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ABSTRACT
Self-join, which joins a relation with itself, is a prevalent
operation in relational database systems. Despite its wide
applicability, there has been little attention devoted to im-
proving its performance. In this paper, we present SCALE

(Sort for Clustered Access with Lazy Evaluation), an effi-
cient self-join algorithm, which takes advantage of the fact
that both inputs of a self-join operation are instances of the
same relation. SCALE first sorts the relation on one join at-
tribute, say R.A. In this way, for every value of the other join
attribute, say R.B, its matching R.A tuples are essentially
clustered. As SCALE scans the sorted relation, each tuple is
joined with its matching tuples co-existing in memory. For
tuples where full-range clustered accesses to their matching
tuples are not possible, they are buffered and the unfinished
part of join processing deferred. Such lazy evaluation mini-
mizes the need for “random” access to the matching tuples.
SCALE further optimizes the memory allocation for clustered
access and lazy evaluation to keep the processing cost min-
imal. Our analytical study shows that SCALE degenerates
gracefully to a Sort-Merge Join in the worst case. We have
also implemented SCALE in PostgreSQL, and results of our
extensive experimental study show that it outperforms both
Sort-Merge Join and Hybrid Hash Join by a wide margin in
(almost) all cases.
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1. INTRODUCTION
Self-join is a join operation that relates data within a rela-

tion by joining the relation with itself. We consider self-joins
with the join predicates involving two distinct attributes
(i.e., R1.A op R2.B, where R1 and R2 are instances of re-
lation R). We observe that this type of self joins occur fre-
quently in many recently emerging database applications,
such as location-based service (LBS), RFID data manage-
ment, sensor networks, network management etc. Below are
two examples:

Example 1: Consider a database of moving objects with a
user-defined view, TRAJECTORY, storing the line segments
of the trajectories of many moving objects. The schema
of TRAJECTORY is (objID, location1, location2, time1,
time2). Each record describes the movement of an object
from location1 at time1 to location2 at time2. An example
LBS query is: for each location L, return all the pairs of
objects O1 and O2, such that O1 arrived at L shortly, say
within t time units, before O2 moved out of L. This query
involves a self equi-join condition:

SELECT *
FROM TRAJECTORY O1, TRAJECTORY O2
WHERE O1.location2 = O2.location1

AND O1.time2 > O2.time1− t

AND O1.time2 < O2.time1

Example 2: Consider a table storing the readings from
a network of temperature sensors with schema: (sensorId,
temperature, timestamp). A view STATS is created on top
of the table with schema: (sensorId, hourId, avgTemp, max-
Temp, minTemp). Each row in STATS provides the average,
maximum and minimum temperatures reported by a sensor
over a particular hour of the day. A user may be interested
in finding out the pairs of sensors, S1 and S2, such that the
average temperature reported by S1 is equal to or lower by
at most 2 degrees than the minimum temperature reported
by S2, within a certain time proximity, say one hour. This
query involves two self band-join [6, 13] conditions1:

SELECT *
FROM STATS S1, STATS S2
WHERE S1.avgTemp <= S2.minTemp

1A general band-join condition has the form R.A − c1 ≤
S.B ≤ R.A+ c2, where c1 and c2 are constants but can not
both be zero.
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AND S1.avgTemp >= S2.minTemp− 2
AND S1.hourId <= S2.hourId+ 1
AND S1.hourId >= S2.hourId− 1
AND S1.sensorId <> S2.sensorId

Moreover, self-join is also common in RDF data manage-
ment where self-join is used to relate the subjects and objects
of a triple table, and in the publication of relational data as
XML where XML queries (e.g. XQuery) over XML views
are translated into self-joins of base relational tables.

Despite the importance and prevalence of self-joins, there
however have been surprisingly few research efforts on opti-
mizing them.

On the one hand, existing solutions either employ join in-
dexes [12] or handle the special case where the join attributes
are on the same attribute (e.g., R1.A = R2.A) [4, 8]. As one
can see from the examples, many emerging queries involve
self joins on two distinct attributes. While index-based tech-
niques could be applied to the problem, it is possible that
indexes do not exist, especially when the queries are ad-hoc
and/or the join attributes are derived and computed from
user defined functions as shown in Example 2. Even when
indexes exist, they may not be useful. For example, if the
join selectivity is high (i.e. a lot of join results), then index-
es, especially the non-clustered ones, are not beneficial.

On the other hand, conventional join algorithms, such as
Sort-Merge Join (SMJ) and Hybrid Hash Join (HHJ), treat the
two instances of the same relation as distinct relations. As
such, they miss the opportunities to enhance the processing
performance, particularly in keeping the I/O cost low.

To improve performance, we need a scheme that can take
advantage of the fact that the two inputs of a self-join opera-
tor are instances of the same relation. Towards this end, we
propose a novel and efficient self equi-join algorithm called
SCALE (Sort for Clustered Access with Lazy Evaluation),
which is also easily extendible to handle self band-joins [6,
13]. SCALE first sorts the relation, say R, on one of the join
attributes, say A, to produce a sorted sequence, denoted
as SA(R) (when R has already been ordered by some join
attribute, this sorting step can be avoided). Now, given a
tuple t with t.B = x, where B is the other join attribute,
all the matching tuples whose R.A value is x are clustered
within SA(R). As such, by scanning SA(R), we have two
possible cases. First, for each tuple t with t.B = x, we have
a clustered access of all matching tuples if t co-exists with
them in memory. In this case, we can generate and produce
the join results at no extra cost since this is within a single
scan of SA(R). Second, for a tuple t with t.B = x for which
such clustered access is not possible (e.g., matching R.A tu-
ples may not co-exist with t in memory), it is buffered and
possibly spilled to disk to defer the join processing to a later
time. Such lazy evaluation minimizes the need for “random”
accesses to the matching tuples.

To support clustered access and lazy evaluation, the mem-
ory space has to be effectively allocated between these two
tasks. To optimize performance, SCALE adopts a cost-based
approach to manage the memory allocation for clustered ac-
cess and lazy evaluation. SCALE is also able to handle the
situation where the two joining instances of the same relation
are associated with different tuple selection and projection
predicates. Moreover, we can improve SCALE with sideways
information passing techniques to further reduce the cost
when many tuples have no join matchings.

Our analytical study shows that SCALE degenerates grace-
fully to Sort-Merge Join (SMJ) in the worst case. We have

also implemented SCALE in PostgreSQL [1], and the results
of our extensive experimental study confirms our analytical
results. Moreover, it shows that SCALE outperforms both
Sort-Merge Join and Hybrid Hash Join by 20% - 40% in
(almost) all cases.

The rest of the paper is organized as follows. Section 2
surveys the related work of this paper. Section 3 discuss-
es the technical details of the SCALE algorithm. We then
present a thorough analytical study of SCALE in Section 4.
An extensive experimental study is presented in Section 5.
In Section 6, extensions to SCALE supporting self band-join
and side-ways information passing are proposed. We con-
clude the paper in Section 7.

