resolution, the size or by restricting the colour palette.
Any of these approaches will reduce the e↵ective size of
the objects and thus query execution on the reconsolidation
structure is accelerated. Imaging formats based on bitmaps
or rasters may be di�cult to degrade or improve precision
easily and quickly, but there also exist layered formats where
layers can be added or dropped individually.

7. CONCLUSIONS
What we present here is the need for forgetting and its

mechanisms in the brain. We argue that forgetting should
also have its place in data management. The brain, however,
deals with imprecise information while many data manage-
ment applications require precision and it is therefore not
obvious where and how forgetting fits into data manage-
ment. Given that storage is becoming ever cheaper, there
seems to be little need to delete at all.

What we argue here, however, is that there is still a need
to delete (or forget) to ensure timely query answers. This
is particularly important as the quantity of data is grow-
ing quicker than the CPUs are becoming faster. Given the
comparatively slow CPUs, we have to shed information to
guarantee answers within a given time [12].

What we propose here is the mechanism or the design
principle of reconsolidation that should be used in the design
of applications and data structures. As we show with its
application to data synopses, forgetting can be a powerful
mechanism for managing data and yet entails considerable
research challenges.

By discussing the example of data synopses we also demon-
strate how the compelling mechanism of reconsolidation can
be applied to applications where imprecision is acceptable.

Maybe the power of this approach is not so much in map-
ping the principle of reconsolidation strictly onto data man-
agement. However, we believe that reconsolidation (increas-
ing or degrading precision) is a powerful mechanism, particu-
larly for the management of data synopses and caches, which
are becoming increasingly important to guarantee quick an-
swers in face of today’s (and tomorrow’s) data deluge.
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ABSTRACT
There is a need to integrate SQL processing with more advanced
machine learning (ML) analytics to drive actionable insights from
large volumes of data. As a first step towards this integration,
we study how to efficiently connect big SQL systems (either MPP
databases or new-generation SQL-on-Hadoop systems) with dis-
tributed big ML systems. We identify two important challenges to
address in the integrated data analytics pipeline: data transforma-
tion, how to efficiently transform SQL data into a form suitable
for ML, and data transfer, how to efficiently handover SQL data to
ML systems. For the data transformation problem, we propose an
In-SQL approach to incorporate common data transformations for
ML inside SQL systems through extended user-defined functions
(UDFs), by exploiting the massive parallelism of the big SQL sys-
tems. We propose and study a general method for transferring data
between big SQL and big ML systems in a parallel streaming fash-
ion. Furthermore, we explore caching intermediate or final results
of data transformation to improve the performance. Our techniques
are generic: they apply to any big SQL system that supports UDFs
and any big ML system that uses Hadoop InputFormats to ingest
input data.

1. INTRODUCTION
Enterprises are employing various big data technologies to pro-

cess huge volumes of data and drive actionable insights. Data ware-
houses integrate and consolidate enterprise data from many opera-
tional sources, and are the primary data source for many analytical
applications, whether it is reporting or machine learning (ML). Tra-
ditionally data warehouses has been implemented using large-scale
MPP SQL databases, such as IBM DB2, Oracle Exadata, TeraData,
and Greenplum. Recently, we observe that enterprises are creating
Hadoop warehouses in HDFS and Hadoop ecosystem, using SQL-
on-Hadoop technologies like IBM Big SQL [13], Hive [21], and
Impala [14]. In this paper, we use the term big SQL systems to
refer to both the large-scale MPP databases as well as the SQL-on-
Hadoop systems.

To gain actionable insights, enterprises need to run complex an-
alytics on their warehouse data. There has been some works that
embed ML inside SQL systems, through user defined functions
⇤The work described in this paper was done while the author was
working at IBM Almaden Research Center
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(UDFs). We refer to this approach as the In-SQL analytics ap-
proach. Such examples include Hivemall [12] for Hive, and Bis-
march [7] which is incorporated into the Madlib analytics library [11]
for Greenplum and Impala [22]. However, through UDFs, only a
limited number of ML algorithms can be supported. For exam-
ple, only convex optimization problems can be implemented in Bis-
march.

With the big data revolution, most new developments of big ML
algorithms happen outside the SQL systems, and mainly on big
data platforms like Hadoop. There are many options, such as ML-
Lib [20], SystemML [9], and Mahout [1], and more systems and
special algorithms are developed every day. Enterprises need to in-
tegrate their big SQL system with their big ML system. The solu-
tion should also be extensible to any future system. The following
example will demonstrate this need of integration.

An Example Scenario. A data analyst from an online retailer
wants to build a classification model on the abandonment of on-
line shopping carts in USA. The detailed information of online
shopping carts and customers are stored in two tables carts and
users either in a MPP database or in a SQL-on-Hadoop sys-
tem. To prepare the data that she later will feed into an SVM
algorithm, the analyst needs to combine the two tables and ex-
tract the three needed features, the customer’s age, gender and
the dollar amount of the shopping cart, as well as the indicator
field abandoned for building the classification model. This data
preparation can be easily expressed as a SQL query shown below.
SELECT U.age, U.gender, C.amount, C.abandoned

FROM carts C, users U

WHERE C.userid=U.userid AND U.country=‘USA’

Spark provides a unified environment that allows combining SQL
(Spark SQL) and ML (MLlib) together. The data handover be-
tween Spark SQL and MLlib is through the distributed (and of-
ten in-memory) data structure, called Resilient Distributed Datasets
(RDDs). Again, analysts are limited by the ML algorithms sup-
ported in MLlib. If an analyst wants to use an existing algorithm
in Mahout or if she has her own analytics algorithm already imple-
mented in MapReduce, she has to write the data into HDFS, run her
analytics algorithm, and store results back into HDFS. In addition,
in both Spark and the In-SQL analytics approach, one is locked in
a particular environment. But in reality, enterprises need a generic
solution that works with many big SQL and big ML system, and is
easily extensible to any future system.

The straightforward approach to connect big SQL and ML sys-
tem is through files on a shared file system, such as HDFS since
most big ML systems are running on Hadoop. In other words, the
big SQL system outputs results onto HDFS and then the big ML
system reads them from HDFS. This approach obviously incurs a
lot of overhead. In this paper, we explore whether we can do better
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than this basic approach.
We identify two major challenges when connecting big SQL and

big ML systems: (1) data transformation and (2) data transfer.
Data transformation deals with the fact that SQL systems and

ML systems prefer data in different formats. For example, most
ML systems work on numeric values only. For categorical val-
ues (e.g. the gender of a customer) normally stored as strings in
SQL systems, they have to be recoded [5] and sometimes dummy
coded [4] (details will be provided in Section 2) before the analy-
sis can be applied. Today, such transformation functionalities are
rarely provided in either big SQL or big ML systems, which means
they have to be implemented by users. One can choose to im-
plement these transformation functions outside both systems, us-
ing her preferred data transformation framework, e.g, MapReduce.
But, this introduces another hop, hence extra overhead, between
SQL and ML systems. A better approach would be to incorporate
transformations in either SQL or ML systems. In order to provide
a generic solution, we leverage the extensibility (e.g UDFs) of big
SQL systems and propose an In-SQL transformation approach. In
fact, we found that most common data transformations between
SQL and analytics can be implemented through UDFs by exploit-
ing the massive parallelism inside big SQL systems.

Data transfer, on the other hand, deals with how the output of a
SQL system is passed over to the ML system for processing. When
the SQL system requires a long haul to produce the output, the
straightforward approach of handing over files on a shared file sys-
tem may be preferred for fault tolerance reasons. But the extra file
system write and read can be a performance hurdle. Another im-
portant issue about the straightforward approach is the fact that the
entire output of the transformation step needs to be produced and
materialized (a blocking operation) before it can be ingested into
the ML system. In this paper, we propose a general approach to
parallel data streaming between these two systems. This approach
avoids touching the file system between SQL and ML systems, and
can be used by any big SQL system that supports UDFs and any
big ML system that uses Hadoop InputFormat for ingesting data
(in fact, all ML systems on Hadoop do) in parallel.

Caching is a common technique used in distributed systems to
reduce communication costs. In this paper, we explore caching
intermediate or final results of the transformation step to help sig-
nificantly reduce the costs of connecting big SQL systems with big
ML systems. Most often the intermediate results that are required
by the recoding transformations can be precomputed and reused.

Note that the need for integrating SQL and ML existed even
before the era of big data. People have been fetching data from
databases and feeding them to ML softwares, such as R [19], in the
past. But since the data exchanged between the two systems were
small, data transformation and transfer were not challenging prob-
lems. For example, there are functions provided in R (sequential
implementations) for common data transformations. Data transfer,
on the other hand, is usually done through passing physical files
around. However, this old way of sequentially transforming data
and passing files around is often infeasible when huge volumes of
data are involved. Exploiting the massive parallelism inside and
between big SQL and big ML systems is a necessity to guarantee
performance, and this is exactly what we strive to achieve in this
paper.

The contributions of this paper are as follows:

• We first propose an In-SQL approach to incorporate common
data transformations for analytics inside big SQL systems
through UDFs, by fully exploiting the massive parallelism of
the big SQL systems.

• We then introduce a general approach to transfer data be-
tween big SQL and big ML systems in a parallel streaming
fashion, without touching the file system.

• We further explore caching techniques to reduce the costs of
connecting big SQL and big ML systems.

2. IN-SQL DATA TRANSFORMATION
Most big SQL systems today have UDF support for extensibil-

ity, which makes it feasible to employ a generic In-SQL solution for
common transformations for ML. We will use the two most com-
mon transformations, recoding of categorical variables and dummy
coding, as examples to demonstrate how these transformations can
be implemented in parallel fashions using UDFs. Some less com-
mon transformations, such as effect coding and orthogonal cod-
ing [6], can be implemented in similar ways as dummy coding.

2.1 Recoding of Categorical Variables
Most data transformation between SQL and ML systems deals

with categorical variables. This is because categorical variables are
usually represented as string fields in SQL systems, but it is very
hard and inefficient to handle string values in analytics. As a result,
most ML systems prefer handling numeric values only. One of the
most common data transformation, therefore, is recoding of cate-
gorical variables [5]. Figure 1(b) shows an example recoding of the
categorical fields gender and abandoned in the table shown in
Figure 1(a) (This table could be the result of a query in a SQL sys-
tem). The recoded numeric values are usually consecutive integers
starting from 1. Here, for the field gender, the value ‘F’ is re-
coded to 1 and ‘M’ is recoded to 2. And for the field abandoned,
‘Yes’ and ‘No’ are recoded to 1 and 2 respectively.

The above recoding is seemingly simple. In a centralized envi-
ronment, it only requires one pass of data to perform the recoding
of all categorical fields, assuming the number of distinct values for
each field is not large. This centralized algorithm simply keeps
track of a running map of current recoded values for each categor-
ical field while scanning through the data. If a value of a field has
been seen before, it just uses the map to recode it, otherwise a new
recoding is added to the map.

In a distributed environment, however, a two-phase approach is
needed. In the first phase, each local worker computes its distinct
values for each categorical field in its local partition, and then ex-
changes the local lists to obtain the global distinct values. In the
second pass of the data, we can use the global distinct values to
perform the recoding.

This two pass algorithms can be easily implemented using a
combination of UDFs and SQL statements. For example, in the
first pass, we can implement a parallel table UDF, which in paral-
lel reads its local partition of the table and generate another table
with two fields colName and colVal, which contains the lo-
cal unique values for each categorical column. For example, the
returned records in a local partition might be {(‘gender’, ‘F’),

(‘gender’, ‘M’), (‘abandoned’, ‘Yes’)}. These records can then
be passed to a SELECT DISTINCT colName, colValue FROM ... state-
ment to compute the global unique values. We can also introduce
another table UDF to add a recoded value field recodeVal to the
results, generating recode mapping records like {(‘gender’, ‘F’,

1), (‘gender’, ‘M’, 2), (‘abandoned’, ‘Yes’, 1), (‘abandoned’,

‘No’, 2)}. Let’s denote the original table as T and the recode map
table as M, then the final recoding in the second pass can be simply
implemented by a join like below:
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age gender amount abandoned
57 'F' 108.00 'Yes'
40 'M' 57.98 'Yes'
35 'F' 265.97 'No'

(a) original table

age gender amount abandoned
57 1 108.00 1
40 2 57.98 1
35 1 265.97 2

(b) recoding

age female male amount abandoned
57 1 0 108.00 1
40 0 1 57.98 1
35 1 0 265.97 2

(c) dummy coding

Figure 1: Recoding and dummy coding of categorical variables

SELECT T.age, Mg.recodeVal as gender, T.mount,

Ma.recodeVal as abandoned

FROM T, M as Mg, M as Ma

WHERE Mg.colName=‘gender’ AND T.gender=Mg.colVal

AND Ma.colName=‘abandoned’ AND T.abandoned=Ma.colVal

Although one could use SQL queries to compute the distinct val-
ues, each column that needs to be recoded would result in such an
SQL query, and would require one pass of the data. Using UDFs,
we can scan the data once and compute the distinct values for all
required columns.

Note that although categorical values are represented as strings
in tables, some modern column stores are able to exploit dictionary
compression to physically store string values as integers. Utiliz-
ing these integers directly as the recoded values for ML systems
is an interesting direction. However, there are a number of chal-
lenges. First of all, the internal physical dictionary encoding is
usually not exposed to users, thus utilizing the encoded integers is
difficult or even impossible in a general approach using UDFs. Sec-
ond, most dictionary compression for big SQL systems, such as in
the Parquet format [18] for Impala and ORC format [17] for Hive,
is applied only for a local partition of data. Therefore, we can-
not directly use the local encoded integers for the global recoding.
Lastly, some ML systems, such as SystemML [9], require the re-
coded categorical values to be consecutive integers starting from 1.
Some dictinary compression algorithms may not produce consecu-
tive integers. Moreover, the recoding needs to be done on filtered
data, and hence we may have to recode the values again.

