
What Can Programming Languages Say
About Data Exchange?

Michael Johnson
Macquarie University

Michael.Johnson@mq.edu.au

Jorge Pérez
DCC, Universidad de Chile

jperez@dcc.uchile.cl

James F. Terwilliger
Microsoft Research

james.terwilliger@microsoft.com

ABSTRACT
Data Exchange, defined generally, is the process of taking
data structured under one schema and transforming it into
data structured under another independent schema. This
process is present in enough scenarios both theoretical and
practical that it has been addressed in many different ways.
Most prominent amongst the solutions to the problem is that
proposed by database literature, in which one constructs
schema mappings, using (a subset of) first-order predicate
calculus, to establish the high-level relationship among the
database schemas participating in the exchange. From a
schema mapping an executable process is derived to per-
form the exchange. This line of research has made signifi-
cant progress and come to impressive findings, but has some
theoretical and practical shortcomings as well. For instance,
there are theoretical limitations as to how to compose or in-
vert such mappings in a complete and unique way, which is a
barrier to making such mappings bidirectional. It is possible
to address some of these shortcomings by looking to solu-
tions from a different discipline—a construct from the pro-
gramming language literature called a lens—that addresses
similar problems from a different perspective. By combining
solutions from these two disciplines, one ends up with a new
direction of research as well as a result that might be greater
than the sum of its parts.

Keywords
Bidirectional Transformations, Data Exchange, Lenses

1. INTRODUCTION
Data Exchange—the process of taking data in one struc-

ture and processing it into another—is a problem that is
widely seen across nearly all fields of computer science. From
databases (moving data instances between schemas) to visu-
alization (moving graphics between formats) to software en-
gineering (moving software artifacts between models), many
disciplines face a familiar problem, where given source and
target descriptions of data:

(c) 2014, Copyright is with the authors. Published in Proc. 17th Inter-
national Conference on Extending Database Technology (EDBT), March
24-28, 2014, Athens, Greece: ISBN 978-3-89318065-3, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

• How does one specify a transformation of source in-
stances into target instances,

• execute that transformation, and

• demonstrate that the transformation has been done as
faithfully as possible?

Even simple data exchange problems can prove to be dif-
ficult. For instance, consider a trivial example of mapping
data from a schema Person1(Id,Name,Age,City) to another
schema Person2(Id,Name,Salary,ZipCode). Some aspects
of this transformation are clear, such as that every instance
of Person1 should correspond to an instance of Person2 with
the same name and identifier post-transformation. However:

• How does one populate the Salary field? Should it be
filled in by nulls, or as a function of the ZipCode field?

• How does one populate the ZipCode field? Should it be
filled in by nulls, or as a function of the City attribute
of the corresponding Person1 instance?

• In the event that one wants to make changes to the
instances in their Person2 form, how are those changes
migrated back to the corresponding Person1 instance?
Is the Age field preserved? How does one calculate the
value of the City attribute?

One could always leave blank the attributes that do not
exactly match. In practice, one wants to preserve as much
data through a transformation as possible. With networked
and cloud-enabled applications, one wants such transforma-
tions to be bidirectional to enable updates to propagate be-
tween instances. And data-exchange scenarios are rarely so
simple as the example above, as anyone who has written a
financial or healthcare application may attest.

The database field has been developing a solution to the
data exchange problem over the past decade. This solution
uses at its core a subset of first-order predicate calculus,
with success in both practical [9] and theoretical applica-
tions [1, 11]. Essentially, the transformation is defined by
using a logical implication α //β, in which α and β are first-
order predicate calculus expressions, stating that whenever
a source database satisfies α then the transformed database
should satisfy β. One can use a graphical tool based on
drawing associations using box-and-line diagrams; those di-
agrams map cleanly to these predicate calculus expressions.
The elegance of this solution and its extensively proven for-
mal properties have led to this solution becoming the lingua
franca of data exchange for database researchers.

The predicate calculus approach has some notable limi-
tations, however. It is commonplace in database research

 

 

223 10.5441/002/edbt.2014.21



to take a language or tool designed for one-way mappings
(as predicate calculus is) and attempt to reuse it in bidi-
rectional scenarios for which is may not be suited. There
are theoretical results demonstrating that a calculus-based
data exchange mapping may not have an inverse, and when
it does, that inverse may not be unique [1, 2, 10]. Even
in traditional unidirectional settings, a calculus expression
may involve existential quantifiers, which mean that target
instances will need to fill in attributes with labeled nulls.
There may be environment information, domain policy, or
other sources that one can use to fill in values that are in-
accessible to the current formal treatment.

