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ABSTRACT
The problem of whether a query Q can be answered using a
set of views V studies the possibility of computing Q when
only the answers to the given set of views are available. In
information-theoretic terms, we say that V determines Q
iff for any two databases D1, D2, V(D1) = V(D2) implies
Q(D1) = Q(D2). In the case that V determines Q, we also
study the existence of equivalent rewritings of Q in terms of
V in a specific rewriting language. Having a view language
V and a query languageQ we say that V-to-Q determinacy is
decidable if there is an algorithm which, given a view V ∈ V
and a query Q ∈ Q, outputs whether V determines Q.

We focus on the case where the views and the query are
defined by subclasses of conjunctive queries and investigate
in which cases V determines Q and the existence of equiv-
alent rewritings of Q in terms of V. We define the class
of CQcgraph queries as binary CQ queries whose body, if
viewed as an undirected graph, is connected. Next, we estab-
lish necessary conditions for determinacy in the CQcgraph-
to-CQcgraph case. We also show that CQchain-to-CQcgraph

determinacy is decidable, extending the previous decidabil-
ity result for CQchain-to-CQchain, where CQchain denotes
the class of binary CQ queries whose body is a simple path
between the two free variables. Finally, we provide an algo-
rithm which, starting with a set of CQcgraph views V and
an integer k, generates a set of CQcgraph queries that are
determined by V and have their size bounded by k.

Categories and Subject Descriptors
H.2 [Database Management]: Languages—Query lan-
guages

General Terms
Theory
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1. INTRODUCTION
The problem of whether a set of queries on a database
provides enough information for answering another query
has received considerable attention in different contexts re-
lated to data management. This has been a central topic in
data integration [5, 10, 17] where the problem is formulated
in terms of rewriting a specific query using a given set of
queries, called views. The same problem is encountered in
semantic caching [8], when answers to a given set of queries
are stored in a cached data container. When a new query
arises, it must be determined whether the query can be an-
swered from the cache, or the complete database needs to
be interrogated. Security and privacy provide another con-
text for the same problem [16]. Assuming that there exists
a set of queries which is considered to be private informa-
tion, and that some data from a database is made accessible
through a set of views, it must be verified that the views do
not provide enough information for answering the queries.

Whatever the context is, a fundamental question is how to
formalize the fact that a set of views V contains enough
information for answering a specific query Q. We say that V
determines Q, denoted V � Q, iff for all database instances
D1 and D2,V(D1) = V(D2) implies Q(D1) = Q(D2) [14].
Indeed, V � Q implies that for any database instance D,
if V (D) is provided, Q(D) can be computed by finding any
database instance D′ with V (D′) = V (D), and computing
Q(D′). We must note that the above definition holds both
in the context of unrestricted (finite or infinite) or restricted
(finite) database instances. However, in this paper we only
consider the finite case.

In the case that a set of views determines a query, we are
also interested to know if there exists an equivalent rewrit-
ing of the query using the views, and the language in which
this rewriting can be done. However, the definition of deter-
minacy does not say anything about how the query could be
rewritten using the views. The existence of such a rewrit-
ing depends on the languages of the query and of the views.
Thus, having a query language Q and a view language V,
we say that a language R is complete for V-to-Q rewritings
iff for any query Q ∈ Q and any set of views V ∈ V, V � Q
implies that there exists a rewriting QV ∈ R such that for
any database instance D, Q(D) = QV(V(D)).

In this paper we consider subclasses of conjunctive queries
(CQ for short) as query and view languages, and study the
decidability of determinacy and the existence of equivalent
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rewritings. The decidability of CQ-to-CQ determinacy and
the completeness of first order logic (FO) for CQ-to-CQ
rewritings is currently an open problem. We define a sub-
class of conjunctive queries, CQcgraph, which contains all
binary CQ queries whose body, if viewed as an undirected
graph, is connected. Our contributions are the following:

1. We identify necessary conditions for the CQcgraph-to-
CQcgraph determinacy in the form of structural prop-
erties of the graph V([Q]), where [Q] is the database
instance induced by the body of Q. This way we know
that if the properties do not hold, then the views do
not determine the query. We also show that our con-
ditions are not sufficient for determinacy, by providing
an appropriate example.

2. We prove that CQchain-to-CQcgraph determinacy is
decidable and that FO is complete for CQchain-to-
CQcgraph rewritings, extending the previous result for
the CQchain-to-CQchain case [2]. CQchain queries are
defined as binary CQ queries where the body, if viewed
as an undirected graph, is a chain between the two ar-
guments of the query.

3. Having a CQcgraph queryQ(x, y), we denote by size(Q)
the number of nodes in the graph [Q]. We say that Q
is minimal if there is no homomorphism h from [Q] to
a strict subgraph of [Q] with h(x) = x and h(y) = y.
Having a set V of CQcgraph views and an integer k,
we provide an algorithm which generates a set of min-
imal CQcgraph queries QV,k such that each Q ∈ QV,k

satisfies V � Q and size(Q) ≤ k. Moreover, the al-
gorithm also provides FO rewritings for all queries in
QV,k. We also give an example of a CQcgraph query Q
and a set of CQcgraph views V such that V � Q and
Q /∈ QV,size(Q), which shows that the algorithm is not
complete in the sense that not all determined queries
are generated.

Although we do not prove this, we believe that the above
results for CQcgraph can be extended to CQ as well.

1.1 Related work
The problem of answering queries using views appears in
several contexts with different assumptions on views and
rewritings. In this paper we study only the case of equiv-
alent query rewritings with exact view definitions, meaning
that the views contain exactly the set of tuples given by
their definitions, and that only equivalent rewritings are of
interest. Other settings which are studied in the literature
include:

1. Sound views: here the views provide only a subset of
tuples from the answer corresponding to their defini-
tions.

2. Maximally contained rewritings: the language in which
the rewritings are done is fixed, thus a rewriting which
contains only a subset of tuples in the answer is re-
quired instead of an equivalent one.

In [14] the problem of language completeness and determi-
nacy is studied extensively for query and view languages

ranging from FO to CQ, in the case of equivalent rewritings
with exact views. It is easy to prove that if satisfiability of
sentences in the query language Q is undecidable, then de-
terminacy is also undecidable. The same holds if the validity
of sentences in the view language V is undecidable. This di-
rectly implies that FO-to-FO determinacy is undecidable
[14]. As a consequence of Craig’s Interpolation Theorem [6],
it follows that FO is complete for FO-to-FO rewritings in
the unrestricted case. However, this result does not extend
to the finite case, where the FO-to-FO query answering
problem is Turing complete. In [14] it is also shown that
every language complete for ∃FO-to-FO rewritings must be
powerful enough to express all queries in ∃SO∩∀SO, leading
to a NP ∩ co−NP lower bound.

Despite the fact that UCQ (unions of conjunctive queries)
is a much weaker language than FO, UCQ-to-UCQ de-
terminacy remains undecidable and any complete language
for UCQ-to-CQ rewritings must be able to express non-
monotonic queries [14]. This implies that UCQ is not com-
plete for UCQ-to-UCQ rewritings, nor other more powerful
languages such as Datalog. Moreover, this result holds even
if the database relations, views, and query are unary.

The case of CQ is particularly important in the context of
answering queries using views. Despite the fact that it has
been extensively studied, it remains open whether CQ-to-
CQ determinacy is decidable and whether FO is complete
for CQ-to-CQ rewritings. In [14, 2] examples show that CQ
is not complete for CQ-to-CQ rewritings. Recently, sub-
classes of CQ where determinacy is decidable were identified.
In [14] it is shown that determinacy is decidable and that
CQ is complete for rewritings in the case of unary views and
when the view set contains only one path. In [2] it is shown
that determinacy is decidable and that FO is complete for
the case where both views and query are paths. In [13] decid-
ability of determinacy and completeness for rewritings are
shown for PF (packed fragment), a restriction of first-order
logic.

