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ABSTRACT
Querying similar graphs in graph databases has been widely studied
in graph query processing in recent years. Existing works mainly
focus on subgraph similarity search and supergraph similarity search.
In this paper, we study the problem of finding top-k graphs in a
graph database that are most similar to a query graph. This prob-
lem has many applications, such as image retrieval and chemical
compound structure search. Regarding the similarity measure, fea-
ture based and kernel based similarity measures have been used in
the literature. But such measures are rough and may lose the con-
nectivity information among substructures. In this paper, we in-
troduce a new similarity measure based on the maximum common
subgraph (MCS) of two graphs. We show that this measure can
better capture the common and different structures of two graphs.
Since computing the MCS of two graphs is NP-hard, we propose
an algorithm to answer the top-k graph similarity query using two
distance lower bounds with different computational costs, in order
to reduce the number of MCS computations. We further introduce
an indexing technique, which can better make use of the triangle
property of similarities among graphs in the database to get tighter
lower bounds. Three different indexing methods are proposed with
different tradeoffs between pruning power and construction cost.
We conducted extensive performance studies on large real datasets
to evaluate the performance of our approaches.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous; D.2.8
[Software Engineering]: Metrics—complexity measures, perfor-

mance measures

General Terms
Algorithm, Theory, Performance

Keywords
Top-K, Similarity Search, Graph Database

1. INTRODUCTION
Graph is a general tool for modeling structural relationships be-
tween data objects. It has been prevalently used in a wide range
of application domains, such as chemical compound structures in
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chemistry, attributed graphs in image processing, food chains in
ecology, electrical circuits in electricity, road networks in trans-
port, protein interaction networks in biology, topological networks
on the Web, etc. With the increasing popularity of graph databases
in various applications, graph query processing has attracted much
attention in recent years.

Existing researches on graph query processing mainly fall into two
categories: subgraph containment search and supergraph contain-
ment search. The former aims to identify a set of graphs that con-
tain a query graph, and the latter aims to find a set of graphs that are
contained by a query graph. Many indexing and query processing
techniques have been proposed to solve these two problems [24, 7,
27, 16, 25, 18, 9, 28, 22, 8, 5, 26, 6].

Besides exact subgraph/supergraph containment query, some stud-
ies allow a small number of edges or nodes missing in the query
result. Two kinds of graph similarity queries have been investi-
gated recently, namely, subgraph similarity search [23, 15] and su-
pergraph similarity search [17]. These algorithms take a thresh-
old based approach, i.e., returning graphs whose distances to the
query graph q are within a given threshold δ. The similarity (or
distance) measure in [15, 17] is defined based on the maximum
common subgraph (MCS) between a query graph q and a graph g in
the graph database, denoted as mcs(q, g). For subgraph similarity
search [15], the similarity of q and g is measured by the distance be-
tween the query graph q and mcs(q, g), i.e., dist(q, g) = |E(q)| −
|E(mcs(q, g))|; while for supergraph similarity search [17], the
similarity is measured by the distance between the database graph
g and mcs(q, g), i.e., dist(q, g) = |E(g)| − |E(mcs(q, g))|.

In many applications, users may want the answer graphs to be sim-
ilar to the query graph, considering the whole structure matching
rather than substructure matching. For example, finding top-k im-
ages that are most similar to a query image, or finding top-k chem-
ical compound structures that are most similar to a query chemical
compound structure. In such situations, neither subgraph similarity
query result nor supergraph similarity query result can be consid-
ered as the appropriate answer for users. The reasons are as follows.
For subgraph similarity query, since it only considers the distance
between the query graph and the MCS, the algorithms may return
a database graph whose size is far larger than that of the query as
long as it contains a subgraph similar to the query. For supergraph
similarity query, since it only considers the distance between the
database graph and the MCS, the algorithms may return a database
graph whose size is far smaller than that of the query as long as it is
similar to a subgraph of the query. We illustrate such issues using
the following example.2, March 26–30, 2012, Berlin, Germany.
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Figure 1: A Motivation Example

Example 1.1: Fig. 1 shows a query graph q and a sample graph
database D = {g1, g2, g3} (The MCS of each database graph and
q is shown in bold edges). Suppose a user wants to find the top-
1 similar graph in D for q. If we use dist(q, g) = |E(q)| −
|E(mcs(q, g))| in subgraph similarity query [15] as the distance
measure, g3 will be returned as the answer, since dist(q, g1) =
7− 2 = 5, dist(q, g2) = 7− 5 = 2 , and dist(q, g3) = 7− 6 = 1.
If we use dist(q, g) = |E(g)|− |E(mcs(q, g))| in supergraph sim-
ilarity query [17] as the distance measure, g1 will be returned as the
answer, since dist(q, g1) = 3 − 2 = 1, dist(q, g2) = 7 − 5 = 2,
and dist(q, g3) = 16 − 6 = 10. However, considering the whole
structure of q and each graph in the database, neither g1 nor g3 will
be a good answer from the user’s perspective, because g1 is too
small and does not share too much common part with q, while g3
is too large and has a large part that cannot match q. Obviously, the
most similar graph to q should be g2, because they share the most
common substructures with the least difference. ✷

As the subgraph/supergraph similarity queries have different goals
from the graph similarity query, their graph distance measures can-
not be applied to solve the latter problem. In addition, the existing
techniques to answer subgraph/supergraph similarity queries, e.g.,
substructure/feature indexing techniques [23, 15, 17], can hardly
be used to answer top-k graph similarity query due to the fol-
lowing reason. The existing solutions take a threshold based ap-
proach which returns graphs whose distances to the query graph q
are within a given threshold δ. So such methods build the index
based on different δ values and answer each query with a specific δ
from the index. However, as the distribution of different structures
in a graph database is not uniform, the number of answer graphs
retrieved for the same value of δ can vary significantly for differ-
ent queries. For example, in a real chemical compound structure
database from the National Cancer Institute, for the same value of
δ, the answer set size for different queries varies from zero to thou-
sands. Given such a great difference in the answer set size, it is hard
for a user to specify a suitable value of δ for each specific query
graph. As a result, a user may need to try many times in order to
obtain a set of answers that is truly useful. This is why we study to
answer top-k graph similarity query instead of using the threshold
approach. As far as we know, there are no efficient and effective
approaches that can handle such a problem in the literature.

Regarding the similarity measure between a query graph and a
database graph, some approximate measures, such as feature-based
measure [21] [23] and kernel function based measure [11, 10, 20]
have been proposed. The former aims to extract domain-specific
elementary structures as features and measure the similarity of two
graphs based on the number of common features they have. The
latter defines the similarity of two graphs using a graph kernel func-
tion, e.g., based on the common random walks, common cyclic sub-
structure patterns, common h-hop neighbors of nodes, etc. Both
measures only provide a very rough estimation of structure simi-

A

DC

A

BCB

A

B C

D

(a) Feature Set F = {f1, f2, f3}

CBCB D

A A

(b) Query Graph q

BC D

A

D

(c) g1

CDCB C

A

B

A

(d) g2

Figure 2: Feature-Based Measure Example

larity since they lose the global structural connectivity in the two
graphs. An example of feature-based measure is showed in Exam-
ple 1.2.

Example 1.2: Fig. 2 shows a feature set F = {f1, f2, f3}, a query
graph q, and a sample graph database D = {g1, g2}. Suppose a
user wants to find the top-1 similar graph in D for q. The feature
vectors for q, g1 and g2 are [1 1 1], [1 1 1] and [1 0 1] respectively.
Thus the similarity between q and g1 is 1, and the similarity be-
tween q and g2 is 2/3 = 0.67. g1 will be returned as the answer.
However, considering the whole structure of q and each graph in
the database, g2 will be a better answer from the user’s perspec-
tive. The main reason that the feature-based method fails to return
a good answer is it only records whether each feature occurs but
cannot capture the connectivity information among features. ✷

In order to measure the similarity of two graphs more accurately,
we propose a new similarity measure based on MCS which takes
structure connectivity fully into consideration.

