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ABSTRACT

Time series analysis, as an application for high dimensional
data mining, is a common task in biochemistry, meteoro-
logy, climate research, bio-medicine or marketing. Similarity
search in data with increasing dimensionality results in an
exponential growth of the search space, referred to as Curse
of Dimensionality. A common approach to postpone this ef-
fect is to apply approximation to reduce the dimensionality
of the original data prior to indexing. However, approxim-
ation involves loss of information, which also leads to an
exponential growth of the search space. Therefore, index-
ing an approximation with a high dimensionality, i.e. high
quality, is desirable.

We introduce Symbolic Fourier Approximation (SFA) and
the SFA trie which allows for indexing of not only large data-
sets but also high dimensional approximations. This is done
by exploiting the trade-off between the quality of the ap-
proximation and the degeneration of the index by using a
variable number of dimensions to represent each approxim-
ation. Our experiments show that SFA combined with the
SFA trie can scale up to a factor of 5–10 more indexed di-
mensions than previous approaches. Thus, it provides lower
page accesses and CPU costs by a factor of 2–25 respect-
ively 2–11 for exact similarity search using real world and
synthetic data.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Search pro-
cess; G.3 [Probability and Statistics]: Time series ana-
lysis; E.1 [Data Structures]: Trees

General Terms

Algorithms, Performance

Keywords

Time Series, Data Mining, Symbolic Representation, Dis-
cretisation, Indexing.
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1. INTRODUCTION
Time series databases, resulting from recording data over

time, range from meteorological data like sediments from
drill holes [20], financial data like stock prices or product
sales, biomedical and biochemical data like ECG signals [14]
or cellular networks [23]. Unlike exact search, similarity
based search finds results that are similar to a query based
on a similarity metric. Examples of similarity queries in-
clude:

- find all stocks that show similar trends
- find the patients with the 10 most similar ECGs
- find all products with a similar sales pattern.
A time series consisting of n measured values can be seen

as a point in n-dimensional space, where the i-th measured
value represents the i-th dimension. By indexing this n-
dimensional point using a spatial index, the problem of find-
ing similar time series is reduced to finding nearby points
in n-dimensional space.
Indexing high dimensional data is a considerable chal-

lenge, as spatial index structures, like the R-Tree [3, 13]
suffer from a phenomenon called the Curse of Dimension-
ality : with increasing dimensionality of the search space,
the performance of similarity based queries on the index be-
comes worse than a linear scan of all data. Spatial index
structures usually degenerate with 10–20 dimensions [12].

Work in [1, 11] introduces the idea of dimensionality re-
duction prior to indexing, and proved that, by using a lower
bounding distance measure, queries are guaranteed to return
the exact same result in reduced dimensional search space
as if they were executed in the original space. In order to
reduce the dimensionality of a time series an approximation
technique is applied, effectively reducing dimensionality of
the time series by 10:1 to 50:1. By use of an approximation
technique the Curse of Dimensionality is shifted to 10–20
indexable dimensions of the approximations. The problem
with approximation is that information from the original
time series is lost. A goal of approximation is to find repres-
entations of the original data, so that each representation
is distinct. For example, similar time series will have the
same representation after an approximation if the reduced
dimensionality is too low.

For two reasons the choice of the optimal dimensionality
of the approximations is difficult:

1. Firstly, a higher dimensionality of the approximations
helps to find distinct representations of the original
time series. However, a spatial index degenerates ex-
ponentially with an increase of dimensions.
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2. Secondly, with a high dimensionality we overrepresent
dissimilar time series, while with a low dimensionality
we underrepresent similar time series. Both of these
issues impact the index negatively up to a point where
a similarity search results in a sequential scan of the
whole database.

We propose a technique which uses a variable number of
dimensions for indexing time series approximations in or-
der to postpone the impact of both issues. The idea is to
group similar approximations based on a small common pre-
fix. The length of the prefix is increased by 1 until each ap-
proximation in distinct. This can be implemented by using
a trie, which is built over a set of strings. This introduces
the problem of how to represent a time series as a string.
Furthermore, it must be possible to extend the length of
an approximation on the fly without the need to recalculate
the approximation. This is why we introduce a symbolic
representation based on the frequency domain as opposed
to the spatial domain. In the frequency domain each di-
mension contains approximate information about the whole
time series. By increasing the dimensionality we can add
detail, thus improving the overall quality of the approxim-
ation. In the spatial domain we have to decide on a length
of the approximation in advance and a prefix of this length
only represents a subset of the time series.

