
Compressed Feature-based Filtering and Verification
Approach for Subgraph Search

Karam Gouda Mosab Hassaan
Faculty of Computers and Informatics, Benha University, Egypt

{karam.gouda, mosab.hassaan}@fci.bu.edu.eg

ABSTRACT

Subgraph search in graph datasets is an important prob-
lem with numerous applications. Many feature-based index-
ing methods have been proposed for solving this problem.
These methods have to index too many features or select
some of them in order to get an index with good prun-
ing capabilities. None of these directions can give an ef-
fective solution to all graph indexing issues. In this paper,
we propose an efficient indexing approach which improves
over current feature-based methods, neither by the costly
feature selection nor by explicitly indexing a multitude of
features. We achieve this by compressing multiple features
into one feature with some neighborhood information en-
coded. Neighborhood is further used to prune unmatched
feature occurrences between the query and data graphs, thus
cutting down the search space of subgraph matching, which
significantly reduce the verification cost. We implement the
approach by exhaustively enumerating small paths as fea-
tures. A novel path-at-a-time verification method that bene-
fits from the occurrences pruning method is introduced. Via
an extensive evaluation on both real and synthetic datasets,
we show that our approach is effective and scalable, and
outperforms state-of-the-art indexing methods.

Categories and Subject Descriptors

H.2.4 [Database Management]: System–Query process-
ing

General Terms

Algorithms, Experimentation, Performance

Keywords

Subgraph query processing, Feature-based indexing, Verifi-
cation methods

1. INTRODUCTION
Large scale graph datasets are prevalent in many appli-

cation areas such as in Bio-informatics, Chem-informatics,
etc. Retrieving data graphs that contain a query graph is a

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
EDBT/ICDT ’13, March 18 - 22 2013, Genoa, Italy
Copyright 2013 ACM 978-1-4503-1597-5/13/03...$15.00.

key issue in these areas. This type of search is well-known
as subgraph search. Formally, given a graph database D =
{g1, g2, . . . , g|D|} and a query graph q, we need to find all
data graphs gi ∈ D, where gi contains the query q, namely,
q is subgraph isomorphic to gi. Figure 1 shows a running
example of subgraph search, where a sample database com-
posed of three data graphs 001, 002 and 003, are given in
Figure 1(a) and a query graph q is given in Figure 1(b). The
number beside each vertex is its id and the letter inside the
vertex is its label. Graph 003 should be returned as a result
since it contains q.

Figure 1: Running Example

Unfortunately, the subgraph search problem is hard in
that it requires subgraph isomorphism checking of query q

against each data graph gi, which has proven to be NP-
complete problem [1]. Indexing [2, 3, 4] is proposed to
alleviate the overhead of pairwise isomorphism checks. In
this approach, indexes are used to quickly filter out data
graphs that are not possible in the result and produce can-
didate graphs. Then the candidate graphs are verified, i.e.
whether the query graph is a subgraph of each candidate,
by a subgraph isomorphism algorithm. The efficiency of
this approach depends on the filtering power of each index-
ing methodology and how fast it produces candidate graphs.
Other measures such as index construction time and update
are also very important to the overall quality of the indexing
method. Even with the existence of a high quality indexing
method, efficient subgraph checking algorithm is very im-
portant since it is required to verify the candidates. Note
that there are many scenarios in which lots of data graphs
contain the query, and using any filtering process would re-
turn all these graphs as candidates to be finally verified.

287

Feature-based indexing [2, 3] is a well-known graph in-
dexing mechanism that works by extracting subgraphs1 of
data graphs as indexing features, and using them to prune
data graphs not having the features that are contained by
the query. The major challenge facing this approach is that
in order to have an index with good pruning quality, a mul-
titude of database features have to be indexed. The higher
the number of features to be indexed, the more possibility
that they comprise a sufficiently discriminative feature set.
Nevertheless, in addition to the big index size that results,
the filtering time increases. This is because of the increase
in the overhead of comparing query features with too many
indexing features. Note that, a canonical representation is
required to compare features. For general subgraphs, finding
a unique representation is far from trivial.
Several feature-based indexing methods have been intro-

duced in recent years. Many of them adopt data-mining
techniques to effectively identify compact sets of features
that possess higher pruning capabilities [3, 5, 6, 7, 8]. The
main limitations of these methods are i) the decisions re-
garding the number, size, structure and pruning quality of
the selected features crucially affect the cost of the mining
process and consequently the index construction time, and
ii) the quality of the selected features degrades over time due
to frequent database updates which necessitates re-building
the index from scratch. Other methods use exhaustive fea-
ture enumeration [2, 9, 10]. Though they support updating
and do not require the costly mining process, they on the
other hand are restricted to specific classes of features in or-
der to keep the index size manageable. This of course has a
negative impact on the pruning quality. The main objective
of our research is to develop an indexing method having the
salient aspects of all previous methods and avoiding their
disadvantages.
In this paper, we propose an efficient indexing approach

which improves the pruning power of current feature-based
methods, neither by the costly feature selection nor by ex-
plicitly indexing a multitude of features. The idea at the
heart of the method is based on the observation that the
pruning quality of a group of features does not necessitate
indexing all these features. Rather than using the expen-
sive mining process to approximately capture this idea, we
show, in this paper, that by indexing a simple feature struc-
ture combined with its degree sequence and neighborhood,
we get a pruning quality as good as that of many of its
supergraphs features. Thus, in our approach the pruning
quality of multiple features is compressed into one feature
with some neighborhood information encoded. Therefore,
the overhead of indexing a multitude of features or selecting
some of them is not required by our approach.
To use neighborhood for pruning, our method makes use

of full information of each indexing feature, that is, the loca-
tion/position of each occurrence of the feature in each data
graph is remembered. We show that storing the mapping in-
formation of each feature’s occurrences gives extra benefits
such as: First, it improves the accuracy of feature contain-
ment in both query and data graphs; consequently, the prun-
ing power is further improved. Second, the fact that neigh-
borhood preserves local structural information surrounding
occurrences allows to prune unmatched feature occurrences
between the query and data graphs, thus cutting down the

1Path, tree, or general subgraphs.

search space of subgraph matching, which significantly re-
duces the verification cost.

The index generated by our method is kept as small as
possible by utilizing neighborhood sharing and vertex rep-
etition. We further speed up occurrences matching by re-
moving duplicated computations. Note that, a vertex may
appear in different features and occurrences, and have neigh-
borhood similar to that of other vertices. Moreover, real
data graphs that come from the same application domain
tend to share commonality, that is, a vertex with its neigh-
borhood appears in many data graphs. We exploit these
properties to minimize the index size and use caching to
relieve the overhead of the repeated computations.

We implement the method by exhaustively enumerating
simple paths of size up to maxL-edges as features (maxL ≤
3 in experiments). The index generated is called PathIn-
dex. A novel path-at-a-time verification method that bene-
fits from the indexed path occurrences, and the occurrences
pruning method is introduced. The salient aspect of this
method is that data graphs are not required, indexed oc-
currences are used instead. Extensive experiments show
that PathIndex’s pruning is highly efficient, its construc-
tion is very fast, and has smaller size compared to other
indexes. Further experiments show that PathIndex based
subgraph search outperforms that of the state-of-the-art in-
dexing methods on both real and synthetic datasets.

2. PRELIMINARIES
Given two sets of labels, Σ1 and Σ2, a labeled graph g is

defined as a triple (Vg, Eg, l), where Vg = {v1, v2, . . . , v|V |} is
the set of vertices, Eg ⊆ Vg ×Vg is the set of edges (directed
or undirected), and l is a labeling function: Vg → Σ1 and
Eg → Σ2. The size of g is denoted by |g| = |Eg|. This paper
focuses on simple, undirected graphs with vertex and edge
labels. However, for presentation ease, we consider labeled
nodes only.

A graph g = (Vg, Eg, l) is a subgraph of another graph
g′ = (Vg′ , Eg′ , l

′) (or g′ is a supergraph of g), denoted g ⊆ g′,
if there exists a subgraph isomorphism from g to g′. We may
simply say that g′ contains g.

Definition 1. Subgraph isomorphism. A subgraph

isomorphism is an injective function O : Vg → Vg′ , such that

(1) ∀υ ∈ Vg, l(υ) = l′(O(υ)). (2) ∀(u, υ) ∈ Eg, (O(u), O(υ))
∈ Eg′ , and l(u, υ) = l′(O(u), O(υ)).

According to Def. 1, the mapping information O(g, g′) =
{O(vi) : vi ∈ Vg} identifies a subgraph of g′ called an occur-

rence of g in g′. The graph g′ may contain many occurrences
of the graph g. Two occurrences O1(g, g

′) and O2(g, g
′)

are considered redundant if their corresponding subgraphs
are automorphic. A graph automorphism is an isomorphism
from the graph to itself. The concept of graph isomorphism

can be defined analogously as Def. 1 by using a bijection
instead of an injection.

Definition 2. Labeled Path. A path u u′ from a

vertex u to a vertex u′ in a graph g = (Vg, Eg, l) is a sequence

v0, v1, . . . , vk of vertices such that u = v0 and u′ = vk, and

(vi−1, vi) ∈ Eg. A path is simple if all of its vertices are

distinct. If the vertex label is used instead of its id, for each

vertex in the path, the path is called labeled path.

