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ABSTRACT
Today, several database applications call for the generation
of random graphs. A fundamental, versatile random graph
model adopted for that purpose is the Erdős-Rényi Γv,p

model. This model can be used for directed, undirected, and
multipartite graphs, with and without self-loops; it induces
algorithms for both graph generation and sampling, hence
is useful not only in applications necessitating the genera-
tion of random structures but also for simulation, sampling
and in randomized algorithms. However, the commonly ad-
vocated algorithm for random graph generation under this
model performs poorly when generating large graphs, and
fails to make use of the parallel processing capabilities of
modern hardware. In this paper, we propose PPreZER, an
alternative, data parallel algorithm for random graph gen-
eration under the Erdős-Rényi model, designed and imple-
mented in a graphics processing unit (GPU). We are led to
this chief contribution of ours via a succession of seven in-
termediary algorithms, both sequential and parallel. Our
extensive experimental study shows an average speedup of
19 for PPreZER with respect to the baseline algorithm.

Categories and Subject Descriptors
E.1 [Data Structures]: Graphs and networks

General Terms
Algorithms, Design, Experimentation

Keywords
Erdős-Rényi, Gilbert, random graphs, parallel algorithm

1. INTRODUCTION
Several data management applications call for the gener-

ation of random graphs. For example, such generation is
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needed for the synthesis of data sets aiming to evaluate ef-
ficiency and effectiveness of algorithms [2], for simulating
processes [21], and at the heart of randomized algorithms
[34, 31]. Furthermore, a random-graph generation process
can be leveraged for sampling. Thanks to the versatility of
graphs as data representation model, random graph genera-
tion processes are also relevant in applications ranging from
physics and biology to sociology.
Two simple, elegant, and general mathematical models

are instrumental in random graph generation. The former,
noted1 as Γv,e, chooses a graph uniformly at random from
the set of graphs with v vertices and e edges. The latter,
noted as Γv,p, chooses a graph uniformly at random from the
set of graphs with v vertices where each edge has the same
independent probability p to exist. Paul Erdős and Alfréd
Rényi proposed the Γv,e model [8], while E. N. Gilbert pro-
posed, at the same time, the Γv,p model [11]. Nevertheless,
both are commonly referred to as Erdős-Rényi models.
To date, this model has been widely utilized in many

fields. Examples include communication engineering [6, 10,
27], biology [28, 30] and social network studies [9, 19, 32].
In [6], the authors study the dissemination of probabilis-
tic information in random graphs. They propose a generic
method and apply it in Erdős-Rényi graphs to get upper and
lower bounds for the probability of the global outreach. The
authors of [10] investigate the dispersal of viruses and worms
in Erdős-Rényi networks because its epidemic dispersing be-
havior determines the dispersing behavior of graphs follow-
ing a power law. In [27], uniform random graphs based on
the Erdős-Rényi model are utilized to explore data search
and replication in peer-to-peer networks. They conclude
that uniform random graphs perform the best. In the field of
biology, the Erdős-Rényi model is accepted as a basic model
to study biological networks; [28] assesses the similarity of
the topologies between biological regulatory networks and
monotone systems, and uses the Erdős-Rényi model is used
as a model to compare against, when studying the proper-
ties of loops in three intracellular regulatory networks. In
[30] this model is again applied to explore how activating
and inhibiting connections influence network dynamics. The
Erdős-Rényi model is also used as a classic model in social
studies [19]. In [9], the heritability in degree and transitiv-
ity is tested on Erdős-Rényi networks together with other
models in order to investigate genetic variation in human
social networks. In [32], a class of models that are general-

1We adopt the original notation of [8]. Some other authors
write G(v, e) or Gv,e. Similarly, we write Γv,p where some
other authors write G(v, p) or Gv,p.

331



izations of the Erdős-Rényi model is analyzed and applied to
model social networks. Besides, these models are also used
for sampling. Namely, Γv,e is a uniform random sampling of
e elements from a set of v. Γv,p is a fixed, independent, and
equiprobable random sampling of edges. Intuitively, gen-
eration corresponds to sampling the complete graph, while
sampling usually chooses elements from an existing graph
or data set [40]. Still, a sampling process can be effectively
simulated using the random generation process as a com-
ponent. These two models can be easily adapted to model
directed and undirected graphs with and without self loops,
as well as bi- and multipartite graphs.
Despite the omnipresence of random graphs as a data rep-

resentation tool, previous research has not paid due atten-
tion to the question of efficiency in random graph gener-
ation. A näıve implementation of the basic Erdős-Rényi
graph generation process, as given in the Γv,p model, does
not scale well to very large graphs. In this paper we pro-
pose PPreZER, a novel, parallel algorithm for random graph
generation under the Γv,p model

2. For the sake of presenta-
tion, we outline our full algorithm via a progression of seven
algorithmic proposals, bringing in one additional feature at
each step. Each intermediate step in this progression forms
a random graph generation algorithm in its own right, and
the effect of each additional feature can be evaluated via a
comparison of the algorithm that includes it to its prede-
cessors. All our algorithms can be tuned to a specific type
of graph (directed, undirected, with or without self-loops,
multipartite) by an orthogonal decoding function.
We first propose a succession of four sequential algorithms.

