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ABSTRACT

Text analytics has become increasingly important with the
rapid growth of text data. Particularly, information extrac-
tion (IE), which extracts structured data from text, has re-
ceived significant attention. Unfortunately, IE is often com-
putationally intensive. To address this issue, MapReduce
has been used for large scale IE. Recently, there are emerg-
ing efforts from both academia and industry on pushing IE
inside DBMSs. This leads to an interesting and important
question: Given that both MapReduce and parallel DBMSs
are for large scale analytics, which platform is a better choice
for large scale IE? In this paper, we propose a benchmark to
systematically study the performance of both platforms for
large scale IE tasks. The benchmark includes both statisti-
cal learning based and rule based IE programs, which have
been extensively used in real-world IE tasks. We show how
to express these programs on both platforms and conduct
experiments on real-world datasets. Our results show that
parallel DBMSs is a viable alternative for large scale IE.

1. INTRODUCTION

Recently we have witnessed the rapid growth of text data,
including Web pages, emails, social media, etc. Such text
data contain valuable knowledge. To tap such knowledge
from text data, text analytics has become increasingly im-
portant. Particularly, information extraction (IE), which
extracts structured data from text, has received significant
attention [27].

Unfortunately, IE is often computationally intensive [26,
28, 34]. The fast growing amount of machine-generated and
user-generated data, the majority of which is unstructured
text, makes the need of highly scalable tools even more ap-
pealing. To address this issue, MapReduce has been used
for large scale IE [20, 35].

On the other hand, there are emerging efforts from both
academia and industry on pushing IE inside DBMSs [33,
34, 22, 18]. These works encapsulate IE inside user defined
functions (UDFs), and then leverage the DBMS engines to
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scale up these in-memory IE solutions to disk resident data.
Furthermore, several new-generation DBMSs, equipped with
massive parallel processing (MPP) architectures, automati-
cally parallelize UDFs and queries using multiple indepen-
dent machines.

Given that both MapReduce and parallel DBMSs are op-
tions for large scale analytics, it is both theoretically and
practically important to understand which platform is a bet-
ter choice for large scale IE. This is the question we ask
in this paper. This study can help research community
and industry vendors to understand how to improve both
platforms to support IE tasks, or how to combine the ad-
vantages of both platforms to build an even better hybrid
platform [29]. While there are many aspects (such as fault
tolerance, elasticity, etc) to be considered when comparing
MapReduce and parallel DBMSs, response time is one of
the most important factors. Therefore, we focus on response
time comparisons in this paper.

While there are a few recent works [16] [23] on comparing
MapReduce and parallel DBMSs, they mainly focused on
relational queries. In contrast, our work focus on IF work-
flows. In terms of benchmarks on text analytics, previous
benchmarks either focused on the quality of the text ana-
lytics approaches [1] instead of response time, or focused on
the document retrieval task [12], where the goal is to retrieve
the most relevant documents given a query, instead of the
IFE task.

In order to define the benchmark of large scale IE tasks,
we first categorize 3 types of IE operators which have been
widely used as building blocks in real-world IE tasks. Then
we consider several IE workflows consisting of these IE op-
erators. These workflows have also been extensively used in
typical IE tasks such as event extraction and entity recon-
ciliation [11].

We choose Hadoop implementation of MapReduce and a
leading commercial MPP DBMS, Vertica, for testing. In or-
der to express the IE workflows, we use PigLatin, a high level
language on Hadoop and SQL accordingly. The implemen-
tations on both platforms leverage both built-in operators
such as the relational operators and UDFs.

We acknowledge that the evaluation in this paper only
considered one system in parallel DBMSs and one system in
MapReduce. We also understand that using other systems
may produce different results. However, both Vertica and
Hadoop/Pig are representative and leading systems. There-
fore, the evaluation results from the two systems can gain
us some initial understanding of the emerging big data an-
alytics. In the future, we will extend our work to include



other systems.

Contributions: To summarize, we have made the follow-
ing contributions in this paper:

e As far as we know, we are the first to propose a bench-
mark to systematically study large scale IE on parallel
DBMSs and MapReduce.

e We categorize the fundamental building blocks of IE
and design IE workflows which have been widely used
in real-world IE tasks.

e We show how to express these workflows on both plat-
forms using built-in operators and UDF's.

Our results show that UDF performance can signifi-
cantly impact the performance of overall IE workflows,
suggesting UDF-centric optimizations as a future re-
search direction.

e Our results also show that while UDF's run on DBMSs
at least as efficiently as on MapReduce, complex work-
flows with relational operators run far more efficiently
on DBMSs than on MapReduce. This demonstrates
that parallel DBMSs is a viable alternative for large
scale TE.

2. RELATED WORK

MapReduce and Parallel DBMSs Benchmarks: There
have been a few works [16, 23] on comparing the perfor-
mance of MapReduce and parallel DBMSs recently. How-
ever, these works mainly focused on relational queries, in-
stead of IE workflows. Expressing IE workflows on both
platforms involves features such as text manipulation oper-
ators and UDF's, which is not a focus of the previous bench-
marks.

Text Analytics Benchmarks: Both IR and Database
communities have created text analytics benchmarks [1, 12].
These works differ from ours mainly in two aspects. First,
most of these works focused on the task of document retrieval
instead of information extraction. Second, these benchmarks
are either not targeted at measuring the response times or
only targeted at response time on single node systems. In
contrast, our benchmark focuses on evaluating the response
time of systems on multiple nodes.

Pushing Analytics into DBMSs: There are emerging
efforts on pushing analytics such as sophisticated machine
learning algorithms into DBMSs [17, 33, 34, 22, 13, 18].
These efforts mainly focused on developing individual in-
DBMS solutions for different analytics algorithms, which is
complementary to our benchmark work.

Large Scale Information Extraction: The problem of
IE has received much attention. Recent work [28, 35, 32, 9,
8] has considered how to improve the runtime in large-scale
IE applications. Our work falls into this direction. However,
these previous efforts either focused on single node solutions
or only focused on MapReduce solutions.

