
Link-based Hidden Attribute Discovery for Objects on Web
Jiuming Huang

1,2,* Haixun Wang
2
 Yan Jia

1
 Ariel Fuxman

3

1
National University of Defense Technology, Changsha, China

2
Microsoft Research Asia, Beijing, China

3
Microsoft Research, Mountain View, California, USA

{huangjiuming, yanjia}@nudt.edu.cn

{haixunw,arielf}@microsoft.com

* The work was done at Microsoft Research Asia.

ABSTRACT

Information extraction from the Web is of growing importance.
Objects on the Web are often associated with many attributes that
describe the objects. It is essential to extract these attributes and
map them to their corresponding objects. However, much attribute
information about an object is hidden in the dynamic user
interaction and is not on the Web page that describes the object.
Existing information extraction approaches focus on getting
information from the object Web page only, which means a lot of
attribute information is lost. In this paper, we study the dynamic
user interaction on exploratory search Websites and propose a
novel link-based approach to discover attributes and map them to
objects. We build an exploratory search model for exploratory
Web sites, and we propose algorithms for identifying, clustering,
and relationship mining of related Web pages based on the model.
Using the unsupervised method in our approach, we are able to
discover hidden attributes not explicitly shown on object Web
pages. We test our approach on two online shopping Websites.
We achieve high precision and recall: For entirely crawled Web
sites the precision and recall are 98% and 97% respectively. For
randomly crawled (sampled) Web sites the precision and recall are
98% and 80% respectively.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications – data

mining; H.3.3 [Information Systems]: Information Search and
Retrieval – retrieval models

General Terms

Algorithms, Experimentation, Theory

Keywords

Attribute discovery, attribute labeling, exploratory search,

information extraction, query link.

1. INTRODUCTION
The Web contains rich information about a large variety of objects
such as people, products, locations, etc. Many applications rely on
information extraction techniques that convert information on the
Web into structured, machine readable format. Current techniques
focus on extracting information from content on given Web pages.
For instance, given a Web page about a product on an e-
commerce Website, much work [1-5] focused on obtaining such
information as the name, brand, price, and other properties, of the
product. However, there are many situations where a lot of useful
information about the product do not appear on the final page that
shows the product, but rather, in the dynamic user interaction
process that leads the user to the page.

We illustrate such situations using an example. Figure 1 is a
product page from Zappos.com, a well known online shopping
Website. The page shows an article of clothing known as “Tunnel
Vision Shirt”. The information on the page includes the name,
brand, price, color, size, width, and SKU of the product.

However, much important information about the “Tunnel Vision
Shirt” is not on the Web page in Figure 1. In Table 1, we show a
total of 15 properties of the product, all of which is obtained from
the Zappos.com Website, but only less than half of the
information (marked “static”) is found on the page in Figure 1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
EDBT 2011, March 22-24, 2011, Uppsala, Sweden.
Copyright 2011 ACM 978-1-4503-0528-0/11/0003 ...$10.00.

Figure 1. Product page.

473

The rest of the information, which we label as “interactive” or
“hidden”, do not exist on the Web page. Instead, it is embodied in
the interactive process with which the user explores the Website
and finds the product. Thus, the problem is, how can we find such
information about the product?

Table 1. A complete property list of “Tunnel Vision Shirt”

Property Value Availability

Product Type Clothing Interaction

Gender Girls Interaction

Category Tops Interaction

Subcategory Long sleeve tops Interaction

Top Type Blouse Interaction

Price Boundary $50.00 and Under Interaction

Theme Casual Interaction

Collar Type Spread Interaction

Width Apparel Interaction & Static

Color Gloxinia Interaction & Static

Brand Roxy Kids Interaction & Static

Size XL Interaction & Static

Name Tunnel Vision Shirt Static

Price $32.00 Static

SKU 7690411 Static

One example of such interaction is the so-called faceted search
[6]. Figure 2 shows the example of faceted search on Zappos.com.
For example, the “Tunnel Vision Shirt” can be found among the
products shown as a result after the user clicks on “Tops” in
“Category”, however, the final page of the product in Figure 1
does not contain the information “Category = Tops.” From our
studies, we found that over 80% of product information is
embodied in user interaction, and less than 50% exists on the
object pages or the final product pages (some interactive
information is also available on final product pages).

Zappos.com and e-commerce are not alone in having this
problem. More and more Websites support the emerging
Exploratory Search model [7], which combines querying and
browsing in Web surfing. Compared with typical keyword search,
exploratory search supplies additional hierarchical or multi-
dimensional browsing options for users who do not know much
about their goals. There are a broad range of applications of
exploratory search. For example, almost every online shopping
Website uses faceted search to give users a variety of categorical
search options; digital libraries, such as ACM Digital Library and
DBLP, supply users with multiple dimensions in search including
publication years, authors, venues, etc.; collaborative tagging [8]
systems such as Delicious.com use tags as useful cues for people
to discover topics that are relevant. Thus, much information about
an object of interest is being used in exploratory search for goal
query in search and exploration, and is not presented explicitly on

the target Web pages. As a result, traditional information
extraction techniques that ignore the dynamic user exploration
process will not be able to obtain complete information about the
objects of interest.

The Naïve Approach. In order to find the complete set of
attributes and their values, we can take the following naïve
approach:

• First, collect all the interaction hyperlinks. A good place to
start is the faceted search box such as the one shown in
Figure 2.

• Second, for each hyperlink, find all the objects that the
hyperlinks point to.

• Third, for each hyperlink, find what attribute/value it
represents.

Unfortunately, each step requires a lot of user supervision. For
instance, in the first step, it is difficult to automatically identify
hyperlinks that correspond to exploratory search/browsing. For a
given Website, say zappos.com, we may discover that interactive
links satisfy a certain pattern containing the string
“www.zappos.com/search”. Thus, it requires us to perform such
kind of investigation on Website.

The second step presents even more problems. Each interactive
hyperlink corresponds to a search criterion. However, the objects
that satisfy a search criterion may not be in the single page the
hyperlink points to, and not every object on the single page
satisfies the search criterion (the page may contain objects related
to the search, or objects that are in promotion or under highlight).
Thus, in order to find the complete set of objects that satisfy the
search criterion, we need to tell the system what are the patterns
that group multiple pages satisfying a search criterion together,
and what region of the page contains objects that satisfy the
search query, etc. Thus, we need a lot of user supervision so that
we can provide a set of templates to the system. Even if the
Websites do not change their templates frequently, it is a tedious

Figure 2. Faceted search on zappos.com

474

task to find and maintain such templates for a large number of
Websites.

