
High-Performance Complex Event Processing using
Continuous Sliding Views

Medhabi Ray, Elke A. Rundensteiner, Mo Liu, Chetan Gupta¶, Song Wang¶, Ismail Ari‡

Worcester Polytechnic Institute, USA, ¶HP Labs, USA, ‡Ozyegin University, Turkey
(medhabi|rundenst|liumo)@cs.wpi.edu

¶(chetan.gupta|songw)@hp.com
‡ismail.ari@ozyegin.edu.tr

ABSTRACT

Complex Event Processing (CEP) has become increasingly impor-

tant for tracking and monitoring anomalies and trends in event streams

emitted from business processes such as supply chain management

to online stores in e-commerce. These monitoring applications sub-

mit complex event queries to track sequences of events that match

a given pattern. While the state-of-the-art CEP systems mostly fo-

cus on the execution of flat sequence queries, we instead support

the execution of nested CEP queries specified by the (NEsted Event

Language) NEEL. However the iterative execution often results in

the repeated recomputation of similar or even identical results for

nested subexpressions as the window slides over the event stream.

In this work we thus propose to optimize NEEL execution perfor-

mance by caching intermediate results. In particular we design two

methods of applying selective caching of intermediate results. The

first is the Continuous Sliding Caching technique. The second is

a further optimization of the previous technique which we call the

Interval-Driven Semantic Caching. Techniques for incrementally

loading, purging and exploiting the cache content are described.

Our experimental study using real-world stock trades evaluates the

performance of our proposed caching strategies for different query

types.

1. INTRODUCTION

1.1 Motivation
∽ Complex event processing (CEP) has recently gained importance

due to its wide range of applicability in modern applications, rang-

ing from RFID based inventory management to real-time intrusion

detection. To fully harness the power of event processing, lan-

guages for specifying powerful pattern matching queries over event

streams with constructs for expressing sequencing, negation, and

complex predicates have been proposed [1, 2, 3]. In particular,

nested CEP query languages [4] provide users with flexible nesting

of operators. Without this capability, users are severely restricted

in forming complex patterns in a convenient and succinct manner.

Often, some complex requirements cannot even be expressed as flat

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
EDBT/ICDT ’13, March 18 - 22 2013, Genoa, Italy.
Copyright 2013 ACM 978-1-4503-1597-5/13/03 ..15.00

queries. For instance consider the nested CEP query written using

NEEL syntax [4] shown in Figure 1. The query consists of three

���������	�
��
���
��

������������
��
���������
�
��������� ���������

����

�����
����
 ����!�

"������
��
����

�����
����
 ����!
�#$��
%&
���'���

Figure 1: Example Query Q1

levels of nested operators. The outermost “SEQ” specifies an or-

dered sequence of “Recycle, Wash and Operate” events. The inner

“AND” specifies an unordered collection of “Sharpen” and “Dis-

infect” events occurring in the event stream between the “Wash”

and “Operate” events. The negation operator “!” signifies that

“Sharpen and Disinfect” events both must not occur in either order

in the stream between the matched “Wash” and “Operate” events.

This particular query detects the faulty condition that after being

recycled and washed, a surgery tool is being put back into use for

operation without first being sharpened and disinfected in a same

quality assurance room. Several such queries may be registered to-

gether in the Quality Assurance system to detect violations. In the

��

������� ��	

���

������

�� ���

���������������
���������������

���������	�
���	
����
	��

�
���� ��	������
���

	��

���

��

���

�������	���

���
�����
�	������
�������

��������	���

�����
����
���� �����
!"#�������
��������$
���%&��

'�
�����(��&

�����������
���	
����
	��

��������
�����

Figure 2: Iterative Processing of nested CEP Query

absence of a customized approach of processing such queries, the

principle of nested SQL query execution [5] is adopted [6]. That is

the outer query is evaluated first followed by its inner sub-queries.

Consider figure 2 where the hierarchical stack based CEP opera-

tors implementing each of the sub-queries of Q1 has been depicted.

The subscripted letters denote event instances and the subscripts

are the timestamps. The outermost SEQ(Recycle, Washing, Oper-

ating) query is triggered by the arrival of an “Operate” event and

the partial result <r1,w2, o11> is produced. A tighter bound of

[2,11] (given by the timestamps of w2 and o11) is pushed down

525

to the inner !AND(Sharpening, Disinfection) query which in turn

produces the result set <s3,d10> within the specified interval. The

predicate testing is done at this stage to eliminate potential match

candidates. Based on the results returned, the“!” operator filters out

the result <r1,w2,o11>. For the next outer result <r1,w2,o20>, the

constrained window is [2,20]. The default method would now com-

pute the inner query once more and again the result set <s3,d10>,

<s13,d10> filters out the outer result. However, a part of the compu-

tation for the inner sub-query is repeated. This is wasteful of critical

computing resources and not efficient in handling high volume data

rates. Figure 3 shows the application of rewriting rules on the ex-

���������	�
��
���
��
���������
��
������������������
����
�
������

���������
��
 ������
��
����
�
�����
����
�����
�
����
������

���������	�
��
���
��
�������
��
�����������

��
������������������

����
�
������
 ������
��
����
�
�����
����
�����
�
����
������

���������	�
��
���
��
�����������

��
������������������
����
�
������

�������
��
 ������
��
����
�
�����
����
�����
�
����
������

���������	�
��
���
��
�����������

��
����
�
������
���������
��
����
�

�����
 ������
��
����
�
�����
����
������
���������	�
��
���
��
���������
��
����
�������
�����������

��
����
�

������
 ������
��
����
�
�����
����
������

Figure 3: Incompletely rewritten Q1

ample query Q1. It shows how the number of flat queries grows

exponentially with the number of events inside the AND operator.

Moreover, this rewriting is also incomplete and does not capture

the true semantics of the original query. The last two flat queries in

figure 3, do not have the predicates that specify that sharpening and

disinfection of the tools must occur in the same room. The reason

is that specifying predicate correlation between non-existent events

is syntactically and semantically wrong.

1.2 State of the Art
While most state-of-the-art CEP systems including [1, 3, 7, 2]

support the specification of CEP queries with sequencing, negation

and predicates some [4] also allow the flexible nesting of negation

with other CEP operators into nested CEP expressions as shown in

the example query Q1. However there is a lack of effective tech-

niques in the CEP literature to support efficient execution of power-

ful queries such as Q1. While an optimization technique involving

rewriting of nested queries was proposed in [8] it is not generally

applicable as shown by our example above-. In short, existing state-

of-the-art CEP solutions do not have an efficient way of handling

nested queries.

On the other hand, nested processing is a well studied area in

the SQL context. Mainly two directions have been explored. Ap-

proaches for decorrelating have been proposed in [9] to merge

nested queries by rewriting them. Orthogonally, Semijoin like tech-

niques involving materializing intermediate results in views [10,

11] have been studied for optimizing multi-block nested queries.

In [12] where incremental views were created over nested data mod-

els to efficiently process queries on such data models. In each

case the goal was to avoid redundant computation in the nested

sub-queries. Although, these techniques worked well in the static

context, the problem is different in the streaming context, where

indexes are generally found to be expensive and views become out-

dated very frequently. Hence light-weight semantics are needed to

ensure view completeness. We will now borrow the idea of attempt-

ing to avoid redundant sub-expression computation from the litera-

ture of static database by adopting and adapt them to the streaming

environment.

