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ABSTRACT
Large data generated by scientific applications imposes chal-
lenges in storage and efficient query processing. Many queries
against scientific data are analytical in nature and require
super-linear computation time using straightforward meth-
ods. Spatial distance histogram (SDH) is one of the basic
queries to analyze the molecular simulation (MS) data, and
it takes quadratic time to compute using brute-force ap-
proach. Often, an SDH query is executed continuously to
analyze the simulation system over a period of time. This
adds to the total time required to compute SDH. In this pa-
per, we propose an approximate algorithm to compute SDH
efficiently over consecutive time periods. In our approach,
data is organized into a Quad-tree based data structure. The
spatial locality of the particles (at given time) in each node
of the tree is acquired to determine the particle distribution.
Similarly, the temporal locality of particles (between consec-
utive time periods) in each node is also acquired. The spatial
distribution and temporal locality are utilized to compute
the approximate SDH at every time instant. The perfor-
mance is boosted by storing and updating the spatial distri-
bution information over time. The efficiency and accuracy of
the proposed algorithm is supported by mathematical analy-
sis and results of extensive experiments using biological data
generated from real MS studies.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database applications—
Scientific databases
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1. INTRODUCTION
With the improvement of computer simulation systems and
experimental devices, the amount of data generated by sci-
entific applications has posed a big challenge to the design
of data management software. There have been attempts to
manage such large data using traditional database manage-
ment systems (DBMS) [11, 8, 19]. However, the traditional
DBMSs are optimized towards business applications and
hence require us to have another look at the system design.
The access to scientific datasets is mainly through high-level
analytical queries that are much more complex to compute
than simple aggregates. Many scientific queries comprise of
a small number of analytical routines that are frequently
used, and these routines generally take super-linear time
when computed by a brute-force approach. Therefore, there
is a need to support efficient processing of such analytics in
a scientific database system. In this paper, we present our
work related to such an analytics that is extremely impor-
tant in the analysis of molecular simulation (MS) data.

Molecular (or particle) simulations are computer based sim-
ulations of complex biological, chemical, or physical struc-
tures. The basic entities of such simulations are natural
particles (e.g., atoms, molecules, etc.) that interact with
each other following classical forces. The simulations are
performed to study the behavior of the entities under the ex-
perimental settings based on some basic theoretical model.
MS is widely used as a basic research tool in bio-physics, as-
tronomical physics, biomedical sciences, material sciences,
etc. The number of entities in simulations may be of large
magnitude, often in the range of hundreds of thousands to
millions. Quantities measured during the simulation are an-
alyzed to test the theoretical model [9, 18]. Fig. 1 shows
a snapshot of a collagen fiber, which consists of 890,000
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atoms. Furthermore, the dataset contains many snapshots
(called frames) of the system state captured at different
time instants. Every frame contains all particles with their
measurements such as spatial coordinates, velocity, forces,
charge, and mass. A large number (e.g., tens of thousands)
of such frames are stored during a typical simulation process.

Figure 1: A snapshot of simulated collagen fiber
structure

MS data analysis, on which scientific discovery heavily de-
pends, involves computing complex quantities that show sta-
tistical properties of the data. Many queries involve count-
ing more than one particle as a basic data unit – a func-
tion that involves counting all m-tuple subsets of the data
is called a m-body correlation function. In this paper, we
discuss one such analytical query called spatial distance his-
togram (SDH) [25], which is the histogram of distances be-
tween all pairs of particles in the system. Being a discrete
approximation of the continuous probability distribution of
distances named Radial Distribution Function (RDF), the
SDH is a very important query in MS databases. It is one
of the basic building blocks for a series of critical quanti-
ties required to describe the physical systems such as total
pressure and energy as summarized in [9].

1.1 Problem Statement
The basic problem of SDH computation is defined as follows:
Given the coordinates of N points and a user-specified dis-
tance w, we are required to compute the number of point-to-
point distances that fall into a series of ranges (i.e., buckets)
of width w: [0, w), [w, 2w), . . . , [(l−1)w, lw]. In other words,
the SDH computation gives an ordered list of non-negative
integers H = (h1, h2, . . . , hl), where each hi(0 < i ≤ l) is
the number of distances that fall into the bucket (distance
range) [(i − 1)w, iw). As SDH is a basic tool in the valida-
tion and analysis of MS systems, its variations over a period
of time during the simulation often become critical informa-
tion. Therefore, we need an efficient technique to compute
the SDH not only for a single frame, but also over a large
number of consecutive frames.

2. COMPARISON TO RELATED WORK
The naive way of computing SDH involves calculating dis-
tance between every pair of particles in the system, and
putting the distances into appropriate histogram buckets -
this apparently requires quadratic time. Popular simulation
data analysis softwares such as GROMACS [14] still follow
the brute-force way to compute SDH. The current state-
of-the-art techniques in SDH computation follow the strat-
egy of treating clusters of particles as the basic processing
units [25, 10]. Such clusters are often organized into nodes in
space-partitioning trees such as kd-trees, as reported in [10].

The key idea in such methods is to process all the particles
in a tree node as a whole, rather than building the histogram
by processing particle-to-particle distances.

A Density-Map based SDH algorithm (DM-SDH) using a
quad-tree data structure is presented in [25]. It is proved

that DM-SDH runs at Θ(N
3

2 ) for 2D data and Θ(N
5

3 ) for
3D data. The central idea of DM-SDH will be presented
later in more details. Even though the DM-SDH is an im-
portant cornerstones in tackling the problem of SDH pro-
cessing, it is still not a practically efficient solution for the
following reasons. First, the time complexity analysis [25]
of DM-SDH is done taking the data size N as input under
a given bucket width w of the SDH. Second, if we consider
the running time as a function of w, or more conveniently,
of the total number of buckets l, we can easily see that it
increases dramatically with l. As a result, in many cases of
reasonably small w values, the actual running time of the
algorithm can be even longer than that of the brute-force
algorithm [25]! Third, it focuses on computing SDH for a
single frame while almost all MS data analysis tasks in the
scientific community require SDH computation for many (if
not all) consecutive frames. To accomplish such continuous
SDH processing in F frames, we basically have to run the
same algorithm F times, and F is normally on the order of
tens of thousands.