2.2 Dummy Coding
Some ML algorithms, such as SVM and logistic regression, re-

quire generating binary features from a categorical variable before
invoking the algorithms. This transformation is called dummy cod-
ing [4]. People also call it one-hot encoding or one-of-K encoding.
Figure 1(c) shows an example dummy coding for the gender field
in the recoded table of Figure 1(b). In dummy coding, a categori-
cal variable with K distinct values is split into K binary variables.
Assuming the categorical variable has already been recoded, then
the original variable with value i results in the ith binary variable
to be 1, and the remaining K � 1 variables to be 0.

To implement dummy coding in big SQL systems, we only need
a parallel table UDF that takes in the number of distinct values for
each categorical variable (already obtained during recoding phase)
and scans through each partition to perform the dummy coding in
parallel.

3. PARALLEL STREAMING DATA TRANS-
FER

In this section, we describe our approach to parallel streaming
data transfer. There are two main goals that we want to achieve
when designing the streaming data transfer method: (1) generality
of the approach on various big SQL and big ML systems, and (2)
exploitation of the massive parallelism between the two systems.
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Figure 2: Information and data flow in parallel streaming data
transfer

To achieve generality, we again exploit the UDF extensibility in the
big SQL systems and extend the Hadoop’s InputFormat interface in
the big ML systems. In fact, most existing big ML systems [9, 1,
20] can input data through the InputFormat interface. So, a user can
choose any of the existing big ML system to run the analytics. The
only change she has to make is to use our specialized SQLStream-
InputFormat in the job configuration. To exploit the massive paral-
lelism between two independent distributed systems, we introduce
a long standing coordinator service to help bridge the two systems
to establish parallel communication channels. In addition, we try
to take advantage of data locality as much as possible when the big
SQL and big ML systems share the same cluster resources.

Figure 2 shows the detailed information and data flow in our
parallel data streaming method. The data transfer starts from the
parallel table UDF in the SQL system. This UDF takes in as inputs
the table to be transferred, the IP and port number of the coordina-
tor, as well as the command and arguments to invoke the desired
algorithm of the target ML system. When this UDF is executed in
each SQL worker, it first connects to the coordinator, notifies the
coordinator of its own worker id, IP address, and the total number
of active SQL workers, and also passes along the command and ar-
guments of the target ML algorithm (step 1 in Figure 2). When all
the SQL workers have registered, the coordinator launches the ML
job with the provided command and arguments (step 2).

When the ML job tries to spawn tasks to read data, it first creates
an InputFormat object. InputFormat has a member function called
getInputSplits(), which is responsible for dividing the input data
into subsets. Each subset is called an InputSplit and is consumed by
one ML worker. In other words, the number of InputSplits equals
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to the number of ML workers. We customized the getInputSplits
method to contact the coordinator to decide on the InputSplits (step
3). Let n be the number of SQL workers and m be the number
of InputSplits. If m is not pre-specified by the particular ML al-
gorithm, then we always set m = n ⇥ k, where k is a parameter
to control the degree of parallelism in the ML job. We divide the
needed m InputSplits evenly into n groups, with each group cor-
responding to the data from one SQL worker, as demonstrated in
Figure 2. To take advantage of the potential locality, we also pro-
vide the locations for each InputSplit where the data for the split
would be local. In particular, for each InputSplit corresponding to
the ith SQL worker, we use the IP address of this SQL worker as
the location of the InputSplit. With the provided locations, when
the ML job spawns the ML workers to read data, it tries to colo-
cate, when possible, in a best effort manner, the ML workers with
the corresponding SQL workers, so that data transfer does not incur
network I/O.

After the ML workers are spawned, they register themselves
back to the coordinator (step 4 in Figure 2). Then, the coordinator
matches the IP of each SQL worker with the IPs of its correspond-
ing ML workers (step 5), and subsequently sends the matched in-
formation back to the workers on both sides (step 6). Now, the job
of the coordinator is done. Finally, the SQL workers and the ML
workers establish the TCP socket connections (step 7), before the
actual data transfer starts (step 8). Each SQL worker sends data
to its ML workers in a round robin fashion. Inside a SQL worker,
there is a send-buffer associated with each target ML worker for
buffering the sent data. Similarly, each ML worker has a receive-
buffer to buffer the received data from its corresponding SQL worker.
The sizes of the buffers are controllable system parameters. If an
ML worker is slow to ingest its data and the corresponding send
buffer becomes full, we can spill it onto the local disks to syn-
cronize the producer and consumers.

4. QUERY REWRITER FOR DATA TRANS-
FORMATION AND TRANSFER

Although we have provided various UDFs for the common data
transformation and parallel data streaming, it is still a difficult task
for the users to compose the queries to invoke these UDFs. For
ease of use, we provide a query rewriter outside the SQL systems.
A user provides this query rewriter with her SQL query (such as
the example query in Section 1), the transformations needed on the
results of the query, and if parallel data streaming is needed, the
necessary information for calling the target ML algorithm. Then,
the query rewriter will extend the given query into another query
with UDFs, and other operations to perform the required transfor-
mations and the data transfer.

5. CACHING
When similar data transformations are repeated between a big

SQL system and a big ML system, we can exploit caching to reduce
the cost. We identified two cases of caching, assuming there is no
data update: (1) caching fully transformed data, and (2) caching
intermediate recode maps.

5.1 Caching Fully Transformed Data
In this case, we cache the fully transformed data in the big SQL

system by storing it as a materialized view or an actual HDFS table.
If later another ML algorithm needs to be run on the data resulted
from the same SQL queries, we can directly reuse the stored data,
thus saving the cost of the SQL queries and the data transformation
all together. This situation happens, for example, when an analyst

wants to run a number of classification algorithms, such as SVM,
logistic regression, naive Bayes and decision trees, to compare the
quality of different classifiers on a particular dataset.

Besides the above case, the fully transformed data can also be
reused if a subset of the transformed data is needed. Let’s take the
example scenario in Section 1 as an instance. If we cache the fully
transformed result of this query, and later we encounter another
query shown below as the data preparation for an ML algorithm,
we can fully utilize the cached data, without running the query and
transforming the query result.
SELECT U.age, C.amount, C.abandoned

FROM carts C, users U

WHERE C.userid=U.userid AND U.country=‘USA’

AND U.gender = ‘F’

The reason that we can fully utilize the cached result is that this
new query satisfy the following conditions:

1. It contains the same tables in the from clause, and the same
join conditions and predicates in the where clause, as the
query for the cached data.

2. The projected fields are a subset of the projected fields in the
query for the cached data.

3. Additional conjunctive predicates are only on the projected
fields in the query for the cached data.

In fact, if we denote the result of query in Section 1 as T, the new
query can be expressed as a selection and projection query on table
T as below.
SELECT age, amount, abandoned

FROM T

WHERE gender = ‘F’

5.2 Caching Recode Maps
The applicability of caching the fully transformed data is limited.

For the following query, the cached data cannot be used at all, as
it does not satisfy the conditions described in the previous subsec-
tion.
SELECT U.age, U.gender, C.amount, C.nItems, C.abandoned

FROM carts C, users U

WHERE C.userid=U.userid AND U.country=‘USA’

AND C.year = 2014

However, we notice that this query satisfies a different set of con-
ditions, which allow it to benefit from caching the intermediate re-
code map (see Section 2.1) generated during the transformation of
the previous query:

1. It contains the same tables in the from clause, and the same
join conditions in the where clause, as the previous query.

2. It contains predicates on the same set of fields as the pred-
icates on the previous queries, and each predicate is either
the same as or logically stronger than (e.g. a < 18 is log-
ically stronger than a  20) the corresponding predicate in
the previous query.

3. The projected categorical fields are a subset of the projected
categorical fields in the previous query.

4. Additional predicates are conjunctive.

By reusing the recode map for the new query, we avoid one of
the two passes for the new query during recoding.

As can be seen above, the way we detect whether a query can
benefit from the cached data is similar to utilizing materialized
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views in query optimization [10, 16] and we extend the query rewriter
introduced in Section 4 to utilize these techniques. When the rewriter
gets a query, it first check to see if any of the existing materialized
views can be used and rewrites the query accordingly.

6. DISCUSSION ON FAULT TOLERANCE
Fault tolerance is a very hard problem for integrating big SQL

and big ML systems. First of all, if either the underlying big SQL
system or the big ML system lacks fault tolerance support, the
whole integration pipeline has to be restarted from scratch in case
of a failure. In fact, most MPP databases do not support mid-query
failure recovery. Most SQL-on-Hadoop engines, like Impala [14]
also sacrifice mid-query recory. As for big ML systems, MLlib
is the only one known to support mid-query fault tolerance. Even
both underlying systems provide fault tolerance guarantees, we still
need the connection between the two to be resilient to failures. If
data transfer between the two systems is through files on HDFS, or
if the cached results from the big SQL system can be directly reused
by the big ML system, the fault tolerance can be guaranteed. On the
other hand, if parallel data streaming in Section 3 is used, more care
has to be taken. First, we need the coordinator service to be resilient
itself. This can be achieved by using Zookeeper [2]. In addition,
when the data transfer between a SQL worker and an ML worker
fails, due to the failure of either end points or the connection, we
need to notify the big SQL system to restart the SQL worker and
simultaneously tell the big ML system to restart all the ML workers
corresponding to the SQL worker, so that the data transfer can be
resumed.

An alternative to our streaming data transfer is utilizing an in-
memory file system like Tachyon [15], which would provide fault-
tolerance guarantees. However, Tachyon is still very Spark and
RDD oriented, whereas in this work we thrive to be provide a
generic solution that works for all big SQL and big ML systems,
whether they run their own native processes, or use MapReduce or
Spark.

7. PRELIMINARY EXPERIMENTS
In this section, we report the results of our preliminary experi-

mental study by using IBM Big SQL 3.0 as the big SQL system
and Spark MLlib as the big ML system.

We used 5 servers for all our experiments. Each had 2x Intel
Xeon CPUs @ 2.20GHz, with 6x physical cores each (12 phys-
ical cores in total), 12x SATA disks, 1x 10 Gbit Ethernet card,
and a total of 96GB RAM. Each node runs 64-bit Ubuntu Linux
12.04, with a Linux Kernel version 3.2.0-23. One of the servers
was used as the HDFS NameNode, MapReduce JobTracker, Spark
master as well as Big SQL head node. The remaining 4 servers
host the HDFS DataNodes, MapReduce TaskTrackers (9 mappers
per server), Spark workers (6 workers on each server) and Big SQL
workers (1 worker with multi-threading on each server). HDFS
replication was set to 3. The send-buffer and receive-buffer sizes
were both set to 4KB for the parallel data streaming.

We generated synthetic datasets in the context of the example
query scenario described in Section 1. In particular, we created a
56GB carts table with 1 billion records and 361 MB users table
with 10 million records. Both tables were stored in text format
on HDFS. We ran the SQL query shown in the example in Sec-
tion 1, transformed the result (recoding the categorical variables
and dummy coding), and passed the result to MLlib for running the
SVMWithSGD algorithm. In our experiments, we report the time
for processing the SQL query, transforming the result, transferring
the transformed data to the ML job, and reading the input data in
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the ML job. We do not report the runtime of the ML algorithm,
because it is highly dependent on the actual data and the algorithm
(e.g how many iterations to converge). For example, reading the
transformed data from HDFS and running the SVMWithSGD for
10 iterations took 774 seconds. In the ML job, we first read the
input data, whether it is from HDFS or from parallel data transfer,
into a Spark in-memory RDD. After that we pass the RDD to the
MLlib SVMWithSGD algorithm. The measured time of reading
input in the ML job is the time from the start of the job till the
in-memory RDD is constructed.

Figure 3 compares three approaches of connecting SQL with ML
for big data. In the naive (denoted as naive in Figure 3) approach,
we use Big SQL to execute the SQL query and materialize the re-
sult on HDFS (prep). Then, we use a third tool, Jaql [3], to perform
the data transformation, since Jaql has built-in functions for recod-
ing of categorical variables and dummy coding (trsfm). Again, the
result is written to HDFS. Finally, Spark MLlib reads the data form
HDFS (input for ml) and performs the ML job. The breakdown of
execution times for different stages is shown in the figure. The sec-
ond approach, denoted as insql in the figure, employs the In-SQL
transformation method (we implemented the recoding of categor-
ical variables and dummy coding in Big SQL using UDFs). In
this approach, the transformation is combined together with the
SQL query, thus the operations can be performed in a pipeline
(prep+trsfm). In the third approach, denoted as insql+stream, we
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use the parallel streaming data transfer in addition to the In-SQL
transformation. Now, all operations can be pipelined together (prep
+trsfm+input). In addition, as we use in-memory RDDs to store the
input data in Spark for the ML job, the transformed data from Big
SQL is never written to HDFS. As can be seen from Figure 3, the
In-SQL transformation significantly improves the performance of
the whole work flow: 1.7x speed up against the naive approach.
The insql+stream approach further improves the performance by
another 43 seconds. This is a significant reduction in data inges-
tion cost in Spark MLlib (reading from HDFS takes 46 seconds),
although it is not an impressive number in the overall workflow. In
this particular case, the transformed data itself was not very large
(5.6GB), and hence reading it from HDFS was not dominating the
overall data pipeline. If a larger dataset were used, the performance
would be more dramatic. We also want to note that if the ML algo-
rithm takes a long time to produce the desired model, then whether
using HDFS or streaming for data transfer makes little difference
in the overall performance. In addition, HDFS can also provide ad-
ditional fault tolerance, and could be preferable if the ML system
requires reading the input multiple times.

