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ABSTRACT
Association rule mining typically focuses on discovering global
rules valid across the entire dataset. Yet local rules valid for subsets
of the dataset, while significantly different from global rules, are
often also of tremendous importance to analysts. In this work, we
tackle this overlooked problem of online mining of localized asso-
ciation rules. We provide support for analysts to interactively mine
rules that are hidden in a global context yet are locally significant.

To tackle this problem we design a compact multidimensional
itemset-based data partitioning (MIP-index). MIP-index offers ef-
ficient mining performance by utilizing precomputed results, while
still allowing the user the flexibility of selecting any data subset
of interest at run-time. We design a suite of alternative execu-
tion strategies for processing such localized mining requests. Op-
timization principles such as selection push-up, supported R-tree
filter and differential treatment of contained and partially over-
lapped MIPs are proposed. We analytically and experimentally
demonstrate that different execution strategies are effective for dif-
ferent query scenarios. Given a localized mining query, our CO-
LARM query optimizer takes a cost-based approach to identify the
best strategy for execution. Through extensive experiments using
benchmark data sets we demonstrate that the COLARM optimizer
is highly accurate in online plan selection and discovering local-
ized rules (otherwise hidden in the global context) in a diversity of
localized mining requests.

1. INTRODUCTION

1.1 Motivation
Mining of association rules and correlations from large datasets

has been recognized as an increasingly critical technology for data-
intensive decision-making activities [2,10,16,17]. Different aspects
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Company Title Location Gender Age Salary
IBM QA Lead Boston M 30-40 60K-90K
IBM Sw Engg Boston F 20-30 90K-120K
IBM Engg Mgr SFO M 20-30 90K-120K

Google Sw Engg SFO F 20-30 90K-120K
Google Sw Engg Boston F 20-30 90K-120K
Google Sw Engg Boston M 20-30 90K-120K
Google Tech Arch Boston M 40-50 120K-150K

Microsoft Engg Mgr Seattle F 30-40 90K-120K
Microsoft Sw Engg Seattle F 30-40 90K-120K
Facebook QA Mgr Seattle F 30-40 90K-120K
Facebook QA Engg Seattle F 20-30 30K-60K

Table 1: The example salary dataset.

of rule mining have received substantial attention. In particular, (a)
improving the efficiency of mining algorithms [4, 6]; (b) generat-
ing rules at different data granularities [10, 19]; (c) mining rules
over heterogeneous data types [20]; (d) defining rule interesting-
ness measures [23]; and, (e) parameter space based interactive rule
exploration [13, 15]. All these efforts, including our prior work
PARAS [13, 15], focus on discovering global rules valid across the
entire dataset. Yet local rules valid for subsets of the dataset, while
significantly different from global rules, are often also of tremen-
dous importance to analysts. The problem of online discovery of
localized rules from subsets of data has received little attention.

Importance of local patterns. Simpson’s paradox [18] estab-
lishes that local patterns can be very different from global patterns.
We illustrate this phenomenon in the context of rule mining. The
salary dataset (Table 1) shows salary information of anonymized IT
employees in different regions of the United States. Based on the
complete dataset, a global salary trend given by rule RG = (A0→
S2) 1 can be mined. Rule RG means that the employees with age
between 20 and 30 usually have salaries ranging between $90K
and $120K. RG has 45% support, i.e., it holds true for five out of
the total of eleven records. It also has a confidence of 83% (5/6).
Next, if an analyst wants to learn the local trends for the female
employees in Seattle (here, the last four records), a localized rule,
namely, RL = (A1 → S2) will be discovered with a 75% support
and a 100% confidence. Interestingly, the global rule RG does not
hold true in this subset.

The above example highlights that localized rule RL will be hid-
den in the global context unless the analyst lowers the minsupport
to < 27% (possibly outputting overwhelmingly large set of rules).

1For rule mining over quantitative data [20], the attribute-value
pairs are discretized into disjoint intervals (e.g., Age 20-30,30-40,
and so on.). We denote the intervals for each dimension as Age =
{A0,A1,A2,. . .}, Salary = {S0,S1,S2,. . .}, and so on. Here, A0=
(Age in 20−30 years) and S2 = (Salary in 90K−120K).
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Even if, in the global context, RL is discovered as a low support
rule, the analyst may not discover that this low ranked rule RL is
prominent in a local context. In general, as trends may vary greatly
from region to region, from job to job and across different age
groups, global patterns may not represent the dataset adequately.

One of the best-known real-life examples of Simpson’s paradox
occurred when the University of California, Berkeley was sued for
bias against women who had applied for admission to graduate
schools there. The admission figures for the fall of 1973 showed
that men applying were more likely than women to be admitted, and
the difference was so large that it was unlikely to be due to chance.
But when examining the individual departments, it appeared that no
department was significantly biased against women. In fact, most
departments had a "small but statistically significant bias in favor of
women". Moreover, this problem has also been motivated in some
of the prior works [8, 22]. In our experimental evaluation (Section
5.3), we observe strong evidence of such Simpson’s paradox in our
tested datasets in the context of localized rule mining queries.

Need for a POQM solution. Employing a mining algorithm
at query-time on even a moderately sized dataset to generate rules
may be prohibitively costly [2, 16]. This holds true even in the
context of localized rule mining; as confirmed by our experiments.
To maintain user interest and focus, real-time query turnaround
times are essential. Clearly, innovations are needed beyond making
the rule mining algorithms faster. Towards this end, online min-
ing solutions [2, 13, 15] employ the preprocess once - query many
(POQM) paradigm. The expensive frequent itemset generation step
is performed offline using a primary support threshold2 to prestore
frequent itemsets in an itemset-based index. At query-time, rules
satisfying user thresholds are generated using the index. In this
work we propose to extend the POQM paradigm towards online
mining of localized rules. Further, for the localized rule mining sce-
nario we discover that due to uncertain nature of subset selection we
cannot guarantee that a POQM solution always outperforms a naive
solution of running the rule mining algorithm from scratch on the
chosen subset. Thus, there is scope for comparison of alternative
execution plans and plan selection using cost-based optimization.

1.2 The State-of-the-Art
Pioneering works in constraint-based mining are done by Bouli-

caut et al. [7, 12]. We leverage from the survey of condensed rep-
resentations [7] as we propose to prestore closed frequent item-
sets for our localized rule mining problem. While [12] presents an
algorithm to efficiently manage the constraint-based mining task
when the sequential databases contain consecutive repetitions of
their items, they do not focus on online mining of rules. Overall,
we extend the problem of local pattern detection [14] towards dis-
covering local association rules. Unlike existing works, we explore
the problem of online localized rule mining and employ a POQM
solution to solve this problem.