2. RELATED WORK
The join operation is one of the most time-consuming and

data-intensive operations. Therefore, it is critical to im-
plement joins in the most efficient way possible. The join
operation has been studied and discussed extensively in the
literature (see [9] for a comprehensive survey). Common ad-
hoc join techniques can be classified into three broad cate-
gories: nested-loop join, sort-merge join [3] and hash-based
join [5, 7, 14]. Recently, Goetz proposed g-join [10], a gen-
eralized join algorithm, intending to replace the above join
techniques. The major advantage of g-join over sort-merge
join and hash-based join lies in its robustness rather than its
potential performance gain. This implies that g-join’s cost-
s should be comparable with those of sort-merge join and
hybird hash join. Therefore, in our experiments we did not
directly compare with g-join. Besides, the Diag-Join algo-
rithm [11] optimizes a special case of 1:N join where the two
joined tables have the time-of-creation clustering property,
which usually does not hold for the single table involved by
a self-join. Thus, Diag-Join cannot be directly utilized for
optimizing self-joins.

Nevertheless, to the best of our knowledge, only a few
works specifically focus on self-join processing. In [12], Lei
and Ross proposed the Stripe algorithm for performing a
join with a join index [16], which maintains pairs of identi-
fiers of tuples that would match in case of a join between
two relations. Stripe join was designed for general join pro-
cessing but is particularly efficient for self-joins. However,
the applicability of Stripe join is highly dependent on the
availability of the suitable join index, which must have been
materialized and maintained by the database systems before
the join execution. In contrast, our algorithm is more useful
in application contexts identified in Section 1, e.g. the join
attribute is a derived one that is not indexed. The problem
of self-join size estimation has been tackled in both central-
ized [2] and large-scale distributed [15] database systems.

In this paper, we mainly discuss the situation that the self-
join predicate involves two distinct attributes. In the special
case where the join predicate is an equi-join over the same
attribute (e.g., R1.A = R2.A), the join may be evaluated
by partitioning the base relation according to the attributes
involved in the equality join predicates and then performing
a simplified join operation separately on each partition. The
identification and execution of such a special case of self-join
were addressed previously in [4, 8]. Our algorithm is actually
applicable to such special cases and essentially behaves like
the partition-based evaluation strategies in [4, 8]. Therefore,
the performances are expected to be comparable for such
special cases.
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3. THE SCALE ALGORITHM
In this section, we consider a self equi-join R1.A = R2.B.

Both R1 and R2 are instances of the same relation R, where
A and B are two (single or composite) attributes.

In the self-join, each tuple t in R is associated with two
sets of matching tuples referred to as its left-matching and
right-matching tuples. A tuple t′ is a left-matching (resp.
right-matching) tuple of t if t.A = t′.B (resp. t′.A = t.B).
We define the left-join (resp. right-join) of t to be the result
of joining t with its left-matching (resp. right-matching)
tuples. Thus, the self-join of R can be computed as the
union of the left-join of each tuple in R or symmetrically as
the union of the right-join of each tuple in R.

3.1 Overview
Without loss of generality, we present our self-join evalua-

tion algorithm SCALE in terms of the union of the right-join
of each tuple. The choice between a left-join or right-join
evaluation of R can be decided in a cost-based manner using
the cost model in Section 4.1.

To evaluate the self-join of R in terms of right-joins, SCALE
first sorts R in ascending order of A to produce the sorted
table SA(R) (sorting is unnecessary if R has already been
ordered by A due to the existence of clustered indices). As
such, for each tuple in R, all its right-matching tuples are
clustered together in SA(R). SCALE then processes SA(R) in
at most two passes as follows. In the first pass, SCALE main-
tains three main-memory buffers, namely, main, hold, and
defer buffers. SCALE sequentially scans the tuples in SA(R)
into the main buffer and computes the right-joins between
the newly scanned tuple and the existing tuples in the main
and hold buffers. The main buffer is managed using a re-
placement policy to evict tuples when the buffer becomes
full. Due to tuple evictions, the right-join of a tuple t could
be partially processed when t is evicted out of the main
buffer. Thus, at the same time that a tuple t is being evict-
ed from the main buffer, we can classify t into one of three
possible states (complete, prefix-complete, or incomplete) as
follows. If the right-join of t has been completed, t is classi-
fied as complete; otherwise, if the right-join between t and
all its right-matching tuples that precede t in SA(R) has
been completed, t is classified as prefix-complete; otherwise,
t is classified as incomplete.

Before evicting a tuple t from the main buffer, SCALE first
determines the state of the right-join of t. If t is complete,
then t is simply evicted from the main buffer; otherwise, t
needs to be buffered elsewhere (either in the hold or in the
defer buffer) for subsequent processing of its remaining right-
join. Specifically, if t is incomplete, then t is transferred to
the defer buffer; otherwise, t must be prefix-complete and
it is transferred to the hold buffer. The tuples in the hold
buffer will “wait” for their unread right-matching tuples in
SA(R) to be scanned into the main buffer to complete their
right-join processing during the first pass. The tuples in the
defer buffer will complete their right-join computation in the
second pass.

At the end of the first pass, if the defer buffer is empty,
this means the self-join of R has been completely evaluated
and SCALE will therefore terminate; otherwise, SCALE will
proceed with the second pass to process the tuples in the
defer buffer.

In the second pass, SCALE computes the remaining right-
join of each tuple in the defer buffer by performing a merge

join of the tuples in SA(R) and the defer buffer. The tuples
in SA(R) (which are already sorted on A) will be scanned
sequentially to merge with the tuples in the defer buffer
which will be retrieved in ascending order of B.

To facilitate the right-join processing, both the hold and
defer buffers are organized as min-heaps ordered on the B
values. When the hold/defer buffer overflows, SCALE flushes
a sorted run from the appropriate heap to the disk. Thus,
SCALE will subsequently need to load back the disk-based
sorted-runs during processing the right-joins, and an addi-
tional buffer, referred to as the run buffer, is used for this
purpose.

It is important that a join computation that has been
performed in the first pass is not computed again during the
second pass. SCALE ensures this by simply recording for each
tuple t spilled to the defer buffer, the ranks of the first and
last tuples in SA(R) (denoted by first(t) and last(t) respec-
tively) that right-join with t during the first pass. During
the second pass, for each tuple t in the defer buffer, SCALE
computes the right-join of t with a right-matching tuple t′

in SA(R) if and only if the rank of t′ either precedes first(t)
or succeeds last(t). For correctness, the tuple eviction policy
of the main buffer ensures that if two tuples t and t′ in the
main buffer have the same A values and t is evicted before
t′, then t must precede t′ in SA(R). Thus, SCALE correct-
ly computes the self-join of R without missing out any join
result and without computing the same join more than once.

(R)SA

In
Memory

On Disk

run buffer

runs
sorted sorted

runs

buffer buffer
hold

main buffer

defer

sorted R on attribute A

tuple flow:
tuple matching:

Figure 1: SCALE execution during the first pass of

processing SA(R)

Fig. 1 shows the execution of SCALE during the first pass
of processing SA(R). The functions of each component, the
tuple flow and the tuple matching procedure will be elabo-
rated in the following subsection.

3.2 Algorithm Details
For a tuple t, we denote the set of its right-matching tuples

in SA(R) by RM(t). During the first pass of processing
SA(R), tuples in RM(t) can be divided into three subsets:

• RM1(t): the tuples in RM(t) that have left the main
buffer when t is read into the main buffer.

• RM2(t): the tuples in RM(t) that will meet and join
with t in the main buffer.

• RM3(t): the tuples in RM(t) that will only be read
into the main buffer after t has left the main buffer.

For a tuple t currently in the main buffer, if it is evicted,
there will be four possible cases according to the distribution

122



case # RM1(t) RM3(t) right-join state of t
1 empty empty complete
2 non-empty empty incomplete
3 non-empty non-empty incomplete
4 empty non-empty prefix-complete

Table 1: The possible distribution of RM(t) tuples

within RM1(t) and RM3(t), along with the corre-

sponding right-join state of t

of RM(t) tuples within RM1(t) and RM3(t), as illustrated
in Table 1.