288

Definition 3. Induced Subgraph. Given a graph g =
(Vg, Eg, l). For each U ⊆ Vg, the induced subgraph of g

defined on the vertex subset U , denoted as Ig(U) = (U,E′),
is the graph composed of all the g’s edges that connect pairs

of vertices of U , that is, E′ = (U × U) ∩ Eg.

Subgraph Search Problem. Given a graph database
D = {g1, g2, . . . , g|D|} and a query graph q. The problem
of subgraph search is to find from D a set of graphs which
contain q, Dq, i.e., Dq = {g : g ∈ D ∧ q ⊆ g}.

Subgraph query processing by pairwise graph compari-
son is very expensive due to data set size and computation
hardness of subgraph test (subgraph isomorphism is NP-
Complete[1]). Reducing the number of graph comparisons
through the framework of filtering-and-verification, i.e. In-
dexing, is the adopted practical solution. Next, we intro-
duce feature-based indexing since it is the basis of our study.
From now on, a data graph, query graph and feature graph
are called a graph, query and feature, respectively.

Algorithm 1: Query Processing(q, I,D)

Input: q: query graph; I: feature-based index; D: database;
Output: Dq is a set of matched graphs, initialized empty;

1: Fq = {f : f ⊆ q ∧ f ∈ I};
2: Cq =

∩
f∈Fq

Df ;

3: for each g ∈ Cq do

4: if q ⊆ g then

5: Dq = Dq ∪ {g}
6: return Dq

2.1 Feature-based Index
A feature-based index I = {(fi,Dfi) : fi ∈ F} is a set

of indexed items. Here F is a set of features, where fi is
a subgraph in the database which can be a path, a tree,
or a general subgraph. And Dfi is a set of graph ids that
contain fi, i.e., Dfi = {g ∈ D : fi ⊆ g}. The filter-and-
verification framework using I is outlined in Algorithm 1.
As shown, the filtering phase and the verification phase are
specified in lines 1-2 and lines 3-5, resp. Line 1 retrieves
the indexing features contained by the query q. Line 2 gets
graphs that contain all the features appearing in q, which is
known as the candidate set Cq. Lines 3-5 perform subgraph
isomorphism test for each candidate graph g. If there is a
subgraph isomorphism from q to g, g is added to the answer
set Dq, i.e., the set of matched graphs.
As an example, suppose the two features f1 and f2 in

Figure 1(b) are indexed, i.e., I = {(f1, Df1), (f2, Df2)}. By
following Algorithm 1, the graphs 001, 002 and 003 will be
returned as candidates since they contain the features f1
and f2 which are contained by the query. Thus, the veri-
fication will be performed on the whole example database
even though the graph 003 is the only graph that contains
the query.
The above example highlights the poor pruning of cur-

rent setting of feature-based filtering scheme. To enhance
pruning of this scheme, a large number of features have to
be indexed, resulting in a large index with increasing fil-
tering time; or alternatively, much more time would have
been needed offline to select a compact set of discriminative
features. Moreover, since the index as defined contains no

useful information for speeding up the verification process,
in scenarios where all graphs, or most of them, contain the
query, extra verification cost would be added to the overall
query processing. Next, we show that, by encoding feature
occurrences, their degree sequences and neighborhoods, f1
and f2 could be used to reduce not only the candidate set
size but also the search space of subgraph matching on the
remaining graphs.

3. NEW FEATURE-BASED PRUNING

APPROACH
Given a graph g = (Vg, Eg). For each vertex v ∈ Vg, define

the neighborhood of v in g, denoted Ng(v), to be the set of
vertices u in g such that there exists an edge in g connecting
u and v. That is, Ng(v) = {u ∈ Vg : (u, v) ∈ Eg}. Let
degg(v) denote the degree of v in g. For graphs g and g′,
g ⊆ g′, we define the degree sequence of an occurrence of g
in g′ as follows.

Definition 4. Degree Sequence of an Occurrence.
Let O(g, g′) = {O(vi) : vi ∈ Vg} be an occurrence of g in

g′. The degree sequence of O(g, g′), denoted degO(g, g
′),

is a sequence of integers <d1, d2, . . . , d|Vg|
> of length |Vg|,

where each di = degg′(O(vi)), ∀vi ∈ Vg.

As an example, in Figure 1, the query q contains one oc-
currence of the feature f1, given as O(f1, q) = {v5, v4, v2},
and its degree sequence is degO(f1, q) =<2,3,4>. The graph
002 also contains one occurrence of f1 which is O(f1, 002) =
{v6, v5, v7}; its degree sequence is degO(f1, 002) =<2,5,4>.

Given graphs g, g′ and g′′. Let g′ and g′′ contain k and m

distinct occurrences of g, resp. Based on degree sequence of
occurrences, we define compatible occurrences as follows.

Definition 5. Compatible Occurrences.
Given two occurrences Oi(g, g

′) and Oj(g, g
′′) of g in g′ and

g′′, respectively. Let degOi
(g, g′) =<d′1, d

′

2, . . . , d
′

|Vg |
> and

degOj
(g, g′′) = <d′′1 , d

′′

2 , . . . , d
′′

|Vg |
> be their degree sequences.

Oj(g, g
′′) is said to be compatible to Oi(g, g

′) iff d′l ≤ d′′l ,

1 ≤ l ≤ |Vg|.

Based on Def. 5, it follows that O(f1, 002) is compatible to
O(f1, q). The main problem with Def. 5 is that in order to
decide the compatibility between two occurrences, we may
end up comparing the degree sequence of all redundancies
of both occurrences. For example, given the redundancy
O′(f1, 002) = {v7, v5, v6} of O(f1, 002) = {v6, v5, v7}. If we
only consider O′(f1, 002) instead of O(f1, 002) during degree
comparisons, we conclude that O(f1, q) has no compatible
occurrence in the graph 002. Instead, we have to compare
every pair of redundancies of both occurrences. Below, we
show that one specified redundancy of each occurrence is
sufficient for degree sequence comparison. First, we show
that the main cause of redundancy is the existence of iso-
morphism relationship among graph vertices.

Definition 6. Isomorphic Vertices. Given a graph

g = (Vg, Eg, l), the two vertices vi, vj ∈ Vg are isomorphic iff

for each vertex u ∈ Vg, u ̸= vi there exists a vertex u′ ∈ Vg,

u′ ̸= vj such that the labeled shortest paths vi u and

vj u′ are isomorphic.

289

It is straightforward to show that the isomorphism rela-
tionship between graph vertices is an equivalence relation.
Therefore, Vg can be divided into equivalent classes of iso-
morphic vertices. Let IsoSeti denote one such class. Obvi-
ously, there are at most

∏
i
(|IsoSeti|)! redundancies of each

occurrence of g in any graph. As an example, the feature
f1 has two classes of isomorphic vertices IsoSet1 = {v1, v3}
and IsoSet2 = {v2}. Thus, there are 2!× 1! = 2 redundan-
cies of each occurrence of f1 in any graph. Hereafter, we
consider the redundancy that maps the isomorphic vertices
to the ordered ones, where the ordering is taken based on
vertex degree. We call this redundancy canonical. For ex-
ample, we will consider O(f1, 002) not O

′(f1, 002) as canon-
ical, since the two isomorphic vertices v1 and v3 of f1 are
mapped under O to the vertices v6 and v7, respectively, and
deg002(v6) ≤ deg002(v7). Lemma 1 shows that the compati-
bility test on canonical occurrences is sufficient.

Lemma 1. Let Oi(g, g
′) and Oj(g, g

′′) be two canonical

occurrences of g in g′ and g′′, resp. If Oj is not compatible

to Oi then no one of Oj redundancies is compatible to any

redundancy of Oi.

proof: Let degOi
(g, g′) = <d′1, d

′

2, . . . , d
′

|Vg |
> and

degOj
(g, g′′) =<d′′1 , d

′′

2 , . . . , d
′′

|Vg |
> be Oi and Oj degree se-

quences, resp. Suppose Oj is not compatible to Oi, then
there exists l such that d′l > d′′l . Any redundancy of Oj is
obtained by exchanging the mapping at two isomorphic ver-
tices of g. Suppose there exists vk ∈ Vg, k > l, such that vk
is isomorphic to vl and d′′k > d′l. By exchanging Oj(vk) with
Oj(vl), we obtain a new redundancy that makes d′l < d′′l ,
however, at position k, we still have d′k > d′′k , that means
the new obtained redundancy of Oj is not compatible to the
canonical Oi. Analogically, we can show that the canonical
Oj is not compatible to any redundancy of Oi. Let k < l.
By exchanging Oi(vk) with Oi(vl), we obtain a new redun-
dancy of Oi that makes d′l < d′′l , however, at position k,
we still have d′k > d′′k , that means the canonical Oj is not
compatible to the new obtained redundancy of Oi. �

Given the k and m distinct occurrences of g in g′ and g′′,
and their compatibilities, we construct a bipartite graph of
g’s occurrences called Occurrences Bipartite Graph, denoted
Bg(g

′, g′′) and defined as follows.