We now investigate the effect of caching intermediate or final
results of data transformation in connecting big SQL and big ML
systems. We compare the In-SQL transformation approach with
the approach where we cache intermediate recode maps, and the
approach where we cache the fully transformed result in Figure 4.
In all three approaches, we employ the parallel streaming trans-
fer to pass data to the ML job. Evidently, if caching can be used,
then the fully cached result will provide the best performance (2.2x
speedup against no cache), followed by the cached intermediate re-
code maps (1.5x speedup against no cache). But, keep in mind that
the applicabilities of the two caching approaches are limited, with
caching the fully transformed result most limited. For both caching
methods, the reusability depends on the complexity of the prepara-
tion SQL query and how fast, or if at all, the data gets updated.

8. CONCLUSION
In this paper, we studied the problem of integrating SQL and ML

processing for big data, providing a general purpose solution that
will work with any big SQL system that supports UDFs and any big
ML system that uses InputFormats to ingest its input. We focused
on two problems: data transformation and data transfer between the
two systems. In particular, we proposed an In-SQL approach to in-
corporate common data transformations for ML algorithms inside
big SQL systems through UDFs. In addition to the basic approach
of using files as the media for data transfer between systems, we
proposed a general streaming data transfer approach by introduc-
ing UDFs in big SQL systems and implementing a special Hadoop
InputFormat. Furthermore, we explored the use of caching inter-
mediate or final results of the transformations to reduce the costs of
connecting SQL and ML systems. Our preliminary experimental
results show that the In-SQL approach has great potential in reduc-
ing the data transformation cost, and caching is very effective in
improving the performance of the whole analytics work flow. The
parallel streaming data transfer approach has its pros and cons, de-
pending on the target ML system. Our preliminary experiments
show it results in significant reduction in data ingestion costs for
MlLib, which uses in-memory RDDs.

As future work, we plan to investigate using a message passing
system like Kafka [8] to pass the data between SQL and ML work-
ers. Kafka would gurantee at least one read, in case of failures.
Kafka could also be the system to cache the data when the ML
workers are not fast enough to consume the data. We also plan to
build a generic data exchange infrastructure that utilizes memory

and streaming between different frameworks running on big data
platforms, such as streaming, batch, SQL, ML, etc.
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ABSTRACT

Scientific and ecological data collection in today’s world is
primarily driven by citizen-based observation networks to
gather information on a diverse array of species and natural
processes. Such efforts leverage the contributions of a broad
recruitment of human observers to collect data and use Ma-
chine Learning algorithms to process the collected data lead-
ing to a computational power that far exceeds the sum of
the individual parts. Instead of organic group formation
and collaboration, our vision is the need to formalize collab-
oration and rethink the components of a data management
system to ensure its sustainability in such human-intensive
applications. The enabler of collaboration is the notion of a
user group that implies different behaviors and interactions
between its members. We advocate the design of new com-
ponents of a data management system that deliberately ac-
knowledge the uncertainty and dynamicity of human behav-
ior by capturing the human factors that characterize group
members. We describe ECCO, a framework that contains two
generic components: adaptive collaborative human factors
learning and adaptive human-centric optimization. Those
are the core components that support the fundamental func-
tionalities of a wide range of human-intensive applications.
ECCO components rely on two optimization engines, namely
task assignment and human data management engine. An
additional challenge in designing the components of ECCO is
the need to support adaptive and incremental computation.
We discuss the modeling, learning, and computational chal-
lenges of designing the components of ECCO and propose a
roadmap of future directions of this vision.

1. INTRODUCTION
Achieving insight about ecological patterns often requires

the study of natural systems at large scales. An emerging
focus therefore is to build an infrastructure for data syn-
thesis and analysis that allows data collection and organi-
zation across the continent and perform large scale analyses
over it. While new technologies are gradually emerging to
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Figure 1: High Level Design of ECCO

leverage autonomous sensor networks for such data collec-
tion, the state of the art techniques still can not identify
organisms to species, they serve to gather information on
the variables that influence species occurrence. Therefore,
most data on species-level occurrence still must be gathered
by humans [10], necessitating innovative programs for wide-
scale data collection and analysis. In particular, the ultimate
objective of such effort is to build a hybrid human machine
computational power to solve complex problems. We advo-
cate the design of a new framework ECCO to that end with
the vision to formalize collaboration and rethink the com-
ponents of a data management system to ensure quality and
sustainability in such human-intensive applications.

Applications: Several leading efforts of citizen science
are being carried out nationally and internationally. For
example, the US National Phenology Network1 conducts
Project Budburst, a citizen-based effort to report pheno-
logical events such as first leafing, first flowering, and first
fruit ripening for a variety of plant species in order to bet-
ter understand the broad scale effects of climate change.
The Galaxy Zoo 2 project provides access to almost 250,000
images of galaxies and engages volunteers to classify them
into shapes in order to better understand how galaxies are
formed. In FoldIt 3 project, researchers attempt to predict

1http://www.usanpn.org/
2http://www.galaxyzoo.org/
3http://fold.it/portal/
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the structure of a protein by taking advantage of puzzle solv-
ing abilities of the human. Another popular example is the
e-Bird project [11, 4], which engages a vast network of hu-
man observers (citizen-scientists) to report bird observations
using standardized protocols.

Objective: The ultimate objective of such efforts is to
employ a hybrid human and mechanical computation power
to solve complex problems through active learning and feed-
back. The contributed large scale data is processed with
Machine Learning algorithms for correlating species distri-
butions with environmental covariates to identify the unla-
beled points that when labeled would most rapidly decrease
uncertainty in the model being deployed, or contain the
highest amount of surprise versus expectation, or most likely
result in a different model being proposed. To seamlessly
enable such capabilities to the domain scientists, therefore,
the challenge is to develop the appropriate data management
and optimization framework that will allow effective group
formation and large scale analyses on the collected data.

Current Practices and Shortcomings: Current citi-
zen science practices primarily rely on passive form of crowd-
sourcing, i.e., forming human networks in a rather organic
way. Naturally, this form of passive crowdsourcing leads
to high latency, inaccuracy, with the potential of substan-
tial noise in the overall outcome. We, on the other hand,
propose ECCO to enable active crowdsourcing for such scien-
tific data collection, where group formation is optimization
guided and the framework constantly learns about the work-
ers from the tasks they undertake and reuse this learning.
We provide one such specific scenario next in the context of
ecological data collection.

Example 1. Scientific Data Collection and Analy-
ses - A Citizen Science application: Typical citizen sci-
ence efforts take place in groups to reduce errors in observa-
tion, or even keep the citizen scientists vested and motivated
in the task. Imagine a citizen scientist application needs to
be designed to collect data that enables building accurate pre-
dictive models by correlating environmental covariates (e.g.,
elevation, soil type, and average precipitation) with the pres-
ence of a species. To formulate the predictive model, the
following tasks are to be performed:

• Confirmed Absence of Species (subtask-1): Another group
(sub-group 1) needs to be formed to confirm the absence
of a species. This step is considered difficult and ex-
pert workers are required to be involved to carry out
this step successfully.

• Confirmed Presence of Species (subtask-2): A third
worker group (sub-group 2) is to be created to confirm
the presence of a species.

• Co-variate Validation (subtask-3): A fourth group of
workers (sub-group 3) is created to validate the model
covariates (e.g., is the elevation really 100 m at this
location like the current covariate dataset indicates?).

• Model Validation (subtask-4): A final group of work-
ers (sub-group 4) is tasked to validate the model itself
(e.g., the system recommends a particular location for
sampling a species presence/absence and the group of
workers are dedicated to validate that).

• This iterative process terminates when the resultant
data has surpassed a certain benchmark in quality (for

example, the built statistical model needs to reach 90%
accuracy and 85% precision). The objective is to achieve
the quality as quickly as possible, by spending the small-
est cost.

Group Interactions:

• Intra-group: Workers in the same sub-group need to
interact with each other to ensure that the collected
observations are correct and consistent.

• Inter-group: The users in sub-groups 1 and 2 are re-
quired to interact with each other to confirm the ab-
sence and presence of the species.

Workers’ Skills: Volunteers are likely to have multiple
skills, e.g., skills in ecological assessment, field training, etc.

We attempt to abstract the processes that are likely to
take place in such active crowdsourcing application and for-
malize them and propose ECCO to achieve the desired out-
come. We identify the following core aspects to support such
ecological applications.

• Complex Tasks: A citizen science application such as
the one above is an example of a complex task that is
composed of sub-tasks. For example, each of the data
collection step described above is a sub-task and the
overall task is a composition of these steps in an ap-
propriate sequence. The current practice is to identify
these sub-tasks manually [6, 12]. Interestingly, while
the overall goal of a complex task may be to surpass the
quality benchmarks as quickly as possible, as stated in
the example, each sub-task may have different goal(s).
The overall execution flow is presented in Figure 2.

• Groups: Central to such collaborative human-intensive
application is the notion of “group”which may further
be decomposed into sub-groups, where a set of workers
collaborate with each other to complete tasks. Exam-
ple 1 requires 4 such sub-groups.

• Human Factors: A variety of individual and group
based human characteristics are to be understood [8,
9]. For example, skill of the workers to identify ex-
perts, their incentives, motivation, or ability to collab-
orate with each other. Some relevant skills pertinent
to the running example may be ecological assessment
skill, field training, and so on.

• Primary Functionalities: (a) given a complex task and
a worker pool, form group of sub-groups to assign to
the sub-tasks; depending on the nature of the appli-
cations, a sub-group may undertake one or more sub-
tasks, collaborate or compete with other sub-groups.
(b) learn skills and other human factors of the workers
that are either individual or group based.

• Scale: We envision the necessity for a generic system
that can handle a wide variety of such applications.
In such a system, hundreds and thousands of citizen
science workers and tasks needs to be processed and
assigned. Scalable solution design becomes the first
class citizen in such settings.
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Desirable characteristics of ECCO: Several key aspects
are to be appropriately unfolded: (1) uncertainty in hu-
man characteristics, namely human factors [8, 9] are to
be understood. More importantly, we need to identify both
individual human factors and those that impact group dy-
namism; For example, individual human factors, such as a
user skill may impact how much leadership she has in a
group; (2) designing declarative primitives which al-
low domain experts to easily accomplish the required func-
tionalities; (3) designing relevant mathematical mod-
els to capture the appropriate optimization objectives; (4)
designing appropriate algorithms and data manage-
ment techniques for effective task assignment and human
factors learning. (5) finally, developing actual systems
or platforms that can integrate the components of ECCO.

Proposed components: ECCO consists of two primary
components which are both required to be adaptive.

• Collaborative Human Factors Learning Component: This
component first formalizes human factors - some of
these characterize individuals, such as, their respective
skills in different domains, their incentives (e.g., wage),
motivation, as well as describe group characteristics,
affinity between the workers, trust, leadership, or even
application characteristics, such as, critical mass (a
socio-psychological concept that describes how large
a group can be for effective collaboration) [5]; These
factors are then leveraged within this component to ac-
complish different learning, as described in Section 2.
This module also exploits a “feedback” loop to enrich
its learning by ingesting data coming from the deploy-
ment platform. This very aspect of users evaluating
other users is a clear departure of ECCO from any ex-
isting system.

• Human-Centric Optimization Component: This com-
ponent consists of two different optimization engines
and heavily interacts with the human factors learning
module to appropriately incorporate human factors in
the design. (a) Adaptive Task-Assignment Engine is
in charge of building a set of homophilous, diverse,
or complementary groups by enabling different inter-
action patterns among group members and accounting
for appropriate human factors to optimize certain out-
comes of a given task. Furthermore, as stated in the
running example, different groups may have different
interaction pattern with each other. (b) Human Data
Management Engine, on the other hand, manages the
data learned from human factors learning component,
as well as the data generated by the task assignment
engine. The overall objective of this engine is to store,
index, and effectively retrieve the collected data over
the time. (c) Last, but not least, we wish to sup-
port adaptivity and incremental computation in both
those engines, as human factors change over time. Fig-
ure 1 describes a high level architecture and interac-
tivity among the different components inside ECCO.

Team formation [1] in online social networks has been the
subject of some recent works which bears resemblance to
the task-assignment problem. What differentiates us, is
the time-variance property and significant interoperability
between different components, by deliberately acknowledging
a wide variety of human factors. Obviously, no attempt has

been made to incorporate human factors learning for collab-
orative applications, or to effectively manage data generated
by human workers.

Sections 2 and 3 contain further details. Our goal is to
ensure scalability, as well as allow incremental and adaptive
learning and computation. In addition to benefiting ecolog-
ical and environmental science, we envision that ECCO will
transpire many data management, index design, algorith-
mic, machine learning, and social science research problems
and foster synergy across these disciplines.

2. ECCO
Individual users and applications which consist of tasks

are integral part of ECCO. ECCO works in conjunction with an
evaluation environment where tasks get evaluated by a hu-
man machine computation model. ECCO’s components are:

2.1 Collaborative Human Factors Learning
Different collaborative applications rely on capturing and

including individual human factors such as skill, motiva-
tion, acceptance ratio (describing how likely an individual
will contribute) [9], or expected wage. Similarly, group hu-
man factors, such as, affinity, leadership, influence, group
size (referred to as critical mass [5]) are also to be factored
in. Moreover, while new users may join, existing ones may
leave. Interestingly, human factors are dynamic - i.e, they
change over time, and depend on the context. Human fac-
tors are also correlated (e.g., a highly skilled individual may
be more influential, or higher rewards lead to higher accep-
tance ratio), and sometimes probabilistic (e.g., acceptance
ratio).

