
Efficient Reasoning about Data Trees via
Integer Linear Programming

Claire David
Université Paris-Est

Claire.David@univ-mlv.fr

Leonid Libkin
University of Edinburgh
libkin@inf.ed.ac.uk

Tony Tan
University of Edinburgh
ttan@inf.ed.ac.uk

ABSTRACT

Data trees provide a standard abstraction of XML documents
with data values: they are trees whose nodes, in addition to
the usual labels, can carry labels from an infinite alphabet
(data). Therefore, one is interested in decidable formalisms
for reasoning about data trees. While some are known –
such as the two-variable logic – they tend to be of very high
complexity, and most decidability proofs are highly nontriv-
ial. We are therefore interested in reasonable complexity for-
malisms as well as better techniques for proving decidability.

Here we show that many decidable formalisms for data trees
are subsumed – fully or partially – by the power of tree au-
tomata together with set constraints and linear constraints
on cardinalities of various sets of data values. All these con-
straints can be translated into instances of integer linear pro-
gramming, giving us an NP bound on the complexity of the
reasoning tasks. We prove that this bound, as well as the key
encoding technique, remain very robust, and allow the addi-
tion of features such as counting of paths and patterns, and
even a concise encoding of constraints, without increasing
the complexity. We also relate our results to several rea-
soning tasks over XML documents, such as satisfiability of
schemas and data dependencies and satisfiability of the two-
variable logic.

Categories and Subject Descriptors

F.1.1 [Computation by Abstract Devices]: Models of
Computation—Automata; F.4.1 [Mathematical logic and
formal languages]: Mathematical logic; G.1.6 [Numerical
Analysis]: Optimization—Integer programming; H.2.1
[Database Management]: Logical Design—Data Models

General Terms

Algorithms, Theory

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICDT 2011 March 21-23, 2011, Uppsala, Sweden.
Copyright 2011 ACM 978-1-4503-0529-7/11/0003 ...$10.00.

Keywords

XML, tree languages, data values, Presburger arithmetic,
reasoning, integer linear programming

1. INTRODUCTION

Traditional approaches to studying logics on trees use a finite
alphabet for labeling tree nodes. The interest in such logics
was reawakened by the development of XML as the standard
for data exchange on the Web. Logical formalisms provide
the basis for query languages as well as for reasoning tasks,
including many static analysis questions such as consistency
of specifications, query optimization, and typing [1, 2, 13,
14, 22, 29].

The simplest abstraction of XML documents is ordered un-
ranked finite trees whose nodes are labeled by letters from a
finite alphabet [23, 34]. This abstraction works well for rea-
soning about structural properties, but real XML documents
carry data, which cannot be captured by a finite alphabet.
Thus, there has been a consistent interest in data trees, i.e.,
trees in which nodes carry both a label from a finite alphabet
and a data value from an infinite domain [6, 7, 8, 12, 25, 17].
It seems natural to add at least the equality of data values
to a logic over data trees. But while for finitely-labeled trees
many logical formalisms are decidable by converting formu-
lae to automata (e.g., the monadic second-order logic MSO),
adding data-equality makes even FO (first-order logic) unde-
cidable.

This explains why the search for decidable reasoning for-
malisms over data trees has been a common theme in XML
research. Such a search has largely followed two routes. The
first takes a specific XML reasoning task, or a set of similar
tasks, and builds algorithms for them (see, e.g, [2, 3, 5, 9, 13,
29, 14]). The second attempts to find a sufficiently general
logical formalism that is decidable, and can express some
XML reasoning tasks of interest (see, e.g, [12, 6, 16]).

While both approaches have yielded many nontrivial and in-
fluential results, they are not completely satisfactory. The
first approach gives us specialized algorithms for concrete
problems, but no general tools. The second approach tends
to produce extremely high complexity bounds, such as 4EX-
PTIME, or even non-primitive-recursive, and in addition, the

18

proofs are usually highly nontrivial and are very hard to
adapt to other reasoning tasks.

Instead we want a sufficiently general formalism – in fact, a
family of formalisms, that are not extremely complicated to
deal with, and at the same time give us acceptable complex-
ity bounds. For reasoning tasks (as opposed to, say, query
evaluation which we are used to in databases), acceptable
complexity is often viewed as single-exponential [28], or
better yet, NP (since SAT solvers are now a practical tool
for many static analysis problems [20]).

The particular class of formalisms we deal with here is mo-
tivated by several concrete reasoning tasks studied in the
XML context, as well as some decidable logical formalisms.
We now briefly describe those. One of the earliest reason-
ing problems studied in the XML context was the problem
of reasoning about keys and inclusion constraints. An XML
key says that for a given label a, the data value of an a-node
(i.e., node labeled a) uniquely determines the node. An in-
clusion constraint says that every data value of an a-node
will occur in a b-node as well. Such constraints are typical
in databases, from which many XML documents are gener-
ated. The question is then whether they are consistent with
the schema of an XML document, usually given as a tree
automaton, or a DTD. This problem is decidable in NP [13].

On the logic side, there appear to be two main ideas leading
to decidability. One starts with a temporal logic, and adds a
limited memory for keeping and comparing data values. Ex-
amples include [12, 16], but the logics, although decidable,
have extremely high complexity (non-primitive-recursive).
A different approach based on restricting the number of vari-
ables was followed by [6], which showed that FO2, first-
order logic with two variables, is decidable over data trees.
In fact, even ∃MSO2, its extension with existential monadic
second-order quantifiers, is decidable. The complexity drops
to elementary but is still extremely high: the decision proce-
dure runs in 3NEXPTIME.

Our formalisms extend the specific constraints such as keys
and inclusions, and yet come very close to subsuming the
power of logics such as ∃MSO2, while permitting many
properties which are not even definable in MSO. To moti-
vate the kind of constraints we use, let us restate keys and
inclusion constraints in a slightly different way. For this, we
need two new notations: V (a) stands for the set of data val-
ues in a-labeled nodes, and #a is the number of a-nodes.

• A key simply states that #a = |V (a)|. We view this
as a linear constraint, and allow arbitrary linear con-
straints over the values #a and |V (a)|, for example,
|V (a)| ≥ 2|V (b)| −#c.

• An inclusion constraint states that V (a) ⊆ V (b), or,
equivalently, V (a) ∩ V (b) = ∅. We generalize this
to arbitrary set-constraints [26], stating that a Boolean
combination of V (a)’s is either empty or nonempty.

We consider the problem of satisfiability of such constraints
with respect to a schema declaration, given by an unranked

tree automaton [21]. Or, formally: Given an unranked tree
automatonA and a collection C of set and linear constraints,
does there exist a tree t accepted by A that satisfies all the
constraints in C?

We prove that this problem, and several of its variations,
are all decidable in NP (the hardness result has been known
even for simple keys and inclusion constraints [13]). The
techniques are all based on reduction to instances of integer
linear programming. In fact, the basic result, unlike many
decidability proofs [6, 12, 13], is quite easy to establish.

Already our basic result subsumes, not only reasoning about
integrity constraints in XML (as in, e.g., [2, 13]), but also a
very large fragment of ∃MSO2. These relationships will be
made precise in Section 6. Note that even the decidability
of the satisfiability problem does not follow from known re-
sults such as [6] which are restricted to fragments of MSO;
in contrast, our formalism expresses many properties not de-
finable in MSO.

One benefit of having simple proof techniques is that the
basic result can be extended in several ways. One of the ex-
tensions introduces variables that count not just the number
of nodes labeled a, but also the number of such nodes that
permit some paths starting from them. For example, we can
reason about the number of a-nodes that have a b-parent and
a c-sibling. By extending the translation into integer linear
programming, we obtain such extensions quite easily.

A more surprising extension is to concisely represented con-
straints. One way to reduce the size of the representation of
linear constraints is to discard all zero entries from matri-
ces defining them. This can shrink the size of the instance of
the problem exponentially. A common phenomenon in com-
plexity theory is that such a shrinking increases the complex-
ity by an exponent. So more naturally, the expected bound
thus would be NEXPTIME. We prove that, quite surpris-
ingly, under such concise representation of constraints, the
problem stays in NP.

