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ABSTRACT
In this paper, we consider complex pattern matching over event
data generated from error-prone sources such as low-cost wireless
motes, RFID. Such data are often imprecise in both their values
and their timestamps. While there are existing works addressing
the problem of spatial uncertainty (i.e. the uncertainty of the data
values), relatively little attention has been paid to the problem of
temporal uncertainty (i.e. the uncertainty of the event timestamps).
As a step to fill this gap, we formulate the problem of matching
complex sequence patterns over time-series data with temporal un-
certainty and propose a new indexing structure to organize the in-
formation of the uncertain sequences and a set of efficient pattern
query processing algorithms. We conduct an extensive experimen-
tal study on both synthetic and real datasets. The results indicate
that the query processing algorithms based on our index structure
can dramatically improve the query performance.

1. INTRODUCTION
Many emerging applications need to detect complex patterns over

event data. Examples include supply chain management [27], track-
ing in libraries [23], environmental monitoring [8], business process
management [16], suspicious behavior monitoring [20] and health-
care [15, 7]. In these applications, the input event data are often
generated from various devices, such as wireless motes and RFID
(Radio Frequency Identification) readers. Generally, an input event
can be represented as a triplet: (event_id, time, attr_values),
where time is the time when the event is detected and attr_values
is a set of attribute values associated with the event. Consider an
RFID deployment system inside an office building, the fundamen-
tal attribute of an event is the location of a person or an object over
time. An event data output by the RFID system could contain sev-
eral attributes and a timestamp as: (‘Allen’,‘Room 401’, 10:05),
which means that the person named Allen enters into Room 401
at 10:05. A typical pattern query would look for a certain inter-
esting sequence of events. An example query could look for an
event (‘Allen’, ‘Room 401’, . . . ) followed by another event (‘Allen’,
‘Room 402’, . . . ).

A major challenge of this problem is that the data sources in
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the above applications are error-prone and hence the input data of
the pattern queries are often imprecise. First, the locations of ob-
jects may be imprecise due to various reasons [19, 26], including
conflicting readings and missed readings. For instances, a person
is detected by two or more near-by sensors at the same time or
RFID readers may not be able to detect all tags when there are
too many tags in their vicinity. Second, events’ occurrence time
can be uncertain due to clock errors of RFID readers, granularity
mismatch or clock synchronization problem among distributed sen-
sors/systems. In such cases, the actual occurrence time of the events
is unknown and can only be estimated as a time range with high
probability [31].

Most existing work on probabilistic query processing over un-
certain data mainly focused on data’s spatial uncertainty [19, 26].
However, the temporal uncertainty in event data brings great chal-
lenges, especially for sequence pattern queries which assume a total
ordering of the input event data. For example, suppose we have two
events: e1 with e1.TI = [1, 3] and e2 with e2.TI = [2, 4], where
TI denotes the range of possible occurrence time of an event. Here
there are two possible occurrence orders of e1 and e2, which adds
additional complexity for matching sequence patterns.

Temporal uncertainty of event data is studied in [31], where the
occurrence time of events are assumed to be independent. However,
in reality, this assumption often cannot hold. For example, in the
above RFID application, consider two events corresponding to the
same person and with different locations. As it is impossible for one
person to be at two different places at the same time, the occurrence
times of the two events are not independent. Especially when the
time intervals of these events overlap, one has to carefully deduce
their possible occurrence time.

This paper can be considered a complimentary work to the ex-
isting techniques for handling spatial uncertainty. In summary, our
contributions include the following:

• We formulate the problem of sequence pattern matching over
event data with spatial and temporal uncertainty. In particu-
lar, we formally define a data model of event sequences with
both spatial and temporal uncertainty and the semantics of
pattern matching queries. In our data model, events are par-
titioned into a number of dependency groups according to
their temporal dependencies. Basically, events from the same
group have temporal dependency, while events from different
groups are temporally independent.

• To speed up the query processing, we propose an index struc-
ture to organize and index event data. In the index, the tem-
poral dependency relationship of events are captured by a set
of integer codes, based on which the ordering of events in
the same dependency groups can be deduced efficiently. Fur-
thermore, a multidimensional index is used to index all the
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attributes and time intervals of the events.

• Based on the above index structure, we develop algorithms to
efficiently extract patterns from the event data. The algorithm
is able to optimize the evaluation order of the sequence pat-
tern and utilize the index structure to minimize the number of
I/O access.

• We perform an extensive experimental study with both syn-
thetic and real datasets to evaluate our proposed approach.
The results indicate that both the index construction algo-
rithm and the query processing algorithms are efficient and
scale well in terms of query response time and I/O cost.

The rest of the paper is organized as follows. Section 2 reviews
the related work and Section 3 formulates the problem by formally
defining the data and query models. Section 4 describes our in-
dexing scheme. Section 5 presents the details of the algorithms for
processing pattern matching queries. Section 6 reports the experi-
ments study and the paper is concluded in Section 7.

2. RELATED WORK

2.1 Event processing over event streams
Complex event processing (CEP) over event streams has been

studied in several recent works [4, 5, 11, 14, 28, 29, 31]. These
works focused on extracting sequence patterns from event streams.
However, most of these existing works considered only event se-
quence with precise attribute values. Some of them [5, 11, 28] use
time interval to represent the duration time of each event, however
the duration time is considered precise and events are still given a
strict partial order.

There are also some recent efforts that addressed out-of-order
streams, where events do not arrive in the order of their occurrence
times [22, 24]. In these papers, the timestamps of events are precise,
so the ordering of the events are still deterministic.

In [19], Christopher et al. process event queries on event streams
with uncertain attribute values with precise timestamps. Zhang et
al. [31] addressed complex event processing over event streams
with imprecise timestamps. In [31], a time interval is used to bound
the occurrence time of each event and the timestamps of different
events are assumed to be independent of each other. In other words,
any two events are allowed to happen at the same time instance. As
discussed earlier in Section 1, this is not reasonable in many real
applications. On the contrary, we consider the situations that some
events have temporal dependencies. This subtle difference brings
significant challenges to the searching of possible orders of events
and the computation of the corresponding probabilities. In addition,
the approach in [31] assumes attribute values are precise, while our
work does not make such assumptions.

In addition, most of the above papers focused on real-time event
streams, where event processing is often constraint within a rela-
tively short time window. Our paper considers archived event data.
In particular, we address the challenges of pre-processing and in-
dexing event data in order to improve query performance.

2.2 Query processing on time series data
The problem of finding patterns in a time series database has been

well studied [9, 13, 17, 18]. However these works were not pro-
posed in the context of event processing and none of them considers
temporal uncertainty of time series data.

More recently, more attention has been paid to uncertain time
series, trajectories and data streams. Most of these works addressed
either probabilistic range queries [25, 32] or probabilistic similarity

queries [6, 21, 30]. In other words, they mostly focused on the
uncertainty of attribute values of the data events.

