
CloudOptimizer: Multi-tenancy for I/O-Bound OLAP
Workloads

Hatem A. Mahmoud∗
UC Santa Barbara

hatem@cs.ucsb.edu

Hyun Jin Moon†
Google Inc.

hyunm@google.com

Yun Chi
NEC Laboratories America

ychi@nec-labs.com

Hakan Hacıgümüş
NEC Laboratories America
hakan@nec-labs.com

Divyakant Agrawal
UC Santa Barbara

agrawal@cs.ucsb.edu

Amr El-Abbadi
UC Santa Barbara

amr@cs.ucsb.edu

ABSTRACT
Consolidation of multiple databases on the same server allows ser-
vice providers to save significant resources because many produc-
tion database servers are often under-utilized. Recent research in-
vestigates the problem of minimizing the number of servers re-
quired to host a set of tenants when the working sets of tenants
are kept in main memory (e.g., in-memory OLAP workloads, or
OLTP workloads), thus the memory assigned to each tenant, as
well as the I/O bandwidth and CPU time, are all dictated by the
working set size of the tenant. Other research investigates the re-
verse problem when the number of servers is fixed, but the amount
of resources allocated to different tenants on the same server needs
to be configured to optimize a cost function. In this paper we in-
vestigate the problem when neither the number of servers nor the
amount of resources allocated to each tenant are fixed. This prob-
lem arises when consolidating OLAP workloads of tenants whose
service-level agreements (SLAs) allow for queries to be answered
from disk. We study the trade-off between the amount of memory
and the I/O bandwidth assigned to OLAP workloads, and develop a
principled approach for allocating resources to tenants in a manner
that minimizes the total number of servers required to host all ten-
ants while satisfying the SLA of each tenant. We then explain how
we modified InnoDB, the storage engine of MySQL, to be able to
change the amount of resources allocated to each tenant at runtime,
so as to account for fluctuations in workloads. Finally, we eval-
uate our approach experimentally using the TPC-H benchmark to
demonstrate its effectiveness and accuracy.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems; C.4 [Performance of
Systems]: Modeling techniques

General Terms
Measurement, Algorithms, Experimentation

∗Work partially done while the author was at NEC
†Work done while the author was at NEC

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
EDBT/ICDT ’13, March 18 - 22 2013, Genoa, Italy
Copyright 2013 ACM 978-1-4503-1597-5/13/03 ...$15.00.

1. INTRODUCTION
Workload consolidation is an effective method to achieve cost ef-
ficiency in cloud computing. The consolidation of multiple small
workloads – also known as multi-tenancy – could avoid signifi-
cant resource waste given that many production servers are often
underutilized [3]. Database services in the cloud benefit from the
same principle through database multi-tenancy by co-locating mul-
tiple databases on the same server. In this paper, we investigate the
problem of allocating resources to tenants and assigning tenants to
servers in a multi-tenant environment. Each tenant is associated
with a service-level agreement (SLA) that defines constraints on
throughput, latency, or both. Violation of such constraints results
in SLA penalties, and – even worse – client dissatisfaction. Our
objective is to develop a principled approach that minimizes the
number of servers required to host a set of tenants, thus provides
cost efficiency, while satisfying the SLA of each tenant.

Recent research investigates the two problems of resource alloca-
tion and server placement separately; that is, either to find an effi-
cient tenant placement when the amount of resources allocated to
each tenant is fixed [17, 6], or to find an efficient resource allocation
when the tenant placement is fixed [20, 21, 18]. We take a different
approach by studying the trade-off between the different resources
allocated to tenants, mainly memory versus I/O. Then we develop
a principled approach that takes advantage of such a trade-off so
as to assign resources to tenants in a manner that makes tenant
placement more efficient. We focus on I/O-bound OLAP work-
loads since previous research has investigated tenant placement for
in-memory OLAP workloads [17], as well as OLTP workloads [6].
An example of I/O-bound OLAP workloads is report generating
queries over large data sets. Previous research on multi-tenancy
that deals with SLAs focuses on either latency SLAs only [17, 21],
or throughput SLAs only [6]. To the best of our knowledge, this
is the first multi-tenancy solution that allows each user to choose
among those two types of SLAs.

The problem of multi-tenancy for I/O-bound OLAP workloads
turns out to be closely related to the well-known “5-minute rule”
that was proposed by Gray et al. [11, 10] and later brought up-to-
date by Graefe [9]. According to the 5-minute rule, under the given
costs for memory versus I/O bandwidth, a data item can be served
either in-memory (memory-resident) or through I/O access (disk-
resident), resulting in different costs; furthermore, there exists a
break-even frequency of access that separates the regions where
one choice is better than the other. In our work, we extend this prin-
ciple in the following two directions. First, we demonstrate that in
handling an OLAP workload (instead of a single data item [11] or

77

certain sequential SQL operations [10, 9]), there exists a continu-
ous spectrum of configurations which we can exploit, in addition to
the choices of 100% memory-resident and 100% disk-resident. For
example, by increasing the amount of memory dedicated to a work-
load, we can trade off a portion of the I/O bandwidth required by
the workload. Second, instead of optimizing for a single workload,
we study how to place and configure a set of tenants in a manner
that minimizes the number of servers required to host all tenants.
Here, the challenge for service providers is that all tenants have to
be considered together in order to achieve globally-optimum solu-
tions.

Our problem poses many practical challenges. First, in order to
minimize the total number of servers we need to configure all ten-
ants in a single optimization problem; however, in order for the
solution to be practical, we have to configure tenants in an incre-
mental fashion as this is how tenants would join a cloud service
in practice. We deal with this challenge by developing two al-
gorithms for optimizing resource allocation: an offline algorithm
named Greedy Resource Optimizer (GRO) that provides an approx-
imation guarantee, and a heuristic named Balanced Resource Op-
timizer (BRO) that lacks an approximation guarantee but allocates
resources to tenants online. By comparing the empirical perfor-
mance of BRO against GRO, we verify that BRO performs almost
the same as GRO for typical OLAP workloads. Another challenge
for the solution to be practical is that SLAs must allow a tenant to
define different throughput and latency requirements for different
time periods (e.g., working hours and evening), perhaps with dif-
ferent costs. This is because the main objective of cloud computing
is to avoid over-provisioning. Thus, our solution must account for
workload fluctuations. We deal with this challenge by generalizing
GRO and BRO to take workload fluctuations into account, and by
introducing changes into InnoDB, the storage engine of MySQL,
so that we can change the memory size assigned to a database at
runtime.

The CloudOptimizer system that we present in this paper is a com-
ponent of our comprehensive data management platform for the
cloud, CloudDB [12]. We summarize our contributions in this pa-
per as follows.

• We propose a profiling approach to capture the trade-off be-
tween the amount of memory and the I/O bandwidth needed
by a given tenant in order to meet its SLAs.

• We develop an approximation algorithm, called Greedy
Resource Optimizer (GRO), to approximate a globally-
optimum resource allocation that assigns resources to tenants
in a manner that optimizes the total number of servers needed
to host all tenants.

• We develop an online heuristic alternative to GRO, called
Balanced Resource Optimizer (BRO). Although BRO lacks
an approximation guarantee, by comparing BRO against
GRO we show empirically that BRO performs well for typi-
cal OLAP workloads.

• We explain how we modified InnoDB, the storage engine of
MySQL, so as to allow for the amount of resource allocated
to a given tenant to change at runtime as the workload fluc-
tuates.

• We conduct an experimental study to demonstrate the effec-
tiveness of our approach, compared to other baseline heuris-
tics, and to evaluate the accuracy of our profiling approach.

The rest of this paper is organized as follows. In Section 2 we sur-
vey related work. In Section 3 we give an overview of our system
architecture. In Section 4 we describe how we profile tenants un-
der different resource configurations. In Section 5 we detail the
algorithms and heuristics that we develop for optimizing resource
allocation. In Section 6 we explain how we control the amount of
resources allocated to different tenants on the same server using
our modified version of MySQL. Finally, we present experimental
studies in Section 7 and give conclusion in Section 8.

2. BACKGROUND AND RELATED WORK
Multi-tenant databases have become an important research area re-
cently as more users move their databases to the cloud [14, 7]. In
this section we discuss prior research that is related to the various
aspects of our work.

