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ABSTRACT
Complex Event Processing (CEP) is a stream processing model that
focuses on detecting event patterns in continuous event streams.
While the CEP model has gained popularity in the research com-
munities and commercial technologies, the problem of gracefully
degrading performance under heavy load in the presence of re-
source constraints, or load shedding, has been largely overlooked.
CEP is similar to “classical” stream data management, but addresses
a substantially different class of queries. This unfortunately renders
the load shedding algorithms developed for stream data process-
ing inapplicable. In this paper we study CEP load shedding under
various resource constraints. We formalize broad classes of CEP
load-shedding scenarios as different optimization problems. We
demonstrate an array of complexity results that reveal the hardness
of these problems and construct shedding algorithms with perfor-
mance guarantees. Our results shed some light on the difficulty of
developing load-shedding algorithms that maximize utility.

1. INTRODUCTION
The complex event processing or CEP model has received sig-

nificant attention from the research community [6, 28, 36, 37, 50,
52], and has been adopted by a number of commercial systems in-
cluding Microsoft StreamInsight [1], Sybase Aleri [3], and Stream-
Base [2]. A wide range of applications, including inventory man-
agement [4], behavior monitoring [47], financial trading [5], and
fraud detection [8, 51], are now powered by CEP technologies.

A reader who is familiar with the extensive stream data process-
ing literature may wonder if there is anything new here, or if CEP is
just another name for stream data management. While both kinds
of system evaluate queries over data streams, the important differ-
ence is the class of queries upon which each system focuses. In
the traditional stream processing literature, the focus is almost ex-
clusively on aggregate queries or binary equi-joins. By contrast, in
CEP, the focus is on detecting certain patterns, which can be viewed
as multi-relational non-equi-joins on the time dimension, possibly
with temporal ordering constraints. The class of queries addressed
by CEP systems requires different evaluation algorithms and differ-
ent load-shedding algorithms than the class previously considered
in the context of stream data management.
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As an example of a CEP-powered system, consider the health
care monitoring system, HyReminder [47], currently deployed at
the University of Massachusetts Memorial Hospital. The HyRe-
minder system tracks and monitors the hygiene compliance of health-
care workers. In this hospital setting, each doctor wears an RFID
badge that can be read by sensors installed throughout the hospi-
tal. As doctors walk around the hospital, the RFID badges they
wear trigger “event” data, which is transmitted to a central CEP
engine. The CEP engine in turn looks for patterns to check for hy-
giene compliance. As one example, according to the US Center for
Disease Control (CDC) [13], a doctor who enters or exits a patient
room (which is captured by sensors installed in the doorway and en-
coded as an Enter-Patient-Room event or Exit-Patient-Room
event) should cleanse her hands (encoded by a Sanitize event)
within a short period of time. This hygiene regulation can be tracked
and enforced using the following CEP queries.
Q1: SEQ(Sanitize, Enter-Patient-Room) within 1 min

Q2: SEQ(Exit-Patient-Room, Sanitize) within 1 min

In the HyReminder system, these two CEP queries monitor the
event sequence to track sanitization behavior and ensure hygiene
compliance. As another example consider CIMS [4], which is a
system also powered by CEP and deployed in the same University
of Massachusetts hospital. CIMS is used for inventory management
and asset tracking purposes. It captures RFID events triggered by
tags attached to medical equipment and expensive medicines, and
uses CEP to track supply usage and reduce inventory cost [15].

While the emergence of CEP model has spawned a wide variety
of applications, so far research efforts have focused almost exclu-
sively on improving CEP query join efficiency [6, 28, 36, 37, 50,
52]. Load shedding, an important issue that has been extensively
studied in traditional stream processing [10, 20, 25, 26, 43, 44, 48,
49, 53], has been largely overlooked in the new context of CEP.

Like other stream systems, CEP systems often face bursty input
data. Since over-provisioning the system to the point where it can
handle any such burst may be uneconomical or impossible, during
peak loads a CEP system may need to “shed” portions of the load.
The key technical challenge herein is to selectively shed work so as
to eliminate the less important query results, thereby preserve the
more useful query results as defined by some utility function.

More specifically, the problem we consider is the following. Con-
sider a CEP system that has a number of pattern queries, each of
which consists of a number of events and is associated with a util-
ity function. During peak loads, memory and/or CPU resources
may not be sufficient. A utility-maximizing load shedding scheme
should then determine which events should be preserved in mem-
ory and which query results should be processed by the CPU, so
that not only are resource constraints respected, but also the overall
utility of the query results generated is maximized.
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Memory-bound CPU-bound Dual-bound
Integral IMLS ICLS IDLS

Fractional FMLS FCLS FDLS

Table 1: Problem variants for CEP load shedding

We note that, in addition to utility-maximization in a single CEP
application, the load-shedding framework may also be relevant to
cloud operators that need to optimize across multiple CEP appli-
cations. Specifically, stream processing applications are gradually
shifting to the cloud [34]. In cloud scenarios, the cloud operator
in general cannot afford to provision for the aggregate peak load
across all tenants, which would defeat the purpose of consolida-
tion. Consequently, when the load exceeds capacity, cloud oper-
ators are forced to shed load. They have a financial incentive to
judiciously shed work from queries that are associated with a low
penalty cost as specified in Service Level Agreements (SLAs), so
that their profits can be maximized (similar problems have been
called “profit maximization in a cloud” and have been considered in
the Database-as-a-Service literature [18, 19]). Note that this prob-
lem is naturally a utility-maximizing CEP load shedding problem,
where utility essentially becomes the financial rewards and penal-
ties specified in SLAs.

While load shedding has been extensively studied in the context
of general stream processing [10, 20, 25, 26, 43, 44, 48, 49, 53], the
focus there is aggregate queries or two-relation equi-join queries,
which are important for traditional stream joins. The emerging CEP
model, however, demands multi-relational joins that predominantly
use non-equi-join predicates on timestamp. As we will discuss in
more detail in Section 4, the CEP load shedding problem is signif-
icantly different and considerably harder than the problems previ-
ously studied in the context of general stream load shedding.

We show in this work that variants of the utility maximizing
load shedding problems can be abstracted as different optimiza-
tion problems. For example, depending on which resource is con-
strained, we can have three problem variants, namely CPU-bound
load shedding, memory-bound load shedding, and dual-bound load
shedding (with both CPU- and memory-bound). In addition we can
have integral load shedding, where event instances of each type
are either all preserved in memory or all shedded; and fractional
load shedding, where a sampling operator exists such that a frac-
tion of event instances of each type can be sampled according to
a predetermined sampling ratio. Table 1 summarizes the six vari-
ants of CEP load shedding studied in this paper: IMLS (integral
memory-bound load shedding), FMLS (fractional memory-bound
load shedding), ICLS (integral CPU-bound load shedding), FCLS
(fractional CPU-bound load shedding), IDLS (integral dual-bound
load shedding), and FDLS (fractional dual-bound load shedding).

We analyze the hardness of these six variants, and study effi-
cient algorithms with performance guarantees. We demonstrate
an array of complexity results. In particular, we show that CPU-
bound load shedding is the easiest to solve: FCLS is solvable in
polynomial time, while ICLS admits a FPTAS approximation. For
memory-bound problems, we show that IMLS is in general NP-
hard and hard to approximate. We then identify two special cases
in which IMLS can be efficiently approximated or even solved ex-
actly, and describe a general rounding algorithm that achieves a
bi-criteria approximation. As for the fractional FMLS, we show it
is hard to solve in general, but has approximable special cases. Fi-
nally, for dual-bound load shedding IDLS and FDLS, we show that
they generalize memory-bound problems, and the hardness results
from memory-bound problems naturally hold. On the positive side,
we describe a tri-criteria approximation algorithm and an approx-
imable special case for the IDLS problem.

The rest of the paper is organized as follows. We first describe

necessary background of CEP in Section 2, and introduce the load
shedding problem in Section 3. We describe related work in Sec-
tion 4. In Section 5, Section 6 and Section 7 we discuss the memory-
bound, CPU-bound and dual-bound load-shedding problems, re-
spectively. We conclude in Section 8.

2. BACKGROUND: COMPLEX EVENT PRO-
CESSING

The CEP model has been proposed and developed by a number
of seminal papers (see [6] and [52] as examples). To make this
paper self-contained, we briefly describe the CEP model and its
query language in this section.

2.1 The data model
Let the domain of possible event types be the alphabet of fixed

size Σ = {Ei}, where Ei represents a type of event. The event
stream is modeled as an event sequence as follows.

