
Two-variable logic and Key Constraints on Data Words∗

Matthias Niewerth
matthias.niewerth@udo.edu

Thomas Schwentick
thomas.schwentick@udo.edu

TU Dortmund University

ABSTRACT
The paper introduces key constraints for data words and
shows that it is decidable whether, for a given two-variable
sentence ϕ that can refer to the successor relation on posi-
tions and a set K of key constraints, there is a data string
w that satisfies ϕ and respects K. Here, the formula is al-
lowed to refer to the successor relation but not to the linear
order on the positions of the word. As a byproduct, a self-
contained exposition of an algorithm that decides satisfiabil-
ity of such formulas (without key constraints) in 2-nexptime
is given.

Categories and Subject Descriptors
H.2.1 [Database Management]: Logical Design—Data
Models; F.4.1 [Mathematical Logic and Formal Lan-
guages]: Mathematical Logic

General Terms
Algorithms, Theory

1. INTRODUCTION
It is well known that two-variable logic has interesting

connections to the foundations of XML. For instance, Core
XPath 1.0 corresponds exactly to two-variable logic on un-
ranked, ordered trees [12] and the regular tree languages,
which capture the structural part of existing schema lan-
guages, exactly correspond to existential monadic second
order logic with two first-order variables (see, e.g., [4]). Ini-
tially, most logic-based research on XML focused on abstrac-
tions by labeled trees that only took the structure into ac-
count and ignored the data in XML documents.

∗We acknowledge the financial support of the Future and
Emerging Technologies (FET) programme within the Sev-
enth Framework Programme for Research of the European
Commission, under the FET-Open grant agreement FOX,
number FP7-ICT-233599

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICDT 2011, March 21–23, 2011, Uppsala, Sweden.
Copyright 2011 ACM 978-1-4503-0529-7/11/0003 ...$10.00

However, in recent years, data has attracted more atten-
tion. In [4] XML documents are modeled by data trees,
trees whose nodes have a label from a finite alphabet Σ and
a data value from an infinite domain dom. Further work on
this subject can be found in [9, 11, 13]. Similarly, languages
of data words, where each position has a label and a data
value, have been studied, sometimes with an additional mo-
tivation by potential applications in automatic verification
[7, 5, 3].

The main results of [4, 5] are that

• satisfiability of two-variable logic over data words is
decidable even if formulas can use the linear order and
the successor relations on positions [5], and that

• satisfiability of two-variable logic over data trees is de-
cidable if only the parent-child relationship and the
direct sibling relationship between the children nodes
of a parent are available [4].

The former problem has unknown (but probably huge) com-
plexity, the latter can be solved in 3-nexptime.

Even though two-variable logic can express a lot of inter-
esting properties of XML documents, their ability to express
integrity constraints is limited. More precisely, they can ex-
press in general key, foreign key and inclusion constraints
only if they are unary.

In this paper, we aim to shed some light on the problem to
decide whether, for a given formula of two-variable logic and
a set of (not necessarily unary) key constraints, there is an
XML document that fulfills the formula and the constraints.
However, as a start, we study it here only for data words.

Integrity constraints for XML have been studied before,
for example in [1, 2]. One of the results1 of [1] is that, it
can be decided in nexptime whether there is an XML doc-
ument for a given regular tree language and a set of key and
foreign key constraints. This work also established a close re-
lationship of key constraints with linear (and prequadratic)
equations that also shows up in our approach.

Contributions and organisation. We define our notion of
key constraints2 in Section 2. The keys that we allow are
relatively flexible as they allow to specify sets of symbols at
each position of a key and they allow the use of wildcards

1The article contains much stronger results, but this one is
most relevant to us
2From a databases point of view the term “uniqueness con-
straints”would probably be better, but it is common to refer
to our type of constraints as keys.

138

for positions to specify that the data value of these positions
is considered irrelevant for the key.

Our main result, which is presented in Section 4 is that
it is decidable whether, for a given formula of two-variable
logic with successor relation (FO2(∼,+1)) and a set of key
constraints, there is a data word that fulfills the formula and
the constraints.

As an intermediate step towards the proof we give in Sec-
tion 3 a 2-nexptime upper bound for the satisfiability prob-
lem for FO2(∼,+1) over data words without key constraints.
The best previous upper bound was inferred from the data
tree case: 3-nexptime. However, the proof uses basically
the same techniques as in [4, 5] and only makes use of the
simpler setting in the string case. Another self-contained
proof for this problem with a 4-nexptime upper bound has
been recently presented in [6].

It remains unclear whether the 2-nexptime bound is op-
timal. The best known lower bound is nexptime and can
be inferred from [8]. However, we show in Section 5 that the
satisfiability problem for FO2(∼,+1,+3) over data words is
2-nexptime-hard.

Acknowledgement. The second author thanks Luc Segoufin
for pointing him to this problem some time ago and for fruit-
ful discussions on the subject that already headed in the
right direction. He also thanks Fritz Eisenbrand for use-
ful suggestions concerning the solution of systems of pre-
quadratic equations.

2. DEFINITIONS
A data word with symbols over an alphabet Σ and a data

domain dom is a finite, non-empty sequence of pairs w =
(σ1, d1) · · · (σn, dn) where each σi ∈ Σ and di ∈ dom. A
data word with propositions over a finite set P of propo-
sitions and a data domain dom is a finite sequence w =
(P1, d1) · · · (Pn, dn) where each Pi ⊆ P and di ∈ dom. For
data words with symbols, we denote the length n of w by
|w|. We call the string str(w) =def σ1 · · ·σn the string pro-
jection of w, likewise for data words with propositions. The
set of data values occurring in w is denoted by dom(w). For
each d ∈ dom(w), the class of d in w is the set Cld(w) of
positions with value d. A zone of a data word is a maximal
substring in which all positions carry the same data value.

The Parikh image Par(w) of a Σ-word (or data word over
Σ) is the function that maps every symbol in Σ to the num-
ber of its occurrences in w. The Parikh image Par(L) of a
language is just the set {Par(w) | w ∈ L}.

An atomic P-type is a set of propositions and negated
propositions from P. The full atomic P-type of a posi-
tion i in a data word is the formula αP (x) =

∧
p∈Pi

p(x) ∧∧
p∈P−Pi

¬p(x). The set of full atomic types over P is de-

noted by T (P). Clearly, there is a simple relationship be-
tween subsets P ⊆ P and full atomic P-types α. Therefore
we sometimes represent a full atomic type α by the set P of
its positive propositions and can identify T (P) with Pow(P).

In Sections 3 and 5 we deal exclusively with data words
over propositions. In Section 4, where we consider key con-
straints, we use words with symbols. Upper bounds for data
words over propositions (as Theorem 3.4) translate to data
words with symbols but not necessarily vice versa. Data
words over a set P of propositions can be considered as data
words with symbols over the alphabet T (P) (or Pow(P)).

Likewise, automata for data words with propositions can be
defined as (usual) automata over T (P).

Definition 2.1. A key constraint κ for words with sym-
bols is a sequence of entries from (Pow(Σ) × {•, ◦}). For a
key constraint κ = (K1,⊗1) · · · (Kk,⊗k) we call k the

We say that a key constraint κ = (K1,⊗1) · · · (Kl,⊗l)
matches a position i in a data word w = (a1, d1) · · · (an, dn)
over an alphabet Σ if for every j ∈ [1, k], ai+j−1 ∈ Kj .

A key constraint is violated in w if it matches two different
positions i1 6= i2 and, for every j ∈ {1, . . . , l}, if ⊗j = • then
di1+j−1 = di2+j−1. Otherwise it is fulfilled. We write w |= κ
if κ is fulfilled in w and, for a set K of key constraints, w |= K
if w fulfills every key constraint in K. For data words with
propositions the definition is analogous with T (P) in place
of Σ and full types αi in place of symbols ai.

For a set K we denote the maximum length of a key in K
by k(K).

In this paper, a data word w = (P1, d1) · · · (Pn, dn) with
propositions from P is represented by a logical structure
with universe {1, . . . , n}, a successor relation +1, an equiva-
lence relation ∼ that holds for two positions if they carry the
same data value, and one unary relation p for every p ∈ P .

The logic FO2(∼,+1) is just first-order logic over such
structures, restricted to the use of variables x and y. Thus,
quantifiers range over positions of a data word, the formula
x+1 = y expresses that y is the right neighbor of x and p(x)
indicates that at position x proposition p holds. A formula
x ∼ y expresses that at x and y the same data value occurs.

FO2(∼,+1) over words with symbols is defined analo-
gously with atomic formulas σ(x) for symbols σ ∈ Σ.

We denote consecutive sets of natural numbers by interval
notation, for example [3, 5] = {3, 4, 5} = (2, 5].

