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ABSTRACT

A key problem in many graph-based applications is the need
to know, given a directed graph G and two vertices u,v € G,
whether there is a path between u and v, i. e., if u reaches v.
This problem is particularly challenging in the case of very
large real-world graphs. A common approach is the pre-
processing of the graphs, in order to produce an efficient
index structure, which allows fast access to the reachability
information of the vertices. However, the majority of exist-
ing methods can not handle very large graphs. We propose,
in this paper, a novel indexing method called FELINE (Fast
rEfined onLINE search), which is inspired by Dominance
Graph Drawing. FELINE creates an index from the graph
representation in a two-dimensional plane, which provides
reachability information in constant time for a significant
portion of queries. Experiments demonstrate the efficiency
of FELINE compared to state-of-the-art approaches.

Categories and Subject Descriptors

H.2 [Database Management|: Systems; G.2.2 [Discrete
Mathematics]: Graph Theory—graph labeling, graph algo-
rithms, path and circuit problems

General Terms

Algorithms, Performance

Keywords

Reachability queries, online search, graph indexing

1. INTRODUCTION

Developing scalable methods for the analysis of large sets
of graphs, including graphs that model biological and chem-
ical structures is a challenging task. Further, the continuous
growth of the size of the graphs, mainly in the web context,
where they can reach tens of millions of nodes, makes such a
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Figure 1: Reachability query tradeoffs

task even harder and demands the development of efficient
methods to handle these graphs.

A common problem in several graph-based applications is
to verify whether a vertex is reachable from another. Let
G = (V,E) be a directed graph, with V being its set of
vertices and E C V2 its set of edges. A reachability query
r(u,v) asks whether a vertex v € V is reachable from a
vertex u € V, i.e., whether there is a path from u to v in G
(see Definition 1). This decision problem is often found in
social networks analysis, where, for instance, it is necessary
to learn whether there is a relationship between two entities,
for security reasons, to provide conditional access to shared
resources or in business intelligence [2, 13]. Reachability is
also useful to determine the visibility between websites for
link structure analysis [25].

DEFINITION 1  (REACHABILITY).

Y(u,v) € VZ, v is reachable from u, denoted r(u,v),
u="v
if and only if < or
(u, w) € EAr(w,v)

Definition 1 shows the reachability relation r. This reach-
ability relation trivially is reflexive and transitive. It is not
antisymmetric, hence not a partial order, because G may
contain cycles. That is why the approaches first turn G
acyclic, i.e., they build the graph G’ = (V',E’) by con-
densation (folding every strongly connected component of G
into one single vertex in V' and retaining in E’ the edges be-
tween those components). Tarjan’s algorithm [30] is used to
identify the strongly connected components, i.e., the func-
tion scc: V — V'. Its time complexity is O(|V| + |E|). By
using the acyclic graph G’, the answer to the reachability
query from u € V tov € V (in G) is the same as the answer
to the reachability query from scc(u) € V' to scc(v) € V'
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(in G'). However the reachability relation in G’ now is a
partial order.

We follow the convention of existing approaches and as-
sume that all input graphs have been transformed into their
corresponding DAGs, i. e., we will refer the graph G’ as the
DAG G, omitting the application of function scc(u) to every
vertex u € V. Thus, we will discuss methods for reachability
only on DAGs.

As explained by Yildirim et al. [35], there are two basic
approaches to answer reachability queries on DAGs, which
are in two extremes of a spectrum (see Figure 1 extracted
from [35]). The first approach (left side) is to pre-compute
and store the full transitive closure of edges, which allows
constant time queries, but requires a quadratic space com-
plexity, making it infeasible to maintain the index in the
case of very large graphs. The second approach (right side)
is to employ a DFS or BFS search to verify the reachability,
starting from vertex u to vertex v. This approach requires
O(|V| + |E|) time for each query, which is often unaccept-
able. There are some alternate approaches between these
two basic ones, including ours, which aim to obtain a small
index that is able to answer most queries in O(1) time.

In a recent work, Jin et al. [18] divide the existing alter-
nate approaches into three classes: Transitive Closure Com-
pression, Hop Labeling and Refined Online Search. How-
ever, the same work states that the manipulation of large
real-world graphs is not supported by the majority of the
methods. In this paper, we demonstrate that it is possible
to create a new and efficient reachability index for very large
graphs, that is simple to understand and easy to implement.
This new index is inspired by Weak Dominance Drawing and
exposes a nice connection to graph drawing literature [3, 4,
14, 23].

Our reachability index represents non-planar DAGs in a
two dimensional plane by assigning to each vertex u a unique
coordinate (i.e., a pair of integers (,¥.)) in the N? plane,
preserving the reachability relations between most pairs of
vertices. Graphically, we translate reachability to the re-
lation “being at the upper-right”, that is, both coordinates
of a vertex v, reachable from another vertex u, need to be
greater than or equal to the respective coordinates of wu,
necessarily. When this geometrical relation holds, we veri-
fy the reachability through a search in a reduced part of
the graph, identified from the index. When it does not, the
non-reachability is decided in constant time.

Based on this index, we present in this paper a novel in-

dexing method called FELINE (Fast rEfined onLINE search).