3. BACKGROUND
3.1 Parallel DBMSs and Vertica

In parallel DBMSs, tables are partitioned over nodes in a
cluster and the system uses an optimizer that translates SQL
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commands into a query plan executed on multiple nodes.
The new generation of parallel DBMSs are equipped with
MPP architectures. Such MPP architectures consist of in-
dependent processors executing in parallel, and are mostly
implemented on a collection of shared nothing machines, al-
lowing better scale-out capability.

Vertica is one of the leading commercial MPP RDBMSs.
Besides the MPP architecture, its another feature is storing
data by columns, which enables more efficient compression
of data and better I/O performance.

Like many DBMSs, Vertica supports text manipulations
in several ways. First, it supports character data type. Fur-
thermore, Vertica provides several built-in string manipula-
tion operators, including regular expression functions com-
patible with Perl 5. These features make writing IE work-
flows easier for users.

Besides built-in operators, Vertica also allows users to
write their own operators/functions as UDFs. Such UDFs
allow users to execute more sophisticated data operations
such as statistical learning based IE, which are hard to ex-
pressed as native SQL. The Vertica execution engine lever-
ages MPP architectures to automatically run UDFs among
multiple nodes where data are distributed. We will discuss
more about Vertica UDF's in Section 3.3.

3.2 MapReduce, Hadoop and Pig

MapReduce is a programming model for processing large
scale of data on multiple nodes. Hadoop is an open-source
implementation of MapReduce. Besides providing the pro-
gramming language support, Hadoop provides a distributed
file system called HDFS.

Analytics workflows often consist of multiple MapReduce
jobs. To help users write such series of MapReduce jobs,
there are many higher level languages developed. Pig is a
platform on top of Hadoop which provides a high level lan-
guage called PigLatin. It provides built-in operators simi-
lar to those provided by DBMSs, with which users can en-
code complex tasks comprised of multiple interrelated data
transformations as data flow sequences, making them easy
to write and maintain. Furthermore, like DBMSs, Pig au-
tomatically optimizes the execution of these complex pro-
grams, allowing users to focus on semantics instead of ef-
ficiency. Finally, Pig also allows users to create their own
operators as UDFs, which we will discuss in detail in Sec-
tion 3.3.

Although there are other high level language platforms
such as Hive [30], we choose Pig in our benchmark studies
because (1) it shares several similarities with DBMSs, and
(2) it is one of the most popular platforms. We will consider
other platforms in future works.

3.3 UDFs

There are two kinds of Vertica UDFs: scalar UDFs and
transform UDFs. A UDF is a scalar UDF if it takes in a
single row and outputs a single value. Otherwise, it is a
transform UDF. Our benchmark includes both types.

Users develop Vertica UDFs by instantiating 3 interfaces:
setup, processBlock and destroy. Setup and destroy are used
to allocate and release resources used by UDFs respectively.
processBlock is where users specify their processing logics.
Vertica partitions data into blocks as basic units of invoking
UDFs. Setup and destroy are invoked once for each block,
and processBlock is invoked repeatedly within a block.



input ‘ Tom ‘ Cruise ‘ was ‘ born ‘ in ‘ NY ‘

output‘P‘P‘O‘O‘O‘L‘

Figure 1: Using CRF's to extract named entities.

Similar to Vertica UDF's, Pig also has simple eval UDFs
and aggregation UDFs which operate on a single row and
a set of rows respectively. Writing Pig UDF's is mainly by
instantiating the ezec interface, which is similar to process-
Block in Vertica. Although Pig does not explicitly provide
interfaces similar to setup and destroy in Vertica, there are
workarounds which allow users to achieve the same goals.

3.4 Information Extraction (IE)

IE and Extractors: IE is to extract structured data from
text. We call programs used to achieve this goal extractors.
Formally, given a predefined schema, an extractor takes in
a piece of text and outputs tuples to populate the given
schema. Each output tuple contains at least one attribute
value which is a substring of the given text. Extractors are
often a set of handcrafted rules or learning based models.
We single out 3 types of extractors extensively used in many
real world IE tasks.

1. Learning-based Extractors and Conditional Ran-
dom Fields (CRFs): Learning-based extractors employ
a learning model such as hidden markov models and sup-
port vector machines for extraction. Usually, these learning
models are first trained using a sample of data. Then they
are deployed and applied repeatedly on large-scale datasets.
We focus on model application in our benchmark, as this is
the phase which often involves big data.

Particularly, we focus on a state-of-the-art learning model
in IE, conditional random fields (CRFs). CRF-based extrac-
tors is a workhorse of the many real world IE systems [36,
19], and has been used on many IE tasks, including named
entity extraction [15, 21], table extraction [25], and citation
extraction [24].

Figure 1 illustrates the input and output of a CRF-based
extractor. Given as input a sequence of tokens (e.g. tokens
from a single sentence) and a set of labels, CRFs are proba-
bilistic models that tag each token with one label from the
given set of labels. In this example, the CRF model has
been trained to extract named entities, therefore the set of
labels include People (P), Locations (L) and Others (O).

CRFs is a very powerful statistical model because it con-
siders the dependency between tokens in order to determine
their labels. To this end, it employs a global optimization
algorithm called Viterbi for inference. We refer readers to
[21] for details.

2. Regular Expression Based Extractors: Regular
expressions are often used in rule-based extractors. The reg-
ular expressions are often hand crafted by domain experts
to capture the patterns in text. Matching strings with reg-
ular expressions is often time consuming. To address this
challenge, there have been extensive research works on con-
structing efficient regular expression matching engines [10,
26, 28]. Instead of implementing these customized solutions,
our benchmark focuses on the built-in regular expression op-
erators provided by both Vertica and Hadoop/Pig to under-
stand how well they support large scale IE tasks.
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3. Dictionary Matching Based Extractors: Another
kind of rule-based extractors match strings with a set of
strings in a given dictionary. If two strings are “similar”
enough, a match is produced. Such dictionary matching
based extraction has been widely used for IE tasks such
as entity reconciliation [11]. Since a straightforward imple-
mentation incurs quadratic number of string comparisons,
many solutions [17, 32] have been proposed to improve its
efficiency. In our benchmark, we choose an implementa-
tion [17] which is relatively easy to express using both SQL
and PigLatin, leaving other solutions for future studies.