To address these issues, this paper draws from a sequence
of recent efforts to bring together researchers from different
fields, all working on bidirectional transformations [6, 18].
Part of the charter of that ongoing effort is to find common-
alities between different solutions to similar problems. One
commonality that has been identified, but only briefly [23], is
between data exchange and a construct from the program-
ming languages community called a lens [14]. This paper
takes that germ of an idea and expounds upon it to lay out
a potential research path that brings those fields together.

Section 2 briefly describes the state of the art in the data
exchange literature, giving an overview of the formalism
used, the successes of the approach, and its limitations. Sec-
tion 3 discusses the lens construct in detail, with a partic-
ular focus on lens properties that could potentially serve to
address the limitations from Section 2. In Section 4, the pa-
per describes what data exchange mappings could look like
when leveraging the work of both communities, as well as a
few other recent advances. Finally, Section 5 concludes the
paper with some additional thoughts on related work and
future directions.

2. DATA EXCHANGE
In the database context, data exchange is the problem

that arises when data must be transferred between inde-
pendent database applications that do not have the same
data format. In the typical data exchange settings, one is
given a source schema and a target schema, usually rela-
tional schemas, a schema mapping M that specifies the rela-
tionship between the source and the target, and a database
instance I of the source schema. The basic problem that
one wants to address is how to materialize an instance of
the target schema that reflects the source data as accurately
as possible [1, 11].

The building block of data exchange, as well as of many
other data-interoperability tasks, is the notion of schema
mapping, which is a high-level specification, usually stated
in a logical language, that describes the relationship between
database schemas. The most extensively studied schema-
mapping language in the database literature, is the language
of source-to-target tuple-generating dependencies (st-tgds).
An st-tgd is a sentence of the form

∀x̄
(
∃ȳϕS(x̄, ȳ) // ∃z̄ψT (x̄, z̄)

)
, (1)

where ϕS(x̄, ȳ) and ψT (x̄, z̄) are conjunctions of relational
atoms (names of tables with variables) over the source and
target schemas, respectively. The semantics of st-tgds is
inherited from the semantics of first order logic. A pair of
database instances I and J of the source and target schemas,
respectively, satisfies (1) whenever the following holds for ev-
ery tuple ā: if formula ϕS(ā, b̄) is true in I for some elements

Figure 1: Visual representation of st-tgds

b̄, then there exists elements c̄ such that ψT (ā, c̄) is true in
J . Moreover, given a fixed I and a set of st-tgds M, every
target instance J such that (I, J) satisfies all the st-tgds in
M, is called a solution for I under M. Thus, given I and
M, the data exchange problem can be formalized as how to
materialize the best solution for I under M.

Example 1. Consider a source schema composed of a
single relation Emp(·) to store employees, and a target schema
Manager(·, ·). A possible st-tgd between these schemas is

∀x
(
Emp(x) // ∃y Manager(x, y)

)
, (2)

which essentially states that every employee in the source
schema should have a manager in the target schema.

Consider a source instance I = {Emp(Alice), Emp(Bob)}.
Two possible solutions for I under the mapping specified by
the above st-tgd are

J1 = {Manager(Alice,Alice), Manager(Bob,Alice)},
J2 = {Manager(Alice,Bob), Manager(Bob,Ted)}.

Notice that there is no constraint over the possible values
used as managers in the target. Actually the following is
also a solution

J∗ = {Manager(Alice,⊥1), Manager(Bob,⊥2)},
where ⊥1 and ⊥2 are labelled nulls used to represent that
a value should be there but the mapping does not provide
enough information to completely determine it. Actually,
J∗ is considered as the preferred solution for the exchange
as it is the most general among all the possible solutions [1].

In a practical setting, an end user does not directly specify
a mapping by writing down an st-tgd, but by specifying
some simple correspondences usually exploiting some visual
interface [9]. Figure 1 shows an example of correspondences
established by drawing arrows between database schemas.
These visual representations are then compiled into sets of
st-tgds. For example, the upper part in Figure 1 can be
represented by the st-tgd

∀x∀y
(
Takes(x, y) // ∃z(Student(z, x) ∧ Assgn(x, y))

)
,

while the lower part is represented by

∀x∀z
(
∃y(Student(x, y)∧Assgn(y, z)) //Enrollment(x, z)

)
.