Our first algorithm, ER, is the näıve implementation of the
random process of Gilbert’s model. In our second algorithm,
ZER, we exploit the availability of an analytical formula for
the expected number of edges that can be skipped, in a ge-
ometric approach. Next, we improve this algorithm further
to PreLogZER, which avoids an expensive computation of
logarithms via pre-computation. Still, the skipping element
in the algorithm can be implemented even more efficiently,
using an acceptance/rejection [35] or Ziggurat [29] method.
We add this additional feature in our PreZER algorithm.
Then we devise data parallel versions for the ER, ZER and

PreZER algorithms. We refer to these data parallel versions
as PER, PZER and PPreZER, respectively. We eschew de-
veloping a parallel version of PreLogZER, as the benefits
this intermediary step brings are sufficiently understood in
the sequential version. These three algorithms are imple-
mented using the application programming interface CUDA
from the C language, and executable on an off-the-shelve
graphics card with a graphics processor unit (GPU). We do
not use any specific synchronization mechanism proprietary
to more sophisticated and more expensive hardware.
The remainder of this paper is structured as follows. The

next section introduces the principles and properties of the
Erdős-Rényi Γv,p model along with a baseline generation al-
gorithm. Section 3 describes our three successive enhance-
ments over the baseline sequential algorithm, namely ZER,
PreLogZER and PreZER. Section 4 presents our design of
the data parallel algorithms PER, PZER and PPreZER. We
conduct an extensive empirical comparison of the perfor-
mance of all seven algorithms in Section 5. We conclude
and discuss our plans for future work in Section 7.

2For the sake of simplicity, henceforward we refer to the Γv,p

model as the Erdős-Rényi model.

2. BASELINE ALGORITHM
A graph in the Γv,p model has v vertices, while each pos-

sible edge, i.e., any edge between a pair of vertices, appears
with probability p. A particularly simple random process
constructs at random a graph with an edge probability dis-
tribution corresponding to this model. The process only has
to iteratively consider each possible edge and select it with
probability p. In case of a directed graph with self-loops,
this process selects each of the v2 possible edges with prob-
ability p. This process can be näıvely implemented by two
loops over the v vertices, selecting an edge if a uniformly
drawn random number between 0 and 1 is smaller than p.
Algorithm 1 illustrates the pseudocode for this algorithm.

Algorithm 1: Original ER

Input: v : number of vertices, indexed 0 to v − 1;
p : inclusion probability

Output: G : Erdős-Rényi graph

1 G = ∅;
2 for i = 0 to v − 1 do
3 for j = 0 to v − 1 do
4 Generate a uniform random number θ ∈ [0, 1);
5 if θ < p then
6 G← (i, j);

Algorithm 1 is designed for a particular desired type of
graph, i.e., a directed graph of v vertices with self-loops.
Still, it is possible to implement an algorithm for the Γv,p

model without prejudice to the particular desired graph type.
Given the number of possible edges E, in a certain graph,
it suffices to generate indices between 0 and E − 1. Such
indices can be decoded with regard to the particular desired
graph type.
For example, the edge corresponding to the index 13 for a

directed graph of 5 vertices (labeled 0 to 4) with self-loops
is the edge between vertex 2 and vertex 3. Algorithm 2 pro-
vides the pseudocode that produces this decoding. Similar
coding and decoding functions are available for directed and
undirected graphs, with and without self loops, as well as
for multipartite graphs.

Algorithm 2: Decoding

Input: ind : edge index; v : number of vertices
Output: the decoded edge (i, j) where the edge starts

from vertex i and ends at vertex j

1 i = � ind
v
�;

2 j = ind mod v;

The decoding aspect is orthogonal to the performance of
the graph generation algorithm. Thus, any decoding can
be relegated to the stage after graph generation. In the
case of sampling, the decoding is rendered irrelevant, as a
particular graph to be sampled is a given of the problem. In
effect, without loss of generality, we omit the presentation
of particular decoding algorithms. Such algorithms are the
same for all sequential algorithms and could be parallelized
in the same way for all data parallel algorithms, yielding
the same further speedup. They are inconsequential to the
performance study we are concerned with here.
We now rewrite the baseline ER algorithm using a single

loop from 0 to E − 1 in Algorithm 3.
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Algorithm 3: ER

Input: E : maximum number of edges;
p : inclusion probability

Output: G : Erdős-Rényi graph

1 G = ∅;
2 for i = 0 to E − 1 do
3 Generate a uniform random number θ ∈ [0, 1);
4 if θ < p then
5 G← ei;

3. SEQUENTIAL ALGORITHMS
In this section we successively introduce three sequen-

tial algorithms for random graph generation in the Γv,p

model, namely ZER, PreLogZER and PreZER. These al-
gorithms exploit the geometric distribution corresponding
to the Bernoulli process constituted by the ER algorithm
as well as the idea of pre-computing and sampling from a
distribution.

3.1 Skipping Edges
The ER algorithm employs a process of successively se-

lecting edges. This is a Bernoulli process with probability p
and sequence length E, the total possible edges in the type
of graph considered. The number of selected edges has a bi-
nomial distribution B(E, p), hence the mean of the number
of edges selected is:

μ = p× E (1)

and its standard deviation is:

σ =
√

p× (1− p)× E (2)

At any step of the sequence, let k be the number of edges
that are skipped before the next edge is selected. The value
of k has a geometric distribution with parameter p. Its prob-
ability mass distribution, i.e., the probability that exactly k
edges are skipped at any step of the sequence, is:

f(k) = (1− p)k × p. (3)

The respective cumulative distribution function, express-
ing the probability that any number of edges from 0 to k is
skipped, is:

F (k) =

k∑
i=0

f(i) = 1− (1− p)k+1 (4)

with mean 1−p
p

and standard deviation
√
1−p
p

.