Recent works on rule mining over multidimensional windows
[8, 22] are closely related. However, their scope is restricted to
transactional datasets such as Market Basket. They make the re-
stricting assumption that the partitioning attributes (such as loca-
tion and time) are distinct from the transactions that compose the
itemsets and rules. We, instead, focus on a relational data model
where both the subset (equivalent of partitioning attributes) and the
itemsets to form rules come from a common pool of attribute-value
pairs. Moreover, both are defined at query-time. Hence, our target
problem is fundamentally different from prior works [8, 22]. For
detailed analysis of related works see Section 6.
2Assuming that analysts are not interested in rules with support
lower than the primary support [2].

1.3 Research Challenges
Our goal of designing a POQM solution for online localized rule

mining imposes the following research challenges.
Offline data preprocessing. Precomputing locally frequent item-

sets is complex. For a dataset containing m records, the total num-
ber of possible subsets that the analyst can select at query-time is
given by the Bell Number [9] as

∑m
i=0{

m
i }, where {mi } is the Stir-

ling number. Clearly, prestoring all possible partitions and their
corresponding frequent itemsets is infeasible. An effective index-
ing strategy for compactly prestoring itemsets (such as suggested
in [7]) is needed to render POQM feasible in a local context.

Online focal subset selection. We denote the subset of interest
to the analyst as the focal subset. The focal subset is specified as a
query-time parameter and may range from as few as a single record
to as many as all records of the dataset. Clearly, a versatile online
query processing strategy is required that can utilize the precom-
puted index structure to efficiently identify the focal subset and the
candidate frequent itemsets.

Online localized rule verification. Most existing online mining
solutions [2, 8] only verify the minsupport (as it is relatively in-
expensive to compute), while avoiding the costlier minconfidence
checks. Due to the importance of null-invariant measures [23], we
propose to verify both minsupport and minconfidence. However, as
these measures can only be verified at query-time, efficient mecha-
nisms are needed for the same.

1.4 The COLARM Approach
The key contributions of this work are summarized as follows:
• We formulate the online localized rule mining query. In ad-

dition to the traditional rule interestingness thresholds (minsupport
and minconfidence), a localized rule mining query introduces two
new parameters, namely, range and item to enable subset selection
and item attribute specification, respectively (Section 2).
• We introduce the Multidimensional Itemset Partitioning in-

dex (MIP-index). MIP-index offers efficient mining performance
by utilizing precomputed results, while still allowing the flexible
query-time selection of data subsets. This is achieved by compactly
prestoring two features of the itemsets, namely, (a) the multidimen-
sional bounding box of the itemsets; and, (b) the items composing
the itemsets (Section 3).
• We isolate different online mining steps and optimize each of

these steps by employing novel optimization principles in the con-
text of online localized rule mining. We construct several alterna-
tive mining plans by pipelining the different optimized steps. We
develop a cost model to estimate benefits and overheads of these
plans. We further develop a Cost-based Optimizer for Localized
Association Rule Mining, in short COLARM, for online selection
of the most cost-effective plan (Section 4).
• Our extensive experimental study using benchmarks such as

chess, mushroom and PUMSB datasets from UCI ML repository
[5] establishes that our COLARM optimizer is highly accurate (∼93%)
in selecting the most efficient mining plan for a rich diversity of
online mining requests. We also observe strong evidence of Simp-
son’s paradox in the context of localized rule mining (Section 5).

2. PRELIMINARIES
We first describe how we represent itemsets in a multidimen-

sional space and then formulate the online localized rule mining
problem using the terms defined in Table 2.

2.1 Itemsets in Multidimensional Space
Consider a relational databaseD with n attributes {A1, . . . ,An}.

Let there be m data records in D. Each data record r consists of
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Symbol Definition
n Total number of attributes in a relation.

minsupp User-specified min. support.
minconf User-specified min. confidence.
Arange Range attribute-value pairs in the WHERE clause of Q.
Aitem Item attributes specified in the WHERE clause of Q.
DQ User-chosen focal subset.

SuppGI Global support of an itemset I in the complete datasetD.
SuppQI Local support of an itemset I w.r.t. the subsetDQ.
ConfGR Global confidence of Rule R in the complete datasetD.
ConfQR Local confidence of Rule R w.r.t. the subsetDQ.
{IQS } Set of candidate itemsets w.r.t. DQ output by SEARCH.
{IQE } Set of candidate itemsets inDQ output by ELIMINATE.
{RQ} Set of local rules inDQ output by VERIFY.

Table 2: List of notation. Figure 1: Itemsets in n-Dimensional Space.

value <v1,. . .,vi,. . .,vn>, where vi corresponds to attribute Ai
of the n attributes. Rule mining [3] works with only nominal at-
tributes, while quantitative attributes are first discretized3. ForD, a
single attribute-value pair (Ai = vi) forms an item and a collection
of such items is called an itemset. For example, in the salary dataset
(Table 1), A0=(Age=20-30) is an item. (Age=20-30, Salary=90K-
120K), also denoted as (A0,S2), is a 2-itemset as it consists of two
items. Further, (Age=20-30, Salary=90K-120K, Company=IBM),
denoted as (A0,S2,C0), is a 3-itemset.

For ease of depiction, in Figure 1 we assume that the salary
dataset consists of three dimensions, namely, age, salary and com-
pany. Here, the records {2,3} belong to the cell (A0, S2, C0). The
cells (3-itemsets), namely, (A0, S2, C0), (A0, S2, C1), (A0, S2,
C2) and (A0, S2, C3) combine to form the 2-itemset (A0,S2). The
bounding box for (A0,S2) is shown in Figure 1. This conforms to
the downward closure property4 of itemsets that we utilize in our
work. While cells (A0, S2, C0) and (A0, S2, C1) contain records
{2, 3} and {4, 5, 6} respectively, cells (A0, S2, C2) and (A0, S2,
C3) are empty. Thus, in general we divide an n-dimensional space
into (n-itemset) cells at the lowest granularity. Several i-itemsets
can be combined to form each (i-1)-itemset. This bottom up pro-
cess can be repeated until 2-itemsets are composed.

2.2 Localized Association Mining Problem
An online mining query for localized rules can be specified by

query Q. Given a datasetD, localized rules valid in the focal subset
DQ are requested. The range parameter Arange in the WHERE
clause specifies DQ. For each range attribute Arangei , the user se-
lects values, where vrangei,p denotes the pth value.

Q: REPORT LOCALIZED ASSOCIATION RULES

FROM Dataset D
WHERE RANGE Arange = { Arange1 = (vrange1,1 ,...), . . .,

Arangek = (vrangek,1 ,...)}
AND

[ ITEM ATTRIBUTES Aitem = {Aitem1 , . . ., Aitemf } ]

HAVING minsupport = minsupp and

minconfidence = minconf;

For the salary dataset (Table 1), (Age={20-30, 30-40} and Com-
pany = {IBM}) forms an example focal subset DQ denoting the
3Discretization of quantitative data (e.g., discretization of attribute
Age as {20-30, 30-40, . . .} versus {20-40,40-60,. . .}) is an orthog-
onal problem and existing works [10, 20] can be applied offline to
achieve the best discretization for a dataset.
4For a frequent itemset, all its subsets are also frequent and thus for
infrequent itemset, all its supersets must also be infrequent.