IE Workflows: For complex IE tasks, enclosing the en-
tire IE program as a singleton is often hard to debug and
maintain. Therefore, the common practice is to decompose
a complex IE task into smaller subtasks, apply off-the-shelf
IE modules or write hand-crafted code to solve each subtask,
and then “stitch” them together and conduct final process-
ing [14]. Besides extractors, relational operators have been
used to compose such complex IE workflows [26, 28]. We
include two IE workflows consisting of relational operators
and extractors in our benchmark.

4. EVALUATIONS

We first introduce the setup and datasets of our bench-
mark evaluations in Section 4.1 and Section 4.2 respectively.
Next, we present our evaluation results, including the per-
formance evaluations of loading data (Section 4.3), IE tasks
using only simple workflows (Section 4.4) and those using
complex IE workflows (Section 4.5). Finally, we present the
summary and discussions of our results in Section 4.6.

4.1 Benchmark Environment

Clusters Setup: We used a 16-node cluster that runs
Red Hat Enterprise Linux, rel. 5.8, (kernel 2.6.18-308.e15
x86 64) and each node has 4 Quad Core Intel Xeon Pro-
cessors X5550 (8M Cache, 2.66 GHz, 6.40 GT/s), 48GB of
RAM, and 8x275GB SATA disks. 8 nodes were used for
Hadoop/Pig, and the other 8 were used for Vertica.

Software Setup: We installed Hadoop version 0.20 and
Pig version 0.9.1 running on Java 1.6.0. We deployed all sys-
tems with the default configuration settings, except that we
set the maximum JVM heap size in Hadoop to 2GB per task
to satisfy the memory requirement of all the UDFs. Particu-
larly, Vertica compresses data by default and Hadoop HDFS
replication factor is 3 by default. We kept these default set-
tings as they are used in typical deployment.

4.2 Data

We downloaded 100,000 Wikipedia articles from the March
2012 dump [2]. In order to support various IE tasks on these
articles, we preprocessed these articles as follows. First, we
tokenized each article, and then used a sentence splitter [3]
to segment the articles into sentences. Finally, given each
sentence, a Part-of-Speech (POS) tagger [3] was used to tag
each token in the sentence.

Data Schema: The above process resulted in two tables:
sentences and tokens. The sentences table contains one tu-
ple for each sentence detected in the corpus. Each sentences
tuple contains did, the ID of the article from which the sen-
tence is extracted, sid, the sentence ID which indicates its
position in the sentence sequence of that article, and the text
of the sentence. The tokens table contains one tuple for each



Attr. Type Attr. Type
i int

did int did
sid int sid int
sentence varchar (25000) tid int
(a) sentences token varchar (24)
pos  varchar (8)
nid int (b) tokens
name varchar (128)
(c) dictionary

Figure 2: Vertica schema definitions. The numbers
indicate string sizes in bytes.

Table Name Meta Data

# of tuples 2.5M
file size 1.1G
. ave length of a sentence 76 characters
min length of a sentence 1 character
max length of a sentence 23K characters
# of tuples 193M
file size 3.9G
tokens ave length of a token 4 characters
min length of a token 1 character
max length of a token 24 characters
# of tuples 453K
file size 10.5M
dictionary ave length of a name 14 characters

min length of a name 7 characters

max length of a name 74 characters

Figure 3: Meta data of sentences, tokens and dictionary.

token in the corpus. Similar to the sentences tuple, each to-
kens tuple contains the IDs of the article and sentence from
which the token is extracted. Additionally, it also contains
tid, token and pos. They indicate its position in the token
sequence of the sentence, the token string, and the POS tag
of the token respectively.

Besides the Wikipedia corpus, we also downloaded a list of
entity names from Freebase [4], a structured Wikipedia-like
portal. The resulting dictionary table contains one tuple for
each name. Each tuple contains a name ID and the name
string.

Figure 2 and Figure 3 list the Vertica schema and the
metadata of the three tables respectively. Note that, the text
data include both short text, such as tokens and dictionary
names, and relatively long text, such as the sentences (the
longest sentence is about 23000 characters). Using these
different varieties of text data, we can study how MapReduce
and parallel DBMSs handle text more comprehensively.

To study scaling-up factors, we duplicated both sentences
and tokens and increased their sizes to 2, 4, 8 and 16 times
of the original tables. We denote the sentence (token) table
which is N times of the original one as sentencesNX (to-
kensNX). We did not increase the size of dictionary, since
typically the size of document corpora may increase while
the size of dictionaries often remains the same.
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| Vetiew | Hadoop/Pig

Segment Segment Repli- Repli-

Table Attributes Function cation cation
sentences doc _id, sent _id hash none 3
tokens doc_id, sent_id, token_id hash none 3
dictionary name_id hash none 3

Figure 4: Data layout of sentences, tokens and dictio-
nary.

Loading Sentences

time (sec.)
600 -
H Vertica 510
500 -
® Hadoop/Pig

400
300
200
100

0
2X 4X

Sentences Scale Factors

8X 16X

Figure 5: Loading sentences at 5 scale factors.

Data Layout: Figure 4 lists the data layout in Vertica
and Hadoop HDFS. Vertica can either horizontally partition
tables or replicate tables. In partitioning tables (or so called
“creating segments” in Vertica), users need to specify (1)
the attribute(s) on which the segments are created; and (2)
functions (i.e. hashing or range) used to create the segments.
We chose to segment all the tables on their primary keys
using hashing functions. Furthermore, we did not replicate
tables in Vertica. Finally, since Pig does not automatically
generate query plans which use indices yet, for the fairness
of comparison we did not create indices in Vertica either.
In Hadoop HDFS, we cannot explicitly specify the seg-
ment attributions and functions as we did in Vertica. In-
stead, Hadoop HDFS horizontally segments the files into
blocks, creates replications for each block, and then ran-
domly distributes all blocks among multiple data nodes.

