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ABSTRACT

Efficient processing of skyline queries has been an area of
growing interest. Most existing techniques assume that the
skyline query is applied to a single data table. Unfortu-
nately, this is not true in many applications where, due
to the complexity of the schema, the skyline query may
involve attributes belonging to multiple tables. Recently,
various hybrid skyline-join algorithms have been proposed.
However, the current proposals suffer from several draw-
backs: they often need to scan the input tables exhaus-
tively in order to obtain the set of skyline-join results;
moreover, the pruning techniques employed to eliminate
the tuples are largely based on expensive pairwise tuple-
to-tuple comparisons. In this paper, we aim to address
these shortcomings by proposing two novel skyline-join al-
gorithms, namely skyline-sensitive join (S2J) and symmetric
skyline-sensitive join (S3J), to process skyline queries over
multiple tables. Our approaches compute the results using
a novel layer/region pruning technique (LR-pruning) that
prunes the join space in blocks as opposed to individual
data points, thereby avoiding excessive pairwise point-to-
point dominance checks. Furthermore, the S3J algorithm
utilizes an early stopping condition in order to successfully
compute the skyline results by accessing only a subset of the
input tables. We report extensive experimental results that
confirm the advantages of the proposed algorithms over the
state-of-the-art skyline-join techniques.
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1. INTRODUCTION
Recently, there has been a growing interest in the efficient

processing of skyline queries [4, 21, 22]. The skyline of a
dataset is the subset of data points that are not dominated1

by any other data points [4]; skyline queries are valuable in
many multi-criteria decision support applications [1].

Various algorithms [2, 12, 20] have been developed to ad-
dress the problem of discovering skylines for a wide range
of scenarios. Most early algorithms assume that the skyline
query is applied on a single table. Naturally, this assumption
is not true for many applications where the schema is com-
plex and the data is distributed onto many tables or data
sources. This is especially true for information integration
applications that inherently operate on multiple sources.

A naive approach to processing such queries is to first
join the relevant tables to materialize all candidate tuples,
and then, to apply existing single-table skyline algorithms.
However, in most cases, a large percentage of the material-
ized tuples will not appear in the final skyline, and thus, a
significant portion of the join work done to obtain the com-
bined candidate set will be wasted. If, on the other hand,
we could prune the redundant tuples during the join pro-
cessing (i.e., the join operation is skyline-sensitive), then we
could achieve significant improvements in the performance
of multi-table skyline queries.

Recently, various attempts have been made to tackle this
challenge [9, 18, 23, 20]. For instance, the skyline-join

operator proposed in [20] is a hybrid of the previous sky-
line and join operators and leverages several pruning oppor-
tunities during its operation for faster execution. [23] pro-
poses a non-iterative, single-pass sort-first skyline-join

(SFSJ) operation for pruning tuples during the join. Never-
theless, like many others, this operator suffers from several
drawbacks, including expensive tuple-to-tuple dominance
checks. Motivated by this, we propose two non-iterative,
single-pass skyline-join algorithms that avoid tuple-to-tuple
dominance checks wherever possible;

• We develop a novel skyline-sensitive join (S2J) algo-
rithm that relies on a novel layer/region pruning (LR-
pruning) strategy to avoid tuple-to-tuple dominance
checks. S2J’s key features are as follows:

– The tuples in the outer table are organized into
layers of dominance.

– The inner table tuples are clustered into regions
based on the Z-values of the skyline attributes.

1A point dominates another point if it is as good or better
in all dimensions, and better in at least one dimension.
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– A trie-based data structure on the inner ta-
ble keeps track of the so-called dominated, not-
dominated, and partially-dominated regions of the
inner table relative to the layers of the outer table.

– S2J obtains the skyline set by scanning the outer
table, only once, while pruning the inner table.

• Next, we propose a symmetric skyline-sensitive join
(S3J) algorithm that repeatedly swaps the roles of the
outer and inner data tables, and which rarely needs to
scan any of the input tables entirely in order to obtain
the set of skyline points.

• Experimental results show that the proposed algo-
rithms are very efficient and outperform existing
skyline-join algorithms on most datasets with differ-
ent distributions and join selectivities.

The rest of the paper is structured as follows: in Section 2,
we give an overview of the existing work. Section 3 presents
the preliminaries and states the problem tackled in this pa-
per. In Section 4, we discuss the proposed skyline-sensitive
join algorithms in detail. Section 5 presents an extensive ex-
perimental evaluation of the proposed approaches. Finally,
we conclude the paper in Section 6.

2. RELATED WORK
The task of finding the non-dominated set of data points

was attempted by Kung et al. [11] in 1975 under the name
of the maximum vector problem. Kung’s algorithm lead to
the development of various skyline algorithms designed for
specific situations, including algorithms for high dimensional
datasets [15] and parallel environments [19].

2.1 Skyline Algorithms
Borzsonyi et al. [4] were the first to coin and investigate

the skyline computation problem in the context of databases.
The authors extend Kung’s divide and conquer algorithm
so that it works well on large databases. They propose a
Block-Nested-Loops (BNL) algorithm, which compares each
point of the database with every other point and reports a
point as a skyline result only if it is not dominated by any
other point. They also propose a divide and conquer based
algorithm, which divides the data space into several regions,
calculates the skyline in each region, and produces the final
skyline from the points in the regional skylines. By focusing
on numerical domains, Borzsonyi et al. were able to gain
logarithmic complexity along the lines of work done in [11].

The Sort-Filter-Skyline (SFS) algorithm [5], which is
based on the same principle as the BNL algorithm, improves
performance by first sorting the data according to a mono-
tone function. Later contributions to skyline query execu-
tion include progressive (such as bitmap and index [21]) and
online algorithms (such as [10] and [16] based on nearest-
neighbor search). More recently, Huang et al. [6] proposed
a parallel skyline algorithm for multi-processor clusters that
utilizes Z-order clustering to reduce dominance checks.

2.2 Skylines on Multiple Tables
Some of the prior work on skylines over multiple tables

include [23, 9, 18, 17, 8, 3, 20, 7, 13]. Jin et al. [7] integrate
state-of-the-art join methods into skyline computation. Sun
et al. [20] extend this work for distributed environments.
The authors introduce a new operator, called skyline-join,

and two algorithms to support skyline-join queries. The first
extends the Sort and Limit Skyline (SaLSa) algorithm [2] to
cope with multiple relations, whereas the second prunes the
search space iteratively. These methods suffer from several
drawbacks, including multiple passes over the datasets and
complex book-keeping to identify pruned tuples.

In [8], the authors provide non-blocking methods for eval-
uating skylines in the presence of equi-joins. These algo-
rithms are built on top of the traditional Nested-Loop and
Sort-Merge join algorithms. Raghavan et al. in [17] propose
a progressive query evaluation framework called ProgXe that
transforms the execution of queries involving skyline over
joins into a non-blocking form. They also enable skyline-
join queries to be processed in a progressive manner, where
the query processing (join, mapping, and skyline) is con-
ducted at multiple levels of abstraction. ProgXe exploits
knowledge gained from both input as well as mapped out-
put spaces to enable executions of joins and skylines at a
higher granularity of abstraction, rather than at the level of
individual tuples. Following [17], Raghavan et al. in [18]
propose a framework called SKIN (SKyline INside Join) to
evaluate SkyMapJoin queries. SKIN reduces the total num-
ber of join results generated and the number of dominance
comparisons needed to compute the skyline results by per-
forming query evaluation at various levels of abstraction.