2.3 Probabilistic temporal databases
Dyreson and Snodgrass are among the first to introduce the valid-

time indeterminacy in temporal databases [12]. They proposed the
concept of indeterminate instant, which is known to be located some
time within a set of time points. Furthermore Dekhtyar et al. [10]
proposed probabilistic temporal databases and capture uncertainties
in both valid time and attribute values. However, both of the above
works only considered a single “select-from-where” block, while
pattern queries in our context are more complicated [31] and hence
their techniques cannot be readily employed.

3. PRELIMINARIES

3.1 Data Model
Basically, an uncertain event comprises of following informa-

tion:

• ID is a unique identifier of e.

• A unique tag indicates the object of the event, where tag be-
longs to a discrete categorical domain D = {TAG1, TAG2,
. . . }.

• A time interval, TI = [TI−, TI+] (TI ∈ T ), that bounds all
the possible occurrence times of that event. As in most ex-
isting temporal data model, we assume the event sequence
has a discrete and totally ordered time domain T , containing
instants numbered as 1, 2, . . . .

• A set of attributes that describes the event. The values of
these attributes could be imprecise. Without loss of general-
ity, we represent each attribute of an event as a value range
R = [R−, R+], associated with a probability density func-
tion pdf of the possible values in R.

Take an RFID deployment in an office building for example, an
event e0 records the current location of a person TAG0. The location
can be represented by two attributes x and y. TI0 stands for an
uncertain time interval, in which TAG0’s location was recorded.

We assume an event’s spatial and temporal uncertainty to be in-
dependent, as their causes are often different. In this way, the spatial
and temporal uncertainty of a sequence of events can be analyzed
independently and easily combined to produce the actual probabil-
ity of the occurrence of a sequence pattern.

3.1.1 Semantics of Possible Worlds
Given a set of events S = {e1, . . . , en}, each combination of

the possible occurrence time gives rise to an instance, also called
a possible world. Each instance assigns a specific timestamp ts to
each event ei, where ts ∈ ei.TI. All these instances comprise the
possible worlds of S.

As we claimed in Section 1, events cannot be simply viewed as
temporally independent. Take the RFID application as an example,
we have the following two dependencies: (1) it is impossible that
one person appeared at two different locations simultaneously; (2)
a person cannot be instantly transported between two faraway loca-
tions. Apparently, both dependencies relate to the occurrence time
of events and we call them temporal dependencies.

To model such dependencies, we propose a concept called de-
pendency group and assume that two events belonging to different
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groups are temporally independent. Consequently, an event set S
can be partitioned into different dependency subsets:

S = S1 ⊕ S2 ⊕ · · · ⊕ Sm (1)

where Sk is a subset of S and events within Sk compose a depen-
dency group Gk. ⊕ is an operator to combine two event subsets
into a single event set.

In order to handle the dependencies, we enforce that each in-
stance of S satisfies the following two conditions: for every pair of
events from Sk, denoted as (e1, tag1,[t1, t2], x1, y1) and (e2, tag2,
[t3, t4],x2, y2) respectively,

Condition 1. e1.ts 6= e2.ts; and

Condition 2. f(x1, y1, ts1, x2, y2, ts2) ∝ θ.

Condition 1 prohibits events belonging to one dependency group
occur at the same time. Condition 2 is a generalization of depen-
dency (2), where f(x1, y1, ts1, x2, y2, ts2) is a user-defined func-
tion and θ is a user specified value. For instance, assuming that
tag1 = tag2, (x, y) represents the location of a person, and θ rep-
resents the maximum moving speed of a person. Suppose

f(x1, y1, ts1, x2, y2, ts2) =

√
(x1 − x2)2 + (y1 − y2)2

|e1.ts− e2.ts|
,

where
√

(x1 − x2)2 + (y1 − y2)2 is the Euclidean distance be-
tween (x1, y1) and (x2, y2). Then the second condition can guar-
antee that each instance of S obeys the second dependency.

3.1.2 Order Instances
According to our model, as shown in equation (1), an event set

consists of several dependency groups. To simplify our discussion,
we just describe the processing of one dependency group Sk, and
all results can be generalized to multiple dependency groups. Ap-
parently, a possible world of Sk that satisfies Condition 1 actually
assigns a total ordering to the events in Sk. We call such a possible
world an order instance, denoted as OI . In other words, an order
instance of Sk assigns a distinct timestamp to each event according
to Condition 1 and hence defines a precedence relation over all the
events in Sk.

Table 1 shows an example of the possible timestamps of events
belonging to Sk. There are 720 possible combinations of the times-
tamps in total, but only 10 are order instances, as listed in Table 2.
Therefore, the order instances are a subset of the possible worlds.
In other words, the actual possible timestamps of an event may be
only a subset of e.TI. Take e1 in Table 2 for instance, e1 can only
occur at timestamp 1 in Sk’s order instances, even though 2 and 3
could be possible timestamps.

Table 1: An example event sequence Sk
Time 1 2 3 4 5 6 7
e1 ? ? ?
e2 ? ?
e3 ? ?
e4 ? ? ? ? ?
e5 ? ? ?
e6 ? ?
e7 ? ?

3.2 Pattern Queries
A pattern query consists of a pattern structure, a time window

and a confidence constraint.
Pattern Item. A pattern structure is defined by a sequence of

pattern items, where each pattern item is defined by several predi-
cates over the specific event attributes. Let E = {E1, E2, . . . } be

Table 2: All order instances of Sk
Time 1 2 3 4 5 6 7
OI1 e1 e2 e3 e4 e5 e6 e7
OI2 e1 e2 e3 e4 e6 e5 e7
OI3 e1 e2 e3 e5 e4 e6 e7
OI4 e1 e2 e3 e5 e6 e4 e7
OI5 e1 e2 e3 e5 e6 e7 e4
OI6 e1 e3 e2 e4 e5 e6 e7
OI7 e1 e3 e2 e4 e6 e5 e7
OI8 e1 e3 e2 e5 e4 e6 e7
OI9 e1 e3 e2 e5 e6 e4 e7
OI10 e1 e3 e2 e5 e6 e7 e4

a set of pattern items appearing in the pattern structure. Given an
event e, ematches a pattern itemEi iff the attributes of e satisfy the
predicates of item Ei.

Each predicate can be modeled as a value range of a particu-
lar event attribute. Hence a pattern item Ei can be represented as
an aggregated value range over all the event attributes, denoted by
Rattr .

Furthermore, since each attribute associates with a probability
distribution function (PDF), we can only assert that e matches Ei
with a probability, denoted as Pr(Ei|e).

Pattern Structure. A pattern structure defines a sequence of
pattern items occurring in a sequential order. A primitive pattern P
contains only one pattern item. A composite pattern is composed
by one or more primitive patterns with the following operators:

• Sequence operator: seq. This is a binary operator. The con-
catenation of two sequences S1 and S2 matches seq(P1,P2)
iff S1 and S2 match P1 and P2, respectively, and all the events
in S2 occur after those in S1.

• Negation: ¬. A possible sequence S matches ¬P, iff there is
no subsequence of S that matches P.