1.3 Proposed Approach
Since nested CEP queries are widely exploited in real-time applica-

tions which need prompt responses efficient processing strategies

are extremely important. Repeated re-computations like the ones

shown in Figure 2 waste critical CPU cycles and must be avoided at

all costs. Thus we now propose to tackle this challenge by introduc-

ing the notion of “Continuous Sliding Views” of the inner queries

over stream. We call these Continuous Sliding Views because they

are views created for continuous sub-queries that need to slide over

the event stream in lock-step with the outer query expressions of

the nested query.

We store results of sub-queries and incrementally update and

re-use them for answering continuous queries over sliding win-

dows. Given streams are potentially unbounded, CEP queries are

equipped with temporal windows that semantically extract a sub

stream out of the infinite stream. The query is then run on this sub-

set of the stream. As example the CEP query Q1 works on a sliding

window of “10 min”. The window advances as new events arrive

- “Slide by tuple” or as time passes “Slide by time”. In either case

there is generally an overlap of events between consecutive window

slides. Thus if results for a CEP query are cached in continuous

sliding views, a large part of the required result set may be already

present in these views for subsequent query invocation on the next

window slide. This raises the challenge that these continuous views

must be maintained because the data is under continuous flux yet

memory is limited. We need to continuously update the content

of the views by adding new intermediate results and removing ex-

pired ones. In addition, we need to carefully design a light-weight

indexing structure to update and access the stored view content to

assure the needed efficiency. In this work we thus propose to tackle

these challenges by developing effective continuous sliding view

optimization strategies.

1.4 Contributions
Our contributions can be summarized in the following points.

• Designed an aggressive pre-fetch based approach called “Ag-

gressive Continuous Sliding Views” (A-CSV) for maintain-

ing and reusing intermediate results of sub-queries to speed

up nested CEP execution over streams.

• To avoid overly aggressive pre-fetching of sub-query results

which may potentially lead to over-computations in some

cases, we design the “Passive Continuous Sliding Views” (P-

CSV) by attaching temporal intervals.

• Proposed a hybrid approach called “Balanced Continuous

Sliding Views” (B-CSV) that takes a clever middle-ground

approach by borrowing principles from the above two mech-

anisms.

• Developed and analyzed a cost model for a comparative study

of the alternative view maintenance strategies.

• Implemented the above CSV strategies in the NEEL query

execution engine [8].

• Conducted experimental studies comparing the nested CEP

query execution with and without the optimizations and the

state-of-the-art nested CEP processing technique using rewrit-

ing of nested CEP queries [13] and achieved upto 89 percent

speedup in execution time.

While we use the Nested Event Language proposed by Liu. et al

in [4] to specify our queries, our approach is generally applicable

in any nested CEP queries. Our proposed approach is simple and

yet effective. Most importantly they are applicable to any nested

526

CEP queries and achieve significant gain over existing techniques

for processing nested CEP queries.

2. RELATED WORK
CEP Systems: Most state-of-the-art CEP systems (such as SASE [1]

and ZStream [3]) do not support nested pattern queries over streams.

In Cayuga [2] the Cayuga Event Language allows the specification

of sub-queries in the form of an SQL-like algebra [9]. However

it doesn’t support applying negation over composite event types.

While CEDR [14] allows applying negation over composite event

types within their proposed language, the execution strategy for

such nested queries is not discussed. [4] proposed the language

NEEL to specify nested CEP queries. Similarly in [15], an XML

based language was proposed which had the capability of support-

ing nested Sequence queries, however it did not have negation and

it did not focus on the processing paradigm of these nested queries.

In short, processing and optimization of nested CEP queries need

greater attention to achieve much more optimized realtime perfor-

mance. Rewriting based approach proposed in [8] optimized per-

formance in some cases but they were not applicable for a wide

range of queries.

View Materialization: Views have been used in database systems

for primarily two purposes. Firstly views provided logical and phys-

ical data independence. Secondly computing a query using previ-

ously materialized views can speed up query processing because

part of the computation necessary for the query may have already

been done while computing the views. The idea of answering queries

using views has existed for a long time.

[16] proposed the idea of precomputing views over static data which

can be used by other queries. Algorithm design for deciding the

minimum set of views to materialize for answering a query has

drawn a lot of attention [17]. In [18] the idea of intermediate result

caching was introduced for sequence queries in static database sys-

tems. There have also been work on query optimizations by rewrit-

ing queries in order to reuse views. Answering queries using views

plays a key role in developing methods for semantic data caching in

client-server systems [19], [20]. In these works, the data cached at

the client is modeled semantically as a set of queries, rather than at

the physical level as a set of data pages or tuples. Hence, deciding

which data needs to be shipped from the server in order to answer a

given query requires an analysis of which parts of the query can be

answered by the cached views.

In [12] incremental views were proposed over nested data model [12]

to decrease the number of disk I/Os while answering queries. How-

ever, in these systems the data is static with infrequent insertions

and deletions. On the other hand, nested CEP queries run on con-

tinuously arriving and expiring events. While they focussed only on

incremental update of views, we propose a more general integrated

approach for maintaining and exploiting views for continuous CEP

queries.

Decorrelation: Kim [9] and subsequently others [21, 22] have

identified techniques to unnest a correlated nested SQL query and

ŞflattenŤ it to a single query. Cao and Badia [21] processed nested

queries independently and then joined the results from different

levels by the ”correlated” predicates. Consequently, algorithms

such as ”complex query decorrelation” [10] have been proposed to

decorrelate the query. However, existing decorrelation algorithms

for relational databases are inherently different from CEP queries.

Along the lines of nested query decorrelation, Liu et al in [8] de-

veloped a set of equivalence rules for rewriting nested NEEL CEP

expressions into unnested form for faster execution. However not

all nested queries can be rewritten into unnested forms. Also their

rewriting rules were often limited by the presence of predicate cor-

relations. Continuous SLiding Views on the other hand is a gen-

eral principle that is scalable and can be applied to any nested CEP

query. Our discussion of our core techniques and experiments will

further prove this claim.

3. PRINCIPLES OF CONTINUOUS

SLIDING VIEWS

��������	

��	�����	
�������

�����
����

	
����
����

������

�����������
	
�����
���

��	�����������	

Figure 4: CSV System Architecture

Our proposed “Continuous Sliding Views” are cached results for in-

ner CEP sub-queries. As continuous queries run over sliding win-

dows, result sets are produced for each sub-query. These results

are cached in memory to be re-used in subsequent window slides.

Thus a Continuous View is formed for each sub-query for hold-

ing its respective result tuples. As the window advances, events in

the data stream expire out and so do result tuples from the views.

The view is continuously updated as new results are produced from

the incoming event stream. However, to guarantee correctness and

completeness of results, we will need to attach descriptors for these

Continuous Sliding Views to denote their validity scope.

Figure 4 shows the overall system architecture of the nested query

processing system with intermediate result storage. The single-

lined arrows show the direction of control flow while thick arrows

show the flow of data. The Executor conducts the actual query pro-

cessing by controlling the functionality of query operators, such

as AND, SEQ and “!” operators which produce pattern query re-

sults. The stream is input into this module and the complex event

patterns it produces are stored in the views. The View Access mod-

ule checks if the results required at a given time are present in the

Sliding View or not. It may use the view directly if it contains the

required results. Otherwise it would invoke the CSV Maintenance

module to update the view. This maintenance could be in the form

of inserts as well as deletes from the continuous sliding view. It

inserts more tuples by calling the Executor module and purges the

cached results in the view as the window slides over. In the fol-

lowing sections we will introduce three alternate but closely related

nested CEP optimization techniques. Each of these strategies share

three common phases - Loading, Usage and Maintenance (Purging

and Expansion).

