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MOTIVATION 
Imagine that your database has all the right indexes. Its buffer 
manager has been tuned to give a high hit ratio, the buffer fits in 
RAM, and the data is well distributed on disk. You’re done, right? 
Well, no, because the application code might be poorly written. It 
might include delinquent design patterns. The demoed tuning tool 
AppSleuth will find those delinquent design patterns but it is the 
demo visitor’s job to fix them. 

The demo scenario will consist of several “Test Your Skill” 
challenges with a tee-shirt as a prize.  The scenarios will come 
from a transactional application, a Data Warehousing application, 
and an E-travel agency. For concreteness, we illustrate the 
functionality of AppSleuth on the E-travel agency here.  
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1. BACKGROUND 
Much excellent work has been done to study the tuning problem 
on the internals of DBMSs such as physical database design[1][3], 
database memory management[4], and buffer management. 
Commercial DBMS’s provide useful tools to tune individual SQL 
statements as well. For example, Oracle’s SQL tuning advisor[2] 
can tune SQL statements and recommend optimizations such as 
building indices, restructuring SQL, or obtaining statistics. Other 
tools like static code analysis tools [5][6][7] and profiling tools 
[8][9] are less database performance oriented. To us database 
performance tuners, static methods are inherently limited, because 
the performance of SQL statements depends on their runtime 
behavior (e.g. how often they are invoked, the size of the data on 
which they operate). But it is often the case that an application 
runs slowly even though every SQL statement is well tuned. For 
example, loops, which hurt performance severely, may not be 
present in SQL but rather in Java or some other language that are 
not accessible to the tuner. The issue is that the problem does not 

lie at the individual statement level but rather in the overall 
structure of the code – what we call delinquent design patterns. 

2. EXAMPLES OF DELINQUENT DESIGN 
PATTERNS 
Typical delinquent design patterns within an application are: 

1) Overuse of Java loops to access the database 

 

 
Figure 1 shows a JAVA code snippet which fetches one record at 
a time, while the code snippet in Figure 2 implements the 
equivalent functionality with a single SQL statement at much high 
speed. 

 

 
2) Excessive loops in stored subprograms 

For example, applications might use cursor loops in stored 
procedures accessing one row at a time rather than use an 
equivalent SQL statement for all rows. Figure 3 and Figure 4 are 
equivalent but the latter runs approximately 20 times fater. 
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Figure 2. Single SQL statement that realizes the same 
functionality more efficiently. 

{ 
rs = stmt.executeQuery(“select col1 from tab1 where col2 between 

“ + start + “ and “ + end); 
while (rd.next()) { /* process the resule set */} 

} 

CURSOR c1 IS SELECT comm_col FROM tab1 FOR UPDATE; 
… 
LOOP 
 FETCH c1 INTO temp_comm; 
 EXIT WHEN c1%NOTFOUND; 
 SELECT MIN(col2) INTO temp_col2 FROM tab2 
WHERE comm_col = temp_comm; 
 UPDATE tab1 SET col1 = temp_col2 WHERE 
CURRENT OF c1; 

i = start; 
while (i <= end) 
{ 

rs = stmt.executeQuery(“select col1 from tab1 where col2 = “ + i); 
while (rd.next()) { /* process the resule set */} 

} 

Figure 1. Overuse of Java looping SQL statements. 

Figure 3. Inefficient  record-at-a-time method. 
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3) Denormalization in schema design 

The following Figure 5 is a piece of data from a denormalized 
table: 

emp_id department dept_state
… … …

emp256 marketing NY
emp257 marketing NY
emp258 technology CA
emp259 accounting NY
emp260 technology CA
emp261 technology CA

--- --- ---  
Figure 5. Data piece in a denormalized table. 

Denormalization exacerbates delinquent design patterns, because 
it tends to increase the number of loop iterations. 

3. APPSLEUTH’S FUNCTIONALITY 
To improve database performance, AppSleuth combines static and 
runtime analysis at the application level to find and validate the 
delinquent design patterns. AppSleuth’s main functionality is to 
read in users’ application source codes and trace files for the 
application execution, parse them, analyze the delinquent design 
patterns in the code (e.g. loop structures), collecting useful 
statistics (e.g. the time consumed by each stored procedure and 
the number of executions through a loop) and outputs the result 
from analysis and detection in a visualized global call graph. 