As a final contribution, we make the entire approach com-
pletely algorithmic, by providing simple and self-contained
translations: (1) from an unranked tree automaton A to a
simple instance ΨA of linear programming, i.e. instances
with only 0, 1 or -1 coefficients; and (2) from a solution
of ΨA to a tree accepted by A. Of course the existence of
translation (1) is known [33, 18]; the contribution here is to
provide a simple algorithm for doing it, that also results in
simple formulae which could be used and implemented for
concrete verification problems.

Organization. Section 2 presents the main definitions. In
Section 3 we define the contraints and the problem we are
interested in. In Section 4 we establish the basic result. An
extension is presented in Section 5. In Section 6 we relate
set and linear constraints to XML reasoning tasks and the
logic ∃MSO2 of [6]. We study the complexity of the prob-
lem in the case of concise representation of the constraints
in Section 7. Finally, the translation from unranked tree au-
tomata to linear integer programming is provided in Section

19

8. Some proofs are only sketched, or completely omitted,
they will be available in the journal version.

2. PRELIMINARIES

Trees and automata. We start with the standard definitions
of unranked finite trees and logics and automata for them.
An unranked finite tree domain is a prefix-closed finite sub-
set D of N∗ (words over N) such that v · i ∈ D implies
v · j ∈ D for all j < i and v ∈ N∗. Given a finite la-
beling alphabet Σ, a Σ-labeled unranked tree is a structure
〈D,E↓, E→, {a(·)}a∈Σ〉, where

• D is an unranked tree domain,
• E↓ is the child relation: (v, v · i) ∈ E↓ for v · i ∈ D,
• E→ is the next-sibling relation: (v · i, v ·(i+1)) ∈ E→

for v · (i+ 1) ∈ D, and
• the a(·)’s are labeling predicates, i.e. for each node v,

exactly one of a(v), with a ∈ Σ, is true.

The label of the node v in t will be denoted by `abt(v), and
the domain D is denoted by Dom(t).

Let r be a designated symbol in Σ. We assume that the root
of the tree (i.e., the empty word) is labeled r, and no other
node is labeled r. (This is not a restriction as we can always
put a new root with a given label.)

An unranked tree automaton [10, 32] over Σ-labeled trees is
a tuple A = (Q,Σ, δ, F), where Q is a finite set of states,
F ⊆ Q is the set of final states, and δ : Q × Σ → 2(Q∗)

is a transition function; we require that δ(q, a)’s be regular
languages over Q for all q ∈ Q and a ∈ Σ.

A run ofA over a tree t is a function ρA : Dom(t)→ Q such
that for each node v with n children v · 0, . . . , v · (n − 1),
the word ρA(v · 0) · · · ρA(v · (n − 1)) is in the language
δ(ρA(v), `abt(v)). Of course, for a leaf v labeled a this
means that v could be assigned state q iff the empty word
ε is in δ(q, a). A run is accepting if ρA(ε) ∈ F , i.e., if the
root is assigned an accepting state. A tree t is accepted byA
if there exists an accepting run ofA on t. The set of all trees
accepted by A is denoted by L(A).

Data trees. In a data tree, besides carrying a label from
the finite alphabet Σ each non-root node also carries a data
value from some countably infinite data domain (to be con-
crete, we assume it to be N). For a node v of a data
tree t, labeled with a symbol a ∈ Σ − {r}, the assigned
data value is denoted by valt(v). We also denote the set
of all data values assigned to a-nodes by Vt(a). That is,
Vt(a) = {valt(v) | `abt(v) = a}.

Note that we assume Vt(r) = ∅ (i.e., no data value assigned
to the root). This is done for convenience and is not a re-
striction, as one can always add a new root without a data
value.

Integer linear programming and Presburger formulae.
Recall that an instance of integer linear programming con-

sists of anm×k integer matrix A and a vector b ∈ Zm. The
question is whether there is a k-vector v̄ over integers such
that Av̄ ≥ b.

The problem is well-known to be NP-complete. It is NP-
hard even when entries are restricted to be 0s and 1s. Mem-
bership in NP follows from the fact that if Av̄ ≥ b has an
integer solution, then there is one in which all entries are
bounded by (ak)p(m), where a is the maximum absolute
value that occurs in A and b, and p is a polynomial [27].

We also consider existential Presburger formulae, i.e., first-
order formulae over the structure 〈Z,+, 0, 1, <〉. Such for-
mulae can always be converted to formulae of the form

ϕ(x̄) = ∃ȳ PBC(Aiv̄i ≥ bi), (1)

where PBC means a positive Boolean combination, and
each Aiv̄i ≥ bi is an instance of integer linear programming
with variables v̄i coming from x̄, ȳ. Whenever we refer to
existential Presburger formulae, we assume that they are in
the form (1). We also only work with non-negative integers
for x̄ and ȳ, so we always assume that all the conditions
xj ≥ 0, yl ≥ 0 are included in formulae. However, it is to
be noted that the entries in Ai and bi can be negative.

Notice that we occasionally use conditions such as x > 0 or
x + y ≤ b, or x = y, but these are easily put in the form
(1) by changing them to x ≥ 1, or −x − y ≥ −b, or the
conjunction of x ≥ y and y ≥ x, respectively.

Satisfiability of existential Presburger formulae is known to
be in NP. This follows from the bound of [27]. If we have
a witness (x̄, ȳ) for ϕ of the form (1), then it does so by
making some of the Aiv̄i ≥ bi true. Using the bound of [27],
we see that no matter which combination of these instances
of linear integer programming makes the formula true, there
is a witness that will require only polynomially many bits in
terms of the size of the formula. This implies the NP bound.

3. CONSTRAINTS AND THE SATISFIA-
BILITY PROBLEM

In this section we give the precise definitions of set and linear
constraints, and state the main satisfiability problem.

Set constraints. Recall that Σ is the labeling alphabet with
a special symbol r for the root. Data-terms (or just terms)
are given by the grammar

τ := V (a) | τ ∪ τ | τ ∩ τ | τ for a ∈ Σ− {r}.
The semantics JτKt is defined with respect to a data tree t:

• JV (a)Kt = Vt(a);
• Jτ1 ∩ τ2Kt = Jτ1Kt ∩ Jτ2Kt;
• Jτ1 ∪ τ2Kt = Jτ1Kt ∪ Jτ2Kt;
• JτKt = Vt − JτKt;

where Vt =
⋃
a∈Σ−{r} Vt(a) is the set of data values found

in the data tree t.

20

A set constraint is either τ = ∅ or τ 6= ∅, where τ is a term.
A tree t satisfies τ = ∅, written as t |= τ = ∅, iff JτKt = ∅
(and likewise for τ 6= ∅).

Note that set constraints τ1 ⊆ τ2 and τ1 ⊂ τ2 can be simi-
larly defined, but they are easily expressible with the empti-
ness constraints (e.g., τ1 ⊆ τ2 means that τ1 ∩ τ2 is empty).

In particular, the inclusion constraint from the introduction
is an example of a set constraint: to say that all data values
of a-nodes occur as data values of b-nodes, we write V (a)∩
V (b) = ∅.

Linear data constraints. Fix variables xa for each a ∈ Σ
and zS for each S ⊆ Σ − {r}. Linear data constraints are
linear constraints over these variables.

The interpretation of xa is #a(t) – the number of a-nodes
in t. The interpretation of zS is the cardinality of the set

[S]t =
⋂
a∈S

Vt(a) ∩
⋂
b/∈S

Vt(b).

That is, [S]t contains data values which are found among a-
nodes for all a ∈ S but which are not attached to any b-nodes
for the label b 6∈ S. Note that the sets [S]t’s are disjoint, and
that

Vt(a) =
⋃

S such that a∈S
[S]t.

This gives us much more information that just the number of
data values in a-nodes, |Vt(a)|, which is simply

|Vt(a)| =
∑

S such that a∈S
zS .

For instance, with such constraints we can reason about data
values that occur in a- and c-nodes but do not occur in b-
nodes: the number of those is simply

∑
{zS | a, c ∈ S, b 6∈

S}.