In order to describe our technique in greater detail, we will intro-

duce some general terms that will be used in the following discus-

sions repeatedly.

DEFINITION 1. Query-Interval: It is an ordered pair of time-

stamps (leftbound and rightbound) for which a given query is com-

puted.

• For a root query, the Query-Interval is given by [e.time −
stamp, e.timestamp - query.Window] where e is the last

event that has arrived.

527

• For SEQ(E1,..Ei,(subquery qi),Ej ,..En) Query-Interval of

qi is given by [ei.timestamp, ej .timestamp] where <e1, .., ei,
ej , .., en> is a valid result of the query SEQ(E1,. .Ei,Ej ,..

En) and Ei and Ej are primitive positive event types.

• For AND(E1,..Ei,(subquery qi),Ej ,..En) Query-Interval of

qi is given by [e1.timestamp, en.timestamp]where <e1, .., ei,
ej , .., en> is a valid result of the query SEQ(E1,..Ei,Ej ,..

En) and E1 and En are primitive positive event types.

• If there are no primitive positive event types adjacent to a

nested sub-expression, the Query-Interval is inherited from

its parent sub-expression without further restriction.

4. AGGRESSIVE CONTINUOUS SLIDING

VIEW
Our first CSV strategy is that of aggressively pre-computing results

for all sub-queries upto a certain timestamp, so that at any time,

when the outer query looks up the views before that time, all results

are guaranteed to be present in the view. We call this approach

Aggressive Continuous Sliding View or A-CSV.

������� �� �� �� ���

���������	�
� ���������	���

��������	
 ��������	

������������
�������

������������
�������

Figure 5: Aggressive Continuous Sliding View Design

We maintain an A-CSV structure for each sub-query. An A-CSV

corresponds to a list of result tuples conforming to the intermediate

output schema. We associate an indicator with each view called

the “rightBound” which indicates the timestamp until where the

view has progressed and contains all valid results for that sub-query.

For the query shown in Figure 5 it is given by ej+1.ts with ej+1

the event with the maximum timestamp among all events of type

Ej+1 which have arrived so far and for which the view has been

computed. In the continuous view maintaining solution the view

will be loaded with all potential candidate results so far in the input

stream up to the rightBound.

4.1 A-CSV Loading
When a new nested CEP query starts running, an A-CSV structure

is created for every sub-query. This structure is a lightweight list

of result tuples whose size grows and shrinks dynamically as the

query runs over incoming event streams. As new results are com-

puted for a sub-query, the“View.rightBound” is given by the largest

“Query-Interval.rightbound” that has been processed so far by that

query. A-CSV maintenance in section 4.3 describes in detail how

the “rightBound” is computed.

4.2 A-CSV Usage
As events stream in and result construction is triggered, new re-

sults are computed for the outer query. Here we emphasize that for

the outer-most query, which is triggered by the arrival of new trig-

gering events, there is never a chance of recomputing old results.

Given an outer query result triggered by an event en, we calcu-

late the constraint window, Query-Interval for each sub-query. If

the rightBound of the view is greater than or equal to the Query-

Interval.rightBound it means that the existing view contains all the

required results. Hence a scan through the view will give us the

required results. Clearly not all results in the view may be utilized

by the current sub-query and they are thus filtered during the scan.

If however the Query-Interval.rightBound is greater than the times-

tamp attached to the view we have to instead first update the view

as explained below before we can extract the desired result.

4.3 A-CSV Maintenance
View Update. When the Query-Interval.rightBound is greater than

the rightBound of the view, it means that the view might not contain

all possible results that the current Query-Interval needs. That is the

view must be expanded. For all new “triggering” events ej for the

sub-query SEQ(Ei . . .Ej) in Figure 5 the results of the sub-query

do not exist in the current view. We thus compute this sub-query

for all triggering events ej such that ej .ts > View.rightBound and

ej .ts <= Query-Interval.

rightBound and load them into the view. Then the rightBound of

the view is updated to reflect the present state of the view namely

View.rightBound := Query-Interval.rightBound.

Purge. When an outer query triggering event en arrives, events

with timestamp less than (en.ts - window) are purged from their

stacks. Similarly, results in the views involving events with times-

tamp less than (en.ts - window) are also deleted from the view. This

window is the overall query window specified in the query.

���

������� �	
� ���	��

�� ���

��������������������������������

���������	�
���	
����
	��

��	��� ��
������
���

	����

���

�
���
�
��
	��

����������������

� �� �	���
�����	���

��

���
����������������

�����
����
����
���������
���������
�������

������� ��!�
���������

���

���

"�
 �#�������
$%�%&'(

Figure 6: A-CSV Usage Example

EXAMPLE 1. Figure 6 shows how on the arrival of event o20,

Sequence Construction by joining the events of the corresponding

stacks is triggered. The interval is extracted for the result < r1,

w12, o18>, namely [1, 12]. AND(Sharpen, Disinfect) results are

constructed for interval [1,12] and stored in the view. Lastly, the

View.rightBound is set to 12. When the new triggering event o20
arrives, we obtain two results for the outer query, namely < r1,

w12, o20 > and < r1, w16, o20 >. For the first outer result, the

Query-Interval for the sub-query is again [1,12]. Hence the ex-

isting view will have all the results. However for the next outer

result, the Query-Interval is [1,16] as shown in Figure 7. Since

the Query-Interval.rightBound > View.rightBound, the view must

be first updated. Thereafter the View.rightBound is updated to 16 to

reflect its present state.

4.4 A-CSV for Negated Sub-queries
Continuous Sliding View for Negative Sub-Queries is essentially

the same as described above. When the inner sub-query is a boolean

528

expression (i.e., if a negation qualifier exists in front of the subex-

pression), then the only difference would be to search for results

during the Query-Interval. We return True or False based on whether

any results are found or not during the given Query-Interval.

���

������� �	
� ���	��

�� ���

���������	�
���	
����
	��

��	��� ��
������
���

�����

���
��
����������

�������

��� � �� ����������������� ��������������
�
�����
	���
����	�
�

�����
���
�
��

���

��� �
!�!�
����
"#� �$���
��������%
!���&��

'�$����(�
���
��&

���

���

����		����		��������		����		��������		����		��������		����		����

Figure 7: A-CSV Update Example

EXAMPLE 2. Consider again the query in the example in Fig-

ure 6 with a slight change. Let the sub query now be negated i.e

SEQ(Recycle r, !AND(Sharpen, Disinfect), Washing w, Operating

o). In this case we could still reuse the view. For example for the

outer query result <r1, w12, o18> the Query-Interval is [1,12].

The rightBound at this time is 12. We then search for results dur-

ing the required interval within the view. If the view is empty for

the required interval, we will output the outer query result and vice

versa.