In [3], the authors develop various algorithms to efficiently
process aggregate skyline-join queries. These algorithms lo-
cally process skylines as much as possible before carrying
out the join between the tuples. [13] develops a frame-
work called FlexPref for extensible preference evaluation in
database systems. FlexPref aims to support a wide array of
preference methods at the core of a database system. Pre-
fJoin [9], which builds on FlexPref, is an efficient preference-
aware join query operations designed specifically to deal with
preference queries over multiple relations.

Most recently, Vlachou et al. [23] introduced the Sort-
First-Skyline-Join (SFSJ) algorithm that fuses the identifi-
cation of skyline tuples with the computation of the join.
SFSJ computes the skyline set by accessing only a subset of
the input tuples; it alternates between its inputs and gener-
ates the skyline tuples progressively as it computes the join
results. The SFSJ algorithm relies on an early-termination
condition, applied on a simple model of sorted input access,
to determine whether it has accessed enough tuples to gen-
erate the complete skyline set.

The authors analyze the performance of SFSJ under 2
pulling strategies, simple round-robin (SFSJ-RR) and a
novel adaptive strategy (SFSJ-SC), that define the order in
which the input relations are accessed. The adaptive strat-
egy prioritizes accesses to the input relations and is shown
to be optimal for SFSJ in terms of the number of tuples ac-
cessed. SFSJ also provides a way to prune the input tuples
if they do not contribute to the set of skyline-join results,
thus reducing the number of generated join results and domi-
nance checks. However, SFSJ does not perform the pruning
in a block-based manner and largely depends on tuple-to-
tuple comparison to find the region that is pruned. Our
proposed approach aims to overcome this drawback by prun-
ing the join space in terms of blocks as opposed to individ-
ual data points, thereby avoiding time-consuming pairwise
point-to-point dominance checks.

In the following section, we formally introduce join-based
skyline queries and provide a background to our approach.
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3. PROBLEM DEFINITION
In this paper we focus on two-way join operations:

Given (a) two datasets, Dout(aout,1, . . . , aout,dout) and
Din(ain,1, . . . , ain,din), (b) a set of skyline attributes,
AS ⊆ {aout,1, . . . , aout,dout} ∪ {ain,1, . . . , ain,din}, and (c)
a set of join attributes, AJ ⊆ {aout,1, . . . , aout,dout} ∪
{ain,1, . . . , ain,din}, a join-based skyline query seeks to iden-
tify a subset of J = Dout ✶AJ

Din consisting of tuples not
dominated by any other tuples in J .

Let p.ah be the value of attribute ah of tuple p; p domi-
nates q in the skyline attribute set, AS, (p✄AS

q) when

∀ai ∈ AS, (p.ai � q.ai) ∧ (∃ak ∈ AS | p.ak ≻ q.ak).

Intuitively, p is better than or equal to (�) q in all dimen-
sions in the skyline attribute set, AS, and better than (≻)
q in at least one dimension, ak. In the rest of the paper, we
omit the reference to the skyline attribute set and use p✄ q
to denote that p dominates q (in the corresponding skyline
attribute set). We use p 6 ✄q for p does not dominate q.

Definition 1. Join-based Skyline. A data tuple, p, is
in Dout SSJAJ ,AS

Din iff (a) p ∈ J = Dout ✶AJ
Din, and

(b) 6 ∃q ∈ J − {p} s.t. (q ✄AS
p).

Throughout the paper, join-based skyline operations
are referred to as skyline-sensitive join (SSJ) operations.
For example, given two tables Highly_rated (rName,

rating, location, remarks) and Business_hrs (rName,

openingTime, closingTime), which contain information
about restaurants, the query:

Skyline_results = SSJ Highly_rated by rName,

Business_hrs by rName,

rating MAX, closingTime MAX

would equi-join the tables on AJ = {Highly rated.rName,
Business hrs.rName} and return results that are not domi-
nated by any other results based on the skyline attributes
AS = {rating, closingTime}. In this query, the underlying
preference function is MAX. While any monotonic function,
such as MIN, is also acceptable as the preference function, in
the rest of the paper, without loss of generality, we assume
that MAX is specified by the user.

4. SKYLINE JOINS WITH LR-PRUNING
Skyline processing on a single table is an expensive oper-

ation as it may incur large access costs to perform pairwise
dominance checks2. If a join operation is required to com-
bine the relevant data, then the query will also incur ad-
ditional costs for materializing the candidate tuples. Natu-
rally, if the number of tuples materialized and compared can
be kept low, significant improvements in the performance of
skyline-join queries can be achieved.

Thus, we propose skyline-sensitive join algorithms where

• the data in the input tables are ordered in a manner
that will help identify skyline points early and prevent
unqualified data points from participating in the join
operation; moreover,

• whenever possible, the join space needs to be pruned in
terms of blocks as opposed to individual data points,
therefore avoiding time-consuming pairwise point-to-
point dominance checks.

2A dominance check compares two data points on a domi-
nance condition.
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Figure 1: Layer/region organization for S2J

We achieve these through a novel layer/region pruning (LR-
pruning) strategy to minimize pairwise tuple comparisons:
In LR-pruning, we partition the data in the outer table into
dominance layers, while the inner table is clustered into re-
gions using Z-order values of the skyline attributes to sup-
port block-based pruning. We then propose a second algo-
rithm, symmetric skyline-sensitive join (S3J), that is similar
to S2J in principle, but repeatedly swaps the roles of the
outer and inner tables. One key outcome of this strategy is
that (unlike S2J, where the outer table is fully scanned), in
S3J, none of the datasets need to be scanned completely in
order to obtain the skyline set.

Before we present S2J and S3J, we first provide an overview
of the underlying LR-pruning strategy.

4.1 Layer/Region Organization of Data

4.1.1 Dominance Layering of the Outer Table

Let ASout ⊆ AS denote the skyline attributes that come
from the outer data table, Dout. As shown in Figure 1(a),
the outer table, Dout, is partitioned into dominance layers
(using MAX). For a layer Li, we define max(Li) as

max(Li) = max(p.a|(a ∈ ASout) ∧ (p ∈ Li)).

The dominance layers are obtained by sorting the tuples
in the descending order of the value of max(Li). The al-
gorithms exhaust all the tuples in the current layer before
observing a decrease in the max(Li) value. In other words,
the layers in Dout are such that for any entry in layer, Li,
the maximum of the skyline attribute values is larger than
the maximum of the skyline attribute values for any entry
in a dominated layer, Lh; i.e.,

∀h>i,p∈Li,q∈Lh
max(p.a|a ∈ ASout) > max(q.a|a ∈ ASout).

Therefore, if two data points in Dout are such that
max(p.a|a ∈ ASout) = max(q.a|a ∈ ASout), they will be
grouped into the same layer partition.

The dominance layers are similar to the“bands”described
in [23]. The layer partitions are ordered and accessed from
the most dominant (L1) to the least dominant (Ln) layer.