Constraints. A pattern query associates with two constraints,
i.e. a time constraint L and a confidence Θ. The time constraint
requires that all matched events should occur within a time inter-
val with length L. Furthermore, the confidence constraint Θ is a
value within (0, 1]. The confidence of a match is the sum of the
probabilities of all matched instances in the possible worlds. All
matches with confidence less than Θ will be eliminated from the
query results.

4. INDEX STRUCTURE
An straightforward way to process a pattern query over an event

sequence is to enumerate the possible worlds and then find out the
matched instances by exhaustive search. However, the cost of such
a method is prohibitive since the cardinality of the possible worlds
is usually huge.

To speed up the processing of pattern queries, we propose an
index structure to enumerate all possible instances in this section.
The index is essentially a prefix tree, where each node represents
an event in S and each path from the root to a leaf node is an order
instance of S. One can perform pattern matching by searching the
pattern within the index.

Unfortunately, the size of such an index is too large to perform
an efficient pattern matching, which requires a traversal of poten-
tially many paths. We proposed a strategy to reduce its redundan-
cies. However, the optimized index structure could still be very
large. Thus, we introduce an encoding scheme to improve the per-
formance, where each tree node will be labeled with a unique code
based on the topology structure of the index. Thereafter, pattern
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matching can be performed efficiently by using the codes rather
than by traversing the tree structure.

4.1 OI-tree
As discussed earlier, one major challenge of the problem is the

temporal dependency of the events in each dependency group. To
facilitate the analysis of the possible worlds, we build an OI-tree
(Order Instance Tree) for each dependency group to capture the
possible orderings of the events in the group. Subsequently, we
use the notion T to denote an OI-tree and Sk to denote the set of
events belonging to the kth dependency group.

4.1.1 The Single-Tree Index
Our first method, called single-tree index, organizes all the or-

der instances of an event group Sk into one single OI-tree. Each
node in the tree corresponds to one or more possible instances of
an event (e) within Sk and each path from the root node to a leaf
node represents one order instance of Sk. Note that a virtual node,
i.e. a node without any corresponding event, is used here as the
root node. This is to accommodate the cases where there are two or
more order instances with different starting events. Figure 1 shows
the OI-tree of our running example Sk (Table 1).

In the construction of the OI-tree, we filter out those impossible
order instances by checking the two aforementioned dependency
conditions. So all the instances compose a OT-tree satisfy depen-
dency conditions. As we can see later, based on the OI-tree, events
can be encoded into integers to enhance the efficiency of pattern
matching.

e1

e3e2

e2e3

e4e5e4

e6

e5

e5

e7

e4

e6 e5

e7 e7

e6

e4

e7

e6

e7

e4e6

e4 e6

e7e4

e7e5

e6

e7

e7

e7

e5

e6

e4

Figure 1: The Single-Tree Structure

Details about the tree construction is given in Algorithm 1. In
this algorithm, each node has a list Lnap for keeping track of events
that have not appeared on the path from the root node to the current
node.

Initially, we generate a virtual root nodeNroot (lines 2–4). Nroot
is at level 0 and does not correspond to any event. Then we generate
the OI-tree level by level. Based on a nodeN at level i, we generate
its child nodes at level i+1 corresponding to each event inN.Lnap.
In each step, we create a new node Nnew for each possible time
instant of e inN.Lnap and updateNnew.Lnap subsequently. If any
event e′ in Nnew.Lnap has no possible time after the time instant
of Nnew, we discard Nnew, because e′ does not appear in the path
from Nroot to Nnew and cannot appear in the subtree of Nnew
either. Otherwise, Nnew becomes a child of N (lines 5–18).

Line 11–16 is used to eliminate paths (event sequences) that do
not satisfy Condition 2 (Section 3.1.1). Node Nnew will be added
into the path only if event e and its preceding nodes satisfy Con-
dition 2, where ej is the j-th preceding event of e. Note that as
in each path all events have different time stamps, Condition 1 is

Algorithm 1: Build OI-tree(Sk)

1 Create an empty tree node list Lnode;
2 Nroot.Lnap ← all events in Sk ;
3 Nroot.level← 0;
4 Lnode ← Lnode ∪Nroot;
5 for each level i from level 1 to level |Sk| do
6 for each node N in Lnode with N.level = i− 1 do
7 for each event e in N.Lnap do
8 Create a new node Nnew corresponding to each

possible time of e;
9 Nnew.Lnap ← N.Lnap − e;

10 if no event e′ in Nnew.Lnap has
e′.TI+ ≤ Nnew.time then

11 j ← 0 ;
12 do
13 ej ← Lnode[Lnode.size− j] ;
14 j ← j + 1 ;
15 while f(x1, y1, ts1, x2, y2, ts2) ∝ θ holds for

e and ej ;
16 if j=i then
17 Nnew becomes a child node of N ;
18 Lnode ← Lnode ∪Nnew;

19 Clear Lnode;
20 return Lnode;

inherently satisfied.
Complexity analysis: Suppose n is the number of events in the

dependency group which is actually the hight of the OI-tree. At
each level i, we need to enumerate all events with an occurrence in-
stant at i. Let λi be the number of events that are possible to occur
at time instant i, then the cardinality of enumeration is

∏n
i=1 λi.

Let κ be the maximum value in {λ1, . . . , λn}, which is a constant.
Then

∏n
i=1 λi ≤ κn. Thus the complexity of the single-tree con-

struction isO(κn). Our experimental results (as illustrated in Table
5 in Section 6) also verify that this algorithm has an exponential
complexity.

4.1.2 The Multi-Tree Index
Note that each path in an OI-tree corresponds to an order in-

stance. Since a subsequence could be shared by multiple order in-
stances, it would repeatedly appear in the OI-tree multiple times.
From Figure 1, we can see that starting from level 3, the left half
and the right half of the tree are exactly the same. Such redundancy
increases the complexity of not only the index construction but also
the pattern matching algorithm.

Therefore, we introduce a multi-tree index to compress the OI-
tree obtained by the single tree method. Basically, we divide Sk
into isolated subsequences, and then construct a smaller OI-tree for
each isolated subsequence. All these OI-trees together represent
the possible orderings of Sk. An isolated subsequence is defined as
follows.

DEFINITION 1. Let S.TI denotes the time interval of a subse-
quence (S) of an event set Sk. Then S is an isolated subsequence of
Sk iff in all order instances of Sk, all events in S can never occur
at an instant t such that t /∈ S.TI and all events not in S can never
occur at an instant t′ such that t′ ∈ S.TI.

Going back to our running example (Table 1), we can see that the
whole Sk is a sequence and also an isolated subsequence. There-
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fore, an OI-tree, denoted as T0, has to be built on the whole se-
quence. According to the definition, S can be divided into the fol-
lowing isolated subsequences: IS1 = {(e1, [1, 3])}, IS2 = {(e2,
[2, 3]), (e3, [2, 3])} and IS3 = {(e4, [3, 7]), (e5, [4, 6]), (e6, [5, 6]),
(e7, [6, 7])}. For each isolated subsequences, as shown in Figure 2,
we construct one OI-tree, i.e. T1, T2 and T3, for IS1, IS2 and
IS3 respectively. We call T0 the parent OI-tree of T1, T2 and T3,
which are then called the child OI-trees of T0.