Definition 7. Occurrences Bipartite Graph.
Occurrences Bipartite Graph of g w.r.t. graphs g′ and g′′ is

the graph Bg(g
′, g′′) = (V1, V2, E), where V1 = {Oi(g, g

′)}ki=1

and V2 = {Oj(g, g
′′)}mj=1, the vertex sets of Bg, are the k and

m distinct occurrences of g in g′ and g′′, resp. For any two

occurrences u ∈ V1 and v ∈ V2, if u is compatible to v, then

(u, v) ∈ E is an edge of Bg, called bipartite edge.

Definition 8. Occurrence Matching Candidates.
Given Bg(g

′, g′′) = (V1, V2, E). For each occurrence u ∈
V1, C(u) = {v ∈ V2 : (u, v) ∈ E} is the set of matching

candidates of u in V2.

A matching M of a bipartite graph G = (V1, V2, E) is a
subset of the bipartite edges with the property that no two
edges of M share the same vertex; M is called semi-perfect

if every vertex in V1 is matched. Theorem 1 makes use of
occurrences bipartite graph of each feature contained by the
query and graphs for effective pruning.

Theorem 1. Given three graphs f, q and g s.t. f ⊆ q and

f ⊆ g. If q ⊆ g, then Bf (q, g) has a semi-perfect matching.

Thus, according to Theorem 1, if there exists an indexing
feature f such that f ⊆ q, f ⊆ g, and Bf (q, g) does not
contain a semi perfect matching, then q is not subgraph iso-
morphic to g, and g can be safely pruned. Since the number
of bipartite edges (matching candidates) plays a dominant
role in the complexity of any bipartite matching (or a sub-
graph matching) algorithm, so minimizing these edges (can-
didates) is crucial for the overall performance of subgraph
search. Figure 2 shows Bf2(q, 003), where matching occur-
rences is based on naive (Figure 2(a)) and degree sequences
(Figure 2(b)) compatibilities. Notice that the number of
matching candidates of f2 occurrences in q is reduced from 8
to 5 candidates in the graph 003 under the degree sequences
compatibility.

In the next subsection, we strengthen the compatibility
definition in order to minimize the number of matching can-
didates of each feature occurrence. Corollary 1 helps in
pruning some unpromising graphs without carrying out the
bipartite matching test.

Figure 2: Bf2(q, 003)

Corollary 1. Let {Oi(f, q)}
k
i=1 and {Oj(f, g)}

m
j=1 be the

k and m distinct occurrences of f in q and g, resp. If k > m,

or there exists an occurrence Oi(f, q) such that it has no

matching candidates in {Oj(f, g)}, then q is not subgraph

isomorphic to g.

Whereas the first condition of Corollary 1 is helpful in
early pruning of graphs, the second condition is effective in
pruning a graph g even before constructing Bf (q, g). As an
example, based on the degree sequence compatibility, the
two occurrences of f2 in q have no matching occurrences
of f2 in the graph 001. Therefore, according to the second
condition of Corollary 1, the graph 001 does not contain q.
Note that the first condition of Corollary 1 would return the
graph 001 as a candidate. For the remaining two graphs 002
and 003, a semi-perfect matching exists in f1 and f2 bipar-
tite graphs. Then, they may contain the query. Next, we
show that by exploiting local structures surrounding feature
occurrences, more graphs can be filtered.

3.1 Occurrences Neighborhood
For each occurrence of a feature f in the query q, there

must exist at least one distinct corresponding occurrence
of f in g in order for g to be qualified as a candidate. In
fact, occurrences compatibility based on degree sequences is
weak. Local structures should also be preserved around cor-
responding occurrences. In Figure 2 (b), O1(f2, 003) is com-

290

patible to O1(f2, q) based on their degree sequences. How-
ever, if we look at the connections of vertex v2 ∈ O1(f2, q)
and its corresponding v2 ∈ O1(f2, 003), we find that v2 ∈
O1(f2, q) is connected to vertices with the labels A,A,A,B.
On the other hand, its corresponding v2 ∈ O1(f2, 003) is
connected to vertices with different labels A,A,C,C; conse-
quently, O1(f2, 003) is not compatible to O1(f2, q). Below,
we strengthen the correspondence definition of occurrences
by taking into account local structures around occurrences.
To capture these structures, we start by defining relative

neighborhood of a vertex and then its Neighborhood Graph.

Definition 9. Vertex Relative Neighborhood.
Given two graphs f and g, and let O(f, g) be an occurrence

of f in g. For each vertex u ∈ O(f, g), there exists vi ∈ Vf

such that u = O(vi). The neighborhood of u in g relative

to f , called u’s relative neighborhood, denoted NO(f,g)(u), is
given by NO(f,g)(u) = Ng(u)\{O(vj) : vj ∈ Nf (vi)}.

For example, given the occurrenceO(f1, 002) = {v6, v5, v7}
then NO(f1,002)(v6) = φ, NO(f1,002)(v5) = {v8, v4, v2} and

NO(f1,002)(v7) = {v8, v4}. Let N l
O(f,g)(u) denote the rela-

tive neighborhood of u by taking the vertex label instead
of vertex id. It follows, N l

O(f1,002)
(v5) = {A,A,B} and

N l
O(f1,002)

(v7) = {A,A}. Based on Def. 9, given X ⊆
O(f, g), we define the relative neighborhood of X, denoted
N l

O(f,g)X, to be the union of all relative neighborhoods of

X ′s vertices, that is, N l
O(f,g)X =

∪
u∈X

N l
O(f,g)(u). Thus,

N l
O(f1,002)

{v6, v7} = φ ∪ {A,A} = {A,A}.

Definition 10. Vertex Neighborhood Graph. For

each vertex u ∈ O(f, g). Define Neighborhood Graph of u,

denoted NGO(f,g)(u), to be the induced graph Ig(N
+

O(f,g)
(u))

after removing the following edges {(u, v) : v /∈ O(f, g)},
where N+

O(f,g)
(u) = NO(f,g)(u) ∪ {u}.

For example, NGO(f1,q)(v2) = ({v1, v3, v2}, {(v1, v3)}). If

we consider the vertex label instead of its id, NGl
O(f1,q)

(v2) =
({A,A,B}, {(A,A)}). As above, we define the neighbor-
hood graph for X ⊆ O(f, g), denoted NGl

O(f,g)X, to be the

union of all neighborhood graphs of X ′s vertices, that is,
NGl

O(f,g)X =
∪

u∈X
NGl

O(f,g)(u), e.g., NGl
O(f1,q)

{v5, v2}

= ({A,A,B,B}, {(A,A)}) and NGl
O(f1,002)

{v6, v7} =
({A,A,B,B}, φ).

Definition 11. Compatible Occurrences (revisited)
Given two occurrences Oi(f, q) and Oj(f, g) of f in q and

g, resp. Let {IsoSeth}
n
h=1, n ≤ |Vf |, be the multiset of iso-

morphic classes of f . Oj(f, g) is said to be compatible to

Oi(f, q) iff NGl
Oi(f,q)

Oi(IsoSeth) ⊆ NGl
Oj(f,g)

Oj(IsoSeth),

∀h, where O(IsoSeth) = {O(v) : v ∈ IsoSeth}.

Corollary 2. Given three graphs f, q and g. Let Bf (q, g)
be the bipartite graph based on the compatibility Def. 11. If

q ⊆ g then Bf (q, g) has a semi-perfect matching.

The compatibility condition of Def. 11 comprises two in-
clusion tests on every corresponding classes of vertices: one
on the vertex sets and the other on the edge sets of the
corresponding neighborhood graphs. Generally, it is flex-
ible to utilize both or any of the two inclusion tests de-
pending on which parts of the neighborhood graphs are in-
dexed. Moreover, the test on vertex sets can be safely re-
placed by a test on (relative) neighborhoods of correspond-
ing classes of vertices. This flexibility allows us to control

the index more efficiently (see next section). Consider, for
example, applying this new compatibility condition on the
remaining graphs 002 and 003. For the graph 002, the two
corresponding neighborhood graphs NGl

O(f1,q)
{v5, v2} and

NGl
O(f1,002)

{v6, v7} given above have similar vertex sets, but
the first graph has the edge (A,A) while the second contains
no edges. It implies that O(f1, 002) is not compatible to
O(f1, q). Since O(f1, 002) is the unique occurrence of f1 in
002, this graph can be safely pruned. For the graph 003,
even though it passes the semi-perfect matching test for f1
and f2 bipartite graphs, the minimal number of matching
candidates obtained for each feature occurrence will speed
up the verification process on this graph (see Section 5.1).
Figure 2(c) shows that Bf2(q, 003) has a minimal number
of bipartite edges (matching candidates) after applying the
compatibility condition of Def. 11.

The benefit of indexing neighborhood graphs of a given
feature occurrence is justified by the following theorem.

Theorem 2. Given O(f, g), an occurrence of f in g. In-

dexing O(f, g) and {NGl
O(f,g)(u) : u ∈ O(f, g)}, the neigh-

borhood graphs of O(f, g), is equivalent to indexing O(f, g)
and all its supergraphs up to the graph NGl

O(f,g)O(f, g).

Theorem 2 tells us that, indexing an easy-to-obtain, sim-
ple feature structure with its neighborhood compresses many
of its supergraph features which are indexed in the tradi-
tional feature-based methods through the expensive mining
process. Section 5 gives an example, where small paths are
used as features.