In particular, we make the following original contributions:

e To our knowledge, FELINE is the first online search
approach that brings the concepts of Weak Dominance
Drawing applied to indexing very large graphs;

e When the non-reachability is not decided in O(1), our
method allows an effective pruning of the search space;

e Our experiments also show that FELINE generates a
small index structure and outperforms the state of the
art approach by more than 40% w.r.t. query and con-
struction times;

e We show that FELINE can be improved by an existing
boosting framework, called SCARAB [18].
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2. RELATED WORK

As mentioned, Jin et al. [18] divides the existing ap-
proaches into three classes: Transitive Closure Compression,
Hop Labeling and Refined Online Search. The methods of
the first class [1, 8, 21, 26, 33, 34] compress the transitive
closure of edges to assign to each vertex u a reachability com-
pressed set. Thus, we determine the reachability between
two vertices by verifying whether the destination vertex is
in the reachability compressed set of the origin vertex. The
second class is called Hop Labeling [10, 11, 16, 20, 27] and
its methods use intermediate vertices to encode the reach-
ability between two other vertices. In general, each node
maintains a list of intermediate vertices that it can reach,
and a list of intermediate vertices that can reach it. Con-
sequently, to answer the queries, a join operation is made
between the lists to determine the occurrence of vertices in
common. In the third class, as proposed by [7, 28, 31, 35],
the approaches are based on the use of online searches. In
this case, they use a scheme for labeling the vertices in order
to prune aggressively the search space, minimizing the num-
ber of vertices to be expanded. However, the original graph
must be maintained in the memory to enable the searches,
which is usually in DFS fashion. Thus, these approaches
have the advantage of not requiring prior computation of
the transitive closure in the construction of the index, and
have a more intuitive index construction step, which allows
its application to very large graphs, and the query costs, in
the worst case, grow proportionally to the size of the graph.

Despite all the existing approaches, Yildirim et al. [35]
showed in their work that very large graphs are not sup-
ported by the vast majority of them. For example, the re-
cent PATHTREE ([19], that had its scalability contested [18,
28, 35], since it performed well just on small graphs. In-
deed, we found in the literature only three methods that
can handle graphs with more than 100,000 edges, the Nuu-
tila’s INTERVAL [26, 33], GRAIL [35], FERRARI [28] and
TF-Label [9].

Nuutila’s INTERVAL [26, 33] extracts the complete tran-
sitive closure of the graph, and uses some lists of interval rep-
resentation to compress any contiguous vertex segment. For
instance, if the transitive closure of vertex w is the set of ver-
tices identified by the integers 1,2,3,4,6,7,8,9,11,12, it can
be compressed into three intervals: [1,4],[6,9] and [11,12]. A
bit-vector compression method, called PWAH (Partitioned
Word Aligned Hybrid compression scheme), is used to com-
press these lists of intervals, allowing efficient operation with
the compressed lists. Given the number of intervals’ lists I,
it constructs an index of size O(I) in O(|V| % |E|) time, and
requires an O(log, I) time for each query

GRAIL (Graph Reachability indexing via rAndomized In-
terval Labeling) is an online search approach, where the in-
dex is formed by multiple intervals obtained by the tradi-
tional min-post strategy. Min-post strategy creates a unique
interval L, = [su,eu] for each vertex u, where s, and e,
denote the start and the end of the interval. The ending
value e, is defined as e, = post(u), that is the post-order
value of the vertex u, and the starting value s, is defined
as sy = min{sz|z € children(u)} if u is not a leaf and
Su = ey, if u is a leaf. GRAIL employs some optimizations
to speed up the query times, like positive-cut filter and level
filter (these optimizations are also used in Feline and are
explained later in this paper). Assuming the use of d in-
tervals, GRAIL constructs an index of size O(d|V]), in a



O(d(|V] + |E|)) time. Its query time ranges from O(d) to
O(V|+ |E|).

Very similar to GRAIL, FERRARI (for Flexible and Ef-
ficient Reachability Range Assignment for gRaph indexind)
[28] also uses intervals obtained from multiple post-order
traversals. However, FERRARI employs a selective inter-
val set compression, where a subset of adjacent intervals is
merged into a small number of approximate intervals. The
merge operation of the interval sets needs to be applied to
each edge, so that every vertex will receive at most deg(v) x d
intervals (for every vertex v and d intervals). Then, the time
complexity for assigning the intervals is O(>", deg(v)xd?) =
O(|E| x d*). Given d intervals of a vertex, FERRARI checks
the target’s intervals set using binary search since the set is
in sorted order. The most relevant difference from GRAIL is
that FERRARI uses a topological ordering of the vertices to
limit the search space, pruning the search whenever all ver-
tices to be searched have a topological ordering rank greater
than the queried vertex. Its index size, construction time
and query time are, respectively, O(d|V|), O(|E| * d?), and
ranging from O(logd) to O(|V| + |E|).

Another work [18] presents a unified framework for reach-
ability computing, called SCARAB (standing for SCAlable
ReachABility), which is an efficient boosting approach that
allows speeding up the queries. SCARAB proposes the use of
a reduced graph extracted from the original graph, contain-
ing the so called “reachability backbone” vertex set. This
reduced graph contains the main “access routes” between
all vertices of the graph. To determine whether there ex-
ists a path between two vertices, SCARAB checks whether
these vertices are connected to the backbone. SCARAB uses
GRAIL as base method for searching and a search on the
backbone determines whether they are reachable from each
other. We understand that SCARAB is beyond the scope of
our work, since it is complementary. However, preliminary
experiments showed that SCARAB can be used to improve
the Feline performance, as shown in Section 4.4.

A recent work [9] proposes TF-Label, an efficient and scal-
able indexing scheme, as its authors words. TF-label (where
TF means Topological Folding) recursively folds the graph
to reduce the final index and applies labels to every vertex,
similarly to traditional Hop Labeling approaches. The ap-
proach assigns the sets labelsou:(u) and labels;n(u) to each
vertex u of the input graph, obtained from the topological
folding step, then for a given query r(u,v), it just needs to
verify the intersection between labelsou:(u) and labels;, (v)
to answer the reachability. If a common element is found, u
reaches v. Its index size is bounded by the number of labels
sets, and its query time complexity is bounded by the inter-
section operation. The construction time is approximately
linear with the in/out-degree of each vertex.