Our Contributions. We present an unsupervised approach for
automatically discovering interactive or hidden attributes for
objects in a variety kinds of Websites that support exploratory
search/browsing. Our approach achieves an average precision of
98% and an average recall of 97% for Web sites that support
exploratory search/browsing.

More specifically,

• We introduce a model for exploratory search/browsing.
Without exception, every Website uses certain templates to
present results that satisfy a search criterion. Although the
templates are different for different Websites, they implement
a similar set of semantics. For example, the concepts of “roll-
up queries” and “drill-down queries” are universal. Our model
focuses on uncovering such semantics.

• We introduce an unsupervised method for crawling and
information extraction. In particular, we propose algorithms to
automatically group web pages that correspond to a single
search criterion, and we propose algorithms for automatic
query identification, including roll-up and drill-down link
detection. Since the algorithms are based on the internal
semantics of exploratory search/browsing, there is no need to
provide handcrafted templates for each individual Website,
which makes our approach general.

Paper Organization. The rest of the paper is organized as
follows. Section 2 models the exploratory search Websites and
defines attribute discovery task based on the model. Section 3
discusses a naïve approach. Section 4 presents our approach based
on the proposed model. Section 5 presents the experiment,
including the construction of data set and the evaluation for the
experimental results. Section 6 brings this paper to a conclusion
and discusses future works.

2. EXPLORATORY SEARCH/BROWSING
Exploratory search/browsing combines keyword search and
multidimensional browsing to help users narrow down on the
objects they are looking for. Unlike traditional navigation, in
exploratory search/browsing, a page often corresponds to a search
of a fixed form, and many hyperlinks on the page correspond to
new searches that are related to the current search.

Websites that provide exploratory search/browsing have many
common characteristics. Our goal is to discover the semantics
underneath these common characteristics so that we can use the
semantics to guide web crawling and information extraction.

2.1 Queries and their Relationships
We first formalize the concept of faceted search. We define a
faceted search as a set of <attribute, value> pairs. For example, a
search represented by {<type, ‘Clothing’>, <gender, ‘Girls’>}
finds girls’ clothing.

We can easily express such queries in SQL, for example:

q : SELECT *

 FROM products

 WHERE Type = ‘Clothing’ AND Gender = ‘Girls’;

If we know the <attribute, value> pairs that correspond to a
query q, and we know the objects that satisfy q, then we know
these objects must have the values for the attributes specified by
q. Thus, to find the complete set of attribute values for all objects,
we need to find:

1. the complete set of queries (including the <attribute, value>

pairs that correspond to each query);

2. objects that satisfy each query (we address this problem in
Sec 3).

The first problem is difficult. The Website does not list all the
queries, nor does it specify the set of <attribute, value> pairs for
each query.

In our work, we discover queries through their relationships. In
faceted search, for example, queries form “drill-down” and “roll-
up” relationships among themselves. As an instance, consider the

query p below, whose WHERE condition is a superset of that of
q:

p : SELECT *

 FROM products

 WHERE Type = ‘Clothing’ AND Gender = ‘Girls’

 AND Category = ‘Tops’;

We say p is a drill-down query of q and q is a roll-up query of p.
Instead of knowing the <attribute, value> pairs for a query q, all
that we know is the hypertext of the drill-down link between q and
p, that is, label(q→p) = <Category, Tops>, that is, query p
narrows down on query p by specifying an additional <attribute,

value> pair.

In the rest of the paper, we focused on solving the above two
problems.

2.2 Page Classification
Before we address the problem of finding queries and objects that
satisfy the queries, we first build a model for exploratory Web
search. Our first job is to classify pages on an exploratory search

site into 3 types: Result Pages, Object Pages, and Unrelated

Pages (which are pages that are neither result pages nor object
pages).

A faceted search returns a Result Page from which a user can
explore objects that satisfy the search criterion. Note that a search
usually corresponds to a set of result pages instead of a single
page. Consider the web page in Figure 3. It is the result of faceted
search q: “Clothing -> Girls” on zappos.com, that is, it is the page
shown after the user clicks on “Clothing” and then “Girls” in
faceted search. The result page contains many hyperlinks,
including links to a partial set of objects (4 objects) that satisfy the
query, hyperlinks (called pagination links) to other result pages
for query q, and hyperlinks that correspond to other faceted
searches (related or unrelated to the current search). Below, we
analyze hyperlinks on the result page, and we classify them into
six categories:

• Drill-down query links: which represent searches that
narrow down user’s selection. For example, if the user clicks
on ‘Tops’, he will trigger a new faceted search p, which is a
drill-down query of the current query q.

475

• Roll-up query links: which represent searches that
generalize the current search. For example, if the user clicks
on ‘Girls’, he will trigger a new faceted search whose
condition contains ‘Type=Clothing’ only, which is a roll-up
query of the current query q. Note that in many Websites,
drill-down queries and roll-up queries may form a
complicated hierarchy and appear in the same area on the
result page.

• Unrelated query links: which represent searches that are
unrelated to the current search. For example, links in the top
navigation bar, such as ‘SHOES’, ‘CLOTHING’, …, and
links in the alphabetical brand search, as well as possible
popular search options, are unrelated query links.

• Object page links: which point to objects that satisfy the
current search. In our example, we have 4 object links;

• Pagination links: which point to other result pages for the
current search. Usually, it does not have links to all the
pages, but rather, it provides an iterative mechanism for users
to page through all the result pages.

• Other links: which are any hyperlinks that do not fall into
the above 5 categories. These include links such as those that
lead to “My Cart”, account management, objects in
promotion, etc.

The drill-down query links, roll-up query links, and unrelated
query links represent other faceted searches, while object page
links and pagination links lead to objects that satisfy the current
search. Note that, given a page on an arbitrary Website, it is most
likely impossible for the machine to automatically identify and
differentiate among the 5 types of links. Instead, we need to take a
supervised approach, that is, we need to tell the system which part
of the page contains which types of links, and the syntactical
patterns these links exhibit. This means we need to build

customized crawling for every Website, which is certainly not
scalable.