DEFINITION 1. An event sequence is a sequence S = (e1, e2,
..., eN ), where each event instance ej belongs to an event type
Ei ∈ Σ, and has a unique time stamp tj . The sequence S is tem-
porally ordered, that is tj < tk, ∀j < k.

EXAMPLE 1. Suppose there are five event types denoted by upper-
case characters Σ = {A,B,C,D,E}. Each character represents
a certain type of event. For example, for the hospital hygiene mon-
itoring application HyReminder, event type A represents all event
instances where doctors enter ICU, B denotes the type of events
where doctors washing hands at sanitization desks, etc.

A possible event sequence is S = (A1, B2, C3, D4, E5, A6, B7,
C8, D9, E10), where each character is an instance of the corre-
sponding event type occurring at time stamp given by the subscript.
SoA1 denotes that at time-stamp 1, a doctor enters ICU.B2 shows
that at time 2, the doctor sanitizes his hands. At time-stamp 6, there
is another enter-ICU event A6, so on and so forth.

Following the standard practice of the CEP literature [6, 7, 37,
52], we assume events are temporally ordered by their timestamps.
Out-of-order events can be handled using techniques from [16, 36].

DEFINITION 2. Given an event sequence S = (e1, e2, ..., eN ),
a sequence S′ = (ei1 , ei2 , ..., eim) is a subsequence of S, if 1 ≤
i1 < i2... < im ≤ N .

Note that the temporal ordering in the original sequence is pre-
served in subsequences, and a subsequence does not have to be a
contiguous subpart of a sequence.

2.2 The query model
Unlike relational databases, where queries are typically ad-hoc

and constructed by users at query time, CEP systems are more
like other stream processing systems, where queries are submitted
ahead of time and run for an extended period of time (thus are also
known as long-standing queries). The fact that CEP queries are
known a priori is a key property that allows queries to be analyzed
and optimized for problems like utility maximizing load shedding.

Denote by Q = {Qi} the set of CEP queries, where each query
Qi is a sequence query defined as follows.

DEFINITION 3. A CEP sequence query Q is of the form Q =
SEQ(q1, q2, ...qn), where qk ∈ Σ are event types. Each query Q
is associated with a time based sliding window of size T (Q) ∈ R+,
over which Q will be evaluated.

We then define the skip-till-any-match query match semantics.
DEFINITION 4. In skip-till-any-match, a subsequence S′ =

(ei1 , ei2 , . . . , ein) of S is considered a query match ofQ = (q1, q2,
. . . , qn) over time window T (Q) if:

(1) Pattern matches: Event eil in S′ is of type ql for all l ∈ [1, n],
(2) Within window: tin − ti1 ≤ T (Q).
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We illustrate query matches using Example 2.

EXAMPLE 2. We continue with Example 1, where the event se-
quence S = (A1, B2, C3, D4, E5, A6, B7, C8, D9, E10). Sup-
pose there are a total of three queries: Q1 = SEQ(A,C), Q2 =
SEQ(C,E), Q3 = SEQ(A,B,C,D), all having the same win-
dow size T (Q1) = T (Q2) =T (Q3) = 5.

Both sequences (A1, C3) and (A6, C8) are matches for Q1, be-
cause they match patterns specified in Q1, and are within the time
window 5. However, (A1, C8) is not a match even though it matches
the pattern in Q1, because the time difference between C8 and A1

exceeds the window limit 5.
Similarly, (C3, E5) and (C8, E10) are matches of Q2; (A1, B2,

C3, D4) and (A6, B7, C8, D9) are matches of Q3.

A query with the skip-till-any-match semantics essentially looks
for the conjunction of occurrences of event types in a specified or-
der within a time window. Observe that in skip-till-any-match
a subsequence does not have to be contiguous in the original se-
quence to be considered as a match (thus the word skip in its name).
Such queries are widely studied [2, 6, 28, 36, 37, 50, 52] and used
in CEP systems.

We note that there are three additional join semantics defined
in [6], namely, skip-till-next-match, partition-contiguity and con-
tiguity. The load shedding problem formulated in this work is ag-
nostic of the join semantics used. In the interest of space, more
details of other join semantics and their relationship with load shed-
ding can be found in the full version of the paper [31].

We also observe that although there are CEP language extensions
like negation [28] and Kleene closure [23], in this work we only
focus on the core language constructs that use conjunctive positive
event occurrences. We leave such query extensions for load shed-
ding as future work.

3. CEP LOAD SHEDDING
It is well known that continuously arriving stream data is often

bursty [20, 43, 49]. During times of peak loads not all data items
can be processed in a timely manner under resource constraints. As
a result, part of the input load may have to be discarded (shedded),
resulting in the system retaining only a subset of data items. The
question that naturally arises is which queries should be preserved
while others shedded? To answer this question, we introduce the
notion of utility to quantify the “usefulness” of different queries.

3.1 A definition of utility
In CEP systems, different queries naturally have different real-

world importance, where some query output may be more impor-
tant than others. For example, in the inventory management ap-
plication [4, 15], it is naturally more important to produce real-
time query results that track expensive medicine/equipment than
less expensive ones. Similarly, in the hospital hygiene compliance
application [47], it is more important to produce real-time query
results reporting serious hygiene violations with grave health con-
sequences than the ones merely reporting routine compliance.

We define utility weight for each query to measure its impor-
tance.

DEFINITION 5. LetQ = {Qi} be the set of queries. Define the
utility weight of query Qi, denoted by wi ∈ R+, as the perceived
usefulness of reporting one instance of match of Qi.

A user or an administrator familiar with the application can typ-
ically determine utility weights. Alternatively, in a cloud environ-
ment, operators of multi-tenancy clouds may resort to service-level-
agreements (SLAs) to determine utility weights. In this work we
simply treat utility weights as known constants. We note that the

notion of query-level weights has been used in other parts of data
management literature (e.g., query scheduling [39]).

The total utility of a system is then defined as follows.

DEFINITION 6. Let C(Qi, S) be the number of distinct matches
for query Qi in S. The utility generated for query Qi is

U(Qi, S) = wi · C(Qi, S) (1)

The sum of the utility generated overQ = {Qi} is

U(Q, S) =
∑
Qi∈Q

U(Qi, S). (2)

Our definition of utility generalizes previous metrics like the
max-subset [20] used in traditional stream load shedding litera-
ture. Max-subset aims to maximize the number of output tuples,
and thus can be viewed as a special case of our definition in which
each query has unit-weight.

We also note that although it is natural to define utility as a lin-
ear function of query matches for many CEP applications (e.g., [4,
47]), there may exist applications where utility can be best defined
differently (e.g. a submodular function to model diminishing re-
turns). Considering alternative utility functions for CEP load shed-
ding is an area for future work.

EXAMPLE 3. We continue with Example 2 using the event se-
quence S and queries Q1, Q2 and Q3 to illustrate utility.

Suppose the utility weight w1 for Q1 is 1, w2 is 2, and w3 is 3.
Since there are 2 matches ofQ1, Q2 andQ3, respectively, in S, the
total utility is 2× 1 + 2× 2 + 2× 3 = 12.

3.2 Types of resource constraints
In this work, we study constraints on two common types of com-

puting resources: CPU and memory.
Memory-bound load shedding. In this first scenario, memory

is the limiting resource. Normally, arriving event data are kept
in main memory for windowed joins until time-stamp expiry (i.e.,
when they are out of active windows). During peak loads, how-
ever, event arrival rates may be so high that the amount of memory
needed to store all event data might exceed the available capacity.
In such a case not every arriving event can be held in memory for
join processing and some events may have to be discarded.

EXAMPLE 4. In our running example the event sequence S =
(A1, B2, C3, D4, E5, A6, B7, C8, D9, E10 ...), with queriesQ1 =
SEQ(A,C), Q2 = SEQ(C,E) and Q3 = SEQ(A, B,C, D).
Because the sliding window of each query is 5, we know each event
needs to be kept in memory for 5 units of time. Given that one event
arrives in each time unit, a total of 5 events need to be simultane-
ously kept in memory.

Suppose a memory-constrained system only has memory capac-
ity for 3 events. In this case “shedding” all events of type B and D
will sacrifice the results of Q3 but preserves A, C and E and meets
the memory constraint. In addition, results for Q1 and Q2 can be
produced using available events in memory, which amounts to a to-
tal utility of 2×1+2×2 = 6. This maximizes utility, for shedding
any other two event types yields lower utility.

