
PeerTrack: A Platform for Tracking and Tracing Objects in
Large-Scale Traceability Networks

Yanbo Wu, Quan Z. Sheng, Damith Ranasinghe and Lina Yao
School of Computer Science

The University of Adelaide, SA, 5005, Australia
{yanbo, qsheng, damith, lina.yao}@cs.adelaide.edu.au

ABSTRACT
The ability to track and trace individual items, especially through
large-scale and distributed networks, is the key to realizing many
important business applications such as supply chain management,
asset tracking, and counterfeit detection. Unfortunately, enabling
traceability across independent organizations still poses significant
challenges in dealing with large volume of data and sovereignty of
the participants. This paper describes PeerTrack, a scalable plat-
form for efficiently and effectively tracking and tracing objects in
large-scale traceability networks. With a novel data model, a DHT-
based indexer, and a distributed query processor, PeerTrack pro-
vides an environment where traceability applications can share data
across independent organizations in a peer-to-peer fashion. This
paper presents the motivation, system design, implementation, and
a proof-of-concept system of the PeerTrack platform.

1. INTRODUCTION
Traceability refers to the capability of an application to track and
trace the state (e.g., location) of an object, including discovering
the information of its current and past state, as well as estimat-
ing the information of its future state. Traceability is essential to
a wide range of important business applications such as manufac-
turing control, logistics of distribution, product recalls, and anti-
counterfeiting [6].

Recent advances in sensor and RFID (radio-frequency identifica-
tion) technologies make automatic tracking and tracing possible
in large-scale applications (e.g., nation-wide supply chain man-
agement across companies). An emerging technique that targets
large-scale traceability is the so called “Networked RFID” [5, 6].
The basic idea behind the Networked RFID is to realize a “data-
on-network” system, where RFID tags contain an unambiguous ID
and other data pertaining to the objects are stored and accessed over
the Internet. With “Networked RFID”, traceability applications an-
alyze automatically recorded identification events to discover the
current location of an individual item. They can also retrieve his-
torical information, such as previous locations, transportation time
between locations, and time spent in storage.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2012, March 26–30, 2012, Berlin, Germany.
Copyright 2012 ACM 978-1-4503-0790-1/12/03 . . . $10.00

However, enabling traceability is not a single layer problem [9].
Large-scale global networks have the potential to generate unprece-
dented amounts of data related to individual objects. An important
challenge centers on the efficient management and sharing of this
data in traceability applications. An obvious solution is to publish
all data collected within each organization to a central data ware-
house. Unfortunately, this approach has several severe drawbacks.
Firstly, object movement and related data are valuable business in-
formation that companies may be very reluctant to put in a shared
central warehouse. Secondly, such an approach has very limited
scalability and is not feasible for large-scale applications where the
amount of data collected could be enormous [1, 2, 6, 8]. The sys-
tem architecture for data gathering, processing and sharing must
be scalable in order to deal with the data collected from networked
systems. For efficient processing and storage, data models must
be carefully designed. To allow business users making useful deci-
sions and analysis in a timely manner, different types of traceability
queries as well as event-driven notification services must be conve-
niently supported.

Motivated by these concerns, we have developed the PeerTrack
platform for efficiently tracking and tracing objects in large-scale
traceability networks. PeerTrack features a pure P2P architecture
for data and query processing. In particular, we have designed a
novel data model for traceability networks, which eliminates the
data dependencies between organizations. Important tracking and
tracing queries have been implemented as built-in features, mean-
while we provide the flexibility of developing add-in queries. In
the following sections, we will overview the design and implemen-
tation of the platform, and sketch the proposed demonstration. For
the details of the data model, architecture and data models, inter-
ested readers are referred to [10].

2. SYSTEM OVERVIEW
PeerTrack (see Figure 1) exploits the distributed hash table (DHT)
infrastructure Chord [7] to manage peers and route messages. Each
organization is viewed as an equal peer of the network. Within a
peer, applications can access local data, as well as remote data of
other peers using the tracking engine via the Internet. The track-
ing engine includes a traceability data model, an indexer, and a
distributed query processor. Developers can implement various
kinds of traceability applications using the generic APIs built on
top of these modules. To support event-driven services (e.g., noti-
fications), a rule engine has been developed. It monitors an event
queue which is public to other modules. A visual tool, namely the
rule editor, facilitates an easy definition of rules.