3. THEFELINEMETHOD

The fundamental idea behind FELINE is to associate ev-
ery vertex in V with a unique ordered pair of natural integers
so that a partial order < over N? is a superset of the partial
order 7 over V. In other terms, given the index i : V — N2,
built by FELINE, and two vertices (u,v) € V?, the impli-
cation r(u,v) = i(u) < i(v) always holds. In this way, if
i(u) 2 i(v) then no traversal of the graph is needed to neg-
atively answer the reachability query from u to v. We will
also see that, whenever i(u) < i(v), the index allows to dis-
card vertices in V, i.e., to reduce the search of a path in
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G to the search of a path in a sub-graph of G. Here is the
definition of the order < over N?:

DEFINITION 2  (PARTIAL ORDER =X). Y(Zu, Yu, Tv, Yv) €
N4; (muvyu) = (x’Uay’U) S Tu < Ty AYu < Yo

The reflexivity, antisymmetry and transitivity of < di-
rectly derive from those of <. Geometrically, (Ty,yu) =
(Tv,yv) means that (z.,y,) is in the upper-right quadrant
of the two-dimensional Cartesian system with (z.,y.) as
the origin and we say u dominates v. Notice that testing
whether this relation holds is performed in constant time.

The (z,y) coordinates attributed to every vertex of G are
called Dominance Drawing of G [23]. The method is inspired
on a weak dominance drawing [23], which guarantees that
V(u,w) € E,i(u) < i(w). From Def. 1, we therefore have:

LeEMMA 1. V(u,v) € V72,

u="v
r(u,v) = < or

Jw € V\ {u}i(u) < i(w) Ar(w,v)

The recursive application of this lemma and the transitiv-
ity of < together prove the following theorem:

THEOREM 1. Y(u,v) € V2, r(u,v) = i(u) < i(v).
With this theorem in hand, we can complement Def. 1:

DEFINITION 3 (ALG. DEFINITION OF REACHABILITY).

u="v
Y(u,v) € V2, r(u,v) < { or

I(u,w) € Eli(w) < i(v) Ar(w,v)

From a logical perspective, writing “i(w) = i(v) Ar(w,v)”
instead of “r(w,v)” does not bring anything since r(w, v) =
i(w) <X i(v) (by Theorem 1). Nevertheless, it is algorithmi-
cally interesting. It means that the recursive search for a
path from u to v (in G and starting from u) can be aborted
whenever an edge leads to a vertex w such that i(w) 2 i(v).
As a consequence, only a sub-graph of G is traversed.

With the help of FELINE’s index, answering the reach-
ability query from uw € V to v € V becomes an efficient
two-step process:

1. Test whether i(u) < i(v) and answer negatively if
i(u) A i(v) (by Theorem 1);

2. Otherwise search in G a path from u to v that only
passes by vertices whose indexes are < i(v).

3.1 Graphical Meaning

Given a DAG G, every vertex is associated with a pair
(z,y) € N? so that, for any two vertices u,v € G, if there is
a directed path from u to v, then the x-coordinate of v is less
than or equal to the x-coordinate of v and y-coordinate of u
is less than or equal to the y-coordinate of v. Figure 2 shows
an example of a small DAG and the index of size O(|V]).

The resulting index can be represented graphically. The
pair of integers (z,y) associated with a vertex is understood
as coordinates in the Cartesian plane.

Theorem 1 graphically means that, for a given vertex u,
we have only to check its upper-right quadrant, in order to
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Figure 2: The drawing of a small DAG: in (A)
the DAG; in (B) the related index, where each row
represents the coordinate of a vertex.

Figure 3: Example of dominance regions.
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Figure 4: Example of exception between u and wv.
The dashed arrow is a falsely implied path or a false-
positive.

identify the vertices that can be reachable from w. If not,
the reachability is negatively answered in constant time.
The =< relations between the vertices (or points in the
plane) are illustrated in Figure 3, where the dashed lines
express the reachability area starting from each vertex. For
example, consider the vertices a and h. For r(a, h), we nec-
essarily have i(a) < i(h) (by Th. 1) and, indeed, the hatched
area starting from point i(a) = (1,4) includes the point

i(h) = (7,8). We can also see in the figure that d is not
in the upper-right quadrant of b, i.e., i(b) £ i(d). Using the
contraposition of Th. 1, we conclude that d is not reachable
from b.

Unfortunately, the index does not allow to positively an-
swer a query in constant time. In other terms, Th. 1 states
that V(u,v) € V2, r(u,v) = i(u) =< i(v), but the reverse
implication does not always hold. Figure 4 shows a crown
DAG known as S graph. In the related index, we have
i(u) = i(v) even if r(u,v) is false, represented by a dashed
arrow between the vertices u and v (false-positive). Another
example is the vertex d in Figures 2 and 3, where, for the
vertex h, i¢(h) is in the upper-right quadrant of i(d), but it
is not reachable according to the graph (from Figure 2-(A)).

It is important to notice that some graphs, such as S,
do not admit a 2D index which is free of false-positives. In
fact, such problematic graphs exist for the construction of
any nD index with n arbitrarily large [14, 23]. The prob-
lem of minimizing the number of false-positives is known to
be NP-hard [23, 24], but we can generate an approximate
locally optimal solution that minimizes the number of false-
positives. (Another solution is shown later in this paper by
applying an optimization called positive-cut filter.)