4. INDEXING FRAMEWORK
The feature-based indexing scheme given in Section 2.1 is

feature oriented, that is, each feature is associated with an
inverted list of graphs ids that contain it. Here, we adopt
an alternative scheme called graph oriented. In this scheme,
each graph has a list of features ids that are contained
by the graph, and additionally each feature id is attached
with feature occurrences and their neighborhood informa-
tion in the graph. Formally, given a graph database D =
{g1, g2, . . . , g|D|} and a set of features F = {f1, . . . , f|F|}.
Let {Oi(f, g)} be the set of all occurrences of a feature f

in a graph g. Our index is given by I = {(g,F ′

g) : g ∈ D},
where F ′

g is the set of features that are contained by g and
associated with their occurrence matrices, that is, F ′

g =
{< f,O(f, g) >: f ∈ F ∧ f ⊆ g}. The Occurrence Ma-

trix of f in g, denoted O(f, g), is a size |{Oi(f, g)}| × |Vf |
matrix, where each row represents an occurrence of f in g,
and each matrix entry is attached with a two-lists container
to maintain the vertex labels and edges of the corresponding
neighborhood graph. For instance, in graph 003 we index
two occurrences of f1 and four occurrences of f2. Figure 3(a)
spots on the two-lists container attached with each vertex
in the occurrence O(f1, 002) = {v6, v5, v7}.

Though the index seems to be large as we maintain the
location and two neighborhood lists for each vertex in each
feature occurrence, the adopted graph oriented scheme al-
lows us to answer queries while the major portion of the
index remains on disk. Moreover, properties such as neigh-
borhood sharing and vertex repetition can be used to keep
the index size minimized, as we see next.

291

L/id v6 v5 v7
V
NGl

O
(v)

{B} {A,A,A,B} {A,A,B}

E
NGl

O
(v)

φ {(A,B)} φ

(a)

f/g 001 002 003
f1 1 1 2
f2 3 3 4

(b)

Figure 3: (a) The two-lists containers attached with
O(f1, 002) = {v6, v5, v7}, (b) Feature Graph Matrix

4.1 Filtering
In this subsection, we present the basic filtering algorithm

followed by an analysis of its complexity. Next, we propose
efficient optimizations. Algorithm 2 outlines the filtering
framework. Given a query q, F ′

q is constructed. The index
I is kept on disk, and used to filter false graphs as many as
possible based on Corollary 2 as follows. For each graph g,
F ′

g is accessed from I, and used with F ′

q to construct Bf (q, g)
for each feature f that occurs in q and g. If Bf (q, g) does not
have a semi-perfect matching for any f , then g is pruned.

Algorithm 2: Basic Filtering(q, I)

Input: q: the query; I = {(g,F ′

g) : g ∈ D}, the graph
index;
Output: Cq: a set of candidate graphs, initially Cq = D;

1: F ′

q = {< f,O(f, q) >: f ∈ I ∧ f ⊆ q};
2: for each g ∈ Cq do

3: Load F ′

g;
4: for each f ∈ F ′

q ∧ f ∈ F ′

g do

5: Process O(f, q) and O(f, g) to construct Bf (q, g);
6: if Bf (q, g) has no semi-perfect matching then

7: Cq = Cq \ {g};
8: break;
9: return Cq

Suppose that k and m are the average number of occur-
rences taken over all features f in q and graphs g, resp.
Line 5 of Algorithm 2 constructs Bf (q, g) = (bij), the bi-
partite matrix between occurrences of f in q and g, i.e., it
is k ×m matrix of 0 and 1 entries, where bij = 1, if the oc-
currences Oi(f, q) and Oj(f, g) are compatible and bij = 0,
otherwise. Each entry bij is computed in Iso × c amor-
tized time, where Iso is the average number of isomorphic
classes taken over all features f , and c is the average cost
of the neighborhood and edge inclusion tests of correspond-
ing classes. For each feature f , the bipartite matrix is then
constructed in (Iso× c× k ×m) amortized time. Let c′ be
the cost that semi-perfect matching test (line 6) can take,
and since k ≤ m, then the worst-case complexity of lines
5-6 is given by O(Iso × c ×m2 + c′). Thus, the worst-case
time complexity of the filtering algorithm is dominated by
the complexity of the nested for loop at lines 2-8, which is
O((Iso× c×m2 + c′)|F ′

q||Cq|).

4.2 Optimizations
Our approach improves the pruning power significantly

but the filtering time needs to be improved. To alleviate the
filtering overhead, we consider the following three optimiza-
tions:

1. Minimizing the initial candidate set Cq.

2. Minimizing the inclusion tests Iso× c×m2.

3. Minimizing |F ′

q|.

Objective 1 is easy to achieve by adding to the index a
memory-resident component called feature-graph matrix [11],
denoted by MF

D
. Figure 3(b) shows MF

D
for the example

database given in Figure 1(a). Each column of MF

D
cor-

responds to a target graph, whereas each row corresponds
to a feature being indexed. Each entry records the num-
ber of distinct occurrences of a specific feature in a target
graph. With this component, we can apply the first con-
dition of Corollary 1 as a preliminary filter to reduce the
initial candidates Cq. Since we enumerate every feature oc-
currence, MF

D
is constructed with no time as a by-product

of the enumeration process. The main problem with MF

D

is when the number of indexing features is large such that
much memory is needed for it. To resolve this, the list MF

g

= {< f, |O(f, g)| >: f ∈ F ′

g} is maintained on disk for each
graph g and accessed while processing g.

Figure 4: (a) NHD and AB arrays of the example
database (b) NHq and the inclusion table

To achieve objective 2, we observe that many vertices in
the database share the same (relative) neighborhood. More-
over, a vertex may appear in many features of the data
graph. Inspired by this observation, we build a memory-
resident component called data Neighborhood Matrix, de-
noted NHD, a matrix to maintain distinct (relative) neigh-
borhoods in the database D. Thus, for each entry in the
occurrence matrix of a given feature f in a graph g, we re-
place the vertex (relative) neighborhood list by a pointer to
its position at NHD. In the online process, given a query
q, the query neighborhood matrix NHq is also constructed.
Then, a binary lookup table, called inclusion table, is cre-
ated to maintain the inclusion relationship between distinct
neighborhoods in NHq and in NHD. The inclusion table
relieves the computation overhead caused by the repeated
neighborhood compatibility checks of occurrences. In fact,
by using the inclusion table, the complexity term Iso×c×m2

is reduced to Iso×m2 + c′′, where c′′ is the cost of building
the inclusion table. Furthermore, using NHD significantly
reduces the index size as well. Note that, a pointer is used
in place of the whole (relative) neighborhood list. Moreover,
if the vertex neighborhood is indexed instead of its relative
neighborhood, the index size can be further improved by

292

removing all neighborhood pointers and using, instead, an
array of pointers of size |Vg| with each graph g, called Ac-

cessibility Bridge (AB) array. In the AB array, each slot u

holds a pointer to the vertex u neighborhood list at NHD.
Note also that, computing neighborhoods is easier than com-
puting relative neighborhoods. Figure 4 (a) shows the data
Neighborhood Matrix NHD and the Accessibility Bridges of
the example database. These structures replace the two-lists
containers associated with features occurrences in the index.
Figure 4 (b) shows the inclusion table and NHq constructed
online. Likewise, a similar approach can be employed on
distinct edge lists of neighborhood graphs, if those edges are
indexed.
Objectives 3 is not so easy since it depends on how features

are selected. However, as suggested in [3], maximal features
in F ′

q are sufficient. In our setting, a feature is maximal if
there exists an occurrence of it that is not contained by any
other feature. Considering maximal features saves repeated
computations performed on their subgraphs features.

5. IMPLEMENTATION
Previously, we presented an approach that improves the

filtering power of any group of features regardless of feature
type. To show how this approach works in practice, we im-
plemented it using paths as features; the index generated is
called PathIndex. Why paths? A path with encoded neigh-
borhood information compresses many of its supergraphs
(Theorem 2). Moreover, paths are easy to manipulate, as
problems like canonicalization are much easier to handle. It
also helps to keep the index size reasonable.
PathIndex exhaustively enumerates simple paths of size

up to maxL-edges as features. Structures such as NHD and
MF

D
are constructed in PathIndex. Also, neighborhoods are

indexed instead of relative neighborhoods, and the edge lists
of neighborhood graphs are not considered. In PathIndex,
every path is encoded, and since the same path may appear
in different graphs, we build a path code dictionary to store
all distinct path codes. Note that, path code dictionary is
easy for update maintenance. We only need to compute the
path codes for the inserted (or deleted) graphs, and then
insert them into (or delete them from) path code dictionary.

5.1 Novel Verification Approach
The verification step checks every graph survived the fil-

tering process by an exact subgraph isomorphism test. Tra-
ditional graph matching methods perform subgraph test in
a vertex-at-a-time manner. The basic verifier Ullman [12],
for example, explores a tree-structured search space consid-
ering all possible vertex-to-vertex correspondences from the
query to the graph. Since, in our framework, after filtering
and according to occurrences pruning method, every path
occurrence in the query has a compact set of compatible oc-
currences in every candidate graph (Section 3), hence the
query could be answered by considering it in a path-at-a-
time manner instead of vertex-at-a-time. Each compatible
occurrence is, in fact, a local match to its corresponding
query path occurrence. If the query is subgraph isomorphic
to the graph, then some of these local matches could be
combined together to produce a global match to the query.
Note, however, that the query might include several paths.
To effectively use the path-at-a-time scenario, we have to
only consider the query disjoint paths.

