O

proceedings

Determining Essential Statistics for Cost Based
Optimization of an ETL Workflow

Sriram Padmanabhan
IBM Software Group
us
srp@us.ibm.com

Ramanujam Halasipuram
IBM Research
~India

ramanujam.s@in.ibm.com

Prasad M Deshpande
IBM Research
India
prasdesh@in.ibm.com

ABSTRACT

Many of the ETL products in the market today provide tools for

Unlike SQL, which is declarative in nature, ETL workflows are pro-
cedural and specify the sequence of steps to transform the sourc
design of ETL workflows, with very little or no support for opti- tables into the target warehouse. Many of the ETL tools in the mar-
mization of such workflows. Optimization of ETL workflows pose ket today provide support for design of ETL workflows, with very
several new challenges compared to traditional query optimization little or no support for optimization of such workflows. The effi-
in database systems. There have been many attempts both in theiency of the ETL workflow depends to a large extent on the skill
industry and the research community to support cost-based opti-and domain knowledge of the workflow designer. This may work
mization techniques for ETL Workflows, but with limited success. well in some situations. However, an ETL workflow is typically
Non-availability of source statistics in ETL is one of the major chal- designed once and executed periodically to load new data. An ETIL
lenges that precludes the use of a cost based optimization strategyworkflow that was efficient to start with can easily degrade over
However, the basic philosophy of ETL workflows of design once time due to the changing nature of the data.

and execute repeatedly allows interesting possibilities for determin-

ing the statistics of the input. In this paper, we propose a frame- It would be useful to add support for optimization of ETL work-
work to determine various sets of statistics to collect for a given flows to ETL engines. Optimization techniques developed for tra-
workflow, using which the optimizer can estimate the cost of any ditional DB systems could potentially be reused. However, there

alternative plan for the workflow. The initial few runs of the work-

are several challenges specific to ETL that need to be addressed

flow are used to collect the statistics and future runs are optimized make this possible. These are summarized below:

based on the learned statistics. Since there can be several alterna-
tive sets of statistics that are sufficient, we propose an optimization
framework to choose a set of statistics that can be measured with
the least overhead. We experimentally demonstrate the effective-
ness and efficiency of the proposed algorithms.

1. INTRODUCTION

Extract - Transform - Load (ETL) tools are special purpose soft-
ware artifacts used to populate a data warehouse with up-to-date,
clean records from one or more sources. To perform this task, a
set of operations should be applied on the source data. The major-
ity of current ETL tools organize such operations as a workflow.
At the logical level, an ETL workflow can be considered as a di-
rected acyclic graph (DAG) used to capture the flow of data from
the sources to the data warehouse. The input nodes of the graph
represent the source record-sets, whereas the output nodes repr
sent the target record-sets that need to be populated. The interme-
diate nodes represent transformation, cleansing and join activities
that reject problematic records and reconcile data to the target ware-
house schema. The edges of the graph represent input and output
relationships between the nodes.

(c) 2014, Copyright is with the authors. Published in Pro@thlinter-
national Conference on Extending Database Technology (BEPBarch
24-28, 2014, Athens, Greece: ISBN 978-3-89318065-3, omPpeeed-
ings.org. Distribution of this paper is permitted under therts of the Cre-
ative Commons license CC-by-nc-nd 4.0

307

e Variety/Multiplicity of data sources like DBMS, flat files,
etc: A ETL workflow can integrate data from multiple sources.
This makes it impossible to push the query into the source
systems, since it may need joins of tables across sources. B¢
sides, some of the sources could be flat files or other source
that do not support SQL.

e Transformation operators: Many of the operators in an
ETL workflow transform data from one form to another, ei-
ther for cleansing or standardizing into a normal form. These
transformation operators are often custom code, the semar
tics of which may not be known to the optimizer. These op-
erators are essentially black box operations for the optimizer,
which makes the optimization extremely challenging.

e Constraints due to intermediate results:In an ETL work-
flow, other than the target table, some intermediate results
can also be collected. For example, a common pattern in ¢
join operator is to collect all tuples that do not join with the
other table (these are called mggect linkg into a separate
table to aid in diagnostics. Such intermediate results pose
additional constraints while reordering a workflow, since the
reordering may make it impossible to generate the same se
of intermediate results.

¢ Non-availability of statistics for cost-based optimization:
Since the source systems are different from the ETL engine
the ETL engine does not have access to the statistics in thi
source databases. Even if the statistics could be made avai
able, they may be insufficient. The extreme case is when the
sources are flat files, since there will be no statistics available

10.5441/002/edbt .2014.29

at all. This makes it impossible to do any kind of cost based \ \

optimization. Md)\wm o WM

. . / |><I Aecu / w«
There have been many attempts both in the industry and the re- /
search community to address these challenges and develop opti- == =
mization techniqugs for ETL Workflows. Howe?ver, they have hF;d g (@ ®)
limited impact on the ETL tools in the market. We revisit this prob- \
lem to identify the missing links in the solution. The challenges due N\@m)
to the transformation operators have been largely addressed. How- — MM
ever, all the existing techniques assume that statistics are available
for cost-based optimization, which is clearly not the case. We ad- /
dress this important gap in this paper, and describe techniques for (c)

learning the required set of statistics needed for optimizing the ETL
workflow. We exploit the pattern adesign once and execute re-
peatedlyof ETL workflows to develop an approach for learning the
statistics in the initial executions so that future executions can be
optimized. of Product. This is likely to be much cheaper in terms of memory
overhead since there is no multi-attribute distribution to be mea-
Traditional database systems maintain a set of statistics, often bysured. We model this as an optimization problem and determine
using histograms, so that it can estimate the cardinalities for various an optimal set of statistics to be measured for any given workflow,
sub-expressions of queries that can be run on the data. Since the s&juch that the overhead of measuring is minimal. In summary, ou
of queries is not known beforehand, the database cannot target theontributions are as follows:
statistics for any specific query. The set of possible statistics for
a given table can be quite large. For example, for a table with

Figure 1: Plans for an ETL workflow

columns, there could b2" possible multi-attribute distributions, * Aframework for optimization of ETL workflows that are re-
one for each subset of attributes. A multi-attribute distribution on peatedly executed, when the statistics on the source table
all the attributes is sufficient to compute all the other distributions. are either unavailable or incomplete.

However, such a distribution will be very large (likely equal to the
database size itself) thus making it very expensive to create and
maintain. A common strategy to avoid this is to store only single
column distributions and use attribute independence assumption to
estimate the multi-attribute distributions needed by the query. This e An experimental evaluation to validate the effectiveness of
may introduce errors in the estimation, since the attributes may not the proposed algorithm.

be independent in practice.

e An algorithm for selecting an optimal set of statistics to be
measured given an ETL workflow, such that any reordering
of the workflow can be costed accurately by the optimizer.