There is also a large amount of work regarding aspects of
equivalent query rewritings using exact views, especially for
CQs and UCQs. In [12] it is shown that it is NP −complete
to decide whether an (U)CQ query has an equivalent (U)CQ
rewriting using (U)CQ views, some polynomial-time sub-
cases being identified for CQ in [7]. Binding patterns [15],
arithmetic comparisons [3] and recursive queries [9] are also
studied for CQ queries and views.

2. PRELIMINARIES
2.1 Basic definitions and notations
A database schema σ is a finite set of relational symbols.
Each relational symbol R ∈ σ has associated a nonnegative
arity ar(R). Assuming an infinite domain dom, a database
instance D over σ defines, for all R ∈ σ, a finite relation
D(R) of arity ar(R) using elements from dom. The active
domain of an instance D, denoted by adom(D), is the set of
elements from dom which are used in D. A database instance
can also be seen as a relational structure with the universe
adom(D). We denote by I(σ) the set of all instances over σ.
If σ contains only binary relations, then each instance D ∈
I(σ) can be seen as a labeled graph. The set of nodes of the
graph is adom(D) and the set of labeled edges E(D) is given
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by all tuples (x1, x2, R) where (x1, x2) ∈ D(R), meaning
that there exists an edge between x1 and x2 in the graph D
labeled with the relation R.

Let σ and σV be database schemas. A query is defined as a
computable mapping from instances of an input schema to
instances of an output schema that commute with isomor-
phisms of the domain. A view V from I(σ) to I(σV) is a set
of queries from I(σ) to I({V }), for each V ∈ σV. Let Q be
a query over σ. Then we say that V determines Q, denoted
V � Q, iff for each D1, D2 ∈ I(σ),V(D1) = V(D2) implies
Q(D1) = Q(D2). Let R be a query over σV. Then, R is an
equivalent rewriting of Q using V, denoted by Q ⇒V R,
iff for all database instances D ∈ I(σ), Q(D) = R(V(D)).
Let Q be a query language and V be a view language. We
call R complete for V-to-Q rewritings iff for any Q ∈ Q and
V ∈ V, V � Q implies that there exists R ∈ R such that
Q⇒V R.

2.2 Query and view languages
In this paper consider the following subsets of conjunctive
queries, which are defined as follows.

Definition 2.1 (CQ). Let Q be a database query over
σ. Then, Q is a conjunctive query (CQ) if it is a conjunction
of the form ∃ȳ(R1(x̄1), · · · , Rk(x̄k)), where ȳ ⊆ (x̄1 ∪ · · · ∪
x̄k). The variables in ȳ are called undistinguished, while the
others are called free. If z̄ is the set of free variables, we
define vars(Q) = ȳ ∪ z̄ to be the set of variables in Q. Also,
let [Q] ∈ I(σ) denote the database instance induced by the
body of Q, where (x1, · · · , xk) ∈ [Q](R) iff R(x1, · · · , xk) is
an atom in Q.

We can rewrite Q in a more convenient manner as

Q(z̄)← R1(x̄1), · · · , Rk(x̄k),

where z̄ is called the head of the query, and the right part
is called the body. As explained before, if all the relations
R ∈ σ are binary, [Q] can be seen as a labeled graph.

Next we define chain queries [2] and connected graph queries
as subsets of CQs.

Definition 2.2 (CQchain). A CQ query is called chain
query if it has exactly two free variables and if it is de-
fined over binary atoms which, when viewed as a labeled
graph, form a simple path from one argument of the query
to the other. The language of all chain queries is denoted as
CQchain.

Definition 2.3 (CQcgraph). A CQ query is called a
connected graph query if it is defined over binary atoms
which, when viewed as an undirected graph, is connected.
Moreover, the query is restricted to have two free variables.
The language of all connected graph queries is denoted as
CQcgraph.

Example 2.1. The database query given by φ1(x, y) ←
R1(x, z1), R2(z1, z2), R1(z2, y) is a chain query, since the

body of the query is a simple path from x to y. The query
φ2(x, y) ← R(x, z1), R(z2, y) is not a chain query, since
there exists no path between x and y, and neither is φ3(x, y)←
R1(x, z1), R2(z1, z2), R1(z2, z3), R2(z3, z1), R1(z1, y), because
the body of the query is not a simple path between x and y.
We also have φ1, φ3 ∈ CQcgraph and φ2 /∈ CQcgraph.

Definition 2.4 (minimality). Let Q(x, y) ∈ CQcgraph

be a query. Q is called minimal iff there is no homomor-
phism h : [Q] → [Q′] with h(x) = x and h(y) = y, for some
Q′ such that [Q′] is a strict subgraph of [Q].

In other words, a CQcgraph query Q is minimal if we can-
not obtain an equivalent query by removing atoms from the
body of Q. We can assume that all the queries we are work-
ing with are minimal, since for any CQcgraph query Q, a
minimal query equivalent to Q always exists.

Finally, we define the weakly connected components of an
instance defined over a schema which contains only binary
relations. This notion is used in some of the proofs later in
the paper.

Definition 2.5 (weak connectivity). Let D ∈ I(σ)
be an instance over a database schema σ. A pair of nodes
(u, v) ∈ adom(D) is called weakly connected if there exists
an undirected path in D from u to v. A weakly connected
component of D is a maximal subgraph in which any pair of
nodes is weakly connected.

3. CQCGRAPH-TO-CQCGRAPH DETERMINACY
CONDITIONS

As it was previously shown in [2], connectivity inside the
body of the query plays an important role in determinacy.
The connectivity graph of a query is defined as the graph
which contains a node for each atom and an edge between
two atoms which share a variable. Indeed, if the connectivity
graph of a CQ query Q has a weakly connected component
S which does not contain any tuple in V([Q]), then a set
of views V determines Q only if there is a view V ∈ V
whose connectivity graph contains a connected component
isomorphic to S. In this section we analyze the CQcgraph-to-
CQcgraph case and we show that connectivity properties of
the graph V([Q]) also play an important role in determinacy.
Let σ be a database schema and Q(x, y) a CQcgraph query
over σ. First, we show that if a CQcgraph view V determines
Q, then there exists an undirected path between x and y in
V([Q]). Then, we show how to compute partial results to a
query more efficiently when V([Q]) is divided into smaller
weakly connected components. Finally we state our second
necessary condition for determinacy: if V determines Q then
the removal of any edge from Q must reflect in the weakly
connected component of x.

We start with an example that illustrates the fact that if x
and y are not weakly connected in V([Q]), then the view
does not determine the query.

Example 3.1. Let Q(x, y) ← a(x, z1), b(z1, z2), c(z2, z3),
d(z3, z1), e(z1, y) be a binary database query over the schema
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Figure 1: The two instances D1 and D2 with V(D1) =
V(D2) and Q(D1) 6= Q(D2) for the views and query
shown in Example 3.1.

σ = {a, b, c, d, e}. Then, consider the view V = {V1, V2} with
V1(x, y)← a(x, z1), b(z1, y) and V2(x, y)← d(x, z1), e(z1, y).
Thus, we have that V([Q]) = {V1(x, z2), V2(z3, y)}. Notice
that x and y are not in the same weakly connected component
which, using theorem 3.1 shown below, implies that V does
not determine Q.

Next we will construct the two instances D1 and D2 with
V(D1) = V(D2) and Q(D1) 6= Q(D2), obtained as described
in the proof of Theorem 3.1. We have D1 = D1

1 ∪ D2
1,

where D1
1 = {a(x, z1), b(z1, z2), c(z2, z3), d(z3, z1), e(z1, y)}

and D2
1 = {a(x′, z′1), b(z′1, z

′
2), c(z′2, z

′
3), d(z′3, z

′
1), e(z′1, y

′)}.
Thus, it directly follows that Q(D1) = {(x, y), (x′, y′)}. Fol-
lowing the construction in the proof, we have D2 = D1

2∪D2
2,

where D1
2 = {a(x, z′1), b(z′1, z2), c(z2, z

′
3), d(z′3, z

′
1), e(z′1, y

′)}
and D2

2 = {a(x′, z1), b(z1, z
′
2), c(z′2, z3), d(z3, z1), e(z1, y)}. It

follows that Q(D2) = {(x, y′), (x′, y)}, thus Q(D1) 6= Q(D2).
It can also be seen that V (D1) = V (D2).