The compression procedure continues by recursively detecting
the isolated subsequences within a subtree of an OI-tree index. For
instance, inside T3 (IS3), the subtree rooted at e4 corresponds to
subsequence S′ = {(e5, [5, 6]), (e6, [5, 6])(e7, [6, 7])}. Obviously,
S′ has two isolated subsequences: IS′1 = {(e5, [5, 6]), (e6, [5, 6])}
and IS′2 = {(e7, [7, 7])}. Correspondingly, two OI-trees T4 and T5

are constructed for IS′1 and IS′2 respectively. The final multi-tree
index is constructed as shown in Figure 2. T3 is called the parent
OI-tree of T4 and T5, whereas T4 and T5 are called as child OI-
tree of T3. In an OI-tree, we call nodes correspond to child OI-trees
as virtual nodes and the others as real nodes.

Figure 2: An example of order instance trees.

Finding isolated subsequences. Now we present the algorithm
to find isolated subsequences. First, we sort the events in Sk in
ascending order of the lower bounds of their time intervals. Then
we decide if Sk can be divided into several isolated subsequences
in the following two phases.

Step 1: Searching for splitting instants by scanning an input se-
quence S. The definition of a splitting instant is given as follows.

DEFINITION 2. Given a sequence S, an instant t̂ is a splitting
instant iff, for any event e in S, we have e.TI+ ≤ t̂ or e.TI− > t̂.

When a splitting instant t̂ is found, Sk will be divided into two
isolated subsequences IS1 and IS2, where all events in Sk with
e.TI+ ≤ t̂ fall into IS1 and other events belong to IS2. Therefore,
IS1 and IS2 have time intervals [Sk.TI−, t̂] and [t̂+ 1, Sk.TI+] re-
spectively.

Step 2: For each isolated subsequence IS acquired in the previ-
ous step, we further divide it based on the following lemma.

LEMMA 1. Given a sequence S, let [t−, t+] be the minimum
time interval bounding the time intervals of n events in S. If [t−, t+]
contains exactly n timestamps, then these n events compose an iso-
lated subsequence.

In particular, we scan events of each IS one by one. For the i-th
event ei, we check if any j-th event ej (j < i) has a time interval
ej .TI so that [ej .TI−, ei.TI+] contains exact i− j+ 1 events. If so,
event ej to event ei compose an isolated subsequence IS1 and all
other events falls into another isolated subsequence IS2. After that
we update the time intervals of events in IS2, and then divide IS2

further by repeating the process from Step 1. This process stops
when no subsequences can be further divided in either step.

Constructing OI-tree for each isolated subsequence. The iso-
lated subsequence based OI-tree construction is similar to Algo-
rithm 1. The only difference is that every time we create a new
node Nnew, we get a sequence S, which contains all events in
Nnew.Lnap. Then we check if S can be divided into several iso-
lated subsequences as described above. If yes, we create an OI-tree
for each new isolated subsequence in exactly the same way and then
we treat each acquired OI-tree as a virtual node in the current OI-
tree.

Time complexity: The multi-tree index is based on following
observations: (1) For each event, its possible instant interval TI is
very limited; (2) Events within a dependency group can be further
divided into isolated subsequences (IS), where event instances in
an IS are correlated, but those belonging to different IS are inde-
pendent. Here event instance refers to an event associated with
one of its possible instant. In practice, we expect that event in-
stances within Sk can be naturally divided into distinct isolated sub-
sequences.

Suppose that Sk can be divided intom isolated subsequences and
the total number of event instances are f · n, where n is the num-
ber of events in Sk. Consequently, the average number of event
instances in each isolated subsequence is f ·n

m
. Furthermore, we as-

sume an event in each isolated subsequence has at most c instances
and hence each isolated subsequence has at most f ·n

c·m events.
Note that for each isolated subsequence, we have to construct an

OI-tree. So the time complexity of the construction of multi-tree
index is O(κ

f·n
c·m · m). If each isolated subsequence contains at

most a constant number of event instant, say k. In other words,
we assume f ·n

c·m = k. Then the time complexity of the multi-tree
approach is O(κk ·m), i.e. a linear complexity.

We expect that in practice most isolated subsequences should
have a small number of events and hence can be bounded by a
constant as analyzed above. We have experimented different dis-
tributions of possible instant intervals of events in Section 6 (Figure
5). The results indicate that the multi-tree algorithm has a linear
complexity.

4.2 Encoding The OI-Tree
Each node in an OI-tree is assigned a unique code, which is the

sum of two parts, i.e. a local relative value vrel and a base value
vbase.

The local relative value. The local relative value vrel indicates a
node’s relative position inside its OI-tree and it can be generated as
follows. In an OI-tree T, each child OI-tree within it will collapse
into a virtual node, such as T4 and T5 in Figure 3 are considered
as a node in T3. Assuming f is the maximum fanout of T, we first
extend T to a complete f -tree (denoted as Tf ) by inserting several
empty nodes into T, as shown in Figure 3.

Each node in Tf is given a local relative value vrel so that the
node with vrel is the (vrel + 1)th node visited when we traverse
Tm using Breath-First Search(BFS).

For instance, the extended complete binary tree of T3 is shown
in Figure 3. The blank nodes are the nodes inserted when extending
T3 to a complete binary tree Tf3 . The numbers beside the nodes are
their local relative values.
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Figure 3: The extended complete binary tree of T3.

The base value. The base value of a node is generated based on
the following rules.

1. The root node of OI-tree T0 is assigned a base value of 0.

2. For a virtual node Ti, with a parent OI-tree as Tj , its base
value equals to its local relative value in Tj , i.e. Ti.vbase =
Ti.vrel.

3. For a real nodeN of OI-tree Tj , letN ′ denotes the preceding
node of N in BFS, then its base value is calculated according
to the following two cases. (1) If N ′ is a virtual node (a child
OI-tree of Tj), then N.vbase equals to the largest code of
the nodes inside the tree represented by N ′. (2) Otherwise,
N.vbase equals to N ′.vbase.

Example. We further explain the generation of node codes using
the running example. Inside the first OI-tree T0, initially the root
node Nroot has a base value 0. Since the fanout is 1, the four
nodes Nroot, T1, T2 and T3 have local relative values 0, 1, 2 and
3 respectively. Then because the node before the virtual node of T1

is a real nodeNroot, the base value of T1 is equal to the base value
of Nroot. So the final code of the virtual node of T1 is 0 + 1 = 1.

Then inside T1, the root node gets a base value that is equal
to the final code of the virtual node in T0 that corresponds to T1,
which is 1. Given the local relative value 0 and 1 of the two nodes
in T1, their final codes are 1 and 2 respectively.

The third node in T0, i.e. the virtual node of corresponding to
T2, gets a base value as the largest final code in T1, which is 2. So
the final code of this virtual node is 2 + 2 = 4, which then becomes
the base value of the root node inside T2.