4.5 A-CSV with Predicate Correlation

���

������� �	
�
���

���	��

�� ���

��������������������������	
���������������������������

�������������������������

��	��� ��
������
���

	��

���

��

��� ��������	
���
������������������

���������������
�� ��!���"���� ���"#�����$�����������%��

&��!�'��(�������$��������������%

�������	���������������

�������	�������������	

��
������	

��
�������

Figure 8: A-CSV with Predicate Correlation

Our view structure is extended to support efficient predicate cor-

relations. We borrow from the literature, techniques for value based

partitioning the views for efficient retrieval of results. The process-

ing is very similar to ones explained above. However, when there is

equality predicate correlations between outer and inner sub-queries,

we will further partition the view by the different values of the pred-

icate seen so far and maintaining a rightBound for each partition.

Thus for the query in Figure 8, we will have multiple partitions of

the view namely one for each different value of “id” pushed down

from the outer Recycle event type.

EXAMPLE 3. Consider the example shown in Figure 8. For the

outer query result <r1, w12, o18> where r1.id = 10, the Query-

Interval [1,12] along with the value of r1.id is passed down. The

corresponding results <s3, d10> where s3.id = 10 is stored in a

view partition with predicate value 10. For the outer query result

<r2, w12, o18> where r2.id = 25 we search for view partitions

with “id” = 25. It does not exist and is hence computed and stored

in a partition annotated with predicate value = 25. Similarly view

updates will be done to respective partitions.

4.6 Preliminary Performance Evaluation
Experimental Setup: The Continuous Sliding Views have been

implemented inside the stream management system called ECube

[13] using Java. Experiments were run on Intel Pentium IV CPU

2.8 GHz with 4GB RAM running Microsoft Windows 7 operating

system. Each query is processed based on a non-deterministic finite

automata based approach stacks. In a nested query the processing

of each subexpression follows the same strategy. The data contains

stock ticker and timestamp information [23]. The portion of the

trace used has 10,000 unique event instances. In most of our ex-

periments the cumulative execution time has been recorded on the

Y-axis against the cumulative number of results.

���������																			
��������

���������	�����
Figure 9: Nested Query Used For Experiments

Evaluation of results: The query depicted in Figure 9 shows a

nested query which is run for three different Window sizes of 100,

500 and 1000 seconds using the continuous view maintenance tech-

nique and the un-optimized iterative processing technique. Fig-

ures 10 a, b and c demonstrate the effectiveness of our view main-

tenance techniques over the un-optimized iterative technique with

increasing Window sizes from 100, 500 to 1000. Our discussions

about cost analysis in Section 7 will give an insight into how the

view maintenance solution reduces the execution time due to the

overlap of results between consecutive window slides. By increas-

ing the size of the Window, the overlap increases and hence the po-

tential gain of the view maintenance based solution. Thus the our

solution produces results 6, 9 and 16 times faster than the default

processing technique for the increasing Window sizes.

4.7 Discussion of Aggressive Continuous
Sliding View

The Continuous Sliding View provides about 89 percent improve-

ment over the iterative processing technique. It avoids the re- com-

putation of intermediate results thus leading to a much faster re-

sponse time of a given nested query. However, to ensure correct-

ness, this strategy of keeping the view complete upto a certain times-

tamp, is wasteful of memory as it often leads to computing and stor-

ing many result tuples that are never used. The following example

proves the above claim.

EXAMPLE 4. Consider the scenario shown in Figure 11. The

outer query produces a result <r20,w26,o30>. The Query-Interval

extracted is thus [20,26]. For the sake of correctness of this tech-

nique the view needs to be updated up to timestamp 26. Hence all

results between [16,26] are computed for the sub-query AND(Sha-

rpen s, Disinfect d). This may lead to computing many results which

529

0e+00

1e+04

2e+04

3e+04

4e+04

5e+04

6e+04

7e+04

0e+00

1e+05

2e+05

3e+05

4e+05

5e+05

6e+05

7e+05

8e+05

9e+05

1e+06

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Number of Results

Window Size = 100

Iterative Processing

Aggressive CSV

0e+00

1e+05

2e+05

3e+05

4e+05

5e+05

6e+05

7e+05

8e+05

9e+05

1e+06

0e+00

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Number of Results

Window Size = 500

Iterative Processing

Aggressive CSV

0e+00

2e+05

4e+05

6e+05

8e+05

1e+06

1e+06

1e+06

2e+06

2e+06

0e+00

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Number of Results

Window Size = 1000

Iterative Processing

Aggressive CSV

(a) (b) (c)

Figure 10: Comparing Execution Time of Queries using Iterative Technique and Aggressive Continuous Sliding Views with Varying

Window Sizes

���

�������
���	

���

�����

�� ���

�����������������������

�	�����

��� ���

����

���

������������
��������

�� !�����������
"#$!�	���������$����%���&'��

���	����
�������'

�����������	

��������������	

��� �����������	�����������	
$����

��(���

)�&�������

���
���

�����������	�����������	
#�*������&

��

��� ���
��� ���

��������������	��������������	��������������	

���
�����������	

$����%��

Figure 11: Over-Computation in A-CSV

never get joined to any outer query result. For example the result

instances shown in red never get used.

The analysis in Example 4 reveals that our Aggressive CSV suffers

from several critical shortcomings, namely:

• This technique might force us to pre-compute many results

that are never used by any outer sub-query. Example 4 shows

the several results produced between the interval of [20,26]

which are never used. For multi-level nested queries these

results might further result in producing results for lower sub-

queries which will finally never be used by an outer result

either.

• For negative sub-queries this technique will end up storing

the results in spite that it may not always be necessary to do

so because boolean sub-expressions are not output but rather

act as filters.

5. PASSIVE CONTINUOUS SLIDING VIEW
The main disadvantage of maintaining a continuous view is the

need to ensure completeness. However, this may result in com-

puting possibly huge set of results which get computed only for the

sake of completeness of the view yet may never get used. A par-

allel can be drawn to ”blind pre-fetching of results” instead of a

re-use based methodology where results that have been used previ-

ously are stored due to the likelihood of them being re-used in the

future. To overcome this disadvantage, we now propose to enhance

the view design by adding a semantic descriptor that effectively in-

dices the view content. Effectively we will maintain discontinuous

pieces of the view instead of a continuous view. Figure 12 shows an

example of how the views are related to a given query for Passive

Continuous Sliding Viewing (I-CSV).

Here we now propose to partition the view into several inter-

vals. Thus given a Query-Interval getting the results for that interval

would be much faster using an interval-to-interval match. It will not

have to scan a single repository to find the relevant results, instead

it will bound the search space at the smaller meta-data level.

5.1 Passive Continuous Sliding View Design

������� �� �� �� ���

�����������������

���������	
���
����������	���

�����
��	��������

������������� ���

������
�����

��	��������
�����

��	��������

������
�����

��	��������

���������	
���
����������	���

Figure 12: Passive Continuous Sliding View Design

The semantic descriptors attached to the view partitions will be

an extension of the viewBound concept used in previous sections.

We will refer to these descriptors as View Interval.

DEFINITION 2. View Interval is an ordered pair of time stamps

attached to view during which some or all results of a query is

present.

It denotes the time interval for which a view is guaranteed to con-

tain all possible results. For a given sub-query we will maintain a

list of View-Intervals and the results associated with the respective

interval.

5.2 P-CSV Loading
When a query starts running, a view is created for every sub-query.

As results for a sub-query are computed, they are stored in their

respective views. The View-Interval defined above is also attached

to the view at this time.

