PostgreSQL Anomalous Query Detector

Bilal Shebarot, Asmaa Sallamt, Ashish Kamra, Elisa Bertinof
fCyber Center and CERIAS, Purdue University, West Lafayette, IN 47907, USA
*EMC Corporation, Bagmane World Technology Center, Bengaluru - 560038, KA, India
{bshebaro, asallam, bertino}@purdue.edu, ashish.kamra@emc.com

ABSTRACT

We propose to demonstrate the design, implementation, and the
capabilities of an anomaly detection (AD) system integrated with a
relational database management system (DBMS). Our AD system
is trained by extracting relevant features from the parse-tree
representation of the SQL commands, and then uses the DBMS
roles as the classes for the bayesian classifier. In the detection
phase, the maximum apriori probability role is chosen by the
classifier which, if not matching the role associated with the SQL
command, raises an alarm. We have implemented such system
in the PostgreSQL DBMS, integrated with the statistics collection
and the query processing mechanism of the DBMS. During the
demonstration, our audience will be given the choice of training our
system using either synthetic role-based SQL query traces based
on probability sampling, or by entering their own set of training
queries. In the subsequent detection mode, the audience can test
the detection capabilities of the system by submitting arbitrary SQL
commands. We will also allow the audience to generate arbitrary
work loads to measure the overhead of the training phase and the
detection phase of our AD mechanism on the performance of the
DBMS.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems - Query processing

Keywords

Anomaly detection, Intrusion detection, Bayesian classifier, DBMS

1. INTRODUCTION

The goal of this work is to demonstrate the integration of a
DBMS specific anomaly detection (AD) mechanism within the
core of the DBMS functionality. AD mechanisms are essential
to detect anomalies in data accesses by users. Such anomalies
may be indicative of insider attacks or compromised database
user accounts [1]. It is important to notice that even though AD
mechanisms exist that work at the operating system (OS) level and
at the network level, these AD mechanisms may not be effective
against database related attacks. The reason is that user actions
deemed malicious for a DBMS are not necessarily malicious for
the underlying OS or the network. For example, consider the
case of a database user/application that performs queries on a

*This work is based on Ashish Kamra’s Ph.D. thesis while at
Purdue University.

Copyright is held by the author/owner(s).
EDBT/ICDT ’13 March 18 - 22 2013, Genoa, Italy
ACM 978-1-4503-1597-5/13/03.

741

customer table containing name, address, phone numbers and
e-mail of customers and thus has the select authorization on this
table. Suppose that this user/application is in charge of shipping
products to customers and each day typically performs 20 shipping
operations. Thus the user/application typically accesses 20 records
from the table and retrieves from these records only the customer
names and addresses. Occasionally the user/application may access
a phone number of some customer when there are problems with
the product order. Now suppose that one day the user/application
retrieves all the records from the customer table. Such access would
be allowed by the access control system as the user/application
has the select authorization on the table. However, the access
is anomalous with respect to the usual access patterns by this
user/application. Such anomalous SQL command may be the result
of a SQL injection vulnerability or a data theft attempt by an
authorized user and is not typically detected by an AD mechanism
working at the OS level or at the network level as the OS and
the network cannot understand the specific SQL command entered
by users or applications. Our approach, that tightly integrates
the AD mechanism with the DBMS, has three main advantages.
First, AD is executed closer to the target (during query processing),
thereby ruling out chances of a back-door entry to the DBMS that
may bypass the AD mechanism. Second, as the AD mechanism
is integrated as one of the features of the DBMS, the physical
location of the DBMS is not a constraint with respect to using the
AD service. Such requirement is important in the current era of
cloud computing as organizations need the flexibility to move their
databases to a cloud service provider. Third, the integration with
the DBMS makes it possible for the AD mechanism to issue more
versatile response actions to anomalies [5].

This demonstration paper is organized as follows: An overview
of related work is presented in Section 2. In Section 3 we describe
the technical details of our AD mechanism. Then we show the
demonstration plan and how the audience can interact with the
system in Section 4. Finally some conclusions are outlined in
section 5.