Following the above analysis, as argued in [2], we can
avoid the per se computation of each skipped edge during
the Bernoulli process. Instead, at the beginning of the pro-
cess, and at any point at which an edge has been selected,
we can randomly generate the number of skipped edges k
and hence directly select the next (k + 1)th edge. In order
to generate the value of k, we reason as follows. Let α be
a number chosen uniformly at random in (0, 1]. Then, the
probability that α falls in interval (F (k−1), F (k)] is exactly
F (k) − F (k − 1) = f(k). In other words, the probability
that k is the smallest positive integer such that α ≤ F (k)

is f(k). Then, in order to assure that each possible value
of k is generated with probability f(k), it suffices to gener-
ate α and then calculate k as the smallest positive integer
such that F (k) ≥ α, hence F (k − 1) < α ≤ F (k) (or zero,
if no such positive integer exists). Setting ϕ = 1 − α, this
condition is equivalently written as:

1− (1− p)k < α ≤ 1− (1− p)k+1 ⇔ (5)

(1− p)k+1 ≤ ϕ < (1− p)k (6)

where ϕ is chosen uniformly at random in [0, 1). By Equa-
tion 6, k is computed as

k = max(0, �log1−p ϕ� − 1) (7)

Then the expected value for k is:

E(k) = lim
l→+∞

l∑
i=0

i× (1− p)i × p =
1− p

p
(8)

As we skip k edges, the offset of the next selected edge is
k+1, with expected value E(k+1) = 1−p

p
+1 = 1

p
. If n skips

are required to process all E vertices, then
∑n

i=1 E(k+1) =
n× 1

p
= E. Thus, the expected number of skips required to

process all E vertices is E(n) = p× E.

3.2 ZER
According to the preceding discussion, we can eschew the

drawing of a random number for each single edge; it suffices
to compute the offsets of edge-skipping steps instead. An
algorithm that implements this idea is given in [2]; the edge-
skipping process is reminiscent of a similar process in the
Z Reservoir sampling algorithm [41], hence we name this
algorithm ZER; its pseudocode is given in Algorithm 4.

Algorithm 4: ZER

Input: E : maximum number of edges;
p : inclusion probability

Output: G : Erdős-Rényi graph

1 G = ∅;
2 i = −1;
3 while i < E do
4 Generate a uniform random number ϕ ∈ [0, 1);
5 Compute the skip value k = max(0, �log1−p ϕ� − 1);

6 i = i+ k + 1;
7 G← ei;

8 Discard the last edge;

As argued in [2], a random sampling algorithm that ex-
ploits a skipping process is expected to be faster than the
algorithm that explicitly considers each candidate sample;
accordingly, ZER is expected to be faster than ER, as it
considers only a fraction of the total number of edges. How-
ever, as we show in Section 5.2.1, this turns out not to be
always the case, due to the logarithm computation overhead
(Step 5 of ZER).

3.3 PreLogZER
We now turn our attention to this logarithm computation

overhead that prevents ZER from achieving its full potential.
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If we generate a 16-bit random number ϕ ∈ (0, 1], then ϕ can
assume 216 = 65536 different values. This is likely to be a
small number relative to the number of times the logarithm
function (Step 5 of ZER) is called. For instance, assume we
generate a directed graph of v = 10, 000 vertices, hence E =
100, 000, 000 candidate edges, under probability p = 0.1.
Then, we expect to calculate E(n) = p × E = 10, 000, 000
logarithm calls.
In effect, it appears to be more economical to pre-calculate

and store the logarithm values of all possible 65536 random
numbers. Such preprocessing can be especially useful in the
generation of multiple random graphs, and it is likely to
bring a benefit in the generation of a single random graph
alone. We call the algorithm that makes use of this pre-
processing step PreLogZER; its pseudocode is presented in
Algorithm 5.

Algorithm 5: PreLogZER

Input: E : maximum number of edges;
p : inclusion probability

Output: G : Erdős-Rényi graph

1 G = ∅;
2 c = log(1− p);
3 for i = 1 to RAND MAX do
4 log[i] = log(i/RAND MAX);
5 i = −1;
6 while i < E do
7 Generate a uniform random number

ϕ ∈ [0,RAND MAX);

8 Compute the skip value k = max(0,
⌈

log[ϕ]
c

⌉
− 1);

9 i = i+ k + 1;
10 G← ei;

11 Discard the last edge;

We have based our argument on the benefit brought about
by PreLogZER on the assumption that we use 16-bit random
numbers. Still, this benefit does not hold any more if we
use random numbers of higher precision. Indeed, in the
experiments of Section 5 we use 32-bit random numbers,
which render the PreLogZER algorithm competitive only
for very large graphs and relatively high probability values
p, for which the expected number of logarithm calls exceeds
232. Still, we wish our generation algorithm to be of general
utility for reasonably-sized graphs and high random-number
precision.

3.4 PreZER
Our first effort at avoiding the logarithm computation

overhead was based on pre-computing all logarithm values
we may need, so that we shall never need to compute one
more than once. Still, the cost reduction would be much
more effective if we avoided logarithm computation alto-
gether. Indeed, instead of pre-computing the logarithm val-
ues themselves, it suffices to pre-compute the breakpoints of
the cumulative distribution function F (k), as follows.
According to Equation 3, the probability f(k) that k edges

are skipped decreases as a function of k. Figure 1 illustrates
the f(k) function for several values of p. In effect, the value
of k is likely to be lower than some, sufficiently large, fixed
integer m. Then, instead of computing the value of k as
a function of ϕ = 1 − α at each iteration, we can simply
pre-compute the m+1 breakpoints of the intervals in which

random number α is most likely to fall, from which the value
of k is directly determined.
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Figure 1: f(k) for varying probabilities p.

It then suffices to generate α uniformly at random in the
interval [0, 1) and compare it with F (k) for k = 0 to m.
We can then set the value of k to the smallest value such
that F (k) > α, or otherwise, if F (m) ≤ α, compute k by
invoking an explicit logarithm computation as in ZER; such
computations should be invoked rarely for sufficiently large
values of m. The exact value of m is to be decided based
on the requirement of the application at hand. Algorithm 6
gives the pseudocode for this PreZER algorithm.

