
ProvenanceCurious: A Tool to Infer Data Provenance
from Scripts

Mohammad Rezwanul Huq, Peter M.G. Apers, Andreas Wombacher
Dept. of Computer Science, University of Twente

7522NB, Enschede, The Netherlands.
{m.r.huq, p.m.g.apers, a.wombacher} @utwente.nl

ABSTRACT
The increasing data volume and highly complex models used
in different domains make it difficult to debug models in
cases of anomalies. Data provenance provides scientists suf-
ficient information to investigate their models. In this paper,
we propose a tool which can infer fine-grained data prove-
nance based on a given script. The tool is demonstrated
using a hydrological model. The tool is also tested success-
fully handling other scripts in different contexts.

Categories and Subject Descriptors
E [Data]: Miscellaneous—Data Provenance

Keywords
Data provenance, Code analysis, Scientific models

1. INTRODUCTION
Data intensive applications are used to study and better

understand complex systems such as physical, geographical,
environmental, biological etc. [6]. In these applications,
the data collection contains both in-situ data and stream-
ing data. Scientists use this data fitting into their model
describing processes in the physical world. During the ex-
ecution of the model, imprecise or unexpected values could
be generated occasionally due to the anomalies either in the
data or in the model. To resolve this issue, scientists need
to debug their scripts used for actual processing as well as
to trace back values of the input data sources. Maintaining
data provenance can help them in such a situation.

Data provenance refers to the derivation history of data
starting from its input sources [1]. Fine-grained data prove-
nance is defined at the value-level which refers to the deter-
mination of how a particular value has been created and pro-
cessed starting from it’s input values. It helps scientists to
trace back values of the input data sources. Coarse-grained
or workflow provenance is defined at the more higher level of
granularity. Workflow provenance only captures association

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT ’13, Mar 18-22 2013, Genoa, Italy
Copyright 2013 ACM 978-1-4503-1597-5/13/03. ...$15.00.

among different operations within the model allowing scien-
tists to debug through their model. Both fine-grained and
workflow provenance are necessary to identify the origin of
the unexpected behavior of the model.

Maintaining data provenance explicitly requires a lot of
effort from the users which is not desirable and appreci-
ated. Therefore, inference of data provenance based on a
given script has a high demand in the scientific community.
A script consists of both control-flow and data-flow based
operations. Execution of a control-flow based operation de-
pends on the successful completion of previous operations
[7] and it exhibits control dependences between operations.
Handling the control-flow based operations (e.g. loop, con-
ditional branching etc.) offers the major challenge to in-
fer data provenance. Since data provenance only explicates
the data dependences among the operations and the val-
ues, these control dependences between operations must be
translated into the data dependences where the availability
of actual values fires the next operation. In this paper, we
describe the development of such a tool, known as Prove-
nanceCurious, which can overcome this challenge and can
infer data provenance based on a given script.

The proposed tool builds the workflow provenance from
the given script. Based on the workflow provenance and the
availability of actual values from different data sources, it
infers fine-grained data provenance. The inference of fine-
grained data provenance allows the users to debug the model
by specifying the value of interest in space and time. Since
there are many programming and scripting languages and
each has its own set of programming constructs and syntax,
we showcase our approach using Python scripts. Python1

is widely-used to handle spatial and temporal data in the
scientific community as well as in commercial products such
as ArcGIS2 which has inspired us to make this choice.

The proposed tool is demonstrated using a hydrological
model estimating the global water demand [8]. The tool
is also tested with other multi-procedure Python scripts in
different contexts. Using the proposed tool, scientists are
able to visualize workflow provenance, i.e. data dependences
among operations. Moreover, they can also select individual
values which are generated by executing the script and infer
fine-grained provenance, i.e. input values those have been
used to calculate the selected value. Especially in cases of
outliers or missing values, it is a beneficial tool, providing
the scientists sufficient information to investigate the unex-
pected behavior of the model.

1http://www.Python.org/
2http://www.esri.com/software/arcgis

765

2. PROVENANCE GRAPH MODEL
The proposed tool, ProvenanceCurious, infers data prove-

nance and represents it as a graph known as provenance
graph. A provenance graph Gp is a set of (V,E) where V
denotes the set of nodes and E denotes the set of directed
edges. A node represents either data or an operation. A
directed edge connecting two nodes represents the data de-
pendence of the target node on the source node. The graph
model consists of different types of nodes. These are:

• Constant: represents any constant value taking part
in an operation.