2. RELATED WORK

Several AD approaches have been proposed for database
systems. Spalka et al. [10] focus on detecting anomalies for
relational databases based on state relations. They compare two
approaches to deal with the database extension; one based on
reference values and one based on A-relations. Mathew er al. [8]
propose a data-centric approach for solving the AD problem in
a DBMS. They model users’ access patterns by profiling the
used data points. Both these approaches complement our work
as they focus on the semantic aspects of the SQL queries as
represented by the data in the relations, while we focus on the
syntactic aspects by detecting anomalous access patterns. Hu et
al. [4] propose an approach for identifying malicious transactions

through a data dependency miner that correlates records from
the database log. The transactions that do not comply with the
data dependencies mined are identified as malicious transactions.
Chung er al. introduce DEMIDS, a misuse-detection system,
tailored for relational database systems [3]. DEMIDS uses audit
log data to derive profiles describing typical patterns of accesses
by database users. Since this approach is still theoretical and has
not been implemented yet, there is no evidence of its capabilities
in the AD domain. Lee et al. [7] propose an approach for detecting
illegitimate database accesses by fingerprinting every transaction,
mainly by summarizing SQL statements into compact regular
expression fingerprints. To the best of our knowledge, no work
demonstrating the capabilities of a DBMS AD mechanism exists.

3. TECHNICAL DETAILS
3.1 The Anomaly Detection Algorithm

In this section, we present our algorithm for detecting anomalous
accesses to a database. We assume that the database has a
Role Based Access Control (RBAC) model in place whereby
authorizations are specified with respect to roles and not with
respect to individual users. Our AD system builds a profile
for each role that represents accurate and consistent behavior of
users holding the role. We rely on the use of intrusion-free
database traces where the record sequences of the database audit
log represent normal user behavior. Thus the classifier is trained
using these records and then used to detect anomalous behavior.

3.2 Data Representation

We assume that users interact with the database through SQL
commands. For example, in the case of SELECT queries, such
commands have the format:

SELECT [DISTINCT] {TARGET-LIST}
FROM {RELATION-LIST}

We use the fine triplet representation introduced in [2, 6] to
capture all the information in the input query. The fine triplet
consists of three fields in the form (SQL-CMD, ACC-REL-BIN{],
PROJ-ATTR-BIN[][]). SOL-CMD represents the type of the query.
ACC-REL-BIN is a binary vector, ACC-REL-BIN[i] is 1 if the
i*" table is accessed in the query, that is, if it is present in
the RELATION-LIST. PROJ-ATTR-BIN is a 2-dimentional vector;
PROJ-ATTR-BINJi][j] is 1 if the j*" attribute of the i*" table is
projected, that is, if it is present in the TARGET-LIST. Consider
as an example, a database that contains three tables Ri, R, and
R3, each with three columns Ci, Ca, and C3. The corresponding
representation of the SELECT, INSERT, and UPDATE queries is
shown in Table 1. Since the triplet depends only on the tables and
attributes accessed in the query, its representation is not affected
by the attributes of the WHERE, VALUES, and UPDATE clauses
printed after the SELECT, INSERT, and UPDATE statements
respectively.

We address the AD problem as a classification problem. We
apply the Naive Bayes Classifier (NBC), as discussed in [2].
NBC is a simple probabilistic classifier based on applying Bayes’
theorem with strong independence assumptions. The NBC uses the
attributes of the triplet representation of an input query and outputs
the identifier of a role. To determine the role associated with a
newly issued query, we use the Maximum Aposteriori Probability
(MAP) decision rule. Using this decision rule, the NBC picks the
correct classification that has the highest role probability. If the
role predicted by the classifier is different from the original role
associated with the query, an anomaly behavior is detected and the
query execution stops.