3.2.1 Tuple Eviction Policy of the Main Buffer
Whenever the main buffer becomes full, each tuple inside

is classified into one of the above four cases and is assigned
with an eviction priority. Tuples with higher priorities will
get evicted first. The destination of an evicted tuple is de-
pendent on its right-join state, as discussed in Section 3.1.
The ultimate goal of the tuple eviction policy is to improve
tuples’ clustered access to their right-matching tuples and
thus maximize the total number of tuples reaching a com-
plete right-join state. Besides, a secondary goal is to pro-
duce early join results at high rates. We describe our tuple
eviction policy by comparing the eviction priorities of two
arbitrary tuples t and t′.

First of all, when t.A = t′.A, if t precedes t′ in SA(R), then
t has a higher eviction priority than t′. This rule ensures the
correctness of SCALE as discussed at the end of Section 3.1.
When t.A �= t′.A, the following heuristic rules are applied:
• When t is in cases 1 or 2 and t′ is in cases 3 or 4, t has a
higher eviction priority than t′, since by staying in the main
buffer t′ could continue joining with more RM3(t

′) tuples
being or to be read from SA(R) and thus is likely to be
classified into cases 1 or 2 when it is evicted in the future.
• When both t and t′ are in one of cases 1 and 2, they have
equal eviction priorities.
• When t is in case 3 and t′ is in case 4, t has a higher
eviction priority than t′, as by staying in the main buffer t′

still has the chance to reach the complete state later.
• When both t and t′ are in case 3, they have equal eviction
priorities.
• When both t and t′ are in case 4, t has a higher eviction
priority than t′ if t.B > t′.B, since as such RM3(t

′) tuples
will be read earlier than RM3(t) tuples and thus by stay-
ing in the main buffer t′ has a bigger chance to reach the
complete status later.

It is obvious that the above rules will cover all scenarios
between t and t′, and thus can produce a global ranking of
the eviction priorities of all tuples in the main buffer.

3.2.2 Processing Tuples in the Hold Buffer
For each tuple t transferred from the main buffer to the

hold buffer, RM1(t) is empty and RM3(t) is non-empty.
During the first pass of processing SA(R), t will wait in the
hold buffer until the RM3(t) tuples are sequentially scanned
into the main buffer, and then t will be moved into the run
buffer so as to complete its remaining right-join processing
with the RM3(t) tuples2.

2In the hold buffer, multiple tuples could share the same
attribute B value. If their total size is larger than the size
of the run buffer, then the join processing for them degrades
to a nested loop join, and each tuple has to be moved into
the run buffer more than once.

Since the SA(R) tuples are sorted on A, tuples in the
hold buffer need to be retrieved and processed in the order
of their B values. To achieve this, the hold buffer is orga-
nized as a min-heap ordered on the B values and is used to
generate disk-based sorted tuple runs when buffer overflows.
Once some tuples in the hold buffer need to join with their
remaining right-matching tuples newly read into the main
buffer, they are retrieved into the run buffer by progressive-
ly reading and (recursively) merging the sorted runs, while
the min-heap may be simultaneously dumping and append-
ing tuples to some existing or new runs on the disk. Fig. 2
shows the procedure of flushing hold buffer tuples from the
min-heap to the sorted runs and then reading them back to
the run buffer.

...

flow

buffer into the hold buffer

the min−heap in
the hold buffer

run
buffer

insert a tuple from the main

sorted runs
on the disk

append the tuple at the heap
top to one sorted run

merge

ordered tuple

Figure 2: Insert tuples to the hold buffer as well as

read them into the run buffer

3.2.3 Processing Tuples in the Defer Buffer
For each tuple t transferred from the main buffer to the

defer buffer, at least RM1(t) is non-empty. Since RM1(t)
tuples precede t in SA(R), t is not able to join with RM1(t)
tuples during the first pass of processing SA(R). As a result,
t will only complete its right-join with tuples in RM1(t) and
RM3(t) after the first pass of processing SA(R) ends, via
a merge join of the tuples in SA(R) and the tuples in the
defer buffer. For the purpose of merge join, SA(R) tuples
will be sequentially scanned once again into the main buffer,
and defer buffer tuples will be read into the run buffer in the
order of their B values. Similarly to the hold buffer, we orga-
nize the defer buffer as a min-heap ordered on the B values
and generate disk-based sorted tuple runs when buffer over-
flows. However, although generated during the first pass of
processing SA(R), these sorted runs are (recursively) merged
in the run buffer during the second pass.

Note that actually tuples in the hold buffer can be pro-
cessed together with tuples in the defer buffer via the merge
join after the first pass of processing SA(R). However, pro-
cessing tuples in the hold buffer during the first pass can
incur less I/O cost as analyzed in Section 4.1, and can gen-
erate join results earlier.

3.2.4 Memory Allocation for Buffers
In the second pass of processing SA(R), SCALE only main-

tains the main buffer and the run buffer to conduct the
merge join. Both buffers dynamically share all available
memory space. As such, the run buffer may be able to grab
enough memory to conduct a single-step merge of sorted
runs of defer buffer tuples.
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In the first pass, both the main buffer and the run buffer
will have predetermined sizes, while the hold buffer and the
defer buffer will dynamically share the remaining memory
space so as to maximize the average lengths of (and mini-
mize the total number of) generated sorted runs. We there-
by develop a cost-based heuristic to optimize the memory
allocation for buffers in this pass.

Suppose the size of R, in terms of the number of pages,
is N and the total available join memory is M pages from
R. The sizes of tuples in the hold buffer and in the defer
buffer are N1 and N2 respectively. The memory allocation
scenario would affect the I/O costs incurred by tuples in the
hold and defer buffers most significantly. In Section 4.1, we
theoretically analyze that N1 would be small and thus the
memory allocation of the run buffer is not critical to the
performance. Thus, we will experientially predetermine a
small size for the run buffer. In so doing, the rest of our
work is simplified to finding a good memory distribution
between the main buffer (with a size Ms), and the hold
and defer buffers (with a total size Mf ). We use M ′ to
denote the amount of memory available for Ms and Mf , i.e.
Ms +Mf = M ′.

From the analysis in Section 4.1, we can see that the val-
ues of N1 and N2 depend on Ms. Basically, a higher Ms

can produce smaller N1 and N2. On the other hand, Mf

affects the number of run merging steps for the defer buffer.
In general, a smaller Mf may increase the number of run
merging steps for the defer buffer.

The cost model derived in Section 4.1 estimates N1 and
N2 based on Ms and then calculates the total I/O cost of
SCALE as

2N(�logM�
N

2M
��+ 2) + 2N1 + 2N2(�logM �

N2

2Mf

��+ 1) (1)

The objective of memory allocation is to minimize the
total cost shown in Eqn. (1). To simplify the problem, we
assume a linear relationship between Ms and the values of
N1 and N2. With this assumption, we could estimate N1

and N2 with different Ms values as follows. First, we use the
cost model to estimate N1 (or N2) under the two situations
of Ms = M ′ and Ms = 0. The values are denoted as N11

(or N21) and N12 (or N22) respectively. Then given any
Ms ≤ M ′, we can estimate N1 and N2 as

N1 = (M ′ −Ms)(N12 −N11)/M
′ +N11 (2)

N2 = (M ′ −Ms)(N22 −N21)/M
′ +N21 (3)

The memory allocation algorithm is based on the follow-
ing observation of Eqn. (1): the dominant impact that the
increase of Mf is probably able to make is reducing the val-
ue of the term f(Mf ) = �logM�N2/(2Mf )��. The algorithm
starts by setting the Mf to a minimum value, say 1. Then it
iteratively attempts to set Mf to a higher number such that
the value of f(Mf ) decreases by 1 in each iteration. If this
results in a lower total cost of Eqn. (1), then the attempts
will be continued. Otherwise the loop will stop. The loop
will also stop if f(Mf ) already reaches 1. As in practice the
value of f(Mf ) tend to be very small due to the logarithmic
effect, the loop will stop after several iterations.