4.3 Data Loading

Vertica: We used a copy command provided by Vertica
which loads a file from the file system into the DBMS. This
copy command is issued from a single node and coordinates
the loading process among multiple nodes. Specifically, Ver-
tica creates a new tuple for each line in the input file, and
distributes the tuple to one of the nodes according to the
segment attributes and functions defined together with the
table schema.

Hadoop: In Hadoop, we used the same input files as we
used to load tables into Vertica. Then we used a copyFrom
Local Hadoop command to load the files from local files
systems to HDFS.

Results: Figure 5 and 6 illustrate the times of loading
sentences and tokens respectively. On each figure, we con-
trasted the time of loading the same file in Vertica with
that in Hadoop. Furthermore, we scaled up both tables and



time (sec.) Loading Tokens
4500 ~ 4183
B Vertica
3600 1 u Hadoop/Pig
2700 -
2091
1800 -
900 -
528 457
o 270 50 102 D16

Tokens Scale Factors

Figure 6: Loading tokens at 5 scale factors.

recorded the loading times.

We have the following observations. First, Vertica spent
far more time loading both tables on all scale factors than
Hadoop. Overall, the sentencesNX loading times of Vertica
is 2-3 times larger than that of Hadoop, and the token-
sNX loading time of Vertica is 3-4 times larger than that
of Hadoop. The overhead of loading in Vertica is mainly
caused by parsing files according to the schema and com-
pressing data. However, as we will show later, the query
execution performance gains of Vertica offset such upfront
loading costs.

Furthermore, we observed when the data sizes were dou-
bled, the loading times were also roughly doubled for both
Vertica and Hadoop. This suggests that both Vertica and
Hadoop scaled well in terms of loading large text data.

4.4 IE Tasks Using Simple IE Workflows

4.4.1 CRF Based Named Entity Extraction (EI)

The first IE task is to identify named entities from the
Wikipedia articles using a CRF model. This CRF model
takes as input the sequence of tokens (and their associated
POS tags) within a single sentence from tokens, and outputs
a named entity tag, for each token in the sequence, as either
People (P), Organization (R), Location (L), or Other (O).

We chose to implement the CRF based named entity ex-
tractor in C++ for Vertica UDFs and in Java for Hadoop/Pig
jobs, because these two languages are either the only or the
main language supported by the two platforms. For both
languages, we used the CRF APIs provided by popular CRF
open sources [5, 6].

The CRF model was first trained using the stand-alone
versions from the above packages. We now discuss the im-
plementations of F1 in Vertica and Hadoop/Pig.

Vertica: The implementation of E1 in Vertica consists
of two parts: (1) the implementation of a CRF UDF which
takes a sequence of tokens (and their POS tags) within a
sentence as input and generates named entity tags for the
input tokens, and (2) the implementation of a SQL query
which applies the CRF UDF to the entire tokens table.

We implemented the CRF UDF as a transform UDF by
instantiating the Vertica UDF interfaces as follows. In the
setup function, the CRF model is loaded into memory. The
processPartition is the main body of UDF, where we parse
the set of input tuples, construct an in-memory data struc-
ture storing the sequence of input tokens and their POS tags,
apply the CRF model, and output a set of tuples containing
the named entity tags produced by the CRF model. Finally,
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Figure 7: F1 execution time at 5 scale factors.

we release the memory consumed by the CRF model in the
destroy function.

The SQL query of applying the CRF UDF to the tokens
table is listed below.

SELECT did, sid, CRF(token,pos)
OVER (PARTITION BY did, sid
ORDER BY tid)
FROM tokens;

The query first partitions the tokens table by the did and
sid columns (i.e. grouping the tokens within the same sen-
tences together). Then it sorts the tuples within each par-
tition by tid. Finally, the CRF UDF, which takes input as
the attributes token and pos, is applied to each sorted token
sequence.

Hadoop: We implemented E1 using a single MapReduce
job. The Mapper reads in the input file, the tokens table,
parses each row r of the input file and identifies did and
sid attributes within r. Then it emits a (key, value) tuple
for each r, where key is did and sid and the value is the
rest of the content in r. Note that using did and sid as the
key has the same effect as the PARTITION BY did, sid SQL
expression.

Like Vertica UDFs, Reducers also have a setup and cleanup
method. Similarly, we load the CRF model into memory
in setup and release the memory in the cleanup. The main
body of the Reducer is very similar to the main body of Ver-
tica CRF UDF. The only difference is that in order to apply
the CRF model to tokens in the order of their positions in
the sentence, we need to implement what the ORDER BY tid
SQL expression does in the Reducer.

It is important to note that our Vertica implementation
and Hadoop/Pig implementation take the same input files
(the token table) and output the same files which contain
one tuple (row) for each token with did, sid, tid and the
named entity tag of that token.

Results: Figure 7 plots the runtimes of the Vertica and
Hadoop/Pig implementations of applying CRFs to token-
sNX for N =1,2,4,8 and 16. The most interesting observa-
tion is that Vertica’s runtimes were comparable to those of
Hadoop/Pig in spite of the popular impression that Hadoop
/Pig is more suitable for analyzing large scale text data. Fur-
thermore, both Vertica and Hadoop/Pig scaled well. This
indicates that both Vertica and Hadoop/Pig are equally rea-
sonable options of applying CRFs on large scale data in
terms of runtimes.
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Figure 9: Hadoop E1 analysis.

To understand how Vertica CRF UDF performed, we mod-
ified the query by replacing CRF UDF, a transform UDF,
with a built-in aggregation function COUNT. The query is
listed below:

SELECT did, sid, tid,
COUNT (*)OVER (PARTITION BY did,sid
ORDER BY tid)
FROM tokens;

For this modified query, we made sure that it read in the
same table as the original query, and size of the table gen-
erated by this query was comparable to the size of the table
generated by the original query.

Figure 8 plots the runtimes of the 2 SQL queries. First,
the runtimes of the query with CRF UDF were about 14 to
19 times larger than the runtimes of the query with COUNT
. Given that the input table and output table sizes of the
two queries were comparable and their query plans picked
by the optimizer were similar, the dramatic difference in
runtimes suggests that CRF UDF incurred significant over-
heads, occupying about 94-95% of entire runtimes. This
underscores the significance of UDFs in efficiently running
statistical learning based extractors in parallel DBMSs like
Vertica.