In the design once execute repeatedbenario of ETL, the work- Thereis a cave_at that the underlying data may chang.e even thouc
flow that is going to run on the data is precisely known. Thus the same flow is executed repeatedly. Thus, the statistics gathere
rather than maintaining the multi-attribute distribution on all at- 1N ©n€ execution may not be valid future executions. In practice
tributes, it is possible to figure out a much smaller set of statis- N data changes gradually and thus we assume that the statisti
tics needed to optimize the workflow. These targeted statistics fom One execution are valid for the next execution. The whole
will enable the optimizer to estimate the cardinalities of all pos- CYCl€ IS repeated in each execution so that the statistics are kept u
sible sub-expressions and to cost all alternative plans. Our pro-dated with the changing data. Further, it can be noted that thoug|
posed system analyzes the workflow to determine a set of statisticsiN€ téchniques are explained in the context of ETL workflows, they
that are sufficient to cost any reordering of the flow. For exam- @PPly equally to SQL queries which are repeatedly executed an
ple, consider 3 possible plans for an ETL workflow as shown in warrant the extra effort of gathering accurate statistics to enable
Figure 1. In order to be able to cost these alternative plans, one Perfect optimization. The rest of the paper is organized as follows.

would need to estimate the cardinalities of the sub-expressions: " S€ction 2, we survey the related work in this area. In Sections &
Orders, Product, Customer, Orders X Product, Orders X and 4, we lay the framework and describe how to determine the

Customer and Product X Customer. It can be seen that to Statistics required to cost any plan. We further extend this into ar

estimate these, the set of statistics needed are the distribution ofPPtimization framework for determining the optimal set of statis-
(Product_id, Customer_id) ofrders, (Product_id) onProduct tics in Section 5. In Section 6, we describe how to exploit metadate

and (Customer_id) of'ustomer-. about functional dependencies to reduce the statistics needed.
- describe the experimental results in Section 7, discuss possible fu

Since the ETL engine does not have control on the source databased!r® work in Section 8 and finally conclude in Section 9.

these statistics need to be observed by the ETL engine itself. The

ETL engine measures these statistics in the initial one or multiple 2. RELATED WORK

runs and uses them to optimize subsequent runs of the workflow. There have been many techniques proposed by the research col
There could be different sets of statistics that are sufficient to cost munity in the past for cost-based optimization of ETL workflows.

any reordering of the flow and the overhead of measuring these Most of the papers [17, 23, 16, 14, 21] focused on conceptua
statistics could vary widely. In the above example, if the plan 1(a) modeling of ETL optimization. [17] models the problem as an

is executed, the cardinality @rder X Product can be directly state-space search problem and defines operators for generatil
observed. Thus, the only other statistics needed are the distributionthe search space. [23] delves into the conceptual modeling of th
of (Customer_id) orC'ustomer and Orders and the cardinality ETL process, while [16] details the mapping of them into logical

308

ETL processes. [14] touches upon efficient heuristics for logical Our proposed technique falls into the second category of optimiza
optimization of the ETL workflows. [21] extended the ETL opti- tion of future queries, based on observations made in the currer
mization to physical implementation for the logical counterparts. run. To the best of our knowledge, this is the first effort to develop
Recently metrics other than cost have also been considered for op-a systematic framework that considers alternative sets of statistic
timization. [18] introduces the idea of optimizing ETL workflows for a given query to choose the option with the minimal overhead
for quality metrics such as reliability and scalability. [19] consid- of observation.

ers optimizing ETL workflows for external interruptions like faults

etc. All these ETL optimization strategies assume the availability 3 STATISTICS COLLECTION FRAMEWORK
of statistics necessary in determining the cost of the operator and . .

focus on the process of cost-based optimization using the operator’ss'll Prellmlnarles))
cost. In contrast, the primary contribution of our work is to address I this section, we introduce the concepts and terminology used ir
the issue of estimating the operator cost when the input statisticsthe rgast of_the paper. The notations used in the following discussior
are either missing or incomplete. are listed in Table 1.

Symbol Description
The set of all possible sub-expressions over|all
the plans for an ETL flow
The relation T; corresponding to subt
expressiore;

Some of the commercial ETL engines support static rule-based op-
timizations. For example, IBM DataStage has introduced this no- | ¢
tion under its Balanced Optimization feature [9], while Informat-
ica [11] also has similar features built into its product. While these | T
techniques do support workflow optimization, the static nature of

the rules doesn't take any cost metrics into consideration. Tiig,.im | Tiy M Tiy M. T,
|T| The cardinality of relatiorf’
Though the current work is primarily motivated by ETL workflows, | Hf Histogram on attribute of relation”” |
there is a lot of work in SQL query optimization area that is some- a The sum of the values in the histogram, this will
. ; X |H|
what related to this work. Most of the published work regarding be equal tdT'|

SQL query re-optimization can be classified into one of the follow- lar| The number of distinct values of attributein
ing two categories: T relation T

lal The domain size of over all relations
a) re-optimizations of the current (or ongoing) query; and i” Join key betweefl:; andT;
b) optimization of future queries al Join of relationsZ; andT; usingJi; :

i The rows fromT; that satisfy the join predicate
Techniques such as mid-query re-optimization [12], eddies [2] geroa |}~ The rows from7; that were rejected by joir
tive re-optimization [15], query scrambling [22], etc. belong to the | T’ predicateJ;;
first category. Work related to statistics tuning and learning [7, 1, For each bucket of the histografg. , multi-

. . . 1’

5,_20, 3, 4, 6, 8] fall into the se_cond cate_gory. IBM Leal_rnln_g_ Opti- <H{ﬁ1 \H%2> ply the frequency value with its corresponding
mizer(LEO) [20] explores the idea of using actual cardinalities for frequency value %
adjusting the optimizer estimates. [3, 4] extend the notion of car- For each bucket of tzhe histograf?, , divide
dinality observation to intermediate sub expressions and introduce ﬁl the frequency value with its corresﬁonding frie-

a framework for obs.er.ving the cardinalities of SEs and usipg them T2 quency value inf,

as part of query optimization. The work_most relev_ant to thl_s paper G(T,a) Group by ofT on attributes
is the pay-as-you-go framework [6], which recognizes that just ob- A ETL transform operator (UDF) applied to a}
serving the cardinalities may not help in finding the optimal plan for | U(T’, a) tributea of T
the current query. The actual cardinalities of many sub-expressions
not covered in the current plan are not observed, since the plan is
not being altered. They introduce the idea of plan modification to Table 1: Symbol descriptions

ensure that all the sub-expressions are covered over the different

plans. This enables observation of the cardinalities of all the sub- Sub-expressionsGiven a ETL workflow, determining an optimal
expressions, thus enabling the selection of the optimal plan. Of plan based on a cost metric involves identifying different possible
course, exploring the cardinalities of all the sub-expressions might re-orderings of the given flow and cost them. Cost-based optimiz-
be an overkill and to strike a balance, XPLUS [8] introduces ex- ers use different transformation rules defined by the semantics ¢
perts which control the trade-off between exploration of the search the operators to determine alternative orderings of the given flow
space (to determine cardinalities of different sub-expressions) andThese transformation rules define all valid re-orderings of the oper:
exploitation of cardinalities of the known sub-expressions. How- ators and thus enable the optimizer in generating a search space
ever, in both of these techniques, the only way to determine the candidate plans. Once the candidate plans are identified, operat
cardinality of a sub-expression is to observe it directly. They do cost models help the optimizer in determining the cost of the plan.
not consider observing other statistics that could be used to com-The cost model estimates the cost of each operator based on inpL
pute the cardinalities. Thus, to be able to measure all cardinalities like the cardinalities of the input relations, CPU and disk-access
of all possible sub-expressions, they would require to run a large speeds, memory availability, etc. The most important factors de-
number of plans. To address this limitation, our framework gener- termining the cost of any operator (including the standard select
alizes this to observe different kinds of statistics, including cardi- project, join and group-by operators) are the cardinalities of the in-
nalities and attribute distributions. A smaller number of attribute puts. Thus, for a given plan, if the cardinalities of the outputs at
distributions are sufficient to compute the cardinalities of all possi- all intermediate stages of the plan are determined, the cost of an
ble sub-expressions. operator in the plan and therefore the total cost of the plan coulc