Besides result page, another important type of page is Object

Page, which contains information about a single object (See
Figure 1 for an example). Objects are basic entities, such as
products on shopping Websites, books on digital library sites,
bookmarks on social bookmarks Websites. Each object is
described by a set of attributes, such as price, size and color for a
product, title, author and publication for a book, category, tag,
source for a bookmark. These form facets for search. In this paper,
for simplicity of discussion, we assume each object is represented
by one and only one object page.

We denote pages that are neither result pages nor object pages as

Unrelated Pages. These include pages for account management,
online transaction, site description and advertisement, etc. Note
that it is not trivial for machines to automatically differentiate the
3 page types without resorting to a supervised approach.

2.3 Semantics Embedded in Link Structures
Our goal is derive a complete set of attribute values for each
object. Since attribute values are embedded in queries, we need to
uncover the mapping between queries and sets of objects that
satisfy the query. A naïve approach needs to find, for each
Website, the syntactic patterns that encode the mapping between
queries and objects. This requires a lot of manual work.

We focus on uncovering the relationships between queries and
objects by mining the hyperlinks among i) faceted searches, ii)
result pages, and iii) object pages. We accomplish this without
relying on syntactic patterns, and thus, there is no manual work
involved. Specifically, we represent an exploratory
search/browsing Website by a graph <P, L>, where P is the vertex
set (each vertex represents a web page), and L is the edge set
(each edge represents a hyperlink from one web page to another

Figure 3. Search result page.

Roll-up query links

Object page links

Pagination links

Drill-down links

Unrelated query

links

476

web page). Besides the visible links between Web pages, there are
also invisible links between queries and result pages.

Figure 4 illustrates the relationship among queries, result pages,
and object pages in our model. All the attributes constitute an
attribute space, which is effectively a query space, as a search
consists of a set of attribute and value pairs. Here we see that q1 is
contained by q2, which means q1 has fewer attributes than q2,

and is thus a roll-up (more general) query of q2. Furthermore,
each query maps to a set of result pages, which in turn contain all
the objects that satisfy the query. Note that if a query corresponds
to more than one result page, these result pages will be connected
using pagination links. But on any result page, the pagination
links may not be complete, that is, a result page may only contain
links to a previous or a next result pages, instead of the whole set
of result pages of the query. Thus, recovering the whole set of
result pages may require some iterative steps if we can identify the
pagination links, which itself requires some supervised learning.
In our approach, we cluster pages based on their internal
hyperlink structures and avoid any supervised learning cost.

 Formally, we define the links among queries, result pages, and
object pages as functions shown below:

Definition 2.1 (Result function): 2R
Q

ϕ
→ maps a query to a

group of result pages.

Definition 2.2 (Object Function): 2O
Q

ω
→ maps a query to a

set of object pages.

For any query q, it is clear that ()qω , the objects that satisfy q, are

listed on result pages ()qϕ .

There are some interesting properties in the link structures on an
exploratory search/browsing Website.

Property 2.3: A result page belongs to one and only one query.

That is, even if two queries q1 and q2 have exactly same results (a
same set of objects satisfies q1 and q2), they have a separate set of
result pages. The result pages are unique because besides the
hyperlinks to the objects, they also contain links related to the
query, including, for example the roll-up and drill down queries of

q1 and q2. Since q1 and q2 are different, their roll-up and drill
down queries are different, which means their result pages are
different. Thus, we can define an inverse function that maps result
pages back to queries:

Definition 2.4 (Inverse result function): Since each result page

belongs to one and only one query, so function
1

2R
Q

ϕ−

→ exists.

We use this property to group result pages by queries (Section 4).

The second important property is concerned with the query links
on result pages. On a result page, there are 6 types of links,
namely, roll-up query links, drill-down query links, unrelated
query links, object page links, pagination links, and other links
(Section 2.1). For example, Figure 4 shows that pages in Result
Page Group 1, which correspond to query q1, contain drill-down

links to q2 (as defined, 1 2q q⊂), while pages in Result Page

Group 2, which correspond to query q2, contain roll-up links to
q1. Result Page Group 2 and Result Page Group 3 have similar
interlinks, and so on. Result Page Group 4 does not have roll-up
or drill down relationships with q1, q2, or q3, but still, it may
contain links to q1, q2, or q3 as unrelated query links, vice versa
for pages in Result Page Group 1, 2, and 3.

Consider two pages p1 and p2 in the same result page group.
Clearly, the two pages will have different pagination links and
object page links. However, the roll-up and drill-down links on p1
and p2 are the same, that is, we have the following property:

Property 2.5 Let q be a query, for any two pages in ()qϕ , that is,

for any two pages in the same result page group of query q, the

roll-up and drill-down links on the two pages are most likely to be

the same.

The property holds because roll-up queries and drill drown
queries depend on the current query only. Since pages in the same
result page group are generated by the same query, they will have
the same set of roll-up and drill-down links. This is of course
based on the assumption that each result page presents all of
possible drill-down links and roll-up links for the current query q.
This assumption is true for all the exploratory search/browsing
Websites we have surveyed.

Besides the above two properties, there are some other properties
which are important to the correctness of our approach. These
include:

• Queries are deterministic, that is, the set of result pages of a
query q is fixed (unless objects are added into or removed
from the database). In other words, though the execution of
query q may be triggered by different hyperlinks or at
different time, q always generates the same result page
group;

• Query results are complete, that is, a query retrieves all the
objects that satisfy the query. In other words, if an object has
all the attribute values specified by the query, this object is
certain to be retrieved by this query;

• All result pages are accessible, that is, starting from any
result page, users can follow pagination links to access all the
result pages in the same result page group.

Figure 4. Relationship among queries, result pages, and

object pages.

477

3. UNSUPERVISED APPROACH
In this section, we present our approach of finding hidden
attribute values for objects on exploratory search Websites. The
approach is general as it does not rely on Website specific
templates. We first give an overview of our approach, and then
describe three algorithms, namely identifying page types,
clustering result pages, and detecting relationship between

queries.

3.1 Overview
Our goal is to find attribute values for each object. The attribute
values are hidden or embedded in queries. So our approach is to
find: i) the complete set of queries; ii) the <attribute, value> pairs
that correspond to each query; and iii) the objects that satisfy each
query. Let o be an object, and let Q(o) be the set of queries that o
satisfies. Then, o’s attribute values are the unions of the set of
<attribute, value> pairs of all the queries in Q(o).