Notice that key constraints from the introduction are exam-
ples of linear data constraints; that the data values of a-nodes
form a key is that the number of a-nodes, which is xa, is
equal to the number of data values found in the a-nodes,
which is |Vt(a)|. It is expressible by the linear constraint:

xa = |Vt(a)| =
∑

S such that a∈S
zS .

We shall view linear data constraints as an instance of integer
linear programming. If Σ = {a1, . . . , a`} and S1, . . . , Sk
is an enumeration of nonempty subsets of Σ − {r} (thus
k = 2|Σ|−1 − 1), then a set of m linear data constraints is
Av̄ ≥ b, where A is an m × (` + k)-matrix over Z and
b ∈ Zm. It is satisfied in a data tree t if it is true when v is
interpreted as the vector(

#a1(t), . . . ,#a`(t),
∣∣[S1]t

∣∣, . . . , ∣∣[Sk]t
∣∣).

Satisfiability problem. Let C denote a collection of set and
linear data constraints. If a tree t satisfies all the constraints

in C, we write t |= C. We study the following satisfiability
problem.

PROBLEM: SAT(A, C)
INPUT: an unranked tree automaton A;

a collection C of set and
linear data constraints

QUESTION: is there a tree t accepted by A
such that t |= C?

The problem of consistency of XML constraints and
schemas [2, 13] is a special instance of this problem. We
shall later see that other problems related to XML con-
straints, as well as a large fragment of the two-variable logic
can be formulated as special cases of SAT(A, C). More-
over, SAT(A, C) includes many instances that cannot even
be formulated in MSO, which is the logic that typically sub-
sumes XML reasoning tasks (for example, the linear con-
straint which states that #a(t) > 2 ·#b(t) is not expressible
in MSO, but is a simple linear data constraint xa > 2xb).

4. DECIDING SATISFIABILITY

We shall now prove the decidability of SAT(A, C) problem.
In our first result, we assume a simple way of measuring the
size of the input:

• For the automaton A, we take the size of the transition
table, where each transition δ(q, a) is represented by
an NFA (or by a regular expression, since an NFA can
be computed from it in polynomial time).

• The size of each set constraint τ {=, 6=} ∅ is measured
as the size of the parse-tree for the term τ .

• The size of the linear data constraints Av̄ ≥ b is the
sum of sizes of A and b, with numbers represented in
binary.

THEOREM 4.1. The problem SAT(A, C) is solvable in
NP.

Before proving this result, we give a couple of remarks.
First, hardness for NP has been known, as it easily follows
from the hardness result for XML keys and foreign keys in
[13] and many other proofs can be adapted as well. In this
result the most important task is to prove the upper bound,
showing that reasoning tasks have acceptable complexity.

Second, extending the class of linear constraints by adding
multiplication leads to the immediate loss of decidability,
as Hilbert’s 10th problem can be trivially encoded. This
remains undecidable even for quadratic equations. On the
other hand, if we extend the class of linear constraints to Pre-
quadratic Diophantine Equation, where in addition to linear
constraint, constraints such as xi ≤ xjxk are allowed, it be-
comes decidable in NEXPTIME [15].

21

Proof of Theorem 4.1. Let Σ = {a1, . . . , an} and
S1, . . . , Sk be the enumeration of non-empty subsets of
Σ − {r}. We fix the vectors x̄ = (xa1 , . . . , xan) and
z̄ = (zS1 , . . . , zSk

).

We first show how to express set constraints in terms of lin-
ear data constraints. For a term τ , we define a family S(τ)
of subsets of Σ as follows.

• If τ = V (a), then S(τ) = {S | a ∈ S and S ⊆
Σ− {r}}.
• If τ = τ1, then S(τ) = 2Σ−{r} − S(τ1).
• If τ = τ1 ? τ2, then S(τ) = S(τ1) ? S(τ2), where ? is
∩ or ∪.

It follows immediately that for every data tree t, we have
JτKt =

⋃
S∈S(τ)[S]t. Recall that the sets [S]t’s are disjoint.

Hence, the set constraint τ = ∅ can be expressed as a linear
data constraint

∑
S∈S(τ) zS = 0. Similarly, τ 6= ∅ can be

expressed as
∑
S∈S(τ) zS ≥ 1. Since the size of linear con-

straints is exponential in Σ, this transformation is polyno-
mial in the size of the whole input.1 Hence, from now on, we
can assume that the set C is of the form A(x̄, z̄) ≥ b, and thus
is given by a quantifier-free Presburger formula ψC(x̄, z̄).

Next, we convert automata into linear constraints. In [33]
it is shown that given a context free grammar G, whose ter-
minals are a1, . . . , an, one can construct in polynomial time
an existential Presburger formula ϕG(x1, . . . , xn) such that
ϕG(m1, . . . ,mn) holds if and only if there exists a word
w ∈ L(G) such that #a1(w) = m1, . . . ,#an(w) = mn,
where #ai(w) denotes the number of occurrences of ai in
the word w. Then, in [18] it is observed that the method can
be extended to ranked tree automata. Since unranked tree au-
tomata can be easily converted to ranked tree automata with
additional new symbol, we can construct the existential Pres-
burger formula ϕA(x1, . . . , xn) for unranked tree automaton
A, with one extra existential quantifier for the new symbol2.
Hence, we have:

LEMMA 4.2. (See also Section 8.) Given an unranked
tree automaton A, over alphabet Σ = {a1, . . . , an},
one can construct in polynomial time an existential Pres-
burger formula ϕA(x1, . . . , xn) such that if w ∈ L(A),
then ϕA(#a1(w), . . . ,#an(w) holds; and conversely, if
ϕA(m1, . . . ,mn) holds, then there exists a tree t ∈ L(A)
such that #a1(t) = m1, . . . ,#an(t) = mn.

Going back to the proof of Theorem 4.1, we introduce ad-
ditional variables va for each a ∈ Σ − {r}. The intended
meaning of va is the cardinality of Vt(a). Let v̄ be the vec-
tor (va1 , . . . , van). We next define two formulae that ensure
proper interaction between ψC and ϕA. First,

χ(v̄, x̄, z̄) =
∧

a∈Σ−{r}

(va =
∑
a∈S

zS) ∧ (va ≤ xa)

1In Section 7 when we look at the concise representations of the
input, we will need a more refined technique for eliminating set
constraints.
2We shall present a more thorough construction in Section 8.

states the expected conditions on these variables, given their
intended interpretations. Second,

χ′(v̄, x̄) =
∧

a∈Σ−{r}

(xa = 0 ∨ va > 0)

ensures that if a-nodes exist (i.e., xa > 0), then at least one
data value is found in the a-nodes.

We now consider a Presburger formula Ψ(A,C)(x̄, z̄)

∃v̄
(
ψC(x̄, z̄) ∧ ϕA(x̄) ∧ χ(v̄, x̄, z̄) ∧ χ′(x̄, z̄)

)
.

To convert Ψ(A,C)(x̄, z̄) into the form (1), we simply move
all the existential quantifier in ϕA(x̄) to the front. Each
atomic predicate inside Ψ(A,C)(x̄, z̄) can then be viewed as
an instance of integer linear programming Aȳi ≥ bi.

LEMMA 4.3. Given tuples of non-negative integers
n̄ = (na)a∈Σ and m̄ = (mS)S⊆Σ−{r}, the formula
Ψ(A,C)(n̄, m̄) holds iff there exists a data tree t accepted by
A such that

1. na = #a(t) for each a ∈ Σ− {r};
2. mS = |[S]t| for each S ⊆ Σ− {r};
3. t |= C.

PROOF. The “if” part is immediate from the construc-
tion of Ψ(A,C). We prove the “only if” direction. Suppose
Ψ(n̄, m̄) holds. That is, there exists a witness v̄ such that

ϕC(n̄, m̄) ∧ ϕA(n̄) ∧ χ(v̄, n̄, m̄) ∧ χ′(n̄, m̄) holds.

Since ϕA holds, by Lemma 4.2, there exists a tree t ∈ L(A)
such that (#a1(t), . . . ,#an(t)) = n̄.