While prior work [9] has acknowledged human factors,
no further attempt has been made to learn and incorpo-
rate them in human-intensive applications in a principled
manner. On the contrary, the collaborative human factors
learning component is considered as one of the most funda-
mental contributions of ECCO, designed with the overall ob-
jective to learn the collaborative human factors [8, 9] adap-
tively. It proposes a set of declarative primitives to learn
the (1) individual human factors, (2) group based human
factors, (3) correlation among different human-factors, (4)
most importantly adaptive and incremental learning of these
factors, considering the achieved quality of the group based
tasks. Recall the feedback loop in Figure 1 that comes from
external evaluation to this component. For our citizen sci-
ence example, the evaluation is performed with a hybrid
human and machine intelligence. In particular, the evalua-
tion of the completed tasks could be precision, recall, accu-
racy, sensitivity, etc. The corresponding vector in evalma-
trix may look like, precision = 0.8, recall = 0.6, accuracy =
0.5, specificity = 0.5. Function relearn is designed to re-
learn how to obtain the skills of the workers (ecological as-
sessment knowledge, field training, etc) from these evalua-
tion values. Some example primitives are provided in Ta-
ble 1.

2.2 Human-Centric Optimization
This component consists of two optimization engines.

Adaptive Task-Assignment Engine: Inputs to this en-
gine are the user population and the tasks (or a set of sub-
tasks), and the output are the groups that are best suited to
undertake the tasks. Primitive Form-Grp(t,U) is designed
for this purpose, which is further explained in Table 1. No-
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Primitive Description
human-factor-ind(u) output the individual human factors of user u.
human-factor-grp(g) output the group based human factors of g.
cor-human-factor({X}, k) output the correlation among the human factors in set {X}.
relearn({X}0, T, evalmatrix) relearn the human factors in the set {X}0, considering T tasks and the evalmatrix.
Form-Grp(t,U) output the assignment of a set of workers from the available worker pool U to task t.
Form-group(L, clique, th,U) output a clique of L workers whose aggregated all-pair affinity is th or beyond.
add-worker(u), delete-worker(u) adds and deletes worker u to/from the available tasks.
find-worker(human-factor) find worker with a given human factor.
find-top-worker(s) Find highest skilled worker for skill s.
find-top-worker(s,k,time-period) Find k highest skilled worker for skill s for a given time period.

add-eval(g, t1) add evaluation score of subtask-1 of task t completed by group g.

Table 1: Example Primitives Descriptions Supported by ECCO.

tice that, the group formation problem for us, is optimization
mediated, instead of organic. Needless to say that each user
is described by a set of human factors that are learned from
the collaborative human factors learning component. The
criteria of the best outcome (i.e., optimization objectives) is
domain-specific to say the least, and to be left for the domain
experts to decide. We, however, provide the mechanism to
incorporate these criteria into a set of well formulated opti-
mization models.

As a simple example, given a sub-task, such as finding
the workers group that can collect initial data to build the
statistical model (subtask-1), the group should be formed
such that the users collectively have the expertise to collect
both positive and negative labels for the statistical model,
their wages do not surpass the cost budget of the task, and
group should be designed such that it brings forth the max-
imum collaborative synergy. On the contrary, given a com-
plex task with a set of sub-tasks (such as one described in
the running example) and described in Figure 2, we need
to form a group of groups, where workers inside the same
sub-group must be highly collaborative, and workers across
some sub-groups need to interact with each other as well (for
example, sub-group-1 and sub-group-2 in the running exam-
ple). This engine is responsible to analyze the desiderata
of task-assignment and form groups to enable the desirable
outcome.

Naturally, even the simplest settings for such problems
give rise to complex mathematical formulations having multiple-
objectives to optimize. Then, the interaction pattern gives
rise to constructing graphs involving the workers, where the
topology of the graph should conform a specific interaction
pattern, as described by the domain experts. For the exam-
ple task stated in the running example, each group interac-
tion translates to forming a clique to execute a sub-task and
the interaction between the sub-groups give rise to forming a
connected topology among the cliques with highest affinity,
as described by Figure 2.

Finally, how big a subgroup should be is application-specific
many times. We envision that ECCO would support a variety
of such applications, where the group formation is premedi-
tated and guided by a well-defined optimization objective.

Human Data Management Engine: The human fac-
tors learning component constantly generates data involv-
ing individual human workers and group of workers over
the time that the task assignment engine needs to tap into
to enable effective assignment of worker groups to the sub-

Predic've)Species)
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Confirmed)Absence)
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Confirmed)Presence)

of)Species)

Model)Formula'on)

Covariate)Valida'on) Model)Valida'on)

Model)Re>Formula'on)

Figure 2: A Complex Task with Sub-tasks Using Example 1.

tasks. Not only that, the evaluation component generates
the evaluation of the completed tasks. Interestingly, this
data is temporal [3] and is associated with time stamps.
Human Data Management engine provides effective man-
agement over this dataset to enable effective storage and
retrieval over the time. We explain some of such functional-
ities next.

This engine will be enabled with the traditional database
primitives, such as, add, delete, or find a user with a given
human factor value, as explained in Table 1. Additionally,
the domain experts or the data analysts may be interested
to perform simple statistical analyses on this collected data,
for example, finding the highest skill worker for a given skill
s, or finding the top-k highest skilled workers, and so on.
The corresponding primitives are described in Table 1. In
an earlier work, we have proposed an effective indexing tech-
nique to cluster the workers based on skills and wages [9].

Recall Example 1 and notice that the complex tasks con-
sists of a set of sub-tasks. We propose primitives to add
evaluation score of a completed task (e.g., sub-task-1 in Ex-
ample 1), completed by a group. Similarly, for efficient task
assignment, ECCO will leverage this engine to quickly find a
group of workers who are most skilled to undertake a given
task (e.g., finding the best set of workers for each of the
sub-tasks in Example 1). In an recent work, we propose
the notion of virtual worker, an effective indexing tech-
nique to cluster the workers based on skills and wages for
effective worker to task assignment [9]. Additionally, our
proposed human data management engine is empowered to
retrieve worker groups that will optimize a particular inter-
action pattern. For example, we will design primitives to
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retrieve a clique of L workers with affinity more than some
threshold th. We refer back to the Table 1 again for the
exact definition of the primitives.

3. CHALLENGES & DIRECTIONS
We describe some of the major challenges in realizing ECCO

and our proposed directions.

(a) Identifying Relevant Factors: One significant chal-
lenge is to identify a wide variety of human factors and
other necessary semantics that are needed in such appli-
cations. We consider a platform with a set of n workers,
U = {u1, u2, . . . , un}

4 and l tasks, T = {t1, t2, . . . , tl}. A
task may be indivisible or may be decomposed to a set of
sub-tasks. A task requires multiple skills over m different
domains, S = {s1, s2, . . . , sm}.
(1) Human Factors: Our initial effort has identified the
following factors that potentially have a dramatic impact on
the ecosystem. (a) Skills: The skill of a worker u is ex-
pressed as a vector s1u, s

2

u, . . . , s
m
u over S, where each skill is

quantified in a continuous scale between [0, 1], where a value
of 0 reflects no expertise for that skill. (b) Wage/Cost: For
many collaborative tasks, explicit monetary remuneration
may need to be offered to the workers. wu represents the
amount of money a worker u is willing to accept to complete
a task. (c) Acceptance Ratio: Acceptance ratio pu ∈ [0, 1]
of a worker u is the probability at which u accepts a task.
(d) Worker affinity: A key to successful collaboration is the
affinity among the individuals. At the atomic level, affin-
ity is defined between a pair of workers u, u0, i.e., Aff(u, u0)
denotes how well these pair of workers work with each other.
(2) Task Quality Metrics: A task t may consist of a set
Q = {Q1, Q2, . . . , Qr} of quality metrics (as described in the
running example, such as precision, recall, etc). We envision
that the relevant metrics to estimate the task quality would
be domain specific and the value of a quality metric may be
an additive, multiplicative, or a more complex function of
individual worker’s skills or other human factors.
(3) Constraints in Collaborative Tasks : A task t may
have a budget (cost) threshold of Ct. To be considered suc-
cessful, it may also have a set of quality metrics threshold Qi

t

(i ∈ {1 . . . r}) with the total expenses less than Ct. Global
constraints should also be considered. For example, each
workers should neither be under nor be over-utilized, by as-
signing a lower (Xl) and an upper (Xh) limit on the number
of tasks she can be assigned to.

(b) Modeling: Appropriate incorporation of the hu-
man factors is one of the foundational steps in the success-
ful development of the Collaborative Human Factors Learn-
ing Component. Similarly, the Human-Centric Optimization
Component have to formalize complex optimization prob-
lems with multiple objectives and constraints. In our initial
direction, we realize that it is only realistic to collaborate
with the domain experts to understand and appropriately
incorporate the application specific human factors. As an
example, for the species data collection task described in
the running example, human factors could be ecological as-
sessment ability, field training, workers’ affinity with each
other, explicit monetary incentives, etc. After that, a math-

4Although new workers could join and existing ones could leave
any time.

ematical model is to be formalized that incorporates those
factors appropriately, where it would maximize some of the
factors, and use the rest as constraints. A simple mathemat-
ical model may intend to form a group G which maximizes
the aggregated expertise Σudi of the users as well as their
collaboration affinity ΣAff(ui, uj), while keeping the total
cost under a certain threshold Σwu ≤ C, such as:

Maximize Σ8ui,uj∈G
Aff(ui, uj)+

Σ8ui∈G
udi ,Σ8u∈G

wu ≤ C

On the contrary, if the task-assignment optimization is per-
formed globally, we also need to add the load balancing con-
straints. However, the question remains, how to acknowl-
edge in the modeling that not all users will perform accord-
ing to their expertise, or a group may have to be partitioned
into sub-groups if it violates the critical mass constraint.
Similarly, task creation engine is also designed to optimize
outcomes (such as minimizing latency), while satisfying the
constraints provided by the domain experts.

(c) Learning: The collaborative human factor learning
component hinges on automated learning techniques to un-
cover the correlation among the human factors. Several in-
teresting and challenging problems surface that involve de-
signing learning algorithms. For example, what makes indi-
viduals or a group remain motivated, or how to learn worker
skills for collaborative tasks? Such problems are likely to
give rise to novel supervised or unsupervised machine learn-
ing solutions.

Let us consider a simple illustration of the function
relearn({X}0, T, evalmatrix) in Section 2.1, where we are
given a matrix evalmatrix that provides how each task ti
is evaluated based on various task quality metrics. Learn-
ing worker skills could be posed as a matrix tri-factorization
problem, where evalmatrix is factorized as, - i.e. evalmatrix ≈
FX 0GT where the approximation accuracy is measured based
on the norm ||evalmatrix−FX 0GT ||. Matrix F is a Boolean
matrix and has the assignment of workers to groups in dif-
ferent tasks. X 0 denotes the worker to human factor matrix.
The final matrix G measures the impact of human factors
to task quality metrics, specifying that metric Gi as a linear
combination of human factors. This tri-factorization [7] is
heavily constrained using non-negativity, sparsity, row/column
stochasticity, or other marginal constraints.

(d) Adaptivity and Incrementality: Adapativity is
essential for the survival of ECCO from several perspectives
- with changing time and context, individual and group hu-
man factors, as well as their correlation will vary. This not
only requires the two of the first three challenges (i.e., mod-
eling and learning) to be time-aware, but also to be adaptive
in nature. For the Human Factors Learning component, this
means that ECCO should be able to adaptively learn the hu-
man factors, as they perform more actions in the system. For
the task assignment engine, it would mean that the system
would be able to incrementally form groups as more users
join or existing ones leave the platform. To enable adaptive
and incremental computation the human data management
engine needs to be sensitive to the footprints of a workers’
activity in a temporal fashion. Understandably, incremental
computation may introduce approximations in the results.
In a recent work of ours, we have proposed how to perform
adaptive task assignment by marginally solving the problem
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and our experimental results demonstrate that our proposed
solutions are both effective as well as efficient [9]. An in-
teresting study would be to investigate the approximation
factors of the proposed algorithms theoretically.

(e) Scalability: The task assignment problem is shown
to be NP-hard[2], even in the simplest scenarios [9] even
without considering affinity. Similarly, matrix factorization
problem is inherently NP-hard [7]. Therefore, all the com-
ponents of ECCO must ensure efficient algorithms for human
factors learning or task assignment. Proposed human data
management engine therefore needs to be appropriately de-
signed to ensure efficient computations. When affinity is
considered in the modeling, the very simple task assignment
formulation described itself gives rise to complex graph par-
titioning formulation. At the same time, we intend to stay
as principled as possible. Traditional modeling and learning
algorithms that are typically inefficient may come largely
inappropriate in our settings, thereby requiring to generate
new theory and techniques. We foresee that the scalabil-
ity challenges of ECCO will nurture engagement and collab-
oration across the theory, database, and machine learning
community. Efficient approximation algorithms with theo-
retical guarantees will be proposed, or we expect to see inno-
vative pre-computation or index design solutions to enable
real time response. A very few existing research efforts [9,
1] superficially investigates some of these scalability issues
for the task assignment problem. How to design the human
data management engine effectively to enable efficient task
assignment and human factors learning remains to be an
open problem.