2.1 Problem Definition
The two problems that we deal with in this paper, namely (i) tenant
placement and (ii) resource allocation, have been investigated sepa-
rately in prior research. One direction of prior research investigates
the problem of tenant placement, with the objective of minimizing
the number of servers, given a fixed amount of resources allocated
to each tenant. That type of problem arises when the working sets
of tenants are kept in main memory, as in the case with in-memory
OLAP workloads [17], and OLTP workloads [6]. When the work-
ing set of each tenant has to be maintained in main memory, the
amount of resources allocated to each tenant (e.g., RAM, CPU,
I/O) is dictated by the working set size as well as the workload
of that tenant. So the challenge is to find a packing of tenants that
minimizes the number of servers given the amount of resources al-
ready allocated to each of the tenants. Another direction of prior
research investigates the reverse problem; that is, given a constant
number of servers, with tenants already assigned to servers, the ob-
jective is to allocate resources to tenants in a manner that optimizes
a particular cost function; for example, to maximize database per-
formance [20], to minimize SLA penalties [21], or to minimize en-
ergy consumption [18]. In this paper, neither the number of servers,
nor the amount of resources allocated to each tenant, are constants.
We analyze the trade-off between different resources, mainly RAM
versus I/O, to allocate resources to tenants in a manner that mini-
mizes the total number of servers.

Prior research on multi-tenancy that considers service-level agree-
ments (SLAs), or service-level objectives (SLOs), as constraints
on the optimization problem, focuses on either throughput con-
straints or latency constraints. For example, TREX [17] and Smart-
SLA [21] are two systems that consider latency constraints; that
is, the service provider guarantees that the response time of each
query (or most of the queries) does not exceed a pre-specified up-
per bound, and agrees to pay penalties whenever such guarantee is
not met. Meanwhile, Kairos [6] is an example of a system that con-
siders throughput constraints; that is, the service provider agrees
to handle the queries of a client at a pre-specified rate. That rate
fluctuates from one time period to another based on the needs of
the client. The client either states their throughput constraints to
the service provider for each time period explicitly, or provides the
service provider with traces of previous runs of the database in or-
der to clarify the desired throughputs at different periods of time.
In this paper, we consider both types of SLAs; that is, the client can
specify an upper bound on latency, a lower bound on throughput, or
both, and the SLA may specify multiple bounds for different time
periods.

78

Some of the prior research that is related to database multi-tenancy
focuses on consolidation of large numbers of almost-inactive ten-
ants by sharing the same schema among tenants (e.g., [4, 13, 15,
19]). The main challenges in that type of systems are (i) scalabil-
ity [4, 13], due to the limit on the number of tables a DBMS can
handle for a given schema, as well as (ii) security [15, 19], because
tenants share the same schema. This paper, in comparison, targets
workloads with non-trivial throughput requirements.

2.2 Solution Properties
Prior research that tackles the problem of optimizing tenant place-
ment can be classified into offline or online solutions. Offline solu-
tions (e.g., [6]) compute tenant placement for all tenants in a single,
large optimization problem. Online solutions (e.g., [17]) make ten-
ant placement decisions, one tenant at a time. Online solutions are
more practical because tenants typically register for a cloud ser-
vice one tenant at a time, not in a single, one-time batch. In this
paper, we develop an online approach, namely Balanced Resource
Optimizer (BRO), that computes a resource allocation to optimize
tenant placement, for one tenant at a time. To verify that BRO
minimizes the number of severs required to host all tenants, we
also develop an offline approximation algorithm with an approxi-
mation guarantee, namely Greedy Resource Optimizer (GRO), that
minimizes the total number of servers by computing a resource al-
location for all tenants in a single optimization problem. By com-
paring the empirical performance of BRO against GRO, we demon-
strate that BRO achieves almost the same results as GRO for typical
OLAP workloads.

Previous research on multi-tenancy can be also classified based on
whether the solution relies on database profiling (e.g., [6]) or on
predictive models (e.g., [21]). Although predictive models require
less pre-processing, they are heavily dependent on the underlying
infrastructure, such as the implementation of the database man-
agement system, and the underlying hardware. We do introduce
changes into the underlying infrastructure to enable our solution,
mainly by modifying the storage engine of MySQL. However, we
opt to use a profiling approach that treats the underlying infrastruc-
ture as a black box to ensure that our solution is portable. To miti-
gate the cost of pre-processing, we design our profiler in a way that
that the profiling does not incur notable disruptions to the normal
operations of the database that is being profiled.

2.3 Level of Multi-tenancy
Multi-tenant database systems can be classified [16] based on the
level of resource sharing into (i) shared tables (e.g., [4, 13]), (ii)
shared process with independent tables (e.g., [17, 6]), (iii) shared
OS with independent processes, and (iv) shared hardware with in-
dependent VMs (e.g., [20, 21, 18]). In shared-table systems, the
service provider hosts a configurable schema that is designed for a
specific domain (e.g., customer relationship management [1]), and
allows different tenants to choose tables and attributes based on
their application-specific needs. Since we target general-purpose
OLAP, rather than a particular domain, we opt not to use shared-
table multi-tenancy. Multi-tenant database systems that use shared
processes with independent tables are not restricted to a single do-
main, but are more suitable for the case when the entire working
sets of tenants reside in main memory, as the case with TREX [17]
and Kairos [6]. In such a case, because each tenant has enough
main memory for its entire data set, the tenants do not compete
over buffer pages, or greedily evict the pages of each others. We
run tenants on independent database processes on the same OS in
order to impose hard boundaries on the amount of resources allo-

Figure 1: CloudOptimizer overview

cated to each tenant, while avoiding the overhead of running mul-
tiple virtual machines on the same server. This allows us, for ex-
ample, to force a tenant that has low throughput SLA to answer
queries from disk, by assigning less memory to that tenant, so as
to leave more memory space for another tenant that has higher
throughput SLA. Curino et al. [6] list some advantages of shared
DBMS processes over independent DBMS processes and indepen-
dent VMs when implementing multi-tenancy for OLTP workloads.
However, none of those points apply to our case. First, using a
shared database process does not save us memory because we do
not use virtual machines, and because the Linux kernel loads only a
single copy of a program into main memory even when we run the
same program multiple times; thus all DBMS processes on a single
server share the same copy of the DBMS in main memory. Second,
OLAP workloads do not benefit from group logging optimizations
that are implemented in some database systems, because insertions
in OLAP databases already happen in large batches. Third, in an
I/O-bound OLAP workload, the overhead of context switching be-
tween database processes is negligible compared to I/O latencies.

3. CLOUD-OPTIMIZER OVERVIEW
We consider the problem of tenant configuration and placement for
I/O-bound OLAP workloads. The objective is to allocate resources
for I/O-bound OLAP tenants, and pack them into servers in a man-
ner that minimizes the total number of servers needed to host all
tenants, while satisfying the SLA requirements of each tenant. The
SLA requirements of tenants are expressed as lower bounds on
throughput, upper bounds on latency, or both. Latency SLAs are
typically specified explicitly by the user, while throughput SLAs
are determined either explicitly by the client, or implicitly based on
the performance of the database before consolidation. Workloads
fluctuate over time in different ways depending on the domain of
each tenant. For example, a database that serves ad-hoc analytical
queries has higher query arrival rates during working hours, then
the query arrival rate drops during the evening, and drops further

79

during night. Such a database is also expected to have low latency
SLA requirements. Meanwhile, a database that serves automated
report-generation queries may have its highest query arrival rate af-
ter working hours, and typically does not have tight latency SLAs.

Initially, when a tenant moves its database to the cloud environ-
ment, the tenant database first runs on a private server that is re-
ferred to as a staging server. A staging server is identical to the
servers that host consolidated tenants, with the exception that a
staging server hosts only one tenant, and there is a profiler in-
stalled on each staging server to measure the resource utilization
of the tenant database. The profiler utilizes another component of
the system, the resource controller, to gradually reduce the amount
of resources allocated to the tenant database in order to figure out
the minimum amount of resources that the tenant can operate with
while satisfying its SLAs. In particular, the profiler examines the
trade-off between the amount of memory and the I/O bandwidth
assigned to the tenant. The profiler ceases to reduce resources, and
reverses any changes as soon as the performance of the database
starts to drop below its SLA, so as to avoid disrupting the normal
operation of the database. The profiler repeats this profiling pro-
cess for each time period for which the client specifies different
SLA requirements.

The output of the profiling phase is a set of profiles that characterize
the performance of the tenant database at different time periods of
the day. The profile of a particular time period determines, for each
possible memory size that can be assigned to the tenant database,
the minimum I/O bandwidth that is required to satisfy the SLA of
the tenant, as well as the appropriate share of CPU time. These
profiles are passed as input to another component of the system,
the resource optimizer, which determines the optimum amount of
each resource that needs to be allocated to the tenant in order to
satisfy the SLA of the tenant while minimizing the total number
of servers required to host all tenants. The output of the resource
optimizer is a resource allocation vector that specifies the amount
of each resource that should be allocated to the tenant database for
different time periods of the day. This resource allocation vector is
used as input to a vector packing solver that determines what other
tenants this tenant should be co-located with in order to achieve
optimum packing.

Once the tenant database is assigned to a particular server, a re-
source controller takes responsibility of adjusting the amount of
server resources allocated to that tenant at different times of the
day based on the resource allocation vector provided by the re-
source optimizer. The resource controller makes use of a version
of MySQL that we modified to allow for the buffer pool size of
the database to be changed at runtime without having to restart the
database process. Besides, the resource controller makes use of
standard Linux administrative tools, like nice and ionice, to
divide CPU time and I/O bandwidth among tenants on the same
server.