3. FO2(∼,+1) WITHOUT KEY CONSTRAINTS
In this section we deal exclusively with data words with

propositions. An FO2-formula is in Scott normal form (SNF)
if it is of the form

ψ =
(
∀x∀y χ ∧

∧
i

∀x∃y χi
)
,

where χ and each χi are quantifier-free FO2(∼,+1) formu-
las (see [10] for a reference). In a standard fashion, any
FO2(∼,+1) formula can be translated3 into a formula in
Scott normal form that is equivalent with respect to satisfi-
ability, as stated in the following lemma.

Lemma 3.1. For each FO2(∼,+1) formula ϕ a FO2(∼
,+1) formula ϕ′ in Scott normal form can be computed in
polynomial time such that ϕ is satisfiable over data words if
and only if ϕ′ is satisfiable over data words.

Proof. From ϕ one can compute an existential second-
order formula

ψ = ∃R1 · · ·Rm
(
∀x∀y χ ∧

∧
i

∀x∃y χi
)
,

that is equivalent to ϕ and where the relation symbols Ri
are unary. Let P ′ = P ∪ {p1, . . . , pm}, where the proposi-
tions pi are new. Let ϕ′ be the formula obtained from ψ by
3If stated for data words with symbols this lemma would
come with an exponential blow-up of the number of symbols
due to the need to encode all possible combinations of the
Ri relations.

139

removing the quantification of the relations Rj and replac-
ing each atom Rj(x) by pj(x) (and likewise each Rj(y) by
pj(y)). Clearly, ϕ′ is satisfied by some data word over P ′ if
and only if ϕ is satisfied by some data word over P.

Thus, we can assume henceforth that the FO2(∼,+1)-formula
ϕ that shall be tested for satisfiability is in Scott normal
form.

In the following, we will annotate word positions by propo-
sitions that reflect the propositions of the adjacent positions
and whether the own data value equals the data values of
the adjacent positions. To this end we use additional propo-
sitions of the form p−1 and p+1, for every p ∈ P. For
a subset P ⊆ P, we define P−1 = {p−1 | p ∈ P} and
P+1 = {p+1 | p ∈ P}. Furthermore, we use the additional
propositions p−1

= and p+1
= to indicate data equalities and p�

and p� to mark border positions. Finally, the propositions
p1 and p2 are used to mark up to two occurrences of a type in
a class. By P1 we denote P ∪P−1 ∪P+1 ∪{p−1

= p+1
= , p�, p�}

and by P2 = P1 ∪ {p1, p2} . Clearly, |P2| = O(|P|).
A data word w′ = (P ′1, d1) · · · (P ′n, dn) over P2 is valid if

it fulfills the following conditions.

(i) P ′1 contains p� but not p−1
= and no proposition of the

form p−1.

(ii) P ′n contains p� but not p+1
= and no proposition of the

form p+1.

(iii) If i < n then P ′i contains a proposition p+1 if and only
if P ′i+1 contains p. Furthermore, it contains p+1

= if and
only if di = di+1.

(iv) If i > 1 then P ′i contains a proposition p−1 if and only
if P ′i−1 contains p. Furthermore, it contains p−1

= if and
only if di = di−1.

(v) If a class contains at least one position with a P1-type α
then it contains exactly one such position with propo-
sition p1 (and at this position p2 does not hold).

(vi) If a class contains at least two positions with a P1-
type α then it contains exactly one such position with
proposition p2 (and at this position p1 does not hold).

We call a data word over P1 valid if it fulfills all but the
last two conditions. By de(w′) we denote the data word
over P that is obtained from a data word w′ over P2 by
dropping all other propositions. Clearly, for every data word
w over P there is a unique valid data word w′ over P1 with
de(w′) = w. But there can be more than one such w′ over
P2.

In the following, we define class type functions for P2-
words. The intention is that the class type function of a
valid P2-word w′ contains all relevant information to decide
whether de(w′) |= ϕ.

If w′ is a valid data word over P2 and c a class of w′, the
class type τ of c is the pair (S,D), where D is the set of all
full types α occurring in c that contain p1 or p2 and S is the
set of all full types α in c that do not contain p1 or p2. We
call the types in D dog types of τ and the types in S sheep
types. Note that if w′ is valid then each class type of every
class in w′ fulfills that

• if it contains a P1-type α at all then D contains α ∪
{p1,¬p2}, and

• if it contains a P1-type α in S then D contains α ∪
{¬p1, p2}.

Furthermore, no full types containing {p1, p2} occur in a
class type. We call a class type valid if it fulfills these con-
ditions.

By CT(P2) we denote the set of all valid class types.

Clearly, |CT(P2)| ≤ 22O(|P|)
.

The class type function ctfw′ of a data word w′ over P2

maps every class type to the number of classes of w′ with
this class type.

An `-profile is a function T : CT(P2) → [0, `) ∪ {∗}. A
class type (S,D) occurs in T if T (S,D) 6= 0. We say that a
data word w′ is a solution for an `-profile T (short: w′ |= T)
if, for every class type (S,D) either T (S,D) = ctfw′(S,D)
or T (S,D) = ∗ and ctfw′(S,D) ≥ `. An `-profile that has a
solution is called satisfiable.

We show in the following proposition that `-profiles con-
tain all necessary information to decide whether a data word
satisfies an FO2(∼,+1) formula. More precisely, we show
that either for all solutions w′ of an `-profile T it holds
de(w′) |= ϕ or for none. In the former case we call T ϕ-
compatible.

Proposition 3.2. (a) Let ` ≥ 2 and let ϕ be a FO2(∼
,+1)-formula in SNF. For each `-profile T either for all
solutions w′ to T it holds de(w′) |= ϕ or for all solutions
w′ to T it holds de(w′) 6|= ϕ.

(b) There is an algorithm that on input ϕ and a satisfiable
`-profile T with ` ≥ 2, decides whether T is ϕ-compatible
in time that is exponential in ϕ and linear in |T |.

Proof. We explain in the following how it can be inferred
from T whether for a data word w′ with w′ |= T it holds
de(w′) |= ϕ and conclude (a) and (b). The proof is similar
to the proofs of Lemmas 8 and 9 in [5].

Let ϕ be a formula of the form(
∀x∀y χ ∧

∧
i

∀x∃y χi
)
.

We show first how it can be inferred from T whether ∀x∀y χ
holds. It is straightforward to bring χ into CNF, and to
rewrite ∀x∀y χ as a conjunction of (exponentially many)
formulas of the form:

ψ = ∀x∀y
(
(α(x) ∧ β(y) ∧ δ(x, y)

)
→ γ(x, y)

)
,

where α and β are full atomic P-types, δ(x, y) is either
x∼y or x6∼y, and γ(x, y) is a disjunction of some formu-
las from x = y − 1, x = y, x = y + 1 and x 6∈ [y − 1, y + 1].
The latter expression is an abbreviation for the formula
x 6= y − 1 ∧ x 6= y ∧ x 6= y + 1. We show how it can be de-
termined from ctfw′ whether for such a formula ψ it holds
de(w′) |= ψ.

Before we continue, let us clarify the relationship between
full P-types and full P2-types. Each P1-type basically con-
sists of the P-type of a position, the P-types of its left and
right neighbor and the information whether the left and right
neighbor have the same data value as the position. Thus,
we can view a P1-type as a tuple (α, α−1, α+1, p−1

= , p+1
=) of

three full P-types and two atomic propositions. In P2-types,
the propositions p1 and p2 additionally mark up to two oc-
currences of every P1-type α in a class.

We distinguish two main cases, that depend on whether
x /∈ [y − 1, y + 1] occurs in γ(x, y).

140

Let us assume first that x 6∈ [y − 1, y + 1] is not a disjunct
of γ(x, y), that is γ(x, y) is a disjunction of formulas from
x = y − 1, x = y and x = y + 1. If δ(x, y) is x∼y, then ψ
can only hold if α and β occur in the same class only at po-
sitions of distance ≤ 1. Whether this is true in de(w′) can
be inferred by inspecting all class types occurring in T . For
instance, if for some class type (S,D) occurring in T , D con-
tains a type (α, α−1, α+1, p−1

= , p+1
=) where β 6∈ {α, α−1, α+1}

and there is a type (β, ...) in D then ψ fails to hold. By a
tedious but simple case distinction it can be shown that
whether ψ holds can indeed be inferred from T .

Likewise, if δ(x, y) is x 6∼ y, whether ψ holds can be in-
ferred by inspecting all class types containing α and those
containing β.