3.3 Integration with Tuple Selection and Pro-
jection Pushdown

For a self-join between two instances R1 and R2 of re-
lation R, it is possible that each instance additionally in-
volves distinct tuple filtering and projection conditions. In
the conventional query processing, tuple selection and pro-
jection operations are usually pushed down onto the lowest

feasible levels within the query execution tree. As a result,
the physical join implementation of the self-join has to deal
with two input sets of tuples, each of which is (horizontally
and/or vertically) a subset of R. Suppose the tuple selec-
tion and projection attached to Ri(i ∈ {1, 2}) are σi and
Πi respectively, and suppose the tuple projection attached
to the self-join operation is Π, the algebra expression of the
self-join is hereby Π((Π1(σ1(R1))) � (Π2(σ2(R2))))

3.
According to σ1 and σ2, the tuples of R that are relevant

to the self-join can be classified into three categories: satis-
fying σ1 only, satisfying σ2 only and satisfying both σ1 and
σ2, which are denoted with Cσ1

, Cσ2
and Cσ1∩σ2

respective-
ly. The filtered R1 consists of Cσ1

and Cσ1∩σ2
tuples, while

the filtered R2 consists of Cσ2
and Cσ1∩σ2

tuples. Clear-
ly, the (un-projected) self-join result can be represented by
(Cσ1

� Cσ2
)∪(Cσ1

� Cσ1∩σ2
)∪(Cσ1∩σ2

� Cσ2
)∪(Cσ1∩σ2

�

Cσ1∩σ2
).

In order to evaluate a self-join integrated with tuple selec-
tion and projection pushdown, a straightforward extension
to SCALE works as follows. As the first step, we sort R on
A to obtain a SA((σ1 ∪ σ2)(R)), which contains a sorted se-
quence of all above three categories of tuples. In addition, in
SA((σ1 ∪ σ2)(R)), the Cσ1

, Cσ2
and Cσ1∩σ2

tuples are pro-
jected by Π1, Π2 and Π1 ∪Π2 respectively. We then run the
rest of the algorithm as usual, with the mere modifications
that Cσ1

(resp. Cσ2
) tuples are distinguished to act only

as the left-hand (resp. right-hand) side of the self-join, and
that Cσ1

tuples behave as if they had no right-matching tu-
ples when they are considered for tuple eviction in the main
buffer. However, there are several potential problems with
such a straightforward extension. First of all, intuitively it
incurs wasteful I/O and CPU costs to sort Cσ2

tuples on A,
as Cσ2

tuples are not a part of right-matching tuples. More-
over, during the first pass of processing SA((σ1 ∪ σ2)(R)),
Cσ2

tuples will keep Cσ1
and Cσ1∩σ2

tuples farther away
from their right-matching tuples. As such, more Cσ1

and
Cσ1∩σ2

tuples would be forced to enter the hold buffer and
the defer buffer and incur additional I/O overhead.

There is another more efficient approach. The rough idea
is to split those three categories of tuples in R into two
parts: one part R+ contains all Cσ1

and Cσ1∩σ2
tuples, and

the other part R− contains the rest Cσ2
tuples. Similarly,

the Cσ1
tuples in R+ are projected by Π1, the Cσ1∩σ2

tuples
in R+ are projected by Π1∪Π2 and the Cσ2

tuples in R− are
projected by Π2. Given the self-join condition R1.A = R2.B,
we need to sort R+ on A into SA(R

+) and sort R− on B
into SB(R−). We then sequentially read both SA(R

+) and
SB(R

−) into memory to merge join them, which generates
the projected result tuples of (Cσ1

� Cσ2
)∪(Cσ1∩σ2

� Cσ2
).

In the meantime, we also apply the self-join techniques of
SCALE to SA(R

+) to produce the projected result tuples of
(Cσ1

� Cσ1∩σ2
) ∪ (Cσ1∩σ2

� Cσ1∩σ2
).

4. ANALYTICAL STUDY
In this section, we first analyze the cost of the SCALE algo-

rithm and then analytically prove that the performance of
SCALE is at least as good as Sort-Merge join.

4.1 Cost Model
Our SCALE algorithm on join condition R.A = R.B is sym-

3Note that the query optimizer will ensure Π1 contains A
and Π2 contains B, even if Π does not contain A and/or B.
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metric: it could choose to sort on either A or B during the
first-step external sorting. However, this choice may affec-
t the final total join cost and thus should be decided in a
cost-based way. Moreover, the query optimizer also needs
a cost model to estimate the self-join subplan costs when
doing join enumeration and pruning.

Notation Definition
N the size of R in terms of pages
M the total number of buffer pages available for join
Ms the total number of pages occupied by main buffer
M the number of R tuples that can be held by main buffer
Mf the number of pages occupied by hold and defer buffers
N1 the total size of tuples transferred to hold buffer
N2 the total size of tuples transferred to defer buffer

t(x, y) a tuple such that t.A = x and t.B = y

N(x, y)
the number of tuples in R that have values x and y

on the attributes A and B respectively
NA(x) the number of tuples in R that have value x on A

NB(y) the number of tuples in R that have value y on B

Pt the position of tuple t in SA(R)

P
1st
RM(t) the position of the first tuple of RM(t) in SA(R)

P
last
RM(t) the position of the last tuple of RM(t) in SA(R)

Table 2: Notations used in the analytical study of

SCALE

Without loss of generality, in the following discussions, we
assume that SCALE sorts R on attribute A during the first-
step external sorting. Table 2 summarizes the notations
used throughout the analytical study of SCALE. Generally,
the I/O cost of SCALE consists of the following components:

(a) The cost of externally sorting R into SA(R).

(b) The cost of sequentially scanning SA(R) during the
first pass of processing SA(R).

(c) The cost of inserting tuples into the hold buffer and
the defer buffer (i.e. generating sorted runs) during
the first pass of processing SA(R).

(d) The cost of reading and merging sorted runs of hold
buffer tuples during the first pass of processing SA(R).

(e) The cost of the merge join of defer buffer tuples and
SA(R) tuples during the second pass of processing SA(R).

In the ideal situation, the I/O cost of SCALE consists of
only (a)–(b). Suppose the size of R, in terms of the num-
ber of pages, is N and the total available join memory is
M pages from R. Then cost (a)–(b) can be calculated as
2N(�logM�N/2M�� + 1) +N .

To calculate (c)–(e), we first assume that we can estimate
the total sizes of tuples in the hold buffer and the defer
buffer, denoted as N1 and N2 respectively. We will show
later how to estimate them.

