
QueryViz: Helping Users Understand
SQL Queries and their Patterns

Jonathan Danaparamita
University of Washington, Seattle

jdanaparamita@gmail.com

Wolfgang Gatterbauer
University of Washington, Seattle

gatter@cs.washington.edu

ABSTRACT
We present QueryViz, a novel visualization tool for SQL
queries that reduces the time needed to read and understand
existing queries. It targets two principal audiences: (i) users
who often issue the same or similar queries and who need
to quickly browse through a repository of existing queries;
and (ii) novices that try to familiarize themselves with the
logic behind alternative patterns of SQL queries. QueryViz
uses as input only two strings: the database schema and
the SQL query. It can thus serve as light-weight add-on to
existing database systems and is also available via an online
interface at http://queryviz.com.

In this demonstration, we explain our visual alphabet,
walk through the visualization algorithm, and let users ex-
perience the difference in understanding SQL queries from
text or our graphical representation while browsing through
repositories of well-known textbook SQL queries.

Categories and Subject Descriptors: H.5.2 [Informa-
tion Interfaces and Presentation]: User Interfaces; H.2.3
[Database management]: Languages; H.1.2 [User/Machine
Systems]: Human information processing

General Terms: Design, Theory, Human Factors

1. INTRODUCTION
Improving the usability of database systems is considered

an important area of research [7]. Especially the user in-
terfaces to databases have been long considered worthy of
improvement [15], and easier application development with
appropriate visual programming tools have listed repeatedly
on the important database agendas (e.g. [12]). Recently, the
idea of a collaborative query management system (CQMS)
has been proposed that helps users issue queries by leverag-
ing an existing log of queries [8, 9]. Independently, the SQL
QuerIE project proposed to use personalized query recom-
mendations to help users issue queries [4, 2]. Also a re-
cent project, SQLshare [1] intends to combine both data
and query management into one online system.

While re-using existing solutions is usually an effective

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2011, March 22–24, 2011, Uppsala, Sweden.
Copyright 2011 ACM 978-1-4503-0528-0/11/0003 ...$10.00

query	
 text	
 query	
 graph	

tabular	
 data	
 visualized	
 data	

Text	
 Graphics	

Query	

(input)	

Data	

(output)	

QBE

VizQL

standard
DBMS

QueryViz, QGM

VQL

Figure 1: QueryViz takes a SQL query and creates a
graph that helps users understand its meaning.

method to speed up performance, the re-use of existing code
or existing SQL queries seems to be more difficult and well
characterized in the following comment of an anonymous
reviewer: “... it is very difficult, without additional doc-
umentation or explanation, to understand the meaning of
complex queries written by others ... There seems to be a
tension between the assumptions that the user is not suffi-
ciently sophisticated to write his own complex query, but is
sophisticated enough to parse someone else’s complex query
...” The main problem is that understanding of queries (also
called query reading or query interpretation [13]) is often as
hard as creating a new query (also called query composi-
tion). Hence, query interpretation is even used for testing
purposes [16].

With QueryViz, we present a novel system that allows
users read and understand existing queries fast. QueryViz
thus enables effective query-reuse, a principal component in
the vision of a collaborative query management system [8].
We achieve this goal by providing a concise set of visual con-
structs that intuitively encode the essence of a SQL query,
together with a method that translates a large fragment of
SQL into this representation. The key observation is that
such a concise and intuitive set of visual constructs can be
created by combining succinctness features of both tuple
relational calculus and domain relational calculus. Thus,
our motivation is quite different from an extensive body of
work on developing visual query languages [3] for composing
queries (e.g. QBE [18] and VQL [17], see Fig. 1). Humans
are usually better in recognizing than composing visual con-
structs. Also, such constructs do not necessarily have to
encode all information, but give only a glimpse that hint
at the underlying meaning. Snippets in search engine re-
sults are a typical example. Our motivation is common with
that of the Query Graph Model (QGM), developed for Star-

558

http://queryviz.com

Fig_KevinBacon_a

39

select!distinct a3.fname, a3.lname !
from !Actor a0, Casts c0, Casts c1, Casts c2, Casts c3, Actor a3!
where !a0.fname = 'Kevin' !
and !a0.lname = 'Bacon' !
and !c0.pid = a0.id !
and !c0.mid = c1.mid !
and !c1.pid = c2.pid !
and !c2.mid = c3.mid !
and !c3.pid = a3.id !
and !not exists!