CPU-bound load shedding. In the second scenario, memory
may be abundant, but CPU becomes the bottleneck. As a result,
again only a subset of query results can be processed.

EXAMPLE 5. We revisit Example 4, but now suppose we have
a CPU constrained system. Assume for simplicity that producing
each query match costs 1 unit of CPU. Suppose there are 2 unit
of CPU available per 5 units of time, so only 2 matches can be
produced every 5 time units.

215



In this setup, producing results for Q2 and Q3 while shedding
others yields a utility of 2 × 2 + 2 × 3 = 10 given the events in
S. This is utility maximizing because Q2 and Q3 have the highest
utility weights.

Dual-bound load shedding. Suppose now the system is both
CPU bound and memory bound (dual-bound).

EXAMPLE 6. We continue with Example 5. Suppose now due
to memory constraints 3 events can be kept in memory per 5 time
units, and in addition 2 query matches can be produced every 5
time units due to CPU constraints.

As can be verified, the optimal decision is to keep events A, C
and E while producing results forQ1 andQ2, which yields a utility
of 2×1 + 2×2 = 6 given the events in S. Note that results forQ3

cannot be produced because it needs four events in memory while
only three can fit in memory simultaneously.

3.3 Types of shedding mechanisms
In this paper, we consider two types of shedding mechanisms, an

integral load shedding, in which certain types of events or query
matches are discarded altogether; and a fractional load shedding,
in which a uniform sampling is used, such that a portion of event
types or query matches is randomly selected and preserved.

Note that both the above mentioned load-shedding mechanisms
are relevant in an online setting. That is, settings in which a shed-
ding decision is made for the current event before the next arriving
event is processed. This is in contrast to offline load shedding,
where decisions are made after the whole event sequence has ar-
rived. The reason we only focus on online load shedding is practi-
cality – most stream applications demand real-time responsiveness;
an offline algorithm that works after the entire event sequence has
arrived is unlikely to be practically useful.

Performance of online algorithms is oftentimes measured against
their offline counterparts to develop quality guarantees like compet-
itive ratios [12]. However, we show in the following that meaning-
ful competitive ratios cannot be derived for any online CEP load
shedding algorithms.

PROPOSITION 1. No online CEP load shedding algorithm, de-
terministic or randomized, can have competitive ratio better than
Ω(n), where n is the length of the event sequence.

A proof of this proposition can be found in Appendix A. Intu-
itively, to see why it is hard to bound the competitive ratio, con-
sider the following adversarial scenario. Suppose we have a uni-
verse of 3m event types, Σ = {Ei} ∪ {E′i} ∪ {E′′i }, i ∈ [m].
Let there be 2m queries SEQ(Ei, E

′′
i ) and SEQ(E′i, E

′′
i ), ∀i ∈

[m], each with unit utility weight. The stream is known to be
(e1, e2, ..., em, X), where ei is either of type Ei or E′i with equal
probability. In addition, X is drawn from the uniform distribution
on {E′′i : i ∈ [m]}. Lastly, suppose the system only has enough
memory to hold two events. The optimal offline algorithm can look
at the type of event X , denoted by E′′k , and keep the corresponding
event ek (of type Ek or E′k) that arrived previously, to produce a
match (either (Ek, E

′′
k ) or (E′k, E

′′
k ), as the case may be) of util-

ity of 1. In comparison, an online algorithm needs to select one
event into memory before the event type of X is revealed. (Note
that the offline algorithm cannot just output results based on the last
event X given the form of the input, because ek could be either Ek
or E′k.) Thus, the probability of producing a match is 1

m
, and the

expected utility is also 1
m

.
This result essentially suggests that we cannot hope to devise on-

line algorithms with good competitive ratios. In light of this result,
in what follows, we will use expected number of query matches

Σ The set of all possible event types
Ej Event of type j
λj The number of arrived eventsEj in a unit time (event arrival rate)
mj The memory cost of keeping each event of type Ej
Q The set of query patterns
Qi Query pattern i
|Qi| The number of event types in Qi
wi The utility weight associated with Qi
ni The number of matches of Qi in a unit time
ci The CPU cost of producing each result for Qi
C The total CPU budget
M The total memory budget
xj The binary selection decision of event Ej
xj The fractional sampling decision of event Ej
yi The selection decision of query Qi
yi The fractional sampling decision of query Qi
p The max number of queries that one event type participates in
f The fraction of memory budget that the largest query consumes
d The maximum number of event types in any one query

Table 2: Summary of the symbols used

based on a characterization of the arriving event stream, and fo-
cus on optimizing the expected utility of online algorithms without
further discussing competitive ratio bounds.

3.4 Modeling CEP systems
At a high level, the decision of which event or query to shed

should depend on a number of factors, including utility weights,
memory/CPU costs, and event arrival rates. Intuitively, the more
important a query is, the more desirable it is to keep constituent
events in memory and produce results of this query. Similarly the
higher the cost is to keep an event or to produce a query match,
the less desirable it is to keep that event or produce that result.
The rate at which events arrive is also important, as it determines
CPU/memory costs of a query as well as utility it can produce.

In order to study these trade-offs in a principled way, we con-
sider the following factors in a CEP system. First, we assume that
the utility weight, wi, which measures the importance of query Qi
installed in a CEP system, is provided as a constant. We also as-
sume that the CPU cost of producing each result of Qi is a known
constant ci, and the memory cost of storing each event instance
of type Ej is also a fixed constant mj . Note that we do not as-
sume uniform memory/CPU costs across different events/queries,
because in practice event tuples can be of different sizes. Further-
more, the arrival rate of each event type Ej , denoted by λj , is as-
sumed to be known. This is typically obtained by sampling the
arriving stream [17, 41]. Note that characteristics of the underlying
stream may change periodically, so the sampling procedure may
be invoked at regular intervals to obtain an up-to-date estimate of
event arrival rates.

Furthermore, we assume that the “expected” number of matches
of Qi over a unit time, denoted by ni, can also be estimated. A
simple but inefficient way to estimate ni is to sample the arriving
event stream and count the number of matches of Qi in a fixed
time period. Less expensive alternatives also exist. For example,
assuming an independent Poisson arrival process, which is a stan-
dard assumption in the performance modeling literature [35], the
number of query matches can be analytically estimated. The full
version of the paper [31] discusses one possible approach to esti-
mate the number of query matches using event arrival rates. In
this work we will simply treat ni as known constants without fur-
ther studying the orthogonal issue of estimating ni.

Lastly, note that since ni here is the expected number of query
matches, the utility we maximize is also optimized in an expected
sense. In particular, it is not optimized under arbitrary arrival event
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Approximation Ratio
IMLS p/(1− f) [Theorem 4]

IMLSm

(loss minimization)
( 1
τ
, 1

1−τ ) bi-criteria approximation, for any τ ∈
(0, 1) [Theorem 3]

ICLS 1 + ε, for ε > 0 [Theorem 10]
IDLS p/(1− f) [Theorem 12]

IDLSm

(loss minimization)
( 1
τ
, 1

1−τ ,
1

1−τ ) tri-criteria approximation, for
any τ ∈ (0, 1) [Theorem 11]

Relative Approximation Ratio (see Definition 8)

FMLS
1 − O

(
|Σ|−

d−2
2 (t2 + 1)−

d
2

)
where t =

min

{
minEj {

λjmj
M
}, 1√

|Σ|

}
[Theorem 7]

FMLS
(under some
assumptions)

O
(

1− k!
(k−d)!kd

)
where k > d [Theorem 8]

Absolute Approximation Ratio (see Definition 7)

FMLS

(1 − β( k!
(k−d)!kd ))-approximation, where β =

min
(

minj

{
λjmj
M

}
, 1
)d

, and k > d controls
approximation accuracy [Theorem 9].

Table 3: Summary of approximation results

strings (e.g., an adversarial input). While considering load shed-
ding in such settings is interesting, Proposition 1 already shows
that we cannot hope to get any meaningful bounds against certain
adversarial inputs.

The symbols used in this paper are summarized in Table 2, and
our main approximation results are listed in Table 3.