Algorithm 6: PreZER

Input: E : maximum number of edges;
p : inclusion probability

Output: G : Erdős-Rényi graph

1 G = ∅;
2 for i = 0 to m do
3 Compute the cumulative probability F [i];
4 i = −1;
5 loop:
6 while i < E do
7 Generate a uniform random number α ∈ (0, 1];
8 j = 0;
9 while j ≤ m do

10 if F [j] > α then
11 Set the skip value k = j; Break;
12 j = j + 1;

13 if j = m+ 1 then
14 Compute the skip value k = �log1−p(1−α)� − 1;

15 i = i+ k + 1;
16 G← ei;

17 Discard the last edge;

4. PARALLEL ALGORITHMS
In this section we leverage the parallel-processing capabil-

ities of a Graphics Processing Unit to develop three succes-
sive data parallel algorithms for random graph generation in
the Γv,p model. These algorithms are the data parallel coun-
terparts of ER, ZER and PreZER. For the economy of the
presentation, we leave PreLogZER out of the discussion, as
the benefits it confers are overshadowed by those of PreZER.

4.1 GPU Essentials
Graphics Processing Units (GPUs) are intended to be used

for tasks related to graphics applications, as their name sug-
gests. However, their performance, general availability, and
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cost render them excellent candidates for hosting general-
purpose algorithms as well. We exploit this potential, aim-
ing to provide fast random graph generation algorithms that
can be easily deployed on hardware that is likely to be avail-
able in most application scenarios.

4.1.1 GPU Architecture
Modern GPUs are multiprocessors with multi-threading

support. Currently, standard GPUs do not offer efficient
synchronization mechanisms. However, their single-instruction,
multiple-threads architecture can leverage thread-level par-
allelism. The chief function of a multiprocessor GPU is to
execute hundreds of threads running the same function con-
currently on different data. Data parallelism is achieved by
hardware multi-threading that maximizes the utilization of
the available functional units.
As our implementation platform we use nVidia graphic

cards, which consist of an array of Streaming Multiproces-
sors (SMs). Each SM can support a limited number of co-
resident concurrent threads, which share the SM’s limited
memory resources. Furthermore, each SM consists of mul-
tiple (usually eight) Scalar Processor (SP) cores. The SM
performs all thread management (i.e., creation, scheduling,
and barrier synchronization) entirely in hardware with zero
overhead for a group of 32 threads called warp. The zero
overhead of lightweight thread scheduling, combined with
fast barrier synchronization, allow the GPU to efficiently
support fine-grained parallelism.

4.1.2 Programming the GPU
In order to program the GPU, we use the C-language

Compute Unified Device Architecture (CUDA) [1] parallel-
computing application programming interface. CUDA is
provided by nVidia and works on nVidia graphic cards. The
CUDA programming model consists of a sequential host
code combined with a parallel kernel code. The former pre-
pares the input data, orchestrates the invocation of the par-
allel code, manages the data transfer between main memory
and GPU memory, and collects and processes the results;
the latter is the actual code executed on the GPU.

4.1.3 Parallel Pseudo-Random Number Generator
In order to fully transpose our algorithm to parallel ver-

sions, we should generate random numbers on the GPU. Un-
fortunately, there is no programmatically accessible source
of entropy that can be used to generate true random num-
bers on a GPU. There is no readily available GPU-based
pseudo-random number generator either. While solutions as
the one in [39] are available for older-generation GPUs, we
wish our pseudo-random number generator to be fast, ex-
ploit the features of state-of-the-art programmable GPUs,
and be able to generate independent uniformly distributed
random numbers in every thread with a single seed. Most ex-
isting pseudo-random number generators designed for CPUs
are difficult to adapt to a GPU in a way that satisfies the
above requirements [17].
To satisfy our requirements, we use Langdon’s pseudo-

random number generator [24, 25], a data-parallel version
of Park-Miller’s pseudo-random number generator [33], also
used for random sampling in the context of genetic program-
ming [26]. Park-Miller’s algorithm is a linear congruential
generator (LCG) [23, 4] with increment equal to zero and
transition function of the form xn+1 = (a × xn) mod m

with a = 16807 and m = 2147483647. Park and Miller show
that these settings generate a full period in the range from
1 to m − 1, with equal probability for each number in this
range [33]. For a correct implementation, multiplications in
Park-Miller’s random number generator must be on 46 bits.
In [25], Langdon compared his GPU version of Park-Miller’s
pseudo-random number generator with the original imple-
mentation, and validated both using the method suggested
by Park and Miller [33].

Algorithm 7: PLCG

Input: MasterSeed, ItemsPerThread
Output: PRNG : list of random numbers of one

thread
1 a = 16807;
2 m = 2147483647;

3 reciprocalm = 1.0
m
;

4 seed = MasterSeed+ ThreadNumber;
5 for i = 0 to ItemsPerThread do
6 temp = seed× a;
7 ϕ = (temp−m× floor(temp× reciprocalm));
8 seed = ϕ;
9 PRNG← ϕ;

Algorithm 7 shows the pseudocode for our implementa-
tion of Langdon’s pseudo-random generator. For our pur-
poses, we produce a block of B random numbers. Each
streaming multiprocessor concurrently generates a vector of
random numbers of size B

|threads| . Each thread is seeded

differently. Then, the vectors are concatenated to produce
the final block of random numbers. It suffices to initial-
ize the pseudo-random generator with different seed on each
stream [24], using a single master seed from which individual
thread seeds are derived. A simple way to create an individ-
ual seed for each thread is to add the thread number to the
master seed. Langdon shows that, despite the dependence
of neighboring thread numbers, for most practical purposes,
it suffices to discard the first 3 random numbers to obtain
independent random numbers thereafter [24]. We adopt this
method.