!(select!xc1.pid !
!from !Actor xa0, Casts xc0, Casts xc1!
!where !xa0.fname = 'Kevin' !
!and !xa0.lname = 'Bacon' !
!and !xa0.id = xc0.pid !
!and !xc0.mid = xc1.mid !
!and !xc1.pid = a3.id)!

and not exists!
!(select!ya0.id!
!from !Actor ya0!
!where !ya0.fname = 'Kevin' !
!and !ya0.lname = 'Bacon’)!

3-21-2010

(a) SQL query

Casts
pid
mid

Casts
pid
mid

Casts
pid
mid

Casts
pid
mid

Actor
 id

fname='Kevin'
lname='Bacon'

Casts
pid
mid

Casts
pid
mid

Actor
id

 fname='Kevin'
 lname='Bacon'

Actor
id

fname='Kevin'
lname='Bacon'

Actor
id

fname
lname

SELECT
fname
lname

(b) QueryViz representation

Figure 2: Application scenario: A user searches for a particular query by browsing through a repository of
100 previously recorded SQL queries. For each SQL query (a), she needs to quickly understand its meaning.
QueryViz can help her understand the query by showing a succinct representation of its logical semantics (b).

bust [5]. However, QGM is targeted towards understanding
actual query plans not the semantics of a query, and its full
specification was never released to the public.

We illustrate our application scenario with an example.

Example 1.1. Consider a simple movie database with the
schema: Actor(id,fname,lname,gender), Casts(pid,mid,role),
Movie(id,name,year,rank). Now consider the SQL query de-
picted in Fig. 2a, or alternatively, the QueryViz representa-
tion in Fig. 2b. What is the meaning of this query? Answer:
Find all actors with Bacon number 2.

Our second main motivating application for QueryViz is as
teaching tool. We have observed that students often have
difficulties understanding the logic behind correlated and
uncorrelated nested queries. Whereas coding patterns are
well-studied and known, this notion is not common for SQL.
QueryViz allows novice SQL users to browse through existing
repositories and thus intuitively familiarize themselves with
the logical patterns behind the SQL syntax.

Despite their intuitive appeal, graphical representations
are not always better [11] and despite much effort and many
visual languages proposed [3], visual query languages never
took the important place conceived by their creators. We
think there are three main points that distinguishes our
motivation, scenario and solution from other approaches:
(i) Add-on: Our visualization does not replace alternative
encodings, but accompanies the textual representation of the
query. It helps better understand existing code by getting
a first intuitive glimpse of the query’s meaning. This ap-
plication is quite similar to text snippets in search engines.
(ii) No syntactic learning : Graphical representations, espe-
cially those used in notation, are far from being intuitively
obvious and need training for applying them. For us, users
do not need to apply them, but just read them. They can im-
mediately switch between text and graphics and learn while
browsing. (iii) Memory : When a user issues a query often,
the visual layout of the query is a strong cue for finding the
same query during browsing.

Note that our work is closely related to recent work by
Ioannidis et al. [14, 10] who translate SQL queries into nat-
ural language. They also use a graphical representation of a
query, however only as intermediate step which is why their

graphs are visually more complex (cp. [10, Fig. 3] vs. Fig. 6).
QueryViz is motivated by the CQMS project1 at Univer-

sity of Washington that develops tools to help database users
more effectively re-use previously executed queries.

2. QUERYVIZ OVERVIEW
QueryViz is implemented in Java. It receives two strings as

input and uses a graph rendering tool (currently Graphviz2)
to return a QueryViz image of the query (Fig. 3).

Parse	

Schema	
 SQL	

AST	
 Graph	
 .dot	

Graphviz	

Image	

Process	
 Arrange	

Figure 3: QueryViz consists of 3 internal modules
that parse the query, process the internal data struc-
ture, and arrange the nodes, before Graphviz cre-
ates the actual figure.