In this paper we introduce a novel symbolic representa-
tion called Symbolic Fourier Approximation (SFA) and the
SFA trie, an index structure utilising the properties of the
frequency domain nature of SFA. As part of this technique
we

• propose a symbolic representation based on Discrete
Fourier Transform (DFT) for approximation and show
the benefits compared to other techniques such as Piece-
wise Aggregate Approximation (PAA),

• introduce a novel discretisation technique called mul-
tiple coefficient binning (MCB) which improves prun-
ing of the search space during the query execution,

• provide a proof of an Euclidean lower bounding dis-
tance measure for SFA which guarantees that the query
results of a similarity search in SFA reduced space are
the same as in the original space,

• introduce the SFA trie, a modification of a prefix tree
built from the strings of the SFA approximations, and

• show through experiments that SFA and the SFA trie
scale to a factor of 5–10 higher indexed dimensions
than previous approaches and can index very large
datasets. Furthermore, the SFA trie is better than
previous approaches by up to a factor of 2–25 in terms
of exact search performance on real and synthetic time
series datasets.

The rest of the paper is organised as follows: Section 2 be-
gins with related work and background material. Section 3
introduces our novel discretisation technique, our symbolic
representation and the lower bounding distance measure.
Section 4 presents the SFA trie. In Section 5 we perform
exhaustive experiments on pruning power and indexing per-
formance. In Section 6 we give a conclusion and suggest
future work.

2. BACKGROUND AND RELATED WORK

2.1 Similarity Search in High Dimensions
A time series C = c1 . . . cn of length n can be represented

by a point in n-dimensional space. Finding similar time
series is thus reduced to finding similar or nearby points in
a high dimensional space.

The similarity of two points Q and C is expressed in terms
of a real value using a distance measure Dtrue(Q,C) → R.
The distance measure is application dependent. Similarity
queries include nearest neighbour or epsilon-range queries,
for example.

Definition 1. k-nearest neighbour (k-NN) query: a k-
NN query for Q is a similarity query in n-dimensional space
DSn, which returns a subset NNk(Q) ⊆ DSn that contains
k objects with the following condition:
∀tǫNNk(Q), ∀oǫDSn−NNk(Q) : Dtrue(t, Q) ≤ Dtrue(o,Q).

Work in [1, 11] introduced a general framework called GEM-
INI for indexing high dimensional data: A time series C =
c1 . . . cn is mapped into a much lower dimensional space by
the use of an approximation technique, called dimensional-
ity reduction. This much lower dimensional space is indexed
using a spatial index and a similarity query can be answered
by traversing the index.

Approximation involves loss of information and the dis-
tance of any two points in original space is not preserved in
lower dimensional space. To guarantee the absence of false
dismissals, we have to define a lower bounding distance meas-
ure DIndexSpace(Q,C) in lower dimensional space, which un-
derestimates the true distanceDtrue(Q,C) between the time
series Q and C in original space. This property is called the
lower bounding lemma [11]:

DIndexSpace(Q,C) 6 Dtrue(Q,C) (1)

Similarity search can be divided into two categories:

1. whole matching : given N time series and a query for
Q, all of length n, find the time series most similar to
Q according to distance measure Dtrue.

2. subsequence matching : given a short query for Q of
length m and a long time series, find all subsequences
within the long time series similar to Q.

Subsequence matching can be reduced to whole matching
by using a sliding window, which is shifted along the long
time series to extract time series of length m which are then
compared to Q.

2.2 Dimensionality Reductions
Dimensionality reductions can be divided into two groups:

symbolic and numerical. In these methods a time series is
represented as a sequence of discrete values (symbols) or
real values respectively. Since symbolic representations are
essentially a character string, they can also be used in data
structures and algorithms in the field of data-mining such
as tries, hashing, Markov models, string-matching [19]. Fur-
thermore, they allow for indexing large datasets [5, 26].