An approximate SDH algorithm (ADM-SDH), whose run-
ning time is not dependent on the data size N (excluding
the DM-tree construction time), is also introduced in [25].
However, its time is dependent on a guaranteed error bound
and the bucket size w. Similar to DM-SDH, the ADM-SDH
can only be applied to a single frame. Hence, the main ob-
jective of our work is to design an algorithm to remedy the
problems of both DM-SDH and ADM-SDH algorithms while
achieving higher efficiency and accuracy.

The SDH problem is often confused with the computation
of the force/potential fields in the MS process itself. In the
later, the physical properties of a particle in the simula-
tion system are determined by the forces applied to it by
all other particles in the system. Various approximate al-
gorithms [3, 12] have been proposed to take advantage of
the mathematical features of the formula that defines such
forces. Although the problem is similar to SDH in definition
and has time complexity of brute-force method, its algo-
rithms provide little insights on how SDH can be efficiently
computed. A detailed comparison between force field com-
putation and SDH can be found in [6]. Note that the former
is about computation done for simulation of a system while
the latter is for system analysis.

The computation of SDH over multiple frames is related to
persistent data structures [7]. These allow different versions
of the computation results, maintained over time, that are
updated for quick query processing. A multi-dimensional
persistent tree (or MP-tree) [23] is an extension of such
data structure for searching in spatio-temporal data. The
location based services (e.g. GIS application) have moti-
vated the need for efficient handling of spatio-temporal data
in DBMSs. Building persistent index schemes on complex
spatio-temporal data allows time efficient retrieval [17]. A
detailed survey by Kaplan [15] presents applications in which
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persistent data structures play significant role in improving
efficiency. These structures are basically designed to address
the I/O bottleneck problem. Again, multi-frame SDH com-
putation can hardly take advantage of techniques developed
for persistent data structures, since heavy computation has
to be performed at each instant, which overshadows the I/O
time.

3. OVERVIEW AND CONTRIBUTIONS
In this paper, we present the design and evaluation of a
practical algorithm for processing SDH of large-scale MS
data, to address the issues mentioned in previous section.
The main idea is to process a density map of the given data
by taking advantage of the two types of uniformity that
widely exist in MS data. This saves computational time
while achieving high accuracy in query results.

The first type of uniformity is related to the spatial dis-
tribution of data points (e.g., atoms) in MS datasets.
In short, we found that MS data often consists of spatial
regions in the simulation space where the data points are
uniformly distributed. It is well known that components of
natural systems tend to spread out evenly in space due to the
existence of chemical bonds and/or inter-particle forces [1,
2]. As a result, particles are often found to be uniformly dis-
tributed in localized regions in the simulation space.1 For
example, the solvent molecules represented by red dots in
Fig. 1 are uniformly distributed since a body of water is
essentially incompressible. Due to this uniformity, such a
region can be treated as a single entity in computing SDH
without introducing significant errors. This property is the
key in controlling the running time of the algorithm such
that it is not affected by the bucket width of SDH. More
details of this technique are presented in section 5.1.

The second type of uniformity refers to the significant tem-
poral similarity among neighboring frames. We argue
such similarity is actually reflected in the final results of the
SDH we obtain for the neighboring frames. Therefore, given
two frames f0 and f1, if we know the SDH of f0, the SDH
of f1 can be obtained by working on the regions that do not
show similarity between the two frames while the regions
that are similar can be ignored. To harness such similarities
among frames, we design an incremental algorithm that
quickly computes SDH of a frame from a base frame whose
SDH is obtained using traditional single-frame algorithms.
More details on this are presented in section 5.2.

We test a composite algorithm that combines the above ideas
on real MS datasets. The results clearly show that the run-
ning time of the proposed algorithm is insensitive to the
change of SDH bucket width w, and can be orders of magni-
tude shorter than that of the ADM-SDH. Furthermore, the
accuracy of the algorithm also beats DM-SDH in almost
all cases. We believe, we have developed the first practical
fast algorithm for processing SDHs, and our success will also
open up a new direction in tackling the more general and also
difficult problem of multi-body (m-body) correlation func-
tion computation [21]. In summary, the major contributions
of our work are:

1 However, it will not make the data system-wise uniform. Oth-
erwise, the SDH computation becomes a trivial task.

• Technique to identify spatial uniformity within a frame

• Technique to identify temporal locality between con-
secutive frames

• An approximate algorithm to compute the SDH of
large number of data frames by utilizing the above
properties

• Empirical and analytical evaluation of the algorithm
and comparison with existing technique

4. BACKGROUND
In this section, we introduce the basic techniques and con-
cepts applied in our work, as they serve as the foundations
in this paper. A detailed presentation is available in [25].
A density map is a conceptual data structure that divides
the simulation space into a grid of small cells (or regions) of
equal size. The region is a cube in 3D and square in 2D.2

Each cell of the grid is further divided into four equal sized
cells to generate a density map of higher resolution. There-
fore, we can organize different density maps of the same data
using a region quad-tree [20], in which a cell is represented
by a tree node and a density map is basically the collection
of all nodes on one level of the tree. In every node of the
tree, we also record the number of particles in it, and the cell
location (i.e., coordinates of corner points). We call such a
tree the Density-Map Tree (DM-tree).

B1

B2
B3

B
A

Figure 2: Computing minimum (i.e., length of solid
lines) and maximum distance (i.e., length of dashed
lines) range between two cells

The core of DM-SDH algorithm is a procedure called Re-

solveTwoCells, which takes two cells (e.g., A and B in
Fig. 2) from a density map as input. For any two cells, we
can compute the minimum and maximum distance between
them in constant time. A pair of cells is resolvable if the
minimum and maximum distances between them fall into
the same SDH bucket i. If two cells resolve into bucket i, we
simply update the histogram by incrementing the distance
count of bucket i by nAnB , where nA and nB are the num-
ber of particles in cell A and B, respectively. If the cells do
not resolve, we take one of the following actions:

(1) Go to the next density map with higher resolution and
resolve all children of A with those of B, or

(2) If it is the leaf-level density map, compute every dis-
tance between particles of A and B and update the
histogram accordingly.