We are now ready to give the following theorem.

Theorem 3.1. Let σ and σV be database schemas which
contain only binary relations. Let Q(x, y) ∈ CQcgraph be a
query over σ and V be a CQcgraph view from I(σ) to I(σV).
Then V � Q implies that x and y are weakly connected in
V([Q]).

Proof. Suppose by contradiction that x and y are not
weakly connected in V([Q]). We construct two database in-
stances D1 and D2 such that V(D1) = V(D2) and Q(D1) 6=
Q(D2), which contradicts V � Q. For any element u ∈
adom([Q]) we associate a fresh element u′. For the rest of
the proof, let Sx be the set of nodes in the weakly connected
component of x in V([Q]) and let S′x = {u′ | u ∈ Sx}.

First, we construct D1 with the domain adom(D1) = {u, u′ |
u ∈ adom([Q])}. For each R ∈ σ we define

D1(R) = {(u, v), (u′, v′) | (u, v) ∈ [Q](R)}.

Therefore, D1 basically consists of two disjoint subgraphs
isomorphic to [Q]. From this it follows that {(x, y), (x′, y′)} ⊆
Q(D1) and that {(x, y′), (x′, y)} ∩Q(D1) = ∅.

For constructing D2, let adom(D2) = adom(D1). Then, let
D2(R) = {(u, v), (u′, v′) | (u, v) ∈ [Q](R), |{u, v} ∩ Sx| 6=
1} ∪ {(u, v′), (u′, v) | (u, v) ∈ [Q](R), |{u, v} ∩ Sx| = 1}, for
all R ∈ σ. The key thing to notice here is that D2 still
contains two disjoint subgraphs isomorphic to [Q]. We will
show that D2 = D1

2 ∪ D2
2, where D1

2 and D2
2 are disjoint

subgraphs with the following properties:

1. adom(D1
2) = (adom([Q])− Sx) ∪ S′x and adom(D2

2) =
Sx ∪ {u′ | u ∈ (adom([Q])− Sx)},

2. the mappings h : [Q] → D1
2 and h′ : [Q] → D2

2

with h(u) = u′, h′(u) = u for all u ∈ Sx and h(v) =
v, h′(v) = v′, for all v /∈ Sx are isomorphisms.

Since x ∈ Sx and y /∈ Sx it follows that h(x) = x′ and
h(y) = y. Thus, we have that (x′, y) ∈ Q(D2) which implies
Q(D1) 6= Q(D2). Finally, the existence of both h and h′

with the fact that D1
1 and D2

1 are disjoint concludes that
V(D1) = V(D2).

Let D1
2 and D2

2 with domains adom(D1
2) = (adom([Q]) −

Sx) ∪ S′x and adom(D2
2) = Sx ∪ {u′ | u ∈ (adom([Q]) −

Sx)} be the subgraphs of D2 where the labeled edges sets
E(D1

2) and E(D2
2) are restrictions of E(D2) for adom(D1

2)
and adom(D2

2). Using the definition of D2, it follows that D1
2

and D2
2 are indeed two disjoint subgraphs such that D2 =

D1
2 ∪D2

2. It remains now to show that the mappings h and
h′ shown above are indeed isomorphisms. We will only show
it for h, since for h′ it is analogous.

First, we will show that h is a homomorphism from [Q] to
D1

2. For that, consider any R ∈ σ and any pair (u, v) ∈
[Q](R). Then, we distinguish the following cases:

• if u ∈ Sx and v ∈ Sx then h(u) = u′, h(v) = v′ and we
have that (u′, v′) ∈ D1

2(R) from the definitions of D2

and D1
2,

• if u /∈ Sx and v /∈ Sx then h(u) = u, h(v) = v, which
concludes,

• if u ∈ Sx and v /∈ Sx then h(u) = u′, h(v) = v and we
have that (u′, v) ∈ D1

2(R) from the definitions of D2

and D1
2,

• if u /∈ Sx and v ∈ Sx then we proceed analogous to the
previous case.

For showing that h−1 is a homomorphism from D1
2 to [Q],

consider any R ∈ σ and any pair (p, q) ∈ D1
2(R). Then, we

distinguish the following cases:

• if (p, q) = (u′, v′), where u′, v′ ∈ S′x then we have that
h−1(u′) = u and h−1(v′) = v; since (u′, v′) ∈ D2(R),
the definition of D2 implies that (u, v) ∈ [Q](R),

• if (p, q) = (u, v), where u, v ∈ (adom([Q]) − Sx), then
we have that h−1(u) = u and h−1(v) = v, which con-
cludes,
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• if (p, q) = (u′, v), where u′ ∈ S′x, v ∈ (adom([Q]) −
Sx) then we have that h−1(u′) = u and h−1(v) = v;
since (u′, v) ∈ D2(R), the definition of D2 implies that
(u, v) ∈ [Q](R),

• if (p, q) = (u, v′), where u ∈ (adom([Q])− Sx), v′ ∈ S′x
then we proceed analogous to the previous case.

Example 3.1 illustrates the constructions described in the
proof of theorem 3.1, in the case that the views do not de-
termine the query. The following lemma follows as a direct
implication of the above theorem.

Lemma 3.1. Let σ and σV be schemas which contain only
binary relations and let D ∈ I(σ) be an instance. Let Q(x, y) ∈
CQcgraph be a query over σ and V be a view from I(σ) to
I(σV) such that V � Q. Then, for every pair (u, v) ∈ Q(D),
u and v are weakly connected in V(D).

Proof. From (u, v) ∈ Q(D) we have that there exists a
homomorphism h from [Q] to D with h(x) = u and h(y) = v.
This implies that we also have a homomorphism h′ from
V([Q]) to V(D) with h′(x) = u and h′(y) = v. The conclu-
sion follows now from theorem 3.1.

The following lemma relates isomorphic weakly connected
components of views of different database instances, by show-
ing that they should have similar impact on the results of
the query.

Lemma 3.2. Let σ and σV be database schemas which
contain only binary relations and let P, P ′ ∈ I(σ) be database
instances. Let Q(x, y) ∈ CQcgraph be a query over σ and V
be a view from I(σ) to I(σV) such that V � Q. Let S be
a weakly connected component of V(P ) and S′ be a weakly
connected component of V(P ′) isomorphic to S. Then, for
any u, v ∈ S and any isomorphism h from S to S′ we have
that (u, v) ∈ Q(P ) iff (h(u), h(v)) ∈ Q(P ′).

Proof. The first thing to note is that it suffices to prove
just one direction of the equivalence: indeed, assuming that
(u, v) ∈ Q(P ) implies (h(u), h(v)) ∈ Q(P ′), the other direc-
tion follows analogous.

Let (u, v) ∈ S such that (u, v) ∈ Q(P ). Suppose by con-
tradiction that (h(u), h(v)) /∈ Q(P ′). Then, we will provide
two instances D1 and D2 such that V (D1) = V (D2) and
Q(D1) 6= Q(D2), which contradicts V � Q. As follows we
show how D1 and D2 are constructed.

Suppose, wlog, that adom(P ) ∩ adom(P ′) = ∅. For con-
structing D1, let adom(D1) = adom(P ) ∪ adom(P ′) and,
for all R ∈ σ, let D1(R) = P (R)∪P ′(R). Thus, D1 contains
two isomorphic copies of P. Using (u, v) ∈ Q(P ), it follows
that (u, v) ∈ Q(D1).

