
Tuning in Action
Wei Cao†

Department of Computer Science,
Renmin University of China

caowei@ruc.edu.cn

Dennis Shasha*
Department of Computer Science,
Courant Institute of Mathematical
Sciences, New York University

shasha@cs.nyu.edu

MOTIVATION
Imagine that your database has all the right indexes. Its buffer
manager has been tuned to give a high hit ratio, the buffer fits in
RAM, and the data is well distributed on disk. You’re done, right?
Well, no, because the application code might be poorly written. It
might include delinquent design patterns. The demoed tuning tool
AppSleuth will find those delinquent design patterns but it is the
demo visitor’s job to fix them.

The demo scenario will consist of several “Test Your Skill”
challenges with a tee-shirt as a prize. The scenarios will come
from a transactional application, a Data Warehousing application,
and an E-travel agency. For concreteness, we illustrate the
functionality of AppSleuth on the E-travel agency here.

Keywords
Database tuning, application-level optimization, performance tool

1. BACKGROUND
Much excellent work has been done to study the tuning problem
on the internals of DBMSs such as physical database design[1][3],
database memory management[4], and buffer management.
Commercial DBMS’s provide useful tools to tune individual SQL
statements as well. For example, Oracle’s SQL tuning advisor[2]
can tune SQL statements and recommend optimizations such as
building indices, restructuring SQL, or obtaining statistics. Other
tools like static code analysis tools [5][6][7] and profiling tools
[8][9] are less database performance oriented. To us database
performance tuners, static methods are inherently limited, because
the performance of SQL statements depends on their runtime
behavior (e.g. how often they are invoked, the size of the data on
which they operate). But it is often the case that an application
runs slowly even though every SQL statement is well tuned. For
example, loops, which hurt performance severely, may not be
present in SQL but rather in Java or some other language that are
not accessible to the tuner. The issue is that the problem does not

lie at the individual statement level but rather in the overall
structure of the code – what we call delinquent design patterns.

2. EXAMPLES OF DELINQUENT DESIGN
PATTERNS
Typical delinquent design patterns within an application are:

1) Overuse of Java loops to access the database

Figure 1 shows a JAVA code snippet which fetches one record at
a time, while the code snippet in Figure 2 implements the
equivalent functionality with a single SQL statement at much high
speed.

2) Excessive loops in stored subprograms

For example, applications might use cursor loops in stored
procedures accessing one row at a time rather than use an
equivalent SQL statement for all rows. Figure 3 and Figure 4 are
equivalent but the latter runs approximately 20 times fater.

† Work done while the author visited New York University under the support of
China Scholarship Council’s Graduate Education Program, and later partially
supported by Natural Science Foundation of China (No. 61202331, 60170013,
60833005,61070055, 91024032, 91124001), and the National 863 High-tech
Program (No. 2012AA010701, 2013AA013204).
* Work supported by U.S. National Science Foundation grants 0922738, 0929338,
1158273
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
EDBT/ICDT’13, March 18–22, 2013, Genoa, Italy.
Copyright 2013 ACM 978-1-4503-1597-5/13/03…$5.00.

Figure 2. Single SQL statement that realizes the same
functionality more efficiently.

{
rs = stmt.executeQuery(“select col1 from tab1 where col2 between

“ + start + “ and “ + end);
while (rd.next()) { /* process the resule set */}

}

CURSOR c1 IS SELECT comm_col FROM tab1 FOR UPDATE;
…
LOOP
 FETCH c1 INTO temp_comm;
 EXIT WHEN c1%NOTFOUND;
 SELECT MIN(col2) INTO temp_col2 FROM tab2
WHERE comm_col = temp_comm;
 UPDATE tab1 SET col1 = temp_col2 WHERE
CURRENT OF c1;

i = start;
while (i <= end)
{

rs = stmt.executeQuery(“select col1 from tab1 where col2 = “ + i);
while (rd.next()) { /* process the resule set */}

}

Figure 1. Overuse of Java looping SQL statements.

Figure 3. Inefficient record-at-a-time method.

737

3) Denormalization in schema design

The following Figure 5 is a piece of data from a denormalized
table:

emp_id department dept_state
… … …

emp256 marketing NY
emp257 marketing NY
emp258 technology CA
emp259 accounting NY
emp260 technology CA
emp261 technology CA

--- --- ---
Figure 5. Data piece in a denormalized table.

Denormalization exacerbates delinquent design patterns, because
it tends to increase the number of loop iterations.

3. APPSLEUTH’S FUNCTIONALITY
To improve database performance, AppSleuth combines static and
runtime analysis at the application level to find and validate the
delinquent design patterns. AppSleuth’s main functionality is to
read in users’ application source codes and trace files for the
application execution, parse them, analyze the delinquent design
patterns in the code (e.g. loop structures), collecting useful
statistics (e.g. the time consumed by each stored procedure and
the number of executions through a loop) and outputs the result
from analysis and detection in a visualized global call graph.

The architecture of AppSleuth is in Figure 6:

Figure 6. AppSleuth's architecture.