4.1.2 Region Organization of the Inner Table

Tuples in the inner table, Din, are mapped onto a Z-
order curve based on the corresponding skyline attribute
set, ASin ⊆ AS (Figure 1(b)). The Z-order (or Morton-
order [14]) curve, shown in Figure 1(b), is a fractal that
can cover the entire data space by repeated applications of
the same base pattern, a “Z”. The Z-value of a data point
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can be obtained by interleaving the bits of the binary repre-
sentation of the coordinate values of the data point. In the
example shown in Figure 1(b), the Z-value of (2, 3) is 001101
obtained by interleaving the binary representations of 2 and
3, i.e. 010 and 011, respectively. For a d-dimensional space,
in which the coordinate values fall in the range [0, 2v − 1],
the Z-value of a data point contains d× v bits grouped into
v number of d-bit groups. In the example, we have three
2-bit groups: 00, 11, and 01.

The Z-curve clusters neighboring points and regions in the
space; points nearby in space also tend to be nearby on the
curve. More specifically, given a Z-value with v many d-
bit groups, the first bit group partitions the d-dimensional
space into 2d equi-sized regions (or clusters), the second bit
group further partitions each of these 2d region blocks into 2d

smaller equi-sized sub-regions (or sub-clusters), and so on.
Also, when ordered by their Z-values, data points are natu-
rally clustered into the regions of the space. For instance, in
Figure 1(b), all the points located in the lower left quadrant
of the space have prefix 00 in their binary representations
and span Z-values from 0 to 13.

The Z-value mapping is one-to-one and invertible, i.e.,
the original coordinate values can be recovered from the Z-
values. Moreover, given a prefix of the bit representation of
a Z-value, we can determine the minimum (minZ) and max-
imum (maxZ) Z-values of that region. minZ is obtained by
filling the rest of the bit positions with 0s and maxZ by
setting all the missing bits to 1.

Note that, in the past, the clustering property of Z-curves
has been leveraged for the single-table skyline problem [6,
12]. In this paper, we show that, when used along with the
dominance layering of the outer table Z-values can be highly
effective in eliminating redundant work for skyline joins.

4.2 S
2
J Algorithm

Given two datasets, Dout and Din, a set of join attributes,
AJ , and a set of skyline attributes, AS, the S2J algorithm
proceeds as follows:

1. Sall = ∅

2. S2J scans outer table, Dout, from layer L1 to Ln.

3. For each layer Li:

(a) S2J invokes the RegionsToExamine(T, max(Li))
function (see Section 4.2.2) to obtain the corre-
sponding set of Z-value regions, Ri, from the trie
structure, T , maintained for the inner table, Din.
The Z-value regions of the inner table obtained in
this step will participate in the join-based skyline
process with Li.

(b) C = ∅

(c) For each region r ∈ Ri:

• C = C∪ (Li ✶AJ
r) is carried out to combine

the outer table tuples in Li with the inner
table tuples in r.

(d) The skyline set, Si, of C ∪ Sall is obtained.

(e) Rmarker(Si) is invoked to mark the appropriate
regions of the inner table, Din, based on Si (see
Section 4.2.1).

(f) Sall = Sall ∪ Si

Algorithm 1: S
2
J(Dout, Din, AS , AJ , T )

Input:

Dout: Outer table; Din: Inner table; AS : Set of skyline
attributes of Dout and Din; AJ : Join attribute set; T : Trie
maintained for Din; R: Set of regions to be examined during
join-based skyline processing; max(Li): Maximum value of
current layer in Dout

Output:

Skyline result S produced by Dout SSJAJ,AS
Din

Procedure:

Initialize T ;
for each layer Li ∈ Dout scanned from L1, L2, . . . , Ln do

if data point scanned is the first data point in L1 or T has
been changed then

R = RegionsToExamine(T , max(Li));
/* Invoke the RegionsToExamine algorithm with parameters T
and max(Li) only if T has been changed, else R remains the
same for the next round. RegionsToExamine is also invoked
once at the beginning when the first data point in L1 is
scanned */

end if

initialize set Si, the set of skyline points for Li;
/* Contains a set of points that do not dominate each other */
for each r ∈ R do

/* r is the Z-value region prefix */
minZval(r) = minZ(r);
maxZval(r) = maxZ(r);
/* Minimum and maximum Z-values of r are obtained */
joinSet = Li ✶AJ

Din in the region defined by [minZval(r),
maxZval(r)];
add the results ∈ joinSet to Si such that only skyline points
are obtained in Si;
for each skyline point s = sout||sin ∈ Si do

U = min(sout);
T = Rmarker(sin, T , U);
/* Update T based on sin ∈ Din and the bound U ob-
tained by taking the minimum of the coordinate values of
sout ∈ Dout */

end for

end for

add Si to S such that only skyline points are obtained in S;
end for

return S

Figure 2: The S2J Algorithm

4. S2J proceeds until all the layers in Dout are processed
or the entire dataset Din is pruned.

A more detailed pseudocode of S2J is presented in Fig-
ure 2. In the following sections, we describe the details of
the algorithm, and how region searches and markings are
performed. The correctness of the S2J algorithm is estab-
lished in Section 4.2.4.

4.2.1 Region-based Pruning of the Inner Table

As it discovers new skyline points that can prune regions
on the inner table, S2J calls the Rmarker book-keeping func-
tion that marks regions of the inner table (Figure 3).

The Rmarker algorithm uses a trie data structure to effi-
ciently store marked regions based on their common Z-value
region prefixes. Each node of the trie holds one bit of the
region prefix and a region marker that can be labeled as:

• Not-Dominated (denoted as ND) – this indicates that
a inner table region is not (yet) dominated by any of
the skyline points discovered so far.

• Dominated for U (denoted as DOM U) – this indi-
cates that a region is dominated; U refers to the largest
max(Li) of the outer table for which the region is
guaranteed to be dominated. Intuitively, this marking
keeps track of the layers of the outer table for which the
region in the inner table can be considered as pruned.
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Algorithm 2: Rmarker(sin, T , U)

Input:

sin: sin ∈ s = sout||sin – T marked using sin; T : Trie structure
of Din; U : Bound on all the points that join sin to form a part of
the overall skyline result; q: Local Queue; l: Maximum depth of T

Output:

Updated Trie T

Procedure:

q.enqueue(1);
q.enqueue(0);
while q is not empty do

regionR = q.dequeue();
if sin ✄ maxZ(regionR) then

/* sin dominates regionR */
if node n in T with prefix regionR is marked as PD or ND
or DOM U ′ such that U > U ′ then

mark n in T as DOM U ;
end if

else if sin 6 ✄minZ(regionR) then

/* sin does not dominate regionR */
if node n with prefix regionR is not marked as PD or DOM
U ′′ and has no ancestor nodes marked as DOM U ′ then

mark n in T as ND;
end if

else if sin 6 ✄maxZ(regionR) and sin✄minZ(regionR) then

/* sin may dominate some points in regionR */
childRegion0 = prefix regionR appended with 0;
childRegion1 = prefix regionR appended with 1;
if node n in T with prefix regionR is a leaf node and length
of prefix regionR in not equal to l then

/* new child nodes inserted into T , while limiting the
depth of T to l */
mark nodes with prefixes childRegion0 and childRegion1
with the region marker of their parent node n;
/* Child nodes to be added to T inherit markers of parent
node as default markers */
if node n is marked as ND then

mark n in T as PD;
/* Parent node n, originally marked ND, is marked PD
since its children are being explored further */

end if

insert nodes with prefixes childRegion0 and
childRegion1 as children of parent node n in T
q.enqueue(childRegion0);
q.enqueue(childRegion1);
/* Enqueue the child nodes of parent node n into q to be
marked appropriately */

else if n is an internal node then

q.enqueue(childRegion0);
q.enqueue(childRegion1);
/* Enqueue the child nodes of parent node n into q to be
marked appropriately */

end if

end if

end while

return T ;

Figure 3: The Rmarker Algorithm

• Partially-Dominated (denoted as PD) – this indicates
that a region itself is not dominated, but contains a
subregion which is dominated.