The process of transforming a time series into a symbolic
representation can be generalised to two parts:

1. approximation is applied to map a time series into
lower dimensional space resulting in a vector of real
values, and
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The SFA Euclidean lower bounding distance between a
DFT representation QDFT = (q′1 . . . q

′
w) and an SFA rep-

resentation CSFA = (c′′1 . . . c′′w) is calculated by exchanging
the pairwise difference of the numerical values in Eq. 2 by
a disti function, which measures the distance between the
i-th symbol and the i-th numerical value:

D2
SFA(CSFA, QDFT ) ≡ 2

∑

i=2

disti(c
′′
i , q

′
i)

2 (3)

The distance disti between a numerical value q′i and a
symbol c′′i = symbola, represented by its lower and upper
discretisation breakpoints βi(a− 1) and βi(a), is defined as
the distance to the lower discretisation breakpoint if q′i is
smaller or the upper discretisation breakpoint if q′i is larger:

disti(c
′′
i , q

′
i) ≡











0, if q′iǫDIi(a)

βi(a− 1)− q′i, if q′i < βi(a− 1)

q′i − βi(a), if q′i > βi(a)

(4)

Figure 4 (right) illustrates the difference between the iSAX
dist and the MCB disti definition. MCB uses different
breakpoints while iSAX uses the same breakpoints for each
symbol.

3.5 Proof of Correctness
To prove correctness of SFA approximation using Eq. 3

and Eq. 4, we have to show that the Euclidean lower bound-
ing lemma holds for SFA.

Claim 1. The distance measure D2
SFA for two time series

QDFT = q′1 . . . q
′
w and CDFT = c′1 . . . c

′
w, CSFA = c′′1 . . . c′′w

holds the Euclidean lower bounding lemma:

D2
SFA(CSFA, QDFT ) 6 D2

True(C,Q)

Proof. iSAX allows Euclidean lower bounding using dis-
tance dist(c, q). It is obvious, following proof [19], that the
distance disti(c

′′
i , q

′
i) using MCB breakpoints is still always

smaller than the distance of two DFT -transformed coeffi-
cients q′i and c′i:

dist2i (c
′′
i , q

′
i) ≤ (c′i − q′i)

2

This yields

D2
true(C,Q) > D2

DFT (CDFT , QDFT ) (5)

= 2
∑

i

(c′i − q′i)
2 (6)

> 2
∑

i

disti(c
′′
i , q

′
i)

2 (7)

= D2
SFA(CSFA, QDFT ) (8)

where Eq. 5 is proven and Eq. 6 is defined in [24].

3.6 Runtime Complexity

Claim 2. The transformation of N SFA words of length
w over an alphabet of size c from a set of N time series of
length n has a complexity of O(N · n log n).

Proof. The calculation of the N DFT approximations
requires O(N · n log n) operations, resulting in N approx-
imations of length w. The calculation of the MCB discret-
isation intervals requires O(Nw) operations, as it involves
scanning all approximations of length w. The N SFA words
require Nw lookups in the breakpoints for the c intervals.

Assuming we use binary search for those lookups this res-
ults in O(Nw · log c) operations. This leads to a total of
O(N · (n log n+w+w log c)) = O(N ·n log n) operations for
N time series (Table 1).

This means the transformation is dominated by the N DFTs
and there is negligible impact by the SFA word length w or
alphabet size c.

Technique DFT SFA PAA SAX/iSAX

Time O(Nn logn) O(Nn logn) O(Nn) O(Nn)

Table 1: Asymptotic runtime complexity of dimen-

sionality reductions for N approximations of time

series of length n.

3.7 Memory Complexity

Claim 3. Given N SFA words of length w, SFA requires
O(Nw) bytes for an alphabet of size 256.

Proof. The memory footprint of SFA consists of the size
of the approximations and the size of the lookup tables. An
alphabet of size 256 can be encoded in log2 256 bits or 1
byte. Thus, an approximation of length w requires w bytes.
Given N time series this results in Nw bytes. Additionally
SFA requires an overhead of w(c−1) ·8 bytes for storing the
w lookup tables containing the c−1 real-valued breakpoints
with 8 bytes (Double) each. Since these lookup tables are
stored only once, the overhead in terms of memory is negli-
gible for large N , resulting in a total complexity of O(Nw)
bytes.