Cost incurred by the hold buffer. The tuples spilled
into the hold buffer are stored in a number of disk-based run
files sorted on attribute B, which have to be merged on-the-
fly using the run buffer during the first pass. Theoretically,
we can calculate the number of merging steps based on the
size of the run buffer and the number of sorted runs in the
hold buffer. However this will result in an overestimation of
the actual merging steps due to the following reasons:

• During the first pass of processing SA(R), as tuples are
read into the main buffer in the order of A, roughly
the B values of the case 4 tuples being spilled to the
hold buffer should be in a nearly sorted order. This
is because for such a case 4 tuple with B = b, it then
must have some matching tuples with A = b that have
not been read into the main buffer. Consequently, a
few (but large) run files will be generated.

• The runs in the hold buffer are merged progressively
while the tuples are being spilled. In other words, at
any moment during the process, we are only merging
up to the tuples that have been spilled so far.

• As one will see in the later analysis, compared with
the FIFO tuple eviction policy for the main buffer, the
number of tuples spilled to the hold buffer is signifi-
cantly reduced by our prioritized tuple eviction policy
described in Section 3.2.1.

Therefore, in our cost model, we assume that the tuples in
the hold buffer are written to disk and read into memory
only once. Our experiment results validate this assumption.
Furthermore, this assumption simplifies the cost estimation
and saves the optimization cost.

Cost incurred by the defer buffer. The tuples in the
defer buffer are also stored as disk-based run files sorted on
B and need to be merged during the second pass. The size
of each run depends on the size of the total memory, denoted
as Mf , that is dynamically shared by the hold buffer and the
defer buffer. As mentioned above, the tuples are spilled to
the hold buffer in a nearly sorted order and thus require only
a small hold buffer. Therefore, we can assume that almost
the whole Mf is allocated to the defer buffer. Given the
size of Mf , the expected number of runs will be �N2/2Mf �.
Furthermore, we can use nearly all the available join memory
to merge defer buffer tuples during the second pass. Then
the number of steps of run merging defer buffer tuples is
�logM�N2/2Mf ��. Finally, we also need to count the cost of
writing the sorted runs in the defer buffer to the disk before
the merging.

In summary, the cost components (c)–(e) can be calculat-
ed as follows:

2N1 +N2(2�logM�
N2

2Mf

�� + 1) +N2 +N (4)

and hence the total cost of our algorithm is

2N(�logM �
N

2M
�� + 2) + 2N1 + 2N2(�logM �

N2

2Mf

��+ 1) (5)

4.1.1 Cost with FIFO Tuple Eviction Policy
Below we discuss how to estimate the values of N1 and

N2, i.e. the sizes of tuples spilled to the hold buffer and
the defer buffer respectively. Due to the dynamic behavior
of our algorithm, the exact estimation is quite complicat-
ed and costly to perform. Hence, we perform a simplified
analysis by assuming that the main buffer applies the FIFO
tuple eviction policy. Moreover, we assume a tuple t(x, y) is
randomly located within the segment of tuples with A = x
in SA(R). As such, there are three scenarios under which
tuples have to be spilled into the hold buffer and the defer
buffer.
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(I) If a tuple t(x, x) belongs to case 2, 3 or 4, then it has
to be spilled to either the hold buffer or the defer buffer.
As t in this case is located inside its own RM(t) in SA(R),
we have P

1st
RM(t) ≤ Pt ≤ P

last
RM(t). Hence, the probability that

t(x, x) falls into case 2 or 3 and thus is spilled to the defer
buffer can be calculated as follows:

P (t(x, y) is spilled to the defer buffer | x = y) ={
0 NA(x) ≤ M

1− M
NA(x)

otherwise. (6)

Furthermore, the probability that t(x, x) belongs to case 4
and thus is spilled to the hold buffer is:

P (t(x, y) is spilled to the hold buffer | x = y) =⎧⎪⎨
⎪⎩

0 NA(x) ≤ M
M

NA(x)
NA(x) ≥ 2M

1− M
NA(x)

otherwise.
(7)

(II) With x > y, a tuple t(x, y) cannot be in cases 3 and
4. Thus, t(x, y) will not be spilled to the hold buffer, and
P (t(x, y) is spilled to the hold buffer | x > y) = 0.
If t(x, y) with x > y is in case 2, then it has to be spilled to
the defer buffer. Note that, in this case, Pt ≤ P

1st
RM(t) due to

the fact that x > y. Therefore, the probability that t(x, y)
falls into this case is:

P (t(x, y) is spilled to the defer buffer | x > y) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 NA(x) ≤ M−
x−1∑
i=y

NA(i)

1
x−1∑
i=y

NA(i) ≥ M

1−

M−

x−1∑

i=y

NA(i)

NA(x)
otherwise.

(8)

(III) With x < y, a tuple t(x, y) cannot be in cases 2 and
3. Thus, t(x, y) will not be spilled to the defer buffer, and
P (t(x, y) is spilled to the defer buffer | x < y) = 0.
If t(x, y) with x < y is in case 4, then it has to be spilled to
the hold buffer. Here, we have Pt ≥ P

last
RM(t). Similar to the

previous case, the probability of t(x, y) being in this case
can be derived as follows:

P (t(x, y) is spilled to the hold buffer | x < y) =⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 NA(x) ≤ M−
y∑

i=x+1
NA(i)

1
y∑

i=x+1
NA(i) ≥ M

1−
M−

y∑

i=x+1

NA(i)

NA(x)
otherwise.

(9)

Now we can derive the values of N1 and N2 as follows:

N1 =

∑
x,y

N(x, y)P (t(x, y) is spilled to the hold buffer)

ρ
(10)

N2 =

∑
x,y

N(x, y)P (t(x, y) is spilled to the defer buffer)

ρ
(11)

where ρ is the number of R tuples that can be stored in
each page.

4.1.2 Cost with Prioritized Tuple Eviction Policy
The above analysis on the values of N1 and N2 does not

consider tuple eviction priorities defined in Section 3.2.1, and
hence may not reflect the real cost of our algorithm correctly.
Below we try to measure some effects of our prioritized tuple
eviction policy.

(I) A tuple t(x, x) in case 4 now is more likely to be kept
in the main buffer until all its right-matching tuples have
been scanned. Therefore, t(x, x) can meet with all of its
matching tuples in the main buffer and can be directly dis-
carded afterwards. As such, the probability of t(x, x) being
spilled into the hold buffer becomes:

P (t(x, y) is spilled to the hold buffer | x = y) ={
0 NA(x) ≤ M

1
NA(x)

otherwise. (12)

By comparing with Eqn. (7), one can see that the adoption
of tuple eviction priorities significantly reduces the proba-
bility of spilling t(x, x) to the hold buffer. The number of
tuples spilled to the defer buffer in this case is unchanged.

(II) Similarly, a tuple t(x, y) with x < y that belongs to
case 4 is more likely to be kept in the main buffer until its
right-matching tuples are fully scanned. Consider the set
S of tuples in SA(R) whose attribute A values fall in the
range (x, y]. Within S, those tuples in cases 1, 2 and 3 all
have higher eviction priorities than t(x, y). By assuming
that t(x, y) has a higher eviction priority than any case 4
tuple in S and that the total number of case 4 tuples in S is
maximum, we can derive an upper bound of the probability
that t(x, y) is spilled to the hold buffer, which can serve as
an approximation of the actual probability:

P (t(x, y) is spilled to the hold buffer | x < y) ≤⎧⎨
⎩

0 NA(x) ≤ M− k(x, y)
1 k(x, y) ≥ M

1−
M−k(x,y)

NA(x)
otherwise.

(13)

where
k(x, y) =

∑
x<i≤y
i≤j

N(i, j) (14)

Again, by comparing with Eqn. (9), we can see that the
prioritized tuple eviction policy can significantly reduces the
probability of spilling t(x, y) to the hold buffer.