(f) Platform Design: ECCO would not be possible with-
out the ability to conduct comprehensive experiments and
validate the outcomes. Note that, finding appropriate datasets
that represent the real world is one of the toughest barri-
ers that we yet have to surpass. Most of the existing plat-
forms, commercial or academic, such as Amazon Mechanical
Turk (www.mturk.com), CrowdDB, Qurk, Deco, do not nat-
urally support collaborative tasks. To go beyond theoreti-
cal analyses, the community needs to have access to one or
more platforms that support collaboration and group forma-
tion, where the experiments and analyses can be conducted
systematically. We expect that ECCO will transpire enough
system research to build platforms and propose declarative
languages to support collaborative human-intensive appli-
cations. Without appropriate evaluation strategies, indeed,
the effectiveness of ECCO will only be partially explored.

4. CONCLUSION
We propose the vision of ECCO, a framework that supports

data management and analyses for ecological data by lever-
aging the innate characteristics of individuals. We outline
the two core components of ECCO - 1) Collaborative Human
Factors Learning Component, 2) Human-Centric Optimiza-
tion Component. The first component is designed to learn
and characterize individual and group behaviors over time,
their interdependence, which is designed to closely work with
the evaluation or the deployment environment. The latter
is an optimization component which interacts with the for-
mer to leverage human factors in the modeling and com-
putations. This component is intended to automate worker
to task assignment which are largely manual (or self medi-
tated) and painfully slow till date. ECCO warrants adaptivity

and scalability - to support that we propose the necessity to
design an appropriate human data management engine that
will collect and manage data coming from the human fac-
tors learning component and use that in task assignment.
We intend to design principled solutions that are effective
as well as efficient. We summarize the challenges of ECCO

and propose initial directions.
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“By letting it go it all gets done.
The world is won by those who let it go.”

(Laozi)

ABSTRACT
In the big-data era data is arriving at such a high pace
and volume that data exploration and querying can only
be feasible if data loading and indexing happens reasonably
quick—if at all. Recent research on handling large scien-
tific data suggests ignoring any database indexing or even
data-loading processing steps but rather turns toward pro-
cessing raw data as it is handed in by scientists, manually
or by semi-automated means—if needed in multiple, itera-
tive steps. In this paper, we describe the anatomy and re-
search challenges of a system coined ligDB1 that is operat-
ing purely on incomplete database tables, JSON documents,
or sets of SPO triplets that are being filled over time. There
is no data stored per se; the only data stored is stemming
from previously posed queries over the stream of arriving
data; kept as long as it is used by forthcoming queries and
otherwise evicted. A key point is that velocity dimension of
“big data” allows queries being processed as they are posted,
with higher-level queries processed on historic query results
(views) and live data. Data that is not touched by any posted
query is immediately discarded.

1. INTRODUCTION
The big data challenge is about making sense of large

amounts of digital content, in a timely fashion, for busi-
ness intelligence or other forms of knowledge-seeking tasks.
Data is generated at various sites and continuously grow-
ing; for instance through crowdsourcing missing entries of a
database table, by contributing facts in Wikipedia pages, or

⇤This work has been partially supported by the German
Research Foundation in project MI 1794/1-1.
1The prefix lig in ligDB stands for “let it go” and to lig
can also mean to live on others; both meanings capturing
together the two corner stones of ligDB
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27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
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by mentioning entity-centric properties in Tweets. The com-
mon problem dimensions imposed by the properties of what
is commonly referred to as “Big Data” are best sketched by
the “4Vs”, most prominently volume and velocity (and vari-
ety and veracity). Data too often arrives in big volumes at
high bandwidth, too much to apply traditional store-first,
process-later approaches. With the advance of technology
the volume and velocity of data will just keep growing, re-
quiring a drastic shift in the current ways of data storing and
processing. Recent works on handling scientific data [25, 4]
have already emphasized the huge overhead of (re-)indexing
for one-time queries over quickly changing data and propose
processing queries on raw input data, if required through
multiple iterations (parsings); or using access-driven data
fetching [1]. Other attempts aim at explorative data analy-
sis, with tools guiding the querying process and supporting
approximative query results with tunable time budgets [29].

ligDB represents a radically new approach to handling
the data deluge: it is designed to let go data (hence its name)
that is not required by any query and only the submission
of a query triggers data gathering and processing. No other
data is stored, unlike earlier works, like the ones mentioned
above, where the “entire” data is available and waiting to
be queried (if needed). In ligDB only the results of queries
are stored/cached, hence are treated as data by subsequent
queries, until replaced in the store if not used. Think of
queries that aim at finding restaurant ratings/critics or the
temperature in a certain city, information on who is the
fiancé of Angelina Jolie, the most promising stock to invest
in, or the hottest posts in Facebook. In the massive amount
of digital content that is created, commented-on, or simply
re-invented (i.e., replicated) at literally every second, why
should we store everything that has been produced thus far,
when those questions can potentially be answered on the fly.
That is, it appears possible that data is arriving at such a
volume and velocity that queries can actually wait for it.

Once fired, queries are getting filled with result tuples un-
til a user-specific quality or response-time criteria is met and
report back to users. Ultimately, queries and their results
can stay in the system and form a basis of further querying;
essentially forming, traditionally speaking, a purely view-
based database system over an update/data stream.

The following are the signature characteristics of ligDB:

• No Storage: no data is stored per-se

• No Schema: data arrives in form of SPO triplets or
JSON documents

• Query-based: queries trigger data gathering to an-
swer the query

 

 

683 10.5441/002/edbt.2015.69

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2015.69


• Result Caching: query results are cached, statically
or dynamically (as views to be updated), and evicted
at some point

• Live or Historic Results: current queries can re-use,
entirely or partially, historic query results

• Query by Example: queries are semi-automatically
formulated, through ontological concepts and the query
by example paradigm. For instance by specifying pre-
viously obtained results and waiting for the updated
ones.

A system such as ligDB is ideally able to behave, from
a user perspective, like a traditional data management sys-
tem: it can serve ad-hoc explorative queries and analytical
queries. On the other hand, it is clear that due to the for-
getful data handling, it also puts natural limits on its appli-
cability to more traditional scenarios.

In order to build such a system, various core research areas
have to be integrated. In fact, there is work on almost all as-
pects of this system in separation. Like data integration, re-
sult caching, view maintenance, and processing queries over
data streams. Old concepts like query by example are re-
vived to allow users querying large amounts of very sparsely
(if at all) described data; a general problem for which also
ontologies can help. In this work, we sketch the overall idea
of ligDB, the characteristics of its core system components,
application cases, and challenges.

This paper is organized as follows. In Section 2, we re-
view recent work on processing data on raw files or in a lazy
fashion along with an overview of fundamental techniques.
In Section 3 the overall architecture and core components of
ligDB are presented; including a sketch of a possible imple-
mentation. In Section 4 we discuss challenges that need to be
addressed. We summarize the paper with a brief conclusion
in Section 5.

2. RELATED WORK
Kersten et al. [29] envision the next generation database

systems as systems that shift away from the goals of com-
pleteness and correctness, aiming towards explorative and
interactive data analysis. They propose several research di-
rections: a one-minute database kernel, producing query re-
sults within a limited time; multi-scale queries—breaking
the query into multiple smaller stages; post processing of
the result sets; query morphing—creating variations of the
issued query and finding their results as well; and providing
query suggestions for more e↵ective data exploration.

Lazy processing: Cheung et al. [15] present Sloth, a sys-
tem that extends lazy evaluation with the purpose of reduc-
ing network latency in web applications. Using dynamic pro-
gram analysis, they identify the queries to be issued by the
application, batch them, and postpone their processing un-
til it is absolutely necessary. Only then they execute batches
of queries, thus reducing network latency. Kargin et al. [28]
propose lazy ETL, a technique for extracting, transforming
and loading in a data warehouse only data that is neces-
sary to answer the issued query. Initially, only the metadata
from the queries are loaded into the warehouse. When the
user issues a query, the selection predicate is imposed on the
metadata to decide which files need to be loaded; the data
is transformed using relational views on the extracted data;
and stored into the internal data structure of the warehouse.

NoDB [25, 4] avoids data indexing and instead operates
on raw csv files, if required through multiple iterations. They

argue that the initial indexing in traditional DBMS poses a
huge overhead, too high for one-time queries over frequently
changing data. However, they still assume that data is re-
siding on disk or another storage container and waiting to
be queried. Similarly, modern SQL-on-HDFS engines like
Google Dremel [35] and Cloudera Impala [16] do not own
data, but execute queries over files stored on a distributed
file system. Abouzied et al. [1] propose to load data for pro-
cessing based on queries. While the query-driven nature is
similar to what we propose with ligDB, we do not assume
that data is stored anywhere and waiting to be accessed.
Instead, ligDB operates solely on live data, as handed in
by scientists or as otherwise generated. When data arrives
there is a one-time chance that it gets consumed—or it is
eliminated otherwise.

Approximate query processing: In [3] the authors
address the problem of overestimating or underestimating
the error in sampling-based approximate query processing
(S-AQP). They show that existing approximation methods
used by S-AQP can sometimes show errors which are overes-
timated or underestimated. They propose a diagnosis tech-
nique to estimate the failure of error estimation for the
query, while still providing an interactive mode of answer-
ing the queries. Using the diagnostics tool, the DB system
switches to non-approximate methods for answering queries,
when the diagnostic tool sees that the error estimation will
be unreliable.

Willis et al. [32] consider partial query results from a dif-
ferent perspective, i.e., partial-results generation in a case
of data-access failures. They provide a taxonomy of partial-
results, classifying them based on the cardinality and the
correctness of the partial result with respect to the true re-
sult. They further discuss how to assess the correctness and
cardinality class of partial results, and whether this can be
done at a finer granularity level (e.g., per row or per column).

Ge and Golab [20] propose a framework for maintain-
ing data structures in main-memory, sliding-window data
warehouses. The proposed framework aims at combining the
benefits of existing sliding-window maintenance techniques,
namely single data structure for all-time window partition,
and one data structure per partition.

Publish/subscribe is a widely used communication para-
digm for large-scale distributed systems. In the publish sub-
scribe interaction scheme, subscribers register for an event
and publishers publish events. Subscribers are asynchronously
notified when an event of interest is published. There are
many variants of this system. Eugster et al. [17] identify and
summarize the commonalities and di↵erences of di↵erent
publish-subscribe systems. Vargas et al. [43] propose an ar-
chitecture for integrating databases with a publish-subscribe
system. They integrate Hermes, a publish subscribe system,
with PostgreSQL, allowing users to subscribe to events de-
noted by changes that occur in the underlaying database

Data Streams and Continuous Queries: Data streams
have emerged as an answer to applications that do not fit
the traditional data model. Golab and Özsu [22] summa-
rize data-stream management systems from di↵erent per-
spectives, and further identify possible research challenges.
PSoup [13] is a system for streaming queries over streaming
data. PSoup treats data and queries symmetrically: when
new query is registered to the system, it is probed over the
historical data to find possible results. Similarly, when a new
streaming data tuple arrives to the system it is first probed
over the pending queries; the result is materialized; and
stored in the system. A result is returned only when a user
requires one, and then only the results belonging to a time
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Figure 1: high level architecture

window are returned. PSoup supports joins over di↵erent
data streams as well, by storing each stream in a correspond-
ing data SteM. Bonet et al. [11, 12] discuss streaming data
and the kinds of queries that can be issued. They describe
types of queries over streaming data—snapshot and long-
running queries. Snapshot queries are defined as those over
a set of streaming sources but in a single point in time in the
past. On the other hand, they describe long-running queries
as queries that continually return answers as new data ar-
rives. ligDB is not meant to be a data-stream processing
system, rather it is supposed to act like a non-streaming,
traditional database system, from a user perspective; with
the di↵erence that no data is stored and only query results
are cached (treated as data or, better, materialized views)
and can be queried as normal “data”. Terry et al. [42] pro-
pose the concept of continuous queries; a permanent query
for which the user gets results whenever there is a matching
tuple. They further define monotone continuous queries as
queries which result is strictly non decreasing over time.

3. LIGDB ARCHITECTURE
The high-level architecture of ligDB is shown in Figure 1.

The system smoothly blends data processing on raw input
streams with traditional query processing on top of data
gathered in a query-driven way. We believe that the query-
driven data gathering and subsequent processing in ligDB
is very reasonable as data is not created by a “big bang” but
is being built up over time, for instance, crowdsourced [19],
measured by sensors, or created by user actions in social
networks or Wikipedia.

3.1 Core Components
ligDB has the following core components (cf., Figure 1):

• Enrich, Annotate, Fuse: We consider small data
fragments in form of sets of object-oriented (entity
centric) key-value pairs as the generic data format.
For instance, in form of JSON objects; however, ide-
ally in form of full-fledged relational tables with clear
schemas. In general, input data can be further annotat-
ed/enriched, e.g., through object/entity disambigua-
tion, cleaned or standardized to general concepts using
ontologies. This is very generic, and does not assume
any fixed schema with full-fledged relational tables and
foreign-key constraints to be present.

• Collect: As there is no data stored per se, initially
queries are purely data-gathering queries, i.e., they de-
fine materialized views, until the query is answered to

a satisfactory level. Subsequently, the query results are
returned. Results can be statically cached or the query
can remain in the system and needs to be continu-
ously updated. This forms a data basis in the otherwise
empty-storage ligDB.

• Cache: The cache is responsible to handle the pre-
viously mentioned results of historic queries. It has
space, time, and runtime constraints. That is, it has
limited (in-memory) storage, evicts too-old-to-be-useful
query results, and limits the amount of views to be con-
tinuously maintained [9, 30] and not frequently used.

• Process: Once queries are present in the system, ei-
ther running or cached, newly posted queries can (fully
or partially) reuse previous query results. When the
query cannot be fully answered by historic results,
the entire query or parts of it are posted in the data-
collector component over the data stream.