To solve the top-k graph similarity query problem, a straightfor-
ward solution is to compute the similarity between the query graph
q and every graph g in D, and return the top-k similar graphs to q.
Since the similarity is based on the MCS of two graphs, for each
graph g in the graph database, we need to compute the MCS of g
and q in query processing, which is NP-hard. In this paper, we de-
veloped several pruning strategies to prune the graphs, which are
not in the top-k answer set, in order to reduce the number of MCS
computations. Based on simple structure statistics such as edge fre-
quency, we derive two distance lower bounds for pruning. We fur-
ther exploit the structural similarity between graphs in D and obtain
a triangle property of similarities among the query graph and two
database graphs. We show that the triangle property can be used
to further prune graphs with the help of an index. We design three
different indexing techniques: DPIndex, OPIndex, and GSIndex,
with different tradeoffs between pruning power and construction
cost. We propose efficient algorithms to compute the top-k similar
graphs for a given graph query, using the lower bounds and triangle
property we derive.
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The main contributions of this paper are summarized below. First,
we study the top-k graph similarity query based on a new MCS
based similarity measure, which takes both the common part and
different part between the query graph and the answer graph into
consideration. Second, we derive two distance lower bounds to
reduce the number of MCS computations in query processing. We
further exploit the structural similarity between graphs in databases
to derive a triangle property based bound, which can be used effec-
tively to prune graphs that are not in the top-k answers. Three
indexes (DPIndex, OPIndex, and GSIndex) are designed with dif-
ferent construction costs and pruning power to support the triangle
inequality based pruning. Based on the lower bounds and indexes,
we propose efficient algorithms to solve the problem of top-k graph
similarity query in graph databases. Third, we conducted extensive
performance studies on a real dataset to test the performance of our
algorithms.

The rest of the paper is organized as follows. Section 2 gives the
problem statement. Section 3 presents our framework to answer
the top-k graph similarity query. Section 4 discusses the pruning
method based on two lower bounds without using any index. Sec-
tion 5 studies the top-k graph similarity query processing based on
three different indexing techniques using the triangle property we
derived. Our experimental results are shown in Sections 6. Section
7 discusses some related works and Section 8 concludes this paper.

2. PROBLEM STATEMENT
In this paper, we focus on undirected vertex-labeled graphs. Given
a set of labels, ΣV , a graph is denoted by g = (V,E, l) where V
is the set of vertices, E ⊆ V × V is the set of edges, and l is a la-
beling function, l : V → ΣV . For each node u ∈ V , l(u) denotes
the label of u. We denote the vertex set and the edge set of graph
g by V (g) and E(g), respectively. |V (g)| and |E(g)| represent the
number of vertices and edges in graph g, respectively. For simplic-
ity, an undirected vertex-labeled graph is hereafter abbreviated to a
graph if the context is obvious.

Definition 2.1: Subgraph Isomorphism. Given two graphs g1 =
(V1, E1, l1) and g2 = (V2, E2, l2), g1 is subgraph isomorphic to
g2, if there is an injective function f : V (g1) → V (g2) such that
(1) ∀u ∈ V1, v ∈ V1 and u ̸= v, we have f(u) ̸= f(v). (2)
∀v ∈ V1, we have f(v) ∈ V2 and l1(v) = l2(f(v)). (3) ∀(u, v) ∈
E(g1), (f(u), f(v)) ∈ E(g2). ✷

Definition 2.2: Common Subgraph. Given two graphs g1 and
g2, graph g is a common subgraph of g1 and g2, if g is subgraph
isomorphic to g1 and g2, respectively. ✷

Definition 2.3: Maximum Common Subgraph. Graph g is a
maximum common subgraph (MCS) of two graphs g1 and g2, de-
noted as mcs(g1, g2), if g is a common subgraph of g1 and g2,
and there is no other common subgraph g′ of g1 and g2, such that
|E(g′)| > |E(g)|. ✷

Definition 2.4: Graph Distance. Given two graphs q and g, the
graph distance based on mcs(q, g) is defined as

dist(q, g) = |E(q)|+ |E(g)| − 2× |E(mcs(q, g))| (1)
✷

In this paper, we allow the MCS of two graphs to be disconnected,
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Figure 3: Example for MCS

since it can potentially capture more common substructures of two
graphs and evaluate the structure similarity of two graphs more
globally. We will show its advantage using the following example.

Example 2.1: Fig. 3 shows a query graph q and a sample graph
database D = {g1, g2}. Suppose a user wants to find the top-1
similar graph in D for q. If we require MCS to be connected, g1
will be returned as the answer, because dist(q, g1) = 12+6− 2×
6 = 6 and dist(q, g2) = 12 + 12 − 2 × 5 = 14. If we allow the
MCS to be disconnected, g2 will be returned as the answer, because
dist(q, g1) = 6 and dist(q, g2) = 12 + 12− 2× 10 = 4. Clearly,
the latter is the desired result for the user, which shows the global
description ability of disconnected MCS. ✷

For graph similarity query, two graphs cannot be considered similar
if their sizes have a significant disparity, i.e., a database graph can
not be considered as a good answer if it is far larger or smaller than
the query graph. A good graph distance measure should have the
ability to bound the size of the retrieved database graph to make
it neither too large nor too small for the query graph. Our graph
distance measure in Definition 2.4 has such a property, which is
shown as follows.

Theorem 2.1: Given a query graph q and a small value δ, for a

database graph g such that dist(q, g) = |E(q)| + |E(g)| − 2 ×
|E(mcs(q, g))| = δ, the following equation holds:

|E(q)|+ δ ≥ |E(g)| ≥ |E(q)| − δ ✷

Proof Sketch: Since |E(mcs(q, g))| ≤ |E(g)|, we have δ =
|E(q)|+ |E(g)| − 2× |E(mcs(q, g))| ≥ |E(q)|+ |E(g)| − 2×
|E(g)| = |E(q)| − |E(g)|, which leads to |E(g)| ≥ |E(q)| − δ.
Similarly, since |E(mcs(q, g))| ≤ |E(q)|, we have δ = |E(q)| +
|E(g)| − 2× |E(mcs(q, g))| ≥ |E(q)|+ |E(g)| − 2× |E(q)| =
|E(g)| − |E(q)|, which leads to |E(g)| ≤ |E(q)| + δ. Thus The-
orem 2.1 holds. ✷

Note that such bounds cannot be obtained for distance measures
in [15] and [17]. For distance measure |E(q)| − |E(mcs(q, g))|
in [15], if |E(q)| − |E(mcs(q, g))| = δ, we only have a lower
bound that |E(g)| ≥ |E(q)| − δ, which implies that |E(g)| can
be arbitrarily large. For distance measure |E(g)| − |E(mcs(q, g))|
in [17], if |E(g)| − |E(mcs(q, g))| = δ, we only have an upper
bound that |E(g)| ≤ |E(q)| + δ, which implies that |E(g)| can
be arbitrarily small. Our graph distance definition can measure the
global structure matching of the query graph and the database graph
more accurately, because we take both the distance between q and
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Algorithm 1 gs-topk (D, q, k)

Input: graph database D, a query graph q, and an integer k;
Output: top-k similar graphs with respect to q;
1: A ← max-heap of size k with each value set to be +∞;
2: H ← min-heap initialized to be ∅;
3: for all g ∈ D do

4: H.push((g, dist(q, g)));
5: while head(H).dist < head(A).dist andH ̸= ∅ do

6: h← H.pop();
7: g ← h.graph;
8: if dist(q, g) < head(A).dist then

9: A.pop();
10: A.push((g, dist(q, g)));
11: return the top-k answers inA;

mcs(q, g), i.e., |E(q)| − |E(mcs(q, g))|, and the distance between
g and mcs(q, g), i.e., |E(g)| − |E(mcs(q, g))| into consideration,
which can measure the difference of the query graph and a database
graph symmetrically. The following example shows that user de-
sired top-1 similar graph in Example 1.1 can be retrieved by using
our new graph distance measure.