4. DEMO SCENARIO
This demo illustrates a human-system partnership. The visitor
arrives and works on three scenarios. In each one, the visitor sees
code, is shown the time a workload takes, and the trace graph
(optionally – some visitors may think they don’t need AppSleuth).
Then the visitor is given choices about what to do. Each choice
generates new performance statistics and a new trace graph. A

visitor who gets the best choice in the first two tries on all three
scenarios wins a tee shirt that says “I’m a super-tuner” with an
appropriate graphic.

5. EXAMPLE DEMO
An E-travel application has 1000 hotels in the database. Each
hotel has different room types such as “double room”, “suite”, etc.
There are 1500 room types for all the hotels in the system. Each
room type has a description in English. The application translates
all the descriptions in English into 11 languages the application
supports. Customers can reserve a certain number of rooms of one
or more certain room types in one or more hotels for a certain
period of time. So a certain room type in a certain hotel on a
given date forms a sku. A lot of the application code (in other
parts) depends on the descriptions for the relevant skus. So the
following tables are involved in this part of the application:

trans_dict(desc_id, lang, phrase),

sku_translated(sku_id, lang, translated).

Table trans_dict acts as the dictionary for all the descriptions in
all the languages. Here the column “phrase” stores the description
in the language indicated by the column “lang”; each description,
indicated by “desc_id”, is stored in as many rows as there are the
languages. So the primary key of trans_dict is (desc_id, lang).
During the processing of each sku, the translations of its
description in all the languages are appended to the table
sku_translated. This is by far the largest table in the application.
Underlined column group indicates the primary key of the table.
There is an index on trans_dict(desc_id). To do the translation for
skus, two other tables are:

hotel_desc(hotel_id, room_type_id, description_EN); and

sku_def(sku_id, hotel_id, room_type_id) with indexes on
hotel_desc(hotel_id, room_type_id) and sku_def(hotel_id,
room_type_id, sku_id). Table hotel_desc records descriptions in
English for hotel-roomtype pairs. Translating such descriptions
from English to all other languages entails a lookup in the
dictionary table trans_dict and the appending of the translated
descriptions to the table sku_translated. Table sku_def records
the mapping from all the generated skus to hotel–roomtype pairs.
The primary key is sku_id.

5.1 Original application
The original application is shown in Figure 7 in pseudo code for
one typical execution of processing 10 hotels.

Figure 7. Pseudo-code for the original design.

The application core consists of the following stored procedures:
• manager
• preparehotel
• skuttran

Figure 4. An equivalent SQL statement
processing many rows at one time.

UPDATE tab1 SET col1 = (SELECT MIN(col2)
 FROM tab2
 WHERE tab2.comm_col =

tab1.comm_col);

Source code parser

Trace file
analyzer

Structure
analyzer

Visualization Annotated
call graph

application
source code

files

application
trace files

AppSleuth

input: a set of hotel ids
 for each hotel_id,

find all the skus in this hotel.
For every such sku, get its description in English

For all the supporting languages
Append the description in the current language
for the sku

738

• insertsku.
Stored procedure manager (Figure 8) receives a set of hotel ids to
work on. For each hotel id, manager calls preparehotel to
prepare for the translation. The pseudo code is like:

Figure 8. Pseudo code for manager.

Stored procedure preparehotel (Figure 9) finds all the skus
belonging to the hotel, and does translation for each sku:

Stored procedure skuttran (Figure 10) does the translation of a
sku’s English description into all the languages:

The last stored procedure insertsku (Figure 11) does the insertion
into sku_translated. The pseudo code is

AppSleuth detected four stored subprograms involved in the
delinquent design patterns (Figure 12). Yellow ellipses represent
stored procedures. Blue edges are call relationships. Brown edges
are calls that are actually executed.

5.2 What the Demo Visitor Will Do
You are given the following independent tuning choices
concerning the application code optimization. Each choice is
implemented, executed, traced and eventually fed to AppSleuth
for detection and visualization.

5.2.1 Tuning 1- loop elimination in skuttran
In skuttran, eliminate the loop of insertion into sku_translated
table one language at a time by one insert-select for each sku with
multiple languages. Implementing such code optimization, with
the typical traced execution out of 5 runs, AppSleuth outputs its
new detection as Figure 13.

5.2.2 Tuning 2 – replace looped insert multiple table
join after redesigning the schema
Another option is to use an insert-select to insert all translations
for one hotel into sku_translated. The insert-select involves a
three-table join between hotel_desc, sku_def, and trans_dict as in
Figure 14. For better join performance, change the hotel_desc
schema to hold desc_id instead of description_EN. AppSleuth’s
output for this tuning choice is in Figure 15:

hotel_desc becomes hotel_desc(hotel_id, room_type_id, desc_id).

Figure 12.
AppSeluth's analysis

of the original
application design.

Figure 13.
AppSleuth's output

after Tuning 1.