742

SQL Command Fine-triplet
Select R1.A; , R3.C3, R3.B3 select < 1,0, 1 >
From Ry, R3 <<1,0,0 >
Where R1.A1=20 and R;.A1=R3.C3 <0,0,0 >
<0, 1,1 >>
INSERT INTO Ry insert <0, 1,0 >
VALUES (1, 1, 1) <<0,0,0>
<1L1,1>
<0,0,0 >>
UPDATE R3 SET R5.C5 = 100 update < 0,0, 1 >
<<0,0,0 >
<0,0,0>
<0,0,1>>

Table 1: Triplet construction example

3.3 Implementation in PostgreSQL

@

Postmaster

e
Connect Main process

Spawn a new server process

Postgres
Server process
Server Initialization

Cox

@5 —
Submit SQL Query

55,
Collect role login stats
Collect table initialization stats

Waitlng for 5

Query Send detection stats to the
statistics collector process
Query Parse Tree
Yes
— | AnomalyDetection | —— > | Anomaly Response
Query Rewritten L No L
Parse Tree

‘Access Control
Enforcement

Query
Executor

P ——
Collect table /column access stats per role

[

=

Query results

Figure 1: Anomaly Detection and Data Collection Hooks in
PostgreSQL.

We implemented our AD algorithm in the open-source DBMS
PostgreSQL. Figure 1 shows the query processing architecture and
the application of our algorithm in the execution pipeline of a query.
For every new connection to the database, the main server process
spawns a new server process called Postgres. Every SQL query sent
on that connection is handled by this new Postgres process. When
a new connection to the database is established by a user, we report
the login statistics to the statistics collector process (server-side
process) that includes the roles activated by the user, and the list
of tables under AD.

When the user submits a query, the query string passes through
the query parser which creates a parse tree of the query structure.
The parse tree is then modified by composing into it any views
or rules that may apply to the query. This is performed by the
query rewrite system. After the query has been rewritten, the query
optimizer takes the parse tree and generates an optimal query plan
that contains the operations to be executed for processing the query.
The plan is then passed to the query executor that is responsible
for executing of the query and passing the results back to the
client. Before the executor begins executing the query, it checks
whether the user has the privileges (directly or indirectly through
role membership) to execute the query under consideration during

False Negatives | 3.4%
False Positives 16%
Recall 84%

Precision 96.1%

Table 2: Classifier Accuracy

the access control enforcement procedure.

The major portion of the information (statistics) required to carry
out the AD task are collected during the access control enforcement
procedure. The collected statistics include the command count, the
table access count, and the column access count on a per role basis.
We assume that a strict RBAC model is under operation and thus all
privileges required to access any portion of the database table are
inherited by a user’s role membership. Thus, the table and column
statistics are aggregated on a per role basis before being sent to
the statistics collector. The statistics collector, upon receiving the
statistics, updates the memory resident role profiles that are then
periodically recorded in our system.

The AD algorithm is executed on the query parse tree so there is
no need to parse the query every time to get the features required
for the detection task. The algorithm uses pre-defined functions
to access the statistics required for the NBC, and the result of the
AD algorithm is whether an anomaly has been detected or not. We
mark a query as anomalous if the role associated with the database
user (submitting the query) does not match the role predicted by the
NBC. Our current implementation, thus, only supports single role
activation by a single user per session.

The performance of our classifier is tested by using a real
dataset to train the system, containing 6602 SQL traces from 4
different applications submitting queries to an MS SQL database
server [2]. The database itself consists of 119 tables with 1142
attributes in all. To generate anomalous queries, we change the role
information in normal queries. Table 2 shows the precision/recall
and false-positive and false-negative statistics, representing the
accuracy of our classifier. With fine triplets, we were able to
achieve high accuracy of detection.