• Source Processing Element: represents any opera-
tion that either assigns a constant or reads data from
the disk.

• Computing Processing Element: represents any
operation that either computes a value based on its
parameters or writes data into the disk.

• View: represents either any variable defined in the
script or intermediate result generated by a process.

Every source and computing processing element generates
a view. Further, a view or constant node can be used as an
input for multiple processing elements. Each type of nodes
has different properties. Some of the properties are impor-
tant to explicate fine-grained provenance information. As
for example, each processing element node has properties
such as: i) windows which is defined over it’s input views
specifying the number of data products to be considered to
process, ii) trigger which specifies how often the process-
ing element is executed and iii) hasOutput which holds a
boolean value indicating that the processing element pro-
duces persistent data (true) or not (false). Moreover, each
view has some distinct boolean properties such as: i) IsIn-
termediate which is true if the view contains intermediate
result set and false otherwise and ii)IsPersistent which is
true if the view contains data products that are read from
or written into the disk. The proposed tool infers the value
of these properties while building the workflow provenance
graph and facilitates this information to infer fine-grained
data provenance.

3. SYSTEM DESCRIPTION
The proposed tool is comprised of five components: graph-

ical interface, graph building engine, inference engine, database
engine and customization engine. Fig. 1 shows these compo-
nents, the inner modules of each component and the user in-
teraction with the tool. Each component is represented by a
rectangle with thick boundary. The other rectangles within
a component represent a module belonging to that compo-
nent. The ellipses represent outputs produced by the mod-
ules. However, the user can interact with only the shaded-
ellipses. The dotted lines show the user input to a module
specifying additional parameters required by the system.

3.1 Graphical Interface
The user interacts with the tool through the graphical in-

terface. First, the user gives the input, i.e. a Python script,
to the import module which then invokes the graph build-
ing engine to build the workflow provenance graph. The
user also provides a few operation-specific information re-
quired by the graph building engine through the operations
info module. Upon the completion of generating the work-
flow provenance graph, the user can also request to infer

Import

Inference

Parsing Traversing

TransformingRe-writing

AST Objects

Initial Graph
Workflow

Provenance
Graph

Formulating
Queries

Associating
Values

Fine-grained
Provenance

Graph

Graph Building Engine

Inference Engine

Graphical Interface

Operations Info

Customization
Current

Provenance
Graph

Re-writing

Customized
Provenance

Graph Customization Engine

1.
 In

pu
t S

cr
ip

t

2.
 In

pu
t O

pe
ra

tio
n

sp
ec

ifi
c

in
fo

3. Input
Database
config. &

Interesting
Value

4. Input
Customize

option

Executing
Queries

Sending
Resultset

Database
Engine

Figure 1: Different components of the system

the provenance for an interesting value in time and space.
At this time, the user has to provide the actual location
of the database that holds the values through the inference
module. Furthermore, selecting a provenance graph either
workflow or fine-grained, the user can also request to have
a customized version of the selected graph by specifying an
appropriate option via the customization module.

3.2 Graph Building Engine
The graph building engine generates the workflow prove-

nance graph based on the given Python script. First, it
parses the script based on a grammar. After parsing the
script, it returns an abstract syntax tree (AST) for the given
script. Then, it traverses through this AST based on a tree
grammar and for each node in the AST, an object of the ap-
propriate class based on the object model is created. At this
time, it asks users to enter a few operation-specific informa-
tion. The operation-specific information includes whether
the operation reads persistent data or not (e.g. true/false)
and whether the operation writes persistent data or not (e.g.
true/false). Having the user input, it builds the initial work-
flow provenance graph based on the graph model discussed
in Sec.2. Since the initial provenance graph captures all
syntactical details of the script, the size of this graph be-
comes significantly large. Therefore, we apply a set of graph
re-write rules on the initial graph to reduce the number of
nodes and edges to achieve the final workflow provenance
graph. The workflow provenance graph is then returned to
the interface so that the user can interact with it.

3.3 Inference Engine
The inference engine is executed when the user requests to

debug the model based on a given value. The inference en-
gine also receives the required parameters such as the work-
flow provenance graph and database location from the user.
The value requested by the user consists of several param-
eters depending on the underlying model. Suppose, for the
model that estimates the global water demand [8], the value
is characterized by it’s timestamp (e.g. yyyy-mm) and cell
position in 2-d co-ordinates. Having this input from users,
the inference engine applies appropriate provenance infer-
ence algorithm [5], [4] to formulate the provenance queries.