Example 2.2: Suppose a user wants to find the top-1 similar graph
for query q from the graph database D = {g1, g2, g3} shown in
Fig. 1. By using graph distance measure defined in Equation (1), g2
will be returned as the answer, since dist(q, g1) = 7+3−2×2 = 6,
dist(q, g2) = 7+7−2×5 = 4, and dist(q, g3) = 7+16−2×6 =
11. Compared with Example 1.1, our graph distance measure can
return the user desired answer. ✷

Problem Statement: Given a graph database D = {g1, . . . , gn}, a
query graph q, and a positive integer k, we aim to retrieve the top-k
graphs from D with the smallest graph distances with q.

3. THE FRAMEWORK
Since computing MCS between two graphs is an NP-hard problem,
it is inefficient to compute the exact graph distance between the
query graph q and every graph g ∈ D. In this paper, we focus on
reducing the number of MCS computations as much as possible,
rather than making an MCS computation faster. To do this, we
adopt a graph distance lower bound based pruning strategy: during
the query processing, for a graph g ∈ D, if the lower bound of
dist(q, g), denoted as dist(q, g), is no less than the largest distance
of the current top-k answers discovered so far, g is not a top-k
answer and can be pruned safely.

The framework for the pruning strategy is shown in Algorithm 1.
We use a max-heap A to maintain the current top-k answers, and
use a min-heap H to keep the lower bounds of the graph distance
for graphs in D to be processed. Each entry in each heap is with
the form e = (graph, dist), where graph is a database graph
and dist is the distance value to be sorted in the heap. We use
e.graph and e.dist to denote the two fields of e. Initially, each
value in A is set to be +∞ and we insert the lower bounds of graph
distances into H in non-decreasing order for all graphs in D (line 1-
4). Next, we iteratively pop the graph g with the minimum value
from H and compute the distance to the query, dist(g, q) (line 6).
If the distance is smaller than the maximum value of current top-k
answers, head(A).dist, we will remove the maximum value from
A, and push the new distance into A (line 8-10). We will stop
the loop and report the final top-k answer if H is empty or the
minimum value in H is no less than the largest value in A (line 5).
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Figure 4: Example for the Bound of Graph Distance

The early stop condition head(H).dist ≥ head(A).dist in Algo-
rithm 1 implies the pruning of unqualified candidates. There are
two ways to make such pruning strategy more effective. First, to
maximize head(H).dist. Since all values in H are lower bounds of
graph distances, a tight lower bound can maximize head(H).dist.
Second, to minimize head(A).dist. If we can populate the top-
k answer set A with graphs having very small distances to q as
early as possible, then we will have a small head(A).dist for prun-
ing more unqualified candidates. Thus the order to examine graph
candidates is very important. In our framework, graphs are ex-
amined in the non-decreasing order of their lower bounds for the
actual distance computation and insertion into A. When the dis-
tance lower bound is a good estimation of the actual graph distance,
head(A).dist can be minimized. From the above analysis, we con-
clude that both cases need a tight lower bound for a better pruning
power. In the following sections, we propose several techniques
to obtain a tight graph distance lower bound in order to reduce the
number of MCS computations.

4. PRUNING WITHOUT INDEXING
As analyzed above, in order to reduce the number of MCS compu-
tations, we need a tight lower bound to prune graphs that cannot be
a top-k answer. Meanwhile, the distance lower bound computation
wrt. the query q should be light-weighted. In this section, we will
introduce two lower bounds with different tradeoffs on tightness
and computational cost. We discuss how to use them for candidate
pruning in top-k graph similarity query.

4.1 Edge Frequency Based Lower Bound
Finding the lower bound of dist(q, g) for graphs q and g is equiv-
alent to finding the upper bound of |E(mcs(q, g))|. Given q and
g, we can compute a rough upper bound of |E(mcs(q, g))| based
on the frequency of distinct edges. A distinct edge in a graph g is
defined as (l(u), l(v)), where l(u) and l(v) are the labels of ver-
tices u and v. A distinct edge e may appear multiple times in a
graph, and we denote the number of occurrences as frequency of
e, f(e, g). We denote the set of the distinct edges in g as Ed(g).
For two graphs q and g, our first upper bound of |E(mcs(q, g))|,
emcs1(q, g), can be obtained as follows based on their distinct edge
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frequencies.

emcs1(q, g) =
∑

e∈Ed(q)∪Ed(g)

min{f(e, q), f(e, g)} (2)

Using the upper bound in Eq. (2), we can obtain our first lower
bound of graph distance, dist1(q, g) as follows.

Theorem 4.1: Given two graphs q, g, the following equation is a

lower bound of dist(q, g).

dist1(q, g) = |E(q)|+ |E(g)| − 2× emcs1(q, g) (3)
✷

Proof Sketch: For each distinct edge e, it can contribute at most
min{f(e, q), f(e, g)} edges in mcs(q, g), because only edges with
the same label on the two ends can match each other. The sum
of min{f(e, q), f(e, g)} for all distinct edges should be an upper
bound of |E(mcs(q, g))|. Thus Theorem 4.1 holds. ✷

Example 4.1: Let’s consider graph q and g1 in Fig. 4. The fre-
quency of edge (A,C), (B,C), and (C,C) are 4, 3, 6 for q and
4, 3, 5 for g1, respectively. The upper bound of |E(mcs(q, g1))| is
emcs1(q, g1) = 4 + 3 + 5 = 12 and dist1(q, g1) = 13 + 12 −
2 × 12 = 1. Similarly, we can get the lower bound of dist(q, g2)
as dist1(q, g2) = 13 + 13 − 2 × 12 = 2. In fact, these two lower
bounds for dist(q, g1) and dist(q, g2) are not tight compared to the
actual graph distances which are 9 and 10, respectively. ✷

Remark 4.1: The time complexity of the edge frequency based up-

per bound computation is O(|E(q)| + |E(g)|), since we have to

scan all edges in the two graphs and count the frequency of each

distinct edge. ✷

4.2 Adjacency List Based Lower Bound
A tighter upper bound for |E(mcs(q, g))| of two graphs q and g is
proposed by Raymond et al. [14] based on the sequences of ver-
tices’ adjacency list of two graphs. The main idea is as follows.

For each node v in a graph, we use L(adj(v)) to denote a multi-
set consisting of all labels in the adjacent nodes of v. A label may
appear multiple times in L(adj(v)). Given two graphs q and g, we
construct a bipartite graph B(q, g) with |V (q)| nodes on one side
and |V (g)| nodes on the other. We use b(u) to denote the corre-
sponding node u in B(q, g). For each pair of nodes u ∈ V (q) and
v ∈ V (g), there is an edge between b(u) and b(v) in B(q, g) iff
l(u) = l(v). For each edge (b(u), b(v)) ∈ E(B(q, g)), the weight
of edge (b(u), b(v)) is defined as w(b(u), b(v)) = |L(adj(u))

∩

L(adj(v))|. After constructing the bipartite graph B(q, g), we find
the maximum weighted bipartite matching M(q, g) of B(q, g) us-
ing Hungarian algorithm. Our second upper bound of |E(mcs(q, g))|
can be derived as follows.

emcs2(q, g) =

∑
(b(u),b(v))∈M(q,g) w(b(u), b(v))

2
(4)

Based on the upper bound of the MCS in Eq. (4), we can obtain the
second lower bound for graph distance as follows.