IBM employees between ages 20 and 40. By defaultArangei spans
over the domain of Arangei . The users can optionally use the item
clause (Aitem) to specify the attributes for generating rules. There-
fore, (Arange ⊆ A) and (Aitem ⊆ A).

Let the user-defined focal subset be DQ. Size of the focal subset
(|DQ|) is the number of tuples in the focal subset. It is computed by
counting the tuples overlapping with the range parameter Arange.
For an itemset I, if DQI denotes the records of DQ that support I,

the local support for I (SuppQI ) = |D
Q
I
|

|DQ| . Itemset I is frequent inDQ

if SuppQI ≥ minsupp. Further, for a rule R = ( X ⇒ Y ), where
I = (X ∪ Y), the local confidence ConfQR is given by the fraction
Supp

Q
I

Supp
Q
X

. Only if ConfQR ≥ minconf, Rule R is included in output

{RQ}. As range and item attributes are known only at query-time,
offline precomputation of local support and confidence values is not
possible. The overall problem is formulated below.

DEFINITION 1. Localized Association Mining Problem: Given
the range attributes Arange, the item attributes Aitem and the
thresholds, namely, minsupp and minconf, find the set of associ-
ation rules {RQ} = {RQ1 , R

Q
2 , . . . , R

Q
m} valid for the focal subset

DQ (defined by Arange). such that for every rule RQk = Xk ⇒
Yk, Xk∪ Yk ⊆ Aitem, the local support SuppQk ≥ minsupp and
the local confidence ConfQk ≥ minconf.

3. THE COLARM DESIGN
To process a localized rule mining query Q, our approach adapts

a preprocess-once-query-many (POQM) paradigm-based solution
composed of two phases, namely, offline preprocessing and online
query processing as described below.

3.1 The COLARM Framework
We now give an overview of our proposed approach that we call

the COLARM framework (Figure 2). The framework consists of an
offline preprocessing phase and an online query processing phase.
The offline preprocessing phase computes and stores the itemset in-
formation using efficient index structures called the MIP-index (ex-
plained in Section 3.3). The index statistics are also pre-computed
and stored for analysis of online mining strategies. In the online
query processing phase, a user submits a mining request that con-
sists of minsupp, minconf and focal subset DQ.

In this work, we propose a suite of six alternate mining plans
for executing the localized mining request submitted by the user.
The cost for each mining plan is derived and discussed in detail
in Section 3.4. Based on the index statistics provided by the offline
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Figure 2: The COLARM framework.

preprocessing phase and the online query parameters, namely, min-
supp, minconf and focal subsetDQ, our proposed COLARM query
optimizer estimates the costs of the alternate plans. The estimates
are a constant time computation of six formulae, each correspond-
ing to one mining plan. For a given mining request, the COLARM
optimizer suggests the plan with the lowest estimated cost which is
then used by the executor to process the online mining request.

3.2 Offline Preprocessing Phase
The preprocessing phase is a one-time offline step. For answer-

ing localized mining queries using POQM, we extend ideas from
two works. First, as summarized by Boulicaut [7], existing works
prestore frequent itemsets in a compact hierarchical itemset-based
index such as a closed IT-tree [24]. At query-time, the index can be
utilized for rule generation and to verify if the generated rules qual-
ify the minsupp and minconf thresholds. Next, Das et al. [8] an-
swer windowed frequent itemset queries by prestoring the bound-
ing boxes of the window attributes. We thus propose to utilize a
multidimensional index to store bounding boxes of itemsets. But in
our relational model as range and item are specified at query-time,
the multidimensional index must be more flexible than required by
their transactional model. In contrast to these two works, we find
that our target problem requires both features of an itemset to be
prestored. Thus, for each itemset we prestore (a.) the bounding box
of the itemset within the multidimensional space and (b.) the items
composing the itemset in a compact hierarchical index. While fea-
ture (a.) enables us to search overlaps between the focal subset and
the pre-stored itemsets, (b.) helps in efficient online rule generation
and threshold verification.

Similar to prior online rule mining works [2, 8], we prestore all
itemsets that satisfy a domain-specific primary support threshold
by employing a rule mining algorithm (Charm [24]) to collect all
the closed frequent itemsets at an offline step. However, the support
and confidence of the rules composed from the prestored itemsets
are determined at query-time based on the focal subset. Extending
our knowledge from Section 2.1, in a multidimensional space of n
(=3 in Figure 1) attributes, we construct a hierarchy of itemsets upto
2-itemsets, starting with the n-itemset cells at the finest granularity.
This hierarchical collection of itemset partitions the multidimen-
sional space into bounding boxes denoted by {DP }. We call these
partitions Multidimensional Itemset Partitions (MIPs). Each MIP,
denoted by IPk , represents both the bounding boxDPk of the itemset
in a multidimensional space as well as the actual items (attribute-
value pairs) composing the itemset I. In other words, the symbols
DPk and IPk are henceforth used interchangeably in the rest of this
document to denote a MIP for an itemset I. As shown in Figure
1, each i-itemset MIP at level i is composed of one or more (i+1)-
itemset MIPs. This MIP-index enables downward closure property

to be implicitly applied during online mining such that if an MIP I
at level i does not qualify the minsupp, all (i+1)-itemset MIPs that
contain I can also be eliminated.

3.3 The Two Level MIP-index
We adopt a two-layered structure to store the two features of the

MIPs, namely, (a.) the bounding boxes and (b.) the items compos-
ing the itemsets, as follows.

The multidimensional index for MIPs. The bounding boxes of
MIPs can be indexed using any multidimensional index. Here, we
use an R-tree, as it is proven to be efficient for searches over multi-
dimensional boxes [11]. An R-tree index can be used to perform a
range search to retrieve the MIPs that overlap with the focal subset
DQ. An R-tree supports partitions of different granularities as well
as overlaps and containments among partitions. An example R-tree
is shown in Figure 3.(a).

The closed IT-tree for itemsets. We employ the itemset-tidset
search tree [24], or in short the IT-tree5. The IT-tree is compact as
it stores only the closed frequent itemsets. As shown by Zaki et
al. [24], there are significant gains both in storage and computation
time by utilizing the closed IT-tree for rule generation. An example
closed IT-tree is shown in Figure 3.(b).