PeerTrack relies on a generic data model for moving objects in

586

Figure 1: The PeerTrack Architecture

large-scale networks, namely “a Model for mOving Objects in Dis-
crete Space” (MOODS). A discrete space refers to a finite set of
nodes which represents all the organizations in the network. MOODS
eliminates the data dependencies between organizations by storing
the information about object movements at the nodes where the ob-
ject has been transported. In particular, PeerTrack introduces the
Information of Object Path (IOP), which includes properties that
indicate the departure and arriving information of objects. With
IOP, each node maintains segments of objects’ moving paths and
uses this information to expedite P2P queries in the network.

The indexer is the key to acquiring IOP. It indexes an observed ob-
ject and its latest location (i.e., the last node where the object is
observed) at a deterministic node called the gateway node. The
gateway node is solely determined by the id of the object thanks
to the determinism of the DHT. When the object is observed at a
new node Nd, the node sends the object’s id to its gateway node via
the indexer. The indexer at the gateway node uses this information
to update its index and sends a message back to Nd, notifying it
the node where the object comes from (i.e., Ns). Meanwhile, the
indexer also sends a message to Ns, informing the node that the
object has arrived at Nd. As a result, the IOP is established, which
is essentially a distributed double linked list. To reduce the index-
ing overhead for large-volume objects, we enhance the indexing
algorithm by grouping the objects according to the prefixes of their
hashed ids. The scheme to determine the optimal length of prefixes
for grouping is carefully chosen in regard to both scalability and
load balancing. Our detailed design of the indexer can be found
in [10].

The fundamental design principle of the query processor is to pro-
cess a query locally to the extent possible and, if necessary, en-
hance it using locally available information before forwarding it to
appropriate remote organizations. Due to the introduction of IOP in
MOODS, we do not have to flood the query to all the nodes in the
network. Instead, the query is processed following the IOP link. As
a result, the performance of query processing can be significantly
improved. To answer a tracking query, i.e., finding the current loca-
tion of an object, the query processor simply contacts the gateway
node for the object via Chord. A tracing query, i.e., finding the
pedigree of an object, can be answered by first tracking the object

(i.e., finding its current location) and then simply tracing back the
list using the IOP information.

3. IMPLEMENTATION
The PeerTrack platform provides an environment for supporting
the development of distributed and large-scale traceability appli-
cations. It offers two interfaces to application developers, namely
the query interface and the rule interface, in the form of Java API.
The query interface accepts queries and executes them either lo-
cally and/or remotely at other nodes. The rule interface can be used
to specify business rules for event-driven services (e.g., out-of-
stock alerts). These two interfaces are built on top of PeerTrack’s
main modules, namely the tracking engine and the rule engine. We
adopted the open source Java project OpenChord1 as the implemen-
tation of Chord [7]. It supports storing all serializable Java objects
within the DHT.

The event filterer and cleanser have been implemented to filter and
clean the data stream collected from various data sources, e.g.,
RFID readers and barcode readers. It mainly implements the al-
gorithms proposed in [3].

The indexer is transparent to the application developers. It imple-
ments the group indexing and IOP acquisition algorithm described
in Section 2. The indexer reads data from the stream processor peri-
odically. Objects observed within a cycle are classified into groups
according to the prefixes of their hashed ids. We use SHA-1 as the
hash function for its uniformity. The length of the prefixes is de-
termined by the function log2 S + log2 log2 S, where S is the size
of the network, represented by the number of nodes within the net-
work. We have conducted extensive experiments to show that the
function can guarantee both scalability and good load balancing.
The anti-entropy aggregation protocol proposed in [4] has been im-
plemented to estimate the value of S.