Theorem 4.2: Given two graphs q, g, the following equation is a

lower bound of dist(q, g).
dist2(q, g) = |E(q)|+ |E(g)| − 2× emcs2(q, g) (5)

✷

Proof Sketch: For a pair u ∈ V (q) and v ∈ V (g), suppose u
is matched to v in mcs(q, g), then it can contribute w(b(u), b(v))
edges in mcs(q, g) at the most. Since M(q, g) is the maximum
matching among all matchings based on the weight w(b(u), b(v))
for each pair (u, v),

∑
(b(u),b(v))∈M(q,g) w(b(u), b(v)) edges can

be contributed to mcs(q, g) in the best case. As each edge is calcu-
lated twice at its two ends, the weight sum should be divided by 2.
So Eq. (4) is an upper bound of |E(mcs(q, g))|. Thus Theorem 4.2
holds.

Remark 4.2: The worst case time complexity of the adjacency list

based lower bound is O(n3), where n = max{|V (q)|, |V (g)|},

which is the complexity of the Hungarian algorithm for best bipar-

tite graph matching. Obviously, the computation of the adjacency

list based lower bound is more costly than the edge frequency based

lower bound. ✷

Theorem 4.3: Given two graphs q, g, for the lower bound of

dist(q, g), we have dist2(q, g) ≥ dist1(q, g). ✷

Proof Sketch: For a vertex u and a label a, we use N(u, a) to
denote the number of neighbors of u with label a, i.e., N(u, a) =
|{u′|u′ ∈ adj(u), l(u′) = a}|. For any (b(u), b(v)) ∈ E(B(q, g)),
w(b(u), b(v)) can be calculated as:

w(b(u), b(v)) =
∑

b∈L(adj(u))
∩

L(adj(v))

min{N(u, b), N(v, b)}

Let L be the set of all labels, we have:

2× emcs2(q, g) =
∑

(b(u),b(v))∈M(q,g)

w(b(u), b(v))

=
∑

a∈L

∑

(b(u),b(v))∈M(q,g),l(u)=a

∑

b∈L(adj(u))
∩

L(adj(v))

min{N(u, b), N(v, b)}

≤
∑

a∈L,b∈L

min{
∑

u∈V (q),l(u)=a

N(u, b),

∑

v∈V (g),l(v)=a

N(v, b)}

For emcs1(q, g), we can derive the following equation:

2× emcs1(q, g) =
∑

a∈L,b∈L

min{
∑

u∈V (g),l(u)=a

N(u, b),

∑

v∈V (q),l(v)=a

N(v, b)}

Thus, we have 2 × emcs2(q, g) ≤ 2 × emcs1(q, g). As a result,
dist2(q, g) ≥ dist1(q, g) holds.

Example 4.2: For graphs q and g1 in Fig. 4, after constructing the
bipartite graph B(q, g1), we can find the upper bound of |E(mcs(q,
g1))| as emcs2(q, g1) = 11, and we have dist2(q, g1) = 13+12−
2× 11 = 3, which is tighter than dist1(q, g1) = 1 in Example 4.1.
Similarly, we can get the lower bound of dist(q, g2) for graphs q
and g2 as dist2(q, g2) = 13+ 13− 2× 12 = 2, which is the same
as dist1(q, g2) = 2 in Example 4.1. ✷
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Algorithm 2 gs-topk-noidx (D, q, k)

Input: graph database D, a query q, and an integer k;
Output: top-k similar graphs with respect to q;
1: A ← max-heap of size k with each value set to be +∞;
2: H ← min-heap initialized to be ∅;
3: for all g ∈ D do

4: H.push((g, dist1(q, g)));
5: while head(H).dist < head(A).dist andH ̸= ∅ do

6: h← H.pop();
7: g ← h.graph;
8: if h.dist = dist1(q, g) and dist2(q, g) < dist1(q, g) then

9: H.push((g, dist2(q, g)));
10: continue;
11: if dist(q, g) < head(A.dist) then

12: A.pop();
13: A.push((g, dist(q, g)));
14: return the top-k answers inA;

4.3 Query Processing
As stated in the above two subsections, for two graphs q and g,
computing dist2(q, g) is much more expensive than computing dist1
(q, g). Thus we only compute dist2(q, g) for graphs that cannot
be pruned by dist1(q, g). Furthermore, computing dist(q, g) is
more expensive than computing dist2(q, g), thus we will not com-
pute dist(q, g) unless g cannot be pruned by both dist2(q, g) and
dist1(q, g).

Based on the above analysis on the tradeoffs between the compu-
tational cost and the bound tightness, we develop an algorithm to
compute top-k graph similarity query, that follows the framework
in Algorithm 1 with more details on updating the bounds. Our al-
gorithm is shown in Algorithm 2. Initially, we compute dist1(q, g)
for all database graphs wrt. q, and push them into H (line 3-4). In
line 5, we iteratively update A and H with the same stop condition
as in Algorithm 1. In each iteration, after popping the top entry h
from H, we first test whether h has been updated with dist2(q, g).
If not and dist2(q, g) < dist1(q, g), we update h with dist2(q, g)
(line 8-9). If both dist1(q, g) and dist2(q, g) have been used to up-
date h, we know that the current lower bound in h is the best one
we can get currently. Then we update the graph g in h using the real
graph distance dist(q, g) and insert it into A if dist(q, g) is smaller
than the largest value in A (line 11-13).

Remark 4.3: With Algorithm 2, we can make sure that the number

of dist2 calculations is no larger than the number of dist1 calcu-

lations and the number of dist calculations is no larger than the

number of dist2 calculations. This is because only the entries in H
that have been updated with dist1 can be updated using dist2, and

only those entries in H that have been updated using both dist1
and dist2 can be updated with dist and pushed into A. ✷

5. PRUNING WITH INDEXING
Up to now, we have derived two lower bounds dist1(q, g) and dist2(
q, g) on dist(q, g) for graphs q and g. Both dist1(q, g) and dist2(q,
g) only consider the relationship between q and g. From Exam-
ple 4.1 and 4.2, we see that the two lower bounds can sometimes
be very loose. In order to find tighter bounds, we study to derive
the lower bound of dist(q, g) from a new angle, with the help of
another database graph g′. The main observation is as follows. If
g and g′ are very similar, then dist(q, g) and dist(q, g′) will not
differ too much. Suppose we have computed dist(q, g′), then we
can use dist(q, g′) to derive a new lower bound of dist(q, g). In the
extreme case, when g and g′ are isomorphic, dist(q, g) is the same

as dist(q, g′).

In this section, we first study how to derive a new lower bound us-
ing a triangle property of graph distance. In order to make use of
such a property, we need to index the distances between database
graphs. We design an algorithm on query processing using the
index and introduce three different implementations of the index
structures.

5.1 The Triangle Property of Graph Distance
First of all, we introduce the triangle inequality property of the
graph distances for three graphs g1, g2 and g3.