Figure 1 illustrates the design of our system. The main components
of the system can be summarized as follows.

• A Profiler: monitors the performance of the tenant database
under different resource configurations and at different times
of the day, and generates a profile that captures the trade-off
between different resources at different time periods of the
day.

• A Resource Optimizer: takes as input the set of profiles
generated by the profiler for each tenant database, and com-
putes the optimum amount of each resource that needs to be
allocated to the tenant database. The objective is to satisfy
the SLA of the tenant while minimizing the total number of
servers that is required to host all tenants.

• A Resource Controller: adjusts the amount of resources al-
located to the tenant database at different times of the day.
The main purpose is to account for workload fluctuations,
based on the resource allocation plan that is generated by the
resource optimizer, and relying on our modified version of
MySQL.

The following three sections explain each of these three compo-
nents in details.

4. PROFILER
The profiler uses the resource controller (explained in Section 6) to
gradually decrease the amount of resources allocated to a database,
one resource at a time, while the database operates on a stag-
ing server, to examine the trade-off between different resources.
Mainly, the profiler captures the trade-off between the memory
size and the I/O bandwidth allocated to the database. The CPU
time needed by an I/O-bound OLAP workload is seldom the main
bottleneck, compared to the I/O bandwidth that is needed by that
workload. We observed this by profiling several OLAP workloads
that we construct from the TPC-H benchmark, with different query
mixtures, and different query arrival rates. Thus, the profiler, as
well as other components of the system, set the percentage of CPU
time that is allocated to a tenant to the percentage of I/O bandwidth
that is allocated to that tenant, as a proper upper bound. The profiler
starts with the most generous configurations, by allocating 100% of
the I/O bandwidth and CPU time of the staging server to the tenant
database, and by setting the buffer pool size of the database to the
size of the entire data set. The profiler reduces the I/O bandwidth
and CPU time gradually while measuring throughput and latency of
the workload. Once the database performance starts to fall short of
the SLA requirements, the profiler immediately resets the I/O band-
width and CPU time to 100%, then repeats the profiling process for
a smaller memory size, and so on. The profiler stops once the mem-
ory size allocated to the tenant does not satisfy the SLA even with
100% I/O bandwidth and CPU time. If the SLA of the tenant spec-
ifies different throughput or latency requirements for different time
periods, the profiler repeats the profiling process for each of those
time periods.

Figure 2 shows an example of a tenant whose throughput is mea-
sured under different memory sizes and different I/O bandwidths,
for a particular time period. The workload consists of a stream of
TPC-H queries targeting a data set of size 1 GB. The dashed line in
Figure 2 (top) indicates a lower bound on throughput, as specified
by the SLA of the tenant. In this example, the profiler starts with a
memory size of 1000 MB, which is the size of the data set. The pro-
filer keeps decreasing the memory size, 100 MB at a time, down to
500 MB, beyond which the throughput goes below the SLA lower
bound even with 100% I/O bandwidth. For each memory size, the
profiler starts with 100% I/O bandwidth and 100% CPU time, and
keeps decreasing this percentage, 20% at a time, while measuring
the throughput of the tenant for different I/O bandwidths and CPU
times, until the throughput goes below the SLA lower bound. The
granularities of resource allocation (in this example, 100 MB of

80

Figure 2: Example profile.

RAM, and 20% of I/O bandwidth and CPU time) are configurable
parameters of the profiler.

When the profiler sets the I/O bandwidth and CPU time of a tenant
to a percentage less than 100%, the profiler runs dummy workloads
in the background, and allocates the remaining I/O bandwidth and
CPU time to those dummy workloads, to emulate the state when
other tenants run concurrently on the same server. The profiler runs
a dummy workload in the background for each available granularity
of I/O bandwidth and CPU time. For example, when the tenant that
is being profiled is assigned 40% of the I/O bandwidth and CPU
time, the profiler runs three dummy workloads in the background,
each has 20% of the I/O bandwidth and CPU time. Each dummy
workload consists of a stream of single-table scans running contin-
uously on a separate data set, to ensure that the I/O bandwidth allo-
cated to the dummy workload is fully utilized. Each dummy work-
load also performs calculations on each row that it scans, to con-
sume all the CPU time that is available for it. The profiler sets the
buffer pool sizes of the database processes that run dummy work-
loads to negligible sizes, and periodically cleans the I/O buffers of
the Linux kernel, to ensure that the dummy workloads answer their
queries from disk rather than from main memory. Moreover, the
profiler disables I/O prefetching for the databases that run dummy
workloads, because prefetching is typically implemented as asyn-
chronous reads that the Linux kernel schedules with lower priority,
so they do not compete properly against the tenant over the avail-
able I/O bandwidth.

Algorithm 1 summarizes the profiling procedure. The goal of pro-
filing is to compute for each possible memory size, the minimum
I/O bandwidth that is required by the tenant to satisfy its SLA, as
shown in Figure 2 (bottom). Alternatively, we may compute for
each I/O bandwidth the minimum memory size required to satisfy
the SLA; both approaches lead to the same results when we run re-
source optimization on tenant profiles, thus for the rest of this paper
we assume without loss of generality that the x-axis corresponds to
memory size. The profiler generates a profile for each time period
for which the tenant has different SLA requirements.

5. RESOURCE OPTIMIZER

Algorithm 1 Profiler
1: for each time period for which the tenant has different SLAs
2: Set tenant buffer pool size to data set size
3: Allocate 100% of I/O and CPU to tenant
4: do
5: do
6: Deduct a granularity of I/O and CPU from tenant
7: Run a dummy workload in the background
8: Measure latency and throughput
9: while SLA constraints are satisfied

10: Allocate 100% of I/O and CPU to tenant
11: Kill all dummy workloads
12: Clean the I/O buffers of OS
13: Deduct a granularity of memory from tenant
14: Measure latency and throughput
15: while SLA constraints are satisfied
16: end for

In this section we explain the resource optimizer that is the core
component of our system. We begin by formulating the problem
that this component solves, then present our algorithmic and heuris-
tic solutions to this problem.

5.1 Problem Formulation
After profiling a tenant ti, the profiler outputs a finite set of map-
pings, Pi = {P 1

i , P
2
i , ...}, one mapping for each time period for

which the tenant specifies different SLA requirements. For exam-
ple, if the tenant ti specifies two lower bounds on throughput, one
for working hours and one for the rest of the day, the profiler out-
puts two mappings P 1

i and P 2
i . Each mapping P ji (m) returns the

minimum I/O bandwidth that needs to be allocated to ti in order to
satisfy its SLA for the time period j when the memory size of ti
equals m. The value of m must be divisible by the granularity of
memory allocation, µ, which we set to 100 MB in our experiments.
The value of P ji (m) indicates the CPU time as well, because we
tie CPU time to I/O bandwidth. The mappings that are generated
by the profiler are passed to the resource optimizer, which picks for
each time period j a single memory size, and consequently a single
I/O bandwidth and CPU time, in a manner that ensures that the total
number of servers that are needed to host all tenants is minimized.

The resource optimizer divides the day into Z standard time peri-
ods. A reasonable value for Z is 12, thus each standard time period
is two hours. The resource optimizer then transforms the set of pro-
files Pi of the tenant ti into a new set P ′i that contains exactly Z
mappings, one mapping for each standard time period. The map-
ping P ′ji is computed by finding out which of the original time
periods that are provided by the tenant ti contains the jth standard
time period; if the jth standard time period overlaps with more than
one of the original time periods provided by the tenant, we pick the
original time period that has tighter SLA requirements. (Alterna-
tively, we may profile tenants for the standard time periods instead
of their original time periods to avoid this overlapping case). With
this transformation, the output of the resource optimizer for any
tenant ti is a 2Z-dimensional resource allocation vector Ai that
specifies, for each of the Z standard time periods, the amount of
memory and the I/O bandwidth allocated to ti. That is, let mj

i be
the optimum memory size of the tenant ti at the jth standard time
period, then Ai = [m1

i , P
′1
i (m

1
i), ...,m

Z
i , P

′Z
i (mZ

i)].