Definition 12. Disjoint paths.
Distinct paths in a graph g are called disjoint if they are edge

disjoint, but not necessarily node disjoint.

Algorithm 3 presents our path-at-a-time verifier. While
query processing, the query q is decomposed into a set of
disjoint paths DP (q). Each path p ∈ DP (q) is associated
with a set of compatible paths C(p) in the graph g. Some
of these compatible paths will be used jointly to match
the query as follows. The algorithm uses a vector M =
{m1,m2, . . . ,m|Vq |

} to denote which vertices of q have been
mapped at an intermediate state of the computation. Here,
mi ̸= 0 indicates that the ith vertex of q has been mapped.
Another vector H = {h1, h2, . . . , h|Vg |

} is used to record the
reverse mapping from g to q. Here, hi = j indicates that the
jth vertex of q has been mapped to the ith vertex of g. The
core procedure Recursive Search uses local matches p′ from
C(pi) (lines 6-7) and proceeds step by step by recursively
adding the subsequent local matches from C(pi+1) (line 8),
or outputs matched if every vertex of q has a counterpart
in g (line 9). If p′ exhausts all local matches in C(pi) and
still cannot find a feasible matching, Recursive Search back-
tracks to the previous state for further exploration (line 10).
Function Joinable (lines 11-14) examines the feasibility of
adding the current local match p′ to join the previous ones.
If that match conflicts with a previously chosen one, then
we consider another local match from C(pi).

Algorithm 3: Verify(DP (q), C,M,H)

Input: DP (q) = {p1, . . . , p|DP (q)|} disjoint paths covering
q;

C = {C(p1), . . . , C(p|DP (q)|)}, C(pi) is the set of
compatible paths to pi in g;
M : the mapping vector, initialized by all 0;
H: the reverse mapping vector initialized by all 0;

Output: matched: q ⊆ g, unmatched: otherwise;

1: if Recursive Search(p1) then return matched;
2: return unmatched;
3:Procedure Recursive Search(pi)
4: for each p′ ∈ C(pi) do
5: if not Joinable(p′,M) then continue;
6: for each v ∈ Vp′ do

7: mu = v; hv = u; /*u is mapped to v in local match*/

8: if i < |DP (q)| then Recursive search(pi+1);
9: else if mu ̸= 0, ∀u then return matched;
10: for each u ∈ (Vpi \

∪
j<i

Vpj) do mu = 0;

11:Function boolean Joinable(p′,M)
12: for each v ∈ Vp′ do /*u is mapped to v in local match*/

13: if (mu ̸= 0 ∧mu ̸= v) || hv ̸= 0 then return FALSE;
14: return TRUE;

The product
∏

|DP (q)|

i=1
C(pi) forms the total search space

of Algorithm 3. To effectively use this algorithm, query
paths should be chosen such that |DP (q)| and |C(pi)| are
minimized. For a given graph, there are multiple disjoint
path decompositions. Algorithm 4 finds a compact set of
disjoint paths that cover q. The algorithm works as follows.
Given the set of all limited-size, simple paths Pq generated
from the query q. Pq is processed in descending order of
path size. For each encountered path p ∈ Pq, we check if
removing p from the query disconnects it or not. If so, i.e.,
the resulting graph is disconnected, p is not considered and

293

the search continue for another one. If, on the other hand,
the resulting graph still connected , p is selected to be in the
cover and removed from the query. Theorem 3 shows that
the selected paths DP (q) are disjoint, and if maxL = 2,
then DP (q) is compact.

Theorem 3. Given Pq, the set of q simple paths of size

up to maxL-edges. The set DP (q) returned by Algorithm 4

is the set of disjoint paths covering q. If maxL = 2, then

DP (q) is compact.

proof: A path of the largest length p ∈ Pq is inserted
into DP (q) and removed from q′ (lines 5-6) if it fully exists
in q′, i.e., if p ⊆ q′ (line 4). This guarantees that all selected
paths do not share any edge, i.e., they are disjoint.
Suppose that DP (q) is not compact and maxL = 2.

Then, there exist at least two 1-edge paths p1 and p2 in
DP (q) such that the path p = p1 ∪ p2 is not selected by the
algorithm. Since p1 ⊆ q′ and p2 ⊆ q′, then the only reason
to not select p is that p disconnects q′. On the other hand,
since removing p1 or p2 leaves q′ connected, then removing
p also leaves q′ connected, i.e., p should have been selected,
a contradiction. �

Algorithm 4: Cover(q, Pq)

Input: Pq: q’s simple paths of size up to maxL-edges;
Output: DP (q): disjoint paths covering q, initialized empty;

1: Sort Pq in decreasing order based on path size;
2: q′ = q;
3: for each p ∈ Pq do

4: if p ⊆ q′ and q′ \ p is connected then

5: Remove p from q′;
6: DP (q) = DP (q) ∪ {p};
7: if q′ is empty graph then break;
8: return DP (q);

Algorithm 5: Order(Vq, DP (q))

Input: DP (q) = {p1, p2, . . . , p|DP (q)|};
Output: An order of DP (q) = {p′1, p

′

2, . . . , p
′

|DP (q)|};

1: for each u ∈ Vq do calculate freq(u);
2: p′1 = pk, k = argmaxp∈DP (q)

∑
u∈Vp

freq(u);

3: DP (q) = DP (q) \ {p′1};
4: newDP (q) = {p′1};
5: V = Vp′1

;

6: for i = 2 . . . (|DP (q)| − 1) do
7: p′i = pk, k = argmaxp∈DP (q)|Vp ∩ V |;
8: DP (q) = DP (q) \ {p′i};
9: newDP (q) = newDP (q) ∪ {p′i};
10: V = V ∪ Vp′

i
;

11: return newDP (q);

Although C(pi) is minimized for each pi based on the oc-
currences pruning method, the search order considered in
Algorithm 3 is random, and can seriously slow down the al-
gorithm. Query disjoint paths DP (q) should be explored in
the order that facilitates getting the utmost benefit of ap-
plying the condition at line 5. In other words, we have to
follow an order which excludes false local matches p′ as early
as possible, saving much of the time that may be taken on

false long partial mappings. A local match p′ is false if it sat-
isfies the conditions at line 13. When we maximize the node
overlapping of a currently processing query path pi with the
previously explored ones, we, in fact, maximize the benefits
of using the condition at line 13, and thus increase the likeli-
hood that false local matches are detected early. Therefore,
we adopt an ordering of DP (q) = {p1, p2, . . . , p|DP (q)|}, such
that the node overlapping of Vpi is maximized with ∪j<iVpj .
And, the first path p1 is chosen such that

∑
u∈Vp1

freq(u)

is maximum, where freq(u) is the frequency of the node u

with respect to DP (q). Algorithm 5 outlines the idea.

Algorithm 6: PathIndex Based Query Processing

Input: q: query graph; PathIndex;
Output: the answer set Dq, initialized empty.

1: Fq = {p ⊆ q : p is a simple path ∧ |p| ≤ maxL};
2: F ′

q = {< p,O(p, q) >: p ∈ Fq};
3: DP (q) = Cover(q,Fq);
4: DP (q) = Order(Vq, DP (q));
5: for each gi ∈ D do

6: Load MF

gi
;

7: for each p ∈ F ′

q do

8: if (|O(p, q)| > |O(p, gi)|) || p /∈ Fgi then

9: continue to gi+1;
10: Load F ′

gi
;

11: C = {}; C = Filter(F ′

gi
,F ′

q, DP (q), C);
12: if C = {} then continue;
13: M = {0, . . . , 0};
14: H = {0, . . . , 0};
15: if Verify(DP (q), C,M,H) then Dq = Dq ∪ {gi};
16:Procedure Filter(F ′

g,F
′

q, DP (q), C)
17: for each p ∈ F ′

q ∧ p ∈ F ′

g do

18: Process O(p, q) and O(p, g) to construct Bp(q, g);
19: if Bp(q, g) has no semi-perfect matching then

20: C = {};
21: break;
22: if p ∈ DP (q) then C = C ∪ {C(p)};
23: return C;

5.2 Query Processing
The overall PathIndex based query processing is outlined

in Algorithm 6. Given a query q, q’s simple paths of size up
to maxL-edges are enumerated as in PathIndex, and F ′

q is
constructed. A compact path cover to the query is obtained
by calling the procedure Cover (Algorithm 4). To produce
an effective ordering of the covering paths, the Order proce-
dure (Algorithm 5) is then used. Algorithm 6 is an iterative
algorithm. At iteration i (lines 6-15), the algorithm decides
whether q is a subgraph of the graph gi or not. To do so, gi
passes through two filters. The first filter, named Filter 1, is
outlined by lines 7-9. In this filter, the graph gi is pruned if
there is a query path that is not in gi or the number of path
occurrences in q is greater than that of gi. Since both MF

gi

and MF

q are required, MF

gi
is loaded into memory (line 6).