The trie is initialized by marking the regions with prefixes
1 and 0 as not-dominated (ND) since the initial skyline set is
∅ (Figure 5(a)). As S2J proceeds and new skyline points are
found, the trie structure becomes deeper, capturing increas-
ing amount of details. At each invocation of the Rmarker

function, the nodes of the trie are considered from the root
to the leaves. During this process, the markings of the in-
ternal nodes can be made more specific and the leaves of the
trie may be split due to the newly discovered skyline points.

Let Si be the skyline points set of layer Li and let s =
sout||sin ∈ Si be a skyline point; sout corresponds to the
outer table, whereas sin corresponds to the inner table;

maxZ(R1)
6

maxZ(R2)

R1 R2
maxZ(R3)

Si

Inner table organized

R3
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Sin

Inner table organized
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Figure 4: Z-value region based dominance test
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Figure 5: (a) Initial trie; (b,c) the trie structure
for skyline points 〈7, 6, 6, 7〉 and 〈2, 7, 7, 6〉; sout =
{〈7, 6〉, 〈2, 7〉} and sin = {〈6, 7〉, 〈7, 6〉}

• A node, η, that is originally marked as Partially-
Dominated (PD) or Not-Dominated (ND) would be-
come dominated if an sin dominating this region is
discovered. Let Sin(η) be the set of skyline points on
the inner table that dominates this node and Sout(η)
be the corresponding points on the outer table. Then,
the node will be marked as DOM U , where U is

U = max
sout∈Sout(η)

( min
a∈ASout

(sout.a)).

Intuitively, U is the bound on themax(Li) of the layers
of the outer table for which the region is guaranteed
to be dominated. Consequently, this region need not
be considered beyond any layer where max(Li) ≤ U .

• A node that is marked Dominated for U (DOM U) can
be remarked as DOM U ′ if a bound U ′ > U is found.
Consequently, the algorithm progressively tightens the
bound corresponding to a region, therefore pruning the
region for an increasing number of outer table layers.

A leaf node may need to be expanded when a subregion of
the node is found to be dominated by a new skyline point.
If the leaf was originally marked Not-Dominated (ND), then
it will now be marked as Partially-Dominated (PD) and two
child nodes will be added to this node. If the leaf was marked
Dominated for U (DOM U), it will be expanded only if the
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Algorithm 3: RegionsToExamine(T , max(Li))

Input:

T : Trie structure of Din; max(Li): Maximum value of current
layer in Dout; s: Local Stack for DFS; l: Maximum depth of T

Output:

Set of regions R

Procedure:

s.push(0);
s.push(1);
while s is not empty do

regionR = s.pop();
parentMarker = current marker on node n having prefix
regionR in T ;
if node n in T is an internal node then

/* Node n has children */
childRegion0 = prefix regionR appended with 0;
childRegion1 = prefix regionR appended with 1;
child0 = marker of node with prefix childRegion0 in T ;
child1 = marker of node with prefix childRegion1 in T ;
if parentMarker is DOM U such that U < max(Li) then

/* Finding a subregion in T marked DOM with the largest
U < max(Li) */
if child0 is DOM U0 such that U0 > U and U0 < max(Li)
then

/* Explore the branches further */
s.push(childRegion0);
s.push(childRegion1);

else if child1 is DOM U1 such that U1 > U and U1 <

max(Li) then

/* Explore the branches further */
s.push(childRegion0);
s.push(childRegion1);

else

add regionR to R;
end if

else if parentMarker is PD then

/* Explore the branches further */
s.push(childRegion0);
s.push(childRegion1);

end if

else if parentMarker is ND or PD or DOM U then

/* node n in T is a leaf node */
add regionR string to R;

end if

end while

return R

Figure 6: The RegionsToExamine Algorithm

subregion has an upper bound U ′ larger than U . When a
leaf is expanded, the new child nodes are inserted into a
queue and are examined and marked appropriately.

To control the granularity of the Z-value regions stored in
the trie structure, we define a parameter l to constrain the
depth of the trie: if a node is at the maximum defined depth
l, then that node is not expanded any further. The effects of
the depth maintained (l) in the trie structure on our skyline-
join approach is experimentally analyzed in Section 5.2.

Similarly to [12], in order to decide whether a Z-value re-
gion is to be marked Dominated for U (DOM U), Partially-
Dominated (PD) or Not-Dominated (ND), the Rmarker algo-
rithm performs Z-value region based dominance tests. Let
R be the prefix that represents a Z-value region; the region-
based dominance tests apply the following three conditions:

1. If sin ✄maxZ(R), then sin ✄R.

2. If sin 6 ✄maxZ(R) ∧ sin ✄minZ(R), then some points
in region R may be dominated by sin; hence this region
needs to be explored further.

3. If sin 6 ✄minZ(R), then sin 6 ✄R.

Figure 4 shows the region-based dominance tests of R1, R2,
R3 against point sin. Here, based on the above conditions,

sin dominates region R3 and does not dominate region R1.
Region R2 needs to be explored further, since some of the
points in this region may be dominated by sin.

Figures 5(b) and 5(c) show the state of the trie (l = 2)
after Rmarker is executed for the skyline points 〈7, 6, 6, 7〉
and 〈2, 7, 7, 6〉, where 〈7, 6, 6, 7〉 is obtained by combining
〈7, 6〉 from the outer table with 〈6, 7〉 from the inner table
and 〈2, 7, 7, 6〉 is got by joining 〈2, 7〉 with 〈7, 6〉. Each of the
trie nodes are labeled based on their overall coverage. For
example, the node with prefix 10 is labeled DOM 2 because it
is dominated by a skyline point and there is a subregion that
is dominated only by 〈2, 7, 7, 6〉 implying U = min〈2, 7〉 = 2.

4.2.2 Fetching Non-Pruned Regions from the Trie

As the S2J algorithm proceeds from one layer to another
in the outer table, it calls the RegionsToExamine function to
obtain the relevant regions from the trie structure (Figure 6).

The input to this function is the max(Li) value of
the current outer table layer Li. Given this value,
RegionsToExamine returns the regions corresponding to the
nodes of the trie that are currently marked ND and the re-
gions related to the nodes that are marked DOM U with the
largest U < max(Li). Note that, if a region corresponds to
a leaf node of the trie and this node is currently marked PD,
then this region is returned as well.

For example, given a level Li withmax(Li) = 7, the trie in
Figure 5(b) would return all leaf regions; in contrast, given
a level Li with max(Lj) = 4, it would only return the nodes
with prefix 10 and 11. Note that, if a region r is marked
Dominated for U and if U ≥ max(Li), then this region does
not participate in the join with the current layer Li. This
is because the layers are considered in the decreasing or-
der of max(Li) and the bound U on a region monotonically
increases; thus, once eliminated, a region will never be con-
sidered for any of the subsequent layers. This ensures that
entire regions are pruned and the parts of the inner table
that are pruned grow over time.