4.1.4 Parallel Prefix Sum
Another fundamental primitive we need for parallelizing

our algorithms is an algorithm that creates a sequence of
partial sums from an existing sequence of numbers. Such
an algorithm has been proposed by Iverson [20], known as
Prefix Sum or Scan with Sum Operation. Prefix sum comes
in two variants: inclusive and exclusive. Given an input
sequence ai, inclusive prefix sum generates the sequence bi =
a0 + a1 + · · · + ai, while exclusive prefix sum generates the
sequence bi = a0 + a1 + · · ·+ ai−1.
A GPU-based implementation of prefix sum is given by

Horn [16] and optimized by Hensley et al. [15]. Both these
implementations have O(nlogn) complexity, while a sequen-
tial scan requires only O(n). Sengupta et al. [38] propose a
O(n) GPU-based data-parallel prefix sum algorithm, which
is further tuned for CUDA [37, 36]. This algorithm con-
sists of two phases: the up-sweep (also known as reduce)
and the down-sweep phase, illustrated in Figure 2. In Fig-
ure 2a, sequence 0 is the original sequence. The elements of
the subsequent sequences are computed by adding values of
elements of the preceding one, as shown in the figure. For
instance, a0−1 in sequence 1 is the sum of a0 and a1 in se-
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quence 0, as indicated by the arrows. In Figure 2b, sequence
0 (on top) is the result of the upsweep operation. Straight
arrows indicate sum, as previously, while curly arrows in-
dicate a swap of elements. The eventual result (bottom of
Figure 2b) is the desired prefix sum sequence.

a0 a1 a2 a3 a4 a5 a6 a7

3

a0 a0�1 a2 a2�3 a4 a4�5 a6 a6�7

a0 a0�1 a2 a0�3 a4 a4�5 a6 a4�7

a0 a0�1 a2 a0�3 a4 a4�5 a6 a0�7

2

1

0 0 a1 a0�1 a0�2 a0�3 a0�4 a0�5 a0�6

0

a0 0 a2 a0�1 a4 a0�3 a6 a0�5

a0 a0�1 a2 0 a4 a4�5 a6 a0�3

a0 a0�1 a2 a0�3 a4 a4�5 a6 0

1

2

3

(a) Up-sweep (b) Down-sweep

Figure 2: Phases of Parallel Prefix Sum [36].

On a GPU, this algorithm suffers from multiple threads
accessing the same bank. It requires artificial padding to
prevent such conflicts. Sengupta et al. propose an approach
based on the hierarchy model of threads in CUDA that avoid
padding [36]. We use Sengupta et al.’s implementation of
both inclusive and exclusive prefix sums.

4.1.5 Parallel Stream Compaction
Last, in our parallelization scheme we employ stream com-

paction, a method that compresses an input array A into a
smaller array B by keeping only the elements that verify a
predicate p, while preserving the original relative order of
the elements [16].
Stream compaction consists of two phases. A scan phase

computes an exclusive parallel prefix sum on the given pred-
icate list (see Section 4.1.4). In effect, the result of this
scan can provide the addresses of those edges that passes
the predicate, as those locations in the parallel prefix sum
list that differ from their successor. Then, a scatter phase
organizes the edge indices into the final edge in a parallel-
processing manner, using the list generated by the scan
phase [16]. The scatter operation is natively accessible in re-
cent GPUs, rendering stream compaction considerably more
efficient. Figure 3 illustrates its working for an array of 10
elements.

10 11 12 13 14 15 16 17 18 19Edge Indexes

1 0 1 0 0 1 1 1 0 0Predicate List

Exclusive Parallel Prefix sum

0 1 1 2 2 2 3 4 5 5

Stream
 C

0 1 1 2 2 2 3 4 5 5

Scatter operation

Com
pacti

10 12 15 16 17Final Edge List

on

Figure 3: Stream Compaction for 10 elements.

4.2 PER
The ER algorithm naturally lends itself to parallelization.

A straightforward way for rendering it parallel is to spread
predefined portions of a complete graph’s edge set E among
the available processing units. The thread running in each
unit checks independently each edge in its assigned group
against a uniform random number, independently generated
as in Section 4.1.3, and sets a corresponding edge predicate
to 1 if the condition is satisfied, otherwise to 0.

The resulting predicate list can be used to represent the
generated graph. However, such a representation would be
inefficient in most practical cases, where the probability p is
relatively low and, therefore, the generated graph relatively
sparse, resulting into a predicate list of many 0 entries. All
such 0 entries would have to be kept in the processing units’
memory and later transferred to the master CPU. We devise
a more efficient method in our PER algorithm, the data
parallel version of ER, as follows.
Instead of explicitly maintaining the unselected edges, we

discard edges with predicate value 0 from the edge list. We
perform this discarding operation in a parallel manner. We
first compute the total number of selected edges, in parallel,
via an exclusive parallel prefix sum on the predicate list (see
Section 4.1.4). Then, we proceed to extract the location of
each selected edge via the scatter phase of the parallel stream
compaction operation, using the result of the parallel prefix
sum, as in Section 4.1.5. The pseudocode for the overall
PER algorithm is given in Algorithm 8.

Algorithm 8: PER

Input: E : maximum number of edges;
p : inclusion probability

Output: G : Erdős-Rényi graph
1 G = ∅;
2 B = |threads|;
3 Iterations = E

B
;

4 for i = 0 to Iterations− 1 do
5 T = ∅;
6 R = ∅;
7 In parallel : Generate B random numbers θ ∈ [0, 1)

in an array R;
8 PL = ∅;
9 In parallel : foreach θ ∈ R do

10 T ← θ’s position in R+ i×B;
11 if θ < p then
12 PL← 1;
13 else
14 PL← 0;
15 In parallel : Perform Parallel Stream Compaction

on T wrt PL;
16 G← T ;

The main parameter of the PER algorithm is the number
of threads per block from which we derive the number of
edges per thread in order to process the total number of
edges. Figure 3 illustrates, in effect, the working of PER for
a set of ten edges.