309

be computed. A sub-plan denotes a subset of the plan till some best plan. Thus, the goal of the framework can be stated as follows
intermediate stage and a sub-expression (SE) logically denotes thegiven an ETL flow, identify a set of statistics to observe such that it
result at an intermediate stage of the plan. covers at least one CSS for each SE in theSsebrresponding to
the flow
For example, consider the sample plans shown in Figure 1 again.
The SEs for the plan 1(a) aerders, Product, Customer, Orders
X Product. A different plan for the same query may produce addi- 3-2 The Framework
tional SEs. For example, plan 1(b) will produce the 8&iers X The overall flow of the ETL optimization process is shown in Fig-
Customers. Thus, in order to be able to cost all possible plans, we ure 2. The process starts with the initial plan, i.e. the workflow
need to look at all possible SEs that can be produced in any of thedefined by the user. The system analyzes the workflow to deter
plans. We will denote the set of all possible SEs over all possible mine optimizable blocks. For each optimizable block, the set of all
plans as€. For simplicity of explanation, the expression corre- possible SEs is determined. The next step is to determine the po:
sponding to the complete flow is also includedinNote that a SE sible CSS for each SE. A set of statistics is determined such tha
is a logical entity and different plans may produce the same SE in it contains at least one CSS for each SE. The plan is then instru
different ways. For example, all the three plans in Figure 1 produce mented with code to collect these statistics and then run to actuall:
the same SEProduct X Orders X Customer. In general, for a gather the statistics. Based on the collected statistics, the optimize
join of n tablesTy, Ts, . . . Ty, considering all possible join orders, — can now cost alternative plans and the best plan is chosen for futur
the set€ will contain all possible joins, i.e. joins corresponding to runs of the flow. The entire cycle is repeated periodically, since
each of the” subsets of 71, T, ... Ty, }. the underlying data characteristics may be changing. If the dat:
changes sufficiently, a plan that was optimal at one time may nc
Candidate Statistics Set: To determine some statistics of a SE, longer be optimal. So it becomes necessary to collect the statistic
other statistics on the composing SEs can be used. A set of statis-and re-optimize again. The process can either repeat at each run
tics that is sufficient for computing a statistic of a SE is defined as a the workflow or at some other user defined interval.
sufficient statistics sdor that statistic. Further, such a set is mini-
mal if any subset of it is not sufficient. We denote such a minimally Steps 1, 2 and 7 are standard steps for any optimizer. Since the
sufficient set of statistics ascandidate statistics set (CS®) the have been covered by prior work on ETL optimization, we just pro-
statistic. There could be multiple CSSs for a statistic. Note that a vide a brief description, pointing out some considerations specific
possible CSS for a statistic is a set containing that statistic itself. to ETL flows. Steps 3 to 6 pertain to identifying and gathering
This set is referred to as the ttrevial CSSfor that statistic. the required statistics and form the focus of this paper. If an ETL
engine already has an optimizer module, we can integrate these a
For example, for the statistidrders X Customer|, a CSS is ditional steps into the optimizer flow. We elaborate on the steps in

{Hustomerid | prQustomer_idy - gince Customer_id is the join the following sections.
column and join cardinality can be estimated if the distributions on
the join attributes of both the relations are known. The trivial CSS
in this case i|Orders X Customer|}. Similarly, for the statis- %mﬂ Initial Plan
tic, HG stomer—id ' 3 possible CSS i$Hg;‘;j;’;"”—id*P roduet_idy]
and the trivial CSS i HS ustomer—id}, } 1. Identify Optimizable Blocks |
l

We further define a notion of ambservable statisticA statistic is \ 2. Identify all SEs |
observable in a given plan if it can be observed by instrumenting the |
plan to collect statistics at the appropriate points. For example, con- Repeat cycle to ‘ 3. Identify CSSs for each SE |
sider the plan shown in Figure 1(a). Both the statistics in the CSS handle changing
{HGuatomer_id | prCustomer_idy are gbservable in this plan, since | 4. Defermine Minimal |
the plan can be instrumented to build the histogrameters Setof Statistic
andCustomer, just after the corresponding nodes in the plan. On 5. Tnstrument Plan To
the other hand, the trivial statistj©rders X Customer| is not e Sathar Slalislios
observable, sinc®roduct is joined withOrders, before joining 5 Run Tnstrumented Plan
with Customer. & Gather Statistics

7. Optimize based
The estimates will be exact only if the histogram stores a frequency @ On the statistic |
count for each value in the domain. In reality, the estimates will Optimized Plan
be approximate since histograms bucketize the values and store the
average frequency count for each bucket. Currently, we consider Figure 2: Overview of the Optimization Process

only histograms that can accurately estimate the cardinalities. Esti-
mation errors introduced because of approximate statistics are left
as part of a future exercise (Section 8). 3.2.1 Identifying Optimizable Blocks

) B o) Due to some constructs in the ETL, it may not be possible to op-
Problem Statement: Any framework that identifies sufficient statis- tjmize the entire workflow as one unit. The workflow needs to be

tics to enable cost-based optimization should guarantee that theproken up into smaller units, each of which can be independently
statistics identified are enough to compute the cost of any SE in gptimized. In this step, the system analyzes the workflow to iden-
the set for the given flow. If at least one CSS for each SE in iy the boundaries in the flow across which the the operators canno

the set' is available, the cost of any plan for the given flow can e moved for optimization. Specifically, the following conditions
be computed, thus enabling the cost-based optimizer to select theneed to be checked:

310

e Materialized Intermediate Results: ETL flows often mate-
rialize some intermediate results, typically to aid diagnostics
or to be used in some other flow. A common example is a
reject link that collects the tuples in a relation that do not
join with the other relation. Blocking operators such as sort
may also need the preceding results to be explicitly material-
ized. Any point at which an intermediate result is explicitly
materialized identifies a block boundary.

Transformation Operators: Another common pattern is the
use of operators that transform attribute values from one form
to another. Often, the transformation operators do not affect

the join re-orderings. However, in some cases, when the op-

erator is applied on an attribute derived from the join of mul-
tiple relationsTy, s, . . . T, and when its result is used in a
further join, it forces the relationiB; , T, . . . T), to be always
joined before they join with the rest of the relations. This, in
effect, creates a block boundary.

Aggregate UDF operators:UDFs and custom operators are
also frequently used in ETL workflows. A custom operator

that aggregates its input tuples to produce a smaller number

of output tuples is blocking in nature. Since the semantics
of the operators is a black box to the optimizer, the safest
strategy is to consider it as a block boundary.

Consider the example workflow shown in Figure 3. This work-
flow will be divided into three optimizable blocks. The first block
boundaryB; is due to the fact that reject link; is materialized.
The second boundarg; is due to the UDF transformation that
creates a derived attributghat is a join attribute of the subsequent
join with 7. These boundaries imply that any reordering of joins
should respect the block boundaries, for examfile.cannot be
moved acrosB;. The block boundaries reduce the search space
for the optimizer since each block can be optimized independently.

i

o
1
by
=
»
5
»
kA

|
X
|
X

Joinonc

Wemmm———
N

Figure 3: Optimizable Blocks

3.2.2 Generating Sub-expressions
The next step is to identify all possible SEs for each optimizable

block. The set of possible SEs depends on the semantics of the
operators, which determines where the operator can be placed in

the flow. For a join on multiple relations, there are many different

join orders possible and each join order would generate a set of

SEs. For example, for a join on 3 relations, the Satonsists of
{T1,T>,T>, T2, T3, T23, T123}. As a case in poinf[1s occurs in
the join order(7T1 X T3) X T.