For the second instance consider adom(D2) = adom(P ) ∪
adom(P ′). Then, for all R ∈ σ let D2(R) be the reunion of
the following sets:

1. {(p, q) | (p, q) ∈ P (R), |{p, q} ∩ S| 6= 1} and {(p, q) |
(p, q) ∈ P ′(R), |{p, q} ∩ S′| 6= 1},

2. {(h(p), q) | (p, q) ∈ P (R), {p, q} ∩ S = {p}} and sym-
metrically {(p, h(q))|(p, q) ∈ P (R), {p, q} ∩ S = {q}},

3. {(h−1(p), q) | (p, q) ∈ P ′(R), {p, q} ∩ S′ = {p}} and
symmetrically {(p, h−1(q))|(p, q) ∈ P ′(R), {p, q}∩S′ =
{q}}.

As in the proof of theorem 3.1, we have that D2 = D1
2 ∪D2

2,
where D1

2 and D2
2 are disjoint subgraphs with the following

properties:

• adom(D1) = S′ ∪ (adom(P )−adom(S)), adom(D2) =
S ∪ (adom(P ′)− adom(S′)),

• the mapping f : P → D1
2 with f(p) = p, for all

p ∈ adom(P ) − adom(S) and f(p) = h(p) for all
p ∈ adom(S) is an isomorphism,

• the mapping f ′ : P ′ → D2
2 with f(p) = p, for all

p ∈ adom(P ′) − adom(S′) and f(p) = h−1(p) for all
p ∈ adom(S′) is an isomorphism.

Since (h(u), h(v)) /∈ Q(P ′) it follows (f ′(h(u)), f ′(h(v))) /∈
Q(D2), using the fact that f ′ is an isomorphism. Since
f ′(h(u)) = u and f ′(h(v)) = v, we have (u, v) /∈ Q(D2).
This implies that Q(D1) 6= Q(D2). Finally, the existence of
both f and f ′, with the fact that D1

1 and D2
1 are disjoint

concludes that V(D1) = V(D2). The fact that D1
2 and D2

2

indeed exist follows in the same lines as shown in the proof
of theorem 3.1.

We note that we can use lemmas 3.1 and 3.2 for comput-
ing partial query results more efficiently in the case where
V([Q]) is divided into smaller weakly connected compo-
nents. LetD be a database instance over σ and u ∈ adom(D)
be a fixed element from the domain of D. Suppose that, tak-
ing V(D) as input, we are interested in computing the set
R = {v | (u, v) ∈ Q(D), v ∈ adom(D)}. Let Su denote
the weakly connected component of u in V(D). Let D′ be
a database instance where V(D′) has a weakly connected
component S′ such that there exists an isomorphism f :
Su → S′. Let R′ = {v | (f(u), v) ∈ Q(D′), v ∈ adom(S′)}.
From lemma 3.1 we have that for all v ∈ R, v is weakly con-
nected to u, thus R ⊆ adom(Su). Then, using lemma 3.2, it
follows that R = f−1(R′). In the case that Su is significantly
smaller than V(D), computing D′ is easier than guessing a
database instance D′′ with V(D′′) = V(D) and computing
Q(D′′) = Q(D).

We are now ready to give another necessary condition for
determinacy which follows directly from lemma 3.2.

Theorem 3.2. Let σ and σV be database schemas which
contain only binary relations. Let Q(x, y) ∈ CQcgraph be a
minimal query over σ and V be a view from I(σ) to I(σV).
Let Sx be the weakly connected component of x in V([Q]).
For every labeled edge e ∈ E([Q]) we denote by Q − e the
query obtained by removing edge e and by Se

x the weakly
component of x in [Q − e]. Then, V � Q implies that for
every e ∈ E([Q]), Sx 6= Se

x.
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x z1 z2 z3 z4 z5

z6 z7

yQ(x, y) =
R1 R1 R1 R1 R1

R2

R2

R2

R3

x z1 z2 z3V1(x, y) =
R1 R1 R1

x z1 z2 z3 yV2(x, y) =
R1 R1 R1 R1

x z1 z2 yV3(x, y) =
R2 R2 R2

x yV4(x, y) =
R3

Figure 2: The query and the views used in example
4.1.

Proof. Suppose there exists an edge e such that Sx =
Se
x. Using lemma 3.2, this implies that (x, y) ∈ Q([Q − e]).

Thus, there exists a homomorphism from [Q] to [Q − e],
which is a contradiction since Q is minimal.

The following example shows that the necessary conditions
from theorems 3.1 and 3.2 are not sufficient for CQcgraph-
to-CQcgraph determinacy.

Example 3.2. Let Q(x, y)← R(x, z1), R(z1, z2), R(z2, z3),
R(z3, z1), R(z1, y) be a database query over the schema σ =
{R}. Then, consider the view V = {V } where V (x, y) ←
R(x, z1), R(z1, z2), R(z2, z3), R(z3, z4), R(z4, y) is a database
query over σ. We have that V does not determine Q. How-
ever, the determinacy conditions described in theorems 3.1
and 3.2 hold, which shows their insufficiency for determi-
nacy.

4. DECIDABILITY OF DETERMINACY IN
THE CQCHAIN-TO-CQCGRAPH CASE

In [2] the following decidability result for CQchain-to-CQchain

determinacy was given:

Theorem 4.1. Let V be a set of CQchain views and Q(x, y)
be a CQchain query. Then V � Q iff x and y are weakly
connected in V([Q]). Moreover, FO is complete for CQchain-
to-CQchain rewritings.

In this section we will extend the above result by showing
that CQchain-to-CQcgraph determinacy is decidable as well.
We start with an example which illustrates the intuition
behind our algorithm.

Example 4.1. Let σ = {R1, R2, R3} be a database schema
and let Q(x, y)← R1(x, z1), R1(z1, z2), R1(z2, z3), R1(z3, z4),
R1(z4, z5), R2(z5, z6), R2(z6, z7), R2(z7, z5), R3(z5, y) over σ

be a CQcgraph query, as shown in figure 2. Also, let V =
{V1, V2, V3, V4} be a set of CQchain views over σ given by

V1(x, y) ← R1(x, z1), R1(z1, z2), R1(z2, y),

V2(x, y) ← R1(x, z1), R1(z1, z2), R1(z2, z3), R1(z3, y),

V3(x, y) ← R2(x, z1), R2(z1, z2), R2(z2, y),

V4(x, y) ← R3(x, y).

As shown later in lemmas 4.1 and 4.2 we have that if V
determines Q then V also determines Q1(x, y) ← R3(x, y),
Q2(x, y) ← R2(x, z1), R2(z1, z2), R2(z2, y) and Q3(x, y) ←
R1(x, z1), R1(z1, z2), R1(z2, z3), R1(z3, z4), R1(z4, y). It could
be observed that [Q1], [Q2] and [Q3] are subgraphs of [Q] (up
to the renaming of their free variables). After the appro-
priate renaming of their arguments, they are simple paths
or simple cycles in [Q] such that each edge linking a node
outside [Qi] to [Qi] (1 ≤ i ≤ 3) has one end in one of the
arguments of Qi. Moreover, [Q1], [Q2] and [Q3] are maximal
subgraphs with the above properties. We show later in lem-
mas 4.1 and 4.2 that if V determines Q then V determines
all queries that satisfy similar properties.

Using theorem 4.1 we have that V determines each of the
above queries. Indeed, we can rewrite Q1 as Q1(x, y) =
∃z1(V2(x, z1) ∧ ∀z2(V1(z2, z1) → V2(z2, y))). For the other
two we have the trivial rewritings Q2(x, y) = V3(x, y) and
Q3(x, y) = V4(x, y). Finally, it can be seen that the existence
of the above rewritings is also sufficient for determinacy,
since we have that Q(x, y) = ∃z1(Q1(x, z1) ∧ Q2(z1, z1) ∧
Q3(z1, y)).

