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ABSTRACT
Ensuring the correctness of a distributed system is an impor-
tant challenge. Previously, two interpretations of correct-
ness have been proposed: the first interpretation is about
determinism, saying that all infinite fair computation traces
produce the same output; and, the second interpretation
is a confluence notion, saying that all finite computation
traces can still be extended to produce the same output.
A decidability result for the confluence notion was previ-
ously obtained for so-called simple transducer networks, a
model from the field of declarative networking. In the cur-
rent paper, we also present a decidability result for simple
transducer networks, but this time for the first interpreta-
tion of correctness, with infinite fair computation traces. We
also compare the expressivity of simple transducer networks
under both interpretations.

Categories and Subject Descriptors
H.2 [Database Management]: Languages; H.2 [Database
Management]: Systems—Distributed databases; F.1 [Com-
putation by Abstract Devices]: Models of Computation

General Terms
languages, theory

Keywords
distributed database, relational transducer, consistency, de-
cidability, expressive power, cloud programming

1. INTRODUCTION
Cloud environments have emerged as a modern way to

store and manipulate data [26, 12]. Essentially, a cloud is a
distributed system that should produce output as the result
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of some computation. A big challenge in distributed sys-
tems is dealing with the nondeterminism that is caused by
the parallel execution of the compute nodes and the under-
lying network infrastructure. A typical example of such non-
determinism is the unpredictable delay on messages, called
asynchronous communication, and the permutation on mes-
sage sequences that are caused by these delays [9].

From this viewpoint, we may call a distributed system
correct when its output is not affected by the above nonde-
terminism. In this paper, we will assume that the output
can not be retracted once it is produced.

Useful insights have already emerged about how correct-
ness might be obtained. One approach is to let the com-
pute nodes run monotone programs that steadily accumulate
messages [1, 4, 21, 5]. Another approach lies in the design
of so-called commutative replicated datatypes, where the
messages represent commutative operations, that are thus
resilient to nondeterministic reorderings [22, 23, 13, 10]. If
the task at hand is not monotone, however, a form of coordi-
nation has to be used to enforce correctness [27, 5]. There is
ongoing theoretical research about the cost and complexity
of coordination [19, 11].

A method that is complementary to the above would be
to automatically check whether a distributed system is cor-
rect. That approach is the focus of the current paper. One
can expect correctness to be undecidable in general, but an
investigation might nevertheless shed some light on trade-
offs between expressivity and decision complexity. More-
over, such an investigation might inform us about which
strategy will be the most viable in practice: do we build dis-
tributed programs by composing mechanisms that guarantee
correctness, as above, or do we just allow any programs to be
created that are checked for correctness afterward? First, it
should be noted that different interpretations of correctness
have already been studied in the literature.

In one interpretation, a system is called correct if all in-
finite computation traces produce the same output. Gen-
erally, only traces are considered that are “fair”. As fair-
ness conditions, we typically demand basic liveness proper-
ties: all compute nodes are infinitely often triggered, and all
sent messages are eventually delivered [1, 5]. We refer to
this interpretation as consistency, with the opposite being
inconsistency.1 Intuitively, if a system is consistent, it is
determinate: as long as the conditions on the network are
sufficiently good, i.e., fair, the system succeeds in obtain-
ing the desired output, no matter how messages might be

1Abiteboul et al. [1] refer to consistency as convergence.
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delayed.
It is also possible to understand correctness as a confluence

notion [6]. We call a system confluent if for any two finite
computation traces on the same input, the second trace can
be finitely extended to also produce the (partial) output of
the first trace. The opposite of confluence is diffluence. Intu-
itively, a system is confluent whenever any two finite traces
can be made to flow together, to achieve the same output.
Note that this might require the arrangement of somewhat
artificial conditions, like the simultaneous delivery of mes-
sages, or the delivery of a certain sequence of messages with-
out intermittent delays. These arrangements might not be
provided by an infinite fair trace!

To rephrase, the big difference between these interpreta-
tions is that a confluent system can, in principle, at any point
in its execution still steer its computation towards the de-
sired output, in some particular way. A consistent system on
the other hand always has to achieve the right output when
only the basic fairness conditions are provided: all nodes
become active infinitely often and all messages are eventu-
ally delivered. It appears that consistency is a stronger re-
quirement. Indeed, every consistent system is also confluent:
whenever we have two finite traces, they can both always be
extended to infinite fair traces that produce (in finite time)
the same output by consistency; hence, the second finite
trace can be finitely extended to achieve the output of the
first finite trace.

We can also provide an example of a confluent system that
is not consistent: we have a single compute node that sends
two messages to itself repeatedly, and, the node will produce
output only when both messages are delivered simultane-
ously. We call this simultaneous delivery a message join. In
some fair computation traces, this arrangement never hap-
pens; these traces produce no output, whereas other fair
traces do.

In this paper, we will only be concerned with consistency
and confluence, as defined above. For completeness, how-
ever, we should also mention the terms eventual consistency
and strong consistency [25, 18, 4, 13]. The former term is
used to describe systems that achieve correctness without
resorting to (heavy) coordination, whereas the latter term
refers to systems that do the opposite. In this paper, we
want to check whether a system is correct, regardless of how
much coordination it uses. From this viewpoint, eventual
and strong consistency seem to be orthogonal to our terms
consistency and confluence.

Previously, we have investigated the decidability of conflu-
ence for distributed systems formalized as relational trans-
ducer networks [6, 7]. Transducer networks are a com-
putational model for declarative networking [27, 5], build-
ing upon the established model of relational transducers for
data-centric agents [3, 24, 15, 14, 16]. Transducer networks
appear suitable to model and study database-oriented dis-
tributed systems. The main result from our previous work
[6, 7] is that, although confluence is undecidable in gen-
eral, it actually is decidable for a syntactically defined frag-
ment of transducer networks, the so-called simple transducer
networks, that are implemented with restricted conjunctive
queries. Formally, the result is that diffluence for simple
transducer networks is NEXPTIME-complete.

But consistency might be more practically relevant than
confluence. Indeed, a distributed system should not depend
on specially arranged message deliveries, as is allowed in

confluence, but it should already work correctly when only
the basic fairness conditions are satisfied, as in consistency.
Deciding consistency, as described above, is a question left
open by the previous work [6, 7]. The current paper works
towards filling this gap for simple transducer networks. At
this point, it should be noted that a confluent simple trans-
ducer network is not automatically consistent, because the
above example of a confluent system that is not consistent
can be implemented as a simple transducer network.2 In-
deed, in line with the above discussion, the author expected
that deciding consistency is harder. Interestingly, the main
contribution of the current paper is to show that deciding
inconsistency for simple transducer networks is in fact also
NEXPTIME-complete.

Regarding expressivity, under the confluence semantics,
the output of a confluent simple transducer network on an
input is defined as the union of the (partial) outputs that
are produced by all finite computation traces on that in-
put. With this definition, it was shown that simple trans-
ducer networks capture the distributed queries expressible
by unions of conjunctive queries with negation [6, 7]. Al-
though this indicates that simple transducer networks are
too limited for general purpose distributed systems, they
are not completely useless as unions of conjunctive queries
with negation seem an attractive and widely used query lan-
guage.