Let us now assume that γ(x, y) is a disjunction of the
formula x 6∈ [y − 1, y + 1] and some of the formulas from
x = y − 1, x = y and x = y + 1. In this case occurrences
of α and β at distances > 1 can never make ψ fail. Thus,for
such formulas, it is sufficient to check all occurring P1-types
in T and to test them for compatibility with ψ.

We now turn to formulas of the form ∀x∃y χi.
The formula χi can be transformed into a disjunction of

(possibly exponentially many) formulas of the form∨(
α(x) ∧ β(y) ∧ δ(x, y) ∧ γ(x, y)

)
,

where α, β, δ are as before and γ is just one of x = y − 1,
x = y, x = y + 1 and x 6∈ [y − 1, y + 1].

Instead of considering all possible cases, we illustrate the
technique by a typical example. Let us assume that, for
some α, the only three disjuncts involving α are

• θ1 = α(x) ∧ β1(y) ∧ x ∼ y ∧ x 6∈ [y − 1, y + 1],

• θ2 = α(x) ∧ β2(y) ∧ x 6∼ y ∧ x 6∈ [y − 1, y + 1], and

• θ3 = α(x) ∧ β3(y) ∧ x 6∼ y ∧ x = y − 1.

To decide whether every position with type α is consistent
with χi, one can inspect all occurrences of α in the class
types of T . An occurrence (α, α−1, α+1, p−1

= , p+1
=) fulfills θ3

only if α+1 = β. For all other occurrences of α it has to be
tested whether they fulfill θ1 or θ2. For such occurrences,
there must either be a distant occurrence of β1 in the same
class or there must be a distant occurrence of β2 in some
other class. The former can be checked by inspecting the
class type (and if α = β it is important that the class type
indicates whether α occurs at least twice in a class). In
the latter case, the occurrence of β2 in some other class is
guaranteed if β2 occurs in some other class type or if it occurs
in the same class type which, by the class type function, has
at least two classes. The latter kind of test is the reason
why we require ` ≥ 2 in the statement of the proposition.

Statement (a) now follows immediately, as de(w′) |= ϕ
implies that all tests on T go through, whereas if de(w′) 6|= ϕ
some test fails.

The algorithm for (b) computes the CNF for ∀x∀y χ and
the DNF for

∧
i ∀x∃y χi, each of exponential size in |ϕ|. For

each subformula, it inspects all class types in T and performs
the tests described above. If all tests pass, it accepts.

Proposition 3.2 almost yields a decision algorithm for FO2(∼
,+1). This algorithm could guess a `-profile T and test
whether it is ϕ-compatible. However, it could happen that T

does not have a solution. In that case, Proposition 3.2 does
not guarantee a correct answer. Thus, we need an additional
algorithm that tests satisfiability of `-profiles. Then, we can
decide satisfiability of ϕ by guessing T and testing that it is
satisfiable and ϕ-compatible.

Our approach is an adaptation of the techniques of [4,
Proposition 3.30] from trees to strings. The idea is to trans-
late a given `-profile T into conditions on the string projec-
tions of solutions to T . Then we show how it can be decided
whether there is a string that satisfies these conditions and
that from that string a solution to T can be inferred.

More precisely, we will construct a string automaton A
(that actually only depends on P) and a linear set Lin that
basically contains a kind of Parikh images of string projec-
tions that are not forbidden by T .

However, in order to ensure that L(A) ∩ L(Lin) 6= ∅ im-
plies that T has a solution, we need to add more detailed
information to the strings we consider.

Let w′ be a valid data word over P1. Recall that a zone
of w′ is a maximal substring in which all positions carry the
same data value. Let c be a class in w′ and let τ = (S,D)
be its class type.

For each zone z of c, the zone type Dz of z is the set of
dog types that occur in z. A zone z is called a dog zone
if Dz 6= ∅ otherwise a sheep zone. Clearly, all sets Dz of
a class are pairwise disjoint and together they contain all
types from D, that is, they induce a partition of D.

We note also that each class c can have at most 2|P2| dog
zones.

The partitioned class type of c is the pair (S, {Dz}z). The
number of different partitioned class types is bounded by
an exponential in P1 (and thus in P). We denote the set
of all partitioned class types by PCT(P2). The partitioned
class type function pctfw′ of w′ is the function that maps
every partitioned class type to its number of occurrences in
w′. An partitioned `-profile is a function T ′ : PCT(P2) →
[0, `) ∪ {∗}, analogous to an `-profile. The terms solution
and satisfiable are defined analogous to `-profiles.

There is a straightforward correspondence between parti-
tioned class types and class types. If (S, {Dz}z) is the parti-
tioned class type of a class then its class type is (S,

⋃
zDz).

Thus, partitioned profiles are just refinements of profiles and
an `-profile T is satisfiable if and only if one of its refinement
partitioned `-profiles is satisfiable.

In the following, we describe how to test whether a parti-
tioned `-profile (with large enough `) is satisfiable.

To be able to use automata for (part of) this test, we first
define, for every data word w′, strings (without data) that
encode informations about the zones and class types of w′.
To this end, let for each partitioned class type τ , up to `
classes of w′ of type τ be numbered 1, 2, .., `. By N(c) we
denote the number of class c. If there are more than ` classes
of a type we set, for the remaining classes c, N(c) = ∗.

Let Γ′ = PCT(P2) × Pow(Pow(P2)) × ([1, `) ∪ {∗}) ×
Pow(P2) and Γ = Γ′ ∪ Pow(P2). With a data word w′ =
(P1, d1) · · · (Pn, dn) over P2 with a numbering N , we asso-
ciate a Γ-string estr`(w

′, N) = v1 · · · vn as follows. If posi-
tion i is not the first position of a zone then vi = Pi. If
it is the first position of a zone z of a class c then vi =
(τc, Dz, N(c), Pi).

In estr`(w
′, N) the zones of w′ are just the substrings in-

duced by position intervals [i, j) where i is a Γ′-position and

141

j > i is the next Γ′-position. We call each such substring in
a Γ-string a pseudo-zone.

The automaton A accepts a Γ-string v if the following
conditions4 hold.

(i) v is valid with respect to the propositions in P2 (anal-
ogous to valid data words).

(ii) Each pseudo-zone z in v is consistent with respect to
the profile information in its first symbol. More pre-
cisely, if (τ,D, j, α) is the first symbol of a pseudo-zone
z then each dog type α ∈ D has to occur exactly once
in z. Besides that only sheep types of τ occur (arbi-
trarily often) in z.

(iii) For every pair of adjacent pseudo-zones with initial
symbols (τ,D, i, P) and (τ,D, i′, P ′) either i 6= i′ or at
least one of i and i′ is ∗.

(iv) The pseudo-zones are consistent with respect to the
propositions p−1

= and p+1
= .

It is obvious that A only depends on P but not on the par-
ticular T ′.

We next describe the linear constraints that we derive
from a partitioned profile T ′. Intuitively, a set Lin`(T

′) ex-
presses that for each (τ,D, i), where D occurs in the parti-
tion of τ and T ′(τ) ≥ i there is exactly one zone in a word.
Furthermore, for each τ , all zones of the type (τ,D, ∗) occur
equally often.

In the following we consider functions from I to N, for
various sets I. Each such function can be considered as a
vector with |I| entries from N. A linear set over I is a set of
functions I → N that can be represented as {f +

∑
i jifi |

ji ∈ N}, where f and all fi are functions I → N.
For a Γ-string v, let hv denote the function that maps

every triple (τ,D, i) consisting of a partitioned class type τ ,
a dog set D and i ∈ [1, `)∪ {∗} to the number of symbols of
the form (τ,D, i, P) in estr(w′).

Lin`(T
′) is the linear set that captures all functions hv for

strings of the form estr`(w
′, N) with w′ |= T ′.

For each partitioned class type τ let eτ,j , be the indicator
function for the set {(τ,D, i) | i ≤ j}, that is it maps every
triple from this set to 1 and all other triples to 0. Let eτ,∗,
be the indicator function for {(τ,D, ∗)} to 1. Then Lin`(T

′)
is simply the set of all functions of the form∑

τ,T ′(τ)6=∗

eτ,T ′(τ) +
∑

τ,T ′(τ)=∗

eτ,` + iτeτ,∗,

with arbitrary natural numbers iτ .

Proposition 3.3. Let ` = 2|P2| and let T ′ be a parti-
tioned `-profile. If there is a Γ-string v ∈ L(A) with hv ∈
Lin`(T

′) then there is a data word w′ and a numbering N
such that estr`(w

′, N) = v and w′ |= T ′.