530

5.3 P-CSV Usage
In contrast to the Continuous Sliding View, the Passive Continu-

ous Sliding View allows an efficient access to the view content by

matching the meta descriptor - View-Intervals. Once the matching

View-Intervals have been identified the required results can be effi-

ciently returned. The extracted Query-Interval is looked up against

the list of View-Intervals. If there exists a match a direct reuse

is made without having to update it. This method is a significant

improvement over the previous view maintaining technique where

there was a need for a scan over the entire result set with a very

small fraction of it catering to the real reuse. Thus this acts as an

efficient index over the view while avoiding storage of many un-

used results.

VI contains QI

VI overlaps QI on left

VI overlaps QI on right

VI contained in QI

Non-Overlap

View Interval (VI) Query Interval (QI)

Figure 13: Types Of Overlap Between View-Intervals And

Query-Intervals

5.3.1 Handling Overlapping View-Intervals

In several occasions multiple View-Intervals may overlap. This

would mean if the full set of results is stored for each overlapping

interval, we would end up storing multiple copies of a single result

tuple. This could be avoided by storing a result tuple only once,

namely, the first time it is created. Thereafter if the same result

occurs in another overlapping interval we will not store it in the

overlapping interval. We have two options namely, we could ei-

ther refer to that interval or a reference to that tuple or being even

more space efficient we may simply not store it. While search-

ing for the complete set of results for a given Query-Interval we

would then search all View-Intervals which overlap with the given

Query-Interval. Thus if there are View-Intervals [2,7],[2,10],[5,10]

and if the Query-Interval is [6,10], we would scan all three View-

Intervals. There is also an added overhead in the view loading in

this case. To store results for overlapping intervals we need to first

check if some previously computed results have already been stored

in an overlapping view interval.

• ”Exact Overlap” or ”Contained”. This referes to the first

type of overlap in Figure 13. The Query-Interval is com-

pletely contained in at least one of the views in the list of

View-Intervals. This happens when the leftbound of the Query-

Interval is greater or equal to the View-Interval’s leftbound

and the rightbound of the Query-Interval is less than or equal

to the View-Interval’s rightbound. In this case all the results

are guaranteed to be present in the list of views which overlap

this Query-Interval. Hence we will scan all the corresponding

views which overlap with this Query-Interval. Some results

in the view might not be used by the present Query-Interval

which are filtered out.

• ”Partial Overlap on the right/left” or ”Contains”. If the

Query-Interval does not exactly match with any of the ex-

isting View-Intervals, then we would look for a partial over-

lap. In the case when the leftbound of the Query-Interval

is greater or equal to the View-Interval’s leftbound and the

rightbound of the Query-Interval is greater than the View-

Interval’s rightbound as shown in the second type of overlap

in Figure 13 we call it a Partial Overlap on the Right. In

this case the inner sub-query is computed only for triggering

events that have occurred between the Query-Interval.right-

bound and View-Interval.rightbound similar to the partial co-

mpute in the Continuous Sliding View. While storing results

we would make sure that these newly computed results are

not present in any of the overlapping View-Intervals. How-

ever when there is a Partial Overlap on the Left or the Query-

Interval contains the View-Interval, a partial incremental co-

mpute is not possible due to the SASE-based right to left

stack-based joins. It is thus always desirable for the Query-

Intervals to move to the right, so that Overlaps on the Right

occur more often.

• ”Non-overlap”. If the Query-Interval does not have exactly

overlap or partial overlap on the right with any existing View-

Intervals, we need to compute results for the given Query-

Interval from the scratch.

5.4 P-CSV Maintenance
When the Query-Interval is not overlapped by any existing View-

Interval, new results need to be computed. The sub-query will be

computed for the given Query-Interval. It is then added to the list

of View-Intervals so that it can be further re-used by future runs.

While if a Query-Interval is overlapped by a View-Interval we will

have to compute the sub-query completely or partially depending

on the type of overlap and will merge the results with the exist-

ing View-Interval by appending the results. Similarly for Query-

Intervals Containing a View-Interval, the Query will be recomputed

and the existing View-Interval will be extended. The steps for view

maintenance are summarized in the Algorithm 1

Algorithm 1 Passive Continuous Sliding View Usage

Require: Query qi, View-Interval-List viewInterval
91: for all viewIntervals vi do

92: if queryInterval containedIn vi then

93: Reuse(vi)
94: end if

95: if queryInterval partialOverlapsOnLeft vi then

96: Reuse(vi)
97: end if

98: if queryInterval partialOverlapsOnRightt vi then

99: Reuse()

910: ViewUpdate(qi)
911: end if

912: if queryInterval contains vi then

913: Reuse()

914: ViewUpdate(qi)
915: end if

916: if queryInterval NonOverlap vi then

917: ViewUpdate(qi)
918: end if

919: end for

There is a search needed to find the overlapping View Intervals.

Any interval tree index can be used to maintain the list of view

intervals. The indexing scheme described in [24] works well for

time intervals and is a simple light weight augmentation of the B+

tree. This indexing speeds up the view retrieval for this Passive

CSV design.

531

���������	�
���	
����
	��

View
Contains
[20,26]?

�����
����
����
���������
���������
�������

���������
���
���

�
�������
��������
��	�	���
�	��
��

�

�����������������
�������������

	���
�
	���
�

	���
��

	����
��

	����
��

 � !

!"�!#

!$�$!

$"�%"

Figure 14: Example demonstrating Passive Continuous Sliding

Views

EXAMPLE 5. Figure 14 shows the state of the view at a given

time for the given query. It contains a set of View-Intervals for

which results have already been computed. When the tuple o30 ar-

rives, the query is triggered and the outer result <r22,w26,o30> is

formed. The Query-Interval extracted is [22,26]. The Interval is

matched against the list of Intervals in the Passive Continuous Slid-

ing View. Two View-Intervals are found to overlap with the given

Query-Interval. They are both probed to get the final results for that

sub-query.

5.4.1 Optimization for Negative Sub-queries

Passive CSV is particularly beneficial for negative sub-queries

not only in terms of CPU processing costs but also in terms of mem-

ory consumption. Negative sub queries need not be joined with the

positive outer query results of the query. Rather they act as fil-

ters screening some of the intermediate results of the outer query.

Hence we now propose to not store any actual tuples in the view for

the boolean sub-queries. Instead simply storing an “isEmpty” flag

for a given interval is sufficient. Thus we check the isEmpty flag

for a given Query-Interval and filter out the results if the isEmpty

flag is false.

���������	�
���	
����
	��

View
Contains
[20,26]?

�����
����
����
���������
���������
�������

���������
���
���

�
���������	
����
�������������
������������

����������	
����
�

����������������� ������	�������

Figure 15: Passive CSV for Negative Sub-Queries

EXAMPLE 6. For the query shown in Figure 15, when the tuple

o30 arrives, the query is triggered and the outer result <r20,w26,o30>
is formed. The Query-Interval extracted is [20,26]. The Interval is

matched against the list of Intervals in the Passive View. For the

matched View Interval the boolean value of the isEmpty flag is set

to True. It therefore returns true and the outer partial result is re-

turned.
Figure 25 compares the memory usage of Passive Continuous

Sliding Views and Continuous Sliding Views for the query specified

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 0
 1

0
 2

0
 3

0
 4

0
 5

0
 6

0
 7

0

S
iz

e
 o

f
V

ie
w

Observation Points

A-CSV

P-CSV

Figure 16: Comparing Memory Usage by Passive Continuous

Sliding Views v/s Continuous Sliding Views

in Figure 14. By partitioning the view into smaller fragments and

indexing them by the intervals attached to them, over-computation

of results is avoided. The Aggressive CSV computes 3 times more

results than the Passive CSV. In a scenario with memory constrains,

the passive model is more practical than the aggressive one. In the

worst case, the Sliding View will end up computing and storing

results which are never used at all. This problem can be completely

avoided using the Passive Continuous Sliding Viewing technique.