Lemma 5.1: Given three graphs g1, g2, and g3, the following tri-

angle property holds.

dist(g1, g3) ≤ dist(g1, g2) + dist(g2, g3) (6)
✷

Proof Sketch: Let α be the number of edges in g2 not included in
E(mcs(g1, g2)) and E(mcs(g2, g3)). we can express |E(g2)| as
follows.

|E(g2)| =α+ |E(mcs(g1, g2))|+ |E(mcs(g2, g3))|

− |E(mcs(g1, g2)) ∩ E(mcs(g2, g3))|.
(7)

Also, for graphs g1, g2, and g3, we have:

|E(mcs(g1, g3))| ≥ |E(mcs(g1, g2)) ∩ E(mcs(g2, g3))| (8)

Based on Eq. (7) and Eq. (8), we obtain:

|E(mcs(g1, g3)|

≥ α+ |E(mcs(g1, g2))|+ |E(mcs(g2, g3))| − |E(g2)|

≥ |E(mcs(g1, g2))|+ |E(mcs((g2, g3))| − |E(g2)|

After multiplying the above equation by -2 and adding |E(g1)| and
|E(g3)| to both sides, we have:

|E(g1)|+ |E(g3)| − 2× |E(mcs(g1, g3)|

≤ |E(g1)|+ |E(g2)| − 2× |E(mcs((g1, g2))|

+ |E(g2)|+ |E(g3)| − 2× |E(mcs((g2, g3))|

In other words, dist(g1, g3) ≤ dist(g1, g2) + dist(g2, g3), which
completes the proof. ✷

Theorem 5.1: Given a query graph q and two graphs g and g′

in graph database D, suppose we have computed dist(q, g′) and

dist(g, g′), then a lower bound of dist(q, g) can be computed as

follows.

dist3(q, g)[g
′] = dist(q, g′)− dist(g, g′) (9)

✷

Theorem 5.1 can be derived directly from Lemma 5.1. Note that
the lower bound dist3(q, g)[g

′] is determined by dist(q, g′) and
dist(g, g′). If dist(q, g′) is small and dist(g, g′) is large, the lower
bound might be quite loose, or even looser than dist1(q, g) and
dist2(q, g), which will be useless for pruning. If dist(q, g′) is
large and dist(g, g′) is small, we might get a large lower bound
of dist(q, g), which can be tighter than dist1(q, g) and dist2(q, g),
and thus helpful for pruning.

Example 5.1: Let’s consider the query graph q and database graphs
g1 and g2 shown in Fig. 4. Suppose we have computed |E(mcs(q,
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Algorithm 3 gs-topk-withidx (D, q, k, I)

Input: graph database D, a query q, an integer k, and index I;
Output: top-k similar graphs with respect to q;
1: A ← max-heap of size k with each value set to be +∞;
2: H ← min-heap initialized to be ∅;
3: for all g ∈ D do

4: H.push((g, dist1(q, g)));
5: while head(H).dist < head(A).dist andH ̸= ∅ do

6: h← H.pop();
7: g ← h.graph;
8: if dist2(q, g) < h.dist then

9: H.push((g, dist2(q, g)));
10: continue;
11: if dist(q, g) < head(A).dist then

12: A.pop();
13: A.push((g, dist(q, g)));
14: update-using-index (H, q, g, I);
15: return the top-k answers inA;

16: Procedure update-using-index (H, q, g, I)
17: for all Gi ∈ I such that g ∈ Gi do

18: if g = ci then
19: for all g′ ∈ Gi and g′ ̸= g do

20: H.update((g′, dist3(q, g
′)[g]));

21: else
22: ifH.update((ci, dist3(q, ci)[g])) then

23: for all g′ ∈ Gi and g′ ̸= g and g′ ̸= ci do

24: H.update((g′, dist4(q, g
′)[ci]));

g1))| = 8, then we can get dist(q, g1) = 12 + 13− 2× 8 = 9. In
addition, suppose we have precomputed dist(g1, g2) = 12 + 13−
2 × 11 = 3. According to Theorem 5.1, we can obtain a lower
bound of dist(q, g2) to be dist3(q, g2)[g1] = 9 − 3 = 6 , which
is much tighter than dist2(q, g2) = 2 in Example 4.2. Similarly,
if we have obtained dist(q, g2) = 13 + 13 − 2 × 8 = 10 and
dist(g1, g2) = 3, we can derive that dist3(q, g1)[g2] = 10−3 = 7,
which is also much tighter than dist2(q, g1) = 3 in Example 4.2.

✷

Computing dist3(q, g) requires two actual graph distances dist(q, g′)
and dist(g, g′). In case we have dist(q, g′) but not dist(q, g′), we
can still derive a relaxed lower bound of dist(q, g) based on the
triangle property as follows. We first compute a lower bound of
dist(q, g′), denoted dist(q, g′), using any one of the three lower
bounds introduced above. The relaxed triangle based bound is pre-
sented in Theorem 5.2.

Theorem 5.2: Given a query graph q and two graphs g and g′

in graph database D, suppose we have computed dist(g, g′) and

a lower bound of dist(q, g′) denoted as dist(q, g′), then a lower

bound of dist(q, g) can be computed as follows.

dist4(q, g)[g
′] = dist(q, g′)− dist(g, g′) (10)

✷

Proof Sketch: Since dist(q, g′) ≤ dist(q, g′), we have:

dist4(q, g)[g
′] = dist(q, g′)− dist(g, g′)

≤ dist(q, g′)− dist(g, g′)

= dist3(q, g)[g
′]

In fact, dist4(q, g)[g
′] is a relaxation of the lower bound dist3(q,

g)[g′]. ✷

Remark 5.1: If we know dist(g, g′), and one of dist(q, g′) and its
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Figure 5: An Example for Top-k Query

lower bound dist(q, g′), the time complexity to update the lower

bound of dist(q, g) using dist3(q, g)[g
′] or dist4(q, g)[g

′] is O(1).
Since calculating dist3(q, g)[g

′] or dist4(q, g)[g
′] is very cheap, we

should use them as many times as needed. ✷

5.2 Query Processing
Based on the above discussion, we know that the key point to get
a tight bound for dist(q, g) is to choose a graph g′ with a small
distance dist(g, g′). Since g and g′ are database graphs, the graph
distance dist(g, g′) can be precomputed offline. A straightforward
way is to precompute the graph distances for all pairs of graphs
in D. Then we need to do O(|D|2) MCS computations, which
is too expensive to be practical, as |D| can range from thousands
to millions. In addition, we know that a large value of dist(g, g′)
might not help us get a tight lower bound of dist(q, g). So it will be
sufficient to index the pairs of graphs with small graph distances for
pruning. In order to do this, we define a graph index I as follows.

Definition 5.1: Top-k Graph Similarity Index: Given a graph

database D, a top-k graph similarity index I consists of a set of
groups, I = {G1, . . . , G|I|}, where Gi ⊆ D for i = 1, . . . , |I|,
and G1∪. . .∪G|I| = D. For each group Gi, there is a center graph
ci ∈ Gi, denoted as c(Gi), and the graph distance dist(g, ci) for
each g ∈ Gi and g ̸= ci is precomputed and stored in I . ✷

Ideally, graphs having small distances with each other should be
assigned to the same group of I to support effective pruning. In the
following, we focus on how to process queries using I . We will
discuss the construction of I in details in the next subsection.

Our main algorithm is shown in Algorithm 3. The process is sim-
ilar to Algorithm 2. The only difference is that, after calculating
the real graph distance dist(q, g) in line 11-13, we need to use
dist(q, g) and the index I to update the lower bounds of other
graphs, by invoking a procedure update-using-index (H, q, g, I).
Next we introduce the procedure update-using-index in details.
In order to update the lower bounds of other graphs using g and
I , we should find all groups Gi ∈ I that contain g. For each
group Gi that contains g, there are two cases. First, g is the cen-
ter ci of Gi. In this case, we can update the lower bound of ev-
ery non-center graph g′ ∈ Gi using dist3(q, g

′)[g] by invoking a
function H.update((g′, dist3(q, g

′)[g])) (line 19-20). The func-
tion H.update((g, dist)) works as follows. We find the entry h in
H where h.graph = g. If dist > h.dist, then the original entry h
is updated to be (g, dist), and the function returns true. Otherwise,
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nothing is done on H and the function returns false. Second, g is
not the center ci of Gi. In this situation, we first update the lower
bound of the center ci, using (ci, dist3(q, ci)[g]). If dist3(q, ci)[g]
is larger than the original one in H, we can use dist(ci, g

′) and the
lower bound dist3(q, ci)[g] to update the lower bound of each other
graph g′ using dist4(q, g

′)[ci] (line 22-24).