766

The model reported in [8] contains only in-situ and static
data. Therefore, in this case, we apply the basic algorithm
described in [5]. After formulating the queries, it invokes the
database engine to execute the queries on the actual values.
The results are then returned to the inference engine. The
inference engine associates the results containing actual val-
ues to the appropriate nodes of the workflow provenance
graph to build the fine-grained provenance graph. Then,
the fine-grained provenance graph is returned to the user.

3.4 Database Engine
The database engine executes the queries sent by the infer-

ence engine. At the time of execution, the executing queries
module makes a connection to the underlying database, fetches
relevant values and executes queries. After the execution,
the results are sent to the sending module which returns the
results to the inference engine for further action.

3.5 Customization Engine
The customization of a provenance graph can satisfy users

with different level of understanding and objectives. The
customization engine provides a handful options to customize
a provenance graph. The user has to specify one of these
options and based on the selected option the engine then
applies appropriate rules to transform the current prove-
nance graph into the customized version of it. One of the
customization techniques is to group processes, known as
grouping process customization. In this technique, if sev-
eral processing nodes with intermediate results are sequen-
tially participating to produce a persistent view of a com-
puting process, then those intermediary processing nodes are
grouped together with the process generating the persistent
view.

3.6 Implementation
The proposed tool is implemented as an eclipse3 plug-in

and written in Java using the latest JDK version 1.7.0 05.
The graphical interface is built by facilitating the eclipse
modeling framework (EMF) and graphical modeling frame-
work (GMF). The Python grammar and tree grammar used
in modules parsing and traversing of the graph building
engine are developed using the ANTLR tool4. Further,
the ANTLR APIs for Java are used to build the abstract
syntax tree (AST) and to create objects by traversing the
AST. To build the provenance graph, we use the attributed
graph grammar (AGG) engine5 and it’s APIs for Java. The
set of re-write rules used in both graph building and cus-
tomization engine are realized by facilitating AGG. Since our
demonstration scenario contains actual values in a SQLite
database6, the database engine currently includes a JDBC
driver for SQLite database engine. However, drivers for
other databases can be easily plugged in.

4. DEMONSTRATION

4.1 Demonstration Scenario
To evaluate the proposed tool, a scientific data processing

model in hydrological domain reported in [23] is introduced.

3http://www.eclipse.org/
4http://www.antlr.org/
5http://user.cs.tu-berlin.de/~gragra/agg/
6http://www.sqlite.org/

Freshwater is one of the most important resources for var-
ious human activities and food production. Therefore, es-
timating water demand and availability on a global level is
necessary to assess the current situation as well as to make
policies for the future. We consider the model estimating
global water demand reported in [8] as our demonstration
scenario. The model calculates water demand globally for
every year starting from 1960 to 2000 at a monthly resolu-
tion.

The Python script used in the model has 120 lines of code
and calculates water demand based on more than 3000 in-
put files. These input files are raster maps with 360×720
cells where each cell contains a value. The calculated wa-
ter demands are also stored in similar types of raster maps.
The values of these maps are stored into a SQLite database
that consumes around 40 GB of memory. Executing the
proposed tool for the complete script generates a workflow
provenance graph consisting of 139 nodes.

4.2 Execution of the Tool
The proposed tool, ProvenanceCurious, is executed as an

eclipse plug-in application. Fig. 2(a) shows the initial win-
dow of the tool after the execution. In the left side of the
window, the user could navigate through the project which
contains a bunch of Python scripts and generated prove-
nance graphs. The user can also update any Python script
in the script editor. In Fig. 2(a), the script test if.py is
opened for editing. Later, the user can initiate the inference
of data provenance by right-clicking on a particular script
and choose import provenance option from the drop-down
menu.

After initiating the inference of data provenance, the cor-
responding components and modules of the system are in-
voked (see Sec.3) to generate the workflow provenance graph.
Fig. 2(b) shows a sample of the generated workflow prove-
nance graph. The user can also edit few properties of the
nodes and edges of the graph in the provenance graph edi-
tor. Moreover, it is also possible to add new nodes or edges
from the drawing palette, positioned at the right side of the
window shown in Fig. 2(b). Later, the user can request to
infer fine-grained provenance graph for a particular cell in
any of the output maps generated by the model. Based on
this request, the tool infers all contributing input values to
produce the value of the selected cell. Further, the graphical
interface also allows customization of the current provenance
graph in the editor based on the user-given option.