Now we show how to assign data values to the nodes in the
tree t so that in the resulting data tree t′ we have mS =
|[S]t′ |, for every S ⊆ Σ − {r}. Let K =

∑
S⊆Σ−{r}mS ,

and we shall use the set {1, . . . ,K} as the data values. Let

ξ : {1, . . . ,K} 7→ 2Σ−{r} − ∅
be a function satisfying |ξ−1(S)| = mS , for each S ⊆ Σ −
{r}. The witness for v̄ is (

∑
a2∈SmS , . . . ,

∑
an∈SmS).

The data tree t′ is obtained by letting Vt′(a) be⋃
a∈S ξ

−1(S). This is possible since χ(v̄, n̄, m̄) holds as∑
a∈S |ξ−1(S)| = va ≤ #a(t) = na. By definition

of the function ξ, we obtain that [S]t′ = ξ−1(S), thus,
|[S]t′ | = ms, for each S ⊆ Σ − {r}. This proves the
lemma.

We now have an NP algorithm for SAT(A, C): in polyno-
mial time we construct the formula Ψ(A,C)(x̄, z̄) and then
check for its satisfiability. It runs in NP, and Lemma 4.3
implies that it solves SAT(A, C). 2

We shall see in the next section that our algorithm for
SAT(A, C) gives some results obtained by using much
harder techniques (such as reasoning about constraints in
XML), and comes very close to giving us results obtained
by considerably much harder techniques (like the results of
[6]). The simpler structure of the proof will lead to some ex-
tensions that otherwise would have been very hard to obtain.

22

5. AN EXTENSION: COMPLEX PROPER-
TIES OF NODES

We now demonstrate how the simple structure of the proof
lets us obtain extensions for the main reasoning task almost
effortlessly.

So far we were counting numbers of nodes #a(t) – i.e.,
nodes labeled a. Checking whether a node is labeled a is
a simple property expressed by a fixed MSO (in fact, by an
atomic FO) formula with one free variable. We now show
that we can count sets of nodes expressed by arbitrary fixed
MSO formulae and use them in linear constraints.

More precisely, let π(x) be an MSO formula with one free
first-order variable in the usual vocabulary of unranked trees,
that is,E↓, E→, and a(·)a∈Σ for child and next-sibling edges
and labeling predicates. These formulae select nodes in
trees. We let #π(t) be the cardinality of the set of nodes
in t that satisfy π.

Using our proof, we can extend the decidability result to con-
straints that include “counting” the number of nodes output
selected by such formulae π(x). Note that unary MSO sub-
sumes many XML formalisms, for example node formulae
of XPath (or even conditional XPath).

If Π = {π1(x), . . . , πs(x)} is collection of such MSO for-
mulae, then we refer to Π-linear constraints: these are linear
constraints over the usual variables xa’s and zS’s, as well as
wπi

’s, interpreted as #πi(t). We then deal with the problem
Π-SAT(A, C): its input is an automaton A and a collection
C of set and Π-linear constraints, and the question is whether
these are satisfiable.

Our proof immediately implies that the problem is decid-
able:

COROLLARY 5.1. The problem Π-SAT(A, C) is decid-
able.

PROOF. We can embed the formulae π1, . . . , πs into the
automaton A and check the existence of a tree over the al-
phabet Σ × 2Π, where (i) its Σ projection is accepted by
A and (ii) for each node labeled with (a, P) ∈ Σ × 2Π, a
formula π is satisfied iff π ∈ P is satisfied. The linear con-
straints in C over the variables xa’s and zS’s can be easily
converted into the variables xa,P ’s and zT , where P ⊆ 2Π

and T ⊆ (Σ× 2Π).

The complexity of Π-SAT(A, C) of course depends on how
the formulae π1, . . . , πn are given. If they are given as MSO
formulae, then it is immediately known that the complexity
is non-elementary. But these formulae are also captured by
the query automata of [24]: these are automata that also se-
lect nodes in their accepting runs. With query automata, the
complexity drops to NEXPTIME, and in some cases to NP.

COROLLARY 5.2. 1. If the formulae in Π are given
as query automata, then Π-SAT(A, C) is decidable in
NEXPTIME.

2. Moreover, it is decidable in NP if Π is fixed, or even if
for each symbol a ∈ Σ the number of formulae πi(x)
which can be true in a-nodes is fixed.

PROOF. Item (1) is straightforward, as the non-
elementary blow-up for SAT(A, C) occurs in translating the
MSO formulae to query automata. However, the blow-up
from NP (complexity of SAT(A, C)) to NEXPTIME occurs
when moving from the alphabet Σ to Σ × 2Π. Thus, if Π is
fixed, then the complexity remains in NP.

Moreover, if for each symbol a ∈ Σ the number of formulae
πi(x) which can be true in a-nodes is fixed, we do not need
to move to the alphabet Σ× 2Π. We can stay in the alphabet
Σ, and embed each π ∈ Π inside the automaton A. The
automaton A can remember the fixed number of nodes that
satisfy π and verify that indeed such is the case. This way
we avoid the exponential blow-up and remains in NP.

While converting from MSO to query automata is non-
elementary, for some other formalisms that complexity is
much lower: for example, [19] shows how to convert
conditional-XPath to query automata in single-exponential
time.

6. COMPARISON WITH OTHER FOR-
MALISMS

We now show how the satisfiability problem SAT(A, C) re-
lates to reasoning tasks for XML with data.

6.1 XML constraints

As we already noticed, keys and inclusion constraints, stud-
ied extensively in the XML context (and included in the stan-
dards) are modeled with set and linear constraints. A simple
key, saying that data values determine a-nodes, is a linear
constraint xa =

∑
a∈S zS , and an inclusion constraint say-

ing that data values of a-nodes occur as data values of b-
nodes is V (a) ∩ V (b) = ∅. Similarly, one can handle denial
constraints, often used in dealing with inconsistent data. An
example of a denial constraint is saying that the same data
value cannot appear in both an a-node and a b-node; this is
expressible as V (a) ∩ V (b) 6= ∅.

Our result implies that the satisfiability problem for key, in-
clusion, and denial constraints wrt an automaton is solvable
in NP. Note however that to express a key as a linear con-
straint one needs exponentially many (in Σ) variables zS ,
while we can compactly encode keys simply by letters in-
volved in them, requiring log |Σ| bits instead. It turns out
that this does not change the bound for keys and inclusion
constraints; our proof can easily be adjusted to show:

COROLLARY 6.1. The satisfiability problem for key (en-
coded by log |Σ| bits) and inclusion constraints wrt an au-
tomaton is solvable in NP.

PROOF. Let A be an automaton over the alphabet Σ
and let C be a collection of keys and inclusion constraints,

23

where elements of C are written as V (a) 7→ a (for keys)
and V (a) ⊆ V (b) (for inclusion constraints). Let Σ =
{a1, . . . , an}.

Our algorithm to decide whether there exists a data tree t ∈
L(A) such that t |= C works as follows.

1. Construct the existential Presburger formula
ϕA(x1, . . . , xk) for the automaton A according
to Lemma 4.2.

2. Let ϕC(x1, . . . , xk) be the formula: ∃v1 · · · ∃vk∧
i

vi ≤ xi ∧
∧
i

(vi = 0↔ xi = 0)

∧(∧
V (ai)7→ai∈C

vi = xi

)
∧
(∧
V (ai)⊆V (aj)∈C

vi ≤ vj
)
.

3. Let ϕA,C(x1, . . . , xk) := ϕA(x1, . . . , xk) ∧
ϕC(x1, . . . , xk).
Test the satisfiability of ϕA,C(x1, . . . , xk).

Note that here we do not use the variables zS’s.

We claim that for each data tree t, t ∈ L(A) and t |= C if
and only if ϕA,C(#a1(t), . . . ,#ak(t)) holds.

We start with the “only if” part. Let t ∈ L(A) and t |= C.
That ϕA(#a1(t), . . . ,#ak(t)) follows from Lemma 4.2. To
show that ϕC(#a1(t), . . . ,#ak(t)) holds, we let the wit-
nesses for each vi as the cardinality |Vt(ai)|, the number of
data values found in the ai-nodes in t. Then, it is straightfor-
ward to show that ϕC(#a1(t), . . . ,#ak(t)) holds.