Similarly, to understand how CRF performed on Hadoop/Pig

platform, we modified the original MapReduce job so that
it did not perform any actual CRF work but partitioned to-
kens and sorted the tuples as the original MapReduce job
did. Essentially we kept the I/O and communication costs
about the same as the original MapReduce job.

Figure 9 plots the runtimes of the two MapReduce jobs.
We observed that the MapReduce job without the CRF re-

E2 Runtimes
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Figure 10: E2 execution time at 5 scale factors.

lated code only took about 6-8% of the original MapReduce
job runtimes. This suggests that running statistical learn-
ing based extractors also incurred significant overheads on
Hadoop/Pig platform.

4.4.2  Regular Expression Based Date Extraction (E2)

The second IE task is to use a regular expression to extract
date from the sentences.

Vertica: Vertica provides function REGEXP_LIKE to deter-
mine if a string matches a pattern, and function REGEXP_SUBSTR
to extract a substring within a string that matches a pat-

tern. The SQL for E2 is as follows’:

SELECT did, sid,
REGEXP_SUBSTR (sentence ,
DATE REGEXP, ’i’)
FROM sentences
WHERE REGEXP_LIKE (sentence,
DATE REGEXP, ’i’);

Pig: Pig also supports a set of built-in regular expression
functions similar to those used in Java. We sketch the Pig
implementation of the above SQL query as follows. First, we
load data from the sentences by the LOAD function. We spec-
ify the sentences schema as the parameter of LOAD to produce
the data conformed to the schema. Next, we go through all
tuples and select those tuples where the sentences match
the date regular expression. This is achieved by the FILTER
function with the filtering condition specified by the regular
expression matching operator MATCHES. Finally, we project
on the filtered tuples to output the did, sid and the matched
date substring using the REGEX_EXTRACT function.

Results: Figure 10 plots the runtimes of Vertica and Hadoop
/Pig for E2. We observed that Vertica was consistently 40-
52% faster than Hadoop/Pig over all scale factors. Further-
more, both platforms scaled well.

To understand why Vertica performed better than Hadoop
/Pig on E2, we did the following analysis. We first removed
REGEXP_SUBSTR and only kept REGEXP_LIKE in the original SQL
query. This results in the following SQL.

SELECT did, sid

We shorten the date regular ex-
pression used in our experiments,
’(january|february|march|april|may|june|july|august|septem
ber|october [november|december) (\s+\d?\d\s*,?)7\s*\d{4}’
as DATE_REGEXP in the following discussions.
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Figure 11: F2 runtime analysis.

FROM sentences
WHERE REGEXP_LIKE(sentence s
DATE REGEXP,

Next, we further removed REGEXP_LIKE and this results in
the following SQL.

SELECT did, sid
FROM sentences;

1)

We modified the original Pig script in the same way. Then
we ran the modified 2 SQL queries and Pig scripts and com-
pared their performance. Figure 11 illustrates their run-
times. First, we checked the query plans of the modified SQL
queries and Pig scripts generated by Vertica and Hadoop/Pig
optimizer respectively. We found that the modified SQL
query (Pig script) plans were comparable with the query
plans of the original SQL query (Pig script) in that (1) they
accessed data in the same way, and (2) the shared opera-
tors between the modified SQL queries (Pig scripts) and the
original one were applied in the same order.

Then we had the following observations. First, we ob-
served that the runtimes of SQL queries and Hadoop/Pig
scripts involving only the regular expression filter were al-
most the same as those of the original SQL query and those
of the original Pig script respectively. This suggests that ex-
tracting the date substrings from the filtered sentences only
occupied a negligible portion in the total runtimes of the
original query/script.

Second, comparing the SQL query of filtering sentences
table using the regular expression and the SQL query of
scanning sentences table, we observed that the runtimes of
former query were 16-115 times of that of scanning table, in-
dicating that the operator REGEXP_LIKE dominated the run-
times. However, as the data size increased, the overheads
of the regular expression matching dramatically decreased
from 115 times of the runtimes of scanning table at 1X
scale factor to 16 times of that of scanning table at 16X
scale factor.

Comparing the Pig script of filtering sentences table using
the regular expression and the Pig script of scanning sen-
tences table, we also observed that the runtimes of the the
former script were 1.3-2 times of that of scanning table. This
indicates that although the runtimes of regular expression
matching operator MATCHES occupied 19-51% of the runtimes
of the regular expression filtering script, its runtime did not
dominate the overall runtime as its Vertica counterpart did.
Furthermore, in contrast to the Vertica regular expression
matching operator, whose overheads relative to the overall
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Figure 12: E3 execution time at 5 scale factors.

runtimes decreased as data sizes increased, the overheads
of Pig regular expression matching operator relative to the
overall runtimes increased as data sizes increased.

Finally, we observed that while regular expression match-
ing was faster in Pig than that in Vertica (about 11-17 sec-
onds faster), scanning tables in Pig was much slower than
that in Vertica (about 25-41 seconds slower). It was mainly
the difference in table scanning time that caused the differ-
ence in the overall runtimes of the original Pig script and
SQL query for E2.

4.4.3 Dictionary Matching Based Entity Reconcilia-
tion (E3)

The third IE task is to reconcile entity names based on
dictionary matching. Specifically, we first obtained a set of
entity names based on the CRF output, i.e. the output from
FE1. This results in 2.7 millions entity names extracted by
CRF from the Wikipedia corpus. Next, we matched these
extracted entity names with the Freebase dictionary dictio-
nary using string edit distance.

Because matching 2.7 million entity names with a dictio-
nary containing 453 thousand names in a straightforward
way, which invokes 1.2 x 10'? string-to-string comparisons,
is very time-consuming, in the experiments discussed below
we randomly selected 2000 from 2.7 million entity names,
and matched them with 10% dictionary names randomly
selected from dictionary. We denote the table containing
2000 names extracted from Wikipedia as wikiNames and the
small sample of dictionary table as smallDictionary.

wikiNames has 4 attributes: did and sid which indicate
from which document and sentence the name is extracted,
nid which indicates the name ID and name which is the
name string. smallDictionary has the same schema as dictio-
nary. To study the scalability, we replicated and increased
wikiNames to 2,4, 8,16 times of the original table as we did
before. In section 4.5.2, we will discuss how to efficiently
conduct dictionary matching over larger datasets.