Claim 4. SFA has the same asymptotic memory com-
plexity as iSAX.

Proof. For an alphabet of size 256 iSAX/SAX requires
w log2 256 bits or w bytes for each approximation. Addition-
ally iSAX requires a small overhead of (c−1) ·8 bytes for the
lookup table containing the c − 1 real-valued break points
with 8 bytes (Double) each. Following the same reasoning
as for SFA, this overhead is negligible for large N , resulting
in a total complexity of O(Nw) bytes.

In case of numerical dimensionality reductions each real-
valued coefficient of the approximation is stored in a Double,
which allocates 8 bytes, resulting in a total of w · 8 bytes for
each approximation. Symbolic representations allow for in-
dexing terabyte sized data [26, 5] due to this 8-fold lower
memory footprint by utilising discretisation on top of ap-
proximation (Table 2).

Technique Numerical SFA SAX/iSAX

Time O(Nw8) O(Nw) O(Nw)

Table 2: Asymptotic memory complexity in bytes

of dimensionality reductions for N approximations

of length w and an alphabet of size 256 for symbolic

representations SFA and SAX/iSAX.

4. INDEXING SFA
The purpose of indexing is to partition the search space

into equal-sized groups containing similar entries and to
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Algorithm 1 SFA Trie Insertion

function Insert(T,TSFA, TDFT , i, node)
1: child = node.getChild(TSFA[i])
2: if (child != null)
3: child.adaptMBR(TDFT )
4: if (child.isInternal())
5: Insert(T, TSFA, TDFT , i+ 1, child)
6: else if (child.isLeaf())
7: child.add(T )
8: if (child.split())
9: child.setInternal()
10: foreach TS in child
11: Insert(TS, TSSFA, TSDFT , i+ 1, child)
12: else
13: newchild = new Leaf
14: node.add(TSFA[i], newchild)
15: newchild.add(T )

adapt the MBR of that child using the DFT approximation
(line 3).

If that child is an internal node (line 4), we recursively
insert the time series and increase the length of the prefix
by one. If that child is a leaf node (line 6), we add the
time series and check if the insertion caused the leaf to split
(line 8). For splitting, we simply flag the child node as an
internal node, and reinsert all time series TS into that node
(line 9–11), causing the length of the prefix to grow by one.

If the child node does not exist (line 12–14), we create a
new child and add the time series.

4.1.2 Complexity of Insertion

Claim 5. The total complexity for approximation (SFA)
and insertion (SFA trie) of a time series of length n is
O(n log n+ w(w + th)) operations.

Proof. The number of operations for insertion is bounded
by the depth of the SFA trie, which is limited by the SFA
word length w. Thus, descending the SFA trie to find the
corresponding leaf node requires O(w) operations, assum-
ing we use a hash for storing (label,edge)-pairs with O(1)
lookup (line 1). Adjusting the MBRs (line 3) requires O(w)
operations for each level of the trie, due to the need to calcu-
late the minimum and maximum value for each dimension.
Splitting (line 10-11) is applied locally and a maximum of th
time series are reinserted causing the MBRs to adjust. This
leads to a total of O(w · (w+ th)) operations for insertion in
case of a split and O(w2) otherwise. This results in a total
complexity for approximation and insertion of a time series
of length n of O(n log n+ w(w + th)) operations.

4.1.3 SFA Trie - MBR distance

During query processing, the minimal distance of a query
to an MBR is calculated. An MBR consists of real-valued
upper and lower bounds: MBR=((l1, u1), . . . , (lw, uw)). The
distance between a DFT representation QDFT = (q′1 . . . q

′
w)

and an MBR is defined as a sum over all dimensions similar
to SFA (Eq. 3):

mindist2(MBR,QDFT ) = 2
∑

i=2

distmbr((li, ui), q
′
i)

2

The distance between a DFT coefficient q′i and a tuple
(li, ui), is defined as the distance to the lower bound, if q′i is
smaller, and the distance to the upper bound, if q′i is larger.