Codes of the other nodes are generated similarly. The final codes
of the running example are shown in Figure 4, where each entry
denotes a node in the OI-tree and the code of each node is given in
the form of vbase + vrel.
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Figure 4: Codes of the running example.
In sequence pattern matching, the essential problem is to judge

the temporal occurrence sequence of events. For example, a simple
pattern query (E1, E2) require e1.ts < e2.ts in each of the match-
ing sequence. Such temporal relationship can be easily acquired by
comparing the corresponding nodes’ codes, as their codes uniquely
determined their positions in the OI-tree. To judge the temporal

relationship between a pair of nodes Ni and Nj corresponding to
events ei and ej , we just need to judge whether Nj .code falls into
[Ni.min,Ni.max], where Ni.min and Ni.max are the minimum
and maximum codes in the tree rooted at Ni.

More specifically, we can derive the following two lemmas for
our coding scheme.

LEMMA 2. Given a complete f -tree Tf and a node N with lo-
cal relative value vrel, the descendant nodes of N must have lo-
cal relative value within ranges [f · vrel + 1, f · vrel + f + 1],
[f2·vrel+f+1, f2·vrel+f2+1], [f3·vrel+f+1, f3·vrel+f3+1]
and so on.

LEMMA 3. Given a complete f -tree Tf and a node N with lo-
cal relative value vrel, the ancestor nodes of N must have local
relative value equalling b vrel−1

f
c, b vrel−1

f2
c, etc.

The proof of Lemma 2 and Lemma 3 is straightforward, so we
omit it for brevity.

Note that the table in Figure 4 does not need to be stored in mem-
ory or on disk. Only the codes of nodes corresponding to some
events are indexed and stored in a way described in the next sec-
tion. In addition, we maintain the following information of OI-trees
in memory to enhance the above operations: (1) T.TI: the time in-
terval of T; (2) T.f : the maximum fanout; and (3) T.CR: the code
range of T. The information of the running example is shown in
Table 3.

Table 3: The information of order instance trees of Sk.
TI fanout code range

T0 [1,7] 1 [0 , 60]
T1 [1,1] 1 [1 , 2]
T2 [2,3] 2 [4 , 10]
T3 [4,7] 2 [13, 60]
T4 [5,6] 2 [16, 22]
T5 [7,7] 1 [29, 30]

4.3 Indexing The Content of Events
Note that in the OI-tree of each group Sk, an event would corre-

spond to multiple nodes, which are kept in a node list Lnode . Each
nodeN inLnode is represented by (N.time,N.code,N.poi). N.poi
is the probability for the occurrence of order instances in the pos-
sible worlds that involve N . We use CR = [codemin, codemax]
to denote the code range of all the nodes in Lnode, where codemin
and codemax stand for the minimum and maximum codes of the
nodes within Lnode respectively.

Combining with other information of an event defined in Sec-
tion 3.1, such as its group id (k), time interval(TI), and attributes
(ATTR), it can be represented by a (d + 3)-dimensional tuple
{[k, k], TI, CR,R1, . . . , Rd}, where k, TI,CR, andRj(j = 1, . . . , d)
stand for the group ID, time interval, code range and attribute value
ranges of an event respectively.

To support the efficient evaluation of pattern queries, we employ
a multi-dimensional index structure to index all of the aforemen-
tioned (d + 3)-dimensional tuples. In principle, as our evaluation
algorithms do not depend on a certain type of index, we can choose
a multi-dimensional index according to the application scenarios,
such as the data distribution, the value of d, etc. In our experiments,
we use R*-tree as our index structure.

5. MATCHING EVENT PATTERNS
In this section we present the details of our pattern query process-

ing algorithms. In particular, we first introduce a sequential evalu-
ation approach in Section 5.1 and then an optimization is given in
Section 5.2.
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Algorithm 2: BasicQueryProcessing(P, L, Θ)

1 Create an empty list Lcand;
2 S ← RangeQuery([0,∞], [0,∞], [0,∞], E1.Rattr);
3 for each event e in S do
4 for each node N in e.Lnode do
5 Lcand ← Lcand

⋃
({e}, [N.time,N.time],

{N`k = N}, N.poi, Pr(e ∈ E1));

6 while there are incomplete entries in Lcand do
7 EN ← one incomplete entry in Lcand;
8 Lcand ← Lcand − EN ;
9 i← the number of events in EN.CurMatch;

10 Create an empty list S;
11 for each group of S do
12 DesCRk ← GetDescCR(N`k .code);
13 S ← S

⋃
RangeQuery([k, k],

[EN.t+ + 1, EN.t− + L], DesCRk, Ei+1.Rattr);

14 for each event e in S do
15 for each node N in e.Lnode do
16 if N.time ∈ [EN.t+ + 1, EN.t− + L] and

N.code ∈ DesCRk] then
17 Create new entry ENnew for N ;
18 if ENnew.P erOI · ENnew.p ≥ Θ then
19 Lcand ← Lcand

⋃
ENnew;

20 return Lcand;

5.1 The Sequential Evaluation
We first consider the pattern query with a pattern structure as a se-

quence of simple event types. The condition range of an event type
is denoted as Rcon. Given a pattern structure {E1, E2, . . . , Eκ},
with a time constraint L and a probability constraint Θ, the query
processing algorithms are given in Algorithm 2. The algorithm can
be extended in a straightforward way to handle pattern structures
involving negation operators.

Example. We use our running example to illustrate the query
processing algorithm. For the ease of explanation, we assume there
is only one dependency group Sk. The value ranges of event at-
tributes in Sk are listed in Table 4. Consider an example pat-
tern query with a time constraint L = 6 and the query structure
P = {A,B,C}, where the predicates of the items are represented
as the following value ranges over the two attributes: A.Rattr =
{[0, 2], [8, 10]},B.Rattr = {[8, 10], [6, 8]} andC.Rattr = {[5, 7],
[5, 7]}.

Table 4: The value ranges of event attributes in Sk.
e1 e2 e3 e4 e5 e6 e7

d1 [0, 2] [2, 4] [0, 1] [8, 9] [4, 6] [0, 2] [4, 6]
d2 [5, 8] [3, 8] [9, 10] [7, 8] [5, 7] [0, 1] [4, 6]

In the algorithm, we maintain a candidate list Lcand in mem-
ory, where each entry in Lcand contains information for a partially
matched sequence and is in the form of EN = (CurMatch,
[t−, t+], LastNodes, PerOI , P ). In particular, CurMatch is
a sequence of matching events found so far. [t−, t+] is the time
interval within which events in CurMatch occur. LastNodes =
{N`1 , N`2 , . . . , N`Gn

} is a list of nodes, whereN`i records the node
corresponding to the last event in the ith dependency groups of S
contained by CurMatch. PerOI is the percentage of total num-
ber of order instances containing the sequenceCurMatch andP is

the product of the probability of each event in CurMatch belong-
ing to its corresponding pattern item. Specially, if the CurMatch
of an entry EN contains less than γ events, we call EN an incom-
plete entry. Otherwise, it is called a complete entry.