Let Q(x, y) be a CQcgraph query and V be a set of CQchain

views. We show that if V determines Q then V determines
all queries that satisfy similar properties to those shown in
the above example. We have also seen that, for the previous
example, this was also sufficient. At the end of the section
we will prove that this is always the case, which concludes
that CQchain-to-CQcgraph determinacy is decidable.

As follows, the inner grade of a node u ∈ adom([Q]) is the
number of triplets (v, u,R), where v ∈ adom([Q]), R ∈ σ
such that (v, u) ∈ [Q](R). Conversely, the outer grade of
a node u is the number of triplets (u, v,R), where v ∈
adom([Q]), R ∈ σ such that (u, v) ∈ [Q](R). We are now
ready to give the following lemmas.

Lemma 4.1. Let σ and σV be database schemas which
contain only binary relations. Let Q(x, y) ∈ CQcgraph be
a minimal query over σ and V ∈ CQchain be a view from
I(σ) to I(σV). Then, V � Q implies that V determines all
CQchain queries Q′(z0, zk) ← R1(z0, z1), · · · , Rk(zk−1, zk)
that satisfy the following properties:

1. [Q′] is a subgraph of [Q]

2. the nodes z1, · · · , zk−1 have the inner and outer grades
equal to 1 in [Q],

3. the nodes z0 and zk are either in the head of Q or have
the inner or outer grade not equal to 1.
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Figure 3: D1 and D2 constructed as shown in the proof of lemma 4.1. The general setting is explained in
example 4.2

Proof. Suppose that there exists a query Q′(z0, zk) ←
R1(z0, z1), · · · , Rk(zk−1, zk) that satisfies the above proper-
ties such that V does not determine Q′. Thus, we have that
the chain R1(z0, z1), · · · , Rk−1(zk−2, zk−1), Rk(zk−1, zk) is a
subgraph of [Q] and that the nodes z1, · · · , zk−1 do not have
other incident edges in [Q] except those from the chain. Next
we will provide two instances D1 and D2, with V (D1) =
V (D2) and Q(D1) 6= Q(D2) which contradict V � Q. For
the rest of the proof, let S denote the weakly connected
component of z0 in V ([Q′]), imin = min0≤i≤k zi /∈ S and
imax = max0≤i≤k zi ∈ S.

For the first instance D1, let adom(D1) = adom([Q])∪ {z′i |
imin ≤ i ≤ imax} ∪ {zu,Ri | 0 ≤ i < imin, R ∈ σ, (u, z0) ∈
R([Q])} ∪ {zu,Ri | imax < i ≤ k,R ∈ σ, (zk, u) ∈ R([Q])}.
Now let the set of edges of D1 be

E(D1) = [Q] (1)

∪ {R(z′i, z
′
i+1) | R ∈ σ, (zi, zi+1) ∈ [Q](R),

imin ≤ i < imax} (2)

∪ {R(u, zu,R0 ),

R1(zu,R0 , zu,R1 ), . . . , Rimin(zu,Rimin−1, z
′
imin

) |
R ∈ σ, u ∈ adom([Q])− {z0, · · · , zk},
(u, z0) ∈ [Q](R)} (3)

∪ {Rimax+1(z′imax
, zu,Rimax+1), . . . , R(zu,Rk , u) |

R ∈ σ, u ∈ adom([Q])− {z0, · · · , zk},
(zk, u) ∈ [Q](R)} (4)

For the second instance, let adom(D2) = adom(D1), with

the set of edges

E(D2) = {R(u, v) | R ∈ σ, (u, v) ∈ [Q](R),

u, v ∈ adom[Q]− {z1, · · · , zk−1}} (5)

∪ {Ri+1(zi, zi+1) | |{zi, zi+1} ∩ S| 6= 1,

0 ≤ i < k} (6)

∪ {Ri+1(z′i, z
′
i+1) | |{zi, zi+1} ∩ S| 6= 1,

imin ≤ i < imax} ∪ (7)

∪ {Ri+1(zi, z
′
i+1) | |{zi, zi+1} ∩ S| = 1,

0 ≤ i < k} (8)

∪ {Ri+1(z′i, zi+1) | |{zi, zi+1} ∩ S| = 1,

imin ≤ i ≤ imax} (9)

∪ {R(u, zu,R0 ),

R1(zu,R0 , zu,R1 ), · · · , Rimin(zu,Rimin−1, zimin) |
R ∈ σ, u ∈ adom([Q])− {z0, · · · , zk},
(u, z0) ∈ [Q](R)} (10)

∪ {Rimax+1(zimax , z
u,R
imax+1), · · · , R(zu,Rk , u) |

R ∈ σ, u ∈ adom([Q])− {z0, · · · , zk},
(zk, u) ∈ [Q](R)} (11)

From equation 1 it follows that (x, y) ∈ Q(D1). Next we will
show that (x, y) /∈ Q(D2), which implies Q(D1) 6= Q(D2).
Finally we will sketch the proof for V (D1) = V (D2).

First, for every 0 ≤ i ≤ k, consider Ui = {zi} ∪ {z′i|z′i ∈
adom(D2)}∪{zu,Ri |R ∈ σ, u ∈ adom([Q]), zu,Ri ∈ adom(D2)}.
Suppose there exists h, a homomorphism from [Q] to D2

with h(x) = x and h(y) = y. Then, we can construct h′, a
homomorphism from [Q] to [Q] as follows:

h′(u) =

{
zi, if h(u) ∈ Ui

h(u), otherwise
,
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for all u ∈ adom([Q]). It follows trivially that h′(x) = x and
h′(y) = y.

As follows, we show that h cannot exist. First, notice that
|h([Q]) ∩ Ui| = 1, 0 ≤ i ≤ k, since otherwise h′ would con-
tradict the minimality assumption on Q. Thus, let ui =
h([Q]) ∩ Ui. Then, we have that

(ui, ui+1) ∈ Ri+1(D2), 0 ≤ i < k. (12)

To see this, suppose there exists 0 ≤ i < k such that
(ui, ui+1) /∈ Ri+1([D2]). Then h′ would be a homomorphism
over [Q] → [Qe], where Qe is the query obtained from Q
by removing the edge e = Ri+1(zi, zi+1). Thus, this would
contradict the minimality assumption on Q.

We know that u0 ∈ U0 and uk ∈ Uk. As follows, we will
show that u0 = z0 and uk = zk. We will only show the
first equality, since the same arguments apply for the second
equality as well. Suppose that u0 6= z0. Then, we distinguish
two cases for z0, that follow the statement of the lemma:

• z0 = x : in this case, we have from the definition of h
that h(x) = x, thus h(x) = z0 which implies u0 = z0,

• the inner grade or outer grade of z0 is different than 1 :
if the inner grade of z0 is 0 and the outer grade is 1 then
|U0| = 1 which implies u0 = z0. Otherwise, it follows
that the outer grade or the inner grade of z0 is bigger
than 1. Suppose u0 6= z0. It follows that the inner and
outer grade of u0 are at most 1, which implies that
there exists an edge e such that h′ is a homomorphism
over [Q]→ [Qe], where Qe is the query obtained from
Q by removing edge e. However, this contradicts the
minimality assumption on Q.

Thus, we now have that u0 = z0 and uk = zk. From 12 it fol-
lows that the chain R1(z0, u1), R2(u1, u2), · · · , Rk(uk−1, zk)
is a subgraph of D2. Since for all 1 ≤ i ≤ k− 1 we have that
ui ∈ Ui, it follows from 8 and 9 that zk ∈ S. Using theorem
4.1, this contradicts the fact that V does not determine Q′.

Next we sketch the proof for V(D1) = V(D2). For V(D1) ⊆
V(D2) consider a CQchain view V ∈ V given byV (v0, vn)←
R1(v0, v1), · · · , Rn(vn−1, vn) ∈ V, and let h be a homo-
morphism from [V ] to D1. Let h([V ]) be denoted by P =
R1(h(v0), h(v1)), · · · , Rk(h(vn−1), h(vn)). From the construc-
tion of D2 it follows that there exists a chain subgraph of D2,
denoted P ′, which is isomorphic to P and starts and ends in
the same nodes as P (recall that adom(D1) = adom(D2)).
This implies that there exists a homomorphism h′ from [V ]
to D2 such that h(v0) = h′(v0) and h(vn) = h′(vn). The
reasoning for V(D2) ⊆ V(D1) is analogous.