Vertica: The Vertica implementation includes two parts:
implementing the edit distance UDF and writing the query
which invokes the UDF. The edit distance UDF takes in-
put as two strings, and outputs a score indicating the edit
distance between the two strings. In contrast to the CRF
UDF discussed in Section 4.4.1, this UDF is a scalar UDF.
The main algorithm of edit distance computation is in the
processBlock function.

The SQL query is listed below, where it invokes the edit
distance UDF over all pairs of names resulting from the cross
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product of smallDictionary and wikiNames.

SELECT D.name, N.name,
EditDistance (D.name,N.name)

FROM smallDictionary D, wikiNames N;

Pig: Similar to the Vertica implementation, the Pig im-
plementation also includes two parts: implementing a Pig
UDF and writing the Pig script. The Pig UDF is a sepa-
rate java file, where the main algorithm of edit distance was
implemented in a function called exec.

We sketch the Pig script as follows. It first loads the
data from smallDictionary and wikiNames separately. Then
it conducts a cross product between the smallDictionary data
and wikiNames data. Finally, it works on columns of the
cross product results, including projecting the columns to
be output and applying the edit distance UDF.

Results: Figure 12 plots the runtimes. We observed that
Vertica was significantly (about 8-9 times) faster than Pig.
Both platforms scaled well as data size increased. This result
again underscores the efficiency advantage of Vertica over
Pig on dictionary matching based extraction tasks.

To understand why Vertica performed better than Pig, we
removed the edit distance UDF from the original SQL query,
resulting in a query purely conducting cross product. The
SQL is listed below. It is important to notice the modified
query is “comparable” to the original query in terms of their
input and output data sizes. We also modified the Pig script
in the similar way.

SELECT D.name, N.name, 1
FROM smallDictionary D, wikiNames N;

Figure 13 plots the runtimes of the modified queries vs
those of the original queries. Again, we checked the query

43% of the runtimes of the original Pig script. As the data
size increased, the ratio of the cross product runtimes to the
runtimes of the original script also decreased slightly, drop-
ping from 43% at scale factor 1X to 39% at scale factor 16.X.
This indicates that the edit distance UDF also occupied a
significant portion of the overall runtimes, although it was
not as dominating as its Vertica counterpart.

Finally, we observed that the runtime difference between
the SQL and Pig cross product queries was significant, in-
creasing from 172 seconds at scale factor 1.X to 2487 seconds
at scale factor 16 X. This difference was about 41-45% of the
runtime difference between the original SQL and Pig script.
The difference in the edit distance UDF runtimes may con-
tribute the remaining overall runtime difference. This sug-
gests that both efficient relational query processing and effi-
cient UDF execution contributed to the efficiency advantage
of Vertica over Pig on E3.

4.5 1IE Tasks Using Complex IE Workflows

4.5.1 Multi-join Based Event Extraction (E4)

As discussed previously (see Section 3.4), many IE work-
flows for complex IE tasks consist of multi-joins, which “stitch”
together the extraction results of subtasks. To study the
performance of Vertica and Hadoop/Pig on such workflows,
we study the task of extracting events regarding “Apple”
company from Wikipedia articles. The goal is to extract
an appleEvents table of schema (date, event), indicating on
which date what event happened to Apple company.

The extraction rules we used for this tasks are as follows.
We first extracted all Wikipedia sentences which mentioned
“Apple” company. Then we extracted dates from all sen-
tences. Next, we stitched together an “Apple” company to-
ken with a date if they appear in the same sentence. Finally,
we output a tuple with a date that appears in the same sen-
tence with “Apple” company and the entire sentence con-
taining this date as the event.

Vertica: We consider two possible SQL implementations,
which mainly differ in the way the named entity tags are
obtained. The first implementation uses a materialized crf-
Tags table of schema (did, sid, tid, tag), indicating the named
entity tags of each token in the tokens table. In our exper-
iments, crfTags is the table output by F1, i.e. the CRF
named entity extractor. The advantages of this implemen-
tation are two aspects. First, it is more efficient for repeated
extraction tasks based on the named entity tags. For exam-
ple, there can be tasks which require extracting events of
companies other than “Apple” or tasks regarding People en-
tities instead of Company entities. Second, we can easily

plans of the modified queries generated by Vertica and Hadoop/Pigreplace CRF with other types of named entity extractors,

engines respectively and found that these query plans were
comparable to their counterparts of the original queries.
We have the following observations. First, the runtimes
of the cross product SQL query were only about 15-31% of
the runtimes of the original SQL query. Furthermore, as the
data size increased, the ratio of the cross product runtimes
to the runtimes of the original query decreased significantly,
dropping from 31% at scale factor 1X to 15% at scale factor
16X. This suggests that the edit distance UDF occupied a
significant portion of the overall runtime and became more
and more dominating in runtimes as data sizes increased.
Second, we have similar observations for the Pig scripts.
The runtimes of the cross product Pig script were about 39-
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e.g., an off-shelf named entity extractors, without changing
the event extraction workflow.

The second implementation uses an in-line construction
of crfTags table. In our experiments, we used the SQL query
for E'1 as a sub-query to compute crfTags online. In contrast
to the materialized implementation, the in-line construction
is more suitable for one-shot extraction tasks.

The SQL query below lists the materialized SQL imple-
mentation. It uses 3 tables: tokens, crfTags, and sentences.
Then it first filters 3 tables using the “Apple” on tokens,
Company (“R”) named entity tags on crfTags and the date
regular expression on sentences respectively. Finally, it joins
all three tables so that “Apple” and tag “R” are on the same
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Figure 14: F4 execution time at 5 scale factors.

token, and this token is in the same sentence as the sentence
containing the date.