Under the consistency semantics, we define the output of a
consistent simple transducer network on an input as the out-
put produced by an arbitrary infinite fair computation trace
on that input. This is sensible because consistency ensures
that all infinite fair computation traces on the same input
produce the same output. At first sight, this definition ap-
pears substantially different from the confluence semantics
above. The second contribution of this paper is to confirm
that the expressivity remains unchanged: consistent simple
transducer networks, under the consistency semantics, also
capture all distributed queries expressible by unions of con-
junctive queries with negation.

This paper is organized as follows. First, Section 2 pro-
vides preliminaries on database notions and (simple) trans-
ducer networks, and, formally defines consistency and con-
fluence. Section 3 shows example simple transducer net-
works. Next, Section 4 presents the NEXPTIME decidability
result for consistency of simple transducer networks, along
with the essential proof steps. The expressivity of consistent
simple transducer networks under the consistency semantics
is investigated in Section 5, also accompanied with the proof.
We conclude in Section 6.

2. PRELIMINARIES

2.1 Database Basics
We first recall some basic notions from database theory [2].

A database schema D is a finite set of pairs (R, k), often

written as R(k), where R is a relation name and k ∈ N its
associated arity. A relation name occurs at most once in a
database schema.

We assume some infinite universe dom of atomic data
values. A fact f is a pair (R, ā), often written as R(ā),
where R is a relation name, called the predicate, and ā is a
tuple of values in dom. We say that a fact R(a1, . . . , ak) is

2See the later Example 3.1.
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over database schema D if R(k) ∈ D. A database instance I
over D is a finite set of facts over D. For a subset D′ ⊆ D, we
write I|D′ to denote the subset of facts in I whose predicate
is a relation name in D′. The active domain of I, denoted
adom(I), is the set of data values occurring in facts of I. For
a fact f , we also write adom(f) to denote the set of values
occurring in just f .

2.2 Distributed Databases and Queries
A network N is a finite, nonempty set of nodes, which

are values in dom. A distributed database schema E is a
pair (N , η) where N is a network and η is a function that
maps each node x ∈ N to an ordinary database schema. A
distributed database instance over E is a function that maps
each node x ∈ N to an ordinary database instance over the
local schema η(x).

A distributed query Q over an input distributed schema
E1 and an output distributed schema E2, where E1 and E2
share the same network, is a function that maps instances
over E1 to instances over E2.

For each instance H over a distributed schema E = (N , η),
we define adom(H) =

⋃
x∈N adom(H(x)).

2.3 Unions of Conjunctive Queries
We recall the query language unions of conjunctive queries

with (safe) negation, abbreviated UCQ¬. It will be conve-
nient to use a slightly unconventional formalization of con-
junctive queries.

Let var be a universe of variables, disjoint from dom.
An atom is a pair (R, u), often written as R(u), where R
is a relation name, called the predicate, and u is a tuple of
variables in var. A literal is an atom, or an atom with “¬”
prepended; these literals are respectively called positive and
negative.

A conjunctive query ϕ, or simply rule, is a 4-tuple

(headϕ, posϕ,negϕ,nonϕ)

where headϕ is an atom; posϕ and negϕ are sets of atoms;
nonϕ is a set of nonequalities of the form x 6= y with x, y ∈
var; and, all variables of ϕ occur in posϕ. Note that negϕ

contains atoms, not negative literals. The components headϕ,
posϕ and negϕ are called respectively the head, the positive
body atoms and the negative body atoms.

A rule ϕ may be written in the conventional syntax. For
instance, if headϕ = T (u, v), posϕ = {R(u, v)}, negϕ =
{S(v)}, and nonϕ = {(u 6= v)}, then we can write ϕ as

T (u, v)← R(u, v), ¬S(v), u 6= v.

Let D be a database schema. A rule ϕ is said to be over D
if for each atom R(u1, . . . , uk) ∈ posϕ∪negϕ we have R(k) ∈
D. Suppose ϕ is over D. A valuation for ϕ is a total function
V from the variables of ϕ to dom. The application of V to
an atom R(u1, . . . , uk) of ϕ, denoted V (R(u1, . . . , uk)), is
defined as the fact R(a1, . . . , ak) where for i = 1, . . . , k we
have ai = V (ui). This notation is naturally extended to a
set of atoms, which results in a set of facts. Now, let I be
an instance over D. Valuation V is said to be satisfying for
ϕ on I if V (posϕ) ⊆ I, V (negϕ) ∩ I = ∅, and V (x) 6= V (y)
for each (x 6= y) ∈ nonϕ. If this is so, we call (ϕ, V ) a
derivation pair, that derives the fact V (headϕ). The result
of ϕ applied to I, denoted ϕ(I), is the set of facts derived
by all satisfying valuations for ϕ on I.

A union of conjunctive queries with negation over D is
a finite set Φ of rules over D that all share the same head
predicate T and head arity k; we call T (k) the target relation.
We also call Φ a UCQ¬ program, and the language of such
programs is denoted UCQ¬. Let I be an instance over D.
The result of Φ applied to I, denoted Φ(I), is defined as⋃

ϕ∈Φ ϕ(I). Note that if Φ = ∅ then Φ(I) = ∅.

2.4 Transducers
We recall (relational) transducers [3, 24, 15, 14, 16]. A

transducer schema Υ is a tuple (Υin,Υout,Υmsg,Υmem,Υsys)
of database schemas with disjoint relation names, with the
restriction that Υsys = {Id (1),All (1)}. We call these database
schemas respectively “input”, “output”, “message”, “mem-
ory” and “system”. A transducer state for Υ is a database
instance over Υin ∪Υout ∪Υmem ∪Υsys. Intuitively, in such
a state, relation Id will provide at each node of a network
the identity of this node, and relation All will provide the
identities of all the nodes in this network. This will be made
more concrete in the next subsection.

We now formalize the transducer model. For technical
simplicity, we immediately restrict attention to transducers
implemented with UCQ¬ programs.3 Formally, a transducer
Π over Υ is a collection of UCQ¬ programs, each over input
schema Υin ∪Υout ∪Υmsg ∪Υmem ∪Υsys:

• for each R(k) ∈ Υout there is a UCQ¬ program ΦR
out

having target relation R(k);

• for each R(k) ∈ Υmem there are UCQ¬ programs ΦR
ins

and ΦR
del both having target relation R(k);

• for each R(k) ∈ Υmsg there is a UCQ¬ program ΦR
snd

having target relation R(k+1).

Note the extra component for message relations; it serves to
indicate the addressee of each message, which is by conven-
tion the first component (see Section 2.5).