However, queries are not first class citizens on exploratory search
Web sites. In our approach, we represent queries using their result

page groups. Let q be a query, we use ()qϕ , the set of result pages

correspond to q, to represent q. Thus, the result page groups act as
a bridge between the queries and the objects.

Specifically, we adopt the following steps to carry out the above
task:

(1) Crawling and preprocessing. We first crawl the entire
Website. We identify each page using its URL and extract all
hyperlinks from the pages.

(2) Identifying the type of each page. We classify Web pages
into three types: result, object and unknown.

(3) Clustering result pages for queries. This step clusters result
pages into groups, each of which is for a query. The clustering
method takes advantage of the observation that result pages
for a same query co-cite a largely same set of result pages.

(4) Detecting relationship between queries. As we have
discussed, hidden attributes exist on the query links (hypertext
of the link from a roll-up query to a drill-down query). For
each query link, say X, we create an attribute, using the
hypertext of X as attribute value and the information of upper
level HTML element of X as attribute name. There are a lot of
mature technologies to find the upper level HTML element of
a hyperlink, such as [25-27].

(5) Assigning attributes to objects. The hidden attributes of an
object are recovered as the union of the <attribute, value>
pairs of all the queries that the object satisfies.

The challenges in above steps are identifying pages’ types,
clustering result pages and detecting relationship between queries.
If these three steps can work generally and unsupervised, the total
process will run without any template. The rest of this section will
describe our algorithms for these key steps.

3.2 Page Type Identification
For an input Website, we want to find the relationships among its
result pages and object pages. To do this, first we need to classify
all of its pages into three types: result pages, object pages, and
unknown pages.

It is usually very easy to use a specific pattern to identify an object
page. For example, on an e-commerce Website such as
Zappos.com, each object page contains a label “Add to shopping
cart.” Certainly, this pattern is site specific. However, since it is
very easy to identify such a pattern, and the pattern is extremely
effective, we use hand-coded patterns to identify object pages.
This is the only site-specific pattern we use in our work.
Alternatively, we can use Web page classification methods based
on machine learning techniques, such as [12] and [13], for this
task as HTML structures of object pages on the same Website are
quite similar.

Our concern is then how to differentiate result pages from
unknown pages. We take a greedy approach, and classify any non-
object page as a result page as long as it contains one hyperlink to
an object page. Although theoretically this may lead to some
issues in clustering result pages, we find the impact is negligible.
In our experiments, we analyze the effect in detail.

Algorithm 1 shows our page type identification algorithm. It is a
two phase algorithm. In the first phase, it identifies the pages
contain “Add to shopping cart” label as object type. In the second
phase, it identifies the remnant pages as result type or unknown
type.

Algorithm 1 Page Type Identification

Input: A Website W=<P, L>

Output: a map from pages to types

1: for p P∈ do

2: if p contains “Add to shopping cart” then
3: Identify p as object page;

4: else
5: Identify p as unknown page;

6: end if
7: end for

8: for each unknown page p do

9: if p contains a link to x and x is object page then
10: Identify p as result page;

11: end if

12: end for

Obviously, Algorithm 1 only need scan every Web page twice, so
the time complexity of it is O(|P|).

3.3 Link-based Result Page Clustering
We explore hyperlink structures to cluster result pages into result
page groups. We introduce a distance measure based on pages’
co-citation information, and then we use a single-pass clustering
algorithm based on the distance measure.

According to Property 2.5, if two result pages belong to the same
query, their drill-down links and roll-up links are the same.
Besides drill-down links and roll-up links, unrelated query links
(links to objects under promotion, for example) on result pages
that belong to the same query are often the same as well
(unrelated queries are either site-specific or query-specific). In
other words, if two result pages belong to the same query, they co-

cite a lot of result pages.

Inspired by the above observation, we introduce a distance
measure to describe the co-citation situation of two pages.

478

Definition 3.1 (Distance of links): Let R be the set of all result

page. Let () { ' | , ' }'pp p R L p Rpτ ∈→= ∈ ∈ denote the set of

result pages p points to. For p R∈ and 'p R∈ , let (, ')p pδ

denote their distance, which is defined as the symmetric

difference between ()pτ and (')pτ , that is

 (, ') | (() (')) ((') ()) |p p p p p pδ τ τ τ τ= − ∪ − (1)

In other words, the larger the distance between two pages, the less
likely they belong to the result of the same query. Intuitively, if p
and p' belong to the same query q, then the query links of p and
the query links of p' should be largely the same. Their difference
is mainly the links to the objects that belong to p and p’

respectively, and the pagination links. Thus, p and p' should have

many common links, so (, ')p pδ is small. On the other hand, if p

and p' belong to two different queries, say, page p belongs to

query ()pθ and p' belongs to query (')pθ , () (')p pθ θ≠ , then

the distance between p and p’ will tend to be large. This is
because the drill-down and roll-up query links depend on the
query, so the result pages pointed to by the drill-down and roll-up
query links of p are quite different from those of p'. Furthermore,
the pagination links of p, which point to other result pages for

()pθ , are totally different from the pagination links of p'.

Based on the nature of the above distance function, we introduce a
threshold to indicate whether two pages belong to the same query

or not. Formally, let d be the threshold, let p and p' be two result
pages, the assumption is:

(), ' (, ') () (')p p R p p d p pδ θ θ∈∀ < ⇔ = (2)

Algorithm 2 clusters result pages according to Eq (2). The output

is a set of result page groups (RPG). In the main loop, we check
every result page. If a result page, say p, has not been added to
any group in RPG, we create a new group using p as a seed page,
then we group neighboring pages starting from p, and add the new
group to RPG at the end. The GroupNeighboringPage function
walks from a seed page to all pages which are neighboring with
their previous pages. That is, for all pages whose distance from
current page is smaller than d, say p', the function add p' to the
group of current page and recursive call itself using p' as seed
page.

Algorithm 2 finds the complete set of result pages for each query.
To see this, let q be a query pointed to by any drill-down link on
the web site, and let Q be the set of all such queries. The members
of Q have a one-to-one mapping with members of RPG. The
reason is as follows. First, Line 2 of the algorithm checks every
result page of the input data and line 4 makes sure that every
result page will not be added into more than one group, so each
result page belongs to one and only one group of RPG. Second,
line 2 in GroupNeighboringPage makes sure only result pages for
the same query will be added to a same group. Furthermore, if a
query generates more than one result page, each result page will
be pointed to by at least one result page for the query using
pagination links (easily inferred from the accessibility of result
pages). So if two pages are for the same query, they will be
clustered into a same group finally. Thus, the queries of Q have
one-to-one mapping to the groups of RPG.