2 We continue our discussions focusing on 2D data to elaborate
and illustrate the proposed ideas. The extension of such ideas to
3D space would be straightforward.
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The complete SDH is generated by executing the Resol-

veTwoCells routine for all cell pairs on a given density
map DMk (the density map in which the cell diagonal length
is at most equal to the bucket width w). Therefore, the algo-
rithm calls ResolveTwoCells recursively (i.e., action (1)
above) till it reaches the lowest level of the tree (i.e., ac-
tion (2) above). Using a geometric modeling approach, it
has been proven that the time complexity of DM-SDH is

O
(

N
2d−1

d

)

[6], where d is the number of dimensions. The
more exciting aspect is that DM-SDH can be extended to
compute approximate SDH results with time complexity

I
(

1
ǫ

)2d−1
, where ǫ is an error bound and I is the number

of pairs of cells in DMk.
3 The idea is to make recursive

calls to ResolveTwoCells only for a fixed number (m) of
levels.4 For cell pairs that are still not resolvable after vis-
iting the m levels, we use heuristics to greedily distribute
distances into relevant SDH buckets. While the ADM-SDH
is a fast algorithm with respect to data size N , its running
time is very sensitive to the bucket width w. Specifically,
quantity I increases by a factor of 22d when 1/w doubles.
As the SDH is basically a discrete approximation of a con-
tinuous distribution of the distances in the simulation sys-
tem, more information is lost when w increases. In practice,
scientists prefer a w value that is small enough such that
there are a few hundred buckets in the SDH computed. In
this paper, we present a fast multi-frame SDH processing
algorithm whose behavior is insensitive to both w and N .
Our algorithm will utilize the same region quad-tree for data
organization as in the DM-SDH and ADM-SDH algorithms.

5. SDH COMPUTATION BASED ON SPA-

TIOTEMPORAL UNIFORMITY
The DM based algorithms depend heavily on resolving cells
to achieve the desired accuracy. Only when we finish visit-
ing m levels of the tree or reach the leaf nodes do we use
heuristics to distribute the distances into relevant buckets.
That is the main reason for the long running time. Our
idea to remedy that problem is to greedily distribute dis-
tances between very large regions of the simulation space,
even when no pairs of such regions are resolvable. In other
words, we use heuristics for distance distribution as early as
possible. However, the distribution of distances between two
large regions may yield arbitrarily large errors. Therefore,
the key challenge is to design a heuristic with high accuracy
even under large regions.

5.1 Utilizing Spatial Uniformity
Our first idea to address the aforementioned challenge is to
take advantage of the spatial distribution of data points in
the cells. As illustrated in Fig. 3: two cells have a distance
range [u, v] that overlaps with three SDH buckets (i.e., from
bucket i to i+2). A critical observation here is: if we knew
the probability distribution function (PDF) of the point-to-
point distances between cells A and B, we can effectively dis-
tribute the actual number of distances nAnB into the three
overlapping SDH buckets. Specifically, the total number of
nAnB distances will be assigned to the buckets based on the

3 There is also a O(N logN) cost for building the Quad-tree.
4 Given the user specified error bound ǫ, our analytical model can
tell what value of m to choose [25]. We will study the heuristics
for distance distribution in section 5.1.

distance

iw (i+1)w (i+2)w
vu

i
bucket bucket bucket

i+1 i+2

Inter−cell distance range

(i-1)w

distance distribution

Figure 3: Distance range of non-resolvable cells
overlaps with more than one bucket of the SDH

probability of a distance falling into each bucket according
to the PDF. For the case in Fig. 3, the relevant SDH buckets
and the number of distances assigned to them are as follows:

H [i], nAnB

∫ iw

u
g(t)dt (1)

H [i+ 1], nAnB

∫ (i+1)w

iw
g(t)dt (2)

H [i+ 2], nAnB

∫ v

(i+1)w
g(t)dt (3)

where g is the PDF. The biggest advantage of the above
approach is that the errors generated in each distance count
assignment operation can be very low, and the errors will not
be affected by the bucket width w, as long as the PDF is
an accurate description of the underlying distance distribu-
tion [5]. Therefore, the main task of the proposed approach
is to derive the PDF.

Note that in the work presented in [25], the distances are
proportionally distributed into the three buckets based on
the overlaps between range [u, v] and the individual buckets.
Such a primitive heuristic, which is named Prop (short for
“proportional”), implicitly assumes that the distance distri-
bution is uniform within [u, v]. However, our experiments
show that a typical distance distribution in MS data is far
from being uniform. Hence, our proposed solution will natu-
rally introduce less errors than the Prop heuristics adopted
by ADM-SDH.

In general, the PDF of interest can be obtained by the spa-
tial distribution of particles in the two relevant cells. The
coordinates of any two particles - one from A and the other
from B - can be modeled as two random vectors ~vA and ~vB ,
respectively. The distance between these two particles can
also be modeled as a random variable D, and we have

D = ||~vA − ~vB ||. (4)

Given that, if we know the PDFs of both ~vA and ~vB , the
PDF of D can be derived via one of the following strategies:
(1) generation of a closed-form via analyzing the PDFs of
~vA and ~vB as well as Eq. 4; or (2) Monte Carlo simulations
using the PDFs of ~vA and ~vB as data generation functions.
In practice, it is difficult to get a closed-form PDF for D
even when the particle spatial distributions follow a sim-
ple form.5 Therefore, we focus on the second technique of
running Monte Carlo simulations in this paper.

5 For example, our analytical study (Appendix F in [26]) under
the assumption of uniform particle distribution shows thatD2 can
only be approximated by a non-central chi-square distribution.
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Monte Carlo simulations can help us obtain a discrete form
of the PDF of the distance distribution, given the PDFs of
the particle spatial distributions [18]. One important note
here is that the method works no matter what forms the spa-
tial distributions follow. However, to generate the particle
spatial distributions, it is infeasible to test the MS dataset
for all possible distributions. Instead, we focus on testing if
the data follows the most popular distribution in MS - spa-
tial uniform distribution.6 As discussed in section 3, natural
systems often contain localized uniform regions in simula-
tion space. Given that, our proposed algorithm contains the
following steps:

(1) Identifying uniform regions in which particles are
uniformly distributed;

(2) Deriving the distance distribution PDFs between all
pairs of uniform regions by Monte Carlo simulations;

(3) Assigning the actual distance counts in such regions
following Eqs. 1– 3.