Proof. Let v ∈ L(A) with hv ∈ Lin`(T
′). We define

the data word w′ by assigning data values to the positions
of v and replacing every symbol of the form (τ,D, i, P) by
P . For each partitioned type τ we pick5 a pseudo-zone dog

4We note that A does not need to test that D occurs in τ .
This is implicitly handled by Lin`(T

′) below.
5Note that by construction we always have D 6= ∅ and that
Lin`(T

′) guarantees that all pseudo zones occur equally of-
ten. Thus, the very choice of D does not matter.

type D and set ov(τ) =
∑
i hv(τ,D, i). Thus, ov(τ) is the

number of classes of type τ in v. We reserve an ordered set
∆τ of ov(τ) data values for each partitioned type τ . We
call a pseudo-zone special if its first symbol is of the form
(τ, g, i, P) with i 6= ∗.

We assign the data values in three stages as follows:

(1) to all special pseudo-zones,

(2) to all non-special dog pseudo-zones,

(3) to all non-special sheep pseudo-zones.

Assigning data values to special pseudo-zones is very simple.
If z is a pseudo-zone with initial symbol (τ, g, i, P) we assign
the i-th data value of ∆τ to z. Note that Lin`(T

′) makes
sure that, for every τ , every pseudo-zone dog type D of τ
and every i ≤ min(`, hv(τ)), there is exactly one symbol
(τ,D, i, P) in v. After stage (1) only data values need to be
assigned for classes whose profile occurs more than ` times
and for each of those, the ` special classes already received
a data value.

We assign data values to non-special dog pseudo-zones in-
ductively from left to right. To this end, let z be a pseudo-
zone of type D for some type τ , and let d be the data value
assigned to z’s left neighbor (undefined, if it is not yet as-
signed). If there is a data value different from d in ∆τ that
has not yet been assigned to a (τ,D)-pseudo-zone, then this
value can be chosen for z. However, if d is the only value in
∆τ that has not yet been assigned we will assign d to some
pseudo-zone z′ with profile D which already has a value
d′ 6= d and use d′ for z. However, we have to make sure that
none of the neighbor pseudo-zones of z′ has the value d. As
each class has at most 2|P2| dog zones altogether, d can be
assigned at this point to at most 2|P2|−1 (dog) pseudo-zones
each of which can be a neighbor to at most 2 other pseudo-
zones. As there are at least `− 1 candidate pseudo-zones to
choose from, it follows from the choice of ` that one of the
candidates does not have a d-valued neighbor.

Finally, it is easy to assign values to non-special sheep
pseudo-zones z for a type τ as z has only two neighbor
pseudo-zones and |∆τ | > ` > 2.

The numbering N can be inferred from the orders of the
sets ∆τ .

This completes the proof of the proposition.

The following theorem is formulated for data words with
propositions but it also holds for data words with symbols.

Theorem 3.4. The satisfiability problem for FO2(∼,+1)
formulas over data words with propositions is decidable in
2-nexptime.

Proof. Let ` = 2|P2| and let ϕ be the SNF of the input
FO2(∼,+1)-formula. The non-deterministic algorithm first
guesses an `-profile T and a partitioned `-profile T ′ that
refines T and tests, using A and Lin`(T

′) if there is a Γ-
string v ∈ LinA with h(v) ∈ Lin`(T

′). It rejects, if this test
fails. Otherwise, it runs the algorithm of Proposition 3.2
and accepts if it accepts.

Clearly, if there is a data string w with w |= ϕ there
is a ϕ-compatible `-profile T with a solution w′ such that
de(w′) |= ϕ and a satisfiable partitioned `-profile T ′ that
refines T . Furthermore, estr`(w

′, N) is accepted by A (for
any numbering N) and hestr`(w

′,N) ∈ Lin`(T
′), thus the al-

gorithm is complete.

142

To show soundness let T, T ′ be as above and let v ∈ L(A)
with hv ∈ Lin`(T

′). By Proposition 3.3 there is a data
word w′ and a numbering N with estr`(w

′, N) = v and
w′ |= T ′. Thus, T ′ and therefore T has a solution. Fi-
nally, as the algorithm of Proposition 3.2 correctly decides
ϕ-compatibility for satisfiable profiles we can conclude that
T is ϕ-compatible. and thus ϕ is indeed satisfiable.

It remains to show that the algorithm works in doubly
exponential time. As |P| and |P ′| are linear in |ϕ|, |Pow(P1)|
is at most exponential in |ϕ|. Therefore, T and T ′ are objects
of at most doubly exponential size. Lin`(T

′) has functions
with a doubly exponential domain and coefficients of at most
doubly exponential size. Likewise, A has at most doubly
exponential many states. Indeed, A only has to check local
consistency of pseudo zones which basically requires states
of the form (α,D), where α is the P2-type of the last symbol
and D indicates which types need to be met in the current
pseudo-zone.

Therefore, (see, e.g., [14, Proposition 4.3]) the Parikh im-
age of L(A) has coefficients of at most doubly exponential
size. Thus, it can be tested non-deterministically in doubly
exponential time (in |ϕ|) whether there is a string v ∈ L(A)
with hv ∈ Lin`(T

′).

It is open whether this bound is optimal. However, we
show in Section 5 that if we additionally allow the formula
to test whether two positions have distance 3 the problem
becomes indeed 2-nexptime-hard.

4. FO2(∼,+1) WITH KEY CONSTRAINTS
This section is devoted to the proof of the main theorem

of this paper.

Theorem 4.1. It is decidable whether for a given FO2(∼
,+1) formula ϕ and a set K of key constraints there is a
data word w such that w |= ϕ and w |= K.

The result holds for data words with symbols as well as for
data words with propositions.

Before we give the details of the proof we first discuss its
general strategy and the underlying ideas.

Just as in Section 3 we (non-deterministically) construct
an automaton A from the given formula that tests some reg-
ular conditions and a set F of restrictions on the occurrences
of class types. From A and F semi-linear sets can be derived
that basically describe the Parikh images of (simultaneous)
solutions of A and F . But this time we are interested in
solutions that additionally fulfill the given key constraints.

Even though the basic idea of the construction is as in
Section 3, there are some crucial differences.

• The precise shape of the underlying alphabet and the
exact conditions are different,

• we (show that we can) restrict attention to data words

– in which all zones have length one, and

– each symbol occurs in (classes of) only one class
type and thus the class type can be inferred from
a symbol.

It turns out that key constraints of different“arities”(num-
ber of •-entries) can be handled by different strategies. If a
key has arity zero it basically states that certain string pat-
terns should not occur more than once. This can be checked

by a finite automaton. If a key has arity one then it basi-
cally states that in the same class the set of symbols of the
•-position can occur at most once within the context given
by the key. This can be translated into conditions on the
occurring class types.

Thus, it mainly remains to deal with key constraints of
arity ≥ 2. To illustrate the idea let us consider a simple
key of the form ({a}, •), ({b}, •). If one of the symbols a or
b is a dog in its class type, that is, it is allowed to occur
only once in each class, then the key can not be violated (if
the class type restrictions are met). Thus, we can assume
that a and b are sheep6. If we know that the class types of
a and b occur frequently in the solutions of A and F that
we consider, say ω(n) many times where n is the length of
the data word, then we have a lot of freedom to assign data
values to occurrences of a and b. More precisely, there is a
quadratic number of possible assignments of pairs of data
values to substrings ab but, of course, there can be only
a linear number of occurrences of such substrings in any
data string. Thus, it will turn out that in this case the key
constraint can be fulfilled.

The general strategy for the decision algorithm can be
stated as follows. It computes a linear set describing the
“Parikh image”of a set of solutions of A and F . If the Parikh
image tells that some class type occurs only a bounded num-
ber of times in such solutions, the symbols of this class are
replaced by “special” symbols that already encode the data
values for the bounded number of classes. A, F and K are
adapted accordingly. This kind of operation might remove
bullets from keys (as the data values are already encoded in
special symbols, occurrences of these symbols do not need
a •). Therefore some keys might become nullary or unary,
thus they can be replaced by new regular and class type con-
ditions. This process might repeat until either a linear set is
met in which all class types are bounded (which can then be
tested by exhaustive search) or a set in which all class types
are unbounded. In the latter case, the above observation
about keys of arity ≥ 2 then guarantees the existence of a
solution.

We note that as we anyway can not give an elementary
upper bound for the overall algorithm we do not always aim
to represent conditions on solutions in the most efficient way.
Instead we favor simplicity over algorithmic efficiency.

The proof consists of three mains parts. First we show
in Subsection 4.1 how the problem of satisfiability of (ϕ,K)
over data words can be (non-deterministically) reduced to
the question whether an instance of a certain constraint
problem over data words has a solution. Next, it is shown in
Subsection 4.2 that if all class types in a linear set of solu-
tions to A and F are unbounded and there are only keys of
arity ≥ 2 then there is a solution to the constraint instance.
Finally, we show in Subsection 4.3 how such an instance can
be obtained from an arbitrary instance.

