
Fast and Accurate Computation of
Equi-Depth Histograms over Data Streams

Hamid Mousavi
Computer Science Department, UCLA

Los Angeles, USA
hmousavi@cs.ucla.edu

Carlo Zaniolo
Computer Science Department, UCLA

Los Angeles, USA
zaniolo@cs.ucla.edu

ABSTRACT
Equi-depth histograms represent a fundamental synopsis widely
used in both database and data stream applications, as they pro-
vide the cornerstone of many techniques such as query optimiza-
tion, approximate query answering, distribution fitting, and paral-
lel database partitioning. Equi-depth histograms try to partition a
sequence of data in a way that every part has the same number
of data items. In this paper, we present a new algorithm to esti-
mate equi-depth histograms for high speed data streams over slid-
ing windows. While many previous methods were based on quan-
tile computations, we propose a new method called BAr Splitting
Histogram (BASH) that provides an expected ϵ-approximate solu-
tion to compute the equi-depth histogram. Extensive experiments
show that BASH is at least four times faster than one of the best ex-
isting approaches, while achieving similar or better accuracy and in
some cases using less memory. The experimental results also indi-
cate that BASH is more stable on data affected by frequent concept
shifts.

Categories and Subject Descriptors
H.3.1 [Content Analysis and Indexing]: Abstracting methods;
F.2.2 [Nonnumerical Algorithms and Problems]: Computations
on discrete structures

1. INTRODUCTION
Compact accurate representations of data distributions are criti-

cal in systems and applications that manage large volumes of data.
In particular, constructs such as histograms which provide statisti-
cally accurate and space-efficient synopses for the distribution of
very large data sets have proved invaluable in a wide spectrum
of database applications, such as query optimization, approximate
query answering, distribution fitting, parallel database partitioning,
data mining, and many others [12]. Histograms are even more im-
portant for data streaming applications, where synopses become
critical to provide real-time or quasi real-time response on con-
tinuous massive streams of bursty data and to minimize the mem-
ory required to represent these massive streams. However, finding

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2011, March 22–24, 2011, Uppsala, Sweden.
Copyright 2011 ACM 978-1-4503-0528-0/11/0003 ...$10.00

fast and light algorithms to compute and continuously update his-
tograms represents a difficult research problem, particularly if we
seek the ideal solution to compute accurate histograms by perform-
ing only one pass over the incoming data. Data streaming applica-
tions tend to focus only on the most recent data. These data can be
modeled by sliding windows [4], which are often partitioned into
panes, or slides whereby new additional results from the standing
query are returned at the completion of each slide [4][14].

An important type of histograms is the equi-depth histogram,
which is the main focus of this paper. Given a data set of single-
value tuples, the B-bucket equi-depth histogram algorithm seeks
to find a sorted sequence of B − 1 boundaries over the sorted list
of the tuples, such that the number of tuples between each two
consecutive boundaries is approximately N/B, where N is the
data set size. For the sake of time and space issues, this goal can
only be achieved within a certain approximation, and because of
computational constraints and requirements of continuous queries
ϵ-approximations with much coarser ϵs are expected in the data
stream environment. In particular, we require that only one pass be
made over the incoming data and the results must be reported each
time the current window slides.

The equi-depth histogram problem is obviously akin to that of
quantiles [9], which seeks to identify the item that occupies a given
position in a sorted list of N items: Thus given a ϕ, 0 ≤ ϕ ≤ 1,
that describes the scaled rank of an item in the list, the quantile
algorithm must return the ⌈ϕN⌉’s item in the list. For example, a
0.5-quantile is simply the median. Therefore, to compute the B−1
boundaries of any equi-depth histograms, we could employ a quan-
tile structure and report ϕ-quantiles for ϕ = 1

B
, 2
B
, ..., B−1

B
. How-

ever, this solution suffers from the following problems: (i) quantile
computation algorithms over sliding windows are too slow, since
they must derive more information than is needed to built the his-
togram [20], and (ii) quantiles algorithms used to construct his-
tograms focus primarily on minimizing the rank error, while in
equi-depth histograms we focus on the size of individual buckets
and seek to minimize the bucket size error. While there has been
significant previous research on ϵ-approximate quantiles over slid-
ing windows of the data streams [15][3], their focus has mostly
been on space minimization, and their resulting speed is not suf-
ficient for streaming applications, particularly when large window
sizes are needed [21]. Noting this problem, Zhang et al. propose
a faster approach to compute the quantile over the entire history
of the data stream [21], but they did not provide an algorithm for
the sliding window case. Although equi-depth histograms could be
implemented by executing several copies of current quantile algo-
rithms, this approach is reasonable only when N is small. To the
best of the authors’ knowledge, no previous algorithm has been pro-
posed for computing equi-depth histograms over sliding windows

69

of data streams without using quantiles.
In this paper, we study the problem of constructing equi-depth

histograms for sliding windows on data streams and propose a new
algorithm that achieves average ϵ-approximation. The new algo-
rithm, called BAr Splitting Histogram (BASH), has the following
properties: BASH (i) is much faster than current techniques, (ii)
does not require prior knowledge of minimum and maximum val-
ues, (iii) works for both physical and logical windows, and (iv)
leaves a smaller memory footprint for small window sizes. As we
shall discuss in more detail later, the main idea of BASH builds
on the Exponential Histograms technique that was used in [6] to
estimate the number of 1’s in a 0-1 stream over a sliding window.
More specifically, our paper makes the following contributions:

• We introduce a new expected ϵ-approximate approach to com-
pute equi-depth histograms over sliding windows.

• We show that the expected memory usage of our approach is
bounded by O(B 1

ϵ2
log(ϵ2W/B)), where B is the number

of buckets in the histograms and W is the average size of the
window.

• We present extensive experimental comparisons with exist-
ing approaches: the results show that BASH improves speed
by more than 4 times while using less memory and providing
more accurate histograms.

The rest of this paper is organized as follows. Section 2 summa-
rizes the related works. In section 3, we provide the preliminary
background and definitions. We describe the BASH algorithm and
its time/space complexity as well as its approximation ratio in sec-
tions 4 and 5 respectively. Section 6 presents a series of experi-
ments results, which provide the basis for the discussion in section
7 elucidating key properties of BASH. We finally conclude the pa-
per in section 8.

2. RELATED WORK
Perhaps, the simplest type of histograms are the traditional equi-

width histograms, in which the input value range is subdivided into
intervals (buckets) having the same width, and then the count of
items in each bucket is reported. Knowing the minimum and max-
imum values of the data, the equi-width histograms are the easiest
to implement both in databases and in data streams. However, for
many practical applications, such as fitting a distribution function
or optimizing queries, equi-width histograms may not provide use-
ful enough information [8]. A better choice for these applications
is an Equi-depth histogram [8][19] (also known as equi-height or
equi-probable) in which the goal is to specify boundaries between
buckets such that the number of tuples in each bucket is the same.
Histograms of this type are more effective than equi-width his-
tograms, particularly for data sets with skewed distributions [12].

Other types of histograms proposed in the literature include the
following: (i) V-Optimal Histograms [10][13] that estimate the or-
dered input as a step-function (or pairwise linear function) with a
specific number of steps, (ii) MaxDiff histograms [20] which aim
to find the B−1 largest gaps (boundaries) in the sorted list of input,
and (iii) Compressed histograms [20] which place the highest fre-
quency values in singleton buckets and use equi-width histogram
for the rest of input data. This third type can be used to construct
biased histograms [5]. Although these type of histograms can be
more accurate than the other histograms, they are more expensive
to construct and update incrementally [11]. For example, current
V-optimal algorithms perform multiple passes on the database, and
are not suitable for most data stream applications [13].