Now we show the “if” part. Suppose ϕA,C(n1, . . . , nk)
holds. By Lemma 4.2, there exists a tree t ∈ L(A) such
that for each ai ∈ Σ, ni = #ai(t). Let (m1, . . . ,mk) be
the witness for (v1, . . . , vk) that ϕC(x1, . . . , xk) holds. We
assign the values 1, . . . ,mi as data values for the ai-nodes
in t such that Vt(ai) = {1, . . . ,mi}, for each ai ∈ Σ. Such
assignment is always possible since mi ≤ #ai(t). That
the keys and inclusion constraints in C are satisfied follows
immediately from the constraints vi = xi and vi ≤ vj , re-
spectively.

This extends the results of [2, 13] which showed an NP
bound for keys and a special form of inclusions (whose right-
hand-sides are keys as well); but in addition our proof is
much more streamlined compared to the proofs there.

Furthermore, it is easy to extend these results to more com-
plex constraints studied in the XML context. For example,
consider key constraints given by regular expressions over
Σ. Such a constraint V (e) → e, for a regular expression e,
is satisfied in a tree t if nodes reachable from the root by fol-
lowing a path from e are uniquely determined by their data
values. These constraints, common in XML schema speci-
fications, are easily described by our formalism: one simply
marks the nodes with states of an automaton for e, and uses
the tree automaton A to ensure that the marking is correct.

6.2 Two-variable logic

As mentioned already, out main result does not follow
from the decidability of the two-variable existential monadic
second-order logic over data trees [6]. We now shall make
precise the relationship between the two formalisms. When
we talk about logics over data trees, we view them as struc-
tures

t = 〈D,E↓, E→, {a(·)}a∈Σ,∼〉, (2)

which extend unranked trees with the binary predicate ∼ in-
terpreted as v ∼ v′ ⇔ valt(v) = valt(v′).

The sentences of the logic ∃MSO2 are of the form
∃X1 . . . ∃Xm ψ, where ψ is an FO formula over the vocab-
ulary extended with the unary predicates X1, . . . , Xm that
uses only two variables, x and y. Every MSO sentence that
does not mention data values is equivalent to an ∃MSO2 sen-
tence. Other examples are keys (∀x∀y (a(x) ∧ a(y) ∧ x ∼
y → x = y)), inclusion constraints (∀x∃y (a(x) →
b(y)∧x ∼ y)), and denial constraints (∀x∀y (a(x)∧b(y)→
¬(x ∼ y))).

It was shown in [6] that every ∃MSO2 formula over data
trees is equivalent to a formula

∃X1 . . . ∃Xk(χ ∧
∧
i

ϕi ∧
∧
j

ψj)

where

1. χ describes a behavior of an automaton that can make
“local” data comparisons (i.e., whether a data value in
a node is equal/not equal the data value of its parent,
left- or right-sibling);

2. each ϕi is of the form ∀x∀y(α(x) ∧ α(y) ∧ x ∼ y →
x = y), where α is a conjunction of labeling predi-
cates, Xk’s, and their negations; and

3. each ψj is of the form ∀x∃y α(x)→ (x ∼ y ∧α′(y)),
with α, α′ as in item 2.

If we extend the alphabet to Σ × 2k so that each label also
specifies the family of the Xi’s the node belongs to, then
formulae in items 2 and 3 can be encoded by constraints.

• Formulae in item 2 become conjunctions of keys and
denial constraints over the extended alphabet. That is,
it becomes a formula

∀x∀y(
∨
a∈Σ′

a(x) ∧
∨
a∈Σ′

a(y) ∧ x ∼ y → x = y),

for some Σ′ ⊆ Σ× 2k, which is equivalent to:

– a is a key for each a ∈ Σ′, and
– V (a) ∩ V (b) = ∅, for every a, b ∈ Σ′ and a 6= b.

• Formulae in item 3 become

∀x∃y(
∨
a∈Σ′

a(x)→ x ∼ y ∧
∨
a∈Σ′′

a(y)),

24

for some Σ′,Σ′′ ⊆ Σ× 2k, which is equivalent to gen-
eralized inclusion constraints of the form⋃

a∈Σ′

V (a) ⊆
⋃
b∈Σ′′

V (b),

or, equivalently
⋃
a∈Σ′ V (a) ∩

⋂
b∈Σ′′ V (b) = ∅.

Hence, [6] and our results imply the following.

COROLLARY 6.2. • (corollary of [6]) Satisfiability
of ∃MSO2 formulae over data trees is equivalent to
satisfiability of keys, denial constraints, and general-
ized inclusions constraints with respect to an automa-
ton with local data comparisons.
• (corollary of Theorem 4.1) Satisfiability of keys, denial

constraints, and generalized inclusions constraints
with respect to an automaton is solvable in NP.

While our main result and the decidability of ∃MSO2 are in-
comparable, in essence we subsume ∃MSO2 minus the local
data comparison constraints. Note that our proof is concep-
tually much simpler than the 30+ page proof of [6] that goes
via more than a dozen reductions. Unlike [6], we fail to cap-
ture local data comparisons in automata; on the other hand,
we add many properties (e.g., linear constraints) which are
not even expressible in MSO.

7. CONCISE REPRESENTATIONS OF
THE SATISFIABILITY PROBLEM

Recall that we measure the size of the linear data constraints
Av̄ ≥ b as the sum of sizes of A and b, with numbers repre-
sented in binary.

This could be a rather inefficient way of representing lin-
ear constraints. Since the number of variables zS in the
constraints is 2|Σ|−1 − 1, we may achieve a more compact
representation if only few of those variables are used in the
constraints. Namely, we can safely disregard all the zero-
columns in A, and keep only the columns that correspond
to variables actually used in constraints. This representa-
tion can be exponentially smaller than the full representation
of the constraints (since Σ is a part of the input, we cannot
achieve a smaller reduction even if there are no linear con-
straints).

We call this a concise representation, and consider the cor-
responding CONCISE-SAT(A, C): it is the same as the
SAT(A, C) problem before, except we use a concise rep-
resentation of linear constraints.

It is a very common phenomenon in complexity theory
that going to concise representation increases the complex-
ity by an exponent; in fact doing so is a common way of
getting NEXPTIME-complete problems from NP-complete
problems. Of course given a concise representation of con-
straints, we can always convert it into the usual represen-
tation in at most exponential time, and then apply Theo-
rem 4.1. This immediately tells us that CONCISE-SAT is in

NEXPTIME, and it is tempting to think that CONCISE-SAT
is NEXPTIME-complete.

This, however, is not the case. Quite surprisingly, the con-
cise representation does not increase the complexity of the
problem. To show this, we need to design the decision pro-
cedure in a much more careful way.

THEOREM 7.1. The problem CONCISE-SAT(A, C) is
solvable in NP.

We now indicate where the proof of Theorem 4.1 falls short
when we have concise representations. First, the transfor-
mation from set to linear constraints is polynomial in the
number of variables zS , i.e., O(2|Σ|). This did not cause
problems before, but now we may not have all the variables
zS , so the input may be of the size O(|Σ|k) for a fixed k.
Then the algorithm for eliminating set constraints becomes
exponential. Second, the introduction of new variables va
for
∑
a∈S⊆Σ zS used in the proof may likewise induce an

exponential blow-up when considering concise representa-
tion.

The main aim is to show that there exists a subset Z ⊆ 2Σ

of polynomial size such that there exists a tree t ∈ L(A)
and t |= C iff there exists a tree t′ ∈ L(A) and t′ |= C and
[S]t′ = ∅, for all S /∈ Z . For this we introduce another
extension of the ILP problem.

We give the sketch of the proof in the following subsection.
The full proof will be available in the full version.

7.1 Sketch of Proof of Theorem 7.1

Let Σ be a finite alphabet and C is a collection of set and
linear constraints. In the following we say that a term τ ∈ C
if and only if C contains a set constraint of the form τ = ∅ or
τ 6= ∅. Similarly we say that a variable zS ∈ C if and only if
there is a linear data constraint in C that uses zS . We denote
by Ψlin(C) the set of linear data constraints found in C.