One technical detail skipped is that we also need to assign
intra-cell distances (step(2) only handles inter-cell distances)
to the first few buckets of the SDH. Details of such opera-
tions can be found in Appendix A.

To complete the above algorithm, all pairs of cells contain-
ing at least one non-uniform cell, will be processed using the
Prop heuristic. Physical study of molecular systems have
shown that it is normal to see a small number of large uni-
form regions covering most of the particles, leaving only a
small fraction of particles in non-uniform regions [1, 2]. This
is also verified by our experiments using real MS datasets
(section 7). This translates into high efficiency of the pro-
posed algorithm. Furthermore, the time complexity of steps
(1) and (2) is unrelated to the bucket size w. The time
needed for step (3) is inversely related to w.

In the remainder of this subsection, we present the main
technical details of accomplishing the above steps.

5.1.1 Identification of uniform regions
The first problem related to this topic is: given a spatial
region (represented as a quad-tree node), how do we test if
it is a uniform region? We take advantage of the chi-square
(χ2) goodness-of-fit test to solve this problem. Here we show
how the χ2 test is formulated and implemented in our model.
A brief introduction to this statistical tool and justification
of its applicability to our problem can be found in Appendix
III of technical report [16].

Definition 5.1. Given a cell Q (i.e., a tree node) in the
DM-tree, we say Q is uniform if its probability value p in the
chi-square goodness-of-fit test against uniform distribution is
greater than a predefined bound α.

To obtain the p-value of a cell, we first need to compute
two values: the χ2 value and the degree of freedom (df) of
that particular cell. Suppose cell Q resides in level k of the

6 Particle spatial distribution is different from the distribution
of distances between particles.

DM-tree (see Fig. 4). We go down the DM-tree from Q till
we reach the leaf level, and define each leaf-level descendant
of Q as a separate category. The intuition behind the test
here is: Q is uniform if each category contains roughly the
same number of particles. The number of such leaf-level
descendants of cellQ is 4t−k, where t is the leaf level number.
Therefore, the df becomes 4t−k−1. The observed value, Oj ,
of a category j is the actual particle count in that leaf cell.
The expected value, Ej , of a category is computed as follows:

Ej =
Total Particle Count in Cell Q

# of leaf level descendants of Q
=

nQ

4t−k
(5)

Having computed the observed and expected values of all
categories related to Q, we obtain the χ2 test score of cell
Q through the following equation:

χ2 =
4t−k
∑

j=1

(Oj −Ej)
2

Ej
(6)

Next, we feed these two values, the χ2 and the df , to the
R statistical library [24], which computes the p-value. We
then compare the p-value to a predefined probability bound
α (e.g., 0.05). If p > α, we mark the cell Q as uniform,
otherwise we mark it as non-uniform. Note that the χ2 test
performs poorly when the particle counts in the cells drop
bellow 5 [13]. But, we already had similar constraint in
our algorithm while building the DM-tree, essentially mak-
ing the cells in the leaf level contain more than 4 particles.
Hence, we choose leaf level nodes as the categories in the
test.

Q

f+1 f+2 f+4

P

Root

h+1 h+2 h+4

4 cells4 cells

0 4

t 
- 

m
  

le
v
e

ls

t - k
  le

v
e

ls

leaf level  t

tt-m t-k

level  m

level  k

level  0

t-m t-k

Figure 4: Sub-trees of nodes P and Q with their leaf
nodes

To find all the uniform regions, we traverse the DM-tree
starting from the root and perform the above χ2 test for
each node we visit. However, once a node is marked uniform,
there is no need to visit its subtree. The pseudo code shown
in Fig. 5 represents this idea – to find all uniform regions,
we only need to call procedure MarkTree with the root
node of the DM-tree as input.

5.1.2 Monte Carlo simulations
The distribution of distances between a pair of cells, say
A and B, can be determined based on their spatial distri-
bution of particles, by running Monte Carlo simulations.
Monte Carlo simulation is a way to model a phenomenon
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Procedure MarkTree(node Q, level l)

0 checkUniform(Q, l)
1 if Q is NOT uniform
2 then for each child Bi of cell Q: i := 1 . . . 4
3 MarkTree (Bi, l + 1)

Procedure checkUniform(node Q, level l)

0 Go to leftmost leaf level (t) descendent of Q
1 for k = 1 to 4t−l

2 χ2 := χ2 + (Ok−Ek)
2

Ek

3 Get pval(χ2) using R library
4 if pval > significance value α
5 then mark Q as uniform
6 else mark Q as not uniform

Figure 5: Marking Uniform Regions

that has inherent uncertainty [18]. If the spatial distribu-
tions of particles in A and B are known to be uniform, the
simulations can be done by sampling (say ns) points inde-
pendently at random from uniform distributions within the
spatial ranges of A and B. Then, the distance distribution is
computed from the points sampled in both cells. A tempo-
rary distance histogram can be built for this purpose. All n2

s

distances are computed (brute-force method), and put into
buckets of the temporary histogram accordingly (e.g., those
overlapping with [u, v] in Fig. 3). The final proportions of
each bucket in the temporary histogram will fulfill our needs
in step (3) of the algorithm.

Sufficient number of points are needed to get reasonably high
accuracy of the SDH generated [5]. The cost of running such
simulations can be high if we were to perform one simulation
for each pair of uniform regions. This, fortunately, is not
the case. First, let us emphasize that the simulations are
not related to the number of particles (e.g., nA and nB) in
the cells of interest - the purpose is to approximate the PDF
of distance distribution. Second, and most importantly, the
same simulation can be used for multiple pairs of cells in
the same density map, as long as the two cells in such pairs
have the same relative position in space. A simple example
is shown in Fig. 2: cell pairs (A,B) and (A,B1) will map to
the same range [u, v] and can definitely use the same PDF. A
systematic analysis of such sharing is presented in following
theorem.