The optimizer may not have support for a few valid transforma-
tions. For example, for the initial plan shown in fig 4(a), the re-
ordered plan shown in fig 4(b) is a valid transformation. However,

the optimizer may not support such a transformation. The opti-
mizer may also exploit some metadata to avoid generating som
plans and reduce the search space. For example, a foreign ke

join is essentially dook-upand the cardinality of the join-result

is same as the cardinality of the foreign-key table. In case of a
cross product, the cardinality of the join-result is the product of the
input cardinalities. Thus, the optimizer may only consider plans
that have foreign key joins and no cross products. In general, ther
is no need to consider SEs from any plan that the optimizer is no
going to generate in its search process, since the optimizer does n
need to estimate the cost of such plans. To avoid this mis-match,
close integration is required in which only the plans generated by
the optimizer are considered for generating thefset

ustomer_i
(product_id,

geography}

@
Figure 4: Sample ETL with aggregation

3.2.3 Generating Candidate Statistics Set

Once the SEs are determined, the system computes possible CS
for each of the SE. Each CSS for an SE provides an alternative fo
estimating the cardinality of that SE. We elaborate on the proces:
of generating CSSs in Section 4.

3.2.4 Determine Minimal Set of Statistics

There is a cost associated with observing a CSS in a given flow
which could include the cpu cost and the memory cost for observ-
ing the distributions. In this step, a set of statistics is chosen, sucl
that at least one CSS for each SE is covered, and at the same tin
the cost of observing the statistics is minimal. The details of this
process are described in Section 5.

3.2.5 Instrument Plan to Get Statistics

The plan has to be instrumented to observe the set of statistics thi
is chosen by the previous step. Many commercial ETL engines
provide a mechanism to plug in user defined handlers at any poin
in the flow. These handlers are invoked for every tuple that passe
through that point. This makes it very easy to plug in code that
can observe the required statistics. We consider two main types ¢
statistics:

1. Cardinality: The cardinality of any observable SE can be
observed by maintaining a simple counter at the correspond
ing point in the flow. The counter is incremented for each
tuple passing through that point. The memory cost of this is
the overhead of maintaining one integer (4 bytes) in memory.

. Distributions: The distribution (histograms) of any observ-
able SE can be observed by maintaining a histogram at the
corresponding point. For each tuple passing through the poin
the attribute corresponding to the histogram is observed anc
the corresponding histogram bucket is incremented. The mer
ory cost of this is equal to the domain size of the attribute on
which the histogram is being built.

3.2.6 Run Instrumented Plan and Observe Statistict
In this step, the instrumented plan is executed and the require:
statistics are gathered. The previous steps ensure that sufficiel

311

statistics are now available for the optimizer to cost any possible r applied to a statistics. and planp. determines the set of other
plan for the given ETL flow. statistics{se, , . . . s, } that can be used to computg, under plan

pe. For example, for the SH} 23 and the planjoin (11,2, T3),
3.2.7 Optimize ETL one possible rule is that the output cardinality can be computed

This step uses traditional cost based optimization techniques to de-USing the input distributions on the join column, i€ »,3| can be
termine the plan with the least cost. Since all the required statistics COmputed using Hz. ,, Hz, }, wherea is the join attribute.
are already computed, the cost of each alternative plan can be accu-
rately determined. We will not elaborate on this step further, since These rules can be applied recursively to generate different CSS fc
any existing cost based optimization technique can be used. a given a SE. We list the rules for some of the common operator:
used in ETL below.

4. GENERATING CANDIDATE STATISTICS

SET 4.1.1 Selectand Project Operators

As mentioned in the previous section, the step of generating CSSs! he rules for select and project operators are listed in Table 2 ani
should be closely integrated with the optimizer, since only the plans @re quite straightforward. The first rule says that the cardinality
considered by the optimizer in its search process need to be consid°f @ selection can be estimated if the distribution on the selectior
ered. Optimizers typically use dynamic programming, in which the attribute is known. The second rule specifies that the distribution
SEs are incrementally built into larger SEs. For each SE, the opti- Of an attributeb on the output of a selection on attributecan be

mizer considers alternative plans to compose it from smaller SEs. €stimated if a joint distribution ofu, b) is known on the input re-
lation. The project operator only selects certain columns, so the
output cardinalities and distributions are identical to the input car-
DEerFINITION 1. Plan: A plan specifies a method of evaluatinga dinalities and distributions.
SE based on smaller SEs, ite. : op(eu, . . . ex), wherep. denotes
aplan for SEe, op is an operator aney, . . ., e, are other SEs. For
example, two plans fofy 2,3 are X (T4 ,2,73) andX (T1,T5,3).
Let P. denote the set of all plans fer

We assume that we can get the set of all SEs and the plans con-

sidered for them from the optimizer, i.e. we can get the/3et
{(e, P.) : e € £}. The next step is to generate the CSSs for com-
puting the cardinality of each SE, using the rules described next.

Reject’,
Link

(e

TR
Figure 5: Sample ETL plan

4.1 Rules for generating CSS

Let us consider the problem of determining some statistics of a SE.
The types of statistics we consider include cardinalify), distinct
values for an attribute¢r|), and distributions §/ 7). The statistic

on a SE may be directly observable if that SE occurs in the plan
being executed. In other cases, it could be computed from other

Id | Plan Se Inputs

ST 0a(Th) | Joa(T0)] | HY,

S2| ou(Th) | HE () | HYP ifb#a
PLl| ma(T) | [ma(T3)]| | |T4]

P2 | ma(Th) | HY (1) | H?,

Table 2: Rules for Select and Project

4.1.2 Join Operator

There are multiple ways to estimate the cardinality of a join opera-
tor. These are listed in Table 3. The first set of rules (J1 and J2) ar
derived from the standard technique used by optimizers to estimat
join cardinalities. The cardinality of a join can be determined from
the distributions on the input tables on the join attribute, by taking
a dot product, i.e|T} 2| = Hy, .Hf,, wherea is the join attribute.
Similarly, to estimate the distribution on the output of the join, we
need a joint distribution on attributesb on the table to which be-
longs. A matrix multiplication between the two distributingif

and H7, will produce the required distribution on the join results
HY, ,,inthe case wherk € Ti.

statistics, depending on the plan being considered. The semantics

of the operator in the plan determines how the output statistics can
be computed. In general, to enable estimation over composition of
operators, we need to define rules for each type of operator.

DEFINITION 2. Rule: A rule specifies a method of computing
a statistic on a SE, based on the statistics of other SEs and the
operator being applied. Lef. = (s, e) denote a statistic for SE,
S. be the set of all statistics farand S be the set of all statistics
over all the SEs. A rule is a functioR. x S. — 2°,i.e. arule

31

Id | Plan Se Inputs

I | W, (T1,T») | [Ti» HE HE,

32| W, (v, T2) | H, ,, H' HE, ifbe T
whereb # a | Hf,, Hy;” otherwise

J3 | X, (Tl,Tg) H%l_z, H%I,H%2
whereb = a

4| M (T1,T2) | |Th2 N

J5 | X, (T1,T2) | H, , HIS TS HY

Table 3: Rules for Join

Rules J4 and J5 are derived from the union-division method, whict
is a new method proposed by us in order to exploit the observable
statistics from the plan to the maximum. For example, if the initial
plan was as shown in Figure 5, then Sk is not directly ob-
servable. HoweverT) 2 3 is observable, so we try to exploit the

2

distributions onTy 2,3. All the rows that form part of IRT 23
would be part ofl} ». Rows fromT; that do not join withTs get
filtered fromT 2,3, whereas they are included . Thus,

Tio = TYNT,
= (T3 UT®) %1,
= (1" fm) U (T

a

X T>) 1

Thus to compute the cardinality @f >, we need to compute the
cardinalities of 7;* % T5) and(T';** 5 T3). Denoting(T;* 5
T») asTy », and considering the fact that a join has a multiplicative

effect on the distribution of the join attribute,

T1’2,3 = TLQNTg
J J J
Thus, H7,, = (HJ |H7)
%13
J13 1,2,3
Thus, HTll,z H%;S 2)
Putting them together, we get:
/ AR
‘T1,2} - ‘Hsz
H%IS
. 1,2,3 .
= ‘H‘IB , from Equation 2 3)
T3

Thus, to compute the cardinality 6§ 2, we need to obseni;13

Ty,2,3’
H;;J and)(T‘f“’ X T3)|, as mentioned in the rule J4. The rule J5

can be similarly derived. Note that to obse@E"® X T», we may
need to add an explicit reject link far, after its join with T3, if it

does not already exist, as shown in Figure 5. Though it looks like
this technique requires a lot more statistics, it can be cheaper sinc

the number of tuples on the reject link can be small.