The resource optimizer needs to pick Ai such that Ai packs well
with the resource allocation vectors of other tenants, so as to min-

81

imize the total number of servers. Consider the offline case when
the profiles of all tenants are given to the resource optimizer as one-
time input. Let the set of resource allocation vectors of all tenants
be A = {A1, A2, ..., An}, where n is the number of tenants. To
pack tenants into servers, we pass A as input to multi-dimensional
vector packing [8]. Since our objective is to minimize the total
number of servers, the resource optimizer should ouput a set of re-
source allocation vectors A∗ that minimizes the optimum output
of multi-dimensional vector packing. That is, let Opt_kDV P (A)
be an optimum solution to multi-dimensional vector packing, then
A∗ = arg_minA{Opt_kDV P (A)}. Since multi-dimensional
vector packing is an NP-hard problem in the strong sense (i.e., the
worst case running time is exponential in the value of the input),
computing A∗ is NP-hard as well. However, there are polynomial-
time approximation algorithms for multi-dimensional vector pack-
ing with guarantees on the worst case ratio between the approx-
imate solution value and the optimum solution value; such ratios
are called approximation ratios. For approximation algorithms of
NP-hard problems, worst case approximation ratios are typically
guaranteed by proving a worst case ratio between the approximate
solution value and a lower bound on the optimum solution value
(rather than the optimum solution value itself, which is hard to
characterize). The lower bound that is used in this kind of guar-
antees is usually an infeasible solution value that can be computed
efficiently for each instance of the hard problem, and is guaranteed
to be less than the optimum solution value.

Let Aprx_kDV P be an approximation algorithm for multi-
dimensional vector packing with a worst case approximation
ratio of ρ, and let Lwr_kDV P be the lower bound that
is used to prove the approximation ratio of Aprx_kDV P ,
thus Aprx_kDV P (A)/Lwr_kDV P (A) ≤ ρ, for any
A. Since Opt_kDV P (A) ≤ Aprx_kDV P (A), therefore
Opt_kDV P (A)/Lwr_kDV P (A) ≤ ρ, for any A. Let Â
be a memory assignment that minimizes Lwr_kDV P (); that is,
Â = arg_minA{Lwr_kDV P (A)}. Thus Lwr_kDV P (Â) ≤
Lwr_kDV P (A∗). Consequently,

Opt_kDV P (Â) ≤ ρ · Lwr_kDV P (Â)

≤ ρ · Lwr_kDV P (A∗)
≤ ρ ·Opt_kDV P (A∗) (1)

For our resource allocation problem, a possible lower bound can be
computed by allowing tenants to span multiple servers. To demon-
strate this, let us first formulate an integer linear program (ILP) for
our resource allocation problem as follows. We refer to the follow-
ing ILP formulation as ILP-1.

min
∑
j zl

s.t.
∑
l xil = 1 ∀i
xil ≤ zl ∀i, l∑

i xil ·Ai[j] ≤ zl ∀l, j
xil ∈ {0, 1} ∀i, l
zl ∈ {0, 1} ∀l

xil = 1 if and only if tenant ti is hosted by server l, and zl = 1
if and only if server l hosts at least one tenant. Since the number
of servers needed to host all tenants is no more than the number of
tenants, therefore 1 ≤ i, l ≤ n, where n is the number of tenants.
Also, Ai[j] is the value of the jth dimension of the vector of tenant
ti, so 1 ≤ j ≤ 2Z. Solving ILP-1 gives an optimum solution to
our tenant placement multi-dimensional vector packing problem,
however it is NP-hard. Relaxing ILP-1 by replacing the integer

constraints (i.e., the last two constraints) with non-negativity con-
straints (i.e., xil, zl ≥ 0,∀i, l) turns ILP-1 into a linear program
(LP) that can be solved in polynomial time. We refer to the linear
program that results from this relaxation as LP-1. The solution to
LP-1 allows a tenant to span multiple servers, thus it is infeasible
for our tenant placement problem. However, the solution value of
LP-1 is a lower bound of the solution value of ILP-1. From [5],
the maximum ratio between the solution value of ILP-1 and the so-
lution value of LP-1 is lg(2Z). We define Opt_kDV P (A) as the
solution value of ILP-1, andLwr_kDV P (A) as the solution value
of LP-1, thus Opt_kDV P (A) ≤ lg(2Z) · Lwr_kDV P (A). By
substituting ρ = lg(2Z) in Equation 1 we get

Opt_kDV P (Â) ≤ lg(2Z) ·Opt_kDV P (A∗) (2)

We focus on finding a resource allocation Â that min-
imizes Lwr_kDV P (). From [5], the solution value
of LP-1 equals maxj{

∑
iAi[j]}. Therefore Â =

arg_minA{maxj{
∑
iAi[j]}} Finding Â provides us with

an input to multi-dimensional vector packing, such that when
multi-dimensional vector packing is solved optimally we get
an output number of servers that is no more than lg(2Z) times
the minimum number of servers required to host the tenants.
In the next section we present an offline greedy algorithm that
approximates Â with an absolute error of no more than 1 in
pseudo-polynomial running time (i.e., the running time is a
polynomial function in the number of tenants), then we show in
Section 5.3 how we derive a heuristic alternative that solves the
same problem in an online manner (i.e., allocates resources to
tenants, one tenant at a time).

5.2 Greedy Resource Optimization (GRO)
In this section we present an offline greedy algorithm, namely
Greedy Resource Optimizer (GRO), that approximates Â with an
absolute error of no more than 1; that is, GRO generates a set
of resource allocation vectors Ȧ such that Lwr_kDV P (Ȧ) ≤
Lwr_kDV P (Â) + 1. The high-level idea of GRO is as follows.
Consider each standard time period as a separate problem. For each
standard time period, begin by assigning maximum memory size to
each tenant, then proceed in iterations. Each iteration picks a ten-
ant whose memory size can be reduced while incurring a minimum
increase in I/O. Continue until the number of servers needed to pro-
vide the total memory size of all tenants, and that needed to handle
the total I/O of all tenants, reach a balanced state.

Algorithm 2 lists our Greedy Resource Optimizer (GRO) algo-
rithm. GRO solves a separate optimization problem for each stan-
dard time period j, since the profile of each standard time period is
completely independent of the profiles of other time periods. Let µ
denote the granularity of memory allocation. Thus, server memory
size, and tenant memory sizes are all multiples of µ. A reason-
able order of magnitude for µ is 100MB. Let mmin

i denote the
smallest memory size with which the tenant ti can satisfy its SLA
for a particular time period. Also, let mmax

i denote the data size
of ti if the data size of ti fits in the RAM of a single server, or
the entire server memory size otherwise. For each standard time
period, GRO begins by assigning to each tenant ti its maximum
memory size, mmax

i . Since the initial total memory size is maxi-
mum, and since P ji is a monotonically non-increasing function in
memory size, therefore the initial total I/O of all tenants is mini-
mum. After the initialization phase, the algorithm proceeds in it-
erations such that each iteration decreases the memory size of a
single tenant. More specifically, in each iteration l, GRO picks a

82

Algorithm 2 Greedy Resource Optimization (GRO)
1: for j = 1 to Z do
2: input: Profiles of the jth time period, {P ji (m) : ∀ti, j,∀m,mmin

i ≤ m ≤ mmax
i ,m/µ ∈ Z}

3: Set l← 0, and assign maximum memory to each tenant mj
i (l)← mmax

i ∀ti
4: while

∑
im

j
i (l) >

∑
i P

j
i (mj

i (l)) and ∃i : mj
i (l) > mmin

i do
5: Define the average I/O increase incurred by a memory deduction as P̄ ji (l, δ) = (P ji (mj

i (l)− δ)− P
j
i (mj

i (l)))/δ

6: Cheapest chunk to deduct from mj
i is δi(l) = arg_minδ{P̄ ji (l, δ) : mj

i (l)− δ ≥ m
min
i , δ/µ ∈ Z+}, if tied pick largest δ

7: Pick the tenant with the cheapest, cheapest deductable memory chunk i(l) = arg_mini{P̄ ji (l, δi(l))}, break ties arbitrarily
8: Deduct that memory chunk from the tenant, mi(l)(l + 1)← mi(l)(l)− δi(l)(l),mj(l + 1)← mj(l) ∀j 6= i(l), l← l + 1
9: end while

10: if max{
∑
im

j
i (l),

∑
i P

j
i (mj

i (l))} > max{
∑
im

j
i (l − 1),

∑
i P

j
i (mj

i (l − 1))} then
11: Revert last interation by setting mi(l)(l)← mi(l)(l − 1)
12: end if
13: end for
14: Let Ȧ = {[mj

i (l), P
j
i (mj

i (l))] : ∀i, j}
15: return Ȧ

tenant ti(l) whose current memory size mi(l)(l) can be decreased
by some amount of memory δi(l) while incurring a minimum aver-
age increase in I/O per unit memory decreased; that is, the cheapest
available chunk of memory that can be removed from a single ten-
ant. GRO finishes a standard time period either after the total mem-
ory size needed by all tenants for that period becomes no more than
the total I/O bandwidth needed, or after each tenant ti is assigned
its minimum feasible memory size for that period; i.e., mmin

i . Be-
fore finishing a time period, GRO makes one last check to see if it
is better to rollback the last iteration. Then GRO moves to another
standard time period, and so on. We denote the resource allocation
returned by GRO as Ȧ.