Algorithm 2 Exact k-Nearest-Neighbour Search

function exactKNNSearch(Q, QDFT , k)
1: PriorityQueue queue, Queue result
2: PriorityQueue temp = approximateSearch(Q,QDFT ,k)
3: queue.push(root, 0)
4: while (!queue.isEmpty()) do
5: (minimum, distance) = queue.RemoveMinimum()
6: for all time series T in temp such that \

Dtrue(T,Q) 6 distance do
7: temp.remove(T )
8: result.insert(T )
9: if |result| = k return result
10: if minimum is internal node
11: tempDist = temp.get(k-|result|).distance
12: for all node in minimum.children do
13: nodeDist = mindist(node.MBR,QDFT )
14: if nodeDist<tempDist
15: queue.push(node,nodeDist)
16: else if minimum is leaf node
17: signals=retrieve raw time series from hard disk
18: for all time series T in signals
19: temp.push(T,Dtrue(T,Q))
20: return result

We modify Eq. 4 by replacing breakpoints βi by the tuple
(li, ui):

distmbr((li, ui), q
′
i) ≡











0, if li 6 q′i 6 ui

li − q′i, if q′i < li

q′i − ui, if q′i > ui

(9)

4.1.4 SFA Trie: k-Nearest-Neighbour Exact Search

We introduce the k-NN exact search algorithm for SFA
based on the SFA trie. The algorithm is an adaptation of the
multistep 1-NN algorithm introduced in [26]. The algorithm
uses a candidate list which is generated by using mindist in
reduced space and later refined by using the original distance
Dtrue. In contrast to the multistep 1-NN algorithm it makes
use of an approximate search (line 2) and the pruning of
index branches based on that search result (line 14).

Input parameters are the query Q, the DFT approxim-
ation of the query QDFT and k. A priority queue queue
is used for index navigation and storage of the nodes hav-
ing the smallest distance in reduced space. Another priority
queue temp is used to store all raw time series currently
known. The queue result is used to store the k-NN of our
query. A time series is transferred from temp to queue (line
6-8) as soon as there are no index branches with a smaller
distance available (line 6-8).

The algorithm starts by performing an approximate search
(line 2) within the SFA trie. The approximate search ex-
ploits the fact that the nearest neighbours and the query
are likely to have the same SFA word. Therefore, we search
the leaf node with the same SFA word as the query and add
those time series to temp to enable pruning of the trie (line
14).

Starting with the root node of the index (line 3), we pop
the node having the smallest distance from queue (line 5).
If the node is an internal node and it’s distance is lower
than that of the best so far known time series in temp (line
13), we traverse and insert all child nodes and their mindist
into queue (line 10-15). The distance of the k-th best so far
known time series is used for pruning (line 11), which is the
(k − |result|)-th element in temp. If the node is a leaf node
(line 16), we retrieve the raw time series from disk (line 17)
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average improve in pruning power using iSAX as baseline, l = 256

coefficients

im
p
ro

ve
 i
n
 %

−20

−10

0

10

20

30

40

50

better

worse

4 6 8 10 12 14 16 18 20

variable
APCA
PAA
PLA
SFA
CHEBY
DFT

Figure 8: Average pruning power over 29 time series

datasets using iSAX as baseline (equals 0%) with

varying number of coefficients (4 to 20). Each bar

represents the average over 29 datasets.

of 2
|symbols|

for a value rang of [−1, 1].

We conclude that differences in the discretisation intervals
have a smaller impact on the tlb than the approximation
when the number of symbols gets large. However, for the
SFA trie high precision using small number of symbols is
required, e.g. 4–16 symbols. Thus, SFA is favourable over
SFA-Dep and iSAX. SFA is favourable over DFT because
of its 8-fold smaller memory footprint.

5.2 Pruning Power
Motivated by the high tlb for SFA, we compared SFA with

numerical and symbolic dimensionality reductions in terms
of pruning power, which is the benchmark for the perform-
ance of 1-NN queries. The pruning power P is defined as the
fraction of the database, that must be examined in reduced
space before the 1-NN to a query is found [15]:

P =
number of objects to be examined

total number of objects

Pruning Power Benchmark.
In this experiment we compare SFA to the most recently

published numerical dimensionality reductions. We use iSAX
pruning power as the base line and measure the relative im-
provement of the other dimensionality reductions given by
1 − Pcurrent

PiSAX
in percent, thus higher is better. The results

were averaged over 29 datasets for a time series length l of
256, an increasing number of coefficients to represent one
approximation and 256 symbols for SFA and iSAX.