4.1.3 Group By Operators

€,

affect the cardinality. Thus the cardinality of the output is same as
that of the input. The distribution of attributé®n the transforma-
tion result is the same as the distributiorbafn the input, ifb # a.

This is because the transformation leavasichanged. Ib = a,

the distribution of output cannot be computed from the input dis-
tributions, since it depends on the actual transformation function.

Id | Plan Se Inputs
Ul | U(T,a) | [U(T,a)| | |T]
U2 | U(T,a) | HYyrwy | HY ifb#a

Table 5: Rules for Transformation operators

4.1.5 Identity Rules
These rules are not specific to any operator, but directly apply tc
any SE and are listed in Table.
Rule 11 specifies that the cardinality of
a relation can be computed from a his- Mg 5.~ [Inputs
togram on any set of attributes of that 1|7 | H:
relation, by just adding up the bucket 2 | He [gt

T T
values.

Rule 12 specifies that a his-
togram on attribute set can be com-
puted from a more fine-grained histogram on attribte$), again
by aggregating on the buckets on thattribute.

4.2 Applying the rules to generate CSS

Given an initial workflow, and the plan space generated by the opti-
mizer, we can apply the rules to generate the CSS for the flow. The
algorithm is listed in Algorithm 1.W is the workflow for which

the statistics need to be determin@lis the set of all non-identity
rules andZ is the set of identity rules. Given the initial plan, the
optimizer is invoked to generate the plan space (lines 1-3) and th
set of possible SEs over all the plag9.(Since we are interested in
estimating the cardinalities of all SEs, we add the cardinality statis-
tic to the tobecomputed set (lines 4-5). Lines 6-16 iterate over
all the statistics in theobecomputed set. For each statistie. to

be computed, the plans generated for that SE are looked up fror
the P. For each plan, the rules matching frdRare determined
and each such rule is applied to generate a set of statistjabdt

can be used to compute (lines 7-11). If any statisti¢s’, ¢') in

S is not already considered, it is added to theecomputed set
(lines 12-14). The sef is also added as a CSS far in the out-

The rules for group-by operator are listed in Table 4. The first rule put (line 15). Furthers. is added to theomputed set once all
specifies that the cardinality of the group-by is same as the numberthe plans fore have been considered (line 16). At the end of the
of distinct values of the group-by attributes in the input table. The run, the outputC has the CSS for all the. that are relevant. The

distribution of attribute$ on the group-by result can be computed
from the histogram ofl” for attributesa, whenb C a. If b is not

a subset ofu, the distribution does not exist, sinbewill not be
present in the output tuples.

Id | Plan Se Inputs
Gl | G(T,a) | |G(T,a)| | |ar|
G2 | G(T,a) | Hyr, | HYifbCa

Table 4: Rules for Group By

4.1.4 Transformation Operators

final step is to apply the identity rules to generate additional CSS
(lines 17-21). A check is made to ensure that no new statistics ar
generated in this step. This is because, the identity rules can lea
to a blowup in the number of statistics. For example, by repeatedly
applying 12, we can see that} can be computed from a histogram
on any subset of attributes containimgwhich can be exponential

in the number of attributes. However, it is always cheaper to main-
tain a histogram on a smaller set of attributes. Thus, we should no
generate histograms on more attributes, unless they have been ¢
ready generated by some other rule. This will be explained furthel
through an example below.

4.3 Example

Finally, the rules for transformation operators are listed in Table 5. Consider the plan space for a flow as shown in Figure 6. Figure 6(a
These operators could even be custom user defined functions. Sincés the original plan and Figure 6(b) is the alternative plan gener-
transformation operators only transform the attributes, they do not ated by the optimizer. The SEs for this plan space (#¢ =

313

Alg. 1 Generate CSS for a ETL workflow 5. OPTIMIZATION FRAMEWORK

Input. Work flow W As seen in Section 4, there are multiple possible CSS for eact
Input. Ruleset R, IdlentityRuleset z ‘ o statistic of a SE. The cost of observing the statistics in a CSS coulc
Output.C = {(se, {s/})} the OSSs for required statistics vary widely. There could be multiple cost metrics such as the CPU-

cost of observing the statistics, the memory overhead for maintain

% ?n;oggs;:féﬁzztsz ;V%’chzllzii ;l C?n space P ing the stgti.stics,. etc. The goal of this step is to select a optima
3. £€={e:(e,P) P} set of statistics with respect to the cost metric such that at least on
4. for(e€é) CSS for the cardinality of each SE &his covered. As described
5. Add (|e| , €) to tobecomputed earlier, this coverage ensures that the cost of any possible plan ce
6. while (tobecomputed # 0) be estimated.
7. (s, €) = tobecomputed.pop()
g: szgr_(ppe[e}&) The simple app_roach c_)f choosing_ the least cost CSS for each SE
10. for (r € R matching p.op and s) not globally optimal, since there is an amortization of the cost of
11. S = r(p,s) statistics that are common across the CSS. For example, in Figure !
12. for ((s',¢')in S) assume that the costs of the CSSs for the cardinality; of and
13. if ((s',¢') & computed) Ti 3 are as depicted in table in fig 7.
14. add (s, €") to tobecomputed '
15. add (se, S)to C
16. add (s, e) to computed Se CSS Cost
ig for (f(se7 S) inIC) [Ty 3] | 1. |Tu,3] 9

. or (rin J13 J13 —
19. Ezpply 2 to(s',e’) € Stoget S’ 2 HE{ ! HE" 9+1=10
20. if (S’ contains only statistics Tiz2| | 3 H?;lu' HT§2 . . 9+3=12

already generated . 13 13 12 12

21. add(se,s/)%(;gc) 4 HT123’HT3 ’HTi’IS’HT2 11

Figure 7: Cost of statistics

{O,P,C,0 XM P,O X C,0 X P X C}. Note that the plan |t e choose the least cost CSS for each statistic, the choices at

joining C with P is not generated since itis a cross product: For css-1 foTy 5| and CSS-4 fofT} »|. The complete set of statistics
brevity, we denoteA X B as AB. The algorithm starts with is {|T1.3], 71 Hﬁs, H%m H;;z}' leading to a total cost of

tobecomputed = {|O|,|P|,|C|,|OP|,|0C|,|OPC|}. The plan Tazs’ ST’ _ e
space for SEDPC is {OP X C,0C X P}. Let us consider the 9+ 11 = 20. However, if.J13 = J12, i.e. T1 joins with T, and T3
planOP X C. By applying J1, we get the CSS1&%, HE} for on the same attribute, it can be seen tHgt? is the same distribu-
|OPC|. Hg'} andHE " are added toobecomputed since they are tion asH,/'*. Thus if we had chosen CSS-2 and CSS-3 to cover the

required by this CSS. Similarly, the plahC’ X P would produce o statistics, the complete set of statistic§ .2, Hyi?, 31},

the CSS{HGc, Hp“}. Next, we consider the statistil,; in leading to a total cost 6f + 1 + 3 = 13, which is less than the cost

tobecomputed, which has a single pla@ > C'. Applying, rule 2 of choosing CSS-1 and CSS-4. This is due to the fact that the cos

we get th_e CSSHZ*, HE}. Rule J_g c%uld al(iso apgly inthis f H: is shared between CSS-2 and CSS-3.

case, which would genera?te. the CEBELE™, HE ", HE Dia,)+

Similarly, other all the statistics fromwbecomputed are processed 51 Probl E lati

to generate the CSS for each of them. Now consider the CSS™¥* roblem Formulation .