3.2 Index Construction

Algorithm 1 generates the coordinates that will compose
the FELINE index. The x coordinates are first determined
by a topological ordering algorithm (line 2), resulting in the
set of coordinates X. Any topological ordering algorithm
can be used (an O(|V|+ |E|) time is found in [12]).

Algorithm 1: Index construction

Data: (V, E), a directed acyclic graph whose set of vertices, V,
is the set of integers from 1 to |V| and E C V?2
Result: (X,Y), two vectors of size |V| such that Vu € V,
i(u) = (Xu, Yu)

1 begin
2 X < TopologicalOrdering(V, E);
3 Y « 0;
4 heads < (0,...,0);
5 d<« (0,...,0);
6 forall the (u,v) € E do
7 heads,, < heads, U {v};
8 dy < dy + 1;
9 roots < {v € V | dy, = 0};
10 while roots # 0 do
11 U 4= arg MaxX, c oots (Xv);
// Append u to Y
12 Y + (Y, u);
// Update d and the roots set
13 roots < roots \{u};
14 forall the v € heads, do
15 dy < dy — 1;
16 if d, = 0 then
17 | roots < roots U{v};

To compute the Y set with y coordinates, we use a heuris-
tic (lines 3 to 17) proposed by Kornaropoulos in [24]. Each
step of the heuristic makes a decision about optimal locality
of the final position of the vertices minimizing the number
of false-positives. It performs repeated deletions of vertices
with no predecessors (i.e., root nodes) to generate a new
topological ordering Y. Given an initial set of roots (line 9),
the algorithm iteratively chooses the root with the highest
rank in X (line 11), a particular case of Kahn’s algorithm
[22].
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The arg max operator (line 11) tries to avoid an exception
between the chosen vertex and the vertices of previous it-
erations, by choosing the root vertex with the higher rank
value. This choice was proved to be locally optimal in [24],
since it selects a root vertex u that generates zero falsely im-
plied paths to any vertex in roots. After a root is selected
and removed from the set, new vertices with no predecessors
may appear and the set needs to be updated (lines 13 to 17).

For instance, consider the DAG of Figure 2-(A). A DFS-
based topological ordering can generate the set X with the
vertices {a,c,d, e, b, f,h,g} associated with z coordinates
with rank values from 1 to 8. The algorithm first fills the
roots set with {a,b} (line 9). Then, in line 11, it chooses
the root vertex b (with the rank value 5, in X) and puts it
into the Y set (in the first position). Next, in line 13, b is
removed from roots, which is updated with the new roots f
and g, and now roots = {a, f,g}. Then, as g has the higher
rank in X, it is also removed from roots and inserted into
the second position of Y. Notice that g has no descendants,
and, at that moment, Y = {b, g} and roots = {a, f}. The
vertex f is the next chosen and Y = {b, g, f}. In Figure 3,
the vertices b, g, and f have the y coordinates in 1, 2 and
3, respectively. The algorithm continues until the Y set is
completed.

3.3 Reachability Queries

Algorithm 2 is a pseudo-code that summarizes FELINE’s
query strategy. As mentioned earlier, for two vertices u and
v, it first checks whether v is equal to v, because of the
reflexive property or in case the search has reached the des-
tination. In line 4, if i(u) £ i(v) is true, we can immediately
stop the search, by contraposition of Th. 1. This last step
is known as negative-cut, because we need no search to con-
clude about the non-reachability between v and v. On the
other hand, if i(u) < i(v), no conclusion can be reached im-
mediately. In this case, FELINE needs to explore all vertices
inside the region between u and v recursively (in DFS).

Algorithm 2: Reachable

Data: (u,v) € V2, two vertices of the DAG
Result: r(u,v), whether v is reachable from u

1 begin

2 if v = v then

3 | return true;

4 if i(u) < i(v) then

5 forall the w € heads, do
6 if Reachable(w,v) then
7 |_ return true;

8 return false;

Let 7: V — {1,2,...,n} denote a topological ordering of
the vertices, for all (u,v) € E it holds 7(u) < 7(v). The sets
X and Y store the topological ordering ranks computed in
Algorithm 1, then, for all (u,v) € E, it is true that X, < X,
and Y, <Y,.

3.3.1 Discussion on FELINE's performance

Regarding online search approaches, in the case of posi-
tive queries ' (or even false-positives), the query time may

lwe use the term positive query referring to those queries
that receive a positive answer about the reachability, as in
opposite, we use the term negative query
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increase as new vertices are expanded by DFS. However,
due to the two topological orderings, the FELINE prun-
ing method can discard those expansions that do not reach
the searched vertex. Figure 5 illustrates the search asso-
ciated with a positive query r(u,v) in GRAIL, FERRARI
and FELINE, more specifically, the triangle represents the
search space composed by the vertices that are included in
u’s interval. For a better understanding, Figure 6 shows an
example.

77, expanded vertices

u u
|
%\ .
v v v
(A) Grall (B) Ferrari (C) Feline

Figure 5: The search space of the three online search
approaches: GRAIL, FERRARI and FELINE. The
triangles represent the vertices expanded by a DFS.
The hatched areas are the branches not pruned by
the topological orderings.

Hn@be® ebdd®
(NONOROROROCRO)] (OCXGXC)

Figure 6: This figure shows a didactic example of
a DAG and its two topological orderings obtained
by Algorithm 1. Given a query 7(a,g), all vertices
after g in (I) and (II) are discarded. This strategy
reduces the search space to only vertices a,c and g.