In the last few years, a lot of attention has been paid to
the development of solid foundations for the problem of ex-
changing data using schema mappings. These developments

224



(M′)−1 ◦ M

A B

A′

M

M′

Figure 1: The schema evolution problem

obtained by inverting mapping M′ and then composing the
result with mapping M.

The intuitive description of composition and inversion pre-
sented in the previous paragraph has turned out to be very
difficult to formalize, and several different semantics have
been proposed in the last few years [18, 16, 19, 2, 4]. For ev-
ery semantics, several questions need to be answered, among
them, questions about computability, existence, and expres-
sivility. This last topic is considerably important in practice.
Given that mappings are usually specified using st-tgds, one
main question is whether the composition of two of these
mappings can also specified by using st-tgds. A similar ques-
tion arises for the inverse operator. It has been shown that
st-tgds are not strong enough to specify neither composition
nor inversion of st-tgds for most of the semantics proposed
so far in the literature. This has motivated the search for
a closed mapping language, a language L such that the re-
peated application of the composition and inversion opera-
tors over mappings specified in L, can always be specified in
L. The existence of such a language is still one of the most
challenging open problems in the area.

Several features of st-tgds are in the focus of the prob-
lems mentioned above. For instance, the existential quan-
tification both in the source and the target-side of mappings,
make them non-deterministic which difficults not only the
processes of exchanging data, but also composing and in-
verting mappings. Actually, Fagin et al. showed that the
language of st-tgds that do not use existential quantifica-
tion in the target side, is closed under composition [18].
Similarly, Arenas et al. proposed a weak semantics for in-
version for which the extension of st-tgds with inequalities
(plus a predicate to differentiate nulls from constant values)
is closed under inversion [4]. Nevertheless, the search for a
language closed under both operators has been somewhat
elusive for the database community.

Although the data exchange problem has been success-
fully studied from a database perspective, several challenges
remain open, among the most important, to find a practi-
cal mapping language with good properties for specifying
exchange processes, and at the same time with good prop-
erties for computing and expressing high-level schema map-
ping operators. We think that in the search for answers to
these open questions, the database community should open
to new ways of attacking the problem, borrowing tools and
techniques from areas that have faced similar challenges but
from different perspectives.

4. LENSES
What is a lens? What are its properties? Symmetric

versus asymmetric?

What are relational lenses? (AKA, how do lenses work
with relational data?)

How are lenses perfectly suited to the data exchange prob-
lem?

What bits do we need to add to lenses to meet the“perfect
requirements” in the previous section?

5. HOW THE WORLD COULD BE, AND WHAT
WE NEED TO DO IT

Use a tool to specify the mapping. Tool, like Clio, has a
natural translation of state to st-tgds.

The inspiration from a new approach comes from an old
idea in the relational database world, namely the relation-
ship between relational calculus and relational algebra fa-
miliar to every database researcher and central to every re-
lational database implementation. The SQL language was
largely inspired by domain relational calculus and was in-
tended as a declarative specification to be later translated
into operational atoms. Specifically, the user workflow is as
follows:

• (optional) Via some form of query builder, the user
constructs a query that is translated into SQL.

• The SQL query is translated statically to a relational
algebra expression.

• The relational algebra expression is translated to a
query plan by associating algorithms with operators,
and by applying optimization routines. This process
is highly informed by gathered statistics, and may be
informed by user intervention.

By associating st-tgds with relational lenses, one can imag-
ine a similar workflow in a bidirectional or synchronization
world:

• Via some form of visual interface, the user constructs
a mapping that is translated into st-tgds.

• The collection of st-tgds is translated statically to a
relational lens template.

• The relational lens template is translated to a mapping
plan by associating algorithms with operators, and by
applying optimization routines. This process is highly
informed by gathered statistics, and in some instances
must be informed by user intervention.

Supplement the specification with some additional hints,
like “what do I do with this extra column” or “if I change
this bit over here, how should I change the mapping or other
model”.

Need a st-tgd-to-lens compiler. Need a completeness proof.

6. CONCLUSION
Lots of work to do, which is good. Work is interdisci-

plinary. Work is preliminary but visionary. If you don’t
accept this paper, then you don’t like freedom.