The above programs form the mechanism to update local
storage and to send messages. Formally, a local transition
of Π is a 4-tuple (I, Ircv, J, Jsnd), also denoted as I, Ircv →
J, Jsnd, where I and J are transducer states for Υ, Ircv is
an instance over Υmsg, and Jsnd is an instance over Υmsg

but where each fact has one extra component, such that:
abbreviating I ′ = I ∪ Ircv,

J |Υin,Υsys = I|Υin,Υsys ;

J |Υout = I|Υout ∪
⋃

R(k)∈Υout

ΦR
out(I

′);

J |Υmem =
⋃

R(k)∈Υmem

(I|R ∪R+(I ′)) \R−(I ′)

Jsnd =
⋃

R(k)∈Υmsg

ΦR
snd(I ′),

where, following the presentation in [27],

R+(I ′) = ΦR
ins(I

′) \ ΦR
del(I

′); and,

R−(I ′) = ΦR
del(I

′) \ ΦR
ins(I

′).

Intuitively, on receipt of Ircv, a local transition updates
the old state I to the new state J and sends the facts in
Jsnd. Compared to I, in J potentially more output facts

3General transducers are studied in [27, 5].
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are produced; and, the update semantics for each memory
relation R adds the facts produced by insertion program
ΦR

ins and removes the facts produced by deletion program
ΦR

del.
4 Output facts can only grow. Local transitions are

deterministic in the following sense: if I, Ircv → J, Jsnd and
I, Ircv → J ′, J ′snd then J = J ′ and Jsnd = J ′snd.

2.5 Transducer Networks
A transducer network N is a triple (N ,Υ,Π) where N is

a network, Υ is a function mapping each node x ∈ N to a
transducer schema, and Π is a function mapping each node
x ∈ N to a transducer over schema Υ(x). For technical
convenience, we assume that all transducer schemas use the
same message relations (with the same arities). This is not
really a restriction because the transducers are not obliged
to use all message relations.

We define the distributed database schema inN that maps
each x ∈ N to Υ(x)in. Any distributed database instance
H over inN can be given as input to N . A configuration of
N on H is a pair ρ = (s, b) of functions s and b where for
each x ∈ N ,

• letting D1 = Υ(x)in and D2 = Υ(x)sys, function s
maps x to a transducer state s(x) for Υ(x) such that
s(x)|D1 = H(x) and s(x)|D2 = {Id(x)} ∪ {All(y) | y ∈
N}; and,

• b maps x to a finite multiset of facts over the shared
message schema of N .

Intuitively, a configuration describes a snapshot of the net-
work at some moment. We call s the state function and b
the (message) buffer function. For each x ∈ N , inside s(x),
the subinstance H(x) provides the local input of x, and the
system relations Id and All provide respectively the identity
of x and the identities of all nodes. Next, b(x) is a multiset
of message facts, with the intuition that these are the mes-
sages sent to x but that are not yet delivered. A multiset
allows us to represent duplicates of the same message (sent
at different times).

The start configuration, denoted start(N , H), is the unique
configuration ρ = (s, b) of N on H where for each x ∈ N ,
letting D = Υ(x)out ∪ Υ(x)mem, we have s(x)|D = ∅ and
b(x) = ∅.

We now describe the actual computation of the transducer
network. A global transition of N on input H is a 4-tuple

(ρ1, x,m, ρ2), also denoted as ρ1
x,m−−→ ρ2, where x ∈ N , and

ρ1 = (s1, b1) and ρ2 = (s2, b2) are configurations of N on H
such that

• m is a submultiset of b1(x), and letting m′ be m col-
lapsed to a set, there exists a Jsnd such that

s1(x), m′ → s2(x), Jsnd,

is a local transition of transducer Π(x);

• for each y ∈ N \ {x} we have s2(y) = s1(y);

• regarding the message buffers, letting J→z
snd = {R(ā) |

R(z, ā) ∈ Jsnd} for each z ∈ N , we have

(i) b2(x) = (b1(x) \m) ∪ J→x
snd ; and,

4We follow the convention that there is no-op semantics in
case a fact is both inserted and deleted at the same time [24].

(ii) for each y ∈ N \{x} we have b2(y) = b1(y)∪J→y
snd ,

where we use multiset difference and union.

We call x the active node, m the delivered messages, ρ1 the
source configuration, and ρ2 the target configuration. Intu-
itively, we select an arbitrary node x and allow it to receive
some arbitrary submultiset m from its message buffer, col-
lapsed to a set. Next, x performs a local transition, in which
the local output and memory is updated, and possibly new
messages are sent. The first component of each fact in Jsnd is
regarded as the addressee, and this component is projected
away during the transfer of the message to the buffer of that
addressee. Messages having an addressee outside N are lost.
If m = ∅, the global transition is called a heartbeat.

A run R of N on H is a sequence of global transitions,
where the source configuration of the first global transition
is start(N , H), and the target configuration of each global
transition is the source configuration of the next global tran-
sition. Runs can be finite or infinite, and we will always
indicate which option is taken. Transition ordinals start at
one. Note that there is no bound on how long a message
has to wait in a buffer, giving rise to asynchronous commu-
nication. We will often refer to global transitions simply as
“transitions”.

2.5.1 Fairness
When infinite runs are considered, in the literature on

process models it is customary to require certain “fairness”
conditions [17, 8, 20]. Let N be a transducer network. An
infinite run of N on some input instance is called fair if the
run satisfies the following conditions: (i) each node of N is
made active infinitely often; and, (ii) if a message f appears
infinitely often in the buffer of a node x then there are an
infinite number of transitions in which f is delivered to x.
The second fairness condition intuitively means that every
sent message is eventually delivered.5

Note that every transducer network has an infinite fair run
for every input because heartbeats are still possible when the
message buffers are empty.

2.5.2 Output of Runs
Let N = (N ,Υ,Π) be a transducer network. In addi-

tion to the distributed schema inN (defined above), we also
define the distributed schema outN that maps each node
x ∈ N to Υ(x)out.

Let H be an instance over inN . Let R be a finite or
infinite run of N on H. The output of R, denoted out(R),
is defined as the instance J over outN where, for each x ∈ N ,
the set J(x) consists of all output facts produced at x during
R. Note that J(x) is always finite for each x ∈ N because
N can not invent new values.

2.5.3 Simple Transducer Networks
We recall some syntactical restrictions on individual trans-

ducers and on transducer networks as a whole [6, 7]. Let Π
be a transducer over a schema Υ. For an individual rule ϕ
of Π, we consider the following restrictions:

5This condition even ensures that messages are eventually
delivered that are sent only a finite number of times: if they
would not get delivered, they would appear infinitely often
in buffers without being infinitely often delivered (violating
the condition).
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• We say that ϕ is message-positive if there are no mes-
sage atoms in negϕ.6

• We say that ϕ is static if ϕ does not use output or
memory relations in its body.

• We say that ϕ is message-bounded if every bound vari-
able (i.e., not occurring in the head) occurs in a pos-
itive message atom of the body, and does not occur
in output or memory atoms of the body (positive or
negative). This is an application of the more general
notion of “input-boundedness” [24, 16, 15].