In all methods, the DFS will proceed expanding vertices
until no more vertices can be expand. But, specially in the
case of false-positives, the goal vertex v will never be found
by GRAIL and all vertices will be always expanded (or until
the level of v is reached). FERRARI avoids this case by
pruning vertices with rank higher than v in the topological
ordering, limiting the search to only a part of the search
space.

Figure 7 depicts the equivalence between the search space
explored by both GRAIL and FERRARI to the search space
explored by FELINE. It shows the pruning behaviour of
FELINE when it applies the same search concept used by
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(C) Feline

(A) Grail

(B) Ferrari

Figure 7: Pruning behaviour of FELINE when em-
ploying the same search strategies of GRAIL and
FERRARI. The red arrow indicates the possibility
of branches to be explored by DFS.

GRAIL and FERRARI. As FERRARI considers only one
topological rank of the goal vertex, it works as FELINE’s
pruning in just one dimension (e.g., on z-axis, in the fig-
ure). Although GRAIL employs a directed search, it may
explore paths that will never reach v, being equivalent to
FELINE without bounds checking in each dimension.

3.3.2 Computational Complexity

It is easy to see that Algorithm 2 takes time O(1) when,
for two vertices u,v € G, either u and v belong to the same
strongly-connected component or the weak dominance re-
lation does not hold (i.e., i(u) £ i(v)). However, when
i(u) = i(v), the reachability is decided by a DFS search in
a generally small part of the graph G identified by the in-
dex. The worst case is to traverse the whole graph G, i.e.,
O(|V|+|E|). However, in practice, the worst case will rarely
happens. The whole graph will be traversed only for those
graphs with just one root and, for queries starting from the
root vertex, the DFS needs to choose the wrong paths to the
target vertex. Furthermore, an optimization can prune the
search before its termination.

Regarding the time for index construction, the complexity
of Algorithm 1 is O(|V|log|V'| + |E|), because all edges are
enumerated (once in line 6, and again in line 14) and roots
is stored as a max-heap structure, where every vertex is
inserted once (O(log|V])), so that line 11 has an O(1) cost.
X, Y and d are simple arrays and heads is an array of arrays.
Since the algorithm uses a O(|V'|+|E|) topological ordering,
its final complexity is still O(|V |log|V| + |E|).

3.4 Optimizations
3.4.1 Positive-Cut Filter

Several approaches described in the literature use spanning-
trees in the index construction [1, 7, 31, 34, 35]. According
to Yildirim et al. [35], in a tree, indexing using a tradi-
tional min-post algorithm is enough to answer some queries
in constant time. This strategy is called positive-cut filter.

As mentioned in Section 2, the min-post strategy creates a
unique interval I, = [sq, €] for each vertex u, where s, and
e, denotes the start and the end of this interval. For those
paths restricted to tree edges, reachability can be guaranteed
(only positive queries). Thus, if I, C I,, we can conclude
that u reaches v. However, we can state nothing about the
non-tree edges, explaining why GRAIL uses this strategy as
a filter, i.e., one more pruning step before searching in the
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graph. FERRARI also employs the same strategy.

.11

[2.2] [7,7]

(M3l

Figure 8: Min-post indexing for a spanning-tree ex-
tracted from the DAG of Fig.2. Each vertex is la-
beled with its min-post interval.

[8,8]

Figure 8 shows a spanning-tree (a spanning-forest, in this
case) extracted from the DAG of Figure 2 and indexed with
the min-post strategy (the labels represent the index). For
instance, consider the vertex h of Figure 8. We can conclude
that the query r(a,h) will return true, without a search,
because [3,3] C [1,5]. However, we can say nothing about
the query r(b, h), because there is no tree edges connecting
the two vertices.

FELINE adds two extra steps in Algorithm 1 to compute
the positive-cut intervals. First, it is the extraction of a
spanning-tree (that may be performed by the topological
ordering in line 2), and, second, the application of min-post
strategy. To use the positive-cut filter, Algorithm 2 needs
to be changed to Algorithm 3, where the new lines 1 and 2
verify the intervals assigned to each vertex by min-post.

3.4.2 Level Filter

Another filter used in FELINE (also in GRAIL and FER-
RARI) is the Level Filter [35], which is an extra indexing
strategy that assigns to each vertex an integer number ac-
cording to its level, representing a negative-cut.

The level of a vertex v (I,) can be defined as its depth [5]:
if v has no immediate predecessors, the [, = 0; otherwise,

<ma§< . lu+1. According to Bender et al. [5], the level
w:(u,v)€E

of a vertex induces its topological ordering: if u precedes v
in the Dag G and u # v, then [, <l,. Algorithm 3 applies
this filter (line 6).

ly =

(1,4)

(@
@9(c) (d)

(6,1)

®
(F).2)

(3,7% (4,5)
(88 (56 (93

Figure 9: Example where the vertex h does not reach
g, but there is a false-implied path between them (g
is in domination area of h). However, g and h are in
the same level, and the level filter prune the search.
The numbers represents the coordinates attributed
by FELINE.

Figure 9 helps to understand the applicability of level fil-



| Graph || vertices | edges | Cluster-coeff | Eff-diameter | roots | leafs |
Arxiv 6000 66707 0.35 5.48 961 624
Yago 6642 42392 0.24 6.57 5176 263
Go 6793 13361 0.07 10.92 64 3087
Pubmed 9000 40028 0.10 6.32 2609 4702
citeseer 10720 44258 0.28 8.36 4572 1868
Uniprot22m 1595444 1595442 0.00 3.3 1556157 1
Cit-patents 3774768 16518947 0.09 10.5 515785 1685423
citeseerx 6540401 15011260 0.06 8.4 567149 5740710
Go-uniprot 6967956 34770235 0.00 4.8 6945721 4
Uniprot100m 16087295 16087293 0.00 4.1 14598959 1
Uniprot150m 25037600 | 25037598 0.00 4.4 21650056 1

Table 1: Datasets

ter. The example shows that a false-positive query r(h,g)
could be pruned in constant time just by verifying that h
and g are at the same level.