Example 4.2. In this example we illustrate the construc-
tion of D1 and D2 as shown in the proof of lemma 4.1. Let

Q(u0, u2) ← R(u0, z0), R(z0, u1), R1(z0, z1), R2(z1, z2),

R3(z2, z3), R4(z3, z4), R5(z4, z5), R6(z5, z6),

R7(z6, z7), R(z7, u2), R(u3, z7), R(u2, u4),

R(u4, u0).

be a database query over σ = {R,R1, · · · , R7} and let the
set V of CQchain views be

V1(x, y) ← R1(x, z1), R2(z1, z2), R3(z2, y),

V2(x, y) ← R2(x, z1), R3(z1, y),

V3(x, y) ← R4(x, z1), R5(z1, y),

V4(x, y) ← R3(x, z1), R4(z1, y),

V5(x, y) ← R5(x, z1), R6(z1, y),

V6(x, y) ← R5(x, z1), R6(z1, z2), R7(z2, y),

V7(x, y) ← R(x, y).

Next, consider the CQchain query

Q′(z0, z7) ← R1(z0, z1), R2(z1, z2), R3(z2, z3), R4(z3, z4),

R5(z4, z5), R6(z5, z6), R7(z6, z7).

We have that [Q′] is a subgraph of [Q]. Moreover, the nodes
z1, · · · , z6 have the inner and outer grades equal to 1 in [Q].
On the other hand, z0 and z7 have outer, respectively inner
grades different then 1. Thus, Q′ satisfies the hypothesis of
Lemma 4.1. Using Theorem 4.1 it follows that V does not
determine Q′ since u and v are not connected by a undirected
path in V ([Q′]). Indeed, we have that

V([Q′]) = {V1(z0, z3), V2(z1, z3), V3(z3, z5), V4(z2, z4),

V5(z4, z6), V6(z4, z7)},

with S = {z0, z1, z3, z5}, where S is the weakly connected
component of z0 in V ([Q′]). Using Lemma 4.1, we have that
any CQchain view which determines Q also determines Q′,
thus V does not determine Q. The construction of D1 and
D2 as shown in the proof the lemma can be seen in Figure 3.
The fact that Q(D1) 6= Q(D2) follows from (u0, u2) ∈ Q(D1)
and (u0, u2) /∈ Q(D2). Also, we have that

V(D1) = V7(u0, z0), V7(z0, u1), V7(z7, u2), V7(u3, z7),

V7(u2, u4), V7(u4, u0), V7(u0, z
u0,R
0 ),

V7(zu2,R
7 , u2), V1(z0, z3), V2(z1, z3),

V3(z3, z5), V4(z2, z4), V5(z4, z6),

V6(z4, z7), V1(zu0,R
0 , z′3), V2(zu0,R

1 , z′3),

V3(z′3, z
′
5), V4(z′2, z

′
4), V5(z′4, z

u2,R
6 ),

V6(z′4, z
u2,R
7 ),

and V (D2) = V (D1). As defined in the proof of lemma 4.1,

U0 = {z0, zu0,R
0 }, U1 = {z1, zu0,R

1 }, Ui = {zi, z′i} for 2 ≤ i ≤
5, U6 = {z6, zu2,R

6 } and U7 = {z7, zu2,R
7 }. All the edges from

Ui to Ui+1, 0 ≤ i < 7, are labeled with Ri+1, and all the
other edges are labeled with R.

Lemma 4.2. Let σ and σV be database schemas which
contain only binary relations. Let Q(x, y) ∈ CQcgraph be
a minimal query over σ and V ∈ CQchain be a view from
I(σ) to I(σV). Then, V � Q implies that V determines all
CQchain queries Q′(x, y)← R1(x, z1), · · · , Rk(zk−1, y) over
σ that satisfy the following properties:

1. there exists z0 ∈ adom([Q]) such that the simple cycle
[Q′(z0, z0)] is a subgraph of [Q],
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2. the nodes z1, · · · , zk−1 have the inner and outer grades
equal to 1 in [Q].

Proof Sketch. The proof follows the same lines as the
proof of lemma 4.1. However, the construction presented
there needs to be adapted for the cycle case.

It follows that the necessary conditions expressed in lem-
mas 4.1 and 4.2 are also sufficient for determinacy. Thus,
we give the decidability theorem for CQchain-to-CQcgraph

determinacy:

Theorem 4.2. Having a set of CQchain views V and a
CQcgraph query Q it is decidable whether V � Q in polyno-
mial time, provided that the query is minimal. Moreover, we
have that FO is complete for CQchain-to-CQcgraph rewrit-
ings.

Proof Sketch. The key thing to note here is that we
can partition the set of edges of [Q] into simple cycles and
simple paths that satisfy the hypothesis of lemmas 4.1 and
4.2. This partition can be obtained in linear time since it
requires only a traversal of the graph [Q]. Let P denote the
set of CQchain queries which correspond to each element of
the partition. Using lemmas 4.1 and 4.2 we have that if
V determines Q then V determines all queries in P. Test-
ing if a CQchain query P ∈ P is determined by V, as well
as computing an equivalent FO rewriting, can be done us-
ing theorem 4.1 in O(|adom([P ])| · S), where S denotes the
sum of |adom(V )| for each V ∈ V. Since we have to check
determinacy for each P ∈ P, the total complexity of the
algorithm is O(|adom([Q])| · S + |E([Q])|), where |E([Q])|
denotes the number of edges in [Q].

If this necessary condition holds, then we have an FO rewrit-
ing for each query in P ∈ P using V. This suffices for obtain-
ing an equivalent FO rewriting of Q in terms of V. Indeed,
the rewriting can be obtained by quantifying existentially
the nodes shared by multiple partitions, as shown in exam-
ple 4.1.

5. GENERATING QUERIES DETERMINED
BY A SET OF CQCGRAPH VIEWS

In this section we will analyze how queries determined by a
set of CQcgraph views can be computed. Let σ and σV be
database schemas which contain only binary relations and
V ∈ CQcgraph be a view from I(σ) to I(σV). We will pro-
vide an algorithm which, starting from the set of queries
in V and an integer k, computes a set QV,k of queries such
that all Q ∈ QV,k are minimal CQcgraph queries that satisfy
V � Q and size(Q) ≤ k, where size(Q) is the cardinal of
adom([Q]). Moreover, the algorithm provides an FO rewrit-
ing for each Q in terms of V.

For two graphs G1 and G2 we define the graph G1 −G2 to
be the graph with the same set of nodes G1 and the set of
edges E(G1 −G2) = E(G1)− E(G2).

Definition 5.1 (u, v-centered subgraph). Let Q ∈
CQcgraph be a query and let u, v ∈ adom(Q). Then, the u, v-
centered subgraph of [Q], denoted as Cu,v(Q) is the subgraph

of [Q] containing all the nodes p such that there exists an
undirected path from u to v in [Q] that contains p and that
uses u and v exactly once. The set of edges E(Cu,v(Q)) is the
natural restriction of E([Q]) on the set of nodes of Cu,v(Q).

Definition 5.2 (u, v-left subgraph). Given a query
Q ∈ CQcgraph and u, v ∈ adom(Q), the u, v-left centered
subgraph of [Q], denoted as Cuu,v(Q), is the weakly connected
component of u in the graph [Q]− Cu,v(Q).

Definition 5.3 (u, v-right subgraph). Having Q ∈
CQcgraph and u, v ∈ adom(Q), the u, v-right centered sub-
graph of [Q], denoted as Cvu,v(Q), is the weakly connected
component of v in the graph [Q]− Cu,v(Q).