Offline MIP-index construction. Construction of MIP-index at
the offline step consists of first generating all closed frequent item-
sets (CFIs) using the CHARM algorithm [24] using the primary
support threshold. The generated CFIs are stored in an IT-tree. The
details of time and space complexity of generating CFIs and con-
structing IT-tree can be found in [24]. Further, we construct the
R-tree using bounding boxes of the closed frequent itemsets. As
this is a one time offline construction, we employ the R-tree pack-
ing scheme proposed by [11]. They proposed a method to build a
packed R-tree that achieves (almost) 100% space utilization. A de-
tailed time and space analysis for R-tree construction can be found
in [11]. In this work we focus on online query processing costs
that are more important than costs of one-time offline MIP-index
construction costs for the problem of online localized rule mining.

3.4 Online Query Processing
In the online query processing phase, the user submits a local-

ized mining query Q with four parameters Arange, Aitem, min-
supp and minconf. Arange defines the focal subsetDQ. The candi-
date frequent itemsets for DQ are identified by performing a range
search using the focal subset DQ over the MIPs {DP } pre-stored
in a R-tree. The candidate itemsets, denoted by {IQS }, only con-
tain the itemsets within the item attributes Aitem . Next, for each
candidate itemset I ε {IQS }, rules are generated using the IT-tree
and the minsupp and minconf thresholds with respect to the focal
subset DQ are verified. Here, we make a simplifying assumption
that the users are allowed to specify Arange with the prestored n-
itemset cells at the lowest granularity to avoid sub-cell computa-
tions. For example, if age attribute is specified in the MIP-index
with increments of 10 as {20-30, 30-40, . . .}, the user selection
must align with them and ranges such as Age=25-30 or Age=35-
40 cannot be specified. This is a valid assumption as optimal dis-
cretization decisions using key ideas from [10,19,20] can be made
for a given dataset during preprocessing based on the domain and
the data characteristics.

Containment vs. partial overlap. Based on the expanse of
the focal subset DQ, the precomputed MIPs can be categorized
into three mutually exclusive groups, namely, contained withinDQ
({DP }c), partially overlapping withDQ ({DP }p) and disjoint with

5Detailed description of the IT-tree can be obtained from [24].
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(a) R-tree (b) Closed IT-tree

Figure 3: The two-level MIP-index.

DQ ({DP }d). Figure 4 illustrates five MIPs (marked with different
patterns) of a datasetD, {DP1 , . . . ,DP5 }. For an example focal sub-
setDQ1 , the MIPsDP1 andDP2 are fully contained in it, i.e., {DP }c
= {DP1 ,DP2 }. There are no partially overlapped MIPs, i.e., {DP }p
= ∅. The rest are disjoint MIPs, i.e., {DP }d = {DP3 ,DP4 ,DP5 }. Ex-
ample focal subset DQ1 is straightforward to process as only con-
tained MIPs exist eliminating the need for record-level processing.

The focal subset DQ2 (Figure 4) represents a distinct scenario
with partially overlapped MIPs {DP }p = {DP3 ,DP4 ,DP5 } and dis-
joint MIPs {DP }d = {DP1 ,DP2 }. There are no contained MIPs,
i.e., {DP }c = ∅. In such cases, for each partially overlapped MIP
DPk (ε {DP }p), the records lying at the intersection of DQ and
DPk must be collected using a costly database scan. The collected
records must then be used to verify the thresholds for the candi-
date itemset {IPk }. Hence, processing partially overlapped MIPs
is much costlier than processing fully contained MIPs. In a query
scenario, different DQ may vary in their sizes and locations within
the multidimensional space. Overall, a variety of query scenarios
are possible ranging from all contained MIPs, to mix of contained
and partially overlapped MIPs, to all partially overlapped MIPs.
A single solution may not be suitable to process all query scenar-
ios in the most efficient manner. Therefore, we develop a suite of
alternate mining plans and an online optimizer for selection of the
most efficient plan to execute online localized mining requests.

4. STRATEGIES FOR ONLINE MINING
As opposed to treating the rule mining process as a black box, we

now isolate each step in the process as an operator. Each operator
has precise inputs, outputs and functionality. The goal is to find
scope for optimizing each isolated operator without affecting the
other operators. We first present the overall plan for processing

Figure 4: Itemsets covering cells.

(a) S-E-V (b) S-VS (c) SS-E-V

Figure 5: The POQM mining plans.

Symbol Definition
CI Number of singleton items in an Itemset I.

TRconst Constant cost of reading records from an R-tree node.
h Height of the R-tree.

Nj Number of nodes at level j of the R-tree.
DQiavg Avg. extent of the ith range attribute in the focal subset.

DPj,iavg Avg. extent of the MIPs in R-tree at level j and attribute i.
{R} Candidate set of rules for confidence check.

Table 3: Notation used in cost estimates.
online localized rule mining queries using the MIP-index, followed
by our proposed optimizations. The plan consists of a pipeline of
three basic operators as shown in Figure 5.(a).

1. SEARCH: Given the range attributesArange in the WHERE
clause of Query Q, the R-tree is searched to output overlap-
ping candidate itemsets denoted by {IQS }. The SEARCH op-
erator is defined as S[Arange, R− tree] −→ {IQS }. Details
of the R-tree search can be found in [21].

2. ELIMINATE: Given the list of candidate itemsets {IQS }
output by the SEARCH operator and the item attributesAitem,
the support of the candidate itemsets must satisfy the min-
supp and the itemsets must be composed of only the item
attributes Aitem. Thus, a reduced list of candidate itemsets,
denoted as {IQE }, is produced. The ELIMINATE operator is
defined as E[{IQS }, A

item, minsupp] −→ {IQE }.
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3. VERIFY: Given the reduced list of candidate itemsets {IQE },
the closed IT-tree [24] and the records inDQ are used to first
generate rules and then verify whether the confidence values
of the rules satisfy the minconf threshold. The rules {RQ}
are returned to the user. The VERIFY operator is defined
as V[{IQE }, minconf ] −→ {RQ}. Refer to [24] for details
on the traditional algorithms for rule generation and minconf
verification using the IT-tree.

Below, we apply several novel optimization principles in the con-
text of online localized rule mining. Each resulting optimized plan
comes, not only with the benefits achieved, but also with some
overhead costs. We design a model for estimating the costs of each
plan. For each online request, a single most efficient plan is used
for execution. We conclude this section with a summary of the six
proposed alternative mining plans in Table 4.

4.1 The Basic S-E-V Plan
The basic mining plan can be composed by pipelining the three

operators, namely, SEARCH, ELIMINATE and VERIFY. The resul-
tant S-E-V plan is depicted in Figure 5.(a). The SEARCH operator,
performing an R-tree search to output the overlapping MIPs {IQS },
works as an inexpensive coarse granularity filter. For each candi-
date itemset I ε {IQS }, the ELIMINATE operator filters items using
Aitem and verifies if local support SuppQI exceeds the user-defined
minsupp. The qualified candidate itemsets {IQE } (where {IQE } ⊆
{IQS }) are used in the VERIFY operator to generate rules. For each
rule r, only if its local confidence (ConfQr ) satisfies the user-defined
minconf will r get included in the final output {RQ}. The detailed
algorithm for threshold verification and rule generation using the
IT-tree can be found in [24]. Both the ELIMINATE and the VER-
IFY operators require finer granularity checks at the record-level,
i.e., the records that lie at the intersection of I and DQ. The can-
didate itemsets {IQS } and {IQE } produced by SEARCH and ELIM-
INATE respectively may contain false positives but are guaranteed
to not generate any false negatives as even the partially overlapping
itemsets are pushed up as candidates, but itemsets that must form
the answers are never eliminated.