Finally, the time complexity of Algorithm 2 is O(|P|), since every
result page is checked once.

Algorithm 2 Result pages Clustering

Input: a Website W=<P, L>

 a threshold d

Output: the set of result page groups (RPG)

1: RPG←∅, LS←{all result pages};

2: for p LS∈ do

3: if ()s RGP p s∈∃ ∈ then

4: continue;

5: end if

6: G←∅, E←∅ ;
7: Add p to g;
8: GroupNeighboringPage (G, E, p);
9: Add G to RPG;

10: end for

function GroupNeighboringPage (G, E, p)

1: for ' () ' 'p p p G p Eτ∈ ∧ ∉ ∧ ∉ do

2: if (, ')p p dδ < then

3: Add p' to G;
4: GroupNeighboringPage (G, E, p');

5: else
6: Add p' to E;

7: end if
8: end for

3.4 Detecting Relationship between Queries
Our goal of detecting relationships between queries is to recover
<attribute, value> pairs for queries. As mentioned, hidden
attributes are embedded in query links. A query link essentially
associates two queries with specific semantics depending on
whether it is a drill-down, a roll-up, or an unrelated query. We
discuss how to obtain <attribute, value> pairs from different
query link types, and then propose an algorithm to select useful
query links.

The drill-down and roll-up links encode the relationship between
two queries. Let p be a drill-down query of q (equivalently, q is a
roll-up query of p.) Then, in many cases, the drill-down hyper link
from q to p will contain the <attribute, value> information as an
anchor text. For instance, assuming a user is browsing a page
about women’s shoes, then, a drill-down link on that page may
have the anchor text “size = 6” or just “6” (we will discuss how to
discover the attribute name when only values appear in the anchor
text). From the anchor text, we obtain <size, 6> as the attribute
value pair that denotes the relationship between the two queries.
The case with roll-up link, however, is not always the same. For
instance, on Zappos.com, the anchor text on a roll-up link may
simply be “remove your selection.” As another example,
Amazon.com displays a set of query links in a hierarchy, for
instance, “Shoes -> Women -> Size -> …” Thus, a single anchor
text “Shoes”, “Women”, or “Size” is not informative, and
understanding the hierarchy requires developing handcrafted
rules. On the other hand, a query link from an unrelated page
(e.g., a page showing a user’s account information) may contain
the attribute/value pair that defines the query. For instance, the
anchor text may simply be “Women’s” on a e-commerce site that
sells shoes. In summary, exploratory search Websites often

479

present attributes on the drill-down links and unrelated links to
inform uses about the content of the link.

Based on the discussion above, we can see that the anchor texts in
drill-down and unrelated links are more reliable. Thus, our goal
becomes how to differentiate roll-up links from drill-down and
unrelated links.

Based on the query definition, given two queries p and q such that
q is the drill down query of p, then the set of objects that satisfy q
must be a subset of the objects that satisfy p. That is, the two
result sets must have set containment relationship. In reverse, if
two object sets, each of which derives from a query, have set
containment relationship, the corresponding queries may be
connected by a drill-down link or an unrelated link. In other
words, if an object set X which derives from a query qX, is a
subset of another object set Y which derives from a query qY, then
qX must not be the roll-up query of qY. We represent queries using
result page groups, and discuss how the subset relation between
two object sets affect query links between two result page groups.
Formally,

Theorem 3.2: Let RPG be the set of all result page groups.

s RPG∀ ∈ , r RPG∀ ∈ , s ≠ r, if
1 1(()) (())s rω ϕ ω ϕ− −⊂ , then

query links between s and r are not roll-up query links.

Proof: s RPG∀ ∈ , r RPG∀ ∈ , 1 1() ()s r s rϕ ϕ− −≠ ⇒ ≠ because

groups in RPG correspond one-to-one with queries. Thus, links
among s and r contain no pagination link. All pages in s or r are

result pages, so x r∀ ∈ , y s∀ ∈ , x may points to y using (1) drill-

down query link, or (2) roll-up query link, or (3) unrelated query

link, or (4) no link. If 1 1(()) (())s rω ϕ ω ϕ− −⊂ , according to the

completeness of queries, 1 1() ()s rϕ ϕ− −⊄ otherwise all object

retrieved by 1()rϕ− will be retrieved by 1()sϕ− . Thus,

1 1(()(()))r sω ϕ ω ϕ− −⊆ . According to the definition of roll-up

query, 1()sϕ− is not a roll-up query of 1()rϕ− . If x y→ , the

possible cases of x pointing to y remain case (1) and case (3). ∎

Another useful and obvious property of relationship between
object sets is that if two object sets, each of which derives from a
query, are equal, and their corresponding result pages have query
links point to each other, the attributes presented by those query
links are certain to be common attributes of the two object sets.

In conclusion, if a query link associate query x to query y, and

() ()y xω ω⊆ , the attributes presented by the link will belong to

query y. We denote this kind of query link as useful link. If we can
find out useful links, the mapping from attributes to queries is
known.

A naïve approach that detects useful links need to check every
query link. For each result page group, say s, we check all query
links on pages in s. If a query link points to page in result page

group r, we check the subset relationship between 1(())sω ϕ− and

1(())rω ϕ− . Assume the average time cost of checking subset

relationship is C. The total cost of naïve approach is as high as
O(|L|*C).

Algorithm 3 Useful link detection

Input: A Website W=<P, L>, RPG

Output: Useful link set D

1: D←∅ ;

2: for s GAP∈ do

3: p ← arbitrary page in s;

4: for each p x L→ ∈ do

5: r ← result page group of x;

6: if 1 1(()) (())r sω ϕ ω ϕ− −⊆ then

7: Add k to D;

8: end if
9: end for
10: end for

Algorithm 3 is our pruning method to detect useful links. We
prune some repeated check operations in the above simple
approach. Property 2.5 and the co-citation phenomenon discussed
in Section 3.3 figure out that, if two pages belong to the same
query, their query links are the same except pagination links. And
the attributes on the query links are certainty, reviewing our goal
which is to map attributes extracted from useful links to objects
retrieved by the queries, we only need to check arbitrary one page
for a result page group.