The second filter, named Filter 2, is outlined by lines 11-12.
Filter 2 applies on graphs gi that survived the first filter. It
is based on both F ′

gi
and F ′

q; thus, F
′

gi
must be first loaded

into memory (line 10). The Filter procedure (lines 16-23) is
then used to prune gi or, otherwise, finds a set of compatible
paths in gi to each path in the query cover. These compat-
ible paths are used by the Verify procedure (Algorithm 3)

294

which outputs whether q is matched in gi or not.
The salient aspects of PathIndex based query processing

are 1) F ′

gi
of graphs that survived Filter 1 represent the

main bulk of accessed information from the Index, 2) graphs
are not required in the verification; the mapping informa-
tions (occurrences details) are sufficient to answer the query,
and 3) the filtering and verification processes are flexible;
they can independently be implemented to work with 1-edge
and/or 2-edges and/or . . . and/ormaxL-edges path features.
Moreover, Filter 2 can directly work on query disjoint paths
instead of all features of the query. This flexibility makes
PathIndex able to adjust even when there is an explosion in
the number of paths as in dense graphs.

6. EXPERIMENTAL EVALUATION
In this section we evaluate the performance of PathIndex

on real and synthetic graphs. PathIndex is implemented in
standard C++ with STL library support and compiled with
GNU GCC. Experiments were run on a PC with Intel 3GHz
dual Core CPU and 4G memory running Linux. In experi-
ments we consider vertex/edge labeled graphs.

Datasets: The first real dataset, referred to as AIDS 40K,
is the AIDS Antiviral screen database (http://dtp.nci.gov/).
It consists of 40,000 graphs, and these graphs have 45 ver-
tices and 47 edges on average. There are totally 61 distinct
vertex labels in the dataset but the majority of these labels
are H, C, O and N. The total number of distinct edge labels
is 3. AIDS 10K is a subset that are randomly drawn from
AIDS 40K. The synthetic datasets are generated using the
synthetic graph data generator GraphGen [5]. The genera-
tor allows us to specify various parameters such as the aver-
age graph density D, graph size E and the number of distinct
vertex/edge labels L. For example, Syn10K.E30.D5.L50
means that it contains 10,000 graphs; the average size of
each graph is 30; the density of each graph is 0.5; and the
number of distinct vertex/edge labels is 50. Five synthetic
datasets with varying parameter values are used in exper-
iments in order to see performance changes with varying
parameter values.
In order to study the scalability of PathIndex against dif-

ferent dataset size, we use a large real chemical compound
dataset, referred to as Chem 1M. Chem 1M is a subset of the
PubChem database (ftp://ftp.ncbi.nlm.nih.gov/pubchem/),
and consists of one million graphs. Chem 1M has 23.98 ver-
tices and 25.76 edges on average. The number of distinct
vertex and distinct edge labels are 81 and 3, resp. For this
study, we derive subsets from Chem 1M, each one consists
of N graphs and called Chem N dataset. Note that the
real datasets AIDS 10K and Chem 1M, and the synthetic
datasets are the same as that used in [13]. AIDS 40K is the
same as that used in [10].

Query sets: There are six query sets Q4, Q8, Q12, Q16,
Q20 and Q24. Each Qi consists of 1000 queries, each of
which of size i. For AIDS 40K, we adopt the query set
from [3]. To generate query sets for other datasets, a set of
1000 graphs whose size is larger than or equal to 24 are ran-
domly selected from the dataset. Then, edges are removed
from graphs such that the remaining graphs still remain con-
nected. These graphs constitute Qi when all graphs are of
size i.

Table 1: # Paths and |NHD| in different datasets
Dataset 1-Edge 2-Edges 3-Edges |NHD|
AIDS 40K 330 1476 4005 1350
Chem 1M 628 1369 2874 1475
Syn10K.E30.D3.L50 2296 12409 49767 15998
Syn10K.E30.D5.L50 13606 119148 - 46200
Syn10K.E30.D7.L50 17207 277357 - 69694

6.1 Performance Study
We evaluate the offline and online performance of PathIn-

dex, and compare it against the state-of-the-art feature-
based indexes such as FG-Index [5, 14], SwiftIndex [8] and
CT-Index [10]. FG-Index and SwiftIndex are based on fea-
ture selection, whereas CT-Index exhaustively enumerates
trees and cycles of limited size. FG-Index indexes frequent
subgraphs based on the idea of δ-Tolerance closed frequent
subgraphs, and uses a verification-free strategy to answer
queries that are frequent in the dataset2. But, SwiftIndex
uses frequent trees instead. As GraphGrepSX [15] (an ap-
proach using exhaustive enumeration of paths) and GCod-
ing [16] (an indexing approach using neighborhood of
database nodes) are outperformed by CT-Index, in this pa-
per, we excluded both of them from comparisons. The ex-
ecutables for competitor methods were obtained from their
authors. Hereafter, PathIndex, FG-index, SwiftIndex and
CT-Index are abbreviated as PI, FG, SI and CT, resp.

In experiments, we adopt the default parameter values
used in each technique: for FG, δ and σ are set to 0.1.
For PI, we have experimented with different maxL, where
maxL ≤ 3. Table 1 shows the number of 1-edge, 2-edges
and 3-edges paths in different datasets. It is noticed that
when the graph density increases, the number of distinct
paths increases as well. Recall that the real datasets are
composed of sparse graphs and, thus, they are characterized
by small number of paths. Since indexing very large number
of paths is expensive, 1-edge paths as features are indexed
by PathIndex for synthetic datasets and paths of size up to
3-edges are indexed for real datasets. Generally, PI adapts
to 1-edge and/or 2-edges and/or 3-edges path features when
the number of those features is acceptable. Table 1 also
shows |NHD|, the number of distinct neighborhoods in every
dataset. The same trend occurs: The number of distinct
neighborhoods increases as graph density increases.

6.1.1 Verification Performance

Figure 5 demonstrates the benefit of using a path-at-a-
time verifier (Algorithm 3). Our verifier is tested against the
state-of-the-art graph matching algorithms like QuickSI [8]
and Vflib (http://amalfi.dis.unina.it/graph/db/vflib-2.0) on
AIDS 10K and Syn10K.E30.D5.L50 by varying the query
size. QuickSI is a vertex-at-a-time verifier, whereas Vflib
is a state space search algorithm. QuickSI significantly im-
proves the Ullman algorithm by using the label and edge
frequencies in the dataset to determine an effective search
order of the search space.

In this experiment, two implementations of our verifier are
used. The first is based on 1-edge paths of the query and
called PV 1. The second, called PV 2, uses paths of size up

2Notice that the competitor FG-Index is the latest release
that uses an additional indexing component called FAQ-
index. The FAQ-index is dynamically constructed from the
set of frequently asked non-frequent subgraphs. Hence, ver-
ification is also not required for processing frequently asked
non-frequent queries.

295

 1

 10

 100

 1000

 10000

Q24Q20Q16Q12Q8Q4

V
er

ifi
ca

tio
n

Ti
m

e
(S

ec
)

(a) AIDS_10K

Vflib
PV_2 (R)

PV_1
PV_2

 1

 10

 100

 1000

Q24Q20Q16Q12Q8Q4

V
er

ifi
ca

tio
n

Ti
m

e
(S

ec
)

(b) Unlabeled AIDS_10K

Vflib
QuickSI

PV_1
PV_2

 10

 100

 1000

Q4 Q8 Q12 Q16 Q20 Q24

V
er

ifi
ca

tio
n

Ti
m

e
(S

ec
)

(c) Syn10K.E30.D5.L50

Vflib
PV_2

 1

 10

 100

 1000

Q24Q20Q16Q12Q8Q4

V
er

ifi
ca

tio
n

Ti
m

e
(S

ec
)

(d) Unlabeled Syn10K.E30.D5.L50

Vflib
QuickSI

PV_2

Figure 5: Verification Performance

to 2-edges. We also use PV 2 and PV 2(R) to denote our
verifier with query disjoint paths ordered according to Algo-
rithm 5 and randomly respectively. Note that, this experi-
ment is performed on all data graphs, i.e., no filter is used.
And, the reported time for our verifier also includes the
time used for building query disjoint paths and their com-
patible graph paths from scratch. Figures 5(a),(c) report
the results on vertex/edge-labeled graphs, whereas Figures
5(b),(d) report on unlabeled-edge graphs. First, note that
the path order determined by Algorithm 5 makes our verifier
(PV 2) faster than that with random order (PV 2(R)), and
less sensitive to query size. Figures 5(a)-(d) show that both
PV 1 and PV 2 perform the best. PV 2 significantly out-
performs Vflib by one to two orders of magnitudes (Figure
5(a),(c)), and by 15 times to two orders of magnitudes (Fig-
ure 5(b),(d)). It also outperforms QuickSI by 2 to 4 times.
These results are realistic since our verifier uses large-size lo-
cal matches, an effective occurrences pruning method, and
an effective search order to confine the search space. In the
following experiments, PV 2 and PV 1 are adopted for real
datasets and synthetic datasets, respectively.