{HE%, HEY)Y for |OPC|. If we apply rule 12 o HSE we get Let S = {s1,s2,...} be the set of all statistics over all the SEs.
cid,pi g ot Depending on the initial plan, some of these statistics are directl

Aop” * which |s:1 S-‘ia“s“fi already generated by other rules. Thus obspervablg LeSo C S%enote the set of observable statistics ’

H cid,pi ci _ . = .
we consider Ho, ™", He'" } as another CSS fqOPC]. How Further, letSc = {|e| : e € £} denote the set of cardinality statis-

ever, Hyp ™, whereX is some other attribute @ P is not con- tics over all the SEs. Each € S has a set of CSSs generated by
sidered sincel, 5™, doesn't get generated by any of the regular the rules. Let’S'S;; denote theith CSS fors;. Each CSS specifies
rules. Finally, note that we restrict the number of CSS by apply- a set of statistics that can be used to compytéhe problem can
ing the rules to only one level in a plan and not recursively. For pe defined as finding a set of statistics to actually obs8fv& So
example, consider the CS$152, HE'} generated fofO PC|. |If such that it satisfies two properties:

we expand this recursively, we would also get the G&8; ",

HY', HEY for |[OPC|. However, we do not do so, since the CSS 1. Eachs € Sc is computable. A statistie is computable if

{Hco,id,pid, HE4} will be generated foF/ &%, which will cover this either it is directly observed, i.a.€ S(, or at least one of its
option. CSSis covered. A CSSis covered if all the statistics in it are
computable.
\Tf“’] RN o 2. 8, is optimal in terms of the cost of observation.
id) id)
= e d | = D=5

Therefore, in principle the problem is to find a subseSefunder
@) @ some constraints. This can be modeled as an extended version
the classicaHitting-Set Probleni13] in literature. This problem is

)) known to be NP hard and can be solved using a linear programmini
Figure 6: Plan space for generating CSS formulation.

314

5.2 LP Formulation of the problem

We use @ — 1 integer linear program formulation. A variablgs
associated witkSo; the value of variable; is 1 if the correspond-
ing statistics; is being observed. A variablgis associated with
S; the value of the variablg; is 1 if the corresponding statistig;

is computable. A variable is associated with the set of CSSs such
that, z;; is 1, if the corresponding’S.S;; is covered

To ensure that a CSS is declaeleredonly if all the constituent
statistics are computable, the following set of constraints are intro-
duced, one for eacti'SS;;, i.e.V;V;.

>

kis,€CSS;;

Yk 2 Z”|CSSZJ|

A statistic whose only CSS is a trivial CSS is computable if and
only ifitis directly observed. For each sughe So, the following
condition is introduced:

Yi = T

The ‘only if’ condition is not required for statistics that have a non-
trivial CSS, since it can be computable without being observed. For
each such; € So, the following condition is introduced:

Yi 2> T;

Similarly, to ensure that a statistic is deemsmputableif and
only if any of its CSSs areovered the following set of constraints
are introduced, one for eagh, i.e. Vi.

yi < Z Zij
J

This covers the ‘only if’ condition. For the ‘if’ condition, the fol-
lowing constraints are introduced, one for egche. Vj.

Yi 2> Zij

Finally, to ensure that each statistic#iz is computable, the fol-
lowing set of constraints are introduced, one for eachk Sc, i.e.
vi:si €Sc

yi > 1

With this formulation, the objective of the LP is to just optimize the
following function:
min Z Ci. X

The statistics for whichz; = 1 are the ones that need to be ob-
served.

5.3 Greedy Heuristics

The LP formulation could take a long time to solve sidtean be
quite large. In such a case, greedy heuristics could be used to arriv
at a good solution. One simple heuristic is, in each round, to pick
the CSS with the least cost from the set of CSSs that cover at leas
one of the uncovered statistics §. After each step, the newly
covered statistics are removed from the set of uncovered statistic:
Also, the costs of the remaining CSSs are reduced based on tt
statistics picked in this step, since these statistics would be alread
available.

5.4 Cost Metrics
The cost of a CSS can be measured in terms of various metrics
We consider two metrics - the memory overhead and the CPU cos
The memory overhead for measuring a histogram on a set of at
tributes is equal to the number of distinct values of that set of at-
tributes. However, since the exact number of distinct values ovel
the output of a SE may not be known, we conservatively use the
number of all possible values. Thus, the memory requirement fol
a single attribute histogram is proportional to the cardinality of
the attribute. For histograms on multiple attributes, the memory
required is the product of the cardinalities of the constituent at-
tributes.

The memory overheads of the vari-

L . . Statistic | Memory
ous statistics are summarized in Ta- T 1
ble. The CPU cost of measuring the po o
statistic is proportional to the num- e a
ber of tuples in the SE on which the T
statistic is measured, since for each Hy la[b]

tuple, the statistic needs to be up-

dated. Thus, to compute the actual CPU cost, we would need th
sizes of the SEs, which is what we are trying to estimate using the
statistic. We break this circular dependency by using the SE size
computed from the previous runs. In the first run, we use a coars:
approximation based on independence assumptions, since no pr
vious data is available.

6. ENHANCEMENTS

6.1 Optimization under Resource Constraints
Till now, we have assumed that all the resources necessary for ider
tifying the statistics and computing them are available. However,
this assumption may not hold in some cases. For example, in Fig
ure 1, to compute the cardinality of IRrders X Customer, a
CSSis{HG!stomerid | prCustomer_idy ‘The memory required for

this CSS i x |Customer_id| (from Table in Section 5.4), which
may not be available.

Generally the cost of the trivial CSS is far less (only 1 counter) than
the cost of other CSSs. Therefore, if resources are constrained, o

Consider the example shown in Figure 5. The set of statistics over extreme approach is to estimate the cardinality of each SE using it

all SEs), the statistics which are observabl&-), the statistics
that needs to be computahf and their respective cost for ob-
servation ¢;) are captured as input to LP as shown in Figure 8.
The statistic|T»| i.e. sz is observable, needs to be computed and
therefore is marked in both the vectors, whilé7’2| is not di-
rectly observale (since subexpressiBa is not part of the current

trivial CSS. However, all SEs are not observable in the given initial
plan. The initial plan could be altered in a subsequent run so tha
the statistic that is not observable in the current run could be ob-
served in the reordered plan. In the current example, the trivial CS¢
would require observing the cardinality Ofrders X Customer.
However, this trivial CSS is not observable in the initial plan (Fig-

plan) but needs to be computed (because some other ordering olure 1(a)). To address this, the ETL plan can be re-ordered as show

the workflow might need it to compute the cost of the plan) and so
it is marked0 and1 in Spo andSc respectively. These along with
all the CSS (like those specified in Figure 7) forms the input for the

in Figure 1(b), which makefOrders X Customer| directly ob-
servable.