The time complexity of Algorithm 3 is O(|RPG|*C). Obviously,
|RPG| is far smaller than |L|.

4. RELATED WORK
A lot of existing work extracts attributes from semi-structure data
(e.g., static Web pages). There are three main categories of
information extraction technologies: 1) Traditional rule or regular
expression based approaches (e.g., [1, 14, 15]). Typically, they are
efficient and can achieve high accuracy when the task is
controlled and well-behaved, for example, the extraction of price
information from Web pages; however, they are not general
because they depend on human experts and programmers to
design hand-coded patterns for every Website; furthermore, as
discussed in [16], they cannot handle noises in a robust manner;
2) Supervised machine learning approaches (e.g., [17, 18]). They
are more automatic as they learn extraction rules from manually
labeled Web pages; and they are useful in closed domains where
human involvement is both essential and available. However, the
training is expensive; 3) Unsupervised approaches (e.g., [19, 20]).
Unsupervised approaches are more robust to noise and more
general for various data sources but usually it is difficult to
achieve high accuracy and they often make many assumptions
which may not always be satisfied.

Much recent research focuses on information extraction without
using templates, and often uses technologies such as ontology and
text mining to get better results. For instance, Holzinger et al [21]
use ontology for extracting product information from tabular data
on Web pages. Its rectangular table model does not make use of
the additional structural information that is present in more
complex layouts. Other works [2, 4, 22] treat Web information
extraction as a classification problem. For example, single-view
and multi-view semi-supervised learning algorithms [2, 4] are
developed to exploit large amounts of unlabeled data. However,
their performance is not quite good since they do not take

480

advantage of characteristics of Web structure. Recently, extracting
information from tables attract a lot of attention. Zhai et al and
Gatterbauer et al [24, 25] propose methods that mine data records
from pages based on the structure of HTML. They combine tag
string match and some visual features to achieve better
performance. More recently, Wang et al [3] uses an automatically
constructed knowledgebase [30] for large scale information
extraction from Web tables.

Lerman et al [26] took advantage of the structure of Websites to
automatic extract and segment records from Web tables. The idea
of [26] is quite similar to our work. Its approach relies on the
common structure of many Websites, which present information
as a list or a table, with a link in each entry leading to a detail
page containing additional information about that item. But its
goal and algorithms are quite different from our work.

Discovering attributes for objects from massive Web data benefits
various applications including information retrieval, ontology
building and data mining. If we can restructure information of
products from Web pages on online shopping Websites, it is easy
to build shopping comparison services [27] like shopping.com, or
mine high level knowledge for competitive intelligence [28]. If
information about papers on DBLP, ACM Digital Library can be
understood automatically, faceted search engine for scholar is
easy to build. And extracting metadata of social bookmarks from
Delicious can facilitate machine understanding the relationship
among various concepts, so as to build ontology. Recently WePS
[29] campaign which focuses on Web People Search problem has
been held three time because the challenges and importance of the
problem.

5. EXPERIMENT
This section reports our experiment on the unsupervised approach
on two well-known exploratory Website: Zappos.com and
Amazon.com. We evaluate the precision and recall on different
scale of data and we show that our unsupervised approach is
effective with close to 100% recall and precision. We further
analyze why our approach cannot achieve close to 100% recall
and precision.

5.1 Data Sets
Zappos.com is a typical faceted search Website. It has good
design which makes it possible to manually create some templates
for the Website, which allows us to extract attributes using the
naïve approach (as described in the introduction). We perform the
naïve approach on the Zappos data and use the result as a
validating dataset.

We crawl the entire Web site of Zappos.com beforehand. The
total number of relevant Web pages is 11,955,201 (Web pages
that do not have additional information about the products, for
example, pages that display products in different order, are
filtered). We also derive a “ground truth” dataset by handcrafting
templates for Zappos.com and then use the naïve approach to
extract products and their attribute values.

Table 2 shows some statistical information about Zappos,
including the number of real result pages, objects and total links.
We also show the number of pages that contain links to objects
but are not related with any queries (we call them fake result

pages here) and the number of <object, attribute> pairs in the data
set.

Table 2. The Zappos Dataset

of result

pages

of objects

(products)

of <object,

attribute>

pairs

of fake

result

pages

of total links

11831247 124839 2208052 2448 2391035716

Amazon.com is a famous and well designed online shopping
Website too. We also crawl Web pages from Amazon.com
(mostly pages in the Shoes category) as another data set. The data
set has 28,186,473 Web pages after applying the same filtering
strategy for Zappos. Table 3 shows the statistical information
about the Amazon data set.

Table 3. The Amazon data set

of result

pages

of objects

(products)

of <object,

attribute> pairs

of fake

result pages

of total

links

27515023 634767 1853145 36683 5637294633

5.2 Evaluation Method
We evaluate our experimental results using the conventional
precision and recall measure. Recall that our goal is to discover
hidden attributes for objects. We define the precision and recall
for single object respectively as Eq (3) and Eq (4):

| () () |
()

| () |

real i machine i
recall i

real i

∩
= (3)

| () () |
()

| () |

real i machine i
precision i

machine i

∩
= (4)

where i is an object, real(i) is the real attribute set of i, machine(i)
is the detected attribute set of i.

For recalls and precision on the entire dataset, we sum the single
evaluation for each object with a weight, where the weight is the
ratio of attributes of the object divided by the total number of real
attributes. Equation (5) and equation (6) define the recall and
precision for dataset s:

| () |
() ()

| () |
i s j s

real i
recall s recall i

real j
∈ ∈

= ×∑ ∑ (5)

| () |
() ()

| () |
i s j s

real i
precision s precision i

real j
∈ ∈

= ×∑ ∑ (6)

5.3 Experimental Results
In order to test the performance and the overhead of our
unsupervised approach, we test on various subsets of our data
sets. In particular, we gauge the effect of the distance threshold in
clustering on the precision and recall on small datasets; and we
test the precision and recall on big data sets with the detected best
parameter. To measure the effectiveness and overhead, we count
the number of object-attribute pairs that can be detected from
datasets of various sizes.

481

In Table 4 we show the precision and recall of results derived by
our approach with different clustering distance thresholds. The
dataset we use contains about 10 thousand pages from Zappos and
10 thousand pages from Amazon. Performance on the entire
Zappos and Amazon data sets are presented in Table 5.