Example 5.2: Fig. 5 shows an example for Algorithm 3. Suppose
we have a sample database D = {g1, . . . , g7}, and the index I
contains 2 groups, which are shown in the upper part of Fig. 5.
The black node in each group is the center of the group. For ease of
reference, we label the real graph distance between each non-center
graph and the center graph in the figure. Suppose we have a query
q and we want to find its top-2 similar graphs. We show H which
maintains the lower bound for each graph on the left side and the
answer set A on the right side. The steps are listed as follows.

• Step 1: H contains the best lower bound we have obtained
for each graph using dist1 and dist2.

• Step 2: Since the lower bound of g4 is the minimum, we
compute dist(q, g4) = 3 and push it into A. We also com-
pute dist3(q, g6)[g4] = dist(q, g4) − dist(g6, g4) = 1. As
dist3(q, g6)[g4] is smaller than the current lower bound of g6
in H, it is not updated.

• Step 3: We compute dist(q, g1) = 6 and push it into A. We
also have dist3(q, g3)[g1] = 6−2 = 4 and dist4(q, g7)[g3] =
4− 1 = 3. So the lower bound of g3 is updated to 4 and the
lower bound of g7 is updated to 3 in H.

• Step 4: We compute dist(q, g2) = 5 and it replaces g1 in A
as dist(q, g2) < dist(q, g1). We compute dist3(q, g3)[g2] =
5− 3 = 2, which is smaller than the current lower bound of
g2 in H. So the lower bound of g2 is not updated.

• Step 5: We compute dist(q, g6) = 4 and it replaces g2 in A.

• Step 6: We compute dist(q, g5) = 7. We can update the
lower bounds of g3 and g7 in H as dist3(q, g3)[g5] = 7−1 =
6 and dist4(q, g7)[g3]= 6 − 1 = 5. As the min value 5 in
H is no less than the max value in A for the current top-2
answers, g3 and g7 can be pruned and the two graphs in A
are returned as the answers.

In the above process, we totally need 5 MCS computations to get
the top-2 answers. If we do not use the lower bounds dist3 and
dist4, no graph can be pruned, because the lower bounds from dist1
and dist2 are loose and smaller than the max value in A. ✷

5.3 Indexing
In this subsection, we discuss how to build index I for effective
pruning based on lower bounds dist3 and dist4. We design three in-
dexing schemes, namely disjoint partition index, overlapping par-
tition index and general similarity index, with different tradeoffs
between construction cost and pruning power.

Disjoint Partition Index (DPIndex): As analyzed above, in each
group of the index, graphs should have small distances with each
other. It is natural to partition the graphs in D into non-overlapping
clusters. Based on this idea, we build the Disjoint Partition Index
(DPIndex) as follows. Given the number of clusters m, we ran-
domly pick m graphs as m center nodes for the clusters. Then for
each non-center graph g ∈ D, we assign it to the nearest center. We
consider each cluster as a group in the index. Suppose Dc ⊂ D is
the set of center nodes we select. Finding the nearest center for

a graph g can be considered as answering a top-1 graph similar-
ity query in Dc, and can be solved using gs-topk-noidx (Dc, g, 1)
shown in Algorithm 2.

Lemma 5.2: Constructing DPIndex needs |D| − m times of gs-

topk-noidx (Dc, g, 1) computations. The size of the DPIndex is

O(|D|). ✷

Overlapping Partition Index (OPIndex): In DPIndex, each graph
only belongs to one group. There are two drawbacks for DPIndex.
First, if the center nodes are not selected properly, it is possible
to derive useless lower bounds. Second, since computing lower
bounds dist3 and dist4 using index is very fast, assigning each
graph to only one group does not make full use of the triangle based
bounds. In order to increase the chance for graphs to get a tighter
lower bound, we develop another index, called Overlapping Parti-
tion Index (OPIndex), that allows each graph to belong to multiple
groups. Suppose that each graph can belong to at most l groups.
The construction of OPIndex is similar to DPIndex, the only dif-
ference is that, after we randomly select m graphs in D as centers,
for each non-center graph g ∈ D, we assign it to the l nearest
centers instead of only one nearest center. Finding l nearest cen-
ters can be considered as answering a top-l graph similarity query
in Dc, and can be solved using gs-topk-noidx (Dc, g, l) shown in
Algorithm 2.

Lemma 5.3: Constructing OPIndex needs |D| − m times of gs-

topk-noidx (Dc, g, l) computations. The size of the OPIndex is

O((|D| −m) · l). ✷

General Similarity Index (GSIndex): For DPIndex and OPIndex,
there is no overlapping between the set of center graphs and non-
center graphs. As a result, a graph can either be a center graph or a
non-center graph but not both. For a non-center graph g, it is with
large possibility that the l nearest graphs in D are not in the center
set Dc, but in the non-center set D − Dc. To solve this problem,
we develop a General Similarity Index(GSIndex) as follows. We
treat each graph in D as the center. Then for each center, we find
its nearest l graphs in D, and putting the l + 1 graphs together
as a group. Finding l nearest graphs in D can be considered as
answering a top-l graph similarity query in D, and can be solved
using gs-topk-noidx (D, g, l) shown in Algorithm 2.

Lemma 5.4: Constructing GSIndex needs |D| times of gs-topk-

noidx (D, g, l) computations. The size of the GSIndex is O(|D| ·l).
✷

Remark 5.2: Among the three indexes, DPIndex, OPIndex and

GSIndex, GSIndex has the largest pruning power while DPIndex

is the weakest. Regarding the construction cost, computing gs-

topk-noidx (D, g, l) is more expensive than computing gs-topk-

noidx (Dc, g, l), because Dc ⊂ D, and computing gs-topk-noidx

(Dc, g, l) is more expensive than gs-topk-noidx (Dc, g, 1), because

l > 1. Thus GSIndex has the highest construction cost while

DPIndex has the lowest construction cost. Regarding the index

size, GSIndex has the largest size while DPIndex has the smallest

size. But even for GSIndex, the index is very compact and can be

memory resident, as there are totally |D|·l index entries in the form

of (gid, dist). For a graph database with millions of graphs and a

typical setting of l = 10, we only need to store ∼ 107 entries for

less than 100 megabytes. ✷

6. PERFORMANCE STUDIES
In this section, we conducted extensive performance studies to eval-
uate the effectiveness and efficiency of our algorithms. To the best
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Table 1: Parameters

parameter range default

k 10, 20, 30, 40, 50 30

|V (q)| 1∼7, 8∼9, 10∼11, 12∼13, 14∼15, 1∼15 1∼15

|D| 10K, 20K, 40K, 60K, 80K, 100K 10K

m 1K, 2K, 3K, 4K, 5K 5K

l 2, 6, 10, 14, 18 10

of our knowledge, there is no existing algorithm on top-k graph
similarity query using the MCS based similarity measure as de-
fined in this paper. The most related and recent work is subgraph
similarity query [15] and supergraph similarity query [17]. Both of
them are threshold based approaches, which aim to answer the sub-
graph/supergraph similarity query with respect to a user-specified
threshold. We first compare our algorithms with these two works
to demonstrate the superiority of our algorithms in finding the most
similar graphs to a query. Next we validate the efficiency of our al-
gorithms by comparing them with a naive sequential scan method
as a performance benchmark, followed by an extensive evaluation
of our indexing techniques. All the algorithms were implemented
using Visual C++ 2005 and tested on a PC with 2.66GHz CPU and
3.43GB memory running Windows XP.