Gibbons et al. presented a sampling-based technique for main-
taining the approximate equi-depth histograms on relational databases

[7]. This work is of our interest mainly because (i) it has con-
sidered a stream of updates over database, which may make the
approach applicable for the data stream environment as well, and
(ii) it has employed a split/merge technique to keep the histograms
up-to-date, which was inspiring for us. However in their work,
the stream of updates is taken from a Zipfian distribution which
means some records may be updated several times, while many
of the other records remain unchanged; this is not the case in a
data streaming environment where records enter windows once and
leave in the same order in which they arrived.

Most past work, in the area of data streams, has focused on the
related problem of quantiles. It has been proven [18] that single-
pass algorithms for computing exact quantiles must store all the
data; thus, the goal of previous researches were to find approximate
quantile algorithms having low space complexity (i.e., low mem-
ory requirements). For this reason, Manku et al. introduced an ϵ-
approximate algorithm to answer any quantile query over the entire
history of the data stream using O(1

ϵ
log2(ϵN)) space [16]. Green-

wald and Khanna, in [9], improved the memory usage of the pre-
viously mentioned approach to O(1

ϵ
log(ϵN)), and also removed

the restriction of knowing the size of the stream (N) in advance.
Their work has been influential, and we refer to it as the GK algo-
rithm. For instance, GK was used in [15] and [3] to answer quantile
queries over sliding windows. The algorithm proposed in [15] has
space complexity O(1

ϵ2
log2(ϵW)), where W is the window size

and it is unknown a priori. In [3], Arasu and Manku proposed an
algorithm which needs O(1

ϵ
polylog(1

ϵ
,W)) space. We will refer

to this algorithm as AM.
AM runs several copies of GK over the incoming data stream

at different levels. At these levels, the data stream is divided into
blocks of size ϵW/4, ϵW/2, ϵW , etc. Once GK computes the re-
sults for a block in a level, AM stores these results until that block
expires. In this way, they can easily manage the expiration in the
sliding window. To report the final quantile at each time, AM com-
bines the sketch of the unexpired largest blocks covering the entire
window. Similar to AM, the algorithm proposed in [15] also run
several copies of the GK algorithm. Therefore, both of them suffer
from higher time complexity, as was shown in [21]. In fact, Zhang
et al. also proposed a faster approach for computing ϵ-approximate
quantile using O(1

ϵ
log2ϵN) space. However, their approach works

only for histograms that are computed on the complete history of
the data stream, rather than on a sliding window.

3. PRELIMINARIES
As already mentioned, BASH is based on Exponential Histograms

(EH) [5], so we will next give a brief description of this sketch tech-
nique. We then provide the formal definitions of the equi-depth
histograms and error measurements.

3.1 Exponential Histogram Sketch
In [6], Datar et al. proposed the EH sketch algorithm for approx-

imating the number of 1’s in sliding windows of a 0-1 stream and
showed that for a δ-approximation of the number of 1’s in the cur-
rent window, the algorithm needs O(1

δ
logW) space, where W is

the window size. The EH sketch can be modeled as an ordered list
of boxes. Every box in an EH sketch basically carries on two types
of information; a time interval and the number of observed 1’s in
that interval. We refer to the latter as the size of the box. The in-
tervals for different boxes do not overlap and every 1 in the current
window should be counted in exactly one of the boxes. Boxes are
sorted based on the start time of their intervals. Here are the brief
descriptions for the main operations on this sketch:

Inserting a new 1: When at time ti a new 1 arrives, EH creates a

70

new box with size one, sets its interval to [ti, ti], and adds the box
to the head of the list. Then the algorithm checks if the number of
boxes with size one exceeds k/2 + 2 (where k = 1

δ
), and, if so,

merges the oldest two such boxes. The merge operation adds up
the size of the boxes and merges their intervals. Likewise for every
i > 0: whenever the number of boxes with size 2i exceeds k/2+1,
the oldest two such boxes are merged. Figure 1 illustrates how this
operation works.

Figure 1: Incrementing an EH sketch twice at time 58 and 60.
That is we have seen 1, 0, and 1 respectively at time 58, 59, and
60. (k=2 and W=35)

Expiration: The algorithm expires the last box when its interval
no longer overlaps with the current window. This means that at
any time, we only have one box that may contain information about
some of the already expired tuples. The third row in Figure 1 shows
an expiration scenario.

Count Estimation: To estimate the number of 1’s, EH sums up
the size of all the boxes except the oldest one, and adds half the
size of the oldest box to the sum. We refer to this estimation as the
count or size of the EH sketch.

It is easy to show that using only O(1
δ
logW) space, the afore-

mentioned estimation always gives us a δ-approximate number of
1’s. It is quite fast too, since the amortized number of merges for
each new 1 is only O(1) (On average, less than one merge is needed
for each increment in the EH sketch). It’s also worth noting that in-
stead of the counting number of 1’s in a 0-1 stream, one can simply
count the number of values falling within a given interval for a gen-
eral stream. Thus, to construct an equi-width histogram, a copy of
this sketch can be used to estimate the number of items in each
interval, when the boundaries are fixed.

3.2 Definitions
Throughout this paper, we will frequently use three important

terms: boxes, bars, and buckets. Buckets are the final intervals that
we intend to report for the histogram. On the other hand, each
bucket may contain one or more bars, and for each bar, the asso-
ciated EH sketch has a list of boxes which has been described in
previous section. With this clarification, we can formally define an
equi-depth histogram as follows:

DEFINITION 1. A B-bucket equi-depth histogram of a given
data set D with size N is a sequence of B − 1 boundaries B1,
B2, ... BB−1 ∈ D, where Bi is the value of the item with rank
⌊ i
B
N⌋ in the ordered list of items in D.

Note that each data item (tuple) is simply considered as a floating
point number. As in can be seen, the number of items between

each two consecutive boundaries is the same (N/B). To ease this
definition, Bi can be also defined as any values between the value
of the items with rank ⌊ i

B
N⌋ and ⌊ i

B
N + 1⌋. A similar definition

can be used for the sliding window case:
DEFINITION 2. A B-bucket equi-depth histogram of a given

data stream D at each window with size W is a sequence of B− 1
boundaries B1, B2, ... BB−1 ∈ DW , where DW is the set of data
in the current window and Bi is the value of the item with rank
⌊ i
B
W ⌋ in the ordered list of items in DW .

Note that the above definitions is valid for both physical windows
in which W is a fixed value and logical windows in which W may
vary through the time. However, as already discussed, computing
the exact equi-depth histograms is neither time efficient nor mem-
ory friendly particularly for the data streaming case [18]. Thus, we
need algorithms to approximate the histogram with respect to some
kind of error measurements. The most natural way to define the
error is based on the difference between the ideal bucket size (i.e.
(W/B) and the size of constructed buckets by any algorithms. The
other way of computing this error, which is based on the error com-
putation in quantiles, is to compute the expected error for the ranks
of reported boundaries. A third approach can also be considered,
which uses the differences between the ideal position (actual value)
of the bucket-boundaries and the exact boundaries. Based on these
three error types, the following definitions can be considered for
the expected ϵ-approximate equi-depth histogram. These three er-
ror types are respectively called size error, rank error, and boundary
error.

DEFINITION 3. An equi-depth histogram summary of a window
of size W is called a size-based expected ϵ-approximate summary
when the expected error on the reported number of items in each
bucket si is bounded by ϵW/B.

DEFINITION 4. An equi-depth histogram summary of a window
of size W is called a rank-based expected ϵ-approximate if the ex-
pected error of the rank of all the reported boundary ri is bounded
by ϵW .