We consider the following restrictions for transducer Π:

• We say that Π is recursion-free if there are no cycles in
the positive dependency graph of Π, which is the graph
having as vertices the relations of Υout ∪Υmsg ∪Υmem

and there is an edge from relation R to relation S if S
occurs positively in the body of a rule in Π with head
predicate R.7

• We say that Π is inflationary if the deletion programs
of memory relations are empty. This means that Π can
not delete memory facts once they are produced.

Transducer Π is called simple if

• Π is recursion-free and inflationary;

• all send rules are message-positive and static; and,

• all insertion rules for output and memory relations are
message-positive and message-bounded.

Let N be a transducer network. The transducer network
N is called globally recursion-free if there are no cycles in
the positive message dependency graph of N , which is the
graph having as vertices the (shared) message relations of
N and there is an edge from relation R to relation S if S
occurs positively in the body of a rule with head predicate
R in some transducer of N .

Lastly, transducer network N is called simple if

• all transducers of N are simple; and,

• N is globally recursion-free.

2.6 Consistency and Confluence
We formalize the different interpretations of correctness

that we have mentioned in the introduction: consistency and
confluence. Let N = (N ,Υ,Π) be a transducer network.

We call N consistent if for each input H, for any two infi-
nite fair runs R1 and R2 on H, we have out(R1) = out(R2).
The opposite of consistency is inconsistency.

We call N confluent if for each input H, for any two finite
runs R1 and R2 on H, if there is a node x ∈ N and a fact
f ∈ out(R1)(x) then we can extend R2 to a finite run R′2
such that f ∈ out(R′2)(x). The opposite of confluence is
diffluence.

6This appears to be a natural constraint because message
delivery is asynchronous: typically, it seems that one would
make sure that every message of interest has arrived before
applying negation (amounting to negation on a memory re-
lation instead).
7Intuitively, focusing on the positive dependency graph will
limit the length of the derivation history of each output,
memory, and message fact. For messages we also enforce
this globally; see below.

3. EXAMPLE PROGRAMS
We give two examples of simple transducer networks.

Example 3.1. We give an inconsistent simple transducer
network. We have a single node x, for which the transducer
schema Υ is as follows: Υin = {R(1), S(1)}, Υout = {T (1)},
Υmsg = {A(1)

msg, B
(1)
msg}, and Υmem = ∅.8 The transducer

rules at x are as follows:

Amsg(n, u)← R(u), Id(n).

Bmsg(n, u)← S(u), Id(n).

T (u)← Amsg(u), Bmsg(u).

This single-node simple transducer network is confluent,
but not consistent. Indeed, some infinite fair runs might
jointly deliver Amsg- and Bmsg-facts, whereas other infinite
fair runs might not. �

Example 3.2. We give a consistent simple transducer net-
work. We have three nodes x, y, and z. The input schemas
at x and y consist respectively of a single relation R(1) and
a single relation S(1). Node z has an output relation T (1).

The shared message relations are A
(1)
msg and B

(1)
msg.

We give x the following sending rule:

Amsg(n, u)← R(u), All(n).

We give y the following sending rule:

Bmsg(n, u)← Amsg(u), S(u), All(n).

Lastly, we give z the following output rule:

T (u)← Bmsg(u).

Note that this simple transducer network is consistent: if
R and S are nonempty at respectively node x and y, and R
and S share a value a, then in each run, x will send Amsg(a)
to (at least) y, and y will subsequently send Bmsg(a) to (at
least) z, and z outputs T (a). �

We note that the syntactical presence of message joins by
itself is not sufficient to cause inconsistency: rules with a
message join might have no satisfiable valuation on any in-
put, hence, have no effect on the computation. Moreover,
even in the absence of message joins, inconsistency (and dif-
fluence) can arise [6, 7]: for example, we can output received
message-facts of a first type as long as a certain memory fact
is absent, but the memory fact is created upon receiving a
message-fact of a second type; so, depending on the rela-
tive delivery orders of these two message types, some finite
runs can not be extended anymore to produce the outputs
of other runs.

4. CONSISTENCY DECIDABILITY
We recall the following result:

Proposition 4.1. ([6, 7]) Deciding diffluence for simple
transducer networks is NEXPTIME-complete.

One of the difficulties of the diffluence decision problem is
that a property of an infinite state system needs to be veri-
fied. Indeed, there are infinitely many inputs and even for a

8Recall that always Υsys = {Id (1),All (1)}.
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fixed input there are infinitely many configurations because
message buffers have no size limit. Naturally, these difficul-
ties are carried over when we want to decide (in)consistency.
The main contribution of the current paper is that the fol-
lowing decidability result also holds:

Theorem 4.2. Deciding inconsistency for simple trans-
ducer networks is NEXPTIME-complete.

The NEXPTIME lower bound is briefly discussed in Sec-
tion 4.1. The next subsections will sketch the essential
proof ideas of the upper bound: Section 4.2 discusses a
small model property, and, Section 4.3 gives the concrete
NEXPTIME decision procedure with correctness proof. The
major technically difficult result of our paper is Claim 4.4,
discussed in Section 4.3.2.

4.1 Lower Bound
The NEXPTIME lower bound follows from the construction

already provided in [6, 7], of which we repeat the main idea.
Each problem A from NEXPTIME is reduced to the incon-
sistency decision problem. Concretely, fixing a NEXPTIME

Turing machine M for A, for each input string w, we trans-
form w into a simple single-node transducer network N that
checks whether its own input describes an accepting trace of
M on w. If so, the single node sends the message accept( ) to
itself. Next, when accept( ) is received, N does something
inconsistent, as in Example 3.1.

4.2 Small Model Property
The small model property of [6, 7], for simple transducer

networks with only one node, can be generalized to simple
transducer networks with multiple nodes and infinite fair
runs.9 This is formalized next.

Let N = (N ,Υ,Π) be a simple transducer network, where
|N | ≥ 1. Suppose N is inconsistent. We show that N is
inconsistent on an input instance over inN whose active do-
main size is bounded by an expression over the syntactical
properties of N . For this purpose, consider the following
syntactically defined quantities about N :

• the length P of the longest path in the positive mes-
sage dependency graph of N (defined in Section 2.5.3),
where the length of a path is measured here as the
number of vertices on this path;

• the largest number B of positive body atoms in any
rule, over all transducers;

• the largest arity I among input relations, over all trans-
ducers;

• the largest arity O among output relations, over all
transducers;

• the number C of different output and memory facts
that can be made with values in A, where A ⊆ dom is
an arbitrary set with |A| = O, and output and memory
relations are taken over all transducers.

9This generalization is technically more convenient for the
current paper, whereas the previous decidability result [6, 7]
used a simulation of a multi-node network on a single-node
network.

We write |N | to denote the size of a reasonable encoding of
N .10 Note that all quantities except C are linear in |N |.
Also, C ≤ kOa, where k is the total number of output and
memory relations in N and a is the largest arity among
output and memory relations. We define sizeDom(N ) =

2ICB
(P+2). Note that both C and sizeDom(N ) are single-

exponential in |N |.
We have the following small model property:

Lemma 4.3. If N is inconsistent, then N is inconsistent
on an input J over inN for which |adom(J)| ≤ sizeDom(N ).