Our experiments show that the clustering distance threshold,
which is the only parameter in our approach, is easy to fix. Recall
that in our clustering algorithm, if two pages belong to the same
query, the only possible links which don’t co-cite the same result
pages are pagination links. Thus, the distance threshold is the
number of different pagination links between two pages. As we
known, each paged Web page has its own serial number. Nearly
all Websites design their pagination hyperlinks in the slide
window way. That is, result pages for same query are sorted by
their serial number and each result page presents hyperlinks point
to n neighboring result page. So it is easy to fix this parameter by
investigating how many n is. For example, Zappos.com is 4 and
Amazon.com is 5. Table 4 shows the performance of our approach
on about 10 thousands of pages with various clustering distance.
The distance parameter affects the performance evidently that the
precision drops but the recall grows with the threshold increases.
When the threshold equals to the experiential value, the precision
and recall reach its peek value (shown in bold font) at the same
time. Thus in practice, we can fix this parameter preliminarily by

user experience and then validate it on small data set. All of our
succeeding experiments fix their clustering distance for Zappos
and Amazon respectively as 4 and 5. The excellent results on
various data scale argue that clustering distance parameter affects
the performance stably.

In Figure 4 we show the online precision and recall as our
approach produce results on the crawled dataset. The horizontal
axis shows the total number of objects (in thousands) the method
has produced so far. We carry out the same test for Amazon data,
and result is shown in Figure 5. Figure 6 and Figure 7 show the
number of object-attribute pairs we recover given the number of
web pages (in thousands) we have processed. Since we have the
entire dataset of Zappos, the number of additional new pairs
reduces as we process more and more pages. This phenomena is
not obvious for the Amazon dataset, as we work on a subset of
Amazon data.

The performance of our approach is good. No matter it is on the
entire Website (Zappos) or on an incomplete Website (Amazon),
the precisions are as high as 0.98. And the recall of results from
Zappos is also good. The recall of results from Amazon is a little
lower than that from Zappos.

Interestingly, the recall of our approach depends not only on the
completeness of the dataset, but also on the speed of crawling.

Figure 5. Performance on Amazon Figure 4. Performance on Zappos

Figure 6. Object-attributes on different page scares of

Zappos

Figure 7. Object-attributes on different page scares of

Amazon

482

The reason why recall on Zappos, as shown in Table 5, cannot
achieve 100% is because the Website updates their products
during our crawling process. So some pages in our data sets are
inconsistent. For example, the product “Tunnel Vision Shirt” for
query “clothing & kids” existed on Zappos.com when we crawl
the result pages of query “clothing & kids”, but it was removed
when we crawl result pages of query “clothing”, then our
approach will not identify hyperlinks on pages of “clothing” to
pages of “clothing & kids” as drill-down links. So “clothing” will
not be labeled to “Tunnel Vision Shirt”. The reason why the recall
of results from Amazon is lower than that from Zappos is that the
Amazon data set lacks some necessary Web pages because the
dataset we have is not complete. Definitely, if some result pages
for a query are not crawled, the objects on these result pages will
not be retrieved. More important, the object set for the query is
incomplete that leads to the drill-down link detection for those
result pages may fail. Nevertheless, the recall still reaches 0.80.

Table 4. Performance on a small data set with different

thresholds

Threshold
Zappos Amazon

Precision Recall Precision Recall

2 0.97 0.84 1.0 0.58

3 0.97 0.90 0.99 0.77

4 0.97 0.96 0.99 0.80

5 0.82 0.96 0.99 0.84

6 0.64 0.96 0.39 0.84

Table 5. Performance on total data set

Data Set
Discovered object-

attributes
Precision Recall

Zappos 2155059 0.98 0.97

Amazon 1853145 0.98 0.80

The factor affects precision is that the result Pages detected by
page type identification algorithm contain some fake result page.
Some unrelated pages contain links to recommended product
pages. If the object set of an unrelated page, for example “Brands”
taxonomy page, happens to be subset of the other object set which
derives from a query, then hyperlink to the “Brand” taxonomy
page will be detected as useful query link. As a result, our
algorithm will label "Brands" to the recommendation products.
However, "Brands" is not a meaningful attribute value, but an
attribute name. So the results on entire Website pages can’t
achieve 100%. But the number of taxonomy pages is quite smaller
than result pages. Thus, the number of recommended products is
small. And many hypertexts of taxonomy page hyperlinks make
sense, such as “Women”, “Beauty” on Zappos and “Books”,
“Electronics” on Amazon.

The performance of our approach is stable. As shown in Figure 4
and Figure 5, the precision and recall are stable, don’t warp over
0.01, on various object sets whose sizes are from 20 thousands to
600 thousands.

The main cost of our approach is to check Web pages and our
goal is to discover object-attribute pairs. So we estimate the
overhead by checking the how many object-attributes can be
discovered on different numbers of Web pages.

On complete data set, Zappos, our approach can discover most of
the object-attributes fast. As we can see in Figure 6, the number of
discovered object-attributes grows rapidly with the number of
scanned Web pages increases at the beginning, and about 84%
object-attributes are discovered when 110 thousands of Web
pages are checked. But the curve grows slowly after the number of
scanned Web pages larger than 110 thousands. This is because
most of the object-attributes contained by the last Web pages have
been discovered in the previous Web pages. This result valid our
assumption that lots of Web pages contain repeated information.

On incomplete data set, Amazon, our approach can discover
object-attributes at a stead speed, as shown in Figure 7. Although
many Web pages are missed in Amazon data set, the number of
object-attributes discovered by our approach linearly relates to the
scale of scanned Web pages.

6. CONCLUSION AND FUTURE WORK
In this paper, we build an interaction model named Exploratory
Search Model and propose a unsupervised approach to discover
attributes, especially hidden attributes doesn’t exist on static Web
pages from links among Web pages. The main foundation of our
work as presented in the built model is the semantic embedded in
link structure of exploratory Websites. In our unsupervised
approach, the hidden attributes contained in hyperlinks, which
can’t be extracted from static pages using existing technologies,
can be discovered automatically without any template; only a
clustering threshold and a pattern for detecting object page need
to set. Our experiments on large data sets, one of which is
complete and the other one of which is incomplete, validate the
effectiveness, general, efficiency of our approach.