4.2.3 Layer-to-Region Joins

Once the non-pruned regions from the inner table are re-
turned, S2J joins the data in the current layer of the outer
table with the data in these regions. To enable the join to
be processed in an efficient manner, we use a B-tree index
on the inner table, Din, built using a composite key formed
by the join attribute of Din and the Z-values of the set of
skyline attributes of Din. Thus, given a join attribute value
and a prefix of the relevant region, we can quickly identify
matching skyline attribute values from the B-tree index: to
join data tuples from the outer table layer Li with the in-
ner table region r, we first compute minZ(r) and maxZ(r)
values of the region r (see Section 4.1.2) and then perform
(Li ✶AJ

Din[minZ(r), maxZ(r)]) using the B-tree.

4.2.4 Soundness and Completeness of S2J

The S2J algorithm (Figure 2) is correct in that, given two
datasets, Dout and Din, a set of join attributes, AJ , and a
set of skyline attributes, AS, the S

2J algorithm returns a set
of results compatible with Definition 1 – i.e. it is sound (does
not produce any non-skyline results) and complete (does not
miss any skyline results).
Soundness: We first establish the soundness of S2J. Let
s = sout||sin be returned as a skyline point. Then, there is
no s′ = s′out||s

′

in such that s′out ✄ sout and s′in ✄ sin.
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Figure 7: Scanning the (current) outer table stops
at layer L5 because L5 and all the following layers
are pruned by the (current) inner table

Proof. Let us assume there exists such an s′. Note that
s′out will be in a layer, L′, dominating or equal to the layer,
L, of sout; therefore, max(L′) ≥ max(L).

• Since sout||sin has been returned, when layer L has
been considered, sin was either not dominated or was
dominated with a bound U where max(L) > U .

• Since max(L′) ≥ max(L), s′out is seen before sout.

• Since when sout was considered, sin was either not
dominated or was dominated with a bound U , when
s′out was considered earlier, s′in (which dominates sin)
must also be either not dominated or dominated with
a bound U ′ ≤ U (due to monotonicity of bounds).

• Since for s′out we have max(L′) ≥ max(L), where
max(L) > U , and s′in must be either not dominated or
dominated with a bound U ′ ≤ U , it follows that when
s′out is considered, s′in has not yet been pruned.

Therefore, s′ = s′out||s
′

in which dominates s = sout||sin
would have been enumerated earlier than s, and thus, s′

would have pruned, s contradicting the premise that s has
been identified as a skyline point. Hence, there cannot be
s′ cannot be a skyline result. This proves that the S2J algo-
rithm is sound.

Completeness: We next establish the completeness of S2J.
Let t = tout||tin be a join result that has not been included
in the skyline result. Thus, there must be an s = sout||sin,
where sout ✄ tout and sin ✄ tin, that is returned.

Proof. Let us assume that there does not exist such an
s. Let L be the layer in which tout is considered.

• Since t has not been included in the result, when layer
L is considered, tin must be in a region dominated with
a bound U ≥ max(L).

• Since tin is in a region dominated with U ≥ max(L),
there must have been an s′ = s′out||s

′

in where s′in ✄ tin
and max(L′) > max(L) (this is due to the monotoni-
cally decreasing property of max(L) values).

• Since there does not exist s✄t and since s′in✄tin, then
s′out 6 ✄tout; i.e., max(L′) ≤ max(L).

The last two statements above contradict each other; thus,
there must exist an s ✄ t, and hence, t cannot be in the
skyline. This proves the completeness of S2J.

4.2.5 Complexity of S2J

The S2J operator scans the outer table once and for
each layer, Li, it (a) identifies the relevant regions (that
are either not dominated yet or dominated with a bound

Algorithm 4: S
3
J(Dout, Din, AS , AJ )

Input:

Dout: Outer table; Din: Inner table; AS : Set of skyline
attributes of Dout and Din; AJ : Join attribute set; Tin: Trie
maintained for Din; Tout: Trie maintained for Dout; R: Set
of regions to be examined during join-based skyline processing;
max(Li): Maximum value of current layer in Dout

Output:

Skyline result S produced by Dout SSJAJ,AS
Din

Procedure:

Initialize Tin, Tout;
for each layer Lout

i ∈ Dout and Lin
i ∈ Din do

p(Lout
i ) = 〈max(Lout

i ),max(Lout
i ), . . . ,max(Lout

i )〉

find the region marker mout for p(Lout
i ) in Tout

if mout is ND or
the largest bound Umax for mout returned as DOM such that
Umax < max(Lin

i ) then

Sout
i = S

2
J(Lout

i , Din, AS , AJ , Tin);

/* Sout
i is skyline result set for Lout

i ∈ Dout returned by S
2
J

*/
else

stop scanning Dout

end if

p(Lin
i ) = 〈max(Lin

i ),max(Lin
i ), . . . ,max(Lin

i )〉

find the region marker min for p(Lin
i ) in Tin

if min is ND or
the largest bound Umax for min returned as DOM such that
Umax < max(Lout

i ) then

Sin
i = S

2
J(Lin

i , Dout, AS , AJ , Tout)

/* Sin
i is skyline result set for Lin

i ∈ Din returned by S
2
J

*/
else

stop scanning Din

end if

add Souti and Sini to S such that only skyline points are
obtained in S;

end for

return S

Figure 8: S3J swaps outer and inner tables in a
round-robin manner

U < max(Li)), (b) performs a join operation with these rel-
evant regions of the inner table, and (c) finds the skyline
based on the candidates.

Therefore, the overall cost is a function of the number
of layers in the outer table, the size of the trie used for
discovering the relevant regions, and the amount of pruning
achieved based on the data distribution. In the extreme, a
leaf stores an individual data point. Since this may impact
the number of pairwise comparisons, in Section 5, we study
the effect of the maximum allowed trie depth (l) on the
performance of the S2J algorithm.

4.3 S
3
J Algorithm

The S3J algorithm (Figure 8) is similar to the S2J, but
swaps the roles of the outer and inner tables for each layer.
Given two datasets, D1 and D2, a set of join attributes, AJ ,
and a set of skyline attributes, AS, the S

3J algorithm main-
tains Z-value based indexes and trie structures for both D1

and D2. Each of the steps of S2J is executed first assuming
D1 as the outer table and then D2.

Since both tables are progressively pruned relative to each
others’ layers, S3J algorithm may stop without fully scanning
any of the tables (Figure 7). For this, S3J utilizes an addi-
tional stopping condition not available to S2J. Let Dout be
the current table that serves as the outer table and Din be
the current inner table. Let Lout

i denote the layer for Dout

and Lin
h denote the (recent) layer for Din. When S3J pro-

ceeds to the layer Lout
i in Dout, it first considers the extreme
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point p(Lout
i ) = 〈max(Lout

i ),max(Lout
i ), . . . ,max(Lout

i )〉 of
the layer and checks if the point is currently being dominated
for any layers of Din or not:

• If p(Lout
i ) is not dominated, then the layer, Lout

i , is
considered as before.

• If p(Lout
i ) is dominated, then we find the largest bound

Umax for which p(Lout
i ) is dominated in the trie and

check if Umax ≥ max(Lin
h ), where Lin

h is the current
layer for the inner table, Din. If so, then the data
layer, Lout

i , and all the subsequent layers of the outer
table have been eliminated from further consideration,
and hence, the scanning of this table can be stopped.