4. RELATED WORK
Load shedding has been recognized as an important problem,

and a large body of work in the stream processing literature (e.g., [9,
10, 20, 26, 33, 43, 44, 48, 49]) has been devoted to this problem.
However, existing work in the context of traditional stream pro-
cessing predominantly considers the equi-join of two streaming re-
lations. This is not directly applicable to CEP joins, where each
join operator typically involves multi-relational non-equi-join (on
time-stamps). For example, the authors in [33] are among the first
to study load shedding for equi-joins operators. They proposed
strategies to allocate memory and CPU resources to two joining re-
lations based on arrival rates, so that the number of output tuples
produced can be maximized. Similarly, the work [20] also studies
the problem of load shedding while maximizing the number of out-
put tuples. It utilizes value distribution of the join columns from
the two relations to produce optimized shedding decisions for tu-
ples with different join attribute values.

However, the canonical two-relation equi-join studied in tradi-
tional stream systems is only a special case of the multi-relational,
non-equi-join that dominates CEP systems. In particular, if we
view all tuples from R (resp. S) that have the same join-attribute
value vi as a virtual CEP event type Ri (resp. Si), then the tradi-
tional stream load shedding problem is captured as a very special
case of CEP load shedding we consider, where each “query” has ex-
actly two “event types” (Ri and Si), and there are no overlapping
“event types” between “queries”. Because of this equi-join nature,
shedding one event has limited ramification and is intuitively easy
to solve (in fact, it is shown to be solvable in [20]). In CEP queries,
however, each event type can join with an arbitrary number of other
events, and different queries use overlapping events. This signifi-
cantly complicates the optimization problem and makes CEP load
shedding hard.

In [10], sampling mechanisms are proposed to implement load
shedding for aggregate stream queries (e.g., SUM), where the key
technical challenge is to determine, in a given operator tree, where

to place sampling operators and what sampling rates to use, so that
query accuracy can be maximized. The work [44] studies the simi-
lar problem of strategically placing drop operator in the operator
tree to optimize utility as defined by QoS graphs. The authors
in [43] also consider load shedding by random sampling, and pro-
pose techniques to allocate memory among multiple operators.

The works described above study load shedding in traditional
stream systems. The growing popularity of the new CEP model that
focuses on multi-relational non-equi-join calls for another careful
look at the load-shedding problem in the new context of CEP.

5. MEMORY-BOUND LOAD SHEDDING
Recall that in the memory-bound load shedding, we are given a

fixed memory budgetM , which may be insufficient to hold all data
items in memory. The problem is to select a subset of events to
keep in memory, such that the overall utility can be maximized.

5.1 The integral variant (IMLS)
In the integral variant of the memory-bound load shedding prob-

lem, a binary decision, denoted by xj , is made for each event type
Ej , such that event instances of type Ej are either all selected and
kept in memory (xj = 1), or all discarded (xj = 0). The event
selection decisions in turn determine whether query Qi can be se-
lected (denoted by yi), because output of Qi can be produced only
if all constituent event types are selected in memory. We formulate
the resulting problem as an optimization problem as follows.

(IMLS) max
∑
Qi∈Q

niwiyi (3)

s.t.
∑
Ej∈Σ

λjmjxj ≤M (4)

yi =
∏

Ej∈Qi

xj (5)

yi, xj ∈ {0, 1} (6)

The objective function in Equation (3) says that if each query
Qi is selected (yi = 1), then it yields an expected utility of niwi
(recall that as discussed in Section 3, ni models the expected num-
ber of query matches of Qi in a unit time, while wi is the utility
weight of each query match). Equation (4) specifies the memory
constraint. Since selecting event type Ej into memory consumes
λjmj memory, where λj is the arrival rate of Ej and mj is the
memory cost of each event instance of Ej , Equation (4) guarantees
that total memory consumption does not exceed the memory bud-
get M . Equation (5) ensures that Qi can be produced if and only
if all participating events Ej are selected and preserved in memory
(xj = 1, for all Ej ∈ Qi).

5.1.1 A general complexity analysis
We first give a general complexity analysis. We show that this

shedding problem is NP-hard and hard to approximate by a reduc-
tion from the Densest k-Sub-Hypergraph (DKSH).

THEOREM 1. The problem of utility maximizing integral memory-
bound load shedding (IMLS) is NP-hard.

A proof of the theorem can be found in Appendix B. We show in
the following that IMLS is also hard to approximate.

THEOREM 2. The problem of IMLS with n event types cannot
be approximated within a factor of 2(logn)δ , for some δ > 0, unless
3SAT ∈ DTIME(2n

3/4+ε

).

This result is obtained by observing that the reduction from DKSH
is approximation-preserving. Utilizing an inapproximability result
in [29], we obtain the theorem above (a proof is in Appendix C).
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It is worth noting that DKSH and related problems are conjec-
tured to be very hard problems with even stronger inapproxima-
bility than what was proved in [29]. For example, authors in [24]
conjectured that Maximum Balanced Complete Bipartite Subgraph
(BCBS) is nε hard to approximate. If this is the case, utilizing a
reduction from BCBS to DKSH [29], DKSH would be at least nε

hard to approximate, which in turn renders IMLS nε hard to ap-
proximate given our reduction from DKSH.

While it is hard to solve or approximate IMLS efficiently in gen-
eral, in the following sections we look at constraints that may apply
to real-world CEP systems, and investigate special cases that enable
us to approximate or even solve IMLS efficiently.

5.1.2 A general bi-criteria approximation
We reformulate the integral memory-bound problem into an al-

ternative optimization problem (IMLSl) with linear constraints as
follows.

(IMLSl) max
∑
Qi∈Q

niwiyi (7)

s.t.
∑
Ej∈Σ

λjmjxj ≤M

yi ≤ xj , ∀Ej ∈ Qi (8)
yi, xj ∈ {0, 1}

Observing that Equation (5) in IMLS is essentially morphed into
an equivalent Equation (8). These two constraints are equivalent
because yi, xj are all binary variables, yi will be forced to 0 if
there exists xj = 0 with Ej ∈ Qi.

Instead of maximizing utility, we consider the alternative objec-
tive of minimizing utility loss as follows. Set ŷi = 1 − yi be
the complement of yi, which indicates whether query Qi is un-
selected. We can change the utility gain maximization IMLSl into
a utility loss minimization problem IMLSm. Note that utility gain
is maximized if and only if utility loss is minimized.

(IMLSm) min
∑
Qi∈Q

niwiŷi (9)

s.t.
∑
Ej∈Σ

λjmjxj ≤M

ŷi ≥ 1− xj , ∀Ej ∈ Qi (10)
ŷi, xj ∈ {0, 1} (11)

In IMLSm Equation (10) is obtained by using ŷi = 1 − yi and
Equation (8). Using this new minimization problem with linear
structure, we prove a bi-criteria approximation result. Let OPT
be the optimal loss with budget M in a loss minimization problem,
then an (α, β)-bi-criteria approximation guarantees that its solu-
tion has at most α · OPT loss, while uses no more than β · M
budget. Bicriteria approximations have been extensively used in
the context of resource augmentation (e.g., see [42] and references
therein), where the algorithm is augmented with extra resources
and the benchmark is an optimal solution without augmentation.

THEOREM 3. The problem of IMLSm admits a ( 1
τ
, 1

1−τ ) bi-
criteria-approximation, for any τ ∈ [0, 1].

For concreteness, suppose we set τ = 1
2

. Then this result states
that we can efficiently find a strategy that incurs at most 2 times the
optimal utility loss with budget M , while using no more than 2M
memory budget.

PROOF. Given a parameter 1
τ

, we construct an event selection
strategy as follows. First we drop the integrality constraint of IMLSm

to obtain its LP-relaxation. We solve the relaxed problem to get an
optimal fractional solutions x∗j and ŷ∗i .

We can then divide queries Q into two sets, Qa = {Qi ∈
Q|ŷ∗i ≤ τ} and Qr = {Qi ∈ Q|ŷ∗i > τ}. Since ŷi denotes
whether query Qi is un-selected, intuitively a smaller value means
the query is more likely to be accepted. We can accordingly view
Qa as the set of “promising” queries, and Qr as “unpromising”
queries.

The algorithm works as follows. It preserves every query with
ŷ∗i ≤ τ , by selecting constituent events of Qi into memory. So the
set of query inQa is all accepted, whileQr is all rejected.

We first show that the memory consumption is no more than
1

1−τM . From Equation (10), we know the fractional solutions must
satisfy

x∗j ≥ 1− ŷ∗i , ∀Ej ∈ Qi (12)

In addition, we have ŷ∗i ≤ τ, ∀Qi ∈ Qa. So we conclude

x∗j ≥ 1− τ,∀Qi ∈ Qa, Ej ∈ Qi (13)

Since we know x∗j are fractional solutions to IMLSm, we have∑
Ej∈Qa

mjλjx
∗
j ≤

∑
Ej∈Qa∪Qr

mjλjx
∗
j = M (14)

Here we slightly abuse the notation and use Ej ∈ Qa to denote
that there exists a query Q ∈ Qa such that Ej ∈ Q.