4.1 Preparations
We call a data word separated if two neighbor positions

always have different data values, that is, if all zones are of
size one. The constraint problem that we consider next is de-
fined over separated data words with symbols. A constraint
instance I is a tuple (A,F , C,K) consisting of

6However, in general it is not that simple due to the fact
that keys have sets of symbols at a position.

143

• a string automaton A,

• a family profile F (to be defined below),

• a set C of class types with non-empty dog sets, and

• a set K of key constraints.

We consider constraint instance for data words with sym-
bols. All conditions refer to the alphabet Σ of the automaton
A.

A class type family (family for short) is a set (S,D), where
S ⊆ Σ and D = {D1, . . . , Dm}, for some n and every Di ⊆ Σ
is non-empty. All sets of a family are pairwise disjoint. A
family profile is a set of families with pairwise disjoint sets
of symbols. Each family (S, {D1, . . . , Dm}) gives rise to m
class types (S,Di). We call the class types of C and the
symbols therein special.

We further require7 that A tests that for each class type
(S,D) of C, each symbol of D occurs exactly once in the
string and otherwise symbols of this type are only from S.

A data word w is a solution to I (w |= I) if the following
conditions hold.

• w is separated.

• The string projection of w is accepted by A.

• Every class has a class type of a family from F or a
class type from C.

• w |= K.

We call I satisfiable if it has a solution.
The following proposition states that the satisfiability prob-

lem for FO2(∼,+1) in the presence of key constraints can
be reduced to satisfiability of constraint instances.

Proposition 4.2. There is a non-deterministic algorithm
that computes, for each pair (ϕ,K′), where ϕ is a FO2(∼
,+1) formula and K′ is a set of key constraints, a constraint
instance I = (A,F , C,K) such that

(ϕ,K′) is satisfiable if and only if some compu-
tation of the algorithm yields a satisfiable I.

Proof. The proof is basically the same for data words
with propositions as for data words with symbols. Our ex-
position assumes data words with propositions. Let ϕ and
K′ be given. It should be noted that we do not require that
solutions to (ϕ,K) are separated. However, the seventh step
of the algorithm will lead to a constraint problem over sep-
arated data words.

We can assume that ϕ is in SNF. The algorithm works
in seven stages which are described in the following. At the
end of each stage there is a new set of conditions and (a) and
(b) holds for the set of possible computations. The objects
that represent these conditions (alphabets, automata, pro-
files, keys) are numbered in accordance with the respective
stage (Σi, Ai, Ti, Ki). If nothing else is stated, objects are
inherited from the previous stage.

1. From formula to automaton/profile. The al-
gorithm first guesses a 2-profile T1 and tests that it is ϕ-
compatible. By the proof of Proposition 3.2 it holds that

7This condition introduces some redundancy in I. However,
it is convenient as A guarantees that special classes are han-
dled correctly and C enables us to easily refer to special class
types.

for every data word w with w |= ϕ and every w′ with
de(w′) = w there is some ϕ-compatible T1 with w′ |= T1.
Thus, (ϕ,K) has a solution if and only if some run of the
algorithm guesses a ϕ-compatible T1 with a solution w′ for
which de(w′) |= K′. It should be noted that the construc-
tion in the proof of Proposition 3.2 guarantees that all dog
sets are non-empty. This condition will be kept valid by all
transformations described below.

Let A1 be the automaton that tests for the string projec-
tion of a data word over P2 whether it fulfills conditions (i),
(ii), (v) and (vi) of the definition of validity and additionally
for every i > 1 that a set Pi contains p−1

= if and only if Pi−1

contains p+1
= and likewise for equality to the right.

Next, the algorithm computes a new set K1 of key con-
straints as follows. To this end, for every key constraint
κ′ = (K′1,⊗1) · · · (K′k,⊗k) from K′ a new key constraint
κ = (K1,⊗1) · · · (Kk,⊗k) is defined by letting each Ki be
the set of all full P2-types α whose restriction to P is in K′i.
We let K1 be the set of all these key constraints. Clearly,
for every valid data word over P2 it holds w′ |= K1 if and
only if de(w′) |= K′.

2. Normalize keys wrt zone structure. In the follow-
ing step, the algorithm changes the key constraints to make
them more homogeneous. Recall that every P2-type α of a
valid data word w′ indicates whether the right (and the left)
neighbor position has the same data value. If in some set
Ki of a key κ, there is a full type α that implies that the
left neighbor has the same data value and a full type β that
implies that the left neighbor has a different data value then
κ can not be violated by two matches of which one has α at
position i and the other β.

Therefore, every key κ can be split with respect to the
equality types without changing its semantics. That is, ev-
ery Ki is partitioned into four sets K==

i , K 6=6=i , K=6=
i , K 6==

i

with the obvious semantics and from every possible of the 4k

combinations of these sets a new key is formed that replaces
κ. Clearly, for the thus constructed set K2 it holds that for
every valid data word w′, w′ |= K2 if and only if w′ |= K1.

3. Use symbols enriched by class types. Next, the
algorithm does the transition from words with propositions
to words with symbols that are enriched by class types. Let
Σ2 be the set of all pairs (α, τ) where α is a full P2-type and
τ a class type. For every valid data word (α1, d1) · · · (αn, dn)
we define the Σ2-word w′ as ((α1, τ1), d1) · · · ((αn, τn), dn),
where each τi is the class type of the class of position i. We
let T3 be the `-profile resulting from T2 by replacing every
full type α in a class type τ by (α, τ). Correspondingly, K3

is constructed by replacing every α in a set Ki of a key κ by
all pairs (α, τ) for which α is dog or sheep in τ . Clearly, for
every valid P2-word w, w |= T if and only if w′ |= T3 and
w |= K2 if and only if w′ |= K3.

Let A3 be the automaton that is obtained from A1 by al-
lowing all symbols (α, τ) in place of α and does some further
tests, described next.

4. Dissolve bounded class types Next, the algorithm
singles out one or two special class types per class type in
T3. First, if T3(τ) = 1 for a class type τ , then this class type
becomes special, that is, it is put into C4 but not into T4.
If T3(τ) = ∗ then for each symbol σ from τ two new sym-
bols (σ, τ, 1) and (σ, τ, 2) are introduced and two new special
class types with these symbols are put to C4. However, in
this case, the “original” τ is put into T4. The automaton
A4 has to check that the occurrence of special symbols is

144

correct with respect to the special classe. In K4, the new
symbols (σ, τ, 1) and (σ, τ, 2) are added to all sets Ki con-
taining (σ, τ).

5. Normalize keys wrt class types. The next trans-
formation step aims at making keys even more homogeneous.
If a set Ki contains two symbols (α1, τ1) and (α2, τ2) with
class types τ1 6= τ2 then the key constraint can not be vi-
olated by two matches of κ, one involving (α1, τ1) and the
other (α2, τ2). Therefore, the algorithm splits every set Ki

of a key κ into sets Kτ
i with respect to their class type τ .

The new keys obtained from κ are all combinations of these
sets. If in this manner a key κ is created that only has special
symbols then this key is removed and the responsibility to
check it is delegated to the automaton A5. More precisely,
A5 has to test that only one position in the string projection
is matched by κ. Let K5 be the set of key constraints that
are obtained in this way.

Clearly, for every valid data word w it holds w |= K4 if
and only if w |= K5.

6. Dissolve unary keys. We say that a key κ =
(K1,⊗1) · · · (Kk,⊗k) is single-valued if all •-positions are
in one zone, that is, for all i ∈ [j1, j2), where j1 and j2 are
the first and last •-postion in κ, respectively, p+1

= occurs in
the symbols of Ki. The following step replaces single-valued
keys by class type constraints. To this end, we first define,
for every single-valued key and each symbol σ in Kj1 a new
symbol (σ, κ). Let A6 be the automaton obtained from A5

by allowing symbols (σ, κ) in place of σ which additionally
tests that

• a symbol (σ, κ) only occurs at positions i if κ matches
i− j1 + 1, and

• symbols σ only occur at positions where none of the
new symbols (σ, κ) matches.

Finally, class types (S,D) which contain symbols σ that were
involved in the transformations just explained are adapted.
More precisely, whenever a new symbol (σ, κ) is added the
following is done, for the unique class type (S,D) in which
σ occurs.

• If σ ∈ S then a new class type (S′, D′ ∪ {(σ, κ)} is
added, where S′ results from S by picking a new sym-
bol ρ′, for every ρ ∈ S (and likewise D′ is obtained
from D). A5 and K5 are changed accordingly to deal
with the newly introduced symbols.

• If σ ∈ D then a new class type (S′, (D′ − σ)∪ {(σ, κ)}
is added, where S′ and D′ are constructed as in the
previous case.