4.3 Discussion
The proposed tool translates the control dependences orig-

inating from a control-flow statement (e.g. loop) into data
dependences to infer data provenance. In the demonstration
scenario, we handle loops which read data, i.e. input maps,
to produce the output map. However, loops updating data
could be also translated into data dependences by inferring
relevant properties such as windows and trigger of the pro-
cessing elements. Furthermore, the proposed tool can handle
variety of Python scripts including multi-procedure scripts
and scripts with other programming constructs such as class
definition, conditional branching etc. Since the system is
built following the layered-design scheme, it is also possi-
ble to showcase the demonstration using scenarios without
data repository. In that case, the inference engine and the
database engine of the tool will be isolated from the system.

767

(a) Script editor (b) Provenance graph editor

Figure 2: The graphical interface of ProvenanceCurious

5. RELATED WORK
One of the existing work in this direction is the usage of a

program dependence graph (PDG) to debug the model. A
program dependence graph (PDG) makes explicit both the
data and control dependences for each statement in a pro-
gram [2]. A system dependence graph (SDG) extends the
definition of program dependence graph and it is capable of
providing data and control dependences for multi-procedure
programs [3]. To investigate a model with anomalies, scien-
tists need to interpret control dependences in these graphs
by themselves which might be a tedious job due to the high
complexity of the model. Since the proposed tool translates
control dependences into data dependences, scientists have
a homogeneous graph with only the data dependences of the
model which is easy to understand.

Furthermore, because of streaming data, the data volume
always increases and it requires additional efforts in debug-
ging models since a single output value could be influenced
by a multitude of input values. The classical dependence
graphs, i.e. SDG and PDG, cannot capture dependences
among model input, model output values and associated
operations. Existing debugging feature of the development
environments and code analysis tools such as CodeSurfer7,
Frama-C8 are capable of explicating this value-level depen-
dency only at the run-time. Depending on the availability
of input and output data from prior executions, the pro-
posed tool allows scientists to visualize the dependences be-
tween the input and output values even without executing
the model once again.

There are few existing tools9,10 which show the call graph
based on a given script, i.e. dependency among different
modules used in the script. However, neither of these tools
can transform the control dependences into data dependences
and can infer fine-grained data provenance.

7http://www.grammatech.com/products/codesurfer/
8http://frama-c.com/
9http://furius.ca/snakefood/

10http://pycallgraph.slowchop.com/

6. CONCLUSION AND FUTURE WORK
In this paper, we demonstrate a tool that infers data

provenance with minimal user annotation based on a given
Python script and represents it as a provenance graph. The
provenance graph provides an overview on data dependences
and are useful for debugging scientific models. The approach
is generally applicable to any procedural languages. In fu-
ture, we plan to improve the interface of the proposed tool.

7. REFERENCES
[1] P. Buneman and W. C. Tan. Provenance in databases,

in ACM SIGMOD, pages 1171–1173, ACM, 2007.

[2] J. Ferrante, K. Ottenstein, and J. Warren. The
program dependence graph and its use in optimization,
in ACM Transactions on Programming Languages and
Systems, volume 9(3), pages 319–349, 1987.

[3] S. Horwitz and T. Reps. The use of program
dependence graphs in software engineering, in Int’l
conference on Software engineering, pages 392–411.
ACM, 1992.

[4] M.R. Huq, P.M.G. Apers, and A. Wombacher.
Fine-grained provenance inference for a large processing
chain with non-materialized intermediate views, in
Scientific and Statistical Database Management, LNCS,
volume 7338, pages 397–405, 2012.

[5] M.R. Huq, A. Wombacher, and P.M.G. Apers. Inferring
fine-grained data provenance in stream data processing:
Reduced storage cost, high accuracy, in Database and
Expert Systems Applications, LNCS, volume 6861,
pages 118–127, 2011.

[6] H. B. Newman, M. H. Ellisman, and J. A. Orcutt.
Data-intensive e-science frontier research, in
Communication of the ACM, volume 46(11), pages
68–77, 2003.

[7] M. Shields. Control- versus data-driven workflows, in
Workflows for e-Science, pages 167–173, 2007.

[8] Y. Wada et. al. Global monthly water stress: II. water
demand and severity of water, in Water Resources
Research, volume 47, 2011.

768