4.3 PZER
We proceed to develop a data parallel version of ZER,

which we call PZER. The two building blocks of PZER are
(i) a data parallel pseudo-random number generator for the
computation of the skip values, and (ii) an inclusive paral-
lel prefix sum for the computation of absolute edge indices.
PZER iteratively computes blocks of edges until the maxi-
mum index is reached.
We employ the pseudo-random generator presented in Sec-

tion 4.1.3. Again, the generated random numbers are used
to compute the skip value as for the ZER algorithm (Equa-
tion 7). These values can indeed be calculated independently
and concurrently. However, in order to correctly derive the
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absolute edge indices from these skip values, each processing
unit needs to know the location of its starting edge. This
starting edge location can only be disclosed, for each pro-
cessing unit, once all edges preceding the group of edges
handled by that unit have been processed.
In order to address this problem, we separate skip value

generation from edge index computation. In effect, each
processing unit first generates sufficient skip values. Then,
once all units have stored their generated skip values, we
compute the overall absolute index values via a parallel pre-
fix sum operation (see Section 4.1.4) over the full skip value
list. The pseudocode for this PZER algorithm is given in
Algorithm 9.

Algorithm 9: PZER

Input: E : maximum number of edges;
p : inclusion probability;
λ : parameter of the block size

Output: G : Erdős-Rényi graph
1 G = ∅;
2 L = 0;

3 σ =
√

p× (1− p)× E;
4 B = (p× E) + (λ× σ);
5 while L < E do
6 R = ∅;
7 In parallel : Generate B random numbers ϕ ∈ [0, 1)

in an array R;
8 S = ∅;
9 In parallel : foreach ϕ ∈ R do

10 Compute the skip value k = max(0, �log1−p ϕ� − 1);

11 S ← k;
12 In parallel : Perform Parallel Prefix Sum on S;
13 G = G ∪ S;
14 L = Last Edge Index in G;

Figure 4 illustrates how PZER generates the absolute edge
index list with probability p = 0.1 and block size of 10.

9 33 5 4 42 32 6 1 24 3Skip List

9 42 47 51 93 125 131 132 156 159

Inclusive Parallel Prefix sum

Fi l Ed Li 9 42 47 51 93 125 131 132 156 159Final Edge List

Figure 4: Generating edge list via skip list in PZER.

The main parameter of the PZER algorithm is the block
size it works with. If that size is too large, then too many
threads will perform unnecessary computations. If the same
is too small, then there will be too many iteration steps of
the main while loop of the algorithm, attenuating its parallel
character. Thus, a tradeoff between unnecessary computa-
tions and potential loss of parallelism emerges.
To strike a balance in this tradeoff, we biased the algo-

rithm slightly towards the side of excessive computations,
using a block size that is a number of λ standard deviations
larger than the mean number of edges as given in Equa-
tions 1 and 2. Thus, we use block size B = (E × p) + (λ ×√

p(1− p)× E), where E is the maximum number of edges
in the graph, and λ the number of standard deviations added
to the mean value of the number of skips.

4.4 PPreZER
Eventually, we devise a data parallel version of PreZER,

which we call PPreZER. This algorithm forms the culmina-
tion of our effort. PPreZER shares the structure of PZER,
but includes a pre-computation ofm probability values, which
are then used to guide the sampling from the logarithmic dis-
tribution, as in PreZER. The pseudocode for PZER is given
in Algorithm 10.

Algorithm 10: PPreZER

Input: E : maximum number of edges;
p : inclusion probability;
m : number of pre-computations;
λ : parameter of the block size

Output: G : Erdős-Rényi graph
1 G = ∅;
2 for i = 0 to m do
3 Compute the cumulative probability F (i);
4 L = 0;

5 σ =
√

p× (1− p)× E;
6 B = (p× E) + (λ× σ);
7 while L < E do
8 R = ∅;
9 In parallel : Generate B random numbers α ∈ (0, 1]

in an array R;
10 S = ∅;
11 In parallel : foreach α ∈ R do
12 j = 0;
13 while j ≤ m do
14 if F [j] > α then
15 Set the skip value k = j;
16 Break

17 j = j + 1;

18 if j = m+ 1 then
19 Compute the skip value k = �log1−p(1− α)� − 1;

20 S ← k;
21 In parallel : Perform Parallel Prefix Sum on S;
22 G = G ∪ S;
23 L = Last Edge Index in G;

The main parameters of PPreZER are the block size B,
which is set, as in PZER, and m, the largest value of skip
whose probability is pre-computed.

5. PERFORMANCE EVALUATION
In this section we evaluate the performance of all the al-

gorithms we have presented and introduced to each other.

5.1 Setup
We ran the sequential algorithms on a 2.33GHz Core 2

Duo CPU machine with 4GB of main memory under Win-
dows XP. The parallel algorithms ran on the same machine
with a GeForce 9800 GT graphics card having 1024MB of
global memory, 14 streaming processors (i.e., 112 scalar pro-
cessors) and a PCI Express ×16 bus. All algorithms were
implemented in Visual C++ 9.0.
In the default settings, we set the algorithms to gener-

ate directed random graphs with self loops, having 10,000
vertices, hence at most 100,000,000 edges. We measure exe-
cution time as user time, averaging the results over ten runs.
The m parameter for PreZER and PPreZER is set to 9, a
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value which is empirically determined to yield the best per-
formance, as discussed in subsection 5.2.6. The block size for
PZER and PPreZER is set to (p×E)+(λ×√

p(1− p)× E),
with E = 108 and λ = 3, which is found to be the value that
yields best performance, as discussed in subsection 5.2.6.

5.2 Results

5.2.1 Overall Comparison
We first turn our attention to the execution time of the

six main compared algorithms, namely ER, ZER, PreZER,
PER, PZER and PPreZER, as a function of inclusion proba-
bility p. Figure 5 shows the results, with the best parameter
settings in those algorithms where they are applicable.
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Figure 6: Running times for small probability.