Execution costs and analysis. The cost of the SEARCH oper-
ator (i.e., an R-tree lookup), depends on the expected number of
disk accesses [21]. Lemma 4.16 gives an estimated count of the
candidate itemsets ({IQS }) output by SEARCH.

LEMMA 4.1. An R-tree storing a set of N MIPs {DP1 , . . .
,DPN} with average extent for the ith attribute as DPiavg and
the focal subset DQ with average extent of the ith attribute
as DQiavg , for n attributes; the average number of candidate

itemsets {IQS } intersected by DQ is approximately computed
as:

|{IQS }| = N ×
∏n
i=1(D

P
iavg +D

Q
iavg

)

While the cost for ELIMINATE is given in Equation 1, Lemma
4.27 gives the estimated count of candidate itemsets ({IQE }) output
by ELIMINATE.

6Derived from the R-tree search algorithm [21].
7Derived from the IT-tree minsupp check algorithm [24].

LEMMA 4.2. Given a set of candidate itemsets {IQS } with
itemset I having local support SuppQI and the focal subsetDQ
with threshold requirement of minsupp, the average number
of candidate itemsets {IQE } output by ELIMINATE is:

|{IQE }| =
∑
iε{IQ

S
}(Supp

Q
i +minsupp)

In the VERIFY operator, the output ruleset {RQ} can be gener-
ated using the IT-tree. For an itemset I, one needs to traverse the
IT-tree up to the level of I in the IT-tree (Lemma 4.38). The over-
all cost of the S-E-V plan as an addition of the individual costs is
shown in Equation 1.

LEMMA 4.3. The level of the IT-tree at which an itemset
I exists equals the number of singleton items composing I de-
noted by CI .

COST (S − E − V ) = COST (S)+COST (E)+COST (V ), where,

COST (S) = [

h−1∑
j=1

{Nj ×
n∏
k=1

(DPj,iavg +DQkavg )}],

COST (E) = [|{IQS }| × |D
Q|],

COST (V ) = [
∑

iε{IQ
E
}

(C
i × |DQ|)+

∑
rε{R}

(Conf
Q
r +minconf)].

(1)

The SEARCH is inexpensive as it is a coarse granularity check.
However, if a larger range is chosen by the user it may require mul-
tiple disk accesses and may impact the execution costs. In sum-
mary, the S-E-V plan would perform well for small DQ expanses
when most of the MIPs are filtered out in the R-tree search. The
VERIFY operator requires record-level operations and multiple it-
erations over the IT-tree. Thus it tends to be the bottleneck of this
plan. The S-E-V plan is effective if the ELIMINATE achieves high
reduction of candidate itemsets from {IQS } to {IQE }, with possi-
bly low overhead. The smaller the set {IQE } reaching the costly
VERIFY operator, the better the plan’s performance. However, a
small overhead for performing the record-level ELIMINATE oper-
ator arises.

4.2 Pushing Selection Up The Plan
The reduction of the candidate itemsets by ELIMINATE is factor

affecting the effectiveness of the S-E-V plan. However, if the ex-
pensive record-level ELIMINATE filters no or very few candidate
itemsets, i.e., {IQE } ' {I

Q
S }, then ELIMINATE no longer remains

a beneficial filter. We now introduce the S-VS strategy that rewrites
the S-E-V plan by merging the ELIMINATE and the VERIFY oper-
ations into a single operator called the SUPPORTED-VERIFY op-
erator (defined below). The S-VS plan is depicted in Figure 5.(b).

SUPPORTED-VERIFY operator. This operator is represented
as V S[{IQS }, A

item, minsupp, minconf ] −→ {RQ}. It takes as
input the candidate itemsets from the SEARCH ({IQS }), the item
attributesAitem and the thresholds minsupp and minconf from the
query. It first filters itemsets not in Aitem. With the remaining
qualified itemsets, a set of rules {R} is generated but only the rules
satisfying both minsupp and minconf are output as {RQ}.

Execution costs and analysis. SEARCH cost for S-VS remains
the same as S-E-V. The minsupp-based elimination of itemsets is
interleaved with the minconf verification using the IT-tree. For

8Derived from the IT-tree rule generation algorithm [24].
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Figure 6: Supported R-tree.

(a) SS-VS (b) SS-E-U-V (c) ARM

Figure 7: More mining plans.

cases {IQE } ' {I
Q
S }, S-VS is bound to outperform S-E-V. This

plan is depicted in Fig. 5.(b) and Eq. 2 shows the overall costs.

COST (S − V S) = COST (S)+COST (V S), where,

COST (V S) = [
∑

iε{IQ
S
}

(C
i × |DQ|)+

∑
rε{R}

(Conf
Q
r +minconf)]. (2)

4.3 The Supported R-tree Filter
In the above two plans, SEARCH selects all MIPs overlapping

with with DQ for the expensive record-level support check irre-
spective of the extent of overlap, i.e., MIPs overlapping by as few
as a single record are also chosen. In cases where DQ partially
overlaps with a large number of MIPs, an excessive number of
record-level support checks are needed. With the goal of further
reducing {IQS }, we now design the SS-E-V plan (depicted in Fig.
5.(c)). The SEARCH operator is modified using the insights from
Lemma 4.4.

LEMMA 4.4. Given a focal subset DQ (⊆ D) and any
itemset I whose bounding box overlaps DQ, the number of
records in DQ that contain I, denoted by |DQI |, has an upper
bound |DGI |, where |DGI | denotes the total number of records
supporting I in the full dataset D. In short, |DQI | ≤ |D

G
I |.

Let |DGI | (e.g., 2000) denote the global count of prestored item-
set I with respect to the entire dataset D (e.g., 100000). Given
a focal subset DQ (e.g., 10000) and minsupp = 25%, we define
|DGI |
|DQ| (here, 2000/10000 = 20%) as the upper bound of the local

support of I, i.e., SuppQI ≤
|DGI |
|DQ| (using Lemma 4.4). SuppQI =

|DGI |
|DQ| only if all records of D that contain I are included in DQ.

By prestoring global support counts (|DGI |) of an itemset I with
its MIP bounding box inside the R-tree, we can eliminate I if min-

supp> |D
G
I |

|DQ| . This customized R-tree structure is henceforth called
the Supported R-tree (Figure 6). This supported R-tree filter may
significantly reduce the list of candidate itemsets without having
to perform a record-level support checks. The modified SEARCH
operator exploiting the supported R-tree is defined below.