7. REFERENCES
[1] M. Arenas, P. Barceló, L. Libkin, and F. Murlak.

Relational and XML Data Exchange. Morgan and
Claypool Publishers, 2010.

Figure 2: The schema evolution problem

are a first step towards providing a general framework for
exchanging information, but they are definitely not the last
one. In fact, many information system problems involve not
only the design and integration of complex application ar-
tifacts, but also their subsequent manipulation. This has
motivated the need for the development of a general infras-
tructure for managing schema mappings. In particular, sev-
eral operators for manipulating schema mappings have been
shown to be fundamental in this area.

Two of the most fundamental operators on schema map-
pings are composition and inversion [3]. Given a mapping
M1 from a schema A to a schema B, and a mapping M2

from B to a schema C, the composition of M1 and M2

is a new mapping that describes the relationship between
schemas A and C. This new mapping must be semantically
consistent with the relationships previously established by
M1 andM2. On the other hand, an inverse ofM1 is a new
mapping that describes the reverse relationship from B to
A, and is semantically consistent withM1. In practical sce-
narios, these operators can have several applications one of
them being the schema evolution problem (Figure 2). Con-
sider a mappingM between schemas A and B, and assume
that schema A evolves into a schema A′. This evolution
can be expressed as a mappingM′ between A and A′. The
relationship between the new schema A′ and schema B can
be obtained by inverting mapping M′ and then composing
the result with mapping M.

The intuitive description of composition and inversion pre-
sented in the previous paragraph has turned out to be very
difficult to formalize, and several different semantics have
been proposed in the last few years [2, 4, 10, 12, 13]. For ev-
ery semantics, several questions need to be answered, among
them, questions about computability, existence, and expres-
siveness. This last topic is very important in practice. Given
that mappings are usually specified using st-tgds, one main
question is whether the composition of two of these map-
pings can also be specified by using st-tgds. A similar ques-
tion arises for the inverse operator. As shown in the follow-
ing example st-tgds are not strong enough to specify neither
composition nor inversion of st-tgds for most of the seman-
tics proposed so far in the literature.

Example 2 ([12]). LetM be the mapping specified by
the st-tgd (2) in Example 1. Consider a new schema com-
posed of relations Boss(·, ·) and SelfMngr(·) and the st-tgds

∀x∀y
(
Manager(x, y) // Boss(x, y)

)
,

∀x
(
Manager(x, x) // SelfMngr(x)

)
.

It can be shown [12] that if the mapping in Example 1 is
composed with the above mapping, the result can be speci-

fied by the logical sentence

∃f
[

∀x
(
Emp(x) // Boss(x, f(x))

)
∧

∀x
(
Emp(x) ∧ x = f(x) // SelfMngr(x)

) ]
.

This sentence essentially states that there exists a function
f(·) that assigns a manager/boss to every employee, and
moreover, if the manager/boss assigned to an employee e
equals f(e), then e should be in the table SelfMngr. This
logical formula is not an st-tgd, actually it is not even in
first-order logic, as it has a second-order quantification over
a function symbol. It was shown by Fagin et al. [12] that
second-order quantification, plus the equality in the left side
of the above formula, is unavoidable if one wants to faithfully
represent the composition of the two mappings. That is, a
composition specified by st-tgds does not exist in this case.

Example 3. To show some of the problems that arise
with inversion, consider a mapping specified by the st-tgds

∀x∀y
(
Father(x, y) // Parent(x, y)

)
,

∀x∀y
(
Mother(x, y) // Parent(x, y)

)
,

and let I = {Father(Leslie,Alice)}. Then the best solution
for I is the instance J = {Parent(Leslie,Alice)}. When try-
ing to establish the reverse relationship, it is not clear what
source instance should be assigned to J . In fact, according
to Fagin’s initial definition of inverse [10], the above map-
ping is not invertible. Subsequent works on relaxed notions
of inverses for mappings have tried to solve this problem by
applying a best effort approach [2, 13]. In particular, under
the definition of Arenas et al. [2], the best possible inverse
for the above mapping is given by the sentence

∀x∀y
(
Parent(x, y) // Father(x, y) ∨ Mother(x, y)

)
.

Notice that under the inverse mapping both instances I1 =
{Father(Leslie,Alice)} and I2 = {Mother(Leslie,Alice)}, are
equally good as solutions for J = {Parent(Leslie,Alice)}.
Also notice that the above mapping is not an st-tgd as it
has a disjunction in the right-hand side, which was shown by
Arenas et al. [2] to be unavoidable in this case. This example
shows that inverses in general may lose information when
going back from target to source, and more importantly,
that inverses specified by st-tgds might not exist.

