
Evaluating Hybrid Queries through Service Coordination in
HYPATIA

Víctor Cuevas-Vicenttín*, Genoveva Vargas-Solar*†, and Christine Collet*

*Grenoble Institute of Technology, CNRS, UJF
Grenoble Informatics laboratory (LIG),

681, rue de la Passerelle, BP. 72, 38402
Saint Martin d’Hères Cedex, France

†French Mexican Laboratory of Informatics and Automatic Control
Exhacienda Sta. Catarina Mártir s/n 72820

San Andrés Cholula, Puebla, México

{Firstname.Lastname}@imag.fr

ABSTRACT

The emergence of mobile and ambient computing technolo-
gies brings democratization in the access to information and
data; services play a crucial role, thereby opening new re-
search challenges for data querying. A promising method
to access data within these novel dynamic environments
in a convenient and efficient way is declarative querying.
Such queries, which we characterize as hybrid queries, in-
volve streaming and on-demand data originated from ser-
vices, possibly with temporal and mobile properties. To
evaluate these queries we propose an approach implemented
in the HYPATIA system, which addresses two main aspects
(i) using service coordination for query evaluation and (ii)
an efficient and flexible mechanism that facilitates incorpo-
rating new capabilities.

1. INTRODUCTION
The advent of mobile computing and communication tech-

nologies lays a foundation for enabling timely and inexpen-
sive access to information. We view declarative queries as
the most convenient way of expressing information needs
in an ambient computing environment. Such queries in-
volve streaming and on demand data originated from ser-
vices, which may have temporal and mobile properties; due
to these characteristics we refer to them as hybrid queries.

Traditional techniques in conjunction with techniques used
for evaluating queries over data streams could in principle
be a solution for processing hybrid queries. Adopting such
an approach, however, presents two major drawbacks; both
of which are associated with traditional DBMSs, but that
are particularly disadvantageous in highly dynamic environ-
ments. First, a query evaluation system based on such an
approach will be expensive to develop and maintain. The

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2012, March 26–30, 2012, Berlin, Germany.
Copyright 2012 ACM 978-1-4503-0790-1/12/03 ...$10.00

addition of new capabilities in particular, would require that
highly qualified system programmers develop the extensions
in the required programming language, after which it is nec-
essary to recompile and redeploy the system. Second, the
system would require a heavy dedicated infrastructure, mak-
ing it expensive to use and yielding it confined to a particular
platform and location.

To our knowledge none of existing querying techniques
tackle at the same time traditional, mobile and continu-
ous queries by coordinating data services (on-demand and
stream as well as static and nomad) along with computation
services, which provide the computing (processing, calcula-
tion, indexing, etc.) functionalities that query evaluation
requires. Related works either focus on services for data
access like in [3], or address dynamic documents like in [1].

The main contributions of the HYPATIA system we pro-
pose for evaluating hybrid queries are: (i) the use of a service
coordination approach for evaluating queries by mapping
them to workflows. Activities of such workflows correspond
to service calls, where services either enable access to data
(e.g. Web-hosted DBMSs, search engines), or perform com-
puting and data processing functions. (ii) the mechanism
to construct and enact query workflows. Our approach is
based on a workflow model and its corresponding evaluation
infrastructure, providing flexible service coordination mech-
anisms that facilitate the addition of new capabilities (e.g.,
query operators). Our demonstration will show, by means
of a concrete scenario, the feasibility of this approach for
the evaluation of several types of queries without relying on
a prebuilt and to a large degree inflexible DBMS. A more
detailed description of our approach is given in [2].

2. DEMONSTRATION SCENARIO
The goal of HYPATIA is to provide an approach that in-

tegrates continuous, stream, snapshot, spatio-temporal, and
mobile queries for accessing data in ambient computing en-
vironments. For this purpose, it introduces the notion of
hybrid queries and a novel approach for flexible query pro-
cessing based on service coordination.

Consider the scenario depicted in Figure 1. Multiple users
are in an urban area carrying GPS-enabled mobile devices
that periodically transmit their location; furthermore, they
have agreed to share some of their personal information. A

602

Figure 1: Example scenario

user in this scenario may want to Find friends which are no
more than 3 km away from him/her, which are over 21 years
old and that are interested in art, along with a reference point
of their location.

To answer this query three data services need to be ac-
cessed, which produce data in one of two ways: on-demand
in response to a given request, or continuously as a data
stream. In either case, the data service exposes an interface,
composed of several operations and supported by standard-
ized protocols. The JavaScript Object Notation (JSON) is
used to represent the data. Accordingly, objects are built
from atomic values, nested tuples, and lists.

The users’ location is made available by a stream data
service with the (simplified) interface

subscribe() → ⌈location:〈nickname, coor〉⌉
consisting of a subscription operation that after invocation,
will produce a stream of location tuples with a nickname
that identifies the user and his/her coordinates. A stream
is a continuous (and possibly infinite) sequence of tuples
ordered in time.