From the above definitions it directly follows that for any
query Q ∈ CQcgraph and for any u, v ∈ adom(Q) we have
that E([Q]) = E(Cu,v(Q))∪E(Cu

u,v(Q)∪E(Cv
u,v(Q)), where

E(G) denotes the edge set of the graph G.

Example 5.1. Let σ = {R}, where R is a binary relation.
Let Q(x, y)← R(x, z5), R(z6, z5), R(z6, x), R(x, z1), R(y, z1),
R(y, z3), R(z3, z4), R(z4, y) be a CQcgraph query over σ. We
have Cx,y(Q) the subgraph of [Q] having nodes {x, z1, y},
with the edges {R(x, z1), R(y, z1)}. We also have Cx

x,y as
the graph with the nodes {x, z5, z6} having the set of edges
{R(x, z5), R(z6, z5), R(z6, y)}. Finally, Cy

x,y is the graph with
nodes {y, z3, z4} and edges {R(y, z3), R(z3, z4), R(z4, y)}.

Lemma 5.1. Let σ be a database schema. Let Q1(x, y),
Q2(x, y) and Q3(x, y) be CQcgraph queries over σ that satisfy
the following properties:

1. There exists z1 ∈ adom(Q1) such that x is a node in
Cz1

z1,y(Q1) and there exists an isomorphism h1 from
Cx,y(Q2) to Cz1,y(Q1), with h1(x) = z1, h1(y) = y.

2. There exists a homomorphism h′1 from Cx
x,y(Q2) to

[Q1], with h′1(x) = z1.

3. There exists z2 ∈ adom(Q3) such that y is a node in
Cz2

x,z2(Q3) and there exists an isomorphism h2 from
Cx,y(Q2) to Cx,z2(Q3), with h2(x) = x, h2(y) = z2.

4. There exists a homomorphism h′2 from Cy
x,y(Q2) to

[Q3], with h′2(y) = z2.

5. There exists a homomorphism h3 from Cx
x,y(Q3) to

[Q2] with h3(x) = x and a homomorphism h4 from
Cy

x,y(Q1) to [Q3] with h4(y) = z2.

then the query Q(x, y) = ∃v2(Q1(x, v2) ∧ ∃v4(Q2(v4, v2)) ∧
∀v1((Q2(v1, v2)→ Q3(v1, y)))) is a CQcgraph query over σ.

Proof. We will start the proof by defining a new query
Q′ ∈ CQcgraph over σ. After that we will prove that Q′ is
indeed equivalent to Q.

Assume, wlog, that adom([Q1])∩adom([Q2]) = {x, y}. From
items 1 and 3 it follows that there exists an isomorphism h′′2
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from Cx,z2(Q3) to Cz1,y(Q1) with h′′2 (x) = z1 and h′′2 (z2) =
y. Then, let Q′3 be the CQcgraph query with adom([Q′3]) =
(adom([Q3])− (Cx,z2(Q3)− {z2})) ∪ h′′2 (Cx,z2(Q3)− {z2}).
For any u ∈ adom([Q′3]), let

f(u) =

{
h′′−1
2 (u), if u ∈ h′′2 (Cx,z2(Q3)− {z2})
u, otherwise

.

Thus, for all u ∈ adom([Q′3]) we have f(u) ∈ adom([Q3]).
The set of edges E([Q′3]) is obtained as follows: for all R ∈ σ
and u, v ∈ adom([Q′3]), R(u, v) ∈ E([Q′3]) iff R(f(u), f(v)) ∈
E([Q3]). Let Q′1 be the query equivalent to Q1, where the
node y is renamed to z2. Finally, let Q′ be the CQcgraph

query with adom([Q′]) = V (Cx
x,z2(Q′1)) ∪ V (Cx,z2(Q′1)) ∪

V (Cz2
x,z2(Q′3)), where V (G) denotes the set of nodes of the

graph G. The set of edges E([Q′]) is the natural restriction
of E([Q′1])∪E([Q′3]) on adom([Q′]). As follows, we will prove
that Q(x, y) is equivalent to Q′(x, y).

Let D ∈ I(σ) be a database instance. First, we will show
that (u, v) ∈ Q′(D) implies (u, v) ∈ Q(D). Thus, there exists
a homomorphism g : [Q′]→ D with g(x) = u and g(y) = v.
From the construction of Q′ we have that there exists v2 ∈
adom([Q′]) such that (x, v2) ∈ Q1([Q′]) and that there exists
v4 ∈ adom([Q′]) such that (v4, v2) ∈ Q2([Q′]). Indeed, this
follows using items 1, 2, 3, 4 of the hypothesis of the lemma,
by taking v2 = z2 and v4 = z1. Thus, using the homo-
morphism g it follows that there exists g(v2) ∈ adom([D])
and g(v4) ∈ adom([D]) such that (u, g(v2)) ∈ Q1(D) and
(g(v4), g(v2)) ∈ Q2(D). It remains now to show that for any
v1, ((Q2(v1, g(v2))→ Q3(v1, y))). This follows from items 3
and 5 and the construction of Q′. Indeed, we have that there
exists a homomorphism g′ from [Q3] to D with g′(x) = v1
and g′(y) = y, which concludes (v1, y) ∈ Q3(D).

It remains to show that (u, v) ∈ Q(D) implies (u, v) ∈
Q′(D). Thus, it follows that there exists v2 ∈ adom(D) such
that Q1(u, v2) is satisfied. Let g′ be a homomorphism from
[Q1] to D with g′(x) = u and g′(y) = v2. Using item 1 and
the fact that ∃v4(Q2(v4, v2)) it follows that Q2(g′(z1), v2) is
satisfied, where z1 is chosen as in item 1. From the fact that
∀v1((Q2(v1, v2)→ Q3(v1, y))) it follows that Q3(g′(z1), v) is
satisfied. Thus, there exists a homomorphism g′′ from [Q3]
to D with g′′(x) = g′(z1) and g′′(y) = v. The conclusion fol-
lows from the fact that we can construct the homomorphism
f ′ from [Q′] to D, where

f ′(p) =

{
g′(p), if p ∈ Cz1

z1,z2(Q′)

g′′(p), otherwise
,

with f ′(x) = u and f ′(y) = v.

Next we give an example of how the lemma can be applied.

Example 5.2. Let σ = {R1, R2, R3, R4} be a database
schema with binary relations. Let V = {V1, V2, V3} be a
view over I(σ), where V1, V2, V3 are defined as follows:

V1(x, y) ← R1(x, z1), R2(z1, y),

V2(x, y) ← R2(x, y), R4(y, z1),

V3(x, y) ← R2(x, z2), R3(z2, y), R4(z2, z3).

Indeed, V1, V2 and V3 satisfy the conditions of lemma 5.1.
Thus, we have that V � Q, where

Q(x, y) ← R1(x, z1), R2(z1, z2), R3(z2, y), R4(z2, z3)

is a CQcgraph query over σ. Indeed, Q(x, y) = ∃v2(V1(x, v2)∧
∃v4(V2(v4, v2)) ∧ ∀v1((V2(v1, v2)→ V3(v1, y)))).

The following lemmas are immediate and show other ways
of obtaining new queries which can be rewritten in terms of
a given set of queries.

Lemma 5.2. Let σ be a database schema with binary re-
lations, and let Q(x, y) be a CQcgraph query over σ. Then,
Q′(x, y) = Q(y, x) is also a CQcgraph query over σ.

Lemma 5.3. Let σ be a database schema with binary re-
lations, and let Q1(x, y) and Q2(x, y) be CQcgraph queries
over σ. Then, the query Q(x, y) = Q1(x, y) ∧ Q2(x, y) is a
CQcgraph query.

Lemma 5.4. Let σ be a database schema with binary re-
lations and let G be an undirected connected graph with the
vertex set V (G) = {x, y, v1, · · · , vn}. For every (p, q) ∈ E(G)
we assign a CQcgraph query ϕp,q over σ where p and q
are free variables. Then, the query given by the formula
Q(x, y) = ∃v1 · · · ∃vn(∧p,q∈E(G)ϕp,q) is a CQcgraph query.