LP and the output is the set of statistics to observe whose total costThus, repeated execution with plan re-ordering can be exploited t

is minimal such thasS¢ is covered.

ensure that the optimal plan for an ETL is computed even undel

315

(5 o [(o[5[5 [o [o [5 [o Tow o0 [on]
\Tu| | 1] [1T5] | 1Tl | |Tus| | |Tos| | |Thas| | H22 | Hy:2 | H® | HiS, H%flg

So 1 1 1 0 1 0 1 1 1 1 1 1

Sc 1 1 1 1 1 1 1 0 0 0 0 0

ci 1 1 1) 1 00 1 100 100 100 10 30

Figure 8: Example LP Formulation

constrained resources. This is the approach followed in [6, 8]. Our 7.1 Complexity of Workflows

method is a natural generalization of these approaches, in which weFigure 9 gives an idea of the complexity of the workflows we have
don’t restrict only to the trivial CSS. We use a mix of trivial CSSs used for the experiments. The graph captures the number of SE
and other CSSs, depending on the available memory, thus reducinghe number of CSS formed without and with the union-division

the number of plan re-orderings.
6.2 Integrating existing statistics from source

systems
Sometimes, a few statistics may already be available, especially

method. From the design perspective, the ETLs range from sim
ple linear ETLs having only one execution plan to complex ETLs
having 8-way joins and many transformations. The graph capture:
that by comparing the number of SEs and the CSSs. The higher th
number(both the SEs and CSS), the complex the ETL is.

when the source systems are relational DB systems. The optima
statistics identification framework can be easily extended to take
advantage of these statistics. All the statistics that are available ca
be added by default to the set of observable statisticsand their
costsc; set to 0. This ensures that the framework will always pick
these statistics to cover as many of the statisticSims possible.

7. EXPERIMENTAL EVALUATIONS

This section details some experiments to evaluate the effectivenes
of statistics identification framework proposed in the previous sec-

O Number Of SEs

8 Num of CSS (Without UD Method)"

& Number Of CSS (With UD Method)

1 2 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Wokflows

tions. We are intentionally focusing on establishing the effective-
ness of the statistics gathering and determination of optimal statis-
tics to observe, rather than the effectiveness of the optimization
itself. The previous works in the literature touch upon that and es-
tablish the necessity for cost-based optimization of ETL workflows.
Our focus here is to determine the optimal statistics to observe, so
that subsequently cost-based optimization of the workflow is pos-
sible.

The set of workflows used for the experiments were a representa-
tive set of30 workflows, motivated from a draft version of TPC-

Figure 9: Complexity of the Workflows

For example, workflon21 is a complex workflow having multi-

ple transformations and a 8-input join. We can also see that the
union-division method introduces quite a few additional CSS to
choose from. Of course the additional CSS introduced increase:
the search space of the optimal statistics to choose from and so w
have measured the additional time overhead that the additional CS

introduce.

DI benchmark being prepared for benchmarking ETL workflows.
All the workflows were designed in IBM InfoSphere DataStage
V9.1 [10]. OurOptimal Statistics Identificatiomodule is not in-
tegrated with any ETL designer component like DataStage. There-
fore all the workflows were exported as XMLs from Datastage to
be consumed by our module. we simulated a simple join-order pur-
mutation generator which takes the optimization blocks and UDF
boundaries into consideration, to generate different sub-exprassion

All the experiments were run on a Intel Core i5 machine with 2.6
GHz CPU and having 4GB of RAM. The machine configuration

90
80
70
60
50
40
30
20

O Without UnionDivision Method
& With UnionDivision Method

Time (ms)

123 456 7 8 910111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Workflows

will effect only the timings of the run, while the others stay invari-
ant.

The data characteristics of

the input relations like table

Figure 10: Time Taken for Statistics Identification

cardinalities, unique values Stat Card uv Figure 10 captures the time taken for CSS generation using dif:
of an attribute (note that we Max 417874 | 417874 ferent rules as specified in the previous sections and also the tim
dont need the actual data) are Min 3342 1102 taken by the LP solver for identifying the optimal statistics to ob-
synthetically generated and Mean | 104466 65768 serve. The total time required for identifying the optimal statistics
are as shown in the adja- Median | 52234 | 6529 is within 100ms for all the workflows, which is quite reasonable

cent table. These are gener-
ated from Zipfian distribution
with a high skew.

considering that this is an offline process. Further, it can be seel
that the additional CSS generated by the union-division methoc
doesn’t add any considerable overhead.

316

7.2 Memory Overhead for the lower bound on the number of re-orderings:

Figure 11 shows the memory required by each of the workflows to

observe the optimal statistics determined using the previously dis- For a workflow, which has a 5-relation join all th&sSE which cover
cussed LP formulation. We can see from the figure that with some the base relations and the SE representing the final output are co
additional memory, all the statistics necessary for determining the ered by any plan. Therefore, the number of SEs that actually nee
cost of any re-ordering of the plan can be computed. The units for to be covered ar81 — (5 + 1). Also any plan for this query con-
memory is an abstract unit representing the number of integers (us-tains9 SE, out of whicl6 are the base relations and the final output.
ing coarse approximation as explained in Section 5) to be stored. Therefore the number of actual SEs that cacdeeredby a single

For example, for workflovit6, we need approximatel§0000 units plan is3. That is in general for a ‘n’ table join flow, the number of
of memory and if an integer takes abaubytes, then the memory SEs that actually have to lweveredis 2" — (n + 2). While, the
required is abou273KB. number of SEs that can be observed (and therefovered for a

given plan is(n — 2). Therefore, the minimum number of execu-
It can be seen from the figure that there are few instances where theions necessary to cover all SEs without considering any semantic
new union-division method introduced new choices of CSS, which of the query is: [ww Therefore, for the above example,

. . (n—2)
reduces the amount of memory requweq. For_ example_, In case OfWe need executions. Clearly, semantics of the query like cartesian
workflow 3, the amount of memory required with and without our

method 120922 and 1811197 units respectively. Of course for product and the metadata information like whether the join are sim-

; 7 le dimension-lookups etc., can be exploited to reduce the numbe
few WO.I’kﬂOWS, the CSS generated by union-division method was Ef SEs that need to Ee covered and thpus the number of executior
not optimal and so was not chosen. For example, for work#dw necessary
the memory required when union-division method is not employed ’
was 3444 units. while for the same workflow, the CSS generated
using union-division method was almost twice as costly%il
units. But since we are selecting the optimal CSS, the first one is
chosen.

If only trivial CSSs are considered, then the number of execu-
tions necessary to cover all SEs for our experimental workflows
are shown in Figure 12. For each workflow, we worked out one
possible solution of plan re-orderings that would cover all the SEs.

For some of the workflows the amount of memory required is high This gives an upper bound on the number of re-orderings that ar
w W u ry required 1s hig necessary. We also pltdtin executionswhich is the lower bound

and possibly could be more than the allowed memory limit. In -

thosgcases%/ it could be possible to observe a subset of)ihe CSS tha(iompUted using the formula above.
fit with in the memory limit in the current run and re-execute the
workflow with a re-orderded plan(s), which allows observation of »
the rest of the statistics. Developing the techniques for determining| ;||
the optimal statistics with plan re-ordering is part of our plan for
future extensions to the current work.