To analyze the running time of GRO, let us use a priority queue to
pick i(l) at each iteration. The running time of GRO depends on the
value of 1/µ ; that is, the granularity at which memory is assigned
to tenants. If 1/µ is a constant then the absolute approximation
error equals 1, and the running time is O(n log(n)), where n is
the number of tenants. However, µ can be used as a parameter to
control the running time as well as the approximation error of GRO.
If µ is a parameter the running time of GRO is O(n 1

µ
(lg(n) +

1
µ

)), and the worst case absolute error equals 1 + n · µ. The extra
error stems from the fact that each tenant may be assigned µ − ε
memory units more than its optimum memory assignment, where
ε is a negligible amount of memory. The following theorem states
the approximation guarantee of GRO when 1/µ is constant.

THEOREM 5.1. Lwr_kDV P (Ȧ) ≤ Lwr_kDV P (Â) + 1

The proof of Theorem 5.1 is in the appendix. From Equation 2 and
Theorem 5.1, we get

Opt_kDV P (Ȧ) ≤ lg(2Z) · Lwr_kDV P (Ȧ)

≤ lg(2Z) · Lwr_kDV P (Â) + lg(2Z)

≤ lg(2Z) · Lwr_kDV P (A∗) + lg(2Z)

≤ lg(2Z) ·Opt_kDV P (A∗) + lg(2Z)

(3)

5.3 Balanced Resource Optimization (BRO)
In this section we present an online heuristic alternative to GRO,
namely Balanced Resource Optimizer (BRO). The high-level idea
of BRO is as follows. Given a single tenant, consider each standard

time period as a separate problem. For each standard time period,
allocated to the tenant a memory size that makes the I/O bandwidth
allocated to the tenant balanced with the memory size. Note the
similarity with GRO, except that BRO processes one tenant at a
time.

To see the rationale behind BRO, let us define D(A) for any re-
source allocationA as D(A) = maxi,j{Ai[j]}}. That is, D(A) is
the maximum dimension of all vectors inA. From [5], ifA is used
as input to ILP-1 and LP-1, the worst case ratio between the solu-
tion value of ILP-1 and the solution value of LP-1 is 1+2Z ·D(A).
That is,

Opt_kDV P (A) ≤ (1 + 2Z ·D(A)) · Lwr_kDV P (A) (4)

To ensure that the number of servers needed by our system is not
much larger than the optimum number of servers, we need to mini-
mize the right hand-side of Inequality 4. GRO focuses on finding a
resource allocation that minimizes Lwr_kDV P (A). Meanwhile,
BRO minimizes D(A) by ensuring that, for each tenant ti and for
each standard time period j, the memory size allocated to ti mini-
mizes max{mj

i , P
j
i (mj

i)}.

Unlike GRO, BRO does not have an approximation guarantee. In
fact, it is possible to come up with corner cases where BRO per-
forms very badly. For example, consider the case when we have n
tenants, all of them have the profile {P ji (1− ε) = 0, P ji (0) = 1}.
BRO sets the buffer size of each tenant to 1 − ε so as to mini-
mize D(A). However, this resource allocation requires n servers
to host the n tenants, which is the maximum number of servers any
resource allocation algorithm would require. When the same in-
put is given to GRO, GRO sets the buffer sizes of half the tenants
to 1 − ε, and the buffer sizes of the other half to 0, thus requires
dn/2e servers to host the given tenants. Nevertheless, as we show
in our experiments, BRO performs almost the same as GRO on typ-
ical OLAP workloads. Moreover, BRO has several practical advan-
tages over GRO. First, BRO assigns a memory size to each tenant
independently of other tenants, thus it can be used as an online al-
gorithm. Second, even in an offline mode, BRO is more efficient in
terms of running time compared to GRO. If µ is not a parameter, the
running time of BRO is linear in the number of tenants. Otherwise,
if µ is a parameter, the running time of BRO is O(n/µ), where
n is the number of tenants. Third, BRO can be generalized eas-
ily to handle the trade-off between more than two resources. For
example, if we consider co-locating CPU-bound workloads such

83

as OLTP with I/O-bound OLAP workloads, we can extend our re-
source allocation vectors to include, for each time period, the CPU
time allocated to tenants besides memory size and I/O bandwidth.
Using an analysis similar to that we do for the I/O-bound case in
Equation 4, we can use BRO to find a resource allocation that is
close to optimum for a mixture of I/O-bound and CPU-bound work-
loads by balancing the three resources (i.e., RAM, I/O, and CPU).
Fourth, BRO does not assume that the profiles of the tenants are
monotonic functions. Fifth, BRO is much simpler and easier to
implement compared to GRO.

We also examine a hybrid approach that attempts to balance the
memory size and I/O bandwidth of each tenant, while taking ad-
vantage of the approximation guarantee of GRO. We refer to this
approach as GRO+BRO. In GRO+BRO, we begin by running GRO
till its end to obtain Ȧ, then we iteratively reduce D(Ȧ) as long
as this reduction does not degrade the approximation guarantee of
Ȧ. Our experiments show that, while GRO+BRO improves the ap-
proximation guarantee of GRO significantly, it rarely decreases the
actual number of servers needed by GRO, since the actual num-
ber of servers needed by GRO is usually much less than the upper
bound provided by its approximation guarantee.

6. RESOURCE CONTROLLER
Once a tenant is deployed on a shared server with other tenants,
a resource controller is responsible for allocating the appropriate
amount of each resource to the tenant. The controller is also re-
sponsible for changing the amount of resources allocated to the
tenant at different time periods based on the resource allocation
vector that is generated by the resource optimizer. We use MySQL
as the default database management system for our cloud environ-
ment. MySQL does not allow for the buffer pool size of a database
to change at runtime, so we had to modify InnoDB, the storage
engine of MySQL, to be able to change the amount of memory
allocated to a tenant at runtime without restarting the database pro-
cess. The resource controller uses standard Linux commands such
as ionice and nice to partition the I/O bandwidth and CPU time
among tenants. Other tools like ioband and cpuset can be used
for that purpose as well. In this section we explain how the resource
controller controls each of these three resources.

6.1 Memory Size
We modify the code of InnoDB, the storage engine of MySQL, in
order to be able to change the amount of memory allocated to a
tenant at runtime without having to restart the database process.
MySQL allows the user to define more than one buffer pool in-
stance for a single database process. MySQL evenly divides the
buffer pool size that the user specifies at launch time, for a single
database process, among all buffer pool instances of that process.
Whenever MySQL needs to load a data page from disk, MySQL
picks one of the buffer pool instances arbitrarily, using a hash fun-
cion, and assigns the new data page to that buffer pool. Simi-
larly, whenever MySQL searches for a data page in the buffer pool,
MySQL uses the same hash function to determine which buffer
pool instance to search in. The purpose of having multiple buffer
pool instance is to reduce contention on the mutexes that guard the
data structures that MySQL uses to manage each buffer pool in-
stance.

We make use of the fact that each buffer pool instance has
its own data structures so as to make our memory adjust-
ments safe and seamless. To implement our memory adjust-
ments into MySQL, we begin by making the startup parameter

Figure 3: An example of runtime buffer pool adjustment in
Elastic MySQL

innodb_buffer_pool_instances, that holds the number
of buffer pool instances, a dynamic parameter that can be changed
at runtime. Whenever the value of that parameter decreases, say
from x to y, we change the hash function that maps data pages to
buffer pool instances, so that all pages map to the first y buffer pool
instances. The remaining (x− y) buffer pool instances remain un-
used, so all their memory pages get swapped gradually to disk by
the virtual memory manager of Linux, if there is another process
that is requesting more memory pages. Conversely, when the value
of innodb_buffer_pool_instances increases back from y
to x, we re-adjust the hash function to map data pages to buffer pool
instances from 1 to x; this forces MySQL to request more memory
pages from Linux for the buffer pool instances from y+1 to x, and
Linux allocates those memory pages by swapping out unused mem-
ory pages of other tenants on the same server. Note that the value of
innodb_buffer_pool_instances can never be more than
the initial value of that parameter that is set at database launch time.
Thus, for each tenant, the resource optimizer sets the initial value
of innodb_buffer_pool_instances, as well as the initial
size of the buffer pool, in a way to satisfy the following condition.
The memory size that needs to be allocated to the tenant at any time
period of the day, based on the resource allocation vector generated
by the resource optimizer, should be able to be allocated to the ten-
ant by maintaining a subset of the initial set of buffer pool instances
in main memory, and swapping the remaining buffer pool instances
to disk.