Theorem 5.2. The number of distinct Monte Carlo sim-
ulations performed for pairs of cells in a density map of M
cells, is O(M).

Proof. See appendix B.

Theorem 5.2 says that, for the possible O(M2) pairs of uni-
form regions on a density map, there are only a linear num-
ber of simulations that need to be run. Furthermore, as we
will see later (Section 5.2), the same cells exist in all the
frames of the dataset, therefore, a simulation run for one

frame can be shared among all frames. Given the above
facts, we can create a hash table or lookup table to store the
simulation results to be shared among different operations
when a PDF is required.

5.2 Utilizing Temporal Locality
Another inherent property of the MS is that the particles
often exhibit temporal locality, and such temporal property
can be utilized to compute the SDH of consecutiv frames
even faster. The existence of temporal locality is mainly
due to the physical properties of the particles in most of the
simulation systems. More specifically, such properties can
be observed at the following two levels:

(1) Particles often interact with each other in groups and
move randomly in a very small subregion of the system;

(2) With particles moving in and out of a cell, the total
number of particles in that cell does not change much

We discuss the algorithm in terms of only two frames f0
and f1, although the idea can be extended to an arbitrary
number of frames. DM-trees T0 and T1 are built for the two
frames f0 and f1, respectively. Since the DM-trees are built
independently from the data they hold, the number of levels
and cells, as well as the dimensions of corresponding cells
in both DM-trees will be same. First, an existing algorithm
(e.g., DM-SDH or ADM-SDH) is used to compute the SDH
H0 for the base frame f0. Then we copy the SDH of frame f0
to that of f1, i.e., H1 = H0. The idea is to modify the initial
value of H1 to reach its correct form by only processing cells
that do not show temporal locality.

Let DM0
k and DM1

k be the density maps, at level k, in their
respective DM-trees T0 and T1. We augment each cell in
DM1

k with the ratio of particle count of that cell in DM1
k to

the particle count of the same cell in DM0
k . A density map

that has such ratios is called a ratio density map (RDM).
The next step is to update the histogram H1 according to
the ratios in the RDM. Let rA and rB (A 6= B) be density
ratios of any two cells A and B in the RDM. We have two
scenarios:

Case 1: rA × rB = 1. In this case, we do not make any
changes to H1. It indicates that the two cells A and B con-
tributed the same (or similar) distance counts to the corre-
sponding buckets in both histograms H0 and H1.

Case 2: rA × rB 6= 1, indicates that some changes have
to be made to H1. Specifically, we follow the Prop heuris-
tic, as in ADM-SDH, to proportionally update the buckets
that overlap with the distance range [u, v]. For example, as
shown in Fig. 3, consider the distance range [u, v] overlap-
ping three buckets i, i+ 1, and i+ 2. The buckets and their
corresponding count updates are given in Eqs. 7– 9.

H1[i], (n1
An

1
B − n0

An
0
B) iw−u

v−u
(7)

H1[i+ 1], (n1
An

1
B − n0

An
0
B) w

v−u
(8)

H1[i+ 2], (n1
An

1
B − n0

An
0
B) v−(i+1)w

v−u
(9)

where n0
A and n0

B are counts of particles in cells A and B,
respectively, in density map DM0

k of frame f0. Similarly,
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n1
A and n1

B are counts of particles in corresponding cells of
density map DM1

k in frame f1. Note that we have n1
A =

rA · n0
A and n1

B = rB · n0
B . The total number of distances

to be updated in the buckets is n1
A × n1

B - n0
A × n0

B . This
actually gives us the number of distances changed between
cells A and B of density map DMk, going from frame f0 to
frame f1.

An efficient implementation of the above idea requires all
pairs of cells that satisfy theCase 1 condition to be skipped.
In other words, our algorithm should only process the
Case 2 pairs, without even checking whether the
product of two cells is 1.0 (explained later). The his-
togram updates can be made efficiently if cells with equal or
similar density ratios are grouped together. Our idea here is
to store all the ratios in the RDM in a sorted array (Fig. 6).
The advantage in sorting is that the sorted list can be used
to efficiently find all pairs of cells with ratio product of 1.0.
In other words, for any cell D with density ratio rD, find the
first cell E and the last cell F in the sorted list with ratios
1/rD, using binary search. Then, pair cell D with all other
cells except the cells between E and F in the sorted list.
Fig. 6 shows an example of a cell (D1) with ratio 1.0 – we
mark the first cell E1 and the last cell F1 with ratio of 1.0.
Then we pair D1 with rest of the cells in the list. Take an-
other example of cell (D2) with ratio 0.2 : we will effectively
skip all the cells (E2 to F2) with ratio 5.0 (as 1/0.2 = 5.0),
and start pairing D2 with those cells that do not have ratio
5.0 (to the left of E2 and right of F2). Again, there are also
intra-cell distances to be processed (details in Appendix A).

In practice, a tolerance factor ǫ can be introduced to the
Case 1 condition such that the cells with ratio product
within the range of 1.0 ± ǫ are skipped from the computa-
tions. While saving more time by allowing more cell pairs
untouched, the factor ǫ can also introduce extra errors. How-
ever, our analysis in Section 6 shows that such errors are
negligible.

5.3 Putting Both Ideas Together
The continuous histogram processing is sped up by utilizing
both spatial uniformity and temporal locality properties. An
overview of the technique is shown in the flow diagram of
Fig. 7. The left branch (decision A ≡ B) is to compute
the intra-cell distances. In the right branch we check the
locality property of every pair of cells before checking for
uniform distribution of the particles. Any pair that satisfies
the locality property is skipped from further computations.
The pairs that fail the locality property check are tested for
the uniformity property. Based on the results of the check,
subsequent steps are taken and the histogram buckets are
updated.