Combining (13) and (14), we have∑
Ej∈Qa

mjλj(1− τ) ≤M

Notice that
∑
Ej∈Qa mjλj is the total memory consumption of

our rounding algorithm, we have∑
Ej∈Qa

mjλj ≤
M

1− τ

Thus total memory consumption cannot exceed M
1−τ .

We then need to show that the utility loss is bounded by a factor
of 1

τ
. Denote the optimal loss of IMLSm as l∗, and the optimal

loss with LP-relaxation as l̄∗. We then have l̄∗ ≤ l∗ because any
feasible solution to IMLSm is also feasible to the LP-relaxation of
IMLSm. In addition, we know∑

Qi∈Qr
niwiŷ

∗
i ≤

∑
Qi∈Qa∪Qr

niwiŷ
∗
i = l̄∗ ≤ l∗

So we can obtain ∑
Qi∈Qr

niwiŷ
∗
i ≤ l∗ (15)

Based on the way queries are selected, we know for every re-
jected query

ŷ∗i ≥ τ,∀Qi ∈ Qr (16)

Combining (15) and (16), we get∑
Qi∈Qr

niwiτ ≤ l∗

Observing that
∑
Qi∈Qr niwi is the utility loss of the algorithm,

we conclude that ∑
Qi∈Qr

niwi ≤
l∗

τ

This bounds the utility loss from optimal l∗ by a factor of 1
τ

, thus
completing the proof.

Note that since our proof is constructive, this gives an LP-relaxation
based algorithm to achieve ( 1

τ
, 1

1−τ ) bi-criteria-approximation of
utility loss.
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5.1.3 An approximable special case
Given that memory is typically reasonably abundant in today’s

hardware setup, in this section we will assume that the available
memory capacity is large enough such that it can hold at least a

few number of queries. If we set f =
maxQi

∑
Ej∈Qi

mjλj

M
to be

the ratio between the memory requirement of the largest query and
available memory M . We know if M is large enough, then each
query uses no more than fM memory, for some f < 1.

In addition, denote by p = maxj |{Qi|Ej ∈ Qi, Qi ∈ Q}| as
the maximum number of queries that one event type participates
in. We note that in practice there are problems in which each event
participates in a limited number of queries. In such cases p will be
limited to a small constant.

Assuming both p and f are some fixed constants, we obtain the
following approximation result.

THEOREM 4. Let p be the maximum number of queries that one
event can participate in, and f be the ratio between the size of the
largest query and the memory budget defined above, IMLS admits
a p

1−f -approximation.
The idea here is to leverage the fact that the maximum query-

participation p is a constant to simplify the memory consumption
constraint, so that a knapsack-like heuristic yields utility guaran-
tees. We present a proof of this theorem in the full version of the
paper [31].

5.1.4 A pseudo-polynomial-time solvable special case
We further consider the multi-tenant case where multiple CEP

applications are consolidated into one single server or into one
cloud infrastructure where the same set of underlying computing
resources is shared across applications.

In this multi-tenancy scenario, since different CEP applications
are interested in different aspects of real-world event occurrences,
there typically is no or very limited sharing of events across dif-
ferent applications (the hospital hygiene system HyReminder and
hospital inventory management system CIMS as mentioned in the
Introduction, for example, have no event types in common. So do
a network intrusion detection application and a financial applica-
tion co-located in the same cloud). Using a hyper-graph model, a
multi-tenant CEP system can be represented as a hyper-graph H ,
where each event type is represented as a vertex and each query as a
hyper-edge. If there is no sharing of event types among CEP appli-
cations, then each connected component of H corresponds to one
CEP application. Let k be the size of the largest connected com-
ponent of H , then k is essentially the maximum number of event
types used in any one CEP application, which may be limited to a
small constant (the total number of event types across multiple CEP
applications is not limited). Assuming this is the case, we have the
following special case that is pseudo-polynomial time solvable.

THEOREM 5. In a multi-tenant CEP system where each CEP
tenant uses a disjoint set of event types, if each CEP tenant uses no
more than k event types, the problem of IMLS can be solved in time
O(|Σ||Q|M2k

2

).
Our proof utilizes a dynamic programming approach developed

for Set-union Knapsack problem [27]. A detailed proof of this the-
orem can be found in Appendix D.

We note that we do not assume the total number of event types
across multiple CEP tenants to be limited. In fact, the running time
grows linearly with the total number of event types and queries
across all CEP tenants.

Lastly, we observe that the requirement that events in each CEP
tenant are disjoint can be relaxed. As long as the sharing of event
types between different CEP tenants are limited, such that the size
of the largest component of H mentioned above is bounded by k,
the result in Theorem 5 holds.

5.2 The fractional variant (FMLS)
In this section, we consider the fractional variant of the memory-

bound load shedding problem. In this variant, instead of taking an
all-or-nothing approach to either include or exclude all event in-
stances of certain types in memory, we use a random sampling op-
erator [32], which samples some arriving events uniformly at ran-
dom into the memory. Denote by xj ∈ [0, 1] the sampling proba-
bility for each event typeEj . The fractional variant memory-bound
load shedding (FMLS) can be written as follows.

(FMLS) max
∑
Qi∈Q

niwiyi (17)

s.t.
∑
Ej∈Σ

λjmjxj ≤M (18)

yi =
∏

Ej∈Qi

xj (19)

0 ≤ xj ≤ 1 (20)

The integrality constraints are essentially dropped from the inte-
gral version of the problem, and are replaced by constraints in (20).
We use fractional sampling variables xj and yi to differentiate from
binary variables xj , yi. Note that Equation (19) states that the prob-
ability that a query result is produced, yi, is the cross-product of
sampling rates of constituent events since each event is sampled
randomly and independently of each other.

5.2.1 A general complexity analysis
In the FMLS formulation, if we fold Equation (19) into the ob-

jective function in (17), we obtain

max
∑
Qi∈Q

niwi
∏

Ej∈Qi

xj (21)

This makes FMLS a polynomial optimization problem subject to a
knapsack constraint (18).

Since we are maximizing the objective function in Equation (21),
it is well known that if the function is concave, then convex opti-
mization techniques [14] can be used to solve such problems opti-
mally. However, we show that except the trivial case where each
query has exactly one event (i.e., (21) becomes linear), in general
Equation (21) is not concave.

LEMMA 1. If the objective function in Equation (21) is non-
trivial (that is, at least one query has more than one event), then (21)
is non-concave.

We show a proof of Lemma 1 in Appendix E.
Given this non-concavity result, it is unlikely that we can hope

to exploit special structures of the Hessian matrix to solve FMLS.
In particular, convex optimization techniques like KKT conditions
or gradient descent [14] can only provide local optimal solutions,
which may be far away from the global optimal.

On the other hand, while the general polynomial program is
known to be hard to solve [11, 45], FMLS is a special case where
all coefficients are positive, and the constraint is a simple knap-
sack constraint. Thus the hardness results in [11, 45] do not apply
to FMLS. We show the hardness of FMLS by using the Motzkin-
Straus theorem [38] and a reduction from the Clique problem.

THEOREM 6. The problem of fractional memory-bound load
shedding (FMLS) is NP-hard. FMLS remains NP-hard even if each
query has exactly two events.

A full proof of this theorem can be found in Appendix F.
So despite the continuous relaxation of the decision variables of

IMLS, FMLS is still hard to solve. However, in the following we
show that FMLS has special structure that allows it to be solved
approximately under fairly general assumptions.
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5.2.2 Definitions of approximation
We will first describe two definitions of approximation com-

monly used in the numerical optimization literature.
The first definition is similar to the approximation ratio used in

combinatorial optimization.

DEFINITION 7. [30] Given a maximization problem P that has
maximum value vmax(P ) > 0. We say a polynomial time al-
gorithm has an absolute approximation ratio ε ∈ [0, 1], if the
value found by the algorithm, v(P ), satisfies vmax(P ) − v(P ) ≤
ε vmax(P ).

The second notion of relative approximation ratio is widely used
in the optimization literature [22, 30, 40, 45].