DEFINITION 5. An equi-depth histogram summary of a window
of size W is called a boundary-based expected ϵ-approximate if
the expected error of all the reported boundary bi is bounded by
ϵS, where S is the difference between the minimum and maximum
values in the current window.

The boundary error behaves very similar to the rank error. How-
ever, boundary error is much faster to be computed, since it deals
with the value of the items instead of their ranks. Throughout this
paper, we consider the first definition, because it is more appro-
priate for many applications that only care about the size of each
individual bucket (not the position of the boundaries).

4. BAR SPLITTING HISTOGRAM (BASH)
In this section, we describe our BAr Splitting Histogram (BASH)

algorithm which computes a size-based expected ϵ-approximate
equi-depth histogram. For the rest of the paper, W denotes the
number of items in the current window. In other words, W is the
size of the most current window, whether it is physical or logical.
We should also mention that, throughout this paper, we never as-
sume that W is a fixed value as in physical windows. This implies
that our approach works for both types of sliding windows. As al-
ready mentioned, B is the number of buckets in the histogram un-
der construction. The pseudo-code for BASH is given in Algorithm
1, which is comprised of the following phases:

1. In the first phase, BASH initializes the structure, which may
differ depending on whether the minimum and maximum values

71

of the data stream is known or not. However, the general idea is
to split the interval into at most Sm = B × p partitions (Bars),
and assign an EH structure to each of the intervals (p > 1 is an
expansion factor helping to provide accuracy guarantees for the al-
gorithm, which will be discussed further in Section 5).

2. The next phase seeks to keep the size of each bar moderate.
To achieve this, BASH splits bars with sizes greater than a thresh-
old called maxSize. Note that maxSize is proportional to current
window size W , so it is not a constant value. Next subsection dis-
cusses this threshold with more details. Since the number of bars
should not exceed Sm, BASH may need to merge some adjacent
bars in order to make more room for the split operation.

3. Using the boundaries of the bars computed in the previous
two phases, the third phase estimates the boundaries for the final
buckets. This phase could be run each time the window slides or
whenever the user needs to see the current results. To implement
this phase, one could use a dynamic programming approach to find
the optimum solution, but unfortunately this is not affordable un-
der the time constraint in streaming environments, so we have to
employ a simpler algorithm.

Algorithm 1 BASH()

initialize();
while (true) {
next = next item in the data stream;
find appropriate bar bar for next;
insert next into bar.EH;
maxSize = ⌈maxCoef ×W/Sm⌉;
if (bar.count > maxSize)
splitBar(bar);

remove expired boxes from all EHs;
if (window slides)

output computeBoundaries();
}

We will next describe these three phases in greater detail.

4.1 Bars Initialization
In many cases, the minimum and maximum possible values for

the tuples in the stream are known or can be estimated. To initialize
the structure for such cases, the initialize() function in Algorithm
1 partitions the interval between the minimum and the maximum
into Sm = B × p (p > 1) equal segments, that we call bars;
an empty EH sketch is created for each segment. As it will be
shown later, the value of our expansion factor does not need to be
much larger than one. In practice, our experiments show that it is
sufficient to set p value less than 10.

For those cases where there is no prior knowledge of the min-
imum and maximum values, initialize() starts with a single bar
with an empty EH. Once the first input, say next, comes in, the
method sets the interval for this bar to [next, next], and increments
its EH by one. The algorithm keeps splitting the bars and expand-
ing the interval of the first and last bars as more data are received
from the stream. In this way, we can also preserve the minimum
and maximum values of the tuples at each point in time.

The other critical step in Algorithm 1 is the split operation
splitBar(). This operation is triggered when the size of a bar is
larger than maxSize = ⌈maxCoef×W/Sm⌉, where maxCoef
is a constant factor. Obviously, maxCoef should be greater than 1
since the ideal size of each bar is W/Sm and we need the maxSize
to be larger than W/Sm. On the other hand, after splitting a bar
into two bars, the size of each bar should be less than or equal to
the ideal size of bars. This implies that maxCoef ≤ 2. This value

is empirically determined to be approximately 1.7. Smaller values
usually cause more splits and affects the performance, while larger
values affect the accuracy since larger bars are more likely to be
generated. Observe that as the window size changes, maxSize
also changes dynamically. This in turn implies that BASH starts
splitting bars very early, when the window is empty and first starts
to grow, because at that point maxSize is also quite small. Start-
ing the process of splitting the bars early is crucial to assure that
accurate results are obtained from early on in the execution of the
algorithm. This dynamicity also helps BASH to easily adapt to the
changes in window size W for logical (i.e., time-based) windows.

Example 1: Assume that we want to compute a 3-Bucket his-
togram (p = 2, k = 2, and W = 100) and the data stream starts
with 10, 123, 15, 98, Thus, the initialization phase starts with a
single bar B1 = (1, [10, 10]), which means the bar size and its in-
terval are respectively 1 and [10, 10]. Once second data item, 123,
enters, BASH inserts it into B1, so B1 = (2, [10, 123]). However,
at this point B1’s size is larger than maxSize (⌈1.7 × 2/6⌉) and
it should be split, so we will have two bars B1 = (1, [10, 66])
and B2 = (1, [66, 123]). Next data item, 15, goes to B1, so
B1 = (2, [10, 66]). Again, B1’s size is larger than maxSize
(⌈1.7 × 3/6⌉), so BASH splits it and now we have three bars:
B1 = (1, [10, 38]), B2 = (1, [38, 66]) and B3 = (1, [66, 123]).
By repeating this approach for each incoming input, we obtain a
sequence of non-overlapping bars covering the entire interval be-
tween the current minimum and maximum values in the window.

4.2 Merging and Splitting Operation
As already mentioned, for each new incoming tuple, the algo-

rithm finds the corresponding bar and increments the EH sketch
associated with that bar as, explained in section 3. However, the
most important part of the algorithm is to keep the number of tu-
ples in each bar below maxSize, allowing for a more accurate
estimate of the final buckets. In order to do so, every time the size
of a bar gets larger than maxSize, BASH splits it into two smaller
bars. However, we might have to merge two other bars in order to
keep the total number of bars less than Sm. This is necessary to
control the memory usage of the algorithm. Due to the structure of
the algorithms, it is easier to start with the merging method.

4.2.1 Merging
In order to merge the EH sketches of the pair of selected bars,

the EH with the smaller number of boxes is set to blocked. BASH
stops incrementing blocked bars, but continues removing expired
boxes from them. In addition, the interval of the other bar in the
pair is merged with the interval of the blocked bar, and all the new
tuples for this merged interval are inserted into this bar. Algorithm
2 describes this in greater detail. The details on how the bars are
chosen for merging will be discussed later in this section.

When running Algorithm 2, every bar may have one or more
blocked bars attached to it. BASH keeps checking that the size
of the actual bar is always bigger than those of its blocked bars,
and whenever this is no longer the case, BASH switches the actual
bar with the blocked bar of larger size. Although this case is rare, it
can occur when the boxes of the actual bar expire and the bar length
decreases, while the blocked EH has not been changed.

Also, observe that every bar might have more than one blocked
bar associated with it. Consider the case where we have to merge
two adjacent bars which already have an associated blocked bar. To
merge these two, we follow the same general approach: the longest
EH is picked and all other bars (blocked or not) are considered as
the blocked bars of the selected (actual) bar. In the next section, we
will show that the expected number of such blocked bars is Sm.