The architecture of AppSleuth is in Figure 6: 

 
Figure 6. AppSleuth's architecture. 

4. DEMO SCENARIO 
This demo illustrates a human-system partnership. The visitor 
arrives and works on three scenarios. In each one, the visitor sees 
code, is shown the time a workload takes, and the trace graph 
(optionally – some visitors may think they don’t need AppSleuth). 
Then the visitor is given choices about what to do. Each choice 
generates new performance statistics and a new trace graph. A 

visitor who gets the best choice in the first two tries on all three 
scenarios wins a tee shirt that says “I’m a super-tuner” with an 
appropriate graphic. 

5. EXAMPLE DEMO 
An E-travel application has 1000 hotels in the database. Each 
hotel has different room types such as “double room”, “suite”, etc. 
There are 1500 room types for all the hotels in the system. Each 
room type has a description in English. The application translates 
all the descriptions in English into 11 languages the application 
supports. Customers can reserve a certain number of rooms of one 
or more certain room types in one or more hotels for a certain 
period of time. So a certain room type in a certain hotel on a 
given date forms a sku. A lot of the application code (in other 
parts) depends on the descriptions for the relevant skus. So the 
following tables are involved in this part of the application: 

trans_dict(desc_id, lang, phrase),  

sku_translated(sku_id, lang, translated).  

Table trans_dict acts as the dictionary for all the descriptions in 
all the languages. Here the column “phrase” stores the description 
in the language indicated by the column “lang”; each description, 
indicated by “desc_id”, is stored in as many rows as there are the 
languages. So the primary key of trans_dict is (desc_id, lang). 
During the processing of each sku, the translations of its 
description in all the languages are appended to the table 
sku_translated. This is by far the largest table in the application. 
Underlined column group indicates the primary key of the table. 
There is an index on trans_dict(desc_id). To do the translation for 
skus, two other tables are: 

hotel_desc(hotel_id, room_type_id, description_EN); and 

sku_def(sku_id, hotel_id, room_type_id) with indexes on 
hotel_desc(hotel_id, room_type_id) and sku_def(hotel_id, 
room_type_id, sku_id). Table hotel_desc records descriptions in 
English for hotel-roomtype pairs. Translating such descriptions 
from English to all other languages entails a lookup in the 
dictionary table trans_dict and the appending of the translated 
descriptions to the table sku_translated. Table sku_def  records 
the mapping from all the generated skus to hotel–roomtype pairs. 
The primary key is sku_id. 

5.1 Original application 
The original application is shown in Figure 7 in pseudo code for 
one typical execution of processing 10 hotels.  

Figure 7. Pseudo-code for the original design. 

The application core consists of the following stored procedures: 
• manager 
• preparehotel 
• skuttran 

Figure 4. An equivalent SQL statement 
processing many rows at one time. 

UPDATE tab1 SET col1 = (SELECT MIN(col2) 
  FROM tab2 
  WHERE tab2.comm_col =  

tab1.comm_col); 

Source code parser 
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input: a set of hotel ids 
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• insertsku. 
Stored procedure manager (Figure 8) receives a set of hotel ids to 
work on.  For each hotel id, manager calls preparehotel to 
prepare for the translation.  The pseudo code is like:  

 
Figure 8. Pseudo code for  manager. 

Stored procedure preparehotel (Figure 9) finds all the skus 
belonging to the hotel, and does translation for each sku:  

 
 

Stored procedure skuttran (Figure 10) does the translation of a 
sku’s English description into all the languages:  

 
The last stored procedure insertsku (Figure 11) does the insertion 
into sku_translated. The pseudo code is  

 

 
AppSleuth detected four stored subprograms involved in the 
delinquent design patterns (Figure 12). Yellow ellipses represent 
stored procedures. Blue edges are call relationships. Brown edges 
are calls that are actually executed.  

5.2 What the Demo Visitor Will Do 
You are given the following independent tuning choices 
concerning the application code optimization. Each choice is 
implemented, executed, traced and eventually fed to AppSleuth 
for detection and visualization. 