O# Reexecutions @ Min executions

of Executions
3

—~ 1.0E+09 6
s 1 0E+08 O Without UnionDivision Method 4
g 10E+08 1 2 m m m m
D 1es07 || ®With UnionDivision Method T TR R R T R
310E+06 I 12 3 45 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
£ Workflows
g, 1.0E+05
2
» 10E+04
5 1.0E403 Figure 12: Number Executions to cover all SEs
g 1.0E+02
S 10501 ii I |ri ﬁ" From the figure, it can be seen that to cover all the different SE<
= oo M limal m T {1 L - for workflow 30 we need at the minimurid executions, while we
12 3 45 6 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Workflows could find a re-ordering which we requirdd executions. Note
that there could be a better re-ordering which could require still
Figure 11: Memory required for observing optimal CSS less executions, but certainly not less than

i . L The reason for the number of executions tolbfer quite a few
7.3 Comparison with existing methods ETLs is because either they are very simple linear ETLs with just
In this section, we compare with existing techniques such as [6] that one execution plan or have joins across optimization block bound-
observe only trivial CSSs and use plan re-orderings to cover all the aries. As discussed in the earlier sections, operators across the o
SEs. Observing the trivial CSS corresponds to observing only the timization blocks doesn’t commute and therefore even those plan
cardinalities (no distributions) at various points in the plan. This ended up having single execution plan.
is a quick, easy-to-implement and low-overhead method of passive
monitoring [20] that can be used to get the actual cardinalities of Also, In few cases it could be possible that the number of exe-
SEs which are part of the plan being executed. However, the trivial cutions necessary to cover all SE can be large. For example,
CSS of all the SEs may not be observable in a single plan. This canexecutions necessary in the case of workfRy means that the
be handled by repeating the query execution with different plans optimal plan for the query can be found only after so many number
such that each SE is covered in some plan. This approach of re-of executions, which might not be acceptable. Using the technique
peated execution with plan modification was described in [6], in in this paper, all the SEs can be covered using the initial run itself,
which they determine the cardinality of all the SEs just by observ- if sufficient memory is available. Even if there is a memory limit, it
ing the cardinalities in the previous runs and then use them for op- could be possible to reduce the number of executions, if CSSs ar
timizing the subsequent runs of the query. We first derive a formula observable with in that memory limit across multiple executions.

317

For workflow 21 in the benchmark, th#in executionsecessary [6] S. Chaudhuri, V. R. Narasayya, and R. Ramamurthy. A

was41, while the the one we found required 70 executions to pay-as-you-go framework for query execution feedback.
cover all the CSS. PVLDB, 1(1):1141-1152, 2008.

[7] C.-M. Chen and N. Roussopoulos. Adaptive selectivity
8. FUTURE WORK estimation using query feedback. ®ilGMOD Conferenge
8.1 Modeling errors pages 161-172, 1994.

When generating CSSs, different types of statistics are explored [8] H. Herodotou and S. Babu. XPLUS: A SQL-Tuning-Aware
and the current work assumes that all these statistics are always ac- ~ Query OptimizerPVLDB, 3(1):1149-1160, 2010.
curate. Generally frequency histograms are bucketized for a range [9] IBM. IBM Infosphere Datastage Balanced Optimization.

of values, and thus the selectivity estimates computed using them IBM InfoSphere DataStage and InfoSphere QualityStage,

introduce error. Section 3 briefly discusses this. When all the statis- Version 8.5 Documentation, Dec. 2011.

tics are accurate, all of them can compete for optimality equally. [10] IBM. IBM InfoSphere DataStage and InfoSphere

But if each of the statistic has an associated error in estimation, QualityStage, Version 9.1 Documentation, 2013.

then the optimization function needs to consider everatleved [11] Informatica. How to Achieve Flexible, Cost-effective

error along with thememory constraints Scalability and Performance through Pushdown Processing.
.) Whitepaper, Nov. 2007.

8.2 Space-time tradeoff with errors [12] N. Kabra and D. J. DeWitt. Efficient Mid-Query

Given a workflow, its optimal plan could be determined using the Re-Optimization of Sub-Optimal Query Execution Plans. In

initial plan, given there is enough memory to observe and store L. M. Haas and A. Tiwary, editor§IGMOD 1998,

all the necessary statistics. But it is generally not the case. So Proceedings ACM SIGMOD International Conference on

there is a trade-off between the amount of memory allowed and the Management of Data, June 2-4, 1998, Seattle, Washington,

number of (re)executions. When the statistics are not accurate but USA pages 106-117. ACM Press, 1998.
introduce errors, this space-time tradeoff might have to be extended[13] R. Karp. Reducibility Among Combinatorial Problems.

to accommodate thallowed error. Complexity of Computer Computatiomeges 85-103, 1972.
[14] N. Kumar and P. S. Kumar. An Efficient Heuristic for
9. CONCLUSIONS Logical Optimization of ETL Workflows. I'BIRTE pages

In this paper, we addressed the problem of cost based optimiza- 68-83, 2010.
tion of ETL workflows in the case where the statistics on the in- [15] V. Markl, V. Raman, D. E. Simmen, G. M. Lohman, and

put relations are either missing or incomplete. We proposed a new H. Pirahesh. Robust Query Processing through Progressive
framework that identifies all necessary statistics by using a formu- Optimization. INSIGMOD Conferencepages 659-670,

lation for determining optimal statistics that can enable cost-based 2004.

optimization of the given query. Also new techniques for determin- [16] A. Simitsis. Mapping conceptual to logical models for ETL
ing the cardinality of operators are proposed. The use of metadata, processes. IDOLAP, pages 67—76, 2005.

cross-product rules and rules for cardinality estimation drastically 117] A, Simitsis, P. Vassiliadis, and T. K. Sellis. State-Space
reduces the statistics that are needed to estimate all the cardinali- Optimization of ETL workflowslEEE Trans. Knowl. Data

ties. Experimental results on the ETL benchmarks show that with Eng, 17(10):1404-1419, 2005.
a small memory overhead, it is possible to measure all the statistics[18] A. Simitsis, K. Wilkinson, M. Castellanos, and U. Dayal.

needed in a single execution of the plan. QoX-driven ETL design: reducing the cost of ETL

consulting engagements. 8iIGMOD Conferencepages

10. ACKNOWLEDGMENTS 953-960, 2009.
We thank Manish Bhide from IBM and Ravindra Guravannaver [19] A. Simitsis, K. Wilkinson, U. Dayal, and M. Castellanos.
from IIT Hyderabad for their valuable comments during our discus- Optimizing ETL workflows for fault-tolerance. ItCDE,

sions. Thanks to Vinayaka Pandit and Krishnasuri Narayanam for pages 385-396, 2010.
their help in formulating and modelling LP. We also thank anony- [20] M. Stillger, G. M. Lohman, V. Markl, and M. Kandil. LEO -
mous reviewers for their thorough feedback. DB2's LEarning Optimizer. In/LDB, pages 19-28, 2001.
[21] V. Tziovara, P. Vassiliadis, and A. Simitsis. Deciding the
11. REFERENCES . . . physical implementation of ETL workflows. BOLAP,
[1] A. Aboulnaga and S. Chaudhuri. Self-tuning Histograms: pages 49-56, 2007.
gB:um?lng H|stogramlsB\ivltlh&utngogogklng at Data. BIGMOD [22] T. Urhan, M. J. Franklin, and L. Amsaleg. Cost Based Query
onferencepages IS ’ Scrambling for Initial Delays. In L. M. Haas and A. Tiwary,

[2] R. Avnur and J. M. Hellerstein. Eddies: Continuously editors,SIGMOD 1998, Proceedings ACM SIGMOD
Adaptive Query Processing. BIGMOD Conferencepages International Conference on Management of Data, June 2-4,
261-272, 2000. _ N o 1998, Seattle, Washington, US#ages 130-141. ACM

[3] N. Bruno and S. Chaudhuri. Exploiting statistics on query Press, 1998.
expressions for optimization. BIGMOD Conferencepages [23] P. Vassiliadis, A. Simitsis, and S. Skiadopoulos. Conceptual

263-274, 2002.) N o modeling for ETL processes. DOLAP, pages 14-21, 2002.
[4] N. Bruno and S. Chaudhuri. Conditional selectivity for

statistics on query expressions.3tGMOD Conference
pages 311-322, 2004.

[5] S. Chaudhuri, V. R. Narasayya, and R. Ramamurthy.
Diagnosing Estimation Errors in Page Counts Using
Execution Feedback. fCDE, pages 1013-1022, 2008.

318