Figure 8 shows that among the numerical representations
DFT shows the best pruning power. SFA is better than most
of the other numerical representations and slightly worse
than DFT. SFA is on average up to a factor of 0.40 better
than iSAX, that means on average 40% less time series have
to be inspected to find the 1-NN.

Overall SFA is not only better than iSAX but the res-
ults indicate that it is competitive with the best numerical
reductions. We conclude that these improvements are a res-
ult of the tight tlb achieved by MCB and DFT. On our
website [25] we show the pruning power for each of the 29
datasets.

DFT has the best pruning power. However, the advantage
of SFA over DFT is the symbolic representation and thus 8-
fold lower memory footprint. This allows for indexing large
and high dimensional datasets through the SFA trie. This
is what we will show in the next experiments.

5.3 Indexing High Dimensional Datasets
In these experiments we focus on two parameters:

1. Approximation length/word length: this represents the
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Figure 9: Mean wall clock time and page accesses

for real world and synthetic datasets.

indexable dimensionality by the multidimensional in-
dex structures.

2. Dimensionality of the datasets: this represents the
length of each raw time series.

Datasets.
We evaluate the performance of similarity search using

SFA, iSAX and DFT on 10 synthetic random walk data-
sets from [14] and the real world datasets presented in [26].
We chose DFT as a representative for the numerical reduc-
tions, as DFT was best in the tlb and pruning power exper-
iments. The synthetic datasets contain 100,000 overlapping
time series each. The real world datasets contain 2.500 to 1
million overlapping time series. For the experiments we par-
titioned the real world datasets into two groups small and
large, with 16 real datasets consisting of less than 100,000
time series and 11 real datasets consisting of more than
100,000 time series. We excluded npo141 and cl2fullLarge
from the large datasets, as their wall clock time and page
accesses are so high that they would dominate the other
measurements.

Setup.
We compare the SFA trie with the iSAX index and DFT

using R*-trees [3], a variant of the R-tree [13]. We set the
base cardinality (alphabet size) b = 4 and the threshold
th = 100 for the iSAX index and the fillfactor = 100 and
p = 0.80 for the R*-tree. We set the fanout of the SFA
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timeseries length l

Im
p
ro

ve
m

e
n
t 
fa

c
to

r 
o
ve

r 
iS

A
X

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

worse

better

256 512 1024 2048 4096

dataset

large

small

synthetic

Ratio of wall clock time using SFA trie vs. the iSAX index

timeseries length l

Im
p
ro

ve
m

e
n
t 
fa

c
to

r 
o
ve

r 
iS

A
X

0

2

4

6

8

10

12

14

16

18

20

22

worse

better

256 512 1024 2048 4096

dataset

large

small

synthetic

Figure 10: Ratio of page accesses and wall clock

time for the SFA trie vs. the iSAX index on the 37

datasets.

trie to 8 (equals 8 symbols) and the threshold th = 100.
We tested using 256 symbols for iSAX. Each index has a
maximum of 100 time series per leaf (same as in [26]). All
results have been averaged over 1000 10-NN queries.

A leaf node access accounts for one page access even if
the leaf node spans more than one disk block or if two leaf
nodes are stored in successive blocks on hard disk.

Impact of Approximation/Word Length.
In this experiment we test the scalability of the SFA trie

in terms of the length of the approximations, i.e. varying the
word length, which correlates with the indexable time series
length. This experiment was performed on large, small and
synthetic datasets. Figure 9 shows the scalability in terms
of the average wall clock time and the average page accesses
to answer one k-NN query for an increasing length of the
approximations. The minimum of each line shows the best
configuration for each index structure. The labels on the top
represent the time series lengths l. The labels on the right
represent the different datasets.

Time Series Lengths (left to right plots): The iSAX index
degenerates faster than the SFA trie when increasing l from
256 to 1024. The R*-tree is competitive to the iSAX index
on the small datasets but scales badly with increasing l on
the large and synthetic datasets.