SELECT S.did, S.sid,
REGEXP_SUBSTR (S.sentence
DATE REGEXP, ’i’),
S.sentence
FROM tokens T, crfTags C, sentences S
WHERE T.token ILIKE ’apple’ AND
C.tag = ’R’ AND
REGEXP_LIKE(S.sentence,
DATE REGEXP, ’i’) AND
T.did = C.did aAND C.did = S.did AnD
T.sid = C.sid AND C.sid = S.sid AND
T.tid = C. tid

ORDER BY S.did,S.sid;

The in-line implementation just replaces crfTags with F1
SQL as a subquery.

Pig: Like SQL implementations, we also implemented both
the materialized version and in-line version of Pig scripts for
FE4. Pig provides a set of operators similar to those provided
by Vertica. So we can translate the above SQL implementa-
tion using all Pig built-in operators (together with the CRF
UDF). However, multi-joins raises a challenge in writing Pig
scripts. FE4 involves joining 3 tables and there are many
ways of joining these tables, depending on their join order.
Each way results in a different runtime. Unlike a declar-
ative language such as Vertica SQL, a procedure language
like PigLatin requires specifying which way the joins are con-
ducted. To address this issue, we tried all combinations of
joining 3 tables, and chose the combination resulting in the
fastest runtime. Our experiment results below are based on
this manually selected “optimal” implementation.

Results: Figure 14 plots the runtimes of two implemen-
tations on both platforms. For the scalability experiments,
we increased the sizes of 3 tables simultaneously: When we
doubled the size of sentences, we also doubled the size of
tokens and thus crfTags accordingly.

We first observed that the materialized implementation
on Vertica was significantly (6-8 times) faster than that on
Pig, indicating Vertica’s the efficiency advantage of execut-
ing complex workflow involving multiple joins. Furthermore,
both Pig and Vertica scaled well as data size increased.

Furthermore, we observed that the in-line implementation
on Vertica was still 8-34% faster than that on Pig, although
the difference was not as significant as that of the mate-
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Figure 15: E5 execution time at 5 scale factors.

rialized implementation. The main reason is that for the
in-line implementation, the CRF UDF runtimes dominated
the total runtimes (CRF UDF occupied 90-99% of the to-
tal runtime on Vertica, and 69-93% of the total runtime on
Pig), and its runtimes were similar on both Vertica and Pig.
Furthermore, as data size increased, CRF UDF occupied
more and more of the entire runtimes on both Vertica and
Pig. This again underscores the significance of UDF's even
for complex IE workflows.

4.5.2 Aggregation Based Efficient Dictionary Match-
ing (E5)

Finally, we look at an IE task which requires aggregations
in addition to multi-joins. Recall that in Section 4.4.3 we de-
scribe how to implement dictionary matching in a straight-
forward way which requires quadratic number of string com-
parisons. Previous work [17] proposed a more efficient ap-
proach which relies on matching short substrings of length
n, called n-grams, and taking into account both positions of
individual matches and the total number of such matches.

Specifically, this approach first computes the n-grams of
all names in both dictionary and wikiNames and stores them
into auxiliary tables denoted as dicGrams and wikiGrams re-
spectively. The dicGrams table is of schema (nid, pos, gram),
where nid is the name ID from dictionary, pos is the po-
sition of the n-gram within the name, and gram is the
corresponding n-gram. Similarly, wikiGrams is of schema
(did, sid, nid, pos, gram) where did, sid and together with
nid uniquely associate the n-gram with a name in wikiNames.

Given these n-grams and a threshold of edit distance, the
algorithm exploits three conditions to filter out name pairs
upon which we will apply the expensive edit distance UDF.
These conditions are: if the edit distance between two names
is small, they must (1) share a large number of n-grams, (2)
the positions of the shared n-grams are not far away, and
(3) the lengths of the two names are similar. Please refer to
the paper [17] for more rigorous descriptions.

Vertica: The paper [17] gave a SQL query expressing the
above 3 conditions as a filter. We only apply the edit dis-
tance UDF to those name pairs which pass this filter. The
following SQL query is to output all name pairs whose edit
distance are within 32:

SELECT A.name, B.name
FROM dictionary A, wikiNames B,

*We altered the query described in paper [17] to satisfy the
ANSI SQL-99 syntax constraint supported by Vertica.
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Figure 16: E5 execution time analysis.

(seLECcT W.did, W.sid , W.nid,
D.nid As dnid
FROM dictionary D, dicGrams DG,
wikiNames W, wikiGrams WG
WHERE W.did = WG. did AND
W.sid = WG. sid AND
W.nid = WG. nid AND
D.nid = DG. nid AND
WG. ngram = DG.ngram AND
(ABS (WG. pos — DG.pos) < 3)
(ABS (LENGTH(W.name)—LENGTH (D.
name)) < 3)
GROUP BY W.did, W.sid , W.nid, D.nid,
LENGTH (W.name) ,
LENGTH (D.name)
HAVING COUNT (%) >=
(LENGTH (W.name) — 4) AND
COUNT (%) >=
(LENGTH (D.name) — 4)) C

WHERE A.nid = C.dnid AND
B.did = C.did AND
B.sid = C.sid AND
B.nid = C.nid AND

EditDistance (A.name,B.name) <3;

Notice that subquery C' expresses the 3 filtering condi-
tions.

Pig: We translate the above SQL query using the built-
in operators provided by Pig, including GROUP (similar to
SQL Group BY). We followed the same procedure we did in
Section 4.5.1 to manually choose the fastest implementation
from all possible 4 table join combinations.

Results: Figure 15 plots the runtimes of E5 on Vertica
and Hadoop/Pig. In this set of experiments, we used the
entire dictionary table instead of the smaller smallDictionary
used in Section 4.4.3. We observed that the implementation
on Vertica was significantly (5-9 times) faster than that on
Pig. This again underscores the efficiency advantage of Ver-
tica over Pig on complex IE workflows. Both Vertica and
Hadoop scaled well, although Pig had initial overheads not
fully amortized at small scale factors and the run times only
began to rise at an expected rate after scale factor 4.