7. Shrink zones. The last step of the algorithm replaces
zones of length > 1 by singleton symbols as explained in the
following. Thus, after this step, only separated solutions are
sought.

The idea is to replace every zone z in a data word by a
single position that contains all relevant information about
z. Clearly, the data value of z can be just kept as data value
for the position. Thus, it suffices to encode the necessary
information about the symbols in z into a single symbol.
More precisely, there are two kinds of new symbols:

• Symbols of the form (σ1, . . . , σm), where σi ∈ Σ6, m ≤
k(K6). Here, σ1 must be the first symbol of a zone
(indicated by p−1

= or p�) and σm a last symbol of a

zone. All other symbols have to indicate equal data
equality with both neighbors. Furthermore, dogs are
not allowed to occur more than once. These symbols
are used to replace zones of lengths up to k(K6).

• Symbols of the form (u, v, E, γ), where u and v are
(k(K6)−1)-tuples of symbols from Σ6, E ⊆ Σ6 and γ :
Q5 → Q5. These symbols are meant to replace zones
z of length > k(K6) containing exactly the symbols
from E, for which u is the concatenation of the first
(leftmost) k(K6) − 1 symbols, v is the concatenation
of the last k(K6) − 1 symbols and γ is the transition
function with respect to A5 that is induced by the
string of z. We only allow symbols that are consistent
in the sense that all symbols from u and v occur in E
and there is a string w that starts with u, ends with v
and uses exactly the symbols from E that induces8 the
transition function γ. Furthermore, the first symbol of
u has to be a first symbol of a zone, the last symbol
of v has to be a last symbol of a zone and all other
symbols indicate equal data values in both neighbors.

The alphabet Σ7 of A7 only consists of these new symbols.
Note that symbols σ that imply, that their data value is
different from the data values of their neighbors are replaced
by tuples (σ) of length 1.

Let A7, T7 and K7 be the automaton, profile and key set
obtained from the previous ones by the following adapta-
tions.

• In A7, a symbol (σ1, . . . , σm) has the same effect as
the string σ1 · · ·σm, a symbol of the form (u, v, E, γ)
just has the effect of γ.

• Let B(σ) be the set of symbols of the zone replaced by
σ according to the above explained intention, that is
B((σ1, . . . , σm)) =def {σ1, . . . , σm} andB((u, v, E, γ)) =def

E. Let (S,D) be a class type of T6. Then we add the
family F = (S′,D) to F , with S′ = {σ ∈ Σ7 | B(σ) ⊆
S}. D contains each set D′ ⊆ Σ7, such that

– B(σ) ∩D 6= ∅ for all σ ∈ D′,
–

⋃
σ∈D′

B(σ) ⊆ S ∪D,

–
⋃

σ∈D′
B(σ) ∩D = D, and

– D ∩ B(σ1) ∩ B(σ2) = ∅ for all σ1, σ2 ∈ D′ with
σ1 6= σ2.

The conditions are chosen such that only symbols cor-
responding to zones with a dog symbol are put into
D, and that each dog set D′ contains each dog symbol
from D exactly once.

• In keys with zones of length > 1 the respective se-
quences of sets are replaced by suitable sets of sym-
bols of the form (σ1, . . . , σm). If the zone occurs at
one of the ends of the key, also symbols of the form
(u, v, E, γ) have to be taken into account. Note that
in this case, u or v contains all relevant information.

8It should be mentioned that there is an implicit control
that dog symbols occur only once. Otherwise, the range of
γ contains only rejecting sink states.

145

Finally, I = (A7,F , C7,K7) where the families of F are
just (S, {D}), for every (S,D) class type (S,D) of T7.

We omit the proof of the correctness of the algorithm as
the correctness of each step should be clear. it should be
noted that the only step that involves non-determinism is
the first step that chooses a profile T .

Note that there can be an exponential blow-up in stage 7.

4.2 Fulfilling the Key Constraints
In this section we give a sufficient condition for the exis-

tence of a solution for a constraint instance I = (A,F , C,K).
The following lemma will be helpful as it allows us to focus

on solutions w in which the number of classes is linear in the
length of w.

Lemma 4.3. For each solution of a partial constraint in-
stance I = (A,F , C) there is a solution w with the same fre-
quencies of class types and |w| ≤ |Q| × (|Σ| × |dom(w)|+ 1).

Proof. Let w be a solution for I of minimal length for
a certain domain dom(w). Towards a contradiction, let us
assume |w| > |Q| × (|Σ| × |dom(w)|+ 1).

As each class contains at most |Σ| dogs, w contains at most
|Σ|×|dom(w)| dog positions. Here, we count dog positions of
special and non-special classes. These dog positions induce
at most |Σ| × |dom(w)| + 1 maximal substrings of sheep.
Thus, there must be a substring u of w that contains only
sheep and has length at least |Q| + 1. Let us consider any
accepting run of A. Just as in the proof of the pumping
lemma there are two positions i < j in u for which A assumes
the same state after reading position i and j, respectively.
Thus, the data word w′ obtained from w by eliminating all
positions in (i, j] is also accepted by A. As these positions
only contain sheep, w′ also satisfies all constraints, thus it
is a shorter solution, the desired contradiction.

For a finite automaton A, Par(L(A)) is a semi-linear set
over Σ, that is Par(L(A)) can be written as a union of linear
sets over Σ. Furthermore, the linear sets can be represented
in the form {f +

∑
i jifi | ji ∈ N}, where the range of f

only contains numbers ≤ |Q|2 and the ranges of the fi only
contain numbers ≤ |Q|, where Q is the state set of A [14,
Proposition 4.3].

With a family profile F and profile set C we associate a
linear set LinF,C as follows. For each dog set D occurring
in F ∪ C let eD be the indicator function for D. For each
σ in a sheep set S let eσ be the indicator function for {σ}.
Then, LinF is defined9 as{∑

D

iDeD +
∑
σ∈S

iσeσ | iD, iσ ∈ N

}
.

Clearly, if a data word w is a solution for (A,F , C,K) then
Par(w) ∈ Par(L(A))∩LinF,C . We next give a sufficient con-
dition for the reverse direction. Let L0 = {f +

∑
j ijfj |

ij ∈ N} be a linear set such that L0 ⊆ Par(L(A)) ∩ LinF,C .
For a class type τ = (S,D) we let f(τ) =def f(σ) and
fj(τ) =def fj(σ), for every10 σ ∈ D. We call τ bounded
with respect to L0, if for all j it holds fj(τ) = 0. We call L0

9The attentive reader might notice that this definition is
overly “generous”. However, it is sufficient for our purposes
as the automaton controls that dogs from C only occur once.

10Note that this is independent of the choice of σ.

unbounded if all non-special class types are bounded with
respect to L0.

Proposition 4.4. Let I = (A,F , C,K) be a constraint
instance such that

• A controls that there are no key violations that involve
matches with only special symbols and no special sym-
bols of the same class occur next to each other,

• all key constraints in K are at least binary,

• there is no key constraint κ, which contains a special
sheep symbol at a •-position, and

• there is an unbounded linear set in Par(L(A))∩LinF,C.

Then I is satisfiable.

Proof. The proof is similar to the proof of Proposition
3.3. However, we have to take key constraints into account.

Let I = (A,F , C,K) be with the stated properties. Let Σ
and Q be the alphabet and state set of A, respectively.

Let L0 = {f +
∑
j ijfj | ij ∈ N} be an unbounded linear

set in Par(L(A)) ∩ LinF,C . Let c′ be the maximum value
occurring in f or any of the fj and let c be c′(|F| + |C|).
Let further m = k(K) and M = 40m2c|Q| × |Σ|. Let g
be the function obtained from L0 by setting ij := M , for
all j, and let w ∈ L(A) with Par(w) ∈ LinF,C be a string
(without data) solution to (A,F , C) of minimal length with
Par(w) = g.

Thus, the following statements hold.

• Every non-special class type in w occurs at least M
times (by the choice of the ij).

• |dom(w)| ≤ cM (as each class type occurs at most c′M
times).

• |w| ≤ 2|Q| × |Σ| × |dom(w)|, as guaranteed by Propo-
sition 4.3.

We have to show how data values can be assigned to the
positions of w such that the resulting data word is separated
and does not violate any key constraints.

We reserve, for each non-special class type τ = (S,D) a
disjoint set ∆τ of g(τ) data values. Here g(τ) is a short-
hand for g(σ), for some σ ∈ D, representing the number of
τ -classes according to g. For a family F = (S,D) we let
∆F =def ∪D∈D∆(S,D).

For each special class type one distinct data value is as-
signed. The condition on A ensures that after this assign-
ment no key constraints are violated and no neighbor posi-
tions have the same data value.