The rest of the data is produced by the next two on-
demand data services, each represented by a single operation

profile(nickname) → person:〈age, gender, email〉

interests(nickname) → [s_tag:〈tag, score〉]

The first provides a single person tuple denoting a profile
of the user, once given a request represented by his/her nick-
name. The second produces, given the nickname as well, a
list of s_tag tuples, each with a tag or keyword denoting
a particular interest of the user (e.g. music, sports, etc.)
and a numeric score indicating the corresponding degree of
interest.

The hybrid query just discussed can be expressed in our
SQL-like query language, which we call HSQL, as follows

SELECT p.nickname, p.age, p.gender, p.email,

nn(’poi’, l.coor)

FROM profile p, location l [range 10 min], interests i

WHERE p.age >= 21 AND l.nickname = p.nickname AND

i.nickname = p.nickname AND i.tag = ′art′

AND distance(l.coor, mycoor) <= 3

The location stream is bounded by a time-based window
which will consider only the data received within the last 10
minutes. We rely on a special function distance to evaluate
the spatial predicate of the query, which receives the current
location of the user issuing the query as mycoor. As a location

reference, the nearest point of interest (poi) is found by the
nn service (nearest neighbor) which will find objects in the
poi category.

2.1 Processing hybrid queries
In order to evaluate a hybrid query like the one presented

in our example, we first need to give to it an executable
form, which in our case is a workflow of activities. A query
workflow specifies a service coordination in which activities
will invoke services as required to generate the query result.

Two types of services take part in a query service coordi-
nation: data services and computation services. While data
services provide the data, computation services are able to
process these data as required to implement query operators.
As we will see, these services can themselves be represented
as workflows and therefore as service coordinations.

A query workflow corresponding to our example query
is given in Figure 2. It is composed of data service ac-
tivities such as the location, profile and interests activ-
ities, as well as computation service activities such as the
distance, nearest-neighbor, join, selection, and projection

activities. Services interoperate via workflow synchroniza-
tion constructs such as parallel and sequential composition,
which are defined using the Abstract State Machines [4]
(ASM) formalism.

We describe next how a query workflow is generated from
a given declarative query, how it is enacted, and the advan-
tages that result from our approach.

Query workflow generation

The primary task to carry out for building a query workflow
like the one depicted in Figure 2 from a given hybrid query is
to determine appropriate joins. We use for this purpose an
adaptation of the Graham-Yu-Ozsoyoglu (GYO) algorithm
used in database theory to determine if a query is acyclic.

Our adaptation considers data service interfaces and the
input and output parameter dependencies in their opera-
tions. For brevity, we just mention the three main phases
of the algorithm. (i) Represent the join dependencies by a
hypergraph. (ii) Process the hypergraph to yield a parse
tree denoting the valid join orders. (iii) Derive a join order
by traversing the tree and then add the remaining operators
to produce the query workflow.

Query evaluation

Evaluating a hybrid query thus depends (i) on finding the
adequate (data and computation) services, and binding each
of the workflow activities to its corresponding service; (ii) on
enabling the communication and interoperation between the
activities. We briefly deal with these aspects next.

Service provisioning and invocation

As previously discussed, we have on-demand and stream-
ing data services. Data is gathered from on-demand data
services by invoking their data operations with the appro-
priate parameters, producing as a result a set of output tu-
ples. This process is depicted in the figure below for the
profile service of our example. Streaming data services are
treated in an analogous manner, except that a single invoca-
tion is performed on their subscribe operation, after which
they produce a data stream that is sent to the destination
specified with the subscription parameters.

603

Figure 2: Hybrid query workflow example

hash-index

service 2

hash-index

service 1

Local data items

service

geo-distance

Figure 3: Simple (left) and composite (right) com-

putation service

profile

On the other hand, the computation services that support
query operators can be simple or composite. Simple compu-
tation services are those whose execution is performed by a
single service operation invocation. Figure 3 at the left illus-
trates such a service. The distance computation service re-
lies on a geo-distance service, which provides the capability
to calculate the geographical distance between two points.
This is achieved by the invocation of its distance operation
with the appropriate parameters.

In contrast, the execution of a composite computation ser-
vice involves multiple operation invocations, possibly also
from different services, as well as manipulation of local data.
These tasks are organized in a service coordination specified
as a workflow, following a model in which we add conditional
and iteration constructs formalized via ASMs to our basic
workflow model. The local data items, which are only visible
within the composite computation service during its execu-
tion, maintain relevant information to guide the evaluation
of the coordination appropriately.

Figure 3 at the right gives an example of a composite
computation service, in the form of an overview of a service
evaluating the join operator based on the symmetric hash-
join algorithm and two instances of a stateful hash-index

service. Several interrelated operation invocations on both
service instances, as well as reads and updates on local data
items, are used to find the tuple matches that form part of
the join result.

Service interoperation and communication

The computation services in a query coordination commu-
nicate via asynchronous input operations exposed by its exe-
cuting environment. In order to take advantage of this mech-
anism, composite computation services must be designed in
such a way that they access the input data sent to them
by their preceding computation services. This data com-
munication occurs when a service invokes the corresponding
input operations of its successor, which in turn will store
the input tuples as part of their state in order to process it
accordingly.