We observe that both ZER and PreZER become faster as
the value of p decreases. This is expected, given that smaller
values of p offer more opportunities to skip edges. Still, these
two relatively naive edge-skipping algorithms are not consis-
tently faster than ER. ZER remains faster than ER only for
probability values up to p = 0.3; this poor performance is
explained by the overhead due to logarithm computations.
PreZER is more efficient than ER for probability values up
to p = 0.7; after that point, the advantage of having pre-
computed values does not suffice to achieve better perfor-
mance.

All three parallel algorithms are significantly faster than
the sequential ones for all values of p; the only exception
to this observation is that PER is slightly slower than ZER
and PreZER for very small values of p, as it has to generate
E random numbers whatever the value of p. Figure 6 illus-
trates the effect of such small values of p on execution time
on logarithmic axes.
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5.2.2 Speedup Assessment
Next, Figure 7 presents the average speedup over the base-

line ER algorithm, for the other five algorithms in the com-
parison, as a function of p. The average speedup for PreZER,
PER, PZER and PPreZER are 1, 1.5, 7.2, 19.3, 19.2, respec-
tively. Besides, for p ≤ 0.5, the average speedup for ZER,
PreZER, PER, PZER and PPreZER are 1.3, 2, 8.4, 29.9 and
29.4, respectively.
In addition, in Figure 8 we gather the average speedup of

each parallel algorithm over its sequential counterparts. The
average speedup for PER, PZER and PPreZER over their
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sequential version are 7.2, 22.8 and 11.7, respectively. For
p ≤ 0.5 the average speedup for PER, PZER and PPreZER
are 8.4, 23.4 and 13.7, respectively.

 0

 100

 200

 300

 400

 500

 600

 700

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ti
m

e 
(m

ill
is

ec
on

d)

Probability

PER
PZER
PPreZER
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5.2.3 Comparison among Parallel Algorithms
Now we focus our attention on the comparison among the

three parallel algorithms in our study. Figure 9 shows the
overall execution times for these three algorithms only. For
all probability values, PZER and PPreZER are faster than
PER. PPreZER is slightly faster than PZER for probabili-
ties greater than 0.4 and slightly slower or identical for the
rest. This result arises from the handling of branching con-
ditions by the GPU, as concurrent threads taking different
execution paths are serialized. In order to verify this suppo-
sition, we compared only the time spent for random number
generation by the three algorithms. Figure 10 shows the re-
sults, which verify the same performance pattern. We con-
clude that PZER and PPreZER are the fastest algorithms
for random graph generation in our study.
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5.2.4 Parallelism Speedup
Now we evaluate the performance speedup gained solely

by virtue of parallelism. For that purpose, we assess, for
each parallel algorithm, its performance speedup while vary-
ing the number of thread-blocks it employs, while fixing the
number of threads per block to half warp, i.e. 16. In this
set of experiments, we generate 100 Γv=10K,p=0.1 graphs and
we report the average time. Figures 11 and 12 depict two
different aspect of our results.
Figure 11 presents the speedup of each parallel algorithm

against the version of itself running with one thread-block.
The runtime charts, in Figure 12, show the total amount
of time spent for each parallel algorithm. The results show
that the greater the number of thread-blocks is, the faster
the algorithm. This result holds for up to 64 thread-blocks,
as the hardware configuration does not afford more benefits
from parallelism under the specific v and p values in this
experiment.

5.2.5 Size Scalability
In all hitherto experiments, we have used a constant graph

size (i.e., number of vertices) and tuned probability p or
the number of thread-blocks we employ. Still, the question
of scalability of our algorithms to larger graph sizes also
needs to be addressed. Figures 13, 14, and 15, show the
execution time results for three different probability values,
as a function of increasing number of vertices.
The results reconfirm our previous findings and carry them

forward to larger graph structures in terms of vertices. They
verify that the difference between ZER and PreZER is at-
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tenuated for smaller values of p, while the advantages of
skip-based parallel algorithm are amplified for such smaller
probability values.
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Figure 13: Runtime for varying graph size, p = 0.001
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Figure 14: Runtime for varying graph size, p = 0.01

5.2.6 Performance Tuning
We also conducted an experimental study to aid our tun-

ing decisions. We shortly report our findings here.
CUDA’s threads are organized in a two-level hierarchy:

a batch of threads forms a thread-block and a collection
of thread-blocks makes a grid. A warp is a group of 32
threads. A thread-block must have at least four warps, i.e.
128 threads, to fully utilize the hardware resources and hide
the latencies [1]. Our experiments suggest that the optimal
thread-block configuration strongly depends on the particu-
lar requirements of the running algorithm. In Section 5.2.4
we have seen an instance where a given thread-block config-
uration did not confer more benefits from parallelism after
crossing a threshold.
We have experimented with different values of the m pa-

rameter, the largest value of skip whose probability is pre-
computed in PreZER and PPreZER. Our experiments have
shown that there are only marginal benefits to be gained
for m values larger than 9, due to the tradeoff discussed in
Section 4.3. We used the value m = 9 in our experiments.
Furthermore, we have experimented with different values

of the size-of-block parameter λ in the PZER and PPreZER
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Figure 15: Runtime for varying graph size, p = 0.1

implementation. Our experiments have shown that perfor-
mance improves with increasing λ up to λ = 3, with not
much to gain thereafter, due to the over-computation over-
head (see Section 4.3). Thus, we have used the value λ = 3
in our experiments.