• Explain:Querying heterogeneous, schema-free (or not
well understood ones) data requires mechanisms that
guide the query-phrasing process. We believe that the
querying process should be driven by either examples
and/or be guided by general-purpose and specialized
ontologies (that can be uploaded in the system).

• API/UI: Users can assemble queries using the above
Explain component and push them to the system. If
they can solely be answered based on cached data, the
result is returned instantaneous. Otherwise, the query
is registered and necessary data is gathered. The user is
notified if the query is answered to a satisfiable degree.

3.2 Object/Entity-Centric Input Fragments
As input, we specifically consider data represented as generic

JSON objects, i.e., a bag of possibly nested key-value pairs.
These might or might not come with globally unique iden-
tifiers that allows to gather data specifically related to one
unique object. If ids are not given directly, to accumulate
key-value pairs for the same object (entity), methods for de-
termining the correct entity based on the data context are
required. Consider for instance the JSON object in Figure 2
that gives details on a business in Phoenix, AZ, as given
by the Yelp academic dataset [45]. Portals like Yelp that
harness crowd input are an excellent example why data is
not created in one time point, but evolves. For instance,
business categories, here “Food” and “Grocery” might be
added later on, review counts grow over time, and the field
“open” can change over time, too. Other information such as
“city” and “state” in this example are redundant, here with
“full address”, but might be useful for querying. To extract
such information and to bring their naming to a common
ground is part of the Enrich, Annotate, Fuse component.
There has been many recent works on understanding Web
tables [33, 44] and on matching and disambiguating named
entities [31, 24] that can be harnessed in ligDB.

3.3 Query Types and Query Publishing
Per se, there is no restriction on the kind of queries that

should be processed in ligDB. Apparantly, however, in a
scenario like the one addressed, where it is reasonable to
throw away any historic, unused data, queries will likely be
mostly of analytical, explorative nature.

The most basic query in ligDB are so called data gath-
ering queries that extract information out of the underly-
ing data stream. Since it is not reasonable to assume a
fixed schema, as described, one way to work is with exam-
ples/templates, for instance,
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1 {
2 “business id”: “usAsSV36QmUej8–yvN-dg”,
3 “full address”: “845 W SouthernAve Phoenix,

AZ 85041”,
4 “open”: true,
5 “categories”:[“Food”, “Grocery”],
6 “city” :“Phoenix”,
7 “review count”: 5,
8 “name”: “Food City”.
9 “state”: ”AZ”,
10 “type”: “business”
11}

Figure 2: Excerpt of a JSON object of the Yelp dataset

1 {
2 “business id”: ?
3 “name” :?,
4 “city” :“Chicago”,
5 }
that are simple selection&projection queries with predi-

cates. Users can also re-use existing query results to gather
additional information, or to refresh/enrich previous results.

It is clear that the above samples and the focus on JSON in
this work is not a restriction; likewise, we could also consider
RDF Subject-Predicate-Object (SPO) triples and queries
expressed in SPARQL, or even data integration/fusion into
relational tables and querying with SQL. Still, it is hard to
phrase meaningful queries. Below, we review some works on
query advisors and ontologies [41, 7].

More advanced queries can be in a form of (top-k) ag-
gregation queries [27], arbitrary join queries (particularly
semi-join–based data pruning appears very useful), queries
that gather/compute data statistics, such as our recent work
on computing correlation values for entity or tag occur-
rences [5], up to “scientific queries” like interpolations that
act as input to visualization, or data cleaning/predication
on the moving data using methods such as Kalman filters;
and any other queries that are traditionally processed over
data streams such as running sums or quantiles. We do not
explicitly rule out sliding windows to be used in ligDB, but
this, rather traditional and also orthogonal (to query-drive
data gathering) concept, is not the focus in this proposal.
Obviously, the selectivity of the query can impair the per-
formance, and, in case of a select *, turn ligDB into a tra-
ditional store. It is the job of the below described query
advisor to guide the user, considering the selectivity of the
queries.

3.4 Query Processing
When considering query processing techniques, there are

two important aspects of ligDB that need to be considered.
First, queries are not guaranteed to be executed within mil-
liseconds as data is per se not given. That is, queries can run
for seconds, which calls for grouping queries and sharing the
load [21, 34, 14]. Second, the workload and the underly-
ing database is very dynamic, the streaming and “historic”
data as well as schemas are constantly changing. Thus, adap-
tive on-the-fly query optimization techniques need to be ap-
plied. Due to the dynamic nature of data streams, adaptive
query processing has been addressed in [34, 8], but also for
queries executed over raw data [4]. Adaptive indexing tech-

niques [23, 26] should also be applied since, first of all, ligDB
has no fixed schemas, and second, the query workload is con-
stantly changing—rendering fixed indexing schemes ine↵ec-
tive. Acosta et al. [2] discuss adaptive query processing with
respect to SPARQL endpoints. Their main idea is adapting
the query to the availability of the SPARQL endpoints, thus
getting results even when some sources are not available, or
parts of the query cannot be answered. In ligDB, as there
is no guarantee that the query can be answered as a whole,
such adaptive techniques can be applied to gather answers
for parts of the query.

3.5 Query Advisor
ligDB aims at handling large amounts of heterogeneous

content, not tailored to a specific, narrow application case
with well designed and understood schemas. The trouble
with this generic setup is that it is hard if not impossible
to phrase meaningful queries without guidance. Thus, the
query advisor is a key component of ligDB. Statistics, con-
stantly gathered from the incoming data stream (after the
Enrich, Annotate, Fuse component), together with generic
and domain specific ontologies, can serve as the base of the
advisor. Blunschi et al. [10] employed ontologies to help
keyword-based querying of complex-schema databases, for
the case of business analysts in banking environments. They
propose methods to find the most promising SQL-query can-
didates, based on input keywords. Clearly, in an arbitrary-
data management system like ligDB, this is of even higher
importance.

Once a query base has been formed, and data is resid-
ing in the cache, collected data can trigger further query
proposals. Sellam and Kersten propose a query advisor [39]
that allows users to explore data and its statistics by posing
queries that can be refined, gathering statistics and expla-
nations of possible results. Another practical solution ap-
pears to be the application of the generic query-by-example
paradigm [47] and reverse engineering of queries based on
data samples [37, 46]; in addition to handing in object/en-
tity centric (former) query results and waiting for ligDB
to refresh them. However, since all these existing techniques
are designed over static data, and the nature of ligDB im-
plies that the data residing in the cache is dynamic, new
challenges arise for adapting existing techniques to the con-
stantly changing data.

3.6 Implementation
The input layer to ligDB is formed by a cluster of ma-

chines that run systems such as Storm [40] or S4 [36] that
aim at fault-tolerant realtime handling of big, high velocity
streams of data; similar to what MapReduce is for batch pro-
cessing. Such systems can scale to big loads of data by adding
more machines for individual processing tasks running in
parallel. Application developers have to provide the imple-
mentation of stream sources and operators, following the
provided API. At that entry point, data is matched against
registered queries and data not touched by at least a single
query is immediately discarded. The Enrich, Annotate, Fuse
and the Collect component is directly implemented in this
streaming environment. Useful data and posted queries are
indexed in an underlying key-value store by entity/object
ids, including attributes and values. In the naive way, this
would generate redundancy, there might be more advanced
ways to store/index that information in an accessible way;
such as by forming clusters or related information (e.g., in
the sense of what is being done for RDF graphs). Ideally,
though, a full-fledged database management system can be

686



employed to harness standard SQL and the research e↵orts
of the past decades (query optimization, query advisors, in-
dices, etc.).

4. CHALLENGES
Arguably the most characteristic facet of ligDB is its for-

getful or simply ignorant way to handle data. Only posed
queries trigger the collection of query-relevant data and,
hence, enables their processing. This is in strict contrast to
traditional data management that collects large amounts of
data, indexes it, and is able to process ad-hoc queries very
e�ciently; assuming data is not changing frequently. This
characteristic of ligDB is unique and poses several impor-
tant research challenges that need to be addressed.

4.1 Incomplete and Time-Varying Results
Terry et al. [42] define monotone continuous queries as

queries whose result is non-decreasing at any point of time.
However, they consider queries over append-only databases,
meaning current tuples do not get updated or deleted. In
ligDB this is not the case: The same query issued only
seconds later may return completely di↵erent results due to
the constantly changing flow of data. One way to solve this
issue is to define truth over time, meaning that results are
true only for a specific time point or time frame, depending
on the query. This is di↵erent to queries over time windows,
as queries do not get attached a time window, but rather
results. It is not clear whether old, cached information (even
though updated) and new streaming data should always be
mixed together, or if it is better to start an entirely new
query. Consider for instance the case of query results that
are, despite being kept fresh, capturing a larger time span; it
might not be semantically correct (or advised) to join/merge
its results with a new query that has seen only very recent
data.

In ligDB, we are also facing the problem of (almost) never
having the complete query answer. With exception of some
type of queries, results in ligDB are never complete, by de-
sign of the system. For instance, a query asking for cities
with hotel prices below some value cannot be complete as
new hotel o↵ers may always arrive to the system. The ques-
tion is when query results are complete enough to be re-
turned to users, considering a benefit/cost tradeo↵ between
runtime and completeness/quality. One approach could in-
vestigate the level of convergence of the query result to a
specific value or size, or if the tuples of the result become
“stable” enough.

4.2 Scale Independence
Queries in ligDB trigger the data collection for their

processing and the amount of data they “subscribe” to is,
thus, performance critical. In the sense of the concept of
scale independence [6, 18], ideally, queries in ligDB can
be answered with consumption of a bounded number of in-
put data, produce only bounded intermediate results and
have also size-bounded output. Without additional knowl-
edge and constraints imposed by the application logic, as in
PIQL [6], this is not possible, and it is unclear to what ex-
tent this can be implemented “in the wild” over schema-free,
heterogeneous data. In addition, queries in ligDB should
behave well in the time dimension, that is, the time required
for gathering data to allow a satisfactory query answering
should be ideally bounded, too. Knowing the rough output
cardinality of a query helps in so far, as the degree of com-
pletion or the full completion is known. Still, this does not

immediately tell when exactly data arrives that would be
required to finalize the results. In fact, it might happen that
a query never gets answered within reasonable time. This
needs to be determined as soon as possible to return to the
query initiator. The system should also be interactive in the
sense that it periodically returns incremental results or time-
to-completion information.

4.3 Cold-Start Problem
In recommender systems, a cold-start problem (cf., [38])

occurs when a new item (user) is added to the system which
cannot be recommended as no one has rated the item so
far. In ligDB there is a cold-start problem when a query
is posted for which only few or no data at all is present in
the system, as in the recent past no related query has been
issued. With changing data and user interests this problem
is expected to occur virtually at any time. In that case, all
query-related data need to be first gathered from scratch
and no previously cached query result is useful to answer
the query at least partially. After this cold-start phase it is
assumed that most queries can be answered at least par-
tially by harnessing cached query results. Partially answer-
able means that previous queries allow finding a subset of
the true query answers (objects) with potentially missing
key-values pairs in the individual result entries. It is to be
decided in this case if it is reasonable to postpone the re-
sult delivery to the query initiator in order to gather addi-
tional results and attributes, to already report the incom-
plete results, and/or to start data gathering to aim at more
complete results. Another issue which rises with the cold-
start problem is how and which queries to phrase: Phras-
ing queries when there is no schema available or some pre-
vious knowledge of the streaming data is not trivial. This
could make the user resort to posing general data-gathering
queries. Thus the ligDB query advisor, ideally, by using
the gathered statistics and/or ontologies, should be able to
suggest queries in this case as well.

5. CONCLUSION
In this work, we sketched the core ideas and research chal-

lenges behind ligDB, a data-management architecture that
makes the case for storing only data for which a related query
is posted to the system. This is in strong contrast to common
data management systems, that follow an index-first-query-
later paradigm or are running continuous queries (often of
statistical nature) on data streams. ligDB is designed to
ideally act as a traditional data management system, serv-
ing ad-hoc queries in acceptable response times but can also
harness long-running data stream analytics. The forgetful
data handling and the pay-as-you-go building up of a data
repository to be reused render ligDB appealing for handling
explorative and analytical queries over large input data. The
price to pay for such a data processing principle is its suscep-
tibility to data-to-query discrepancy and a not su�ciently
large data input rate.
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ABSTRACT
Preserving the integrity of application data across updates
in the presence of failure is an essential function of com-
puting systems, and byte-addressable non-volatile memory
(NVM) broadens the range of fault-tolerance strategies that
implement it. NVM invites database systems to manipu-
late durable data directly via load and store instructions,
but overheads due to the widely used mechanisms that en-
sure consistent recovery from failures impair performance,
e.g., the logging overheads of transactions. We introduce
the concept of Timely Su�cient Persistence (TSP) mech-
anisms, which is relevant to both conventional and emerg-
ing computer architectures. For a broad spectrum of fault-
tolerance requirements, satisfactory TSP mechanisms typ-
ically involve lower overheads during failure-free operation
than their non-TSP counterparts; hardware and OS support
can facilitate TSP mechanisms. We present TSP variants of
programs representing two very di↵erent classes of shared-
memory multi-threaded software that store application data
in persistent heaps: The first employs conventional mutexes
for isolation, and TSP substantially reduces the overhead of
a fault-tolerance mechanism based on fine-grained logging.
The second class of software employs lock-free and wait-free
algorithms; remarkably, TSP is very easy to retrofit onto a
non-resilient design and enjoys zero runtime overhead. Ex-
tensive experiments confirm that TSP yields robust crash
resilience with substantially reduced overhead.