However, there are still much works to do in future. Firstly, even
if we can crawl entire Website, there are too many repeated
information in the whole page set that a lot of Web pages need to
check after 84% object-attributes are discovered. Secondly, it is
hard to crawl entire Website in fact that will decrease the recall.
Thirdly, the Websites may maintain their objects so as to decrease
the recall. The approach to cover above problems is combine our
unsupervised approach and crawling technologies to implement a
online system, and develop more heuristic methods in order to
avoid checking repeated information.

7. ACKNOWLEDGMENTS
The authors are grateful to MSRA and NUDT for offering
experimental equipments and directions.

8. REFERENCES
[1] Buttler, D., Liu, L. and Pu, C. A Fully Automated Object
Extraction System for the World Wide Web. In Proceedings of

the The 21st International Conference on Distributed Computing

Systems (2001). IEEE Computer Society.

[2] Ghani, R., Probst, K., Liu, Y., Krema, M. and Fano, A. Text
mining for product attribute extraction. ACM SIGKDD

Explorations Newsletter, 8, 1 2006), 41-48.

483

[3] Wang, J., Shao, B., Wang, H. and Zhu, K. Understanding
Tables on the Web. Under submission (2010). Tech. Report.

[4] Probst, K., Ghani, R., Krema, M., Fano, A. and Liu, Y.
Extracting and Using Attribute-Value Pairs from Product

Descriptions on the Web. Springer-Verlag, City, 2007.

[5] Zhu, J., Nie, Z., Wen, J.-R., Zhang, B. and Ma, W.-Y.
Simultaneous record detection and attribute labeling in web data
extraction. In Proceedings of the 12th ACM SIGKDD

(Philadelphia, PA, USA, 2006). ACM.

[6] English, J., Hearst, M., Sinha, R., Swearingen, K. and Yee,
K.-P. Hierarchical faceted metadata in site search interfaces. In
Proceedings of the CHI '02 extended abstracts on Human factors

in computing systems (Minneapolis, Minnesota, USA, 2002).
ACM.

[7] Marchionini, G. Exploratory search: from finding to
understanding. Communications of the ACM, 49, 4 2006), 46.

[8] Fu, W.-T. The microstructures of social tagging: a rational
model. In Proceedings of the 2008 ACM conference on Computer

supported cooperative work (San Diego, CA, USA, 2008). ACM.

[9] Gupta, S., Kaiser, G., Neistadt, D. and Grimm, P. DOM-based
content extraction of HTML documents. In Proceedings of the

Proceedings of the 12th international conference on World Wide

Web (Budapest, Hungary, 2003). ACM.

[10] Wang, F., Li, J. and Homayounfar, H. A space efficient XML
DOM parser. Data & Knowledge Engineering, 60, 1 2007), 185-
207.

[11] Wood, L. Programming the Web: the W3C DOM
specification. IEEE Internet Computing, 3, 1 1999), 48-54.

[12] Choi, B. and Yao, Z. Web Page Classification*. Foundations

and Advances in Data Mining2005), 221-274.

[13] Cooley, R., Mobasher, B. and Srivastava, J. Data preparation
for mining world wide web browsing patterns. Knowledge and

Information systems, 1, 1 1999), 5-32.

[14] Abiteboul, S. Querying Semi-Structured Data. In
Proceedings of the 6th International Conference on Database

Theory (1997). Springer-Verlag.

[15] Maynard, D., Tablan, V., Ursu, C., Cunningham, H. and
Wilks, Y. Named entity recognition from diverse text types.
Citeseer, City, 2001.

[16] Lehnert, W., McCarthy, J., Soderland, S., Riloff, E., Cardie,
C., Peterson, J., Feng, F., Dolan, C. and Goldman, S.
UMass/Hughes: description of the CIRCUS system used for
Tipster text. In Proceedings of TIPSTER' 93 workshop

(Fredericksburg, Virginia, 1993). ACL.

[17] Muslea, I., Minton, S. and Knoblock, C. Hierarchical
wrapper induction for semistructured information sources.
Autonomous Agents and Multi-Agent Systems, 4, 1 2001), 93-114.

[18] Kushmerick, N. Wrapper induction: Efficiency and
expressiveness. Artificial Intelligence, 118, 1-2 2000), 15-68.

[19] Mansuri, I. R. and Sarawagi, S. Integrating Unstructured
Data into Relational Databases. In Proceedings of the 22nd

International Conference on Data Engineering (2006). IEEE
Computer Society.

[20] Seymore, K., McCallum, A. and Rosenfeld, R. Learning

hidden Markov model structure for information extraction. City,
1999.

[21] Holzinger, W., Krpl, B. and Herzog, M. Using ontologies for
extracting product features from web pages. The Semantic Web-

ISWC 20062006), 286-299.

[22] Zhu, J., Nie, Z., Wen, J.-R., Zhang, B. and Ma, W.-Y. 2D
Conditional Random Fields for Web information extraction. In
Proceedings of the 22nd international conference on Machine

learning (Bonn, Germany, 2005). ACM.

[23] Han, X. and Zhao, J. CASIANED: People Attribute

Extraction based on Information Extraction. City, 2009.

[24] Zhai, Y. and Liu, B. Web data extraction based on partial
tree alignment. In Proceedings of the 14th international

conference on World Wide Web (Chiba, Japan, 2005). ACM.

[25] Gatterbauer, W., Bohunsky, P., Herzog, M., Kr\, B., \#252,
pl and Pollak, B. Towards domain-independent information
extraction from web tables. In Proceedings of the 16th

international conference on World Wide Web (Banff, Alberta,
Canada, 2007). ACM.

[26] Lerman, K., Getoor, L., Minton, S. and Knoblock, C. Using
the structure of Websites for automatic segmentation of tables. In
Proceedings of the 2004 ACM SIGMOD international conference

on Management of data (Paris, France, 2004). ACM.

[27] Doorenbos, R. B., Etzioni, O. and Weld, D. S. A scalable
comparison-shopping agent for the World-Wide Web. In
Proceedings of the first international conference on Autonomous

agents (Marina del Rey, California, United States, 1997). ACM.

[28] Teo, T. and Choo, W. Assessing the impact of using the
Internet for competitive intelligence. Information & Management,
39, 1 2001), 67-83.

[29] Artiles, J., Gonzalo, J. and Sekine, S. Weps 2 evaluation

campaign: overview of the web people search clustering task.
City, 2009.

[30] Wu, W., Li, H., Wang, H. and Zhu, Q. Towards a Universal
Taxonomy of Many Concepts. Under submission (2010). Tech.
Report .

484