72

Algorithm 2 mergeBars()

if (! findBarsToMerge(Xl, Xr)) return false;
Initialize new bar X;
if (EHXl .BoxNo ≥ EHXr .BoxNo){
EHX = EHXr ;
Add EHXl to the blocked bars list of EHX ;

} else {
EHX = EHXl ;
Add EHXr to the blocked bars list of EHX ;

}
Add the blocked bars of both EHXl

and EHXr to the blocked bars list of EHX ;
X .start = Xl.start;
X .end = Xr .end;
Remove Xr and Xl from the bars list;
Add bars X and to the bars list;
return true;

4.2.2 Splitting
When the size of a bar, say X , exceeds the maximum threshold

maxSize as shown in Algorithm 1, we split it into two smaller bars
according to Algorithm 3. Before the split operation takes place, we
make sure that the number of bars is less than Sm. If this is not the
case, as already explained, we would try to merge two other small
adjacent bars. After X is determined to be appropriate for splitting,
we divide the interval being covered by X into a pair of intervals
and assign a new EH sketch to each of them. Let us call these new
bars Xl and Xr . X must be split in such a way that the size (count)
of Xl and Xr remain equal. To this end, the algorithm first tries to
distribute the blocked bars of X , denoted as BBX , into the blocked
bars of each of the new bars. The splitting algorithms tries to do
this distribution as evenly as possible; however, the size (count)
of bars Xl and Xr may not be equal after running this step. Thus,
BASH splits the actual bar of X (EHX) accordingly to compensate
for this difference. It is easy to show that it is always possible to
compensate for this difference using an appropriate split on EHX ,
since the size of the actual bar is guaranteed to be greater than the
size of each its blocked bars.

To split the original EH sketch, EHX , into a pair of sketches,
BASH first computes the split ratio denoted as Ratio in Algorithm
3. Ratio simply indicates that to compensate for the difference
between the size of the two new bars, the aggregate size of boxes
going from EHX to EHXr after splitting should be Ratio times
the size of EHX . In order to have such a split ratio, BASH puts
half of EHX boxes with size one into EHXl , and the other half
into EHXr . Then, it replaces each of the remaining boxes in EHX

with two boxes that are half the size of the original box. Finally,
based on the current ratio of the sizes, BASH decides whether to put
each copy to EHXr or EHXl . In other words, if the current ratio
of the size of EHXr to the aggregate size of EHXr and EHXl is
smaller than Ratio the copy will go to EHXr otherwise it will go
to EHXl .

Example 2: Let us get back to our running example. Assume
we have the following six bars at some point: B1=(21, [1, 43]),
B2=(14, [43, 59]), B3 = (10, [59, 113]), B4=(9, [113, 120]), B5

=(29, [120, 216]), and B6 = (15, [216, 233]), and the next input
is 178. BASH inserts this input into B5, and now B5’s size is
30 which is larger than maxSize=⌈1.7 × 100/6⌉=29. Thus, B5

should be split. However, since we already have six (p × B) bars,
we need to find two candidates for merging before we can split
B5. As the bars’ size offers B3 and B4 are the best candidates,
since after merging them the aggregate size is still smaller than

maxSize. Therefore, after this phase is done the following bars
would be in the system (note that for simplicity, we assumed that
nothing expires in this phase): B1=(21, [1, 43]), B2=(14, [43, 59]),
B3=(19, [59, 120]), B4=(15, [120, 168]), B5= (15, [168, 216]), and
B6=(15, [216, 233]).

Algorithm 3 splitBars(X)

if (curBarNo == Sm && !mergeBars()) return;
Initialize new bars Xl and Xr;
l = 0;
//distributing blocked bars of X between the new bars
BBSize = Aggregate Size of the blocked bars;
for each (blocked bar bar in BBX) {

if (l + bar.size < BBSize/2) {
l += bar.size;
Add bar to BBXl ;

} else
Add bar to BBXr ;

}
EHXl .start = EHX .start;
EHXl .end = (EHX .start + EHX .end)/2;
EHXr .start = (EHX .start + EHX .end)/2;
EHXr .end = EHX .end;
Ratio = ((X .size/2)-l)/(X .size - BBSize);
foreach (box box in EHX) {

if (box.size == 1)
Alternatively add a copy of box to EHXl or EHXr ;

else {
box.size = box.size/2;
for (2 times)

if (EHXr .size /(EHXr .size+EHXl .size) < Ratio)
Add a copy of box to EHXr ;

else
Add a copy of box to EHXl ;

}
}
Remove X from the bars list;
Add bars Xl and Xr to the bars list;

4.2.3 Which Bars to Merge
To select two bars for merging, we first look for any two empty

adjacent bars. If there is no such pair, we look for an empty bar
and merge it with the smaller of its two neighbors. When there is
no empty bar, then we find the two adjacent bars that have the min-
imum aggregate size. If this aggregate size is less than maxSize
(which is usually the case), we select them for merging. Other-
wise, we do not perform any merge operations until some boxes
expire, since we do not want to create bars with size greater than
maxSize. Although bars may be initially empty or become empty
due to the expiration of their boxes, the case in which the bars are
not is obviously the most common one.

4.2.4 An Alternative Merging Approach
Although the aforementioned approach guarantees the approxi-

mation ratio, it is using blocked bars which may increase the mem-
ory requirement and as a result influence performance. As an al-
ternative approach, one can use the following method, wherein the
idea is to merge the boxes of the two bars, and make a new EH.
The former technique is called BASH-BL, since it needs to deal
with BLocked bars, and this alternative approach is referred to as
BASH-AL thorough the rest of the paper.

To merge two EH sketches, we start by selecting boxes with size

73

Figure 2: Merging two EH sketches EH1 and EH2. (k=2)

one from both EH sketches, and mingle them into a list sorted by
the start time of their intervals. If the number of such boxes is
more than k/2+2 (k = 1/δ), we keep combining the oldest boxes
in this list until the number of boxes with size one is smaller than
k/2+2. The same steps would be followed for boxes with size two.
We compile all boxes of size two, sort them based on their start
times, and if the number of these boxes is more than k/2 + 1, we
combine the oldest ones until the number of such boxes is smaller
than or equal to k/2 + 1. Note that while merging boxes with
size two, we may be using some boxes from the first EH , some
from the second EH , and some boxes generated from combining
boxes in the previous iterations. This approach is then repeated for
boxes with larger size (4, 8, etc.). Figure 2 illustrates an example
of merging two EH sketches where k = 2 using this alternative
method.

Although, we do not have any blocked bars, the same split ap-
proach, mentioned earlier, can be used for this alternative merging
technique. This time, the splitting operation in Algorithm 3 splits
the only existing EH into two EHs of equal size.

4.3 Computing Final Buckets
So far, we showed how the intervals can be partitioned into Sm

parts in a way that each part contains no more than maxSize items.
The last phase is to report the final buckets or boundaries of the
buckets. As already noted, a dynamic programming approach can-
not be used to see which bars should go into each bucket. This
is due to the quadratic delay of the dynamic approach that makes
it completely inapplicable. Instead, we use a linear approach as
shown in Algorithm 4.

First, this algorithm computes the total number of estimated tu-
ples in the current window by adding up the estimated number of
tuples in each bar. Let us call it totalEst, which is not necessar-
ily equal to W 1. Therefore, the expected number of tuples in each
bucket should be idealBuckSize = totalEst/B. Thus, we start
from the first bar and keep summing the estimated number of items
in each bar until the sum exceeds idealBuckSize. At this point,
we report the appropriate boundary for the current bucket as shown
in Algorithm 4 and continue with the next bucket.

5. THEORETICAL RESULTS
In this section, we provide the theoretical proof of the approxi-

mation ratio, time complexity, and space usage of the BASH algo-
rithm. All the proofs are provided for the version of BASH which
1Note that the expected value of totalEst is W, but at each point in
time these two may have different values.