SUPPORTED-SEARCH operator. The SS[Arange, minsupp] −→
{IQSS} operator takes in the range attributes Arange and the min-
supp threshold. It outputs the candidate itemsets {IQSS} that over-
lap with the Arange only if their global support counts exceed the

minsupp. Thus the SS operator works as a coarse granularity sup-
ported R-tree filter together with performing the range search.

Execution costs and analysis. The costs incurred by the SS-E-
V are shown in Equation 3. Unlike the regular SEARCH opera-
tor, the selectivity of the SS operator also takes the support of the
stored MIPs and the minsupp into account. This coarse granular-
ity minsupp check can be cheaply interleaved with the range search.
The costs of ELIMINATE and VERIFY are identical to Equation 1.
The key contribution of the SS-E-V plan is that the SUPPORTED-
SEARCH potentially generates fewer candidate itemsets ({IQSS})
than produced by the original SEARCH operator, i.e., {IQSS} �
{IQS }. Thus, potentially reducing the inputs to ELIMINATE and
VERIFY operators.

COST (SS − E − V ) = COST (SS)+COST (E)+COST (V ), where,

COST (SS) = [

h−1∑
j=1

{Nj ×
n∏
k=1

(DPj,kavg+DQkavg )×

(Suppj +minsupp)}].

(3)

4.4 Pipelining both Supported Operators
The SS-E-V plan can run into the same issues with the ELIM-

INATE as the S-E-V plan, i.e., if {IQE } ' {I
Q
SS}, then ELIMI-

NATE may not be an effective filter. We may instead opt to pipeline
SUPPORTED-SEARCH and SUPPORTED-VERIFY operators re-
sulting in the SS-VS plan (Figure 7.(a)).

Execution costs and analysis. The cost incurred by the SS-VS
(Equation 4) is the sum of the costs of SS and VS operators. The
VS operator processes candidate itemsets {IQSS} output by SS. SS-
VS is guaranteed to outperform SS-E-V when {IQE } ' {I

Q
SS}.

COST (SS − V S) = COST (SS)+COST (V S). (4)

4.5 Treating Contained and Overlapped MIPs
Differently

In the plans described thus far, irrespective of whether a MIP is
fully contained within DQ or it only overlaps by as few as a single
record, it is sent for the record-level threshold check. We now in-
troduce a key property in Lemma 4.5 that opens a new opportunity
for optimization.
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Mining Plan Optimization Query Cost
S-E-V Basic SEARCH+ELIMINATE+VERIFY plan COST(S) + COST(E) + COST(V)
S-VS Selection push-up COST(S) + COST(VS)
SS-E-V Supported R-tree filter COST(SS) + COST(E) + COST(V)
SS-VS Supported R-tree filter + selection push-up COST(SS) + COST(VS)
SS-E-U-V Supported R-tree filter + differential treatment of containment and overlap COST(SS) + COST(E) + COST(U) + COST(V)
ARM Traditional rule mining over focal subset COST(σ) + COST(εAR)

Table 4: Summary of the six mining plans.

LEMMA 4.5. If the MIP bounding box DPI of an itemset I
is completely contained within the focal subsetDQ, the local
support of I equals its global support. In other words, if (DPI
⊆ DQ), then (SuppQI = SuppGI ). Proof is trivial.

By Lemma 4.5, once a fully contained Itemset I is included in
the candidate list {IQSS} by the SS operator, any record-level check
of I’s support is redundant. Therefore, we now propose a mining
plan that treats the fully contained MIPs differently from the par-
tially overlapped MIPs. The MIPs contained within DQ, denoted
by {IQSS}c, can be safely sent to VERIFY for rule generation and
minconf verification. Only the MIPs that partially overlap with
DQ, denoted by {IQSS}p, are required to undergo the expensive
record-level support check. Here, subscripts c and p stand for con-
tained and partially overlapped, respectively. ELIMINATE out-
puts the candidate itemsets {IQE}p (⊆ {IQSS}p). Figure 7.(b) depicts
the resultant SS-E-U-V plan. Lastly, we introduce an itemset-level
UNION operator to merge the two lists of itemsets to form a single
list of itemsets for rule generation in VERIFY.

UNION operator. This operator, denoted by U[{IQI1}, {I
Q
I2},

. . .] −→{IQ}p,c, takes as input two or more lists of itemsets, (here,
{IQE}p and {IQSS}c) and produces a single list which is the union of
the two inputs.

Execution costs and analysis. The SS-E-U-V plan now in-
corporates all the optimizations designed above. It is expected
to be highly effective in processing a large spectrum of query re-
quests. The SS operator’s cost remains the same as SS-VS, but
SS now splits the candidate itemsets into two mutually exclusive
sets, namely, the contained MIPs {IQSS}c and partially overlapped
{IQSS}p MIPs. The partially overlapped MIPs ({IQSS}p) must first
pass through ELIMINATE to produce a reduced list {IQE }p (⊆
{IQSS}p). As the two lists {IQSS}c and {IQE }p merged by UNION
are mutually exclusive (requiring no duplicate removal), UNION
incurs a constant cost. VERIFY processes a total of (|{IQE }p| +
|{IQSS}c|) candidate itemsets for rule generation (Equation 5).

COST (SS − E − U − V ) = COST (SS)+COST (E)+COST (U)+
COST (V ), where,

COST (U) = [Uconst],

COST (V ) = [
∑

iε({IQ
E
}p+{IQ

SS
}c)

(C
i × |DQ|)+

∑
rε{R}

(Conf
Q
r +minconf)].

(5)

4.6 Employing the Traditional Mining Plan
For the extreme case when huge numbers of partially overlapped

MIPs might require expensive record-level checks, a traditional
two-step rule mining algorithm may be more practical than em-
ploying the sophisticated MIP-index-based mining plans. This tra-
ditional plan may employ a mining algorithm (Charm [24]) directly
over the extracted focal subset DQ. We refer to this baseline plan
as the ARM plan (Figure 7.(c)) that is composed of the following
two operators:

SELECT operator. Denoted as σ[Arange, D] −→ DQ, SE-
LECT takes as input the range attributes Arange and the dataset D
to output the records of the focal subset DQ.

ARM operator. This operator, denoted by εAR[DQ, Aitem,
minsupp, minconf ] −→{RQ}, performs the traditional Association
Rule Mining (ARM) from scratch. It takes the focal subsetDQ, the
item attributes Aitem and the thresholds minsupp and minconf as
inputs. It outputs the desired ruleset {RQ}.

Execution costs and analysis. SELECTION using an R-tree re-
quires extracting the records from the overlapped bounding boxes.
The costs for the rule mining step depend on the input data size, the
length of the maximum frequent itemset and the number of dimen-
sions. The costs of this baseline plan is computed by adding the
SELECTION and ARM costs (Equation 6).