First, QueryViz parses both the schema and the query
strings into two abstract syntax trees (AST). Only a subset
of SQL is currently supported and queries that use addi-
tional commands result in a syntax error. Second, it pro-
cesses the ASTs and produces data structures represent-
ing the schema and the query. These data structures typi-
cally include information about tables to be used and their
alias names, various predicates specified in the query, and
columns to be projected. These data structures are then
manipulated to create an underlying encoding for the graph
visualization. The output of this stage is an internal repre-
sentation of the QueryViz graph. The third stage arranges
the QueryViz graph by including information about verti-
cal and horizontal depth arrangements. QueryViz currently
outputs this information as a DOT file, which is finally ren-
dered with the help of GraphViz.

1
http://db.cs.washington.edu/cqms

2
http://www.graphviz.org/

559

http://db.cs.washington.edu/cqms
http://www.graphviz.org/

R(a,b,c), S(d,e)

q2 select a
from R
where b <> ALL

(select d
from S)

q3 select a
from R
where b not IN

(select d
from S)

q4 select a
from R
where not exists

(select *
from S
where b=d)

S
d

R
a
b

V2 SELECT
a

q2 : a : ∃b.∃c.(R(a, b, c) ∧ ∀d.∀e.(S(d, e)⇒ d 6=b))

q3 : a : ∃b.∃c.(R(a, b, c) ∧ b 6∈ {d | ∃e.S(d, e)})
q4 : a : ∃b.∃c.(R(a, b, c) ∧ ¬∃d.∃e.(S(d, e) ∧ d=b))

V2 : a : ∃b.(R(a, b,) ∧ ¬(∃d.(S(d,) ∧ d=b)))

Figure 4: Schema with three equivalent queries (q1
to q3), their common QueryViz representation V2 and
their respective translations into FOL.

3. A GLIMPSE BEHIND THE SCENES
The complexity of understanding SQL queries is partly

due to the fact that there are several alternative expressions
that are equivalent, based on syntactic redundancy and al-
gebraic properties of the query constructs [6]. For example,
Fig. 4 shows three identical queries with different syntax.

Our observation is that a variety of syntactic constructs
can be represented with only a few core visual constructs,
namely: three types of nodes, lines with optional direction
and comparison operators, and optional bounding boxes in
two line styles (cp. Fig. 5). Our visual alphabet is very close
to the basic operators of the First-Order Logic (FOL) rep-
resentation of queries, but also combines succinctness ideas
from both tuple relational calculus (TRC) and domain re-
lational calculus (DRC): Similar to DRC (and hence Data-
log), the locality between a relation and its attribute names
is preserved, hence there is no need for aliases. Similar to
TRC (and SQL), we do not represent anonymous variables,
i.e. variables that do not participate in any selection, join or
comparison predicate. Furthermore, our representation al-
lows edges not just between attributes, but also between re-
lation names for unions of queries (no example shown here).

Definition 3.1 (QueryViz Graph). a QueryViz graph
V is (R, S, E,B) where: R is a collection of sets of nodes
Ri = (ri, Ai) with ri being the relation name and Ai being
an ordered subset of the relation’s attributes (ai1, . . . , aik);
S = (SELECT, As) is set of nodes representing the selected
attributes; E is a set of edges ej = (sj , tj , cj) where the start
node sj and end node tj are chosen from

⋃
ri ∪

⋃
aij, i.e.

from both the relation names and their attributes, and cj is a
comparison operator c ∈ {=, 6=, >,≥, <,≤}; and B is a pos-
sibly empty set of bounding boxes Bi = (Ri, si) where each
bounding box groups together a disjoint set Ri of relations
and has a line style si ∈ {dashed, double}.