Table 2: Offline Costs.
Dataset Time (Sec) Index Size (MB) # Features

FG CT PI FG CT PI FG PI

AIDS 40K 1347 451 9.49 158.2 49.1 25.8 5345 5781
Chem 100K 111 180 6.5 82.2 82 27.4 283 3434
Chem 200K 175 fail 13.6 171.7 fail 65.8 299 3851
Chem 300K fail fail 21.8 fail fail 100.8 fail 4349
Chem 1M fail fail 82.5 fail fail 382.1 fail 4871

SynD5.L50 21 7939 0.4 9.8 9 2.8 31 13606
fail: Algorithm fails to run on our machine.

6.1.2 Cost of Offline Processing

The offline performance in terms of index construction
time and index size for AIDS 40K, Chem 100K, Chem 200K,
Chem 300K, Chem 1M and Syn10K.E30.D5.L50 (SynD5.L50)
are listed in Table 2.
Table 2 shows that PI construction time is much better

than those of other indexing methods for all datasets. More-
over, it shows that PI construction algorithm is less sensitive
to dataset size (the trend is approximately linear), and out-
performs FG and CT algorithms by over an order of magni-
tude. This is because no data mining and expensive isomor-
phism tests are required for PI construction; only paths of
small size are generated. Though CT does not perform the
expensive mining process, its construction time on synthetic
data is much slower than PI and FG. This is due to the large

number of trees and cycles that have been enumerated and
tested for isomorphism.

Contrasting indexes based on size, we note that PI has the
smallest size. Though PI has more features than FG, its size
is smaller than half of FG size; thanks to the small features
(paths that compresses many of its supergraph features), the
NHD structure and the Accessibility Bridge arrays. Thanks
also to our verification method which does not require the
graphs while verification. Therefore, PI size does not include
dataset size. Finally, CT has comparable size with FG for
all datasets except for AIDS 40K, CT size is smaller than
FG size.

Note that, the construction time and index size for FG and
CT are not shown in Table 2 for larger Chem N datasets
(N > 200K for FG and N > 100K for CT) because their
construction algorithms fail to run on our machine for large
datasets.

Table 3: The pruning power of Filter 1 and Filter 2
of PathIndex on AIDS 10K dataset and their times

Q4 Q8 Q12 Q16 Q20 Q24

Filter cands. time cands. time cands. time cands. time cands. time cands. time

F1
1+2+3 2607 0.19 543.8 0.17 124.4 0.19 41 0.1 20.1 0.14 9.5 0.09

F2
1+2+3 2305 4.78 254.1 2.11 37.9 0.79 14.9 0.41 7.9 0.3 4.8 0.25

F2
3 2315 1.32 257 0.81 39.8 0.3 16.2 0.13 8.2 0.14 4.8 0.1

F2
2d 2412.7 1.07 362.5 0.42 67.3 0.11 26.1 0.05 13.1 0.07 6.7 0.03

Ans. Set 2303.6 —– 210.8 —– 26.4 —– 10.1 —– 5.7 —– 3.9 —–

cands.: Average candidate size per query.

time: The total running time (in Sec.) of 1000 queries in each query set.

 10000

 100000

 1e+06

 1e+07

 1e+08

Q24Q20Q16Q12Q8Q4C
an

di
da

te
/A

ns
w

er
 S

et
 S

iz
e (a) AIDS_40K

CT
PI

AS

 1000

 10000

 100000

 1e+06

 1e+07

Q24Q20Q16Q12Q8Q4C
an

di
da

te
/A

ns
w

er
 S

et
 S

iz
e (b) Syn10K.E30.D5.L50

CT
PI

AS

Figure 6: Candidate Size

6.1.3 Filtering Performance

In order to show the influence of Filter 1 and Filter 2 used
with PI, Table 3 shows the number of candidates pruned by
each filter and its running time for different query sets on
AIDS 10K. In this experiment, maxL = 3. Also, Filter 1,
abbrev. F1

1+2+3, and Filter 2, abbrev. F2
1+2+3, are based

on the information of all features, i.e., 1-edge, 2-edges and
3-edges paths. Table 3 shows that the pruning power of Fil-
ter 1 is very high. It prunes most of the graphs in no time.
On Q4, which contains small queries, for example, it prunes
75% of the graphs in 0.19 sec. Filter 1 achieves that speed
because it performs at most two integer comparisons for each
feature contained by the query and each graph. Although
Filter 2 is applied on fewer graphs, it is rather slower since
more computations are relatively required to first construct
the bipartite matrix and then perform a semi-perfect match-
ing test. Nevertheless, Filter 2 pruning is effective; Table 3
shows that it prunes almost all false graphs, i.e., most of
the survived graphs are actual answers. Since much of the
computations are repeated in Filter 2 due to the inclusion
relationship between paths, we ran Filter 2 on 3-edges paths
only, abbrev. F2

3. Note that, every 3-edges path represents
a maximal feature and contains five other features. Table
3 shows that F2

3 is faster than F2
1+2+3 and, on the other

hand, achieves approximately the same pruning power on all
query sets. For example, F2

3 spends 1.32 sec compared to

296

 1

 10

 100

 1000

Q24Q20Q16Q12Q8Q4T
o
ta

l
R

e
s
p
o
n
s
e
 T

im
e
 (

S
e
c
) (a) AIDS_40K

CT
FG
PI

 0.1

 1

 10

 100

Q24Q20Q16Q12Q8Q4T
o
ta

l
R

e
s
p
o
n
s
e
 T

im
e
 (

S
e
c
) (b) Chem_10K

CT
FG
PI

 1

 10

 100

Q24Q20Q16Q12Q8Q4T
o
ta

l
R

e
s
p
o
n
s
e
 T

im
e
 (

S
e
c
) (c) Chem_200K

FG
PI

 0

 50

 100

 150

 200

 250

 300

Q24Q20Q16Q12Q8Q4T
o
ta

l
R

e
s
p
o
n
s
e
 T

im
e
 (

S
e
c
) (d) Chem_1M

PI

 0.1

 1

 10

 100

 1000

Q24Q20Q16Q12Q8Q4T
o
ta

l
R

e
s
p
o
n
s
e
 T

im
e
 (

S
e
c
) (e) Syn10K.E30.D5.L50

CT
FG
PI

Figure 7: Total Response Time for Real and Synthetic Datasets

 0.1

 1

 10

 100

 1000

 1 10 100 1000T
o
ta

l
R

e
s
p
o
n
s
e
 T

im
e
 (

S
e
c
) (a) Chem_?K (Q8)

CT
FG
PI

 0.1

 1

 10

 100

 7 5 3T
o
ta

l
R

e
s
p
o
n
s
e
 T

im
e
 (

S
e
c
) (b) Syn10K.E30.D?.L50 (Q8)

CT
FG
PI

 0.1

 1

 10

 100

 7 5 3T
o
ta

l
R

e
s
p
o
n
s
e
 T

im
e
 (

S
e
c
) (c) Syn10K.E30.D?.L50 (Q16)

CT
FG
PI

 0.1

 1

 10

 100

 80 50 20T
o
ta

l
R

e
s
p
o
n
s
e
 T

im
e
 (

S
e
c
) (d) Syn10K.E30.D5.L? (Q8)

CT
FG
PI

 0.01

 0.1

 1

 10

 100

 80 50 20T
o
ta

l
R

e
s
p
o
n
s
e
 T

im
e
 (

S
e
c
) (e) Syn10K.E30.D5.L? (Q16)

CT
FG
PI

Figure 8: Scalability on Dataset Size(# Graphs in K) [a], Graph Density [b, c], and # Labels [d, e].

4.78 sec by F2
1+2+3 on Q4 to prune almost the same number

of graphs. Table 3 also shows that running Filter 2 on the
query disjoint 2-edges paths (abbrev. F2

2d) is faster than
F2

3 and relatively has acceptable pruning power.
Figure 6 plots the answer set size (AS), and the number of

candidates returned by PI and CT on the real and synthetic
datasets for the different query sets. The candidate size for
FG is not shown because FG’s executable does not support
this feature; in FG, the filtering and verification processes
are implemented together. Figure 6 shows that the pruning
power of CT is comparable with that of PI on real datasets
(sparse data) for moderate size queries Q4-Q12. For larger
query size Q16-Q24, PI becomes better. On the synthetic
dataset (dense data), the pruning power of CT deteriorates
and the gap between CT and PI becomes very large. Thus,
we conclude that PI has good pruning power on sparse as
well as dense data.

6.1.4 Cost of Online Processing

Figure 7 reports the total response time comparing PI, FG
and CT algorithms on different real and synthetic datasets.
Note that, in experiments, to facilitate direct application of
the PV 2 verifier on real datasets and the PV 1 verifier on
synthetic datasets, the PI algorithm utilizes the 2-edges and
1-edges disjoint paths of each query for filtering respectively.
Figure 7 shows that PI has the best performance on all

datasets. On AIDS 40K, PI outperforms CT by up to an
order of magnitude for all query sets, and FG by up to a
factor four, except on Q4, where FG does the best. On
Chem 10K, the performance of PI relative to CT remains
as for AIDS 40K; but relative to FG, we find that the gap
increases as query size decreases. On the larger Chem 200K,
the performance gap between FG and PI increases for all
query sets, but FG still wins for Q4. On the largest Chem 1M
dataset, PI is the only algorithm shown; other algorithms
failed to run on our machine, and thus are not shown. FG is
attractive for very small queries since a large amount of can-
didates can be verified without subgraph isomorphism test-
ing, whereas for larger queries, the verification free technique
can not take effect on most candidates. Figure 7 also shows
that PI has the best performance on Syn10K.E30.D5.L50.
It outperforms CT by up to three orders of magnitude. FG
does not perform well for Q4 since there exist no frequent

features of size 4 and thus the verification-free strategies are
not used in this case.