1. INTRODUCTION
Runtime failures such as process crashes, operating sys-

tem kernel panics, and power outages can corrupt or de-
stroy application data unless e↵ective measures protect ap-
plication data integrity. Both disk-based and main-memory
database systems running on conventional hardware with
volatile byte-addressed memory and non-volatile block stor-

c� 2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
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Creative Commons license CC-by-nc-nd 4.0
.

age employ sophisticated techniques to preserve the integrity
of application data across updates in the presence of fail-
ures [13]. Unfortunately these techniques sometimes su↵er
painful runtime overheads due to the performance charac-
teristics of hard drives and solid state drives.

Emerging hardware promises durability with greatly im-
proved performance [14]. Byte-addressable non-volatile
memory (NVM) is becoming available [1] and has en-
abled new database system designs with improved perfor-
mance [17, 21, 26]. NVM has sparked increased interest in
main-memory databases that store all data in memory and
directly manipulate durable data in persistent heaps via
load and store instructions rather than through database
or filesystem interfaces [25]. Such approaches o↵er supe-
rior performance compared to disk- and SSD-based systems
with comparable fault tolerance, but they su↵er noticeable
overheads during failure-free operation [14].

We begin by introducing a conceptual framework that
encompasses both conventional and emerging hardware.
We then systematically characterize as a function of fault-
tolerance requirements the circumstances under which run-
time overheads may safely be postponed until failures actu-
ally occur and/or eliminated outright, and we tailor the spe-
cific measures taken to the available hardware. The result is
the concept of Timely Su�cient Persistence (TSP). Loosely
speaking, a TSP fault-tolerance mechanism eschews costly
preventive measures in favor of minimalist remediation when
failure is imminent, which typically reduces runtime over-
heads substantially. It furthermore helps us to identify new
hardware and OS support to facilitate new fault tolerance
mechanisms. We restrict ourselves in this paper to the con-
text of a single computer, and the following types of failures:
process crashes, kernel panics, and power outages.

The remainder of this paper is organized as follows: Sec-
tion 2 reviews emerging hardware architectures, describes
corresponding fault tolerance mechanisms and application
programming styles, and discusses how these new develop-
ments relate to traditional fault-tolerance objectives. Sec-
tion 3 defines Timely Su�cient Persistence and describes
how it can be implemented on both conventional and emerg-
ing hardware. Section 4 presents two case studies illustrat-
ing the benefits of TSP: In one case, TSP imbues a pro-
gram with crash resilience while adding zero runtime over-
head; in another case, TSP substantially reduces the runtime
overhead of an existing fault-tolerance technique. Section 5
presents experimental results confirming both the fault tol-
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erance properties and performance advantages of TSP in our
two case studies, and Section 6 concludes with a discussion.

2. NEW HARDWARE & SOFTWARE
Database management systems are designed to survive

severe failures, e.g., power outages. When they run on
conventional hardware with volatile DRAM memory, they
must therefore write data to block-addressed storage de-
vices, which perform poorly for random writes. Write-ahead
logging and grouping partially mitigate the storage I/O bot-
tleneck [13]. The need to synchronously commit such writes
to block storage may limit overall database performance to
storage bandwidth [10]. Solid state drives (SSDs) enable
databases with improved performance compared with disk-
based designs [19]. However, SSDs still su↵er from the same
fundamental drawback as HDDs: both kinds of storage de-
vices require databases to synchronously commit data via
a relatively slow block I/O interface [19]. Main-memory
databases are optimized for the case where all data fits in
memory [22]. To this end, systems such as HBase [9] and
Silo [24] redesign recovery and locking mechanisms so as to
minimize the impact of these bottlenecks. However, main-
memory databases that have not been re-architected for the
case that all data fits in durable memory still su↵er from
the I/O bottleneck of persisting on stable storage. Tradi-
tional filesystems running on conventional hardware provide
an alternative means of manipulating durable data, but they
su↵er the same storage bottlenecks that a✏ict databases [4].

Byte-addressable non-volatile memory (NVM) has re-
cently become available. Conventional DRAM is approach-
ing density scaling limits [1], and the most promising re-
placement technologies—phase change memory, spin-torque
transfer memory, and memristors—all happen to be non-
volatile [26]. If any of these technologies architecturally sup-
plants or supplements DRAM it will provide inherently non-
volatile random-access memory (NVRAM). Meanwhile, hy-
brid DRAM/flash memory DIMM packages backed by bat-
teries or supercapacitors (NVDIMMs) implement NVM by
persisting the contents of DRAM to flash when power is
lost [14]. Non-volatile CPU caches have been proposed to
complement NVM [28]. Another way to preserve the con-
tents of volatile DRAM across utility power outages is to fail
over to an uninterruptible power supply, a traditional build-
ing block of fault-tolerant systems [12]. Regardless of the un-
derlying technology, all forms of NVM share several advan-
tages over block-addressed storage devices. NVM is installed
on the memory bus and enjoys access latencies and band-
width comparable to DRAM. NVM is accessed at cache-line
granularity via load and store instructions. In contrast
to the relatively coarse, slow, mediated updates o↵ered by
database and file systems atop block storage devices, NVM
enables fast, fine-grained, direct updates by application soft-
ware.

The potential of NVM has been explored in the context
of disk-based and main-memory databases [17, 21, 26] and
filesystems [5]. However the arrival of new forms of NVM has
also renewed interest in a style of application programming
that has long been possible but that has remained outside
the mainstream until recently. Since the days of MULTICS,
some operating systems have o↵ered application programs
the illusion that load and store instructions operate upon
durable data [6]; file-backed memory mappings provide this

illusion on modern POSIX systems [23]. Atop such mecha-
nisms it is possible to layer higher-level abstractions ranging
from straightforward persistent heaps [18] to sophisticated
object databases [27].

Compared with the more mainstream approach in which
applications manipulate durable data via filesystem or
database interfaces, the “NVM style” of direct manipula-
tion o↵ers several attractions. The most obvious is that
in-memory data structures and algorithms are sometimes
more convenient and more natural than the storage-oriented
alternatives. A related issue is that translating between in-
memory and serial data formats can be cumbersome. Trans-
lation between serial and in-memory formats can also be
slow and error-prone; parsers, for example, are notorious for
harboring bugs.

Supporting fault-tolerant “NVM-style programming” in
the age of genuine NVM presents interesting new oppor-
tunities and challenges. Failures that abruptly terminate
program execution can leave application data in NVM in an
inconsistent state, so the challenge is to ensure that recov-
ery can always restore consistency to data that survives the
failure. Recent research has proposed transactional updates
of persistent heaps, where transactions are defined either ex-
plicitly by the programmer [25] or are automatically inferred
from the target program’s use of mutual exclusion primi-
tives [2, 3]. In the latter approach, synchronously flushing
UNDO log entries to NVM immediately before store in-
structions execute enables recovery code to roll back trans-
actions as necessary to restore the persistent heap to a con-
sistent state, and such synchronous flushing adds noticeable
overhead during failure-free operation.

Fortunately, some characteristics of emerging hardware
work to our advantage when addressing specific kinds of
failures. For example, the time and energy costs of flush-
ing volatile CPU cache contents to the safety of NVM are
miniscule compared to the corresponding costs of evacuat-
ing data in volatile DRAM to block storage [14]—a crucial
di↵erence that helps enormously if we must quickly panic-
halt a faulty OS kernel. In general, the key to finding the
best designs for meeting given fault-tolerance requirements
on emerging hardware is to systematically consider the costs
of moving data out of harm’s way and to devise contingency
plans that replace burdensome migrations during failure-free
operation with guarantees of last-minute rescue. We shall
see that emerging architectures sometimes reward procras-
tination handsomely.

3. TIMELY SUFFICIENT PERSISTENCE
Application requirements must distinguish tolerated fail-

ures from non-tolerated failures. Process crashes and ker-
nel panics resulting from software or hardware errors are
frequently placed in the former category, as are power out-
ages. Application requirements must furthermore specify
what subset of critical application data must survive toler-
ated failures. For example, requirements might declare that
the entire state of a process is critical; more selective require-
ments might instead deem the process heap to be critical but
permit thread execution stacks to be lost. Requirements
might even designate di↵erent fault tolerance requirements
for di↵erent subsets of application data. Requirements must
also distinguish between fail-stop failures that abruptly halt
process/thread execution and failures that first corrupt ap-
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plication data. For example, when a process on a POSIX
system receives a SIGKILL signal, all threads merely halt;
the same is sometimes true when a process triggers a trap,
e.g., by executing illegal instructions. By contrast, memory
corruption errors in C/C++ programs often corrupt critical
application data.

Fault-tolerance strategies typically move data from places
where tolerated failures threaten corruption or destruction
to places beyond the reach of tolerated failures; we respec-
tively refer to such locations as vulnerable and safe. Safety
can be defined only with respect to fault-tolerance require-
ments and is orthogonal to hardware characteristics such
as volatility. For example, ordinary volatile DRAM can be
safe with respect to process crashes, but even hard disks may
be deemed vulnerable if we must tolerate catastrophes that
wipe out entire data centers. Finally, we must ask whether
we have adequate notice of tolerated failures to move crit-
ical data from vulnerable locations to safe ones. If so, we
may seek improved performance while still meeting fault-
tolerance requirements by trading runtime guarantees that
critical data is in a safe location for guarantees that the data
will be moved to safety should the need ever arise.

Timely Su�cient Persistence (TSP) describes fault-
tolerance mechanisms that make such tradeo↵s. A TSP de-
sign satisfies its requirements by moving a minimal amount
of data (typically only critical data) to a location that is
adequately safe (typically no safer) and does so in a timely
manner (typically “just in time”). For example, Whole Sys-
tem Persistence [14] is an ingenious two-stage TSP design
that protects the entire state of a computer from power out-
ages by flushes the contents of volatile CPU registers and
caches into volatile DRAM using residual energy stored in
the system power supply and then evacuating the contents
of DRAM into flash storage using energy stored in superca-
pacitors. This design completely avoids any overhead during
failure-free operation. Presently we shall consider other TSP
designs that tolerate a wider range of failures (e.g., due to
software errors), that protect critical data more selectively,
and that o↵er similarly attractive performance.

In our experience it is instructive to ask simple questions
about the minimum support needed to satisfy given fault tol-
erance requirements—if only just barely—and to ask what
“hidden” support may be present in the hardware and sys-
tems we are already using. Such exercises have more than
once led the authors to insights that in turn informed im-
proved TSP designs that, in retrospect, had been right un-
der our noses but that we had overlooked before we began
to seek TSP solutions explicitly. For example, consider the
requirement that critical data that is explicitly placed in
memory allocated through a special interface must survive
process crashes only. A näıve approach might begin with
the observation that physical memory allocated to a process
is promptly reclaimed by the OS when the process crashes,
with no opportunity for the process to rescue its contents.
This line of reasoning might then conclude that crash tol-
erance in this context requires preemptively (and perhaps
synchronously) committing data to durable media during
failure-free operation.

A better approach begins by asking what minimal degree
of “durability” su�ces to survive process crashes: POSIX
calls it “kernel persistence,” and files in memory-backed
filesystems have this property. We then consider what hap-
pens when such a file is memory mapped into the address

space of a process that stores data into the mapping re-
gion and then crashes. The modified physical memory page
frames corresponding to the mapping are also pages in the
backing file and are not reclaimed by the OS when the pro-
cess crashes. Furthermore stored data in the CPU cache
at the time of the crash will eventually be evicted into the
memory-backed file and meanwhile will be visible from the
cache to any process that reads the file. Therefore if the
process places critical data in memory corresponding to a
memory-mapped file from a DRAM-backed file system, fol-
lowing a crash the file will contain all data stored by the
process up to the instant of the crash, and we obtain this
guarantee with no overhead during failure-free operation.
(Our technical report provides additional detail and refer-
ences on the interaction between process crashes and file-
backed memory mappings [15].) Of course, additional mea-
sures may be required to ensure that application data stored
in the file can be restored to a consistent state following a
crash; we consider two di↵erent ways of ensuring consistent
recoverability in Section 4. The important point is that seek-
ing a TSP solution has gotten us halfway to our goal with
zero runtime overhead.

Di↵erent kinds of failures call for di↵erent TSP designs.
If we are required to tolerate kernel panics, for example, we
must arrange for the dying OS to flush volatile CPU caches
to memory. This su�ces to meet the requirement if memory
is non-volatile (or if the machine architecture preserves the
contents of memory across “warm reboots” [16]). If mem-
ory is volatile and is not preserved across OS re-starts, the
contents of memory must be written to stable storage be-
fore the panic’d OS shuts down the machine. An HP team
has implemented the required support in the Linux kernel’s
panic handler, which required a relatively small amount of
straightforward code. Power outages admit a spectrum of
TSP designs ranging from mundane uninterruptible power
supplies to sophisticated and resourceful strategies for stor-
ing and scrounging just enough energy to rescue critical
data [14]. Emerging non-volatile memories can dramatically
reduce the time and energy cost of keeping a machine run-
ning long enough to rescue critical data after utility power
fails.

Conventional relational database management systems al-
low the user to trade consistency for performance via config-
uration parameters. For example, serializability and snap-
shot isolation o↵er di↵erent performance and consistency
guarantees. TSP designs provide a wider range of appli-
cations with analogous tradeo↵s among failure toleration
requirements, hardware and system software support, and
performance during failure-free operation.