Algorithm 3: Reachable

Data: (u,v) € V2, two vertices of the DAG
Result: r(u,v), whether v is reachable from u
1 begin
if I, C I, then
| return true;

[-B V]

4 if w = v then

5 | return true;

6 if i(u) < i(v) and l, <, then
7 forall the w € heads, do
8 if Reachable(w,v) then
9 |_ return true;

10

return false;

4. EXPERIMENTS
4.1 Datasets

4.1.1 Benchmark: Real graphs

We used 5 small (i. e., less than 100,000 vertices) and dense
real-world DAGs: Arziv?, Citeseer®, Go*, Pubmed® and
Yago®. We also used 6 large real-world DAGs (sparse and
dense): Cit-Patents”, Citeseerz®, Uniprot22m, Go-uniprot,
Uniprot100m and Uniprot150m®. Table 1 shows some char-
acteristics of the graphs, such as the number of vertices and
edges, clustering coefficient, effective diameter (instead of
diamenter) available from [35] (the authors used the SNAP
software’® to compute these values). The effective diameter
(or effective eccentricity) is an estimated size of the path in
which 90% of all pairs of vertices connected are reachable
from each other [6]. The effective diameter is more robust
than the diameter and has been successfully used to analyse
topological properties of Internet graphs [6, 29].

Zarxiv.org

3citeseer.ist.psu.edu

www.geneontology.org
www.pubmedcentral.nih.gov
www.mpi-inf.mpg.de/suchanek /downloads/yago
snap.stanford.edu/data/cit-Patents.html
8citeseerx.ist.psu.edu

9www.uniprot.org

Ysnap.stanford.edu/snap/

N O O
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4.1.2 Synthetic graphs

We also performed experiments using synthetic random
graphs (DAGs) generated to test the scalability of the ap-
proaches. Table 2 shows these datasets. Each graph was
generated according to [35]. At first, given a predetermined
set of vertices, we generated a permutation of this set, in
practice a different topological ordering. Then, for a given
number of edges, we randomly select two vertices and con-
nect them, respecting their topological order. The size of
those graphs make the computation of the clustering coeffi-
cients and effective diameters prohibitive.

Graph ][ vertices | edges
50M 50M 50M
60M 60M 60M
70M 70M 70M
80M 80M 80M
90M 90M 90M

100M 100M 100M
200M 200M 200M
50M-5 50M 250M
50M-10 50M 500M
100M-5 100M 500M
100M-10 100M 1000M

Table 2: Synthetic Dataset

4.2 Experimental methodology

GRAIL [35], FERRARI, Nuutila’s INTERVAL [26, 33]
and TF-Label [9] are considered the most efficient methods
for answering reachability queries. Like FELINE, GRAIL
and FERRARI also employ an online search where the graph
should remain in memory along with the generated index.
INTERVAL and TF-Label are based on the compression of
the transitive closure, generating a self-sufficient index, that
is, queries can be answered based only on the index, without
the need to maintain the original graph in memory.

Fully optimized versions of the baselines were used in the
experiments (following the authors’ recommendations). All
implementations (GRAIL, FERRARI, INTERVAL and TF-
Label) were provided by their authors and are in C++,
as well as FELINE. All FELINE’s implementations use the
positive-cut filter and the level filter.

The experiments with small graphs (i.e., with less than
100,000 edges) were performed on an Intel(R) Xeon(R) CPU
E5620 (8-core, 2.40GHz) machine with 32G ram. For larger
graphs, we used an Intel(R) Xeon(R) CPU E5620 (8-core,
2.40GHz) machine with 96G ram. However, all implemen-
tations are single threaded.

4.2.1 Queries

We generated a specific set of queries for each graph (real



Graph GRAIL INTERVAL FERRARI TF-Label FELINE GRAIL INTERVAL FERRARI TF-Label FELINE
Arxiv 13.607 48.136 30.085 7885.118 5.533 745.230 28.087 166.103 164.076 493.092

Yago 11.714 13.707 18.501 50.998 4.206 27.810 16.099 33.119 11.689 9.893

Go 8.160 7.504 10.583 30.715 3.333 66.344 18.193 29.209 18.597 81.846

Pubmed 13.967 27.392 32.609 86.405 5.528 32.269 12.614 23.530 10.744 9.997
Citeseer 17.403 31.409 34.591 154.177 7.356 37.842 17.373 32.247 15.814 13.226
Uniprot22m 7121.763 1189.403 1083.154 2546.216 818.732 36.524 87.393 23.263 19.670 18.115
Cit-patents 22575.605 504209.060 28157.440 253828.562 6065.227 91.998 74.917 87.360 62.005 41.291
Citeseerx 25400.748 8049.076 18134.930 104418.257 5519.161 97.654 47.417 61.792 91.149 40.292
Go-uniprot 45998.303 23002.793 29491.370 70984.078 6051.333 37.633 112.861 213.040 30.319 22.817
(Uniprot100m 93990.593 13279.480 14223.680 48741.968 10533.610 53.373 117.323 60.839 48.084 26.507
[Uniprot150m 155546.666 21756.457 25738.860 70321.609 17745.300 63.384 121.837 61.466 55.397 27.764

Table 3: Construction and query times for real graphs. Average times (in milliseconds).

or synthetic) and we randomly selected 500k pairs of vertices
for each set. We submit the respective set of queries to each
dataset, and all results shown are the average values of 10
executions. With these sets of queries, we were able to esti-
mate the performance in terms of query times, construction
time of the indexes and their size.