X-Axis (Indexed Dimensions): Both measurements (wall
clock time and page accesses) show the same trend. The SFA
trie scales to 128 indexed dimensions without degeneration.
20 − 32 dimensions seem to be a good trade-off between
storage space and performance. This equals 60− 96 Bits for
SFA. Comparing the optimal number of indexed dimensions
for iSAX (4−8), DFT (8−16) and SFA (20−32), the SFA trie
is among the best indexes on the small and large real world
datasets and only scores worse on the synthetic datasets for
l = 256. iSAX performs well on random data, because the
iSAX discretisation is based on normal distribution.

In the SFA trie an increasing dimensionality of the ap-
proximations causes dense leaf nodes to split, but the gen-
eral structure of the trie remains unaffected as opposed to
the R*-tree or the iSAX index. This is why the SFA trie
improves when increasing the length of the approximation.

Indexing High Dimensional Datasets.
For this experiment we compare the symbolic representa-

tions in terms of indexing time series datasets with a high
dimensionality (very long time series). Only the optimal
number of coefficients, i.e. those which had the lowest data
page accesses, is compared for each dataset and representa-
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Figure 11: Number of graphs searched to find the

5-NN out of 1450 graphs. Each dot represents 1 to

10 queries. Only orbits with k < 106 are shown.

tion. In Figure 10 we illustrate the factor of improvement in
wall clock time and page accesses for the SFA trie over the
iSAX index for different time series lengths l. The factor is
given by timeiSAX

timeSFA
and ioiSAX

ioSFA
, meaning higher is better.

The largest dataset with 4096 dimensions and size 106

occupied approx. 32GB of memory.
On the large datasets the median improvement factor over

iSAX rises with increasing l from about 1.5 to 3 (time) and
to 2.8 (I/O). On some datasets the improvement is up to a
factor of 25 (11) in terms of I/O (time) for real (converted-
katafu) and 27 (22) in terms of I/O (time) for synthetic
datasets (synthetic 9 ). On the small datasets there seems to
be little influence of l on the wall clock time and the median
stays around a factor of 1.5, with some datasets showing
an improvement of up to 5 (foetal-ecg/power-data). On the
synthetic datasets and l = 256 the SFA trie shows a worse
wall clock time than the iSAX index. However, the median
improves to a factor of about 1.5 to 15.

We conclude that the SFA trie scales much better for in-
creasing time series lengths on large and synthetic datasets
due to the high number of indexable dimensions, as shown
in the previous experiment.

5.3.1 Use-Case: Cellular Networks

This experiment illustrates the necessity of indexing time
series with a length of up to 66000 dimensions. Compar-
ing cellular networks is a challenging problem that could
provide insight into biology and therapeutics. Thus, heur-
istics such as graphlet frequency distribution have been pro-
posed. In [23] two networks are similar, if they contain sim-
ilar subgraphs, named graphlets. A network is characterised
by up to 73 graphlet degree distributions GDD of graphlets
with 2–5 nodes. The GDD measures the number of nodes
N j

G(k) touching k graphlets at a particular node j in the
graphlets, called orbit. For a fixed orbit j the GDD can be
easily interpreted as a time series using k as the time axis
and N j

G(k) as the value. However, k might become arbit-
rarily large. The similarity Dj of two graphs G and H is
measured using the j-th normalised GDD:

Dj(G,H) = (
∑∞

k=1

[

N j
G(k)−N j

H(k)
]2
)1/2, jǫ[0 . . . 72]

We indexed different orbits for 1450 randomly generated
graphs from [10], consisting of 725 isomorph pairs, contain-
ing 20–600 nodes with eta=0.01. We indexed those orbits
with a k degree of less than 66000 using the SFA trie and
the iSAX index and did a 5-NN search, which is guaran-
teed to find the isomorph pair. Figure 11 shows that, due
to the high degree k of the GDD, the iSAX index falls back
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Figure 12: Comparison of index size and leaf node

occupancy with varying size of the synthetic dataset.
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Figure 13: Average wall clock time and average page

accesses to answer a 5-NN query with a varying size

of the synthetic datasets.

to a sequential scan of all graphs. Meanwhile, the SFA trie,
which was built using an SFA word length of 1024 up to
2048, scales well with the high degree k of the GDD and
on average 150–400 out of 1450 graphs are scanned to find
the 5-NN for an orbit. This is a factor of 3–7 improvement
compared to iSAX and sequential scanning.