4. CASE STUDIES
We now consider in detail two approaches to ensuring con-

sistent recovery of application data in multi-threaded pro-
grams that manipulate persistent heaps via CPU load and
store instructions. Both approaches share several features
in common: the programming model is convenient, famil-
iar, and readily implementable in mainstream programming
languages such as C++; the programmer obtains access
to address space regions backed by durable media via a
conventional memory allocation interface (e.g., malloc for
C/C++); and the programmer assists recovery by ensur-
ing that all live application data in the persistent heap are
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reachable from a heap-wide root pointer manipulated via
simple get_root() and set_root() interfaces. Finally, in
both approaches the application programmer must ensure
that concurrent threads access shared data in an orderly
manner, free of data races and other concurrency bugs. In
one of our approaches, multithreaded isolation depends upon
conventional synchronization primitives (e.g., Pthread mu-
texes); the other relies upon non-blocking algorithms. We
describe how TSP enables both kinds of multithreaded soft-
ware to ensure consistent recovery of the persistent heap
without high-latency CPU cache flushing during failure-free
operation.

Implementations of both approaches on emerging archi-
tectures featuring NVRAM or NVDIMM memory o↵er sub-
stantial advantages, but implementation on conventional
hardware (volatile DRAM and block-addressed storage) is
also possible. To tolerate process crashes only, it su�ces
to ensure that the persistent heap is backed by a memory-
mapped file in an ordinary filesystem or even a file in a
DRAM-backed file system (e.g, /dev/shm). To tolerate ker-
nel panics, the kernel must flush volatile CPU caches to
memory; if the latter is volatile, memory regions correspond-
ing to persistent heaps must be written to durable storage.
To tolerate power outages, su�cient standby power must
be available to flush CPU caches and move persistent heap
data to durable media. As noted in Section 1, NVRAM and
NVDIMMs dramatically reduce the time and energy cost of
tolerating both kernel panics and power outages.

Sections 4.1 and 4.2 describe the principles underlying the
two approaches; Section 5 describes corresponding imple-
mentations and our empirical evaluation of their correctness
and performance overheads.

4.1 Zero-Overhead Atomic Updates
This section presents the remarkable observation that a

well-known class of multi-threaded isolation mechanisms,
together with TSP, guarantee consistent recovery from
crashes without the need for any additional mechanisms or
precautions whatsoever.

Following the terminology of Fraser & Harris [8], we say
that an algorithm that ensures orderly multi-threaded ac-
cess to shared in-memory data is non-blocking if the suspen-
sion or termination of any subset of threads cannot prevent
remaining active threads from continuing to perform cor-
rect computation. Non-blocking algorithms cannot employ
conventional mutual exclusion because a mutex held by a
terminated thread will never be released, which prevents all
surviving threads from accessing data protected by the mu-
tex. Threads in non-blocking algorithms typically employ
atomic CPU instructions such as compare-and-swap to up-
date shared memory while precluding the possibility that
other threads may observe inconsistent states of application
data. Lock-free algorithms, a special case of non-blocking al-
gorithms, o↵er the stronger guarantee that forward progress
occurs even in the presence of contention for shared data.
Wait-freedom is yet a stronger guarantee that a bounded
number of operations is needed to complete an operation.
All wait-free algorithms are lock-free. We employ lock-free
and wait-free sub-species of non-blocking algorithms, using
the latter term for brevity. One additional definition helps
us to reason about the e↵ects of crashes: Following Pelley
et al. [20], we imagine a thread called the recovery observer
that is created at, and observes the state of program memory

at, the instant when all other threads in a program abruptly
halt due to a crash.

Consider a program whose application-level data resides
in a persistent heap and is manipulated with a non-blocking
algorithm. The heap is furthermore updated in TSP fash-
ion, i.e., in the event of a crash due to any tolerated failure,
data in volatile locations (e.g., CPU caches or DRAM) will
be flushed to durable media (NVRAM/NVDIMMs or sta-
ble storage) as necessary. We shall see that under these
assumptions, a crash cannot prevent consistent recovery of
the application data in the persistent heap.

Consider a crash that abruptly terminates all of the pro-
gram’s threads. We imagine a recovery observer created at
the instant of the crash and consider its view of memory.
Thanks to TSP, practical/implementable recovery code will
have precisely the same view of memory as our hypothetical
recovery observer. In particular, TSP ensures that the state
of recovered memory will reflect a strict prefix of the store

instructions issued by the terminated threads. By definition
of non-blocking algorithm, the termination of the program’s
threads by the crash cannot prevent the recovery observer
from making correct progress based on its view of memory,
regardless of what the recovery observer intends to do. In
particular, the recovery observer may traverse application
data in the persistent heap by starting at the heap’s root
pointer; again by the definition of non-blocking algorithm,
the recovery observer will never thereby encounter corrupt
or inconsistent application data. Identical reasoning applies
to any number of recovery observers, which collectively could
resume correct execution from the consistent state of appli-
cation data that they find in the persistent heap.

The main advantage of the approach outlined above is
that it requires relatively little additional e↵ort for the class
of software to which it applies. Unlike whole-system per-
sistence (WSP) [14], our technique does not simply resume
thread execution where a crash suspended it—which would
be fine for power outages but which isn’t the right remedy
for crashes induced by software bugs. Instead, we require ap-
plication code to resume execution from a consistent state
of the persistent heap. However our technique is potentially
applicable to a broader range of failures, including not only
the power outages handled byWSP but also software failures
including kernel panics and process crashes, so long as the
failures do not corrupt the persistent heap. One restriction
of the approach outlined above is the requirement that appli-
cations manipulate data in persistent heaps exclusively via
non-blocking algorithms. Such algorithms may o↵er excel-
lent performance, but they are less general, more complex,
and less widely used than alternative approaches. We now
consider how TSP enables e�cient support for consistent
recoverability in a much wider class of software.

4.2 Mutex-Based Software
Atlas is a system that employs compile-time analysis

and instrumentation, run-time logging, and sophisticated
recovery-time analysis to imbue conventional mutex-based
multithreaded software with crash resilience [2,3]. Atlas op-
erates upon multi-threaded programs that correctly employ
mutexes to prevent concurrency bugs and ensure appropriate
inter-thread isolation but that take no measures whatsoever
to ensure consistent recovery from durable media. Atlas
is nearly transparent, requiring minimal changes to target
programs: durable data must reside in a persistent heap
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and all active data structures in the persistent heap must
be reachable from the persistent heap’s root pointer. At-
las guarantees that recovery will restore the persistent heap
to a consistent state and that crashes cannot corrupt the
integrity of data within it. We explain how TSP improves
performance during failure-free operation after briefly re-
viewing the workings of Atlas; previous publications supply
the details [2, 3].

Atlas leverages the fact that shared heap data may be
modified within critical sections protected by mutexes and
assumes that each outermost critical section (OCS) in the
target program both finds and leaves the heap in a consistent
state according to application-level integrity criteria. There-
fore each OCS represents a bundle of changes to the persis-
tent heap that should be applied failure-atomically. Atlas
instruments target programs with logging mechanisms to en-
sure that an OCS interrupted by a crash can be rolled back
during recovery. Furthermore, subtle interactions among
OCSes can produce situations where OCSes that completed
prior to a crash must nonetheless be rolled back upon re-
covery (see Section 2.3 of [2]); Atlas recovery code correctly
handles such situations. Finally, it is possible for crashes to
cause Atlas-fortified software to leak memory; Atlas recently
incorporated a recovery-time garbage collector to reclaim
leaked memory.

Compared with the approach to consistent recovery of
programs that employ non-blocking algorithms described
in Section 4.1, Atlas o↵ers several advantages: Atlas op-
erates upon more general classes of software that employ fa-
miliar isolation mechanisms, as opposed to more restricted
and much more esoteric non-blocking algorithms. Further-
more, because Atlas rolls back critical sections interrupted
by crashes, it can tolerate failures that cause data corruption
within such critical sections; thus Atlas-fortified software is
robust against a wider range of failures.

Timely Su�cient Persistence brings substantial perfor-
mance benefits to Atlas-fortified software. Atlas employs
undo logging at run time to retain the ability to roll back
OCSes during recovery: Before allowing a store instruc-
tion in the target program to alter a persistent heap loca-
tion for the first time in an OCS, Atlas first adds an entry
to its undo log. If TSP is not available, Atlas must syn-
chronously flush the undo log entry from the CPU cache
into memory before allowing the store to occur. This syn-
chronous flushing adds considerable overhead beyond the
unavoidable Atlas overhead of logging. However if TSP is
available, synchronously flushing CPU caches is no longer
necessary because TSP guarantees that recovery will read
the most recent state of all persistent memory locations, re-
gardless of what tolerated failure has occurred. The details
of how TSP delivers on this guarantee will of course depend
on the details of how TSP tolerates failures (Section 3).

5. EXPERIMENTS
We performed fault-injection experiments to confirm that

both of the approaches described in Section 4 do indeed en-
sure consistent recovery of persistent heap data. We also
measured the overhead of the logging required by Atlas
(Section 4.2) and of the failure-free cache flushing that At-
las would require if TSP were not available. Previously
published experiments applying Atlas to real applications
(OpenLDAP and memcached) and benchmarks (Splash2)

have shown a 3⇥ performance overhead of logging alone
and 5⇥ overhead when both logging and synchronous flush-
ing are enabled [3]. The more recent results in Section 5.2
below extend and confirm our earlier findings.

5.1 Map Interface & Implementations
Our experiments employ two di↵erent multi-threaded im-

plementations of the familiar “map” interface, i.e., a local
key-value store that in the present case maps integer keys to
integer values. We divide the key space into a small lower
range L used for integrity checks and the remaining much
larger higher range H. Each thread t 2 [1 . . . T ] maintains
in the map two private counters indexed with keys c1,t and
c2,t in L. Iteration i of the main loop of each worker thread
performs three steps as atomic and isolated operations: it
first sets the value associated with c1,t to i, then increments
the value associated with a key drawn with uniform proba-
bility from H, then sets the value associated with c2,t to i.
The correctness invariants of the map are the following two
inequalities:

TX

t=1

c1,t �
TX

t=1

c2,t  T (1)

TX

t=1
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keyk2H

map[k].value �
TX

t=1

c2,t (2)

Our non-blocking map implementation is based on a lock-
free skip list by Herlihy & Shavit [11]. We employ a mature
and stable C implementation by Dybnis that is believed to
be bug-free [7]. We wrote our own mutex-based map imple-
mentation in C. It employs a separate-chaining hash table
and moderate-grain locking (one mutex per 1000 buckets).

Our fault-injection methodology mimics the e↵ects of a
sudden process crash caused by an application software er-
ror, e.g., a segmentation violation, illegal instruction, or inte-
ger divide-by-zero. We abruptly and simultaneously termi-
nate all threads in a running process by sending the process
a SIGKILL signal, which cannot be caught or ignored. Recov-
ery code then attempts to locate the map in the persistent
heap by starting from the heap’s root pointer, traverse the
contents of the map, and verify the integrity of the map by
testing the invariants of Equations 1 and 2.

5.2 Results
Both our map implementations recovered completely suc-

cessfully after hundreds of injected process crashes, consis-
tent with previous findings concerning Atlas [3] and with the
reasoning in Section 4.1. Similar results would occur under
other kinds of non-corrupting failures.

We measured the performance of four variants of our map
implementations, where the metric used is “total number
of iterations of all worker threads per second” (recall from
Section 5.1 that each iteration performs three atomic oper-
ations). The throughput of our native unmodified mutex-
based code is compared with two Atlas-fortified variants of
the same code, one with UNDO logging alone and one with
both logging and synchronous CPU cache flushing. We can
thus quantify the overhead of logging alone, which is suf-
ficient for consistent recovery if TSP is available, and of
synchronous flushing, which is necessary for consistent re-
covery if TSP is not available. We include the performance
of the non-blocking map for completeness, noting that com-
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Hardware Platform Throughput (millions iter/sec)
CPU type hardware Mutex-Based

Computer @ GHz threads DRAM no Atlas log only log + flush Non-Blocking
ENVY Phoenix 800 Desktop i7-4770 @ 3.4 8 32 GB 3.66 2.36 1.58 2.54
DL580 Gen8 Server E7-4890v2 @ 2.8 30 1.5 TB 2.13 1.50 1.06 2.00

Table 1: Hardware platforms & experimental results. All computers are HP, all CPUs Intel.

parisons with the mutex-based map are problematic because
the two maps employ di↵erent data structures (hash table
vs. skip list). All performance and fault-injection experi-
ments were conducted on the HP/Intel computers described
on the left-hand side of Table 1.

The right-hand side of Table 1 presents our performance
results. In all cases we report results for runs with eight
worker threads. For the server experiment we pinned all
software threads to a single one of the DL580’s four CPU
sockets; each socket has 15 cores and 30 hardware threads.
Running Atlas in “TSP mode” (logging enabled but syn-
chronous flushing disabled) compared with unfortified code
reduces throughput by roughly 35% on the desktop and by
roughly 30% on the server. This is the price we pay for using
Atlas to ensure consistent recovery when TSP is available.
When TSP is not available Atlas must synchronously flush
log entries, and the throughput reduction resulting from At-
las fortification increases to 57% on the desktop and 50% on
the server. Comparing the throughput of TSP vs. non-TSP
modes of Atlas, we see that TSP increases throughput by
49% on the desktop machine and 42% on the server.

6. CONCLUSIONS
Timely Su�cient Persistence brings substantial benefits

when application fault tolerance requirements and available
hardware and system software support enable TSP. Our ex-
perience with both real applications [3] and small bench-
marks (Section 5.2) shows that TSP designs outperform
their non-TSP counterparts by wide margins. Remarkably,
readily implementable TSP designs for non-blocking algo-
rithms can sometimes completely eliminate runtime over-
heads while satisfying stringent fault tolerance requirements.
Looking forward, we believe that TSP points the way to ef-
ficient tradeo↵s among runtime overheads, fault tolerance
objectives, and hardware and system software support.
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