The Monte Carlo simulation step introduced in our algo-
rithm is expensive when computing SDH of a sequence of
frames. As mentioned in section 5.1, the cost can actually
spread over when we are processing a sequence of frames.
It is an interesting fact that the tree building process is
such that a cell in the DMs of same level in all frames is
of same dimensions. Therefore, a simulation done once can
be reused in all other frames. Given a pair of cells A and
B and their respective distance range [u, v], we compute the
proportions of distances that map to each bucket covered
by [u, v] through Monte Carlo simulation. For each distinct
[u, v] range, we store such (and only such) proportions of
distance distributions in a universal hash table.

For every pair of uniform cells that do not resolve and have
distance range [u, v], we look into the hash table to get the
proportions to distribute the distances into buckets. If an
entry is available in the hash table, we use it directly. Oth-
erwise, a new simulation is done and proportions are calcu-
lated. This new simulation information is stored in the hash
table. The hash table is universal and is used for computing
the histogram of all the frames for a given bucket width.

Figure 7: Steps in dealing with two cells of the com-
posite algorithm for computing SDH
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To simplify the implementation, one decision we made was
to choose a level k in the DM-tree and process cells on that
level only (instead of working on uniform regions on different
levels). We need a level that balances both SDH computa-
tion time and the error – choosing a level close to the leaves
may increase the time, while a level close to the root will
introduce higher errors in the SDH. An important feature
of our algorithm is that the user can choose a level to run
the algorithm according to her tolerance of the errors. Such
choices can be made beforehand by analysis as discussed
in technical report [16]. Note that all the cells in the DM-
tree that are uniform are marked before the continuous SDH
processing begins.

The proposed technique is completely based on the gen-
eral temporal and spatial uniformity of the data set. Such
cell-wise uniformity is not only observed in MS, but also in
many traditional spatiotemporal database applications [22].
Hence, it can be applied to very different data sets such as
crowd of people and stars in astronomical studies.

6. PERFORMANCE ANALYSIS
The performance (running time and errors) of the proposed
techniques is analyzed briefly in this section. More details
are explained in technical report [16].

6.1 Time analysis
The running time of the algorithm utilizing only the spa-
tial uniformity property is contributed by the following fac-
tors: (a) identifying uniform regions; This can be bound by
O(N logN), as the count in each leaf node is used for at
most O(logN) chi-square tests; (b) distributing distances
into buckets; For this, all pairs of cells on a DM need to be
processed - in a DM with M cells, the time is O(M2). (c)
Monte Carlo simulations that require O(MTs) time accord-
ing to Theorem 5.2. Here Ts is the time of each individual
simulation that can be regarded as a constant, and such cost
can be amortized into the large number of frames.

Theoretically, the cost of identifying uniform regions domi-
nates, as the complexity is related to system size N . How-
ever, the O(M2) time for factor (b) can dwarf it if we choose
a DM on the lower levels of the quad tree - M approaches
N when the level gets lower.

6.2 Error analysis
Based on the sources, two types of errors are introduced by
utilizing the spatial uniformity feature:

I. error (eu) by pairs of cells that are both uniform, and

II. error (ea) by those with at least one non-uniform cell.

Type I error is introduced by: (a) approximation error of
Pearson’s χ2 test statistic [4], which is up to the order of

O
df−1

df

t , where df is degree of freedom and Ot is the number
of observations in χ2 test. When df is sufficiently large, the
error in marking a cell uniform is eu = 1/Ot. (b) simulation
error, which, according to the Law of Iterated Logarithm
(LIL) [4], is up to the order of ( nAnB

log lognAnB
)−1/2, where nA

and nB are the number of points simulated in cells A and B,
respectively. Considering a scenario where nA and nB are

of the order of 102, the simulation error is slightly smaller
than the order of 10−2.

It is easy to see that the Type II error is as much as the error
achieved by the Prop heuristic. It is hard to get a tight
error bound when the distribution of points in a cell is not
uniform. We have done intensive qualitative research and
found that the error (theoretical) can be loosely bounded
by 10% [26]. Of course, this is not a tight bound, and our
experimental results (section 7) show that the error is much
smaller (less than 1%).

6.3 Error/Performance Tradeoff
Given the above analysis, we show our algorithm is tunable
in that the user can choose a level of the DM-tree to get a
desired error guarantee. Suppose pu is the fraction of pairs
of cells that are uniform on a given level, the total error ξ
produced by our algorithm based on spatial uniformity is

ξ ≤ eupu + ea(1− pu) (10)

From the above equation, we can solve pu to obtain a guide-
line on the level of the DM-tree we run the algorithm:

pu ≥ ea − ξ

ea − eu
(11)

In other words, a user will choose to work on a DM where
the fraction of uniform cells is at least

√
pu, in order to get

an error lower than ξ.

The performance analysis about temporal locality is done in
similar way. The details are presented in [16], due to space
limitations. In summary, with a negligible loss of accuracy,
the application of spatial and temporal uniformity improves
the performance significantly.

7. EXPERIMENTAL RESULTS
The proposed continuous SDH computation method was im-
plemented in C++ programming language and tested on real
MS data sets. The experiments were conducted on an Ap-
ple Xserve server with two Intel quad-core processors and 24
GB of physical memory. The Xserve was running OS X 10.6
Snow Leopard operating system. We tested the following
algorithms to evaluate the performance of our approach.

A1: The ADM-SDH algorithm presented by Tu et. al. [25].
This method processes SDH frame by frame; and dis-
tributes the distances using Prop exclusively;

A2: The algorithm utilizing only temporal locality to com-
pute SDH continuously over multiple frames;

A3: The algorithm utilizing only spatial uniformity to com-
pute SDH frame by frame;

A4: The algorithm utilizing both temporal locality and spa-
tial uniformity to compute SDH continuously.