The correctness of the early stop condition is established
in the following section.

4.3.1 Correctness of S3J

Soundness: Note that S3J relies on the S2J described in the
previous subsection and the soundness of S3J comes from the
soundness of S2J.
Completeness: Next, we prove that the early stop condi-
tion does not cause a violation of the completeness of S3J.
Let t = tout||tin be a join result that has not been included
in the skyline result. Since S2J is complete, we know that
if the layer containing tout has been seen, then there must
exist an s ✄ t found earlier (see Section 4.2.4). We need to
show that if tout is not found due to early stopping, then
there must also exist s✄ t.

Proof. Let Lout be the layer in which tout would be con-
sidered if the early stop condition was not applied.

• Since the early stop condition has been applied and
tout has been pruned, we know that p(Lout) is domi-
nated in the corresponding trie.

• Let U in be the largest bound on the dominated regions
covering p(Lout). Since the early stop condition has
been applied and tout has been pruned, we also know
that U in > max(Lin), where Lin is the current layer
for the inner table.

• Since Lin is the current layer for the inner table, it
includes tin.

• Since

U in = max
sin∈Sin

( min
a∈ASin

(sin.a))

and since

U in ≥ max(Lin)

it follows that there exits at least one sin ∈ Sin that
dominates p(Lin), which also implies that sin ✄ tin.

• Since sin is used in the computation of U in on the
region dominating tout, there must be a corresponding
sout ✄ tout.

• Therefore, there exists an s = sout||sin, where sout ✄
tout and sin ✄ tin.

In other words, there exits s✄t for any t that is eliminated
from consideration due to the early stop condition. This
proves that S3J is complete.

4.3.2 Discussion

Consider a scenario where we are given two tables that
each contain data which are themselves skylines. On joining
these tables (on a non-skyline attribute), each tuple in the
join result will also be a global skyline point. This scenario
constitutes the worst-case for our algorithm: since both the
input data as well as the output consists of all skylines, there
is no pruning or early stop possible. This implies that a full
join of the input tables has to be performed (with the help
of the index structure). In this scenario, the overhead of
our algorithm is the amount of work needed to maintain the
in-memory trie; which is simply O(N × l), where N is the
amount of data and l is the depth of the trie (since none of
the elements in the tables are pruned, our approach makes a
root-to-leaf pass on the trie for each of the N data elements).

[23] has shown that the SFSJ algorithms are instance op-
timal with a ratio of 2 for cases where the inputs have at
most K tuples in each “band” and have also shown that the
algorithms are not instance optimal in the general case. As
the experiments presented in the next section show, S3J per-
forms as good or better than SFSJ. Firstly, for each pruned
region that SFSJ maintains, the S3J algorithm maintains at
least one marking in the trie. This implies that S3J will
stop as soon as (or earlier) than SFSJ. Moreover, S3J is
able to split a single region into multiple sub-regions that
provide tighter boundaries. As a consequence, S3J is able
to make pruning decisions more proactively as opposed to
SFSJ, which may need to see more data before it can stop.

5. EXPERIMENTAL EVALUATION
In this section, we evaluate the efficiency and effective-

ness of S2J and S3J by varying the parameters involved and
by comparing them against iterative skyline-join [20], Pre-
fJoin [9], and the SFSJ-RR and SFSJ-SC algorithms [23].

5.1 Experimental Setup
Our evaluations were conducted on a setup with an In-

tel Core 2 Duo 2.33GHz processor, 2GB RAM and Win-
dows XP operating system. The S2J and S3J algorithms
were implemented in Java and the experiments were run
on data that was stored locally. For comparison purposes,
the Java implementations of the SFSJ-RR and SFSJ-SC al-
gorithms were obtained from the authors of [23]. In addi-
tion, we implemented PrefJoin [9] and the iterative skyline-
join algorithm [20] to make further comparisons. The B-
tree index is built using Berkeley DB Java Edition 3.3.873.
The trie implementation in Java was adapted from http:

//www.technicalypto.com/2010/04/trie-in-java.html.
• Datasets. Evaluations were carried out on 24 dif-
ferent synthetic datasets and 4 different real/benchmark
datasets. Synthetic datasets as described in [4] were gen-
erated based on correlated, anti-correlated and independent
distributions4. The cardinality of the datasets (n) was var-
ied between 10,000 and 1 million tuples per data source, and
the join rates (r) considered were 0.01 (i.e., 1 in 100 data
tuples in a data source joins a tuple in another data source),
1, and 10. The dimensionality (d) of the skyline attribute
set of each data source was varied between 2 and 4, hence

3Downloaded from http://www.oracle.com/technology/
software/products/berkeley-db/je/index.html
4Random dataset generator available for download at http:
//randdataset.projects.postgresql.org/.
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Figure 9: Effect of maximum depth (l) of the trie structure (n = 1M/dataset, j = 1, d = 2, s = 4, r = 10)
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Effect of maximum depth l (n = 10K/dataset, j = 1,
d = 2, s = 4, r = 10), (b) Effect of cardinality n of
datasets (j = 1, d = 2, s = 4, r = 10, l = 10)

the dimensionality of the result set (s = |AS|) obtained after
Dout SSJAJ ,AS

Din varies between 4 and 8.
In addition to these synthetic datasets, we also used the

NBA dataset5 and the TPC-H benchmark datasets6.
• Evaluation Measures. As is common in assessing sky-
line algorithms, we used execution time as the major metric
in evaluating our methods. Execution time is the duration
from the time an algorithm starts to the time it returns the
entire skyline set. In addition, we used the total number of
tuples scanned (sum of the depths of tuples accessed from
the two input tables), the number of dominance checks and
the number of join results as other evaluation metrics.

Both our approach and the competitor approaches require
the inputs to be sorted. All indices and sorted records are
prepared prior to running the experiments. Unless otherwise
specified, each experiment is run five times and the results
reported are the averages of the five runs.

5.2 Experimental Analysis of S2J and S
3
J

Before comparing S2J and S3J to other algorithms, we
first experimentally analyze the performance characteristics
of S2J and S3J. In particular, we investigate the impact of
the region granularity defined by the trie depth l and the
memory utilization of the data structures.
• Impact of l. If l = 1, the trie stores information about
data points in only 2 blocks: one block that covers all data
points with common region prefix 1 and another block that
covers all data points with common region prefix 0. For a
given l, the trie can store information up to 2l regions.

Figure 9 shows the effect of l on execution time, number
of tuples scanned, number of intermediate candidates mate-
rialized, and the number of dominance checks7. As can be

5Downloaded from http://skyline.dbai.tuwien.ac.at/
datasets/nba/.
6TPC-H database generator available at http://www.tpc.
org/tpch/default.asp.
7Note that this experiment was carried on datasets with in-

seen here, for both S2J and S3J, the number of dominance
checks (Figure 9(a)) and the number of intermediate data
points materialized (Figure 9(b)) decrease as l increases. As
expected, while for S2J the outer table needs to be scanned
in its entirety independent of l, S3J is able to better prune
the number of scanned tuples when the granularity of the
space is fine; i.e., l is large (Figure 9(c)).

Figure 9(d) shows the execution time behaviors of S2J and
S3J. As can be seen here, the impact of l on the execution
time is not monotonic: as l increases, the execution times
first decrease and, after some point, start increasing. Thus,
there is a trade-off between the maximum depth of the trie
and the gains achieved in terms of execution time.