The proof is based on a straightforward extension of the
technique in [6, 7].

4.3 Decision Procedure
Let N = (N ,Υ,Π) be a simple transducer network. In

this section, we provide a NEXPTIME procedure to decide if
N is inconsistent. Concretely, this procedure will accept on
at least one computation branch if and only if N is incon-
sistent.

We first define auxiliary expressions over syntactical prop-
erties of N . Let P, B, C, and sizeDom(N ) be as defined in
Section 4.2. We define numMsg = |N | · r · sizeDom(N )a,
where r is the number of message relations and a is the
largest message arity; this is an upper bound on the num-
ber of messages that a node can send during each tran-
sition when an input distributed database instance H is
given with |adom(H)| = sizeDom(N ).11 We also define

runLen = CB
(P+1)numMsgP. Note that both numMsg

and runLen are single-exponential in |N |.
We also need some additional terminology. Letting C ⊆

dom, we call a fact f a C-fact if adom(f) ⊆ C.
The decision procedure does the following steps:

1. Guess an input instance H over inN that satisfies
|adom(H)| ≤ sizeDom(N ).

2. Guess two finite runs S1 and S2 of N on H, that do
at most runLen transitions.

3. Choose a focus node x ∈ N and an output fact f such
that f ∈ out(S1)(x) and f /∈ out(S2)(x). Reject if no
such node and fact can be chosen.

4. We extend S2 with P + 1 rounds as follows. In each
round, do the following for each node y: do one heart-
beat, and, letting b denote the buffer of y at the begin-
ning of the round, deliver to y all unique messages in b
one after the other, jointly delivered with their dupli-
cates in b (if any). To rephrase, different messages are
never delivered simultaneously (see also Section 4.3.3).

5. Letting C = adom(f), accept if no new output or
memory C-fact is created at x in the above extension
of S2.12 Otherwise reject.

10For example, N can be encoded as a sequence of nodes,
transducer schemas, and transducers whose rules are writ-
ten in full; and, where all input and output relations of a
transducer schema are effectively used in the rules of the
corresponding transducer [7].

11In the expression of numMsg, the number of addressees
is represented by |N |.

12In particular, note that f was not created in the extension.
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We remark that the overall procedure can be implemented
in nondeterministic procedural code, so that each computa-
tion branch takes single-exponential time. We give the cor-
rectness proof in Sections 4.3.1 and 4.3.2. In Section 4.3.3,
we highlight some important differences between the design
of the inconsistency decision procedure of the current pa-
per and the diffluence decision procedure of our previous
work [6, 7].

4.3.1 Correctness 1
We start with the technically simplest direction: suppose

that the procedure accepts. We show that N is inconsistent.
We first observe what happened on an accepting computa-

tion branch of the procedure on N . To start, the procedure
has guessed an input H over inN . Next, it has guessed
two finite runs S1 and S2 of N on H such that there is
a node x ∈ N and a fact f that satisfy f ∈ out(S1)(x)
and f /∈ out(S2)(x). Denote C = adom(f). Lastly, the
procedure has extended S2 with P + 1 rounds, of the form
described in the decision procedure, to obtain a finite run S ′2.
The procedure has observed that no new output or memory
C-facts were created at x in S ′2 after S2.

We use the guessed finite runs to show that N is incon-
sistent on H. Note that S1 can surely be extended to an
infinite fair run R1 of N on H, in which f is thus output
at x. Next, let R2 denote an extension of S ′2 obtained by
doing an infinite number of rounds of the form described
in the procedure. Run R2 is fair because in each round,
all nodes become active at least once, and all messages at
the beginning of the round are delivered. We show that f
is never created at x during R2, demonstrating that N is
indeed inconsistent. We show more concretely that x pro-
duces no new output or memory C-facts in R2 after S ′2.
Hence, using the above observation of the decision proce-
dure, f /∈ out(R2)(x).

Towards a contradiction, suppose that x produces a new
output or memory C-fact g during some transition k in R2

after S ′2, by means of a derivation pair (ϕ, V ) (defined in
Section 2.3). We assume that g is the first new C-fact that x
creates after S ′2. We show that (ϕ, V ) also (newly) derives g
during some transition of x in S ′2 after S2, which contradicts
the above observation of the decision procedure.

We consider the body literals of ϕ in turn, and argue that
they are satisfied under valuation V during some transition
of x in S ′2 after S2. First, because S ′2 and R2 operate on
the same network and the same input, the system and input
literals of ϕ are satisfied under V during every transition
of x in S ′2 after S2. In those transitions, the output and
memory literals of ϕ are also satisfied under V because they
refer to C-facts by message-boundedness (g is a C-fact), and
those transitions see exactly the same output and memory
C-facts as transition k of R2: we use the above observation
of the decision procedure and the assumption that g is the
first new C-fact at x in R2 after S ′2.

We are left to show that any messages needed by (ϕ, V )
are delivered to x in some round of S ′2 after S2, which, com-
bined with the argumentation for the other body literals
above, gives rise to a particular transition of x during which
all body literals of ϕ are satisfied under V . Recall that mes-
sage literals in ϕ are positive because N is simple. Moreover,
(ϕ, V ) can require at most one message by design of R2. If
no message is required, (ϕ, V ) will already derive g in the
very first round of S ′2. If (ϕ, V ) requires one message h to be

delivered, then, starting at transition k of R2, we can follow
the derivation history of h backwards, and collect derivation
pairs for recursively needed messages (if any). We stop go-
ing backward when we encounter a needed message that does
not require other messages, or when we encounter a needed
message delivered to a node z of which a copy also occurs
in the last buffer of z in S2. This second condition causes
us to stop tracing the derivation history (the latest) when
we reach the tail of S2. Hence, each encountered message
in the derivation history requires at most one other message
by design of the rounds after S2, i.e., the derivation history
of h is a chain. This backward chain is of length at most
P by recursion-freeness. Next, using that sending rules are
message-positive and static, we can show by forward induc-
tion on this derivation history that h is delivered to x the
latest in round P + 1 of S ′2; this induction starts at the first
round of S ′2 after S2.

4.3.2 Correctness 2
Let N be as above. Suppose N is inconsistent. We go

sequentially over the steps of the decision procedure, and
show that at least one computation branch accepts.

Step 1.
By the small model property (Lemma 4.3), there is an

input H over inN with |adom(H)| ≤ sizeDom(N ) on which
N is inconsistent: there are two infinite fair runs R1 and
R2 of N on H such that there is a node x ∈ N and a fact
f that satisfy f ∈ out(R1)(x) and f /∈ out(R2)(x). Denote
C = adom(f).

The procedure can guess an instance isomorphic to H,
but for technical simplicity we assume that the procedure
guesses exactly H.