Proof Sketch. Suppose, wlog, that for any p1, q1, p2, q2
such that (p1, q1) ∈ E(G) and (p2, q2) ∈ E(G) with (p1, q1) 6=
(p2, q2) we have adom(ϕp1,q1) ∩ adom(ϕp2,q2) = {p1, q1} ∩
{p2, q2}. Then, Q is equivalent to the CQcgraph queryQ′(x, y)
where E[Q′] = ∪(u,v)∈E(G)E([ϕu,v]).

Finally, we give the algorithm which takes as input the view
V and an integer k and outputs a set of queries QV,k. We
will use the following subroutines:

• combineThree(Q1, Q2, Q3) : given CQcgraph queries
Q1, Q2 and Q3 returns false if the three queries cannot
be combined, or the combined query Q otherwise, as
shown in lemma 5.1,

• invert(Q1) : given a CQcgraph query Q1, the inverse
query is returned, as shown in lemma 5.2,

• combineTwo(Q1, Q2) : given CQcgraph queries Q1 and
Q2, returns the combined query Q as shown in lemma
5.3,

• combinePoints(G,ϕ): given the graphG and the assig-
nation ϕ, it returns the combined query Q as shown in
lemma 5.4.

We assume that the above subroutines return only minimal
queries. Thus, a minimization operation must be performed
before returning the result of each.

The pseudocode is shown in algorithm 5.1. The termina-
tion of the algorithm is ensured by the fact that the number
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Algorithm 5.1 Generating queries determined by a set of
views V which have the size smaller than k.
1: stop← false, QV,k ← V
2: while stop = false do
3: stop← true
4: if ∃Q1, Q2, Q3 ∈ QV,k such that

combineThree(Q1, Q2, Q3) 6= false then
5: Q′ ← combineThree(Q1, Q2, Q3)
6: if Q′ /∈ QV,k ∧ size(Q′) ≤ k then
7: QV,k ← QV,k ∪Q′, stop← false
8: end if
9: end if

10: if ∃Q ∈ QV,k where invert(Q) /∈ QV,k ∧
size(invert(Q)) ≤ k then

11: QV,k ← QV,k ∪ invert(Q), stop← false
12: end if
13: if ∃Q1, Q2 ∈ QV,k where combineTwo(Q1, Q2) /∈

QV,k ∧ size(combineTwo(Q1, Q2)) ≤ k then
14: QV,k ← QV,k ∪ combineTwo(Q1, Q2), stop ←

false
15: end if
16: if ∃G,ϕ where |V (G)| ≤ 2 ∗ k and ϕ is an assignation

such that for each (u, v) ∈ E(G), ϕu,v ∈ QV,k then
17: Q′ ← combinePoints(G,ϕ)
18: if Q′ /∈ QV,k ∧ size(Q′) ≤ k then
19: QV,k ← QV,k ∪Q′, stop← false
20: end if
21: end if
22: end while

of CQcgraph queries over σ which are smaller than k is fi-
nite. We must note that the appartenance test made in
lines 6, 10, 13 and 18 tests if there exists a query Q′ ∈ QV,k

such that there exists an isomorphism h : [Q] → [Q′] with
h(x) = x and h(y) = y, and not for equal query graphs. We
also stress the fact that the bound of 2k points used in line 16
is indeed optimal, in the sense that the algorithm would not
produce more queries with a higher bound. This can be seen
by analyzing the query graph [Q′] obtained as described in
the proof of lemma 5.4. Indeed, the minimization of Q′ con-
sists of removing edges from the original graph [Q′]. Thus,
we can impose the condition that for each u ∈ V (G) there
exists v ∈ V (G) such that the subgraph [ϕu,v] is not com-
pletely removed from [Q′] in the minimization process, since
otherwise we could obtain an equivalent query by choosing
a graph G with fewer nodes. The conclusion now follows
from the fact that the minimized query should have at most
k nodes.

Example 5.3 shows how the algorithm starts with a set of
views and produces a specific query.

Example 5.3. Let σ = {Ra, Rb, Rc, Rd} be a database
schema with binary relations. Let V = {V1, V2, V3} be a
view over I(σ), where V1, V2, V3 are binary CQcgraph queries
defined as follows:

V1(x, y) ← Ra(x, z1), Rb(z1, y), Rd(z1, z2),

V2(x, y) ← Rb(x, y),

V3(x, y) ← Rb(x, z1), Rc(z1, y), Rd(x, z2).

Also, consider the CQcgraph query

Q(x, y)← Ra(x, z1), Rb(z1, z2), Rd(z1, z3), Rc(z2, y)

over the database schema σ. It can be seen that Q can be
rewritten in terms of V as

Q(x, y) = ∃v1(V3(v1, y) ∧ ∀v2(V2(v1, v2)→ V3(x, v2))).

Notice that this query is indeed generated by the algorithm
by first inverting V1, V2 and V3, then using lemma 5.1 for ob-
taining a query Q′, which again, inverted, leads to Q. Thus,
even if V1, V2 and V3 do not directly satisfy the properties of
lemma 5.1 the query is generated by the algorithm using the
inversion procedure in advance.

Next, we give an example which shows that if item 5 from
lemma 5.1 is not satisfied, then the views may not determine
the query.

Example 5.4. Let σ = {Ra, Rb, Rc, Rd} be a database
schema with binary relations. Let V = {V1, V2, V3} be a
view over I(σ), where V1, V2, V3 are binary CQcgraph queries
defined as follows:

V1(x, y) ← Ra(x, z1), Rb(z1, y), Rd(z1, z2), Rd(y, z3)

V2(x, y) ← Rb(x, y),

V3(x, y) ← Rb(x, z1), Rc(z1, y), Rd(z1, z2), Rd(x, z3).

We have that V1, V2 and V3 satisfy hypothesis 1 to 4 of
lemma 5.1, but not 5. Thus, we have the CQcgraph query

Q(x, y) ← Ra(x, z1), Rb(z1, z2), Rd(z1, z3),

Rc(z2, y), Rd(z2, z4)

obtained as in the proof of lemma 5.1. However, it can be
seen that V does not determine Q. Indeed, the above algo-
rithm does not generate Q starting from V.

A natural question that rises is the following: given a set
V of CQcgraph views and a CQcgraph query Q, does the
algorithm generate all the queries determined by V with
the size smaller than Q? It turns out that this is not the
case, as shown in the following example.

Example 5.5. Consider the CQcgraph query

Q(x, y) ← a(x, z3), b(z3, z1), c(z1, z2), d(z2, z4), e(z4, y),

f(z1, z5), f(z2, z6)

over the signature σ = {a, b, c, d, e, f}. Then, consider the
CQcgraph views

V1(x, y) ← a(x, z1), b(z1, y), f(y, z2),

V2(x, y) ← d(x, z1), e(z1, y), f(x, z2),

V3(x, y) ← b(x, y),

V4(x, y) ← d(x, y),

V5(x, y) ← b(x, z1), c(z1, z2), d(z2, y), f(z1, z3), f(z2, z4).

We have that V � Q due to the following rewriting of Q in
terms of V :

Q(x, y) = ∃z1(V1(x, z1) ∧ ∃z2(V2(z2, y) ∧
∀z3∀z4((V3(z3, z1) ∧ V4(z2, z4))→ V5(z3, z4))))
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However, the algorithm does not generate Q since Lemma
5.1 does not handle nested universal quantifiers, as needed
in this rewriting.

6. CONCLUSION
The problem whether CQ-to-CQ determinacy is decidable
remains open, several well behaved subclasses being iden-
tified in the meantime. Currently there is a common belief
that results for CQcgraph may be naturally extended to CQ,
thus a result regarding CQcgraph-to-CQcgraph determinacy
decidability would be an important milestone in solving the
original problem for CQs.
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