Remember, from Section 4.2, that when the maximum
depth of the trie is reached, the data in any “still non-
dominated” regions need to go into a join operation with
data from the other relation. Therefore, a higher trie depth
may increase the chances of finding dominated regions that
can then be pruned away. Therefore, higher values of l can
help in achieving faster execution times. However, we ob-
served that beyond a certain value of l it actually becomes
cheaper to materialize the skyline candidates through joins,
rather than repeatedly checking for possibly pruned regions
within a dense trie structure. To see why, consider that in
the worst case, for the maximum possible value of l, the
trie stores the pruned data point itself at the leaf level. This
would mean that the pruned regions would no longer be rep-
resented as blocks of data points, but instead they would be
individual data points. Hence, checking for pruned regions
will become as expensive, if not more expensive, as carrying
out pairwise point-to-point dominance checks.

For the S2J algorithm the turning point comes early, be-
tween l = 3 and 5, whereas the S3J algorithm benefits from
better granularity until l ∼ 9. This is because S3J is able to
stop without having to scan all the layers in the datasets.
• Memory Utilization. Our algorithms need 2 data struc-
tures: (a) a B-tree for indexing the data, and (b) a trie
structure for maintaining the region markings.

The B-tree index, which is stored on disk and used for join
processing, relies on a composite key formed by combining
the join attribute and the Z-values of the set of skyline at-
tributes (Section 4.2.3). While the use of the B-tree index
itself is common (for index-nested loop joins) we have a slight
increase in space overhead due to the Z-value composite keys
needed for effective pruning. The overhead depends on the
sizes of the Z-values relative to the original join keys. We
ran an experiment on a dataset with 1 million tuples (j = 1,
d = 2, s = 4, r = 10) and found that for this dataset the

dependent data distribution. Similar results were obtained
for other datasets with different cardinality and dimension-
ality, and hence, these graphs are not shown.
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Figure 11: Comparison against other algorithms
(n = 100K/dataset, j = 1, d = 2, s = 4, r = 10, l = 5)

Berkeley DB B-tree index built on only the join attribute oc-
cupied 40.3 MB of hard disk space, whereas an index built
on the composite key formed by the join attribute and the Z-
values occupied 96.9 MB of disk space. This rough doubling
in space occupied is expected as the key and the Z-value
each is stored as a Java integer of size 4 bytes.

Perhaps more important is the memory consumption of
the in-memory trie data structure, which keeps track of the
pruned and non-pruned regions. The space overhead of the
trie depends on the number of marked regions; in the worst
case, the trie would need to maintain markings on each and
every data point; this would mean that the pruned regions
can no longer be represented as blocks of data points, but
instead they would be individual data points. As shown
by the experimental results in Figure 10, the memory used
by the trie structure mainly depends on the depth of the
trie maintained (l), rather than on the cardinality (n) of
the datasets. S3J uses more memory than S2J, because S3J

maintains a trie for both the outer and inner tables. Also,
while the memory usage increases quickly with the depth of
the trie, as the experiments in this section show, the overall
depth that needs to be maintained is often not very high
and the memory usage is negligible.

5.3 Evaluation against other Techniques
Based on the analysis in the previous subsection, we set

l = 5 as the maximum allowed depth for the trie. Also, since
the S3J algorithm performs better than S2J, here we report
comparison results only for S3J.

In Figure 11, we first compare S3J against the iterative
skyline-join [20], PrefJoin [9], and SFSJ methods [23] for a
sample scenario. As can be seen here, S3J and the state-of-
the-art approach, SFSJ, are the most competitive among the
alternatives, and the difference from the other techniques is
multiple orders of time. Therefore, in the rest of the section,
we focus on the detailed study of S3J and SFSJ family.

5.3.1 TPC-H Benchmark and NBA Dataset

We first use the TPC-H benchmarks and the NBA dataset
to compare the S3J algorithm to SFSJ-RR and SFSJ-SC .
• TPC-H Datasets. TPC-H is a decision support bench-
mark. The TPC-H datasets were generated using the TPC-
H DBGEN tool8. We answered the following query:

Skyline_results = SSJ Part by P.partkey,

PartSup by PS.partkey,

P.size MAX, P.retailPrice MAX,

PS.availQty MAX, PS.supplyCost MAX

The cardinalities of the Part (P) and PartSup (PS) ta-
bles were varied by choosing different Scale Factors (SF).
SF scales the database population – for a particular value

8See Footnote 6.

of SF the DBGEN tool produces SF×200K tuples in table
Part and SF×800K tuples in table PartSup.

Figure 12 illustrates that the S3J algorithm outperforms
SFSJ-RR and SFSJ-SC on the TPC-H datasets over all eval-
uation metrics. Please note that all plots are on a log scale.
In terms of execution time (Figure 12(a)), S3J shows signif-
icant gain as the size of the datasets increases.

As is expected, on extremely small TPC-H datasets (2K x
8K), S3J is marginally slower since it has the added overhead
(∼ 2 sec.) of accessing the trie structure to find the regions
that have been pruned. But this overhead becomes negligi-
ble as the size of the dataset grows; this is mainly because
S3J leverages the block-based LR-pruning technique to per-
form far lesser number of dominance checks (Figure 12(b)) as
compared to the SFSJ methods. Both SFSJ-RR and SFSJ-
SC use time-consuming pairwise tuple-to-tuple dominance
checks in order to eagerly prune tuples that cannot produce
skyline-join results, hence this causes the cost of finding the
skyline to be considerably higher than our algorithm. In
addition, S3J has a tighter stopping condition as compared
to SFSJ-RR and SFSJ-SC (Figure 12(c)). It accesses lesser
number of tuples than the SFSJ methods, hence showing
that the early stopping condition employed by S3J is suc-
cessfully able to avoid more number of redundant accesses to
the tuples in the input datasets. Also, S3J materializes fewer
number of intermediate skyline candidates (Figure 12(d)).
• NBA Dataset. For the experiments with the NBA
dataset, we use the table that lists a player’s regular
season statistics – this table contains 21961 tuples and
includes 17 types of statistics (e.g., assists and points)
for the players. We encoded this dataset in the form
of two tables: Player_points (playerID, points, FGM)
and Player_assists (playerID, assists, FTM) – FGM
stands for Field Goals Made, FTM stands for Free Throws
Made. The following query was run:

Skyline_results = SSJ Player_points by playerID,

Player_assists by playerID,

points MAX, FGM MAX,

assists MAX, FTM MAX

As Figure 12 shows that the trends are similar to the
results obtained using the TPC-H datasets, and the S3J al-
gorithm outperforms the SFSJ-RR and SFSJ-SC algorithms
on the NBA dataset as well.

5.3.2 Detailed Analysis using Synthetic Datasets

We now present a more detailed performance evaluation
of the S3J algorithm using synthetic datasets.
• Effect of Data Correlation. Figure 13 shows the
performance of S3J over data with different correlations in
terms of execution time (Figure 13(a)), dominance checks
(Figure 13(b)) and total number of tuples scanned (Fig-
ure 13(c)). As illustrated in the figure, while S3J has only
marginal gain on correlated datasets (in which only a few
skyline points are obtained while the majority of the data
points are dominated), it performs extremely well on inde-
pendent and anti-correlated data distributions.