5.5 Disadvantages of Passive Continuous Slid-
ing Views

Despite its advantages over the pre-fetch based view maintaining

technique, Passive Continuous Sliding View Maintenance suffers

from a few drawbacks.

• The main drawback of this method of view maintaining is the

complexity of storing the results without duplication. A given

result could belong to multiple View Intervals. However to

make sure it is stored once, it is necessary to reverse index

these results. However this adds significant overhead on the

execution time.

• On the same lines, finding all correct results spanning over

multiple View Intervals requires the maintenance of a smart

light-weighted index. However this too adds significant per-

formance overhead.

6. BALANCED CONTINUOUS SLIDING

VIEWS
Choice between Continuous Sliding Views and Passive Continu-

ous Sliding Views is that of memory-CPU trade-off. This leads us

to propose a hybrid approach of combining the advantages of the

two techniques discussed previously. In this method there will be

an initial scan of the set of outer results to make decisions about

the View-Intervals that would be formed. This Balanced Continu-

ous Sliding View (B-CSV) technique guarantees that the view will

move only in one direction that is towards the right. This is ben-

eficial as we can do partial compute to update the view. In this

method, we do some pre-fetching of results similar to Continuous

Sliding View, however making sure that such results do get used at

some point of time thus overcoming the major problem of the ag-

gressive view maintenance technique. At the same time we main-

tain a finer level of granularity of the view like the passive approach.

532

This technique can be rightly called a hybrid of the above two ap-

proaches because of two reasons: Firstly, this approach selectively

pre-fetches results. It does not blindly pre-fetch results like the first

technique nor does it load the view based on complete re-use. Sec-

ondly, it maintains the stored results are a level of granularity that is

finer than the aggressive continuous sliding view and courser than

the passive approach.

6.1 B-CSV Design
The data structure for this technique is the same as for the Passive

Continuous Sliding View Maintenance. For a given sub-query we

will maintain a View-Interval and the results associated with the

respective interval.

��������	�
�������

����	�
�������

Figure 17: Maximum Query-Interval

6.2 View Loading
The view is loaded once for a set of outer query results. Such a

pre-processing simplifies the storage of results without storing any

duplicates. Thus when an outer query is triggered, a set of outer

query results are produced. Given this set of outer sub-query re-

sults, we determine the maximum overlapping Query-Intervals and

form View-Intervals for such overlapping Intervals. We precom-

pute the results of the inner sub-query for these View-Intervals and

store them. Figure 17 visually explains the meaning of maximum

overlapping Query-Interval.

6.3 View Usage
For a given outer query result, if the Query-Interval is found con-

tained in the list of View-Intervals, the results are directly retrieved

only from that View-Interval. There is no case of Overlapping

View-Intervals. This is the main reason which saves this technique

from the disadvantage of Passive Continuous Sliding Views. On

the other hand, since we do not precompute any result, it also does

not suffer from the disadvantage of the Continuous Sliding View.

Algorithm 2 shows the steps for view usage.

Algorithm 2 Balanced Continuous Sliding View Usage

Require: View-Interval VI, Query-Interval QI

91: Interval maxInterval = r.get(0).extractQueryInterval();

92: for Interval QI:r.extractQueryInterval() do

93: if maxInterval < QI then

94: maxInterval := QI

95: end if

96: end for

97: if maxInterval.containedIn(VI) then

98: computeNeeded = false

99: if computeNeeded == true then

910: PartialCompute(maxInterval)

911: else

912: Reuse()

913: end if

914: end if

6.4 View Maintenance
By the way the Max-Interval is computed, it is guaranteed that the

View-Interval can only move forward in time as the window slides

forward. Thus, View Maintenance will require only a delta compute

which are inserted into the view.

Claim: The paired values in the View-Intervals always increases.

Proof: Proof by Contradiction.

Assume a triggering event et arrives. Let the previous triggering

event be ept. The maximum Query-Interval formed is [tx,ty]. Let

the existing View-Interval be [tm,tn]. If the View-Interval was to

move to the left, tx < tm. However, this can never be possible

because if tx is the left bound of the Query-Interval, it is obtained

from the timestamp of an event instance of an outer query result say

<... ex,ez , ... et >. If ex is joined with et, it must have also joined

with ept forming an outer query result <... ex,ez , ... ept >. Thus

the View-Interval should have been [tx,tn] which is a contradiction.

7. COST ANALYSIS
We will now show a simple cost analysis to theoretically show the
advantages of using view maintenance techniques. For that we must
first introduce certain terminologies in Table 1 that will be used in
the cost model. Cost Model for Flat Stack-Based Execution. For

Table 1: Terminology Used in Cost Estimation
Term Definition

Ccompute(qi) The cost of computing results for a query qi indepen-

dently

PE Selectivity of all single-class predicates for event class

E

PEi,Ej Selectivity of predicates between event class Ei and Ej

PtEi,Ej Selectivity of the implicit time predicate of sub-

sequence (Ei, Ej)

|Si| Number of tuples of type Ei in time window TWP

|Sqi| The number of results for a query qi
Ov The fraction of overlap between the View-Interval and

the Query-Interval qi

an event pattern query qi = SEQ(E1, E2 ,..., Ei ,..., En), Ei is an
event for 1 < i < n. Using stack-based pattern evaluation, the cost
of computation Ccompute(qi) is formulated in Equation 1.

Ccompute(qi)
=

n−1∑

i=1

|Si+1| ∗ [

i∏

j=1

|Sj | ∗ PtEj,Ej+1
∗ PEj,Ej+1

] (1)

Cost Model of Iterative Nested Execution. For a nested expres-
sion qi, qiroot represents the outer most query and qichildj repre-

sents its jth child. Ccomputeqi consists of computation costs for

qiroot, computation costs for qichildj and joining costs as captured

Equation 2.

Ccomp(qi)
=Ccomp(qi.root) + |qi.root| ∗ (

n∑

j=1

Ccomp(qi.childj)) (2)

Iterative Nested Execution with Continuous Sliding Viewing
Technique. For a nested expression qi, qiroot represents the outer
event expression and qichildj represents its jth child. Ccomputeqi

mainly consists of computation costs for qiroot, view maintenance
costs for qichildj as shown in Equations 3 and 4.

Ccomp(qi)
=Ccompqi.root

+ |Sqi.root| ∗ (

n∑

j=1

CV A + Cupdqj.child
)

(3)

Cupd(qi) =(1− Ov) ∗

n−1∑

i=1

|Si+1| ∗ PEi−1,Ei
∗ [

i∏

j=1

|Sj | ∗ PtEj,Ej+1
]

(4)
CV A =Size of the V iew (5)

Iterative Nested Execution with Continuous Semantic Viewing
technique. The computation cost using Semantic View is similar to

533

the cost for Continuous Sliding View as shown in Equation 6 except
the cost for View access is constant and has thus been ignored.

Ccomp(qi)
= Ccompqi.root

+ |Sqi.root| ∗ (

n∑

j=1

Cupdqj.child
) (6)

From the above set of equations, it can be seen that the outer

query results are joined with the inner query results by a cross prod-

uct. Hence the factor |Sqi.root| which denote the number of outer

query results, is multiplied with the cost of computing the inner

query. However in caching techniques, this computing cost of an

inner query is replaced by the view access and maintenance cost

which are much less compared to computing the inner queries from

scratch.