COST (ARM − Plan) = COST (σ)+COST (εAR), where,

COST (σ) = [(

h−1∑
j=1

{Nj ×
n∏
k=1

(DPj,kavg+DQkavg )})× TRconst],

COST (εAR) = [|DQ|×(max
Iε{IQ}(C

I))× n].

(6)

5. EXPERIMENTAL VALIDATION OF THE
COLARM FRAMEWORK

In this section we provide experimental results to explore the
validity of our COLARM framework. We focus on three questions:

• Is the COLARM framework capable of providing correct de-
cisions regarding the best choice among the set of six plans?

• Do the proposed optimizations in the five MIP-index based
mining plans achieve the expected execution cost benefits for
the tested datasets?

• What is the extent of Simpson’s Paradox observed in the con-
text of localized rule mining?

We conducted experiments on a Windows 7 machine with In-
tel(R) Xeon(R) CPU X3440@2.53 GHz processor and 8 GB of
RAM. The mining plans and the COLARM optimizer are coded
using C++.

Experimental datasets. We use three real benchmark datasets
from the UC Irvine Machine Learning Repository [5], namely, chess,
mushroom and PUMSB. Chess contains 3196 records with 76 dis-
tinct items. Mushroom contains 8124 records with 120 distinct
items. PUMSB contains 49046 records with 7117 distinct items.
Figure 8 depicts the number of closed frequent itemsets stored in
the MIP-index structure for chess, mushroom and PUMSB datasets,
respectively as we vary the primary threshold values9. For both
Chess and PUMSB datasets the number of closed itemsets dras-
tically increases with a decrease in the primary threshold. The
change in Mushroom is rather gradual. A detailed analysis of the
three chosen datasets including a discussion of the distribution of
9The primary support ranges are as suggested in [24].
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Figure 9: Avg. CPU costs of mining plans for chess dataset.

closed frequent itemsets (CFIs) by their length can be found in [24].
The length of an itemset I corresponds to the number of singleton
items in I, also denoted by CI (see Table 3). In other words, the
length also denotes the number of attributes (dimensions) in the
R-tree. Overall, chess and PUMSB have a symmetric distribution
of CFIs whereas mushroom has a bi-modal distribution of closed
frequent itemsets (CFIs). Thus, these three datasets represent di-
verse characteristics for testing the effectiveness of the COLARM
framework in terms of local itemsets discovered and selecting min-
ing plans with quick response times.

Preparing the MIP-index is a one-time offline step irrespective
of the number of online requests processed thereafter. Thus, the
index construction costs are of less importance. Infact, prior works
[13, 24] have studied, in particular, the impact of the number of
prestored itemsets on the subsequent online execution. For the
online local mining experiments, we focus on a different set of
measurements as described below. For our tested scenarios of on-
line mining queries, we use the MIP-index structures created us-
ing primary support 60% for chess, 5% for mushroom and 80%

for PUMSB datasets, respectively. The corresponding MIP-index
structure stores approximately 300000, 10000 and 450000 closed
frequent itemsets for chess, mushroom and PUMSB, respectively.

Experimental methodology. Our experiments test two metrics,
namely, (a.) the query response time benefits of using the cost-
based optimizer for plan selection, and (b.) the extent of Simpson’s
paradox in localized mining. The range and item attributes are part
of the user request (see Q in Sec. 2.2). This query-time selection
from a common pool of attributes means that existing solutions [8]
are not applicable and thus can not be compared against. We study
the following measures:

1. Execution time metric: We compare the average execution
times of the six alternate mining plans for different query pa-
rameter settings i.e., by changing the focal subset size, min-
supp and minconf, respectively. We compare plan selection
by the COLARM optimizer based on the estimated costs with
the actual execution costs of the plans.
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Figure 10: Avg. CPU costs of mining plans for mushroom dataset.

2. Optimization benefits: In addition to the above factors de-
rived from the cost model, we also evaluate the effectiveness
of our optimized MIP-index-based mining plans measured
by their respective gains in reducing the execution costs com-
pared with the basic S-E-V plan.

3. Local rules vs. global rules: For the tested local mining
sccenarios, we compare the counts of fresh local rules versus
the global rules to determine the extent of Simpson’s paradox
observed.

5.1 Accuracy of the COLARM Optimizer
Here we present our experiments to validate the COLARM op-

timizer’s capability to identify the most cost effective plan for a
diversity of tested mining requests. We vary the mining parame-
ters such asDQ size (4 distinct values), minsupp (3 distinct values)
and minconf (3 distinct values) to create a total of 36 distinct lo-
calized mining requests for each of the three datasets. For each
tested mining request, the COLARM optimizer computes the es-
timated costs of the six plans using the cost formulae derived in
Section 4 and suggests the plan with the minimum estimated cost.
To demonstrate the effectiveness of our COLARM optimizer, we
plot the average execution times of the six plans for the tested sce-
narios and indicate with an arrow the plan chosen by COLARM in
majority of the cases.

In our experiments we vary the DQ sizes as % of the complete
dataset D, namely, 50%, 20%, 10% and 1%. Similarly, different
minsupp (as % of subset DQ) values are used, namely, {80, 85,
90} for the chess dataset, {70, 75, 80} for the mushroom dataset
and {85, 88, 91} for the PUMSB dataset, respectively. Further, we
used high minconf values, namely, {85, 90, 95}, for all datasets.
These chosen minsupp and minconf values are based on the pri-
mary support values chosen for creating the MIP-index and the
analysis of the distribution of their closed frequent itemsets by their
lengths provided in [24].

Impact of varying focal subset sizes. Figures 9, 10 and 11 de-
pict the average execution times of the six mining plans for chess,
mushroom and PUMSB, respectively. For each |DQ| (say, 50% of
|D|), the execution time is averaged over several runs by submitting
queries with fixed sized DQ over different regions of the dataset.
The plan chosen by the COLARM optimizer on majority of runs
based on the estimated costs is marked with an arrow. We fix the
minconf to 85%. For each dataset, |DQ| equals (a) 50%, (b) 20%,
(c) 10% and (d) 1% of |D| of the tuples. For all datasets (Figures
9, 10 and 11), with a decrease in the focal subset size from 50%
to 1% (charts (a) to (d)), the execution costs of the plans decrease
drastically. This conforms to predicted trends of the cost model.
The smaller the focal subset |DQ|, the fewer the overlapping MIPs
to be verified. This leads to a faster response times.