This shows that the LR-pruning technique and the early
stopping conditions used in S3J are more effective than the
corresponding pruning and stopping conditions in SFSJ,
hence resulting in fewer number of dominance checks (Fig-
ure 13(b)) and lesser scans (Figure 13(c)).

In the rest of this section, we use independently dis-
tributed datasets in the interest of space.
• Effect of Dimensionality. Figure 14 shows the impact
of the number of skyline attributes per dataset (d = 2, 3, 4)

261



1E+01

1E+03

im
e

 (
se

c,
 l

o
g

 s
ca

le
) S3J SFSJ!RR SFSJ!SC

1E 01

22K!x!22K 2K!x!8K 20K!x!80K 200K!x!800K

NBA TPC H TPC H TPC HE
xe

cu
ti

o
n

 T
i

Data Size | Dataset

(a) Execution time

1E+02

1E+04

1E+06

. 
C

h
e

ck
s 

(l
o

g
 s

ca
le

)

S3J SFSJ!RR SFSJ!SC

1E+00

22K x 22K 2K x 8K 20K x 80K 200K x 800K

NBA TPC!H TPC!H TPC!H

#
 D

o
m

.

Data Size | Dataset

(b) Dominance checks

1E+02

1E+04

1E+06

S
ca

n
n

e
d

 (
lo

g
 s

ca
le

) S3J SFSJ!RR SFSJ!SC

1E+00

22K x 22K 2K x 8K 20K x 80K 200K x 800K

NBA TPC!H TPC!H TPC!H

#
 T

u
p

le
s 

Data Size | Dataset

(c) Tuples scanned

1E+02

1E+04

1E+06

a
te

ri
a

li
ze

d
 (

lo
g

 s
ca

le
)

S3J SFSJ!RR SFSJ!SC

1E+00

22K x 22K 2K x 8K 20K x 80K 200K x 800K

NBA TPC!H TPC!H TPC!H

D
a

ta
 M

a

Data Size | Dataset

(d) Candidates materialized

Figure 12: Performance on real and benchmark datasets (j = 1, d = 2, s = 4, l = 5)
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Figure 13: Effect of data correlation (n = 100K/dataset, j = 1, d = 2, s = 4, r = 10, l = 5)

Outer Table Size 10K 100K 1000K

S
2
J 4.11 sec. 14.82 sec. 137.87 sec.

S
3
J 3.84 sec. 13.36 sec. 109.78 sec.

SFSJ-RR 2.49 sec. 46.31 sec. 9208.12 sec.

SFSJ-SC 2.47 sec. 40.59 sec. 7932.35 sec.

Table 1: Impact of size of the outer table on execu-
tion time (j = 1, d = 2, s = 4, r = 10, l = 5)

across the various evaluation metrics. The number of skyline
attributes in each case is given by s = 2× d. As observed in
the figures, the proposed algorithm outperforms both SFSJ-
RR and SFSJ-SC in terms of execution time (Figure 14(a)),
dominance checks (Figure 14(b)), and total number of tuples
accessed (Figure 14(c)). The SFSJ methods fail to prune the
space efficiently and incur additional cost due to its pruning
process. This experiment illustrates that the proposed S3J

algorithm is clearly more scalable as compared to SFSJ-RR
and SFSJ-SC, and the trie-based LR-pruning technique is
effective even on datasets with high dimensions. Similar
results were obtained for other data distributions.
• Effect of Data Cardinality. S2J and S3J differ from
each other in one key aspect. The S2J algorithm makes
a distinction between the outer and inner tables. Table 1
shows the impact of the size of the outer table on S2J – as
the size of the outer table increases the execution time in-
creases as well. S3J improves on S2J by continuously swap-
ping the roles of the outer and inner tables for each layer.
The swapping of the tables eliminates the need to pick one of
the tables as the “best” outer table. This hypothesis is con-
firmed by the experimental results obtained. For instance,
on tables containing 1 million tuples each (Table 1), S2J has
an execution time of ∼ 137 sec., whereas S3J has a faster
execution time of ∼ 109 sec. Note that, S2J still performs
better than SSFJ-RR and SFSJ-SC; on the above-mentioned
dataset these methods have execution times of ∼ 9, 208 sec.
and ∼ 7, 932 sec., respectively.

Figure 15 illustrates the performance of S3J

against increases in data cardinality of each dataset
(n = 10K, 100K, 1000K). The plots are on a log scale
and show results on independently distributed datasets.

Figure 15(a) shows that S3J scales well and performs
significantly better in terms of execution time as compared
to the SFSJ algorithms. On the very small dataset, S3J

is marginally slower since it has the added overhead of
accessing the trie structure in order to find the regions that
have been pruned. But as the size of the datasets increases,
S3J scales much better than SFSJ-RR and SFSJ-SC.
• Effect of Join Rate. Figure 16 compares the perfor-
mance of S3J against the SFSJ algorithms across different
join rates, namely r = 0.01, 1, 10. In terms of execution time
(Figure 16(a)), the S3J algorithm outperforms both SFSJ-
RR and SFSJ-SC across different joins rates. This gain is
due to the fewer number of dominance checks (Figure 16(b))
performed by S3J and also the fact that it scans a lower num-
ber of tuples (Figure 16(c)) as it computes the skyline. The
result shows that S3J has a clear advantage over the SFSJ
methods even when the join rates of the datasets are varied.

6. CONCLUSIONS
In this paper, we studied the problem of processing sky-

line queries over multiple data sources. We proposed two
novel non-iterative algorithms, namely S2J and S3J, to pro-
cess join-based skyline queries in a skyline-sensitive man-
ner. Both of these algorithms produce the skyline points by
scanning the outer table one dominance layer at a time and
require at most a single scan. A trie-based book-keeping
strategy helps prune the tuples in the inner table, which are
mapped to their corresponding Z-order values, quickly. The
Z-order values help cluster the data into region-blocks in or-
der to support efficient dominance checks and to facilitate
block-based pruning of the inner table. The S2J algorithm
scans the outer table entirely, while pruning the inner table
progressively. The S3J algorithm is similar to S2J, the main
difference being that S3J repeatedly swaps the outer and in-
ner tables for symmetric operation. A special stopping con-
dition applicable when using this symmetric strategy helps
the algorithm stop earlier than S2J, without having to scan
any of the input datasets in its entirety.

The experiments carried out show the superiority in per-
formance of S2J and S3J on both real and synthetic datasets
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Figure 14: Effect of dimensionality (n = 100K/dataset, j = 1, s = 2d, r = 10, l = 5)
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Figure 15: Effect of data cardinality (j = 1, d = 2, s = 4, r = 10, l = 5)
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Figure 16: Effect of join rate (n = 100K/dataset, j = 1, d = 2, s = 4, l = 5)

with various distributions, cardinalities and dimensions. In
conclusion, the proposed algorithms are very efficient in ex-
ecuting join-based skyline queries and significantly outper-
form the existing skyline-sensitive join techniques.
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[1] W.-T. Balke, U. Güntzer, and J. X. Zheng. Efficient

distributed Skylining for web info. systems. In EDBT, 2004.
[2] I. Bartolini, P. Ciaccia, and M. Patella. Salsa: computing

the skyline without scanning the whole sky. In CIKM, 2006.
[3] A. Bhattacharya and B. P. Teja. Aggregate skyline join

queries: Skylines with aggregate operations over multiple
relations. In COMAD, 2010.
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