DEFINITION 7.2 (C-FUNCTIONS). Given an alphabet
Σ and a collection C of data constraints, a C-function is a
function F from Σ ∪ {τ |τ ∈ C} ∪ { zS |zS ∈ C} to 2Σ such
that:

• for each a ∈ Σ, either F(a) = ∅ or a ∈ F(a);

• for each zS ∈ C, either F(zS) = ∅ or F(zS) = S;

• for each constraint τ 6= ∅ ∈ C, we have F(τ) ∈ S(τ);

• for each constraint τ = ∅ ∈ C, we have F(τ) = ∅ and
Im(F) ∩ S(τ) = ∅;

where Im(F) denotes the image of F , and S(τ) was defined
in the proof of Proposition 8.4.

The intuition of F is such that Im(F) is the desired set Z .
Given a collection C of data constraints and a C-function F ,
we call Ψ(C,F) the system obtained from C by adding the
following constraints to Ψlin(C):

25

zS ≥ 1 for each S ∈ Im(F)− ∅
xa = 0 for each a ∈ Σ such that F(a) = ∅
zS = 0 for each zS ∈ C such that F(zS) = ∅∑

a∈S∈Im(F)−∅

zS ≤ xa for each a ∈ Σ;

Notice that the size of Ψ(C,F) is polynomial in the size of
both C and the alphabet Σ.

In the rest of the proof, all instances of ILP we refer to are
instances over the variables xa, zS , va.

DEFINITION 7.3 (ILP UNDER C-CONDITION). An in-
stance of ILP problem under C-condition is given by an in-
stance Ψ of ILP together with a collection C of data con-
straints. We say that it has a non-negative solution if there
exists a C-function F such that the instance of ILP given by
Ψ and Ψ(F , C) has a non-negative solution.

We shall now state the two main lemmas from which Theo-
rem 7.1 follows immediately. The proofs will be available in
the full version.

LEMMA 7.4. Checking whether an instance of ILP with
C-condition has a non-negative solution can be done in NP.

LEMMA 7.5. Given an automaton A and a set C of data
constraints in concise representation, one can construct, in
polynomial time, an instance of ILP with C-condition so that
there exists a tree t ∈ L(A) such that t |= C iff the instance
of ILP with C-conditions has a non-negative solution.

8. CONVERTING AUTOMATA TO PRES-
BURGER FORMULA

To make our proof completely algorithmic, in this section
we spell out the translation from automata to a Presburger
formula defining Parikh images of trees, used as a black box
(Lemma 4.2) in the proof of Theorem 4.1. Moreover, we
also present an algorithm, that given a solution to the Pres-
burger formula, constructs a tree accepted by the original
automaton.

We recall that the Parikh image of a tree t over
Σ = {al, . . . , an} is an n-tuple Parikh(t) =
(#a1(t), . . . ,#an(t)), and the Parikh image of a tree
language L is Parikh(L) = {Parikh(t) | t ∈ L} ⊆ Nn.

PROPOSITION 8.1. There is a quadratic time algorithm
that, given an unranked tree automaton A over Σ =
{al, . . . , an}, returns a formula

ϕA(x1, . . . , xn) = ∃ȳ α(x̄, ȳ)

of at most quadratic size such that

• if t ∈ L(A), then ϕA(#a1(t), . . . ,#an(t)) holds; and
conversely,

• if ϕA(k1, . . . , kn) holds, then there exists a tree t ∈
L(A) such that #a1(t) = k1, . . . ,#an(t) = kn

and α is a conjunction of formulae of the form:

• A(x̄, ȳ) ≥ b, where all the entries of A and b are either
0 or 1 or −1;
• formulae (w = 0 ∨ u ≥ 1) where w, u are variables

among x̄, ȳ; and
• disjunctions

∨
i(wi ≥ 1∧ui = 1), wherewi’s and ui’s

are variables among x̄, ȳ.

Moreover, from every solution (k1, . . . , kn) and witness
tuple m̄ such that α(k1, . . . , kn, m̄) holds, we can con-
struct effectively a tree t ∈ L(A) such that Parikh(t) =
(k1, . . . , kn).

8.1 Proof of Proposition 8.1

The general outline is as follows: we first replace an au-
tomaton by an extended DTD (Proposition 8.2), and then by
a DTD of a special form, which we call simple DTD (Propo-
sition 8.3). We then show the construction of the Presburger
formula for such simple DTDs (Proposition 8.4). The first
two reductions are standard. The crucial one is the last one.

Recall that an extended document type definition (EDTD)
is a context-free grammar in which the right-hand sides of
productions can be regular expressions. Formally, an ex-
tended DTD over the alphabet (Γ ∪ Λ) of nonterminals Γ,
with a distinguished symbol r for the root, and terminals Λ
is G = (Γ,Λ,∆), where ∆ assigns to each symbol a ∈ Γ a
regular expression over (Γ∪Λ)−{r}. The set of trees of G
is denoted by T (G). That is, an unranked tree t is in T (G)
if its root is labeled r, for each node v labeled a ∈ Γ with
children v · 0, . . . , v · (n − 1), the word of their labels, i.e.,
`abt(v · 0) · · · `abt(v · (n− 1)), is in the language of ∆(a),
and each node labeled with b ∈ Λ is a leaf.

The first reduction is stated as a proposition below. The
proof will be available in the full version.

PROPOSITION 8.2. Given an automaton A with the set
Q of states over alphabet Σ, one can construct, in quadratic
time, an extended DTD G = (Γ,Σ − {r},∆) with Γ =
Q× Σ ∪ {r} such that the following holds.

1. For all tree t ∈ L(A), there exists a tree t′ ∈ T (G)
such that for all a ∈ Σ, #a(t) = #a(t′).

2. Vice versa, for all tree t′ ∈ T (G), there exists a tree
t ∈ L(A) such that for all a ∈ Σ, #a(t) = #a(t′).

Moreover, every tree t′ ∈ T (G) can be converted effectively
into a tree t ∈ L(A).

Next, we define simple DTDs as G = (Γ,Λ,∆) with a des-
ignated terminal symbol λ ∈ Λ. In them, ∆(a) is one of the
following: b, or bc, or b|c, or λ, where b, c ∈ (Γ ∪Λ)− {r}.
We denote the set of parse trees of G by T (G). Note that
trees in T (G) can have only unary or binary branching.
We make the standard assumption that all symbols in Γ are
reachable from the root symbol r. If a CFG has unreach-
able symbols, they can be eliminated without affecting the
set T (G).

26

The second reduction is stated as proposition below. The
proof will be available in the full version.

PROPOSITION 8.3. Given an extended DTD G =
(Γ,Λ,∆), one can construct, in linear time, a simple DTD
G = (Γ′,Λ ∪ {λ},∆′) such that the following holds.

1. For all tree t ∈ T (G), there exists a tree t′ ∈ T (G)
such that for all a ∈ Λ, #a(t) = #a(t′).

2. Vice versa, for all tree t′ ∈ T (G), there exists a tree
t ∈ T (G) such that for all a ∈ Λ, #a(t) = #a(t′).

Moreover, every tree t′ ∈ T (G) can be converted effectively
into the tree t ∈ T (G).

The last reduction is stated as proposition below.

PROPOSITION 8.4. Given a simple DTD G = (Γ,Λ ∪
{λ},∆), where Λ = {a1, . . . , an}, one can con-
struct, in linear time, an existential Presburger formula
ϕG(x1, . . . , xn) := ∃ȳψ(x̄, ȳ) such that for every tree t,
t ∈ T (G) iff ϕG(#a1(t), . . . ,#an(t)) holds.
Moreover, from every solution (k1, . . . , kn) and m̄ such that
ψ(k1, . . . , kn, m̄) holds, we can construct effectively a tree
t ∈ T (G) such that Parikh(t) = (k1, . . . , kn).