The fact that st-tgds cannot faithfully represent the com-
position or inversion of st-tgds has motivated the search for
a closed mapping language; a language L such that the re-
peated application of the composition and inversion opera-
tors over mappings specified in L, can always be specified in
L. The existence of such a language is still one of the most
challenging open problems in the area.

Several features of st-tgds are in the focus of the problems
mentioned above. For instance, the existential quantifica-
tion both on the source and the target-side of mappings,
makes them non-deterministic which makes more difficult
not only the processes of exchanging data, but also compos-
ing and inverting mappings. Actually, Fagin et al. showed
that the language of st-tgds that do not use existential quan-
tification on the target side, is closed under composition [12].
Similarly, Arenas et al. proposed a weak semantics for in-
version for which the extension of st-tgds with inequalities
(plus a predicate to differentiate nulls from constant values)
is closed under inversion [4]. Nevertheless, the search for a

225



language closed under both operators has been somewhat
elusive for the database community. An addition to st-tgds
which has been very common in the literature are target de-
pendencies used to enforce properties only over the target
side (for example, key and foreign-key constraints on the
target). Target dependencies add expressive power and can
be used to decrease the level of non-determinism when ex-
changing data, but at the same time, they complicate the
managing of mappings at a high level.

Although the data exchange problem has been success-
fully studied from a database perspective, several challenges
remain open, among the most important, to find a practi-
cal mapping language with good properties for specifying
exchange processes, and at the same time with good prop-
erties for computing and expressing high-level schema map-
ping operators. We think that in the search for answers
to these open questions, the database community should be
open to new ways of attacking the problem, borrowing tools
and techniques from areas that have faced similar challenges
but from different perspectives.

3. LENSES
Lenses [14] are a useful technique developed in the pro-

gramming language community (although it is noteworthy
that some lens concepts appear in work in other communi-
ties including work on data storage and caching). Lenses
have played an important role in an international research
initiative aimed at developing and understanding techniques
for bidirectional transformations [6, 18].

The motivation for the development of lenses closely par-
allels some of the open issues raised in the previous section.
Bidirectional transformations, unless they happen to be bi-
jections,

• have to provide a candidate for a “reverse” transfor-
mation, even when an inverse transformation doesn’t
exist

• have to deal with potential non-determinism in the re-
verse transformation

• should be closed under composition, and ultimately

• should form a closed mapping language as described
above.

Lenses, in their various guises, provide such bidirectional
transformations.

The most basic form of a lens, called a set-based lens, con-
sists of two sets S and V and two functions g (pronounced
get) S //V , and p (pronounced put) V ×S //S. Set-based
lenses are asymmetric and can be thought of as an abstrac-
tion of a view updating problem — S should be thought of
as the set of states of a system, and V as the set of states
of a view of that system. Since a view state contains less
information than a system state, a view state can easily be
calculated from any system state, and that’s what g does.
However given just a view state it is not in general possible
to determine a single corresponding system state because of
the missing information. Instead, the lens provides a way, p,
of calculating a new system state from an old system state
and a specified view state. The function p can be thought
of as view updating : Given a system state s and its corre-
sponding view g(s), if the view is modified to some new view
state v, then the system state s should be updated to a new
system state p(v, s).

A lens is called well-behaved if it satisfies two conditions

(i) (PutGet) the updated system state really does corre-
spond to the view state v: g(p(v, s)) = v, and

(ii) (GetPut) the Put for a trivially updated state is trivial:
p(g(s), s) = s.

Some examples of work on well-behaved asymmetric lenses
include quotient lenses [15], which allow the properties of a
lens to be relative to equivalence classes; delta lenses [8,
21], which enrich the situation by using the nature of the
modification, the delta, from g(s) to v to compute a delta
which can be used to update s; edit lenses [16], which take as
input edit operations rather than simple deltas; and so on.
In each case the lenses are composable, and lenses are in a
sense a schema mapping, but, sadly, inversion of asymmetric
lenses is, except in trivial cases, not defined.

These lenses are all called asymmetric to emphasise the
difference between S and V : S contains all the informa-
tion and V some information that can be derived from S.
The lenses themselves are sometimes said to go from S to
V . They are bidirectional, but asymmetrically so. Data ex-
change, and many other notions of data synchronisation, are
in contrast symmetric — there is no master source of data
like S, and no a priori “easy” direction for data exchange.