Then, in two phases data values can be assigned

(1) to all non-special dog positions,

(2) to all non-special sheep positions.

We assign data values to non-special dog positions induc-
tively from left to right. Let i be the first position with a
dog symbol σ ∈ D that has not yet received a data value.
Let τ = (S,D) be the corresponding class type. Let d ∈ ∆τ

be a remaining data value, that is, a value that has not yet
been assigned to a σ-position. There are two possibilities
why d could not be assigned to i: first, position i− 1 could
already carry d, or some key constraint κ could be violated

146

by assigning d to i. If there is some remaining d ∈ ∆τ to
which none of these possibilities applies, we assign d to po-
sition i. Otherwise, we are going to exchange d with some
data value d′ ∈ ∆τ that has been assigned to some other
σ-position.

Let m = k(K). In the following, we denote the set of data
values that occur at some position of distance < m from a
dog position with a data value e by Nm(e). Note that, as
each class has at most |Σ| dogs, |Nm(e)| < 2m|Σ|, for every
data value e.

Let us assume that assigning d to i would violate a key
constraint κ of length k. Then there are positions i1, i2 such
that for all (at least two) •-positions j of κ, i1+j−1 already
received a data value and i2 + j − 1 already received a data
value, unless i = i2 + j − 1. Let i′ = i2 + j′ − 1 6= i for
some (other) •-position j′ of κ and let d̂ be the data value
assigned to i′. Then i′ is a dog position as the only sheep
to which data values have already been assigned are special
and special sheep do not occur at •-positions. As the two
matches need to have identical data values at •-positions,
we can conclude that d ∈ Nm(d′). Therefore, the m − 1
left neighbors together rule out at most (m− 1)2m|Σ|+ 1 ≤
2m2|Σ| data values11 for position i.

As we assume that there is no valid value available, at least
|∆τ | − 2m2|Σ| values have thus already been assigned to σ-
positions. Let d be one of the remaining data values in ∆τ

and let j be a σ-position with a data value d′. Exchanging
d and d′ can be impossible because of one of the following
reasons.

(i) j − 1 or j + 1 carries d,

(ii) i− 1 carries d′,

(iii) assigning d to j would yield a key violation involving
position j, or

(iv) assigning d′ to i would yield a key violation involving
position i.

Condition (i) can apply to at most 2|Σ| many σ-positions.
as d is only assigned to dog positions yet. Condition (ii)
applies to at most one σ-position. As above, Condition
(iii) only applies if some dog position (which matches a •-
position of some key) at distance ≤ m from j carries a data
value from Nm(d). This can be the case for at most 4m2|Σ|
many σ-positions. Condition (iv) only applies if, for some
data value d′′ at a dog position of distance ≤ m from i,
d′ ∈ Nm(d′′). This can be the case for at most 2m2|Σ|
σ-positions. Altogether there are at least |∆τ | − 2m2|Σ|
candidate positions for a value exchange of which at most
(6m2 + 2)|Σ|+ 1 positions would lead to some violation. As
|∆τ | > (8m2+2)|Σ|+1, there is a position with which an ex-
change is possible. This completes the description of phase
(1).

In phase (2) we assign data values in a left-to-right fashion
to non-special sheep positions. We maintain as invariant
that each data value is assigned to at most X = 4c|Q| × |Σ|
positions, that are no special sheep positions. Let i be the
first non-special sheep position from a family F to which
we have not yet assigned a data value. There are three
conditions under which we can not assign a data value d ∈
∆F to i.

11The +1 accounts for the fact that i needs a different data
value than i− 1.

(i) i− 1 or i+ 1 carry d,

(ii) assigning d to i would yield a key violation involving
position i, or

(iii) d has already been assigned to X positions.

Clearly, (i) rules out at most 2 values from ∆F . A data
value d can only fulfill condition (ii) if for some value d′

occurring at distance < m from i, d has an occurrence at
distance < m from some dog position of d′ (if d is special)
or some sheep or dog position of d′ (if d is not special). This

rules out at most 4m2X data values. Finally, at most |w||X|
data values can be ruled out by condition (iii).

However, it holds

2 + 4m2X = 2 + 16m2c|Q| × |Σ| < M

2
,

|w|
X

≤ 2cM |Q| × |Σ|
4c|Q| × |Σ| =

M

2
.

Thus, fewer than M data values are ruled out. As |∆F | ≥
M , it is possible to find a data value d ∈ ∆F that does not
violate any constraints and maintains the invariant.

4.3 Separating frequent from infrequent class
types

In this section, we use slightly extended notions of con-
straint families and constraint instances. An extended con-
straint family F = (S,D, E) consists of a set S of sheep
symbols, a set D of dog sets (just as before) and a set E
of special dog sets that have to occur in exactly one class.
An extended constraint system is a tuple (A,F , C,K), where
A, C,K are as before and F is an extended family.

There is a little subtlety with this notion. If a class has the
class type of a set E ∈ E for some extended family F , then
the dogs of this class are considered special symbols but the
class could well contain non-special sheep symbols from S.
If a key contains an entry Ki consisting of symbols from E
and S, the intention is that it only disallows matches where
symbols from S from the special class of E occur. Therefore,
in the following we consider a key of this kind only violated if
the i-positions of both matches of the violation carry either
a symbol from E or a symbol from S from the class of E.

Proposition 4.5. There is a non-deterministic algorithm
that for each extended constraint instance I with at least one
family either accepts or computes an extended constraint in-
stance I ′ such that the following conditions hold.

(a) If the algorithm accepts then I is satisfiable.

(b) If the algorithm computes a satisfiable instance I ′ then
I is satisfiable.

(c) If I is satisfiable then the algorithm has some compu-
tation that accepts or computes a satisfiable instance I ′

with fewer families than I.

Proof. The algorithm uses many of the ideas and tech-
niques that were already used in the proofs of Propositions
4.2 and 4.4.

Let I = (A,F , C,K) be the input constraint instance. The
algorithm first guesses a linear set L0 = {f +

∑
j ijfj |

ij ∈ N} and verifies that L0 ⊆ Par(L(A)) ∩ LinF . If L0

is unbounded the algorithm accepts.

147

If L0 is not unbounded, there must be an extended fam-
ily F = (S,D, E) for which some class type τ = (S,D) is
bounded.

The algorithm continues by replacing τ by some new types
in E in a way that is somewhat similar to step 4 of the
algorithm in the proof of Proposition 4.2. For each symbol
σ ∈ D, the algorithm introduces f(τ) new special symbols
(σ, 1), . . . , (σ, f(τ)) and removes σ. It adds the f(τ) new
resulting special class types to E . These class types consist
entirely of dogs. A is adapted in order to guarantee that
no two symbols of the form (σ, j) and (σ′, j) occur next to
each other and to test that each (σ, j) occurs exactly once.
Besides that, it handles (σ, j) just as it handled σ before.
Note that there are no changes with respect to the sheep in
F .

If in some key κ there is a set Ki = S′ ∪D′ with S′ ⊆ S
and ∅ 6= D′ ⊆ D the algorithm proceeds as follows, for every
such key (and every such i). For each j ≤ f(κ), it introduces
a new key κj in which every σ ∈ D′ is replaced by (σ, j). If
S′ 6= ∅ then an additional key κ′ is added with S′ in place
of Ki. All these keys inherit ⊕i = •. The key κ itself is
removed.

For each of the new keys, the automaton is modified to
test that there are no key violations by matches in which
every •-position is matched with a special dog position.

Let I1 be the resulting extended constraint instance. If
the family, from which the class type (S,D) that was made
special was chosen, has further non-special class types, the
algorithm restarts from the beginning but with I1 in place
of I. In this manner it constructs a sequence of extended
constraint instances I1, I2, However, as the number of
unbounded class types decreases in each iteration, the whole
process terminates either by reaching an unbounded instance
or by making the last class type of some family F special.
In the former case the algorithm accepts, in the latter case
it removes F from F by a procedure described next.

Let F = (S, ∅, E) be the family that has to be removed.
For each dog set E ∈ E and each sheep σ ∈ S a new symbol
(σ,E) is introduced. These symbols are special symbols and
are used to construct special class types from the dog sets
in E which are then put into C. For each E ∈ E and each set
Ki ⊆ S ∪E of a key κ, the symbols σ ∈ Ki ∩S are replaced
by (σ,E). Furthermore, ⊕i is set to ◦.

If any of the resulting keys becomes nullary, that is, it does
not contain any •-positions, its verification is delegated to
the automaton A.

If a resulting key κ is unary with the only remaining •-
position j, then the algorithm proceeds as follows. Let F ′ =
(S′,D′, E ′) be the family of Kj . We distinguish three cases:
(1) Kj ⊆ S′, (2) Kj ∩ D 6= ∅, for some D ∈ D′ and (3)
Kj ∩ E 6= ∅, for some E ∈ E ′.