4.1.3 Practical Considerations
In DBMS systems, we could utilize a two-dimensional his-

togram to summarize the joint distribution function N(x, y)
and hence we can use the above cost model to estimate the
cost of the join algorithm. Note that the sum aggregates
in Eqns. (8) and (9) can be efficiently calculated with the
widely adopted one dimensional equi-depth histogram and
cumulative histogram. However, Eqn. (14) would be expen-
sive to calculate. Therefore, we will adopt Eqn. (9) in our
cost model for algorithm implementation, which provides an
upper bound of the algorithm’s cost.

When the two-dimensional histograms are unavailable, we
will use the one-dimensional statistics to estimate N(x, y)
as follows. Suppose we only have the one functions NA(x)
and NB(y). By assuming that the attributes A and B are
statistically independent of each other, we can derive the
function N(x, y) as follows (|R| is the total number of tuples

in R): N(x, y) = NA(x)·NB(y)
|R|

.

4.2 Comparison with Sort-Merge Join
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Now we try to compare the cost of our SCALE algorithm
with that of Sort-Merge Join (SMJ). The I/O cost of SMJ
consists of: (a) the cost of externally sorting R into SA(R),
(b) the cost of externally sorting R into SB(R) and (c) the
cost of merge join of SA(R) and SB(R). Hence the total cost
can be estimated as follows:

4N�logM�
N

2M
��+ 6N (15)

In the worst case of SCALE, all the tuples will be spilled
to the defer buffer during the first pass of processing SA(R).
That is, in this case, N2 = N and N1 = 0. By substituting
them into Eqn. (5), we have

2N�logM �
N

2M
��+ 2N�logM�

N

2Mf

�� + 6N

By comparing this with Eqn. (15), one can see the cost of
SCALE would be the same as that of SMJ if �logM�N/2Mf �� =

�logM�N/2M��.
As described in Section 3.2.4, generally speaking, the larg-

er the portion of tuples that are spilled to the defer buffer,
the more memory is allocated to the hold and defer buffers.
In the adverse case, Mf will be set to a value close to M
such that �logM �N/2Mf �� = �logM�N/2M��. In other words,
SCALE degenerates to SMJ in the adverse case.

5. PERFORMANCE STUDY
We have integrated our proposed SCALE algorithm into

PostgreSQL 8.4.4 [1] as a standard join operation. We en-
abled the query optimizer to additionally include SCALE in
its plan search space, based on the cost model provided in
Section 4. We used the default system settings without any
tuning. We empirically compared SCALE with the native
join operations of PostgreSQL: Sort-Merge Join (SMJ), Hy-
brid Hash Join (HHJ) and Nested-Loop Join (NLJ). However,
the performance of NLJ was always significantly worse than
the other three join operations in all experiments. Thus, we
will not report the experimental results of NLJ here.

We conducted all experiments on a Dell workstation which
is equipped with a Quad-Core Intel Xeon 2.66Hz CPU, 2GB
DRAM and two SATA disks with storage capacities of 500G-
B and 750GB. Both the operating system, Ubuntu 7.10 with
Linux 2.6.22 kernel, and the PostgreSQL system run on the
500GB disk, while the databases as well as intermediate re-
sults of PostgreSQL are stored on the 750GB disk.

5.1 Synthetic Dataset Generation
We generated numerous synthetic tables with different

properties in order to comprehensively and extensively eval-
uate the performance of SCALE. In general, every synthetic
table consists of two join attributes, A and B, along with
another 23 padding attributes4. All attributes are of the (4-
byte) integer data type and thus each tuple has a fixed size
of 100 bytes. The attribute A, on which a synthetic table R
will be externally sorted by SCALE to generate SA(R), has
the value domain [1, 106].

As noted, the performance of SCALE is dependent on the
overall distance (nearness) between tuples and their corre-
sponding right-matching tuples in SA(R). A shorter aver-
age distance means to us a stronger correlation between A

4Note that with fewer padding attributes SCALE could per-
form even better, as the same amount of join memory now
can hold more tuples and thus the sizes of the hold and defer
buffers may decrease.

and B5 and hence better performance of SCALE. We expect
to test SCALE on synthetic tables with tunable correlation
extents. To this end, we have four essential configurable
parameters when generating a table R:

• AD: the statistical distribution of A values, uniform or
Zipf.

• MD: the maximum absolute difference between the A
value and the B value of a single tuple t, i.e., |t.A −
t.B| ≤ MD. MD is used to model the correlation be-
tween R.A and R.B. A small MD value means that
R.A and R.B are more correlated. Hence, more tuples
will be able to complete their right-joins before they
are evicted from the main buffer. This is the situation
where SCALE is expected to perform well. On the other
hand, a large MD means that it is less likely for tuples
to find matching tuples in the main buffer. Such cases
are not favorable to SCALE.

• DD: the statistical distribution of (t.A − t.B + MD)
values, either uniform or Zipf.

• DV: the number of distinct values on A, which are
uniformly distributed over [1, 106].

The Zipf distribution has a parameter θ, which affects the
skewness of the data distribution: the greater the value of
θ, the greater the skewness. We also varied the θ values. In
the following presentation, we shall use “Zipf x” to represent
“Zipf with θ = x”.

5.2 Experiment Design
On each synthetic table R, we executed self-join queries

of the following basic form:
SELECT *

FROM R AS R1, R AS R2

WHERE R1.A = R2.B
and compared the total query execution times of SCALE, SMJ
and HHJ. In certain queries, we also applied extra tuple
selection conditions with different selectivities on both R1

and R2. No clustered indices on A or B were available and
thus both SCALE and SMJ were forced to explicitly sort R.

The experiments conducted consist of four parts. The first
part is a micro-benchmark test, which enumerated different
combinations of the above four parameters (AD, MD, DD

and DV), as well as the total available join memory MEM on
a set of synthetic tables with fixed sizes. The second part
tested the scalability of SCALE by varying the table sizes.
The third part measured and verified the effectiveness of
our memory allocation scheme presented in Section 3.2.4.
The final part focused on the performance of SCALE when
combined with tuple selection and projection, as described
in Section 3.3.

Note that in all experiments, during the first pass of SCALE,
the size of the run buffer was set to MEM/10. Except
for those experiments that studied the memory allocation
scheme, for all other experiments, we completely relied on
our memory allocation scheme to divide the remainder of
MEM between the main buffer, and the hold and defer buffer-
s. Between queries, we clear the operating system cache with
the Linux command “echo 3 > /proc/sys/vm/drop caches”.

5Note here the meaning of correlation is a bit different from
its traditional definition, which measures the relationship
between the A and B values within the same tuple.
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(b) AD = Zipf 0.5
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(c) AD = Zipf 0.7
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(d) AD = Zipf 0.95

Figure 3: Benchmark test, 1GB tables with 10 mil-

lion tuples, AD varies, MD = 105, DD = uniform, DV

= 1× 105

We tested SCALE under a wide range of extents of correla-
tion between A and B. Throughout our experiments (Fig. 3
to 10 below), we utilized three DV values, i.e. 105 (the most
common), 5× 105 and 9× 105, and two MD values, i.e. 105

(the most common) and 5×105. In Fig. 3, 5, 8(a) and 10(a),
DV = MD = 105 so that A and B were not obviously corre-
lated; in Fig. 4, MD = 5× 105 and DV = 105 so that A and
B were much uncorrelated; in Fig. 6, 7, 8(b), 9 and 10(b),
A and B were (a bit or very) correlated.