All datasets, source code of the algorithms and test sets
are available at http://www.dcc.ufmg.br/~ renerv/feline.

4.3 Results

4.3.1 Index construction time

Table 3 shows the average values obtained from the con-

The average times to answer a query are also shown in Ta-
ble 3. The INTERVAL method achieved good results but, as
we will show, could not build the indexes of the larger syn-
thetic graphs. Again, at confidence level of 0.1, the Friedman
test shows that the performances are significantly different.
However, as detailed in Fig. 11, FELINE is competitive with
INTERVAL and TF-Label, since they are in the same group.
However, as FELINE is faster than GRAIL and FERRARI,
we can state that FELINE has the best query time (con-
sidering the real datasets). Indeed, FELINE is typically 2
times better.

struction times of indexes (in milliseconds). Best results are %‘
highlighted with a gray background. Figure 13 summarizes 5 4 3 ) ;
the times for synthetic graphs. | ] | o
For small graphs, the construction time of FELINE is up —— : H
to 3 times faster than GRAIL, FERRARI, INTERVAL and Grail --roomeanes ; — T Feline

TF-Label. For the large graphs, the performance of the
FELINE is up to 10 times better than the others.

We applied the Friedman test [15] to the results to obtain
their statistical significance. At a confidence level of 0.1,
FELINE’s performance is significantly better in all cases.
Proceeding to the Nemenyi post-hoc test [17], we plot the
diagram of the Fig. 10, which represents the critical differ-
ence of performance between the approaches. In the dia-
gram, the axis represents the average ranks of the methods,
from 1 (best) to 4 (worst). When comparing all the meth-
ods against each other, we connect the groups that are not
significantly different by a bold line. The critical difference
(CD) is also shown and if the distance between the ranks of
two methods is greater than the CD, then the methods are
not grouped. For instance, the group formed by INTER-
VAL, GRAIL and FERRARI indicates that the differences
of their performances are not statistically significant.

CD = 1.658

1

TF-Label ---nnt !—! - Feline
e Interval

L L L LE LT LE P EEELEL et Ferrari

Figure 10: The critical difference diagram for the
construction times.

4.3.2 Query answering time

..................... TF-Label

Interval

Figure 11: The critical difference diagram for the
query times.

4.3.3 FELINE-B approach

In many graphs, the out-degrees and in-degree follow dif-
ferent distributions. To verify whether this difference can
influence the FELINE’s index, we plot the indexes for some
graphs and its reversed version, i.e., for each DAG G, we
generate another DAG GT = (V, ET), where ET is the set
of edges with its reversed directions. We notice that the
vertices of the normal and the reversed graphs present dif-
ferent placements. This occurs because reversing the edges
of a DAG, due to the in-degree and out-degree distributions
of its vertices, the number of successors (and predecessors)
of each vertex changes, as well as the number of roots and
leafs of the DAG. Figure 12 shows plottings from four DAGs
indexes: Arvix, Yago, Go and Pubmed (Their sizes make
possible the plottings). Obviously the query r(u,v) in the
DAG G is equivalent to the r(v,u) in the DAG GT, but, as
the vertices have different coordinates in each index, each
one performs different to the same query.

Considering the plottings, we decided to investigate whether
the use of reversed graphs may contribute to improve the
performance of FELINE. We then included new experiments
where FELINE generates a reversed index (from the re-
versed graph). The version that used a reversed index is
called FELINE-I. Table 4 summarizes the construction and



Graph FELINE FELINE-I FELINE-B FELINE FELINE-I FELINE-B
Arxiv 5.533 5.467 10.760 493.092 894.211 420.806
Yago 4.206 3.776 8.090 9.893 24.754 9.435
Go 3.333 3.737 6.706 81.846 34.753 44.390
Pubmed 5.528 5.465 10.700 9.997 9.006 9.517
Citeseer 7.356 6.821 14.102 13.226 19.508 11.608
Uniprot22m 818.732 740.511 1567.305 18.115 18.964 19.461
Cit-patents 6065.227 5994.798 11913.330 41.291 27.894 32.226
Citeseerx 5519.161 6242.018 11243.650 40.292 56.193 41.777
Go-uniprot 6051.333 6616.405 12202.540 22.817 53.354 24.392
[Uniprot100m 10533.610 9417.537 20373.920 26.507 28.410 29.837
Uniprot150m 17745.300 15985.690 34359.940 27.764 29.749 31.570

Table 4:

query times for FELINE-I.

Arxiv
T

Figure 12: Indexes plotting. Legend: * for normal
and A for reversed. The normal or reversed indexes
can result in different performances.

The observed gains of FELINE-I, for some datasets, indi-
cates that the reversed index can be used to compose a new
and more efficient prune strategy. This new strategy is based
on looking at both indexes (normal and reversed), i.e., in
the intersection of the reachable areas (two weak dominance
tests at line 4 of Algorithm 2). FELINE-B (bidirectional)
implements this new strategy. For a query r(u,v), all ver-
tices out of the (u,v) area in the normal index and the (v, u)
area in the reversed one, are discarded. The performance of
FELINE-B is compared with FELINE and FELINE-I in Ta-
ble 4. Notice that the average time for index building almost
doubled, but FELINE-B results are close to the best single
index for each dataset, and better than the average of both
FELINE and FELINE-I.