Figure 14. Tuning 2's optimization highlighted.

insertsku(sku_id, description, language)

 insert into sku_translated(sku_id, description, language);

preparehotel (i_hotel_id)
 Find all the skus belonging to this i_hotel_id from
sku_def;
 For each sku
 get its description from the hotel_desc table;
 do translation for this description (calling
skuttran(sku_id, descriptioninEN))
 End for;

manager(a set of hotel_ids)
 For each hotel_id
 Call preparehotel(hotel_id)
 End for;

Figure 9. Pseudo code for preparehotel.

skuttran(sku_id, descriptioninEN)

 Find the desc_id for this descriptionEN in trans_dict

 For each of the phrases with the same desc_id

 Call insertsku to do the insertion.

 End for;

Figure 10. Pseudo code for skuttran.

Figure 11. Pseudo code for insertsku.

INSERT INTO sku_translated(sku_id, translated, lang)
SELECT sku_id, phrase, language
FROM sku_def, hotel_desc, trans_dict
WHERE sku_def.hotel_id = hotel_desc.hotel_id
 AND sku.room_type_id = hotel_desc.room_type_id
 AND hotel_desc.desc_id = trans_dict.desc_id

AND hotel_desc.hotel_id = i_hotel_id

739

5.2.3 Tuning 3 - reducing the number of joins by
denormalization
Instead of using a three-way join insert-select, use
denormalization to reduce this to a two-way join, e.g. changing
the sku_def’s schema to this:

sku_def(sku_id, hotel_id, room_type_id, desc_id). Primary key
and indexes don’t change. AppSleuth’s analysis output is in
Figure 16.

5.2.4 Tuning 4, 5 … – other possible tuning methods.
Users will be offered other choices including materialized or
unmaterialized views (Figure 17). The demo should be fun
because most conference participants work on the internals of
database management systems but don’t face real world tuning
problems with them.

Figure 17. AppSleuth's output after Tuning 4 with an

unmaterialized view.
If the user ever chooses unmaterialized views to tune, then tests
will be conducted for the query performance over the view
against over base tables or materialized views to judge the overall
performance improvement as the following table Table 1 shows.

Table 1. Comparison of query performance for tuning using
an unmaterialized view.

Query performance
comparison

Elapsed time for
cold buffer

Elapsed time for
warm buffer

Tuning 4 0.12 seconds
(avg.)

0.08 seconds
(avg)

Other tuning
methods

0.08 seconds
(avg.)

0.02 seconds
(avg)

6. DEMO RESULTS
The visitors to our demonstration will get a hands-on feel for
using a tuning tool that goes beyond index or statement tuning to

application tuning. They will have a chance to test their skill and
to evaluate the results of their decisions. Designers will
understand the importance of implementation tools. Query
processing researchers will see that the boundaries of query
processing extend to the multi-statement level.

7. REFERENCES
[1] Agrawal, S., Chaudhuri, S., Koll{\’a}r, L., Mathare, A. P.,

Narasayya, V. R., and Syamala, M. Database Tuning
Advisor for Microsoft SQL Server 2005. In Proceedings of
the 30th International Conference on Very Large Data Bases
(VLDB ‘04) (Toronto, Canada, August 31 – September 3,
2004). Morgan Kaufmann, San Fransisco, CA, 2004, 1110 –
1121.

[2] Dageville, B., Das, D., Dias, K., Yagoub, K., Zait, M.,
Ziauddin, M. Automatic SQL tuning in Oracle 10g. In
Proceedings of the 30th International Conference on Very
Large Data Bases (VLDB ‘04) (Toronto, Canada, August 31
– September 3, 2004). Morgan Kaufmann, San Fransisco,
CA, 2004, 1110 – 1121.

[3] Zilio, D., Rao, J., Lightstone, S., Lohman, G., Storm, A. J.,
Garcia-Arellano, C., and Fadden, S. DB2 Design Advisor:
integrated automatic physical database design. . In
Proceedings of the 30th International Conference on Very
Large Data Bases (VLDB ‘04) (Toronto, Canada, August 31
– September 3, 2004). Morgan Kaufmann, San Fransisco,
CA, 2004, 1110 – 1121.

[4] Storm, A. J., Garcia-Arellano, C., Lightstone, S., Diao, Y.,
and Surendra, M. Adaptive self-tuning memory in DB2. In
Proceedings of the 32nd International Conference on Very
Large Data Bases (VLDB’06) (Seoul Korea, September 12 –
15, 2006). VLDB Endowment, 1081-1092.

[5] The Klocwork website. (2012) , DOI = http://www.klocwork.com/

[6] The Fortify website. (2012) , DOI = https://www.fortify.com/

[7] The Coverity website. (2012), DOI =
http://www.coverity.com/

[8] Arjun Dasgupta, Vivek Narasayya, Manoj Syamala, A Static
Analysis Framework for Database Applications, ICDE '09
Proceedings of the 2009 IEEE International Conference on Data
Engineering, pp 1403-1414

[9] Surajit Chaudhuri, Vivek Narasayya, and Manoj Syamala, Bridging
the Application and DBMS Profiling Divide for Database
Application Developers, VLDB '07 Proceedings of the 33rd
international conference on Very large data bases, pp 1252-1262

Figure 16.
AppSleuth's output

after Tuning 3.

Figure 15.
AppSleuth's output

after Tuning 2.

740