Figure 3 illustrates an example of a deployment in which the re-
source controller changes the memory sizes of tenants at run-
time. In this deployment, three tenants share the same server,
and each of them has different memory requirements for three
different time periods of the day. For each tenant, the resource
controller sets the startup configurations of MySQL such that the
buffer pool size allocated to the tenant database equals the max-

84

imum amount of memory that the tenant needs for any time pe-
riod of the day (i.e., 2GB, 3GB, and 3GB for MySQL-1, MySQL-
2, and MySQL-3, respectively); at the same time, the resource
controller sets the number of buffer pool instances of the tenant
database such that the amount of memory that the tenant needs
for any time period is a multiple of the size of a single buffer
pool instance (i.e., 4, 3, and 3 buffer pool instances for MySQL-
1, MySQL-2, and MySQL-3, respectively). Note that the buffer
pool instances of different tenants do not have to have the same
size; that is, the size of a buffer pool instance is not a unit of mem-
ory allocation. In Figure 3, MySQL-1 has a total buffer pool of
size 2 GB, divided over 4 buffer pool instances, while each of the
two other tenant has a buffer pool of size 3 GB, divided over 3
buffer pool instances. For the first time period, the resource con-
troller sets the value of innodb_buffer_pool_instances
for MySQL-2 and MySQL-3 to 2, and sets it to 4 for MySQL-
1. Although MySQL-2 (and MySQL-3) has a buffer pool of
size 3 GB, MySQL does not map any data pages to the third
buffer pool instance, because of the modifications that we made.
Therefore, all the memory pages of the third buffer pool instance
get swapped to disk by the Linux virtual memory manager, and
are replaced by memory pages of MySQL-1. In the second
time period, the resource controller reduces the memory size of
MySQL-1 by reducing innodb_buffer_pool_instances
to 3, and increases the memory size of MySQL-2 by increas-
ing innodb_buffer_pool_instances to 3. As MySQL-2
starts to map data pages to the third buffer pool instance, the data
pages of that buffer pool instance replace those of the fourth buffer
pool instance in MySQL-1, while MySQL-1 refrains from map-
ping any data pages to its fourth buffer pool instance. Similarly, in
the third time period, the third buffer pool instance of MySQL-3
replaces another buffer pool instance of MySQL-1.

6.2 I/O Bandwidth
On a Linux system, the command ionice sets the I/O priority of
a given process to a value from 0 to 7, where 0 is the highest I/O
priority. The command ionice works only when the I/O sched-
uler of the Linux kernel is set to Complete Fair Queuing (CFQ),
which is the default I/O scheduler starting Linux 2.6.18. By de-
fault, CFQ time-slices I/O fairly among processes, and gives higher
priority to synchronous I/O over asynchronous I/O. Let xo be the
default time slice for synchronous I/O, which is a configurable pa-
rameter of CFQ. When ionice is used to set the I/O priority
of a tenant ti to ni, the time slice assigned by CFQ to ti equals
xo + (xo/5) ∗ (4 − ni). Thus, given a set of tenants running on
the same server, in order to assign to each tenant ti a share of I/O
bandwidth IOi, we find a feasible solution to the following system
of equations.

xi = xo + (xo/5) ∗ (4− ni) ∀i

xi/
∑
j

xj ≥ IOi ∀i

0 ≤ ni ≤ 7 ∀i

In any feasible solution to this system of equations, the value of
the variable ni indicates the I/O priority that should be assigned to
the tenant ti, using the ionice command, in order to partition the
available I/O bandwidth among tenants, and allocate a percentage
of I/O bandwidth that equals IOi to the tenant ti. We also set the
default time slice of CFQ for synchronous I/O to a value of xo that
makes this system of equations feasible. We implement this system
of equations in AMPL, and solve it using any MINLP solver; e.g.,
FilMINT [2].

6.3 CPU Time
For CPU time, the nice command on Linux sets the CPU priority
of a given process to a value from−20 to 19, where−20 is highest
CPU priority. The ratio between the CPU time assigned to two ten-
ants t1 and t2 with CPU priorities n1 and n2, respectively, equals
(20−n1)/(20−n2). Thus, given a set of tenants that are co-located
together on the same server, in order to assign to each tenant ti a
percentage of CPU time CPUi, we find a feasible solution to the
following system of equations.

(20− ni)/(20− nj) = xi/xj ∀i, j

xi/
∑
j

xj ≥ CPUi ∀i

−20 ≤ ni ≤ 19 ∀i

In any feasible solution to this system of equations, the value of
the variable ni indicates the CPU priority that should be assigned
to the tenant ti, using the nice command, in order to partition
the available CPU time among tenants, and allocate a percentage
of CPU time that equals CPUi to the tenant ti. Similar to the
case with I/O bandwidth, we implement this system of equations in
AMPL, and solve it using a MINLP solver.

7. EXPERIMENTS
We begin by explaining our experimental setup, then present a set
of experiments to evaluate the effectiveness of our resource opti-
mization algorithms and the accuracy of our profiling approach.
The outputs of GRO and BRO, as well as other baseline heuris-
tics that we compare our resource optimizer against, are passed
as inputs to First-Fit Decreasing (FFD) [8], which approximates
multi-dimensional vector packing with an approximation guaran-
tee of 7/3. The goal of our experiments is to demonstrate (1) that
our online heuristic BRO achieves nearly the same results as our
offline approximation algorithm GRO that has an approximation
guarantee, when run on typical OLAP workloads, (2) that the re-
source allocations generated by GRO and BRO, when passed as
input to multi-dimensional vector packing, achieve significant sav-
ings in the number of servers compared to the resource allocations
generated by other baseline heuristics, and (3) that our profiler cap-
tures the trade-off between memory size and I/O bandwidth with
good accuracy.

7.1 Experimental Setup
We implement the profiler and the resource optimizer as Linux
Bash scripts, and implement the rest of the system in C++. We
begin by profiling a set of 15 tenants. We use the standard TPC-H
schema (version 2.14.4), and populate each database with random
data that we generate using the TPC-H dbgen tool. For each ten-
ant we generate a stream of queries, randomly chosen from the set
of 22 queries defined by the TPC-H benchmark. During profiling,
the profiler measures the throughput of each tenant under different
memory sizes, from 100MB through 1000MB, with a step size of
100MB or 200MB, depending on how quickly the throughput of
the tenant drops as the memory size decreases; steeper curvatures
require more fine-grained profiling. For each memory size, tenants
are profiled for I/O bandwidths, raning from 20% through 100%,
with 20% step size. We refer to this set of profiles as Treal. We then
construct another set comprised of a thousand profiles that we refer
to as Tscaled. Each profile ti in Tscaled is constructed by randomly
picking a profile tk from Treal, and scaling tk by a random factor,
say x, where x is a positive integer no more than server memory
size. We scale a profile tk by setting P ji (m) = P jk (m/x), for

85

Figure 4: Effectiveness of GRO and BRO, for scaled profiles.

all m, and for all j. This scaling operation maintains the original
curvatures of the profiles in Treal, but with larger units of memory.

7.2 Server Savings
We evaluate the effectiveness of our algorithms and heuristics by
comparing them against three baseline resource allocation heuris-
tics: (1) MIN, which assigns to each tenant ti its minimum fea-
sible buffer size mmin

i , (2) MAX, which assigns to each tenant
ti its maximum buffer size mmax

i , that is either the database size
of ti if it fits in main memory, or the server main memory size
otherwise, and (3) CONST, which assigns the same buffer size
mconst to all tenants, that is the minimum buffer size that satisfies
the throughput SLAs of all tenants. The I/O bandwidth assigned
to each tenant ti is defined by its profile Pi. Thus, the I/O band-
widths assigned to ti by MIN, MAX, and CONST are Pi(mmin

i),
Pi(m

max
i), and Pi(mconst), respectively. We use the set Tscaled

as input to these three baseline heuristics, as well as our algorithms
GRO and BRO, to obtain for each tenant five different resource
allocation plans, then we use these configurations as input to multi-
dimensional vector packing to obtain five tenant placement plans.
We compare the number of servers needed by different placement
plans. Figure 4 illustrates the number of servers needed by each
plan as the size of the main memory of servers increases from 1GB
to 10GB. Figure 4 shows that GRO and BRO always require the
same number of servers on typical OLAP workloads, and they both
achieve significant savings in the number of servers compared to
other baseline heuristics. We get the same results when repeating
the experiment with server RAM sizes that range from 100MB to
1000MB; in such case we use fractional scaling factors when gen-
erating Tscaled, since the maximum feasible memory size of any
tenant can not be more than the main memory size. Next, we re-
place the set Tscaled with another set T ′real that consists of 1000
tenants whose profiles are randomly picked from Treal but with-
out scaling. Figure 5 shows the number of servers needed by each
placement plan when we use T ′real as input to the system. Figure 5
shows that GRO and BRO still achieve significant savings in the
number of servers compared to other baselines. As the size of the
main memory of the servers increases, the MAX heuristic catches
up with GRO/BRO. This is due to the fact that all tenants have
database sizes of no more than 1GB, and we have 5 possible I/O
bandwidths (20%-100%, with 20% step size), thus the number of
tenants placed on any server can not be more than 5.