Algorithm 4 computeBoundaries()

b = −1; //An index over bars list
count = 0;
idealBuckSize = totalEst/B;
for (int i = 0; i < B; i++) {

while (count ≤ idealBuckSize) {
b ++;
count += bars[b].count;

}
surplus = count− idealBuckSize;
boundaries[i] = bars[b].start+
bars[b].length ∗ (1−surplus/bars[b].count)

count = surplus;
}
return boundaries;

uses blocking to merge the bars (BASH-BL). Similar proofs can be
provided for the other version as well.

5.1 Approximation Analysis
First, we start by proving that the splitting operation does not

change the expected error of the estimations for the number of tu-
ples in each new bar. Assume bar X is going to be split. Let the
actual number of items in X be NX , while the sketch has estimated
this number to be nX . Because of the EH sketch approximation ra-
tio, we know:

(1− δ)NX ≤ nX ≤ (1 + δ)NX (1)

After splitting X into two smaller bars, say Xl and Xr , our es-
timation for each of these new bars is nX/2, because of the way
the split operation works. Let the actual number of items in Xl be
kl. The expected error for this new bar (Xl) is computed as the
average error over all possible values for kl. Let P{kl = k} be the
probability that the size of bar Xl is k (0 ≤ k ≤ NX). It is then
easy to see that:

P{kl = k} =
(NX

k

)
(1/2)NX (2)

Without loss of generality, assume nx ≤ NX and NX is an even
number. Thus:

E{err(Xl)} =

NX∑
k=0

|nX

2
− k|P{kl = k}

=

nX/2∑
k=0

(
nX

2
− k)P{kl = k}+

NX∑
k=nX/2+1

(k − nX

2
)P{kl = k}

= 2

nX/2∑
k=0

(
nX

2
− k)P{kl = k}+

NX∑
k=0

(k − nX

2
)P{kl = k}

= 2

NX/2∑
k=0

(
nX

2
− k)P{kl = k}+ NX

2
− nX

2
(3)

Now, we show that the first part of the last equation is negligible
with respect to NX/2− nX/2.

nX/2∑
k=0

(
nX

2
− k)P{kl = k} ≤

nX/2∑
k=0

(
NX

2
− k)P{kl = k}

≤
NX/2∑
k=0

(
NX

2
− k)P{kl = k}

74

=
NX

2

NX/2∑
k=0

P{kl = k} −
NX/2∑
k=0

kP{kl = k}

=
NX

2

1

2
(1 + P{kl =

NX

2
})−

NX/2∑
k=1

NX

2
P ′{kl = k − 1}

=
NX

4
(1 + P{kl =

NX

2
})− NX

2

NX/2−1∑
k=0

P ′{kl = k}

=
NX

4
(1 + P{kl =

NX

2
})− NX

2

1

2

=
NX

4

(
NX

NX/2

)
(
1

2
)NX ∼ 1

4

√
NX

π
(4)

The last part is because of the direct application of Sterling’s
formula and P ′{kl = k} is the probability of having k items in
the left bar when you split a bar with size NX − 1. Combining
inequality (4) with equation (3), and using inequality (1), we can
conclude that:

E{err(Xl)} =
NX

2
− nX

2
+

2

4

√
NX

π

≤ δ
NX

2
+

1

2

√
NX

π

≤ (δ +
1√
πNX

)
NX

2
(5)

Note that the second part of this error shows that no matter how
accurate the estimation of the size of bar X is, when we split it, we
will add 1/

√
πNX error rate on average. Fortunately in practice,

this increase in error is negligible since NX is very large. More-
over, later we show that the number of split operations is bounded
such that at the next split on the same bar, this extra error will be
vanished due to the expiration of old and inaccurate boxes. Thus
in practice, the expected δ-approximation still holds for this new
bar. This also holds for E{err(Xr)} symmetrically. Thus, we
can state that the expected error does not change by splitting a bar.
Moreover, the merge operation does not change this error, since the
EH sketch of the merged bars does not change at all. These two
facts lead us to the following lemma:

LEMMA 1. At any moment in time, our sketch contains an ex-
pected δ-approximation of the number of tuples in each bar. Also,
these estimations are not greater than maxSize.

THEOREM 1. For any given 0 < ϵ < 1, algorithm compute-
Boundaries() provides a size-based expected ϵ-approximate equi-
depth histogram for sliding windows on data streams.

PROOF. We need to show that the estimated number of tuples
in each bucket is bounded by ϵW/B on average. Remember that,
on average every bucket consists of Sm/B = p bars. According
to Lemma 1, every bar also has an expected δ-approximate number
of tuples in it. On the other hand, the first and last bars should
be treated differently, because we may only consider a fraction of
them in the bucket. Thus, in total, we would have δ error for the
size estimation of the bars and 2× 1/p for the bars at the two ends
of the bucket. The latter is because the entire counted number from
those two bars may be on the wrong side of the boundaries we have
selected. This proves that the expected total error is bounded by
δ + 2/p. Calling this bound ϵ, one can say that by setting δ =
ϵ/2 (k = 2/ϵ) and p = 4/ϵ, we obtain a size-based expected ϵ-
approximate equi-depth histogram.

The proof, we provided here shows that the expected approxima-
tion error is bounded, which is enough for our purpose even though
better bounds may hold in theory.

5.2 Space Complexity Analysis
To analyze the space usage of our approach, we first prove the

following lemma showing that on average, the total number of blocked
bars is limited.

LEMMA 2. At any moment in time, the BASH algorithm on av-
erage generates O(Sm) number of blocked bars.

PROOF. The algorithm only performs a merge operation when
it has to split a bar and there is no room left for a new bar. Thus,
the number of merge operations is less than the number of split op-
erations. Moreover, for each split operation on a bar, maxSize/2
tuples must have been inserted into the bar since the last split on the
bar. This means that the average number of splits and consequently
the average number of merges is 2 × W/maxSize. By selecting
maxSize to be O(W/Sm), e.g., maxCoef × W/Sm which is
less than twice the ideal size for each bar, we can conclude that
the average number of split operation and as a result the average
number of merge operations in each window is O(Sm).

To show that the average number of blocked bars in the current
window is O(Sm), first consider that there is no switch between
any actual bar and one of its larger blocked bars. For this case,
every blocked bar stays in the system, until the whole window ex-
pires. This is because when a bar is blocked, it does not get incre-
mented anymore and after the window slides for W tuples, all its
boxes will be expired. This basically means the average number
of blocked bars is the same as the average number of splits. Now,
consider the case that we need to switch an actual bar with one of
its blocked bars which has a larger size. We show that on average
the number of such switches are constant, thus the average number
of blocked bars is still O(Sm). Let q be the probability of switch-
ing an actual bar with one of its blocked bars at any time between
two consecutive split operations over that actual bar. Also, observe
that the size of blocked bars are always decreasing, and on average,
the rate of expiring from both types of bars are the same. Thus,
blocked bars sizes are decreasing at a faster rate than those of ac-
tual bars, since we may insert new items into the actual bars. This
basically means q < 1/2. Keeping this in mind, we also know
that in the mentioned period, the probability of having one switch
is q, the probability of having two switches is q2, etc. Thus, the
expected number of switches is Σiqi ≤ q/(1− q)2, which in turn
is smaller than 2 for q < 1/2. This completes our proof.