Recently, a notion of well-behaved symmetric lens has
been introduced [17]. Although they are defined elementar-
ily, a symmetric lens can be seen to be equivalent to a span
of asymmetric lenses: A set-based symmetric lens between
S and T amounts to a set U (sometimes called “universal”
because it contains all the information of both S and T , and
in general even more besides) and two asymmetric lenses,
one from U to S and one from U to T . Symmetric lenses
are composable and each symmetric lens has an inversion
obtained by exchanging the roles of S and T .

(A span is, as just described, a pair of lenses (or functions,
or more generally other agreed operations) with a common
starting position viz S oo U // T . A cospan (cospans will
be referred to at the end of the paper) is similarly a pair of
lenses (or functions, etc) with common ending positions viz
S //X oo T .)

There is an analogy here with functions and relations —
functions do not in general have uniquely defined inversions,
but instead we might consider spans of functions that form
generalised relations and do have inversions given by revers-
ing the relation. The analogy is in fact the mathematical
basis of the symmetric lens constructions: in both cases in-
version is obtained the same way, and composition is calcu-
lated by pullback (the basis of relational composition).

As a concrete example, consider the work to date on rela-
tional lenses [5]. Relational lenses have a strong correlation
with relational algebra; for instance, there is a “projection”
lens corresponding to the projection operator π. Because
each lens must specify put and get functions p and g, each
lens not only describes how to retrieve data as does its re-
lational algebra counterpart, but also how to update and
replace it. Thus, relational lenses can be considered a solu-
tion to the view-update problem [7].

Each given relational operator does not have a unique up-
date policy, however. For the given simple example of the
projection operator π, if the operator drops a column c, and
a new row is added to the output (view) state, there are sev-
eral possibilities as to how to populate that column c when
adding the row to the input state. Some possibilities are:

• Always use a null value.

226



• Always use a constant value.

• Always insert an environment value, e.g., the current
time or user.

• Use a functional dependency c′ → c from another col-
umn c′ to determine the value.

The original work on relational lenses treats the last of
those options as the proper one in the sense that it is the
least lossy, but requires the presence of a functional depen-
dency to operate. Each of these choices of update policy
is equally valid based on the requirements of the user and
the available data. Therefore, one can equally consider a
relational lens template as a way to describe a family of po-
tential lenses corresponding to a specific relational operator
but missing its update policy.

The update policy for the projection operator is very sim-
ilar to a way to specify how to resolve existential quantifiers
in st-tgds, but update policies for other operator templates
need not be. For example, the join and union lens templates
must have update policies specifying whether updates are
propagated to the left or right inputs, or to both.

It is important to note that relational lenses to date are
asymmetric. As noted before, to be a complete solution to
data exchange scenarios, an important first step would be
to develop symmetric versions of these lenses. However, the
potential association between lenses, especially relational
lenses, and data exchange is powerful. There is a rich and
evolving body of work on lenses and their generalisations.
Lenses are an abstraction of schema mappings. And sym-
metric lenses provide a closed mapping language since they
have inversions and compositions. Thus lenses seem set to
solve outstanding problems in data exchange including the
development of a closed mapping language and the schema
evolution problem. Furthermore, of course, the development
of lenses will likewise be positively influenced by closer and
more explicit links with the database community and prac-
tical data exchange.

4. BRINGING THEM TOGETHER
What is hopefully clear by this point is that the data ex-

change problem is relevant to multiple fields of study within
computer science, and that different fields have developed
solutions to the problem that could potentially learn from
each other. To summarize:

An st-tgd is a declarative, unidirectional language. It has
tool support in the form of mapping builders [9]. The
formal treatment of st-tgds demonstrates a great many
positive angles, but has practical problems when it
comes to existential quantifiers and completeness un-
der inversion and composition.

Lenses combine to become operationally specified, domain-
specific bidirectional languages. One such language is
relational lenses, which have general parity with rela-
tional algebra.

There are almost certainly many possible ways to inter-
act between these two tools and formalisms. However, one
concrete approach comes from an old idea in the relational
database world, namely the relationship between relational
calculus and relational algebra familiar to every database
researcher and central to every relational database imple-
mentation. The SQL language was largely inspired by do-
main relational calculus and was intended as a declarative

specification to be later translated into operational atoms.
Specifically, the user workflow is as follows:

• (optional) Via some form of query builder, the user
constructs a query that is translated into SQL.