8. PERFORMANCE EVALUATION
We now demonstrate the effectiveness of the Balanced Continu-

ous Sliding Views over Aggressive Continuous Sliding Views and

Passive Continuous Sliding Views. The experiments measure the

execution time for the queries, which include the time for view con-

struction, look-up and purging. Memory sizes have been

8.1 Varying Length of Subqueries

���������	
���	�����

��������������

���������	
���	�����

��������������	��

�

���������	
���	�����

��������������	��

����
�

Figure 18: Varying Length of Children Queries

Figure 18 shows three queries with varying lengths of the in-

ner sub-query from two event types to four event types. The Win-

dow size is kept constant at 500. Figure 19 (a), (b) and (c) show

the comparison between the three continuous view strategies with

varying sub-query length. Clearly the length of the sub-query has

an effect on the relative performances. The Balanced Continu-

ous Sliding Views and the Aggressive Continuous Sliding Views

techniques take significantly less execution time compared to the

Passive Continuous Sliding Views as the length of the sub-queries

in increased. This is due to the fact that the Passive Continuous

Sliding View computes minimally and hence results in too many

calls to the view maintenance function which slows it down signif-

icantly. Also as seen from our further analysis of the data, the oc-

casions when Continuous Sliding View computes un-used results

arises very rarely and hence proves better than Passive Continuous

Sliding Views. However, Balanced Continuous Sliding View main-

tenance technique not only makes minimal calls to the view mainte-

nance function but also maintains a granular view look-up structure

thus making it perform better than both the other techniques. As

the length of the sub-query in increased, the maintenance cost is

increased and this maintenance happens much more frequently in

Passive Continuous Sliding Viewing and hence its performance de-

teriorates compared to the other techniques.

8.2 Varying Number of Subqueries
Figure 20 shows 3 queries with varying number of the inner sub-

queries from one sub-query to three sub-queries. The Window size

is kept constant at 500 and the number of sub-queries is kept con-

stant. Figures 21 (a), (b) and (c) show a comparison between the

���������	
���	�������

�

��������������

���������	
���															�������

�

�������������� �������
����

���������																				
���																							�����																									��

�	

�������������� �������
���� ����������

��

Figure 20: Varying Number of Positive Children Queries

three view maintenace techniques as we vary the number of sub-

queries shown in Figure 20. Again we see that the Balanced Con-

tinuous Sliding View Maintenance takes a much less execution time

compared to Continuous View Maintenance or Passive Continu-

ous Sliding View Maintenance. As the number of subqueries is

increased, the difference in performance between Passive Contin-

uous Sliding Viewing and Continuous Sliding Views increases as

expected because for every subquery the number of recomputations

is much larger for Passive Continuous Sliding Views than Continu-

ous Sliding Views.

8.3 Rewriting v/s View Maintenance

���������	
���	�����

���������������

���������	
���	�����

���������������	��

�

���������	
���	�����

���������������	��

����
�

Figure 22: Varying Lengths of Negative Sub Queries

Figure 22 shows three queries with boolean sub-queries with

varying lengths of the inner sub-query from two event types to four

event types. The Window size is kept constant at 500 and the sub-

query has two event types in all of them. Figure 23 (a), (b) and

(c) show that both the two optimization techniques perform much

better than the iterative technique with respect to execution time.

However the performance of the techniques vary with the complex-

ity of the boolean queries. As the length of the boolean queries is

increased, the Balanced CSV technique takes a much shorter execu-

tion time compared to the Rewriting technique [13]. This is due to

the fact that the Rewriting technique results in extremely complex

queries when the length of the negative sub-query is increased.

8.4 Varying Selectivity for Predicate Correla-
tion

���������	
���	�����

��������������
�����	���������	�	����������

Figure 24: Query with Predicate Correlation

In the following set of experiments, we will use queries with

predicate correlations between different levels of nested queries.

We will compare how the optimized CSV for predicate correlation

performs against general CSV without optimization. The queries

used for the experiments are shown in Figure 24. We will vary the

534

0e+00

2e+04

4e+04

6e+04

8e+04

1e+05

1e+05

1e+05

0e+00

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Number of Results

Length of Subquery = 2

A-CSV
P-CSV
B-CSV

0e+00

5e+03

1e+04

2e+04

2e+04

2e+04

3e+04

4e+04

4e+04

4e+04

5e+04

0e+00

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

9e+06

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Number of Results

Length of Subquery = 3

A-CSV
P-CSV
B-CSV

0e+00

2e+04

4e+04

6e+04

8e+04

1e+05

1e+05

1e+05

2e+05

2e+05

0e+00

1e+05

2e+05

3e+05

4e+05

5e+05

6e+05

7e+05

8e+05

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Number of Results

Length of Subquery = 4

A-CSV
P-CSV
B-CSV

(a) (b) (c)

Figure 19: Comparing Execution Time with Aggressive Continuous Sliding View (A-CSV), Passive Continuous Sliding View (P-CSV)

and Balanced Continuous Sliding View (B-CSV) with Varying Length of Sub-queries

0e+00

2e+04

4e+04

6e+04

8e+04

1e+05

1e+05

1e+05

0e+00

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Number of Results

Number of Subquery = 1

A-CSV
P-CSV
B-CSV

0e+00

2e+04

4e+04

6e+04

8e+04

1e+05

1e+05

0e+00

1e+05

2e+05

3e+05

4e+05

5e+05

6e+05

7e+05

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Number of Results

Number of Subquery = 2

A-CSV
P-CSV
B-CSV

0e+00

1e+04

2e+04

3e+04

4e+04

5e+04

6e+04

7e+04

8e+04

9e+04

1e+05

0e+00

5e+05

1e+06

2e+06

2e+06

2e+06

3e+06

4e+06

4e+06

4e+06

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Number of Results

Number of Subquery = 3

A-CSV
P-CSV
B-CSV

(a) (b) (c)

Figure 21: Comparing Execution Time for Aggressive Continuous Sliding View (A-CSV), Passive Continuous Sliding View (P-CSV)

and Balanced Continuous Sliding View (B-CSV) with Varying Number of Sub-queries

����������	
����

�������������	
����

Figure 25: Varying Selectivity of Correlated Predicate

domain size of the attributes on which there is an equivalence cor-

relation between the outer and inner query. Thus the selectivity is

increased. The chart in Figure 23 (d) reflects the effect of increas-

ing selectivity on the average time for the computation of a single

result. It shows that with the increase in selectivity the partitioned

view takes almost the same time for different selectiveness, while

for the non-partitioned view the average execution time goes on in-

creasing with increasing selectivity. The reason for this increase

is that although the same number of outer results scan the same

number of inner ones thus keeping the total time of computation

constant, however when it is averaged over the smaller number of

actual results produced, the average execution time increases.

8.5 Memory Usage of Viewing Techniques
Figure 26 shows the memory utilizations of the various continu-

ous view strategies based on the size of the view at a given instance

of time. We use the query depicted in Figure 9 with a fixed window

size of 100. Even in terms of memory the Balanced Continuous

Sliding View consumes minimum memory. It neither stores extra

unused results like the Aggressive Continuous Sliding View nor has

a huge list of intervals like the Passive Continuous Sliding View.