To further understand why Vertica performed so well, we
decomposed the execution time into the time used on the
filtering subquery (subquery C in the above SQL and its
counterpart in Pig script) and the remaining part(mainly
the edit distance UDF). Figure 16 plots the decomposed
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times. We observed that the filtering query dominated the
total runtime on both platforms (occupying at least 99% of
total runtime on Vertica and 98% on Pig). They largely
contributed to the difference in total runtime between the
platforms. This suggests that although UDF's are important
for IE workflows, relational query operators and query flows
are as important as UDF's for complex IE workflows.

It is important to note that although the filtering sub-
query dominated the total runtime, without the filtering, it
could have taken much longer to compare wikiNames against
the entire dictionary table on both platforms in a straight-
forward way as we did in E3. Please refer to [17] for more
details.

4.6 Summary and Discussions

We now summarize the benchmark results, comment on
particular aspects of each system that the raw numbers may
not convey, and present key conclusions of our studies.

Importance of UDFs: As we have shown in several simple
and complex IE tasks (E'1, E3 and E4), UDFs dominated
the total runtimes on both Vertica and Hadoop/Pig. There-
fore, it is important to optimize the execution of UDFs on
both engines in two aspects.

The first direction is to make the optimizers of both DBMSs
and Hadoop/Pig aware of UDFs. The current optimizers of
both types of platforms make little efforts in understanding
UDFs, including their selectivity and costs. Understanding
UDF's, however, can make a big difference in runtime. For
example, the execution plans generated by both Vertica and
Hadoop/Pig for the in-line implementation of E4 applied
the CRF UDFs to the entire tokens table. However, if the
optimizers had known that CRF UDF is very expensive, it
could first filter tokens table using “Apple”. Then it could
only apply CRF's to tokens in those sentences which contain
token “Apple”.

A possible solution along this direction is to understand
certain properties of the UDFs and exploit these properties
for query optimization. There are some recent works [33,
26, 28, 8] in this direction, but there is much more potential.
Another possible solution is to develop tools which can semi-
automatically collect UDF statistics and seek users’ help in
understanding UDF's.

The second direction is to make the execution engines bet-
ter support running UDFs. In all of our experiments, we ran
UDFs as “fenced-out” mode (e.g. running UDF's as a sepa-
rate process from the query process) on Vertica, which is a
safer but less efficient approach. We observed that for some
UDF's on Vertica, in particular, UDF's which generated large
size of output, the performance was improved by 20% if we
switched to “fenced-in” mode. How to achieve the tradeoff
between the efficiency and the safety of running UDF's is an
important research direction.

Furthermore, the current execution engines, in particular
the parallel DBMSs, are designed for I/O intensive tasks.
However, as we have witnessed in our experiments and oth-
ers’” works [33, 28, 22, 7], many IE tasks, in particular, are
also CPU-intensive tasks. Therefore, it is important to op-
timize CPU utilization to achieve better performance in ex-
ecuting UDFs.

Importance of Built-in Extraction Operators: Both
Vertica and Hadoop/Pig provide built-in extraction opera-
tors such as regular expression matchers. Our benchmark
showed that on both Vertica and Hadoop/Pig, regular ex-



pression matchers occupied a significant portion of total run-
time for some IE tasks (more than 90% on Vertica and as
much as 50% on Hadoop/Pig). There have been several
works [10, 31] on efficiently matching regular expressions.
Both DBMSs and Hadoop/Pig can consider incorporating
these advanced techniques for regular expression matcher.

Parallel DBMSs as a Viable Alternative for Large
Scale IE: One of the most important lessons we learnt from
the benchmark is that parallel DBMSs is a viable alternative
for large scale IE to Hadoop in several aspects. First, as we
have shown that DBMSs like Vertica provide many built-
in extraction related operators such as regular expression
functions. This not only makes it easier for users to write
IE programs without coding from scratch, but also enables
more efficient execution (as shown in task F2 and E4).

Second, several DBMSs including Vertica use MPP archi-
tecture. This feature together with UDFs make it as easy
to parallelize applications on DBMSs as that on Hadoop.
In terms of performance, as we have observed from our
benchmark results, for IE workflows which were dominated
by expensive UDFs such as CRFs (e.g. E1 and in-line
E4), Vertica ran at least as fast as Hadoop/Pig, while for
other IE workflows (e.g., E3 and E5), Vertica outperformed
Hadoop/Pig by 5-9 times.

Finally, many workflows for complex IE programs con-
sist of a significant number of relational operators used to
stitch together workflows for sub-tasks. This is where par-
allel DBMSs really shine. As our experiment results have
shown, for such complex IE workflows (e.g. materialized E4
and E5), Vertica were significantly (5-9 times) faster than
Hadoop
/Pig. We cover more details about this aspects in the fol-
lowing paragraph.

General Performance Issues in DBMSs and Hadoop
/Pig: Besides issues specific to IE, we also observed a few
performance issues which appeared in previous performance
studies [23, 16] on relational queries in DBMSs and Hadoop.
First, loading times in DBMSs were slower than those in
Hadoop. We showed that loading data in Vertica was about
3-5 times slower than that in Hadoop. This is mainly caused
by the upfront overheads of parsing files and compression.
So Hadoop/Pig may be more suitable for one-shot analyt-
ics tasks while DBMSs may be more suitable for repeated
analytics over the same data.

Second, joins in DBMSs were significantly faster than
those in Hadoop/Pig. Unlike the streamlining execution of
multiple joins in DBMSs, Hadoop/Pig must materialize the
results for each join before it begins the next one. This turns
out to be great overheads (paid by Hadoop/Pig for fault tol-
erance). These observations suggest that optimizing work-
flows consisting of relational operators is also important for
large scale IE tasks.

5. CONCLUSIONS AND FUTURE WORK

We propose a benchmark to systematically study the per-
formance of parallel DBMSs and Hadoop for large scale
IE tasks. Our results show that parallel DBMSs is a vi-
able alternative for large scale IE. The future works include
(1) extending the studies to other high level languages over
Hadoop such as Hive; and (2) leveraging our benchmark re-
sults to categorize IE workflows and build hybrid execution
engines on DBMSs and Hadoop for large scale IE.
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