6.1.5 Scalability Test

In order to test the scalability of PI against the dataset
size, we ran PI and other methods on the generated subsets
of Chem 1M. Figure 8(a) shows the total response time for
Q8 on the generated subsets of Chem 1M. It shows that PI
scales gracefully and outperforms FG and CT by over 2 and
3 times, respectively. FG and CT are not shown on larger
subsets for the same previously mentioned reason. Figures
8(b)-(c) and 8(d)-(e) show the effects of changing graph den-
sity and the number of vertex/edge labels respectively for
the query sets Q8 and Q16. For Q8, PI is comparable to FG
on the two parameters. The performance gain increases as
the number of labels increases and graph density decreases.
For Q16, the same trend occurs with more performance gain
on both parameters. CT is very sensitive to these parame-
ters, displaying worse performance especially with large den-
sity and few labels.

Table 4: Offline Costs (unlabeled-edge graphs).
Dataset Time (Sec) Size (MB) # Features

SI PI SI PI SI PI

Unlabeled AIDS 40K 3965 7.23 207.3 22.7 3092 3930
Unlabeled SynD5.L50 0.92 0.3 4.25 2.4 60 620

 0

 20

 40

 60

 80

 100

 120

Q24Q20Q16Q12Q8Q4To
ta

l R
es

po
ns

e
Ti

m
e

(S
ec

) (a) Unlabeled AIDS_40K

SI
PI 3

 2

 1

 0
Q24Q20Q16Q12Q8Q4To

ta
l R

es
po

ns
e

Ti
m

e
(S

ec
) (b) Unlabeled Syn10K.E30.D5.L50

SI
PI

Figure 9: Response Time for Unlabeled-Edge Graphs

6.1.6 Performance on unlabeled-edge graphs

Here, we compared PI with SwiftIndex (SI) [8] in order to
show the performance on unlabeled-edges graphs. Note that
we carried out this experiment since SI is working on this
type of graphs only, and uses the QuickSI verifier. We used
AIDS 40K and SynD5.L50 after removing the edge labels,

297

and we denoted them as Unlabeled AIDS 40K and Unla-
beled SynD5.L50, respectively. Table 4 shows the supe-
riority of PI on all offline costs. Figure 9 shows that PI
outperforms SwiftIndex on both datasets. On sparse data
(Unlabeled AIDS 40K), PI beats SI by up to an order of
magnitude, whereas on dense data (Unlabeled SynD5.L50),
the performance gain is lower.

7. RELATED WORK
Indexing neighborhood and utilizing it for pruning has

been employed by many graph indexing methods [17, 16,
18, 19]. These methods can be classified as node-based in-
dexing techniques since they index distinct database nodes
with their local structures. In [17], the local structure is
taken as the induced subgraph of the node and its neigh-
bors, whereas, in [16], it is captured by the level-k path
tree. [19] encodes all shortest paths information in the k-
neighborhood subgraph of every database node in what is
called neighborhood signature. In [18], a structure called
Hybrid Neighborhood Unit (HNU) is devised. It stores for
each node v in the graph its label, degree, v’s neighbors and
v’s neighbors’ neighbors. Different from these methods, our
approach encodes neighborhood of features which are gen-
eral subgraphs. Thus our approach can be considered as a
hybrid between node-based and feature-based approaches,
which scales both of them.
The main problem with node-based methods is the high

cost of comparing large-size local structures. Node-based
methods avoid this problem by indexing at most two-levels
of neighborhood information of each database node. Our
approach, on the other hand, indexes up to (l + 1)-levels
of neighborhood information of each node of an indexing
feature, where l is the length of the longest path in that
feature starting at the given node. Since PathIndex exhaus-
tively enumerates paths, then each database node appears
in at least one path feature. Thus, up to (maxL + 1)-levels
of neighborhood information of each database node are in-
dexed in PathIndex.
Very few approaches try to reuse information from the

filtering step to speed up the verification phase [8, 10, 2, 20].
GraphGrep [2] used the location information of each path
in the candidate graph to prune parts of the graph which do
not contain any path of the query. Though graphGrep leads
to an improved verification phase, its filtering is limited.
In contrast to GraphGrep, the SING approach [20] used
path locality 3 to improve both verification and filtering. In
[8], a verifier called QuickSI is introduced. QuickSI achieves
good performance by using label and edge frequencies in the
database to confine the search space. On the contrary, we
develop a novel path-at-a-time verifier that benefits from the
occurrences pruning method to reduce the search space, and
employs a novel search order of query paths to speed up the
matching process.

8. CONCLUSIONS
In this paper, to cope with the subgraph search problem,

we proposed an efficient feature-based indexing approach.
For a long time, it is believed that there is a tradeoff between
the size of the feature set and its filtering strength. The pre-
sented approach broke this belief by compressing multiple

3the starting positions of all its occurrences

features into one feature with some neighborhood informa-
tion encoded. Neighborhoods are further used to guide the
verification process, and a novel verification method is in-
troduced. Extensive experiments demonstrate that our ap-
proach scale current graph indexing methods for subgraph
search problem.

9. ACKNOWLEDGMENTS
The authors would like to thank James Cheng for provid-

ing FG-index, and Nils Kriege for providing CT-index , and
Haichuan Shang for providing SwiftIndex and QuickSI. The
authors also acknowledge the valuable comments of Xifeng
Yan.

10. REFERENCES
[1] M. R. Garey and D. S. Johnson, Computers and

Intractability: A Guide to the Theory of NP-Comleteness.
W. H. Freeman Co., 1979.

[2] R. Giugno and D. Shasha, “Graphgrep: A fast and
universal method for quering graphs,” Proc. of the 16th
International Conference on Pattern Recognition, pp.
112–115, 2002.

[3] X. Yan, S. Yu, and J. Han, “Graph indexing: a frequent
structure-based approach,” SIGMOD, pp. 335–346, 2004.

[4] H. He and A. K. Singh, “Closure-tree: An index structure
for graph queries,” ICDE, pp. 38–49, 2006.

[5] J. Cheng, Y. Ke, W. Ng, and A. Lu, “Fg-index: towards
verification-free query processing on graph databases,”
SIGMOD, pp. 857–872, 2007.

[6] S. Zhang, M. Hu, and J. Yang, “Treepi: A novel graph
indexing method,” ICDE, pp. 966–975, 2007.

[7] P. Zhao, J. X. Yu, and P. S. Yu, “Graph indexing: tree +
delta <= graph,” VLDB, pp. 938–949, 2007.

[8] H. Shang, Y. Zhang, and X. Lin, “Taming verification
hardness: an efficient algorithm for testing subgraph
isomorphism,” PVLDB, pp. 364–375, 2008.

[9] D. W. Williams, J. Huan, and W. Wang, “Graph database
indexing using structured graph decomposition,” ICDE, pp.
976–985, 2007.

[10] K. Klein, N. Kriege, and P. Mutzel, “CT-index:
Fingerprint-based graph indexing combining cycles and
trees,” ICDE, pp. 1115–1126, 2011.

[11] X. Yan, F. Zhu, P. S. Yu, and J. Han, “Substructure
similarity search in graph databases,” SIGMOD, pp.
766–777, 2005.

[12] J. R. Ullmann, “An algorithm for subgraph isomorphism,”
ACM, vol. 23(1), pp. 31–42, 1976.

[13] W.-S. Han, J. Lee, M.-D. Pham, and J. X. Yu, “igraph: a
framework for comparisons of disk-based graph indexing
techniques,” PVLDB, pp. 449–459, 2010.

[14] J. Cheng, Y. Ke, W. Ng, and A. Lu, “Efficient query
processing on graph databases,” TODS, vol. 34, 2010.

[15] V. Bonnici, A. Ferro, R. Giugno, A. Pulvirenti, and
D. Shasha, “Enhancing graph database indexing by suffix
tree structure,” Recognition in Bioinformatics, pp.
1195–203, 2010.

[16] L. Zou, L. Chen, J. X. Yu, and Y. Lu, “A novel spectral
coding in a large graph database,” EDBT, pp. 181–192,
2008.

[17] Y. Tian and J. Patel, “Tale: A tool for approximate large
graph matching,” ICDE, pp. 963–972, 2008.

[18] S. Zhang, J. Yang, and W. Jin, “Sapper: Subgraph indexing
and approximate matching in large graphs,” PVLDB, 2010.

[19] P. Zhao and J. Han, “On graph query optimization in large
networks,” SIGMOD, 2010.

[20] R. Natale, A. Ferro, R. Giugno, M. Mongiovi,
A. Pulvirenti, and D. Shasha, “Sing: Subgraph search in
non-homogeneous graphs,” BMC Bioinformatics, vol. 11,
p. 96, 2010.

298