7.3 Profiling Accuracy
We run a set of experiments to evaluate the accuracy of the predic-
tions made by the profiler about the runtime performance of differ-

Figure 5: Effectiveness of GRO and BRO, for unscaled profiles.

Figure 6: Observed throughput versus expected throughput.

ent tenants. We compare the observed throughputs of tenants, after
they are deployed on shared servers, against their expected through-
put that is given by their profiles. We do this evaluation for two
types of environments. The first environment is a set of stand-alone
servers in NEC Labs; each server runs Linux 2.6, and has a single
disk and 2 Intel Quad-Core Xeon processors with hyper-threading.
The second environment is Amazon EC2 virtual machines1; we
use medium-size instances (m1.medium) that run Linux 2.6, and
each has 1 virtual core with 2 EC2 Compute Units (i.e., about 2-2.4
GHz Opteron or Xeon processor). Note that in the case of EC2 ma-
chines, we still use a shared OS model of multi-tenancy, because
all tenants that are co-located together by our system are deployed
on the same EC2 machines. We deploy the tenants in the set Treal
on shared data servers, and divide server resources among them
based on their profiles, then compare their observed throughputs
against the throughputs that are expected based on their profiles.
The servers that we use to host tenants have the same configura-
tions as the servers that we use during the profiling phase; so for
each of the two environments that we use for our experiments, we
do the profiling and the evaluation on the same environment. Pro-
filing is done on private servers, while evaluation is done on shared
server deployments. Figure 6 illustrates the observed throughputs
of tenants compared against their expected throughputs as indicated
by their profiles. Each tenant is represented as a point whose x-
coordinate is the expected throughput of the tenant, while the y-
coordinate is the observed throughput on the shared server. Our ex-
periments show that, when using stand-alone servers, our profiler
captures the trade-off between the different resources allocated to
tenants, with minimal violations of SLAs at runtime. Profiling on
EC2 virtual machines results in more violations, even when we add

1http://aws.amazon.com/ec2/

86

a constant error margin to the profiles; this may be due to the fact
that EC2 machines are virtual machines that share their resources
with other virtual machines in the Amazon EC2 environment. In
a production environment, anomalous tenants whose runtime per-
formance does not meet their expected performance are typically
moved to other servers using load-balancing and live migration
techniques. Our profiling approach, when used with stand-alone
servers, helps system administrators keep the number of tenants
that require migration low.

8. CONCLUSION
We study the trade-off between memory size and I/O bandwidth
for I/O-bound OLAP workloads with SLAs. We propose a pro-
filing approach that captures this trade-off. Then we develop
an approximation algorithm, namely GRO, that approximates a
globally-optimum resource allocation to minimize the total number
of servers needed to host a set of tenants, while satisfying the SLAs
of each tenant. We also propose an online heuristic, namely BRO,
that performs almost the same as GRO on typical OLAP workloads
despite the lack of an approximation guarantee. We develop a re-
source controller to dynamically change the amount of resources
allocated to each tenant at runtime, to account for fluctuations in
workloads, relying on a version of MySQL that we modified for
that purpose. Finally, we conduct an experimental study to demon-
strate the effectiveness of GRO and BRO compared to other base-
line heuristics, and to evaluate the accuracy of our profiling ap-
proach on different environments.

Acknowledgements
The work in this paper was partially funded by a gift grant from
NEC Labs America and NSF grant CNS 1053594.

9. REFERENCES
[1] http://www.salesforce.com.
[2] K. Abhishek, S. Leyffer, and J. Linderoth. Filmint: An outer

approximation-based solver for convex mixed-integer
nonlinear programs. INFORMS Journal on computing,
22(4):555–567, 2010.

[3] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,
A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, and
M. Zaharia. Above the clouds: A berkeley view of cloud
computing. Technical report, University of California at
Berkeley, 2009.

[4] S. Aulbach, T. Grust, D. Jacobs, A. Kemper, and J. Rittinger.
Multi-tenant databases for software as a service:
schema-mapping techniques. In SIGMOD, 2008.

[5] C. Chekuri and S. Khanna. On multi-dimensional packing
problems. In Proceedings of the tenth annual ACM-SIAM
symposium on Discrete algorithms, SODA ’99, pages
185–194, Philadelphia, PA, USA, 1999. Society for
Industrial and Applied Mathematics.

[6] C. Curino, E. P. Jones, S. Madden, and H. Balakrishnan.
Workload-aware database monitoring and consolidation. In
SIGMOD, 2011.

[7] A. J. Elmore, S. Das, D. Agrawal, and A. El Abbadi. Who’s
driving this cloud? towards efficient migration for elastic and
autonomic multitenant databases. Technical Report
CS-2010-05, UCSB, 2010.

[8] M. R. Garey, R. L. Graham, D. S. Johnson, and Andrew.
Resource constrained scheduling as generalized bin packing.
Journal of Combinatorial Theory, 21:257–298, 1976.

[9] G. Graefe. The five-minute rule twenty years later, and how
flash memory changes the rules. In Proceedings of the 3rd
international workshop on Data management on new
hardware, DaMoN ’07, pages 6:1–6:9, 2007.

[10] J. Gray and G. Graefe. The five-minute rule ten years later,
and other computer storage rules of thumb. SIGMOD Rec.,
26(4):63–68, Dec. 1997.

[11] J. Gray and F. Putzolu. The 5 minute rule for trading memory
for disc accesses and the 10 byte rule for trading memory for
cpu time. In SIGMOD, 1987.

[12] H. Hacıgümüş, J. Tatemura, W.-P. Hsiung, H. J. Moon,
O. Po, A. Sawires, Y. Chi, and H. Jafarpour. CloudDB: One
size fits all revived. In SERVICES, 2010.

[13] M. Hui, D. Jiang, G. Li, and Y. Zhou. Supporting database
applications as a service. In ICDE, 2009.

[14] D. Jacobs and S. Aulbach. Ruminations on multi-tenant
databases. In BTW, pages 514–521, 2007.

[15] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin.
Dynamic authenticated index structures for outsourced
databases. In SIGMOD, 2006.

[16] B. Reinwald. Database support for multi-tenant applications.
In IEEE Workshop on Information and Software as Services,
2010.

[17] J. Schaffner, B. Eckart, D. Jacobs, C. Schwarz, H. Plattner,
and A. Zeier. Predicting in-memory database performance
for automating cluster management tasks. In ICDE, 2011.

[18] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes. Cloudscale:
elastic resource scaling for multi-tenant cloud systems. In
Proceedings of the 2nd ACM Symposium on Cloud
Computing, SOCC ’11, pages 5:1–5:14, 2011.

[19] R. Sion. Query execution assurance for outsourced
databases. In VLDB, 2005.

[20] A. A. Soror, U. F. Minhas, A. Aboulnaga, K. Salem,
P. Kokosielis, and S. Kamath. Automatic virtual machine
configuration for database workloads. In SIGMOD, 2008.

[21] P. Xiong, Y. Chi, S. Zhu, H. J. Moon, C. Pu, and
H. Hacigumus. Intelligent management of virtualized
resources for database systems in cloud environment. In
ICDE, 2011.

APPENDIX
In this appendix, we prove Theorem 5.1. To keep the notation sim-
ple, we use δi(l) to indicate both the amount of memory, and the
range [mi(l)−δi(l),mi(l)]. For anym in the range δi(l), such that
m is a multiple of µ, we refer to the range [mi(l) − δi(l),m] as a
tail of δi(l), and the range [m,mi(l)] as the remainder of the tail.
For any tail β, we use the symbol β to refer to the range of the tail
as well as the size of the tail. Similarly, for any remainder α of the
tail β, we use the symbol α for both the range and its size. For any
m in the range [mmin

i ,mi(l)− δi(l)), such that m is a multiple of
µ, we refer to the range [m,mi(l)− δi(l)] as a prefix of δi(l). For
any prefix γ, we use the symbol γ to refer to both the prefix range
and its size. We also use the function P () to indicate the I/O band-
width for a given buffer size as determined by the buffer size, or
to indicate the difference of I/O bandwidth across a range, and we
use P̄ () to indicate the average difference in I/O bandwidth across
a range; for example, P (δi(l)) = Pi(mi(l) − δi(l)) − Pi(mi(l))
and P̄ (δi(l)) = P (δi(l))/δi(l).

The proof of the approximation guarantee of GRO is based on the
following two lemmas.

87

Lemma A.1: If β is a tail of δi(l) then P̄ (β) ≤ P̄ (δi(l)).