Based on the above lemma, we can now compute the average
space used by BASH. On the one hand, each EH sketch for count-
ing X items in an sliding window with δ-approximate (δ = ϵ/2)
accuracy needs O(1

δ
log(δX)) or equivalently O(1

ϵ
log(ϵX)) of

space. On the other hand, the total number of bars in the system is
O(Sm) for the worst case (Lemma 2). Thus the total memory used
is O(Sm

1
ϵ
log(ϵ×maxSize)) or O(B 1

ϵ2
log(ϵ2W/B)). This lead

us to the following theorem:

THEOREM 2. The BASH algorithm computes the set of B − 1
boundaries of the expected ϵ-approximate equi-depth Histogram
on a data stream using O(B 1

ϵ2
log(ϵ2W/B)) space, where W is

the sliding window size.

Observe that this bound is computed for the worst case scenario.
As previously mentioned, we do not need to set k (1/δ)) and p
to very high values in practice. Consequently, BASH practically
needs even less memory space than the existing approaches.

75

5.3 Time Complexity Analysis
We will compute the expected computational cost of BASH per

tuple assuming that k = 2: for larger k’s the algorithm is faster at
the cost of using more memory space. When the next data value,
next, comes in, the cost of the various steps in Algorithm 1 can be
estimated as follows:

• Finding the appropriate bar, curBar, for next to be inserted
into takes log(Sm) using a simple binary search.

• Incrementing the EH sketch of curBar needs one
box-combining operation on the average. To see why this
is O(1), observe that at most half of the increments cause
two size-one boxes to get merged. From this half, half of
them result in combining two boxes of size 2, and so on and
so forth. Therefore, in total, for 2i increments we need 2i−1

merges on boxes of size 1, 2i−2 of merges on box of size 2,
..., and 1 merge for boxes of size 2i−1. Since this adds up to
2i − 1, each increment requires an average (2i − 1)/2i ≈ 1
combining operations.

• The probability of needing a split operation is 1/Sm, and to
split a bar we only need to go through the box list of EH
once; this takes O(log(maxSize)). Therefore, the average
cost of a split operation is O(log(maxSize)) /Sm, which is
practically a constant.

• The merge operation itself needs a constant amount of time,
but to find the best bars to merge, we need to go through
the entire list of bars of length Sm. Multiplying this by the
probability of needing to merge (1/Sm), we conclude that
the average cost for this operation is also constant.

• Computing the final boundaries requires visiting all bars
(O(Sm)). Fortunately, we do not need to report the results
for each new incoming data value. Instead, we can report
the results each time the window slides (S): this reduces the
complexity to O(Sm/S).

• The naive implementation of the expiration phase checks the
last box of each EH (O(Sm)). This time can be reduced to
O(log(Sm)) using a simple heap tree structure. To keep the
implementation simple, we perform the expiration phase a
constant number of times in each slide: this can lower the
time complexity to O(Sm/S).

Considering these computations, we can conclude that the total
time complexity per data item would be O(log(Sm) + Sm/S) =
O(log(B×p)+(B×p)/S), where S is the slide size. In practice,
this time complexity would be very close to a constant time, since
S is usually much larger than Sm, and log(Sm) is usually very
small.

6. EXPERIMENTAL RESULTS
In order to evaluate the performance of the proposed algorithms,

we have implemented both versions of the BASH algorithm us-
ing the C++ programming language. The version of BASH which
blocks the bars in the merge operation is referred to as BASH-BL,
and the alternative approach which mixes the boxes of the EHs into
a single EH at the merge time is called BASH-AL. In addition to
BASH, we have also implemented the AM [3] algorithm in the ex-
act same environment. To be able to compare the resulting his-
tograms from each of the mentioned algorithms, we used a simple
approach which computes the exact boundaries of the equi-depth
histograms. It is worthy to note that for some cases this approach
needs several hours to compute the exact histograms.

For all the experiments shown in this section, we have fixed the
slide size at 100 tuples. To Make the error diagrams smoother,

Table 1: Data sets used for the experimental results
Name Distribution Size Shifts Parameters
DS1 Uniform 1m 0 min0,max10k
DS2 Normal 1m 0 µ5k, σ2k
DS3 Normal 1m 0 µ5k, σ50
DS4 Normal 1m 0 µ5k, σ20
DS5 Normal 1m 0 µ5k, σ500
DS6 Zipfian 1m 0 α1.1
DS7 Zipfian 1m 0 α1.5
DS8 Exponential 1m 0 λ10−2

DS9 Exponential 1m 0 λ10−3

DS10 Exponential 1m 0 λ10−4

DS11 Normal 1m 100 µ10k-1k, σ50
DS12 Normal 1m 100 µ15k-5k, σ200
DS13 Normal 1m 1k µ15k-5k, σ200
DS14 Normal 10m 1k µ15k-5k, σ500
DS15 Normal 10m 1k µ15k-5k, σ50
DS16 Mix 10m 100 µ5k, σ200, λ10−3

DS17 Mix 10m 1k µ5k, σ200, λ10−3

DS18 Poker-Hands 10m 0 -
DS19 S&P500 165k - -
DS20 Expanded 1.03m - -

S&P500

the average error for every 20000 tuples is shown at each point.
No prior knowledge of the minimum and maximum values of the
incoming data is considered. maxSize and B are also set to 1.7×
W/Sm and 20 respectively. Similar results hold for different values
of B, which are eliminated due to space limitations.2

Most of the comparisons included in this part are performed with
ϵ = 0.01 for AM algorithms. The experimental results show that
to obtain this error rate for window sizes larger than 100k, it is
almost always sufficient to set δ to 0.1 and p to 7. Moreover, if one
wants to compete with AM with an error rate of 0.025, setting δ
to 1/8 and p to 4 would always provide more accurate results in
BASH than AM. All the experiments are run on a 64bit, 2.27 GHz
machine running CentOS with 4GB of main memory (RAM) and
8MB of cache.

6.1 Data sets
The data sets used for evaluating the results can be categorized

into two main parts: synthesized data sets and real-world data sets.
Table 1 summarizes some information about these data sets.

Synthesized data sets: We have used a number of different syn-
thesized data sets in our experiments:

• Uniform, Normal, Zipfian, and Exponential distributions with
different settings for their parameters and without any con-
cept shift (DS1 through DS10).

• Normal distributions with many shifts on the value of the
mean parameter. (DS11 to DS15)

• Random shifts on random distributions (DS16 and DS17):
Just as in the previous data sets, the distribution of data in
these data sets encounters several shifts. However, this time
at each shift, we randomly select between normal and expo-
nential distributions. If the choice is the normal distribution,
with probability 0.5, we increase the mean by 50, otherwise
we decrease it by 50. In the same way, we change the stan-
dard deviation by ±5. On the other hand, if the exponential
distribution is selected at the current shift, the rate parameter
(λ) is randomly updated by ±10%. The initial values of the
parameters are shown in Table 1.

2For more results, see our more extensive report in [17].

76

Figure 3: a) Execution time for all data sets (W = 100k), and b) The effect of changing window size from 1k to 1m on the execution
time on DS13. (k = 10, p = 7, and ϵ = 0.01.)

Real-world data set: One of the most important applications of
the histograms is for those cases in which the distribution of the
data is unknown or can not be simply modeled. To evaluate the
performance of BASH algorithms over this kind of data, we have
considered the following real-world data sets:

• Poker-hands (DS18)[2]: Each row in this data set contains
10 values ranging from 1 to 12. For this data set, we have
computed the histogram over the multiplication of all these
values in each row. Note that this data set contains no concept
shift, since the probability of each outcome at each point is
computable.

• S&P500 (DS19)[1]: This data set contains minute-by-minute
prices of the S&P500 index starting from January 29, 2010
and ending on August 13, 2010. Each record contains the
highest, lowest and last prices of the index in the correspond-
ing minute.