The query processor accepts queries from both the application layer
and the DHT layer (rewritten from other nodes). A Dispatcher
class has been implemented to pick up a corresponding registered
processor instance for an incoming query. All queries and their
processor instances are implemented as plug-ins. For example, for
a tracking query TrackQuery that locates an object, a
TrackQueryProcessor is implemented. Both classes are reg-
istered in the query processor via the register(Query q,
Processor p) interface at runtime, where Query and
Processor are the Java classes for all queries and processors.
This mechanism ensures high flexibility and makes it possible to
dynamically upgrade the system without rebooting. We have im-
plemented some important traceability queries. A special imple-
mentation is the RewritableQuery class, which represents
queries to be rewritten for executing at other nodes via DHT inter-
face. Tracking and tracing queries are subclasses of the
RewritableQuery. The query objects are all serializable for
seamless integration with OpenChord.

The rule engine is built on top of JBoss Drools2, which includes
three main modules, namely Drools Guvnor, Drools Fusion, Drools
Expert. We used Drools Fusion and Drools Expert to build our rule
engine. Drools Guvnor is used as the knowledge base for storing
and organization business contexts and the defined rules. The rule
engine monitors an event queue which receives events from other

1http://open-chord.sourceforge.net/
2http://www.jboss.org/drools

587

Figure 2: Screenshot of the Rule Editor

modules in PeerTrack and triggers corresponding actions if the con-
ditions are satisfied. The rule editor (Figure 2) is developed to
provide a visual interface for efficiently defining and editing busi-
ness rules. It also contains a knowledge base that assists users who
do not have specialized knowledge to define business rules with a
semi-structured natural language. The rule editor supports the se-
mantic specification of rules and automatically translates the visual
representation of rules to a specified rule language (in this case,
Drools Rule Language).

4. DEMONSTRATION SCENARIO
We have developed several traceability applications on top of the
PeerTrack platform, including mobile asset management and sup-
ply chain management. In this paper, we will focus on presenting a
mobile asset management system. This system has been deployed
at the International Linen Service PTY LTD. (ILS), a company that
provides a suite of linen services for over 200 customers (e.g., ho-
tels, hospitals, and aged-care homes) in South Australia. Each cus-
tomer has one or more delivery locations (nodes). In this system,
trolleys (objects) are reusable containers for linens and they are at-
tached with RFID tags. They are transported among nodes and can
be detected by RFID readers when they arrive at a delivery loca-
tion. An order is simply an aggregation of several trolleys for the
same customer. The mobile asset management system developed
from the PeerTrack platform offers an automated tracking and trac-
ing service with the capability to monitor and control ILS logistical
operations in real-time over 300 different locations.

We also developed a visual monitoring tool that has been deployed
at each customer’s site, together with the P2P services. Figure 3
shows the screenshot of the visualization tool deployed at ILS. We
use this application as the demo to show the advantages of our Peer-
Track platform.

Tracing and Tracking. Tracing a trolley can be initiated using the
“Order/Object Search Tool” panel. After a user inputs the trolley id
and clicks the “Trace Trolley” button, the visualization tool creates
TraceTrolleyQuery, which is a subclass of the TraceQuery,
and sends it to the PeerTrack platform. PeerTrack traces it to the
original location of the trolley following the IOP stored in each
node along its moving path. The search result is shown as high-
lighted lines on the map of the query initiator.

Similarly, for tracking a trolley, the TrackTrolleyQuery is
sent to the corresponding gateway node via the underlying struc-
tured overlay. The gateway node which maintains its latest location
then sends back the node id of the current location of the queried
trolley. The result is shown at the query initiator as an informa-
tional bubble (see the one at the left top of the “Global Delivery
Network” map in Figure 3).

With this architecture, the tracking and tracing can be done with
minimum number of network calls. In the implementation, to fur-
ther reduce the network cost, we cache the IP address of customers
so that in most cases the underlying P2P routing cost is eliminated.

Inventory monitoring. The query processor offers facilities for
developer to implement various kinds of queries and register them
into the system. To realize quasi-real-time inventory monitoring,
an InventoryQuery class (which is subclass of
RewritableQuery) and its processor
InventoryQueryProcessor are implemented. The former
defines the query parameters including the node to monitor and the
refreshing interval. When the query is issued to the query proces-
sor, an InventoryQueryProcessor instance is initialized for
query processing. Specifically,
the InventoryQueryProcessor periodically sends the
InventoryQuery object via OpenChord to the monitored node.

When the node icon is clicked, a context menu is popped up with
the option to start monitoring the node. The inventory is displayed
near the node (e.g., the number “50”, “100”) and refreshed at a
certain interval.