The whole query processing algorithm work in two steps.
Step 1. Searching for the first pattern item. Initially, we issue

a range query to find all events that match E1 via the multidimen-
sional index (line 2). For each returned event e, we create a new
entry for each of e’s corresponding nodes (lines 3–5).

Coming back to our example. In step 1, we search for events
matching itemA by issuing a range query ([0,∞],[0,∞],[0,∞],[0,
0.2],[0.8, 1]). An event e3 is retrieved. There are two nodes in
e3.Lnode, with timestamps 2 and 3, and codes 6 and 7, respec-
tively. We create a new entry in Lcand based on each node. Specif-
ically, for the node N corresponding to timestamp 2, we have an
entry EN = {{e3}, [2, 2], {N`k }, P erOI = 0.5, P = 1}, where
N`k = N .

Step 2. Searching for the next pattern item. For each incom-
plete entry EN in Lcand, suppose Ei is its last matched item, i,e.
EN has already i matched pattern items, then the next pattern item
Ei+1 can be recognized as follows. In particular, the next matching
event e must satisfy the following requirements:

1. Pr(Ei+1|e) > 0, it means each attribute range of e must
intersect with the condition range of Ei+1.

2. Event e is possible to appear after all the events in EN and
fulfill the time constraintL, which means the occurrence times
of e fall into [EN.t+, EN.t− + L].

3. Suppose e belongs to the kth dependency group Sk. If there
are other events from the same group included in the already
matched events, then there is at least one order instance of Sk
such that e occurs after all those events. It means at least one
node of e in the OI-tree appear in the subtree of LastNk, the
last matched events from Sk.

For the last requirement, given the last node N`k corresponding
to each group Sk, we compute a range (denoted as DesCRk) of
codes of the nodes that are inside the subtree of N`k in the OI-
tree corresponding to Sk. Then if one node N is in the subtree
of N`k , N.code must be inside DesCRk. DesCRk is computed
by a function GetDescCR (called line 12), which, as described
later, will take use of Lemma 2 for this purpose.

Then we issue range queries to the multidimensional index to
search for qualified events and create new entries according to each
returned event. If the new entries are corresponding to confidences
larger than Θ, we insert them into Lcand (line 14–19).

The whole process is completed by iteratively repeating Step 2
until all entries in Lcand are complete. Then based on each entry
EN = (CurMatch, [t−, t+], LastNodes, PerOI, P ), we get a
match resultCurMatch, with time range [t−, t+] and a confidence
of PerOI · P .

Let us look at our example again. Based on the code of N`k in
the previously mentioned entry EN , we compute the code range
DesCRk as {[9, 10], [13, 60]}. Then we search for the next event
matching itemB by issuing two range queries ([k, k], [3, 7], [9, 10],
[0.8, 1], [0.6, 0.8]) and ([k, k], [3, 7], [13, 60], [0.8, 1], [0.6, 0.8]).
An event e4 is returned, which has a corresponding node N ′ with
N ′.code = 14 and N ′.time = 4. Then we have a new entry
EN ′ = {{e3, e4}, [2, 4], {N`k }, P erOI = 0.2, P = 1}, where
N`k = N ′.

Based on EN ′ we search for the next pattern item C in a similar
way and get an complete entry {{e3, e4, e7}, [2, 7], LastNodes,
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PerOI = 0.2, P = 0.25}. The matched subsequence (e3, e4, e7)
falls in [2, 7] and has a confidence of 0.2 ∗ 0.25 = 0.05.

Algorithm 3: GetDescCR(N`k )

1 DesCRk ← ∅ ;
2 S ← all of OI-trees with CR covering N`k .code ;
3 for each OI-tree T in S do
4 if T is the smallest OI-tree to contain N then
5 code← N`k .code;

6 else
7 T′ ← the largest tree containing N and in T;
8 code← T′.CR−;

9 S′ ← all OI-trees with CR in [T.CR−, code];
10 if S′ = ∅ then
11 vbase ← T.CR−;

12 else
13 vbase ← the maximum upper bound of code ranges of

OI-trees in S′;

14 vrel ← code− vbase;
15 Rrel ← ranges of relative values of descendant nodes of

N`k ;
16 Add base values to the boundaries of ranges in Rrel;
17 DesCRk ← DesCRk

⋃
Rrel;

18 return DesCRk;

Computing DesCRk. The code range of descendant nodes of
a given node N`k , it compute by GetDescCR( ), as shown in Al-
gorithm 3. DesCRk = [0,∞] if N`k = NULL. Otherwise, we
compute DesCRk in the following way.

Initially, we set DesCRk = ∅. Then based on the information
of all OI-trees corresponding to Sk (as shown in Table 3), we find
all the OI-trees containing N`k and then compute a code range cor-
responding to each of these OI-trees. DesCRk is set as the combi-
nation of the acquired code ranges.

Particularly, for each OI-tree T containing N`k , we can easily
deduce the base value and local relative value of N`k (lines 4-14).
Then we can deduce the ranges of local relative values of the de-
scendant nodes of N`k based on Lemma 2.

Based on Lemma 2, given vrel, we derive a set of code ranges
(Rrel) bounding all the local relative values ofN`k ’s descendants in
T. For each range inRrel, we obtain the final code range by adding
a base value on its boundaries. The base value can be computed
in a similar way as generating the global base value described in
Section 4.2.

5.2 Optimizations
The sequential evaluation of P = {E1, E2, . . . , En} is carried

out according to the occurrence order of of the pattern items, i.e. E1

is matched first and then followed by E2, and so on, until the last
item has been matched. This can actually be further optimized by
fine-tuning the matching order of items and hence eliminating the
unqualified entries from the candidate list Lcand as early as possi-
ble. More specifically, we can choose the matching order according
to the expected number of matching instances of each item.

Our optimized solution is carried out as follows. For matching a
pattern structure P = {E1, E2, . . . , En}, we will estimate the ex-
pected number of order instances that match each pattern item over
the whole time domain and choose the pattern item with the lowest
number, sayEi. After matchingEi, we will generate a list of candi-

date sequences, one for each event instance that matches Ei. Then
for each candidate, we re-estimate the expected number of matches
of all the unmatched pattern items and again choose the one with the
lowest number for the next matching attempt. Note that we have to
re-estimate the expected number of matches because the matching
conditions are changed due to the fact that some events have already
been matched in the candidate sequence. As indicated by our anal-
ysis later in this section and also verified by our experimental study,
this optimization can significantly cut down the number of candi-
dates and hence reduce the query processing time considerably.

In the rest of this section, we provide more details of this algo-
rithm and present an analysis on its performance.

Getting statistical information. We first extract some statistical
information from the whole event set S, which will be used for all
future query processing. In particular, we uniformly partition the
d-dimensional domain space of the event attributes into a number
of cells. In addition, we equally divide the time domain T into a
number of time intervals. Then for each cell cj , we can collect the
expected number of events with attributes falling in cj during time
interval Ik, denoted as pj,k. All the numbers corresponding to all
the cells and time intervals are stored in memory.