Our query processing approach based on service coordi-
nation is geared towards flexibility, which is highly desirable
in ambient computing environments. First, service coordi-
nation offers the capability to dynamically acquire resources
that provide the required functionality by adopting a late
binding approach, where additionally the best services avail-
able can be selected at query evaluation time. Furthermore,
if some data or computation services become unavailable,
evaluating the query is still possible by discovering other
services that provide the same or similar data and function-
ality in the environment.

3. EXPERIMENT SETUP
In order to implement the Friend Finder scenario described

in our example, and subject of our demonstration, we de-
veloped a test dataset using GPS tracks obtained from ev-
erytrail.com. Concretely, 58 tracks generated (by walking,
cycling, or driving) within the city of Paris. We converted
the data from GPX to JSON and integrated it to our custom
stream server to create the location service. For the profile
and interests services we created a MySQL database acces-
sible via JAX-WS Web Services running on Tomcat. The
profile data is artificial and the interests were assigned and
scored randomly using the most popular tags used in Flickr
and Amazon. For the nearest-neighbor (NN) points of in-
terest we converted a KML file containing the major tourist
destinations in Paris into JSON, this data is employed by
the corresponding NN service in conjunction with an R-tree
based spatial indexing service.

We also implemented an interface based on Google Maps
that enables to visualize the query result, which is presented
in Figure 4 right. This setup enables posing queries involv-
ing spatio-temporal aspects like in our example. Finally,

604

Figure 4: Hypatia GUI (left) and Friend Finder visualization GUI (right)

Time‐window Query parser

Join

Query parser

Query

ASM interpreter. . .
Query

workflow

constructorSchedulerStream access

Computation servicesp

data service 2 data service ndata service 1

Stream server

Figure 5: Architecture of Hypatia

an additional online auctions setup based on the NEXMark
benchmark helps to demonstrate queries involving the rest
of the implemented operators.

3.1 Implementation issues
The architecture of our system is presented in Figure 5, it

was developed on the Java platform. Queries in HYPATIA
are entered via a GUI (presented in Figure 4) and specified in
our HSQL query language. When a query is provided to the
system it is parsed and then its corresponding query work-
flow is generated by the query workflow constructor compo-
nent, which employs our GYO-based algorithm. The parser
was developed using the ANTLR (http://www.antlr.org/)
parser generator.

The GUI also enables the user to visualize the query work-
flow (at the middle left of Figure 4 left), which is facilitated
by the use of the JGraph (http://www.jgraph.com/) library.
Data services are represented in yellow whereas computation
services are represented in blue, both with their correspond-
ing labels.

Two main components support the computation services
corresponding to query operators. A scheduler determines
which service is executed at a given time according to a pre-
defined policy, while composite services coordinations are
executed by the ASM interpreter that implements our work-
flow model (also developed with ANTLR). The computa-
tion service workflows can be visualized through the GUI,
as shown in the right panel of Figure 4 (left). In turn, they
are specified textually in a language based on the ASM for-
malism.

We developed a set of computation services that are used
to build hybrid query operators. These services run on a

Tomcat container supported by the JAX-WS reference im-
plementation (https://jax-ws.dev.java.net/), which enables
to create stateful services. The core operators currently im-
plemented (either as simple or composite computation ser-
vices) are join and bind-join, tuple and time based windows,
grouping and aggregation, selection and projection.

During the evaluation of a query data tuples flow from the
data services to various computation services, as determined
by the query workflow. The end result is a data stream
that denotes the tuples that are added and the tuples that
are removed from the query answer, which is indicated by a
special (positive or negative, respectively) numeric attribute
on the tuples. The query result stream is presented in a
textual form in the GUI (bottom of Figure 4 left). For the
Friend Finder scenario, the results are also exported as a
service and presented in our Google Maps GUI as markers
within the (shaded) valid result area and that link to the
user information.

Acknowledgment

This work has been supported by the ANR-08-SEGI-014
OPTIMACS Project (http://optimacs.imag.fr), financed by
the French National Research Agency (ANR).

4. REFERENCES
[1] S. Abiteboul, A. Bonifati, G. Cobéna, I. Manolescu,

and T. Milo. Dynamic XML documents with
distribution and replication. In Proceedings of the 2003
ACM SIGMOD international conference on
Management of data, SIGMOD ’03, pages 527–538,
New York, NY, USA, 2003. ACM.

[2] V. Cuevas-Vicentt́ın, G. Vargas-Solar, C. Collet,
N. Ibrahim, and C. Bobineau. Coordinating services for
accessing and processing data in dynamic
environments. In Proceedings of the 2010 international
conference on On the move to meaningful internet
systems - Volume Part I, OTM’10, pages 309–325,
Berlin, Heidelberg, 2010. Springer-Verlag.

[3] Y. Gripay, F. Laforest, and J.-M. Petit. A simple (yet
powerful) algebra for pervasive environments. In
Proceedings of the 13th International Conference on
Extending Database Technology, EDBT ’10, pages
359–370, New York, NY, USA, 2010. ACM.

[4] Y. Gurevich. Evolving algebras 1993: Lipari guide.
pages 9–36, 1995.

605