5.3 Discussion
A possible objection to the significance of our results is

the fact that the speedup achieved is gained over an al-
gorithm which is already relatively fast compared to time
needed to store the results in secondary memory. Indeed
the time to write individual or buffered results to disk dom-
inates the generation. However, this is not the case when
the graph remains in main memory. Besides, the relevance
and applicability of our results is enhanced by the increasing
availability of flash memory storage and the proliferation of
graph-based techniques, methods, and simulation require-
ments in modern data management tasks.
Our algorithms are efficient for generating graphs that fit

in main memory for further processing but also for larger
graphs to be further processed concurrently, in parallel, or
in a streaming fashion. This is even more the case when
the graphs remain in the memory of the GPU for further
processing. Still, for the sake of a fair comparison, our ex-
periments have been conducted with all results written to
main memory.

6. RELATED WORK
Graphs constitute such a versatile data model that they

are used in almost every domain of science and humanities.
Random graphs [3] are used for the generation of synthetic

data sets for the evaluation of effectiveness and efficiency of
graph processing methods. They are also used in simulation
[21], randomized algorithms [13], and sampling [40]. In the
domain of information and knowledge management, they are
used in such applications as web mining and analysis [22, 5],
data mining [18], and social network analysis [32], among a
multitude of other examples.
It has been properly argued that Erdős-Rényi random

graphs are generally not representative of real-life graphs,
such as communication networks, social networks, or molec-
ular structures, which exhibit specific degree distributions
and resulting properties. However, if real-life graphs signifi-
cantly differ from Erdős-Rényi graphs, one still needs Erdős-
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Rényi models to characterize these differences and quantify
their significance. The generation of random graphs with
prescribed constraints generally requires different and more
complex machinery. The prevalent approach is the usage of
mixing Markov chains, as found in [12], for the generation
of random structures as bipartite graphs of transactions and
items with prescribed degree constraints.
The authors of [42] distinguish between matching-based

models and switching-based models. Mixing-Markov-chains-
based generation leverages switching-based models. The two
models referred to as Erdős-Rényi models were proposed
in 1959 by Paul Erdős and Alfréd Rényi, for Γv,e in [8],
and E.N. Gilbert in [11], for Γv,p, respectively. They are
matching-based models. The two models indeed coincide
when v, the number of vertices of the total graph, becomes
sufficiently large and e ≈ E × p, where E is the maximum
number of possible edges.
The Erdős-Rényi models can be used to sample existing

graphs or other data structures. To this extent, Reservoir
sampling [41] can be seen as a continuous sampling algo-
rithm in the Γv,e model, where e is the size of the Reser-
voir. The authors of [40] propose a sampling algorithm for
counting triangles in graph based on the Γv,p model. They
discuss a MapReduce [7] implementation of their algorithm
that shares the conceptual design of our PER data parallel
algorithm: generate and test vertices in parallel and com-
pact the result.
As we have discussed, the said model induces a simple gen-

eration algorithm. To our knowledge, the authors of [2] were
the first to discern that this algorithm can be improved by
leveraging the geometric distribution of the number of ele-
ments skipped. This idea is similar to the one used in Reser-
voir algorithm Z of [41] for reservoir sampling of streams. We
refer to this algorithm as ZER. Still, unfortunately, the the-
oretical improvement announced in [2] cannot be achieved
in practice because of the overhead of the logarithm compu-
tation.
We are not aware of any other attempt to enhance the

efficiency of random graph generation. In our effort, the
availability of a GPU gave us the motivation and the oppor-
tunity to successfully tackle this task. The absence of read-
ily available random generators on graphic processors [24]
and the data structures of the processor and of the CUDA
framework [1] posed additional challenges that we were able
to address.

7. CONCLUSIONS

7.1 Summary of Contribution
This paper has led to the proposal of two new algorithms

for the generation of random graphs in the Erdős-Rényi
model Γv,p, namely PreZER and PPreZER. In order to mo-
tivate, explain, and evaluate this work, we have outlined a
succession of algorithm leading to our two flagship contribu-
tions. The baseline algorithm, ER, and the three enhance-
ments thereupon, namely ZER, PreLogZER and PreZER,
are sequential algorithms. The three algorithms PER, PZER
and PPreZER are data parallel versions of their sequential
counterparts designed for graphics cards and implemented
in CUDA. To our knowledge, PreZER is the fastest known
sequential algorithm, while PZER and PPreZER can both
claim the title of the fastest known parallel algorithms for
a GPU. They yield average speedups of 1.5 and 19 over the

baseline algorithm, respectively. These results enable sig-
nificant efficiency gains in modern data management tasks,
simulations, and applications, whenever they call for the
generation of a random graph.

7.2 Future Work
Currently, we are studying ways to build efficient stream

sampling algorithms using the techniques developed for
PZER and PPreZER. Such an alteration involves the careful
design of the communication protocol between the incoming
stream of data managed by the central processor and the
graphic card memory, on the one hand, as well as of the
streamed production of results, on the other hand. We are
also studying the generation of other random structures with
prescribed constraints. We study alternatives to the mix-
ing Markov chain approach that would allow us to devise
and cast new algorithms in both the random generation and
random sampling frameworks at the same time. The main
applications that we are contemplating are in the fields of
data mining and social networks anonymization in the spirit
of [12] and [14].

8. REFERENCES
[1] CUDA Zone: Toolkit & SDK.

http://www.nvidia.com/object/what is cuda new.html.

[2] V. Batagelj and U. Brandes. Efficient generation of
large random networks. Physical Review E,
71(3):036113, 2005.

[3] B. Bollobas. Random graphs. Academic Press, 2nd
edition, 2001.

[4] P. Bratley, B. L. Fox, and L. E. Schrage. A Guide to
Simulation, page 397. Springer, 2nd edition, 1987.

[5] A. Z. Broder, R. Kumar, F. Maghoul, P. Raghavan,
S. Rajagopalan, R. Stata, A. Tomkins, and J. L.
Wiener. Graph structure in the web. Computer
Networks, 33(1-6):309–320, 2000.
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