Given the above statistical information, we can estimate the num-
ber of matches for each pattern item Ei by finding out all the cells
that overlap with matching conditions of Ei and then calculate an
aggregate value over the numbers of all these cells.

Choosing the first pattern item. Suppose we are to process a
pattern query with a pattern structure as P = {E1, E2, . . . , En}.
Initially, for each pattern item Ei, we estimate the expected num-
ber of matching events over the whole time domain T and then we
choose the one with the minimum number.

Suppose Ei is the chosen pattern item. Then we retrieve all
events that match Ei by using the multi-dimensional index. Note
that each such event e corresponds to multiple instances due to its
temporal uncertainty. So for each node in node list e, i.e. each
instance of e, we create a new entry in the candidate list Lcand.

In this algorithm, an entry in Lcand has to be extended with
a list FirstNodes (in addition to the original LastNodes list).
The FirstNodes list, as indicated by its name, contains the first
matched events of each dependency group in the partially matched
sequence of this candidate. This is needed as we may have to search
for matching events in both forward and backward directions as de-
scribed later.

Choosing the next pattern items. Based on each entry EN
in Lcand, we will choose an unmatched pattern item for the next
matching attempt. To re-estimate the expected number of matched
events for an unmatched pattern item, we should update its match-
ing time interval based on the matched events in EN .

For an item Ei, we estimate the lower-bound (or upper-bound)
of its matching time interval as the upper-bound (or lower-bound)
of the occurrence time of the matched events before (or after)Ei. If
there is no matched event before (or after)Ei, then the lower-bound
(or upper-bound) is set to 0 (or inf). After updating the matching
time interval of item Ei, we can estimate its expected number of
matched events and choose the one with the minimum number for
the next matching attempt.

Suppose Ei is the pattern item that is chosen. Then an event e
may match Ei should satisfy the following conditions.

1. The attribute uncertain ranges of e intersect the condition
range of Ei.

2. e has a possible occurrence time within the matching time
interval of Ei.

3. Suppose e belongs to the kth dependency group of S. Then
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if there are other events in the same group in the matching
subsequences before and after Ei, denoted as PSbefore and
PSafter , respectively, then there should be at least one order
instance of Sk such that at least one node of e (out of the
multiple node due to the temporal uncertainty of e) appear in
the path from the last node N`k of PSbefore to the first node
Nak of PSafter .

For the last condition, we can compute a code range CRk for
each group that bounds the codes of nodes in this path. In particu-
lar, based on the code of N`k in PSbefore and Lemma 2, we com-
pute the code range of all descendants ofN`k , denoted asDesCRk.
Similarly, based on the code of Nak in PSafter and Lemma 3, we
compute the code range of all ancestors ofNak , denoted asAnCRk.
Finally, we can get CRk = DesCRk

⋂
AnCRk.

With CRk, we can issue a set of range queries to retrieve the
matching events for Ei. Then the candidate entry will be updated.
This process will be repeated until all pattern items are matched.

Cost analysis. Next we discuss the improvement that can be
achieved by the optimization in comparing to the sequential evalu-
ation in Section 4.1.1. Since the main cost of the query processing
algorithms is to search for the next pattern item based on each en-
try in Lcand, the query performance is mainly determined by the
number of entries in Lcand. So we measure the performance of
each query processing algorithm by the total number of entries ever
inserted into Lcand, denoted as ξ.

To account for the worst case, we consider a query pattern with
time constraint equaling the length of the whole time domain and a
confidence constraint as 0. Given the pattern structure P = {E1, . . . ,
En}, every time we search for one pattern item Ei, we create new
entries for each possible timestamp of each event e matching item
Ei. Let pi denotes the quantity of events that matchEi. In addition,
we assume all events have f possible occurrence instants.

For the sequential evaluation approach, the total number of en-
tries ever inserted into Lcand, ξseq , is computed as follows. As
there are p1 events that match E1, we create f candidate entries for
each of these p1 events. Therefore, we create p1 · f entries in the
first step.

Thereafter, for the ith pattern item Ei, we create pi · f entries for
each entry already in Lcand. So after all n pattern items are found,
we have

ξseq = p1 · f + (p1 · f) · (p2 · f) + · · ·+ Πn
i=1(pi · f)

=
∑
j=1

n(Πj
i=1(pi · f)) (2)

With regard to the optimized approach, we can calculate ξopt
in a similar way. Note that, for every step in this approach, we
choose the pattern item that matches minimum number of events.
So we can sort p1 to pn in ascending order and get a new sequence
{p̂1, p̂2, . . . , p̂n}. Then we have ξopt =

∑
j=1 n(Πj

i=1(p̂i · f)).
In general, for any other searching order, let Eri denote the ith

pattern items that are chosen, the cost of this order is equal to
ξother =

∑
j=1 n(Πj

i=1(pri · f)). Based on these fomula, we
can derive that ξother is no less than ξopt. Thus, the searching order
introduced in our solution is optimal.

6. EXPERIMENTS
All our experiments are run on a desktop PC with a 2.66GHz

CPU and 4GB RAM. The page size is set to 4096 bytes. We use
both real and synthetic datasets. Details of the datasets and query
generation are given in Section 6.1. We study the behavior of our
index schema and the effects of various parameters in Section 6.2.

Then we conduct comparative performance study of our query pro-
cessing algorithms in Section 6.3.

6.1 Experiment Configurations
Real Data. We use three sequential datasets from the UCI ma-

chine learning repository. The Dodfers dataset collects the number
of cars passing the 101 North freeway in Los Angeles [1]. It con-
tains totally 50,400 tuples, each with one attribute value. The ICU
dataset contains 7931 records provided by the Children’s Hospital
in Boston [2]. Each tuple has two attributes. The third dataset is the
localized personal activity data (referred to as LPA for short), which
contains totally 164,860 location records, each with 3 attributes [3].

Each tuple (viewed as an event) in these datasets has a timestamp
and several attribute values. We generate uncertain event sequence
by generalizing their timestamps and attribute values into uncertain
ranges.

Synthetic Data. We first generate two certain event sequences.
Particularly, we first generate N objects, each with d attribute val-
ues. The attributes of objects follow Gaussian distribution. Then
we assign a timestamp, which is drawn from a time domain T con-
taining 10N time instants, to each object. In one synthetic dataset,
the timestamps of objects are randomly chosen from T , while in the
other dataset the timestamps of objects are clustered into 10 groups.
Within each group, timestamps follow Gaussian distribution around
the group center.

After getting the certain event sequences, we convert these cer-
tain sequences into uncertain sequences in the same way as de-
scribed above.

Pattern Queries. For every experiment, we generate 1000 pat-
tern structures and the result presented is the average on 1000 queries,
each with one pattern structure.

To generate a pattern structure, we first generate the condition
range for each pattern item inside the pattern structure. Each con-
dition range covers 20% of the spatial domain space, with a center
randomly chosen from the domain space. Then we randomly assign
the operator “¬” and “[ ]” on 10% pattern items of the 1000 pattern
structures.