DEFINITION 8. [30] Given a maximization problem P that has
maximum value vmax(P ) and minimum value vmin(P ). We say
a polynomial time algorithm has a relative approximation ratio
ε ∈ [0, 1], if the value found by the algorithm, v(P ), satisfies
vmax(P )− v(P ) ≤ ε(vmax(P )− vmin(P )).

Relative approximation ratio is used to bound the quality of so-
lutions relative to the possible value range of the function. We
refer to this as ε-relative-approximation to differentiate from ε-
approximation used Definition 7.

Note that in both cases, ε indicates the size of the gap between
an approximate solution and the optimal value. So smaller ε values
are desirable in both definitions.

5.2.3 Results for relative approximation bound
In general, the feasible region specified in FMLS is the intersec-

tion of a unit hyper-cube, and the region below a scaled simplex.
We first normalize (18) in FMLS using a change of variables. Let
x̄′j =

λjmjxj
M

be the scaled variables. We can obtain the following
formulation FMLS’.

(FMLS’) max
∑
Qi∈Q

niwi
∏

Ej∈Qi

M

λjmj
x̄′j (22)

s.t.
∑
Ej∈Σ

x̄′j = 1 (23)

0 ≤ x̄′j ≤
λjmj

M
(24)

Note that the inequality constraint (18) in FMLS is now replaced
by an equality constraint (23) in FMLS’. This will not change the
optimal value of FMLS as long as

∑
Ej

λjmj
M

≥ 1 (otherwise,
although

∑
Ej∈Σ x̄

′
j = 1 is unattainable, the memory budget be-

comes sufficient and the optimal solution is trivial). This is because
all coefficients in (17) are positive, pushing any xi to a larger value
will not hurt the objective value. Since the constraint (18) is ac-
tive for at least one global optimal point in FMLS, changing the
inequality in the knapsack constraint to an equality in (23) will not
change the optimal value.

Denote by d = max{|Qi|} the maximum number of event types
in a query. We will assume in this section that d is a fixed con-
stant. Note that this is a fairly realistic assumption, as d tends to
be very small in practice (in HyReminder [47], for example, the
longest query has 6 event types, so d = 6). Observe that d essen-
tially corresponds to the degree of the polynomial in the objective
function (22).

An approximation using co-centric balls. Using a random-
ized procedure from the optimization literature [30], we show that
FMLS’ can be approximated by bounding the feasible region using
two co-centric balls to obtain a (loose) relative-approximation ratio
as follows.

THEOREM 7. The problem FMLS’ admits a relative approx-
imation ratio ε, where ε = 1− O

(
|Σ|−

d−2
2 (t2 + 1)−

d
2

)
and

t = min

(
minEj

(
λjmj
M

)
, 1√
|Σ|

)
.

A proof of this result can be found in Appendix G. Note that this
is a general result that only provides a loose relative approximation
bound, which is a function of the degree of the polynomial d, the
number of event types |Σ|, and λjmj

M
, and cannot be adjusted to a

desirable level of accuracy.
An approximation using simplex. We observe that the feasible

region defined in FMLS’ has special structure. It is a subset of
a simplex, which is the intersection between a standard simplex
(Equation (23)) and box constraints (Equation (24)).

There exists techniques that produces relative approximations for
polynomials defined over simplex. For example, [22] uses a grid-
based approximation technique, where the idea is to fit a uniform
grid into the simplex, so that values on all nodes of the grid are
computed and the best value is picked as an approximate solution.
Let ∆n be an n dimensional simplex, then (x ∈ ∆n|kx ∈ Zn+) is
defined as a k-grid over the simplex. The quality of approximation
is determined by the granularity the uniform grid: the finer the grid,
the tighter the approximation bound is.

The result in [22], however, does not apply here because the fea-
sible region of FMLS’ represents a subset of the standard simplex.
We note that there exist a special case where if λjmj

M
≥ 1, ∀j

(that is, if the memory requirement of a single event type exceeds
the memory capacity), the feasible region degenerates to a simplex,
such that we can use grid-based technique for approximation.

THEOREM 8. In FMLS’, if for all j we have λjmj
M
≥ 1 then

the problem admits a relative approximation ratio of ε, where

ε = O

(
1− k!

(k − d)!kd

)
for any k ∈ Z+ such that k > d. Here k represents the number of
grid points along one dimension.

Note that as k →∞, approximation ratio ε→ 0.
A detailed proof of this result can be found in Appendix H.

This result can provide increasingly accurate relative approxima-
tion bound for a larger k. It can be shown that for a given k, a
total of

(|Σ|+k−1
|Σ|−1

)
number of evaluations of the objective function

is needed.

5.2.4 Results for absolute approximation bound
Results obtained so far use the notion of relative approximation

(Definition 8). In this section we discuss a special case in which
FMLS’ can be approximated relative to the optimal value (Defini-
tion 7).

We consider a special case in which queries are regular with no
repeated events. That is, in each query, no events of the same type
occur more than once (e.g., query SEQ(A,B,C) is a query without
repeated events while SEQ(A,B,A) is not because event A appears
twice). This may be a fairly general assumption, as queries typ-
ically detect events of different types. HyReminder [47] queries,
for instance, use no repeated events in the same query (two such
example Q1 and Q2 are given in the Introduction). In addition,
we require that each query has the same length as measured by the
number of events.

With the assumption above, the objective function Equation (22)
becomes a homogeneous multi-linear polynomial, while the feasi-
ble region is defined over a sub-simplex that is the intersection of a
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cube and a standard simplex. We extend a random-walk based ar-
gument in [40] from standard simplex to the sub-simplex, and show
an (absolute) approximation bound.

THEOREM 9. In FMLS’, if λjmj
M

s are fixed constants, in ad-
dition if every query has no repeated event types and is of same
query length, d, then a constant-factor approximation can be ob-
tained for FMLS’ in polynomial time. In particular, we can achieve
a (1 − β( k!

(k−d)!kd ))-approximation, by evaluating Equation (21)

at most
(|Σ|+k−1
|Σ|−1

)
times, where β = min

(
minj

(
λjmj
M

)
, 1
)d

,
and k > d is a parameter that controls approximation accuracy.

We use a scaling method to extend the random-walk argument
in [40] to the sub-simplex in order to get the desirable constant fac-
tor approximation. A detailed proof can be found in [31]. Note
that, by selecting k = O(d2) we can get k!

(k−d)!kd close to 1. Also

note that if λjmj
M
≥ 1 for all j, β = 1 and we can get an approxi-

mation arbitrarily close to the optimal value by using large k.

6. CPU-BOUND LOAD SHEDDING
In this section we consider the scenario where memory is abun-

dant, while CPU becomes the limiting resource that needs to be
budgeted appropriately. CPU-bound problems turn out to be easy
to solve.

6.1 The integral variant (ICLS)
In the integral variant CPU load shedding, we again use binary

variables yi to denote whether results of Qi can be generated. For
each query Qi, at most ni number of query matches can be pro-
duced. Assuming the utility weight of each result is wi, and the
CPU cost of producing each result is ci, when Qi is selected (yi =
1) a total of niwi utility can be produced, at the same time a total of
nici CPU resources are consumed. That yields the following ICLS
problem.

(ICLS) max
∑
Qi∈Q

niwiyi (25)

s.t.
∑
Qi∈Q

niciyi ≤ C (26)

yi ∈ {0, 1} (27)

ICLS is exactly the standard 0-1 knapsack problem, which has
been studied extensively. We simply cite a result from [46, Chap-
ter 5] for completeness.

THEOREM 10. [46] The integral CPU-bound load shedding prob-
lem (ICLS) is NP-complete. It admits a fully polynomial approxi-
mation scheme (FPTAS).

ICLS is thus an easy variant among the load shedding problems
studied in this work.

6.2 The fractional variant (FCLS)
Similar to the memory-bound load shedding problems, we also

investigate the fractional variant where a sampling operator is used
to select a fixed fraction of query results. Instead of using binary
variables yi, we denote by yi the percentage of queries that are
sampled and processed by CPU for output. The integrality con-
straints in ICLS are again dropped, and we can have the following
FCLS formulation.

(FCLS) max
∑
Qi∈Q

niwiyi (28)

s.t.
∑
Qi∈Q

niciyi ≤ C (29)

0 ≤ yi ≤ 1, for all i (30)

Since ni, wi, ci are all constants, this is a simple linear program
problem that can be solved in polynomial time. We conclude that
FCLS can be efficiently solved.

7. DUAL-BOUND LOAD SHEDDING
Lastly, we study the dual-bound load shedding problem, where

both CPU and memory resources can be limited.