Example 3.2. Consider query q5 in Fig. 6, taken from
the Demo quiz of gradience. com . Both relations partici-

exists	

•  x=y	

•  x=ANY	
 (select	
 y)	

•  EXISTS	
 (select	
 where	
 x=y)	

•  x	
 IN	
 (select	
 y)	

≠
•  x<>y	

•  x<>ANY	
 (select	
 y)	

•  EXISTS	
 (select	
 where	
 x<>y)	

>
•  x>y	

•  x>ANY	
 (select	
 y)	

•  EXISTS	
 (select	
 where	
 x>y)	

•  x<>ALL	
 (select	
 y)	

•  not	
 EXISTS	
 (select	
 where	
 x=y)	

•  not	
 IN	
 (select	
 y)	

>

•  x=ALL(select	
 y)	

•  not	
 EXISTS	
 (select	
 where	
 x<>y)	

•  x<=ALL	
 (select	
 y)	

•  not	
 EXISTS	
 (select	
 where	
 x>y)	

not	
 exists	
 /	
 all	

≤

Figure 5: Lines with optional direction and com-
parison operators, together with bounding boxes in
two line styles that group together relations suffice
to express the most important syntactic constructs
of nested SQL queries.

Scores(team,day,opponent,runs)

q5 select S1.team, S1.day
from Scores S1
where not EXISTS

(select *
from Scores S2
where S1.runs=S2.runs
and (S1.team<>S2.team OR

S1.day<>S2.day))

V5 Scores
team
day
runs

 Scores
team
day
runs

SELECT
team
day

q5 : t, d : ∃o.∃r.(S(t, d, o, r) ∧ ¬(∃t2.∃d2.∃o2.∃r2.
(S(t2, d2, o2, r2) ∧ r2 =r ∧ (t2 6= t ∨ d2 6=d))))

V5 : t, d : ∃r.(S(t, d, , r) ∧ ∀t2.∀d2.∀r2.
(S(t2, d2, , r2) ∧ r2 =r ⇒ t2 = t ∧ d2 =d))

Figure 6: Query for “teams and days on which the
team had a run that was neither repeated on another
day nor by another team,” its QueryViz representa-
tion, and their respective translations into FOL.

pating in the query are identical but do not need aliases.
Attributes which are not relevant (here opponent) are not
shown. Also, in this particular case, visualizing disjunctions
can be avoided by using universal quantification.

Theoretical and practical limits. QueryViz focuses
only on set semantics and does not provide visual constructs
for distinct nor outer-joins. The formalism allows for unions
of queries and, with the help of one additional visual con-
struct, for arbitrary nestings of disjunctions; however, the
representation can then become exponentially large in the

560

gradience.com

Fig_webPage

39

3-21-2010

help

help

QueryViz
Y o u r I n p u t

Specify or choose a pre-defined schema

Employee and Department

EMP(eid,name,sal,did)
DEPT(did,dname,mgr)

Specify or choose an SQL Query

Query 8

SELECT e1.name
FROM EMP e1, EMP e2, DEPT d
WHERE e1.did = d.did
AND d.mgr = e2.eid
AND e1.sal > e2.sal

Submit

Q u e r y V i z R e s u l t

Example	

schema	
 	

Example	

query	
 	

Resul1ng	

visualiza1on	
 +	
 ⇒ 	

Figure 7: The online interface to QueryViz will be
accessible from queryviz.com. This simple query asks
for all employees that earn more than their manager.

size of the query and, hence, less helpful for the user than
the original query text (note that disjunctions do not nec-
essarily lead to complicated representations as seen in Ex-
ample 3.2). Our implementation currently does not sup-
port disjunctions, but could be extended to do so in the fu-
ture. Furthermore, QueryViz focuses only on nested queries
in the WHERE clause and currently lacks visual constructs
for groupings and aggregations.

4. DEMONSTRATION SETUP
The QueryViz demonstration will present the visual for-

malism and the algorithm for translating queries. It will
also let users familiarize themselves with the system across
different scenarios. The setup will include a machine con-
nected to the online version and an additional installation
with various user interactions on a local machine.

The online version allows users to visualize existing or
newly defined queries. Figure 7 shows a screenshot. The
workflow and interaction are kept very simple: a user spec-
ifies or chooses an existing schema and a query, the system
then renders the graphical representation of this query.