5.4 Indexing Large Datasets (One Billion Time
Series)

In this experiment we focus on the size of the dataset,
i.e. the number of time series it contains.

Dataset.
iSAX and SFA qualify for indexing large sized datasets as

both are symbolic representations and exhibit an approx. 8-
fold lower memory footprint than numerical dimensionality
reductions. For this experiment, we indexed 106 to 109 syn-
thetic time series with a length of 256, resulting in 2GB to
2TB raw data. Each data point was generated using stand-
ard normal distribution N(0,1) and the recursive function:
xi+1 = N(xi, 1) (same as in [5]).

Setup.
We set the word length w = 8 and base cardinality b = 4

for the iSAX index and w = 20 for the SFA trie and a leaf
threshold th = 10000 for both. The iSAX index was imple-
mented using the optimised node splitting policy presented
in [5].

A leaf node access accounts for one page access even if
the leaf node spans more than one disk block or if two leaf
nodes are stored in successive blocks on hard disk.

Index Size & Leaf Node Occupancy.
In this experiment we measure the size of the index in

(1) the total number of nodes (including leaf nodes), (2) the
total number of leaf nodes, (3) the fillfactor of the leaf nodes
and (4) the size of the index on disk excluding the raw time
series data. Figure 12 shows that the SFA trie is a more
compact representation than the iSAX index and requires
a factor of 1.72 to 2.28 less nodes and 1.24 to 2.58 less leaf
nodes to represent the data. This leads to a 1.24 to 2.58
higher fillfactor of the leaf nodes. The SFA trie is also more
compact in terms of memory requirements, as it needs up
to a factor of 2.4 less main memory compared to the iSAX
index (excluding the raw time series data).

These results show that in terms of memory footprint the
SFA trie qualifies for indexing large datasets such as the
iSAX trie does [5, 26].

Similarity Search.
To benchmark the index structures, we compared the iSAX

index and the SFA trie in terms of leaf node accesses, which
is an objective measure for disk page accesses, and wall clock
time, which is the time spent for each similarity query in-
cluding disk page accesses. We did 100 5-NN queries each
and averaged the results.

This experiment (Figure 13) demonstrates that the SFA
trie requires less disk accesses and less wall time than the
iSAX index to answer a similarity query. On average the
SFA trie requires up to a factor of 2.45 less wall time and
up to a factor of 2.6 less leaf node accesses.

A 5-NN query on the 1000 M dataset took on average 52
minutes for the SFA trie and 80 minutes for the iSAX index.

Note that the use of N(0,1) for data generation is in favour
of iSAX, as iSAX discretisation is based on N(0,1). Still, the
SFA trie requires less page accesses and wall time than the
iSAX index.

6. CONCLUSIONS
We introduced the SFA trie and the symbolic represent-

ation SFA based on the discretisation of Discrete Fourier
Transform (DFT). The SFA trie exploits the frequency do-
main nature of SFA by approximation of a time series us-
ing a high dimensionality and a variable prefix for indexing.
With a variable prefix length it is possible to distinguish
time series which have similar approximations. This leads
to improved similarity query performance. The SFA trie
is tailored for a variable prefix length as it grows in depth
rather than width when increasing the length of similar ap-
proximations, which postpones the effects of the Curse of
Dimensionality.

As part of SFA we introduced a novel discretisation tech-
nique called MCB. As DFT has a statistically significant
tighter lower bound compared to PAA, SFA provides a tighter
lower bound to the Euclidean distance than iSAX. Like
iSAX it offers a high information density per bit and thus
allows for indexing large datasets. Unlike iSAX, every SFA
coefficient represents the whole signal due to the frequency
domain, which allows for indexing high dimensional data-
sets. In our experiments the SFA trie is the best index
structure in terms of page accesses and wall clock time on
real and synthetic datasets. Future work includes a tech-
nique to efficiently rebalance the SFA trie, thereby avoiding
degeneration due to updates.
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[25] Schäfer, P., and Högqvist, M. SFA web page.
http://www.zib.de/patrick.schaefer/sfa/, 2011.

[26] Shieh, J., and Keogh, E. iSAX: indexing and
mining terabyte sized time series. In KDD (2008),
pp. 623–631.

527