5.3 Experimental Results

5.3.1 Micro-Benchmark Test
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Figure 4: Benchmark test, 1GB tables with 10 mil-

lion tuples, AD varies, MD = 5× 105, DD = uniform,

DV = 1× 105

All synthetic tables in this test have 10 million tuples, with
a total size of 1GB. The experimental results are depicted
by Fig. 3 – 7, from which we can clearly see that SCALE sig-
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Figure 5: Benchmark test, 1GB tables with 10 mil-

lion tuples, AD = uniform, MD = 105, DD varies, DV

= 1× 105
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Figure 6: Benchmark test, 1GB tables with 10 mil-

lion tuples, AD varies, MD = 105, DD = uniform, DV

= 5× 105

nificantly outperformed both SMJ and HHJ in all situations.
The performance gain of SCALE over the winner between SMJ

and HHJ was between 20% to 45%. In all figures, we observe
that the execution times of SCALE were quite stable for a
wide range of join memory MEM. The execution times of
SMJ and HHJ also stabilized when the join memory MEM in-
creased to 100MB. We will not show the statistical details
about tuple distribution over the six cases as well as the
sizes of hold buffer tuples and defer buffer tuples in SCALE.
Generally speaking, most tuples fell into cases 1, 2 and 4 as
expected, among which case 1 tuples occupied a very sig-
nificant portion. As a result, compared to the size of R,
the total size of tuples in hold and defer buffers was usu-
ally small. The above observations explain the superiority
of SCALE. We then briefly analyze the behaviour of SCALE
according to the figures.

In both Fig. 3 and Fig. 4, when MEM was fixed, the ex-
ecution times of SCALE remained nearly unchanged as AD
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Figure 7: Benchmark test, 1GB tables with 10 mil-

lion tuples, AD varies, MD = 105, DD = uniform, DV

= 9× 105

varied. The underlying reason lies in that different AD set-
tings resulted in more or less the same numbers of join result
tuples, as well as the similar tuple distributions over the six
cases. On the other hand, with a specific AD, when MEM in-
creased, the number of tuples in case 2 (so is the size of defer
buffer tuples) decreased slowly, the number of tuples in case
4 also decreased but the the hold buffer was always emp-
ty. Therefore, the difference between the execution times
of SCALE highly depended on how effectively the tuple runs
in the defer buffer were merged. The fact is that multi-
ple merge passes were required only when MEM = 10MB,
which led to an execution time notably higher than those
with larger MEM values. Comparing Fig. 3 with Fig. 4, the
only parameter setting difference was the value of MD. With
a greater MD, although the sizes of hold buffer tuples and
defer buffer tuples increased, the number of join result tu-
ples was reduced dramatically and thus much less CPU cost
was incurred. Consequently, the execution times of SCALE
in Fig. 4 were lower than their counterparts in Fig. 3.

In Fig. 5, the DD setting was varied. With the same MEM

value, from Fig. 5(a) to Fig. 5(d), the sizes of hold buffer tu-
ples and defer buffer tuples dropped gradually but the num-
ber of join result tuples rose quickly, and therefore the exe-
cution times increased correspondingly. Note that Fig. 5(a)
is actually the same as Fig. 3(a). Within each of Fig. 5(b) –
5(d) having the Zipf DD, when the MEM increased, the size
of defer buffer tuples decreased slightly while the hold buffer
was always empty. Besides, multiple merge passes for tuples
in the defer buffer were required only when MEM = 10MB.
Therefore, in all four subfigures of Fig. 5, the execution times
of SCALE with 10MB MEM were much higher than those with
larger MEM values.

In both Fig. 6 and 7, whenMEM was fixed and AD changed
from uniform to Zipf (θ increasing from 0.5 to 0.95), both
hold buffer tuples and defer buffer tuples shrank in sizes.
However, in the meantime, the number of join result tuples
increased, which incurred much more CPU time as well as
a higher total execution time. On the other hand, with a
specific AD, when MEM increased, the number of tuples in
case 2 (so is the size of tuples in the defer buffer) decreased
slowly, but the relatively small number of tuples in case 4 (so

is the size of tuples in the defer buffer) decreased fast. As a
whole, similar to the scenarios in Fig. 3 and 4, the execution
time differences of SCALE were determined by the number of
merge passes when merging tuples in the defer buffer. Still,
for the 10MB MEM, SCALE generated multiple merge pass-
es and thus resulted in a higher execution time than others
with larger MEM values. Among Fig. 3, Fig. 6 and Fig. 7,
their parameter settings differed only on the value of DV.
With a smaller DV, the sizes of hold buffer tuples and defer
buffer tuples and the number of join result tuples all rose
a bit. Consequently, the corresponding execution times of
SCALE in Fig. 3, Fig. 6 and Fig. 7 were in an ascending order.

5.3.2 Scalability Test
In this test, we investigated how the relative performance

of SCALE compared to SMJ and HHJ will change with respect
to the synthetic table sizes. We fixed AD (uniform), MD

(105) and DD (uniform), and then generated two groups of
tables, each according to a different DV value (either 9×105

or 105). Each group contains four tables of 50 million (5G-
B), 100 million (10GB), 150 million (15GB) and 200 million
(20GB) tuples, on which self-joins were conducted with join
memory MEMs of 500MB, 1000MB, 1500MB and 2000MB
respectively. The experimental results are plotted in Fig. 8.

SCALE
SMJ
HHJ

  0

  1,000

  2,000

  3,000

  4,000

  5,000

  6,000

  7,000

  8,000

1x 2x 3x 4x

Ex
ec

ut
io

n 
Ti

m
e 

(in
 se

c)

Table Size (in 5GB) and MEM Size (in 500MB)

(a) DV = 1 × 105

SCALE
SMJ
HHJ

  0

  1,000

  2,000

  3,000

  4,000

  5,000

  6,000

  7,000

  8,000

1x 2x 3x 4x

Ex
ec

ut
io

n 
Ti

m
e 

(in
 se

c)

Table Size (in 5GB) and MEM Size (in 500MB)

(b) DV = 9 × 105

Figure 8: Scalability test, with varying table sizes

and join memory sizes, AD = uniform, MD = 105, DD
= uniform

As shown, SCALE kept gaining significant performance im-
provement over both SMJ and HHJ as the table sizes in-
creased. Moreover, all execution times of SCALE with DV =
9×105 in Fig. 8(b) were higher than their counterparts with
DV = 1× 105 in Fig. 8(a), which is consistent with our ob-
servations from Fig. 3, Fig. 6 and Fig. 7. As such, it would
be convincing to claim that similar benchmark tests with d-
ifferent table sizes will bring the same conclusions on SCALE

as those presented in the above micro-benchmark test.

5.3.3 Verification of Memory Allocation Scheme
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Figure 9: Verify the effect of memory allocation

scheme, 1GB table with 10 million tuples, MEM =

10MB, AD = uniform, MD = 105, DD = uniform,

DV = 9× 105

In order to verify the effectiveness of our memory allo-
cation scheme proposed in Section 3.2.4, we conducted an
experiment with the synthetic table in Fig. 7(a). We fixed
MEM to 10MB and then ran SCALE with nine different mem-
ory ratios of the main buffer (denoted by SW) to the hold
and defer buffers (denoted by FW). The experimental results
are shown in Fig. 9.