 

5.2.1 Tuning 1- loop elimination in skuttran 
In skuttran, eliminate the loop of insertion into sku_translated 
table one language at a time by one insert-select for each sku with 
multiple languages. Implementing such code optimization, with 
the typical traced execution out of 5 runs, AppSleuth outputs its 
new detection as Figure 13. 

5.2.2 Tuning 2 – replace looped insert multiple table 
join after redesigning the schema 
Another option is to use an insert-select to insert all translations 
for one hotel into sku_translated. The insert-select involves a 
three-table join between hotel_desc, sku_def, and trans_dict as in 
Figure 14. For better join performance, change the hotel_desc 
schema to hold desc_id instead of description_EN. AppSleuth’s 
output for this tuning choice is in Figure 15: 

hotel_desc becomes hotel_desc(hotel_id, room_type_id, desc_id).  

  
 

Figure 12. 
AppSeluth's analysis 

of the original 
application design. 

Figure 13. 
AppSleuth's output 

after Tuning 1. 

Figure 14. Tuning 2's optimization highlighted. 

insertsku(sku_id, description, language) 

 insert into sku_translated(sku_id, description, language); 

preparehotel (i_hotel_id) 
 Find all the skus belonging to this i_hotel_id from 
sku_def; 
 For each sku 
  get its description from the hotel_desc table; 
  do translation for this description (calling 
skuttran(sku_id, descriptioninEN)) 
 End for; 

manager(a set of hotel_ids) 
 For each hotel_id 
  Call preparehotel(hotel_id) 
 End for; 

Figure 9. Pseudo code for preparehotel. 

skuttran(sku_id, descriptioninEN) 

 Find the desc_id for this descriptionEN in trans_dict 

 For each of the phrases with the same desc_id  

  Call insertsku to do the insertion. 

 End for; 

Figure 10. Pseudo code for skuttran. 

Figure 11. Pseudo code for insertsku. 

INSERT INTO sku_translated(sku_id, translated, lang) 
SELECT sku_id, phrase, language 
FROM sku_def, hotel_desc, trans_dict 
WHERE sku_def.hotel_id = hotel_desc.hotel_id 
   AND sku.room_type_id = hotel_desc.room_type_id 
  AND hotel_desc.desc_id = trans_dict.desc_id 

AND hotel_desc.hotel_id = i_hotel_id 
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5.2.3 Tuning 3 - reducing the number of joins by 
denormalization 
Instead of using a three-way join insert-select, use 
denormalization to reduce this to a two-way join, e.g. changing 
the sku_def’s schema to this: 

sku_def(sku_id, hotel_id, room_type_id, desc_id). Primary key 
and indexes don’t change. AppSleuth’s analysis output is in 
Figure 16. 

      

      

5.2.4 Tuning 4, 5 … – other possible tuning methods. 
Users will be offered other choices including materialized or 
unmaterialized views (Figure 17). The demo should be fun 
because most conference participants work on the internals of 
database management systems but don’t face real world tuning 
problems with them.  

 
Figure 17. AppSleuth's output after Tuning 4 with an 

unmaterialized view.  
If the user ever chooses unmaterialized views to tune, then tests 
will be conducted for the query performance over the view 
against over base tables or materialized views to judge the overall 
performance improvement as the following table Table 1 shows. 

Table 1. Comparison of query performance for tuning using 
an unmaterialized view.  

Query performance 
comparison 

Elapsed time for 
cold buffer 

Elapsed time for 
warm buffer 

Tuning 4 0.12 seconds 
(avg.) 

0.08 seconds 
(avg) 

Other tuning 
methods 

0.08 seconds 
(avg.) 

0.02 seconds 
(avg) 

6. DEMO RESULTS 
The visitors to our demonstration will get a hands-on feel for 
using a tuning tool that goes beyond index or statement tuning to 

application tuning. They will have a chance to test their skill and 
to evaluate the results of their decisions. Designers will 
understand the importance of implementation tools. Query 
processing researchers will see that the boundaries of query 
processing extend to the multi-statement level. 
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Figure 16. 
AppSleuth's output 

after Tuning 3. 

Figure 15. 
AppSleuth's output 

after Tuning 2. 
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