7.1 The integral variant (IDLS)
The integral dual-bound load shedding (IDLS) can be formulated

by combining CPU and memory constraints.

(IDLS) max
∑
Qi∈Q

niwiyi

s.t.
∑
Ej∈Σ

λjmjxj ≤M

∑
Qi∈Q

niciyi ≤ C

yi ≤
∏

Ej∈Qi

xj (31)

xj , yi ∈ {0, 1}

Binary variables xj , yi again denote event selection and query
selection, respectively. Note that in order to respect the CPU con-
straint, not all queries whose constituent events are available in
memory can be produced. This is modeled by an inequality in
Equation (31).

We show that the loss minimization version of IDLS admits a
tri-criteria approximation.

THEOREM 11. Denote by M the given memory budget C the
given CPU budget, and l∗ the optimal utility loss with that budget.
IDLS admits ( 1

τ
, 1

1−τ ,
1

1−τ ) tri-criteria-approximation for any τ ∈
[0, 1]. That is, for any τ ∈ [0, 1], we can compute a strategy that
uses no more than 1

1−τM memory 1
1−τC CPU, and incur no more

than l∗

τ
utility loss.

The idea of the proof is to use LP-relaxation and round the result-
ing fractional solution, which is similar to Theorem 3. In addition,
we show that the approximable special case of IMLS (Theorem 4)
also holds for IDLS. Detailed proofs of both theorems can be found
in [31].

THEOREM 12. Let p be the maximum number of queries that

one event can participate in, and f =
maxQi

∑
Ej∈Qi

mjλj

M
be the

ratio between the size of the largest query and the memory budget.
IDLS is p

1−f -approximable in pseudo polynomial time.

7.2 The fractional variant (FDLS)
The fractional dual-bound problem once again relaxes the inte-

grality constraints in IDLS to obtain the following FDLS problem.

(FDLS) max
∑
Qi∈Q

niwiyi (32)

s.t.
∑
Ej∈Σ

λjmjxj ≤M

∑
Qi∈Q

niciyi ≤ C (33)

yi ≤
∏

Ej∈Qi

xj (34)

xj , yi ∈ [0, 1]
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First of all, we note that the hardness result in Theorem 6 still
holds for FDLS, because FMLS is simply a special case of FDLS
without constraint (33).

The approximation results established for FMLS, however, do
not carry over easily. If we fold (34) into Equation (32), and look
at the equivalent minimization problem by taking the inverse of the
objective function, then by an argument similar to Lemma 1, we can
show that objective function is non-convex in general. In addition,
we can show that except in the trivial linear case, the constraint in
Equation (33) is also non-convex using a similar argument. So we
are dealing with a non-convex optimization subject to non-convex
constraints.

It is known that solving or even approximating non-convex prob-
lems with non-convex constraints to global optimality is hard [14,
21]. Techniques dealing with such problems are relatively scarce
in the optimization literature. Exploiting special structure of FDLS
to optimize utility is an interesting area for future work.

8. CONCLUSIONS AND FUTURE WORK
In this work we study the problem of load shedding in the con-

text of the emerging Complex Event Processing model. We investi-
gate six variants of CEP load shedding under various resource con-
straints, and demonstrate an array of complexity results. Our results
shed some light on the hardness of load shedding CEP queries, and
provide some guidance for developing CEP shedding algorithms in
practice.

CEP load shedding is a rich problem that so far has received little
attention from the research community. We hope that our work will
serve as a springboard for future research in this important aspect
of the increasingly popular CEP model.
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APPENDIX
A. PROOF OF PROPOSITION 1

PROOF. First, we show that no deterministic online shedding al-
gorithm can achieve a competitive ratio that is independent of the
length of the event sequence. In order to establish this, it is suf-
ficient to specify a distribution over event sequences for which the
competitive ratio—defined to be the ratio of the expected utility ob-
tained by the algorithm and the (offline) optimal utility—achieved
by any deterministic algorithm must depend on the length of the
sequence.

We construct such a distribution as follows. Suppose we have a
universe of 3m event types, Σ = {Ei} ∪ {E′i} ∪ {E′′i }, i ∈ [m].
Assume that there are 2m queries SEQ(Ei, E

′′
i ) and SEQ(E′i, E

′′
i ),

∀i ∈ [m], each with unit utility weight. The event sequence is of
the form (e1, e2, ..., em, X), where for all i ∈ [m], ei is set to be
either Ei with probability 1/2 or E′i with probability 1/2. In ad-
dition, X is drawn from the uniform distribution over {E′′i : i ∈
[m]}.

Suppose the system can only hold two events in memory due to
memory constraints. The optimal offline algorithm has a utility of
1. This is because it can look at the type of eventX , denoted byE′′k ,
and keep the corresponding event ek which is of type either Ek or
E′k, and has arrived previously. This ensures that irrespective of the
instantiation of the event stream one query (either SEQ(Ek, E

′′
k )

or SEQ(E′k, E
′′
k ) match can be produced.

A deterministic online algorithm, on the other hand, needs to
select one event into memory before seeing the event type of X .
In particular, if X is E′′k then the deterministic algorithm is able
to report the correct query (either (Ek, E

′′
k ) or (E′k, E

′′
k )) only if it

stored ek.1

Thus, if a deterministic algorithm stores ek then it succeeds only
ifX isE′′k . The latter event happens with probability 1

m
; therefore,

the probability that a deterministic algorithm produces a match is
1
m

. Its expected utility is also 1
m

given that queries all have a unit
weight.

Note that the competitive ration, i.e., the ratio of the utility pro-
duced by the optimal offline algorithm, and an online deterministic
algorithm, is 1

m
. Here m is the size of the event stream minus one.

Since an event stream can be unbounded, the ratio can be arbitrarily
bad.

Next, we show that no randomized algorithm can do any better.
Using Yao’s principle [54], we know that the expected utility of
a randomized algorithm against the worst case input stream, is no
more than the expected utility of the best deterministic algorithm
against the input distribution. Since we know any deterministic
algorithm against the input distribution constructed above is 1

m
, it

follows that the expected utility of a randomized algorithm against
the worst case input stream from this input distribution is at most
1
m

, thus completing the proof.

B. PROOF OF THEOREM 1
1Note that the algorithm can only report queries that have a match,
i.e., it cannot report false positives. Hence, if X is E′′k , then the
algorithm cannot simply guess and declare a match, say (Ek, E

′′
k ),

without any knowledge of ek. Specifically, ek could instead be E′k
and in such a case the declared match would be incorrect.

PROOF. We obtain the hardness result by a reduction from Dens-
est k-sub-hypergraph (DKSH). Recall that given a hypergraphG =
(V,H), the decision version of DKSH is to determine if there ex-
ists an induced subgraph G′ = (V ′, H ′), such that |V ′| ≤ k, and
|H ′| ≥ B for some given constant B.

Given any instance of the DKSH problem, we construct an IMLS
problem as follows. We build a bijection φ : V → Σ, so that
each vertex vj ∈ V corresponds to one event type Ej ∈ Σ. For
each hyperedge hi ∈ H , using vertices vk that are endpoints of
hi to construct a corresponding query Qi, such that ∀vk ∈ hi,
φ(vk) ∈ Qi. Set all Ej to have unit cost (mjλj = 1) and all Qi
have unit weight (wini = 1), and lastly set the memory budget to
k.

We first show the forward direction, that is if there exists a solu-
tion to DKSH, i.e., a k-sub-hypergraph with at leastB hyper-edges,
then there exists a solution to IMLS with no more than k memory
cost but achieves B utility. Suppose the subgraph G′ = (V ′, H ′)
is the solution to DKSH. In the corresponding IMLS problem, if
we keep all event types φ(v′), ∀v′ ∈ V ′, our solution has a mem-
ory cost of |V ′|, which is no more than k since G′ is a k-sub-
hypergraph. This ensures the constructed solution is feasible. Fur-
thermore, the utility of the IMLS solution is exactly |H ′| by our
unit weight construction. Since we know |H ′| ≥ B, this completes
the proof in this direction.

In the other direction, let the set of events selected in IMLS be
S ⊆ Σ while the set of dropped events be D = Σ \ S. The set of
vertices Vs corresponding to S induces a subgraphGs = (Vs, Hs).
S respects memory-bounds in IMLS implies |Vs| ≤ k, so Gs is a
valid k-sub-hyper-graph. In addition, S produces utilityB in IMLS
ensures that |Hs| ≥ B, thus completing the hardness proof.