It is obvious that the curve in Fig. 9 contains a trough
whose lowest point corresponds to the ratio of 7:3 with the
minimum execution time of 138 seconds. The small circle in
Fig. 9 represents the chosen ratio, 77:23, by our automatic
memory allocation scheme, with the actual execution time
of 143 seconds. It turns out that our decision on the mem-
ory allocation is quite near to the optimal scenario in the
exploited space.

5.3.4 Effect of Integration with Tuple Selection and
Projection

It is desirable to see how the tuple selection and projection
conditions that are pushed down to the joining instances of a
self-join will affect the effectiveness and efficiency of SCALE.
We therefore designed an experiment to investigate this.
SCALE incorporated the first approach in Section 3.3 to

enable tuple selection and projection pushdown, which re-
quires much less implementation effort but has obviously
worse performance than the second approach. We defined a
refined self-join query template:

SELECT *

FROM R AS R1, R AS R2

WHERE R1.A = R2.B
AND R1.C ≥ i× 5× 104

AND R2.C ≤ 106 − i× 5× 104

where C is a third integer attribute of R whose values are
uniformly distributed over [1, 106] and i is an integer pa-
rameter ranging from 1 to 10. By varying the value of i, we
can easily and accurately control the tuple selection selec-
tivities of R1 and R2, as well as the number of overlapped
tuples between these two instances. For simplicity we did
not introduce tuple projection into the queries.

We tested the above refined self-join queries against two
synthetic tables with fixedMEM (10MB), AD (uniform), MD

(105) and DD (uniform) but two different DV values (1×105

and 5×105). The experimental results are shown in Fig. 10.
In both SMJ and HHJ, the selection conditions in the queries
were pushed down to the level of scanning R1 and R2.

As can be seen, SCALE still performed better than SMJ and
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Figure 10: Test on integration with selection condi-

tion R1.C ≥ i×5×104 and R2.C ≤ 106− i×5×104, 1GB

tables with 10 million tuples, MEM = 10MB, AD =

uniform, MD = 105, DD = uniform

HHJ in almost all scenarios. As i increased, the benefit of
SCALE disappeared gradually. However, this trend is expect-
ed because the benefit of SCALE mainly originates from the
overlap between R1 and R2. When i became 10, which was
actually the worst case as R1 and R2 are totally disjoint,
the execution times of these three approaches are more or
less the same. This phenomenon, however, is surprisingly
positive. Note that regardless of the i value, in this test
SCALE was always sorted on the original R and then two ful-
l sequential scans of SA(R) were conducted. Furthermore,
as mentioned above, our implementation of SCALE chose the
worse one of two candidate solutions for the purpose of com-
bining tuple selection and projection. Therefore, we can op-
timistically conclude that a fully optimized SCALE will be
superior to both SMJ and HHJ when dealing with general
self-join queries.

6. EXTENSIONS TO SCALE
In this section, we propose two extensions to SCALE. The

first extension can improve SCALE’s performance, while the
second extension generalizes SCALE for it to be utilized by
more applications.

6.1 Sideways Information Passing
A tuple t in R plays roles as both the left-hand side (LH-

S) and the right-hand side (RHS) in the self-join condition
R1.A = R2.B. Let NA(a) and NB(b) denote the total num-
ber of tuples in R that have the attribute value A = a and
B = b respectively. Suppose SCALE sorts R on A into SA(R).

If NA(t.B) (resp. NB(t.A)) is zero, t will not be able to
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find corresponding right- (resp. left-) matching tuples in R.
If both NA(t.B) and NB(t.A) are zero, then t is totally ir-
relevant to the self-join. Therefore, it would be beneficial
to prune such irrelevant tuples from R as early as possi-
ble. To achieve this, we collect the value distribution infor-
mation not only for attribute A, but also for attribute B,
during the initial run formation phase of externally sorting
R into SA(R). We can then discard those irrelevant tuples
on-the-fly when merging the initial sorted runs during the
subsequent run merge phase.

During the first pass of processing SA(R), it is safe and
beneficial to remove a tuple t from the main buffer once t
can no longer left-join or right-join with any other existing
or incoming tuples in the main buffer. This is called eager
tuple pruning strategy.

At the moment when t becomes eligible for the early prun-
ing, RM3(t) must be empty. In the meantime, all the left-
matching tuples of t must also have been read into the main
buffer. This situation can be easily determined by counting
the tuples whose attribute B values are equal to t.A and
so far have been read into the main buffer, and comparing
the number with NB(t.A) which will be collected during the
external sorting of R as described above.

6.2 Self Band–Join
A band-join [6, 13] between two relations R and S on

attributes R.A and S.B has the join condition of the form
R.A− c1 ≤ S.B ≤ R.A+ c2, where c1 and c2 are constants
that may be equal, and either one of them, but not both,
may be zero. Band joins are common in queries that require
joins over continuous domains such as time and distance. A
self band-join involves two instances R1 and R2 of relation
R with a join condition R1.A− c1 ≤ R2.B ≤ R1.A+ c2.

Extending SCALE to the self band-join is straightforward.
For a tuple t with t.B = b, its right-matching tuples RM(t)
becomes the set of consecutive tuple segments in SA(R) with
their A values falling into the range [b− c2, b+ c1]. Besides,
there are no other modifications required to enable SCALE to
handle self band-joins.

The two schemes of sideway information passing discussed
in Section 6.1 are also extendible according to self band-join.
For a tuple t in R, when

∑t.B+c1
i=t.B−c2

NA(i) = 0, t will not
be able to find corresponding right-matching tuples in R;
similarly, when

∑t.A+c2
i=t.A−c1

NB(i) = 0, t will not be able to
find corresponding left-matching tuples in R. Therefore, if∑t.B+c1

i=t.B−c2
NA(i) = 0 and

∑t.A+c2
i=t.A−c1

NB(i) = 0, then t is
irrelevant to the self band-join and can be pruned during
the external sorting of R into SA(R).

The principle of the eager tuple pruning for the main
buffer also applies to the self band-join. However, in or-
der to determine if all the left-matching tuples of a tuple
t have been read into the main buffer, it requires count-
ing all the tuples whose attribute B values fall in the range
[t.A− c1, t.A+ c2].

It is also obvious that the self band-join can be integrated
with tuple selection and projection pushdown as described
in Section 3.3, since the merge join between SA(R

+) and
SB(R−) is also well adaptive to band-join.

7. CONCLUSION
In this paper, we have proposed SCALE, an efficient self-

join algorithm. Our extensive performance evaluation showed
that that SCALE is generally superior to conventional join al-

gorithms like Sort-Merge Join, Hybrid Hash Join and Nested-
Loop Join. There are still several extensions and optimiza-
tions that potentially deserve to be studied in the future.
First, in SCALE, the join result tuples are not delivered in a
sorted order. However, in some cases, it would be desirable
and beneficial to produce a sorted join output. It remains
a challenge to revise the algorithm so as to generate sorted
results without incurring too much overhead. Second, the
memory allocation among buffers of SCALE is done statically
based on the cost estimation before the first scan of the sort-
ed relation. As the cost estimation might not be accurate
due to inaccurate statistics, it would be interesting to design
a dynamic allocation algorithm to adjust the memory allo-
cation among all buffers at runtime. Third, SCALE does not
exploit the opportunity of outputting join results during the
external sorting of the relation at the beginning. Intuitive-
ly, interleaving the sorting with the tuple matching proce-
dure would further improve the execution time. Fourth, our
current techniques work well for a binary self-join. When
executing a query with multi-way self-joins, there might be
a more efficient way than simply applying a binary tree of
SCALE operations.
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