The running times of the algorithms on different data sets
are measured for comparison, along with the errors intro-
duced due to approximation. The errors are computed by
comparing the approximate SDH results with the correct
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SDH of each frame. The error (in percentage) of each frame
is calculated as

Perror = 100×
∑

i

|Hi −H ′
i|
/

∑

i

Hi

where Hi and H ′
i are the correct and approximate distance

counts, respectively, in bucket i of the histogram.
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Figure 8: Temporal similarity between two consec-
utive frames chosen randomly from the dataset of
890K atoms

Data Sets: Two datasets from different simulation sys-
tems were used for experiments. The first dataset consists
of frames captured from a collagen fiber simulation system.
The simulated system is made of 890, 000 atoms and their
positions are stored in a total number of 10, 000 frames.
The second dataset is collected from a simulation of cross
membrane protein system with about 8, 000, 000 atoms and
10, 000 frames. We randomly selected a chunk of about 100
consecutive frames from the first data set and 11 frames
from the second dataset for our experiments. The main
bottleneck in testing the algorithms is computing the cor-
rect histogram of the frames, needed to compute the error.
Obtaining correct histogram is basically running the naive
or DM-SDH algorithm, which is computationally expensive.
Therefore, we could only get the correct histograms of 11
frames from the 8 million data set (by naive approach in
about 27 days!).

We observed significant temporal similarity among frames
of the dataset. The success of utilizing the temporal sim-
ilarity property depends on the total fraction of cells that
exhibit such property. In fact, the running time of the tech-
nique is affected by the number of cell pairs (A,B) for which
rA × rB = 1± ǫ. Figs. 8(a) and 8(b) show the density of ra-
tios and ratio products on each level of the DM-tree in two
consecutive frames, chosen randomly from the data set of
890, 000 atoms. For all levels we tested, majority of the cells
(cell pairs) show ratio (ratio product) that is close to 1.0.
The number of cell pairs with ratio product of 1.0 increases
as we descend down the tree. Similar trends are observed in
the other data set also. This confirmed the great potential
of using temporal similarity to save time in SDH processing.

Fig. 9(a) and 9(c) show the running time of all the algo-
rithms for different bucket widths. It can be noted that the

running time of A1 can be orders of magnitude longer than
our proposed algorithms. The important observation to be
made about algorithm A1 is that the running time increases
dramatically with the decrease of w (note the logarithmic
scale). Method A2 is similar to A1 but, utilizes temporal
locality while working on only one level. When the bucket
width is small, both methods work on lower tree levels, with
small number of atoms in cells. The utilization of locality
gives scope to save some running time in A2. Unlike the first
two methods, the time spent by methods A3 and A4 does
not change much with the change of bucket width w. Note
that the average running times presented here have amor-
tized all “start-up” costs including that for running Monte
Carlo simulations, spatial uniformity test, and that for com-
puting the SDH for the first frame.

The errors (in percentage) of each method are shown in
Fig. 9(b) and 9(d) for different values of w. The errors ren-
dered by A3 and A4 are always lower than those by method
A1. However, the errors of A2 are slightly higher than A1
for small bucket widths. The number of distances to be dis-
tributed between two cells is very small, as the algorithm
works close to leaf level. Therefore, by utilizing the tempo-
ral locality property the small errors are added on top of the
Prop method applied for other cell pairs. Although method
A4 is faster than A3, the price for that is an error rate that is
slightly higher. However, it provides a good tradeoff as the
improvement of performance is of larger magnitude than the
loss of accuracy (note the differences between the lines of A3
and A4). The method A3 stands clear winner for producing
the lowest errors. The distance distribution curve computed
by Monte Carlo simulations diminishes the error that would
have been introduced by heuristically distributing distances
as in A1. The errors in method A1 stay low (still equal
to or higher than other methods) for smaller bucket widths
but goes higher under larger w values. The reason being,
proportions for small buckets are almost similar in all the
algorithms. Number of distances that are in the range of
very small buckets are few and therefore their proportional
distribution are not much different. Hence, the error is low.
With the increase of bucket width, A1 would end up dis-
tributing the distances equally in all the buckets while our
methods accurately compute the proportions of distances
that should go into each bucket.

Number of simulations: Most of the initial time in com-
putation of the first few frames is spent in performing the
simulations to update the hash table entries. In our exper-
iments on the data set of 890, 000 atoms, the number of
simulations performed for each frame dropped quickly. In
total, 100 frames were processed to compute SDH using al-
gorithm A3. Fig. 11(a) shows the distribution of simulations
performed over 100 frames. We can see that the first frame
peaks at 120 simulations. In most of the other frames, no
simulations are performed except for few frames for which
less than 25 simulations are performed. This clearly states
that the hash table utilized in A3 saves running time by
reusing the simulations performed in previous frames.

The resolved pairs of cells eliminate direct computation of
large number of distances, saving simulation time as well.
Fig. 10 shows the number of such distance computations
eliminated in SDH processing with different bucket sizes.
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Figure 9: Comparison of running time and percentage error of the algorithms/methods (y-axis has log scale).
(a)–(b) The results from 890, 000 atom data set. (c)–(d) Results from 8 million atom data set
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Simulation size: The number of points used in every Monte
Carlo simulation does not affect the SDH results, as long as
sufficient number of points (i.e., 25) are generated. The er-
ror shown in Figure 11(b) does not change for different sizes
of simulations performed. Thus, our analysis in section 6
only gives a loose error bound whereas the actual errors are
much lower.

One of the algorithms presented here can be chosen based on
the performance/error tradeoff criteria. One way to quan-
tify the performance/error tradeoff is the product of time and
error - an algorithm with lower time–error product (TEP)
is preferred. We calculated the TEPs of all tested algo-
rithms and found that, among all settings and algorithms,
A4 stands clear winner by producing the smallest TEPs un-
der all bucket widths (details are discussed in technical re-
port [16]). In summary, the computation of SDH based on
spatial uniformity gives much better performance. The idea
of utilizing the temporal locality can be combined with both
A1 and A3 to make the computations faster.

8. CONCLUSIONS AND FUTURE WORK
An efficient approximate solution to the spatial distance his-
togram query is provided in this paper. SDH is one of the
very important molecular simulation data analysis queries
that is frequently applied to a collection of data frames. We
used the point region Quad-tree efficiently to take advan-
tage of the data locality and statistical data distribution

properties. The algorithm presented is practically feasible
to analyze data of large number of frames continuously. Its
efficiency and accuracy are supported by mathematical anal-
ysis and extensive experimental results. As a follow-up work,
we are investigating the implementation of our algorithms
in modern parallel platforms such as Graphics Processing
Units (GPU). An immediate work of interest is to extend
our algorithm to spatial particle distributions other than the
uniform pattern. Another important direction of research
would be to study the feasibility of utilizing spatiotemporal
uniformity properties for the computation of generalm-body
correlation functions in scientific databases.
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APPENDIX

A. HANDLING INTRA-CELL DISTANCES
Given a cell A with diagonal length of q, the distances be-
tween two particles within A fall into the range [0, q]. We
also assume this range overlaps over buckets 0 to i.