• Expanded S&P500 (DS20): For each row of the previous
data set, we generated 17 more values with a normal distri-
bution such that 95% of them are between the lowest and
highest prices of the corresponding row. Combined with the
existing three prices in each row, this makes a data set with
more than 1.03 million records.

6.2 Timing Results
For each of the data sets introduced in Table 1, the running time

of the three algorithms with ϵ = 0.01 and W = 100k is shown in
part a of Figure 3. Similar results are obtained for different window
sizes and ϵ which is not shown in this paper due to space limitations.
For further results, readers are referred to our extensive report [17].

Based on the timing results in part a of Figure 3, we can state
that both BASH-BL and BASH-AL are at least four times faster
than AM in almost all the data sets, while also providing more ac-
curate histograms which are discussed later in this section. This
improvement on execution time makes BASH much more appli-
cable than AM. particularly for larger windows (or equivalently
faster data streams.) As an example, consider DS16 in which AM
and BASH-AL (BASH-BL) respectively spend 607.56 and 111.79
(124.61) seconds to compute the results. Another interpretation of
these timings would be that AM and BASH-AL (BASH-BL) can
respectively support 16549 and 89453 (80250) data items per sec-
ond with a window size of 100k. Therefore, AM may not be prac-
tical for many data streaming systems, while BASH is performing

properly. In the next few paragraphs, we show that the problem of
high delay of the AM approach gets even worse with larger window
sizes.

As already mentioned, AM runs several copies of the GK al-
gorithm and employs a sorting algorithm over the output of these
copies to generate the final quantiles. Thus, the timing performance
of AM is hugely dependent on its sorting algorithm. In our im-
plementation of AM, we have used quick sort, since it is one of
the fastest sorting algorithms in practice. However, we have also
included the running time of AM without considering the time it
spends on sorting (bars titled as "AM No Sort" in part a of Fig-
ure 3). Interestingly, even after eliminating the sorting time from
AM, both BASH-BL and BASH-AL are still faster. Another impor-
tant factor affecting the performance of the mentioned algorithms
is the window size W . Part b of Figure 3 sketches how the window
size affects the response time. These results are taken over data
set DS13. The delay time for all the three approaches increases
with respect to the window size; however, the growth rate of AM is
greater than the other two. It is worthy to mention that putting the
sorting time aside, the rest of the AM algorithm still needs more
time than BASH algorithms for all window sizes.

6.3 Space Usage Results
The diagram in part a of Figure 4 compares the space usage of

the three algorithms for a window size of W = 100k. In this
diagram, for each of the data sets, we have provided the size of the
main structures in the algorithms. For all the cases (except DS19),
both BASH-BL and BASH-AL need at least 20% less space than
AM. However, BASH-BL uses slightly more space than BASH-
AL. The reason that BASH algorithms need more memory than
AM for DS19 is the small size of this data set (165K) with respect
to the window size (100K). This is due to the fact that the BASH
algorithms are in their initialization phase, during which reaching
convergence might use more memory than other algorithms. It is
also worth mentioning that the smaller the variance of data values,
the less the memory usage for both BASH algorithms.

In part b of Figure 4, the diagram illustrates the space usage of
the three algorithms for different window sizes. Both BASH al-
gorithms use almost the same amount of memory in each window
size, and that amount increases logarithmically with respect to the
window size. On the other hand, memory usage of AM is almost
constant for different window sizes, and it even decreases for very
large window sizes. Therefore, for the window sizes larger than

77

Figure 4: Space usage of the algorithms for a) all the data sets (W = 100k), and for b) different window sizes on DS13. (k = 10,
p = 7, and ϵ = 0.01.)

256K, AM starts performing better than BASH algorithms in terms
of space. This suggests that there are situations where AM per-
forms better than BASHs with respect to memory usage. However,
we also need to keep in mind the following two important points:
First, as shown in the two diagrams of Figure 5, the histograms
generated by either of the BASH algorithms over windows with
size larger than 256K are at least three times more accurate than
the ones computed by AM. Second, for all the cases that the mem-
ory usage of BASH algorithms is worse than AM, the running time
of AM is at least 8 times worse than those of BASHs. Nevertheless,
for larger window sizes, we can use smaller values for parameters
k and p, and reduce the memory usage while still providing faster
and more accurate histograms than AM. The current setting of k
and p values is best suited for window sizes between 32K to 256K
in terms of both accuracy and space requirements.

6.4 Error Results
To evaluate the accuracy of each approach, we have used three

type of errors which have been already introduced in Section 3.2:
The boundary error, bucket size error (or simply size error), and
rank error. For each type of errors the absolute difference of the re-
ported value by each algorithm with the ideal value is used to avoid
domination of the final error values by the large differences. The
average error for each of these three error types over time are shown
in Figure 5. Part a, b, and c of the figure respectively compare the
boundary, size, and rank errors of the three algorithms. As you can
see, both BASH-BL and BASH-AL algorithms outperforms AM in
terms of accuracy for most of the data sets. It is also worthy to
mention that although not always true, BASH-BL is slightly more
accurate than BASH-AL.

The aforementioned error results are for the case in which win-
dow size is 100k. However, this error results differ for different
window sizes. To see this, we compute the boundary, size and
rank errors of the histograms generated by each of the algorithms
over data set DS13 (Figure 6). All three algorithms perform almost
equally in terms of errors up to the window size of 16k. How-
ever, from window size of 32k, the error rates of BASH algorithms
start to decrease, while for the AM algorithm, this rate does not
change, or it even increases. As a result, in larger window sizes,
both BASH-BL and BASH-AL hugely outperform AM algorithms
with respect to the three error types.

To have a better understanding of the evolution of accuracy for
the histograms over time, we also compare the boundary error re-

sults for AM, BASH-BL, and BASH-AL for some of the data sets.
We should mention that the errors of different diagrams are not
comparable with each others since they are in different scales:

Data Sets with No Concept Shifts: Figure 7 compares the bound-
ary errors for the three approaches (AM, BASH-BL, and BASH-
AL) for uniform, normal, and exponential distribution. The X axis
shows the number of tuples that have come into the system thus
far, while the Y axis indicates the average boundary errors. Both
BASH algorithms perform nearly the same, and at all points in time
the generated histograms by the BASH algorithm are more accurate
than the ones generated by the AM method.

Data Sets with Concept Shifts: Figure 8 illustrates the bound-
ary errors of AM and two versions of the BASH algorithm on three
of the data sets with concept shifts. The results mainly indicate
that, not only are BASH-BL and BASH-AL on average more accu-
rate than AM, but they are also more steady. This is more apparent
in part a of Figure 8 that sketches the boundary error results for
data set DS14 in which we have a concept shift at every 10,000
data items. To see this fluctuation in the errors computed for the
AM method, all three diagrams in Figure 8 show the error of the
generated histograms from tuple 4000k to tuple 6000k. In all these
three data sets, the boundary error for the AM method fluctuates at
each concept shift while BASH is more stable.

Real-World Data Sets: The boundary errors for the three real-
world data sets are also computed for BASH-BL, BASH-AL, and
AM algorithms (Figure 9). Similar to most of the cases we have
seen thus far, BASH algorithms are far more accurate than AM for
all the three data sets.