We denote the subgraph/supergraph similarity query in [15] and
[17] as SubSim and SuperSim respectively. The benchmark al-
gorithm is denoted as SeqScan, which answers a top-k similarity
query by performing a sequential scan on the graph database D
for a query q. For each gi ∈ D, SeqScan will first check whether
||E(q)|−|E(gi)|| (a simple lower bound of dist(q, gi)) is less than
the largest distance of the current top-k answers. If yes, it performs
an MCS computation to get the graph distance and decides whether
to put gi into the answer set or not. We denote our four approaches
as noIndex, DPIndex, OPIndex and GSIndex respectively. Among
them, noIndex is the algorithm to prune graphs using two lower
bounds dist1 and dist2 without using any index (refer to Algo-
rithm 2), DPIndex, OPIndex and GSIndex denote the approaches
that follow Algorithm 3, using the indexes DPIndex, OPIndex and
GSIndex respectively.

Datasets: We evaluate the performance of our algorithms on a real
NCI dataset downloaded from the National Cancer Institute Open
Database website1. The NCI dataset contains a list of compound
structures of cancers and AIDS, where each structure can be mod-
eled as an undirected and labeled graph. We extract six datasets
that consist of 10K, 20K, 40K, 60K, 80K and 100K graphs, respec-
tively. We also randomly extract another 1,000 graphs as the query
set. The size of the query graphs ranges from 1 to 15.

Parameters: We evaluate our approaches by varying five param-
eters, namely, the top-k value in the query, the size of the query
graph |V (q)| , the number of graphs in the graph database |D|, the
number of groups m used in DPIndex and OPIndex, and the maxi-
mum number of groups l that each graph can belong to in OPIndex

and GSIndex. The ranges for the five parameters and their default
values are shown in Table 1. If not otherwise specified, we will
use the default value for each parameter. For the query graph size
|V (q)|, except for cases when varying |V (q)|, we test all 1,000
query graphs and report the average performance.

6.1 Similarity Measures Evaluation
We first introduce the similarity queries to be evaluated below.
1
http://cactus.nci.nih.gov/download/nci/
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Figure 7: Power of Pruning Strategy

• SubSim: Subgraph similarity query in [15], where graph dis-
tance is defined as dist(q, g) = |E(q)| − |E(mcs(q, g))|.

• SuperSim: Supergraph similarity query in [17], where graph
distance is defined as dist(q, g) = |E(g)| − |E(mcs(q, g))|.

• FullSim: Full graph similarity query defined in this paper,
where graph distance is defined as dist(q, g) = |E(q)| +
|E(g)| − 2× |E(mcs(q, g))| in Equation (1).

First of all, we show why the query results of subgraph/supergraph
similarity query are not good answers of graph similarity query
by empirical testings. Both SubSim and SuperSim are designed
for threshold based query instead of top-k query. To get top-k re-
sults for these two graph distance measures, we embed them into
our algorithm noIndex by replacing our graph distance by graph
distances in SubSim and SuperSim respectively. The two lower
bounds dist1 and dist2 are modified accordingly. The testing is
conducted on dataset D that consists of 10K graphs for the query
set of 1,000 graphs.

As we stated before, two graphs cannot be considered similar if
their sizes have a significant disparity. To evaluate these three
graph distance measures, we report the average size of the top-
k answer graphs, Avg(q), for a query q, defined as Avg(q) =
1

k

∑
g∈A |E(g)| where A is the top-k answer set of q. Fig. 6(a)

shows Avg(q) for query q with size |E(q)| in the range 3 ∼ 15. As
we can see, no matter how |E(q)| changes, SubSim always returns
the answer graphs of very large sizes, e.g., Avg(q) = 12 even for
the small query of size 3. In contrast, SuperSim always returns the
answer graphs of small sizes no matter how large the query size is,
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e.g., Avg(q) = 6 even for the large query of size 15. Our mea-
sure FullSim can report different average sizes of answer graphs
for different query sizes, and the average size of the answer graphs
is increasing linearly as the query size increases.

Next, we empirically show that threshold based query techniques
in [15] [17] can hardly be used to answer top-k queries. We tested
1,000 queries on dataset D of 10K graphs with k = 30 for these
three measures respectively. For each query, we denote the largest
distance between the top-k answers and the query q as δ. We report
the frequency of δ for the 1,000 queries in Fig. 6(b) ∼ Fig. 6(d).
Fig. 6(b) shows that for most queries in SubSim, δ is less than 2,
where δ = 0 occurs with frequency around 70% and δ = 1 occurs
with frequency around 30%. For SuperSim, Fig. 6(c) shows that
δ falls into [0, 5] for most queries, where δ = 1 and δ = 2 occur
with high frequencies. Fig. 6(d) shows that for most queries in
FullSim, δ falls into interval [2, 7] where δ = 3 and δ = 4 occur
with high frequencies. From Fig. 6(b) ∼ Fig. 6(d), we can see
that, given a specific value of k, δ varies a lot for all these three
measures, especially FullSim. It is impossible to determine a fixed
δ to answer the exact top-k answers for different query graphs.

6.2 Query Performance Evaluation
We evaluate query performances of our four algorithms noIndex,
DPIndex, OPIndex and GSIndex against the benchmark algorithm
SeqScan. First of all, we test the power of our lower bound based
punning strategy with dist1 and dist2. We compare noIndex with
SeqScan with respect to two parameters |V (q)| and k. In order
to vary the number of nodes in the query graph, we divide the
1,000 query graphs into 5 groups, with size |V (q)| in intervals 1
∼ 7, 8 ∼ 9, 10 ∼ 11, 12 ∼ 13, and 14 ∼ 15 respectively. The
result on the average number of MCS computations is shown in
Fig. 7(a). When the query size increases, the number of MCS
computations for noIndex and SeqScan increases. SeqScan needs
around 7000 MCS computations for graph with size larger than 10,
while noIndex needs no more than 500 MCS computations for all
testing cases, which improves the performance by about two orders
of magnitude. We vary the top-k value from 10 to 50, and report
the average number of MCS computations in Fig. 7(b). When k in-
creases, the average number of MCS computations of both noIndex

and SeqScan increase. This is because when k is large, the distance
of the k-th graph in the answer set will be large, thus the filtering
condition for both noIndex and SeqScan will be hard to be satis-
fied for candidate pruning. Compared with SeqScan, noIndex also
improves the performance by about two orders of magnitude.

Next, we evaluate our three indexing techniques with noIndex as
the baseline. We vary five parameters |V (q)|, m, l, k, and |D|. For
each testing case, we report the average number of MCS computa-
tions and the average query processing time for the corresponding
algorithm.

Vary Query Size |V (q)|: The result on the average number of
MCS computations is shown in Fig. 8(a). When the query size
increases, the number of MCS computations for all four algorithms
increases. noIndex needs nearly 300 MCS computations using the
database with 10K graphs. GSIndex only needs around 150 MCS
computations, which save 50% cost on MCS computations. The re-
sult on the average query processing time is shown Fig. 8(b). When
the query size is large, the query processing time for all four al-
gorithms has a sharp increase. This is because the cost of MCS
computation increases exponentially with respect to the graph size.
The query time is in the scale of seconds, as the major computation

cost is from MCS computation which is expensive. In all cases,
GSIndex performs best and noIndex performs worst.

Vary Number of Groups m: Fig. 8(c) and Fig. 8(d) show the
curves when varying the number of groups m in DPIndex and
OPIndex. We also show the performance of noIndex, which is
constant wrt. m, as a baseline performance. In Fig. 8(c), when m
increases, the number of MCS computations for both DPIndex and
OPIndex decreases. This is because when the number of groups is
larger, more graphs are selected as the center graphs, which have
larger pruning power than non-center graphs. The gap between
DPIndex and OPIndex becomes larger when m increases. It is be-
cause when the number of groups becomes larger, each non-center
graph will have a larger chance to find a good center graph that is
similar to the non-center one, and thus the pruning power will in-
crease. The curves for the processing time in Fig. 8(d) are similar
to the curves for the number of MCS computations. OPIndex has
larger pruning power than DPIndex in all cases.