We devote the rest of this subsection to the proof of Propo-
sition 8.4. We need a new notation here. For a tree t
over the alphabet Γ ∪ Λ ∪ {λ}, we define a directed graph
Gt = (Vt, Et), where the set of vertices is Vt = Γ∪Λ∪{λ};
and for every a, b ∈ Γ∪Λ∪{λ}, there is an edge (a, b) ∈ Et
if there exists a node in t labeled with b and whose parent is
labeled with a. If a symbol a does not appear in the tree t,
then it is an isolated vertex in Gt.

The main idea is to prove that a tree t ∈ T (G) iff the follow-
ing quantities:

1. na = #a(t), for each a ∈ Γ ∪ Λ ∪ {λ};

2. na↓b is the number of b-nodes whose parents in t is
labeled with a;

3. δa is the length of some path from the root r to the
symbol a in the graph Gt,

satisfy the following relations:

• na =
∑
b∈Γ∪Λ nb↓a, for each a ∈ Γ ∪ Λ ∪ {λ}.

• – na = na↓b + na↓c, if ∆(a) = b|c.
– na = na↓b = na↓c, if ∆(a) = bc,
– na = na↓b, if ∆(a) = b,

• δr = 0;

• for each a ∈ Γ ∪ Λ ∪ {λ} and a 6= r,

δa = −1↔ na = 0

and ∨
nb↓a 6=0 and δb 6=−1

δa = δb + 1

Note that by default, we set δa = −1, if there is no path from
the root to the symbol a in the graph Gt, which means that
the symbol a does not appear in t.

Then, the construction of the desired formula ϕG is straight-
forward. It uses the variables xa’s, ya’s and xa↓b’s, for all
a ∈ Γ ∪ Λ and b appears in ∆(a). The intended meaning of
each variable is as follows: xa is for na; xa↓b is for na↓b; ya
is for δa.

The formula ϕG is the conjunction of the following:

• xr = 1;

• xa =
∑
b∈Γ∪Λ xb↓a for each a ∈ Γ ∪ Λ;

• xa = xa↓b = xa↓c for each ∆(a) = bc;

• xa = xa↓b + xa↓c for each ∆(a) = b|c;

• xa = xa↓b for each ∆(a) = b;

• yr = 0;

• for each a ∈ Γ ∪ Λ ∪ {λ},
ya = −1↔ xa = 0

∨∨
a appears in ∆(b)

ya = yb + 1 ∧ xb↓a 6= 0 ∧ yb 6= −1.

The total number of variables xa’s and xa↓b’s and ya’s is
linear in the size of ∆. We do not need the variables xa↓b’s,
if b does not appear in ∆(a).

By existentially quantifying all the variables xa↓b’s and ya’s,
we can then view ϕG as an existential Presburger formula
with xa’s as the free variables.

Proposition 8.4 follows immediately from the lemma below.

LEMMA 8.5. Let G = (Γ,Λ,∆) be a simple CFG. The
formula ϕG(n̄) holds – where (n̄) = (na)a∈Σ and the wit-
nesses for xa↓b’s and ya’s are: xa↓b = na↓b ∈ N, and
ya = da ∈ N, for a, b ∈ Γ ∪ Λ – if and only if there ex-
ists a tree t ∈ T (G) such that

(1) na = #a(t) for each a ∈ Γ ∪ Λ,
(2) na↓b is the number of b-nodes whose parents are a-

nodes, and
(3) da is the length of some path from the root r to the

symbol a in the graph Gt.

PROOF. From the definition of Ψ(G), the “if” part is im-
mediate. We prove the other implication. Let n̄ = (na)a∈Σ

such that ϕG(n̄) holds. Let na↓b be the witness for xa↓b for
a, b ∈ Γ ∪ Λ, and da for ya, for a ∈ Γ ∪ Λ. Let G̃ = (Ṽ , Ẽ)

be a directed graph where the set Ṽ of nodes is Γ ∪ Λ and
the set Ẽ of edges is defined as: (a, b) ∈ Ẽ iff na↓b 6= 0.

We shall construct a tree t ∈ T (G) that satisfies (1) and
(2) and that Gt = G̃. First, we construct a directed graph
G = (V,E) with the following properties.

27

(i) For each a ∈ Γ∪Λ, there are exactly na nodes labeled
a.

(ii) For each a, b ∈ Γ ∪ Λ, there are exactly na↓b edges
going from an a-node to a b-node.

(iii) There is exactly one node labeled r and it has no in-
coming edges (the root node).

(iv) All nodes, except the root node, have exactly one in-
coming edge.

(v) For all nodes, outgoing edges conform to ∆. That is,
for each a ∈ Γ, the outgoing edges from a-nodes are as
follows: if ∆(a) = b ·c, there are exactly two outgoing
edges: one to a b-node and one to a c-node; if ∆(a) =
b|c, there is exactly one outgoing edge going to a node
labeled by b or c; and if ∆(a) = b, there is exactly one
outgoing edge that goes to a b-node.

Procedure 1 shows the construction of the graph G. Since
nr = 1, there is only one root node in G. The steps 7, 8,
12, 13 and 17 of the procedure are possible due to the equal-
ity xb =

∑
d∈Γ∪Λ xd↓b in Ψ(G). Properties (i)-(v) follow

directly from the construction and the constraints given in
Ψ(G).

Procedure 1 Construct Graph G = (V,E)

1: The set V consists of
∑

a∈Γ∪Λ na nodes.
For each a ∈ Γ ∪ Λ, we label na nodes with a.

2: E := ∅.
3: for all a ∈ Γ do
4: Let w1, . . . , wna be the a-nodes.
5: if ∆(a) = b · c then
6: Let n = na = na↓b = na↓c.
7: Pick a sequence u1, . . . , un of n distinct b-nodes with no

incoming edges in E.
8: Pick a sequence v1, . . . , vn of n distinct c-nodes with no

incoming edges in E.
9: E := E ∪ {(wi, ui), (wi, vi)}i=1,...,n.

10: end if
11: if ∆(a) = b ∪ c then
12: Pick a sequence u1, . . . , una↓b of na↓b distinct b-nodes

with no incoming edges in E.
13: Pick a sequence v1, . . . , vna↓c of na↓c distinct c-nodes

with no incoming edges in E.
14: E := E ∪ {(wi, ui)}i=1,...,na↓b ∪

{(wna↓b+j , vj)}j=1,...,na↓c .
15: end if
16: if ∆(a) = b then
17: Pick a sequence u1, . . . , una↓b of na↓b distinct b-nodes

with no incoming edges in E.
18: E := E ∪ {(wi, ui)}i=1,...,na↓b .
19: end if
20: end for

If G were a tree, we would be done: membership in T (G)
would follow from (v), property (1) from (i), and property
(2) from (ii) and (v). Therefore, to finish the proof of Lemma
8.5, we show Claim 8.6 and Claim 8.8 below.

CLAIM 8.6. A connected directed graphG = (V,E) that
satisfies (i)-(v) is a tree.

PROOF. From Properties (iii) and (iv), we can see that the
graph G satisfies the equation |E| = |V | − 1. If we for-
get about orientation, this equation implies that a connected

graph is a tree [35]. The root (the r-labeled node) gives the
tree a unique orientation; we must show that it is the same
one as the one inG. For this, consider any path from the root
to a leaf in the tree, and suppose one edge has an orientation
different from G. Let (u, v) be the first such edge; that is, in
G we have an edge (v, u). This cannot be the first edge of
the path, as the root has no incoming edge inG. Hence u has
a parent u′ in the oriented tree, and the edge (u′, u) has the
same orientation in both the oriented tree and in G. But this
tells us that u has two incoming edges, which contradicts
(iv). 2

We shall use Claim 8.7 to prove Claim 8.8.

CLAIM 8.7. In the directed graph G̃, a node a is con-
nected from the root symbol r iff da 6= −1, or equivalently,
na 6= 0. Moreover, da is the length of some path from the
root symbol r to a, if da 6= −1.

PROOF. The proof is by straightforward induction on the
value da. The base case, da = 0, is trivial as it means a = r.
The induction hypothesis is that for each node a with da =
k 6= −1 is connected from the root symbol r by a path of
length k.

Suppose b is a node such that db = k + 1. By the construc-
tion of ϕG , there exists a node a such that na↓b 6= 0 and
da = k. By the induction hypothesis, a is connected from
the root symbol r with a path of length k, and by the con-
struction of G̃, there exists an edge from a to b. Thus, our
claim holds.