Each pattern query is controlled by the number of pattern items
n, the time constraint L, the confidence constraint Θ. We will vary
these values to see their impacts on the query performance.

Baseline. Due to the lack of previous work on the problem, we
use our less optimized approaches as the baseline methods. For
example, we compare the single-tree method with the multi-tree
method for the index construction algorithm. With regard to query
evaluation algorithms, we compare a tree-traversal method without
our tree encoding scheme, the sequential query processing algo-
rithm and the optimized one proposed in this paper.

6.2 The Study of The Index
We first study the behavior of our index structure using the two

synthetic sequences, with uniform distributed timestamps and clus-
tered timestamps, respectively. We vary two parameters of an event
sequence, the length and the number of possible occurrence times
of each event, denoted as f . Note that since the construction of
the OI-tree of each group are independent, so to study the behav-
ior of the index structure, we assume all events inside the synthetic
sequences belongs to the same group.

We measure the index construction time and the size of acquired
OI-tree in our experiments. We compare the Multi-Tree approach
with the Single-Tree approach in this set of experiments.

Effect of the sequence length. We vary the length of the se-
quence from 10 to 1000 to see its effect on the index. The number
of possible occurrence times (f ) of each event is randomly set to
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a value within [2, 5]. Figure 5 demonstrates the test results of the
Multi-Tree approach. Both the construction time and number of
nodes of OI-trees increase almost linearly with the increase of se-
quence length.

As for the Single-Tree approach, the construction time and num-
ber of nodes increase exponentially as the sequence length increases.
For example, given a sequence where events only have two possible
occurrence times, the construction time and number of nodes of the
Single-Tree approach is shown in Table 5. As demonstrated in the
table, it will take almost four days to construct the index for a se-
quence with a length of 20. We do not draw the results in Figure 5
as they are too large to be shown nicely.
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Figure 5: Effect of the length of sequence.

Table 5: The construction cost of the Single-Tree method
length 5 10 15 20

time (second) 0.015 1.944 472.4 3.44E+05 (est)
number of nodes 31 1023 32767 1.05E+06

Effect of the number of occurrence times. We vary the number
of time instants of each event from 2 to 6 to see its effect on the
index. The sequence length is 1000. Figure 5 demonstrates the
test results of the Multi-Tree approach. The construction time and
number of nodes increase evidently as f increases. This is because
increasing f will increase the fanout of OI-trees, and therefore will
increase the size and construction time of the OI-trees.

On the other hand, with a large f , the time intervals of events
overlap with each other heavily. Therefore a long event sequence
cannot be easily divided into many isolated subsequences, and hence
the heights of OI-trees are very large. This is more obvious for the
clustered dataset, where time intervals of many events are congre-
gated together.
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Figure 6: Effect of the number of time instants.

6.3 Performance Comparison
We compare the query performance of the two methods proposed

in Section 5.1 and in Section 5.2 with a tree traversing method.
In the tree traversing method, we traverse every path of the OI-
trees of a given sequence to find the matching subsequences. For
the multidimensional index, we employ R*-tree as the underlying
structure of our index.

We measure the total entries (in Lcand) created during the query
processing, the total query processing time and the number of disk
page accesses (I/O) in our experiments.

We conduct experiments with the three real datasets. Specially,
we only extract the first 5000 events from each dataset. The times-
tamps in each dataset are normalized into a time domain contains
20000 time instants.

In this set of experiments, we randomly set the number of possi-
ble time instants f as a value within [2, 6].

Number of dependency groups. We vary the number of de-
pendency groups from 1 to 8 to see its impact on the query perfor-
mance. In particular, we partition events in a given sequence into
different dependency groups randomly.

The number of pattern items (n) of each pattern query is set to 5
in this set of experiments. The time constraint and confidence con-
straint are randomly chosen from [2n, 5n] and [0.6, 0.8], respec-
tively.

The test results of the three real datasets are given in Figure 7. As
shown in the figure, the number of entries of both methods slightly
increases as the number of groups increases. With the optimized
method, the number of entries increases much slower than the se-
quential evaluation.

Then query processing time of both our methods increase lin-
early as the number of groups increases, while the time cost of the
tree traversing method increases exponentially. The speed up of the
optimized method compared to the tree traversing is up to 20 times
(8 groups, Dodfers dataset).

The number of I/O accesses of both our methods increases as
the number of groups increases. We do not measure the I/O cost
of the tree traversing method because all tree nodes are cached in
memory during the experiments, which is actually in favor of the
tree-traversing method.

As shown in the figure, the optimized method also outperforms
the sequential one under all circumstances.

Number of pattern items n. We vary the average number of pat-
tern items n from 5 to 30. The time constraint and confidence con-
straint of each query is randomly chosen from [2n, 5n] and [0.6, 0.8],
respectively.

As shown by the results, the improvement achieved by our opti-
mization method in comparing to the sequential approach is greater
with a larger number of pattern items. This is because with long pat-
tern structure, the order of searching for each pattern items becomes
more important. In this set of experiments, the optimized method
outperforms the sequential evaluation on all three real datasets. The
test results of both our methods on the Dodfers dataset is given in
Figure 8. Other results are omitted due the space limit.

Time constraint L. We vary the time constraint from n to 5n,
where n is the number of pattern items of the particular query struc-
ture.

Shown by the test results, we find out that the performance of
both query processing method decreases as L increases. This is
because given a pattern structure, the loner of the time constraint,
the more matches will be returned. Nevertheless, on all three real
datasets, the optimized method’s performance decreases much slower
than the sequential one. The results of the Dodfer dataset is given
in Figure 9 and the results of other two datasets are omitted again
due the space limit.

Confidence constraint. We vary the confidence constraint from
0.4 to 0.8 to examine its impact on the query performance. With
larger confidence constraint, we expect more entries will be elimi-
nated earlier during the query processing. This is validated by our
experimental results. With both our query processing methods, the
number of entries, query processing time and number of I/O de-
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Figure 7: Effect of the number of dependency groups.
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Figure 8: Effect of the number of pattern items.

crease decrease when the confidence constraint increases. The opti-
mized method still outperforms its counterparts in all aspects on all
datasets. Once again, we present the results on the Dodfers dataset
in Figure 8 and omit the others as the trends shown on them are the
same.

7. CONCLUSION AND FUTURE WORK
In this paper, we study the sequence pattern matching over archived

event data with temporal uncertainties. To the best of our knowl-
edge, this is the first work to address this problem. To enhance
query efficiency, we propose an index structure to organize and in-
dex the archived event data, with which all possible orderings of
events can be efficiently deduced. Based on such the index, we de-
velop algorithms to efficiently extract patterns from the event data.
Finally, we conduct an extensive experimental study on both real
and synthetic datasets to prove the efficiency of our proposal. Ex-
perimental results show that our algorithms, both the index con-
struction algorithm and query processing algorithms, are efficient
and scale well with respect to query response time and I/O.
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