However between Continuous Sliding View and Passive Continu-

ous Sliding View, the number of unused results computed in the

A-CSV and size of the list of intervals of the P-CSV keep varying.

9. CONCLUSIONS
This paper focuses on optimizing the processing of Nested Com-

plex Event Processing queries by designing the Continuous Sliding

View structures for inner sub-queries. In particular, we designed

a Continuous Sliding Viewing methodology for storing interme-

diate results. We described techniques for incrementally loading,

purging and exploiting the view content. We proposed three al-

ternate paradigms of continuous sliding view management, namely

aggressive, passive and balanced. Our experiments compare the

above mentioned viewing methodologies against standard iterative

535

0e+00

5e+03

1e+04

2e+04

2e+04

2e+04

0e+00

2e+04

4e+04

6e+04

8e+04

1e+05

1e+05

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Number of Results

Subquery Length = 2

Rewriting
B-CSV

0e+00

2e+03

4e+03

6e+03

8e+03

1e+04

1e+04

0e+00

2e+03

4e+03

6e+03

8e+03

1e+04

1e+04

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Number of Results

Subquery Length = 3

Rewriting
B-CSV

5e+01

1e+02

2e+02

2e+02

2e+02

3e+02

4e+02

4e+02

4e+02

5e+02

0e+00

5e+02

1e+03

2e+03

2e+03

2e+03

3e+03

4e+03

4e+03

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Number of Results

Subquery Length = 4

Rewriting
B-CSV

(a) (b) (c)

Figure 23: Comparing Execution Time for Rewriting Technique and Balanced Continuous Sliding Viewing with Varying Number of

Sub-queries

0e+00

1e+02

2e+02

3e+02

4e+02

5e+02

6e+02

7e+02

0e+00

1e+03

2e+03

3e+03

4e+03

5e+03

6e+03

7e+03

8e+03

9e+03

V
ie

w
 S

iz
e

Number of Results

Comparing Memory Usage

A-CSV
P-CSV
B-CSV

Figure 26: Comparing Memory Usage of Aggressive Contin-

uous Sliding View (A-CSV), Passive Continuous Sliding View

(P-CSV) and Balanced Continuous Sliding View (B-CSV)

processing technique for nested CEP query execution time. Our

strategies significantly outperform iterative processing method by

reducing execution time by up to 89 percent. The Aggressive CSV

is found to out perform the Passive one in most cases, however

the Passive CSV consumes less memory. The Balanced CSV how-

ever achieves both minimum execution time as well as memory us-

age. We also compared the performance of our caching technique

against state-of-the-art method of processing Nested CEP queries

which is Rewriting [8]. In [25] they authors observe that with in-

creasing stream arrival rates and large join states, the CPU typically

becomes strained before the memory does. Temporary data flush-

ing [26] and compressed data representations further counteract the

chances of a memory-limited scenario. If under duress complete

results can no longer be produced at run-time, then the DSMS must

employ the available resources to ensure the production of maxi-

mal run-time throughput (output rate). Therefore, in this work, we

achieved optimizing the throughput of nested CEP queries in CPU-

limited cases.

10. REFERENCES
[1] E. Wu, Y. Diao, and S. Rizvi, “High-performance complex event processing

over streams.” in SIGMOD, 2006, pp. 407–418.

[2] A. J. Demers et al., “Cayuga: A general purpose event monitoring system.” in

CIDR, 2007, pp. 412–422.

[3] Y. Mei and S. Madden, “Zstream: a cost-based query processor for adaptively

detecting composite events,” in SIGMOD, 2009, pp. 193–206.

[4] M. Liu, E. A. Rundensteiner, D. J. Dougherty, C. Gupta, S. Wang, I. Ari, and

A. Mehta, “NEEL: The nested complex event language for real-time event

analytics,” in BIRTE, VLDB WOrkshop, 2010, pp. 116–132.

[5] J. M. Smith and P. Y.-T. Chang, “Optimizing the performance of a relational

algebra database interface,” Commun. ACM, vol. 18, no. 10, pp. 568–579, 1975.

[6] M. Liu, M. Ray, E. A. Rundensteiner, D. J. Dougherty, C. Gupta, S. Wang,

I. Ari, and A. Mehta, “Processing nested complex sequence pattern queries over

event streams,” in DMSN, VLDB Workshop, 2010, pp. 14–19.

[7] “Esper 2009, http://esper.codehaus.org/. accessed july 2009.”

[8] M. Liu, E. A. Rundensteiner, D. Dougherty, C. Gupta, S. Wang, I. Ari, and

A. Mehta, “High-performance nested CEP query processing over event

streams,” in ICDE, April, 2011.

[9] W. Kim, “On optimizing an sql-like nested query,” ACM Trans. Database Syst.,

vol. 7, pp. 443–469, 1982.

[10] P. Seshadri, H. Pirahesh, and T. Y. C. Leung, “Complex query decorrelation,” in

ICDE, 1996, pp. 450–458.

[11] Mumick, IS. and Finkelstein, S. and Pirahesh, H. and Ramakrishnan. R, “Magic

is relevant.” in SIGMOD, 1990.

[12] A. Kawaguchi, D. Lieuwen, I. Mumick, and K. Ross, “Implementing

incremental view maintenance in nested data models,” in Database

Programming Languages, 1998.

[13] M. Liu, E. A. Rundensteiner, D. J. Dougherty, C. Gupta, S. Wang, and I. Ari,

“E-Cube: Multi-dimensional event sequence analysis using hierarchical pattern

query sharing,” in SIGMOD, 2011.

[14] R. S. Barga, J. Goldstein, M. Ali, and M. Hong, “Consistent streaming through

time: A vision for event stream processing.” in CIDR, 2007, pp. 363–374.

[15] B. Mozafari, K. Zeng, and C. Zaniolo, “Ik*sql: A unifying engine for sequence

patterns and xml.”

[16] S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and K. Shim, “Optimizing

queries with materialized views,” in ICDE, 1995.

[17] L. A.Y., R. A., and O. J.J., “Query answering algorithms for information

agents,” in Proc. National Conference on Artificial Intelligence, 1996, pp.

270–294.

[18] P. Seshadri, M. Livny, and R. Ramakrishnan, “Sequence query processing,” in

SIGMOD, 1994, pp. 430–441.

[19] F. M. Dar S., J. B., S. D., and T. M., “Semantic data caching and replacement,”

in VLDB, 1996, pp. 330–341.

[20] KellerA.M. and B. J., “Apredicate-based caching scheme for client-server

database architectures,” in VLDB Journal, 1996, pp. 330–341.

[21] B. Cao and A. Badia, “A nested relational approach to processing sql

subqueries,” in SIGMOD, 2005, pp. 191–202.

[22] Dayal, U, “A unified approach to processing queries that contain nested

subqueries aggregates and quantifiers.” in VLDB, 1987.

[23] “I. inetats. stock trade traces. http://www.inetats.com/.”

[24] M. A. Nascimento and M. H. Dunham, “Indexing valid time databases via

b+-trees,” IEEE Trans. on Knowl. and Data Eng., pp. 929–947, 1999.

[25] B. Gedik and et al., “Adaptive load shedding for windowed stream joins,” in

CIKM, 2005.

[26] B. Liu, Y. Zhu, and E. Rundensteiner, “Run-time operator state spilling for

memory intensive long-running queries,” in SIGMOD, 2006.

536