CLAIM 8.8. From a directed graph G = (V,E) that
satisfies (i)-(v), one can compute in polynomial time a con-
nected directed graphG′ = (V,E′) that also satisfies (i)-(v).

PROOF. The idea is to change a few edges in G in or-
der to connect all components to the connected compo-
nent that contains the r-node. We first observe the follow-
ing. Suppose G consists of several connected components:
G0, G1, . . . , Gl, where G0 is the component that contains
the root node. Then, there exist a node u in G0 and a node
v in one of G1, . . . , Gl such that u and v are labeled by the
same symbol from Σ.

By Claim 8.7, if da 6= −1 (thus, na 6= 0), the symbol a
is connected to the root symbol r in G̃, and that da is the
length of some path from r to a in G̃. So, for every sym-
bol a that appears in G, there exists a sequence of symbols
b0, b1, . . . , bj , respectively, where

• b0 = r,

• bl = a, and

• for each i = 0, . . . , j − 1, nbi↓bi+1
6= 0.

If the symbol a does not appear in G0, then there are a node
u in G0 and a node v in one of G1, . . . , Gl such that both u
and v are labeled with the same symbol bi ∈ {b1, . . . , bl}.

28

Let G1 be the component that contains that node v. By (v),
the node v has as many children as u (and it has at least one
child as it is not labeled by λ).

If u and v have one child each, then letw1 andw2 be their re-
spective children. We can then connectG0 andG1 by replac-
ing the edges (u,w1) and (v, w2) with (u,w2) and (v, w1).
If u and v have two children each, then letw1, w

′
1 andw2, w

′
2

be their respective children. We can then connectG0 andG1

by replacing the edges (u,w1), (u,w′1) and (v, w2), (v, w′2)
with (u,w2), (u,w′2) and (v, w1), (v, w′1).

It is straightforward to see that after such edge replacement
the graph still satisfies properties (i)-(v), and each edge re-
placement reduces the number of connected components, so
eventually this algorithm produces a tree t that satisfies (i)-
(v). Moreover, the numbers na↓b do not change during the
process, thus, Gt = G̃.

This completes the proof of Lemma 8.5. 2

9. CONCLUSIONS

We have studied the consistency problem of set and linear
constraints with respect to regular tree languages given by
an automata. We prove that this problem is solvable in NP
(the hardness result has been known even for simple keys
and inclusion constraints [13]).

At least as important as the result itself, we provide an orig-
inal and modular proof using simple proof techniques as in
particular linear integer programming. This unable us to ex-
tend the result to more complicated path constraints. Sur-
prisingly, we can use the same techniques to show that the
complexity of the problem remains NP even when consider-
ing concise representation of the constraints.

In terms of expressivity, our formalism subsumes many in-
teresting formalism such as keys, inclusions and denial con-
straints. Our formalism is also closely related to the exten-
sion of ∃MSO2 presented in [6], as it subsumes ∃MSO2 mi-
nus the local data comparison constraints. In addition, it is
also able to express many non-MSO properties.

Acknowledgment. We thank the anonymous referees for
their comments. This work was supported by the FET-Open
project FoX (Foundations of XML), grant agreement FP7-
ICT-233599, and by EPSRC grant G049165. This work was
done when the first author was at the University of Edin-
burgh.

10. REFERENCES

[1] N. Alon, T. Milo, F. Neven, D. Suciu, V. Vianu. XML with data
values: typechecking revisited. J. Comput. Syst. Sci. 66(4): 688-727
(2003).

[2] M. Arenas, W. Fan, L. Libkin. On the complexity of verifying
consistency of XML specifications. SIAM J. Comput. 38(3): 841-880
(2008).

[3] M. Arenas, L. Libkin. XML data exchange: consistency and query
answering. J. ACM 55(2): (2008).

[4] H. Björklund, M. Bojanczyk. Bounded depth data trees. In
ICALP’07, pages 862–874.

[5] H. Björklund, W. Martens, T. Schwentick. Optimizing conjunctive
queries over trees using schema information. MFCS’08, pages
132–143.

[6] M. Bojanczyk, A. Muscholl, T. Schwentick, L. Segoufin.
Two-variable logic on data trees and XML reasoning. J. ACM 56(3):
(2009).

[7] M. Bojanczyk, C. David, A. Muscholl, T. Schwentick, L. Segoufin.
Two-variable logic on words with data. In LICS’06, pages 7-16.

[8] P. Bouyer, A. Petit, D. Thérien. An algebraic characterization of data
and timed languages. CONCUR’01, pages 248–261.

[9] D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi.
Regular XPath: constraints, query containment and view-based
answering for XML documents. In LID’08, 2008.

[10] H. Comon, et al. Tree Automata: Techniques and Applications.
October 2007.

[11] S. Dal-Zilio, D. Lugiez, C. Meyssonnier. A logic you can count on.
POPL 2004, 135–146.

[12] S. Demri, R. Lazic. LTL with the freeze quantifier and register
automata. ACM TOCL 10(3): (2009).

[13] W. Fan, L. Libkin. On XML integrity constraints in the presence of
DTDs. J. ACM 49(3): 368–406 (2002).

[14] D. Figueira. Satisfiability of downward XPath with data equality
tests. PODS’09, 197-206.

[15] R. Givan, D. A. McAllester, C. Witty, and D. Kozen. Tarskian set
constraints. Inform. and Comput., 174 (2002), pp. 105–131.

[16] M. Jurdzinski, R. Lazic. Alternation-free modal mu-calculus for data
trees. In LICS’07, pages 131–140.

[17] M. Kaminski, T. Tan. Tree automata over infinite alphabets. In
Pillars of Computer Science, 2008, pages 386–423.

[18] E. Kopczynski, A. Widjaja To. Parikh Images of Grammars:
Complexity and Applications. In LICS 2010.

[19] L. Libkin, C. Sirangelo. Reasoning about XML with temporal logics
and automata. J. Applied Logic, 8:2, 210–232 (2010).

[20] S. Malik and L. Zhang. Boolean satisfiability: from theoretical
hardness to practical success. CACM 52(8), 76–82, 2009.

[21] W. Martens, F. Neven, T. Schwentick. Simple off the shelf
abstractions for XML schema. SIGMOD Record 36(3): 15-22 (2007).

[22] T. Milo, D. Suciu, V. Vianu. Typechecking for XML transformers. J.
Comput. Syst. Sci. 66(1): 66-97 (2003).

[23] F. Neven. Automata, logic, and XML. In CSL 2002, pages 2–26.
[24] F. Neven, Th. Schwentick. Query automata over finite trees. Theor.

Comput. Sci. 275(1-2):633-674 (2002).
[25] F. Neven, Th. Schwentick, V. Vianu. Towards regular languages over

infinite alphabets. MFCS 2001, pages 560–572.
[26] L. Pacholski, A. Podelski. Set constraints: a pearl in research on

constraints. In CP’97, pages 549–562.
[27] C. Papadimitriou. On the complexity of integer programming. J.

ACM, 28 (1981), 765–768.
[28] A. Robinson, A. Voronkov, eds. Handbook of Automated Reasoning.

The MIT Press, 2001.
[29] Th. Schwentick. XPath query containment. SIGMOD Record 33(1):

101-109 (2004).
[30] H. Seidl, Th. Schwentick, A. Muscholl. Numerical document

queries. PODS’03, 155–166.
[31] H. Seidl, Th. Schwentick, A. Muscholl, P. Habermehl. Counting in

trees for free. In ICALP 2004, pages 1136–1149.
[32] J.W. Thatcher. Characterizing derivation trees of context-free

grammars through a generalization of finite automata theory. JCSS 1
(1967), 317–322.

[33] K. N. Verma, H. Seidl, T. Schwentick On the Complexity of
Equational Horn Clauses. In CADE 2005, pages 337–352.

[34] V. Vianu. A web Odyssey: from Codd to XML. In PODS’01, pages
1–15.

[35] D. West. Introduction to Graph Theory. Prentice Hall, 2001.

29