• The SQL query is translated statically to a relational
algebra expression.

• The relational algebra expression is translated to a
query plan by associating algorithms with operators,
and by applying optimization routines. This process
is highly informed by gathered statistics, and may be
informed by user intervention.

By associating st-tgds with lenses, one can imagine a sim-
ilar workflow in a bidirectional or synchronization world:

• Via some form of visual interface, the user constructs
a mapping that is translated into st-tgds.

• The collection of st-tgds is translated statically to a
relational lens template.

• The relational lens template is translated to a mapping
plan by associating algorithms with operators, and by
applying optimization routines. This process is highly
informed by gathered statistics, and in some instances
must be informed by user intervention (in the same
spirit as past work on updatable views [22]).

An added benefit to this approach is that a mapping would
now have a “show plan” capability similar to that used in re-
lational database engines. The designer of a mapping would
be able to see not only how the mapping is specified (in
language that is natural to st-tgds) but also how it will be
evaluated (in language that is natural to anyone that has
ever used a relational database).

One necessary difference between this approach and the
relationship between SQL and relational algebra is the ex-
pected amount of necessary user intervention. With a typi-
cal relational engine, user hints are entirely optional; a user
may be able to specify indexes or join algorithms, but with-
out any such input, the engine still manages to determine
an optimal query plan a vast majority of the time. With
the data exchange scenario, one would need to somehow fill
in the relational lens template parameters, needing answers
to questions like “what do I do with this extra column”.
While reasonable defaults may exist, it is unclear as to how
often those defaults will be optimal to the user’s scenarios.
Therefore, it is important to discover some way to map those
questions to user input, which is primarily a usability ques-
tion, and a non-trivial one at that. Thus, to successfully
incorporate the two technologies along these lines, at the
very least the following will need to be accomplished:

1. A symmetric version of the relational lens framework.

2. An st-tgd-to-lens compiler, and a completeness proof
of that compiler.

3. A reasonable mapping of relational lens template pa-
rameters to user gestures — for instance, giving the
user an understandable way to dictate through which
inputs an update to a join should propagate.

One final solution of note is that one can use a combi-
nation of lenses and st-tgds to solve the schema evolution
problem in Section 2 as well, and possibly in two different

227



manners. The simplest of the two possible approaches is
to note that composing mappings specified using lenses is
as simple as concatenating them. So, if there is a mapping
from S to T as [m1,m2,m3], and one can express a schema
evolution operation against S to S′ as a sequence of sym-
metric lenses [`1, `2], then one can construct a mapping from
S′ to T as [`−1

2 , `−1
1 ,m1,m2,m3].

It should be noted that lenses are not the only recent at-
tempt to construct mappings from incremental components
such [23]; one such language (called channels) allows schema
evolution primitives to be propagated through mappings
rather than appended to one end [24]. It may prove useful
to end users that have control over both ends of a mapping
to have a choice between adapting one schema and compos-
ing the mappings as in the previous paragraph, or propagate
the evolution primitives through the mapping and construct
a new, evolved target schema T ′. To support the latter,
one must add an additional research goal to the above list,
namely to update the lens formalism to allow the possibil-
ity of schema evolution, or otherwise resolve the differences
between lenses and channels.

5. CONCLUSION
This paper has described the status quo of research on

data exchange on two different fronts in two different dis-
ciplines: st-tgds from database literature, and lenses from
programming language literature. Both tools have rich pub-
lication histories and formal results; the vision laid out in
this paper is not intended to replace either one. Rather, it
seems likely that by combining the work done in both areas
and following the spelled-out research agenda, a novel, com-
plete, and practical solution to the data exchange problem
may result. To realize the vision will require work at practi-
cal and formal levels and across interdisciplinary boundaries.

There are also tantalising opportunities that require fur-
ther study. Among them there is work showing how certain
kinds of lenses really do correspond concretely to schema
mappings [20]. Can this be generalised to symmetric lenses
in their various forms? Are symmetric lenses really an em-
bodiment of schema mappings with a built-in calculus of
data exchange? Also, there is already practical work in
building data exchange via cospans of certain kinds of lenses
[19]. That work has been used to concretely implement
data exchange and systems interoperation. A co-span of
asymmetric lenses is not a symmetric lens, but there must
be a precise mathematical relationship between the co-span
based data exchange and the span based schema mappings.