Step 2.
Next, we guess two finite runs of at most runLen transi-

tions. First, for an infinite fair run R, we define the function
finR that maps each node y ∈ N to the set of message facts
g for which there are only a finite number of transitions in
R during which g is sent to y. We call finR(y) the finite
messages of y during R. Also, for a multiset m and a set A,
we write m|A to denote the multiset m′ containing all ele-
ments of m that also occur in A, with the same cardinalities
they had in m.

Letting x and C be as above, consider the following claim:

Claim 4.4. Let R be an infinite fair run of N on H. For
every finite prefix R′ of R, there exists a finite run S of N
on H, such that

• S does at most runLen transitions;

• s1(x) and s2(x) contain the same output and memory
C-facts, where s1(x) and s2(x) are the states of x at
the end of respectively S and R′; and,

• for each y ∈ N , abbreviating Fy = finR(y), we have
that b1(y)|Fy is contained in b2(y)|Fy , where b1(y) and
b2(y) are the message buffers of y at the end of respec-
tively S and R′.

Proof. We sketch the proof. The first condition of the
claim is an effect of the way we construct S to satisfy the
other two conditions. The main idea in this construction is
as follows.
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To satisfy the condition on output and memory C-facts
at x, we first collect the derivation history of messages in
R′ that are needed to create the output and memory C-
facts of x during R′: we “mark” the transitions in which
the needed messages are sent, and what derivation pairs
they use. Messages might recursively depend on each other,
and their derivation history may span multiple nodes. By
recursion-freeness, at most CB

(P+1) transitions are marked
in this way. If we only had to satisfy the condition on C-
facts, we could execute these marked transitions and deliver
just the needed messages. But, the claim also demands an
additional condition on finite messages.

To satisfy the condition on finite messages, we continu-
ously detect the sending of finite messages that accidentally
originate in the marked transitions as a side-effect of gener-
ating the needed messages; and, we deliver these accidental
messages in additional transitions, to imitate the way that
R′ delivers them. Each of those marked transitions from
above can send at most numMsg finite messages, each of
which might require its own additional delivery transition,
in each of which again at most numMsg finite messages are
sent, etc. We can show that at most numMsgP additional
delivery transitions should be provided for each of the indi-
vidual CB

(P+1) marked transitions. In total, S contains at
most runLen transitions. �

Let R1 and R2 be as above. For i ∈ {1, 2}, letting Ai

denote the set of all output and memory C-facts created at
x during the entire run Ri, let R′i be a prefix of Ri that
already creates all of Ai at x.13 Next, for i ∈ {1, 2}, let Si
be a finite run corresponding to R′i as implied by Claim 4.4.
Note that each Si does at most runLen transitions, so the
procedure can guess them.

Step 3.
For i ∈ {1, 2}, by Claim 4.4, run Si creates precisely

the same output and memory C-facts at x as in R′i, and
by extension Ri. Hence, letting f be as above, we have
f ∈ out(S1)(x) and f /∈ out(S2)(x). So, the procedure can
choose node x and fact f to focus on in step 3.

Steps 4 and 5.
Let S ′2 be an extension of S2 as performed by the rounds of

step 4. We show that no new output or memory C-facts are
created at x in this extension after S2, causing the procedure
to accept, as desired.

Towards a proof by contradiction, suppose that a new
output or memory C-fact g is created at x, during some
new transition k in S ′2, by means of a derivation pair (ϕ, V ).
We assume that g is the first newly created C-fact at x in
the extension. We show that V is also satisfying for ϕ during
a transition of x in the suffix of R2, i.e., after R′2, causing g
to be derived there as well, which is impossible by choice of
the prefix R′2.

First, we show there is a transition j of x in the suffix ofR2

in which the messages required by (ϕ, V ) are delivered. By
construction of transition k, the pair (ϕ, V ) actually requires
at most one message. If no message is required, transition j
can be any transition of x in the suffix of R2, which surely
exists by fairness of R2. And if (ϕ, V ) requires a message

13In each infinite fair run, the output and memory C-facts
of x are always created in a finite prefix, because there are
only a finite number of facts that can be created.

h to be delivered, Claim 4.5 (below) also guarantees the
existence of transition j.

We now show that (ϕ, V ) is satisfying during transition
j of R2, giving the contradiction mentioned above. First,
during j, the system and input literals of ϕ are satisfied un-
der V because S ′2 and R2 operate on the same network and
the same input. The messages required by (ϕ, V ) (at most
one) are delivered in transition j by choice of j. Next, any
output or memory facts positively required by (ϕ, V ), which
are C-facts by message-boundedness, must be in the last
configuration of S2 because g is by assumption the first new
C-fact created at x in the extension. Hence, by construction
of S2 (Claim 4.4), these facts are in the last configuration of
R′2, making them available during transition j. Lastly, any
output or memory facts whose absence is required by (ϕ, V ),
again C-facts by message-boundedness, must, by inflation-
arity, be absent from the last configuration of S2. So, again
by construction of S2, they are absent from the last con-
figuration of R′2. Now, using the assumption that no more
output and memory C-facts are created at x in R2 after R′2,
they are also absent during transition j.

Claim 4.5. For each y ∈ N , every message delivered to
y in the extension S ′2 after S2 is also delivered to y at least
once in the suffix of R2.

Proof. We show by induction on the rounds i of S ′2 that
whenever a message is delivered to a node y ∈ N in round i
then this message is also delivered to y at least once in the
suffix of R2.

For the first round, if a message g is delivered to a node
y, this message is in the last buffer of y in S2. If g is a
finite message of y during R2 then by construction of S2

(Claim 4.4), message g is also in the last buffer of y in R′2.
Hence, by fairness, g will be delivered to y in the suffix of
R2. If g is not a finite message, i.e., g is sent to y an infinite
number of times during R2, then again by fairness, g will
be delivered (infinitely often) in the suffix of R2.

For the inductive step, suppose we deliver a message g to
a node y in round i, with i ≥ 2. Because the buffer of y at
the beginning of round i−1 was completely delivered during
round i − 1, message g must have been sent during round
i− 1 by some node z, with possibly z = y. Let (ϕ, V ) be a
derivation pair that made z send g to y during round i− 1.
We show that V is also satisfying for ϕ in the suffix of R2,
making z also send g to y in this suffix, which, by fairness,
causes g to be delivered to y in the suffix.

Because S ′2 and R2 operate on the same network and the
same input, the system and input literals of ϕ are satisfied
under V during each transition of z in the suffix of R2, and
such transitions surely exist by fairness of R2. Now, by
construction of round i − 1, the pair (ϕ, V ) can require at
most one message. If no message is required, then z will
send g to y during each transition of z in the suffix of R2.
And if one message is required, this message was delivered
to z in round i− 1, and hence this message is delivered to z
in the suffix of R2 by applying the induction hypothesis. �

4.3.3 Comparison with Previous Work
We contrast the inconsistency decision procedure of the

current paper with the diffluence decision procedure in our
previous work [6, 7]. We first remark that if the diffluence
decision procedure has an accepting computation branch
then the input simple transducer network is also inconsis-
tent (because consistency implies confluence). Although the
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overall outline of the diffluence decision procedure is very
much like the inconsistency decision procedure of the cur-
rent paper, step 4 is substantially different: the rounds of the
diffluence decision procedure deliver all possible messages si-
multaneously, in effect providing all possible opportunities
to derive output facts. Intuitively, using the notations of
Section 4.3, if the output fact f is not created at x this
way, then no finite extension of S2 can do this either (giving
diffluence). However, the simultaneous delivery of all possi-
ble messages is an unsuitable strategy to detect inconsistent
simple transducer networks that are still confluent (like Ex-
ample 3.1): we have to look for infinite fair runs that avoid
creating f at x, even though any finite run can be finitely
extended to produce this fact (using some right message de-
liveries). For this reason, we have modified the diffluence
decision procedure to obtain the inconsistency decision pro-
cedure, as follows.