In the first case, for each non-empty12 subset M of Kj

and each D ∈ D′ a new set DM is introduced with the sym-
bols from D together with new symbols (σ, κ,M), for every
σ ∈ M . In the automaton these symbols are handled as σ
was handled before. However, the automaton checks that a
symbol (σ, κ,M) only occurs at places where κ matches and
σ n only occurs at places where κ does not match. In keys
κ′ 6= κ with a position set K ⊆ S′, the new symbols are
added to K and then it is split with respect to the sets M .

In the second case, for each non-empty subset M of Kj∩S

12Note that M = ∅ would yield D itself.

and each D ∈ D a new set DM is introduced, just as in
the first case. Furthermore, for each subset M of Kj with
M ∩D 6= ∅, a set DM with all symbols from D−M and all
symbols (σ, κ,M) with σ ∈M is added as well. Changes to
the automaton and to the keys are analogous to the previous
case.

In the third case, sets of the form DM with M ⊆ Kj ∩ S
are added as before. Then the algorithm guesses a subset
M ⊆ Kj and replaces E by the set of all symbols from
E −M and all symbols (σ, κ,M) with σ ∈ M . Changes to
the automaton and to the keys are again analogous to the
previous case.

In all three cases, κ is removed from K afterwards. This
does not do any harm as the new type constraints together
with the additional checks by the automaton guarantee that
κ is not violated.

This completes the description of the algorithm.
We explain now why this algorithm has the stated prop-

erties.
Let I0 = I denote the input instance for the algorithm.

By induction on i it can be shown that for each computation
with (at least) i iterations the following holds.

(1) If I is satisfiable then there is a computation for which
Ii is satisfiable.

(2) If for some computation Ii is satisfiable then I is satis-
fiable.

For (1) it suffices to observe that, if Ii−1 has a solution then
it has a solution in some linear set L0 that the algorithm can
choose initially. All modification steps that transform Ii−1

into Ii are such that a solution of Ii−1 can be transformed
into a solution of Ii. The only modifications might rename
some symbols in the solution. For (2) it can be observed
that all modifications are such that from a solution to Ii a
solution to Ii−1 can be constructed.

Thus, the algorithm is “locally” sound and complete.
Local soundness immediately yields statement (b).
We already mentioned that the algorithm always termi-

nates either by accepting or by reaching an instance with
fewer families. By local completeness we can conclude (c).

Next we show (a), that is, if the algorithm accepts, the
current instance Ir at this point has a solution. To see this,
we construct a (non-extended) instance from Ir by moving
all bounded dog sets E from families F to C. The result-
ing instance fulfills the prerequisites of Proposition 4.4 and
therefore has a solution w. Clearly, w is also a solution for
Ir. It should be noted that this solution does not have any
sheep in classes of types from sets E.

Now we are prepared to give a proof of the main result.

Proof of Theorem 4.1. The non-deterministic decision
algorithm that tests satisfiability of FO2(∼,+1) formulas
ϕ over data words in the presence of a set K of key con-
straints proceeds as follows. First, using the algorithm of
the proof of Proposition 4.2, it constructs a constraint in-
stance I. This can be turned into an extended constraint
instance by choosing all sets E empty. Then, by iteratively
using the algorithm of Proposition 4.5 it either accepts I (in
which case (ϕ,K) is satisfiable) or it constructs a sequence
of (extended) constraint instances with a decreasing num-
ber of families ending with some instance with empty F and
K. Such an instance only has a non-empty set C of special

148

class types and an automaton A which, besides many other
things, tests all former key constraints. Clearly, solutions of
such an instance can only have a bounded number of classes
and thus, satisfiability can be tested by a non-emptiness test
for a finite automaton.

As the algorithm involves the iterated application of pro-
cedures that might result in exponentially larger instances,
there does not seem to be an elementary upper bound.

5. LOWER BOUND FOR SATISFIABILITY
OF FO2(∼,+1,+3) ON DATA WORDS

Theorem 5.1. It is 2-nexptime-hard to decide whether
a FO2(∼,+1,+3) formula ϕ is satisfiable.

Proof. The proof is by a reduction from the 2-nexptime-
complete problem 2-EXP-corridor tiling. An input to 2-
EXP-corridor tiling is a tuple T = (Γ, H, V, α, ω, 1n).

A valid m × m-corridor tiling for T is a mapping λ :
[1,m] × [1,m] → Γ such that the following constraints are
satisfied:

(1) the bottom row starts with α, i.e., λ(1, 1) = α;

(2) the top row ends with ω, i.e., λ(m,m) = ω;

(3) all vertical constraints are satisfied, i.e., ∀i ∈ [1,m),
∀j ∈ [1,m], (λ(i, j), λ(i+ 1, j)) ∈ V ; and,

(4) all horizontal constraints are satisfied, i.e., ∀i ∈ [1,m],
∀j ∈ [1,m), (λ(i, j), λ(i, j + 1)) ∈ H.

2-EXP-corridor tiling consists of all T with a valid 22n×22n -
corridor tiling.

The main idea of the reduction is to build a formula Ψ,
which checks, that every data string w that satisfies Ψ is
divided into blocks, where each block encodes a tile γ, a
row number r and a column number c. The formula Ψ fur-
ther checks whether the corridor tiling derived from w in
the canonical way fulfills T . The details of the proof are
ommited due to lack of space.

6. CONCLUSION
The decidability result for FO2(∼,+1) over data words in

the presence of key constraints is only a first step for the
study of the corresponding problem on data trees. It should
be noted that, as usual, the result also holds for existential
monadic second order logic with two variables in the first-
order part.

However, many questions remain open:

• What is the exact complexity of satisfiability of FO2(∼
,+1) over data words in the presence of key constraints?

• How can key constraints be used in proofs of stronger
lower bounds?

• Is the problem still decidable in the presence of a linear
order?

• Does the result translate to trees?

• What is the exact complexity of the satisfiability prob-
lem for FO2(∼,+1) over data words without key con-
straints? In particular:

– Can the upper bound of Theorem 3.4 be extended
in the presence of the +3-relation (and further
+k-relations)?

– Can the lower bound of Theorem 5.1 also be shown
for FO2(∼,+1)?

• What about other kinds of integrity constraints?

• Are the results meaningful in the context of automatic
verification?

7. REFERENCES
[1] Marcelo Arenas, Wenfei Fan, and Leonid Libkin. On

the complexity of verifying consistency of xml
specifications. SIAM J. Comput., 38(3):841–880, 2008.

[2] Marcelo Arenas and Leonid Libkin. A normal form for
xml documents. ACM Trans. Database Syst.,
29:195–232, 2004.

[3] Henrik Björklund and Thomas Schwentick. On notions
of regularity for data languages. Theor. Comput. Sci.,
411(4-5):702–715, 2010.

[4] M. Bojanczyk, A. Muscholl, T. Schwentick, and
L. Segoufin. Two-variable logic on data trees and
XML reasoning. J. ACM, 56(3), 2009.

[5] M. Bojanczyk, A. Muscholl, T. Schwentick,
L. Segoufin, and C. David. Two-variable logic on
words with data. In IEEE Symposium on Logic in
Computer Science (LICS), pages 7–16, 2006.

[6] Claire David, Leonid Libkin, and Tony Tan. On the
satisfiability of two-variable logic over data words.
Extended abstract to appear in 17th LPAR 2010,
LNCS, Springer-Verlag., 2010.

[7] Stéphane Demri and Ranko Lazic. Ltl with the freeze
quantifier and register automata. ACM Trans.
Comput. Log., 10(3), 2009.

[8] Kousha Etessami, Moshe Y. Vardi, and Thomas
Wilke. First-order logic with two variables and unary
temporal logic. Inf. Comput., 179(2):279–295, 2002.

[9] Diego Figueira. Forward-xpath and extended register
automata on data-trees. In ICDT, pages 231–241,
2010.

[10] Erich Grädel and Martin Otto. On logics with two
variables. Theor. Comput. Sci., 224(1-2):73–113, 1999.

[11] Marcin Jurdzinski and Ranko Lazic. Alternating
automata on data trees and xpath satisfiability.
CoRR, abs/0805.0330, 2008.

[12] Maarten Marx. First order paths in ordered trees. In
ICDT, pages 114–128, 2005.

[13] Luc Segoufin. Automata and logics for words and trees
over an infinite alphabet. In CSL, pages 41–57, 2006.

[14] Anthony Widjaja To. Parikh images of regular
languages: Complexity and applications. CoRR,
abs/1002.1464, 2010.

149