6. REFERENCES
[1] M. Arenas, P. Barceló, L. Libkin, F. Murlak. Relational

and XML Data Exchange. Synthesis Lectures on Data
Management, Morgan and Claypool Publishers, 2010.

[2] M. Arenas, J. Peréz, C. Riveros. The recovery of a
schema mapping: bringing exchanged data back. TODS
34(4) (2009).

[3] M. Arenas, J. Pérez, J.L. Reutter, C. Riveros.
Composition and inversion of schema mappings.
SIGMOD Record 38(3), 17–28 (2009).

[4] M. Arenas, J. Pérez, J.L. Reutter, C. Riveros. Query
Language based Inverses of Schema Mappings:
Semantics, Computation, and Closure Properties
VLDBJ 21(6), 823–842 (2012)

[5] A. Bohannon, B.C. Pierce, J.A. Vaughan. Relational
lenses: a language for updatable views. PODS 2006.

[6] K. Czarnecki, J.N. Foster, Z. Hu, R. Lämmel, A.
Schürr, J.F. Terwilliger. Bidirectional Transformations:
A Cross-Discipline Perspective. ICMT 2009.

[7] U. Dayal and P. Bernstein. On the Correct Translation
of Update Operations on Relational Views. ACM
Transactions on Database Systems, September 1982,
8(3).

[8] Z. Diskin, Y. Xiong, K. Czarnecki. From State- to
Delta-Based Bidirectional Model Transformations: the
Asymmetric Case, Journal of Object Technology 2011,
10(6), 1–25.

[9] R. Fagin, L.M. Haas, M.A. Hernández, R.J. Miller, L.
Popa, Y. Velegrakis et al. Clio: Schema Mapping
Creation and Data Exchange. Conceptual Modeling:
Foundations and Applications, 2009, 198–236.

[10] R. Fagin. Inverting schema mappings. TODS 32(4)
(2007).

[11] R. Fagin, P.G. Kolaitis, R.J. Miller, L. Popa. Data
exchange: semantics and query answering. TCS 336(1),
89–124 (2005).

[12] R. Fagin, P.G. Kolaitis, L. Popa, W.C. Tan.
Composing schema mappings: Second-order
dependencies to the rescue. TODS 30(4), 994–1055
(2005).

[13] R. Fagin, P.G. Kolaitis, L. Popa, W.C. Tan.
Quasi-inverses of schema mappings. TODS 33(2)
(2008).

[14] J.N. Foster, M.B. Greenwald, J.T. Moore, B.C. Pierce,
A. Schmitt. Combinators for bidirectional tree
transformations: A linguistic approach to the
view-update problem. ACM Trans. Program. Lang.
Syst., 29(3): (2007).

[15] J.N. Foster, A. Pilkiewicz, B.C. Pierce. Quotient
Lenses. ICFP 2008.

[16] M. Hofmann, B.C. Pierce, D. Wagner. Edit lenses.
POPL 2012.

[17] M. Hofmann, B.C. Pierce, D. Wagner. Symmetric
lenses. POPL 2011.

[18] Z. Hu, A. Schürr, P. Stevens, J.F. Terwilliger.
Dagstuhl seminar on bidirectional transformations
(BX). SIGMOD Record 40(1), (2011).

[19] M. Johnson. Enterprise Software with Half-Duplex
Interoperations. In Doumeingts, Mueller, Morel and
Vallespir (eds), Enterprise Interoperability: New
Challenges and Approaches, 521–530, Springer-Verlag,
(2007).

[20] M. Johnson and R. Rosebrugh. Fibrations and
Universal View Updatability. Theoretical Computer
Science, 388, 109–129, (2007).

[21] M. Johnson and R Rosebrugh. Delta lenses and
opfibrations. BX 2013, to appear.

[22] A.M. Keller. Choosing a View Update Translator by
Dialog at View Definition Time. VLDB 1986, 467–474.

[23] J.F. Terwilliger, A. Cleve, C. Curino. How Clean Is
Your Sandbox? ICMT 2012.

[24] J.F. Terwilliger, L.M.L. Delcambre, D. Maier, J.
Steinhauer, S. Britell. Updatable and Evolvable
Transforms for Virtual Databases. PVLDB 3(1)
(VLDB 2010).

228