7. DISCUSSION
The experimental results for the performance of the algorithms

on different window sizes, shown in Figures 3.b, Figure 4.b, and
Figure 6 reveal some interesting features of the BASH algorithms.
For all the cases, BASH-AL is slightly faster and more efficient
(in terms of memory use) than BASH-BL. However, for window
sizes larger than 32k BASH-BL typically produces more accurate
histograms. The reason behind this observation is that BASH-
BL does not lose any accuracy while merging, due to the use of
blocked bars. On the other hand, the size of each bar (EH sketch)
increases with the increase in window size and, as a result, larger
boxes may appear in each bar for larger windows. In this case,
merging technique in BASH-AL loses more accuracy due to miss-
ordering larger boxes. Thus, BASH-BL performs more accurately

78

Figure 5: a) Boundary error, b) size error, and c) rank error for all data sets. (k = 10, p = 7, W = 100k, and ϵ = 0.01.)

Figure 6: The effect of changing window size from 1k to 1m on the a) boundary error, b) size error, and c) rank error for DS13.
(k = 10, p = 7, and ϵ = 0.01.)

Figure 7: The boundary errors for data sets a) DS1, b) DS5, and c) DS8 from left to right. (k = 10, p = 7, W = 100k, and ϵ = 0.01.)

Figure 8: The boundary errors for data sets a) DS14, b) DS16, and c) DS17 from left to right. (k = 10, p = 7, W = 1m, and
ϵ = 0.01.)

Figure 9: The boundary errors for data sets a) DS18, b) DS19, and c) DS20 from left to right. W is set to 10k for DS19 and 100k for
others. (k = 10, p = 7, and ϵ = 0.01.)

79

than BASH-AL in larger windows; however, it needs more time
and memory to maintain the blocked bars.

On the other hand, the interpretation of the comparison results
for space usage between BASH methods and AM may not be so
clear cut. The memory usage of AM is almost fixed (or even de-
creases) for different window sizes, while it logarithmically in-
creases in BASH algorithms. The better scaling of space usage
of AM for larger windows is mainly due to the difference in the
main objectives of the two algorithms. Observe that for larger win-
dows, the allowed error bounds increase for both algorithms since
the errors are proportional to the window size. While AM uses
this relaxation on the error constraint to minimize memory usage,
BASH seeks to maximize accuracy and minimize the running time
as well as keeping memory usage in a reasonable range. This claim
is apparent in Figures 3.b, Figure 4.b, and Figure 6, wherein for
those cases in which memory consumption of AM is more efficient
than the BASH methods, the accuracy of the histograms generated
by AM as well as its running time are significantly worse than those
of both BASH algorithms.

According to the timing results in Figure 3, both BASH-BL and
BASH-AL are at least four times faster than AM, while produc-
ing histograms that have almost the same or even better accuracy.
A more important concern is the scalability of the algorithms with
respect to running times. As part b of Figure 3 indicates, the execu-
tion time for both BASH-BL and BASH-AL linearly increases with
the window size, while this increase for AM is much faster. This is
mainly because BASH does not employ a sorting technique as op-
posed to AM. Moreover, the results in part a of Figure 3 show that
the running times of BASH algorithms decreases for data sets with
smaller standard deviations (such as DS4, DS7, and DS11), while
AM needs more time and memory for these types of distributions.

8. CONCLUSION
Synoptic structures and techniques are widely recognized as be-

ing critical for supporting fast computations on massive data streams
with light demands on computational resources [3], [4], [6], [7],
[8], [9], [10], [13], [16], [21]. Nevertheless, while histograms are
widely used in DBMS, DSMS have yet to see practical and efficient
algorithms for building accurate histograms for windows over data
streams. In this paper, we presented a new method called BAr Split-
ting Histograms (BASH) to estimate an expected ϵ-approximate
equi-depth histogram for sliding windows over a data stream. We
have performed extensive experimental evaluations to compare the
speed, accuracy, and memory required by our algorithm vis a vis
the state-of-the art AM method [3]. The comparison results ob-
tained show that BASH delivers (i) significant improvements in
the speed of computation (between 4 and 30 times faster), (ii) bet-
ter overall accuracy, and (iii) comparable memory requirements.
Moreover, when changes occur in the distribution of data, e.g.,
when concepts shift or drift, BASH responds and recovers its accu-
racy faster than the AM algorithm.

Several new research opportunities have also emerged in the course
of this work, and will be pursued in the future by (i) integrating
BASH with other synoptic techniques, such as sampling, (ii) con-
structing accurate equi-width histograms without requiring prior
knowledge of the extrema, and (iii) extending our algorithm to
compute biased histograms using the idea of biased quantiles [5]

9. ACKNOWLEDGMENTS
The authors would like to thank Armita Azari and Deirdre Kerr

for their valuable help in gathering the data sets for the experimen-
tal results and also proof reading the paper.

10. REFERENCES
[1] Business databases at ucla anderson, school of management,

http://www.anderson.ucla.edu/x14506.xml, December 2010.
[2] Uci machine learning repository,

http://archive.ics.uci.edu/ml/datasets.html, December 2010.
[3] A. Arasu and G. S. Manku. Approximate counts and

quantiles over sliding windows. In PODS, pages 286–296,
2004.

[4] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.
Models and issues in data stream systems. In PODS, pages
1–16, 2002.

[5] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava.
Space- and time-efficient deterministic algorithms for biased
quantiles over data streams. In PODS, pages 263–272, 2006.

[6] M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining
stream statistics over sliding windows. SIAM J. Comput.,
31(6):1794–1813, 2002.

[7] P. B. Gibbons, Y. Matias, and V. Poosala. Fast incremental
maintenance of approximate histograms. In VLDB, pages
466–475, 1997.

[8] M. Greenwald. Practical algorithms for self scaling
histograms or better than average data collection. Perform.
Eval., 27/28(4):19–40, 1996.

[9] M. Greenwald and S. Khanna. Space-efficient online
computation of quantile summaries. In SIGMOD
Conference, pages 58–66, 2001.

[10] S. Guha, N. Koudas, and K. Shim. Data-streams and
histograms. In STOC, pages 471–475, 2001.

[11] F. Halim, P. Karras, and R. H. C. Yap. Fast and effective
histogram construction. In CIKM, pages 1167–1176, 2009.

[12] Y. E. Ioannidis. The history of histograms (abridged). In
VLDB, pages 19–30, 2003.

[13] H. V. Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala,
K. C. Sevcik, and T. Suel. Optimal histograms with quality
guarantees. In VLDB, pages 275–286, 1998.

[14] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker. No
pane, no gain: efficient evaluation of sliding-window
aggregates over data streams. SIGMOD Record,
34(1):39–44, 2005.

[15] X. Lin, H. Lu, J. Xu, and J. X. Yu. Continuously maintaining
quantile summaries of the most recent n elements over a data
stream. In ICDE, pages 362–374, 2004.

[16] G. S. Manku, S. Rajagopalan, and B. G. Lindsay.
Approximate medians and other quantiles in one pass and
with limited memory. In SIGMOD Conference, pages
426–435, 1998.

[17] H. Mousavi and C. Zaniolo. Fast and space-efficient
computation of equi-depth histograms for data streams.
Technical report, UCLA, Los Angeles, USA, 2010.

[18] J. I. Munro and M. Paterson. Selection and sorting with
limited storage. Theor. Comput. Sci., 12:315–323, 1980.

[19] M. Muralikrishna and D. J. DeWitt. Equi-depth histograms
for estimating selectivity factors for multi-dimensional
queries. In SIGMOD Conference, pages 28–36, 1988.

[20] V. Poosala, Y. E. Ioannidis, P. J. Haas, and E. J. Shekita.
Improved histograms for selectivity estimation of range
predicates. In SIGMOD Conference, pages 294–305, 1996.

[21] Q. Zhang and W. Wang. A fast algorithm for approximate
quantiles in high speed data streams. In SSDBM, page 29,
2007.

80