Impact of varying minimum support. For the chess dataset
(Figures 9 (a)-(d)), our proposed mining plans consistently outper-
form the traditional ARM plan. As expected, the SS-E-U-V plan is
optimized to deliver the best execution time. This trend is attributed
to the sparse population of itemsets in chess and a symmetric dis-
tribution of itemsets by length. In Figures 10 (a)-(d) a similar trend
is observed for the mushroom dataset. We also observe that among
the MIP-index based plans the average execution cost decreases
from S-E-V to SS-E-U-V in most cases as each of the optimiza-
tions are employed. In Figures 11 (a)-(d) for the PUMSB dataset,
the MIP-index-based mining plans continue to perform distinctly
better at the lower |DQ| sizes. However, for the higher |DQ| (50%
and 20%), we observed no clear winner. In some cases, the base-
line ARM plan outperforms the other plans. This distinct trend in
PUMSB dataset is attributed to due the symmetric distribution of
itemsets by length and high density of the dataset. The impact of
varying minconf is similar to, yet less drastic than, that of varying
minsupp. Thus, those experimental results are omitted due to space
constraints.

Plan selection accuracy of COLARM optimizer. In Figures
9, 10 and 11, we depict with an arrow the mining plans chosen by
the COLARM optimizer using our cost model. As the results are
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Figure 11: Avg. CPU costs of mining plans for PUMSB dataset.
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Figure 13: Average local versus global CFIs.

averages over several runs, the arrow indicates the plan that was
chosen in majority. Thus, we find that COLARM indeed almost
always selects the most efficient plan. Out of the total 108 distinct
tested request scenarios (3 datasets and 36 parameter settings), CO-
LARM makes erroneous decisions for only three cases, namely, in
Figure 10.(d) for minsupp = 75% and in Figure 11.(c) for minsupp
88% and 91%. Thus, COLARM is more than 93% accurate. When
failing to select the optimal plan, COLARM selects a plan with at
most 5% extra cost compared with the optimal.

5.2 Measuring the Optimization Benefits
Here, we zoom into the optimized operators of the MIP-index

based mining plans. We use the S-E-V plan as the baseline and
compare its execution costs against our optimized plans, namely,
S-VS, SS-E-V, SS-VS and SS-E-U-V. For a plan P, the gain is com-
puted as (CPUSEV −CPUP )

CPUSEV
. Figure 12 depicts the % gain for each

optimized plan. In Figure 12, the benefits of pushing selection up,
i.e., the VS operator, are minor. On the other hand, the plans us-
ing the SS operator show 8% to 44% gains, indicating the success

of the supported R-tree filter. Particularly, SS-E-U-V exhibits high
gains (∼22% to 44%).

5.3 Comparing Local vs. Global Rules
In Figure 13 we summarize the average number of closed fre-

quent itemsets (CFIs) mined in our tested cases. Here it is impor-
tant to understand that these local frequent itemsets were captured
in the offline MIP-index construction due to the use of low pri-
mary support, namely, 60% for chess, 5% for mushroom and 80%
for PUMSB datasets, respectively. These local itemsets qualify at
high support (≥80% for chess, ≥69% for mushroom, and ≥85%
for PUMSB) only at the 1%-50% subset granularities. These local
CFIs will be either missed when reasonable global minsupp (> pri-
mary threshold) values are input, or will be hidden within a large
number of itemsets if the user inputs a global minsupp less than the
primary threshold.

Compared with the global itemsets mined at reasonable min-
supp values 80% for chess and 60% for mushroom, we find that
majority of the CFIs mined in the tested query scenarios are lo-
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cal CFIs, providing strong evidence for Simpson’s paradox. For
example, for the mushroom dataset, when a subset of mushroom
samples with attribute-value pair stalk-shape=tapering is chosen,
we observe 32 local CFIs emerge that have a low global support of
'39%. Two example CFIs are {stalk-surface-below-ring=smooth,
veil-color=white} and {stalk-surface-above-ring=smooth, veil-type
=partial, ring-number=one}. These 32 CFIs are hidden in the
global context as 625 other CFIs exist in the global context with
higher support values. For this subset of mushroom samples sat-
isfying attribute-value pair stalk-shape=tapering, these CFIs have
local support values ≥69%. For PUMSB the itemsets mined with
global minsupp = 85% are in majority also for the local queries, yet
several additional prominent local CFIs are discovered as well.

Experimental conclusions. Our main experimental findings are
summarized as follows:
• The experimental evaluation establishes the accuracy of the

cost model as the trends observed are coherent with the predictions
of the cost model.
• In most of our tested cases, the SS-E-U-V plan consistently

outperforms the other plans. In some cases for PUMSB, the ARM
plan marginally outperforms the others. Overall, no single mining
plan is a clear winner.
• The COLARM optimizer successfully identifies the most ef-

ficient plan with more than 93% accuracy for all our tested cases
including extreme cases where the traditional ARM plan is most
efficient.
• Among the MIP-index-based mining plans, the plans using the

SS operator are significantly less expensive indicating the success
of the supported R-tree filter.
•We observe strong evidence for Simpson’s paradox in the con-

text of local rule mining requests.

6. RELATED WORK
Aggarwal et al. [1] identify the importance of localized rules.

Yet, they propose a one-time clustering-based summary of the mar-
ket basket dataset with a fixed minsupport value. Han et al. [17]
propose a 2-phased processing framework for online constraint-
based mining. However, both these works improve existing query-
time rule mining algorithms rather than precomputing itemsets for
online mining of localized rules. These improved algorithms are
thus orthogonal to our efforts and could in fact be used in conjunc-
tion with our proposed strategies.

Two recent works on mining rules on multidimensional data [8,
22] relate to our work. However, a closer analysis reveals that they
solve a different problem altogether. First, they assume that in a
transactional data model (e.g., market basket dataset [1]), there is
a set of window attributes, such as location and time of transac-
tion, on which partitions are created. Thus, in their data model,
the transaction data forming the itemsets are required to be distinct
from the partitioning attributes. In contrast, our work focuses on a
relational data model, such as in [20], where the subset attributes
and the items used for forming rules are from a common pool of
attribute-value pairs. The offline assumptions to aid the precom-
putation as done in [8] are unrealistic in our model. Thus, these
existing approaches [8,22] are inapplicable to the relational model.

7. CONCLUSION AND FUTURE WORK
We address the novel problem of online localized rule mining.

We design a novel MIP-index that makes POQM feasible for our
target problem. Using the efficient two-layered MIP-index, we de-
sign several alternate mining plans that employ sophisticated opti-
mization strategies such as selection pushup, supported R-tree filter

and differential treatment of contained versus partially overlapped
MIPs. Our COLARM optimizer selects the most efficient plan for
processing each mining request. Our extensive experiments using
benchmark datasets establish the effectiveness of our COLARM
framework in a rich variety of tested cases. We also find strong ev-
idence of Simpson’s paradox in the context of localized rule min-
ing. In future, we plan to tackle two additional problems related to
localized association rule mining, namely, (a.) mining the range,
support and confidence parameters from the data in an automatic
and efficient way; and (b.) multi-query optimization in the context
of localized association rule mining.
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