4. DEMONSTRATION

For demonstrating our work, we have extended the interface for
pgAdmin, that is, the GUI interface for PostgreSQL [9]. Figure 2
shows the extended pgAdmin query interface that allows users
to submit SQL queries which generate an execution report after
every transaction. Specifically, we allow the audience to toggle
between the training and the detection phase and specify the roles
under AD, and test the detection mechanism implemented. We also
demonstrate the different behaviors of our system depending on the
various input parameters (such as role probabilities, etc..), and we
display the corresponding statistics of the DBMS and performance
measurements of our detection algorithm when varying the input
workload. Details are discussed in what follows.

Figure 2: pgadmin query interface and transaction details.

743

The anomaly detection:

For demonstration purposes, we prepared a set of different
synthetic datasets that can train the AD mechanism in many
different scenarios. These datasets are carefully prepared to
demonstrate different schemes for each training session based on
different roles. After these files are given in input to the AD
mechanism for training, the system will report the time spent in
training the classifier.

Our audience will also have the option to train the AD
mechanism through customized input queries and will be able
to perform training without using our preset synthetic datasets.
After the training phase is over, the audience can submit arbitrary
queries to the system to test its AD capabilities. While choosing
the detection option and upon the execution of each query, the
execution time is displayed and the detection time is reported.
Since our implementation of the AD mechanism is learning-based,
any query that is not anomalous is used to train the classifier even
while the system is operating in the detection mode. At the end of
each query execution, the time spent in this feedback operation is
reported as well.

Statistics:

«|.Dependents....| Demo Statistics | Profiles...| Anol » ~

Server Groups

3 servers (1) Parameter value probability
7] (localhost:5432) Hie R o9
= Command Select 05
= \7\!7]atabase5) Table Payroll 03
_) postgres A oiinnn S 01

= (@jtest
Figure 3: Anomaly Detection Statistics interface.

In Figure 3, we show the extended pgAdmin interface for
displaying the various AD statistics (profile for a role). For a
specified role, we display the probability of specific command
types, tables, and columns. For example, if we choose the ‘Fin’
role and the ‘Select’ command, the command probability shown
in Figure 3 is computed using P(command = Select|role =
Fin). Similarly, if we choose the ‘Fin’ role, the ‘Payroll’
table, the ‘Select’ command, and the ‘Name’ column, the column
probability is computed using P(command = Select, column =
Name, Table Payroll|role = Fin). These statistics are
indicative based on the type of query that can be accepted (assumed
not to be anomalous) from the user holding this specific role.

Performance Analysis:

We allow the audience to assess the performance of the AD
mechanism when varying a number of input parameters.

1. Changing the Database size:

In this set of experiments, the audience can run tests on
an increasing size of the database to measure the anomaly
detection time and detection overhead when executing
queries. The database size is measured in terms of the
number of tables and columns per table. To test the
performance of our system, we initialized a table of 10
columns with 100 rows of random data. The database is
configured with 3 roles and 3 users. Every user is assigned
to exactly one role in the database. For training the classifier,
we divide the tables into 3 groups; each user submits a
query on each table in one of the groups. We measure the
performance of our system by executing 5 runs; in each
run the database size is doubled, starting with database
size of 5 tables. Figure 4 reflects the results of executing
5 SELECT, 5 INSERT, and 5 UPDATE commands using
the fine triplet representation. The detection time for the
fine triplets, however, does increase and becomes noticeable
when the database size is large. This is primarily because the

il()o
{
E 60 -=-fine
=
§
i
0
x510) 2x{10,12) 4x(20,16) 8x{40,24) 16x(80,40)
Database Size
40 (b)
s
30
® 25
1
3 20
€
g 15
-=-fine

x{5,10} 2x{10,12] 4x(20,16) Bx{40,24) 16x(80,40)

Database Size

Figure 4: Changing Database size affecting: (a) Detection time
(b) Detection overhead.