Proof: Assume for contradiction that P̄ (β) > P̄ (δi(l)). We
consider the non-trivial case when 0 < β < δi(l), since other-
wise the lemma is obvious. Let α be the remainder of β. Since
P (δi(l)) = P (α) + P (β), therefore P̄ (δi(l)) = P (α)

δi(l)
+ P (β)

δi(l)
=

αP̄ (α)
δi(l)

+ βP̄ (β)
δi(l)

. Since δi(l) = α + β, thus P̄ (δi(l)) is a convex
combination of P̄ (α) and P̄ (β). Since we assume that P̄ (β) >
P̄ (δi(l)), and 0 < β < δi(l), therefore P̄ (α) < P̄ (δi(l)). Note
that one of the endpoints of the range α is atmi(l), thus α is among
the possible δ’s for tenant ti at iteration l. But by definition, δi(l)
is the δ with the smallest value of P̄ () for the tenant ti at iteration
l. Therefore we reach a contradiction.

Lemma A.2: If γ is a prefix of δi(l) then P̄ (γ) > P̄ (δi(l)).

Proof: Assume for contradiction that P̄ (γ) < P̄ (δi(l)). Let δ′

be the concatenation of the ranges γ and δi(l). Then P̄ (δ′) is a
convex combination of P̄ (γ) and P̄ (δi(l)). Since we assume that
P̄ (γ) < P̄ (δi(l)), and by definition γ > 0 and δi(l) > 0, therefore
P̄ (γ) < P̄ (δ′) < P̄ (δi(l)). Note that one of the endpoints of the
range δ′ is at mi(l), thus δ′ is among the possible δ’s for tenant
ti at iteration l. But by definition, δi(l) is the δ with the smallest
value of P̄ () for the tenant ti at iteration l. Therefore we reach a
contradiction.

With Lemma A.1 and A.2 proved, now we are ready to prove The-
orem 5.1.

Proof of Theorem 5.1: Let ṁi denote the buffer size allocated by
Ȧ to tenant ti. We begin by proving that there is no other re-
source allocation Ã that satisfies both of the following two inequal-
ities: (1)

∑
i m̃i <

∑
i ṁi and (2)

∑
i Pi(m̃i) <

∑
i Pi(ṁi),

where m̃i indicates the buffer size allocated by Ã for tenant ti.
Then we show that if there exists Ã that satisfies only one of the
two inequalities, then the difference betweenLwr_kDV P (Ã) and
Lwr_kDV P (Ȧ) is no more than 1. Recall that the resources that
we consider are CPU, RAM, and I/O. We set the percentage of
CPU time equal to the percentage of I/O bandwidth; thus the re-
source allocation of any time period is a two-dimensional vector
representing memory size and I/O bandwidth.

Assume for contradiction that there exists a resource allocation Ã
that satisfies both Inequality 1 and Inequality 2. Let ta be any
tenant such that m̃a < ṁa. Also, let tb be any tenant such that
Pb(m̃b) < Pb(ṁb). Since Pb is monotonically non-increasing,
therefore m̃b > ṁb. Let ∆a denote the range [m̃a, ṁa], and let
la be the iteration at which GRO sets the buffer size of tenant ta to
ṁa. Similarly, let ∆b denote the range [ṁb, m̃b]. GRO removes
the range ∆b from the buffer of tb in one or more δ’s. Let these
δ’s be ordered chronologically as δ1

b , δ
2
b , ..., δ

3
b , where δ1

b is the
first removed δ. Let lb be the iteration at which δ1

b is picked by
GRO; that is, δ(lb) = δ1

b . Note that δ1
b may be not completely con-

tained within the range ∆b. We refer to the intersection between the
ranges ∆b and δ1

b simply as ∆b∩ δ1
b . The range ∆b∩ δ1

b is actually
a tail of δ1

b . Therefore, from Lemma A.1, P̄ (∆b ∩ δ1
b) ≤ P̄ (δ1

b).
We prove that for any such ta and tb, P̄ (∆b) ≤ P̄ (∆a), the we use
this inequality to reach a contradiction with Inequality 2.

Consider the two possible cases, either (1) la < lb, or (2) lb < la.
For Case 1, at iteration lb, the buffer size of tenant ta is still at
ṁa, unchanged since la. Therefore ∆a is one of the δ’s that are

considered for comparison at iteration lb. Since GRO picks δ1
b at

iteration lb, therefore P̄ (∆a) ≥ P̄ (δ1
b) ≥ P̄ (∆b ∩ δ1

b). Sim-
ilarly, since δ2

b , ..., δ
c
b are all picked by GRO at iterations subse-

quent to iteration lb, therefore P̄ (∆a) ≥ P̄ (δjb), for all j. Note that
P̄ (∆b) is a convex combination of P̄ (∆b ∩ δ1

b), P̄ (δ2
b), ..., P̄ (δcb).

Therefore P̄ (∆b) ≤ P̄ (∆a). For Case 2, at iteration lb, the buffer
size of tenant ta is at ma(lb) > ṁa. Let ∆′a denote the range
[ṁa,ma(lb)]. GRO removes ∆′a from the buffer of ta in one or
more δ’s. Let these δ’s be ordered chronologically as δ1

a, δ
2
a, ..., δ

d
a,

where δ1
a is the first removed δ. Note that these δ’s are pre-

fixes of one another, therefore P̄ (δ1
a) < P̄ (δ2

a) < ... < P̄ (δda).
Note also that ∆a is a prefix of δda, therefore P̄ (δda) < P̄ (∆a).
Since δ1

b is picked by GRO at iteration lb, rather than δ1
a, there-

fore P̄ (∆b ∩ δ1
b) ≤ P̄ (δ1

b) ≤ P̄ (δ1
a) < P̄ (∆a). Similarly,

for all δjb , if δjb is picked by GRO at an iteration before la, then
P̄ (δjb) < P̄ (∆a). Otherwise, if δjb is picked by GRO after la, then
we apply the logic of Case 1 to show that P̄ (δjb) ≤ P̄ (∆a). There-
fore, for all j, P̄ (δjb) ≤ P̄ (∆a). As with Case 1, since P̄ (∆b) is
a convex combination of P̄ (∆b ∩ δ1

b), P̄ (δ2
b), ..., P̄ (δcb), therefore

P̄ (∆b) ≤ P̄ (∆a). From Inequality 1, since
∑
i m̃i <

∑
i ṁi,

therefore
∑
a ∆a >

∑
b ∆b. And since P̄ (∆a) ≥ P̄ (∆b) for all

a and b, therefore
∑
a ∆aP̄ (∆a) >

∑
b ∆bP̄ (∆b), which can be

re-written as
∑
a P (∆a) >

∑
b P (∆b). Therefore,

∑
i Pi(m̃i) >∑

i Pi(ṁi), which contradicts with Inequality 2. Thus, there is no
resource allocation Ã that satisfies both inequalities, 1 and 2.

Consider the case when Ã satisfies only one of the two inequali-
ties, either 1 or 2. We prove that in such case Lwr_kDV P (Ȧ) ≤
Lwr_kDV P (Ã)+1. To prove this, we consider two special cases,
either (1)

∑
i ṁi ≤

∑
i Pi(m̃i),

∑
i m̃i <

∑
i Pi(ṁi), or (2)∑

i Pi(ṁi) ≤
∑
i Pi(m̃i),

∑
i m̃i <

∑
i ṁi. Other than these

two cases, Lwr_kDV P (m̃) > Lwr_kDV P (ṁ), and the theo-
rem follows directly. For Case 1, note that the loop of GRO ter-
minates once total RAM is no more than total I/O. Let L denote
the last iteration, and let d =

∑
imi(L) −

∑
i Pi(mi(L)), and

d′ =
∑
imi(L − 1) −

∑
i Pi(mi(L − 1)). Since each iteration

of the loop of GRO decreases the buffer size of a single tenant, and
since the RAM and I/O of each tenant is at most 1, therefore each
iteration decreases total RAM by no more than 1 and increases to-
tal I/O by no more than 1. Thus the difference between total RAM
and total I/O decreases by no more than 2 after each iteration. In
our case, d ≤ 0, therefore d′ ≤ 2. If d′ ≥ 1, then d ≥ −1, thus
the gap between total RAM and total I/O when GRO terminates is
no more than 1, and the theorem follows. If d′ < 1, then d may
be less than -1, however in such case the last iteration degrades the
solution instead of improving it. We check for this case after the
loop terminates, and if it occurs we rollback the last iteration, thus
the final gap size is d′. Therefore, the gap between total RAM and
total I/O is never more than 1. Since Lwr_kDV P (m̃) lies within
this gap, therefore the difference between Lwr_kDV P (m̃) and
Lwr_kDV P (ṁ) is no more than 1. For Case 2,

∑
i ṁi >

∑
i m̃i.

Then there must be a tenant ta such that m̃a < ṁi. But from
the definition of GRO, the two termination conditions are either
(i) mi(l) = mmin

i for all ti, which is not true in this case since
ma 6= mmin

a , or (ii)
∑
imi <

∑
i Pi(mi), which is also not true

by the definition of Case 2. Therefore we reach a contradiction.
�

88