For the local setup, we will demonstrate QueryViz across
three different scenarios. In each scenario, users have the
option to either use only query text, only QueryViz, or both
side-by-side. They can optionally measure time and com-
pare if they are faster by using QueryViz or not in a multiple-
choice test: (i) browse: Users browse through existing queries

and informally familiarize themselves with the visual con-
structs. The goal is not to look at the formal logical foun-
dations, but at a number of illustrating examples. We will
also have several printed catalogs with example query rep-
resentations that allow several users browsing in parallel.
(ii) search: Users are given a natural language description
of a query. The task is then to find the correct query among
10 queries in minimum time. This scenario closely matches
our main motivating scenario but is difficult to measure on
a large scale. (iii) query interpretation [13]: Users are given
a query in the query language and a printed database with
data filled in. They are asked to find the data asked for
by the query. This scenario has the advantage that, while
it still captures the difference in speed of understanding a
query, it can be scaled: it allows to automatically generate
many random questions and test understanding by the use
of multiple-choice tests [16].

Acknowledgement. We like to thank YongChul Kwon,
Nodira Khoussainova, Magdalena Balazinska and Dan Suciu
for helpful discussions at early stages of this project. This
research is supported in part by NSF grant IIS-0915054.

5. REFERENCES
[1] SQLShare. http://escience.washington.edu/sqlshare.
[2] J. Akbarnejad, G. Chatzopoulou, M. Eirinaki, S. Koshy,

S. Mittal, D. On, N. Polyzotis, and J. S. V. Varman. SQL
QueRIE recommendations. PVLDB, 3(1):1597–1600, 2010.

[3] T. Catarci, M. F. Costabile, S. Levialdi, and C. Batini.
Visual query systems for databases: A survey. J. Vis.
Lang. Comput., 8(2):215–260, 1997.

[4] G. Chatzopoulou, M. Eirinaki, and N. Polyzotis. Query
recommendations for interactive database exploration. In
SSDBM, 2009.

[5] L. M. Haas, J. C. Freytag, G. M. Lohman, and
H. Pirahesh. Extensible query processing in starburst. In
SIGMOD, 1989.

[6] Y. E. Ioannidis. From databases to natural language: The
unusual direction. In NLDB, 2008.

[7] H. V. Jagadish, A. Chapman, A. Elkiss, M. Jayapandian,
Y. Li, A. Nandi, and C. Yu. Making database systems
usable. In SIGMOD, 2007.

[8] N. Khoussainova, M. Balazinska, W. Gatterbauer,
Y. Kwon, and D. Suciu. A case for a collaborative query
management system. In CIDR, 2009.

[9] N. Khoussainova, Y. Kwon, M. Balazinska, and D. Suciu.
Snipsuggest: A context-aware SQL-autocomplete system.
PVLDB, 4(1), 2010.

[10] G. Koutrika, A. Simitsis, and Y. E. Ioannidis. Explaining
structured queries in natural language. In ICDE, 2010.

[11] M. Petre. Why looking isn’t always seeing: Readership
skills and graphical programming. Commun. ACM,
38(6):33–44, 1995.

[12] R. Agrawal et al. The claremont report on database
research. Commun. ACM, 52(6):56–65, 2009.

[13] P. Reisner. Human factors studies of database query
languages: A survey and assessment. ACM Comput. Surv.,
13(1):13–31, 1981.

[14] A. Simitsis and Y. E. Ioannidis. DBMSs should talk back
too. In CIDR, 2009.

[15] S. Spaccapietra. User interfaces; who cares? In VLDB,
1994.

[16] J. D. Ullman. Improving the efficiency of database-system
teaching. In SIGMOD, 2003.

[17] K. V. Vadaparty, Y. A. Aslandogan, and G. Özsoyoglu.
Towards a unified visual database access. In SIGMOD,
1993.

[18] M. M. Zloof. Query-by-example: A data base language.
IBM Systems Journal, 16(4):324–343, 1977.

561

queryviz.com
http://escience.washington.edu/sqlshare

	1 introduction
	2 queryViz overview
	3 A glimpse behind the scenes
	4 Demonstration Setup
	5 References