Real-time Monitoring. The users can define various kinds of rules
in PeerTrack and get notified when an event of interest occurs. The
rules for successful and incorrect deliveries have been created with
the rule editor (Figure 2 shows the definition for the “Successful
Delivery” rule). When the successful delivery rule is triggered,
i.e., a trolley is delivered to the correct destination, the “Real-time
Order/Object Status Monitoring” area in Figure 3 is updated with
the latest information. Meanwhile, the “Global Delivery Network”
map is updated by showing an icon at the destination of the deliv-
ery.

This is realized by the indexer and the rule engine. As part of the
IOP acquisition process, the indexer will be notified by the gateway
node after an object has arrived at another node. This notification,
as an event, is also sent to the event queue which is monitored by
the rule engine. In the application, we also implemented the “In-
ternal Workflow Monitoring” sub-system that monitors the internal
movements of the trolleys.

5. CONCLUSION
In this paper, we have presented PeerTrack, a comprehensive plat-
form for efficiently and effectively tracking and tracing objects in
large-scale and distributed networks. PeerTrack relies on a novel
data model, a DHT-based indexer and a distributed query proces-
sor. The platform has been validated by successfully creating a
number of traceability applications. Currently we are extending the
platform to support queries on predicting future status of objects.
This typically involves overcoming uncertainty issues introduced
by traceability applications using statistical and probabilistic tech-
niques. Interested readers are referred to the project website3 for
3http://www.cs.adelaide.edu.au/peertrack

588

�������� ���	
��� ��������

������ ������� ������	

�������� ������������ ������ �������� ������������ ����� !���

Figure 3: Visualization Tool

more details.

6. REFERENCES
[1] R. Agrawal, A. Cheung, K. Kailing, and S. Schönauer.

Towards Traceability Across Sovereign, Distributed RFID
Databases. In Proc. of the 10th Intl. Database Engineering
and Applications Symposium (IDEAS’06), Delhi, India,
December 2006.

[2] M. J. Franklin, S. R. Jeffery, S. Krishnamurthy, F. Reiss,
S. Rizvi, E. Wu, O. Cooper, A. Edakkunni, and W. Hong.
Design Considerations for High Fan-in Systems: The HiFi
Approach. In Proc. of the Second Biennial Conf. on
Innovative Data Systems Research (CIDR’05), Asilomar,
CA, USA, January 2005.

[3] S. R. Jeffery, G. Alonso, M. J. Franklin, W. Hong, and
J. Widom. Declarative Support for Sensor Data Cleaning. In
Proc. of the 4th Intl. Conf. on Pervasive Computing
(Pervasive’06), Dublin, Ireland, May 2006.

[4] M. Jelasity and A. Montresor. Epidemic-Style Proactive
Aggregation in Large Overlay Networks. In Proc. of the 24th
Intl. Conf. on Distributed Computing Systems (ICDCS’04),
Washington, DC, USA, 2004.

[5] G. Roussos, S. S. Duri, and C. W. Thompson. RFID Meets

The Internet. IEEE Internet Computing, 13(1):11–13, 2009.
[6] Q. Z. Sheng, X. Li, and S. Zeadally. Enabling

Next-Generation RFID Applications: Solutions and
Challenges. IEEE Computer, 41(9):21–28, September 2008.

[7] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-to-Peer Lookup
Service for Internet Applications. In Proc. of the 2001 Conf.
on Applications, Technologies, Architectures, and Protocols
for Computer Communications, New York, NY, USA, 2001.

[8] S. Wu, S. Jiang, B. C. Ooi, and K.-L. Tan. Distributed Online
Aggregations. PVLDB, 2(1):443–454, 2009.

[9] Y. Wu, D. C. Ranasinghe, Q. Z. Sheng, S. Zeadally, and
J. Yu. RFID Enabled Traceability Networks: a Survey.
Distributed and Parallel Databases, 29(5-6):397–443.

[10] Y. Wu, Q. Z. Sheng, and D. Ranasinghe. Peer-to-Peer
Objects Tracking in the Internet of Things. In Proceedings of
the 40th International Conference on Parallel Processing
(ICPP’11), Taipei, Taiwan, 2011.

589