C. PROOF OF THEOREM 2
PROOF. We note that the reduction from Densest k-sub-hypergraph

(DKSH) discussed above is approximation preserving. Utilizing a
hardness result of DKSH [29], which establishes that DKSH can-
not be approximated within a factor of 2(logn)δ for some δ > 0,
we obtain the inapproximability result of IMLS.

D. PROOF OF THEOREM 5
Proof Sketch. The IMLS problem studied in this work can be for-
mulated as a Set-union Knapsack problem [27]. A dynamic pro-
gramming algorithm is proposed in [27] for Set-union Knapsack,
which however runs in exponential time. If we define an adjacency
graph G by representing all events as graph vertices, and each pair
of vertices are connected if the corresponding events co-occur in
the same query. The exponent of the running time is shown to be no
more than the cut-width of the induced adjacency graphG, cw(G).
Recall that cut-width of a graph G is defined as the smallest inte-
ger k such that the vertices of G can be arranged in a linear layout
[v1, ..., vn] such that for every i ∈ [1, n − 1], there are at most
k edges with one endpoint in {v1, ..., vi} and another endpoint in
{vi+1, ..., vn}.

In the context of a multi-tenant CEP system, assuming each non-
overlapping CEP tenant uses at most k event types, then the size of
the largest component of the adjacency graph G is at most k. This,
combines with the fact that the degree of each vertex in each com-
ponent is at most k, ensures that cw(G) ≤ k2. The running time of
the dynamic programming approach in [27] can then be bounded
by O(|Σ||Q|M2k

2

). Note that this result is pseudo-polynomial,
because the running time depends on the value of memory budget
M instead of the number of bits it needs to represent it.
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E. PROOF OF LEMMA 1
PROOF. Denote H as the Hessian matrix of (21) representing

its second order partial derivatives. In the trivial case where (21)
is just a linear function (each query has exactly one event type),
H is an all-zero matrix with all-zero eigenvalues, which is trivially
concave.

In general, (21) is a nonlinear polynomial (i.e., at least one query
has more than one event). Since (21) is a polynomial with positive
coefficients and positive exponents, and xj ≥ 0, ∀j, we know all
non-zero second order partial derivatives of (21) are positive, and
thus all non-zero entries of H are positive. Denote by hij the ith
row, jth column entry of H , given that hij ≥ 0, ∀i, j, we know the
trace of the Hessian matrix tr(H) = h11 +h22 + ...+h|Σ||Σ| ≥ 0.
From linear algebra, we know that tr(H) equals the sum of the
eigenvalues of H .

Since H is a Hessian matrix, we know it is symmetric and its
eigenvalues are all real. In addition, at least one eigenvalue is non-
zero because H is not an all-zero matrix.

We show by contradiction that H must have at least one positive
eigenvalue. Suppose this is not the case. Since H has at least one
non-zero eigenvalue, all its non-zero eigenvalues have to be nega-
tive, which implies that the sum of all eigenvalues are negative, thus
we have tr(H) < 0. This contradicts with the fact that tr(H) ≥ 0.
Therefore H must have at least one positive eigenvalue, which en-
sures that H is non-concave.

F. PROOF OF THEOREM 6
PROOF. We show the hardness of this problem by a reduction

from the Clique problem. Given a graph G = (V,E), the decision
version of the Clique problem is to determine if there exists a clique
of size k in G.

From any instance of the Clique problem, we construct an in-
stance of the FMLS problem as follows. We build a bijective func-
tion φ : V → Σ to map each vertex vj ∈ V to an event φ(vj) ∈ Σ.
We set a unit memory consumption for each event (λjmj = 1), and
a unit knapsack capacity. So we get

∑
Ej∈Σ xj ≤ 1. Furthermore,

given an edge ei = (vl, vk) ∈ E, we build a query (φ(vl), φ(vk))
with unit utility weight (niwi = 1). We then essentially have a
unit-weight, unit-cost, length-two-query FMLS that corresponds to
the graph G. This gives rise to the following bilinear optimization
problem subject to a knapsack constraint.

max
∑

Qi:(El,Ek)∈Q

xlxk

s.t.
∑
Ej∈Σ

xj ≤ 1 (35)

0 ≤ xj ≤ 1

Since we are dealing with a maximization problem, and the co-
efficients of the objective are all non-negative, increasing xj values
will not “hurt” the objective. Thus, the knapsack constraint in (35)
can be changed into a standard simplex constraint

∑
Ej∈Σ xj = 1

without changing the optimal value of the problem.
Given the FMLS defined above, the decision version of FMLS is

to decide if there exists a fractional strategy such that the total util-
ity value is at least u. We first show that if there exists a clique of
size k inG, then the value of the FMLS we construct is at least k−1

2k
.

To show this connection, we use the Motzkin-Straus theorem [38],
which states that global maximum over the standard simplex is at-
tained when values are distributed evenly among the largest clique

from the graph. So if there is a clique of size k in graph G, then
the k-clique has a total of

(
k
2

)
number of edges. Since each edge

produces a value of ( 1
k

)2, the the optimal value of FMLS is at least(
k
2

)
( 1
k

)2 = k−1
2k

.
We now show the other direction, that is if the optimal value

FMLS problem we construct is no less than k−1
2k

, then the graph G
has a clique of size no less than k. We show this by contradiction.
Suppose the size of the maximum clique of G is c, c < k. Then by
the Motzkin-Straus theorem [38] the global maximum of the FMLS
we construct is at most c−1

2c
, which is less than k−1

2k
because c < k.

This contradicts with the fact that the optimal value is no less than
k−1
2k

, therefore, the graph must have a clique of size at least k.
We note that by using a reduction from Clique, we have shown

that even in the restricted case where the objective function in Equa-
tion (21) is a bi-linear function (a summation of quadratic square-
free monomials), or in other words each query has exactly two
events, FMLS remains NP-hard.

G. PROOF OF THEOREM 7
PROOF. Let B(t) = {x ∈ Rn, ‖x‖2 ≤ t} be a ball constraint.

We show that the feasible region of FMLS’, denoted by S, satisfies
B(t) ⊆ S ⊆ B(1), where t = min(minEj (

λjmj
M

), 1√
|Σ|

).

First, we know that any feasible solution satisfies ‖x‖1 ≤ 1. It
can be shown that ∀x, ‖x‖2 ≤ ‖x‖1. Thus we know ‖x‖2 ≤ 1,
and S ⊆ B(1).

On the other hand, the ball inside S is limited by the shortest
edge of the hyper-rectangle, minEj (

λjmj
M

), and the largest possi-
ble ball inside standard simplex, which has a radius of 1√

|Σ|
. So

we have t = min(minEj (
λjmj
M

), 1√
|Σ|

). The largest ball inside S

is thus B(t).
Authors in [30] show that if a convex feasible region contains

a ball constraint, and in addition is bounded by another ball con-
straint, the polynomial program can be approximated with a rela-
tive approximation ratio that is a function of the degree of the poly-
nomial, and the radius of the ball constraints, namely the ratio is
1 − (d + 1)!(2d)−2d (|Σ| + 1)−

d−2
2 (t2 + 1)−

d
2 . Given that d is

assumed to be a fixed constant, thus our result in the theorem.

H. PROOF OF THEOREM 8
PROOF. We again use the FMLS’ formulation. Let d = max{|Qi|}

be the maximum number of events in any query. Monomials in (22)
can be homogenized to degree d using the fact that

∑
Ej
x̄′j = 1.

So (22) is equivalent to the following formula that is degree-d ho-
mogeneous ∑

Qi∈Q

niwi(
∑
Ej

(x̄′j))
d−|Qi|

∏
Ej∈Qi

M

λjmj
x̄′j (36)

Under the assumption that for all j we have λjmj
M

≥ 1, the
problem then is to optimize a degree-d homogeneous polynomial
program on the standard simplex ∆|Σ|.

Authors in [22] show that using a uniform k-grid, ∆|Σ|(k) =

{x ∈ ∆|Σ||kx ∈ Z+}, polynomials of fixed degree d can be ap-
proximated by evaluating (22) for all

(|Σ|+k−1
|Σ|−1

)
number of points

on the k-grid ∆|Σ|(k). Utilizing approximation bound obtained
in [22] (see Theorem 1.3 in [22]), FMLS’ in this special case can
be approximated with a relative approximation ratio ε = (1 −

k!
(k−d)!kd )

(
2d−1
d

)
dd. Given that d is assumed to be a fixed constant,

we get the result stated in the Theorem.
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