Figure 5: Detection time affected by number of roles.

number of features considered by the detection algorithm for
fine triplets becomes very large in case of a large database
size. For example, considering the database size of 16z,
corresponding to a database of 80 tables and 40 columns per
table, gives rise to 80 x 40 = 3200 features to be considered
by the detection algorithm (for calculating likelihood of
every role) for the fine triplets. Thus, if fine triplets are
being used for the AD procedure, the number of tables in
the database that need to be considered for the AD procedure
must be carefully configured so as not to adversely impact
the performance of the database. While the detection time
remains constant for the case of simple and join queries, the
overhead for simple queries is large, while it is less in the
join queries case as the time spent in query processing itself
is large.

2. Anomaly Detection time vs. Number of roles:

In this experiment, the audience can measure the effect of
increasing the number of roles in the database on the AD
time. The audience can define the base number of roles and
the maximum number allowed to use in the DBMS, where
each user belongs to one role. For our experiment we set

744

the base number of roles to 2 and the maximum number
to 6. The result of executing 5 SELECT, 5 INSERT, and
5 UPDATE commands is plotted in Figure 5. The detection
time increases with increasing the number of roles because in
the AD algorithm we have to calculate the role likelihood for
every role in the database. However, the performance impact
is small since computing the role likelihood only requires a
summation over the relevant feature probabilities.

CONCLUSION AND FUTURE WORK

In this work, we have demonstrated the design and
implementation of an anomaly detection mechanism implemented
in the PostgreSQL DBMS. We have developed interfaces in the
pgAdmin tool for the audience to interact with our system. Our
demonstration allows the audience to test the capabilities of the
anomaly detection mechanism by first training it manually or using
synthetic query traces (generated using probability sampling), then
by testing whether an arbitrary query under anomaly detection is
detected as anomalous or not.

We plan to extend this work by adding support for group-by
type of queries that can help train our system in further anomalous
situations. We also plan to extend our approach by also considering
the query semantics in terms of data values used for the query
computation. Another complementary area for future research is
the response of the system when an intrusion is detected.

S.

6. REFERENCES
[1] E. Bertino. Data Protection from Insider Threats. Synthesis
Lectures on Data Management. Morgan & Claypool
Publishers, 2012.
[2] E. Bertino, E. Terzi, A. Kamra, and A. Vakali. Intrusion

detection in rbac-administered databases. In Computer
Security Applications Conference, 21st Annual, pages 10 pp.
—182, dec. 2005.

C. Y. Chung, M. Gertz, and K. Levitt. Demids: A misuse
detection system for database systems. In Proceedings of the
Integrity and Internal Control in Information System, pages
159-178, 1999.

Y. Hu and B. Panda. A data mining approach for database
intrusion detection. In Proceedings of the 2004 ACM
symposium on Applied computing, SAC *04, pages 711-716,
New York, NY, USA, 2004. ACM.

A. Kamra and E. Bertino. Design and implementation of an
intrusion response system for relational databases.
Knowledge and Data Engineering, IEEE Transactions,
23(6):875 —888, June 2011.

A. Kamra, E. Terzi, and E. Bertino. Detecting anomalous
access patterns in relational databases. The VLDB Journal,
17(5):1063-1077, Aug. 2008.

S. Y. Lee, W. L. Low, and P. Y. Wong. Learning fingerprints
for a database intrusion detection system. In Proceedings of
the 7th European Symposium on Research in Computer
Security, ESORICS 02, pages 264-280, London, UK, UK,
2002. Springer-Verlag.

S. Mathew, M. Petropoulos, H. Q. Ngo, and S. Upadhyaya. A
data-centric approach to insider attack detection in database
systems. In Proceedings of the 13th international conference
on Recent advances in intrusion detection, RAID’10, pages
382-401, Berlin, Heidelberg, 2010. Springer-Verlag.
pgadmin development team. pgadmin postgre sql tools.

A. Spalka, J. Lehnhardt, S. Jajodia, and D. Wijesekera. A
Comprehensive Approach to Anomaly Detection in
Relational Databases, volume 3654, pages 924-924.
Springer Berlin / Heidelberg, 2005.

(3]

(4]

(5]

(6]

(7]

(8]

(9]
(10]