Spatial uniformity based algorithm: We run a simula-
tion by sampling from a single uniform region with dimen-
sions equal to those of cell A. This will generate a distance
distribution that spans over buckets 0 to i. We follow the
same idea shown in Eqs. 1-3 to assign the distance counts of
cell A into the buckets:

H [0],
(

n1

A(n1

A−1)

2

)

∫ w

0
g(t)dt

H [1],
(

n1

A(n1

A−1)

2

)

∫ 2w

w
g(t)dt

· · · · · ·
H [i],

(

n1

A(n1

A−1)

2

)

∫ q

(i−1)w
g(t)dt

Temporal locality based algorithm: Each individual
cell of the RDM with ri 6= 1 is used to update the counts.
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Specifically,

H1[0, . . . , i− 1],
(

n1

A(n1

A−1)

2
− n0

A(n0

A−1)

2

)

w
q

H1[i],
(

n1

A(n1

A−1)

2
− n0

A(n0

A−1)

2

)

(i−1)w
q

B. TOTAL SIMULATIONS PERFORMED
The density map is organized as a grid of M = n× n cells.
We represent the position of each cell by an ordered pair
(x, y), where x and y are the horizontal and vertical displace-
ments respectively, of the cell from the top-left corner of the
density map. A cell C with displacements i, j is represented
by C(i, j). The width or side of each cell is denoted by t (see
Fig. 12). We discuss the number of Monte Carlo simulations
performed in a density map through a special feature called
L-shape (Definition. B.1). The number of simulations per-
formed is directly related to the number of distinct L-shapes
found in the density map.

Definition B.1. L-shape of two cells A and B, L(A,B),
is a subset of the density map that includes the two end cells
A(xA, yA) and B(xB, yB) and all the cells with positions

(xA + 1, yA), (xA + 2, yA), . . . , (xB, yA) and

(xB, yA + 1), (xB, yA + 2), . . . , (xB, yB − 1)

or the positions

(xA, yA + 1), (xA, yA + 2), . . . , (xA, yB) and

(xA + 1, yB), (xA + 2, yB), . . . , (xB − 1, yB)

Without loss of generality we assume xA < xB and yA < yB
in rest of the discussion. It is to be noted that both cells, A
and B, have only one neighbor cell in the L(A,B)-shape.

Definition B.2. The size of an L(A,B) shape, denoted
as d(L(A,B)), is the ordered pair (a, b) where a is the hor-
izontal distance (counted in number of cells) and b is the
vertical distance between the cells A and B.

Definition B.3. Equivalent L-shapes: Let L(A,B) and
L(C,D) be two L-shapes with sizes d(L(A,B)) = (a, b) and
d(L(C,D)) = (c, d). Then L(A,B) is equivalent to L(C,D)
(i.e,. L(A,B) ≡ L(C,D)) iff (a = c and b = d) or (a = d
and b = c).

Lemma B.4. L(A,B) ≡ L(C,D) iff the minimum and
maximum distances between A,B and between C,D are equal.
In other words, L(A,B) ≡ L(C,D) iff distmin,max(A,B) =
distmin,max(C,D).

Proof. Consider two L-shapes, L(A,B) and L(C,D) with
sizes d(L(A,B)) = (a, b) and d(L(C,D)) = (c, d).

If L(A,B) ≡ L(C,D) then, by the definition B.3, d(L(A,B)) =
d(L(C,D)). Thus, a = c and b = d or a = d and b = c.

Fig. 12 shows maximum distance between cells A and B.
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Figure 12: Illustration of L-shape L(A,B) of size
d(L(A,B)) = (a, b) in a density map

distmax(A,B) =
√

((a+ 1) ∗ t)2 + ((b+ 1) ∗ t)2

=
√

((c+ 1) ∗ t)2 + ((d+ 1) ∗ t)2
= distmax(C,D)

Similarly for the minimum distance between cells A and B,

distmin(A,B) =
√

((a− 1) ∗ t)2 + ((b− 1) ∗ t)2

=
√

((c− 1) ∗ t)2 + ((d− 1) ∗ t)2
= distmin(C,D).

Let two pairs of cell (A,B) and (C,D) have same minimum
and maximum distance between them i.e.,

distmin,max(A,B) = distmin,max(C,D)

Thus,
√

((a− 1) ∗ t)2 + ((b− 1) ∗ t)2 =
√

((c− 1) ∗ t)2 + ((d− 1) ∗ t)2

The equation holds only if (a = c and b = d) or (a = d and
b = c). Thus, d(L(A,B)) ≡ d(L(C,D)). By definition, if
two L-shapes have same size, they are equivalent.

Theorem B.5. The number of distinct L-shapes (regard-
less of position) in a density map with M = n2 cells is
n(n+1)

2
− 1.

Proof. The form of each L-shape L(A,B) is defined by
its size d(L(A,B)) = (a, b), where 0 ≤ a ≤ n−1 and 0 ≤ b ≤
n−1. But, since the L shapes with size (a, b) are equivalent
to the L-shapes with size (b, a) we need only to count the L-
shapes with size (a, b) where b ≥ a and b 6= 0. The number
of such L-shapes for given values of a = 1, 2, . . . n − 1 are
n− 1, n− 2 . . . , 1 respectively. For a = 0 there are n− 1 L-
shapes. Obviously, the total number of all distinct L-shapes

of size (a, b) is n∗(n+1)
2

− 1.

As the number of distinct Monte Carlo simulations per-
formed in an RDM is equal to the number of distinct L-
shapes, the total number of simulation performed to com-
pute SDH is bound by O(M).
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