4.3.4 Yynthetic Datasets

The construction times and query times are reported in
Figures 13 and 14, respectively. Notice that for the 200M,
50M-5, 50M-10, 100M-5 and 100M-10 datasets shown, there
are no results for the INTERVAL and TF-Label, because
during the experiments they failed with these datasets. FER-
RARI registered an execution time up to 8 hours for the
100M-10 dataset and was cancelled.

These results show that FELINE and FELINE-B are scal-
able and truly competitive with the state of the art ap-
proaches. With the experiments, we can demonstrate that
FELINE has a very stable high performance in construction
time and FELINE-B has the best query times.

435 Indexsize
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Results for FELINE-B. Average times (in milliseconds).
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Figure 13: Construction times for synthetic graphs.
At a confidence level of 0.1, all results are signifi-
cantly different.

Figures 15 and 16 show the size of the indexes built by FE-
LINE. The figures do not show the values for the FELINE-I,
because its index size is the same of FELINE.

Due to its multiple intervals, GRAIL generates indexes
that are larger than those generated by FELINE, which are
2 times greater when d = 3 and 4 times greater when d = 5.
Since FELINE-B generates an index of size that is propor-
tional to the normal and reversed graphs (with positive-cut
and level filters), its index is greater than the FELINE’s in-
dex (FELINE and FELINE-I), but it is not exactly twice
as big because each filter is applied just once in FELINE-B,
only on the normal index.

4.4 Scarab Framework

According to [18], the SCARAB framework (see Section 2)
can speed up the reachability queries. Although it is not the
aim of this paper to investigate the applicability of boost-
ing methods, we use the framework to show that FELINE
can also take advantage of it. For this, we implemented a
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Figure 14: Query times for synthetic graphs. At a
confidence level of 0.1, all results are significantly
different.
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Figure 15: Index sizes for real graphs.

Graph [[ FELINE-SCAR [ GRAIL-SCAR
Arxiv 203.761 319.452
Yago 8.691 20.760
Pubmed 8.703 17.932
citeseer 10.539 19.595
uniprot22m 23.033 63.202
Cit-patents 30.749 52.908
citeseerx 35.248 171.752
Go-uniprot 28.025 74.649
uniprot100m 30.970 85.538
uniprot150m 33.068 91.111

Table 5: Query times for SCARAB implementa-
tions. At a confidence level of 0.1, all results are
significantly different.

version called FELINE-SCAR, derived from the FELINE-B
method. In theory, any existing approach can be boosted
with SCARAB, but we were not able to do so for INTER-
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Figure 16: Index sizes for synthetic graphs. At a

confidence level of 0.1, all results are significantly
different.

VAL and TF-label due to the complexity of the framework
to handle “offline” approaches, since is necessary some mod-
ification on the original approaches. GRAIL-SCAR were
provided by the authors and it was acclaimed as the best
method in [18].

Table 5 shows the results of some experiments performed
in the same conditions applied before (500k queries, 10 exe-
cutions and the same machines), and following the recommen-
dations of SCARAB’s authors. Although some gains were
observed with the SCARAB versions for some datasets, at a
confidence level of 0.1, FELINE-SCAR and GRAIL-SCAR
are significantly different, as presented in Figure 17.

CD =1.261

4 3 2 1

Grail-SCAR

Feline-SCAR

Figure 17: The critical difference diagram for Scarab
experiments.

4.5 Discussion

For all datasets we can notice that, despite the particular
characteristics of the graphs, FELINE approaches achieved
best results, but we need to highlight some issues:

e The INTERVAL approach does not scale well, failing
for very large graphs. The problem remains in the
memory requirements for building the index.



e FERRARI and TF-Label outperform GRAIL in query
and construction times, but TF-Label generated the
smallest index. However, with the best of our efforts,
we were unable to identify the reasons that made this
approach fail for some the synthetic large datasets.

Every online search approach studied can prune neg-
ative queries in constant time and also applied the
positive-cut strategy to prune some positive queries.
Then the differences among their performances really
come from the search done in those cases where the
queries were not previously pruned or in case of false-
positive queries. We show that Feline discards more
branches in the search, avoiding that vertices that ap-
pear after the goal vertex in the topological orderings
are expanded.

The relatively simple FELINE approach for building
indexes limits their size. The linear size of the indexes
(with the number of vertices of the graphs) avoids the
undesirable a priori thinking about the number of in-
tervals that needs to be used in GRAIL, to optimize
the query time and index size. Considering the IN-
TERVAL method, this works even better, because the
number of intervals is found dynamically. The number
of intervals used by FERRARI’s index is predefined
like GRAIL, but some optimizations increase the in-
dex dynamically.

FELINE and FELINE-B represent the best of two com-
promises: construction time and query time. FELINE
achieved the best construction times for all datasets,
and FELINE-B achieved the best query times, with a
competitive index size.

5. CONCLUSION

Given a graph, we considered the task of efficiently an-
swering whether there is a path connecting two arbitrary
vertices. It is an important and challenging problem in many
applications that handle very large graphs, like social net-
works, biological structures, dependence graphs in compilers
and so on.

This paper presented Feline, a novel graph indexing me-
thod for the reachability problem. Inspired by the Weak
Dominance Drawing technique, Feline is scalable and easy
to implement. Experiments show that it outperforms the
state of the art w.r.t. query and construction time, and also
the size of the index it builds.

We are currently working on distributed, out-of-core and
incremental versions of Feline. We believe that its index
may be extended to support efficiently these versions.
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