First, we have used the new design of rounds in step 4
of the procedure. In particular, within the setting of Sec-
tion 4.3.2, the rounds now only do necessary message deliv-
eries: the deliveries that will surely occur in the suffix of R2

after R′2. This property is formalized by Claim 4.5. Intu-
itively, because the suffix of R2 does not succeed in produc-
ing f at x, the newly designed rounds will not do this either
because they generate no additional opportunities to derive
f at x with respect to R2. Technically, this is achieved by
never delivering messages simultaneously, so that any newly
sent messages during the rounds also naturally arise in the
suffix of R2. But Claim 4.5 depends on appropriately han-
dling the so-called finite messages of R2, which are the mes-
sages that are only finitely often sent in R2. This issue does
not appear in the previous work because only finite runs
were considered there. Now, such finite messages are either
(accidentally) caused by jointly delivering at least two mes-
sages, or by delivering another finite message. It could be
that some opportunities to create f at x were wasted dur-
ing the prefix R′2 by delivering finite messages in the wrong
order or too soon. This has to be reflected in the last con-
figuration of S2, because otherwise the rounds of step 4 can
still use these finite messages to produce f at x. For this
reason, we have modified how the finite run S2 is constructed
from the prefix R′2, to specifically deal with finite messages
(Claim 4.4). This claim is the biggest technical challenge
with respect to the previous work.

Of course, the above modifications still have to ensure
that if the inconsistency decision procedure has an accepting
computation branch then the input simple transducer net-
work is really inconsistent. This is the direction discussed in
Section 4.3.1. To achieve this, the new design of the rounds
also guarantees that if we repeat the rounds forever then we
obtain an infinite fair run (that avoids creating the output f
at x). Indeed, during each round, each node becomes active
at least once and all messages at the beginning of the round
are delivered.

5. EXPRESSIVITY
Here we study the expressivity of consistent simple trans-

ducer networks under the infinite fair run semantics. First,
Section 5.1 formalizes the queries computed by (general)
transducer networks, for both the consistency and conflu-
ence semantics. Section 5.2 defines how UCQ¬ can directly
express distributed queries. The expressivity result is pre-
sented in Section 5.3, along with proofs for the upper and

lower bound.

5.1 Computing Distributed Queries
Let N = (N ,Υ,Π) be a transducer network, not neces-

sarily simple. Recall the distributed schemas inN and outN

from Section 2.5.
If N is consistent, we say that N computes the follow-

ing distributed query under the consistency semantics, with
input schema inN and output schema outN : an input H
over inN is mapped to the instance J over outN defined as
J = out(R), where R is an arbitrary infinite fair run of N
on H. This mapping is well-defined because N is consistent:
all runs of N on input H produce the same output.

If N is confluent, we say that N computes the following
distributed query under the confluence semantics [6, 7], also
with input schema inN and output schema outN : an input
H over inN is mapped to the instance J over outN where
J(x) for each x ∈ N is the union, over all finite runs of
N on H, of the output facts produced at x in those runs.
Note that when N is confluent, all finite runs on H can be
extended to obtain J .

5.2 Expressing with UCQ¬

To study the expressivity of simple transducer networks,
we formalize how a distributed query can be expressed di-
rectly in UCQ¬. First, for a distributed schema E = (N , η),
we define the ordinary database schema

〈E〉 = {x.R(k) | x ∈ N , R(k) ∈ η(x)}

∪ {x.Id (1) | x ∈ N} ∪ {node(1)}.

Intuitively, we write the node name in front of the local
relation names, and we provide relations to contain node
identifiers. Similarly, for an instance H over E , we define
the following ordinary instance over 〈E〉:

〈H〉 = {x.R(ā) | x ∈ N , R(ā) ∈ H(x)}
∪ {x.Id(x), node(x) | x ∈ N}.

Now, we say that a distributed query Q over input schema
E1 = (N , η1) and output schema E2 = (N , η2) is expressible

in UCQ¬ if for each x ∈ N and each R(k) ∈ η2(x), we can
give an UCQ¬ program Φx,R over input schema 〈E1〉 with

target relation R(k) such that for all instances H over E1 we
have

Q(H)(x)|R = Φx,R(〈H〉).

Intuitively, we give an UCQ¬ program to compute local out-
put relation R at node x. This program is given access to
all facts on the network, and all node identifiers.

5.3 Expressivity Result
Our previous work [6, 7] has shown that the expressivity of

confluent simple transducer networks, under the confluence
semantics, coincides with the distributed queries expressible
in UCQ¬. It is not obvious whether the expressivity would
remain unchanged when we replace confluence by consis-
tency, because, as remarked in the Introduction, confluence
might require message deliveries not provided by infinite fair
runs. But we can indeed confirm the following:

Theorem 5.1. Consistent simple transducer networks, un-
der the consistency semantics, capture the distributed queries
expressible in UCQ¬.
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For the upper bound, we can actually use the previously
mentioned confluence expressivity result, as will be explained
in Section 5.3.1. The lower bound requires a new technical
construction, demonstrated in Section 5.3.2.

5.3.1 Upper Bound
Let N = (N ,Υ,Π) be a consistent simple transducer

network, that expresses a distributed query Q under the
consistency semantics. We show that Q is expressible in
UCQ¬. It suffices to show that N is confluent and also
computes Q under the confluence semantics, because then
we can apply the previous result [6, 7] to know that Q is
expressible in UCQ¬.

To show that N is confluent, we formally repeat the in-
tuitive argument mentioned in the Introduction.14 Consider
an input H for N . Let R1 and R2 be two finite runs
of N on H. Suppose there is a node x ∈ N and a fact
f ∈ out(R1)(x). If R2 has not already output f at x, we
have to show that R2 can still be extended to do so. To
start, R1 and R2 can clearly be extended to infinite fair
runs, that we will denote as R′1 and R′2 respectively. Note
that f ∈ out(R′1)(x). Now, by consistency of N , fact f is
also produced at x in R′2, in some finite prefix. Hence, R2

can be finitely extended to output f at x.
Now we show that N computes Q under the confluence

semantics. Let H be an input for N . Let J be the output
of N on H under the confluence semantics. We show that
J = Q(H). Let x ∈ N .