Vary l: We vary the maximum number of groups l each graph can
belong to in OPIndex and GSIndex. Fig. 8(e) shows that, when l
increases from 2 to 18, the pruning power for both OPIndex and
GSIndex increases. This is because when l is larger, the lower
bound for each graph is more likely to be updated by the center
graphs. GSIndex performs better than OPIndex, and the gap be-
tween OPIndex and GSIndex increases when l increases. This is
because, in GSIndex, each graph finds its top-l similar graphs in the
database D for the lower bound update; while in OPIndex, each
non-center graph finds its top-l similar graphs in the center graph
set Dc. As Dc ⊂ D, the top-l distances indexed for each graph
in OPIndex is no less than those in GSIndex, which will cause the
triangle based lower bounds looser. Fig. 8(f) shows the processing
time when varying l. The curves are similar to those in Fig. 8(e).

Vary k: We vary the top-k value from 10 to 50, and report the aver-
age processing time in Fig. 8(g). When k increases, the processing
time for all four algorithms increases. This is because when k is
large, the distance of the k-th graph in the answer set will be large,
thus the early stop condition will be hard to be satisfied for candi-
date pruning. GSIndex performs best in all cases. The curves for
the average number of MCS computations are similar to those for
the average processing time, and not shown here due to the lack of
space.

Vary Database Size |D|: Fig. 8(h) shows the average processing
time when varying the number of graphs in the database |D|. The
processing time increases sub-linearly with respect to |D|, because
k is fixed and when the number of graphs in the database is large,
the distance of the k-th graph in the answer set will be small, thus
the early stop condition will be effective for candidate pruning.
When |D| = 100K, GSIndex can save nearly 65% computational
cost compared to noIndex. The curves for the average number of
MCS computations are similar to those for the average processing
time, and not shown here due to the lack of space.

6.3 Indexing Cost Evaluation
We test the three indexes DPIndex, OPIndex and GSIndex for dif-
ferent m, l and |D| values. For each testing case, we report the
corresponding index construction time and the size of the index.
The results are shown in Fig. 9.
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Figure 8: Scalability Testing
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Figure 9: Index Testing

Vary Number of Groups m: Fig. 9(a) shows the index size for
DPIndex and OPIndex when varying the number of groups m. The
size of OPIndex is several times larger than that of DPIndex on av-
erage since OPIndex allows graphs to belong to multiple groups.
As the number of groups increases, the size of DPIndex remains al-
most constant while the size of OPIndex decreases linearly, which
confirm the space analysis for DPIndex (O(|D|)) and OPIndex

(O((|D| − m) · l)). Fig. 9(b) shows that the construction time of
OPIndex is about 10 times larger than that of DPIndex on average.
This is because the computation cost of gs-topk-noidx (Dc, g, 10)
is much larger than that of gs-topk-noidx (Dc, g, 1). In addition,
it shows that the construction time of OPIndex is smaller when m
is either too large or too small. The underlying reason is as fol-

lows: when m is too small, Dc will be small, and gs-topk-noidx
(Dc, g, l) will be fast; when m is too large, |D| −m will be small,
and we only need to compute gs-topk-noidx (Dc, g, l) for |D|−m
graphs, which also makes the index construction fast.

Vary l: We test the index size and the index construction time
for OPIndex and GSIndex when varying the maximum number of
groups l that each graph can belong to. The results are shown in
Fig. 9(c) and Fig. 9(d) respectively. The results on both index size
and construction time are consistent with the theoretical results in
Lemma 5.3 and Lemma 5.4. GSIndex is larger and needs more
construction time in all cases.

Vary Database Size |D|: Fig. 9(e) and Fig. 9(f) show the index
size and index construction time for all three indexes DPIndex,
OPIndex and GSIndex when varying the number of graphs |D| in
the database. The index sizes for all indexes increase linearly with
respect to |D|. The processing time for all indexes also increases
when |D| increases. GSIndex is the most costly one among all in-
dexes on both index size and construction time. Overall all indexes
are very compact. The largest size is 10 megabytes for GSIndex
when |D| = 100K.

7. RELATED WORK
Graph query processing has been studied a lot in recent years. Ex-
isting works on graph query processing can mainly be divided into
three categories, namely, subgraph/supergraph containment query,
subgraph/supergraph similarity query and full graph similarity query.

Subgraph/supergraph containment query aims to find graphs that
contain the query graph or are contained by the query graph in a
graph database. There are a lot of algorithms and indexing tech-
niques proposed for subgraph query. Most of them use a min-
ing based approach, e.g., gIndex [24], FG-Index [7], Tree+∆ [27],
SwiftIndex [16], TreePi [25], etc. Others use non-mining based ap-
proach, e.g., GraphGrep [18], C-Tree [9], gCode [28], and GDIn-
dex [22]. An extensive comparison and evaluation of these algo-
rithms can be found in iGraph [8]. There have been several recent
works that focus on answering supergraph query, e.g., CIndex [5],
GPTree [26], and IG [6].
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Subgraph/supergraph similarity query is a variant of the subgraph/
supergraph containment query that allows the missing of edges or
nodes in the query result. Several approaches, such as C-Tree [9],
GDIndex [22], Grafil [23], and Grafil+ [15] are proposed for sub-
graph similarity search. A recent work [17] has been proposed to
solve the supergraph similarity search problem. Among them, C-
Tree [9] measures the similarity using a heuristic graph mapping
method and does not support exact MCS based similarity query.
[22] aims to find subgraphs with the minimum number of vertex
and edge mismatches bounded by a given threshold. The similar-
ity measures of [15], [17], and [23] are based on the MCS of the
query and the database graph. They focus on a threshold based sub-
graph/supergraph similarity query which can not be used to answer
the top-k graph similarity query studied in this paper.

Full graph similarity query aims to find graphs that are similar to
the query graph. There are two categories based on different simi-
larity measures. The first category is to use the feature-based mea-
sure, in which domain-specific elementary structures are first ex-
tracted as features and the similarity of two graphs is measured by
the number of common features they have. A lot of feature ex-
traction methods have been developed in [24] [7] [27] [16] [25]
[23] and techniques of feature based similarity search are summa-
rized in [21]. The second category is to use the kernel-based mea-
sure where similarity is defined using a graph kernel function based
on walks [11], cyclic patterns [10] or h-hop neighbors [20]. Both
the feature-based approach and kernel-based approach only pro-
vide a very rough measure on structure similarity since they lose
the global structural connectivity of two graphs.

Algorithms for computing the maximum common subgraph (MCS)
of two graphs have been extensively studied. A lot of related work
on maximum common subgraph can be found in [13] [2] [3] [12]
[19] [1] [4] and [14]. Our work is different from these approaches,
because we aim at reducing the number of MCS computations rather
than making an MCS computation faster.

8. CONCLUSION
In this paper, we study to find top-k similar graphs for a query
graph in graph databases. Existing solutions are all threshold based
subgraph or supergraph similarity search, which cannot be used to
solve our problem properly. We introduce a new graph distance
measure using the maximum common subgraph (MCS), which are
more accurate than the feature based measures by considering the
global structures. In order to reduce the number of MCS compu-
tations, which is NP-hard, we propose two distance lower bounds
with different tightness and computational costs to be used in prun-
ing unqualified candidates. We further introduce a triangle property
to lower bound the graph distance. We show that the triangle prop-
erty can be efficiently and effectively used in pruning with the help
of an index. We design three variants of the index with different
trade-offs between construction cost and pruning power. We con-
ducted extensive performance studies using a real dataset to test our
approaches.
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