• Let f ∈ Q(H)(x). By definition of Q(H), fact f is
produced at x in some arbitrary infinite fair run of N
on H. So, f is produced in some finite prefix of this
run. Hence, f ∈ J(x).

• Let f ∈ J(x). By definition of J , fact f is produced at
x in some finite run of N on H. This finite run can be
extended to an infinite fair run. By consistency of N ,
all infinite fair runs produce the same output. Hence,
f ∈ Q(H)(x).

5.3.2 Lower Bound
LetQ be a distributed query over input distributed schema
E1 = (N , η1) and output distributed schema E2 = (N , η2).
Suppose Q is expressible in UCQ¬. More concretely, for
some x ∈ N , suppose we have a rule ϕ over 〈E1〉 describing
(part of) a local output relation T in η2(x). Rule ϕ can be
written in the following canonical form:

T (u)← A, B, C, D, E

where

A = y1.R1(v1), . . . , ym.Rm(vm);

B = node(a1), . . . ,node(an);

C = ¬z1.S1(w1), . . . ,¬zp.Sp(wp);

D = ¬node(b1), . . . , ¬node(bq); and,

E denotes a sequence of nonequalities. Below, we describe
a transducer network N over N to produce at node x, in
its output relation T , the facts generated by ϕ. In N , we

14This argument works in general, i.e., also for the case that
N is not simple.

give each node x ∈ N its local input schema and local output
schema as prescribed by η1(x) and η2(x) respectively. There
will be no memory relations; we will only use sending rules
and output rules.

If the description of Q in UCQ¬ consists of multiple rules,
like more rules for output relation T at x, or rules to de-
scribe other output relations (also at other nodes), then the
construction below can be repeated and the partial trans-
ducer networks thus obtained can be united, as long as new
names are used for the auxiliary message relations, to avoid
unwanted name clashes.

Rules. For technical simplicity we assume that body parts
A, B, C, and D are nonempty; the construction can be
easily adapted to cases where one or more of these parts is
empty. The main idea is that the body literals of ϕ, except
those with predicate node, are sequentially evaluated on re-
spectively the nodes y1, . . ., ym, z1, . . ., zp. This sequential
behavior is obtained by chaining messages.

First, assuming some arbitrary total order on var, for each
i ∈ {1, . . . ,m}, we define ti to be an ordering of all unique
variables in {a1, . . . , an} united with all unique variables in
v1 up to and including vi. Note that tm contains all variables
of ϕ because all variables of ϕ occur in positive body atoms
(see Section 2.3).

We now add sending rules to our transducer network un-
der construction. We use the base name ‘x.T ’ for all message
relations to indicate that we are making messages for output
relation T at x.15 Each message is broadcasted, but only the
intended addressee will have a sending rule to appropriately
react. Let a ∈ var be a variable not yet used in ϕ. To start,
we put the following sending rule on node y1:

x.T+
1 (a, t1)← B′, R1(v1), All(a),

where B′ is B but now with relation node replaced by re-
lation All . The symbol ‘+’ in the head indicates that we
are evaluating the positive body literals of ϕ. Next, for
i = 2, . . . ,m, we put the following sending rule on node yi:

x.T+
i (a, ti)← x.T+

i−1(ti−1), Ri(vi), All(a).

Note that the set of head variables grows monotonously with
each new sending rule, and all variables of ϕ are present in
the head of the rule for relation x.T+

m .
Next, we will evaluate the negative literals of ϕ in a dis-

tributed fashion. To start, we put the following sending on
node z1:

x.T−1 (a, tm)← x.T+
m(tm), D′, ¬S1(w1), All(a),

where D′ is D but now with relation node replaced by rela-
tion All . Next, for i = 2, . . . , p, we put the following sending
rule on node zi:

x.T−i (a, tm)← x.T−i−1(tm), ¬Si(wi), All(a).

Lastly, we put the following output rule on node x:

T (u)← x.T−p (tm), E.

In this last rule, we check all nonequalities and we project
variables in the same way as ϕ.

15Any auxiliary message relations we use are assumed to be
added to the transducer schemas of the nodes.
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Discussion. It can be verified that all the above sending
rules are message-positive and static. The output rule is
message-positive and message-bounded. The transducers
are inflationary because there are no memory relations. More-
over, because of the message chain, the transducers of N are
locally recursion-free and the entire network is also globally
recursion-free. We conclude that N is simple.

Lastly, N is consistent: on every input H over inN , if the
original rule ϕ has a satisfying valuation V on 〈H〉, fairness
will allow the corresponding chain of messages to execute
successfully in every run on H because the chain does not
require the simultaneous delivery of messages.

6. CONCLUSION
Our previous work [6, 7] presented decidability of conflu-

ence for simple transducer networks. But consistency, as for-
malized here with infinite fair runs, might be preferred over
confluence: a distributed system should already work cor-
rectly when only the basic fairness conditions are satisfied,
instead of waiting for specially arranged message deliveries
as is allowed in confluence. The current paper complements
the previous result, by showing decidability of consistency
for simple transducer networks. Moreover, the expressivity
of simple transducer networks under both correctness no-
tions turns out to be the same.

In further work, one could try to relax some of the syn-
tactic restrictions of simple transducer networks, for both
confluence and consistency. We might speculate that, be-
cause deciding confluence and deciding consistency have the
same complexity for simple transducer networks, and yet
consistency appears to be a stronger condition, it might be
possible to more easily relax the syntactic restrictions for
the confluence case.

One might also investigate in more detail how consistency
and confluence relate. As already mentioned in the Intro-
duction, consistency implies confluence. But there are ex-
amples of confluent programs that are not consistent. For
such examples, typically the program is confluent because
there exists some right order of message deliveries to achieve
the output, and this order does not always occur in infinite
fair computation traces. However, by gradually increasing
the “fairness” assumptions, possibly these message deliveries
will start to occur in every infinite fair computation trace.
For instance, an additional fairness assumption could be that
whenever two messages occur infinitely often together in the
message buffer of a node then they are infinitely often deliv-
ered simultaneously to that node. Under this assumption,
the example from the Introduction that is confluent but not
consistent no longer holds. Yet, this assumption still allows
for other examples that are confluent but not consistent.16

One might try to increase the fairness assumptions to a point
where confluence implies consistency, or prove that this will
never be possible. Perhaps simple relational transducer net-
works could provide an initial setting.

A pragmatic lesson also seems possible. When we com-
bine the previous work [6, 7] with the current, we might
have a concrete indication that automatically deciding the
correctness of a distributed system is not a useful strategy

16Indeed, this time the program could require that a message
B is delivered immediately after a message A is delivered,
and this program only sends B when A is delivered (so A
and B do not occur together in the message buffer).

in practice. Indeed, it seems we have to severely restrict ex-
pressivity to obtain decidability, and yet the time complexity
remains prohibitively high. What might be more promising
though, is achieving correctness through practical mecha-
nisms and protocols [22, 23, 10, 13], design guidelines [12],
and insights about monotonicity [18, 4, 27, 5].
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